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ABSTRACT 39 

Identifying new problems and providing solutions are necessary tasks for design engineers at early-stage 40 

product design and development. A new problem fosters innovative and inventive solutions. Hence, it is 41 

expected that engineering design pedagogy and practice should equally focus on Engineering Design 42 

Problem-Exploring (EDPE) – a process of identifying or coming up with a new problem or need at the early 43 

stage of design, and Engineering Design Problem-Solving (EDPS) – a process of developing engineering 44 

design solutions to a given problem. However, studies suggest that EDPE is scarcely practiced or given 45 

attention to in academia and industry, unlike EDPS. The aim of this paper is to investigate the EDPE process 46 

for any information relating to its scarce practice in academia and industry. This is to explore how emerging 47 

technologies could support the process. Natural models and phenomena that explain the EDPE process are 48 

investigated, including the “rational” and “garbage can” models, and associated challenges identified. A 49 

computational framework that mimics the natural EDPE process is presented. The framework is based on 50 

Markovian model and computational technologies, including machine learning. A case study is conducted 51 

with a sample size of 43 participants drawn worldwide from the engineering design community in academia 52 

and industry. The case study result shows that the first-of-its-kind computational EDPE framework presented 53 

in this paper supports both novice and experienced design engineers in EDPE.  54 

 55 

Keywords: Artificial intelligence; Computer-Aided Design; Conceptual Design; Creativity and Concept 56 

Generation; Data-Driven Design. 57 

 58 

1 INTRODUCTION 59 

One of the main tasks of a design engineer at early-stage product design and 60 

development is to provide an Engineering Design Solution (EDS) to a societal problem 61 

using personal knowledge, experience, and background [1, 2]. Another main task is 62 

identifying or conceptualising a new Engineering Design Problem (EDP) [3, 4]. The EDP 63 
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would deliver societal values once it is solved. Many societal problems, such as “created” 64 

and “discovered” problems, are elusive and could remain elusive until discovered by a 65 

design engineer [5]. A “created” EDP is a problem that remains unknown or would not 66 

exist until conceptualized and translated by an engineer to make it an apparent EDP. A 67 

“created” EDP does not have a known formulation, method of solution, or solution.  A 68 

“discovered” EDP is a type of problem that exists, identified by a design engineer, and 69 

may or may not have a known formulation, method of solution, or solution [6, 7]. An EDP 70 

triggers ideas for inventive or innovative solutions [8]. The value of an EDS depends on 71 

the type of EDP it solves. Hence, both coming up with an EDP and providing an EDS are 72 

equally important and are standard expectations in engineering design [9, 10].  73 

Therefore, focus on the processes leading to an EDP and EDS is expected in 74 

engineering design academia and industry. However, this seems not to be the case. 75 

Studies suggest that over the years, the focus is mainly on Engineering Design Problem-76 

Solving (EDPS) – the process of producing an EDS [11, 12]. The process of coming up with 77 

an EDP or a need at early stages in design [13], referred to as Engineering Design Problem-78 

Exploring (EDPE) in this research, is rarely practiced or discussed in the literature [14-18]. 79 

This lack of attention on EDPE over the years has increasing consequences, including 1) 80 

limiting the comprehensive capability within engineering design, 2) delayed discovery, 81 

innovation, and invention, 3) less inventive solutions/products, 4) lack of development of 82 

a specific support tool for EDPE, 5) lack of creativity assessment standard and rewards for 83 

EDPE, and 6) decline in EDPE skills within the engineering design community [19-22]. 84 

Research interests in recent times suggest a need for a strong focus on EDPE. The solution-85 
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first approach in engineering design is attracting research interests and seems to be an 86 

approach that would necessitate computational facilitation in EDPE. In this approach, an 87 

EDS is created first in anticipation of a yet-to-be-identified EDP [27]. This is distinct from 88 

the widely known problem-first approach, where an EDS is sought for an EDP. The 89 

solution-first approach implies a greater need for a process to facilitate new EDPs that 90 

match EDS created beforehand. Albeit studies on the scarce attention and practice of 91 

EDPE are few, a study on its determinants, consequences, and mitigation lacks. A study 92 

that provides empirical evidence in support of reports on the scarce focus on EDPE also 93 

lacks. 94 

 In this paper, the aim is to investigate the EDPE process and practice for 95 

information relating to its scarce practice. This would facilitate possible interventions to 96 

encourage EDPE practice in academia and industry. Albeit behavioral interventions like 97 

formal teaching/training skills and reward systems for EDPE is possible, there are scholarly 98 

indications that EDPE involves heavy thinking and is a difficult, challenging, and time-99 

consuming task [23-26]. Hence, special attention in this paper is on EDPE process activities 100 

with natural limitations that necessitate computational support. The models and 101 

phenomena related to the natural EDPE process are investigated including the “rational” 102 

and “garbage can” models, serendipity, and apophenia phenomena. This contributes to 103 

coming up with a first-of-its-kind computational approach and tool presented in this 104 

paper that mimic and support the natural EDPE process. To mimic the natural EDPE 105 

approach, a Markovian model (MM) is used in synergy with computational technologies, 106 

including data mining, machine learning (ML), natural language processing (NLP), 107 
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duplication recognition, and python programming language. A case study is conducted in 108 

three parts with a sample size of 43 participants drawn worldwide from the engineering 109 

design community in academia and industry. In the first part of the case study, the aim is 110 

to obtain empirical evidence on the lack of focus on EDPE within the engineering design 111 

community. The aim of the second part of the case study is to test how closely a 112 

computationally framed EDP matches a naturally framed one by a human. In the last part 113 

of the case study, the value of the computational EDPE support tool – Pro-Explora V1 (Pro-114 

Explora) presented for the first time in this paper is evaluated.  115 

 Presented in the following section are the natural EDPE process including possible 116 

determinants of its scarce practice. Section 3 is on the methodology used in this paper to 117 

come up with a data-driven computational EDPE framework. Section 4 is about the case 118 

study data collection methods. Qualitative and quantitative results of the case study are 119 

presented in Section 5 and discussed in Section 6. The paper is concluded in Section 7. 120 

 121 

2 LITERATURE REVIEW  122 

 123 

2.1 Models and phenomena related to the natural EDPE approach 124 

The EDPE process is characterized by divergent thinking and decision-making for 125 

a new EDP. The “rational” model and “garbage can” model relate to the natural EDPE 126 

process. The “rational” model is a formal model of science which postulates that careful 127 

analyses of previous problems and theories underpin the discovery of a new problem [28]. 128 
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It supports that a new problem is identified progressively or logically based on gaps in 129 

previous problems and theories. The “garbage can” model postulates that a new problem 130 

emerges stochastically rather than logically [29, 30]. It supports that a new problem 131 

comes up from a stochastic synthesis of previous problems that may not be related. A 132 

new problem based on the “garbage can” model is considered more creative than that 133 

based on the “rational” model [31]. The “garbage can” model relates to connectionism - 134 

a cognitive science concept that likens the connections in computer Artificial Neural 135 

Networks (ANN) to natural cognitive ability [32]. The computer ANN contains stochastic 136 

and complex interconnected nodes that distribute information for ML. 137 

The “rational” and “garbage can” models describe the natural process through 138 

which new opportunities, ideas, or concepts are produced. Specifically, they are used to 139 

describe the process of coming up with research topics or titles. For example, Alter and 140 

Dennis [28] states that: “As faculty, we tend to teach our students a formal “rational 141 

model” of science in which research activity is driven by a solid understanding of prior 142 

work. Under this approach, research topics emerge from a careful analysis of prior 143 

research and theory.” Also, project advice to students is to begin the “search for a suitable 144 

problem as soon as possible” [33]. In discussing where a new project is found and how a 145 

project is identified, selected, developed, and refined, Dennis and Valacich [29] state that 146 

the garbage can model is “a more useful model of how research projects are typically 147 

developed” where “the key elements of the project are thrown together into a garbage 148 

can, mixed together, and out comes the project.” Also, Martin [30] states that an 149 

organization looking for a problem could be imagined as a garbage can where, as 150 
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“members of the organization generate problems and solutions, they dump these into 151 

the garbage can” from which a new problem emerges. 152 

Serendipity is a cognitive phenomenon related to EDPE or discovering something 153 

new and valuable by chance [34, 35]. It is described as one of the mechanisms of 154 

innovation [36], and “connotes the profound ability of finding out valuable things 155 

different from those who have been exploring by spending a lot of time or for years” [37]. 156 

Serendipity occurs when observation by a design engineer triggers unexplored 157 

possibilities. Usually, this is based on coincidence with the design engineer’s interest, 158 

passion, experience, knowledge, cultural background, and so on. It is reported that the 159 

“ground effect” in aircraft is a serendipity discovery [38]. Apophenia is another cognitive 160 

phenomenon related to the discovery of a new EDP. It is a natural tendency to see or 161 

make meaningful, valuable, invisible connections between unrelated or random data 162 

[39]. Apophenia is related to the “garbage can” model and ANN. It could lead to an 163 

“invention: creating new, previously unimaginable meanings through accident” [40]. 164 

EDPE is considered challenging, and findings on some determinants are presented next. 165 

 166 

2.2 Challenges with the natural EDPE 167 

2.2.1 Memory limitation in the natural EDPE process 168 

Studies show that the average amount of information the short-term memory can retain 169 

and process when exposed to a new concept is 7 ± 2 [41, 42]. The number approaches 170 

the minimum with an increased number of syllables in a word during processing of a 171 

sequence of words [43]. EDPE, as a cognitive activity, inherently involves processing word 172 
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sequences, as the “rational” and “garbage can” models suggest. Hence, despite the 173 

complexity of the brain, its information-processing capacity is limited [44]. The cognitive 174 

demands of EDPE could push cognitive limits and present a level of difficulty, confusion, 175 

fixation, and demotivation, which could result in abandonment.  176 

 177 

2.2.2 Cognitive fatigue in the natural EDPE process 178 

Cognitive fatigue is mental exhaustion resulting from tasks requiring deep thinking and 179 

could occur within 30 minutes of commencing a cognitive task [45, 46]. An EDPE process, 180 

as explained by the “garbage can” model, involves creating unfamiliar concepts through 181 

stochastic information combinations, transformations, and/or explorations [47]. 182 

Cognitive fatigue could be induced during EDPE tasks and manifest as creative burnout, 183 

frustration, and/or tiredness leading to withdrawal from the task [48-52]. 184 

 185 

2.2.3 Insufficient knowledge and difficulty in prompt initiation of natural EDPE process 186 

It could be inferred from the “garbage can” model that EDPE requires knowledge and 187 

information [53]. Sometimes it could be difficult to promptly recall previous knowledge 188 

or information. Hence, to “create” a new EDP by stochastically recalling and combining 189 

previous knowledge and information could be challenging. Also, knowledge is infinite and 190 

could hinder EDPE irrespective of the level of experience of a design engineer. Hence, 191 

novice design engineers who are not experienced, knowledgeable, or informed could find 192 

it more challenging to practice EDPE.  193 

 194 
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2.3 Potential computational technologies for EDPE    195 

A computational system is not susceptible to the challenges associated with the 196 

natural EDPE process discussed in Section 2.2 [54]. Hence, it could be used to support 197 

EDPE. The “garbage can” model discussed in Section 2.1 could be computationally 198 

mimicked by using Artificial Intelligence (AI) [55]. A possible approach is to create a data 199 

(word) sequencing model using a Markovian model (MM), Bidirectional Encoder 200 

Representations from Transformers (BERT), or Long Short-Term Memory (LSTM). An MM 201 

is any model that exhibits the Markov chain (MC) property. BERT uses transformers - 202 

unique neural network architecture reported effective in modelling long-term 203 

dependencies in a sequence [56, 57]. BERT, like LSTM, uses long-term dependencies 204 

(depending on previous states) in its network to predict the next state in a sequence. For 205 

example, if the state represented with the ellipses is missing from the sequence - 206 

“Engineering design is a noble…”, contextual word embeddings BERT can be used to 207 

predict (natural language inference, NLI) the next or missing state (masked word) as 208 

“profession”. The next state is inferred relative to the previous states. BERT can also 209 

combine the context of both previous and next states (bidirectional) to predict a state in 210 

a sequence. This could be described as forward and backward determinism.   211 

The persistence of previous states in BERT and LSTM networks could be 212 

disadvantageous because it can impact computational power, time, speed, and cost. Also, 213 

BERT requires significant data training. Although there are indications that BERT can be 214 

used to predict/generate a new sequence, it is used to predict/generate a sequence that 215 

already exists such as known answers to questions. It is reported that in sequence 216 
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generation, BERT is formulated as a Markov random field language model without 217 

additional parameters or training [58]. When the generation of a new concept is intended 218 

such as in EDPE, the repetition of already known concepts or solved EDP is not desirable. 219 

Unlike BERT and LSTM, MC is a model of a specific type of stochastic sequence [59, 220 

60]. It is memoryless of past states, and the next state in the sequence only depends on 221 

the present state. The MC network uses only forward determinism and does not retain 222 

previous information. This results in lesser computing power, cost, time, and higher 223 

computing speed. In deterministic chaos theory, forward determinism is considered more 224 

important than backward determinism [61]. MC has prior stochastic and decision-making 225 

applications in engineering design including 1) modelling of transitions in 226 

communications, 2) modelling of sequential design decisions, and 3) analyses of 227 

behavioral patterns in engineering design [62-65]. An MM is used in this paper as the 228 

pioneering technology to provide the basis for comparison with BERT and LSTM in future 229 

research in EDPE applications. 230 

Big data could be equivalent to the previous knowledge required in the “garbage 231 

can” model. Big data is a large volume of structured, semi-structured, and unstructured 232 

data from which new knowledge or information can be found [66]. Big data is associated 233 

with some computational technologies, including data extraction, NLP, ML, and 234 

duplication recognition [67]. Presented in Section 3 is how an MM is used in synthesis 235 

with big data and the associated technologies to come up with computational support in 236 

EDPE. 237 

 238 
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2.4 Research questions    239 

Despite being an important and standard requirement, EDPE lacks practice within the 240 

engineering design community, as discussed in Section 1. There are scholarly opinions 241 

that EDPE is a challenging task with cognitive limitations (Section 2.2). Unlike EDPS, there 242 

is no specific support tool for EDPE. However, emergent computational technologies 243 

could provide support for EDPE. To this end, the research questions (RQs) that follow are 244 

addressed in this paper. The answers to the RQs would provide knowledge for 245 

interventions in the lack of EDPE practice in engineering design. In the first part of the 246 

case study presented in this paper, RQ1 is addressed. In the second and third parts of the 247 

case study, RQ2 is addressed: 248 

RQ1: Do design engineers understand that EDPE is a standard requirement in 249 

engineering design, like EDPS?”  250 

RQ2: Could emergent computational technologies support novice and 251 

experienced design engineers in EDPE?  252 

 253 

3 METHODOLOGY 254 

3.1 Theoretical framework for computational EDPE  255 

Concerning RQ2, a theoretical data-driven computational framework, shown in 256 

Fig. 1, is presented to support EDPE as a challenging activity. The framework is based on 257 

the information presented in Table 1 on the natural EDPE approach and its computational 258 

equivalence. The natural EDPE approach in Table 1 is based on findings discussed in 259 

Section 2 and supported by most intellectual property offices [68].  260 
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Table 1   Comparison of algorithms for natural and computational EDPE 261 

Natural EDPE approach Computational EDPE approach 

1) Identify an EDP of societal relevance 
by accident (serendipity), stochastic 
synthesis (“garbage can” model), 
logical progression (“rational” model), 
and/or conceptualization (apophenia) 
 

1) Frame an EDP of societal relevance by 
stochastic synthesis of big data, 
computational technologies (data extraction, 
ML, NLP), coding capabilities, connectionist 
theory, deterministic chaos, MM, BERT, 
and/or LSTM 

2) Search manually for prior existence 
in relevant databases using search 
engines. 

2) Make an automated search for prior 
existence in relevant databases using 
duplication recognitions. 

3) Decide, subject to acceptance by 
society or a relevant authority 

3) Decide, subject to a design engineer's 
acceptance. 

 262 

 263 

Fig. 1   Big data-driven computational EDPE framework 264 

 265 

The computational EDPE framework shown in Fig. 1 comprises System A and 266 

System B. The input to System A is a collection or corpus of engineering design project 267 

titles extracted online from Compendex, Scopus, journals and conferences databases, and 268 

findaphd.com using a python data extraction tool “Scrapy”. The output from System A is 269 

processed data which feeds System B to produce a new EDP as output.  The project titles 270 

used as input to System A are important lines of words that represent EDPs in engineering 271 
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design projects [69]. A “project title should provide information about the topic being 272 

studied, and may consist of the actual problem statement” [70]. According to Martin [30], 273 

“the researcher should critically review the literature on a given topic in order to find an 274 

important issue which previous research has failed to resolve successfully”. This 275 

‘important issue’ is usually formulated as a title – the problem solved, being solved, or yet 276 

to be solved. Hence, the extracted titles in this paper are previous EDPs. As an example, 277 

in the project title: “Design of an Automatic Sprinkler Fire Fighting System”, the EDP of 278 

fighting the fire using an automatic sprinkler system is described. The underlying EDP is: 279 

“What is a better way, among the existing alternatives, to fight fire?” The design project 280 

is conceived as a solution to fire fighting. It is believed that such a solution was not 281 

available when the project was conceived. This makes the project an EDP that needs to 282 

be addressed because there is a potential benefit in doing so. The EDP addressed in the 283 

project is described with the title. Albeit the title appears as an EDS, it is an EDP if that 284 

EDS is unavailable or yet to be realized. It remains an EDP until it is solved. Hence, 285 

computationally exploring and identifying a new EDP could lead to an invention or 286 

innovation. 287 

 The increasing volume of titles, continuously collected for EDPE, could be 288 

regarded as structured big data of previous EDPs. Hence, this is the concept of the ‘Big 289 

data’ indicated as input to the model in Fig. 1. To mimic the natural EDPE, the framework 290 

in Fig. 1 is created to use or learn from only the natural EDPs to come up with a 291 

computational equivalent. The output from System B (which contains the MM in Fig. 2) is 292 
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a unique EDP distinct from the input. The preprocessing and processing of the corpus in 293 

System A for input in System B to produce a unique EDP are presented next. 294 

3.1.1 Preprocessing of corpus for EDPE 295 

The corpus extracted online is preprocessed in System A Fig. 1 using NLP and ML. 296 

The corpus is first prepared as a “tab-separated value” with each line in the corpus ending 297 

with a period. On inspection, some of the extracted titles in the corpus appear vague to 298 

describe an EDP. This necessitates an ML classification model to classify subsequent 299 

extracted titles that do not describe an EDP (Non-EDP). The extracted corpus is manually 300 

separated by inspection as a dataset of EDP and non-EDP. This is to enable the training of 301 

the algorithm for the classification model using supervised ML – an aspect of AI that 302 

provides computer systems with the ability to learn from data. The dataset size is 2133 303 

(comprising 1833 EDP and 300 non-EDP), and a 20% test size is used for the ML. The 304 

training requires that the dataset is ‘cleaned’ and ‘tokenized’ as part of NLP [71, 72]. The 305 

‘cleaning’ requires the removal of regular expressions or characters that specify a search 306 

pattern in extracted texts such as “?”, “@“, and “$”. It also requires the removal of 307 

stopwords from the dataset such as “a”, “for”, and “the” which are insignificant in NLP. 308 

Different algorithms are tried during the training, including RandomizedSearchCV, Naïve 309 

Bayes (Gaussian and Multinomial), and Random Forest. These algorithms are part of 310 

Scikit-learn – a library in Python that provides many unsupervised and supervised learning 311 

algorithms. Trying different algorithms to select the best based on performance is a 312 

common practice in ML. Two Scikit-learn performance evaluation libraries – classification 313 

report and confusion matrix [73], are used during the training to evaluate the 314 
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performance of the algorithms in the classification model. For RandomizedSearchCV, the 315 

accuracy calculated using the confusion matrix is 93%. The classification report shows the 316 

precision, recall, and f1-score accuracy metrics as 94%, 93%, and 93%, respectively. These 317 

metrics suggest that only a few EDPs are wrongly classified as non-EDPs and vice versa. 318 

Hence, RandomizedSearchCV is used based on best performance values. The 319 

preprocessed corpus in System A Fig. 1 is stored and processed in System B Fig. 1 to 320 

produce a new EDP as presented next 321 

 322 

3.1.2 Processing of corpus for EDPE 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

Fig. 2   A theoretical model for EDP sequencing [8] 333 

 334 

The MM contained System B Fig. 1, discussed in Section 2.3, is enlarged in Fig. 2 335 

for clarity. In Fig.2, the MM exhibits the properties of a two-stage MC known as a hidden 336 
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Markov model (HMM). It has hidden and physically observable states (emissions) [74, 75]. 337 

What constitutes the hidden states and emissions in this paper are explained in Section 338 

3.3. MC is used as an HMM in many real-life problems, such as handwriting recognition, 339 

machine maintenance, and weather forecasting. This is because MC alone does not fully 340 

represent the intent in many real-life problems [76]. In this paper, as shown in Fig. 2, the 341 

hidden states (for example, S10S20… Sm0) are discreet, while the emissions S00S01S02… S0n 342 

exhibit the Markov property (Section 2.4). The probability of the emissions depends on 343 

the probability of the hidden states. The emissions transit such that the next emission 344 

depends on the present emission and not on the past emission(s). The emission 345 

transitions are assumed to be observed at equal time intervals at the indices 0,1,2,3,… n, 346 

known as epochs [77]. This means that time-homogeneity (discrete instead of real-valued 347 

time) applies. In this application, the actual time for transitions is computationally very 348 

small and justifies the time-homogeneity assumption. The stochastic process in Fig. 2 349 

could be expressed as Eq. (1). 350 

𝑓: 𝑆𝑛 x Λ →  𝑆𝑛+1              𝑛 ∈ ℤ
+;  ℤ+ = {0, 1, 2, 3, … }                             (1) 351 

In Eq. (1), as used in this paper, the output Sn+1 is a function of two arguments, sn 352 

and λ. This is such that, sn ∈ Sn and λ ∈ Λ. The function f(sn, .) is a random variable (Sn+1) 353 

for each sn ∈ Sn, while for each λ ∈ Λ, f(., λ) is a hidden function between Sn and Sn+1. This 354 

hidden function, f(., λ), makes the output of System B Fig. 1 to be indeterministic which 355 

represents the unpredictability of the highest order [78]. Hence, the probability of any 356 

predictor’s confidence in the output of System B Fig. 1, relative to the input, cannot be 357 

unity. Generally, the transition probability of the MM in Fig. 2 is given in Eq. (2). 358 
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𝑝𝑖𝑗  =  𝑃(𝑆0(𝑛+1) = 𝑇𝑗| 𝑆0𝑛 = 𝑇𝑖)                                            (2) 359 

Eq. (2) shows that, in Fig. 2, if the probability of an emission at epoch n is Ti then there is 360 

a probability that at epoch n+1 the emission is Tj  [79]. Note that the emission transitions 361 

occur if, and only if, pij > 0. As shown in Fig. 2, an emission is represented as Sij where the 362 

row vector is the sequence index and the column vector is the epoch. For simplicity of 363 

analysis, let the emissions at epochs 0,1,2, … n in Fig. 2 be a,b,c,… z. Specifically, applying 364 

Eq. (2) to Fig. 2 yields Eq. (3). 365 

𝑃(𝑆01 = 𝑏, 𝑆02 = 𝑐,… 𝑆0𝑛 = 𝑧| 𝑆00 = 𝑎)                                      

     = 𝑃(𝑆00 = 𝑎)𝑃(𝑆01 = 𝑏| 𝑆00 = 𝑎)𝑃(𝑆02 = 𝑐| 𝑆01 = 𝑏)…

                                                     …  𝑃(𝑆0𝑛 = 𝑧| 𝑆0(𝑛−1) = 𝑦)

= 𝑝𝑎
(0)𝑝𝑎𝑏𝑝𝑏𝑐… 𝑝𝑦𝑧                                                                      }

 
 

 
 

                (3) 366 

Relating Eq. (3) to Fig. 2, pa
(0) represents the initial emission probability for the stochastic 367 

process at epoch 0. Pab represents the transition probability from epoch 0 to epoch 1.  Pbc 368 

represents the transition probability from epoch 1 to epoch 2. Pyz represents the 369 

transition probability from epoch n - 1 to epoch n. The initial emission would be necessary 370 

if the observable state of the sequence after n transitions is of interest. If the initial 371 

emission probability is known, then pa
(0) = 1, and Eq (3) results in Eq. (4). 372 

= 𝑝𝑎𝑏𝑝𝑏𝑐… 𝑝𝑦𝑧                                                                   (4) 373 

After an EDP is produced in System B Fig. 1 as a sequence of emissions, a 374 

duplication recognition search is performed. The sequence is only outputted from System 375 

B Fig. 1 as a new EDP if it does not have a duplicate (exact match) in the original corpus 376 

stored in System A Fig. 1. Otherwise, it is discarded and another sequence produced. The 377 

framework in Fig. 1 is deployed to produce a computational EDPE tool discussed next. 378 
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3.3 Pro-Explora – a computational support tool for EDPE  379 

Pro-Explora is a computational support tool for EDPE. In Pro-Explora, the 380 

theoretical EDP sequencing model in System B Fig. 1 is realized by processing the input 381 

corpus in System B Fig. 1 as a python dictionary data structure. The corpus is split into 382 

single words with each word as the dictionary key. The value list of each key contains all 383 

words that come immediately after the key in all occurrences of the key in the corpus. To 384 

closely mimic a natural EDP, the initial word/emission at epoch 0 in Fig. 2 is randomly 385 

selected from the list of hidden states S10S20… Sm0. The hidden states S10S20… Sm0 comprise 386 

the first words of each EDP in the extracted corpus. For example, S10 will be “Design” and 387 

S20 will be “A” for a corpus that contains the two EDPs – [“Design of a mechanical intrusive 388 

force detection device.”, “A design of an automatic bottle opener.”]. The dictionary key 389 

“of” in the corpus will have the values “a” and “an”. After the initial emission, the rest of 390 

the emissions are constrained to be randomly chosen from the mutually exclusive hidden 391 

states at epochs 1,2,3,4,5,…n based on the  Markov property. These observable states in 392 

Fig. 2 represent the new EDP from System B Fig. 1. The framework in Fig. 1 mimics the 393 

natural EDPE (Section 2.1), especially the “garbage can” model. As presented next, a 394 

useful output from System B Fig. 1 requires specific adjustments to the MM in Fig. 2 [76]. 395 

 396 

Adjustment 1: Enhanced stochasticity 397 

For a word ending with a period in a list of hidden states in Fig. 2, synonyms of the word 398 

are added to the list without replacing the word. For example, “extractor.”, “centrifuge.”, 399 

and “threshing machine.” are added to the list containing the word “separator.” The 400 
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synonyms are obtained using the python wordhoard library and online thesaurus. This 401 

adjustment increases the stochasticity and number of Pro-Explora outputs with the same 402 

EDPs in the corpus and makes the tool create new EDPs that involve newer technologies.  403 

 404 

Adjustment 2: Output word-count constraints  405 

The number of words (n) in the new EDP from Pro-Explora is constrained to a minimum 406 

of 6 and a maximum of 12 (6 ≤ n ≤ 12). This is based on findings from studies and the 407 

result of the EDP word-count analysis on the extracted corpus as shown in Fig. 3.  408 

 409 

Fig. 3    Word count of titles describing EDP 410 

 411 

Shown in Fig. 3 are the word counts mostly used in titles that describe an EDP 412 

(Section 3.1.1). It could be seen that the most used word counts range between 8 and 12. 413 

This range is significant in this paper and correlates with the scholarly suggestions that a 414 

maximum of 12 words should be used to describe an EDP to inspire thoughts and attract 415 

attention [80-83]. Also, as discussed in Section 2.3.1, the limit of words the brain can 416 

process at once is between 5 and 9. Hence, the word count limit of 6 - 12 for the Pro-417 

Explora output is considered appropriate. Using python code, it is checked that the output 418 

from System B Fig. 1 ending with a period satisfies the word count limit. 419 
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Pro-Explora GUI  420 

Backend python codes enable the functionality of Pro-Explora. However, it is accessed 421 

through a simple web Graphical User Interface (GUI) shown in Fig 4 which requires a Login 422 

to access at https://www.explorefoss.com/. A logged-in user “Engineer” is shown in the 423 

Pro-Explora GUI in Fig. 4. The GUI has two settings that contain some options that could 424 

be selected based on preference before EDPE as explained next. 425 

 426 

Fig. 4   Pro-Explora GUI with some framed design problems 427 

 428 

The Pro-Explora GUI, as shown in Fig.4, has the “Select explore domain” and “Select 429 

number of problems to explore” settings.  The “Select explore domain” setting has four 430 

domain options – “Engineering design product”, “Engineering design research”, 431 

“Engineering design machine intelligence”, and “Engineering design cross-domain”.  The 432 

“Engineering design cross-domain” option has the largest database, a combination of the 433 

other three domains. The “Select number of problems to explore” setting has 1 and 5 as 434 

https://www.explorefoss.com/
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the minimum and maximum numbers to select with 1 as the default. The history of all 435 

explored domains is displayed in the “List of explored domain(s)” section of the GUI. With 436 

the preferential options set, clicking on the Explore/ReExplore button activates a new 437 

EDPE process. The GUI in Fig. 4 displays five framed EDPs and any or all could be selected 438 

and saved for later review. Pro-Explora can frame over 100 unique EDPs per minute. This 439 

would be impossible with the natural EDPE process (Section 2.1), considering the 440 

associated challenges (Section 2.2). The framework and tool for computational support in 441 

EDPE are presented in this section. Presented in the next section are the methods of data 442 

collection and analyses to answer the RQs in this paper. 443 

 444 

4 DATA COLLECTION METHOD AND ANALYSES 445 

4.1 Case study details 446 

 447 

 448 

 449 

 450 

 451 

Fig. 5   Overview of data collection approach 452 

As shown in Fig. 5, the data collection method is through a case study comprising 453 

three parts. Adverts for the case study are sent through channels targeting professionals 454 

and students (Year 2 upwards) within engineering design or design-related academic 455 

programmes. Participants for the case study include students from UK and Singapore 456 
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Universities and professionals from countries including Canada, France, India, Russia, 457 

Singapore, the United Kingdom, and the United States. The case study advert specifies 458 

eligibility for participation - healthiness, a basic understanding of creativity, and an 459 

engineering design-related background. All participants provide qualifications, years of 460 

experience, and other details (Table 2). Only one participant who showed interest is 461 

disqualified based on not meeting the criteria of educational background. The creativity 462 

“understanding” in the eligibility is important because creativity as a phenomenon for 463 

coming up with something new and useful is strongly correlated with EDPE [84-88]. 464 

 465 

Table 2   Case study participants' detail 466 

Participants 
Gender 

 

Academic Qualification 

(Obtained/in view) 
 

Experience 

(Years) 

Male Female Total B MS PhD  ≤ 3 > 3 

Novice 12 7 19  5 11 3  19 0 

Experienced 23 1 24  10 9 5  0 24 

Total 35 8 43  15 20 8  19 24 

B – Bachelors, MS – Masters 467 

 468 

As shown in Table 2, the participants are categorized based on their years of 469 

experience as either “Novice” (Mean (M) = 1.5 years, Standard Deviation (SD) = 0.7 years) 470 

or “Experienced” (M = 8 years, SD = 3.8 years, Range (R) = 17 years). An inclusion criterion 471 

of 0 – 40 years of experience is applied to ensure that participants find it easy to perform 472 

computer-based activities. The three parts of the case study shown in Fig. 5 lasted about 473 

30 minutes in total and are presented next. 474 

 475 
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Case Study: Part 1 - Questionnaire responses 476 

This part of the case study addresses RQ1. The aim is to subtly test the consciousness of 477 

EDPE practice within the engineering design community. As previously mentioned, 478 

creativity correlates strongly with EDPE and EDPS. The participants are given the 479 

questions in Table 3 as an online questionnaire to respond to. In Table 3, Questions ‘a’, 480 

‘c’, and ‘d’ are subtly designed to test if participants have a conscious understanding 481 

(personally or taught) of creativity relative to EDPE or identifying a new EDP.  An effort is 482 

made to “avoid leading questions” by not mentioning EDPS or EDPE [89]. 483 

 484 

Table 3   Questionnaire for Part 1 of the case study 485 

Questionnaire themes 

(a) What does it mean to be creative? 
(b) What are the major roles of creativity in engineering design? 
(c) Do You Consider Yourself Creative? 
(d) Why are you creative or uncreative? 
(e) Were you taught creativity at University or at work? 

 486 

Case Study: Part 2 - Unbiased judgment of natural and computational EDP 487 

In this part of the case study, the participants are given the following instruction: 488 

“Below, you are presented with 20 unique engineering design-related problems. 489 

Professionals within the engineering design discipline conceptualized and produced some 490 

of these problems while some are computationally generated with a computational tool. 491 

You are required to go through each of the 20 problems and choose one option under 492 

each problem based on whether you think the problem is produced by a person or 493 

computationally generated.” Two options are provided for response.  494 
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Different sets of 20 EDPs similar to that in Table 4 are presented to each 495 

participant. However, each set contains a randomly arranged 5 EDPs framed by a design 496 

engineer (naturally framed) and 15 EDPs framed using Pro-Explora (computationally 497 

framed). The ratio (1:3) of the EDPs is intentionally not disclosed to the participants. Since 498 

the participants are unaware of this ratio, it helps to eliminate bias in their judgements. 499 

To make the reader guess, the categories of the EDPs – “naturally” or “computationally” 500 

framed, are not indicated here but in Section 5.4. 501 

 502 

Table 4   A sample set of 20 EDPs for participants 503 

Naturally and computationally framed EDPs 

1. Design of a mechanical intrusive force detection device. 
2. To design a portable water distillation device. 
3. A sustainable packaging design for wine. 
4. Designing an interactive interface for collaborative engineering design. 
5. A design of an automatic bottle opener. 
6. Towards intelligent emotion detection system for video traffic surveillance. 
7. Ai-based learning models for video traffic surveillance. 
8. Design and material properties to minimize biofilm deposits. 
9. Design of human-powered hybrid electric-power shovel for the physically 
challenged. 
10. Design of self-reconfigurable production equipment during operation. 
11. Anti riot drone without traffic lights. 
12. Investigation of anomaly detection in a critical materials. 
13. Design of a self-timing solar seawater desalination machine. 
14. Staging co-design for reverse modeling of product development. 
15. Detecting aggressive driving behavior using scilab. 
16. Design of remote intelligent home finance software. 
17. Designing products by artificial intelligence design approach. 
18. A computationally efficient real-time vehicle and speed detection using federated 
learning. 
19. Automatic mechanical footstep power tiller machine. 
20. Design of production information retrieval system. 

 504 
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Case Study: Part 3 - Evaluating the value of a computational EDPE support tool 505 

This is the last part of the case study and contributes to answering RQ2. It is about 506 

evaluating a computational EDPE support tool – Pro-Explora, presented in Section 3.3. 507 

Participants use the tool to come up with at least 5 EDPs in about 10 minutes. On a Likert 508 

scale of 1 – 10, the participants rated the usefulness of the EDP framed by the tool. They 509 

also provide additional information on 1) the reason for the usefulness rating they 510 

provide, and 2) whether the EDP inspired or prompted them to think of a different EDP 511 

related or unrelated to the originally framed EDP.  512 

 513 

4.2 Data analysis 514 

  Data from the case study is qualitatively and quantitatively analyzed. The 515 

qualitative analysis is performed with NVivo 12 - powerful software for qualitative data 516 

analysis, following the workflow in Fig. 6. 517 

 518 

Fig. 6 Case study qualitative analysis workflow  519 

In Fig. 6, the 7 stages involved in qualitative analysis with NVivo are shown. The 520 

various data collected are imported into NVivo and arranged. The data is coded - the 521 
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process of gathering materials (participants' responses) by topics or themes. This is 522 

followed by querying the data for patterns and connections. The query results are 523 

reflected upon and visualized. Although the workflow in Fig. 6 is iterative, the first 6 stages 524 

should be sequentially completed before any iterative update can be made to any of 525 

them. However, the last stage (Memo) can be referenced from any stage at any time. 526 

 527 

5 RESULTS 528 

5.2 General understanding of creativity 529 

In Part 1 of the case study (Section 4.1), Questions ‘a’, ‘b’, and ‘d’ in Table 3 is to 530 

address RQ1. They are designed to subtly reveal the participants’ general understanding 531 

of creativity relative to EDPE, which strongly correlates with creativity as mentioned in 532 

Section 4.1. Responses to the questions are qualitatively analyzed using the WFA in Fig. 533 

7, Cluster Analysis (CA) in Fig. 8, and text query search (Fig. 9.) 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

Fig. 7 Most frequent words in explaining creativity in engineering design 543 
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Presented in Fig. 7 are the 25 most frequent words used by the participants to 544 

explain what creativity means to them. It could be seen that the participants mainly 545 

associate the word ‘problem’ with creativity in engineering design.  A cluster analysis (CA) 546 

is performed to observe the relationship between the 25 words in Fig. 7. The CA result is 547 

shown in Fig. 8. 548 

 549 

 550 

Fig. 8 Word cluster showing a relationship in words explaining creativity 551 

 552 

Shown in Fig. 8, are clusters suggesting the relationships between the 25 most 553 

frequent words in Fig. 7. The highest single cluster of 5 words – ‘concepts’, ‘creating’, 554 

‘solutions’, ‘solving’, and ‘problem’ could be seen encircled in Fig. 8. To understand the 555 

context of the encircled cluster, a text query search is run with the 5 cluster words, and 556 

the result is presented in Fig. 9.  557 
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 558 

 559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

Fig. 9 Word Tree result for a text query search  571 

 572 

The Word Tree (WT) in Fig. 9 shows the root term as ‘problem’ which is the most 573 

frequent word in the WFA in Fig. 7. For a clearer context of the relationships in the cluster 574 

words in Fig. 8, five words are allowed on either side of the root term in Fig. 9. As the WT 575 

shows, creativity is generally understood to be an EDPS phenomenon. This is likely to be 576 

the participants' understanding of creativity from academia and literature. There is no 577 

explicit association of creativity to EDPE by the participants. The next result presented is 578 

on the teaching of creativity in engineering design in academia. 579 
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5.3 Teaching creativity in engineering design 580 

 581 

 582 

 583 

 584 

 585 

 586 

Fig. 10 Participants’ responses to their creativity ability  587 

 588 

The participants’ responses to Questions ‘c’ and ‘e’ of Part 1 of the case study 589 

(Table 3) are presented in Fig. 10 and Fig. 11. Questions ‘c’ and ‘e’ are designed to reveal 590 

the adequacy and focus on creativity teaching in academia. As shown in Fig. 10, most of 591 

the participants consider themselves creative which shows that creativity is a popular skill 592 

in engineering design.  593 

 594 

 595 

 596 

 597 

 598 

 599 

 600 

Fig. 11 An insight into creativity teaching in academia   601 
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Presented in Fig. 11, are the percentages of participants who are either taught 602 

creativity in academia or industry and those who are not. It could be seen that not all the 603 

participants who consider themselves creative (in Fig. 10) are formally taught creativity. 604 

Some design engineers could be naturally creative without being formally taught as 605 

shown in Fig. 11. However, this should not deter effort in teaching creativity techniques 606 

and skills formally in academia and industry. Every good natural ability needs formal 607 

support. For example, some people are naturally good at playing football but football 608 

academies exist. There is the possibility that those who are creative (C – Yes) but not 609 

taught creativity (CT – No) could have been more creative if formally taught creativity in 610 

academia. Also, the possibility exists that those who are not creative (C – No) and not 611 

taught creativity (CT – No) could have been creative if formally taught. The result 612 

presented in Fig. 11 suggests that creativity teaching in academia may be below average 613 

as over 50% of the participants are not formally taught creativity. For the lesser 614 

percentage that is formally taught creativity, the focus is on EDPS while EDPE is ignored 615 

as shown in Fig. 9. Following the completion of Part 1 of the case study, Part 2 is 616 

commenced and the results are presented next.  617 

 618 

5.4 Differentiating a computationally and naturally framed EDP 619 

In Part 2 of the case study, as part of answering RQ2, the intent is to test if the participants 620 

could differentiate between a computationally and naturally framed EDPs. In the set of 621 

20 EDPs presented in Table 4, EDPs 1 – 5 are framed by a design engineer while EDPs 6 – 622 

20 are framed by Pro-Explora. Participants are required to distinguish both categories of 623 
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EDPs, as explained in Section 4.1. The result of this activity for all the participants (Novice 624 

and Experienced) is presented in Fig. 12. The “Novice” and “Experienced” participants are 625 

code-named and presented in Table 5 for confidentiality.  626 

 627 

Table 5 Novice and Experienced participants 628 

Novice Experienced 

1013 1019 1026 1058 1022 1035 1041 1048 
1014 1020 1027  1028 1036 1042 1049 
1015 1021 1029  1030 1037 1044 1057 
1016 1023 1043  1031 1038 1045 1059 
1017 1024 1050  1032 1039 1046 1060 
1018 1025 1051  1033 1040 1047 1061 

 629 

 630 

 631 

Fig. 12 Result of Part 2 (Unbiased Judgement) of the case study 632 

 633 
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As shown in Fig. 12, some of the participants have zero failures in distinguishing a 634 

naturally framed EDPs. These participants are “1015”, “1016”, “1021”, “1028”, “1029”, 635 

“1036”, “1037”, “1046”, “1050”, “1057”, and “1060”. It could be seen in Table 5 that some 636 

of these participants are “Novice” while some are “Experienced”. These zero failures 637 

suggest that the “computationally framed EDP” judged by the respective participants as 638 

a “naturally framed EDP” appears natural, useful, and meaningful. The correlation 639 

between the participants’ years of experience and failures in distinguishing a 640 

computationally and naturally framed EDP is tested for statistical significance. The results 641 

are presented in Table 6. Note that the participants are already categorized based on 642 

years of experience in Table 2. Hence, the failures in Table 6 are relative to the 643 

participants’ (Novice and Experienced) years of experience.  644 

Table 6 Correlation between experience and distinguishing a computational EDP 645 

(Null hypothesis (Ho): There is a significant relationship between the participants’ experience and 646 
their failures in distinguishing a computationally and naturally framed EDP) 647 

 P-value Pearson’s r 

Failures in distinguishing a computationally framed EDP 0.78 0.04 

Failures in distinguishing a naturally framed EDP 0.72 -0.06 

P-value <0.05 defines statistical significance 648 

 649 

Cosine similarity assessment 650 

The result presented in Fig. 12 indicates a misjudgment of at least one naturally framed 651 

EDP or computationally framed EDP by all the participants. This suggests a similarity 652 

between the two categories of EDPs. As a further analysis, the naturally framed (EDP1 – 653 

EDP5) and computationally framed (EDP6 – EDP10) EDPs in Table 4 are assessed for 654 

differences or similarities. The first EDP in Table 4 is named correspondingly as EDP1, the 655 
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second EDP2, and the tenth EDP10. A random quote (Q*) is added in Table 7 to see how 656 

its similarity compares with the EDPs. The result of the assessment is presented in Table 657 

7. The assessment is performed using cosine similarity, which measures similarity 658 

between texts by “calculating the cosine of the angle between the two vectors” [90]. A 659 

web text trained Spacy pipeline, en_core_web_lg, is used to compute the cosine 660 

similarity. Spacy is an open-source python library for NLP. Cosine similarity ranges from 0 661 

– 1 with 1 indicating 100% similarity. It could be seen in Table 7 that most similarities 662 

between the naturally and computationally framed EDPs are above 65%. This justifies the 663 

failures in judgments in Fig. 12. Since Q* in Table 7 is a quote, its similarity with the EDPs 664 

is the lowest across rows. 665 

 666 

Table 7 Cosine similarity assessment result 667 

Q* - “Anyone who has never made a mistake has never tried anything new.” (Albert Einstein) 668 

 669 

5.5 The value of computational support tool in EDPE 670 

To address RQ2, in Part 3 of the case study, the participants used Pro-Explora as a support 671 

tool to come up with some EDPs. They rated 5 of the EDP on a Likert scale of 1 – 10 (with 672 

10 being the highest). In Fig. 13, the mean of the ratings for all participants (Novice and 673 

Experienced) is shown with the standard error (SE). 674 

 EDP6 EDP7 EDP8 EDP9 EDP10 Q* 

EDP1 0.8163 0.7000 0.7461 0.8465 0.8589 0.6163 

EDP2 0.7164 0.6240 0.7838 0.6794 0.6686 0.5628 

EDP3 0.6700 0.6656 0.6258 0.6776 0.6872 0.5249 

EDP4 0.7842 0.7275 0.7191 0.7500 0.7710 0.5371 

EDP5 0.6163 0.5767 0.5481 0.7164 0.7306 0.4750 
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 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

Fig. 13 Participants’ usefulness rating for Pro-Explora framed EDP (with ±1 SE bar) 684 

 685 

The overall mean usefulness rating of the participants (Novice and Experienced) 686 

shown in Fig.13 is 7.74. Coincidentally, the separate mean usefulness ratings of the 687 

“Novice” and “Experienced” participants is 7.74 and 7.74, respectively. The mean for a 688 

Likert scale of 1 – 10 is 5.5. Hence, the overall usefulness rating of the participants (7.74) 689 

for Pro-Explora generated EDPs is above the mean value (5.5) of the Likert scale. This 690 

usefulness rating of 7.74 out of a maximum of 10 on the Likert scale could be considered 691 

high. In Fig. 13, the error bar overlaps give a visual insight on the variabilities in the 692 

individual rating values which aggregate to the means used for the plot. For example, in 693 

Fig. 13, the error bar for participant “1030” overlaps with others to the right of participant 694 

“1030” up to participant “1033”. This indicates that some of the separate ratings of the 695 
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participants to the right of “1030” are higher than that of participant “1030”. As seen in 696 

Table 5, these participants belong to either the “Novice” or “Experienced” category. 697 

Some of the participants mention that they are inspired or prompted to think of a 698 

different or related EDP based on the EDP framed by Pro-Explora. The correlation 699 

between the participants' experience and their usefulness ratings is statistically analyzed 700 

and presented in Table 8. The analyses in Table 8 are relative to the participants’ years of 701 

experience, as indicated in Table 2. As shown in Table 8, the analysis is performed for the 702 

overall participants (Novice and Experienced). As a further confirmation, the analysis is 703 

also performed separately for only the “Novice” and only the “Experienced” participants. 704 

Coincidentally, as shown in Table 8, the p-value for the overall rating is the same as that 705 

of the “Experienced” participants. 706 

 707 

Table 8 Correlation between experience and rating of a computational EDP 708 

(Null hypothesis (Ho): There is a significant relationship between the participants’ level of 709 
experience and their usefulness ratings of Pro-Explora framed EDP) 710 

 P-value Pearson’s r 

Usefulness Rating (Overall) 0.69 -0.06 

Usefulness Rating (Novice participants only) 0.16 -0.34 

Usefulness Rating (Experienced participants only) 0.69 -0.08 

P-value <0.05 defines statistical significance 711 

 712 

6 DISCUSSION 713 

6.1 Academic implications  714 

The findings and results contribute to knowledge by providing empirical evidence 715 

on the 1) lack of focus on EDPE within the engineering design community and 2) value of 716 
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computational support in the EDPE process for the first time. The lack of attention on 717 

EDPE contrasts with the standard expectation of design engineers in identifying societal 718 

EDP using their experience, knowledge, and background [4, 10, 13, 91]. The natural EDPE 719 

process investigated in this paper requires creativity. Over 50% of the participants in the 720 

case study indicate that they were not formally being taught creativity. This suggests a 721 

lack of creativity teaching in academia within engineering design disciplines [92]. Also, the 722 

effort in teaching creativity in academia is focused on EDPS while EDPE is ignored. The 723 

case study result indicates that the general understanding of creativity is about EDPS 724 

within the engineering design community. This understanding is likely from the teachings 725 

provided in academia. Hence, effort in teaching creativity in engineering design disciplines 726 

should equally focus on both EDPS and EDPE. 727 

   728 

6.2 Industry implications 729 

There are scholarly opinions, as mentioned previously, that EDPE is a challenging 730 

activity. However, a paper on why EDPE is challenging lacks. This paper highlights the 731 

possible determinants of the challenges associated with EDPE. Hence, this makes it 732 

possible to extensively investigate some computational technologies that could support 733 

the natural EDPE process, while it was previously indicated that computational EDPE 734 

would be impossible [93]. This paper would provide opportunities for further research in 735 

the area of computational EDPE in engineering design and other fields. For example, it 736 

could be applied in the medical field to identify new possibilities. The results presented in 737 

this paper show that both novice and experienced design engineers can come up with at 738 
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least 5 EDPs in about 10 minutes. This feat would be difficult or impossible within natural 739 

limits due to cognitive limitations and fatigue (Section 2.2). In the natural EDPE process, 740 

it is considered “entirely reasonable to spend several months or longer thinking about 741 

potential problems” to solve [94]. The EDP framed by Pro-Explora is given an average 742 

“usefulness” rating of 7.74 out of 10 by both novice and experienced design engineers 743 

(Section 5.5). This indicates that design engineers could be computationally and 744 

intentionally inspired, prompted, or supported in using their knowledge in EDPE. The 745 

inspiration occurs when the Pro-Explora framed EDP coincides with the design engineer’s 746 

knowledge, experience, and/or background. This is similar to serendipity discovery 747 

(Section 2.1), and some participants agree that the EDP framed by Pro-Explora inspired 748 

them to think of a different EDP. Knowledge is infinite, and design engineers cannot 749 

measure their knowledge or intentionally recall all they know  [95, 96]. Hence, 750 

computationally prompting the design engineer of an EDP that may be within the domain 751 

of their knowledge to solve is advantageous and a rapid way of discovering a new EDP, an 752 

invention, or innovation. 753 

 754 

6.3 Limitations and opportunities 755 

The results are based on the direct responses provided by the participants. No further 756 

verification of the information is carried out. For example, the Universities attended by 757 

the participants who reported that they are not taught creativity are not contacted for 758 

verification. Also, being an online activity, it is not certain whether the participants spent 759 

longer or lesser than 10 minutes during EDPE with Pro-Explora. However, an instruction 760 
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to spend 10 minutes on the task is provided. During the case study, the participants used 761 

Pro-Explora once for EDPE, rated its outputs above average, and requested access for 762 

continued use which is granted. Further trials would be necessary to monitor the 763 

subsequent rating for Pro-Explora and ensure an increased rating. The uniqueness of Pro-764 

Explora framed EDP is based on a duplication recognition search in the original corpus 765 

used in generating the EDP. This search is not extended to the google and patent 766 

databases which are popular for verifying uniqueness. However, during a pilot test, a 767 

manual search on google returned no duplicate for any Pro-Explora framed EDP. 768 

Although BERT and LSTM technologies are potential computational technologies 769 

for EDPE (Section 2.3), they have not been used to compare with the MM used in this 770 

paper. Being in its infancy (Version 1), Pro-Explora will be improved further based on the 771 

feedback received from the participants. This will include optimizing its outputs and 772 

exploring other related NLP technologies including BERT and LSTM. Data collection for 773 

Pro-Explora database will continue, and its model will be updated continuously. 774 

 775 

7 CONCLUSIONS 776 

In this paper, case study-based evidence is provided to highlight the lack of 777 

attention on EDPE - an important aspect of engineering design at early-stage product 778 

design and development. Albeit there are few studies on the lack of attention on EDPE, a 779 

study providing empirical evidence and determinants for it lacks. The natural approaches 780 

related to EDPE are investigated including the “garbage can” model and serendipity 781 
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phenomenon. Some challenges and natural limitations associated with the natural EDPE 782 

approach are identified including cognitive fatigue. This suggests that computational 783 

support could be advantageous in the process. In response, a data-driven computational 784 

EDPE framework and support tool – Pro-Explora are presented. The tool is the first-of-its-785 

kind computational technology that mimics the natural EDPE process. It is based on a 786 

synergy of the MM and some big data technologies including ML and NLP. 787 

A case study is conducted with 43 participants including novice and experienced 788 

design engineers. During the case study, the participants could not distinguish EDP 789 

framed by Pro-Explora when presented alongside naturally framed ones. Using Pro-790 

Explora as support, novice and experienced participants come up with at least 5 new EDPs 791 

in about 10 minutes. This would be difficult or impossible with the natural EDPE approach.  792 

The overall average rating provided by the participants on the usefulness of Pro-Explora 793 

framed EDP is 7.74 out of 10. This is promising for accelerated innovations and inventions 794 

in the industry. Further, the result shows that over 50% of the participants in the case 795 

study did not receive any formal teaching on creativity in academia. This highlights the 796 

importance of focusing on teaching creativity in engineering design-related disciplines 797 

which is fundamental in EDPE. 798 
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Fig. 12 Result of Part 2 (Unbiased Judgement) of the case study 1274 
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Fig. 13 Participants’ usefulness rating for Pro-Explora framed EDP (with ±1 SE bar) 1287 
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Natural EDPE approach Computational EDPE approach 

Identify an EDP of societal relevance by 
accident (serendipity), stochastic 
synthesis (“garbage can” model), 
logical progression (“rational” model), 
and/or conceptualization (apophenia) 
 

Frame an EDP of societal relevance by 
stochastic synthesis of big data, 
computational technologies (data extraction, 
ML, NLP), coding capabilities, connectionist 
theory, deterministic chaos, MM, BERT, 
and/or LSTM 

Search manually for prior existence in 
relevant databases using search 
engines. 
 

Make an automated search for prior existence 
in relevant databases using duplication 
recognitions. 

Decide, subject to acceptance by the 
society or a relevant authority 

Decide, subject to a design engineer's 
acceptance. 
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Participants 
Gender 

 

Academic Qualification 

(Obtained/in view) 
 

Experience 

(Years) 

Male Female Total B M PhD  ≤ 3 > 3 

Novice 12 7 19  5 11 3  19 0 

Experienced 23 1 24  10 9 5  0 24 

Total 35 8 43  15 20 8  19 24 

B – Bachelors, M – Masters 1326 
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Questionnaire themes 

(a) What does it mean to be creative? 
(b) Major are the roles of creativity in engineering design? 
(c) Do You Consider Yourself Creative? 
(d) Why are you creative or uncreative? 
(e) Were you taught creativity at University or at work? 
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Table 4 A sample set of 20 EDP for participants 1395 
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Naturally and computationally framed EDP 

1. Design of a mechanical intrusive force detection device. 
2. To design a portable water distillation device. 
3. A sustainable packaging design for wine. 
4. Designing an interactive interface for collaborative engineering design. 
5. A design of an automatic bottle opener. 
6. Towards intelligent emotion detection system for video traffic surveillance. 
7. Ai-based learning models for video traffic surveillance. 
8. Design and material properties to minimize biofilm deposits. 
9. Design of human-powered hybrid electric-power shovel for the physically 
challenged. 
10. Design of self-reconfigurable production equipment during operation. 
11. Anti riot drone without traffic lights. 
12. Investigation of anomaly detection in a critical materials. 
13. Design of a self-timing solar seawater desalination machine. 
14. Staging co-design for reverse modeling of product development. 
15. Detecting aggressive driving behavior using scilab. 
16. Design of remote intelligent home finance software. 
17. Designing products by artificial intelligence design approach. 
18. A computationally efficient real-time vehicle and speed detection using federated 
learning. 
19. Automatic mechanical footstep power tiller machine. 
20. Design of production information retrieval system. 
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Table 5 Novice and Experienced participants 1413 

Novice Experienced 
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1013 1019 1026 1058 1022 1035 1041 1048 
1014 1020 1027  1028 1036 1042 1049 
1015 1021 1029  1030 1037 1044 1057 
1016 1023 1043  1031 1038 1045 1059 
1017 1024 1050  1032 1039 1046 1060 
1018 1025 1051  1033 1040 1047 1061 
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Table 6 Correlation between experience and distinguishing a computational EDP 1450 
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 P-value  Pearson’s r 

 Novice Experienced  Novice Experienced 

Experience vs Failed C differentiation 0.19 0.62  0.32 0.11 

Experience vs Failed N differentiation 0.38 0.56  0.21 0.13 

C – computationally framed EDP  N – naturally framed EDP 1451 
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Table 7 Cosine similarity assessment result 1487 

 1488 
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Table 8 Correlation between experience and rating of a computational EDP 1521 

 EDP6 EDP7 EDP8 EDP9 EDP10 Q* 

EDP1 0.8163 0.7000 0.7461 0.8465 0.8589 0.6163 

EDP2 0.7164 0.6240 0.7838 0.6794 0.6686 0.5628 

EDP3 0.6700 0.6656 0.6258 0.6776 0.6872 0.5249 

EDP4 0.7842 0.7275 0.7191 0.7500 0.7710 0.5371 

EDP5 0.6163 0.5767 0.5481 0.7164 0.7306 0.4750 
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 P-value Pearson’s r 

Experience vs Usefulness Rating (Novice) 0.16 -0.34 

Experience vs Usefulness Rating (Experienced) 0.69 -0.08 

 1522 


