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Abstract. We generalise the popular cops and robbers game to multi-
layer graphs, where each cop and the robber are restricted to a single
layer (or set of edges). We show that initial intuition about the best
way to allocate cops to layers is not always correct, and prove that the
multi-layer cop number is neither bounded from above nor below by any
function of the cop numbers of the individual layers. We determine that
it is NP-hard to decide if k cops are sufficient to catch the robber, even
if each layer is a tree plus some isolated vertices. However, we give a
polynomial time algorithm to determine if k cops can win when the rob-
ber layer is a tree. Additionally, we investigate a question of worst-case
division of a simple graph into layers: given a simple graph G, what is
the maximum number of cops required to catch a robber over all multi-
layer graphs where each edge of G is in at least one layer and all layers
are connected? For cliques, suitably dense random graphs, and graphs
of bounded treewidth, we determine this parameter up to multiplicative
constants. Lastly we consider a multi-layer variant of Meyniel’s conjec-
ture, and show the existence of an infinite family of graphs whose multi-
layer cop number is bounded from below by a constant times n/ logn,
where n is the number of vertices in the graph.

Keywords: Cops and robbers, multi-layer graphs, pursuit–evasion games,
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1 Introduction

We investigate the game of cops and robbers played on multi-layer graphs. Cops
and robbers is a 2-player adversarial game played on a graph introduced inde-
pendently by Nowakowski and Winkler [22], and Quilliot [25]. At the start of the
game, the cop player chooses a starting vertex position for each of a specified
number of cops, and the robber player then chooses a starting vertex position for
the robber. Then in subsequent rounds, the cop player first chooses none, some,
or all cops and moves them along exactly one edge to a new vertex. The robber
player then either moves the robber along an edge, or leaves the robber on its
current vertex. The cop player wins if after some finite number of rounds a cop



occupies the same vertex as the robber, and the robber wins otherwise. Both
players have perfect information about the graph and the locations of cops and
robbers. Initially, research focussed on games with only one cop and one robber,
and graphs on which the cop could win were classed as copwin graphs. Aigner
and Fromme [1] introduced the idea of playing with multiple cops, and defined
the cop number of a graph as the minimum number of cops required for the cop
player to win on that graph. Many variants of the game have been studied, and
for an in-depth background on cops and robbers, we direct the reader to [5].

In this paper, we play cops and robbers on multi-layer graphs where each
cop and the robber will be associated with exactly one layer, and during their
respective turns, will move only over the edges in their own layer. While we define
multi-layer graphs formally in upcoming sections, roughly speaking, here a multi-
layer graph is a single set of vertices with each layer being a different (though
possibly overlapping) set of edges on those vertices. The variants we study could
intuitively be based on the premise that the cops are assigned different modes
of transport. For instance, a cop in a car may be able to move quickly down
streets, while a cop on foot may be slower down a street, but be able to quickly
cut between streets by moving through buildings or down narrow alleys.

Extending cops and robbers to multi-layer graphs creates some new variants,
and generalises some existing variants. Fitzpatrick [14] introduced the precinct
variant, which assigns to each cop a subset of the vertices (called their beat).
In the precinct variant, a cop can never leave their beat. This can be mod-
elled as multi-layer cops and robbers by restricting each layer to a given beat.
Fitzpatrick [14] mainly considers the case were a beat is an isometric path,
we allow more arbitrary (though usually spanning and connected) beats/layers.
Clarke [11] studies the problem of covering a graph with a number of cop-win
subgraphs to upper bound the cop number of a graph — again such construc-
tions can be modelled as multi-layer graphs with the edges of each layer forming
a cop-win graph. Another commonly studied variant of cops and robbers defines
a speed s (which may be infinite) such that the robber can move along a path
of up to s edges on their turn [6, Section 3.2]. These can also be modelled as
multi-layer graphs by adding edges between any pair of vertices of distance at
most s that only belong to the layer the robber is occupying.

1.1 Further Related Work

Temporal graphs, in which edges are active only at certain time steps, are some-
times modelled as multi-layered graphs. There has been some work on cops and
robbers on temporal graphs, though generally yielding quite a different game to
the ones we consider here as a cop is not restricted to one layer. In particular,
[3] considers cops and robbers on temporal graphs and when the full temporal
graph is known they give a O(n3T ) algorithm to determine the outcome of the
game where T is the number of timesteps.

Variants of cops and robbers are also studied for their relationships to other
parameters of graphs. For instance, the cop number of a graph G is at most one
plus half the treewidth of G [17]. And if one considers the “helicopter” variant



of cops and robbers, the treewidth of a graph is strictly less than the helicopter
cop number of the graph [29]. Toruńczyk [32] generalises many graph parame-
ters, including treewidth, clique-width, degeneracy, rank-width, and twin-width,
through the use of variants of cops and robbers. We introduce our multi-layer
variants of cops and robbers partially in the hopes of spurring research towards
multi-layer graph parameters using similar techniques.

Recently Lehner, resolving a conjecture by Schröeder [27], showed the cop
number of a toroidal graph is at most three [19]. There is also an interesting
connection between cop number and the genus of the host graph [1, 8, 26, 27].
It remains open whether any such connection can be made in the multi-layer
setting.

1.2 Outline and Contributions

In Section 2 we define multi-layer graphs and multi-layer cops and robbers.
In Section 3 we develop several examples which highlight several counter-

intuitive facts and properties of the multi-layer cops and robbers game. In par-
ticular, we show the multi-layer cop number is not bounded from above or below
by a non-trivial function of the cop numbers of the individual cop layers.

In Section 4 we study the computational complexity of some multi-layer cops
and robbers problems. We show that deciding if a given number of cops can
catch a robber is NP-hard even if each layer is a tree plus some isolated vertices,
but that if only the robber layer is required to be a tree the problem is FPT in
the number of cops and the number of layers of the graph.

In Section 5 we consider an extremal version of multi-layer cop number over
all divisions into layers of a single-layer graph. In particular, for a given single-
layer graph G what is the maximum multi-layer cop number of any multi-layer
graph G when all edges of G are present in at least one layer of G.

In Section 6 we consider Meyniel’s conjecture, which states that the single-
layer cop number is O(

√
|V |) and is a central open question in cops and robbers.

We investigate whether a multi-layer analogue of Meyniel’s conjecture can hold
and, determine the worst case multi-layer cop number up to a multiplicative
O(log n) factor. This contrasts with the situation on simple graphs, where the
worst-case is only known up to a multiplicative n1/2−o(1) factor.

Finally in Section 7 we reflect and conclude with some open problems.
Due to space limitations, most proofs have been omitted. For a complete

version with all proofs, please refer to [13].

2 Definitions and Notation

We write [n] to mean the set of integers {1, . . . , n}, and given a set V we write(
V
2

)
to mean all possible 2-element subsets (i.e., edges) of V . A simple graph is

then defined as G := (V,E) where E ⊆
(
V
2

)
. For a vertex v ∈ V we let dG(v) :=

|{u : uv ∈ E}| be the degree of vertex v in G, and δ(G) := minv∈V (G) dG(v)
denote the minimum degree in a graph G. If, for all v ∈ V , dG(v) = r for some



integer r, we say that G is r-regular. If the exact value of r is not important,
we may just say that G is regular. If, instead, for all v ∈ V , dG(v) ∈ {r, r + 1}
for some integer r, we say that G is almost-regular. The distance between two
vertices u and v in a graph is the length of a shortest path between u and v.

A multi-layer graph (V, {E1, . . . , Eτ}) consists of a vertex set V and a col-
lection {E1, . . . , Eτ}, for some integer τ ⩾ 1, of edge sets (or layers), where for
each i, Ei ⊆

(
V
2

)
. We often slightly abuse terminology and refer to a layer Ei

as a graph; when we do this, we specifically refer to the graph (V,Ei) (i.e., we
always include every vertex in the original multi-layer graph, even if such a ver-
tex is isolated in (V,Ei)). For instance, we often restrict ourselves to multi-layer
graphs where, for each i ∈ [τ ], the simple graph (V,Ei) is connected. We will say
that each layer is connected to represent this notion. Given a multi-layer graph
(V, {E1, . . . Eτ}) let the flattened version of a multi-layer graph, written as fl(G),
be the simple graph G = (V,E1 ∪ · · · ∪ Eτ ).

Cops and robbers is typically played on a simple graph, with one player
controlling some number of cops and the other player controlling the robber.
On each turn, the cop player can move none, some, or all of the cops, however
each cop can only move along a single edge incident to their current vertex. The
robber player can then choose to move the robber along one edge, or have the
robber stay still. The goal for the cop player is to end their turn with the robber
on the same vertex as at least one cop, while the aim for the robber is to avoid
capture indefinitely. If a cop player has a winning strategy on a graph G with k
cops but not with k−1 cops, we say that the graph G has cop number k, denoted
c(G) = k, and that G is k-copwin. Given a multi-layer graph (V, {E1, . . . , Eτ}),
we will say the cop number of layer Ei to mean the cop number of the graph
(V,Ei).

As this paper deals with both simple and multi-layer graphs, as well as cops
and robbers variants played on these graphs, we will use single-layer as an ad-
jective to denote when we are referring to either specifically a simple graph, or
to cops and robbers played on a single-layer (i.e., simple) graph. This extends
to parameters such as the cop number as well.

In this paper we consider the cops and robbers game on multi-layer graphs
and so it will be convenient to define multi-layer graphs with a distinguished
layer for the robber. More formally, for an integer τ ⩾ 1, we use the notation
G = (V, {C1, . . . , Cτ}, R) to denote a multi-layer graph with vertex set V and
collection {C1, . . . , Cτ , R} of layers, where {C1, . . . , Cτ} are the cop layers and
R is the robber layer. In the cops and robber game on G each cop is allocated
to a single-layer from {C1, . . . , Cτ}, and the robber to R, and each cop (and
the robber) will then only move along edges in their respective layer. We do not
allow any cop or the robber to move between layers. We note that this is a slight
abuse of notation, and that both (V, {C1, . . . , Cτ , R}) and (V, {C1, . . . , Cτ}, R)
both denote a multi-layer graphs with the the same collection {C1, . . . , Cτ}∪{R}
of edge sets, the latter has designated layers for the robber/cops whereas the
former does not. We will use Ei to denote edge sets in multi-layer graphs that
do not have a cop or robber labels.



A setting that appears often is R = C1 ∪ · · · ∪ Cτ , where the robber can
use any edge that exists in a cop layer. This setting is given by the multi-layer
graph G := (V, {C1, . . . , Cτ}, C1 ∪ · · · ∪ Cτ ), but for readability we will instead
use G := (V, {C1, . . . , Cτ}, ∗) to denote this.

We define several variants of cops and robbers on multi-layer graphs, however
in each of them we have an allocation k := (k1, . . . , kτ ) of cops to layers, such
that there are ki cops on layer Ci. We will often use k :=

∑
i ki to refer to the

total number of cops in a game.

We now define multi-layer cops and robbers: a two player game played with an
allocation k on a multi-layer graph G = (V, {C1, . . . , Cτ}, R). The two players are
the cop player and the robber player. Each cop is assigned a layer such that there
are exactly ki cops in layer Ci. The game begins with the cop player assigning
each cop to some vertex, and then the robber player assigns the robber to some
vertex. The game then continues with each player taking turns in sequence,
beginning with the cop player. On the cop player’s turn, the cop player may
move each cop along one edge in that cop’s layer. The cop player is allowed to
move none, some, or all of the cops. The robber player then takes their turn,
either moving the robber along one edge in the robber layer or letting the robber
stay on its current vertex. This game ends as a victory for the cop player if, at
any point during the game, the robber is on a vertex that is also occupied by
one or more cops. The robber wins if they can evade capture indefinitely.

We can now begin defining our problems, starting with Allocated multi-
layer cops and robber.

Allocated multi-layer cops and robber
Input: A tuple (G,k) where G = (V, {C1, . . . , Cτ}, R) is a multi-layer graph
and k is an allocation of cops to layers.
Question: Does the cop player have a winning strategy when playing multi-
layer cops and robbers on G with allocation k?

We also consider a variant in which the cop player has a given number k of
cops, but gets to choose the layers to which the cops are allocated.

Multi-layer cops and robber
Input: A tuple (G, k) where G = (V, {C1, . . . , Cτ}, R) is a multi-layer graph
and k ⩾ 1 is an integer.
Question: Is there an allocation k with

∑
i ki = k such that (G,k) is yes-

instance for Allocated multi-layer cops and robber?

Lastly we consider Multi-layer cops and robber with free layer
choice, a variant of Multi-layer cops and robber in which, before the
game is played, the layers in the multi-layer graph are not assigned to being
either cop layers or robber layers. Instead the layers are simply labelled E1

through Eτ , and in this variant the cop player first allocates each cop to one
layer, and then the robber player is free to allocate the robber to any layer.



Multi-layer cops and robber with free layer choice
Input: A tuple (G, k) where G = (V, {E1, . . . , Eτ}) is a multi-layer graph and
k ⩾ 1 is an integer.
Question: Is there an allocation k with

∑
i ki = k such that for every j,

((V, {E1, . . . , Eτ}, Ej),k) is a yes-instance for Multi-layer cops and rob-
ber?

We say that the multi-layer cop number of a multi-layer graph G is k if (G, k)
is a yes-instance for Multi-layer cops and robber but (G, k − 1) is a no-
instance for Multi-layer cops and robber. We will denote this with mc(G).
We round out this section with a number of basic observations.

Proposition 1. Let G = (V, {C1, . . . , Cτ}, R) and G′ = (V, {C1, . . . , Cτ}, R′) be
any two multi-layer graphs where R ⊆ R′ ⊆

(
V
2

)
. If (G, k) is a no-instance to

Multi-layer cops and robber, then (G′, k) is a no-instance to Multi-layer
cops and robber. Consequently, mc(G) ⩽ mc(G′).

Proof. To win, the robber on G′ uses the strategy from G. The robber can execute
this strategy as any edge in R′ is in R. Since the cop layers have no added edges,
the strategy must be robber-win as else the cops would win on G. ⊓⊔

Proposition 2. Let G = (V, {C1, . . . , Cτ}, R) and G′ = (V, {C ′
1, . . . , C

′
τ}, R) be

any two multi-layer graphs that satisfy Ci ⊆ C ′
i for every i ∈ [τ ]. If (G, k) is

a yes-instance to Multi-layer cops and robber, then (G′, k) is also a yes-
instance to Multi-layer cops and robber.

Proof. To win, the cops on G′ use the strategy from G. As no edge has been
removed from G to create G′, this must still result in the cops winning. ⊓⊔

Proposition 3. Let G = (V, {C1, . . . , Cτ}, ∗) be a multi-layer graph. If (G, k)
is a yes-instance for Multi-layer cops and robber, then, letting Ei = Ci

for each i ∈ [τ ], ((V, {E1, . . . , Eτ}), k) is a yes-instance for Multi-layer cops
and robber with free layer choice.

Proof. Immediate from the problem definitions and Proposition 1. ⊓⊔

3 Counter Examples & Anti-Monotonicity Results

In this section we provide some concrete examples of cops and robbers on multi-
layer graphs illustrating some peculiarities of the game that may seem counter-
intuitive. We begin with the following that states that it is sometimes beneficial
to put multiple cops on the same layer, and leave other layers empty.

Theorem 1. For any n ⩾ 4 there exists a multi-layer graph (V, {CH , CV }, ∗)
on n vertices such that a cop player can win with two cops if both cops are on
CH , or if both cops are on CV , but the robber player can win if one cop is on
CV and the other is on CH .



It is natural to ask if, given some multi-layer graph G = (V, {C1, . . . , Cτ}, R),
the multi-cop number of G is bounded from below by the minimum cop-number
of a single cop layer; namely, does mc(G) ⩾ mini c((V,Ci)) hold? Observe that,
if |V | = n and we let Sn denote the star graph on n vertices, any multi-layer
graph G = (V, {E(Sn), C2, . . . , Cτ}, R) has cop number 1, as the cop can start
on the centre of the star and reach any other vertex in one move. This is not
enough resolve the question directly, however in the next result we build on this
idea to show a general bound of the form mc(G) = Ω(mini c((V,Ci))) does not
hold.

Proposition 4. For any c ⩾ 2 there exist graphs G1 = (V,E1) and G2 = (V,E2)
such that c(G1) , c(G2) ⩾ c and mc((V, {E1, E2}, ∗)) = 2.

The idea of the proof is to take two n-vertex graphs with cop number c and
add a n − 1 pendent vertices from a single vertex in each graph (un and vn
respectively). The graphs are then identified as cop layers in such a way that a
cop at un can police half the vertices, and a cop at vn can cover the other half.
See Figure 1 for an illustration. In fact, in such a construction the two cops will
catch the robber after at most one cop move. As a result, the edges present in
the robber layer are irrelevant and we have the following corollary.

Corollary 1. For any c ⩾ 2 there exist graphs G1 = (V,E1) and G2 = (V,E2)
such that c(G1) , c(G2) ⩾ c, and for any set of edges R ⊆

(
V
2

)
,

mc((V, {E1, E2}, R)) ⩽ 2.

un

G2vn

G1

Fig. 1: Illustration of the construction in the proof of Proposition 4. The dotted
edges signify an identification of the two end points of that edge.

We now consider the reverse inequality: is the multi-layer cop number bounded
from above by a function of the cop numbers of the individual layers? If, in a
multi-layer graph G = (V, {C1, . . . , Cτ}, R), the robber layer is a subset of one of
the cop layers, i.e. R ⊂ Ci for some i ∈ [τ ], then mc(G) ⩽ c((V,Ci)) as the cop
player can allocate c((V,Ci)) cops to layer i, ignoring all other cop layers. The
same reasoning gives an upper bound of

∑
i∈[τ ] c((V,Ci)) on the cop number in

the ‘free choice layer’ variant of the game. Thus, in this special case an upper
bound that depends only on the cop numbers of individual layers does exist.
However the next result shows that this is not the case in general.



Theorem 2. For any positive integer k, there exists a multi-layer graph G =
(V, {C1, C2}, R) on O(k3) vertices such that each of (V,R), (V,C1), and (V,C2)
are connected, c((V,R)) ⩽ 3, c((V,Ci)) ⩽ 2 for i ∈ {1, 2}, and mc(G) ⩾ k.

4 Complexity Results

In this section we will examine multi-layer cops and robbers from a computa-
tional complexity viewpoint. For a background on computational complexity,
we point the reader to [30]. First note that as determining the cop-number of
a simple graph is EXPTIME-complete [18], Multi-layer cops and robber
with free layer choice is also EXPTIME-complete by the obvious reduc-
tion that creates a multi-layer graph with one layer from a simple graph. The
same reduction, and the fact that, unless the strong exponential time hypothesis
fails3, determining if a graph is k-copwin requires Ω(nk−o(1)) time [9], we also
get that Multi-layer cops and robber with free layer choice requires
Ω(nk−o(1)) time.

An algorithm that determines whether a simple graph G is k-copwin in
O(knk+2) time is given in [23]. Petr, Portier, and Versteegen show this by first
constructing a state graph — a directed graph H wherein each vertex of H cor-
responds to a state of a game of cops and robbers played on the original graph
G. They then give an O(knk+2) algorithm for finding all cop-win vertices of H,
where a vertex is cop-win if the corresponding state either is a winning state
for the cops, or can only lead to a winning state for the cops. We adapt their
construction by only creating arcs of H where the move of a given cop or robber
is allowed (i.e., the edge in the multi-layer graph exists in the same layer as the
cop or robber that is moving). By doing this we obtain the following.

Theorem 3. Allocated multi-layer cops and robber can be solved in
O(k2n2k+2).

Note that τ , the number of layers, does not appear in the above as if τ ⩽ k
then any dependence on τ is absorbed by the dependence on k, and if k < τ then
at least τ − k layers must have zero cops allocated to them and can be ignored.

By taking an instance of dominating set G = (V,E), and creating for each
vertex v ∈ V a layer Ev containing every edge incident to v, we create an
instance of Multi-layer cops and robber with free layer choice that
has a winning strategy for k cops if and only if G has a dominating set of size
k, leading to the following.

Theorem 4. Multi-layer cops and robber with free layer choice is
NP-hard, even if each layer is a tree plus some isolated vertices.

Note that the input size to Multi-layer cops and robber with free
layer choice is the number of bits required to represent both the underlying
graph and each of the layers.

3 See [12, Chapter 14] for background on the strong exponential time hypothesis.



If it is only the robber that is limited to a tree, however, then determining if
k cops can win is FPT in the number of cops and number of layers in the graph.
In particular, this result applies even if the layers are not connected. We obtain
this result by characterising whether the robber can win based on the existence
of edges in the robber layer that cops can easily patrol.

Theorem 5. Given a multi-layer graph G = (V, {C1, . . . , Cτ}, R), if R is a tree,
then Multi-layer cops and robber on G can be solved in time O(f(k, τ) ·
poly(n)), where k is the number of cops, τ is the number of layers of G, f is a
computable function independent of n, and poly(n) is a fixed polynomial in n.

The next result follows immediately from the proof technique used to prove
Theorem 5.

Corollary 2. Given a multi-layer graph G = (V, {C1, . . . , Cτ}, R), if R is a tree,
and each cop layer is connected, then mc(G) ⩽ 2.

5 Extremal Multi-Layer Cop-Number

In this section we study, for a given simple connected graph G = (V,E), the
extremal multi-layer cop number of G. This is the multi-layer cop number max-
imised over the set of all multi-layer graphs with connected cop-layers, which
when flattened give G. More formally, for given connected graph G = (V,E), if
we define the set

L(G) = {(V, {C1, . . . , Cτ}, ∗) : E = C1 ∪ · · · ∪ Cτ

and for each i ∈ [τ ], (V,Ci) is connected},

then the extremal multi-layer cop-number of G is given by

emcτ (G) = max
G∈L

mc(G) .

We generalise two tools for bounding the cop number of graphs to the set-
ting of multi-layer graphs; (1, k)-existentially closed graphs [7] and bounds by
domination number. See the arXiv version of this paper [13] for more details on
the former method; here we will now outline our use of dominating sets.

Let G = (V, {E1, . . . , Eτ}) be a multi-layer graph (without designated layers).
Amulti-layer dominating set in G is a setD ⊆ V ×{1, . . . , τ} of vertex-layer pairs
such that for every v ∈ V , either (v, i) ∈ D for some i, or there is a (w, i) ∈ D
such that w ∈ V and vw ∈ Ei. We define the domination number γ(G) of G
to be the size of a smallest multi-layer dominating set in G. Note that if G has
a single-layer this definition aligns with the traditional notion of dominating
set, which justifies the overloaded notation. It is a folklore result that the cop
number is at most the size of any dominating set in the graph, this also holds in
the multi-layer setting.

Theorem 6. Let G := (V, {E1, . . . , Eτ}) be any multi-layer graph and G′ :=
(V, {E1, . . . , Eτ},

(
V
2

)
). Then, mc(G′) ⩽ γ(G).



Proof. Let D be any multi-layer dominating set of size |D| = γ(G) and for each
(v, i) ∈ D place one cop in layer i at the vertex v. The result now follows as if
the robber is at an any vertex then they are adjacent to a cop in some layer and
so the robber will be caught after the cops first move. ⊓⊔

We now introduce the parameter δ(G) which is an analogue of minimum
degree for a multi-layer graph G = (V, {E1, . . . , Eτ}). This is given by

δ(G) := min
v∈V

∑
i∈[τ ]

d(V,Ei)(v). (1)

Using this notion we prove a bound on the domination number of a multi-
layer graph, the proof is based on a classic application of the probabilistic method
[2, Theorem 1.2.2].

Theorem 7. Let G = (V, {E1, . . . , Eτ}) be any multi-layer graph. Then,

γ(G) ⩽ nτ

τ + δ(G)
·
(
ln

(
τ + δ(G)

τ

)
+ 1

)
.

Note that there are least two other sensible definitions of ‘multi-layer mini-
mum degree’, namely the minimum degree of each layer mini∈[τ ] minv∈V d(V,Ei)(v),
and minimum number of neighbours within any layer δ(fl(G)). Our definition of
δ(G) above in (1) can be thought of as the ‘minimum number of edges incident
in any layer’, this is arguably a less natural notion than δ(fl(G)) however it gives
a better bound in our application (Theorem 7), in particular.

Proposition 5. For any multi-layer graph G we have δ(fl(G)) ⩽ δ(G).

Returning to extremal multi-layer cop numbers, for a complete graph we
obtain Theorem 8. The upper bound we arrive at by placing all τ cops on a
single vertex v; as each edge of Kn must be in some layer, there is no vertex that
is not incident with v in some layer. The lower bound requires more work and
relies on constructing cop layers with no overlap by combining colour classes of
an edge colouring of the clique due to Sofier [31].

Theorem 8. Let n ⩾ 1, 1 ⩽ τ < ⌊n
2 ⌋ be integers. Then, ⌈ τ

10⌉ ⩽ emcτ (Kn) ⩽ τ .

We now consider the extremal multi-layer cop number of the binomial random
graph Gn,p. For any integer n ⩾ 1, this is the probability distribution over all
n-vertex simple graphs generated by sampling each possible edge independently
with probability 0 < p = p(n) < 1, see [4] for more details. The following result
shows that, for a suitably dense binomial random graph Gn,p, with probability
tending to 1 as n → ∞, emcτ (Gn,p) = Θ(τ log(n)/p). The single-layer cop
number of Gn,p in the same range is known to be Θ(log(n)/p) [7], so in some
sense our result generalises this result.

Theorem 9. For ε > 0, if n1/2+ε ⩽ np = o(n), and 1 ⩽ τ ⩽ nε then,

P
(

ε

10
· τ · lnn

p
⩽ emcτ (Gn,p) ⩽ 10 · τ · lnn

p

)
⩾ 1− e−Ω(

√
n).



The upper bound in the proof of Theorem 9 follows from Theorems 6 and
7, whereas the lower bound follows by independently choosing cop layers which
are each distributed as a random graph with edge probability Θ(p/τ) and then
applying a generalised form of the existential closure technique developed in [7].
See [24] for results on the cop number of Gn,p for other ranges of p.

The extremal multi-layer cop number of a graph G is also bounded from
above by the treewidth of G.

Theorem 10. For any graph G := (V,E), emcτ (G) ⩽ tw(G). Furthermore,
these cops can placed in any layers and still capture the robber.

6 Multi-Layer Analogue of Meyniel’s Conjecture

For the classical cop number, Meyniel’s Conjecture [15] states that O(
√
n) cops

are sufficient to win cops and robbers on any graph G. After a sequence of results

[10, 15, 16, 20, 28] the current best bound stands at n · 2−(1−o(1))
√

log2 n, see [5,
Chapter 3] for a more detailed overview.

It is natural to explore analogues of Meyniel’s Conjecture for the multi-layer
cop number. Namely, what is the minimum number of cops needed to patrol any
multi-layer graph with τ connected layers? Our results for the clique show that
if τ is allowed to be arbitrary then no bound better than O(n) can hold. We
conjecture that this is not the case when the number of layers is bounded.

Conjecture 1. For any fixed integer τ ⩾ 1 and collection (V,E1), . . . , (V,Eτ ) of
connected graphs where |V | = n, we have

mc((V, {E1, . . . , Eτ}, ∗)) = o(n).

Observe that the connected assumption is necessary in Conjecture 1 if we do
not have divergent minimum degree, as shown by the example with two cop
layers given by two edge disjoint matchings who’s union forms an even cycle.
This conjecture might seem very modest in comparison to Meyniel’s conjecture,
however the following result shows that it would be almost tight.

Theorem 11. For any positive integer n there is a n-vertex multi-layer graph
G = (V, {C1, C2, C3}, ∗) such that |V | = Θ(n), each cop layer is connected and
has cop-number 2, and

mc(G) = Ω

(
n

log n

)
.

The construction in Theorem 11 starts with a 3-edge coloured cubic expander
graph X on N vertices, where each color class is a cop layer. The vertices of X
are then connected to the leaves of a star that has been subdivided Θ(logN)
many times — these can be used by all cops. The idea is that k cops can police
at most 2k vertices of X within Θ(logN) steps as it takes each cop this long to
change location in X (via the arms of the star). If k = Θ(N) is chosen to be a
suitably small but constant fraction of N , then even with the vertices policed by



the cops removed there is still an expander subgraph of X not adjacent to any
cops. The robber can then use this expander subgraph to change position before
any cop can threaten them.

Many of the current approaches to Meyniel’s Conjecture use some variation
the fact that a single cop can guard any shortest path between any two vertices.
For example the first step of the approach in [28] is to iteratively remove long
geodesics until the graph has small diameter (following this a more sophisti-
cated argument matching randomly placed cops to possible robber trajectories
is applied). What makes Conjecture 1 difficult to approach is that, even for two
layers, a shortest path in the flattened graph fl(G) may not live within a single
cop layer. We note that [16] use a different approach based on expansion, their
approach is more versatile however the authors were unable to apply it in the
multi-layer setting.

This suggests a new or more refined approach is needed. However, by a direct
application of Theorems 6 and 7, using a simple dominating set approach we can
prove Conjecture 1 for multi-layer graphs with diverging minimum degree.

Proposition 6. For any n-vertex multi-layer graph G = (V, {E1, . . . , Eτ}) sat-

isfying δ(G)/τ → ∞ as n → ∞, we have mc
((

V, {E1, . . . , Eτ},
(
V
2

)))
= o(n).

7 Conclusion and Open Problems

We studied the game of cops and robbers on multi-layer graphs, via several
different approaches, including concrete strategies for certain graphs, the con-
struction of counter-intuitive examples, algorithmic and hardness results, and
the use of probabilistic methods and expanders for extremal constructions. We
find that the multi-layer cop number cannot be bound from above or below by
(non-constant) functions of the cop numbers of the individual layers. We bound
an extremal variant for cliques and dense binomial random graphs (extending
some tools from the single layer case along the way). We also find that a naive
transfer of Meyniel’s conjecture to the multi-layer setting is not true: there are
multi-layer graphs which have multi-layer cop number in Ω(n/ log n). Algorith-
mically, we find that even if each layer is a tree plus some isolated vertices, the
the free layer choice variant of the problem remains NP-hard. Positively, we find
that the problem can be resolved by an algorithm that is FPT in the number of
cops and layers if the layer the robber resides in is a tree.

We are hopeful that our contribution will spark future work in multi-layer
variants of cops and robbers, and suggest a number of possible open questions:

We were not able to generalise some frequently used tools from single-layer
cops and robbers: for example, we have no useful notion of a corner, or a retract,
nor dismantleability - we are hopeful that such tools may exist.

We have made some progress on the parameterised complexity of our prob-
lems, but have only considered a limited set of parameters and have not con-
sidered any parameter that constraints the nature of interaction between the



layers: if we, for example, require that the layers are very similar alongside other
restrictions does that impact the computational complexity of our problems?

Single-layer cops and robbers has been very successful as a tool for defining
useful graph parameters of simple graphs, and we ask whether multi-layer cops
and robbers could be used to define algorithmically useful graph parameters.

Some of our bounds and extremal results are unlikely to be tight in number
of layers or with respect to other graph characteristics: can they be improved?

Is the extremal multi-layer cop number ofGn,p always Θ(τ ·c(Gn,p)) w.h.p. for
any p? Of particular is whether this holds even in the ‘zig-zag’ regime [21]?

While we showed that a naive adaptation of Meyniel’s conjecture to our
multi-layer setting fails, it is still possible that o(|V |) cops are sufficient for a
bounded number of connected layers. We have shown this for a special case
related to degree: is it true in general?

Finally, while we introduced a particular notion of multi-layer dominating
set for our use in proving other results (inspired by similar ideas in single-layer
cops and robbers), we suggest that this multi-layer graph characteristic may also
be interesting in its own right, in particular for algorithms for other problems
on multi-layer graphs.
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