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Abstract. In many imaging applications where segmented features (e.g. blood

vessels) are further used for other numerical simulations (e.g. finite element

analysis), the obtained surfaces do not have fine resolutions suitable for the
task. Increasing the resolution of such surfaces becomes crucial. This paper

proposes a new variational model for solving this problem, based on an Euler-

Elastica-based regulariser. Further, we propose and implement two numerical
algorithms for solving the model, a projected gradient descent method and

the alternating direction method of multipliers. Numerical experiments using

real-life examples (including two from outputs of another variational model)
have been illustrated for effectiveness. The advantages of the new model are

shown through quantitative comparisons by the standard deviation of Gaussian
curvatures and mean curvatures from the viewpoint of discrete geometry.

1. Introduction. In this paper, we propose a new variational model for getting a
faster and smoother three-dimensional (3D) surface reconstruction in high resolution
from the collection of a few low-resolution images (input of cross-sections or slices),
where the gaps of given slices are often large and uneven. There are various practical
or operational reasons why only low-resolution data (often with poor quality by
way of artefacts or noise) are available. For example, imaging equipment may have
limitations, such as short scanning times or low radiation doses to minimise harm or
damage to patients. A more subtle reason is that the region of interest (RoI) may
be very small in a large and high-resolution (HR) image. Hence, it is necessary to
develop appropriate and suitable mathematical models to reconstruct HR surfaces
as far as the RoI is concerned. Once a HR datum (surface) is achieved, further
measures or even new simulations based on the new geometry can be conducted,
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such as finite element analysis of blood flows in clinical imaging. Though the surface
reconstruction problem arises as a problem in discrete geometry (see Figure 1), we
shall develop a variational model for solving it.

Figure 1 . Three-dimensional reconstruction of Branching Cylin-
ders by the new proposed Euler-Elastica-based model from low-
resolution inputs N = 128 with 24 deliberately uneven slices.

The problem under study might be classified as an inpainting problem in which
gaps are filled in some manner [24]. Mathematical methods using variational mod-
els based on partial-differential-equation-based (PDE-based) have been widely ex-
ploited in image processing since the 1990s, as these approaches can accurately
simulate our real, visible and physical world as evident from diverse application
areas such as medicine, economics, and computer vision [5, 13]. Beyond imaging
processing, the topic of 3D surface inpainting is much less studied in the variational
framework.

In discrete geometry, many works exist for surface reconstruction. For retrieving
the 3D shape, mathematical methods can be roughly divided into two categories
depending on the surface representations: (i) the explicit reconstruction (e.g. De-
launay triangulation [12], and Voronoi diagram [3, 2, 1]), and (ii) the implicit recon-
struction (e.g. radial basis functions [11], Poisson reconstruction [17, 18], and level
set method [8, 30, 25]). In a nutshell, surfaces by category (i) are typically piecewise
linear and these methods are relatively easy to implement. Although this kind of
representation is suitable for graphics purposes, it is tough to cope with the non-
uniform, potentially noisy, or incomplete data. For instance, when the number of
vertices and faces in the surface is not sufficiently large, it can also have difficulties
in tracking topological changes and large deformations. Category (ii) methods can
produce reconstructions through forming a physical model based on differentiable
distance functions over an implicit surface and are capable of coping better with
the cases of non-uniform, potentially noisy, or incomplete data.

This paper proposes a method in category (ii) inspired by the lucid reconstructed
framework delineated by Bretin, Dayrens, and Masnou [8] by applying geometric
variational energies with the phase-field approximation, which are more pleasant
to work with numerically than category (i) methods. Two regularisation energies
(perimeter-based energy and Willmore-based energy) were applied in the framework
by [8]. Connecting with the phase-field approximation, the perimeter-based formu-
lation (Van der Waals-Cahn-Hilliard energy) and the Willmore-based formulation
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are reformulated where the linear obstacle slack restrictions are constituted by the
low-resolution input slices as the shape constraint. Nevertheless, there are some
defects in these two proposed formulations as Figures 2-3 show. Figure 2 shows
the final reconstruction result using the perimeter-based formulation, and it does
not fully satisfy our visual criteria globally. Although it successfully preserves edge
features, particularly on the flat tops of the input slices, due to its energy being con-
nected with the total variation, the overall result still contains defects with jagged
edges and other undesirable artefacts. On the other hand, Figure 3 displays the
result using the Willmore-based formulation, which has fewer defects compared to
the perimeter-based formulation, resulting in smoother and more natural surfaces.
However, it tends to plump up the top plane due to the close relationship of Will-
more energy with mean curvature, and there may be bumps if the number of input
slices is not sufficiently large in the given lower resolution. As such, the challenge
becomes how to obtain a suitable variational model beyond the energy using mean
curvature regularisation that can better address these issues.

Figure 2 . Reconstruction results with defects (top right: flattened
top with jagged edges and sunken shape; bottom: serious bumps)
by the perimeter-based formulation of Branching Cylinders from
low-resolution inputs N = 128 with 24 uneven collected input slices
(the left-hand side of Figure 1).

Therefore, to improve on [8], we must employ some geometric regulariser that
outperforms the mean curvature. Motivated by other image processing works [9, 21]
where the Euler-Elastica-based formulations are better than the formulation related
to mean curvature, our proposed work overcomes above deficiencies by minimising
the Euler-Elastica-based energy. Apart from the question of how to solve the new
formulation, an interesting problem arises in comparing different models: how to
deal with the different or inconsistent numbers of triangular meshes for final sur-
faces for a fair and objective comparison of results by different formulations? We
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address this by computing the standard deviation of Gaussian curvatures (GC) and
mean curvatures (MC) to indicate the corresponding level of smoothness from the
viewpoint of discrete geometry, which is stimulated by [19, 27].

Figure 3 . Reconstruction results with defects (top right: bulging
top with dented centre and jagged edges slightly; bottom: slight
bumps) by the Willmore-based formulation of Branching Cylinders
from low-resolution inputs N = 128 with 24 uneven collected input
slices (the left-hand side of Figure 1).

The rest of this paper is organised as follows: Section 2 introduces some essen-
tial mathematical preliminaries, including definitions and notations for the recon-
structed framework of a geometric variational method, linear obstacle slack restric-
tions, and phase-field approximation. Section 3 proposes the new Euler-Elastica-
based formulation first and derives the Euler–Lagrange equation, and then presents
two numerical algorithms for solving the resulting optimisation problem where we
extend the alternating direction method of multipliers (ADMM) to solve our model,
which leads to faster numerical approximations. Finally, simulated and realistic ex-
amples are depicted and compared in Section 4 by different models (inpainting
models and three formulations), where quantitative comparisons are also given to
show the effectiveness of the new Euler-Elastica-based formulation.

2. Mathematical preliminaries. The goal is to obtain a smooth D-dimensional
reconstruction E∗ ⊂ RD from the initial set E0, as Figure 4 exemplified, where Ẽ is
the desired target set and E denotes as the possible reconstruction. Here the initial
set E0 consists of given parallel cross-sections Πi ⊂ RD with the number of slices
s ∈ N∗ and i = 1, . . . , s. We provide visual illustrations using the two-dimensional
scenario (D = 2 for curve smoothing) to clarify some of the notations in this section
(significant notations are summarised in Appendix A). The primary implementa-
tions for the three-dimensional scenario (D = 3 for surface reconstruction) are
presented in Section 4. In this section, we first introduce a shape-preserving ap-
proach by interior and exterior restrictions to maintain the shape of the input set
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during reconstruction. Later, we address the challenge of formulating and comput-
ing variational energies by employing a phase-field method. This approach allows
us to represent the variational energies using a smooth and continuous function,
which can be easily discretised and optimised numerically.

(a) The target set Ẽ (b) The initial set E0 (c) Possible result E

Figure 4 . Exemplification of the target set Ẽ (left), the initial
set E0 (centre) and the possible construction E (right) in the two-
dimensional scenario.

2.1. Fidelity by interior and exterior restrictions. To address the challenge
of incorporating restrictions based on the initial set E0 using a collection of s fi-
nite hyperplanes Πi for i = 1, . . . , s, we adopt a fidelity-driven approach to the
reconstruction process. It is worth noting that for any two distinct hyperplanes
i ̸= j, we assume that Πi ∩ Πj = ∅, and hyperplanes can be expressed as Πi ={
(ξ, 0) : ξ ∈ RD−1, i = 1, . . . , s

}
if an appropriate orthonormal system of coordi-

nates is chosen in RD (this is possible due to slices being parallel and sitting in
a low dimension). To preserve the shape of the input data, we use a term in this
approach similar to the fidelity term used in other variational models. However,
due to the discrete nature of the input data in E0, we do not strictly use the least-
squares fidelity term, such as

∫
Ω
|E∗−E0|2 dΩ, in the following setting. Specifically,

we first introduce interior and exterior restrictions ωin := ωin
E0

and ωex := ωex
E0

re-
spectively, which are originated from the set of hyperplanes related to the initial set
E0

ωin := ωin
E0

=
s⋃

i=1

ωin
i and ωex := ωex

E0
=

s⋃
i=1

ωex
i

where ωin
i , ωex

i are preset based on Πi. Here,

• ωin, ωex ⊂ {Πi} as Figure 5(a) illustrated, i.e. ωin
i , ωex

i ⊂ Πi,
• ωin

i ⊂ E0 ∩Πi ⊂ Πi \ ωex
i satisfies for every initial object E0, and

• ωin
i ∪ ωex

i ⊃ Πi does not require as it enables to handle noisy inputs.

Then, the problem for reconstruction from slices can be formulated as a variational
model, which is to find the (local) minimum E∗ subject to

E∗ = argmin
ωin⊂E

E∩ωex=∅

E(E) (1)

where ωin, ωex are interior and exterior restrictions from the initial set E0, and E can
be the perimeter-based P, the Willmore-based W , and the Euler-Elastica-based E
energy, as shown shortly in Section 2.2 to impose smoothness on the surface ∂E.
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(a) (b)

Figure 5 . Illustrations of (a) interior restrictions ωin (cyan) and
exterior restrictions ωex (pink), and of (b) fattened interior restric-
tions Ωin (cyan) and exterior restrictions Ωex (pink) from the initial
set E0.

Next, we suggest two fattened restrictions depicted in Figure 5(b) to enhance
more flexibility during the reconstruction process. As we only have a limited number
of slices, these restrictions are designed to enlarge the feasible region and improve
the reconstruction. Define the fattened interior and exterior restrictions as follows:

Ωin := Ωin
E0

=

s⋃
i=1

Ωin
i,h and Ωex := Ωex

E0
=

s⋃
i=1

Ωex
i,h

where the thickness parameter h = εα > 0 is determined by given ε > 0 and
α ∈ [0, 1]. Here, h controls the thickness of the restrictions, and the value of α
determines the rate at which the thickness increases with ε. To define Ωin

i,h and

Ωex
i,h, we use the signed distance function (or called oriented distance function) di

to an arbitrary subset πi of hyperplanes Πi. The restrictions are then defined as:

Ωin
i,h =

{
(ξ, ζ) ∈ (RD−1 × R) ∩ E0 : ξ ∈ ωin

i , |ζ| < h|di(ξ, ωin
i )|

}
,

Ωex
i,h =

{
(ξ, ζ) ∈ (RD−1 × R) ∩ E0 : ξ ∈ ωex

i , |ζ| < h|di(ξ, ωex
i )|

}
,

as Figure 6 illustrated where they are fixed from initial set E0. Here, the signed
distance function di is given by di(ξ, πi) = dist(ξ, πi)− dist(ξ,Πi \ πi) for arbitrary
ξ ∈ Πi and πi ⊂ Πi where dist(·, ·) is the representative Euclidean distance in
RD [4].

ξ|di(ξ, ωi)|
ωi

h|di(ξ, ωi)|

Ωi,h

Figure 6 . Illustration of the fattened restriction of ωi with the
thickness parameter h where part of the fattened region Ωi,h ={
(ξ, ζ) ∈ (RD−1 × R) ∩ E0 : ξ ∈ ωi, |ζ| < h|di(ξ, ωi)|

}
is shown in

gray.
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Therefore, incorporating the fattened restrictions, model (1) becomes

E∗ = argmin
Ωin⊂E

E∩Ωex=∅

E(E) (2)

where fattened restrictions Ωin,Ωex are defined from E0, and E as a general the
energy function can be P,W ,E (to be introduced shortly in Section 2.2).

2.2. Relaxation by phase-field approximation. The difficulty with model (2)
is that the unknown is the set E, not a function representing E. We now introduce
the phase-field method to represent the set by a function, and then turn the problem
into a variational problem before considering discretisation and numerical solution.
The phase-field method is a widely used technique for modelling complex physi-
cal phenomena with sharp interfaces or discontinuities, such as phase transitions,
fracture, and grain growth, among others. In essence, the phase-field method re-
places the sharp interface or discontinuity with a diffuse interface or transition zone
of finite thickness, which is controlled by a scalar parameter known as the phase-
field variable. By doing so, the problem becomes amenable to standard numerical
methods for solving partial differential equations, such as finite differences, finite
elements, or spectral methods, among others. In the following, we will describe
how to use the phase-field method to approximate the binary indicator function
and reformulate the inverse problem (2) involving the phase-field approximation.

In order to describe the representation of the set E by the phase-field function
(recall that E0 is the initial set and E is the possible solution), Modica and Mortola
in [20], as well as Bretin, Dayrens, and Masnou in [8, 7] have proposed a sequence
(uε) (i.e. phase-field function uε(·)) defined as follows

uε(ξ) = q

(
d (ξ, E)

ε

)
. (3)

This sequence is used to approximate the indicator function of set E that charac-
terises the interface between the target object and background region. Here,

• d (ξ, E) is the signed distance function that measures the distance between
the given point ξ and the boundary ∂E of the set E. Specifically,

d (ξ, E)


< 0 when ξ ∈ E \ ∂E
= 0 when ξ ∈ ∂E

> 0 otherwise

,

as Figure 7(a) shows. Note that |d (ξ, E)| gives the shortest distance from
ξ to the boundary ∂E with the property |∇d | = 1 [8, 7, 14].

• ε is the phase-field variable related to the thickness parameter h = εα as
previously mentioned.

• q is called the profile function, which is required to be a piecewise function
that takes the value of 1 inside E, half on ∂E, and 0 outside E and is de-
signed to enforce the continuity and smoothness of the phase-field function.

Then, the phase-field approximation method provides an equivalence between fat-
tened restrictions and phase-field functions by

Ωin ⊂ E ⊂ RD \ Ωex ⇐⇒ uin
ε ≤ uε ≤ uex

ε (4)
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where the phase-field profiles uin
ε , uex

ε by (3) are defined by

uin
ε = q

(
d (ξ,Ωin)

ε

)
and uex

ε = 1− q

(
d (ξ,Ωex)

ε

)
, (5)

and the latter of (4) is called linear obstacle restrictions on uε, which serves as
an obstacle for the minimisation problem and allows the minimiser to satisfy the
restrictions.

Next, to determine the profile function q that satisfied the above requirements of
being 1 inside E, half on ∂E, and 0 outside E, one suggestion is to utilise the double-
well potential W [8]. The Euler equation q′′ = W ′(q) with the initial condition q(0)
can be solved as the following Cauchy problem for W ∈ C2

q′ = −
√

2W (q) and q(0) =
1

2
.

For the specific case of the double-well potential given by W (u) = 1
2u

2(1− u)2, the
profile function q can be deduced via the separation of variables as

q(ξ) =
1

2

(
1− tanh

(
ξ

2

))
=

1

1 + eξ
. (6)

Then, by using the profile function q, the interior region Ωin and exterior region
Ωex of the initial object E0 can be indicated as 1 and 0 respectively, and in fact,
two phase-field profiles by (5) have the following convergence results

uin
ε (ξ)

ε→0−−−→


1 if ξ ∈ Ωin

1
2 if ξ ∈ ∂Ωin

0 otherwise

and uex
ε (ξ)

ε→0−−−→


0 if ξ ∈ Ωex

1
2 if ξ ∈ ∂Ωex

1 otherwise

(7)

as Figure 7(b) sketched. Furthermore, these profiles can be indicated by

uin
ε =

1

2
1Ωin and uex

ε = 1− 1

2
1Ωex . (8)

E

∂E

d < 0

d > 0

d = 0

(a)

Ωin

Ωex

∂Ω

u = 1

u = 0

u = 1
2

(b)

Figure 7 . Illustrations of (a) the signed distance function (negative
inside E, zero on the boundary, and positive outside), and of (b)
the values of u for the interior region Ωin, boundary ∂Ω, and the
exterior region Ωex of the object E using the profile function q.
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Naturally, the variational framework (2) with the phase-field relaxation is refor-
mulated as:

u∗
ε = argmin

uin
E0

≤u≤uex
E0

Eε(u), (9)

where u := uε, u
in
E0

:= uin
ε , uex

E0
:= uex

ε after omitting ε for simplified, two restric-
tions are associated with the initial set E0, and Eε can be the perimeter-based Pε,
Willmore-based Wε and Euler-Elastica-based Eε formulation from corresponding en-
ergies E = P,W ,E , to be introduced in (10)-(12) for energies, and (13), (15), (16)
for formulations.

Our framework incorporates three classical energies: the perimeter-based P, the
Willmore-based W , and the Euler-Elastica-based E energy [8, 21, 23, 22]. These
energies with their properties have been extensively studied in image processing and
are now extended to our surface reconstruction problem.

(P) The perimeter-based energy is the first energy we consider, expressed as

P(E) =

∫
∂E

1E dHD−1 (10)

where 1E is alluded to the indicator function or the characteristic function of
the set E that indicates elements in the set E [7, 16], that is, 1E(ξ) = 1 if ξ ∈ E
and 0 otherwise, HD−1 denotes the (D−1)-dimensional Hausdorff measure in
RD and ∂E is the boundary of E. The perimeter-based energy is a simple and
intuitive way to measure the length or surface area of a given set. One of the
key properties of this energy is that it is scale-invariant, meaning that it does
not depend on the size or location of the set being measured. Additionally,
it has a well-defined gradient that can be used for optimisation purposes.
However, it can be sensitive to noise and can be affected by irregularities in
the boundary of the set. Besides, there is a relationship between the perimeter
energy and the total variation (TV) functional. In fact, the perimeter energy
can be viewed as a special case of the TV functional, where the signal or image
is a binary indicator function of a set. More generally, the TV functional can
be seen as a generalisation of the perimeter energy to functions that are not
binary indicator functions.

(W ) For the second choice of energy: Willmore-based energy is defined by

W (E) =

∫
∂E

|H|2 dHD−1 (11)

where H is the mean curvature on the boundary ∂E. The Willmore energy
is a geometric energy that measures the bending or deviation of a surface
from a plane. This energy is quadratic in the mean curvature of the surface,
which captures both its local and global curvature information. The Willmore
energy is also scale-invariant, which means that it is preserved under rescaling
of the surface, making it robust to changes in size or orientation.

(E ) Last, the Euler-Elastica-based energy is the key suggestion in our framework,
being the third choice, which is the combination of two energies mentioned
above

E (E) = P(E) + W (E) =

∫
∂E

(1E + |H|2) dHD−1 (12)

with the indicator function 1E and the mean curvatures H on the boundary
∂E as (10) and (11). Clearly, the Euler-Elastica-based energy combines the
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perimeter-based energy and the Willmore-based energy, which makes it an
effective energy functional for shape analysis and geometric modelling. The
first indicator term measures the smoothness of the boundary, while the sec-
ond term measures the curvature. By combining these two terms, the Euler-
Elastica energy can capture both the local and global properties of a shape.
Moreover, the Euler-Elastica energy has been shown to have desirable prop-
erties, such as convexity and stability, which makes it an attractive option for
optimisation-based approaches.

Furthermore, in recent years, new formulations of these energies have been ex-
plored using the approaches of Γ-convergence and phase-field approximation. No-
tably, the Γ-convergence and phase-field approximation approaches have opened up
new avenues for studying these energies and their properties, such as convergence,
stability, and regularity. Moreover, the use of regularised functions in these for-
mulations can be beneficial in numerical optimisation, as they allow for efficient
computation of minimisers and can avoid issues associated with non-smooth func-
tionals. These developments have led to significant progress in the field of geometric
variational problems and their applications.

(Pε) Modica and Mortola in [20] along with additional literature [8, 21] revealed
that the perimeter-based energy P could be approximated using the classical
phase-field formulation (Van der Waals-Cahn-Hilliard formulation, in accor-
dance with other terminologies, say perimeter-based formulation Pε instead)

Pε(u) =

∫
Ω

(
ε

2
|∇u|2 + 1

ε
W (u)

)
dΩ (13)

where W (u) = 1
2u

2(1−u)2 and ε is the representative diffuse interface width.

More specifically, the Γ(L1(Ω))-limit is the Γ-convergence of Pε to the area
functional as ε → 0. In other words,

Γ(L1(Ω))− lim
ε→0

Pε(u) = P(u) =

∫
Ω

d|∇u| (14)

for u ∈ BV(Ω, {0, 1}) where u = 2χΩ−1 = 1Ω with the characteristic function
χΩ of the finite perimeter set Ω. Then, there exists P(u) =

∫
Ω
d|∇u| =

HD−1(∂Ω) =
∫
∂Ω

1Ω dHD−1.
(Wε) Further, they also demonstrated that the Willmore-based formulation Wε can

be used to approximate (↭) the Willmore-based energy W [8, 20, 7], i.e.

W (E) =

∫
∂E

|H|2 dHD−1

↭ Wε(u) =
1

2ε

∫
Ω

(
ε△ u− 1

ε
W ′(u)

)2

dΩ

(15)

where W ′(u) = u(u− 1)(2u− 1). Remark that Wε(u) stands for the rescaled
norm of L2-gradient flow of Pε(u) [21].

(Eε) Eventually, we consider the Euler-Elastica-based formulation

Eε(u) = Pε(u) + Wε(u)

=

∫
Ω

(
ε

2
|∇u|2 + 1

ε
W (u)

)
dΩ +

1

2ε

∫
Ω

(
ε△ u− 1

ε
W ′(u)

)2

dΩ
(16)

to approximate the Euler-Elastica-based energy where the double-well poten-
tial W (u) = 1

2u
2(1 − u)2 has two minima and its first derivative is W ′(u) =



SURFACE RECONSTRUCTION FROM FEW SLICES 11

u(u− 1)(2u− 1). Röger and Schätzle in [23], partially responding to the con-
jecture of De Giorgi [15], with additional literature [21, 22] proved that the
approximation is established with respect to Γ-convergence of Eε

Γ(L1(Ω))− lim
ε→0

Eε(u) =

∫
∂Ω

(1Ω + |H∂Ω|2) dHD−1 (17)

where 1E is the indicator function, H∂Ω is the mean curvatures vector of ∂Ω.

3. The new model and its numerical algorithms. After establishing the nec-
essary mathematical framework in Section 2, we propose a new model related to our
objective functional (9), which utilises the Euler-Elastica-based formulation (16) by
minimising

Eε(u) =

∫
Ω

(
ε

2
|∇u|2 + 1

ε
W (u)

)
dΩ +

1

2ε

∫
Ω

(
ε△ u− 1

ε
W ′(u)

)2

dΩ

s.t. uin
E0

≤ u ≤ uex
E0

(18)

subject to linear obstacle restrictions as (4) related to the initial set E0 where the
double-well potential W (u) = 1

2u
2(1 − u)2 has two minima and its first derivative

is W ′(u) = u(u− 1)(2u− 1).

3.1. Derivation for the Euler-Elastica-based formulation. In the following,
we derive the Euler–Lagrange (E-L) PDE for the Euler-Elastica-based formula-
tion (16) in order to compute the (local) minimum of our model (18). For other
two formulations (13) and (15), the derivation is analogous.

By Gâteaux derivative, for ∀τ , there exists

δE =
1

ε

∫
Ω

W ′(u)τ dΩ + ε

∫
Ω

∇u · ∇τ dΩ (19a)

+ ε

∫
Ω

△u · △τ dΩ +
1

ε3

∫
Ω

W ′(u) ·W ′′(u)τ dΩ (19b)

− 1

ε

(∫
Ω

△τ ·W ′(u) dΩ +

∫
Ω

△u ·W ′′(u)τ dΩ

)
. (19c)

Next by Green’s formulae, for the second term of (19a), the first term of (19b) and
of (19c), there exists∫

Ω

∇u · ∇τ dΩ =

∮
Γ

∇u · τ · n dΓ−
∫
Ω

△u · τ dΩ, (20)

∫
Ω

△u · △τ dΩ =

∫
Ω

△u · ∇ · ∇τdΩ =

∮
Γ

△u · ∇τ · ndΓ−
∫
Ω

∇ · (△u) · ∇τdΩ

=

∮
Γ

△u · ∇τ · ndΓ−
∮
Γ

∇ · (△u) · τ · ndΓ +

∫
Ω

△2u · τ dΩ,
(21)

and ∫
Ω

△τ ·W ′(u)dΩ =

∫
Ω

∇ · ∇τ ·W ′(u)dΩ

=

∮
Γ

∇τ ·W ′(u) · ndΓ−
∫
Ω

∇τ · ∇W ′(u) dΩ

=

∮
Γ

∇τ ·W ′(u) · ndΓ−
∮
Γ

τ · ∇W ′(u) · ndΓ +

∫
Ω

τ · △W ′(u) dΩ.

(22)
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Therefore, assembling (19), (20), (21) and (22),

δE =
1

ε

∫
Ω

W ′(u)τ dΩ + ε

(∮
Γ

∇u · τ · ndΓ−
∫
Ω

△u · τ dΩ
)

+ ε

(∮
Γ

△u · ∇τ · n dΓ−
∮
Γ

∇ · (△u) · τ · n dΓ +

∫
Ω

△2u · τ dΩ
)

+
1

ε3

∫
Ω

W ′(u) ·W ′′(u)τ dΩ

− 1

ε

(∮
Γ

∇τ ·W ′(u) · ndΓ−
∮
Γ

τ · ∇W ′(u) · ndΓ

+

∫
Ω

τ · △W ′(u) dΩ +

∫
Ω

△u ·W ′′(u)τ dΩ

)
=

∫
Ω

(
1

ε
W ′(u)− ε△ u+ ε△2 u+

1

ε3
W ′(u) ·W ′′(u)

−1

ε
△W ′(u)− 1

ε
△ u ·W ′′(u)

)
τ dΩ +

∮
Γ

(
ε△ u · n− 1

ε
W ′(u) · n

)
∇τ dΓ

+

∮
Γ

(
ε∇u · n− ε∇ · (△u) · n+

1

ε
∇W ′(u) · n

)
τ dΓ = 0

is permitted by the following E-L equation

1

ε
W ′(u)− ε△ u+ ε△2 u+

1

ε3
W ′(u) ·W ′′(u)− 1

ε
△W ′(u)− 1

ε
△ u ·W ′′(u) = 0,

that is,

1

ε
W ′(u)− ε△ u+△

(
ε△ u− 1

ε
W ′(u)

)
− 1

ε2
W ′′(u)

(
ε△ u− 1

ε
W ′(u)

)
= 0. (23)

3.2. Numerical algorithm I. Following the above derivation of an E-L PDE,
consider how to construct a numerical algorithm for our models with respect to Eε.
A Cauchy problem is first recalled [8]{

ut = −∇Eε(u),
u(ξ, 0) = u0(ξ).

(24)

Here, Eε can be the perimeter-based Pε, Willmore-based Wε and Euler-Elastica-
based Eε formulation, and u0(ξ) is from the initial set E0 by (3). Then, by the Euler
semi-implicit discretisation scheme in time [6], the approximate numerical scheme
can be expressed with the presetting synthetic time step τ

uk+1 − uk

τ
= −∇Eε(uk+1). (25)

In essence, the iterative solution uk+1 meets the regularisation with (9), that is,

uk+1 = argmin
u

{
1

2τ

∫
Ω

(u− uk)
2 dΩ + Eε(u)

}
,

so that the restrictive conditions are promised as (4) aforesaid

Eε(uk+1) ⩽
1

2τ

∫
Ω

(uk+1 − uk)
2 dΩ + Eε(uk+1) ⩽ Eε(uk).
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In addition, we enforce the linear obstacle restriction (4) by applying the orthogonal
projection to handle the inequality with increased relaxation, i.e.

uin
E0

≤ u ≤ uex
E0

↭ max(min(u, uex
E0

), uin
E0

). (26)

Accordingly, the numerical scheme of the E-L equation (23) for the Euler-Elastica-
based formulation with respect to the time step τ is proposed as

ut = ε△ u− 1

ε
W ′(u) +△

(
1

ε
W ′(u)− ε△ u

)
+

1

ε2
W ′′(u)

(
ε△ u− 1

ε
W ′(u)

)
.

Following that, its numerical Euler semi-implicit discretisation scheme in time τ is
expressed

uk+1 − uk

τ
=ε△ uk+1 −

1

ε
W ′(uk+1) +△

(
1

ε
W ′(uk+1)− ε△ uk+1

)
+

1

ε2
W ′′(uk+1)

(
ε△ uk+1 −

1

ε
W ′(uk+1)

)
.

(27)

Clearly, reorganising above equation (27), there exists

uk+1 =
(
ID − ετ △+τε△2

)−1(
uk − τ

ε
W ′(uk+1) +

τ

ε
△W ′(uk+1)

−τ

ε
W ′′(uk+1)△ uk+1 +

τ

ε3
W ′(uk+1)W

′′(uk+1)
) (28)

that is, the point uk+1 is also a fixed point of the function

ΦE (x) =
(
ID − ετ △+τε△2

)−1(
uk − τ

ε
W ′(x) +

τ

ε
△W ′(x)− τ

ε
W ′′(x)△ x+

τ

ε3
W ′(x)W ′′(x)

)
.

(29)

Moreover, the prepositional operator of (29)

ρE (ξ) =
(
ID − ετ △+τε△2

)−1
(30)

is able to implement via fast Fourier transform (FFT) and its associated symbol of
a differential operator

ρE (ξ) =
(
ID − ετ △+τε△2

)−1
=

1

1 + 4τεπ2|ξ|2 + 16τεπ4|ξ|4
. (31)

Overall, each iteration of the Projected Gradient Descent Method (PGDM) is
summarised in the following Algorithm 3.1 for estimating the numerical solution of
the Euler-Elastica-based formulation where another two options for perimeter-based
formulation and Willmore-based formulation can be referred to [8].

3.3. Numerical algorithm II. In recent years, there has been a lot of progress
in developing fast alternating direction method of multipliers (ADMM) for various
applications [26, 28]. Here we have extended the method to solve our model (18).

Expecting new variables w = ∇u to have a faster numerical approximation, the
formulation is converted to

argmin
u,w

∫
Ω

(
ε

2
|w|2 + 1

ε
W (u)

)
dΩ +

1

2ε

∫
Ω

(
εdivw − 1

ε
W ′(u)

)2

dΩ

s.t. w = ∇u and uin
E0

≤ u ≤ uex
E0

.

(32)



14 YIYAO ZHANG, KE CHEN AND SHANG-HUA YANG

Algorithm 3.1: Projected Gradient Descent Method (PGDM)

Input: Initial set E0; Parameters τ, ε.
Output: Numerical solution uk+1.

1 Initial input: u0 = q
(

d (ξ,E0)
ε

)
; (3)

2 Interior restriction: uin
E0

= q
(

d (ξ,Ωin)
ε

)
; (5)

3 Exterior restriction: uex
E0

= 1− q
(

d (ξ,Ωex)
ε

)
; (5)

4 for k = 0, 1, . . . do
5 uk+ 1

2
= max(min(uk, u

ex
E0

), uin
E0

) ; (26)

6

uk+1 =
(
ID − ετ △+τε△2

)−1(
uk+ 1

2
− τ

ε
W ′(uk+ 1

2
) +

τ

ε
△W ′(uk+ 1

2
)

−τ

ε
W ′′(uk+ 1

2
)△ uk+ 1

2
+

τ

ε3
W ′(uk+ 1

2
)W ′′(uk+ 1

2
)
) ; (28)

7 End till some stopping criteria are met.

Then, the augmented Lagrangian functional for the above is expressed as

Lρ(u,w;λ) =

∫
Ω

[(
ε

2
|w|2 + 1

ε
W (u)

)
+

1

2ε

(
εdivw − 1

ε
W ′(u)

)2

+ ⟨λ,∇u−w⟩+ ρ

2
|∇u−w|2

]
dΩ

=

∫
Ω

[(
ε

2
|w|2 + 1

ε
W (u)

)
+

1

2ε

(
εdivw − 1

ε
W ′(u)

)2

+
ρ

2

∣∣∇u−w + ρ−1λ
∣∣2 − λ2

2ρ

]
dΩ

(33)

with the penalty parameter ρ > 0 and the Lagrange multiplier λ. Therefore, the
problem in the ADMM can be considered as solving two subproblems and updating
one multiplier:

uk+1 = argmin
u

∫
Ω

[
1
εW (u)− 1

ε (divwk)W
′(u) + 1

2ε3 (W
′(u))2

+ρ
2

∣∣∇u−wk + ρ−1λk

∣∣2] dΩ

wk+1 = argmin
w

∫
Ω

[
ε
2 |w|2 + ε

2 (divw)2 − 1
ε (divw)W ′(uk+1)

+ρ
2

∣∣w −∇uk+1 − ρ−1λk

∣∣2] dΩ

λk+1 = λk + ρ (∇uk+1 −wk+1)

. (34)

For the u-subproblem of (34), by Gâteaux derivative, for ∀τ , there exists

δEuk+1
=

∫
Ω

(
1

ε
W ′(u)τ − 1

ε
divwkW

′′(u)τ +
1

ε3
W ′(u)W ′′(u)τ

)
dΩ (35a)

+ ρ

∫
Ω

(
∇u−wk + ρ−1λk

)
∇τ dΩ. (35b)
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Next by Green’s formulae, for (35b), there exists∫
Ω

(
∇u−wk + ρ−1λk

)
∇τ dΩ

=

∮
Γ

(
∇u−wk + ρ−1λk

)
τ · ndΓ−

∫
Ω

∇ ·
(
∇u−wk + ρ−1λk

)
τ dΩ.

(36)

Therefore, assembling (35) and (36),

δEuk+1
=

∫
Ω

(
1

ε
W ′(u)τ − 1

ε
divwkW

′′(u)τ +
1

ε3
W ′(u)W ′′(u)τ

)
dΩ

+ ρ

(∮
Γ

(
∇u−wk + ρ−1λk

)
τ · ndΓ

−
∫
Ω

∇ ·
(
∇u−wk + ρ−1λk

)
τ dΩ

)
= 0

is permitted by the following E-L equation

1

ε
W ′(u)− 1

ε
divwkW

′′(u) +
1

ε3
W ′(u)W ′′(u)− ρ∇ ·

(
∇u−wk + ρ−1λk

)
= 0. (37)

Analogously, for the w-subproblem of (34), by Gâteaux derivative, there exists

δEwk+1
=

∫
Ω

(
εwτ + ε divw · ∇τ − 1

ε
W ′(uk+1)△w · τ

+ρ
(
w −∇uk+1 − ρ−1λk

)
τ
)
dΩ

(38)

for ∀τ . Next by Green’s formulae, for the second term of (38), there exists∫
Ω

divw · ∇τ dΩ =

∮
Γ

divw · τ · n dΓ−
∫
Ω

△w · τ dΩ. (39)

Therefore, assembling (38) and (39),

δEwk+1
=

∫
Ω

(
εw − 1

ε
W ′(uk+1)△w + ρ

(
w −∇uk+1 − ρ−1λk

))
τ dΩ

+ ε

(∮
Γ

divw · τ · ndΓ−
∫
Ω

△w · τ dΩ
)

is permitted by the following E-L equation

εw − 1

ε
W ′(uk+1)△w + ρ

(
w −∇uk+1 − ρ−1λk

)
− ε△w = 0. (40)

Before proceeding with the numerical solutions, we first still enforce the linear
obstacle restriction (4) as (26) in Algorithm 3.1 of Section 3.2, i.e.

uin
E0

≤ u ≤ uex
E0

↭ max(min(u, uex
E0

), uin
E0

).

Then, to progress the numerical solution of (34), the minimising solution of u-
subproblem is given by

uk+1 − uk

τ
=ρ∇ ·

(
∇uk+1 −wk + ρ−1λk

)
− 1

ε
W ′(uk+1)

+
1

ε
divwkW

′′(uk+1) +
1

ε3
W ′(uk+1)W

′′(uk+1),

(41)
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which leads to the update

uk+1 = (I − τρ△)−1

[
uk + τ

(
−ρ∇ ·wk +∇ · λk − 1

ε
W ′(uk)

+
1

ε
divwkW

′′(uk) +
1

ε3
W ′(uk)W

′′(uk)

)]
.

(42)

Next, for the minimising solution of w-subproblem, it is discretised by

wk+1 −wk

τ
=
1

ε
W ′(uk+1)△wk+1 − εwk+1

+ ρ
(
wk+1 −∇uk+1 − ρ−1λk

)
+ ε△wk+1,

(43)

which issues in the update

wk+1 = (I + ετ − ετ△)−1
[
wk +

τ

ε
W ′(uk+1)△wk

+τρ
(
wk −∇uk+1 − ρ−1λk

)]
.

(44)

Lastly, recall that the multiplier λ will be updated by

λk+1 = λk + ρ (∇uk+1 −wk+1) . (45)

This completes one step of the ADMM method, with the final algorithm shown
in Algorithm 3.2.

Algorithm 3.2: Alternating Direction Method of Multipliers (ADMM)

Input: Initial set E0; Parameters τ, ε, ρ.
Output: Numerical solution uk+1.

1 Initial input: u0 = q
(

d (ξ,E0)
ε

)
; (3)

2 w0 = ∇u0 ;

3 λ0 = w0 ;

4 Interior restriction: uin
E0

= q
(

d (ξ,Ωin)
ε

)
; (5)

5 Exterior restriction: uex
E0

= 1− q
(

d (ξ,Ωex)
ε

)
; (5)

6 for k = 0, 1, . . . do
7 uk+ 1

2
= max(min(uk, u

ex
E0

), uin
E0

) ; (26)

8

uk+1 =(I − τρ△)−1
[
uk+ 1

2
+ τ (−ρ∇ ·wk +∇ · λk

−1

ε
W ′(uk+ 1

2
) +

1

ε
divwkW

′′(uk+ 1
2
)

+
1

ε3
W ′(uk+ 1

2
)W ′′(uk+ 1

2
)

)] ; (42)

9
wk+1 = (I + ετ − ετ△)−1

[
wk +

τ

ε
W ′(uk+1)△wk

+τρ
(
wk −∇uk+1 − ρ−1λk

)] ; (44)

10 λk+1 = λk + ρ (∇uk+1 −wk+1) ; (45)

11 End till some stopping criteria are met.
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4. Experimental results and quantitative comparisons with analysis. We
are now ready to present some experimental results in this section. 3D reconstructed
results will be performed in the following using

• 3D surface inpainting models extended from [24],
• the perimeter-based formulation (13),
• the Willmore-based formulation (15), and
• the new Euler-Elastica-based formulation (16),

where four inpainting models are tested as follows

• the Cahn-Hilliard model (see Section 5.3 in [24]),
• the Mumford-Shah model (see Chapter 7 in [24]),
• the transport model (see Section 6.1 in [24]), and
• the absolutely minimising Lipschitz extensions (see Section 4.4 in [24]).

The experimental results consist of two simulated examples, namely (Example
1 Sphere like tumour-liked simulation and Example 2 Branching Cylinders as
branching blood vessels mimicked), as well as two segmented realistic examples
(Example 3 Stent segmented from real CT images and Example 4 Tumour seg-
mented from real MRI images), and one realistic example (Example 5 Deer from
THz imaging). For Example 1 Sphere, we demonstrate the simulation of the in-
put slices and the gap-filling process (Figure 8). The results obtained using the
compared models are presented in Figure 9 and Figure 10. However, only the in-
painting results are shown in this example as they are unsatisfactory in meeting our
expectations, despite some of them being feasible for gap filling (e.g. Figure 9(a)
and (b)). In Example 2 Branching Cylinders, we illustrate the feasibility of con-
cave geometrical morphology for our formulations. The simulated input and its
results using three formulations are depicted in Figure 11 and 12. To compare the
results obtained from the three formulations and establish a benchmark as the stop-
ping criterion, we propose an approach for quantitative comparisons. This is
done through the mathematical and graphical interpretation (Equations (46)-(47)
and Figure 13) from the perspective of discrete geometry. The variance of the two
simulated examples is visualised in Figure 14 and 16 with histograms in Figure 15
and 17. Furthermore, the numeric corroboration of the comparison between the
three formulations and Examples 1-3 is presented in Table 1, and the experi-
mental convergence and computational complexity of PGDM for Exam-
ple 1 is provided in Figure 18 and 19. Considering the gradient descent method
used throughout ADMM, an experimental analysis of ADMM for Example
1 is provided in Figure 20. This analysis focuses on the sensitivity of parameters
to establish the relationship between the new formulation and parameters for faster
and better numerical simulations. Lastly, we present the results of three realistic
examples, (Example 3 Stent segmented from real CT images, Example 4 Tumour
segmented from real MRI images, and Example 5 Deer from THz imaging) in Fig-
ure 22-25. These results demonstrate the application of the new Euler-Elastica
formulation and verify its merits. Remark that all implementations were coded
using the computer programming language: MATLAB R2022a® in the operating
system: macOS Monterey (Version 12.5) equipped with a 2.3 GHz 8-Core Intel Core
i9 Processor and 16GB 2667 MHz DDR4 Memory (some implementations in the re-
vised version were carried out using MATLAB R2023a® in the operating system:
macOS Ventura (Version 13.3.1 (a)) equipped with an Apple M1 Max Chip and 64
GB Memory).

https://doi.org/10.1017/CBO9780511734304.006
https://doi.org/10.1017/CBO9780511734304.008
https://doi.org/10.1017/CBO9780511734304.007
https://doi.org/10.1017/CBO9780511734304.005
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Example 1 (Sphere tested by all compared models). To simulate the
reconstructed problem from a few slices, by setting the low resolution N = 32,
the rough 5 slices are collected from a Sphere as tumour-liked simulation being the
first example as Figure 8(a) illustrated. Then, the initially rough surface can be
straightforwardly constructed by duplicating the slices to fill the gaps as Figure 8(b)
visualised. Remark that the gaps between the slices range from four to five. To fill
the gap between the top and bottom slices, we duplicate half of the top slice and
half of the bottom slice. For the remaining slices, we use the slices themselves to
fill the half-up and half-down gaps.

(a) (b)

Figure 8 . Visualisation of (b) the initial rough surface of Exam-
ple 1 Sphere by duplicating the slices from (a) the given 5 slices
under the low resolution N = 32.

First, to compare the variational framework with phase-field approximation, we
would like to demonstrate the results (see Figure 9) by the explored extension of
four 3D surface inpainting models ((a) the Cahn-Hilliard model, (b) the Mumford-
Shah model, (c) the transport model, and (d) the absolute minimising Lipschitz
extensions) which are introduced from [24]. The extension from 2D image inpaint-
ing to 3D surface inpainting is explored by the case of missing slices in the vertical
direction to restore one of the planes in two axes other than the vertical axis. Appar-
ently, such a task is quite challenging for the above inpainting models, which these
illustrated results are visually unacceptable with the time-consuming acquisition,
and probably the sunken gaps would lead to unexpected variations even though the
gaps of two of the results were filled. The main reason for unsatisfactory results by
inpainting models is due to their local and partial inpainting without considering
the global variation. Remark that the stopping criteria for each inpainting model
are set as respectively: the maximum number 500 of iterations for the Cahn-Hilliard
model; the residual less than the tolerance 10−14 for the Mumford-Shah model with
the maximum number 50 of iterations; the residual less than the tolerance 10−5 for
the transport model with the maximum number 50 of iterations; and the residual
less than the tolerance 10−8 for the absolutely minimising Lipschitz extensions with
the maximum number 50 of iterations.

Thereupon, for our variational framework with phase-field approximation, the
parameters are set as ε = 1.5/N , τ = ε4, and the stopping criterion by the difference
of corresponding energies between new iterative results and previous one less than
the preset value. By the convergence results of (7), the surface by three formulations
(perimeter-based, Willmore-based, and Euler-Elastica-based formulation) can be
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extracted from the iterative results under the isosurface value at half as Figure 10
demonstrated. Under observation of Figure 10, the last one by investing the Euler-
Elastica-based formulation is the desired result. Noted that applying the Willmore-
based formulation produces a smoother surface with undesired shapes of the top
and bottom due to achieving lower energy of mean curvature with the property
of Willmore energy. Moreover, applying the perimeter-based formulation emerges
small bulges patently, whereas it maintains the initial shape globally.

(a) (b)

(c) (d)

Figure 9 . Inpainting results of Example 1 Sphere by four mod-
els: (a) the Cahn-Hilliard model; (b) the Mumford-Shah model; (c)
the transport model and (d) the absolute minimising Lipschitz ex-
tensions from Figure 8(a) the given 5 input slices under the low
resolution N = 32. (Clearly, inpainting methods do not work well
if given only a few slices. )

(a) (b) (c)

Figure 10 . Final reconstructed results of Example 1 Sphere by
three formulations: (a) perimeter-based formulation; (b) Willmore-
based formulation; and (c) Euler-Elastica-based formulation; from
low-resolution inputs N = 32 with 5 slices. (Visually, the result (c)
by the new model is the best. )



20 YIYAO ZHANG, KE CHEN AND SHANG-HUA YANG

Example 2 (Branching Cylinders tested by three formulations). Anal-
ogously, for the second example: Branching Cylinders as branching blood vessels
mimicked, Figure 11 delineates the initially rough surface under the same duplicat-
ing idea in the first example, which is constructed from the given 24 slices under
the low resolution N = 128. Remark that the gap of collected slices is intentionally
uneven so that the initial surface has a distinct fluctuation waiting to be restored,
and the gap range is from three to thirteen.

(a) (b)

Figure 11 . Visualisation of (b) the initial rough surface of Ex-
ample 2 Branching Cylinders from (a) the given 24 slices under
the low resolution N = 128.

As the resolution of this example is increased, keeping the same diffuse interface
width ε = 1.5/N and setting the larger time step τ = {ε3, 10ε4} for the faster sta-
ble results where ε3 for perimeter-based and Willmore-based formulation, and the
latter one for Euler-Elastica-based formulation by the corresponding fixed point
iterative schemes, then the reconstructed surfaces by three formulations are ex-
tracted as Figure 12 performed. Following the presupposition in Section 1, as the
Euler-Elastica-based formulation merges the advantages of the perimeter-based for-
mulation and the Willmore-based formulation to overcome the above deficiencies,
the surface by the Euler-Elastica-based formulation is heralded the better recon-
struction comparing by the Willmore-based formulation in this scenario either the
top plane or the concave between the branching part.

(a) (b) (c)

Figure 12 . Final reconstructed results of Example 2 Branch-
ing Cylinders by three formulations: (a) perimeter-based formula-
tion; (b) Willmore-based formulation; and (c) Euler-Elastica-based
formulation from low-resolution inputs N = 128 with 24 slices.
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Quantitative Comparisons. Broadly speaking, the reconstruction of Branch-
ing Cylinders using the Willmore-based formulation (Figure 12(b)) initially fulfilled
the initial requirements, exhibiting minor deficiencies that were difficult to discern
through visual inspection alone. However, when compared to the results obtained
using the newly proposed Euler-Elastica-based formulation, these deficiencies be-
come more noticeable.

Accordingly, to indicate the level of smoothness for the above results by three
formulations, the quantitative benchmark is considered by computing its standard
deviation of Gaussian curvatures (GC) σGC := σ(κG) and of mean curvatures (MC)
σMC := σ(κ̄) for surfaces represented by triangular meshes from the viewpoint of
discrete geometry. To recap from the theoretical discrete geometry, the Gaussian
curvature of each vertex is given by

κG(vi) =

2π −
NFiR∑
k=1

θik

AiR

(46)

and the mean curvature of each vertex is given by

κ̄(vi) =
1

2AiR

∑
j∈RNVi

(cotαij + cotβij)(vj − vi) (47)

where AiR stands for the appropriately chosen area from the patch within R-ring
neighbouring vertices RNVi (i.e. the minimum number of edges from vi to the
neighbouring vertex is less than or equal to R where, in this case, R is opted for 1)

around the vertex vi, θik denotes the angle of the kth face at the vertex vi, NFiR

is the total number of faces in the set FiR around this vertex vi, as well as αij and
βij are two angles opposite to the sharing edge in the two triangles as Figure 13
exemplified, which can be consulted [19, 27] for more details. Remark that, by the
concept of geometrical measure, the Gaussian curvature is intrinsically invariant
and relies only on surface-estimated distances, yet the mean curvature embedded
surface locally is extrinsic evaluation in some ambient space e.g. Euclidean space.

αij
βij

vi

vj

θik

Figure 13 . Computing curvatures – Illustration of the patch
within the 2-ring neighbouring vertices 2NVi of the centre vertex
vi (blue) where the first ring neighbouring vertices are red, and the
second ring neighbouring vertices are green.

In accordance with Figure 10 and Figure 12 for Examples 1 and 2, we present
in Figure 14 and Figure 16 the variance of Gaussian curvature and mean curvature
at each vertex of the triangular meshes, computed using three different formulations
for these two examples. In order to facilitate the comparison of the results, we set the
minimum (maximum) of the colorbar to the maximum (minimum) curvature of all
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vertices for the three formulations and meshes: max (min (P),min (W ),min (E ))
and min (max (P),max (W ),max (E )), respectively. We also provide histograms
in Figure 15 and Figure 17 to show the proportional distribution of all curvatures
at each vertex and to compare the curvature distributions across different meshes
using three formulations. We note that, as expected for Example 1 and 2 by E ,
the majority of the curvatures cluster around zero.

Figure 14 . Visualisation of Gaussian curvatures (top line) and
mean curvatures (bottom line) in final reconstructed results of
Example 1 Sphere by three formulations: perimeter-based for-
mulation (left); Willmore-based formulation (middle); and Euler-
Elastica-based formulation (right).

Figure 15 . Histograms of all Gaussian curvatures κG (left) and
mean curvatures κ̄ (right) in final reconstructed results of Exam-
ple 1 Sphere by three formulations: perimeter-based formulation
(pink); Willmore-based formulation (green); and Euler-Elastica-
based formulation (cyan).
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Figure 16 . Visualisation of Gaussian curvatures (top line) and
mean curvatures (bottom line) in final reconstructed results of Ex-
ample 2 Branching Cylinders by three formulations: perimeter-
based formulation (left); Willmore-based formulation (middle); and
Euler-Elastica-based formulation (right).

Figure 17 . Histograms of all Gaussian curvatures κG (left) and
mean curvatures κ̄ (right) in final reconstructed results of Ex-
ample 2 Branching Cylinders by three formulations: perimeter-
based formulation (pink); Willmore-based formulation (green); and
Euler-Elastica-based formulation (cyan).

In Table 1, we present numerical comparisons of the three formulations for Ex-
amples 1-3, in terms of the standard deviation of Gaussian curvatures (σGC), the
standard deviation of mean curvatures (σMC), and CPU elapsed time. We observe
that, for the same input, the trend of values of σGC and σMC is decreasing, indicat-
ing that the level of smoothness is improving as the amount of variation is reduced,
thus indicating a better reconstruction by the new proposed formulation. Addition-
ally, we report the average elapsed time of each iteration by the three formulations,
highlighting the computational efficiency of our numerical approach.
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Table 1 . Comparisons of the standard deviation of Gaussian cur-
vatures σGC and of mean curvatures σMC, and of the average elapsed
time of each iteration (seconds/iteration or s/iter) by three for-
mulations: perimeter-based (P), Willmore-based (W ), and Euler-
Elastica-based (E ) formulation to three examples: Example 1
(Figure 14), Example 2 (Figure 16) and Example 3 (Figure 22).

Model P Model W New model E
Example 1

Sphere
(N = 32)

σGC

σMC

s/iter

85.6522
4.9897
0.0009

10.5005
1.2315
0.0030

4.3289
0.9789
0.0033

Example 2
Branching Cylinders

(N = 128)

σGC

σMC

s/iter

772.2918
10.9077
0.0835

191.8314
8.9567
0.2791

89.1912
6.3708
0.3108

Example 3
Stent

(N = 512)

σGC

σMC

s/iter

16372.1718
100.5420
0.4761

1734.3918
35.2987
1.4679

1628.0449
33.3259
1.4778

Experimental Convergence and Computational Complexity of PGDM
for Example 1. To evaluate the convergence of the numerical algorithm I, in Fig-
ure 18, we plot the relative error between the current and previous iterations over
the number of iterations for Example 1 with respect to three formulations. From
the convergence plot, we observe that the algorithm with Euler-Elastica-based for-
mulation converges rapidly within the first 100 iterations and reaches a relative
error of 10−4 after approximately 300 iterations.

Figure 18 . Experimental convergence curves by the relative error
over the number of iterations for Example 1 with respect to the
perimeter-based (red with circles), the Willmore-based (green), and
the Euler-Elastica-based (cyan with pentagrams) formulation.
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Additionally, we evaluate the computational complexity of numerical algorithm
I in terms of the number of iterations and the time required to run the algorithm.
To estimate the computational complexity of an algorithm, we analyse the number
of operations or steps the algorithm takes as the size N of the input increases. In
our 3D scenario, the main operations inside the loop are the fast Fourier transform
(FFT) and its inverse, which have a complexity ofO(N logN) for each axis. Besides,
the Laplacian operator has a complexity of O(N3), while the other operations have
a lower complexity. Therefore, the computational complexity for each iteration of
the algorithm I can be estimated as O(N3 logN). Here, we measured the running
time for Example 1 with various inputs N on the same hardware and software
environment and used the unit of time set as the arbitrary unit (a.u.) in Figure 19.
Then, we observe that the trend of experimental results and estimated arithmetical
values are semblable. Note that the actual running time of an algorithm depends
not only on its computational complexity but also on the specific hardware and
software environment in which it is executed.

Figure 19 . Computational complexity curves of experimental re-
sults (red with circles) and estimated arithmetical values (green)
with various inputs N for Example 1 where the unit of time is set
as the arbitrary unit (a.u.).

Experimental Analysis of ADMM for Example 1. For the experimental
results by the numerical algorithm II, the results are similar to the key computing
gradient descent method used throughout ADMM. Meanwhile, the result by this
algorithm is more sensitive than by the first Algorithm 3.1, which means the result is
strongly influenced by the related parameters (the penalty parameter ρ, the diffuse
interface width ε, and the time step τ), even though the speed of acquiring expected
results is faster associated with fewer iterations.
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Due to the sensitivity of parameters, Figure 20 provides the binary maps of
testing in relation to the penalty parameter ρ ∈ [0.5, 10] with the step of 0.5, and
the representative diffuse interface width ε · N ∈ [1.5, 3] with the step of 0.1 for
Example 1 Sphere under the low resolution N = 32 in two time steps τ = ε3

and τ = ε3.5. After setting the criterion by our proposed benchmark in the case
of the standard deviation of Gaussian curvatures σGC less than the value by the
Willmore-based formulation which is σGC < 10.5005 in Table 1, then the binary
maps can be ascertained the suitable range of parameters for the reliable results
where the binary value 1 stands for the tolerable results existed, and 0 indicates the
unpleasant results during the iterations.

(a) (b)

Figure 20 . Binary maps of testing parameters sensitivity with
respect to the penalty parameter ρ ∈ [0.5, 10] with the step of 0.5
and the representative diffuse interface width ε · N ∈ [1.5, 3] with
the step of 0.1 for Example 1 Sphere under the low resolution
N = 32 by the numerical algorithm II based on ADMM where 1
(green) stands for the tolerable results existed and 0 (red) indicates
the unpleasant results during the iterations under the different time
steps (a) τ = ε3 and (b) τ = ε3.5.

Example 3 (Stent segmented from real CT images). Last but not least, the
realistic examples are procured from the variational segmentation work by Dr Liam
Burrows [10] for the application of 3D reconstruction in medical imaging from 2D
X-ray computed tomography (CT) scans and magnetic resonance imaging (MRI).
Figure 21 visualises the direct construction by stacking all 48 2D low-resolution
CT slices (N = 512) of the Chest. Then, the segmented Stent is constructed in
the top line of Figure 22 and following the smoothed results by the Euler-Elastica-
based formulation. Returning to the original objective of surface reconstruction
from a reduced number of slices, Figure 23 demonstrates the efficacy of the new
Euler-Elastica-based formulation by reconstructing the surface from only half of the
available slices. This approach not only reduces the time required for data collection
in clinical imaging, thereby minimising patient exposure to uncontrollable high-dose
radiation, but also improves the quality of reconstructed objects by incorporating
super-resolution techniques.
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Figure 21 . Visualisation of initial CT real data of the Chest (blue)
under the low resolution N = 512 from 48 slices where Example
3 segmented Stent is indicated as red.

Example 4 (Tumour segmented from real MRI images). In this example,
we demonstrate the efficacy of our Euler-Elastica-based formulation in segmenting
tumours from high-resolution MRI images. Specifically, we focus on a small region
of interest in a large collection of 280 MRI images, resizing the area of interest
to 150 × 150 pixels from the original size of 1210 × 2378. This scenario poses a
subtle challenge, as the small size of the region of interest makes it difficult to
accurately segment the tumour from the surrounding tissue. However, by applying
our new proposed model, we are able to achieve highly accurate results, as shown
in Figure 24. Remark that we use the similar parameter settings as in Example 3,
with the same time step of τt = ε4 and ε = 2/N for the stent and ε = 2.5/N̄ with
the average pixel number N̄ of three axes for the tumour.

Example 5 (Deer from real THz imaging). Terahertz (THz) imaging has the
potential to revolutionise medical imaging due to its non-ionising nature and ability
to penetrate through certain materials. However, the images produced by THz
imaging often suffer from low resolution with noise, and require significant time for
acquisition [29]. The proposed Euler-Elastica-based formulation is also applicable
for the 3D reconstruction from THz imaging data, as demonstrated by the example
of a deer in Figure 25. By using the proposed formulation, we are able to effectively
address the challenges posed by THz imaging and reconstruct smooth 3D models of
the deer. The results, shown in Figure 25 (b), (d), (f), (h), illustrate the successful
reconstruction from the full input of 218 slices (a) and fewer inputs (c), (e), (g). The
parameter settings used for this example are τ = ε3.5 and ε = 3/max (Nx, Ny, Nz)
with the maximum pixel number of three axes. These results demonstrate the
potential of the proposed formulation for improving the quality and speeding up
of 3D reconstructions from THz imaging data with low resolution and fewer slices,
which can have important applications in medical imaging and other fields.
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Figure 22 . Visualisation of segmented rough input (top) of Ex-
ample 3 Stent from the given 48 slices of CT real data under the
low resolution (Figure 21) and the smoothed reconstruction results
by the Euler-Elastica-based formulation (bottom) where the results
on the right column are the enlarged view of the left column.

5. Conclusions. The problem of reconstructing a high-quality 3D surface and
achieving super-resolution is considered from a limited collection of low-resolution
2D slices. We proposed an Euler-Elastica-based formulation in the phase-field
framework, which allows for improved construction quality by capturing both local
edge features and global surface smoothness. Two numerical algorithms are devel-
oped for the numerical implementations. Besides visual comparisons with existing
methods, we have compared construction qualities by measuring Gaussian curva-
tures and mean curvatures, showing that the proposed model outperforms previous
works. The presented findings validate the effectiveness of addressing the challenges
and offer promising prospects for various applications in medical imaging, computer
vision, and other fields where high-quality surface reconstruction is essential.
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Figure 23 . Visualisation of segmented rough input slices (top) of
Example 3 Stent by less 24 slices from CT real data under the
low resolution (Figure 21) and the smoothed reconstruction results
by the Euler-Elastica-based formulation (bottom) where the results
on the right column are the enlarged view of the left column.
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Figure 24 . Visualisation of segmented rough input (left) of Ex-
ample 4 Tumour from the given 280 slices of MRI real data and
the smoothed reconstruction results by the Euler-Elastica-based
formulation (right).
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Appendix A. Summary of notations.

Notations Implications

D Dimension of the space.

RD D-dimensional Euclidean space.

Ẽ (E0) Target (Initial) set.

E∗ (E) Final (Potential) result.

{Πi=1,...,s} Set of the given s parallel cross-sections/slices/hyperplanes Πi.

ωin (ωex) Set of the interior (exterior) restriction ωin
i (ωex

i ) for all slices.

Ωin (Ωex)
Set of the fattened interior (exterior) restriction
s⋃

i=1

Ωin
i,h (

s⋃
i=1

Ωex
i,h) for all slices with the thickness h.

di(ξ, πi)

Signed distance function (oriented distance function)

that identifies the distance between the given point ξ

to an arbitrary subset πi of hyperplanes Πi.

q(·) Profile function.

W (·) Double-well potential function.

uε(·) Phase-field function.

uin
E0

:= uin
ε

(uex
E0

:= uex
ε )

Phase-field profiles/approximations of the interior (exterior)

restriction Ωin (Ωex) with the thickness control ε > 0 for h = εα.

1Ω(χΩ) Indicator function (characteristic function) of set Ω.

HD D-dimensional Hausdorff measure.

H Mean curvatures.

E = P,W , E
Variational energy, which can be the Perimeter-based P,

the Willmore-based W , or the Euler-Elastica-based E energy.

Pε,Wε, Eε

Perimeter-based formulation, Willmore-based formulation, Euler-

Elastica-based formulation.

Γ− lim Γ-convergence.

τ Synthetic time step.

ρ Penalty parameter.

∇u Gradient operator: ∇u =
(

∂u
∂ξ1

, . . . , ∂u
∂ξD

)
.

div u Divergence operator: div u =
D∑
i=1

∂u
∂ξi

.

△u Laplacian operator: △u =
D∑
i=1

∂2u
∂ξ2i

.

σGC := σ(κG)

(σMC := σ(κ̄))
Standard deviation of Gaussian (mean) curvatures.
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