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ABSTRACT (250 words, max 250) 

Background 

With global adoption of CT lung cancer screening, there is increasing interest to use artificial 

intelligence (AI) deep learning methods to improve the clinical management process. To enable 

AI research using an open source, cloud-based, globally distributed, screening CT imaging 

dataset and computational environment that are compliant with the most stringent 

international privacy regulations that also protects the intellectual properties of researchers, 

the International Association of the Study of Lung Cancer (IASLC) sponsored development of 

the Early Lung Imaging Confederation (ELIC) resource in 2018. The objective of this report is to 

describe the updated capabilities of ELIC and illustrate how this resource can be utilized for 

clinically relevant AI research. 

Methods 

In this second Phase of the initiative, metadata and screening CT scans from two time points 

were collected from 100 screening participants in seven countries. An automated deep learning 

AI lung segmentation algorithm, automated quantitative emphysema metrics, and a 

quantitative lung nodule volume measurement algorithm were run on these scans. 

Results 

A total of 1,394 CTs were collected from 697 participants. The LAV950 quantitative emphysema 

metric was found to be potentially useful in distinguishing lung cancer from benign cases using 

a combined slice thickness ≥ 2.5 mm. Lung nodule volume change measurements had better 

sensitivity and specificity for classifying malignant from benign lung nodules when applied to 

solid lung nodules from high quality CT scans. 

Conclusion 

These initial experiments demonstrated that ELIC can support deep learning AI and quantitative 

imaging analyses on diverse and globally distributed cloud-based datasets.  
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INTRODUCTION (3932 words) 

Lung cancer is the leading cause of cancer deaths globally with over 1.8 million annual 

deaths (1). At 22%, the five-year net survival for lung cancer is among the lowest of all types of 

cancer (2). Low-dose computed tomography (LDCT) has demonstrated 20-39% of lung cancer 

mortality reduction (3-9). This has led to the national roll out of LDCT screening globally (10). To 

optimize the delivery of lung cancer screening, there is increasing interest to use artificial 

intelligence (AI) deep learning methods to discriminate malignant versus benign lung nodules, 

determine biological behavior to personalize screening intervals and improve risk prediction 

among people with negative screens (i.e., with no or only small nodules) (11-16). These studies 

are usually limited to relatively small numbers of cases aggregated from screening participants 

at a regional level. To date, the limited availability of large collections of high-quality screening 

cases may not fully reflect the actual diversity of screening participants and types of CT 

scanners deployed globally for the lung cancer screening process.  

To address the need of an open source, screening CT imaging dataset for AI research 

that meets the increasingly stringent privacy regulations and the need to protect the 

intellectual properties of researchers, the International Association for the Study of Lung 

Cancer (IASLC) initiated the Early Lung Imaging Confederation (ELIC) project in 2018 to develop 

a globally distributed and cloud-based database and computational resource for AI research 

(17). ELIC was designed to allow regional lung cancer screening programs to securely make their 

anonymized lung cancer screening CT scans and metadata available for computational analysis 

by global researchers and algorithm developers without transferring the data outside their 

region. Contributors to this resource are provided tools so they can make their screening 

participants’ clinical information de-identified and their CT scans can only be quantitatively 

analyzed to generate analysis results within the secure ELIC environment; the CT scans 

themselves cannot be downloaded or used for other purposes. Similarly, ELIC is designed to 

provide a strict assurance to algorithm developers that their algorithms and algorithm results 

are secure and cannot be obtained or used by other parties. Other federated medical imaging 

data and computational environments exist (18,19), but they do not provide both assurances. 

Some of the existing resources such as the National Lung Screening Trial repository or The Lung 
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Image Database Consortium image collection (LIDC-IDRI)  (https://ieee-

dataport.org/documents/lung-image-database-consortium-image-collection-lidc-idri) are easily 

accessible and offer researchers the opportunity to download data collections and freely test 

their algorithms. However, some of the CT scanners and image acquisition parameters are not 

consistent with current standards. The location of the malignant nodules may not be clearly 

annotated, nodule follow-up data are not available and clinical data may not be continuously 

updated. There is a need for continuously updated data due to changing lung cancer screening 

entrance criteria, CT scanner technology, and population exposures over time. The intent of 

ELIC is to provide a continuously updated set of high-quality CT lung cancer screening datasets 

that will be useful to lung cancer researchers and AI developers for algorithm performance 

evaluation. 

To illustrate how this globally distributed CT screening imaging resource can be utilized 

to advance AI research, we applied both deep learning AI algorithms and traditional image 

processing algorithms to the ELIC dataset.  

METHODS 

ELIC Structure 

ELIC uses a hub and spoke architecture such that each clinical site uploads anonymized 

data to a spoke cloud instance. This cloud instance is a virtual computer located in their local 

region. Algorithm developers can upload their AI or quantitative analysis algorithms to the ELIC 

hub cloud instance which is distributed to spokes to run against spoke data when an 

experiment is started. Specification documents that explain the ELIC system, how a spoke can 

upload clinical datasets to ELIC, and how an algorithm developer can upload and run an 

algorithm can be found in the ELIC website (https://www.iaslc-elic.org/). When ELIC starts an 

experiment, the algorithm, encapsulated in a Docker virtual machine, is sent to each spoke and 

the spoke cloud instance then spawns local cloud instances (typically 5 to 10) to run the 

algorithm on the datasets. This approach allows ELIC to analyze spoke data collections with two 

levels of parallelization, one across the spoke instances and another across any number of local 

cloud computing instances. Another benefit of this approach is that ELIC can easily scale at any 
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time to perform very large and demanding computational analyses that would be extremely 

difficult to achieve if actual computing hardware were assembled for an analysis. 

A large number of advances have been made to ELIC since our initial description of the 

first phase of the project (17) resulting in a fully functional and useful cloud based ELIC 

environment. First, an open-source de-identification and data curation tool 

(https://github.com/johnperry/CTLCDeidentifier)(20) was modified to support the specific data 

collection and quality control requirements of ELIC. This version not only performs 

deidentification of CT DICOM images but it also helps a site prepare/curate metadata (e.g. 

location, measurement, and characteristics of lung nodules, lung cancer status, lung cancer 

subtype etc.) for submission to ELIC. This enhanced CTP DICOm deidentifier had the benefit of 

helping sites more quickly and easily prepare deidentified data in a common format and also 

helped catch data collection issues early in the curation process before the data was uploaded 

to ELIC. Numerous additional enhancements were made to make ELIC more maintainable, 

efficient, and secure. To better support deep learning AI developers, ELIC was modified to allow 

for using GPU processing, which is commonly used to accelerate deep learning algorithms. 

In this second phase of the initiative, ELIC was populated with anonymized lung cancer 

screening cases from seven globally distributed institutions located in Vancouver, Ishikawa, 

Milan, Porto Alegre, Perth, Gdansk, and New York. Institutional Review Board approval was 

obtained at each spoke site for these anonymized cases. Each site was asked to provide 100 

lung cancer screening cases at two time points where 25 cases were confirmed early lung 

cancers, 25 cases each had no nodules and no cancer, and 50 cases each with at least one non-

malignant nodule. The second scan for lung cancer cases had to be obtained prior to any 

treatment. Each CT lung cancer screening case was provided with metadata describing the case 

including the image acquisition protocol, the coordinates of lung nodules, the diameter of each 

nodule, and the nodule type (solid, sub-solid or part-solid). The lung cancer status of the nodule 

at the time of data submission to ELIC as determined by the donating institutions was used as 

the source of clinical ground truth for all analyses reported in this manuscript. In addition, basic 

patient demographic information such as age, sex, smoking status, were also provided. All data 

was represented with nomenclature and data values consistent with the data dictionary 
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(available at http://va-pals.org) used by the open source VAPALS-ELCAP lung cancer screening 

management system (21).  

Image analysis 

Automated analysis of the ELIC LDCT lung cancer screening cases was performed with the 

following deep learning AI methods and quantitative imaging algorithms: 

A.   The presence of emphysema on LDCT has been reported as an independent risk factor for 

lung cancer (22). To evaluate the potential for quantitative CT emphysema metrics to help 

differentiate lung cancer cases from benign cases, we evaluated the mean ratio of quantitative 

measurement values (mean HU, median HU, Std. Dev. HU, Perc15 (23), LAV950 (24)) between 

lung cancer cases and non-lung cancer cases within the lungs of the participants in the ELIC 

dataset. For example, the mean volume in each lobe was calculated for the lung cancer cases 

and divided by the mean volume for each lobe in the non-cancer cases. Then the 5 lobe volume 

ratios were averaged to arrive at a mean lung volume ratio between the lung cancer cases and 

the non-cancer cases. A higher emphysema metric ratio signifies that the lung cancer cases had 

a higher metric value than the non-lung cancer cases whereas a lower ratio metric value was 

produced when the lung cancer cases had a lower ratio value than the non-lung cancer cases. A 

measurement ratio of near 1.0 signifies that the emphysema metric did not differ between the 

two types of cases. The goal of this analysis is to identify which emphysema metric was better 

associated with an increased risk for the eventual development of lung cancer, which would 

result in a ratio metric significantly above or below a ratio value of 1.0.  

To achieve this, we first applied a deep learning AI CT lung segmentation algorithm that 

produced lung and lobe segmentation masks. Figure 1 shows the result of overlaying lobe 

segmentation masks over the lung region in an ELIC case. This deep learning lung segmentation 

algorithm was accelerated by using the GPU processing capabilities available on Amazon Web 

Services cloud servers.  

The AI lung segmentation algorithm in this study used PyTorch (25) and nnUNet (26), two 

widely used deep learning frameworks. The network uses deep supervision, instance 

normalization, and a LeakyReLU. Images are predicted with a sliding window using overlapping 
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patches with a 50% overlap and gaussian weighted softmax aggregation in the overlap regions. 

The algorithm was run on spoke spawned AWS cloud server instances with GPU hardware 

capabilities. 

B. A semi-automated quantitative CT lung nodule volume algorithm derived from the open 

source Accumetra Lesion Sizing Toolkit (ACM-LSTK) (27) (https://github.com/accumetra/ACM-

LSTK) was run on all solid lung nodule locations provided the radiologist at each site. This 

algorithm was designed to support volume measurement of small solid lung nodules with a 

minimum diameter of 5.0 mm that met the Quantitative Imaging Biomarkers Alliance (QIBA) CT 

small lung nodule profile requirement such as a slice thickness of ≤ 1.25mm (28). The volume of 

the primary lung nodule for each case was independently evaluated at each of two time points 

and subtracted yielding a volumetric change in mm3 and as a percentage of the volume of the 

nodule at the first time point. The QIBA minimum nodule growth table based on nodule size 

was used to determine if a lung nodule had grown beyond what can be accounted for due to 

imaging and software measurement error (27). As we had previously found that quantitative 

assessment of small nodules improved with the rigor of the image acquisition quality, we 

stratified the initial CT images collected in ELIC based on acquisition paraments to evaluate if 

this variability affected the outcomes of the AI evaluations.   

Data Subsets 
 

The clinical demographic information of the lung cancer and non-lung cancer cases are 

shown in Table 1. Table 2 shows the CT scanners and image acquisition parameters mainly used 

to acquire data contributed to ELIC by each spoke. Figure 2 provides a flow diagram showing 

how the lung cancer cases and non-cancer cases were used to evaluate a deep learning AI lung 

segmentation and emphysema measurement analysis and a quantitative lung nodule volume 

change algorithm. The AI lung lobe segmentation algorithm was run against 168 lung cancer 

cases and 529 non-cancer cases resulting in successful lung segmentation and measurement 

results for 139 lung cancer cases and 482 non-cancer cases (data subset 1). The cases excluded 

from data subset 1 had DICOM CT image data issues preventing 3D analysis with the algorithms 

we used such as DICOM CT image series that had changing CT slice thicknesses and missing CT 
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slices. Most AI and quantitative imaging algorithms require a regularly spaced rectilinear array 

of CT HU data values on which to operate. Thus, having gaps and changes in the input data 

generally prevents automated analysis for most AI and quantitative imaging algorithms. 

To create data subset 2 suitable for assessing the performance of a solid lung nodule 

volume algorithm, more data exclusions were needed: 

• Cases where CT scan slice thickness > 1.25 mm 

• Cases where CT scan slice spacing > CT scan slice thickness 

• Cases consisted of part-solid and nonsolid lung nodules 

• Cases where there was a problem with running on the data 

After applying these exclusions, data set 2 included 44 (26.2%) lung cancer cases and 134 

(25.3%) non-cancer cases. 

To further evaluate the performance of semi-automated lung nodule volume change 

algorithm on the highest CT image quality data in ELIC, we further eliminated the following 

cases: 

• Cases where CT slice thickness > 1.0 mm  

• Cases where reconstruction kernel edge enhancement (28) was very high 

• Cases where scanning interval was < 120 days 

• Cases where very poor segmentation results were encountered.  

This resulted in a data subset 3, consisting of 18 (12.9%) lung cancer cases and 63 (11.9%) non-

cancer cases to assess the performance of the semi-automated solid lung nodule volume 

change algorithm with high CT image quality data.  

Governance 

ELIC is governed by two committees made of members from the IASLC Board of 

Directors, Committees, and contributing institutions. The ELIC Governance Committee is 

charged with setting the strategic direction of ELIC and ensuring alignment of business and 

governance policies with the overarching goals of ELIC. The ELIC Scientific Committee is 
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responsible for ensuring the scientific and technical aims of ELIC are accomplished by 

developing and deploying experiments for the ELIC infrastructure.  

ELIC is currently in the proof-of-concept phase, thus members of the ELIC Scientific 

Committee are the only researchers able to access the ELIC environment; however, prior to 

making ELIC widely available the ELIC Governance Committee will be tasked with creating a 

review and approval process for scientific proposals and developing payment structure that is 

cost-neutral for the IASLC.   

RESULTS 

In the 697 CT screening cases, 44.3% of these cases were female and 15.5% were from 

individuals who have never smoked, 40.5% had smoked in the past, and 44.1% were still 

smoking. The mean and standard deviation for age, pack years, and number of lung nodules 

was 62.8 ± 8.3, 38.1 ±27.8, and 1.3 ±1.3, respectively.  

The AI lung lobe segmentation algorithm was run on all ELIC cases resulting in successful 

lung lobe segmentation and emphysema measurement results for 139 lung cancer cases and 

482 non-cancer cases (data subset 1). Analysis of the emphysema metric data collected 

indicated that LAV950 applied to thicker slice thickness data had the greatest potential to 

separate lung cancer cases from non-lung cancer cases, among the emphysema metrics tested. 

Table 3 lists the spokes from lowest slice thickness to highest slice thickness and the 

measurement ratios for all the emphysema metrics evaluated. This preliminary study data 

shows that LAV950 performed better than all other metrics in scans with a slice thicknesses > 

1.25 mm. 

Table 4 shows the mean volume change and the Coefficient of Variation (COV) for 

benign versus malignant solid lung nodules in data subset 2. Benign nodules either showed 

minimal volume change or decrease in volume in the follow-up scan while malignant nodules 

showed a large increase in volume. The volumetric measurements had a small coefficient of 

variation. 

Figure 3 shows an example of a semi-automated volumetric segmentation of a benign 

solid lung nodule scanned with 1.0 mm slice thickness and spacing at two time points. The 
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radiologist measured diameter increased from 9.0 mm to 10.7 mm, which would be considered 

a large enough growth to indicate suspicion for lung cancer using diameter measurements and 

the lung-RADS requirement of growth >= 1.5 mm. However, the measured volume of the solid 

lung nodule changed by 13.5% (100 x (286.2 – 252.1)/286.2). When we evaluate a 13.5% 

observed increase in volumetric size of this 9.0 mm solid lung nodule against the 44.3% growth 

required by the QIBA small lung nodule profile volumetric change table, we found that the 

observed change in volume was not large enough to confirm growth beyond CT imaging and 

software measurement error. Thus, in this case, radiologist diameter measurement indicated 

the potential for this nodule being malignant and the volumetric algorithm correctly classified 

this nodule as not achieving a size change beyond imaging and software measurement error.  

We then compared diameter and volumetric change measurements to classify lung 

nodule malignancy risk using the 44 lung cancer cases and 134 non-lung cancer cases (data 

subset 2). The sensitivity and specificity of classifying malignant nodules using semi-automated 

volumetric change analysis was 75% and 92%, respectively compared to 75% sensitivity and 

98% specificity using the lung-RADS criteria of a ≥ 1.5mm diameter change with radiologists 

measured diameter measurements.   

When the performance of volumetric nodule changes to classify lung cancer cases from 

benign cases using the image collection with the highest acquisition quality and excluded the 

incorrect volumetric segmentations (data subset 3), this resulted in a volumetric change lung 

cancer classification sensitivity and specificity performance of 89% and 100%, respectively 

compared to 75% and 98% with diameter measurement (Figure 4)  

 

DISCUSSION 

Here we presented the first AI and quantitative imaging analysis pilot study results from 

the new open-source, globally distributed, and cloud-based ELIC lung cancer screening imaging 

database and computational environment. ELIC operates entirely on a globally distributed cloud 

with high levels of security provisions ensuring that both clinical sites and algorithm developers 

can operate with high levels of control over their data and algorithms.  
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For this study ELIC was populated with 697 LDCT lung cancer screening cases from 7 

global locations. Both a deep learning AI lung segmentation algorithm and a solid lung nodule 

volume measurement algorithm were evaluated against the ELIC data using the AWS cloud 

services infrastructure. This is proof-of-concept study demonstrates the capability to run 

complex deep learning and quantitative imaging analyses on diverse and globally distributed 

datasets without the need for transmitting the clinical images and metadata to a central 

location and with high levels of security compliant with existing international regulatory 

requirements. This cloud environment operates with a high levels of data security federating 

large globally diverse clinical/CT image databases. This computational resource enables the 

participation of many clinical sites and algorithm AI developers from across the globe, who 

would otherwise be unable to participate in such public health research or quality-controlled 

environment.   

The idea of using federated data analysis technology to provide a secure environment 

to access a large amount of high-quality imaging and biomedical data have been developed and 

used to link medical centers within a country to facilitate AI research (18, 19, 29, 30). However, 

to our knowledge these federated image collections were not from multiple countries and did 

not have as high a level of security as ELIC. For example, most federated systems utilize 

computing hardware running within a local healthcare setting, opening up the possibility that 

the computing hardware, along with the stored data and algorithms, can be stolen or accessed 

without permission by local administrators or others who may be involved in imaging research 

and may have high turnover. This type of approach will require more computational staff 

support from many globally distributed computer system administrators and the attendant cost 

may be prohibitive in some settings. In contrast, ELIC data and de-identified CT images are 

stored on a highly secure cloud infrastructure (e.g. AWS) and managed by a trusted third party 

administrator, greatly limiting the total number of system administrators that have access to 

the ELIC data. All administrative persons with access to ELIC data and algorithms are bound by 

confidentiality requirements and have no background or interest in ELIC data or imaging 

algorithms. Also, the ELIC third-party administrator only allows Information Technology 

administrators to perform system administration work on the ELIC cloud servers and under 
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strict confidentiality terms. From a donor or national perspective, ELIC can also enforce strict 

data usage restrictions on the amount and type of data that can be extracted from an analysis 

by groups that run algorithms against ELIC data. Such capabilities include limiting the size of 

data analysis reports, the size of uploaded images, and applying lossy jpeg image compression 

on algorithm generated images to prevent unapproved copying of the image collections.  

For this study we performed a preliminary evaluation of both an AI deep learning driven 

method for emphysema measurement and a quantitative imaging algorithm for measuring 

change in small solid lung nodules. Both analyses yielded promising preliminary results that 

have the potential to help inform the design of larger studies. The quantitative analysis of 

emphysema using a deep learning AI lung segmentation found that the LAV950 metric 

performed best at separating lung cancer cases from-non-lung cancer cases, but only when the 

site used thick CT slices. This finding is consistent with the lung density methods and results 

reported by Gallardo-Estrella (31) where thin CT image slices were combined to create CT scans 

with 3mm slice thickness using COPDGene data. Given the lack of consensus as the best lung 

densitometry method is best to use (e.g., Perc15 or LAV950) to quantitatively assessing 

emphysema (32), the preliminary results found in this study merit further evaluation. It should 

be noted that the preliminary emphysema results reported here do not imply that CT scanning 

for quantitative assessment of emphysema should be performed with thick (>= 2.0 mm) CT 

image slices. Rather, these results may support that CT scans should be acquired with thin CT 

slice thickness and quantitative analysis algorithms should combine the thin CT section 

information to create voxels over a larger 3D region to help suppress image noise as previously 

reported (31). 

This pilot evaluation also provided interesting findings regarding the performance of 

quantitative lung nodule volume change measurement in malignant and benign lung nodules. 

The coefficient of variation of the measurement was found to be tight even for small nodules 

<300 mm3 demonstrating the accuracy of volumetric measurement when analyzing CT images 

obtained with a high-quality CT image acquisition protocol (Table 4).  Such measurement 

accuracy may be clinically important as semi-automated volumetric nodule measurements of 

CT scans acquired with high quality image acquisition (with a time interval between CT scans ≥ 
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120 days) resulted in a sensitivity of 89 % and specificity of 100 % compared to 75% sensitivity 

and 98% specificity resulting from 2-D measurements using the same set of scans. This suggests 

that use of CT slice thicknesses <= 1.0 mm with appropriate follow-up time interval may 

improve the performance of semi-automated volumetric assessment and warrants further 

study by the global lung cancer community. 

Other potential benefits arising from the development of ELIC include the use of a 

globally distributed structured lung cancer screening database. ELIC requires all participating 

sites to provide metadata using a common nomenclature and data structure. All ELIC sites 

providing screening data in this report used the open source VAPALS-ELCAP data dictionary. 

The data assembled for this manuscript therefore comprised a pilot effort with data 

standardization across the 7 ELIC contributing sites. This approach also could support global 

lung cancer imaging research efforts moving forward.  This would be a significant contribution 

of IASLC to the refinement of future lung cancer screening management. Finally, ELIC might also 

be used to establish a curated IASLC image research collection for both training and evaluation. 

An archive of screening cases assembled with appropriate permissions utilizing the thoracic CT 

images and associated clinical ground truth data may be of considerable value as a global IASLC 

resource.  

Lessons learned from this pilot study include the issues associated with the variability of 

the submitted image and clinical data acquired across the globe. Despite having provided 

contributing sites with a specific acquisition protocol, major problems occurred with automated 

analysis by AI and quantitative algorithms. Figure 2 shows that DICOM CT image data issues 

significantly impacted the number of high-quality cases for volumetric analysis in ELIC. In the 

future, we plan to improve the CT image quality validation methods and tools in order to better 

ensure that only data that adhere to high levels of CT image quality can be entered e.g. 

verification of CT slice thickness, spacing and continuity.  ELIC is also working with international 

lung cancer screening sites to contribute more cases to ELIC to expand this valuable open 

resource to facilitate AI research in lung screening. 

Limitations 
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 This pilot study has potential limitations in terms of reproducibility and generalizability 

given the study size and preliminary nature of the reported findings. In creating ELIC as an 

open-source image resource with donated images and meta data, we are providing resources 

so that independent verification of our reported finding is readily doable. We encourage other 

researchers to critically assess the findings of this report and conduct additional research to 

improve the process of thoracic CT screening.    

CONCLUSION 

ELIC is now a functional resource to advance deep learning AI and quantitative imaging 

research studies on a diverse, globally distributed CT screening dataset. Expansion of ELIC can 

provide a major global resource for lung cancer imaging research. 
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Table 1: Lung cancer screening participant demographics for the ELIC dataset. 
 

 No Nodules Benign Nodules Lung Cancer 

Participant Cases 172 402 123 

Nodule Count 0 1383 475 

Mean Age (+- SD) 61.70 ± 7.62 62.58 ± 8.48 65.15 ± 8.43 

Gender = Male 57.56 % 52.99 % 56.10 % 

Smoking Status    

- Past 34.88 % 42.54 % 41.46 % 

- Current 48.84 % 41.04 % 47.15 % 

- Never 16.28 % 16.42 % 11.38 % 

Mean Pack Years (+- SD) 34.52 ± 24.56 38.60 ± 28.64 41.71 ± 28.71 
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Table 2: Most commonly used CT scanners and image acquisition parameters in each spoke 

 

Spoke 

Scanner 

Model 

Maximum 

Detector 

Slices 

Reconstruction 

Kernel 
Slice 

Thickness 

Slice 

Spacing 

1  Siemens Flash 128 I-70f/2 0.75 mm 0.70 mm 

2  Siemens Flash 128 B60f 1.00 mm 1.00 mm 

3  Sensation 16 16 B50f 1.00 mm 1.00 mm 

4  GE LightSpeed VCT 64 BONE 1.25 mm 1.25 mm 

5  GE LightSpeed Qxi 4 BONE 1.25 mm 1.25 mm 

6  Philips Ingenuity Core 128 B 2.00 mm 1.00 mm 

7  Toshiba Asteion 4 FC56 3.00 mm 3.00 mm 
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Table 3:  A listing of spokes from ordered according to the CT slice thickness used to scan 

screening participants. Emphysema metric ratios were evaluated comparing lung cancer cases to 

benign cases showing that LAV950 applied to thick CT image slices had the highest emphysema 

metric ratios (red text) between lung cancer cases and non-lung cancer cases. 

 

Spoke 
Slice 

Thickness 

Lung 

Volume 

Mean 

HU 

Median 

HU 

Std Dev 

HU 
Perc15 

LAV950 

% 

1  0.75 mm 0.94 1.01 1.01 0.96 1.00 1.04 

2  1.00 mm 0.98 1.01 1.01 0.98 1.00 1.02 

3  1.00 mm 1.08 1.00 1.01 0.96 1.00 0.98 

4  1.25 mm 0.92 0.98 0.99 0.93 1.00 0.99 

5  1.25 mm 1.02 0.98 0.99 0.96 0.98 1.21 

6  2.00 mm 1.29 1.04 1.03 1.05 1.02 1.36 

7  3.00 mm 1.03 1.02 1.01 1.05 1.01 1.34 
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Table 4: The mean lung nodule volume change and the Coefficient of Variation (COV) for 

malignant and benign solid nodules in data subset 2. 

 
 Nodule Volume 

mm3 

Mean Volume 

Change (%) 

COV 

Non-Lung Cancer 

Cases 

< 300 6.6 11.0 

>= 300 -101.4 -4.7 

Lung Cancer Cases < 300 346.9 0.9 

>= 300 382.5 1.1 
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Figure 1: Fully automated deep learning lung and lobe segmentation of a low dose CT lung 
cancer screening scan. 
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Figure 2: Construction of three data subsets for (1) the evaluation of a deep learning AI 
segmentation and quantitative emphysema algorithm, and (2) the evaluation of a small 
solid lung nodule volume change algorithm on solid lung nodules, and (3) the evaluation of 
the same small solid lung nodule volume change algorithm on high CT image quality data. 
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Exclusion of data in sets 2 and 3 were based on deterministic rules (e.g. missing slices in 

DICOM series, lung nodule diameter < 5.0 mm).   
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Figure 3: Semi-automated volumetric measurement of a benign solid lung nodule at time 
point 1 (left) and time point 2 (right) showing a small increase in volumetric size. Each time 
point image panel shows axial (top-left), coronal with 3D nodule surface shown in green 
(top-right), coronal (bottom-left), and sagittal (bottom-right) image reformats. 
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Figure 4: Performance of radiologist diameter (left), semi-automated volume change 
(middle), and semi-automated volume change using only high-quality CT image data and 
segmentation results (right) at classifying lung cancer malignancy. 
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