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E-commerce supply chains and their members face risks from cyber-attacks. Consumers who purchase goods online also risk having 

their private information stolen. Thus, businesses are investing to improve cyber-security at a non-trivial cost. In this paper, we conduct 

a Stackelberg game theoretical analysis. In the basic model, we first derive the equilibrium pricing and cyber-security level decisions in 

the e-commerce supply chain. Based on real-world practices, we then explore whether or not governments should impose cyber-security 

penalty schemes. Our findings show that when the government is characterized by having sufficiently high emphasis on consumer surplus, 

implementing the penalty scheme is beneficial to social welfare. Then, we extend the analysis to examine how adopting systems security 

enhancing technologies (such as blockchain) will affect the government’s choice of imposing penalty. We uncover that when it is 

beneficial to have government’s penalty scheme, the technology benefit-to-cost ratio is a critical factor which governs whether the 

optimal penalty will be lower or higher with the adoption of systems security enhancing technologies. To generate more insights, we 

conduct further analyses for various extended modeling cases (e.g., with alliance, competition, and the defense-level dependent penalty 

scheme) and find that our main results remain robust. One important insight we have uncovered in this study is that imposing government 

penalty schemes on cybersecurity issues may do more harm than good; while once it is beneficial to implement, the government should 

charge the heaviest possible fine. This finding may explain why in the real-world, governments basically always adopt a polarized 

strategy, i.e., either do not impose penalty or impose a super heavy penalty, on cyber-security issues.  
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1. Introduction 

Cyber-security issues are becoming a daily challenge for businesses worldwide and must be addressed in e-

commerce supply chains. The number of cyber-attacks has grown steadily during the last few years. According 

to Kaspersky Lab, a cyber-attack was launched every 40 seconds in 20163 and the rate of phishing attacks in 

2018 was almost doubled compared to 20174. Cyber-attacks may take the form of impersonation, fraudulent 

banking data use, blackmail, random demands, and power cuts, and their effects range from the theft of 

individuals’ personal information to the theft of confidential industrial product data. For example, in October 

2013, the personal information of 2.9 million account holders (logins, passwords, names, and credit card 

numbers and expiration dates) was stolen from the software company Adobe. 
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Both e-commerce platforms and governments treat cyber-attacks very seriously, as they can compromise 

users’ privacy and may be disastrous for the companies involved. To enjoy the convenience of shopping online, 

consumers typically need to submit their private information. This exposes their information to serious threats. 

A security breach of the giant U.S. retailer Target Corporation in December 2013, for example, exposed the 

personal data of over 110 million consumers, leading to a nearly 50% drop in profits. In January 2014, data from 

100 million South Korean credit cards were stolen. As a result, more than 2 million South Koreans had their 

cards blocked or replaced, as they feared that their bank accounts would be emptied. In 2016, 3 billion Yahoo 

accounts were hacked, and in 2018, Under Armor reported that its “MyFitnessPal” service had been hacked, 

affecting 150 million users. Consumers’ perceptions of information security can affect their online purchase 

behavior and can lead to business losses, including an abnormally high turnover of customers and increased 

customer acquisition activities (Wu et al. 2018). For example, when Sony’s PlayStation Network was attacked 

in April 2011, the personal data of 77 million users were leaked and the banking information of tens of thousands 

of players was compromised. To appease users, Sony paid out US$15 million in compensation, plus a few 

million dollars in legal fees, as well as refunding the people whose bank accounts had been illegally used. Cyber-

security issues are thus becoming a daily challenge for e-businesses.  

To prevent consumer information from being stolen, e-commerce companies are obligated to implement 

the right technologies (see Section 1.2) at a non-trivial cost. In fact, worldwide spending on information security 

products and services exceeded US$114 billion in 2018, representing an increase of 12.4% from US$101.54 

billion in 2017, according to Gartner, a leading research firm. Gartner also predicted that end-user spending for 

the information security and risk management market will grow at a “compound annual growth rate” of 8.7% 

from 2018 through 2023 to reach $188.4 billion in constant currency.5 In addition to e-commerce companies’ 

cyber-security measures, governments all around the world take different measures for cyber-security related 

challenges. In 2019, the U.K. government invested £100m in new cyber-security R&D and launched a fund to 

drive diversity across the industry. Chinese legislators passed an e-commerce law to improve online regulation 

and protect consumer privacy, which took effect on January 1, 2019, and stated that platforms have the 

responsibility to protect the security of personal information held by e-commerce platforms. Platform operators 

would face a penalty of 500,000 yuan (i.e., US$73,260) if they fail to take necessary steps, or up to 2 million 

yuan in serious cases. On February 28, 2019, Thailand passed its Cybersecurity Act, and legislators in Europe 

also unanimously passed the Personal Data Protection Act, based on the European Union’s General Data 

Protection Regulation (GDPR). In 2016, the Australian government rolled out its Cyber Security Strategy, 

which included investments of more than US$230 million across “five areas of action” up until 2020. Some U.S. 

state governments also implemented regulations to ensure the security of online shopping environments. The 

four main data oversight categories addressed in this legislation are breach notifications, data security, data 

disposal, and the privacy of non-personally identifiable information. The Department of Justice of the US 

government announced in April 2015 its “Best Practices for Victim Response and Reporting of Cyber Incidents,” 
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which supplements its cyber-security regulations6. However, not every state in the U.S. has imposed the penalty 

rule for cyber-security issues. For example, California recently passed the SB-317 Bill, which imposes penalties 

for non-compliance, but New York has no such restriction (see Table 1.1a). Why this is the case and whether 

the government should play a more central regulatory role in cyber-security should be examined further. 

Moreover, as shown in Table 1.1.b (Appendix), in all the real-world cases that we have found, governments 

basically always adopt a polarized strategy, i.e., either do not impose penalty or impose a super heavy penalty, 

on cyber-security issues. Whether there is a scientific explanation for the existence of this type of polarized 

strategy deserves deeper investigation. 

Table 1.1a. Some examples of cyber-security rules in different places 7 

Rules Details of penalty 

European Union (General Data 

Protection Regulation) 

Very heavy penalty: The maximum fine for non-compliance is €10 million or 2% of “worldwide 

annual revenue.” 

New York regulations No clear penalty imposed for non-compliance 

California regulations Starting from January 1, 2020, “any manufacturer of a device that connects to the internet must 

equip it with ‘reasonable’ security features, designed to prevent unauthorized access, 

modification, or information disclosure.” A penalty will be imposed for non-compliance cases.8 

 

Motivated by the importance of cyber-security for e-commerce supply chains and the different associated 

government practices, we explore the following research questions in this paper. (1) In terms of e-tailer’s cyber-

security investments, what are the optimal retail prices, level of cyber-security, and wholesale pricing decisions 

in the supply chain, with and without government penalty schemes? (2) How does the presence of a government 

cyber-security penalty scheme affect the supply chain (and its members), consumers and social welfare? Are 

there any cases in which having government’s penalty scheme does more harm than good? If it is beneficial to 

implement the penalty scheme, is it wise for the government to impose a very heavy penalty? (3) What are the 

impacts brought by the e-tailer’s deployment of technologies (such as blockchain) on our findings? How robust 

are the findings? To address the above research questions, we formally build a consumer utility based stylized 

analytical model and conduct a Stackelberg game-theoretic analysis. We also include extended modeling 

analyses to show robustness of the findings. Table 1.2 (Appendix) shows features of cyber-security for e-

commerce platforms as well as how they are being considered and modeled in this paper to address the research 

issues. We argue that the models and analyses conducted in this paper are specific to the domain on 

cybersecurity and hence the derived insights are relevant and applicable to e-commerce supply chains.  

To the best of our knowledge, our paper is one of the first analytical operations management (OM) studies 

that explore cyber-risk in e-commerce supply chains with the considerations of government cyber-security 

penalty policies and other associated issues (such as the use of technologies). Cyber-attacks in e-commerce 

supply chains are a serious real-world problem. Our findings give important guidance for policy makers on how 

to enhance cyber-security and may explain why in the real-world, governments basically always adopt a 

polarized strategy on cyber-security issues. 
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The remainder of this paper is organized as follows. Section 2 presents the literature review. Section 3 

describes the basic analytical models for the e-commerce supply chains without government intervention 

(Model NG) and with a government cyber-security penalty scheme (Model G). In Section 4, the two models are 

compared and the value of government cyber-security penalty schemes (VGCPs) is examined. Section 5 

provides extended analyses and Section 6 concludes the study. All proofs as well as some extended modelling 

analyses and supplementary results are placed in E-Companions (available online). 

2. Related Literature 

The problems examined in this study are related to research on e-commerce, cyber-security, and the role of 

government in OM.  

OM has entered the digital era. The advancement of e-commerce has led to extensive research on ways of 

optimizing e-commerce supply chains (Tsay and Agrawal 2004; Cai 2010; Wu et al. 2015; Scholz et al. 2017; 

Lim and Srai 2018; Zhang and Choi 2021). Earlier studies have explored how consumer behaviors affect e-

tailing operations (e.g., Carrillo et al. 2014). In recent years, the operations of online platforms are widely 

explored, as they support e-commerce (for example, Hao and Fan 2014; Kuruzovich and Etzion 2018). For 

instance, Niu et al. (2019) model the incentives of competing e-commerce firms for logistics cooperation. They 

find that if “Firm A” forms a logistics sharing alliance with ‘Firm B”, then “Firm B” can guarantee customers 

a promised delivery time (PDT). Wang et al. (2019) conduct a Stackelberg game analysis of electronic business 

platform financing. The authors empirically examine the effect of offline call intensity on the probability of 

online consumers’ purchasing digital services, and the “carryover effect of call intensity”. Zhang and Yao (2020) 

study a similar problem and consider similar effects.  Shen et al. (2019) focus on exploring the problem of a 

manufacturer’s optimal channel selection between a platform retailer and a traditional reseller. Yan et al. (2019) 

examine whether a marketplace platform should be introduced to e-commerce. The role of using online 

platforms in e-commerce supply chain strategies has also been examined (Hagiu and Wright 2015; Abhishek et 

al. 2016; Kwark et al. 2017; Tan and Carrillo 2017; Liang et al. 2020). In particular, Tian et al. (2018) conduct 

a study of e-commerce platform operations to investigate the role of e-tailers, and find that the interaction 

between order-fulfilment costs and upstream competition intensity moderates the e-tailer’s selection of an 

optimal mode. In this study, we also address the e-commerce operations problem and the e-tailer in our paper 

can be an e-platform (such as Amazon.com and JD.com), but we focus on tackling the cyber-security challenge. 

Unlike other studies, we also examine the government’s role in the cyber-security of e-commerce supply chains. 

Cyber-security problems are known to be important in the OM literature (Choi et al. 2018; Bier and 

Gutfraind 2019; Paul and Zhang 2021) but not yet well-explored analytically. For instance, Guha and Kumar 

(2018) indicate that data and cyber-security are future research directions in the fields of OM and information 

systems. As Tang and Whinston (2020) argue, security negligence is a major cause of data breaches and can 

occur if a firm’s information technology managers cannot adequately address security vulnerabilities. Cohen 

(2018) notes that the availability of sensitive personal data can attract hackers and lead to serious cyber-security 

problems, including “information leakage, fraud, and identity theft”. The information privacy issue in e-
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commerce platforms is non-trivial, as it may affect consumers’ confidence in e-platforms and ultimately reduce 

profits.  

In the context of analytical OM studies, Nagurney and Shukla (2017) claim that firms and governments are 

sharing threat information to arrange coordinated defenses against attacks. The authors argue that governments 

and policy-makers are pushing firms to exchange information in the cyber space as a possible defensive 

mechanism. Wu et al. (2018) explore a firm’s information security decisions using game theory. The authors 

highlight that competition plays a critical role in affecting the optimal security decisions. Khouzani et al. (2019) 

present a framework to efficiently solve a multi-objective optimization problem for cyber-security defense. 

Cheung and Bell (2019) present a novel “attacker-defender” model against a “quantal response adversary” to 

protect critical assets. Eling and Wirfs (2019) conduct an analysis of over 1500 cyber risk incidents extracted 

from an operational risk dataset. They note that cyber-risk is a special risk category that warrants more research, 

and their results can help insurance companies with limited data and experience of cyber-risks to develop cyber 

insurance policies. More recently, Simon and Omar (2020) investigate the cybersecurity investment with the 

consideration of coordination and strategic attacker. Following this stream of literature, this paper assumes the 

related information in the supply chain is public. This paper supplements the OM literature on cyber-security 

analyses. We focus on e-commerce supply chains and analytically study the optimal cyber-security level and 

the roles played by the government. 

Governments can affect supply chain operations through various means. For example, Arya and 

Mittendorf (2015) note that governments have increasingly attempted to direct business behavior to achieve 

specific socially desirable outcomes. Hua et al. (2016) study competition and coordination in two‐tier public 

service systems under government fiscal policies. The authors claim that a relatively low tax‐subsidy rate can 

almost perfectly coordinate the two public service providers to achieve almost the maximum possible benefits 

from the two‐tier service system. Berenguer et al. (2017) investigate the effects of subsidies on increasing 

consumption through for-profit and not-for-profit newsvendors. They show that subsidy programs provide 

stronger incentives for not-for-profit than for-profit firms to increase consumption. Xiao and Xu (2018) find 

that it is wise for the retailer to adopt a lost-sale penalty contract, which can incentivize the seller to install the 

right level of capacity and extract the full surplus. Zhang and Zhang (2018) examine the interactions between 

customer purchasing behaviours and trade-in remanufacturing. They uncover how a social planner (such as the 

government) should design a public policy to maximize social welfare. Xu et al. (2018) conduct a study of the 

impacts of markets and tax on transnational corporations’ procurement strategies. They highlight the 

significance of a company's global supply chain management decisions while taking international taxation rules 

into consideration. Yu et al. (2018) investigate government subsidy programs and find that governments can 

improve consumer welfare by developing subsidy programs that involve multiple (competing) manufacturers 

with different market sizes and adequate capacities. More recently, Hsu et al. (2019) find that a quality subsidy 

offered by the government to farmers can decrease the quality of their dairy products and their profits. Similar 

to the above studies, we also explore the role played by governments in the business operations. However, 

different from them, we focus on exploring whether governments should play a role on cyber-security, which 
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are motivated by real world observed practices. 

In the digital era (Choi et al. 2018; Swaminathan 2018), cybersecurity threats are being a priority for global 

business. Many researchers investigate how to use systems security enhancing technologies (such as blockchain) 

to fight against cyber-attacks and improve operations. Doroudi et al. (2021) explore how to mitigate the 

performance drop and data breaching problems under cyber-attacks by using technologies. Cheung and Bell 

(2021) propose that real-time recovery technology is crucial in managing real-time cyber-attacks. The authors 

propose how to improve connectivity of cyber networks. Ji et al. (2016) discuss how big data analysis and 

optimization tools can be used to tackle advanced cyber-attacks. Bensoussan et al. (2020) reveal that intrusion 

prevention is a crucial point for overcoming cybersecurity risk. The authors explore how to guarantee the 

information system’s security from the perspective of maintenance practice related to an “intrusion detection 

system”. They mention that companies should continuously employ and update the relevant technologies to be 

“sustainable” against cyber-attacks. Cohen and Lee (2020) uncover that technologies including robotic 

automation, artificial intelligence (AI) and Internet-of-Things (IoT) applications can help improve the design of 

worldwide business networks. They claim that the incomplete integration of networks leads to cyber-security 

issues. Olsen and Tomlin (2020) discuss the practical values of the technologies for business operations in the 

industry 4.0 era. The authors point out that blockchain is a possible solution for dealing with the data security 

challenges. Cui et al. (2021) explore how to make use of technologies such as AI to improve the performance 

of supply chains. To enhance systems security as well as many business operations, the blockchain technology 

is commonly known to be useful. In fact, blockchain can be viewed as a distributed ledger which can provide 

secure data platform and enhance transparency and tractability of data. In the OM literature, Babich and Hilary 

(2019) discuss how blockchain can be employed to face cyber incident and safety issues. The authors share their 

visions on the field, including many proposals for future research. Choi and Luo (2019) discuss the “data quality 

challenges” for sustainable operations in emerging economies. The authors investigate how blockchain may 

help to enhance operations by dampening data quality related problems. Choi et al. (2020) examine the service 

pricing problems in “on-demand-service-platform” operations. The authors uncover how blockchain can be 

used to improve service operations by considering the risk sensitivity of customers. Cai et al. (2021) analytically 

explore how blockchain can help to address the cheating problems in the use of markdown contract in a supply 

chain with a rental platform. Luo and Choi (2021) conduct a review related to AI and blockchain. They highlight 

that the integration of these two critical disruptive technologies can help improve cybersecurity. Choi and Shi 

(2021) explore the use of blockchain for ride-hailing operations under COVID-19. For more details of using 

blockchain in supply chain systems, refer to Hastig and Sodhi (2020) and Choi et al. (2021). Note that even 

though it is known that using the systems security enhancing technology such as blockchain is helpful to deal 

with challenges in cyber-security, to the best of our knowledge, no prior studies in OM have ever analytically 

examined this issue. This paper bridges this gap. 

3. Basic Models 
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3.1 Model NG: Without a Government Penalty Scheme 

Cyber-attacks potentially affect all members of e-commerce supply chains in an online market. When 

consumers make purchases online, their private information, including their names, addresses, purchasing 

records, telephone numbers, and credit card numbers etc., may be at risk of being stolen. Thus, both supply 

chains and consumers are affected. To enhance readability, the definitions of different models and some 

important variables are described in Table 3.1. For other notation, please refer to E-Companion A5. 

 

Table 3.1. Definitions of different models and variables  

Notation Meaning 

Model NG E-Commerce supply chains without the government cyber-security penalty scheme. 

Model G E-Commerce supply chains with the government cyber-security penalty scheme. 

Model NT E-Commerce supply chains with technologies and without government penalty. 

Model GT E-Commerce supply chains with technologies and with government penalty. 

𝛾 The likelihood that e-commerce supply chains suffer cyber-attacks. 

𝑎 Consumer’s sensitivity to cyber-attacks. 

β The “rate of success in detecting the attack”, which is the same as “the level of defense effort of the 

e-tailer” in this paper. 

𝛼 The level of cyber-security risk, which is defined as 𝛼 =γ(1-β). 

𝑚 The unit product cost for the supplier. 

𝑤 The product is supplied by the supplier to the e-tailer at a unit wholesale price 𝑤. 

𝑝 the product’s selling price from e-tailer. 

F The penalty the government imposes on the e-tailer when the e-tailer (E) fails to defend against 

cyber-attack. 

𝜋𝐸 The profit of e-tailer. 

𝜋𝑆 The profit of supplier. 

𝜋𝑆𝐶  The profit of supply chain. 

𝐶𝑆 The consumer surplus. 

𝑆𝑊 The social welfare. 

𝐾𝐷𝐸(𝛽) The defense effort cost. 

 
Figure 3.1.  An e-commerce supply chain with cyber-attack (Model NG).  

In our study, we consider an e-commerce supply chain with a supplier and an e-tailer, as shown in Figure 

3.1. The likelihood that e-commerce supply chains suffer cyber-attacks is 𝛾9. Following Agurney and Shukla 

(2017) and Simon and Omar (2020), we explore the case in which the e-tailers and consumers have a perception 

of the probability of cyber-attack. Both of them form “rational expectations” regarding the likelihood that e-

commerce supply chains suffer cyber-attacks. Intuitively, consumers perceive their personal information being 

exposed and other risks associated with cyber-attacks as negative. Their sensitivity to the level of cyber-security 
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public information, which is also based on the fact that major e-tailers have to disclose major cyber-attack events as a part of its corporate social 

responsibility in any open markets. 
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risk is denoted by the coefficient 𝑎. To protect the online shopping environment, companies implement measures 

to increase the level of cyber-security. In terms of the e-tailer’s attempts to defend against cyber-attack, β 

represents the rate of success in detecting the attack10, and (1 − 𝛽) represents the likelihood of failure. Thus, 

following Nagurney and Shukla (2017), we call the likelihood of “having trouble” (i.e., being attacked and 

failing to successfully defend against it) when the e-tailer operates online the level of cyber-security risk (𝛼), 

which is defined as 𝛾(1 − 𝛽).  Note that 𝛾𝛽 represents the level of successful defense from cyber-attack. In this 

paper, we assume that α and β are common knowledge to the supplier and e-tailer. Firstly, we assume that the 

e-tailer can communicate the information of cyber security with the supplier. Previous studies have adopted the 

same assumption that information sharing between the e-tailer and supplier is common. For example, Li (2002), 

Ha and Tian (2017), and Zhang and Zhang (2020). This is also in line with what the US government is 

advocating now with the information sharing among private companies on cyber-attacks11. Secondly, for α (level 

of cyber-security risk), it relates to the cyber-attack cases. From news, consumers will have the experience and 

feeling regarding it because major cyber-attacks cases cannot be hidden. So, we argue that this kind of data is 

publicly available, and there are lots of cyber-attack news for companies like JD and Amazon. For β (the rate 

of success in detecting cyber-attacks), it can be judged according to the technology adopted by the platform. 

Thirdly, from history and experience, and for the analysis purpose, this paper assumes that the level of cyber-

security risk and the rate of success in detecting cyber-attacks are publicly known. In other words, in this paper, 

we consider the symmetry of information and postpone the asymmetry case to future research.  

We consider a case in which consumers have a heterogeneous valuation, 𝑢, of the product, in which 𝑢 

follows a distribution 𝑓(∙). Following the literature and for analytical tractability, we consider a case in which 

𝑓(𝑢) is a uniform distribution with a lower bound of 0 and upper bound of 1, denoted by U [0, 1].12 In addition, 

to focus on our main areas of exploration and to simplify the notation, we normalize the market population as 

1. E-tailers implement measures to increase their cyber-security, and these measures incur a non-trivial cost. As 

𝛽 denotes the e-tailer’s level of defense effort, when an e-tailer exerts an effort 𝛽, a defense effort cost 𝐾𝐷𝐸(𝛽) 

is incurred, which is given by 𝑘𝛽2/2, where 𝑘 > 0. Note that 𝑘 can be treated as the cost coefficient of defense. 

A higher cyber-security improvement requires more complicated configuration and better functionality of the 

software system. This leads to a higher level of systems complexity and the cost becomes much higher when 

the desirable level of cyber-security is higher. It is therefore reasonable to apply a quadratic cost structure, which 

reflects the fact that the marginal defense cost increases for achieving a higher cybersecurity level (Kim et al., 

(2011)). What is more, the quadratic cost structure is in line with the extant literature as follows. Shetty et al. 

(2010) claim that the defense effort costs should increase with the security level. As in Nagurney and Shukla 

(2017), to reach a security level 𝛽, the e-tailer invests 𝐾𝐷𝐸(𝛽) with the function assumed to be continuously 

differentiable and convex. Similar to Kim et al., (2011), Nagurney and Shukla (2017) and Yang et al. (2021), 

                                                 
10 In this paper, 𝛽 represents “the rate of success in detecting the attack”, which is the same as “the level of defense effort of the e-tailer.” 
11 https://www.nytimes.com/2021/05/09/us/politics/biden-cyberattack-response.html (accessed 9 May 2021). 
12 In this paper, the consumer utility is equal to 𝑢 − 𝑎𝛾(1 − 𝛽) − 𝑝, where 𝛾 represents the likelihood of being attacked. As such, if the cyber-security 

risk increases, the consumer utility will be hurt. Following this argument, the derived consumer utility is linear. 
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we consider the defense effort cost 𝐾𝐷𝐸(𝛽) given by 𝑘𝛽2/2 as a convex function of 𝛽, indicating that 𝐾𝐷𝐸
′ (𝛽) >

0 and 𝐾𝐷𝐸
′′ (𝛽) > 0; namely, the cost increases as the rate of success in detecting the attack increases at a growing 

rate. 

When consumers decide whether to shop on an e-tailer platform, they will consider factors such as (i) the 

product’s selling price from e-tailer 𝑝; (ii) the level of security regarding their private information, which can 

be interpreted by the cyber-security risk level of the platform, which is equal to 𝛾(1 − 𝛽) , where 𝛾  and 𝛽 

represent the likelihood of being attacked and the success rate of detecting the attack, respectively; and (iii) 

consumer sensitivity to the level of cyber-security risk, which we denote by 𝑎. Thus, we can derive the number 

of consumers who will buy the product at a price 𝑝 and with effort level 𝛽. Noting that consumers choose to use 

the platform when their valuation  𝑢 is greater than or equal to 𝑝 + 𝑎𝛾(1 − 𝛽), the demand function is given as 

follows: 𝐷(𝑁𝐺) = ∫ 𝑓(𝑢) ⅆ𝑢
1

𝑝+𝑎𝛼
= 1 (1 − (𝑝(𝑁𝐺) + 𝑎𝛾(1 − 𝛽(𝑁𝐺)))) 

                                = 1 − 𝑒 + 𝑒𝛽(𝑁𝐺) − 𝑝(𝑁𝐺), where 𝑒 = 𝑎𝛾.                                                                  (3.1) 

Observe that we use the subscript (NG) to represent the functions and optimal decisions under Model NG. 

As shown in Figure 3.1, the unit product cost for the supplier under Model NG is 𝑚 . The product is 

provided by the supplier to the e-tailer at a unit wholesale price of 𝑤. We build a consumer utility based stylized 

analytical model to conduct a Stackelberg game-theoretical analysis. In our model, the supplier determines the 

wholesale price as the leader and the e-tailer controls 𝑝 and 𝛽 simultaneously as the follower. The sequence of 

events is illustrated in Figure 3.2.  

  

Figure 3.2.  Sequence of events for Model NG. 

Thus, the profit functions of supplier (S) and e-tailer (E) are given as follows: 

𝜋𝑆(𝑁𝐺) = (𝑤(𝑁𝐺) − 𝑚(𝑁𝐺))𝐷(𝑁𝐺) = (𝑤(𝑁𝐺) − 𝑚(𝑁𝐺))(1 − 𝑒 + 𝑒𝛽(𝑁𝐺) − 𝑝(𝑁𝐺)),                                          (3.2)                                                                                                                     

𝜋𝐸(𝑁𝐺) = (𝑝(𝑁𝐺) − 𝑤(𝑁𝐺))𝐷 − 𝐾𝐷𝐸(𝛽(𝑁𝐺)) = (𝑝(𝑁𝐺) − 𝑤(𝑁𝐺))(1 − 𝑒 + 𝑒𝛽(𝑁𝐺) − 𝑝(𝑁𝐺)) − 𝑘𝛽(𝑁𝐺)
2 /2.  (3.3) 

We solve this game by backward induction. By checking the Hessian matrix, we find that 𝜋𝐸 is jointly 

concave in 𝑝(𝑁𝐺) and 𝛽(𝑁𝐺), when   𝑘 > 𝑒2/2 . In this paper, we consider the case with  𝑘 > 𝑒2/2  which is the 

common situation because it means exerting effort to defend against cyber-attacks is expensive. If it is not the 

case, the effort will go to the upper bound, which is unlikely to be the case in practice. For any given wholesale 

price 𝑤(𝑁𝐺), we characterize the equilibrium retail price 𝑝 and the likelihood of the successful defense  𝛽 that 

will maximize 𝜋𝐸(𝑁𝐺).  

We can then determine the wholesale price for the supplier by maximizing the supplier’s profit function. 

As we assume that 𝑘 > 𝑒2/2, it is straightforward to establish that 𝜋𝑆(𝑁𝐺)(𝑝(𝑁𝐺)
∗ |𝑤 , 𝛽(𝑁𝐺)

∗ |𝑤) is concave in 𝑤 

(P.S.: 𝜕2𝜋𝑆/𝜕𝑤2 = −2𝑘/(2𝑘 − 𝑒2) < 0 ) and optimizing it yields the optimal wholesale price and further 
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yields the optimal selling price and the likelihood of successful defense in Model NG. We can thus summarize 

the results as follows. Under Model NG, if 𝑘 > 𝑒2/2, there is a unique equilibrium with the selling price 

 𝑝(𝑁𝐺)
∗ = 𝐴 + 𝜏𝐵, the defense effort set by e-tailer 𝛽(𝑁𝐺)

∗ =
𝑒𝐽

2𝜀
 , and the wholesale price set by the supplier 

𝑤(𝑁𝐺)
∗ = 𝜏 , where 𝐴  =

𝑘(1−𝑒)

2𝑘−𝑒2   , 𝐵 =
𝑘−𝑒2

2𝑘−𝑒2  ,  𝜏 =
1−𝑒+𝑚

2
, 𝜀 = 2𝑘 − 𝑒2 and  𝐽 = 1 − 𝑒 − 𝑚 . We can further 

derive the corresponding optimal supplier’s profit and optimal e-tailer’s profit. As 𝛽∗ and 𝑤∗ are positive and 1 

− B >0, we can derive that  𝜏 > 0 and 𝐽 > 0. We denote CS as the consumer surplus, which can be derived as 

follows: 

𝐶𝑆(𝑁𝐺) =
1

2
(1 − 𝑒 + 𝑒𝛽(𝑁𝐺) − 𝑝(𝑁𝐺))2.                                                                                                                    (3.4) 

 Under Model NG, at the equilibrium, the supplier’s profit, the e-tailer’s profit, consumer surplus (𝐶𝑆(𝑁𝐺)), 

and social welfare (𝑆𝑊(𝑁𝐺)) are given as follows (P.S.: See E-Companion A2 and A3 for more details):𝜋𝑆(𝑁𝐺)
∗ =

2𝑘𝜓 , 𝜋𝐸(𝑁𝐺)
∗ = 𝑘𝜓 ,  𝐶𝑆(𝑁𝐺)

∗ = 𝑘𝜓(1 − 𝐵) , 𝑆𝑊(𝑁𝐺)
∗ = 𝜋𝑆(𝑁𝐺)

∗ + 𝜋𝐸(𝑁𝐺)
∗ + 𝐶𝑆(𝑁𝐺)

∗ = (4 − 𝐵)𝑘𝜓,  where  𝜓 =

(1−𝑒−𝑚)2

8(2𝑘−𝑒2)
. A complete list of abbreviations is given in E-Companion A5. The results reveal that under Model 

NG, the equilibrium profit of the supplier is twice that of the e-tailer’s profit. i.e., 𝜋𝑆(𝑁𝐺)
∗ = 2𝜋𝐸(𝑁𝐺)

∗ . Thus, we 

can clearly see that when 𝑚, a, 𝑘, or 𝛾 varies, the effects on the suppler and the e-tailer are the same.  

Now, we explore how the cost of the product affects the wholesale price, the selling price, and cyber-

security. We have the following findings: If the unit product cost for the supplier (m) increases, (i) the optimal 

wholesale price 𝑤(𝑁𝐺)
∗  will monotonically increase; (ii) the optimal selling price 𝑝(𝑁𝐺)

∗  will increase when  𝑘 ≥

𝑒2  and decrease when 𝑒2/2 < 𝑘 < 𝑒2 ; (iii) the optimal level of cyber-security 𝛽(𝑁𝐺)
∗   will monotonically 

decrease. By differentiating  𝑤(𝑁𝐺)
∗  , 𝑝(𝑁𝐺)

∗ , and 𝛽(𝑁𝐺)
∗  with respect to m, we find that the optimal wholesale price 

increases in m. Intuitively, if the cost of the product increases, the supplier will increase the wholesale price. 

From 
𝜕𝛽(𝑁𝐺)

∗

𝜕𝑚
< 0 , we see that when the cost (m) of the product increases, the e-tailer should pay a higher 

wholesale price (w) to the supplier. Then the e-tailer’s motivation to defend against a cyber-attack will also 

decrease. If 𝑘 ≥ 𝑒2, the optimal price will increase when m increases. However, if 𝑒2/2 < 𝑘 < 𝑒2, the optimal 

price will decrease when m increases. As 𝛽∗ decreases, the cyber-security cost for the e-tailer decreases; thus, 

even if the wholesale price increases, the retail price decreases. 

Next, we examine how the likelihood of being attacked (𝛾) will affect these optimal decisions at the 

Stackelberg equilibrium. If the likelihood of being attacked (𝛾) increases, (a) the optimal wholesale price 𝑤(𝑁𝐺)
∗  

will monotonically decrease, (b) the optimal selling price  𝑝(𝑁𝐺)
∗   will increase when

𝑒2

2
< 𝑘 < 𝑘1,  where 𝑘1 =

1

12
(𝑒(2 + 3𝑒 − 2𝑚) + 𝑒√4(1 − 𝑚)2 + 12𝑒(1 − 𝑚) − 15𝑒2), else 𝑝(𝑁𝐺)

∗  will decrease when 𝑘 > 𝑘1.  and (c) 

the optimal level of cyber-security 𝛽(𝑁𝐺)
∗   will increase when  (ⅰ) 0 < 𝑒 ≤

1−𝑚

2
; or (ⅱ)  

1−𝑚

2
< 𝑒 <  

3(1−𝑚)

2
 

and 
𝑒2

2
< 𝑘 <

𝑒2(1−𝑚)

(2𝑒+𝑚−1)
. Otherwise, 𝛽(𝑁𝐺)

∗  will decrease. Thus, we can see that if 𝑒 and k are within specific 

ranges, the optimal level of cyber-security 𝛽(𝑁𝐺)
∗  will increase as the risk of being attacked increases. This is 
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because e-tailer is willing to input more effort to reduce the chance of being attacked when the cost of improving 

the level of security is relatively low. Note that the level of cyber-security risk is defined as 𝛾(1 − 𝛽). From 

(3.3), it indicates that the e-tailer’s demand and profit both decrease with e. If 𝛾 increases, the e-tailer is willing 

to increase 𝛽(𝑁𝐺)
∗  to make the shopping environment safer when 0 < 𝑎 ≤

1−𝑚

2𝛾
 , (i.e., 𝑒 is sufficiently small). 

However, when 𝑒 is over a threshold, the e-tailer will increase the likelihood of successful defense 𝛽(𝑁𝐺)
∗  to 

maintain the safety level of the platform when k is relatively low. The wholesale price also decreases when the 

likelihood of being attacked increases. As the online shopping environment will then become more unsafe, the 

supplier must lower the wholesale price to attract more demand. However, as the probability of the platform 

being attacked increases, the optimal selling price 𝑝(𝑁𝐺)
∗   will increase when k is within a specific range. This 

can be attributed to the increasing cyber-security cost for the e-tailer. 

We now examine how consumer sensitivity to cyber-risk ( 𝑎 ) will affect these optimal decisions 

(equilibrium). We find that under Model NG, at the Stackelberg equilibrium: (i) when the consumer’s sensitivity 

(a) to the cyber-security risk increases, the optimal wholesale price  𝑤(𝑁𝐺)
∗ will decrease, and if the given 

likelihood of being attacked (𝛾) is higher, this effect will be more obvious; (ii) when 𝑎 increases,  𝑝(𝑁𝐺)
∗   will 

increase when 𝑘 is within the same range as the counterpart for 𝛾; and (iii) the effect of a to 𝛽(𝑁𝐺)
∗  is the same 

as 𝛾. When (ⅰ) 0 < 𝛾 ≤
1−𝑚

2𝑎
 (i.e., 𝑒 is sufficiently small), or (ⅱ) 

1−𝑚

2𝑎
< 𝛾 <  

3(1−𝑚)

2𝑎
 and 

𝑒2

2
< 𝑘 <

𝑒2(1−𝑚)

(2𝑒+𝑚−1)
, the 

optimal level of cyber-security 𝛽(𝑁𝐺)
∗  will increase as consumers are more sensitive to cyber-attack. 

Consumers’ concerns about cyber-security affect their shopping decisions on the online platform. As 

consumers become more sensitive to the risk of cyber-attack, the supplier has to lower the wholesale price to 

attract more demand. If the cost coefficient k is moderate, the e-tailer will take the decision to price higher when 

consumers become more sensitive to an attack, mainly because the e-tailer’s cyber-security costs increase. As 

we can see in the previous paragraph, the likelihood of a successful defense cyber-attack (𝛽(𝑁𝐺)
∗ ) also increases 

when e is sufficiently small or k is within a specific range. The sensitivity analysis for Model NG is summarized 

in Table 3.2 in Section 3.2. We demonstrate above that the supplier’s expected benefit is double of the e-tailer’s 

(𝜋𝑆(𝑁𝐺)
∗ = 2𝜋𝐸(𝑁𝐺)

∗ = 2𝑘
(1−𝑒−𝑚)2

8(2𝑘−𝑒2)
= 2𝑘𝜓).  

In summary, the results above show how the supplier’s profit  𝜋𝑆(𝑁𝐺)
∗  and the e-tailer’s profit 𝜋𝐸(𝑁𝐺)

∗  are 

affected by different factors. Under Model NG, (i) If the unit manufacturing cost (m) increases, both the 

supplier’s and the e-tailer’s profits will decrease. (ii) When  
𝑒2

2
< 𝑘 <

𝑒(1−𝑚)

2
 , both profits will increase with 

the chance of being attacked (𝛾). When 𝑘 >
𝑒(1−𝑚)

2
, their profits will decrease. (iii) When  

𝑒2

2
< 𝑘 <

𝑒(1−𝑚)

2
, 

both profits will increase as consumers become more sensitive to the cyber-security risk. When 𝑘 >
𝑒(1−𝑚)

2
, 

their profits will decrease. 

Under Model NG, when the cost of product increases, both the supplier’s and e-tailer’s profits decrease. 

For the supplier, when 𝛾 or 𝑎 increases, the wholesale price decreases, but the demand increases. The change in 
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profit depends on the tradeoff between the revenue per product (𝑤 − 𝑚) and demand. As shown in (3.3), the e-

tailer’s profit depends on two factors, namely the revenue from selling the product ((𝑝(𝑁𝐺)
∗ − 𝑤)𝐷) and the cost 

of exerting effort for cyber-security ( 
𝑘𝛽2

2
). When 𝛾 or 𝑎 increases, both the revenue and cost of exerting effort 

increase simultaneously. The change in the e-tailer’s profit is decided by the tradeoff between these two parts. 

The details of the respective thresholds are given in Table 3.3. When k is relatively low, i.e.,
𝑒2

2
< 𝑘 <

𝑒(1−𝑚)

2
, 

both profits increase with 𝛾 and 𝑎. 

3.2 Model G: With a Government Penalty Scheme  

As mentioned in Section 1.1, in some countries or cities, various government rules and regulations require 

companies to maintain certain levels of cyber-security. If a breach occurs, companies are subject to significant 

fines, fees, penalties, and punitive consequences. Violating cyber-security laws is an expensive and disruptive 

process. For example, the European Union’s General Data Protection Regulation (GDPR) is designed to protect 

the personal information of all its citizens. The GDPR is particularly punitive, with very heavy fines potentially 

totaling up to tens of millions of dollars. Based on real-world observations, after exploring Model NG, we then 

consider Model G, in which the government imposes a penalty of cyber-security issue (see Figure 3.3). 

 

Figure 3.3.  An e-commerce supply chain with government penalty scheme (Model G). 

 In this scheme, the government imposes a penalty F when the e-tailer (E) fails to defend against cyber-

attack (P.S.: In the extended model, we consider the case when the penalty depends on the effort of defense). 

Note that compared to Model NG, the only difference of Model G is that the e-tailer will suffer a penalty F if 

he fails to defend against the cyber-attack. Thus, the number of consumers who will buy the product at a given 

price 𝑝 and effort level 𝛽 under Model G is given in the following: (P.S.: The subscript (G) represents the 

functions and optimal decisions under Model G): 

𝐷(𝐺) = ∫ 𝑓(𝑢) ⅆ𝑢
1

𝑃+𝑎𝛼
= 1 − 𝑒 + 𝑒𝛽(𝐺) − 𝑝(𝐺).                             (3.5)  

Then, the profit functions of the e-tailer and the supplier are shown as follows: 

𝜋𝐸(𝐺) = (𝑝(𝐺) − 𝑤(𝐺))𝐷(𝐺) (1 − 𝛾(1 − 𝛽(𝐺))) + [(𝑝(𝐺) − 𝑤(𝐺))𝐷(𝐺) − 𝐹]𝛾(1 − 𝛽(𝐺)) −
𝑘 𝛽(𝐺)

2

2
 

            =  (𝑝(𝐺) − 𝑤(𝐺))𝐷(𝐺) − 𝐹𝛾(1 − 𝛽(𝐺)) −
𝑘𝛽(𝐺)

2

2
,                                          (3.6) 

𝜋𝑆(𝐺) = (𝑤(𝐺) − 𝑚(𝐺))𝐷(𝐺) = (𝑤(𝐺) − 𝑚(𝐺))(1 − 𝑒 + 𝑒𝛽(𝐺) − 𝑝(𝐺)).                              (3.7) 
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We can simplify (3.6) and then find that the difference in the e-tailer’s profit function between Model G and 

Model NG is the term 𝐹𝛼, which denotes that the e-tailer will suffer a penalty F when failing to detect the cyber-

attack. This is the situation in places like European Union, and California. Following Jiang et al. (2017), Choi 

(2019), and Pun and Hou (2021), we define social welfare as the sum of supplier’s profit, e-tailer’s profit, and 

consumer surplus: 𝑆𝑊(𝐺)
∗ = 𝜋𝑆(𝐺)

∗ + 𝜋𝐸(𝐺)
∗ + 𝜗𝐶𝑆(𝐺)

∗ , where  𝜗 > 0 represents the relative importance (weight) 

of consumer surplus in the social welfare. In most prior literature, this value is set to be 1 but as we will see 

later on, 𝜗 is in fact critical for our analysis and hence we explicitly define it here. In our model, the government 

decides the optimal F under a given emphasis on CS. Then the supplier determines the wholesale price as the 

leader and the e-tailer controls 𝑝 and 𝛽 simultaneously as the follower. The sequence of events is illustrated in 

Figure 3.4.  

 

Figure 3.4.  Sequence of events for Model G. 

Following the similar approach to that in Section 3.1, we summarize the equilibrium decisions and results 

as follows. Under Model G, if 𝑘 > 𝑒2/2: (a) the optimal wholesale price set by the supplier, the optimal selling 

price set by the e-tailer and the optimal defense effort determined by the e-tailer are respectively given as follows 

(P.S.: A, B, C, F and other notation can be found in E-Companion A5; we bold some of them as we will refer 

to them later on): 

𝑤(𝐺)
∗ =

𝑘(1−𝑒+𝑚)+𝑒𝐹𝛾

2𝑘
= τ + 𝑪 ∙ 𝑭,              (3.8) 

𝑝(𝐺)
∗ = 𝐴 + τ𝐵 + (𝟐 − 𝑩)𝑪 ∙ 𝑭,               (3.9) 

𝛽(𝐺)
∗ =

𝑒J

2ε
+

(𝟑−𝟐𝑩)𝑪∙𝑭

𝒆
 ,               (3.10) 

where  𝐶 =
𝑒𝛾

2𝑘
.                 (3.11) 

(b) The supplier’s and the e-tailer’s profits are given as follows: 𝜋𝑆(𝐺)
∗ =

(𝑘(1−𝑒−𝑚)+𝑒𝐹𝛾)
2

4((2𝑘−𝑒2)𝑘
=

2𝑑ε

𝑘
,  𝜋𝐸(𝐺)

∗ =

𝑘2(1−𝑒−𝑚)2−2𝐹𝑘𝛾(8𝑘−𝑒(1+3𝑒−𝑚))+𝐹2𝛾2(8𝑘−3𝑒2)

8(2𝑘−𝑒2)𝑘
= 𝑀1. (c) The consumer surplus and social welfare are given as 

follows: 𝐶𝑆(𝐺)
∗ = ⅆ, 𝑆𝑊(𝐺)

∗ =
2ⅆε

𝑘
+ 𝑀1 + 𝜗ⅆ, where ⅆ =

(𝑘(1−𝑒−𝑚)+𝑒𝐹𝛾)2

8(2𝑘−𝑒2)2 . Note that in our analysis, we only 

discuss the case when e-tailer’s profit is positive and the effort level is less than the upper bound. Then we find 

out that the penalty fee should be less than 𝐹 ≡  
𝑘(4𝑘−𝑒(1+𝑒−𝑚))

(4𝑘−𝑒2)𝛾
 and 4𝑘 > 𝑒(1 + 𝑒 − 𝑚) under Model G.  In 

Table 3.2, we report the sensitivity analysis results for the equilibrium decisions under Models G and NG. 

 

Table 3.2. Sensitivity analyses for Models G and NG  

 Model Equilibrium w Equilibrium p Equilibrium 𝛽 

𝑚 ↑ NG ↑ 
↓: (𝑒2/2 < 𝑘 < 𝑒2) 

↑: 𝑘 > 𝑒2 
↓ 
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G ↑ 
↓: (𝑒2/2 < 𝑘 < 𝑒2) 

↑: 𝑘 > 𝑒2 
↓ 

𝛾 ↑ 
NG ↑ 

↓: 𝑘 > 𝑘1 

↑:
𝑒2

2
< 𝑘 < 𝑘1 

↓ :1）  0 < 𝑒 ≤
1−𝑚

2
  or 2） 

1−𝑚

2
< 𝑒 <

 
3(1−𝑚)

2
  and 

𝑒2

2
< 𝑘 <

𝑒2(1−𝑚)

(2𝑒+𝑚−1)
 

↑: else 

G ↑:𝐹 >
𝑘

2𝛾
 ↑: 𝐹 >

𝑘(𝑘(6𝑘+𝑒(−2−3𝑒+2𝑚))+𝑒4)

2(𝑒4−4𝑒2𝑘+6𝑘2)𝛾
 ↑:𝐹 >

𝑎𝑘(4𝑒𝑘+𝑒2(−1+𝑚)+2𝑘(−1+𝑚))

𝑒4−2𝑒2𝑘+8𝑘2  

𝑎 ↑ 

NG ↑ 
↓: 𝑘 > 𝑘1 

↑:
𝑒2

2
< 𝑘 < 𝑘1 

↓ :1）  0 < 𝑒 ≤
1−𝑚

2
  or 2） 

1−𝑚

2
< 𝑒 <

 
3(1−𝑚)

2
  and 

𝑒2

2
< 𝑘 <

𝑒2(1−𝑚)

(2𝑒+𝑚−1)
 

↑: else 

G ↑: 𝐹 >
𝑘

𝛾
 

↑: 12𝑘 ≥ 𝑘2  

and 𝐹 >
𝑘(𝑒4−3𝑒2𝑘+6𝑘2−2𝑒𝑘(1−𝑚))

(𝑒4−3𝑒2𝑘+6𝑘2)𝛾
 

↓: 𝐹 >
𝑘

𝛾
−  

(𝑒2+2𝑘)(1−𝑚)

4𝑒𝛾
 

F ↑ G ↑ ↑ ↑ 

 

We can see that the equilibrium decisions under Model G are very similar to those for Model NG, but with 

two differences. First, compared with Model NG, each optimal decision has a positive increment (as highlighted 

in bold, see (3.8) to (3.9)). The details will be discussed in Section 4. Second, under the current model, as the 

government’s cyber-security penalty scheme is enforced, the optimal decisions are affected by F. We also 

conduct a sensitivity analysis for Model G and its comparison with Model NG is given in Table 3.2. 

By differentiating  𝑤(𝐺)
∗

 , 𝑝(𝐺)
∗  and 𝛽(𝐺)

∗  with respect to m, we derive similar results under Model NG. 𝑤(𝐺)
∗  

will increase with the unit manufacturing cost (m); the optimal selling price 𝑝(𝐺)
∗  will increase when 𝑘 > 𝑒2, 

and vice versa. 𝛽(𝐺)
∗ decreases as m increases. If the cost of the product increases, the supplier will raise the 

wholesale price and the e-tailer should pay a higher wholesale price to the supplier, and the e-tailer’s motivation 

to defend against a cyber-attack will decrease.  If the cost for cyber-security is relatively high (𝑘 > 𝑒2), the 

optimal price will increase when m increases. However, if 𝑒2/2 < 𝑘 < 𝑒2, the optimal price will decrease when 

m increases. As 𝛽(𝐺) 
∗ decreases, the cyber-security cost for the e-tailer decreases, so although the wholesale price 

increases, the retailing price decreases. 

As the likelihood of being attacked (𝛾) increases, the optimal wholesale price  𝑤(𝐺)
∗  will increase when 𝐹 >

𝑘

2𝛾
; the optimal selling price 𝑝∗

(𝐺) will increase when 𝐹 >
𝑘(𝑘(6𝑘+𝑒(−2−3𝑒+2𝑚))+𝑒4)

2(𝑒4−4𝑒2𝑘+6𝑘2)𝛾
; and (c) the optimal level 

of cyber-security 𝛽(𝐺)
∗  will increase when 𝐹 >

𝑎𝑘(4𝑒𝑘+𝑒2(−1+𝑚)+2𝑘(−1+𝑚))

𝑒4−2𝑒2𝑘+8𝑘2 . Thus, when F is set over a threshold, 

𝑤(𝐺)
∗  , 𝑝(𝐺)

∗  and 𝛽(𝐺)
∗  all increase with 𝛾. 

The sensitivity analysis of consumer sensitivity to the cyber-security risk (i.e., a) under Model G is also 

conducted. Consumers’ concerns about cyber-security affect their shopping decisions on online platforms. When 

consumer sensitivity (a) to the cyber-security risk increases, the optimal wholesale price  𝑤(𝐺)
∗  will increase if 

𝐹 > 𝑘/𝛾, and vice versa.  𝑝(𝐺)
∗  will increase with a when 12𝑘 ≥ 𝑘2  and 𝐹 >

𝑘(𝑒4−3𝑒2𝑘+6𝑘2−2𝑒𝑘(1−𝑚))

(𝑒4−3𝑒2𝑘+6𝑘2)𝛾
, and 

vice versa. 𝛽(𝐺)
∗
 will decrease with a when 𝐹 >

𝑘

𝛾
−  

(𝑒2+2𝑘)(1−𝑚)

4𝑒𝛾
. 𝑘2 denotes (2 + 3𝑒 + √4 + 3(4 − 5𝑒)𝑒) . 
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Under Model G, if the unit manufacturing cost (m) increases, both the supplier’s and the e-tailer’s profits 

will decrease. If 𝐹 > 𝑚𝑎𝑥 {
2𝑘−𝑒(1−𝑚)

2𝛾
, 0}, both profits will increase with the consumer’s sensitivity (𝑎). If 𝐹 >

𝑚𝑎𝑥 {
𝑘(2𝑘−𝑒+𝑒𝑚)

4𝑘𝛾−𝑒2 , 0}, the supplier’s profit will increase with 𝛾 . As 
∂𝜋𝐸(𝐺)

∗

𝜕𝛾
= 𝛾1 = [6𝑎2𝐹2𝛾3 − 2𝑎𝑘2(−1 + 𝑚 +

𝑎𝛾) + 2𝐹2𝛾(−8𝑘 + 3𝑎2𝛾2) + 2𝐹𝑘𝛾(−3𝑎2𝛾 + 𝑎(−1 + 𝑚 − 3𝑎𝛾)) + 2𝐹𝑘(8𝑘 + 𝑎𝛾(−1 + 𝑚 − 3𝑎𝛾))]/8𝑘(−2𝑘 +

𝑎2𝛾2),when the numerator is positive, the e-tailer’s profit increases with 𝛾, and vice versa.  

After deriving the equilibrium decisions under Model G, we summarize the impacts of F in Lemma 3.1: 

Lemma 3.1.  If the penalty fee F increases, (a) the optimal wholesale price 𝑤(𝐺)
∗ , the optimal selling price 𝑝(𝐺)

∗ , 

and the optimal level of cyber-security 𝛽(𝐺)
∗  will all monotonically increase.  (b) The supplier’s profit 𝜋𝑆(𝐺)

∗ will 

monotonically increase. (c) If 𝐹 > max {0,
𝑘(8𝑘+𝑒𝑚−𝑒−3𝑒2)

(8𝑘−3𝑒2)𝛾
}, the e-tailer’s profit will increase with F. (d) The 

consumer surplus  𝐶𝑆(𝐺)
∗

  will be greater if the government raises the penalty fee.  

From Lemma 3.1, we find that as the government increases the intensity of penalty (F), the cyber-

environment will be more secure, and consumer surplus will increase, although consumers must pay more for 

the same product. When the government increases F, the supplier will benefit unconditionally. Intuitively, the 

e-tailer’s profit is always positive under Model NG, while for Model G, it depends on the penalty F. 

From the analysis above, we summarize how the supplier’s and the e-tailer’s profits will be affected by the 

different factors under the two models in Table 3.3. We then obtain Lemma 3.2. 

Lemma 3.2. i) When the manufacturing cost (m) increases, the supplier’s and the e-tailer’s profits will be 

reduced under both models. ii) If the cost of cyber-security is relatively high, both the supplier and the e-tailer 

will incur losses under model NG when the likelihood of being attacked (𝛾) increases or the consumers become 

more sensitive (a) to the cyber-security risk. iii) When F is over a threshold, increases of a or 𝛾 have a positive 

effect on the supplier’s and the e-tailer’s profits (the existence of 𝛽 must be guaranteed.) 

Lemma 3.2 (i) shows that when the manufacturing cost rises, both the supplier’s and the e-tailer’s profits 

will decrease.  

 

Table. 3.3 Sensitivity analysis of the supplier’s and the e-tailer’s profits 

 Model  𝜋𝑆
∗  𝜋𝐸

∗ 

𝑚 ↑ 
NG ↓ ↓ 

G ↓ ↓ 

𝛾 ↑  

NG 
↑：

𝑒2

2
< 𝑘 <

𝑒(1−𝑚)

2
. 

↓:  𝑘 >
𝑒(1−𝑚)

2
. 

↑：
𝑒2

2
< 𝑘 <

𝑒(1−𝑚)

2
. 

↓:  𝑘 >
𝑒(1−𝑚)

2
. 

G ↑：𝐹 > 𝑚𝑎𝑥 {
𝑘(𝑒−2𝑘−𝑒𝑚)

𝑒2𝛾−4𝑘
, 0}. 

↑：𝛾1 > 0. 

Vice versa. 

a ↑ NG 
↑：

𝑒2

2
< 𝑘 <

𝑒(1−𝑚)

2
. 

↓:  𝑘 >
𝑒(1−𝑚)

2
. 

↑：
𝑒2

2
< 𝑘 <

𝑒(1−𝑚)

2
. 

↓:  𝑘 >
𝑒(1−𝑚)

2
. 
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G 

↑：𝐹 > 𝑚𝑎𝑥 {
2𝑘−𝑒(1−𝑚)

2𝛾
, 0}. 

(Equivalently, if 
𝑒2

2
< 𝑘 <

𝑒(1−𝑚)

2
  is satisfied or the 

penalty fee (F) is greater than 
2𝑘−𝑒(1−𝑚)

2𝛾
  when 𝑘 >

𝑒(1−𝑚)

2
. ) 

↑：𝐹 > 𝑚𝑎𝑥 {
2𝑘−𝑒(1−𝑚)

2𝛾
, 0}. 

 

F ↑ G ↑ ↑：𝐹 > max {0,
𝑘(𝑒+3𝑒2−8𝑘−𝑒𝑚)

(3𝑒2−8𝑘)𝛾
} 

From Table 3.3, we find that 𝛾  and a have different effects on 𝜋𝑆(𝐺)
∗   and 𝜋𝐸(𝐺)

∗   . For Model G, if the 

likelihood of being attacked through an e-commerce platform increases or the consumers become more sensitive 

to cyber-attack risk, the supplier’s profit will increase when the penalty fee is over a threshold. On one hand, 

the wholesale price ( 𝑖. 𝑒. , 𝑤(𝐺) − 𝑤(𝑁𝐺) = 𝐶𝐹 > 0)  and demand (i.e., 𝐷(𝐺) − 𝐷(𝑁𝐺) = (1 − 𝐵)𝐶𝐹 > 0 ) 

increase with the presence of government penalty scheme. On the other hand, as shown in Table 3.2, the 

wholesale price increases with 𝛾 and a when F is greater than  
𝑘

2𝛾
. For the e-tailer, compared to Model NG, we 

have shown above that the e-tailer’s demand increases under Model G. However, it doesn’t mean that the e-

tailer’s profit will increase because the e-tailer has to bear the penalty. As Equation (3.6) shows, the e-tailer’s 

profit depends on three factors, the revenue from selling ((𝑝(𝐺) − 𝑤(𝐺))𝐷(𝐺) ) ,  the cost of maintain cyber 

security ( 
𝑘𝛽(𝐺)

2

2
) and the penalty (𝐹𝛾(1 − 𝛽(𝐺))). The details of the thresholds are listed in Table 3.3. Under 

Model NG, when k is relatively low, i.e., 
𝑒2

2
< 𝑘 <

𝑒(1−𝑚)

2
 , both profits increase with 𝛾  or 𝑎 . Thus, the 

determining factor is k for Model NG. For Model G, the determining factor is the relationship between F and 𝑘.  

  If 𝐹 > 𝑚𝑎𝑥 {
𝑘(2𝑘−𝑒+𝑒𝑚)

4𝑘−𝑒2𝛾
, 0}, then the supplier’s profit will increase with 𝛾. If 𝐹 > 𝑚𝑎𝑥 {

2𝑘−𝑒(1−𝑚)

2𝛾
, 0}, 

(or equivalently, if 
𝑒2

2
< 𝑘 <

𝑒(1−𝑚)

2
  is satisfied, or the penalty fee (F) is greater than 

2𝑘−𝑒(1−𝑚)

2𝛾
  when 𝑘 >

𝑒(1−𝑚)

2
), then both the supplier’s and e-tailer’s profits will increase with the consumer’s sensitivity (𝑎). As we 

have proven that 
𝑒(1−𝑚)

2
> 

𝑒2

2
 , when 

𝑒2

2
< 𝑘 <

𝑒(1−𝑚)

2
, it yields 

2𝑘−𝑒(1−𝑚)

2𝛾
 < 0. Both the supplier’s and e-tailer’s 

profits will increase with the consumer’s sensitivity (𝑎) under Model G. The results reveal that k and F are the 

key factors.  

The supplier’s profit and consumer surplus are greater under Model G than under Model NG, and we 

examine why in Section 4.  

4. Values of Government Cyber-Security Penalty Schemes 

After deriving the equilibrium decisions and performance measures in the e-commerce supply chains under 

Models NG and G, we define the following terms, which respectively represent the values of government cyber-

security penalty schemes (VGCPS) for the supplier, the e-tailer, consumers, and social welfare when Model G 

is used (rather than e-commerce supply chains without cyber-security penalty schemes, i.e., Model NG): 

𝑉𝐺𝐶𝑃𝑆(𝑆) =  𝜋𝑆(𝐺)
∗ − 𝜋𝑆(𝑁𝐺)

∗ ,                                                                                                                                       (4.1) 

𝑉𝐺𝐶𝑃𝑆(𝐸) =  𝜋𝐸(𝐺)
∗ −  𝜋𝐸(𝑁𝐺)

∗ ,                                                                                                                                    (4.2) 



17 

 

𝑉𝐺𝐶𝑃𝑆(𝐶𝑆) = 𝐶𝑆(𝐺)
∗ − 𝐶𝑆(𝑁𝐺)

∗ ,                                                                                                                                     (4.3) 

𝑉𝐺𝐶𝑃𝑆(𝑆𝑊) = 𝑆𝑊(𝐺)
∗ − 𝑆𝑊(𝑁𝐺)

∗ .                                                                                                                                 (4.4) 

We then compare Models NG and G, and obtain Proposition 4.1. 

Proposition 4.1. For given  𝑎, 𝑚, 𝑘  and  𝛾： 𝑤(𝐺)
∗ > 𝑤(𝑁𝐺)

∗ ;  𝑝(𝐺)
∗ > 𝑝(𝑁𝐺)

∗ ; 𝛽(𝐺)
∗ > 𝛽(𝑁𝐺)

∗ ;  𝜋𝑆
∗

(𝐺)
>

𝜋𝑆
∗

(𝑁𝐺)
;   𝐶𝑆(𝐺)

∗ > 𝐶𝑆(𝑁𝐺)
∗ .  

With the presence of government cyber-security penalty schemes, the wholesale price, the selling price, 

and the defense effort all increase, as do the supplier’s profit and consumer surplus. The optimal decisions under 

Model G are similar to those under Model NG. Under Model NG, the government is absent, so F is not a concern 

when making the optimal decision. Under Model G, the government provides a cyber-security penalty scheme 

to improve e-commerce supply chain performance. When the e-tailer fails to detect and prevent a cyber-attack, 

the fine (F) is imposed. Through the equilibrium analysis, we find that the role of government does affect the 

final decision of the player. First, the wholesale price (𝑤(𝐺)
∗ = τ + 𝐶𝐹) in Model G is higher than that in Model 

NG and the difference term is CF, where 𝐶 =
𝑒𝛾

2𝑘
.  Thus, the higher F is, the greater the difference between “the 

wholesale prices of the two models” becomes. Second, the optimal selling price set by the e-tailer is given 

as: 𝑝(𝐺)
∗ = 𝐴 + τ𝐵 + (2 − 𝐵)𝐶𝐹, which is different from 𝑝(𝑁𝐺)

∗ = 𝐴 + τ𝐵 in the term (2 − 𝐵)CF. The penalty 

increases the selling price (2 − 𝐵)CF. Third, when there is a government penalty scheme, we find that the 

defense effort from the e-tailer  𝛽(𝐺)
∗   will be greater than that in the situation without the participation of 

government through the term 
1

𝑒
(3 − 2𝐵)CF. As shown above, when the government is involved in supervising 

the e-tailer’s defense effort against cyber-risk, the increment of the wholesale price is CF. The unit product cost 

for the supplier m remains unchanged. Thus, the profit per product also increases with CF, and the demand for 

the product also increases (i.e., 𝐷(𝐺) − 𝐷(𝑁𝐺) = (1 − 𝐵)𝐶𝐹 > 0 ). The supplier’s profit under Model G is 

therefore greater than that under Model NG. Consumers benefit from government cyber-security penalty 

schemes. Although they must pay more for the same product 𝑝(𝐺)
∗ > 𝑝(𝑁𝐺)

∗ , the likelihood of a successful defense 

goes up more significantly  𝛽(𝐺)
∗ > 𝛽(𝑁𝐺)

∗ . Thus, the consumer surplus 𝐶𝑆(𝐺)
∗  rises compared with 𝐶𝑆(𝑁𝐺)

∗ .  

Proposition 4.1 clearly demonstrates the impact of the government intervention, and the differences in the 

equilibrium decisions between Model NG and Model G are highlighted (see (3.8) to (3.10)). The results also 

show that the supplier always benefits from the penalty scheme. After switching from Model NG to Model G, 

the selling price increases more than the wholesale price (P.S.: From (3.8) and (3.9), since (2 − 𝐵) > 1, we 

have: 𝑝(𝐺)
∗ − 𝑝(𝑁𝐺)

∗ > 𝑤(𝐺)
∗ − 𝑤(𝑁𝐺)

∗ .  ). Compared to Model NG, we have shown above that the e-tailer’s 

demand increases under Model G. However, it doesn’t mean that the e-tailer’s profit will increase because the 

e-tailer has to bear the penalty. To avoid being punished, the e-tailer attempts to further increase the level of 

cyber-security as  𝛽(𝐺)
∗ > 𝛽(𝑁𝐺)

∗ . This is also shown in Proposition 4.1. From (4.1) to (4.4) as well as Proposition 

4.1, we can see that 𝑉𝐺𝐶𝑃𝑆(𝑆)  and 𝑉𝐺𝐶𝑃𝑆(𝐶𝑆)  are always positive whereas 𝑉𝐺𝐶𝑃𝑆(𝐸)  is negative. For 

𝑉𝐺𝐶𝑃𝑆(𝑆𝑊), we find that it is negative when  𝜗 = 1 .  
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To have a clearer picture regarding how various parameters affect 𝑉𝐺𝐶𝑃𝑆(𝑆𝑊) with different 𝜗, we conduct 

a numerical analysis. We explore how the product cost (𝑚), the likelihood of being attacked (𝛾), consumer 

sensitivity to the level of cyber-security risk (𝑎)  and the cost coefficient of defense (𝑘) will affect 𝑉𝐺𝐶𝑃𝑆(𝑆𝑊) 

when the threshold of 𝜗  takes different values. We will also find the conditions when 𝑉𝐺𝐶𝑃𝑆(𝑆𝑊)  becomes 

positive. In Figures 4.1 to 4.4, the basic parameters are set as follows (except for the parameter under study 

when we will vary it): 𝑎 = 1, 𝛾 = 0.18, e = 0.18, 𝑘 = 𝑒2/2 + 0.1 =0.1162, F =0.35, 𝑚 ∈ [0,1]. From Figures 

4.1 to 4.4, we have the following observations: (i) Effects brought by some parameters such as m, k and 𝑎 are 

monotone while the effect brought by 𝛾 is not. (ii) 𝑉𝐺𝐶𝑃𝑆(𝑆𝑊) becomes positive when 𝜗 is sufficiently big. 

 

Figure 4.1. How 𝒎 affects 𝑽𝑮𝑪𝑷𝑺(𝑺𝑾).                                                Figure 4.2. How 𝒌 affects 𝑽𝑮𝑪𝑷𝑺(𝑺𝑾).    

 

Figure 4.3. How 𝛾 affects 𝑽𝑮𝑪𝑷𝑺(𝑺𝑾).                                                          Figure 4.4. How 𝜶 affects 𝑽𝑮𝑪𝑷𝑺(𝑺𝑾).    

From the above numerical analysis, it is clear that if the government puts a higher emphasis on CS, then  

𝑉𝐺𝐶𝑃𝑆(𝑆𝑊)  will become positive. In fact, we can prove this result analytically. To be specific, 𝑉𝐺𝐶𝑃𝑆(𝑆𝑊)  ≥

0 if and only if 𝜗 ≥ 𝑇 ≡
(2𝑘−𝑒2)(2𝑘(8𝑘−𝑒(3+𝑒−3𝑚))−𝐹(8𝑘−𝑒2)𝛾)

𝑒𝑘(2𝑘(1−𝑒−𝑚)+𝑒𝐹𝛾)
 . Note that under Model G, F is bounded above 

by 𝐹 ≡  
𝑘(4𝑘−𝑒(1+𝑒−𝑚))

(4𝑘−𝑒2)𝛾
  (or else the e-tailer will quit the market). If F is positive and approaches zero, we 

get lim
𝐹→0

𝑇 =
(2𝑘−𝑒2)(8𝑘−𝑒(3+𝑒−3𝑚))

𝑒𝑘(1−𝑒−𝑚)
.  When F is set to be the upper bound 𝐹 , then T(𝐹 = 𝐹 ) is equal to the 

following  
(2𝑘−𝑒2)(𝑒4−12𝑒2𝑘+32𝑘2+5𝑒3(1−𝑚)−16𝑒𝑘(1−𝑚))

𝑒𝑘(𝑒3−4𝑒𝑘−3𝑒2(1−𝑚)+8𝑘(1−𝑚))
. We define 𝑇 ≡

(2𝑘−𝑒2)(8𝑘−𝑒(3+𝑒−3𝑚))

𝑒𝑘(1−𝑒−𝑚)
   and 𝑇 ≡
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(2𝑘−𝑒2)(𝑒4−12𝑒2𝑘+32𝑘2+5𝑒3(1−𝑚)−16𝑒𝑘(1−𝑚))

𝑒𝑘(𝑒3−4𝑒𝑘−3𝑒2(1−𝑚)+8𝑘(1−𝑚))
. Based on the above exploration, we have Theorem 4.1 (P.S.: The 

government aims to maximize the social welfare). 

Theorem 4.1.  (a) It is wise for the government to impose the penalty scheme if and only if 𝜗 > 𝑇 ≡

(2𝑘−𝑒2)(2𝑘(8𝑘−𝑒(3+𝑒−3𝑚))−𝐹(8𝑘−𝑒2)𝛾)

𝑒𝑘(2𝑘(1−𝑒−𝑚)+𝑒𝐹𝛾)
 and the optimal F = 𝐹 (i.e., the upper bound). Otherwise, if 𝜗 ≤ 𝑇, then 

the government should not impose the penalty.  (b) Under Model G (in which the government imposes a penalty 

fee less than 𝐹), then when the government’s penalty fee increases: (i) Both the supplier and consumer are 

always benefited from the scheme. However, the e-tailer’s profit is hurt. (ii) If the government puts a sufficiently 

high emphasis on CS (i.e., 𝜗 > 𝑇), social welfare increases.  

Theorem 4.1(a) highlights the condition under which Model G outperforms Model NG. Theorem 4.1 (b) 

indicates the impacts brought by the government’s penalty scheme. One interesting point to note is that, if the 

government has a sufficiently high emphasis on CS (when the weight of CS (i.e., 𝜗) is over 𝑇), social welfare is 

improved upon the implementation of the penalty scheme. As 𝑉𝐺𝐶𝑃𝑆(𝑆𝑊) increases with F, if the government 

has a sufficiently high emphasis on CS as mentioned in Theorem 4.1(b)(ii), then the government’s optimal 

decision is to impose the highest penalty fee 𝐹.  As a remark, when 𝑇 < 𝜗 < 𝑇, Model G yields a higher social 

welfare than Model NG if the government imposes a penalty fee between[�̈�, 𝐹],where �̈� = 𝑎𝑟𝑔𝐹(𝑇 = 𝜗); if 𝜗 <

 𝑇, the penalty scheme should not be implemented.  

To better understand Theorem 4.1(b)(ii), we explore how the critical threshold  𝑇  is affected by various 

factors. First, for the factor m, the impact is obvious in which a larger m will lead to a greater T. For other 

parameters, as the conditions are indeed rather complex, we conduct a numerical sensitivity analysis to show 

how the factors affect T. Please refer to the E-Companion for the details.  

While if we look at individual stakeholders, we conclude that it is impossible to achieve the “all-win 

situation” under Model G (compared to Model NG) as some parties like the e-tailer is always worse off. An 

important implication from Theorem 4.1(a) is that: For the governments which treasure consumer welfare more, 

it is appropriate to implement penalty schemes. Theorem 4.1 may hence explain why some governments (such 

as European Union) have implemented the penalty scheme but some (e.g., New York) do not. Plus, in all the 

cases that we have found, once the penalty scheme is implemented, the fine is very heavy. The real-world cases 

are in line with our finding in which governments basically always adopt a polarized strategy, i.e., either do not 

impose any penalty or impose a super heavy penalty on cyber-security issues. 

As a remark, implementing the government’s penalty scheme is not always preferred in all cases. Even if 

it is preferred, we have shown that the e-tailer still needs to suffer. Thus, in the extended analyses in Section 5, 

we consider some other measures (Section 5.1), forming alliances (Section 5.2 and E-Companion, etc.) which 

may help achieve all-win for all members of the supply chain, for both the cases with/without the government’s 

penalty scheme. 
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5. Extensions 

5.1 Using Blockchain-Based Systems Security Enhancing Technologies 

In e-commerce and supply chain operations, a recent hot topic is about the implementation of innovative 

technologies such as blockchain (Choi et al. 2021; Pun et al. 2021; Shen et al. 2021; Wang et al. 2021). As 

mentioned in Section 1.2, for cyber-security, it is also widely reported that blockchain technologies can help 

provide the technological platform for operations with secure data. In real world, Danieli, one of the world's 

largest suppliers in the steel industry, is implementing blockchain technology to enhance cybersecurity for its 

networks13 . Cyber Alliance Management (cm-alliance.com) recently even lists various application areas of 

blockchain for cybersecurity14 . In this section, we analytically examine how systems security enhancing 

technologies (such as those blockchain-based systems) 15  can play a role for cyber-security. We extend the 

analysis to explore the impacts brought by the use of technologies by the e-tailer. We generate additional insights 

by exploring cases in which: (i) the e-tailer adopts technologies to defense cyber-attack without government 

penalty (Model NT); and (ii) the e-tailer makes use of technologies with government penalty (Model GT). We 

aim to see if adopting technologies can be an effective way to better deal with cyber-security. Before we conduct 

further analyses, we have Definition 5.1 which describes the “all-win” scenario. 

Definition 5.1. An all-win scenario is achieved under Model x if the supply chain, consumers and social welfare 

under Model x are all better off compared to the respective ones under Model NG. 

Note that for the cases with strategic alliance, Definition 5.1 treats the supply chain as a unit. If the all-win 

situation is achieved, it is just a matter of profit division between the e-tailer and supplier in sharing the “supply 

chain surplus”, e.g., via a bargaining model.   

5.1.1 Model NT  

Before we conduct further analyses, we introduce the new demand function and profit functions which are 

shown as below: 

𝐷(𝑁𝑇) = ∫ 𝑓(𝑢) ⅆ𝑢
1

𝑝+𝑎𝛼−𝑏
= 1 + 𝑏 − 𝑒 + 𝑒 𝛽(𝑁𝑇) − 𝑝(𝑁𝑇),                                                                   （5.1） 

where b > 0 is the benefit brought to consumers with the use of technologies (e.g., blockchain) as it fosters trust 

and may allow consumers to check more things with clean data. To be specific, if the right technologies are 

used, consumers will feel more secure towards the e-tailing operations and this increases their purchasing utility. 

Furthermore, with technologies such as blockchain-based platforms, transparency of the e-commerce supply 

chain will usually be enhanced and consumers can know more about the product (e.g., the product provenance 

information). This also creates value to the consumers. 

𝜋𝐸(𝑁𝑇) = (𝑝(𝑁𝑇) − 𝑤(𝑁𝑇) − 𝑐)𝐷(𝑁𝑇) − 𝐾𝐼𝑇(𝛽(𝑁𝑇)) −  𝑇𝐼𝑇 ,                                                    (5.2) 

                                                 
13 https://industryeurope.com/metals-giant-danieli-announces-move-towards-blockchain-based/ (accessed 26 March 2021) 
14 https://www.cm-alliance.com/cybersecurity-blog/the-future-use-cases-of-blockchain-for-cybersecurity (accessed 26 March 2021) 

 
15 In the remaining parts of this extended analysis, unless otherwise specified, the term “technologies” refer to the “systems security 

enhancing technologies” such as the use of blockchain. 

https://industryeurope.com/metals-giant-danieli-announces-move-towards-blockchain-based/
https://www.cm-alliance.com/cybersecurity-blog/the-future-use-cases-of-blockchain-for-cybersecurity
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𝜋𝑆(𝑁𝑇) = (𝑤(𝑁𝑇) − 𝑚)𝐷(𝑁𝑇),                               (5.3) 

where 𝐾𝐼𝑇(𝛽(𝑁𝑇)) =  𝑘𝐼𝑇𝛽(𝑁𝑇)
2 /2  and 𝑘𝐼𝑇 < 𝑘  which means improve cyber-defense is cheaper with 

technologies than without technologies; 𝑐 > 0 is the per unit technologies operations cost; 𝑇𝐼𝑇 > 0 is the fixed 

technologies cost. 

 We try to explore and see if the use of technologies is an effective measure. By checking the Hessian 

matrix, we find that 𝜋𝐸(𝑁𝑇) is jointly concave in 𝑝(𝑁𝑇) and 𝛽(𝑁𝑇),when   𝑘𝐼𝑇 > 𝑒2/2. We solve this game by 

backward induction. Like the derivations and analyses conducted for Model NG, we can derive the respective 

equilibrium decisions for Model NT. There is a unique equilibrium with the wholesale price 𝑤(𝑁𝑇)
∗ =

1

2
(1 + 𝑏 − 𝑐 − 𝑒 + 𝑚); the selling price  𝑝(𝑁𝑇)

∗ =
𝑒3−3𝑒𝑘𝐼𝑇−𝑒2(1+𝑏+𝑐+𝑚)+𝑘𝐼𝑇(3+3𝑏+𝑐+𝑚)

2(2𝑘𝐼𝑇−𝑒2)
, and the defense effort 

𝛽(𝑁𝑇)
∗ =

𝑒(1+𝑏−𝑐−𝑒−𝑚)

2(2𝑘𝐼𝑇−𝑒2)
. 

The supplier’s profit, the e-tailer’s profit, consumer surplus (𝐶𝑆(𝑁𝑇)), and social welfare (𝑆𝑊(𝑁𝑇)) are given 

as follows (P.S.: See E-Companion A4 for the detailed derivations):𝜋𝑆(𝑁𝑇)
∗ =

𝑘𝐼𝑇(1+𝑏−𝑐−𝑒−𝑚)2

4(2𝑘𝐼𝑇−𝑒2)
 , 𝜋𝐸(𝑁𝑇)

∗ =

𝑘𝐼𝑇(𝐽+𝑏−𝑐)2

8(2𝑘𝐼𝑇−𝑒2)
− 𝑇𝐼𝑇， 𝐶𝑆(𝑁𝑇)

∗ =
𝑘2𝐼𝑇(1+𝑏−𝑐−𝑒−𝑚)2

8(2𝑘𝐼𝑇−𝑒2)2 , 𝑆𝑊(𝑁𝑇)
∗ =

𝑘𝐼𝑇(7𝑘𝐼𝑇−3𝑒2)(1+𝑏−𝑐−𝑒−𝑚)2

8(2𝑘𝐼𝑇−𝑒2)2 − 𝑇𝐼𝑇 . 

Define the technology benefit-to-cost ratio (BCR) as follows: 

BCR = 𝑏/𝑐,  

which is a relative measure to represent whether the use of technologies is beneficial or not. It is crystal clear to 

see that using technologies is beneficial, “neutral”, and harmful if BCR > 1, = 1, and < 1, respectively.  

Note that BCR is a critical factor. To be specific, we find that the main difference between Model NG and 

Model NT is related to factors including BCR (i.e., b and 𝑐 ) and 𝑇𝐼𝑇 . For 𝑤(𝑁𝑇)
∗  : If 𝐵𝐶𝑅 ≥ 1  then 𝑤(𝑁𝑇)

∗ ≥

𝑤(𝑁𝐺)
∗  . If 𝐵𝐶𝑅 < 1 , then 𝑤(𝑁𝑇)

∗ < 𝑤(𝑁𝐺)
∗  . Since 𝑘𝐼𝑇 < 𝑘 , so we can get 0 < 2𝑘𝐼𝑇 − 𝑒2 < 𝑘 − 𝑒2 . For 𝛽(𝑁𝑇)

∗  : 

The denominator for 𝛽(𝑁𝑇)
∗ is smaller than 𝛽(𝑁𝐺)

∗ ; if 𝐵𝐶𝑅 ≥ 1, 𝛽(𝑁𝑇)
∗  is definitely greater when technologies are 

adopted. If b is slightly less than 𝑐, 𝛽(𝑁𝑇)
∗  increases. The magnitude depends on a tradeoff between the decrease 

of denominator and the increase of numerator. If 𝑏 ≪ 𝑐, then 𝛽(𝑁𝑇)
∗  decreases. The conditions are the same for 

the supplier’s profit 𝜋𝑆(𝑁𝑇)
∗  and consumer surplus 𝐶𝑆(𝑁𝑇)

∗ .  

For the e-tailer: If 𝐵𝐶𝑅 ≥ 1 and  0 < 𝑇𝐼𝑇 <
𝑘𝐼𝑇(𝐽+𝑏−𝑐)2

8(2𝑘𝐼𝑇−𝑒2)
−

𝑘𝐽2

8(2𝑘−𝑒2)
, then 𝜋𝐸(𝑁𝑇)

∗ > 𝜋𝐸(𝑁𝐺)
∗ . If b is slightly 

less than 𝑐 and 𝑇𝐼𝑇 is small enough, the e-tailer is still benefited from the adoption of technologies. Otherwise, 

the e-tailer will be hurt, i.e.,𝜋𝐸(𝑁𝑇)
∗ < 𝜋𝐸(𝑁𝐺)

∗ . For SW, if 𝐵𝐶𝑅 ≥ 1 and 0 < 𝑇𝐼𝑇 <
𝑘𝐼𝑇(7𝑘𝐼𝑇−3𝑒2)(1+𝑏−𝑐−𝑒−𝑚)2

8(2𝑘𝐼𝑇−𝑒2)2 −

𝑘(7𝑘−3𝑒2)𝐽2

8(2𝑘−𝑒2)2 , then  𝑆𝑊(𝑁𝑇)
∗ >  𝑆𝑊(𝑁𝐺)

∗ . If b is slightly less than 𝑐, and  𝑇𝐼𝑇 is small enough, SW will increase 

when technologies are present. Otherwise,  𝑆𝑊(𝑁𝑇)
∗ <  𝑆𝑊(𝑁𝐺)

∗ .   

From the above analysis, we find that if 𝐵𝐶𝑅 ≥ 1  and 0 < 𝑇𝐼𝑇 ≤
𝑘𝐼𝑇(𝑏−𝑐)(𝑏−𝑐+2𝐽)

8(2𝑘𝐼𝑇−𝑒2)
, then 𝜋𝐸(𝑁𝑇)

∗ > 𝜋𝐸(𝑁𝐺)
∗ . 
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If 𝐵𝐶𝑅 ≥ 1   and 0 < 𝑇𝐼𝑇 ≤
𝑘𝐼𝑇(7𝑘𝐼𝑇−3𝑒2)(𝑏−𝑐)(𝑏−𝑐+2𝐽)

8(2𝑘𝐼𝑇−𝑒2)2  , then  𝑆𝑊(𝑁𝑇)
∗ >  𝑆𝑊(𝑁𝐺)

∗  . When 𝐵𝐶𝑅 ≥ 1  and 

𝑘𝐼𝑇(𝑏−𝑐)(𝑏−𝑐+2𝐽)

8(2𝑘𝐼𝑇−𝑒2)
< 𝑇𝐼𝑇 ≤

𝑘𝐼𝑇(𝑏−𝑐)(𝑏−𝑐+2𝐽)

8(2𝑘𝐼𝑇−𝑒2)
, the e-tailer’s profit is hurt with the use of technologies, but the SW 

increases. Exploring 𝐶𝑆(𝑁𝑇)
∗   and 𝜋𝐸(𝑁𝑇)

∗  , we can find that if 𝐵𝐶𝑅 ≥ 1 , then 𝐶𝑆(𝑁𝑇)
∗ > 𝐶𝑆(𝑁𝐺)

∗   , which means 

using technologies is good for consumers. Moreover, using technologies is harmful to the e-tailer if 𝑇𝐼𝑇 is over 

𝑘𝐼𝑇(𝑏−𝑐)(𝑏−𝑐+2𝐽)

8(2𝑘𝐼𝑇−𝑒2)
.  

We summarize the core insights from the above analysis in Theorem 5.1 

Theorem 5.1.  Under the case without government penalty, if BCR ≥ 1, the e-tailer's use of technologies such 

as blockchain (i.e., comparing between Model NG and Model NT) will yield the following: (a) The cyber-

security level is higher. (b) Both the supplier and consumers are benefited. (c) When 𝑇𝐼𝑇 is sufficiently small, 

the e-tailer is benefited and social welfare is improved. When 𝑇𝐼𝑇 is moderate, social welfare is improved but 

the e-tailer suffers a loss. When 𝑇𝐼𝑇 is sufficiently big, the e-tailer suffers a loss and social welfare drops. 

Theorem 5.1 points out that the adoption of technologies brings benefit to the cyber-security level. There 

exists an all-win situation for all participates including consumer, supplier and e-tailer, when the benefit brought 

to consumers with the use of technologies is greater than the per unit technology operations cost and the fixed 

technology cost is relatively small (0 < 𝑇𝐼𝑇 <
𝑘𝐼𝑇(𝐽+𝑏−𝑐)2

8(2𝑘𝐼𝑇−𝑒2)
−

𝑘𝐽2

8(2𝑘−𝑒2)
). However, it may be harmful to the e-

tailer when the fix cost is relatively high. As a result, for the case when using technologies is harmful to the e-

tailer, the government may help by providing a financial support, such as sponsoring the e-tailer to cover a part 

of the fixed cost of using technologies. Note that having government’s sponsor to support technological 

development is rather common16 and hence providing this type of government sponsor should be feasible. 

As concluded, the adoption of technologies can increase the cybersecurity level and bring benefit to all 

members when the benefit brought to consumers with the use of technologies (𝑏) is greater or slightly less than 

the per unit technology operations cost (𝑐) and the fixed technology cost (𝑇𝐼𝑇) is not very high. 

5.1.2 Model GT  

In the above model analysis, we confirm that Model NT can improve the performance of every member and 

enhance the cyber-security level. In this section, we consider the presence of both government penalty scheme 

and technologies, represented by Model GT. Here, if consumers suffer a cyber-attack, the government will 

impose a penalty F on the technology-based e-commerce supply chain. 

 Like the derivations and analyses conducted for Model NT, we can derive the respective equilibrium 

decisions for Model GT. The equilibrium decisions under Model GT are very similar to those for Model G. 

Compared with Model G, each optimal decision has the new terms related to 𝑏 and 𝑐.  The fixed technology 

cost (𝑇𝐼𝑇) affects the profit of e-tailer and social welfare. Note that in our analysis, we only discuss the case 

                                                 
16 https://medium.com/singulardtv/5-governments-that-actually-support-blockchain-innovation-d4b3c1e27119; and 
https://coindelite.com/news/u-k-government-is-ready-to-sponsor-blockchain-startups/ (accessed 8 January 2021). 

https://secure-web.cisco.com/1sRztSPpqxAaASMgogqUjN3bUAOLke2_Jlvlq-CS53flWoZCGbZBwmy2azNEsfGhhC_KJi9biqxL8yFLv1ZpPKwvvFhfkiRded_M2qu75108H_4oB8s6ebaWEj0jM4seI7qlRtKn7LWOi7qs8ZkYeZiVUE_BkHwrG-Dqt1GoD3aTcL5gKWuav6Ebewboj6gbDHLFOJrXMFPwvN_LW6Njd6tt5pSnd8sTkqUE5P6_iH8kVahp9bVYzY999KbR_RO3jbJFPU8aZUvmU74ofXZIZFcw7i1dHlbArkmnq6Q2yeqzKa3LIBEj-I7d-ylU0GZKG/https%3A%2F%2Fcoindelite.com%2Fnews%2Fu-k-government-is-ready-to-sponsor-blockchain-startups%2F
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when the e-tailer’s profit is positive and the effort level is less than the upper bound. Thus, we find out that the 

penalty fee should be less than 𝐹𝐼𝑇 ≡  
𝑘𝐼𝑇(4𝑘𝐼𝑇−𝑒(1+𝑒−𝑚+𝑏−𝑐))

(4𝑘𝐼𝑇−𝑒2)𝛾
 and 4𝑘𝐼𝑇 > 𝑒(1 + 𝑒 − 𝑚 + 𝑏 − 𝑐) under Model 

GT. Since the value of the penalty scheme for social welfare increases with the penalty fee, the optimal decision 

of F for government is 𝐹𝐼𝑇 under Model GT. 

By comparing Model G and Model GT, we have Proposition 5.1. 

Proposition 5.1. If it is beneficial to impose the penalty, comparing between Model G and Model GT: When, 

𝐵𝐶𝑅 > 1, then the optimal penalty is smaller after adopting technologies (such as blockchain). Otherwise, if 

the 𝐵𝐶𝑅 < 1 (BCR = 1), then the optimal penalty is larger (unchanged) after technology adoption.  

Proposition 5.1 indicates the importance of BCR in deciding whether the optimal penalty will be larger or 

smaller after the adoption of technologies. This finding is neat and also in line with the above discussions. The 

adoption of technologies with government intervention (by comparing Model GT and Model G) has the similar 

effect as the case without government intervention (comparing Model NT and Model NG). Compared Model 

GT to Model G, the adoption of technologies can also improve the cybersecurity level and bring benefit to 

supplier and consumer when 𝐵𝐶𝑅 ≥ 1. The profit of e-tailer and social welfare only increase when the use of 

technologies( 𝑏)  is greater or slightly less than the per unit technologies operations cost (𝑐)  and the fixed 

technology cost (𝑇𝐼𝑇) is not very high. With the utilization of technologies, if the benefit brought to consumers 

with the use of technology is greater than the per unit technology operations cost (i.e., 𝐵𝐶𝑅 > 1), then we can 

find that 𝐹𝐼𝑇 < 𝐹.  This implies that for the government, the optimal penalty fee decreases after adopting 

technologies. Otherwise, if the 𝐵𝐶𝑅 < 1, then  𝐹𝐼𝑇 > 𝐹, which indicates that the optimal penalty fee increases 

after technology adoption.  

Similar to the analysis for Section 4, by comparing Model GT with Model NT, we can get the findings like 

Proposition 4.1. For given 𝑎, 𝑚, 𝑘  and  𝛾,  we have:    𝑤(𝐺𝑇)
∗ > 𝑤(𝑁𝑇)

∗ , 𝑝(𝐺𝑇)
∗ > 𝑝(𝑁𝑇)

∗ , 𝛽(𝐺𝑇)
∗ > 𝛽(𝑁𝑇)

∗ , 𝜋𝑆
∗

(𝐺𝑇)
>

𝜋𝑆
∗

(𝑁𝑇)
, 𝐶𝑆(𝐺𝑇)

∗ > 𝐶𝑆(𝑁𝑇)
∗ .  If we look at the impacts of having the penalty scheme under the case with 

technologies, we will find the government's use of penalty scheme will yield the following: (i) The cyber-

security level is higher than the case without penalty scheme. (ii) Both the supplier and consumer are benefited 

from the scheme than without penalty scheme. (iii) The e-tailer’s profit is hurt than without penalty scheme. 

As 𝑆𝑊(𝐺𝑇)
∗ − 𝑆𝑊(𝑁𝑇)

∗  increases with F, if the government has a sufficiently high emphasis on CS, then the 

optimal decision for government is to impose the highest penalty fee 𝐹𝐼𝑇 .  To be specific, with technologies, it 

is wise for the government to impose the penalty scheme if and only if 𝜗𝐼𝑇 ≥ 𝑇𝐼𝑇 ≡

(2𝑘𝐼𝑇−𝑒2)(2𝑘𝐼𝑇(8𝑘𝐼𝑇−𝑒(3+3𝑏−3𝑐+𝑒−3𝑚))−𝐹(8𝑘𝐼𝑇−𝑒2)𝛾)

𝑒𝑘𝐼𝑇(2𝑘𝐼𝑇(1+𝑏−𝑐−𝑒−𝑚)+𝑒𝐹𝛾)
.  If the government puts a sufficiently high emphasis on CS (i.e., 

𝜗𝐼𝑇 ≥ 𝑇𝐼𝑇), social welfare increases. It shows the robustness of our core findings in our basic models.  

We define 𝑇𝐼𝑇 ≡
(2𝑘𝐼𝑇−𝑒2)(8𝑘𝐼𝑇−𝑒(3+3𝑏−3𝑐+𝑒−3𝑚))

𝑒𝑘𝐼𝑇(1+𝑏−𝑐−𝑒−𝑚)
, �̈�𝐼𝑇 = 𝑎𝑟𝑔𝐹

(𝑇𝐼𝑇 = 𝜗𝐼𝑇),  and 𝑇𝐼𝑇 ≡

(2𝑘𝐼𝑇−𝑒2)(𝑒4−12𝑒2𝑘𝐼𝑇+32𝑘2𝐼𝑇+5𝑒3(1+𝑏−𝑐−𝑚)−16𝑒𝑘𝐼𝑇(1+𝑏−𝑐−𝑚))

𝑒𝑘𝐼𝑇(𝑒3−4𝑒𝑘𝐼𝑇+8𝑘𝐼𝑇(1+𝑏−𝑐−𝑚)+3𝑒2(−1−𝑏+𝑐+𝑚))
.  Note that the subscript IT means the case with 
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technology adoption. 

When  𝑇𝐼𝑇 < 𝜗𝐼𝑇 < 𝑇𝐼𝑇 , if the government chooses the penalty fee between [�̈�𝐼𝑇 , 𝐹𝐼𝑇],  then imposing 

penalty is good for the social welfare and hence Model GT outperforms Model NT (P.S.: 𝐹𝐼𝑇 is the government’s 

optimal decision). Otherwise, the penalty scheme should not be adopted as Model NT is better than Model GT. 

If 𝜗𝐼𝑇 <  𝑇𝐼𝑇, the penalty scheme should not be implemented. 

With the present of the penalty scheme under the case with technologies, we will find that: (a) Social 

welfare increases if the government puts a sufficiently high emphasis on CS (i.e., 𝜗𝐼𝑇>𝑇𝐼𝑇 ), (b) It is wise for 

the government to impose the penalty scheme if and only if  𝜗𝐼𝑇 > 𝑇𝐼𝑇. These findings are basically consistent 

with the ones in Theorem 4.1, and hence we can see that the respective findings in the basic model stay robust. 

  Furthermore, focusing on the thresholds (i.e., T for the case without technologies and 𝑇𝐼𝑇  for the case 

with technologies) which determine whether implementing the government’s penalty scheme is beneficial to 

social welfare, we have the following findings: If F is relatively small and BCR > 1, then 𝑇𝐼𝑇 is smaller than 𝑇. 

It means that the penalty scheme more likely be preferred after the introduction of technologies. If F is relatively 

high and BCR< 1, then 𝑇𝐼𝑇 is greater than 𝑇. It presents that the penalty scheme is more likely be preferred 

under the case without technologies.  

As a remark, we also explore a scenario in which the e-tailer outsources the cyber-security task to a third-

party high-tech company by a paying lump-sum payment to acquire perfect security (i. e. , 𝛽 = 1).  This extended 

analysis is in fact based on some industrial observations. For example, e-tailer can buy the cyber-security service 

from the outside platform like IBM Blockchain, Alibaba Cloud (Baas), etc. As claimed from the Alibaba17, 

Blockchain as a Service (BaaS) is an enterprise-level platform service based on leading blockchain technologies, 

which would ensure companies could operate in a secure and stable environment. The platform also declares 

that BaaS “provides advanced security protection and creates a multi-dimensional blockchain security system”. 

For IBM Platform, security is also guaranteed and many successful blockchain application cases are realized 

for various industries. Based on these cases, we build analytical models to identify the value of this outsourcing 

service by exploring the equilibrium profit of the e-tailer in the presence of government penalty scheme and 

outsourcing service. The details of this extended analysis are available upon request18. 

5.2. Other Extensions19 

To show further robustness of our findings and generate more insights, we have conducted some more extended 

analyses. The detailed analyses can be found in the E-Companion (published online) and we present the core 

findings in the following.  

Alliance: We consider the case in which the supplier and e-tailer form a strategic alliance and be 

integrated. For this case, we have shown that by forming the supply chain alliance, the cyber security level, the 

                                                 
17 https://www.alibabacloud.com/products/baas?gclid=EAIaIQobChMI68r7woOY6gIVylVgCh2w-w0vEAAYAiAAEgKtzvD_BwE (accessed 23 June 

2020) 
18 We sincerely thanks for reviewer’s advice. The extension of outsourcing security with government supervision is available upon request.  
19 We just concisely present the core findings from these various extensions in the mainbody and relegate the details to the Online Appendix. We sincerely 

thank the comments by the senior editor and reviewers on restructuring the paper to make it cleaner and neat to read.  

https://www.alibabacloud.com/products/baas?gclid=EAIaIQobChMI68r7woOY6gIVylVgCh2w-w0vEAAYAiAAEgKtzvD_BwE
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profit of the whole supply chain, consumer surplus, and social welfare will all be better. Forming an alliance, as 

an all-win strategy, is a very effective way for improving cybersecurity level. Thus, when it is unwise for the 

government to implement the penalty scheme, it will be a good idea for the government to encourage the e-

tailer and supplier to form a strategic alliance and this will interestingly enhance the cyber security level. This 

is consistent with the observed industrial practices that major e-tailers like Amazon.com and JD.com all have 

formed strategic alliances with many of their suppliers. In addition to many benefits in supply chain operations 

(such as dampening the bullwhip effect and improving coordination), our findings show that this act is also 

helpful for cybersecurity.   

Competition: In the market, competition commonly exists. We hence consider a stylized supply chain 

consisting of two competing e-tailers (called e-tailers 1 and 2) selling two substitutable products. (a) For the 

case without government’s penalty, our findings interestingly show that a higher level of price competition 

benefits all members and enhances the cyber-security level. The larger degree of cyber-security competition 

also benefits all members when the cost coefficient for cyber-security is high enough. However, when the cost 

is not so high, members are hurt. (b) For the case with government’s penalty, we find that the results of the basic 

models stay robust.  

Defense-level dependent penalty: To check if a change of penalty scheme may affect the findings, we 

consider in an extended model the case in which the government’s penalty F is a function of 𝛽. In other words, 

we model the case in which the more effort the e-tailer makes, the lower the penalty fee it faces. Comparing to 

the findings under Model NG, we first uncover that the results of the basic models stay robust. After that, we 

compare the performance of the fixed penalty scheme (in basic models) and the defense-level dependent penalty 

scheme. Our analysis shows that when the cost for cyber-security is sufficiently low, when the consumers 

become more sensitive to cyber-security or the chance of being attacked increases, the government should 

choose the fixed penalty scheme. This finding shows that despite simple, the fixed penalty scheme is in fact a 

useful method which can outperform the defense-level dependent penalty scheme. Governments should hence 

consider it.  

 

6. Conclusion 

Cyber-security is a critical issue nowadays but it is under-explored in the OM literature. Motivated by observed 

real-world practices, we have built formal analytical models to explore the value of government cyber-security 

penalty schemes under different settings, e.g., including the use of systems security enhancing technologies 

(Section 5.1) and others (in Section 5.2, e.g., alliance, competing e-tailers, government’s defense-level 

dependent penalty). In the basic models, we have considered the two situations of an e-commerce supply chain 

with and without the consideration of a government cyber-security penalty scheme (Model G and Model NG, 

respectively). We have found that the government’s penalty scheme will always benefit the supplier and 

consumers but hurt the e-tailer. We have analytically proven (with the bounds derived) that when the 

government’s emphasis on consumer surplus is sufficiently high, implementing the penalty scheme is beneficial 
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to social welfare. We have also found that once the government has decided to implement the penalty scheme, 

the optimal penalty should be a very heavy fine (which goes to the upper bound). Then we have extended the 

analysis to examine how adopting technologies such as blockchain will affect the government’s choice of 

imposing penalty. We have revealed that when it is beneficial to have government’s penalty scheme, if the unit 

technology operations cost is lower (higher) than the unit benefit brought to consumers, the optimal penalty will 

be lower (higher) after adopting technologies. To generate more insights, we have conducted further analyses 

for various extended modeling cases and found that our main results remain robust. Among other findings, we 

have proven that the formation of alliance is an effective way to increase cyber security. This is hence a good 

option in case governments find that imposing penalty as a way to increase cyber security is not beneficial to 

social welfare. Last but not least, we have found that the government penalty schemes may do more harm than 

good; while once it is beneficial to implement, the government should charge the heaviest fine. This finding 

may explain a common observation: In the real-world, governments basically always adopt a polarized strategy, 

i.e., either do not impose penalty or impose a super heavy penalty, on cyber-security issues. 

Our findings have various practical implications and offer managerial insights, including some guidance 

for industrialists and governments on cyber-security issues. 

When should the government impose the cyber-security penalty scheme: Our analytical results show 

that the government’s implementation of cyber-security penalty scheme is beneficial to the supplier and 

consumers, but always hurts the e-tailer. We know that implementing the cyber-security penalty scheme is 

beneficial to improving social welfare only for the government which is characterized by having a sufficiently 

high emphasis on consumer surplus. This explains why some countries such as the UK and European Union 

implement cyber-security penalty schemes as they are well-known to have very high respects to consumer 

benefits. Just on the contrary, some governments of cities/countries (like China and New York) do not impose 

any penalty on cyber-security. Based on the analytical findings, we guess that one probable reason may be 

because compared to, e.g., economic benefits (i.e., profits of supply chain members), they don’t pay much 

attention to consumer benefits in a relative sense. For example, maybe in New York, company profit is regarded 

relatively important, then there is no cybersecurity penalty. As of today (September 2021), one of the reasons 

why there is no cybersecurity penalty issue in China may be that the government focuses more on economic 

development and the interests of companies are relatively important. It is interesting to note that China is now 

talking about imposing heavy and strict cyber-security measures. According to our findings, this may mean that 

the government of China has changed to put more emphasis on consumers (than before) and hence the relevant 

legislations are now under way. 

The optimal penalty scheme: From our analyses, if it is beneficial to implement the cyber-security penalty 

scheme, then the government should set the very heavy fine. This is in fact in line with the observed real world 

practices in which, e.g., European Union imposed a super high penalty on cyber-security problems. The same 

for the UK’s case. Imposing a very heavy penalty on cyber-security problems is hence a scientifically sound 

practice.  

What if it is not beneficial to have the cyber-security penalty scheme: From the above findings, we can 
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see that in the real-world, governments either do not impose penalty or impose a super heavy penalty on cyber-

security issues. Then, for the situation in which it is not beneficial for the government to implement cyber-

security penalty, then what will be some alternative measures? In our extended analyses, we have shown the 

importance of encouraging the e-tailer and suppler to form a strategic alliance. Our analysis (see Theorem A1.1 

and A1.2 in E-Companion) has shown that establishing an alliance strategy is an essential measure in achieving 

an all-win situation and governments should not ignore its importance. This finding also supports the common 

observations that e-commerce supply chain members love to establish strategic alliance (as evidenced by the 

cases of Amazon.com and JD.com). This industrial practice is indeed wise and helpful in e-commerce 

environments with cyber-security considerations. 

Using systems security enhancing technologies (such as blockchain): From the supply chain perspective, 

if governments only implement penalty schemes, e-tailers and the profits of the whole supply chain will be 

affected. If the benefit brought to consumers with the use of systems security enhancing technologies (such as 

blockchain) is greater than the per unit technology operations cost and the fixed technology cost is relatively 

small, the adoption of technologies will be a good choice. It is also interesting to note that when it is beneficial 

to have the government penalty scheme, the presence of systems security enhancing technologies also affects 

the optimal penalty and the specific impact depends on the technology benefit-to-cost ratio (BCR). When BCR > 

1, then the optimal penalty is smaller after adopting technologies. Otherwise, if BCR < 1, then the optimal 

penalty is larger after technology adoption. This implies that the implementation of systems security enhancing 

technologies like blockchain not only affects the optimal cyber-security level but also the optimal penalty that 

will be charged (if the government has decided to implement the penalty scheme). 

A limitation of our study is that we do not consider a situation involving multiple competing e-tailers in 

the supply chain system with different substitutability coefficients. In future studies, applying the 𝛽-related 

government penalty scheme to e-tailers under competition (Ha et al. 2017) would thus be valuable. Investigating 

how the technology adoption may improve cyber-security in a competitive environment is also an interesting 

future research direction. In this paper, we consider the symmetry of information and postpone the asymmetry 

case in the future research. Last but not least, extending the analysis to reveal how the risk-averse attitudes of 

e-tailers may affect their investments in cyber-security would also be an interesting direction to explore. 
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Appendix:  

Table 1.1b. Some real-world cases of cyber-security fines20 

 
Real-world cases Details of penalty 

Equifax (2017 data breach) $575 million. 

British Airways (2018 data breach) the UK Information Commissioner’s Office (“ICO”) fined BA $230 million. 

Uber (2016 data breach) Instead of quietly going away, the rideshare company was hit with a $148 million fine for 

violation of data breach notification laws. 

Marriott International (2018 data 

breach) 

On July 9, 2019, the ICO announce that the breach resulted in a fine of £99,200,396 

(approximately $124 million). 

Yahoo (2013 security breach) This breach cost Yahoo $85 million. 

Capital One (2019 data breach) The bank suffered a fine of $80 million. 

Google violated the GDPR in2019. This cybersecurity issue cost Google the equivalent of $43 million. 

Alibaba (Ant Group 2021) Chinese regulators have fined Alibaba a record $2800 million. Ant agreed to strengthen the 

protection of personal information and effectively prevent the abuse of data.21 

Didi Global Inc. (2021)  Bloomberg claims that Chinese regulators are considering serious, perhaps unprecedented, 

penalties for Didi, which is likely to impose harsher sanctions on Didi than on Alibaba.22 

 

Table 1.2. Features of cyber-security of e-commerce platforms 

Features Details Related Model Settings 

Consumer’s 

concerns for 

security 

Online consumers provide their private information, including their names, 

addresses, and possibly their credit card details and other types of financial 

information. This exposes their information to serious dangers if the e-

commerce platforms are not secure. They risk having their private 

information stolen. Cyber-security is hence critical. 

This feature is reflected in the 

demand function in which 

consumers sensitivity to cyber-

attacks is present. 

Cyber-

attack’s 

impacts 

Cyber-attacks can compromise users’ privacy and may be disastrous for the 

companies involved as previous mentioned.  It is critical and important to 

defend against cyber-attack. 

β denotes the e-tailer’s level of 

defense effort, and an associated 

cost 𝐾𝐷𝐸(𝛽) is incurred. 

Penalty 

measures 

Unlike other “crimes”, some governments have imposed very heavy penalty 

rules on cyber-security while some haven’t. It is hence interesting to explore 

whether governments should impose penalty and play a role in cyber-

security issues or not. 

We take government penalty 

schemes into consideration and 

compare scenarios with and without 

governments. 

Alliance In e-commerce, it is widely reported that e-tailers form strategic alliance with 

their suppliers. Typical examples include Amazon.com and JD.com. 

Whether or not it is a wise measure to deal with cyber-security challenge 

deserves deep investigations 

In our extended models, we 

compare the role played by alliance 

and show that it is critically 

important. 

 

                                                 
20 https://www.statista.com/statistics/1170520/worldwide-data-breach-fines-settlements/  (accessed July 20, 2021) 
21 https://www.ft.com/content/bb251dcc-4bff-4883-9d81-061114fee87f (accessed August 1, 2021) 
22 https://www.bloomberg.com/news/articles/2021-07-22/china-is-said-to-weigh-unprecedented-penalty-for-didi-after-ipo (accessed August 1, 2021) 
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