
 
1 INTRODUCTION 

Remote sensing is transforming what we map, measure and analyze in river science and fluvial 
geomorphology (Marcus and Fonstad, 2010).  A number of tools have been developed to meas-
ure channel width and centerlines from satellite imagery e.g. RivWidth/RivWidthCloud 
(Pavelsky and Smith, 2008, Yang et al., 2019) and RivaMAP (Isikdogan et al., 2017) then quan-
tify multi-temporal planform change e.g. SCREAM (Rowland et al., 2016), RivMAP (Schwenk 
et al., 2017) and PyRIS (Monegaglia et al., 2018).  Often these tools are applied to delineate and 
characterize the wetted river channel.  From a fluvial geomorphology perspective, however, the 
geomorphologically active channel, i.e. the zone where the river can vertically and laterally ad-
just (Gurnell et al., 2016), is of potentially greater significance than the stage- and discharge-
dependent wetted channel.  Google Earth Engine (GEE) could enable the spatial and temporal 
upscaling of such tools (Gorelick et al., 2017, Fryirs et al., 2019).    

In settings such as the Philippines, where sediment delivery rates are globally high (Syvitski 
et al., 2005) and rates of floodplain development adjacent to rivers are intense, risks arising 
from geomorphologically active rivers need to be assessed and incorporated into flood risk 
management.  For example, as channels migrate, they erode their floodplain, potentially result-
ing in property losses and the failure of critical infrastructure (e.g. bridges).  Compared with 
temperate regions, less is known about the behavior of tropical rivers.  Previous analyses of 
river planform change in the Philippines found meanders migrating at rates of up to 30 m.a-1 
(Dingle et al., 2019).  These rapid rates imply that in large catchments (> 103 km2), meander 
migration rates may be up to an order of magnitude greater than in temperate region catchments 
of equivalent size (Dingle et al., 2019).  Multi-temporal, catchment-scale applications are 
needed to further test this result and investigate the fundamental controls on tropical river mor-
phodynamics and their evolutionary trajectories.  

In this paper, we describe a semi-automated GEE workflow to extract the active channel from 
publicly available satellite imagery.  The active channel is defined to include both the wetted 
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channel and unvegetated, alluvial deposits (so does not include vegetated islands).  The defini-
tion is not based on, or sensitive to, river stage or discharge (Manners et al., 2014).  We resolve 
the annual active channel for two tropical rivers in north Luzon, the Philippines, between 1987 
and 2019 to: (i) detect large-scale planimetric change in the Bislak River; and, (ii) quantify the 
reach averaged migration rate for the Cagayan River.  The findings quantify patterns of dyna-
mism in tropical river systems and demonstrate the utility of GEE in fluvial geomorphology ap-
plications. 

2 METHODOLOGY 

2.1 Study Sites 

Two tropical river systems on Luzon Island (Philippines) were selected for analysis (Figure 
1).  Both are prone to extreme meteorological events (typhoons, tropical cyclones) that can gen-
erate geomorphically effective flows from highly elevated water and sediment discharges.  

The Bislak River is the main trunk channel of the Bislak catchment (~ 600 km2), sourced in 
the Cordillera Central Mountains.  It has a Type I climate, having distinct dry and wet seasons 
(Tolentino et al., 2016).  The active channel of the Bislak River is narrow (< 200 m) and later-
ally confined in the upper catchment, whereas the active channel widens (~500 m) and the plan-
form becomes more braided/wandering towards the downstream outlet.   

The Cagayan River is the main trunk channel of the Cagayan catchment (~ 27,000 km2), the 
largest catchment in the Philippines.  Notable tributaries include the Chico and Pinacanauan de 
Ilagan Rivers.  It has a Type III climate, having less pronounced seasonality than the Bislak 
River  (Tolentino et al., 2016).  The active channel of the Cagayan River is wider (> 1000 m 
towards the downstream outlet), exhibiting alternating single and multithreaded reaches. 

Figure 1. Overview map of the Bislak and Cagayan catchments on Luzon Island (Philippines).  The re-
gions of interest (ROI) for the main trunk channels are shown on the right (highlighted red on the map) 
and are used in the Google Earth Engine workflow (Section 2.3). 



2.2 Google Earth Engine (GEE) overview 

Google Earth Engine (GEE) is a cloud-based computing platform for processing very large geo-
spatial datasets (Gorelick et al., 2017).  Tens of petabytes of publicly available remotely sensed 
imagery (e.g. Landsat and Sentinel collections) and other datasets (e.g. Shuttle Radar Topogra-
phy Mission) are freely accessible through the GEE data catalog.  To date, GEE has been suc-
cessfully applied to map and quantify long-term changes in surface waters at the global-scale 
(Donchyts et al., 2016, Pekel et al., 2016).  Applications of GEE in the fluvial geomorphology 
context are more limited, although river avulsion dynamics (Edmonds et al., 2016) and wetted 
river widths (Yang et al., 2019) have been assessed.          

2.3 Google Earth Engine (GEE) workflow 

For this application, a semi-automated GEE workflow was developed to extract the active chan-
nel from Landsat imagery.  The workflow uses all available Landsat surface reflectance (SR) 
imagery (including: Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced TM+ and Landsat 
8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS); nominal resolution 30 
m) for the time-period 1987 – 2019.  Region of interest (ROI) polygons were first drawn for 
each main trunk channel where the width of the active channel was consistently > 200 m (Fig-
ure 1).  Key stages of the workflow are shown in Figure 2 and described below: 

 
a) Time and ROI filter – annual image collections were built using all available Landsat im-

agery (Bislak River n = 1427, Cagayan River n = 1380).  The image collections were spa-
tially filtered by the bounds of the ROI (Figure 1).  The number of images contained in 
annual image collections varied because of the operational histories of the Landsat satel-
lites (Bislak River: min = 13, max = 70, mean = 44.6; Cagayan River: min = 9, max = 72, 
mean = 43.1).  No imagery was available for 2012. 

b) Cloud masking procedure – for each image, the CFmask algorithm was applied to mask 
cloud and cloud shadow pixels (Foga et al., 2017).   

c) Temporal compositing – a median reducer was applied to aggregate the cloud-masked 
images in the annual image collection, generating an individual annual image (an annual 
temporal composite).  Sensitivity analysis was undertaken to test the effect of different 
reducer percentiles.  For instance, the 25th percentile represented ‘greener’ conditions than 
the 75th percentile when visualized in RGB space.  

d) Water classification – the spectral-based classification of Zou et al. (2018) was used to 
classify water pixels in the annual temporal composite image, producing a binary water 
mask.  The method has reported accuracy of 97% across the contiguous United States and 
visual analysis suggested that the approach performed well here (e.g. Figure 2d).  The wa-
ter classification uses multiple spectral indices including the modified normalized differ-
ence water index, MNDWI, normalized difference vegetation index, NDVI and enhanced 
vegetation index, EVI.   

e) Active channel classification – the same multiple spectral indices as above were used to 
classify the active channel pixels, producing a binary active channel mask.  The active 
channel boundary was enforced by excluding vegetated pixels.  The approach is similar to 
Monegaglia et al. (2018), although no additional benefit was observed by including the 
SWIR 2 band (used for emerging sediment bar detection).  Active channel pixels were 
classified using relational operators where MNDWI ≥ -0.4 and NDVI ≤ 0.2.  An NDVI 
threshold of 0.2 is established in the literature for dense riparian vegetation (Bertoldi et 
al., 2011).       

f) Binarization, data export and noise removal – the binary water and active channel masks 
were combined to a single image (i.e. union).  The final binary image was exported to 
Google Drive as a GeoTIFF file.  Noise removal was undertaken using the image process-
ing toolbox in MATLAB, with patches of disconnected pixels representing small objects 
(< 0.09 km2 or 100 pixels for the Bislak River; < 0.9 km2 or 1000 pixels for the Cagayan 
River) removed from the final binary image.  No further cleaning was undertaken.   

 



 
Figure 2. Google Earth Engine (GEE) workflow for active channel classification.  Example from the Ca-
gayan River (17°21'26.3"N 121°46'41.1"E).  This includes: (a) time and ROI filter; (b) cloud masking 
procedure following Foga et al. (2017); (c) temporal composition of cloud masked images; (d) water clas-
sification following Zou et al. (2018); (e) active channel classification; and, (f) binarization and data ex-
port.  The water mask largely reinforces the active channel mask.  No noise removal has been applied to 
the above images. 



2.4 Active channel change 

Analysis of active channel change is limited to river reaches where the binarized active channel 
masks was continuous (i.e. the mask did not fragment at the 30 m pixel resolution).  The reaches 
were close to the downstream outlet, with lengths of 15 km for the Bislak River and 135 km for 
the Cagayan River.  Active channel change is investigated through: (i) quantification of active 
channel occurrence frequency and (ii) centerline analysis using the RivMAP toolbox. 

3 RESULTS 

3.1 Active channel occurrence frequency 

First, we focus on the 15 km reach of the Bislak River to detect large-scale planimetric change.  
The position of the active channel has shifted through time (e.g. Figure 3).  Active river channel 
occurrence, the frequency with which a pixel is classified as active channel between 1987 and 
2019, is mapped to visualize channel dynamics (Figure 4).  The map enables interpretation of 
geomorphic processes, with the active channel shown to wander in the downstream section and 
infrequent activation/disconnection of a secondary chute channel observed around the middle 
section.  Towards the downstream section of the study reach, the active channel occurrence is 
high (> 80%).  Towards the upstream section, however, the active channel occurrence is lower 
(~50%).  Detailed visual inspection of annual binary masks showed fragmentation towards the 
upstream end of the reach (12/32 had discontinuous binary masks).  This is likely a function of 
the narrow width (< 200 m) of the active channel relative to pixel size (30 m) and the complex 
active channel shape.  The maximum classified area of the active channel is 13.5 km2, with 
55.3% of the area having an occurrence frequency > 50%, and 21.3% of the area having an oc-
currence frequency > 90%.  Analysis has been repeated for the Cagayan River study reach, 
where the maximum classified area of the active channel is considerably larger (191 km2), with 
61.2% of the area having an occurrence frequency > 50%, and 40.0% of the area having an oc-
currence frequency > 90%.  In detecting large-scale planimetric change for the Cagayan River, 
meander expansion (erosion and accretion) and cutoffs were shown.  Relatively narrow inputs 
(< 200 m) at tributary junctions resulted in some temporal inconsistency in the classification 
procedure.    

3.2 Active channel centerline analysis – RivMAP application 

Here, we focus on the 135 km reach of the Cagayan River and apply the RivMAP toolbox for 
centerline analysis (Schwenk et al., 2017).  25 of the 32 annual active channel masks were in-
cluded for analysis (1988 – 2019), with fragmented binary masks omitted (caused by persistent 
cloud cover, especially for years with less available Landsat imagery).   

Annually resolved active channel centerlines from application of RivMAP show the complex 
and active morphodynamics for the Cagayan River (Figure 5).  Centerline analysis adds quanti-
tative detail to the geomorphic interpretations from Section 3.1.  Here, migration rate is calcu-
lated from the migrated area divided by the centerline length.  For the entire study reach over 
the 31 year time-period, the average active channel migration rate was 17.5 m.a-1.  The mini-
mum rate was 7.7 m.a-1 (1988) and the maximum rate was 37.0 m.a-1 (2005).  Locally, however, 
the migration rate will vary.  The middle section of the study reach (45 – 85 km downstream) 
appears most active, with > 1 km lateral shifts in the centerline position (especially at meander 
cutoffs) between 1988 and 2019.  It should be noted that the average migration rate is of the 
same order of magnitude as the Landsat pixel size (30 m).  The migration rates calculated for 
the study reach are comparable to the migration rates reported by Dingle et al. (2019) for an ~85 
km reach of the Cagayan and Pinacanauan de Ilagan Rivers (up to 30 m.a-1).  The previous 
analysis used manually digitized channel bank positions from individual satellite images in 
1973, 1990, 2001, 2008 and 2017.  The current analysis uses semi-automatically extracted ac-
tive channel masks resolved at annual intervals.  The next steps will be to validate the classifica-
tion datasets, before undertaking uncertainty analysis on the planimetric change (Donovan et al., 
2019).  Then, detailed investigation of the spatiotemporal distribution of migration rates, rather 



than reach averaged rates, can be calculated for an improved process-understanding of dyna-
misms and river behavior. 

Figure 4. Active channel for the Bislak River (near Bacarra, 18°15'15.5"N 120°36'46.5"E) in 1989 and 
2019 (blue = active channel; black = noise removed, orange star = Bacarra). 

Figure 3. Active channel occurrence frequency for the Bislak River between 1987 and 2019 
(18°16'43.9"N 120°40'17.4"E).  Darker blues represent more frequent active channel occurrence, flow di-
rection is right to left (orange star = Bacarra).  The binary figure (top left) represents the combined active 
channel area for the 32 year period (i.e. the maximum active channel extent).     



 



4 CONCLUSIONS 

Active channel change has been investigated over four decades for two tropical river systems in 
the Philippines using Google Earth Engine and image analysis techniques.  We demonstrate: 
 

1. The ability to generate and extract annual active channel masks, using established multi-
ple spectral indices.  We demonstrate a semi-automated workflow that takes advantage of 
cloud masking and temporal compositing within the GEE environment to resolve annual 
active channels from ~30 years of Landsat satellite imagery. 

2. The application of image analysis techniques to map active channel occurrence fre-
quency, aiding geomorphic interpretations e.g. infrequent activation/disconnection of a 
secondary chute channel on the Bislak River.  

3. Application of the RivMAP toolbox (Schwenk et al., 2017) for centerline change analy-
sis.  For the Cagayan River, the reach averaged migration rate ranged from 7.7 m.a-1 in 
1988 to 37.0 m.a-1 in 2005 (average = 17.7 m.a-1).  The SCREAM package of Rowland et 
al. (2016) would offer a complementary analysis application in multithreaded river sys-
tems.  SCREAM uses a bank-based reference frame for analyzing complex channel sys-
tems.    

4. Application challenges, including: (i) discontinuous active channel masks; (ii) the need to 
validate classified data; and, (iii) the need for uncertainty analysis when assessing plani-
metric and morphodynamic change.  Preliminary results show that the reach averaged 
migration rates are of the same order of magnitude as pixel size.  

 

Figure 5. Centerlines for the Cagayan River.  Zoom views show the complex migration patterns and cutoffs 
at (i) 17°47'04.4"N 121°41'49.3"E and (ii) 17°51'45.0"N 121°39'38.5"E.  Total centerline length = ~225 km. 



The ability of these tools to provide multi-temporal data over large river reaches will enable 
theories of geomorphic change to be tested, and the re-assessment of some classic concepts in 
fluvial geomorphology such as river channel pattern classification. 
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