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Abstract. This paper deals with the generalized convolutions connected
with the Williamson transform and the maximum operation. We focus on
such convolutions which can define transition probabilities of renewal pro-
cesses. They should be monotonic since the described time or destruction
does not go back, it should admit existence of a distribution with a lack
of memory property because the analog of the Poisson process shall exist.
Another valuable property is the simplicity of calculating and invert-
ing the corresponding generalized characteristic function (in particular
Williamson transform) so that the technique of generalized characteristic
function can be used in description of our processes. The convex linear
combination property (the generalized convolution of two point measures
is the convex combination of several fixed measures), or representabil-
ity (which means that the generalized convolution can be easily written
in the language of independent random variables)—they also facilitate
the modeling of real processes in that language. We describe examples
of generalized convolutions having the required properties ranging from
the maximum convolution and its simplest generalization—the Kendall
convolution (associated with the Williamson transform), up to the most
complicated here—Kingman convolution. It is novel approach to apply in
the extreme value theory. Stochastic representation of the Kucharczak-
Urbanik in the order statistics terms is proved, which open new paths
to investigate Archimedean copulas. This paper open the door to solve
an old open problem of the relationship between copulas and generalized
convolutions mentioned by B. Schweizer and A. Sklar in 1983. This in-
dicates the path of further research towards extremes and dependency
modelling.
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1. Motivations

The most important motivation to write this paper is to solve the open problem
mentioned in [43] (see problem 7.9.9, p.122) to make a measurable calibration
of copulas in the context of generalized convolutions, in particular extremes.
We present here the first step towards solving this problem and present the
characterization of the maximum convolution, responsible for the construction
of extremes, in the terms of other convolutions, which in their algebras already
have well-developed tools (e.g. the Williamson transform corresponding to the
Kendall convolution). Moreover, we are building new tools for the development
of the Lévy processes theory in generalized sense [7], in particular extremes,
and a groundbreaking renewal theory such that renewal functions have clear
analytical formulas (see [24]).

Real world phenomena are often effects of accumulation processes. The
most natural description of a accumulation process is through summation of
components. However, accumulation of components can be described some-
times more adequately by the maximum function or by the �p-norm of the
vector of components, but often this dependence is more complicated and we
are using some approximating methods. The origin of this point of view one
can find in two papers: [7,24], where the authors consider renewal theory and
Lévy processes in the generalized convolution sense. Following this papers,
we propose here to use generalized convolutions, in particular the Kendall
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convolution and the Kendall type convolutions to find connections with the
extreme value theory. Our choice is motivated by many interesting properties
of such convolutions including the close connection with the max-convolution
and the extreme value theory, simplicity in calculating the corresponding char-
acteristic functions and inverting these characteristic functions, representing
convolutions by the convex linear combination of some measures or represent-
ing them by simple operations on some independent random variables. Since
the Kendall convolution extends the concept of the max-convolution we call it
extremal Kendall convolution to emphasize this property.

In this paper one can find the precise description of Kendall convolution
and the Kendall-type convolutions, their exceptional properties and applica-
tions in stochastic models—some of them have not been known yet. We an-
alyze also some examples of convolutions with similar properties. Finally, we
prove a stochastic representation of the Kucharczak-Urbanik convolution in
the terms of order statistics. This is the starting point for a novel approach to
Archimedean copulas which are now extensively studied [11,31,34,35].

Generalized convolutions were defined and intensively studied by K. Ur-
banik in [48–52]. His work has its origin in the paper of Kingman [29], where the
first generalized convolution, called now the Kingman (or Bessel) convolution,
was defined. This convolution—the ancestor of all generalized convolutions—is
strictly connected with a Wiener process in R

n and the Bessel process describ-
ing the distance of the walking particle from the origin.

For a while it was not clear that the class of generalized convolutions
is rich enough to be interesting for applications and useful in stochastic sim-
ulation and mathematical modeling, but by now we know that this class is
very rich, worth studying. It turned out, for example, that each generalized
convolution has its own Gaussian distribution, exponential law and Poisson
process with corresponding distribution with lack of memory property (see
[22,23,25,27]). The origin of some generalized convolutions one can find also
in Delphic semi-groups [16,28]. A different approach to generalized convolu-
tions appeared in the theory of harmonic analysis, see e.g. [33,44,45].

The classical convolution, corresponding to the summation of indepen-
dent random variables and the max-convolution corresponding to taking the
maximum of independent random variables, are examples of generalized con-
volutions. The extreme value theory described e.g. in [14,41], based on the
max-convolution, is widely developed and is applied e.g. in modelling rare
events with important consequences, like floods, hurricanes (see [3,9,41,47]).
We focus here on the Kendall convolution, defined by Urbanik in [53] which
can be used to model e.g. some hydrological phenomena: pretty stable be-
haviour of the “natural” water level together with rarely appearing floods. We
describe some distributional properties of the Kendall and Kendall type convo-
lutions (see [21,30,37]). Especially interesting and useful in modeling extremal
events is that for Kendall and Kendall type convolutions the convolution of
two measures with compact supports can have heavy tail.
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In Sect. 2 we present basics of the theory of generalized convolutions.
Sect. 3 contains a list of generalized convolutions studied in this paper.
For Sect. 4 let us remind first that each generalized convolution corre-

sponds to its own integral transform, for details and basic properties see [5,6,
49,51–54]. We describe some properties of the Kendall convolution through its
generalized characteristic function—the Williamson transform. Especially sim-
ple and clear here is the inversion formula. More information and details one
can find in [7] or [56]. The Williamson transform is also used in copula theory
(see e.g. [34,35]) since it is a generator of Archimedean copulas. For asymp-
totic properties of the Williamson transform see [2,24] and [31]. In Sect. 4.1
we draw the reader attention to the fact that the generalized convolution can
be defined by the corresponding integral transform as the proper generalized
characteristic function. It turned out that such approach was already consid-
ered in the area of Harmonic Analysis and Theory of Special Functions, see
e.g. [33,44,45]. However generalized convolutions considered in those papers
may not satisfy all Urbanik’s assumptions.

In Sect. 5 we show that for α � 1 there exists a (weakly stable) distri-
bution μ such that the Kendall convolution λ1 �α λ2 can be defined by the
following equation:

(
λ1 �α λ2

) ◦ μ =
(
λ1 ◦ μ

) ∗ (
λ2 ◦ μ

)
, (1)

where ∗ is the classical convolution and the operation ◦ : P2
+ → P+ is de-

fined as follows: L(θ1) ◦ L(θ2) = L(θ1 θ2) for independent random variables
θ1, θ2. Generalized convolutions with this property are called weak generalized
convolutions. We indicate which of the convolutions which we considered are
weak.

In Sect. 6 we study properties of generalized convolution allowing the con-
struction of the corresponding Poisson process. We start from the monotonicity
property stating that the generalized sum of positive random variables cannot
be smaller than their maximum—this is necessary to have positive increments
(of time). Not every generalized convolution has this property. We also study
existence of distributions with the lack of memory property with respect to
a given generalized convolution. For some convolutions such distributions do
not exists. The main result of this section, Theorem 5, gives a few equivalent
conditions for monotonic convolution to allow the existence of a distribution
with the lack of memory property. We indicate such convolutions among ones
we consider in this paper, e.g. for the Kendall convolution, �α, the power
distribution pow(α) with the density αxα−11[0,1](x) has the lack of memory
property.

In Sect. 7 we show that for the Kendall convolution, �α, for α ≤ 1 there
exists a distribution ν, which is weakly stable with respect to max-convolution,
such that for any λ1, λ2 ∈ P+ (probability measures on [0,∞)) we have

(
λ1 �α λ2

) ◦ ν =
(
λ1 ◦ ν

)
�

(
λ2 ◦ ν

)
,
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with the max-convolution � defined by L(θ1)�L(θ2) = L(max{θ1, θ2}), where
θ1 and θ2 are independent positive random variables. We have also the fol-
lowing property which, as it will be shown in Sect. 3, trivially follows from
the definition of the Kendall convolution: 1 = (δa �α δb) ([max{a, b},∞))
> (δa �α δb) ((max{a, b},∞)). By these properties we can model such pro-
cesses as the change of water level in the river in the continuous time which is
pretty stable most of the time but sometimes goes into extremes.

An equivalent definition of Kendall convolution presented in Sect. 8, states
that the Kendall convolution of two Dirac measures, δa, δb, is a convex linear
combination of two fixed measures with coefficients of this combination de-
pending on a and b. In [20] it was shown that the Kendall convolution is the
only generalized convolution with this property. It was shown in [37] that if the
generalized convolution of δa and δb is a convex combination of n fixed mea-
sures and with coefficients of this combination depending on a and b then the
generalized convolution is similar to the Kendall convolution. We call them
the Kendall-type convolutions. Such convex combination properties are not
only useful in explicit calculations, but they allow to define a family of inte-
gral transforms parametrized by n ≥ 2 extending in this way the Williamson
transform (which covers the case n = 2).

Finally, in Sect. 9 we focus on preparation for studying path properties of
the Lévy processes with respect to generalized convolution. In order to make it
possible we need to express the given convolution in the language of operations
on independent random variables. Such a construction for a given generalized
convolution is called representability (for details see [7]). Here we study a
simplified version of this property expressing a generalized convolution of two
measures λ1 
 λ2 corresponding to the independent random variables θ1, θ2

as a distribution of an explicitly defined variable Ψ(θ1, θ2). If Ψ(θ1, θ2)(ω) =
Ψ(θ1(ω), θ2(ω)) a.e. for some measurable function Ψ: R

2 → R, then Ψ(x, y) =
(xp + yp)1/p for some p ∈ (0,∞]. In all other cases Ψ(θ1, θ2) depends also on
some other random variables. For example for the Kendall convolution we have
L(θ1) �α L(θ2) is the distribution of

M
(
1(�α,1](U) + Π2α1[0,�α](U)

)
,

where M = max{θ1, θ2}, 	 = min{θ1, θ2}/max{θ1, θ2}, Πq is a variable with
the Pareto distribution πq and density qx−q−11[1,∞)(x), U has uniform distri-
bution on [0, 1] and θ1,Θ2,Π2α, U are independent.

1.1. Notation

Through this paper, by P+ (respectively P or more general P(E)) we denote
family of all probability measures on the Borel subsets of R+ := [0,∞) (re-
spectively R or more general separable Banach space E). The distribution of
the random element X is denoted by L(X). A dilation family (rescalings) of
operators Ta : P+ → P+, a ∈ R+ := [0,∞) is defined for μ ∈ P+ and any
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Borel set B in the following way: Taμ(B) = μ(B/a) if a > 0 and T0μ = δ0.
Equivalently, Taμ = L(aX) for a ∈ R+ and L(X) = μ.

2. A Primer on Generalized Convolutions

The Kendall convolution is a well known example of a generalized convolution
defined by K. Urbanik in [48] and studied in [49–52]. Urbanik was mainly
interested in generalized convolutions on P+ and we shall do the same in this
paper, but a wider approach is also possible.

In this section we present this part of the theory of generalized con-
volutions, which is necessary for studying properties of Kendall and other
convolutions.

Definition 1. A generalized convolution is a binary, associative and commuta-
tive operation 
 on P+ with the following properties:

(i) λ 
 δ0 = λ for all λ ∈ P+;
(ii) (pλ1 + (1 − p)λ2) 
 λ = p(λ1 
 λ) + (1 − p)(λ2 
 λ) for all p ∈ [0, 1] and

λ, λ1, λ2 ∈ P+;
(iii) Ta(λ1 
 λ2) = (Taλ1) 
 (Taλ2) for all a ≥ 0 and λ1, λ2 ∈ P+;
(iv) if λn ⇒ λ and νn ⇒ ν, then λn 
 νn ⇒ λ 
 ν for λn, μn, λ, μ ∈ P+, n ∈ N,

where ⇒ denotes weak convergence;
(v) there exists a sequence of positive numbers (cn) and a probability measure

ν ∈ P+, ν �= δ0, such that Tcn
δ�n
1 ⇒ ν, (here λ�n = λ 
 λ 
 ... 
 λ︸ ︷︷ ︸

n times

).

Remark 1. Note that any generalized convolution 
 is uniquely determined by
δx 
 δ1, x ∈ [0, 1]. Indeed, by Definition 1,

• first, for each choice of a, b ∈ R+ the measure δa
δb is uniquely determined
by

δa 
 δb =
{

TM

(
δx 
 δ1

)
, if M > 0,

δ0, if M = 0,

where M = a ∨ b := max{a, b}, m = a ∧ b := min{a, b} and x = m
M ;

• second, for arbitrary measures λ1, λ2 ∈ P+

λ1 
 λ2 =
∫ ∞

0

∫ ∞

0

(δa 
 δb) λ1(da)λ2(db).

Characteristic functions are important tools for the analysis of classical
convolution. It turns out that not every generalized convolution allows a rea-
sonable analog of characteristic function. The next definitions, introduced by
K. Urbanik in [48], select these convolutions for which such analog can be
defined.

Definition 2. The class P+ equipped with the generalized convolution 
 is
called a generalized convolution algebra and denoted by (P+, 
). A continuous
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(in the sense of weak convergence of measures) mapping h = h� : P+ → R is
called a homomorphism of the algebra (P+, 
) if for all λ1, λ2 ∈ P+

• h(λ1 
 λ2) = h(λ1)h(λ2)
and

• h(pλ1 + (1 − p)λ2) = ph(λ1) + (1 − p)h(λ2) for all p ∈ [0, 1].

Algebras admitting a non-trivial homomorphism (i.e. h �≡ 1, h �≡ 0) and the
corresponding generalized convolutions are called regular.

Definition 3. For a regular algebra (P+, 
) (or for the regular generalized con-
volution 
) we define a probability kernel Ω: R+ → R+ by

Ω(t)
def
= h(Ttδ1) = h(δt), t � 0,

and a 
-generalized characteristic function Φ�
λ : R+ → R+ of λ ∈ P+ as an

integral transform with the kernel Ω:

Φ�
λ(t)

def
=

∫ ∞

0

Ω(st)λ(ds) = h(Ttλ), t ∈ R+. (2)

Note that if X is a random variable with distribution λ ∈ P+ then

Φ�
λ(t) = EΩ(tX), t ∈ R+.

The function Φ�
λ plays a similar role as the Laplace or Fourier transform for

classical convolution on P+ or P, respectively. Basic properties of 
-generalized
characteristic functions are in [25,48]. For the present paper it is important
to know that each regular generalized convolution determines its generalized
characteristic function uniquely up to a scale constant. Moreover, convergence
of 
-generalized characteristic functions uniformly on compact sets is equiva-
lent to weak convergence of the corresponding probability measures.

Some generalized convolutions admit only the existence of a function
h : P+ → R which has all the required properties of homomorphism except
continuity. Equivalently, the corresponding probability kernel Ω: R+ → R is
not continuous (and the corresponding generalized convolution is not regular).
For example max-convolution is not regular since it admits only one (up to a
scale) probability kernel: Ω(x) = 1[0,1)(x), which is evidently not continuous.
For such convolutions the corresponding generalized characteristic functions
can be defined by (2), but then some of the properties, which hold in the
regular case, may not be satisfied.

3. Basic Examples of Generalized Convolutions

We present here a basic list of generalized convolutions defined uniquely, ac-
cording to Remark 1, by its value on δx 
 δy or δx 
 δ1 for x ∈ (0, 1). In the
latter case, the values for x ∈ {0, 1} we define by continuity.
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Example 3.0. The Kingman or Bessel convolution with parameter s > − 1
2 is

defined for x, y � 0 by

δx ⊗ωs
δy = L

(√
x2 + y2 + 2xyθs

)
,

where θs is a random variable with the following density function:

fs(t) =
Γ(s + 1)√

πΓ(s + 1/2)
(
1 − t2

)s−1/2

+
,

where a+ = max{a, 0}. The measure δx ⊗ωs
δy has support [|x − y|, x + y]. If

n := 2(s + 1) ∈ N, n > 1, then the variable θs can be identified as θs = U1,
where Un = (U1, . . . , Un) is a random vector having uniform distribution on
the unit sphere Sn−1 ⊂ R

n.

Example 3.1. The classical convolution ∗ on P+ is given by

δx ∗ δy = δx+y, x, y � 0.

Example 3.2. Symmetric convolution �� on P+ we define by

δx �� δy =
1
2
δx+y +

1
2
δ|x−y|, x, y � 0.

This distribution can be considered as the limit of δx ⊗ωs
δy for s ↘ − 1

2 .

Example 3.3. α-stable convolution ∗α for α > 0 is given for x, y � 0 by

δx ∗α δy = δgα(x,y), where gα(x, y) = (xα + yα)1/α.

Example 3.4. The Kendall generalized convolution �α on P+, α > 0, is defined
by

δx �α δ1 :=
(
1 − xα

)
δ1 + xαπ2α, x ∈ [0, 1],

where πβ is the Pareto distribution with the density function fβ(t) = βt−β−1

on the set [1,∞) for some β > 0.

Example 3.5. The max-convolution is simply defined by

δx�δy = δx∨y.

This distribution can be considered as the limit of δx �α δy for α → ∞. This
is the reason why we call the Kendall convolution by the extremal Kendall
convolution.
Example 3.6. The Kucharczak convolution δx ◦1 δy for x, y � 0 defined in [54],
Example 2.4, is a measure absolutely continuous with respect to the Lebesgue
measure and for a ∈ (0, 1], r > 0, given by

δx ◦1 δy(dt) =
rxaya

Γ(a)Γ(1 − a)
tr−ar−1(2tr − xr − yr)1[gar(x,y),∞)(t)

(tr − xr − yr)a(tr − xr)(tr − yr)
dt.
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Example 3.7. The Kucharczak-Urbanik generalized convolution defined in [30,
54] for α > 0 and n ∈ N is uniquely determined by

δx �α,n δ1(ds) := (1 − xα)nδ1(ds) +
n∑

k=1

(
n

k

)
xαk(1 − xα)n−kμk,n(ds) (3)

for x ∈ [0, 1], where for k = 1, . . . , n the probability measures μk,n, are defined
by their density functions fk,n:

fk,n(s) = αk

(
n + k

n

)
s−α(n+1)−1

(
1 − s−α

)k−1
, s > 1. (4)

Example 3.8. A family of non-regular generalized convolutions ♦p,α, p ∈ [0, 1],
α > 0, was introduced by K. Urbanik in [54] initially for α = 1. This family
interpolates between two boundary cases: the max-convolution for p = 0 and
the Kendall convolution for p = 1. The ♦p,α-convolution δx♦p,αδ1, x ∈ [0, 1],
is defined for p �= 1

2 by

δx♦p,αδ1(ds) = (1 − pxα) δ1(ds) + pxα α
2p−1

2p−sq

s2α+1 1[1,∞)(s)ds, x ∈ [0, 1],

where q = α(1−2p)
(1−p) . By continuity, for p → 1/2 we have

δx♦1/2,αδ1(ds) =
(
1 − xα

2

)
δ1(ds) + xα

2
α(1+2 ln s)

s2α+1 1[1,∞)(s)ds.

Example 3.9. In [37] one can find the description of the regular generalized
convolutions called the Kendall-type convolutions. Their probability kernels
are the following:

ϕc,α,p(t) = (1 − (1 + c)tα + ctαp)1[0,1](t),

where p � 2, α > 0 and one of the following conditions holds

(1) c = (p − 1)−1,
(2) c = (p2 − 1)−1,
(3) c = 1

2 (2 − p)(p − 1)−1,

(4) c = 1
2 (p − 1)−1,

(5) c ∈ (
(p2 − 1)−1, 1

2 (p − 1)−1
)

and none of the previous cases holds.

For other parameters p, c, α none of the functions ϕc,α,p can be a proba-
bility kernel of a regular generalized convolution. Such convolutions are given
by

δx �c,α,p δ1 = ϕc,α,p(x) δ1 + xαp λ1 + (c + 1)(xα − xαp)λ2,

for properly chosen probability measures λ1, λ2 supported in [1,∞). For de-
tails, in particular for the explicit densities and cumulative distribution func-
tions of the measures λ1, λ2, see [37].
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4. The Kendall Convolution by the Corresponding Williamson
Transform

Let m0 denote the sum of δ0 and the Lebesgue measure on [0,∞). By Theorem
4.1 and Corollary 4.4 in [52] we know that the generalized convolution can
be defined uniquely by its generalized characteristic function treated as an
integral transform. Such approach is described by the next definition. Let us
remind here that the L1(m0)-topology of L∞(m0)-space means that fn → f
for functions fn, f ∈ L∞(m0) if

∫
fn(x)g(x)m0(dx) → ∫

f(x)g(x)m0(dx) for
all g ∈ L1(m0), or, equivalently if

∫
fn(yx)g(x)m0(dx) →

∫
f(yx)g(x)m0(dx)

for all g ∈ L1(m0) and all y ∈ [0,∞).

Definition 4. We say that the Borel function ϕ : [0,∞) → R, |ϕ(t)| � ϕ(0) = 1,
defines a ϕ-generalized convolution on P+ if

(i) the integral transform

λ̂(t) :=
∫ ∞

0

ϕ(tx)λ(dx), λ ∈ P+,

separates points in P+, i.e. λ̂ = μ̂ implies that λ = μ,
(ii) the weak convergence λn → λ is equivalent to the convergence λ̂n → λ̂

in the L1(m0)-topology of L∞(m0),
(iii) for every x, y � 0 there exists a measure μ ∈ P+, such that the following

equality, called the product formula for the function ϕ, holds

∀x, y � 0∃μ ∈ P+ ϕ(xt)ϕ(yt) =
∫ ∞

0

ϕ(st)μ(ds). (5)

The corresponding ϕ-generalized convolution for such function ϕ and
measure μ described in (iii) is defined by

∀x, y ∈ R+ δx♦ϕδy := μ.

Remark 2. It is easy to notice that the operation ♦ϕ defined for the point
mass measures by the Definition 4 satisfies all conditions of Definition 1 thus
it is a generalized convolution in the Urbanik sense. Continuity of the function
ϕ is equivalent with the regularity of convolution ♦ϕ.

In all the following examples, except the Example 4.10, we see that the
known generalized convolution 
 is ϕ-generalized convolution for the function
ϕ being the probability kernel for 
. In Example 4.10 we describe Whittaker
Wα,ν-generalized convolution, based on a little changed product formula. This
convolution does not satisfy the condition (iii) of the Urbanik definition of
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generalized convolution, however methods used in studying the properties of
one convolutions can be helpful in studying the properties of others.

Example 4.0. The characteristic function of the variable θs, s > − 1
2 is given

by the following formula (for the proof see e.g. [29])

Φs(t) :=
∫ 1

−1

eitxfs(x)dx = Γ(s + 1)
( t

2

)s

Js(t),

where Js is the Bessel function of the first kind with the index s and

Js(t) =
∞∑

m=0

(−1)m

m!Γ(m + 1 + s)

( t

2

)2m−s

.

We recognize here ϕ = Φs, λ̂(t) =
∫ ∞
0

Φs(tx)λ(dx). The definition of the
Kingman-Bessel convolution ⊗ωs

follows now from the Gegenbauer’s Formula
(see e.g. [46], Chapter 8.19), which is the product formula (5) for this case:

Φs(xt)Φs(yt) =
∫ ∞

0

Φs(rt) rs(x, y, r) dr.

Here for x, y > 0 the function rs(x, y, r) as a function on r, is the density of
the random variable

√
x2 + y2 + 2xyθs and it is equal to

rs(x, y, r) =
Γ(s + 1)√

πΓ(s + 1/2)
21−2s(xy)−2s r 1(|x−y|,x+y)(r)

[
(r2 − (x − y)2)((x + y)2 − r2)

]−s+ 1
2
.

Example 4.1. For the classical convolution we have ϕ(t) = e−t and the integral
transform λ → λ̂ is the classical Laplace transform. The product formula (5)
follows from the fact that the Laplace transform of the convolution of two
measures is equal to the product of their Laplace transforms.

Example 4.2. For the symmetric convolution �� we have ϕ(t) = cos(xt) and
equation (6) follows from the elementary formula:

cos(xt) cos(yt) =
1
2

cos((x + y)t) +
1
2

cos((x − y)t).

Example 4.3. For the α-stable convolution ∗α we have ϕ(t) = e−tα

. This means
that λ̂ is simply a modified Laplace transform.

Example 4.4. Recall that for α > 0 and a non-negative, σ-finite on [0,∞)
(finite on compact sets) measure λ on R+ the Williamson transform Wαλ is
defined by

Wαλ(t) :=
∫ ∞

0

(
1 − tαxα

)
+
λ(dx),
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where a+ = max{a, 0}. The product formula (5) for the Williamson transform
is the following:

(1 − tαxα)+(1 − tαyα)+ =
∫ ∞

0

(1 − tαsα)+(δx �α δy)(ds), x, y � 0.

This formula was introduced for studying of the Kendall �α convolution in
[51], thus �α-generalized characteristic function is given by:

Φ�α

λ (t) := Wαλ(t) =
∫ ∞

0

(
1 − tαsα

)
+
λ(ds). (6)

The Williamson integral transform for α = 1 was introduced when study-
ing n-times monotonic functions, i.e. functions f on [0,∞) such that (−1)	f (	)(r)
is non-negative, non-decreasing and convex for � = 0, 1, ..., n−1. R.E. Williamson
showed (see [56] Th. 1 and 2) that f is n-times monotonic function on (0,∞)
iff f(t) =

∫ ∞
0

(1 − tx)n−1
+ γ(dx), for some non-negative, σ-finite measure γ on

[0,∞).
Actually, the original Williamson transform and its modifications γ −→∫ ∞

0

(
1− tαxα

)d−1

+
γ(dx), for some α, d > 0, are applied in many different areas

of mathematics including actuarial science (see e.g. [8,32]) and dependence
modeling by copulas [15,31,34,35].

Note that it is easy to retrieve the measure knowing its Williamson trans-
form. This makes the proof of the fact that the Williamson transform uniquely
determines the measure much simpler than that for the Fourier or Laplace
transforms. To see this we integrate by parts the right hand side of (6) and we
obtain

Φ�α

λ (t) = αtα
∫ 1/t

0

xα−1F (x) dx,

where F is the cumulative distribution function for λ. Now, with the notation
G(t) = Φ�α

λ (1/t), we obtain

tαG(t) = α

∫ t

0

xα−1F (x)dx, thus F (t) = G(t) + α−1t−1G′(t), (7)

at each continuity point of the function F . Consequently, Φ�α

λ1
(t) = Φ�α

λ2
(t)

implies that λ1 = λ2. Since Φ�α

λ (t) is the generalized characteristic function
for the Kendall convolution we know that for λ1, λ2 ∈ P+

Φ�α

λ1�αλ2
(t) = Φ�α

λ1
(t)Φ�α

λ2
(t), t � 0. (8)

The cumulative distribution function of the Kendall convolution of two mea-
sures can also be be easily expressed:

Theorem 1. For every λ1, λ2 ∈ P+. The measure λ = λ1 �α λ2 if and only if
Fλ, the cumulative distribution function of λ, is given by

Fλ(t) = G1(t)F2(t) + G2(t)F1(t) − G1(t)G2(t),
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where Fi is the cumulative distribution function of λi, Gi(t) = Φ�α

λi
(1/t), i =

1, 2, Fλ is the cumulative distribution function of λ and Gλ = Φ�α

λ (1/t).

Proof. Assume that λ = λ1 �α λ2. By the formula expressing the cumulative
distribution function by the Williamson transform and the equality ̂λ1 �α λ2 =
λ̂1λ̂2 we have that Gλ(t) = G1(t)G2(t), t � 0, and then, by (7)

Fλ(t) = Gλ(t)) + α−1t−1G′
λ(t)

= G1(t)G2(t) + α−1t−1G′
1(t)G2(t) + α−1t−1G1(t)G′

2(t)
= G1(t)F2(t) + G2(t)F1(t) − G1(t)G2(t).

Assume now that the cumulative distribution function Fλ can be written by
the desired formula. Since Fi(t) = Gi(t) + α−1t−1G′

i(t), i = 1, 2, then

Fλ(t) = G1(t)F2(t) + G2(t)F1(t) − G1(t)G2(t)

= G1(t)G2(t) + α−1t−1
(
G1(t)G2(t)

)′
.

By the uniqueness of the Williamson transform we see that the generalized
characteristic function of λ is equal to G1(t−1)G2(t−1), t � 0 which is the
generalized characteristic function of λ1 �α λ2. �

Example 4.5. For the max-convolution we have ϕ(t) = 1[0,1](t). This function
is not continuous, thus the corresponding convolution � is not regular, but the
inversion formula is also equally easy to obtain:

λ̂(t) =
∫ ∞

0

1[0,1](tx)λ(dx) =
∫ t−1

0

λ(dx) = Fλ(t−1),

thus Fλ(t) = λ̂(t−1) for all continuity points of the cumulative distribution
function Fλ.

Example 4.6. For a ∈ (0, 1], r > 0, the Kucharczak generalized convolution ◦1

can be defined by the product formula (5) applied to its probability kernel:

Ω(t) =
Γ(a, tr)
Γ(a)

=
1

Γ(a)

∫ ∞

tr

xa−1e−xdx, t > 0.

This means that the measure μ = δx ◦1 δy is defined as a solution of the
following integral equation:

1
Γ(a)2

∫ ∞

trxr

sa−1e−sds

∫ ∞

tryr

ua−1e−udu =
∫ ∞

0

1
Γ(a)

∫ ∞

trsr

ua−1e−uduμ(ds).

Example 4.7. The Kucharczak-Urbanik convolution �α,n can be defined by
equation (5) for ϕ(t) := (1 − tα)n

+. To see this note that for any x ∈ [0, 1] and
t � 0 we have

(1 − tαxα)n
+(1 − tα)n

+ =
n∑

k=0

(
n

k

)
xαk(1 − xα)n−k(1 − tα)n+k

+ .
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It remains to show that for any integer k ≥ 1

(1 − tα)n+k
+ =

∫ ∞

0

(1 − tαsα)+ fk,n(s) ds,

where the density functions fk,n, k = 1, . . . , n, n ∈ N, are described in Example
3.7. This equality we can obtain by a simple induction argument (with respect
to k), where the first step of induction is based on the following property of
the Pareto distribution:

∫ ∞

0

(1 − sαtα)n
+ πα(n+1)(ds) = (1 − tα)n+1

+ .

The final conclusion is a consequence of the uniqueness of probability kernel
(up to a scale coefficient) of every generalized convolution (for the proofs see
[39,51]).

The inversion formula for the integral transform λ → λ̂ with the kernel
Ωα,n can be obtained using the same methods as inverting the Williamson
transform, but the level of difficulty increases with the increase of n - for the
detailed proof see [34,35].

Example 4.8. The ♦p,α generalized convolution, α > 0, p ∈ [0, 1], can be
defined by equation (5) for the probability kernel

Ω♦α,p
(t) = (1 − ptα)1[0,1](t), t ≥ 0

This function, except for the Kendall case p = 1, is not continuous thus the
generalized convolution ♦p,α is not regular.

Example 4.9. The Kendall-type generalized convolutions �c,α,p were found by
considering such parameters c, α, p for which the function ϕc,α,p(t) = (1− (1+
c)tα + ctαp)1[0,1](t) can play the role of probability kernel of some general-
ized convolution. In particular we choose such c, α, p that for all x, y > 0 the
measure μ (depending on x and y) which satisfies the equality

ϕc,α,p(xt)ϕc,α,p(yt) =
∫ ∞

0

ϕc,α,p(ts)μ(ds)

is a probability measure.

4.1. Generalized Convolutions in Harmonic Analysis

The version of equation (5) appearing in the theory of special functions and
harmonic analysis is called a product formula or a multiplication formula for
the family {χ

λ
}λ∈Λ of continuous functions on I ⊂ R:

χ
λ
(x)χ

λ
(y) =

∫

I

χ
λ
(s)K(x, y, s) ds, λ ∈ Λ, (6’)

where the kernel K(x, y, s) does not depend on λ and Λ is some indexing
set. Such product formulas are the key ingredient for definitions of generalized
translation and generalized convolution operators which have been introduced
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by J. Delsarte [13] and B. Levitan [33] in the theory of special functions and
harmonic analysis. For details and examples see [4,10].

For the generalized convolutions on P+ introduced by K. Urbanik in the
probability theory we have

{
χ

λ
(·) : λ ∈ I

}
=

{
Ω(t ·) : t � 0

}
,

where Ω: R+ → R+ is the probability kernel for the considered generalized
convolution. In the definition of J. Delsarte [13] and B. Levitan [33] the set I
in the family {χ

λ
}λ∈Λ is some indexing set and the equality χ

λ
(x) = χ1(λx)

does not have to hold, but the family
{∫

I

χ
λ
(s)K(x, y, s) ds : λ ∈ Λ

}

will identify the kernel K(x, y, s) uniquely up to a set of Lebesgue measure
zero for each choice of x, y ∈ I.

Example 4.10. In [44] the authors proved the product formula for the index
Whittaker transform and defined the corresponding generalized convolution
operator. By the index Whittaker transform we understand here the integral
transform P+ � μ → (Wα,νμ)(t) given by

μ̂(λ) := (Wαμ)(λ) :=
∫ ∞

0

Wα,Δλ
(x)μ(dx), λ � 0,

where α < 1
2 is a parameter, Δλ =

√
( 1
2 − α)2 − λ and Wα,ν is the Whittaker

function

Wα,ν(x) =
e− x

2 xα

Γ( 1
2 − α + ν)

∫ ∞

0

e−ss− 1
2−α+ν

(
1 +

s

x

)− 1
2+α+ν

ds,

for Re x > 0,Reα < 1
2 +Re ν. Equivalently the Whittaker function is defined

as the solution of Whittaker’s differential equation:

d2u

dx2
+

(
−1

4
+

α

x
+

1/4 − ν2

x2

)
u = 0

uniquely determined by the property Wα,ν(x) ∼ xαe−x/2 for x → 0.
The index Whittaker transform μ → μ̂ has the following properties of

the generalized characteristic function (see Prop. 4.4 in [45]):
(i) μ̂ is uniformly continuous on [0,∞). Moreover, for any indexing set J

if the family {μj |(0,∞) : j ∈ J} is tight, then {μ̂j : j ∈ J} is uniformly
equicontinuous;

(ii) μ̂ uniquely determines μ ∈ P+;
(iii) if μn, μ ∈ P+, n ∈ N, and μn ⇒ μ then μ̂n → μ̂ uniformly on compact

sets;
(iv) if μn ∈ P+, n ∈ N and μ̂n(λ) → f(λ) pointwise in λ � 0 for some

real function f , continuous in a neighbourhood of zero then there exists
μ ∈ P+ such that f = μ̂.
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The product formula for the Whittaker function of the second kind is the
following (see Th. 3.1 in [44]):

Wα,ν(x)Wα,ν(y) =
∫ ∞

0

Wα,ν(s)Kα(x, y, s)ds, (9)

where

Kα(x, y, s) :=
(xy)2α−1

√
2πs2α

× exp
{

1
2x2

+
1

2y2
− 1

2s2
−

(x2 + y2 + s2

4xys

)2
}

D2α

[
x2 + y2 + s2

2xys

]

and Dμ(s) is the parabolic cylinder function for s > 0, Re μ < 1:

Dμ(s) =
sμe−s2/4

Γ( 1
2 (1 − μ))

∫ ∞

0

t
1
2 (1+μ)

(
1 +

2t

s2

)μ/2

e−tds.

The equation (9) holds for all ν for which the function Wα,ν can be defined,
but considering generalized characteristic function in the sense of Delsarte
and Levitan we will assume that ν = Δλ. By Theorem 4.6 in [45] we have∫ ∞
0

Kα(x, y, s)ds = 1 for all x, y > 0. Consequently we have that the product
formula (9) for the Whittaker function defines a generalized convolution � in
the sense of Delsarte and Levitan:

δx � δy(ds) = Kα(x, y, s)1(0,∞)(s) ds.

This proposal does not guarantee that � is a generalized convolution in the
Urbanik’s sense. In particular, we do not know if conditions (iii) or (v) of
Definition 1 hold.

5. The Kendall Convolution as a Weak Generalized Convolution

Let us remind that the measure ν ∈ P(E) is stable if for all a, b � 0 there
exists non-random d(a, b) ∈ E such that

Taν ∗ Tbν = Tc(a,b)ν ∗ δd(a,b),

where c(a, b)α = aα + bα for some α ∈ (0, 2]. If d(a, b) ≡ 0 then the measure
ν is called strictly stable. The complete characterization of both stable and
strictly stable distributions is known and given e.g. in [42].

Similarly we define weakly stable distributions, which are measures on
an arbitrary separable Banach space E (with the Borel σ-algebra):

Definition 5. We say that a measure μ ∈ P(E) is weakly stable if

∀ a, b ∈ R ∃λ = λa,b ∈ P : Taμ ∗ Tbμ = λ ◦ μ,

where ∗ denotes the classical convolution and L(X) ◦ L(θ) = L(Xθ) if the
random elements X and θ are independent.
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It is known (see [36]) that μ is weakly stable if and only if

∀λ1, λ2 ∈ P ∃λ = λa,b ∈ P (λ1 ◦ μ) ∗ (λ2 ◦ μ) = λ ◦ μ. (*)

This property is the base for defining weak generalized convolution:

Definition 6. Let μ be a weakly stable measure on a separable Banach space E.
The binary operation ⊗μ : P2

+ → P+, called a μ-weak generalized convolution,
is defined as follows: for any λ1, λ2 ∈ P+

λ1 ⊗μ λ2 = λ ∈ P+ ⇐⇒ (
λ1 ◦ μ

) ∗ (
λ2 ◦ μ

)
= λ ◦ μ.

The generalized convolution 
 is called a weak generalized convolution if there
exists a weakly stable measure μ such that 
 = ⊗μ.

All known weakly stable measures are symmetric, i.e. satisfying the prop-
erty μ(A) = μ(−A) for every Borel set A ∈ B(E). Moreover if μ on E is weakly
stable, then for every subspace E1 ⊂ E and every linear operator Q : E → E1

the measure μQ on E1 defined by

∀A ∈ B(E) μQ(A) := μ(Q−1(A))

is also weakly stable and both μ and μQ define the same weak generalized
convolution on P+. For these reasons in defining weak generalized convolutions
we will restrict our attention to weakly stable measures μ ∈ Ps (symmetric
measures on R).

Remark 3. Let μ̂ be the characteristic function of the weakly stable measure
μ ∈ Ps. By the weak stability condition (∗) and Definition 6 written in the
language of characteristic functions we have that there exists a measure λ =
λ1 ⊗μ λ2 such that

∫ ∞

0

μ̂(st)λ1(ds)
∫ ∞

0

μ̂(st)λ2(ds) =
∫ ∞

0

μ̂(st)λ(ds).

In this case the probability kernel of the generalized convolution ⊗μ is ϕ(t) =
μ̂(t) =

∫
R

cos(tx)μ(dx) considered as a function on R+. Finally we see that the
generalized convolution 
 with the probability kernel ϕ is weak iff the function
ϕ(|t|), t ∈ R, is a characteristic function of some measure μ ∈ Ps, 
 = ⊗μ and

∀ a, b, t ∈ R+ ϕ(at)ϕ(bt) =
∫ ∞

0

ϕ(st) δa ⊗μ δb (ds). (10)

Theorem 2. The Kendall convolution �α is a weak generalized convolution if
α ∈ (0, 1]. The corresponding weakly stable measure μ := μα ∈ Ps is defined
by the density function

gα(t) =
2α

π
|t|−α−1

∫ |t|

0

xα−1 sin x dx, t ∈ R \ {0}.

Proof. Since we already know that the probability kernel for the Kendall con-
volution is Ω�α

(t) = (1 − tα)1[0,1](t) we only need to:
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(a) show that the function g(t) := Ω�α
(|t|) is a characteristic function of

some probability μ if α ∈ (0, 1];
(b) identify ĝα as the density of μ.

Indeed, if (a) and (b) hold then μ̂(t) = Ω�α
(|t|) thus, by equality (10) we see

that μ is weakly stable and defines the convolution �α.
To see that (a) holds true, note that for t > 0

ĝ′(t) = −αtα−1 < 0, and ĝ′′(t) = α(1 − α)tα−2 > 0.

Consequently, by the Polya Theorem, it follows that ĝ is indeed the character-
istic function of a symmetric probability measure μ.
To see that (b) holds true we use the inverse Fourier transform for integrable
characteristic function to obtain the density function of μ:

1
2π

∫

R

g(x)e−itx dx =
∫

R

(
1 − |x|α)

+
e−itx dx

=
α

π
|t|−α−1

∫ |t|

0

xα−1 sin x dx = gα(t). �

Theorem 3. Assume that the Kendall convolution �α is weakly stable. Then
α ∈ (0, 2].

Proof. The Kendall convolution �α is weakly stable iff the function (1−|t|α)+
is the characteristic function μ̂ of some symmetric probability distribution μ.
Then we have

μ̂
( t

n1/α

)n

=
(
1 − |t|α

n

)n

−→ e−|t|α ,

which means that the function e−|t|α is also a characteristic function of some
α-stable probability measure. By the theory of symmetric stable distributions
(see e.g. [42]) we get α � 2. �

Example 5.0. As we have seen in Example 4.0 the probability kernel for the
Kingman convolution is equal to the characteristic function Φs(t) = Γ(s +

1)
(

t
2

)s

Js(t) of the variable θs appearing in the definition of this convolution.

Consequently, the Kingman convolution ⊗ωs
is weakly stable for all s > − 1

2 .

Example 5.1. The classical convolution on P+ is weakly stable since for its
probability kernel e−t we have g(t) = e−|t| which is the characteristic function
of the Cauchy distribution.

Example 5.2. The symmetric convolution is weakly stable since g(t) = cos(t)
is the characteristic function of μs = 1

2δ1 + 1
2δ−1.

Example 5.3. The α-stable convolution ∗α is weakly stable for α ∈ (0, 2] since in
this case e−|t|α is the characteristic function of a symmetric α-stable measure.
For α > 2 the convolution ∗α is not weakly stable.
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Example 5.4. Example 5.6. For the Kucharczak convolution the probability
kernel is Ω(t) = Γ(a, tr)/Γ(a) for some a, r > 0, thus for the function g(t) =
Ω(|t|) we have g′(t) = − r

Γ(a) t
ar−1e−tr

< 0 for t > 0 and g′′(t) = r
Γ(a) (rt

r +1−
ar)tar−2e−tr

, which is positive for ar � 1. This means that the Kucharczak
convolution is weakly stable if ar � 1.

Example 5.7. For all n ∈ N the Kucharczak-Urbanik convolution �α,n is weakly
stable if α ∈ (0, 1].

Example 5.9. The Kendall-type convolutions �c,α,p with the probability kernel
ϕc,α,p(t) = (1 − (c + 1)tα + ctpα)1[0,1](t), p � 2, α > 0, is weakly stable for
α � 1 since then, in all admissible cases, ϕ′

c,α,p(t) � 0 and ϕ′′
c,α,p(t) � 0

for all t ∈ [0, 1]. This by the Pólya criterion shows that ϕc,α(|t|), t ∈ R is a
characteristic function of some probability measure μ. This means that �c,α,p

is μ-weakly stable.
Of course the max-convolution and ♦p,α convolution cannot be weak

generalized convolutions since they are not regular.

6. Lack of Memory Property

In the classical theory of stochastic processes a very important role plays the
Poisson process build on a the sequence of i.i.d. exponentially distributed ran-
dom variables. This particular choice of distribution was caused by the lack
of memory property exclusively satisfied by the exponential distribution. It
turns out that a generalized convolution 
 admits or not the existence of a
distribution with the lack of memory property with respect to 
. However if
such distribution exists, then it is unique up to a scale coefficient. To analyze
this notion more precisely we need to define monotonic convolutions first:

Definition 7. A generalized convolution 
 on P+ is monotonic if for every x, y �
0 we have

δx 
 δy

(
[x ∨ y,∞)

)
= 1.

Informally speaking the generalized convolution is monotonic if the cor-
responding generalized sum of independent positive random variables cannot
be smaller than the biggest of them.

Example 6.0. Not every generalized convolution is monotonic. The best known
convolution without this property is the Kingman (or Bessel) convolution since
for every s > − 1

2 and x, y > 0 we have

supp
(
δx ⊗ωs

δy

)
=

[|x − y|, x + y
]
.
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Definition 8. A probability measure ν ∈ P+ has the lack of memory property
with respect to the generalized convolution 
 if

P
{
X > x 
 y

∣
∣X > x

}
= P {X > y} , x, y � 0,

where X is a random variable with distribution ν and (x 
 y) is any random
variable with L(x 
 y) = δx 
 δy, independent of X.

Remark 4. Notice that if the generalized convolution 
 is monotonic then the
equation from Definition 8 can be changed into

P {X > x 
 y} = P {X > x}P {X > y} , x, y � 0.

It was shown in [22], Prop. 5.2 that the measure ν ∈ P+ with the cumu-
lative distribution function F has the lack of memory property with respect to
the monotonic generalized convolution 
 if and only if the probability kernel
Ω(t) is monotonically decreasing and F (t) = 1−Ω(ct), t > 0, for some constant
c > 0. In view of the previous considerations we have the following:

Theorem 4. Let 
 be a monotonic generalized convolution with the probability
kernel ϕ. Then the following conditions are equivalent:
(1) ϕ(t) is monotonically decreasing on R+ and ϕ(+∞) = 0;
(2) (1 − ϕ(t))1[0,∞)(t) is the distribution function of a measure with lack of

memory property;
(3) ϕ(t−1)1[0,∞)(t) is the cumulative distribution function of some probability

measure

Example 6.1. The classical convolution ∗ is evidently monotonic, its probabil-
ity kernel is e−t, thus it admits the distribution with lack of memory property,
which is well known to be exponential.

Example 6.2. The symmetric convolution �� is not monotonic, since for x, y > 0

supp
(
δx �� δy

)
=

{|x − y|, x + y
}
.

Example 6.3. The α-stable generalized convolution ∗α is monotonic and has
the kernel of generalized characteristic function Ω(t) = e−tα

. This function
satisfies assumptions of Theorem 3 thus ∗α admits the distribution with lack of
memory property with cumulative distribution function 1−FZ(t) = e−tα

1[0,∞)(t).
The convolution ∗α is μ-weak with respect to ⊗�-convolution, where μ has the
cumulative distribution function F (t) = 1 − FZ(t−1) and the density

f(t) = αt−α−1e−t−α

1(0,∞)(t).

Example 6.4. The Kendall convolution �α is monotonic since δa �α δb, a, b >
0, is a measure supported in [a ∨ b,∞) and its probability kernel Ω(t) =
(1− tα)+ satisfies the assumptions of Theorem 3, thus the measure μ with lack
of the memory property is pow(α) since its cumulative distribution function
is F (t) = tα1[0,1](t) + 1[1,∞)(t).
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Example 6.5. The max-convolution is evidently monotonic and its distribu-
tion with the lack of memory property is δ1. Note that the corresponding
Poisson process is rather dull as it is not moving at all: max{1, 1} = 1 =
max{1,max{1, 1}}.

Example 6.6. The Kucharczak convolution for a ∈ (0, 1], r > 0, is monotonic
and its probability kernel is given by Ω(t) = Γ(a,tr)

Γ(a) , t > 0. Thus the corre-
sponding distribution with lack of memory property is the Weibull distribution
with the distribution function F such that F (t) = (1 − Ω(t))1[0,∞)(t) and the
density

F ′(t) =
r

Γ(a)
tar−1e−tr

1(0,∞)(t).

Example 6.7. The Kucharczak-Urbanik generalized convolution is monotonic
and the function

f(x) = nαtα−1
(
1 − tα

)n−1

+

is the density of its distribution with lack of memory property.

Example 6.8. The ♦p,α generalized convolution is not regular but it is mono-
tonic. It admits the existence of a distribution λ with lack of memory property,
defined by

λ(dx) = αpxα−1dx + (1 − p)δ1(dx).

Example 6.9. The Kendall type convolutions are monotonic since their prob-
ability kernels ϕc,α,p are monotonically decreasing. The measure with the lack
of memory property has density

fc,α,p(x) = α
[
1 + c − cpxα(p−1)

]
xα−1 1(0,1)(x).

7. The Kendall Convolution Expressed by the max-Convolution

We can replace the classical convolution in the condition defining weak stability
by any generalized convolution 
, as it was done by Kucharczak and Urbanik
in [30] and by Jasiulis-Go�ldyn and Kula in [19]:

Definition 9. Let 
 be a generalized convolution on P+. A distribution μ is
weakly stable with respect to 
 (
-weakly stable) if

∀ a, b � 0 ∃λ = λa,b ∈ P+ Taμ 
 Tbμ = λ ◦ μ,

Distributions weakly stable with respect to 
 define new generalized con-
volution, called the weak generalized convolution with respect to 
.

Definition 10. Let μ be a weakly stable measure with respect to the generalized
convolution 
. Then a μ-weak generalized convolution ⊗μ,� with respect to 

is defined as follows: for any a, b � 0

δa ⊗μ,� δb = λ if Taμ 
 Tbμ = λ ◦ μ.



  224 Page 22 of 37 B. H. Jasiulis-Go�ldyn et al. Results Math

Equivalently we can say that for every λ1, λ2, λ ∈ P+

λ1 ⊗μ,� λ2 = λ if
(
λ1 ◦ μ

) 
 (
λ2 ◦ μ

)
= λ ◦ μ.

Even though the conditions described in Definitions 9 and 10 suggest a strict
connection between the 
-weakly stable distribution and 
-stable distribution
this is not the case. The measure λ is 
 stable if

∀ a, b � 0 ∃ c > 0, ∃ d ∈ R Taλ 
 Tbλ = Tcλ 
 δd. (11)

If d = d(a, b) ≡ 0 then the measure λ is called 
 strictly stable and the
generalized characteristic function of λ is of the form Φ�

λ(t) = e−Atα

for some
A � 0 and α > 0 (see [49,50,53]). The 
-stable measures which are not 
-
strictly stable distributions are studied in a series of papers [17,18,38,40], but
we still do not have their complete characterization even in the seemingly easier
case of weak generalized convolution.

The following Theorem is a continuation of the Theorem 3 describing
lack of memory property:

Theorem 5. Let 
 be a monotonic generalized convolution with the probability
kernel ϕ. Then the following conditions are equivalent:

(1) 
 admits the existence of a distribution with lack of memory property;
(4) 
 is a weak generalized convolution with respect to the � convolution based

on �-weakly stable measure μ with the distribution function ϕ(t−1)1[0,∞)(t),
i.e. 
 = ⊗μ,�.

Proof. Only the implication 1) → 4) requires explanation: By 3) of Theorem
4 we can consider a random variable X with cumulative distribution function
of the form FX(t) := ϕ(t−1)1[0,∞)(t). Since ϕ : [0,∞) → R is the probability
kernel of 
, then for a, b > 0

Fmax{aX,bX′}(t) = FaX(t)FbX(t) = FX(ta−1)FX(tb−1)

=
∫ ∞

0

ϕ(t−1s)δa(ds) ·
∫ ∞

0

ϕ(t−1s)δb(ds)

=
∫ ∞

0

ϕ(t−1s)(δa 
 δb)(ds) = FθX(t),

where X ′ is an independent copy of X, L(θ) = δa 
 δb and θ is independent of
X. �

Remark 5. By Theorem 4 we know that the generalized convolution 
 has a
kernel Ω that is monotonically decreasing to zero iff 
 = ⊗μ,�, where μ is a
�-weakly stable probability measure with the cumulative distribution function
F (t) := Ω(t−1)1[0,∞)(t) and
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max
{
θ1X1, θ2X2

} d= θZ, (12)

where θ, θ1, θ2 are i.i.d. with cumulative distribution function F , L(X1) 

L(X2) = L(Z) such that θ, θ1, θ2,X1,X2, Z are independent.

Remark 6. Notice that the measure μ with cumulative distribution function
F is weakly stable with respect to �-convolution if

∀x, y, t > 0∃λ ∈ P+ F (xt)F (yt) =
∫ ∞

0

F (st)λ(ds).

We do not have here the complete solution of this integral-functional equation
but we present a rich list of examples connected with some selected generalized
convolutions.

Example 7.1. There is a surprising connection between the classical and max-
convolution. The classical convolution ∗ on P+ has the probability kernel
Ω(t) = e−t1[0,∞)(t), which satisfies assumptions of Theorem 4. Thus the mea-
sure μ with the cumulative distribution function F (t) = e−t−1

1[0,∞)(t) and
the density f(t) = t−2e−t−1

1[0,∞)(t) is �-weakly stable, ∗ = ⊗μ,� and

max
{
θ1X1, θ2X2

} d= θ1

(
X1 + X2

)
, (13)

where θ1, θ2 have distribution μ and X1,X2 are arbitrary non-negative random
variables such that θ1, θ2,X1,X2 are independent.

Remark 7. The equality (13) is also a simple consequence of the lack of mem-
ory property of the exponential distribution if we notice that 1/θi has the
exponential distribution with expectation 1: For any u > 0

P
{
θ1

(
X1 + X2

)
< u

}
= P

{
θ−1
1 > u−1

(
X1 + X2

)}

∗= P
{
θ−1
1 > u−1X1

}
P

{
θ−1
2 > u−1X2

}

= P {max{θ1X1, θ2X2} < u} ,

where ∗= follows, upon conditioning with respect to (X1,X2), by the lack of
memory property of θ−1

1 .

Example 7.3. The stable convolution ∗α has the probability kernel e−tα

, α > 0,
which satisfies assumptions of Theorem 4. Consequently the measure μ with
the cumulative distribution function F (t) = e−t−1

1[0,∞) and density

f(t) = αt−α−1e−t−α

1[0,∞)(t)

is �-weakly stable and ∗α = ⊗μ,�. This leads to an interesting property: if
θ1, θ2 have distributions with the density function f , variables θ1, θ2,X1,X2

are non-negative and independent then
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max
{
θ1X1, θ2X2

} d= θ1 (Xα
1 + Xα

2 )1/α
.

Example 7.4. For the Kendall convolution �α, α > 0, the probability kernel
(1−tα)+, α > 0, satisfies assumptions of Theorem 4 thus �α= ⊗μ,�, where μ is
a measure with the cumulative distribution function F (t) = (1−t−α)1[1,∞)(t),
i.e. μ = πα. Consequently: if θ1, θ2 have distribution πα, variables θ1, θ2,X1,X2

are non-negative and independent then

max
{
θ1X1, θ2X2

} d= θ1 (X1 �α X2) ,

where (X1 �α X2) is any random variable with distribution L(X1) �α L(X2)
independent of θ1.

Example 7.5. Notice that the following, rather trivial, property holds:

∀x, y, t > 0 1[0,1](xt)1[0,1](yt) =
∫ ∞

0

1[0,1](st)δmax{x,y}(ds).

This means that the cumulative distribution function F (t) = 1[0,1](t−1) cor-
responds to the measure δ1, which is weakly stable with respect to the max-
convolution. This seems to be interesting, but it is only another way to describe
the following, trivial property:

max{θ1X1, θ2X2} d= θ1 max{X1,X2}
for X1,X2, θ1, θ2 independent, L(θ1) = L(θ2) = δ1.

Example 7.6. The Kucharczak convolution has the probability kernel Ω(t) =
Γ(a, tr)/Γ(a) satisfying the assumptions of Theorem 4, thus F (t) = Ω(t−1)1[0,∞)(t)
is the cumulative distribution function of a �-weakly stable measure μ with

f(t) := F ′(t) =
r

Γ(a)
t−ar−1e−t−r

1(0,∞)(t).

Again we have: if θ1, θ2 have distributions with the density function f , variables
θ1, θ2,X1,X2 are non-negative and independent then

max
{
θ1X1, θ2X2

} d= θ1 (X1 ◦1 X2) ,

where (X1 ◦1 X2) is any random variable with distribution L(X1) ◦1 L(X2)
independent of θ1.

Example 7.7. The Kucharczak-Urbanik convolution �α,n can be defined by the
probability kernel Ωα,n(t) = (1 − tα)n

+ and its property: for all μ1, μ2 ∈ P+

there exists μ =: μ1 �α,n μ2 such that
∫ ∞

0

Ωα,n(tx)μ1(dx)
∫ ∞

0

Ωα,n(ty)μ2(dy) =
∫ ∞

0

Ωα,n(tx)μ(dx).
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Evidently the function Ωα,n(t) satisfies the assumptions of Theorem 4, thus
the variable θn with the cumulative distribution function Fα,n(t) = (1 −
t−α)n1[1,∞)(t) is weakly stable with respect to the max-convolution �. More-
over, the Kucharczak-Urbanik convolution �α,n is a weak generalized convo-
lution with respect to max-convolution i.e. �α,n= ⊗μn,� and

L(X1) �α,n L(X2) = L(Z) iff max
{
θnX1, θ

′
nX2

} d= θnZ,

where θn, θ′
n are i.i.d. with the distribution μn such that θn, θ′

n,X1,X2, Z are
independent. It is worth noticing also that if Q1, . . . Qn are i.i.d. random vari-
ables with Pareto distribution πα then

θn
d= max

{
Q1, . . . , Qn

}
.

Example 7.9. For the Kendall-type generalized convolution �c,α,pthe probabil-
ity kernel

ϕc,α,p = (1 − (1 + c)tα + ctαp)1[0,1](t)

is the tail of some cumulative distribution function. By Theorem 4 we have
that ϕc,α,p(t)1[1,∞)(t) is the tail of distribution function of a measure with lack
of memory property with respect to �c,α,p convolution and by Theorem 4 each
Kendall type generalized convolution is a μ-weak distribution with respect to
the max-convolution �, where μ ∈ P+ has the cumulative distribution function
F (t) := ϕc,α,p(t−1)1[1,∞)(t).

8. Convex Linear Combination Property

In this section we give a collection of examples of generalized convolutions with
the convex linear combination property. The generalized Kendall convolution
is one of these examples.

Definition 11. The generalized convolution 
 on P+ has the convex linear
combination property with parameter n ∈ N, n � 2, if there exist func-
tions p0, . . . , pn−1 : [0, 1] �→ [0, 1],

∑n−1
k=0 pk(x) ≡ 1 and there exist measures

λ0, . . . , λn−1 ∈ P+ such that

∀x ∈ [0, 1] δx 
 δ1 =
n−1∑

k=0

pk(x)λk.

Example 8.4. It is evident that the Kendall convolution has the convex linear
combination property with the parameter n = 2. In fact we know much more,
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see [20]: it is the only regular generalized convolution with the convex linear
convolution property for n = 2.

Example 8.5. The max-convolution (which is not regular) is a trivial example
of a generalized convolution with the convex linear combination property with
n = 1, since δx�δ1 = δ1 for x ∈ [0, 1].

Example 8.7. The Kucharczak-Urbanik convolution �α,n, α > 0, n ∈ N, is
another example of generalized convolution with the convex linear combination
property for n + 1 since by equation (3)

δx �α,n δ1(ds) := (1 − xα)nδ1(ds) +
n∑

k=1

(
n

k

)
xαk(1 − xα)n−kμk,n(ds),

where μk,n are probability densities given by (4).
Example 8.8. Every non-regular generalized convolutions ♦p,α, p ∈ [0, 1],
α > 0, described by its probability kernel Ω♦p,α

= (1−ptα)1[0,1](t) has the con-
vex linear combination property for n = 2. The ♦p,α-convolution is uniquely
determined for p �= 1

2 by

δx♦p,αδ1(ds) = (1 − pxα) δ1(ds) + pxα α
2p−1

2p−sq

s2α+1 1[1,∞)(s)ds, x ∈ [0, 1],

where q = α(1−2p)
(1−p) . By continuity, for p → 1/2 we have

δx♦1/2,αδ1(ds) =
(
1 − xα

2

)
δ1(ds) + xα

2
α(1+2 ln s)

s2α+1 1[1,∞)(s)ds,

Example 8.9. Notice that for Kendall-type generalized convolutions �c,α,p in
each of the five admissible cases described in [37] we have ϕc,α,p(0) = 1,
ϕc,α,p(1) = ϕc,α,p(+∞) = 0 and

δx �c,α,p δ1 = ϕc,α,p(x) δ1 + xαp λ1 + (c + 1)(xα − xαp)λ2,

for some probability measures λ1, λ2 ∈ P+. This means that it has convex
linear combination property with n = 3.

9. Description by Random Variables

While constructing stochastic processes with independent increments in the
sense of generalized convolution it turns out that we have big trouble if we
study path properties of such processes. This was the reason why the authors
of [7] introduced the Definition 6.2 of representability for weak generalized
convolutions. Roughly speaking the weak generalized convolution 
 is repre-
sentable if there exists a method of unique clear choice of variable X for which
L(X) = μ1 
 μ2. The proper Definition of representability of generalized con-
volution requires more conditions if it is suppose to be used in constructing
stochastic processes by their paths—for details see Definition 6.2 in [7].
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For the convenience, we denote by θ1 
 θ2 any random variable with
distribution L(θ1) 
 L(θ2) if θ1, θ2 are non-negative and independent.

Example 9.0. There are at least three methods of representing the Kingman
convolution ⊗ωs

:

(1) If n = 2(s + 1) ∈ N then we are using the weakly stable random vector
U = (U1, . . . , Un) with uniform distribution on the unit sphere Sn in
R

n. Then for independent random variables θ1, θ2 we choose independent
copies U1,U2 of U such that θ1, θ2,U1,U2 are independent. Next we
define an adding operator on pairs (θi,Ui), i = 1, 2 by

θ1U1 + θ2,U2 = ‖θ1U1 + θ2U2‖2 · θ1U1 + θ2U2

‖θ1U1 + θ2U2‖2
(14)

where ‖ · ‖2 denotes the Euclidean norm in R
n. The two product factors

on the right are independent and

‖θ1U1 + θ2U2‖2
d= θ1 ⊗ωs

θ2,
θ1U1 + θ2U2

‖θ1U1 + θ2U2‖2

d= U1.

We see that the equality (14) is the equality (∗) given in Sect. 5, following
Definition 5, written in the language of random elements, where μ = L(U)
and

θ = θ(θ1,U1, θ2,U2) = ‖θ1U1 + θ2U2‖2,

U = U(θ1,U1, θ2,U2) =
θ1U1 + θ2U2

‖θ1U1 + θ2U2‖2
.

(2) Recently Misiewicz and Volkovich showed in [39] that for arbitrary s >
− 1

2 the random vector W = (W1,W2) with the density proportional to
(1 − x2 − y2)s− 1

2 is weakly stable. Moreover for every choice of indepen-
dent θ1, θ2, random vectors W1,W2 independent copies of W such that
θ1, θ2,W1,W2 are independent we have

θ1W1 + θ2,W2 = ‖θ1W1 + θ2W2‖2 · θ1W1 + θ2W2

‖θ1W1 + θ2W2‖2
. (15)

The two two product factors on the right are independent and

‖θ1W1 + θ2W2‖2
d= θ1 ⊗ωs

θ2,
θ1W1 + θ2W2

‖θ1W1 + θ2W2‖2

d= W1.

The equality (15) is the equality from Definition 6 in Sect. 5, written in
the sense of equality almost everywhere and

θ = θ(θ1,W1, θ2,W2) = ‖θ1W1 + θ2W2‖2,

W = W(θ1,W1, θ2,W2) =
θ1W1 + θ2W2

‖θ1W1 + θ2w2‖2
.
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Notice that W can be identified with the vector (cosφ, sin φ), where φ

is a random variable with the density proportional to (sin2 ϕ)s+ 1
2 on the

interval [0, 2π]. Moreover, the vector W is living on the unit sphere in
R

2, but it does not have uniform distribution there.
(3) For any s > − 1

2 Kingman in [29] gave the following explicit formula for
the random variable θ1 ⊗s θ2:

θ1 ⊗s θ2
d=

√
θ2
1 + θ2

2 + 2θ1θ2 cos φ,

where φ is a random variable with the density proportional to the function
(sin2 ϕ)s+ 1

2 on the interval [0, 2π]. It is known (and easy to check) that
if φ1, φ2 are independent copies of φ then cos(φ1 − φ2)

d= cos φ. This
leads to the following Kingmam’s interpretation: if Q is a vector of the
length θ forming the angle ϕ with the fixed straight line then we will use
the notation Q = (θ, cos ϕ). Consequently, using elementary geometry we
have
(
θ1, cos ϕ1

) ⊕ (
θ2, cos ϕ2

) def
=

(√
θ21 + θ22 + 2θ1θ2 cos(ϕ1 − ϕ2), cos(ϕ1 − ϕ2)

)
,

and, by the previous considerations,
√

θ2
1 + θ2

2 + 2θ1θ2 cos(φ1 − φ2)
d= θ1 ⊗s θ2.

In view of Example 9.0. we see that the random variable θ1 
 θ2 with the
distribution L(θ1) 
L(θ2) can be expressed in many different ways. If we want
to base on this representation the construction of stochastic processes with
independent (with respect to the generalized convolution 
) increments only
the first representation Example 9.0.1 is admissible - for details see [7].

Theorem 6. If there exists a function ψ : R
2 �→ R such that

Ψ(θ1, θ2)(ω) = ψ(θ1(ω), θ2(ω)) a.e.

for all independent θ1, θ2 then there exists α ∈ (0,∞] such that

ψ(x, y) =
(|x|α + |y|α)1/α

, x, y ∈ R
2,

which follows from the Bohnenblust theorem (for details see [7]).

Almost trivially we have the following representations of discussed here
convolutions by random variables:

L(θ1) ∗ L(θ2) = L(θ1 + θ2). (Example 9.1.)

L(θ1) �� L(θ2) = L(
(θ1 + θ2)Q + |θ1 − θ2|(1 − Q)

)
, (Example 9.2.)
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where P{Q = 1} = P{Q = 0} = 1
2 such that Q, θ1, θ2 are independent.

L(θ1) ∗α L(θ2) = L((θα
1 + θα

2 )1/α). (Example 9.3.)

L(θ1)�L(θ2) = L(max{θ1, θ2}). (Example 9.5.)

Theorem 7. Assume that the generalized convolution 
 on P+ has the convex
linear combination property. Then 
 is represented by random variables.

Proof. Assume that L(θ1) = μ1, L(θ2) = μ2 such that θ1, θ2 are independent.
By our assumptions for every x ∈ [0, 1) there exist n ∈ N, p0, . . . , pn−1 : [0, 1] �→
[0, 1],

∑n−1
k=0 pk(x) = 1 for all x ∈ [0, 1], and there exist measures λ0, . . . , λn−1 ∈

P+ such that

∀x ∈ [0, 1] δx 
 δ1 =
n−1∑

k=1

pk(x)λk. (16)

Now we define some auxiliary random variables: M = max{θ1, θ2}, m =
min{θ1, θ2} and 	 = 	(θ1, θ2) := m/M . For the numbers s0(x) = p0(x),
sk(x) =

∑k−1
j=0 pj(x) for k = 1, . . . , n − 1, we define a sequence of intervals:

A0(x) = [0, p0(x)] and

Ak(x) =
(
sk−1(x), sk(x)

]
, k = 1, . . . , n − 1.

Of course
⋃n−1

k=0 Ak(x) = [0, 1] for all x ∈ [0, 1]. Now we choose random
variables Q0, . . . , Qn−1 with distributions λ0, . . . , λn−1 respectively, a ran-
dom variable U with uniform distribution on the interval [0, 1] such that
θ1, θ2, θ3, U,Q0, . . . , Qn−1 are independent. Now we are able to define the ran-
dom variables representing the convolution λ1 
 λ2:

x 
 1 d=
n−1∑

k=0

1Ak(x)(U)Qk,

and

λ1 
 λ2 = L
(

M

n−1∑

k=0

1Ak(�)(U)Qk

)

.

�

Example 9.4. For representability of the Kendall convolution take non-negative
independent random variables θ1, θ2 and we define, as in the proof of Theorem
5, M = max{θ1, θ2}, m = min{θ1, θ2}, 	 = m/M . Let U has the uniform
distribution on [0, 1], Π2α has the Pareto distribution π2α and U , Π2α and
θ1, θ2 are independent. Then

θ1 �α θ2
d= M

(
1(�α,1](U) + Π2α1[0,�α](U)

)
.
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Another representation of θ1 �α θ2, found in [26] or directly obtained from
Theorem 1. Since P{ θi

Zi
< t} = Gi(t), we have the following:

θ1 �α θ2
d= max

{
max{θ1, θ2},min

{
θ1

Z1
,

θ2

Z2

}}
,

where Z1, Z2 are i.i.d. with pow(α) distribution such that θ1, θ2, Z1, Z2 are
independent.

Remark 8. The construction proposed in Theorem 6 can be trivially adapted
to Examples 9.7, 9.8 and 9.9, thus we have that the Kucharczak-Urbanik con-
volutions, ♦p,α-convolutions and Kendall type convolutions can be represented
by random variables.

Example 9.7. For the Kucharczak-Urbanik convolution representation by ran-
dom variables can be done in a more interesting way:

We introduce first an useful notation: for any 1 � k � n define a function
σk,n : R

n → {1, . . . , n} by

σk,n(x1, . . . , xn) = xj ⇔ #{i ∈ {1, . . . , n} : xi � xj} = k,

for any j, k ∈ {1, . . . , n}. If X1, . . . , Xn are i.i.d. random variables the random
variable Xk:n := σk,n(X1, . . . , Xn) is called the k’th order statistics (based on
n i.i.d. observations), k = 1, . . . , n. In particular, X1:n = min{X1, . . . , Xn} and
Xn:n = max{X1, . . . , Xn:n}. For basic information on order statistics see e.g.
[12,55].

We need also to notice that if Q is the Pareto random variable with
distribution πα, then Q−1 has the power distribution pow(α) with the density
αxα−11[0,1](x). Moreover, if Vi = Q−1

i , i = 1, . . . , n, are i.i.d. variables with
the power distribution pow(α) then

Qk:n = V −1
n−k+1:n k = 1, . . . , n.

Theorem 8. Let θ1 and θ2 be independent non-negative random variables with
distributions μ1 and μ2. Then μ1 �α,n μ2 is the distribution of the random
variable

M(θ1, θ2)
n∑

k=0

Qk:n+k 1(
Wk:n, Wk+1:n

](	(θ1, θ2)
)
,

where Q1, . . . , Q2n are i.i.d. random variables with the Pareto distribution πα,
W1, . . . ,Wn are i.i.d. random variables with the distribution pow(α) such that
Q1, . . . , Q2n,W1, . . . ,Wn are independent and Q0:n := 1,Wn+1:n = ∞.
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Proof. Note that the basic components of the Kucharczak-Urbanik convolu-
tion, see (3), are probability measures with the densities fk,n, n ∈ N, k =
1, . . . , n, defined in (4). The key observation here is that fk,n is the density of
Qk:n+k where Q1, . . . , Q2n is an i.i.d. sample from the same Pareto πα distri-
bution. Now by (3) in Sect. 3 we have:

x �α,n 1 d=
n∑

k=0

Qk:n+k1{Bn(xα)=k},

where Bn(xα) is the Bernoulli random variable (counting successes in n trials
with the success probability p = xα) such that Bn(xα) and (Q1, . . . , Q2n) are
independent.

It remains to show that for all k = 0, 1, . . . , n we have

P
{
Bn(xα) = k

}
= E1(Wk:n,Wk+1:n](x) = P

{
Wk:n < x � Wk+1:n

}
,

where W1, . . . ,Wn are i.i.d. random variables with the distribution pow(α). To
see this we recall (see e.g. [12]) that the bivariate density function fk,k+1:n of
(Xk:n,Xk+1:n) for i.i.d. random variables X1, . . . , Xn with the density f and
cumulative distribution function F has the form

fk,k+1:n(x, y) =
n!

(k − 1)!(n − k − 1)!
F k−1(x)Fn−k−1(y)f(x)f(y)1{x<y}.

Therefore, for any r

P
{
Xk:n < r � Xk+1:n

}

=
n!

(k − 1)!(n − k − 1)!

∫ r

−∞
F k−1(x)f(x) dx

∫ ∞

r

(1 − F (y))n−k−1f(y) dy

=
(

n

k

)
F k(r)(1 − F (r))n−k = P

{
Bn(F (r)) = k

}
.

The last formula applied to Wk:n, Wk+1:n yields P{Wk:n < r � Wk+1} =
P

{
Bn(xα) = k

}
. Now, assuming that Q1, . . . , Q2n and W1, . . . ,Wn are inde-

pendent, we have

x �α,n 1 d=
n∑

k=0

Yk:n+k1(
Wk:n,Wk+1:n

](x). (17)

In order to get the final statement it is enough to choose Q1, . . . , Q2n and
W1, . . . ,Wn independent of θ1, θ2 and notice that

θ1 �α,n θ2 = M(θ1, θ2)
(
δ�(θ1,θ2) �α,n δ1

)
.

�
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Remark 9. Notice that for the generalized convolution 
 on P+ with the convex
linear combination property we have

1
θ1 
 θ2

d=
1

M(θ1, θ2)
∑n−1

k=0 1Ak(�(θ1,θ2))(U)Xk

= m(θ−1
1 , θ−1

2 )
n−1∑

k=0

1Ak(�(θ1,θ2))(U)X−1
k ,

if θ1, θ2,X0, . . . Xn−1 are independent, L(Xk) = λk, k = 0, . . . , n − 1 as in the
representation (16). We used here equality 	(θ1, θ2) = 	(θ−1

1 , θ−1
2 ).

Remark 10. Applying this techniques to the Kucharczak-Urbanik convolution
�α,n and using the result of Theorem 1 we obtain

1
θ1 �α,n θ2

d= m(θ1, θ2)
n∑

k=0

1(
Wk:n, Wk+1:n

](	(θ1, θ2)
)
V −1

n+1:n+k,

where V1, . . . , Vn,W1, . . . ,Wn are i.i.d. random variables with the distribution
pow(α) such that V0:n := 1, Wn+1:n = ∞.
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Whittaker convolution, (2018) arXiv: 1805.03051v1

[46] Titchmarsh, E.: Introduction To The Theory Of Fourier Integrals, 2nd Edn.,
Oxford (1948)

[47] Toulemonde, G., Ribereau, P., Naveau, P.: Applications of extreme value theory
to environmental data analysis. Extreme Events Observ. Model. Econ. 9–22
(2016)

[48] Urbanik, K.: Generalized convolutions. Stud. Math. 23(3), 217–245 (1964)

[49] Urbanik, K.: Generalized convolutions II. Stud. Math. 45(1), 57–70 (1973)

[50] Urbanik, K.: Remarks on B-stable probability distributions. Bull. Acad. Polon.
Sci. Sér. Sci. Math. Astronom. Phys. 24(9), 783–787 (1976)

[51] Urbanik, K.: Generalized convolutions. III. Stud. Math. 80(2), 167–189 (1984)

[52] Urbanik, K.: Generalized convolutions. IV. Stud. Math. 83(1), 57–95 (1986)

http://arxiv.org/abs/1802.06657v2
http://arxiv.org/abs/1805.03051v1


  224 Page 36 of 37 B. H. Jasiulis-Go�ldyn et al. Results Math

[53] Urbanik, K.: Analytical Methods in Probability Theory, in Transactions of the
Tenth Prague Conference on Information Theory, Statistical Decision Functions,
Random Processes held at 1986, Academia Publishing House of the Czechoslovak
Acad. Sci., pp. 151–163 (1988)

[54] Urbanik, K.: Anti-irreducible probability measures. Probab. Math. Stat. 14(1),
89–113 (1993)

[55] Weso�lowski, J., Ahsanullah, M.: Switching order statistics through random
power contractions. Aust. N. Z. J. Stat. 46(2), 297–303 (2004)

[56] Williamson, R.E.: Multiply monotone functions and their Laplace transforms.
Duke Math. J. 23, 189–207 (1956)

Barbara H. Jasiulis-Go�ldyn
Institute of Mathematics
University of Wroc�law
pl. Grunwaldzki 2
50-384 Wroc�law
Poland

e-mail: barbara.jasiulis@math.uni.wroc.pl;
basiaja@liverpool.ac.uk

and

Institute for Financial and Actuarial Mathematics
Department of Mathematical Sciences
University of Liverpool
L69 3 BX
Liverpool
UK

Jolanta K. Misiewicz and Jacek Weso�lowski
Faculty of Mathematics and Information Science
Warsaw University of Technology
ul. Koszykowa 75
00-662 Warsaw
Poland

e-mail: Jolanta.Misiewicz@pw.edu.pl;
Jacek.Wesolowski@pw.edu.pl

Edward Omey
Faculty of Economics and Business-Campus Brussels
KU Leuven
Warmoesberg 26
1000 Brussels
Belgium

e-mail: edward.omey@kuleuven.be

Received: February 1, 2023.



How Exceptional is the Extremal Kendall Page 37 of 37   224 

Accepted: July 30, 2023.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.


	How Exceptional is the Extremal Kendall and Kendall-Type Convolution
	Abstract
	1. Motivations
	1.1. Notation

	2. A Primer on Generalized Convolutions
	3. Basic Examples of Generalized Convolutions
	4. The Kendall Convolution by the Corresponding Williamson Transform
	4.1. Generalized Convolutions in Harmonic Analysis

	5. The Kendall Convolution as a Weak Generalized Convolution
	6. Lack of Memory Property 
	7. The Kendall Convolution Expressed by the max-Convolution
	8. Convex Linear Combination Property
	9. Description by Random Variables
	Acknowledgements
	References


