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Abstract 

Title: Exploring the potential of the use of spinal registry data for the use in clinical trials 

Author: Lukas Staudt 

Background: Sciatica describes the symptoms of low-back and leg pain most commonly due to a 

herniated disc that presses on the sciatic nerve. If persistent, invasive methods such as surgical 

microdiscectomy are required. Although being a surgery with relatively small incisions, it bears some 

risks of adverse events (AEs), e.g. durotomy, wound infection or in rare cases even nerve root damage. 

Observational registries allow for continuous data collection over indefinite time for numerous 

patients. One can therefore gain additional insight in subgroup demographics of the patient 

population and rare events. Furthermore, large numbers of patients and observations can improve 

the performance of prediction models.  

Purpose: The aims of this study are to: (1) provide a comprehensive overview of the collected dataset 

from the Spine Tango registry; (2) determine the best method for imputing missing data in this 

routinely collected registry data set; (3) assess the predictive values of patient characteristics on 

patient-reported outcome measures (PROMs) and complications during surgery; and (4) examine the 

utilization of registries in both clinical trials and observational studies and identify strategies to 

increase their impact on clinical trials. 

Methods: To understand the patient population and potential relationships among collected variables, 

thorough descriptive statistics were performed. Simulation studies were conducted to determine the 

best approach for imputing PROM items and scores, including the examination of missingness 

percentages, mechanisms, and cut-off point score calculations. The focus of prediction modeling was 

the routinely collected Core Outcome Measurement Index (COMI) and complications. Patients with 

sciatica were identified in collaboration with the Spine Tango committee, and various model 

approaches were compared for goodness of fit and prediction accuracy, including regression and 

mixed models. A literature review of both randomised controlled trials and observational studies was 

conducted, comparing differences in missing data, collected outcomes, study length, number of 

patients, and registry use. Case studies of successful registry utilization in other clinical areas were 

analyzed to identify potential for implementation in the present clinical focus. 

Results: The international nature of the Spine Tango registry led to variability in documentation and 

data collection across countries. The simulation studies showed that item-based imputation was 

superior to score-based imputation in most scenarios. Mixed models with random intercepts and 
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slopes, as well as non-linear time terms, performed best in terms of model fit. Logistic regression 

models that defined complications as outcome were able to identify risk factors, such as prior surgery, 

level of spine of physical status. The utilization of registries in the field of this clinical population is 

underutilized, and studies from other areas demonstrate that registry use can reduce trial costs by 

facilitating patient identification, data collection, and event detection, as well as reducing trial-specific 

patient visits and improving patient retention.  

Conclusion: The potential of routinely collected registry data remains under-utilized within the 

sciatica-affected patient population. The noteworthy resemblances observed between observational 

data and randomized controlled trial data, both in descriptive statistics and prognostic factors, 

underscore the comparability of these sources and advocate for the integration of registry data in this 

domain. While the integration of a registry into a trial presents complexities, successful endeavors in 

related fields point to an innovative trial design that harmonizes these two research approaches. 
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Chapter 1: Introduction 

1.1 Chapter outline 

In this opening chapter, an overview of the content and structure of the thesis is provided. The chapter 

begins by delving into the medical background of sciatica, explaining its characteristics, causes, 

prevalent treatment options and methods of measuring pain and quality of life. Various clinical study 

designs are discussed, with an emphasis on the importance of randomized controlled trials (RCTs). A 

literature review of impactful studies in sciatica treatment is conducted, focusing on key comparisons 

such as microdiscectomy vs. conservative treatment and microdiscectomy vs. epidural steroid 

injections. Additionally, the potential of routinely collected data in clinical research is examined, 

highlighting its advantages and limitations. Finally, an outline of the overall structure and objectives 

of the thesis is presented. 

1.2 Medical background – Sciatica and treatment options 

The sciatic nerve is the longest and widest nerve in the human body and runs from the lower back 

down the back of each leg (Ropper and Zafonte, 2015). It controls several muscles in the legs and 

receives sensation signals from the skin. Symptoms of any irritation of this nerve include lower back 

and leg pain, as well as numbness. The term sciatica is often confused with general back pain but is a 

symptom, not a condition. The most common cause for sciatica is a herniated disc that is pressing on 

the nerve (in over 90% of the cases); often in the lumbar region of the spine (Koes et al., 2007). Sciatica 

affects over 3% of the UK population at any time (Wilby et al., 2021).  

Duration and severity can vary and in 60-90% of patients, spontaneous regression occurs. Symptoms 

can then be treated with conservative methods such as physiotherapy and analgesics (Chen et al., 

2018). Persisting pain (longer than 6 weeks) though, might require invasive methods. Most commonly 

performed is a surgical microdiscectomy. In this procedure the portion of the disc that is pressing on 

the nerve is removed. Although being an open surgery, a microdiscectomy can be done with relatively 

small incisions and minimal tissue damage. In most comparative clinical studies, the effectiveness of 

microdiscectomy and non-surgical treatment, such as physiotherapy or analgesics, has been 

investigated. However, results of those studies were inconclusive. Whereas some studies found 

significant superiority of surgery, others concluded that there is no difference in the long term (Atlas 

et al., 1996, Buttermann, 2004, Chen et al., 2018, Osterman et al., 2006, Weinstein et al., 2008). A 

meta-analysis has shown that the difference of treatment outcomes is not significant enough to 
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establish microdiscectomy as overall superior and therefore there exist no specific healthcare 

guidelines (Chen et al., 2018). 

Epidural steroid injections (ESI) are a non-surgical treatment option for sciatica that may be used in 

combination with physiotherapy. During the procedure, a mixture of local anaesthetic and steroid 

medication is injected into the spine through one of three routes: caudal epidural, inter-laminar, or 

transforaminal epidural steroid injection (TFESI). 

There are currently no specific recommendations for the treatment of sciatica in individual cases. 

Further research is needed to better understand the most effective treatment methods for optimizing 

healthcare in these cases. Before reviewing prior impactful trials in this medical field, it is necessary 

to examine and discuss commonly used methods for measuring pain in trials. 

1.3 Outcome Measures for back and leg pain 

1.3.1 Pain scores 

Many clinical studies can rely on quite accurate instruments to obtain a certain measurement value 

e.g. blood pressure, body weight, blood sugar etc. There are no instruments though, to objectively 

measure pain, which has to be reported by the patients themselves. There are several techniques to 

assess a patient’s pain and to capture any improvement of a certain treatment. Methods with which 

a patient indicates pain for example on a scale between “no pain” and “pain as bad as it could be” 

such as a Visual Analogue scale (VAS) (Price et al., 1983) are still commonly used.  

1.3.2 Quality-of-life (QoL) questionnaires 

For specific pathologies such as sciatica, there exist questionnaires that try to evaluate pain intensity 

and quality of life as informatively as possible, in order to quantify a treatment effect. It is common to 

assess a patient's quality of life by using a score that considers not only the intensity of pain, but also 

its impact on daily life. This approach aims to measure how the pain affects the patient's ability to 

perform daily activities and overall quality of life, rather than just the intensity of the pain itself.  

The modified Roland Morris (MRM) questionnaire (Roland and Morris, 1983) is a tool used to assess 

the impact of low back pain on an individual's quality of life. It is a self-administered questionnaire 

that consists of 24 statements about daily activities that may be affected by low back pain. The 

individual is asked to indicate how often they experience difficulty with each activity due to their low 

back pain on a scale of 0 (never) to 5 (always). The total score is calculated by summing the responses 

to each statement, with a higher score indicating a greater impact of low back pain on quality of life. 

The MRMQ has been modified for use in assessing the impact of sciatica specifically (Kim et al., 2010). 
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Another method is the Oswestry Disability Index (ODI) (Fairbank and Pynsent, 2000). It consists of 10 

items that cover several characteristics of low back and leg pain, e.g. intensity, standing, sleeping, sex 

life (if applicable) etc. Each item is scored from 0 to 5, with higher values representing greater 

disability. The overall score is then calculated as percentage of the scores of the applicable sections.  

The Core Outcome Measure Index (COMI) is a questionnaire for assessing low-back and leg pain, 

patient satisfaction, and treatment complications (Mannion et al., 2016). It has been found to be 

highly correlated with other methods for measuring these outcomes. It is short but consistent, what 

makes it desirable for minimizing non-response and missing data. 

Other commonly used measurements are the Sciatica Bothersome Index (SBI) and the Short Form 36 

(SF-36) (Burholt and Nash, 2011, Grøvle et al., 2010). The SBI is a questionnaire that captures the 

impact of sciatica on quality of life. Items cover the frequency and intensity of sciatica-related 

symptoms, as well as the impact of these symptoms on daily activities. The SF-36 is a general health 

survey that assesses physical and mental health-related quality of life. It consists of 36 items that cover 

physical functioning, role physical, bodily pain, as well as mental health. 

Chiarotto et al. aimed to generate a consensus of outcome measurements for low back pain and 

proposed ODI and Roland Morris for physical functioning and the numeric rating scale (NRS) for pain 

intensity (Chiarotto et al., 2018), but there exist no standards yet. One of the difficulties of comparing 

different studies that investigate the effect of different sciatica treatments is that outcome measures 

are only comparable up to a certain degree. Most of the measures correlate with each other quite 

strongly, but common measurement standards are needed. Whether or not the COMI can be used as 

core outcome measurement for sciatica patients has to be verified by further studies. 

1.4 Clinical study designs 

Before examining clinical trials for the treatment of sciatica, it is important to understand the different 

types of study designs that are commonly used in clinical research. Clinical studies can be classified as 

either observational or experimental, depending on whether the investigator intervenes in the study 

or simply observes and collects data. Experimental studies involve introducing an intervention and 

studying its effects, while observational studies do not involve any intervention. Clinical studies can 

also be classified based on the time frame in which data are collected, as either retrospective or 

prospective. Retrospective studies involve looking at data from the past, while prospective studies 

involve collecting data going forward from the start of the study. Observational studies can be either 

retrospective or prospective, while experimental studies are always prospective. When an 
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observational study covers a long period of time, it is called a cohort study (Ranganathan and 

Aggarwal, 2018). 

When evaluating the effectiveness of a treatment in clinical studies, it's essential to make comparisons 

with other treatments or control groups, such as placebos. To obtain accurate results, one should 

maintain balance between the treatment groups, considering factors like age, sex, and severity of 

disease that might influence the measured outcome. The aim is to minimize any bias in the estimates 

that could lead to unreliable results. However, there are various ways that bias can be introduced, 

making it difficult to ensure completely bias-free results. Selection bias, for example, can occur when 

patients or clinicians select interventions based on personal preference. To prevent selection bias, 

some clinical studies therefore randomly assign recruited patients to a treatment (Randomised 

Controlled Trials) (Infante-Rivard and Cusson, 2018). However, when comparing interventions such as 

surgery and physiotherapy, it is not possible to ensure that neither the clinician nor the patient knows 

which treatment has been assigned (blinding). 

 

1.4.1 Randomised controlled trials 
 

Randomised controlled trials (RCTs) are considered the "gold standard" in clinical research because 

they aim to control as many confounding factors as possible. In RCTs, patients are randomly assigned 

to a treatment and can therefore only be conducted prospectively. However, RCTs can be expensive 

and time-consuming due to regulatory requirements. Due to strict protocols, it is also possible that 

they do not accurately reflect real-world practice. Observational and non-randomised studies can 

sometimes be a useful alternative (Spieth et al., 2016).  

A potential issue of analysis of RCTs is cross-over. It occurs when patients are allowed to switch to 

another treatment arm after their assignment. One can analyse the data as treated (AT) or as intended 

to treat (ITT). ITT describes the analysis of patients using the treatment they were initially assigned to, 

instead of the treatment they received. The ITT method preserves the benefits of randomization, but 

the as-treated method is more intuitive. Patients may also drop out of a trial for various reasons, 

leading to missing data. High percentages of patients that changed treatment during the study or were 

lost to follow-up can impact statistical results. It is therefore crucial to consider which methods to use 

for analysis, to prevent incorrect conclusions (Tripepi et al., 2020). 

RCTs are highly regulated, making them challenging to conduct. The approval and funding process also 

involve bureaucratic barriers, leading to high costs for conducting the trial (Hariton and Locascio, 

2018). These factors may decrease the willingness of patients to participate. Additionally, strict criteria 



23 
 

for patient recruitment and the potential for randomisation cause a non-representative sample of the 

patient population. Blinding is used to address treatment preferences and protect against bias, but 

this is not always possible, e.g. in the case of treatments with distinctive procedures (e.g. TFESI 

compared to microdiscectomy). 

1.4.2 Observational studies 
 

Without the process of randomisation, the choice of treatment is very likely to be connected to the 

severity of the disease and presence of other conditions. Even if the statistical analysis methods 

account for potential confounding factors and differences between patients, these adjusted 

associations might still reflect residual confounding due to factors that were not assessed properly or 

due to unknown associated factors. Such potential biases might result in false conclusion, especially if 

the investigated treatment effect is rather moderate (Faraoni and Schaefer, 2016, Nørgaard et al., 

2017). 

Many reviews that compared treatment estimates from randomised trials and observational trials 

found those estimates to be significantly different from each other. For example, an observational 

study of the Danish Civil Registration System that tracks 98% of all incidents of cancer in Denmark 

reported that statin use in cancer patients is associated with reduced cancer-related mortality, even 

statistically adjusting for known potentially confounding factors (Nielsen et al., 2012). Other 

observational studies reported statin therapy being associated with reduced incidence of cancer. A 

later performed meta-analysis of RCTs including more than 10,000 patients reported no apparent 

effects of statins on incidence of cancer or death due to cancer (Collins et al., 2016).This shows that 

randomisation is in many cases a helpful tool to simplify the capture of unbiased cause-effect 

relationships.  

Ultimately, RCTs are with good reason seen as ‘gold-standard’ for clinical research, especially if a study 

aims for the approval of a new intervention. In case of evaluating treatments that are routinely done 

though, the analysis of vast amount of collected data in registries can complement existing RCT results 

and add valuable insights. Concato et al. proposed that both types of studies are needed to assess the 

effect of treatments and that they should rather be seen as a compliments instead of one being 

superior over the other (Concato et al., 2010). Meta-analyses are seen as the highest level of quality 

in evidence-based research and can combine results from several former studies, understand 

underlying design issues and account for potential biases in the interpretation of the combined data 

(Colditz, 2010). 

1.5 Literature review of impactful prior studies regarding sciatica treatment 
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In this section, some studies that have had a significant impact on the treatment of sciatica will be 

reviewed.  

1.5.1 Microdiscectomy vs conservative treatment 

In 1996, Atlas et al. conducted a study called "The Maine Lumbar Spine Study" that focussed on the 

outcomes of surgical and nonsurgical treatment for sciatica. It was a prospective cohort study that 

followed 507 patients recruited from medical practices in Maine (US) for one year. Instead of randomly 

assigning patients to treatment groups, the treatment was chosen by the patient and the physician 

(275 patients received surgery, while 232 received nonsurgical treatment). This study design may have 

led to a bias in the results, as it is likely that more severe cases of pain were treated with surgery. 

However, baseline characteristics such as age and sex were balanced between the two groups, 

although the nonsurgical group had a slightly higher percentage in patients that received of workers' 

compensation (40.1% in the nonsurgical group and 30.4% in the surgical group, p=0.02). Worker’s 

compensation is a form of insurance that provides benefits to employees who suffer from work-

related illness or injuries (U.S. Department of Labor). This could be a factor that affects the quality of 

treatment and possibly its outcomes. A total of 118 patients (23% of the total) dropped out of the 

study, but the characteristics of these "dropouts" were similar between the two groups. Therefore, 

only the remaining patients were included in the statistical analyses. When examining baseline clinical 

features such as pain severity and disability, there were many significant differences between the two 

groups. The Modified Roland Morris score and the number of disability days in the past month were 

significantly higher in the surgical group. In addition, the surgical group had a higher percentage of 

patients receiving narcotic treatment and a higher percentage of patients with worse leg pain 

compared to back pain. The significant differences in these clinical features suggest that the two 

treatment groups were not statistically comparable and the results of the study may be biased. The 

study found a significant superiority of surgery, with 71% of patients in the surgical group reporting 

definite improvement compared to 43% in the nonsurgical group. However, these results should be 

interpreted cautiously (Atlas et al., 1996). 

A very impactful trial was the Spine Patient Outcomes Research Trial (SPORT) by Weinstein et al. It 

was a combination of both observational and randomised trial components, with 501 enrolled 

participants in the randomised trial and 743 participants in the observational cohort at 13 spine clinics 

in 11 US states.  

The observational component involved enrolling participants into different treatment groups based 

on their preferences, clinical characteristics and other factors. These participants were followed over 

time, and their outcomes were assessed using standardized measures and patient-reported 
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questionnaires. It aimed to gather real-world data on the outcomes of different treatment approaches 

as they were chosen by the participants and their healthcare providers. In the randomised component 

of the study, participants were randomly assigned to receive either surgical intervention or non-

surgical treatments. By combining these two components, SPORT aimed to provide a comprehensive 

assessment of the effectiveness of different treatment approaches for spinal disorders. This hybrid 

design allowed researchers to gather real-world evidence from observational data while also 

establishing causality and evaluating treatment effects through randomised controlled trials.  

The study was conducted by the Department of Veterans Affairs and funded by the National Institutes 

of Health. The SPORT trial enrolled 2,437 patients with low back pain and sciatica at 13 clinical sites in 

the United States between 1999 and 2004. Participants that were part of the randomised component 

of the trial (501), were allocated to one of three treatment groups: surgical intervention (discectomy 

or laminectomy), non-surgical intervention (physical therapy, education, and medication), or 

"watchful waiting" (delayed treatment). The results of the SPORT trial were published in the New 

England Journal of Medicine in 2006. It also continued to collect data after the first publication, which 

was subsequently investigated in secondary analyses.  

The study compared the effects of discectomy and non-operative care on outcome measures such as 

changes in the SF-36 Bodily Pain and Physical Function scales and the modified Oswestry Disability 

Questionnaire. These measures were assessed at 6 weeks, 3 and 6 months, and annually for four years. 

Due to a high rate of cross-over in the randomised trial, the statistical analysis was conducted using 

both the intention-to-treat method and the as-treated method. By the end of the four years, only 59% 

of the patients allocated to surgery had actually received it, while 45% of the patients allocated to 

non-operative care received surgery. Most patients who switched treatment arms did so within the 

first year (57% and 41% in the surgery and non-operative groups, respectively). The observational 

cohort had a significantly lower rate of cross-over (95% of patients who chose surgery received it, 

while 24% of patients who chose non-operative care received surgery). The two study groups had 

similar baseline measurements, although the observational cohort had slightly more symptoms and 

functional impairment. The results of both study groups showed significant benefits of surgery for all 

secondary measures except for work status, which showed a non-significant benefit. The primary 

outcomes of the observational study also showed a significant benefit for surgery. The as-treated 

analysis of the randomised trial produced results similar to those of the observational study, showing 

a significant benefit for surgery. However, the intention-to-treat analysis did not show a significant 

benefit (p-values of 0.15, 0.42, and 0.074 for bodily pain, physical function, and ODI, respectively). This 

highlights the challenges of statistical analysis in randomised trials with high rates of cross-over. An 
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intention-to-treat analysis may not detect benefits, while an as-treated analysis does not protect 

against confounding (Weinstein et al., 2008).  

In 2018, Chen et al. published a systematic meta-analysis that included 19 randomised trials 

comparing surgery to non-operative treatment for lumbar disc herniation. Sample sizes of the 

included studies varied between 40 and 472 with a mean and standard deviation of 110.37 (s.d. 97.38). 

The total number of patients of all included trials was 2,272. The trials measured various outcomes, 

including self-reported pain (using visual and numeric rating scales, 11 studies), the ODI questionnaire 

(5 studies), and adverse events. These outcomes were divided into three categories: short-term (one 

to three months), mid-term (three to six months), and long-term (up to 12 months). Non-operative 

treatment included various approaches such as physiotherapy, home exercise instruction, medication, 

bed rest, and epidural steroid injections. 

Compared with non-operative treatment, surgical treatment was more effective in lowering pain. For 

this, 12 trials were compared. Of these trials, 9 (961 patients) reported data at the short-term, three 

(293 patients) at the mid-term, and seven (725 patients) at the long-term follow-up periods. Two trials 

did not report the time points. A general concern about the quality of the data was raised. The 

sensitivity analysis indicated that the pooled result was unstable when the studies were removed one 

by one for the short-term follow-up period. Additionally, the funnel plot showed an asymmetrical 

distribution for self-related pain, suggesting the possibility of publication bias.  

A total of 5 studies (842 patients) recorded the ODI questionnaire at the short-term, four (765) at the 

mid-term and four (762) at the long-term. Overall, surgical intervention was found to be more 

effective in improving disability than conservative treatment. The test for subgroup differences 

revealed that surgical treatment more effective than conservative treatment for mid-term and long-

term periods. The significance of these findings did not change when the studies were removed one 

by one at the mid-term.  

In terms of adverse events, no significant difference was observed between surgical and conservative 

treatments in 6 trials involving 1,060 patients. The sensitivity analysis indicated that the pooled result 

was not influenced by the individual trials.  

Overall, the study concluded that it was not possible to make a firm recommendation based on the 

available data (Chen et al., 2018). 

1.5.2 Microdiscectomy vs epidural steroid injection (ESI) 

There are several studies that compare microdiscectomy to conservative treatments like 

physiotherapy, as well as studies that compare it specifically to epidural steroid injections. Epidural 
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steroid injections are a low-risk alternative to surgery, and their efficacy was investigated in a study 

by Buttermann et al. (Buttermann, 2004). This randomised prospective trial studied 100 patients who 

had not improved after at least six weeks of non-invasive treatment. The trial used interlaminar 

epidural steroid injections and assessed treatment improvement using the ODI questionnaire as a 

measure of quality of life. Both treatments resulted in a significant decrease in pain and disability 

(p<0.0001), but surgery was found to be superior to injections (p=0.015). The study concluded that 

epidural steroid injections can be a viable alternative, but are inferior to surgery. A retrospective case 

series by Manson et al. reported that surgery could be avoided in 56% of surgical candidates, while a 

retrospective study by Wang et al. reported that 77% of surgical candidates could avoid surgery (Wang 

et al., 2002, Manson et al., 2013). 

It should be noted that the study by Buttermann et al. only considered the interlaminar approach for 

injections, and it is not known if other approaches would lead to different treatment results 

(Buttermann, 2004). A meta-analysis by Lee et al. reviewed seven randomised controlled trials and 

three prospective observational studies and compared the treatment effects of interlaminar and 

transforaminal steroid injections using pain intensity measurements such as the visual analogue scale 

(VAS), ODI, and numerical rating scales. The study found that transforaminal injections resulted in 

significantly better short-term outcomes in terms of pain control, and non-significantly more 

favourable long-term pain reduction (Lee et al., 2018). 

In order to develop more evidence-based healthcare guidelines, there has been ongoing research 

comparing transforaminal epidural steroid injections (TFESI) to microdiscectomy. Wilby et al. 

conducted a prospective randomised controlled trial called Nerve root block versus surgery (NERVES), 

which directly compared these two treatments in 163 patients with sciatic pain that had not improved 

after at least six weeks of non-operative treatment. The primary outcome was the Oswestry Disability 

Index (ODI) questionnaire score at 18 weeks post-randomisation, and secondary outcomes included 

numerical pain ratings, the modified Roland-Morris score, and the COMI scale at 12-week intervals, as 

well as patient satisfaction at 54 weeks. During the study, 35% of the TFESI group underwent 

additional microdiscectomy. The study used the intention-to-treat method to control for confounding 

factors. It found no statistically significant difference between the two groups for the primary 

endpoint, with mean reductions in ODI scores of 26.74 in the surgical group and 24.52 in the TFESI 

group. However, the surgical group had four cases of serious adverse events, while there were none 

in the TFESI group. Additionally, the cost of the procedures was very different, with approximately 

£600 for TFESI and approximately £4,000 for microdiscectomy. This suggests that TFESI could be a 

suitable standard procedure for the treatment of sciatica, with surgery reserved for cases where TFESI 

is ineffective (Wilby et al., 2021). 
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1.6 Potential of the use of routinely collected data 

Observational studies, can provide additional information to supplement results from randomised 

controlled trials (RCTs). However, it is important to note that observational studies may be subject to 

bias, especially when the treatment effects being studied are moderate (Faraoni and Schaefer, 2016). 

Routinely collected data from registries may differ in structure from data collected through RCTs, due 

to strict data regulation policies in RCTs. Registries are often designed for large amounts of data, 

potentially from multiple different sites. The sites’ financial resources or treatment preferences can 

affect the reliability of the analysis. 

However, the large amount of data collected by clinical registries can be used to identify rare events 

or to detect patterns of outcomes in certain subgroups of patients. In 2000, EUROSPINE, the Spine 

Society of Europe, and the Institute for Evaluative Research in Orthopaedic Surgery at the University 

of Bern, Switzerland developed the Spine Tango (ST) registry for outcomes regarding spinal surgeries. 

It was launched in 2002 and now includes over 700,000 collected forms (EUROSPINE, 2022b). 

Several studies have found that observational studies, which involve collecting data on people who 

are already receiving a certain treatment, can provide valuable insights into real-world practice and 

outcomes. Clinical registries, which contain a large amount of data, can be used to describe patterns 

of care, understand variations in treatment and outcomes, and identify subgroups within a 

heterogeneous population of people with chronic low back pain (Hooff et al., 2015). 

Most studies that aim for the approval of new drugs or techniques are randomised controlled trials 

(RCTs). However, observational studies can be very useful for the evaluation of the effectiveness of 

treatments in routine clinical practice outside of a research setting. These types of studies are 

relatively inexpensive and quick to conduct (if registries are already set up) and can provide valuable 

information on routine practice. Longitudinal data is particularly useful for market surveillance 

(Gilmartin-Thomas et al., 2018).  

Clinical registries are being increasingly acknowledged as helpful data sources in clinical research and 

usually focus on a specific medical condition, population, or intervention. In the era of digitalization, 

the data available in registries offers valuable attributes for clinical research: cost-effectiveness (once 

established) and easy accessibility. Denmark, Sweden and the UK have some of the most complete 

national databases that are collecting data from patients in hospitals and health-care organizations, 

e.g. SWEDEHEART, SweSpine, and Spine Tango (James et al., 2015). The analysis of the data in such 

registries with a representative patient population helps assessing health care effectiveness and safety 

and evaluating prognostic factors (José and Edelman, 2017). 
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1.7 Thesis outline 

The aim of this project was to examine how registry data is currently being used in the context of 

sciatica, and to consider how insights from routinely collected data can inform future clinical trials. To 

do this, data from the Spine Tango registry and the NERVES trial were available.  

The first step was to conduct a literature review of both observational studies and randomised 

controlled trials (RCTs) in the sciatica patient population, comparing the characteristics of these 

studies in terms of missing data, collected outcomes, study length, number of patients, and use of 

registries. The results of this literature review provide an overview over how registry data is currently 

being used and its untapped potential. RCTs from other medical fields that successfully integrated a 

registry in the study design were analysed to identify ways in which it can be used to support future 

clinical studies in the sciatica-affected patient population. 

Another aspect of the project was to compare the routinely collected data from the Spine Tango 

registry and the NERVES trial, looking at factors such as missing data and collected outcomes. The 

project also involved identifying correlations between patient characteristics and conducting a full 

descriptive analysis of both data sets.  

Additionally, part of the project was to develop an appropriate method for imputing missing data in 

patient-reported outcome measures in routinely collected data. To do this, a simulation study using 

data from the Spine Tango registry was conducted. The study used patients with complete outcome 

and baseline questionnaires as a basis, and artificially introduced missing data at both the item and 

questionnaire levels. This simulation covered several parameters, such as the mechanism of 

missingness, the method of imputation (at the item and questionnaire score level), the percentage of 

missingness, and the cut-off points for calculating questionnaire scores.  

Finally, the project involved the development of prognostic models to predict patient outcomes after 

surgery, using techniques such as regression and mixed-effect models. Outcomes that are considered 

included the COMI score and complications during surgery. The goal was to identify risk factors that 

could improve routine healthcare and decision-making, and to develop a prognostic model that can 

predict patient outcomes before an intervention. 

The next chapter will offer an in-depth review of various research studies, including both observational 

studies and RCTs. This examination will focus on factors such as collected outcomes, study duration, 

sample size, missing data, and whether registries were utilized. If data from different sources show 

similarity, it would underscore the potential for integrating registry data into RCTs. Furthermore, the 
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chapter will explore how such integration can function and the limitations associated with this 

approach.  
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Chapter 2: Exploring the potential of the 

use of spinal registry data in clinical trials 
 

2.1 Chapter Outline 

The aim of this chapter is to conduct a literature review of both observational studies and RCTs in the 

sciatica patient population. The objective is to compare the characteristics of these studies, including 

aspects such as missing data, collected outcomes, study duration, patient numbers, and the potential 

utilization of registries. The investigation seeks to determine the level of comparability between these 

two types of publications.  

The rationale behind comparing missing data is to assess data quality, with an initial expectation that 

observational studies may have a higher proportion of missing patient information. However, if this 

hypothesis is not true, the reliability of results could be equally strong.  

Moreover, it is anticipated that observational studies, particularly those utilizing registries, would 

generally exhibit larger sample sizes. In cases where the collected outcomes, duration of follow-up, 

and dropout rates align with those of RCTs, the extensive pool of data collected can be readily 

compared with RCT data. Consequently, combining these sources may offer a comprehensive 

overview of the study population.  

Finally, the results of this literature review provide an overview of how often registry data is currently 

being used in studies in this population and for which purposes. RCTs from other medical fields that 

successfully integrated a registry in the study design were analysed to identify ways in which it can be 

used to support future clinical studies in the sciatica-affected patient population. 

2.2 Introduction 

Clinical registries are databases that collect data from routine interventions in real world practice. 

They can be a valuable source of evidence for researchers, as well as practitioners, due to their 

capability to collect vast data over a long time. Depending on the scale of a registry, information about 

demographic sub-populations and rare events can be detected and risk can be assessed accurately. 

One example of a large-scale clinical registry is the SWEDEHEART registry, which is a nationwide 

registry in Sweden that collects data on all patients with acute coronary syndrome and heart failure. 

It includes information on baseline patient characteristics, treatment details, as well as outcomes. It 



32 
 

has been used to study the effectiveness and safety of various interventions (Bäck et al., 2021, Figtree 

et al., 2022, Mars et al., 2021). 

Another example is the Spine Tango registry, which is a global registry for spine surgery and is analysed 

in depth in Chapter 3 of this project. The registry collects data on patient characteristics, surgical 

procedures, and outcomes (EUROSPINE, 2022b). 

Evidence from clinical registries can be used in a number of ways to inform clinical practice and 

research. Not only can registry data be used to identify patterns of treatment effectiveness, but also 

to identify potential adverse effects. With the large number of patients that are included in routinely 

collected data, rates of rare events can be assessed with greater accuracy than using data from RCTs, 

which often that do not include as many patients. The large scale of some registries can also facilitate 

the development of prediction models that can aid practitioners in their decision making. 

In recent years, the use of registries has been increasingly investigated (Lauer and D'Agostino, 2013), 

but data quality in RCTs is unmatched, due to their randomisation and consistent follow-ups. The 

National Health Service (NHS) developed a payment model called the best practice tariff, which is a 

financial incentive system that rewards hospitals for delivering high-quality care according to specific 

guidelines for various medical conditions and procedures. The aim is to improve patient outcomes and 

reduce costs by encouraging healthcare providers to adhere to best practice guidelines. This also 

includes specific requirements for data collection and reporting to the British Spine Registry (BSR), 

which records patients and surgical data for all spinal procedures in the UK. A study by Habeebullah 

et al investigates the impact of this tariff by comparing patient data before and after its introduction. 

The authors found that the introduction significantly increased compliance with the BSR, with the 

percentage of cases entered into the registry improving from 70% to 97% (Habeebullah et al., 2021).  

Registry-based randomised controlled trials (RCTs) are a type of RCT that incorporates a clinical 

registry (Li et al., 2016). A registry can be used to identify and enrol participants, and to collect data 

on patient characteristics, interventions, and outcomes. The implementation of an existing registry 

can reduce time and resources required to identify and enrol participants and therefore potentially 

lead to a more efficient trial in terms of outcome collection and costs (Dombkowski et al., 2014, Rao 

et al., 2014). Registry-based RCTs can also include a diverse group of patients who receive routine care 

in real-world settings. This can improve the generalisability of trial results to real-world settings. 

However, the registry data may not be as detailed as data collected just for the trial. Overall, registry-

based RCTs are a promising approach to clinical trial design, and have the potential to provide valuable 

insight about interventions in real-world populations. However, it is important to carefully consider 
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the strengths and limitations of this approach, and to ensure that appropriate methods are used to 

minimize bias (Karanatsios et al., 2020). 

A previous systematic review by van Hooff et al. (Hooff et al., 2015) focussed on spinal disorder 

registries and their impact on routine care. 25 spine registries were identified, representing 14 

countries. However, it concluded that there was a lack of evidence that registries have significantly 

improved the quality of spine care. The purpose of this chapter is to review observational studies and 

randomized controlled trials (RCTs) regarding surgical interventions for disc herniations. The review 

will analyse various aspects of the studies, such as reported missing data, collected outcomes, study 

duration, sample size, and the use of registries. This analysis will offer an overview of how many 

studies, both observational and investigational, incorporate registries and the manner in which they 

are employed. By identifying the different ways in which registries are utilized, the chapter seeks to 

uncover any untapped potential. Moreover, successful RCTs that employed registries to enhance trial 

conduct will be examined to identify best practices for implementing registries in clinical research and 

to comprehend the potential advantages of this approach. 

2.3 Review – Methods 

.This chapter does not aim to provide the most comprehensive literature review possible, but instead 

aims to give an overview of the RCTs and observational studies conducted in this patient population, 

particularly focusing on: 

a) missing data,  

b) collected outcomes,  

c) study length,  

d) number of patients, and  

e) the use of registries.  

Therefore, the review was limited to the PubMed library Central® (PMC) of the U.S. National Institutes 

of Health's National Library of Medicine (NIH/NLM) and focused on completed studies (excluding 

ongoing studies or trials). This literature review was conducted on the 22nd of July 2022. The following 

inclusion and exclusion criteria were applied. 

2.3.1 Inclusion Criteria 
 

• Patient Population: Patients diagnosed with sciatica resulting from lumbar disc herniation. 

• Medical Procedure: Microdiscectomy for the treatment of lumbar disc herniation. 
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• Study Types: Two types of studies will be included: 

o Randomized Controlled Trials (RCTs) 

o Observational Studies (cohort studies, case-control studies, cross-sectional studies). 

 

2.3.2 Exclusion Criteria 
 

• Not Primarily Focused on Surgical Outcome: Publications that do not primarily investigate the 

surgical outcome, but rather focus on analgesics, anaesthetics, inflammation, diagnostic tools, 

pre-surgery, during-surgery, or post-surgery medication, etc. 

• Not in Humans: Studies conducted on non-human subjects. 

• Non-Surgical Interventions: Publications that investigate non-surgical interventions. 

• Other surgical procedures: Studies that included patients with other procedures such as spinal 

fusions. 

• Other medical indication: Studies that do not include patients with lumbar disc herniations. 

• Other spinal regions: Studies that were focussed on other spinal regions (cervical, thoracic). 

• Non-English Publications: Studies published in languages other than English. 

• Wrong Publication Type: Literature reviews, meta-analyses, secondary analyses or protocols. 

• Specific Subset of Patients: Studies specifically targeted to a subset of patients, such as those 

who underwent failed surgery, recurrent surgery, or amputees, will be excluded. The focus is 

on the general patient population. 

In order to specify a search with multiple terms, they can be connected with logical “AND” and “OR” 

operators. The first step was to identify MesH and key terms that describe the patient population, 

which are listed in Table 2.1. A MeSH term (Medical Subject Heading) is a standardized and controlled 

vocabulary used by the National Library of Medicine (NLM) to categorize and index biomedical 

literature. It consists of specific terms or phrases that represent various medical concepts, conditions, 

treatments, and other relevant topics. MeSH terms are assigned to scientific articles and other 

resources to facilitate more efficient and accurate searching in databases like PubMed. 

“disc herniation*”[tw]  

“disk herniation*”[tw] 

“herniated disc*”[tw] 

“herniated disk*”[tw] 

“Intervertebral Disc Displacement“[Mesh] 

“slipped lumbar disc*”[tw] 
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“Sciatica”[Mesh] 

Table 2.1: MesH and key terms describing the patient population. 

By using the * symbol in the search term, the word stem can be looked for instead of listing all possible 

word endings. These were then connected with the OR operator and saved as search terms (1). To 

specify the type of medical intervention that this literature was focussed on, the MesH and key terms 

in Table 2.2 were used.  

“Discectom*”[tw] 

“Diskectom*”[tw] 

“Diskectomy"[Mesh] 

“Microdiscectom*”[tw] 

“Microdiskectom*”[tw] 

”Sciatica/surgery"[Mesh] 

“Intervertebral Disc Displacement/surgery“[Mesh] 

“spinal surger*”[tw] 

“Spine/surgery“ [Mesh] 

“Decompression, Surgical“[Mesh] 

Table 2.2: MesH and key terms describing the medical intervention. 

Again, these were then connected with the OR operator and saved as search terms (2).  

To specify the research publication type for observational studies the MesH and key terms listed in 

Table 2.3 were used and connected with the OR operator. This category of search terms was not 

further expanded to terms such as “prospective”, since that would include publications that would 

not necessarily be observational studies.  

“Observational Study“[Publication Type] 

“observational”[tw] 

“retrospective*”[tw] 

“Retrospective Studies“[Mesh] 

Table 2.3: MesH and key terms describing the publication type of retrospective observational. 

These were then saved as search terms (3).  

To specify the research publication type for RCTs the MesH and key terms listed in Table 2.4 were used 

and connected with the OR operator. 

RCT[tw]  
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RCTs[tw]  

“randomized controlled trial*”[tw] 

"Randomized Controlled Trial"[Publication Type]  

“Randomised Controlled Trial*”[tw] 

“Clinical Trial*”[tw] 

Table 2.4: MesH and key terms describing the publication type of RCTs. 

These were then saved as search terms (4). 

Afterwards, two searches were conducting by connecting (1), (2) and (3) for observational studies and 

(1), (2) and (4) for RCTs with “AND” operators.  

After applying these search terms, the literature review was conducted in two rounds. The first round 

involved screening titles and abstracts, and the second round entailed a comprehensive reading of the 

remaining studies. 

2.3.3 Summary techniques 
 

In summarizing the amount of missing data across the studies (missing data defined as the number of 

patients that had to be excluded in the final analysis of the study), three techniques were employed. 

Firstly, the mean and standard deviation of the reported missing data were calculated for each study, 

without considering their sample sizes, ensuring equal weight for each mean value. Secondly, the 

weighted mean and standard deviation, accounting for the sample sizes, were determined to estimate 

the average missing data at the population level. Furthermore, missing data was categorised in the 

following intervals: 0-10%, 10-20%, 20-30%, 30-40% and 40-50%. When a study precisely reported 

10% missing data, it was appropriately placed within the 0-10% category, and the same approach was 

taken for other specific percentages. Notably, no study included in the analysis had more than 50% 

missing data. Missingness was defined as the number of patients excluded from the study due to their 

lack of data in essential patient covariates or outcomes, such as instances of loss to follow-up. If 

indicated, missing data was measured for the primary outcome timepoint.  

In order to summarise the sample sizes of the studies, they were grouped into distinct intervals: less 

than or equal to 50, 51 to 100, 101 to 200, 201 to 500, 501 to 1,000, 1,001 to 5,000, and more than 

5,000 patients. An overall mean and standard deviation of sample size were also provided for the two 

included publication types.  

To summarize the duration of the studies, they were categorized into specific intervals: less than or 

equal to six months, six months to one year, one to two years, two to five years, and more than five 
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years. Hereby, a study that reported a follow-up period of exactly one year, would be categorised into 

the “six months to one year” category. The same approach was taken for other specific follow-up 

periods. Additionally, an overall mean and standard deviation of study length were calculated for the 

two types of publications included. 

In order to obtain a comprehensive overview of the outcomes gathered in the studies, we conducted 

a count of publications measuring each specific outcome. As studies commonly include multiple 

outcomes, it is important to note that this is not a simple one-to-one counting process. Instead, we 

accounted for the total number of publications for each outcome, and these results are visually 

presented through bar plots, providing a clear and informative representation of the overall findings. 

2.4 Review – Results 

The results of this review will be presented descriptively,  providing a PRISMA-flow diagram of the two 

review rounds and categorised exclusion. 

2.4.1 Observational studies 

With the previously established combination of search terms (1), (2) and (3) 246 observational studies 

were identified regarding surgery due to disc herniations. After an initial screening of titles and 

abstracts 80 were excluded. At second screening at which papers were read in depth, a further 77 

were excluded. Figure 2.1 shows a diagram of the exclusion of papers in the review rounds. 
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Figure 2.1: PRISMA flow diagram for exclusion of observational studies in review rounds.  

The category of “Not primarily focussed on surgical outcome” included: drugs after surgery, 

anaesthetics, risk of site infections, depression/psychology, post-surgery treatment, extubating 

techniques during surgery, discharge time, impact of an HD videodisk program on patient satisfaction, 

treatment preferences, inflammation profile of herniated discs, degree of macrophage infiltration on 

disc material, costs due to fluid leaks and more. The category of “Specific subsets of patients” included 

publications that focussed on subsets of patients such as amputees, failed surgery and re-herniation. 

The full text of 1 article could not be accessed. The first author of this paper was contacted to request 

access to the full text, but there was no response to date. This led to a total of 88 articles included in 

this review. A list of all included publications is listed in Appendix A. 

 

2.4.2 RCTs 

With the previously established combination of search terms (1), (2) and (3) 542 RCTs were identified 

regarding surgery due to disc herniations. After an initial screening of titles and abstracts 423 were 

excluded. At second screening at which papers were read in depth, a further 43 were excluded. Figure 

2.2  shows a diagram of the exclusion of papers in the review rounds. 
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Figure 2.2: PRISMA flow diagram for exclusion of RCT publications in review rounds.  

The category “Not about surgery effect” included publications that focussed on skin incisions, bladder 

needs, drain usage, scarring prevention, risk of site infections, psychology, MRI imaging, discharge 

time, pre-operative information-video effect on patient decision, bed rest decision or the effect of 

showing patients removed disc material. The full text of 2 of the publications could not be accessed. 

The authors of these papers were contact to request access to the full text, but there was no response 

to date. This led to a total of 74 articles in this review. A list of all included publications is listed in the 

Appendix B.  

In the following, these RCTs are analysed regarding missing data, number of patients, length of study, 

outcomes collected and the use of any registry. 

2.5 Review – Comparison of observational studies and RCTs 

In this section, the included randomised controlled trials (RCTs) and observational studies will be 

compared with respect to the amount of missing data, the number of patients enrolled in the study, 

the length of follow-up, and the outcome measures that were collected. In Error! Reference source 

not found., missing data percentages are compared.  
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Figure 2.3: Bar-plot of proportion of studies / trials in each category of missing data. Both data series 

have been normalised by the number of total studies in the series. 

 

As expected, a larger percentage of RCTs have low missing data than observational studies. In RCTs, 

missing data may occur due to participants dropping out of the study or not completing all study visits, 

while in observational trials, missing data may occur due to incomplete or missing data on participant 

characteristics or exposures. Clearly defined study protocols lead to more consistent data collection. 

However, there is a substantial number of publications in both RCTs and observational studies, that 

did not report missing data. Of all observational studies that reported missing data and did not 

specifically state that the analysis is by design on a complete data set, the mean and standard 

deviation of missing data was 12.95% (s.d. 15.82%). The weighted mean and standard deviation (using 

the “Mmisc” R-package), weighted with the number of patients normalised so that the sum of weights 

equals one, was 19.14% (s.d. 14.90%). 

Figure 2.4 visualises percentages of studies (normalised to either total number of RCTs or 

observational studies) in each category of number of patients that were included.  
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Figure 2.4: Bar-plot of proportion of studies / trials in each category of number of patients. Both data 

series have been normalised by the number of total studies in the series. 

Only observational studies had more than 1,000 patients. It appears that sample size of patients in 

RCTs are smaller than in observational studies. A possible reason is that observational studies do not 

have the same strict eligibility criteria that RCTs have. In an RCT, participants must meet certain criteria 

to be eligible to participate, such as having a specific condition or being of a certain age. This is done 

to ensure that the results of the trial are as accurate as possible, by minimizing any potential 

confounding factors. On the other hand, observational studies often include a more diverse group of 

participants, and do not have the same strict eligibility criteria. This means that they may be able to 

include a larger number of participants, as it is easier to recruit people for the study. The mean and 

standard deviation of the sample size of observational studies and RCTs was 278.39 (s.d. 4,610.13) 

and 105.52 (s.d. 129.82) patients, respectively. The large sample size of some of the studies caused 

the large variation in sample sized in observational studies. 

In Figure 2.5, percentages of studies (normalised to either total number of RCTs or observational 

studies) for each category of length of follow-up are visualised. 
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Figure 2.5: Bar-plot of proportion of studies / trials in each category of length of follow-up. Both data 

series have been normalised by the number of total studies in the series. 

The two data series look similar. There appears to be more observational studies than RCTs with 

follow-up between 6 months and 1 year, and more RCTs than observational studies with follow-up 

between 1 and 2 years. However, there does not seem to be a systematic difference in length of 

follow-up over which either study type is conducted. The mean and standard deviation of the length 

of observational studies and RCTs was 1.25 (s.d. 2.40) and 1.70 (s.d. 3.41) years, respectively. 

To get an overview of commonly used outcome measures and identify the most used ones, primary 

and secondary outcomes of each study were analysed. Since most studies collected more than one 

outcome, the sum of outcomes is higher than the sum of publications. In Figure 2.6, outcomes that 

were collected in both study types are visualised. 
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Figure 2.6: Bar-plot of total number of publications that collected each outcome. *Surgical outcomes 

include: neurological examinations, fusion rates, MRI, radiographic scans. 

The main outcomes are similarly often collected by both RCTs and observational studies. However, 

there were a few outcomes that were only collected by one publication type. Some RCTs collected 

hospital stay, the Roland Morris Disability questionnaire or general examinations, whereas 

observational studies did not. Conversely, some observational studies collected the EQ-5D quality-of-

life questionnaire, reoperation rates or the Macnab criteria. The Macnab criteria is a classification of 

global outcome of spinal interventions into the categories: excellent, good, fair, and poor (Ahn et al., 

2018).  

The main differences between RCTs and observational studies were the occurrence of missing data 

and number of included patients. Outcomes that are collected and follow-up times are mostly the 

same between the two publication types, which is why there is a lot of potential for observational 

studies to complement RCTs and deliver comparable data sets. These can be used to gather additional 

information of real-world practice and can potentially (due to larger sample size) lead to more 

accurate estimates, for  

The most used outcomes for surgical interventions due to herniated lumbar discs in observational 

studies were ODI and visual analogue / numerical pain rating scales (VAS / NRS), followed by the SF-

36 health related quality-of-life questionnaire. 

Of the 88 included observational studies, 22 mentioned the use of a registry or a local database. The 

public registries used were: NORSpine (9 publications), SweSpine (5 publications), Spine Tango (2 

publications), Danish spine register (1 publication), SWISSspine (1 publication) and others (NSN 
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database, including the CSORN registry, German Spine register, local clinical databases, Ohio Bureau 

of Workers Compensation database, BWC database, Quality and Outcomes Database QOD and local 

clinical databases. Registries were used for either data collection or patient monitoring.  

The most used outcomes for surgical interventions due to herniated lumbar discs in RCTs were visual 

analogue and numerical pain scores and the ODI and SF-36 health related quality-of-life 

questionnaires.  

Only 1 of the 74 included RCTs mentioned the use of a registry (Swespine). Three further trials used 

local databases for patient randomisation and data collection and storage. One trial used 

observational data from a not further specified database to complement their findings.  

2.6 Lack of use of registries 

Registries can potentially be used in both randomised controlled trials (RCTs) and observational 

studies. In RCTs, registries can be used to identify and enrol eligible participants, track their progress 

through the study, and collect data on outcomes. In observational studies, registries can be used to 

identify and follow a cohort of individuals over time and collect data on exposures, outcomes, and 

other variables of interest. Registries can be a valuable resource for researchers and healthcare 

professionals to gain insights into routine practice. For observational studies, there are multiple 

examples of where data collection of real-world evidence was obtained by clinical registries in similar 

fields such as spinal stenosis or recurrent surgeries (Fritzell et al., 2015, Möller et al., 2022, 

Sigmundsson et al., 2013). Such examples can motivate more such research to be done in the field of 

sciatica related microdiscectomies.  

However, only one RCT used a spine registry (Swespine) for their study in the sciatica-affected patient 

population that had surgery due to a herniated disc. 22 observational studies mentioned the use of a 

registry. The most commonly used registries were NORSpine, SweSpine and Spine Tango. They were 

used for data collection and patient monitoring.  

Registries can be expensive to set up and maintain. Therefore, studies do often not have the funding 

to set up a new registry for their specific purposes. However, the outcomes that were collected in 

many observational studies and RCTs are routinely collected on some of the existing registries. The 

infrastructure for data collection by using a registry exists. For studies that are focussed on outcomes 

that are routinely collected, it can be of financial benefit to conduct the study on a registry instead of 

developing a new data collection tool. In some cases, this method could even reduce the cost 

significantly and enable studies that were otherwise not possible. The potential of the use of registries 

can be seen in studies in other clinical areas. Payment schemes such as the spinal best practice tariff 
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on compliance with the British Spine Registry can be an effective way to improve not only the 

consistency of data collection via registries, but also the quality of the observational data (Habeebullah 

et al., 2021).  

2.7 Registry-based RCTs – Potential 

Registry-based randomised controlled trials (RCTs) are a modern trial design that combines the 

benefits of large-scale registries with treatment randomization. Registries can be used for various 

aspects of a trial, such as identifying patients, randomizing treatments, and collecting data. This 

approach allows for the enrolment of larger patient populations and long-term follow-up at relatively 

low cost. A registry can be used for various elements of a prospective trial, including identifying eligible 

patients, obtaining patient consent, randomizing treatments, collecting baseline data, and detecting 

and adjudicating clinical endpoints. By incorporating randomization into a clinical registry, some of the 

critical attributes of a prospective RCT can be combined with the practical features of a large-scale 

registry, including the benefits of consecutive enrolment and automated patient identification and 

follow-up. Registry-based RCTs are well-suited for open-label evaluations of commonly used 

therapeutic alternatives in settings with existing registries, but may not be appropriate for trials that 

require strict definitions of endpoints or comprehensive safety reporting. However, registry-based 

RCTs can still be useful for evaluating new indications for pharmaceutical agents and can offer benefits 

such as the ability to identify and enrol a larger proportion of patients and conduct long-term follow-

up at low cost. An important advantage of registry-based RCTs is the ability to describe and follow up 

the entire reference population, including eligible non-randomised patients and non-eligible 

individuals. (James et al., 2015). 

2.7.1 The TASTE-trial 

The TASTE trial was a randomised controlled clinical trial that was conducted in Sweden (Lagerqvist et 

al., 2014). The trial compared two treatments for acute myocardial infarction, also known as a heart 

attack, and included a total of 7,244 patients. The SWEDEHEART (Swedish Web System for 

Enhancement and Development of Evidence-based Care in Heart Disease Evaluated According to 

Recommended Therapies) registry was used for the identification of patients, randomisation and 

collection of baseline and follow-up variables. The TASTE trial recruited a significant number of 

patients with ST-segment elevation myocardial infarction (STEMI) who were planning to undergo 

percutaneous coronary intervention and were able to provide oral informed consent. This means that 

the trial was representative of the overall population of STEMI patients in the region who undergo 

percutaneous coronary intervention. Hospitalizations for myocardial infarction are recorded with a 
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high level of accuracy. The use of personal identification numbers is required and helps to ensure that 

death registries in the Nordic countries are also complete, although it is not possible to distinguish 

between cardiac and non-cardiac causes of death. The use of automated personalized identification 

numbers in Sweden allowed the researchers to track all of the patients and ensure that none were 

lost during the study. The accuracy of the source data was checked against electronic health records 

and found to be in agreement 95% of the time (James et al., 2015). The cost of conducting a trial using 

the existing registry and willing investigators who provided their services for minimal pay was 

significantly lower than the cost of a traditional trial of the same size. Specifically, the cost of 

establishing and running the SCAAR/SWEDEHEART registries was approximately $400,000, while a 

traditional trial of the same size would have cost tens of millions of dollars. One potential limitation 

of the TASTE trial is that the outcomes were based on registry data rather than being systematically 

evaluated. This could potentially lead to less accurate results compared to a traditional randomised 

trial (James et al., 2015, Lagerqvist et al., 2014). 

2.7.2 The DETO2X-AMI trial 

Another trial that integrated the SWEDEHEART registry into the study design was the DETO2X-AMI 

trial. It tested the use of supplemental oxygen compared to normal air in patients with heart attack 

symptoms or a confirmed heart attack. The study included 6,600 patients who were randomly 

assigned to receive either supplemental oxygen or normal air. The study used the SWEDEHEART and 

other public registries for outcome collection. However, the study design had limitations, such as 

being an open-label design (no blinding), which can introduce bias. The results of the study found that 

using supplemental oxygen did not reduce the risk of death within one year (Hofmann et al., 2017, 

James et al., 2015). 

2.7.3 The SORT OUT trials 

In the SORT OUT trials, patients were randomly assigned to receive a stent using either a postal or 

interactive voice system. National registries were used to identify clinical events such as death, heart 

attacks, and revascularization. This trial design allowed for the systematic detection of clinical events 

in a real-world setting, without requiring additional patient visits (James et al., 2015, Thuesen et al., 

2013). 

2.7.4 The SAFE‑PCI for Women trial in the USA 

The SAFE-PCI for Women trial in the US used a registry-based trial methodology, which involved 

incorporating a randomised trial into the existing cardiovascular research infrastructure of the NIH 

National Cardiovascular Data Registry's CathPCI Registry. This trial was designed to compare radial and 

femoral artery access in women undergoing PCI, with the primary efficacy endpoint being a composite 
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of bleeding or vascular complications requiring intervention. The registry-based trial design had two 

main advantages: it enabled the identification of operators and sites that could include patients with 

a balanced risk of complications from both radial and femoral approaches, and it reduced the 

workload for site coordinators by about 65% per patient compared to traditional study forms. While 

the trial was successful, the cost savings were not as significant as in the TASTE trial due to the lack of 

full integration of the registry into clinical care (Hess et al., 2013, James et al., 2015, Moussa et al., 

2013). 

 

2.8 Summary 

The comparison between RCTs and observational studies showed several key differences and 

similarities. RCTs tend to have lower missing data rates due to rigorous protocols, whereas missing 

data in observational studies is often linked to incomplete participant information. Study protocols 

also influence consistent data collection. Notably, both RCTs and observational studies sometimes 

omit reporting missing data. Observational studies tend to involve larger sample sizes, possibly due to 

their less strict eligibility criteria, compared to RCTs. The length of follow-up shows some variation, 

with more observational studies in the 6 months to 1-year range, and more RCTs in the 1 to 2-year 

range, but no systematic difference is evident. 

Primary and secondary outcomes were analysed across studies, showing similarity in outcomes 

collected by both RCTs and observational studies. However, some outcomes were unique to either 

type. For instance, RCTs collected hospital stay and certain questionnaires, while observational studies 

gathered data on quality-of-life assessments and reoperation rates. The data series demonstrate 

similarity between the study types, indicating the potential for observational studies to supplement 

RCTs and provide valuable real-world insights. 

Common outcome measures in both observational studies and RCTs are the ODI, numerical or visual 

pain rating scales, as well as the SF-36 questionnaire. Registries, however, see limited adoption in both 

RCTs (only 1 out of 74) and observational studies (22 out of 88). When employed, they were utilised 

for participant identification, data collection, and monitoring. 

Registries, while beneficial, can be costly to establish and maintain. However, many outcomes 

collected in studies are already part of existing registries, suggesting financial benefits and increased 

feasibility for studies focused on routinely collected outcomes. Such use of registries has been 

successful in other clinical areas, such as the TASTE-trial, the DETO2X-AMI trial, the SORT OUT trials or 
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the SAFE-PCI for women trials. Additionally, Payment schemes tied to registry compliance can enhance 

data consistency and quality. 

2.9 Discussion 

The motivation behind this chapter was to analyse observational studies and randomized controlled 

trials (RCTs) within the sciatica-affected patient population that underwent microdiscectomy. Main 

aspects of the comparison of the two publication types were missing data, collected outcomes, study 

length, sample size and the use of a registry. The aim hereby was twofold: first, to assess the utilization 

of registries in these studies and, second, to examine whether there existed alignment in methods and 

collected outcomes between RCTs and observational studies. The identification of such alignment 

could potentially unlock the vast potential of routinely collected data. However, despite the 

advantages, there are several limitations and essential prerequisites for the effective integration of 

registries in RCTs. 

To establish a registry for RCTs, it is crucial to incorporate standardized core measurement sets specific 

to the studied patient population, enabling uniform data collection across trials and registries. These 

registries should integrate with various data sources, including electronic health records and 

administrative databases, to enhance data accuracy and comprehensiveness. Comprehensive patient 

data collection is essential when cross-referencing is not feasible. Registries should possess the 

capability to track participants over time and collect follow-up data for evaluating long-term 

intervention outcomes. Collaboration with trial sponsors and adherence to study protocols, along with 

the potential for randomization techniques, enhance registry utility. Data comparability ensures 

merging of information from various sources, while robust data security measures are crucial due to 

the technical demands of clinical registries for RCTs. 

The results of the literature review reveal alignment between the two publication types, particularly 

concerning the gathered outcomes. Despite the absence of a defined core outcome set for this patient 

population, key outcomes, including ODI, visual or analogue pain scales, and the SF-36, are collected 

in both publication types. Remarkably, registries used in certain observational studies routinely collect 

this data, supporting the assumption of under-utilisation of registries in RCTs. Noteworthy examples 

such as the TASTE-trial, the DETO2X-AMI trial, the SORT OUT trials, and the SAFE-PCI for women trials 

highlight how integrating routinely collected data infrastructure can significantly benefit RCTs.  

In the subsequent chapter, a more detailed analysis will be conducted on data from a recent RCT and 

a registry (Spine Tango), including descriptive statistics of collected patient covariates, missing data, 
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and prognostic factors. Discovering further similarities between these two data sources would 

strengthen the recommendation for integrating registry data into RCTs whenever possible. 
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Chapter 3: Registry data vs RCTs: Insights 

from the Spine Tango registry and the 

NERVES trial 
 

3.1 Chapter Outline 

The purpose of this chapter is to compare the routinely collected data from the Spine Tango registry 

and the NERVES trial, looking at factors such as missing data and collected outcomes. This chapter also 

involves identifying correlations between patient characteristics and conducting a full descriptive 

analysis of both data sets. The aim was to investigate if the data sources are comparable in terms of 

baseline patient characteristics and collected outcomes. Discrepancies between the two sets would 

suggest that registry data potentially collects outcomes not measured in RCTs. These differences might 

then suggest that insights might either be more biased since the collected data is not randomized or 

that there are differences in the patient population. If the two data sources are very similar, this would 

support the use of registry data in the use of clinical trials.  

3.2 Introduction 

RCTs are considered the gold standard for evaluating the effectiveness of a medical treatment. In an 

RCT, participants are randomly assigned to a treatment arm. This helps to control for potential 

confounding factors and ensures that bias is minimised. Routinely collected registry data is data that 

is collected as part of routine clinical care, rather than for the purpose of a specific research study. 

One key difference between RCTs and registry data is the level of control over the data collection 

process. In an RCT, the data collection process is carefully controlled by research protocols. In contrast, 

the data collected through registries is observational and could therefore be affected by specific 

treatment preferences of patients and clinicians. This can lead to differences in the quality of the data, 

with RCTs generally considered to have higher-quality data (Collins et al., 2020). 

Another difference between RCTs and registry data is the type of information that is collected. RCTs 

are typically designed to answer specific research questions. As a result, they focus on the variables 

that are directly relevant to the research question. In contrast, registry data tends to include a broader 

range of information about the patient, including both clinical and demographic data (Collins et al., 

2016, Grootendorst et al., 2010) 
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Although some registries have built-in randomization tools and can be used to collect and analyse RCT 

data such as the SWEDEHEART registry (Jernberg et al., 2010), data from registries is typically 

observational and therefore of structural difference compared to data from RCTs. Entries are often 

recorded by several research sites, that can differ in various characteristics such as financial budget, 

therapy preferences etc., which is why registry data is considered to be more biased (Concato et al., 

2010).  

Nevertheless, the collection of data in registries can lead to additional and crucial insights for 

healthcare, since the vast amounts of data in clinical registries can detect rare adverse events or 

benefits and identify patterns of outcomes for subsets of patients (Benson and Hartz, 2000). Most 

RCTs are conducted over a specific timeframe and with regard to their individual research question. 

Strict protocols and surveillance over long follow-up periods require numerous health professionals 

to be involved, which can result in high costs to conduct such a trial. Additionally, strict patient 

recruitment regarding inclusion and exclusion criteria and the reluctance regarding randomization 

might lead to a non-representative sample of the patient population and therefore selection bias of 

the resulting data.  

Ultimately, RCTs are with good reason seen as ‘gold-standard’ for clinical research, especially if a study 

aims for the approval of a new intervention. In case of evaluating treatments that are routinely done 

however, the analysis of vast amount of collected data in registries can complement existing RCT 

results and add valuable insights.  

In terms of comparing the descriptive statistics of RCT data and registry data, it is important to 

consider the specific measures that are being used. For example, if both sets of data are reporting on 

the same outcome, such as the rate of hospitalizations, then the descriptive statistics for the two sets 

of data can be directly compared. However, if the two sets of data are reporting on different 

outcomes, then it may be more difficult to compare their descriptive statistics.  

In this chapter data from the recently conducted nerve root block versus surgery (NERVES) trial and 

data from the international registry Spine Tango (Wilby et al., 2021) will be summarised. This will be 

done in the framework of sciatica patients as study population who underwent a microdiscectomy. 

Access to the Spine Tango data was obtained through the submission of a study protocol to the Spine 

Tango committee. A data sharing agreement was established between Spine Tango and the University 

of Liverpool, with the data being provided in a fully anonymized format. As a result, obtaining approval 

from the ethics committee was not necessary. 
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One of the main outcomes in both data sources and focus in this chapter is the Core Outcome 

Measures Index (COMI), which was recorded pre-surgery and at follow-up visits. It is a quality-of-life 

(QoL) questionnaire based on the items proposed by an expert group for the use in clinical routine, 

quality management and research (Deyo et al., 1998). It covers not only pain intensity and its effect 

on quality of life, but also allows patients to report complications, overall satisfaction, and further 

surgeries.  

3.3 The Core Outcome Measures Index (COMI) 

There are different versions of the COMI questionnaire and the version that was used in the NERVES 

trial was different from the one that is routinely collected in Spine Tango. Changes in the design of 

questionnaires could potentially impact the comparability of summarized scores. However, for 

simplicity, it is assumed that scores are the same, if the same patient filled out both. This assumption 

however, has not been examined.  

The questionnaire used in the Spine Tango registry can be found in Appendix A: COMI version in the 

Spine Tango registry. The answers of these questions will be summarised in a score, which is calculated 

with the following method. From question 2a and 2b, the higher of the values is selected, which 

indicates the more intense pain. For questions 3-7, the 5 ordered sections will assigned values 0-4, 

depending on the severity and then transformed to a 0-10 scale, by multiplying with 2.5. To obtain the 

overall score, the mean over all questions 2-7 will be computed, were the value of question 2 is the 

higher of the two values of 2a and 2b (EUROSPINE, 2022a). 

Mannion et al. showed that COMI showed similar external responsiveness to the common 

questionnaire SRS-22. “It is well able to detect important change. Coupled with its brevity, which 

minimizes patient burden, these favourable psychometric properties suggest the COMI-back is a 

suitable instrument for use in registries and can serve as a valid instrument in clinical studies emerging 

from such data pools.” (Mannion et al., 2016)  

The questionnaire used in the NERVES trial can be found in Appendix B: COMI version in NERVES trial. 

The first 3 questions were answered on a 5-point scale, whereas the last two questions were answered 

in total days (0-28) and afterwards categorized into groups (0 days = 1 point, 1-7 days = 2 points, 8-14 

days = 3 points, 15-21 days = 4 points, more than 21 days = 5 points). In the trial the score was 

computed as average over all points of questions 1-5 (scale 1-5), however, this score was re-scaled to 

a score from 0 to 10, by allocating a point system in the following way: 0 days = 0 points, 1-7 days = 

2.5 points, 8-14 days = 5 points, 15-21 days = 7.5 points, more than 22 days = 10 points). The same 

scaling (0, 2.5, 5, 7.5, 10) is applied to category items with 5 possible answers. Afterwards, a score is 
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defined as mean over these questions 1-5. For questionnaires that were completed the mean will be 

over questions 1-7. The statistical analysis plan (SAP) recommended, that a score is only calculated 

when all items are present.  

3.4 Nerve root block versus surgery (NERVES) trial 

The NERVES trial was a phase 3, multicentre, open-label, randomised controlled trial that compared 

surgical microdiscectomy to transforaminal epidural steroid injection in patients with sciatica 

secondary to herniated lumbar disc. There are various approaches for the treatment of this condition 

e.g. microdiscectomy, conservative non-surgical treatment or epidural injections, but controversy 

over the optimal treatment remains. In most comparative clinical studies, the effectiveness of 

microdiscectomy and non-invasive treatment in form of physiotherapy or analgesics etc. has been 

investigated. Results of those studies were inconclusive (Atlas et al., 1996, Buttermann, 2004, 

Osterman et al., 2006, Weinstein et al., 2008). A meta-analysis has shown that the difference of 

treatment outcomes is not significant enough to establish microdiscectomy as overall superior and 

therefore there exist no specific healthcare guidelines (Chen et al., 2018). Few former studies directly 

compared microdiscectomy to epidural steroid injections (ESI) via interlaminar approach and 

concluded that microdiscectomy has a better effect on pain reduction, but that ESI can often prevent 

the need for surgery (Buttermann, 2004, Wang et al., 2002).     

The NERVES trial focused on the direct comparison of the transforaminal (TFESI) approach versus 

surgery regarding clinical and cost-effectiveness of these options for management of radicular pain 

due to herniated lumbar disc (Wilby et al., 2021). The trial was conducted at 11 spinal units across the 

UK, where eligible patients were aged 16-65 years, had MRI-confirmed non-emergency sciatica with 

symptom duration between 6 weeks and 12 months, and had leg pain that was not responsive to non-

invasive treatment. Patients with prior spinal surgeries at same disc level, serious neurological deficit, 

known to be pregnant or patients who did not attempt any form of conservative treatment or have 

contraindication for surgery and/or injection were not included. Patients were randomly allocated to 

a treatment by an online randomization system that was stratified by centre with random permuted 

blocks. Primary outcome was the Oswestry Disability Index (ODI) 18 weeks after randomization and 

all patients who completed a valid questionnaire at baseline were included. Secondary outcome 

measures included ODI at 30, 42 and 54 weeks, the Core Outcome Measurement Index (COMI), 

numerical rating scores, and the Modified Roland-Morris questionnaire (MRM). Baseline 

characteristics included gender, age, weight, height, BMI, number of weeks of symptoms, 

employment status, inability to work due to sciatica, estimated volume of canal occupied by disc 

prolapse and level of disc prolapse. 
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A total of 163 patients enrolled with a total of 80 (49%) assigned to the TFESI group and 83 (51%) to 

the surgery group. Analysis has been made according to intent-to-treat concept. ODI mean 

improvement in the TFESI group was 24.52 points (scale 0-100) and 26.74 points for the surgery group 

(less than 10 points are not considered clinically significant improvement). The pain reduction of the 

two treatment approaches was therefore similar, but there were four serious adverse events in four 

participants associated with surgery and none with TFESI. Although ODI was the primary outcome in 

this study the focus will be on COMI scores, because the number of patients who completed COMI in 

the Spine Tango registry (11,093) was significantly higher than the patients who completed ODI 

(3,019). 

3.4.1 Descriptive statistics of baseline patient/surgery characteristics 

The patient characteristics that were collected in the trial included: sex, age, estimated volume of 

canal occupied by disc prolapse, treatment, BMI, duration of symptoms in weeks and level of spine. A 

summary of these variables is shown in Table 3.1. 

Characteristic N=163 

Sex   Female 

   Male 

   Missing 

86 (52.76%) 

77 (47.24%) 

0 (0%) 

Age 

   Missing 

Mean 42.83 (s.d. 9.28) 

0 (0%) 

Volume of Canal Less than 25% 

   Between 25% and 50% 

   Greater than 50% 

   Missing 

87 (53.37%) 

70 (42.94%) 

6 (3.68%) 

0 (0%) 

Allocated Treatment Surgical microdiscectomy 

   TFESI 

   Missing 

83 (50.92%) 

80 (49.08%) 

0 (0%) 

BMI    

   Missing 

27.72 (s.d. 5.86) 

21 (12.88%) 

Weeks of Symptoms 

   Missing 

Mean 41.83 (s.d. 10.91) 

0 (0%) 

Level of Spine  L5 / S1 

   L4 / L5 

   L3 / L4 

92 (56.44%) 

52 (31.90%) 

3 (1.84%) 
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   Other 

   Missing 

1 (0.61%) 

15 (9.20%) 

Table 3.1: Descriptive statistics of patient characteristics that were collected in the NERVES trial. 

Data is complete unless otherwise indicated. 

For further details, visualisations of the distribution of the continuous variables were generated as 

depicted in Figure 3.1Error! Reference source not found. – 3.3Error! Reference source not found.. 

This will allow for later comparison with the Spine Tango patient population to determine if the two 

data sources contain comparable patient population data.  

 

Figure 3.1: Histogram of age in NERVES patient population 

 

Figure 3.2: Histogram of BMI in NERVES patient population 
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Figure 3.3: Histogram of weeks of symptoms in NERVES patient population 

3.4.2 Dependencies between baseline variables 

In analysing pairs of continuous variables, the Pearson-correlations were computed using the cor()-

function in R, along with a scatter plot. For a combination of a continuous and categorical variable, 

medians and ranges were analysed using boxplots. Additionally, two-sample Kolmogorov-Smirnov 

tests were used to compare the underlying distribution of the two samples, with a p-value below 0.05 

indicating that they are likely from different distributions. For analysing relationships between two 

categorical variables, grouped bar plots were used to display the frequencies of the variables, and chi-

square tests were used to quantify dependency. 

The issue of multiplicity was acknowledged and considered. Multiplicity refers to the potential 

increase in Type 1 error rate when multiple statistical tests are conducted on a single dataset, leading 

to a higher likelihood of false positive findings. While recognizing the importance of adjusting for 

multiplicity to mitigate this risk, the decision was made not to make explicit adjustments in this study 

for the following reasons. This is due to the exploratory nature of this analysis, where the goal was to 

identify potential relationships or dependencies between variables that might warrant further 

investigation. This exploratory analysis was rather meant to be hypothesis-generating than 

hypothesis-testing.  

3.4.2.1 Pairs of continuous patient covariates 

In this section, the relationship between continuous variables will be analysed using scatter plots and 

the cor()-function in R. The continuous variables in this data set are age, BMI and weeks of 

symptoms, which results in 3 distinct pairs. The aim of analysing the correlations between these 

variables is to gain a better understanding of the relationships between them and identify any patterns 
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or trends that may exist. Scatter plots of the three combinations of age, BMI and weeks of symptoms 

are shown in Figure 3.4. 

 

Figure 3.4: Scatter plots of combinations of BMI, age and weeks of symptoms.  

The correlation between age vs BMI, age vs weeks of symptoms and BMI vs weeks of symptoms were 

0.068, -0.11 and 0.04 respectively, which indicates that correlation is very low in each combination. 

3.4.2.2 Pairs of continuous and categorical patient covariates 

In the following section, the relationship between continuous and categorical variables will be 

examined using box plots and the Kolmogorov-Smirnov (KS) test. Box plots will be used to visualize 

the distribution of the continuous variables for different categories of the categorical variables, and 

the KS-test to determine whether there is a statistically significant difference between the 

distributions of the continuous variables for different categories of the categorical variables. The aim 

is to gain a better understanding of the relationships between these variables by analysing the 

dependencies between them. The result of KS-tests depends on the sample size. Significant 

differences that are detected can therefore be minor from a clinical point of view and should be 

interpreted with caution. 

Figure 3.5 displays group the median, range, as well as lower and upper quartiles of age, grouped by 

sex. 
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Figure 3.5: Boxplots of age grouped by sex. 

It appears that men were slightly younger in this patient sample. Group means of men and women 

were 40.97 (s.d. 9.32) and 43.00 (s.d. 8.67) respectively. However, the two-sample KS-test resulted in 

a p-value of 0.44, which indicates that the null-hypothesis that they are from the same distribution 

cannot be discarded. Figure 3.6 shows boxplots for BMI for both men and women.  

 

Figure 3.6: Boxplots of BMI, grouped by sex. 

The KS test resulted in a p-value of 0.63, which indicates that the null-hypothesis that they are from 

the same distribution cannot be discarded. Figure 3.7shows boxplots for weeks of symptoms for both 

men and women. 
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Figure 3.7: Boxplots of weeks of symptoms, grouped by sex. 

The KS test resulted in a p-value of 0.34, which indicates that the null-hypothesis that they are from 

the same distribution cannot be discarded. Figure 3.8 shows boxplots for age, grouped by estimated 

volume of canal occupied by disc prolapse.  

 

Figure 3.8: Boxplots of age, grouped by estimated volume of canal occupied by prolapsed disc. 

It seems that patients with 25%-50% volume of canal were younger than patients with less than 25%.  
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Group means of “less than 25%” and “between 25% and 50%” were 43.01 (s.d. 9.57) and 40.37 (s.d. 

8.41) respectively. However, the two-sample Kolmogorov-Smirnov (KS) test resulted in a p-value of 

0.12, which indicates that the null-hypothesis that they are from the same distribution cannot be 

discarded. Tests between the group “greater than 50%” and others was not performed, since this 

group had a very low number of patients. Figure 3.9shows boxplots for BMI, grouped by estimated 

volume of canal occupied by disc prolapse. 

 

Figure 3.9: Boxplots of BMI, grouped by estimated volume of canal occupied by prolapsed disc. 

Group means of “less than 25%”, “between 25% and 50%” and “greater than 50%” were 28.03 (s.d. 

6.01), 27.15 (s.d. 5.79) and 32.59 (s.d. 7.02) respectively. It seems that patients that had more than 

50% of volume of canal occupied by prolapsed disc had higher BMI. However, there were only 6 

patients in this group (no missingness in this variable). KS tests between the group “greater than 50%” 

and other groups did not have significant p-values and the null-hypothesis could not be discarded. It 

would be interesting to see if there actually is a significant difference if there are the same variables 

available from data sets with larger sample size. Figure 3.10 shows boxplots for weeks of symptoms, 

grouped by estimated volume of canal occupied by disc prolapse. 
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Figure 3.10: Boxplots of BMI, grouped by estimated volume of canal occupied by prolapsed disc. 

KS tests between these groups did not have significant p-values and the null-hypothesis could not be 

discarded. There seems to be no correlation between these two patient covariates.  

In the following, this procedure will be applied to the combinations level of spine and age, BMI and 

weeks of symptoms.  

 

Figure 3.11: Boxplots of age, grouped by level of spine. 
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Group means of age of patients that had surgery at level “L5/S1” and “L4/L5” were 41.83 (s.d. 8.71) 

and 41.96 (s.d. 9.80) respectively. A KS test could not detect any significance. Tests including “L3/L4” 

were discarded, since there were only 2 patients in this sub-group. Analysis of level of spine in 

combination with both BMI and weeks of symptoms resulted in the same conclusion. Group means 

were close to each other and KS-tests could detect no significant dependence. 

3.4.2.3 Pairs of categorical patient covariates 

The categorical patient covariates were sex, level of spine and estimated volume of canal occupied by 

prolapsed disc. In order to analyse a possible correlation between sex and estimated volume of canal 

occupied by disc prolapse the frequencies of the categories of volume of canal for both men and 

women will be visualised. 

 

Figure 3.12: Percentages of volume of canal occupied by prolapsed disc grouped by sex. 

Figure 3.12 shows that in males, the percentage of a volume of 25%-50% is less frequent than in 

females, whereas the frequency of less than 25% is higher. These two patient covariates could be 

correlated. A Chi-square test resulted in a test statistic (X-squared) of 2.10 (degrees of freedom = 2) 

and a p-value of 0.35, which indicates that there is insufficient evidence to reject the null hypothesis 

of independence. The same visualisation for sex and level of spine is shown in Figure 3.13. 
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Figure 3.13: Percentage of level of spine, grouped by sex. 

It seems that more women had surgery at the L5 / S1 level and more men had surgery at L4 / L5 level. 

Level of disc and sex seems to be slightly correlated. The Chi-square test resulted in a test statistic (X-

squared) of 3.31 (degrees of freedom = 2) and a p-value of 0.19, which indicates that there is 

insufficient evidence to reject the null hypothesis of independence. The same visualisation for level of 

spine and volume of canal is shown in Figure 3.14. 

 

Figure 3.14: Percentage of level of spine, grouped by estimated volume of canal occupied by prolapsed 

disc. 
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The distribution of the two groups “less than 25%” and “between 25% and 50%” show a very similar 

distribution, which indicates that the variables estimated volume of canal and level of spine are not 

correlated. The Chi-square test resulted in an X-squared of 1.77 (degrees of freedom = 4) and a p-

value of 0.78, which means that there is no evidence that these two variables are dependent. 

3.4.3 Descriptive statistics of COMI questionnaires  

Missingness of items or entire questionnaires at baseline was low overall, with 13 of 163 scores 

missing. Details about item missingness is displayed in Table 3.2. 

Item Q1 a) Q1 b) Q2 Q3 Q4 Q5 Q6* Q7* score 

Missingness 3 

(1.84%) 

1 

(0.61%) 

3 

(1.84%) 

1 

(0.61%) 

8 

(4.91%) 

8 

(4.91%) 

163 

(100%) 

163 

(100%) 

13(7.98%) 

Table 3.2: Missingness of items in baseline COMI questionnaires in the NERVES trial. * Items Q6 and 

Q7 were only applicable for follow-up questionnaire and are therefore completely missing at 

baseline. 

3.4.3.1 Baseline scores 

In the following it will be investigated if baseline scores have any associations with other baseline 

patient covariates. It could be for example, that the baseline COMI scores are higher, and the quality 

of life therefore lower, for patients with a long duration of symptoms or older age. Identifying such 

associations helps understanding the indication and the overall patient population. The baseline score 

distribution is displayed in Figure 3.15.  

 

Figure 3.15: Histogram of baseline COMI scores for all patients for whom it was available. 
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For continuous patient covariates the Pearson-correlation was computed using the cor()-function 

in R. For age, BMI and weeks of symptoms, those correlation values were 0.084, -0.026 and -0.015 

respectively. Scatter plots of these three tests are displayed in Figure 3.16. 

 

Figure 3.16 a), b) and c): Scatter plots of baseline COMI scores vs a) Age (left), b) BMI (middle) and c) 

weeks of symptoms (right). 

Considering the low Pearson-correlation values and that there are no visible connections between 

baseline scores and the other three variables, it can be assumed that each are not dependent on each 

other. 

For categorical patient covariates sex, level of spine and estimated volume of canal occupied by 

prolapsed disc, box plots were used to visualise the means and standard deviations in each 

subcategory, which are shown in Figure 3.17.  

 

Figure 3.17 a), b) and c): Box plots of baseline COMI scores vs a) sex (left), b) level of spine (middle) 

and c) volume of canal (right). 

For each of the combinations, KS-tests were performed, the p-values of which are summarised in Table 

3.3. 

Subset of patients for which the COMI scores were tested with the KS-test p-value 



66 
 

Female and Male patients 0.212 

Volume of canal less than 25% and 25% to 50% 0.883 

Volume of canal less than 25% and greater than 50% 0.163 

Volume of canal less than 25% to 50% and greater than 50% 0.217 

Level of Spine S1/L5 and L4/L5 0.911 

Level of Spine S1/L5 and L3/L4 0.832 

Level of Spine L4/L5 and L3/L4 0.928 

Table 3.3: Results of KS-test for sub-categories of baseline COMI scores and categorical patient 
covariates in the NERVES trial data set. 

None of the KS-test showed significant p-values, which indicates that no dependencies between 

baseline COMI scores and either of these categorical variables could be detected. 

Patients were split into the two treatment groups TFESI and microdiscectomy. Since they were 

randomised, it is expected that the distribution of COMI baseline scores is similar between the groups.  

 

Figure 3.18: Boxplots for baseline COMI scores, grouped by allocated treatment.  

The KS-test results indicate that there is no significant dependency (p-value = 0.833) between the type 

of treatment and the baseline COMI scores. This suggests that there is relatively little difference in the 

distribution of COMI scores between the treatment groups. This outcome aligns with expectations, as 

the treatment allocation was randomized, meaning that patients were assigned to their respective 

treatment groups without bias.  

3.4.3.2 Scores past surgery 

In Table 3.4 the missingness of the follow-up COMI questionnaires are summarised. 
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Item Q1 a) Q1 b) Q2 Q3 Q4 Q5 Q6 Q7 Score 

Week 18 30 

(18.40%) 

29 

(17.78%) 

29 

(17.78%) 

28 

(17.18%) 

30 

(18.40%) 

31 

(19.02%) 

33 

(20.25%) 

32 

(19.63%) 

38 

(23.31%) 

Week 30 68 

(41.72%) 

71 

(43.56%) 

67 

(41.10%) 

67 

(41.10%) 

73 

(44.79%) 

78 

(47.85%) 

72 

(44.17%) 

72 

(44.17%) 

87 

(53.37%) 

Week 42 68 

(41.72%) 

69 

(42.33%) 

68 

(41.72%) 

68 

(41.72%) 

73 

(44.79%) 

71 

(43.56%) 

68 

(41.72%) 

68 

(41.72%) 

86 

(41.72%) 

Week 54 41 

(25.15) 

40 

(24.54%) 

40 

(24.54%) 

40 

(24.54%) 

44 

(26.99%) 

47 

(28.83%) 

44 

(26.99%) 

44 

(26.99%) 

60 

(36.81%) 

Table 3.4: Missingness of items in follow-up COMI questionnaires in the NERVES trial in total 

numbers and percent. 

Worth mentioning is that intervals of 18- and 54-weeks past randomisation had much lower 

missingness overall than intervals of 30- and 42-weeks past randomisation. This is because 18- and 

54-week measurements were collected during hospital visits, whereas 30- and 42-week 

measurements were postal. Scores of each interval are summarised as box-plot in Figure 3.19. 

 

Figure 3.19: Box-plots of COMI scores at each interval in the NERVES trial data. 

For each of the combinations, KS-tests were performed, the p-values of which are summarised in Table 

3.5. 

KS-test p-value 

COMI at Baseline vs COMI at 18 weeks <0.001 
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COMI at Baseline vs COMI at 30 weeks <0.001 

COMI at Baseline vs COMI at 42 weeks <0.001 

COMI at Baseline vs COMI at 54 weeks <0.001 

COMI at 18 weeks vs COMI at 30 weeks 0.756 

COMI at 18 weeks vs COMI at 42 weeks 0.455 

COMI at 18 weeks vs COMI at 54 weeks 0.082 

COMI at 30 weeks vs COMI at 42 weeks 0.961 

COMI at 30 weeks vs COMI at 54 weeks 0.982 

COMI at 42 weeks vs COMI at 54 weeks 0.817 

Table 3.5: Results of KS-test for pairs of time-points of COMI scores in the NERVES trial data set. 

KS-tests showed that baseline scores come from a different underlying distribution than any of the 

other outcome scores. P-values of combinations between outcome score intervals after surgery were 

not significant. This suggests that there is little progression over time between the first and the last 

time point of follow-up and that improvement takes place between surgery and the first follow-up. 

Since in this trial, patients were allocated randomly to two different treatments, microdiscectomy and 

TFESI, baseline scores and scores at 18 weeks past randomisation (primary outcome time point) are 

analysed regarding their treatment group. The treatment difference between 18 weeks past surgery 

and baseline is analysed regarding each of the following variables: treatment type, sex, volume of 

canal occupied by prolapsed disc, level of spinal disc, age, BMI and weeks of symptoms. Figure 3.20 

shows box plots of the outcome difference and categorical baseline variables. 
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Figure 3.20 a), b), c) and d): Boxplots for COMI differences; subtraction of baseline scores from 18-

weeks past surgery scores, grouped by a) allocated treatment (top left), b) sex (top right), c) level of 

disc (bottom left) and d) estimated volume of canal occupied by prolapsed disc (bottom right). 

For each of the combinations, KS-tests were performed, the p-values of which are summarised in 

Table 3.6. 

KS-test p-value 

Microdiscectomy vs TFESI 0.165 

Female vs Male 0.476 

Level of Spine L5/S1 vs L4/L5 0.057 

Volume of Canal <25% vs 25-50% 0.325 

Volume of Canal <25% vs >50% 0.595 

Volume of Canal 25-50% vs >50% 0.742 

Table 3.6: Results of KS-test for pairs of baseline sub-groups and their difference in COMI scores in 
the NERVES trial data set. 

None of the KS-tests yielded statistically significant differences between the pairs of variables. 

Notably, among the patients who underwent surgery at level L5/S1, there was a relatively small 
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reduction in COMI scores compared to those who had surgery at level L4/5, with a mean difference of 

-3.439 (standard deviation: 2.795) for the former and -4.614 (standard deviation: 2.242) for the latter. 

It's important to mention that tests involving subgroups of patients who had surgery at different levels 

were excluded from the analysis due to the limited number of patients in these specific groups. 

 Figure 3.21 Shows scatter plots of the outcome difference and continuous baseline variables.

 

Figure 3.21 a), b) and c): Scatter plots for COMI differences; subtraction of baseline scores from 18-

weeks past surgery scores and a) age (left), b) BMI (middle), and c) weeks of symptoms (right). 

The Pearson-correlation coefficients, computed with the R-function cor(), were -0.04, -0.01 and -

0.01 for age, BMI and weeks of symptoms respectively, which all indicate that there is very low 

correlation between the pairs of variables.  

Another way to analyse if any of the patient characteristics were associated with treatment outcome, 

is to fit a multivariable linear regression model with 18 weeks past randomisation COMI scores as 

outcome measure. The coefficients of each variable and their 95% confidence interval of this linear 

regression model are listed in Table 3.7.  

Characteristic Coefficient estimate 95% CI p-Value 

Sex  Female 

  Male 

Reference 

0.044 

 

[-0.968, 1.057] 

 

0.931 

Age 0.004 [-0.051, 0.059] 0.884 

BMI -0.005 [-0.089, 0.080] 0.913 

Weeks of Symptoms -0.019 [-0.071, 0.033] 0.462 

Vol. Canal:  < 25% 

  25% - 50% 

  > 50% 

Reference 

-0.273 

-0.720 

 

[-1.310, 0.765] 

[-3.302, 1.861] 

 

0.603 

0.581 
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Spine Level:  L5 / S1 

  L4 / L5 

  L3 / L4 

Reference 

-0.876 

1.910 

 

[-1.882, 0.130] 

[-3.090, 6.910] 

 

0.087 

0.449 

Treatment:  Microdiscectomy 

  TFESI 

Reference 

0.833 

 

[-0.159, 1.825] 

 

0.099 

Baseline COMI score 0.489 [0.259, 0.767] 0.001* 

Table 3.7: Estimates of coefficients, 95%-confidence intervals and p-values for covariates in 

multivariable linear regression model with COMI scores at 18 weeks past randomisation as outcome. 

The only patient characteristics to be connected to treatment outcome is baseline COMI scores. The 

R2 was picked to measure the explained proportion of variance in the outcome that is explained by 

the covariates. The R2 of 0.151 shows that only little outcome variation could be explained by the 

included input variables. This means that there might be unmeasured variables that could possibly 

explain outcome variation. As seen, the treatment method did not have a significant p-value, and 

there is therefore a lack of evidence for a treatment difference. However, there were four serious 

adverse events in four participants associated with surgery, and none with TFESI. Moreover, TFESI 

showed better cost-effectiveness, which is why Wilby et al. recommend TFESI as first invasive 

treatment option (Wilby et al., 2021).  

In summary, the analysis of the RCT data set showed relatively low levels of missingness in patient 

covariates, with only a small fraction of the data missing for most variables. Outcomes, on the other 

hand, exhibited a higher proportion of missing values compared to the covariates. These findings are 

consistent with the publication by Wilby et al., which included a descriptive analysis of patient 

covariates and COMI scores at baseline, as well as over time. In that publication, a longitudinal mixed 

model was used to assess the treatment effect on COMI scores, yielding an estimate of -0.77 (-1.58, 

0.03). This aligns with the results of the multivariable linear regression model in this chapter, indicating 

that the treatment was not statistically significant (although it approached significance with a p-value 

close to the threshold). 

This section added a comprehensive exploration of dependencies between baseline variables, 

accompanied by visualizations that should be considered during analyses. Furthermore, it establishes 

the groundwork for a comparison of these dependencies with the Spine Tango dataset, where patient 

data was routinely collected. 

3.5 The Spine Tango registry (EUROSPINE) 
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The vast amount of data in clinical registries can be used to detect rare adverse events or benefits and 

identify patterns of outcomes for subsets of patients. The growing demand for outcome measurement 

and quality assurance in the field of low-back and leg pain led to the development of such a registry 

in 2000. The so-called Spine Tango (ST) registry was built by EUROSPINE, the Spine Society of Europe 

in collaboration with the Institute for Evaluative Research in Orthopaedic Surgery at the University of 

Bern, Switzerland. It was launched in 2002 and to date, over 750,000 forms (134,458 surgery forms) 

from five continents have been collected  (EUROSPINE, 2022b). Several studies concluded that in a 

heterogeneous group of conditions, observational studies obtain valid insights into real-world practice 

and outcome research, as well as help optimizing health service and quality assurance. Results from 

well-designed observational studies can be similarly trustworthy as results from RCTs (Benson and 

Hartz, 2000, Colditz, 2010, Concato et al., 2010, Concato et al., 2000).Containing such a vast amount 

of entries, “registries can describe care patterns, appropriateness of care, understand variations in 

treatment and outcomes, identify and select subgroups in the heterogeneous chronic low back pain 

population with a probability of poor or successful outcome” (Hooff et al., 2015). 

When it comes to the evaluation of therapeutic effectiveness of treatments in routine clinical practice 

in non-research settings, well-performed observational studies can be of crucial importance and are 

relatively inexpensive and fast to conduct. Sweden for example has some of the most complete 

national databases that are collecting data from patients in hospitals and health-care organizations, 

e.g. SWEDEHEART and SweSpine (James et al., 2015). The analysis of the data in such registries with a 

representative patient population helps assessing health care effectiveness and safety and evaluating 

prognostic factors (José and Edelman, 2017). Studies that are based on registry data must make sure 

to include an appropriate and representative population of patients, regarding their condition and 

characteristics, so that the inferences drawn from the statistical analysis are valid.  

Data access was granted for the Spine Tango registry regarding the patient population affected by 

sciatica secondary to prolapsed disc. The registry mostly collected data of surgical procedures, a 

further investigation about the difference of treatment effects between microdiscectomy and TFESI is 

therefore difficult.  

Data have been collected with various forms, such as outcome questionnaires at several time points, 

surgery and follow-up forms. Each patient has a unique anonymized patient ID by which all available 

information for each patient can be matched. The surgery forms have been updated over the years 

and collected slightly different information, therefore there are some characteristics that have only 

been measured over specific years. There are four different surgery forms, indicated by the year from 

which they were updated (2005, 2006, 2011 and 2017). Table 3.8 indicates the availability of the 
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characteristics which were considered as potentially connected to treatment outcome, as well as 

information about adverse events and in which version of the surgery forms they were collected. 

Variable Surgery sheet 2005 Surgery sheet 2006 Surgery sheet 2011 Surgery sheet 2017 

Age x x x x 

Gender x x x x 

Surgeon credentials x x x x 

Level of disc x x x x 

Country ID x x x x 

ASA Morbidity status x x x x 

Smoker   x x 

BMI   x x 

Previous treatment x x x  

Duration of symptoms    x 

No. of previous surgeries x x x  

Adverse events x x x x 

Blood loss x x x x 

Table 3.8: Availability of variables in each version of the surgery form 

The total number of patients in the surgery sheets are 292 (2005 form), 4,615 (2006 form), 10,936 

(2011 form) and 2,340 (2017 form). Some patients had multiple surgery entries in the registry. Later 

analyses require an assumption of independence of individual entries. Therefore, only the earliest of 

the procedures for each patient was considered, in case there were multiple. This, together with 

deleting duplicate rows, led to a total of 17,252 patients. After reducing the data to the first surgery 

per patient (if multiple) and deleting duplicates, independence between data rows was assumed, 

however not further investigated. ASA Morbidity denotes the ASA (American Society of 

Anesthesiologists) physical status classification system for assessing the fitness of patients before 

surgery (Anesthesiologists, 2020). In further notation the categories will be abbreviated with ASA 1-4 

(there are 6 categories, but no patient in the data was classified in category 5 or 6). 

The most commonly patient reported outcome measures for quality of life and lower back and leg 

pain were the Oswestry Disability Index (ODI) and the Core Outcome Measures Index (COMI), which 

were recorded pre-surgery and at follow-up visits. The focus in this project is on the COMI 

questionnaire. 

3.5.1 Descriptive statistics on patient/surgery characteristics 

Table 3.9 shows descriptive statistics each variable. Since instead of BMI the 2017 forms had height 

and weight, BMI values were calculated according to the formula BMI = kg/m2 and categorized into 

“<20”, “20-25”, “26-30”, “31-35” and “>35”, like in the 2011 form. Countries were anonymised and 
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can therefore not be identified further. For simplicity ID were renamed in descending order by number 

of patients using alphabetic lettering. Countries with less than 100 entries were grouped into “other” 

for simplicity.  

Variable N = 17,252 patients 

Sex    Female 

    Male 

    Missing 

8,033 (46.56%) 

9,219 (54.44%) 

0 (0%) 

Age 

    Missing 

Mean 47.38 (s.d. 14.12) 

18 (0.10%) 

Surgeon credentials  Board certified neurosurgeon 

    Specialized spine surgeon 

    Neurosurgeon in training 

    Board certified orthopedic surgeon 

    Orthopedic surgeon in training 

    Other 

    Missing 

6,950 (40.29%) 

6,902 (40.01%) 

1,814 (10.51%) 

815 (4.72%) 

260 (1.51%) 

191 (1.11%) 

320 (1.85%) 

Country ID   A 

    B 

    C 

    D 

    E 

    F 

    G 

    H 

    Other 

    Missing 

8,062 (46.73%) 

3,779 (21.90%) 

1,545 (8.96%) 

1,010 (5.85%) 

627 (3.63%) 

325 (1.88%) 

170 (0.96%) 

125 (0.72%) 

384 (2.23%) 

1,068 (6.19%) 

Level of spine   L5/S1 

    L4/L5 

    L3/L4 

    L2/L3 

    L1/L2 

    Other 

    Missing 

7,510 (43.53%) 

7,571 (43.88%) 

1,370 (7.91%) 

442 (2.56%) 

30 (0.17%) 

329 (1.91%) 

0 (0%) 

ASA Morbidity   1 7,010 (40.63%) 
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    2 

    3 

    4 

    Missing 

6,114 (35.44%) 

989 (5.73%) 

26 (0.15%) 

3,113 (18.04%) 

Table 3.9: Descriptive statistics of all variables, the collection of which was consistent over the 

changes in surgery forms.  

Figure 3.22 shows a histogram of the age in this patient population. 

 

Figure 3.22: Histogram of age in this patient population in the Spine Tango registry (of a total of 17,252 

data points out of which 18 were missing) 

With a mean of 47.38 (s.d. 14.12) this population is on average older than participants of the NERVES 

trial, which had a mean of 42.83 (s.d. 9.28).  

As seen in Table 3.8, some patient characteristics were not consistently part of surgery forms. For 

example, previous treatment was stopped in 2017 and instead replaced by duration of symptoms. 

Smoking status and BMI have been introduced in 2011. This change results in large percentages of 

missing data and makes more advanced modelling approaches such as prognostic modelling 

challenging. In the following, descriptive statistics of these variables are presented regarding the 

subset of surgery forms that collected them. 

3.5.1.1 Smoking status and BMI 

In this subset there were 12,485 patients. Variable N = 12,485 patients 
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Smoking status   Smoker 

    Non-smoker 

    Missing 

1,703 (13.64%) 

7,432 (59.52%) 

3,350 (26.83%) 

BMI    ≤ 20 

    > 20 to ≤25 

    >25to ≤30 

    >30 to ≤35 

    > 35 

    Missing 

452 (3.62%) 

2,864 (22.94%) 

3,349 (26.82%) 

1,427 (11.43%) 

626 (5.01%) 

3,767 (30.17%) 

Table 3.10: Descriptive statistics of BMI and smoking status. 

3.5.1.2 Previous treatment 

Previous treatment was collected in surgery forms from 2005, 2006 and 2011, but were discontinued. 

Therefore, there are only 15,094 total patients for which this item was available. 

None < 3 months 

conservative 

3 – 6 months 

conservative 

6 – 12 months 

conservative 

> 12 months 

conservative 

Surgical 

treatment 

Missing 

3,865, 

(25.61%) 

3,082 

(20.42%) 

3,145 

(2.84%) 

2,280 

(15.11%) 

1,643 

(10.89%) 

604 

(4.00%) 

475 

(3.15%) 

Table 3.11: Descriptive statistics of previous treatment (N=15,094). 

3.5.1.3 Duration of symptoms 

After previous treatment was discontinued to be collected, it was replaced by duration of symptoms, 

included in surgery forms since 2017. Therefore, there are only 2,158 patients for which this item was 

available. 

< 3 months 3-12 months > 12 months Missing 

656 (30.40%) 1,110 (51.44%) 392 (18.16%) 0 (0%) 

Table 3.12: Descriptive statistics of duration of symptoms (2,158). 

3.5.1.4 Complications 

Complications were also consistently entered in surgery forms, with an occurrence rate of 4.33% (747 

complications). The type of complication and their occurrences are summarised inTable 3.13.  

Complication type Occurrence 

Dural lesion  

Nerve root damage 

Bleeding in spinal canal 

650 (87.01%) 

38 (5.09%) 

11 (1.47%) 
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Bleeding outside spinal canal 

Cauda equina damage 

Wound infection 

Vascular injury 

Other 

Wrong level 

Missing 

12 (1.61%) 

2 (0.27%) 

8 (1.07%) 

4 (0.54%) 

20 (2.68%) 

2 (0.27%) 

236 (1.37% of all 17,252 patients) 

Table 3.13: Descriptive statistics of complications during surgery (N = 747) 

In the following it will be analysed if there are any dependencies between patient covariates. By 

analysing dependencies between patient covariates, one can identify potential confounding factors 

that may affect the outcomes of interest. In both registry data and RCTs, there might be hidden 

variables that influence the outcome, leading to biased conclusions. Recognizing these confounding 

factors allows to adjust for them appropriately during analysis, improving the accuracy of the results.  

Understanding how patient covariates relate to treatment outcomes can help in patient stratification. 

Identifying subgroups of patients who respond better to the intervention can lead to personalized or 

tailored treatment plans, optimizing patient care and potentially improving overall outcomes.  

For both registry data sets and RCTs, understanding the relationships between covariates can help 

assess the generalizability of the findings. If certain patient characteristics consistently influence 

outcomes across different datasets or study designs, it adds to the robustness of the conclusions and 

enhances the external validity of results.  

Insights gained from the analysis of dependencies can be valuable in designing future studies. 

Researchers can use this information to adjust sample size, stratify randomization, or consider other 

factors that might impact the outcomes of interest, ultimately leading to more efficient and effective 

studies.  

The main rationale behind this analysis is to determine if there are any dependencies between patient 

covariates that need to be considered for later analyses. If any dependencies are found, the goal is to 

ascertain whether they align with the data set from the NERVES data set. 

3.5.2 Dependencies 

In this study, all possible combinations of two patient covariates are tested in order to identify any 

potential dependency. For combinations of a continuous and a categorical variable, group means and 

standard deviation were further analysed by using boxplots. Additionally, two-sample KS-tests are 

used to investigate if two samples are from the same underlying distribution. If the test results in a p-
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value smaller than 0.05, it can be assumed that they are not from the same distribution. For two 

categorical variables grouped bar plots, split by the categorical variables and displaying the 

frequencies of the other variable, were used. In order to quantify association, Chi-square test were 

used. However, due to very large sample sizes, even the smallest differences in group means are 

detected by either test. Results of such tests are therefore interpreted with caution.  

Given the vast number of combinations, only those exhibiting detectable associations are presented, 

while those without detected associations are summarized in Appendix E. The primary objective is to 

comprehensively examine the impact of these factors on patient outcomes by analysing the 

interrelationships between various patient characteristics. Similar to the analyses conducted with the 

dataset of the NERVES trial, the issue of multiplicity was acknowledged, however, the decision was 

made not to make explicit adjustments in this study. Again, this is due to the exploratory nature of 

this analysis, where the goal was to identify potential relationships or dependencies between variables 

that might warrant further investigation. This exploratory analysis was rather meant to be hypothesis-

generating than hypothesis-testing. 

The age distribution for each category of level of spine is shown in Figure 3.23. 

 

Figure 3.23: Box plots for of age in each sub-category of level of spine in the Spine Tango registry. 

Surgeries at levels “L4 / L5”, “L3 / L4” and “L2 / L3” apparently were in an older sub-population of 

patients than at level “L5 / S1”. Group means were 42.96 (s.d. 12.04), 48.87 (s.d. 14.22), 57.46 (s.d. 

13.97) and 62.47 (s.d. 12.15) for “L5 / S1”, “L4 / L5”, “L3 / L4” and “L2 / L3” respectively.  
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The subgroup “L5/S1” was significantly younger than any other sub-group (KS-test p-values <0.05). 

The only pairs of subgroups that did not result in significant p-values were “L1/L2” and “other”, 

“L3/L4” and “L1/L2”, as well as “L4/L5” and “other”.  

Additionally, there seems to be an association between age and ASA morbidity status. This is visualised 

in Figure 3.24. 

 

Figure 3.24: Box plots for age in each sub-category of ASA morbidity status. 

Patients that were classified as ASA morbidity status 2, 3 and 4 apparently were in an older sub-

population of patients than with status 1. Group means were 41.96 (s.d. 11.56), 51.32 (s.d. 14.13), 

61.14 (s.d. 14.56) and 63.68 (s.d. 13.49) for status groups 1,2,3 and 4 respectively. The difference in 

group means showed significance (KS-test p-value smaller than 0.05) for each of the pairs, but “ASA 

3” and “ASA 4”. 

There are numerous countries contributing to Spine Tango, but country A and B account for roughly 

68% of the data set in this patient population. Routine practice might be different in each country, 

which especially reflects in annotation of surgeon credentials. A summary is displayed in Figure 3.25. 
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Figure 3.25: Bar plot of percentage of surgeon types, split by country ID. Abbreviations in legend: BC-

N = Board-certified neurosurgeon, SSS = specialized spinal surgeon, N-t = Neurosurgeon in training, 

BC-O = Board-certified orthopedic surgeon, O-t = Orthopedic surgeon in training. 

One example is country C, which does not report any board-certified neurosurgeons or neurosurgeons 

in training (abbreviated by BC-N and N-t respectively). Similar differences can be seen for other 

countries, which leads to an association between country and surgeon credentials, just due to the 

practice of reporting. This needs to be kept in mind in later prediction modelling approaches. The Chi-

square test resulted in a test statistic (X-squared) of 7,244.7 (degrees of freedom = 45) and a p-value 

< 0.001, which demonstrates that there is an association between these two variables. 

Differences between countries were also apparent for different types of previous treatment, see 

Figure 3.26. 

 

Figure 3.26: Bar plot of percentages of different types of previous treatment, split by country ID. 
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In country A and C, a larger percentage of patients had no received previous treatment than in other 

countries. Country H had a higher percentage of patients that had between 3 and 6 months prior 

conservative treatment than other countries. 

These discrepancies may be due to variations in treatment practices between the different countries. 

The Chi-square test resulted in a test statistic (X-squared) of 2,852.7 (degrees of freedom = 45) and a 

p-value < 0.001, which shows that there is an association between these two variables. 

Interestingly, some countries had a different distribution of patients regarding their ASA morbidity 

classification, which is displayed in Figure 3.27. 

 

Figure 3.27: Bar plot of percentages of different ASA morbidity statuses, split by country ID. In each 

country sub-plot ASA statuses are numbered 1-4 from left to right (red, green, blue, purple).  

Country D had a higher percentage of patients with ASA status 2 and 3, compared to countries A, B or 

C. Countries with ID H, I and the small countries that were grouped into “other”, had higher 

percentages of patients with ASA status 1. The Chi-square test resulted in a test statistic (X-squared) 

of 1,070.8 (degrees of freedom = 27) and a p-value < 0.001, which shows that there is a dependency 

between these two variables. 

Additionally, there were slight differences of frequencies of ASA Morbidity state in different groups of 

previous treatment, as illustrated in Figure 3.28. 
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Figure 3.28: Bar-plot of percentages (y-axis) of ASA Morbidity state categories split by the sub-

categories of previous treatment (x-axis).  

It appears that ASA Morbidity status of 1 was more frequent in patients that had no previous 

treatment or previous treatment of less than 3 or 3 to 6 months, compared to patients that had 

prior surgery. Additionally, patients with no previous treatment more often had no ASA morbidity 

status available. 

Even if differences are slight, Figure 3.29 shows that more patients that had prior surgery had 

complications during surgery, compared to conservative or no prior treatment. 
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Figure 3.29: Bar plot of percentage of complications, grouped by previous treatment. Categories 

indicated in length of months (mon.) stand for conservative treatment of the indicated length. 

It seems that prior surgery is a risk factor, which will be analysed later in Chapter 5 in further depth. 

The Chi-square test resulted in a test statistic (X-squared) of 66.85 (degrees of freedom = 5) and a p-

value < 0.001, which shows that there is an association between these two variables. 

ASA morbidity status appears to be correlated to BMI as seen in Figure 3.30. 

 

Figure 3.30: Bar plot of percentage of BMI categories, split by ASA morbidity statuses. 
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Patients with ASA morbidity status 3 or 4 more often had BMIs of 31-35 and >35. The Chi-square test 

resulted in a test statistic (X-squared) of 315.5 (degrees of freedom = 12) and a p-value < 0.001, which 

shows that there is an association between these two variables.  

In this population, there were some associations between patient covariates. In particular, differences 

in routine practice between countries regarding surgeon reporting and previous treatment were 

correlated. This suggests that variations in these factors may impact patient outcomes and should be 

considered in future modelling approaches. Also apparent were associations between age and ASA 

morbidity as well as age and level of spine at which the surgery took place. Prior surgery could be a 

risk factor that clinicians should be aware of, which will further be investigated in prediction modelling 

approaches. It should be remembered, that the data set was very large, and even the slightest 

differences can be significantly detected by both the Chi-square and the KS-test. These p-values 

therefore need to be interpreted with caution. 

3.5.3 Outcomes in Spine Tango 

The Spine Tango registry collects multiple patient-reported outcome measures. The Oswestry 

Disability Index and COMI questionnaires are the main quality-of-life measures that are routinely 

collected. In the following, the amount of missing data in the COMI questionnaire and possible 

dependencies of its reporting with other variables are investigated.  

The number of patients that had at least 1 answered COMI entry is 11,093 (64%), but questionnaires 

are categorized in many different time intervals and the amount of missingness is much higher than 

in the NERVES trial. Of all patients that have at least one answered COMI questionnaire, only 54% 

(6,008) have a baseline score and of those who have, only a further 59% (3,530) have at least one 

follow-up score. Table 3.14 shows the percentages of entries in the available time spans after surgery 

of all patients with at least one COMI entry.  

Before 

surgery 

4 

weeks 

6 

weeks 

2 

months 

3 

months 

6 

months 

9 

months 

1 year 2 years 3 years 

54% 

(6,008) 

1% 

(144) 

4% 

(441) 

0.4% 

(44) 

49% 

(5,395) 

10% 

(1,157) 

6% 

(697) 

46% 

(5,094) 

38% 

(4,232) 

0.5% 

(51) 

Table 3.14: Percentages of entries in the available time spans after surgery of all patients with at 

least one COMI entry. 

Before surgery, 3 months, 1 year and 2 years after surgery seem to be standard check-in follow-up 

times, whereas the other times are much less frequent. In the forms there are also the exact days of 

completion, which makes it possible to use all available patients with a baseline entry and any follow-
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up entry for a longitudinal model. Due to the observational nature of the data, the classification of 

these intervals is not necessarily the same for each country or clinic. It is expected that there are time 

windows of a specific number of days for each of the intervals, however further details were not 

available.  

In order to check that the questionnaires were allocated correctly to these time spans, the days after 

surgery were plotted and grouped according to their category of time span, the result of which is 

shown in Figure 3.31. Although there is some variance of the days after surgery at which forms were 

submitted, the groups are clearly separated and therefore categorized correctly. 

 

Figure 3.31: Frequencies of days after surgery regarding the groups into which they have been 

categorized in the registry excerpts. Overlap did not appear often, but is visible due to a degree of 

opacity of the color-scheme. 

Figure 3.32 shows from which surgery form and therefore also from which time span in years these 

collected forms are. 
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Figure 3.32 a) and b): a) Visualisation of how many patients had COMI questionnaires available in each 

surgery form (left) b) fractions of patients with available COMI for each surgery form (right). 

Most of the forms were collected from patients from the 2011 form, which is mainly due to the size 

of the data set. However, it also seems that a higher percentage of patient entries of the 2011 form 

had COMI available (69.5%), compared to other forms (51.6%, 54.5% and 61.1% for surgery forms 

2005, 2006 and 2017 respectively).  

Routine practice can differ especially regarding reporting. This was already seen in differences in 

surgeon credentials, but there are also differences in the reporting of COMI questionnaires between 

countries. 

 

Figure 3.33: Bar plot of COMI availability, grouped by country ID. 
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Country D and countries that were in the group “other” had much lower percentages of COMI 

availability. 

In the following, similar to the procedure of the NERVES trial data, it will be analysed if COMI baseline 

scores had any associations to other baseline patient characteristics. For continuous patient covariates 

Pearson-correlation was computed using the cor()-function in R and scatter plots.  

For categorical patient covariates, box-plots for each sub-category of each characteristic were 

considered. Due to large sample size however, KS tests could detect significant p-values and lead to 

the assumption that two sample sizes are not from the same underlying distribution. Therefore, 

means and standard deviations of the sub-groups were also taken into consideration.  

Figure 3.34 shows a scatter plot between age and baseline COMI scores. 

 

Figure 3.34: Scatter plot of baseline COMI scores on x-axis vs age on y-axis.  

More baseline COMI scores are on the upper end of the scale (between than 5 and 10) than on the 

lower half (between 0 and 5). However, there is no visible pattern in this plot that indicates a 

relationship between COMI baseline scores and age. This is supported by a Pearson-correlation 

measure of -0.006. It is evident that these two patient covariates are not dependent.  

All other patient covariates were categorical and will be analysed using box plots and KS tests. 

However, it needs to be remembered that even small differences can be detected with significant p-

values due to large sample size. Each pair of variables is analysed on a complete data set regarding 

the two columns. 
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In Figure 3.35, the median, range, as well as lower and upper quartiles of baseline COMI scores are 

visualised, grouped by sex.  

 

Figure 3.35: Box plot of baseline COMI scores, grouped by sex. 

The KS test rejected the null-hypothesis with a p-value smaller than 0.001. However, group means of 

women and men were 7.88 (s.d. 1.64) and 7.53 (s.d. 1.78) respectively. The clinically important 

difference of COMI scores for improvement is 2.2 (between 2.0 and 2.5). In a clinical point of view, 

these two patient samples, with a difference of 0.35 are therefore not considered significantly 

different. In Figure 3.36, the median, range, as well as lower and upper quartiles of baseline COMI 

scores are visualised, grouped by surgeon credentials.  

 

Figure 3.36: Box plot of baseline COMI scores, grouped by surgeon credentials. 
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Baseline scores between most surgeon credentials are similar, with the exception of “other”. Group 

means are summarised in Table 3.15.  

Surgeon 

type 

BC-N SSS N-t BC-O O-t Other 

Mean (s.d.) 7.69 (1.74) 7.64 (1.70) 7.79 (1.78) 7.80 (1.65) 7.86 (1.70)  8.24 (1.78) 

Table 3.15: Baseline COMI score mean and standard deviations of each subgroup of patients, 

regarding surgeon credentials. 

Even though baseline scores seem to be higher for surgeons in group “Other”, it is not assumed to be 

dependent from a clinical point of view. In Figure 3.37, the median, range, as well as lower and upper 

quartiles of baseline COMI scores are visualised, grouped by country ID. 

 

Figure 3.37: Box plot of baseline COMI scores, grouped by country ID. 

In this case, there are some pairs of countries, between which there seems to be a significant 

difference in baseline COMI scores (country C and F). Means and standard deviations are summarised 

inTable 3.16.  
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Country 

ID 

A B C D E F G H I Other 

Mean 

(s.d.) 

7.81 

(1.70) 

7.60 

(1.72) 

6.68 

(2.06) 

7.34 

(1.63) 

7.57 

(1.72) 

8.10 

(1.51) 

7.36 

(1.91) 

7.55 

(1.67) 

7.75 

(1.77) 

7.03 

(1.79) 

Table 3.16: Baseline COMI score means and standard deviations of each subgroup of patients, 

regarding country IDs. 

There seem to be some variations in the baseline COMI scores between different countries, the reason 

of which needs to be investigated further. In Figure 3.38, the median, range, as well as lower and 

upper quartiles of baseline COMI scores are visualised, grouped by level of spine. 

 

Figure 3.38: Box plot of baseline COMI scores, grouped by level of spine. 

Patients that had surgery at the L2/L3 level had slightly higher baseline COMI scores than patients that 

had surgery at any other level. The difference however is not large enough to consider COMI scores 

and level of spine to be correlated. In Figure 3.39, the median, range, as well as lower and upper 

quartiles of baseline COMI scores are visualised, grouped by ASA morbidity status. 
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Figure 3.39: Box plot of baseline COMI scores, grouped by ASA morbidity status. 

Patients with ASA morbidity 4 had higher baseline COMI scores than patients of the other categories. 

However, standard deviation in this group was also very large, which is why there is no reason to 

assume that COMI scores and ASA morbidity are connected. In Figure 3.40, the median, range, as well 

as lower and upper quartiles of baseline COMI scores are visualised, grouped by BMI. 

 

Figure 3.40: Box plot of baseline COMI scores, grouped by BMI. 

Differences in mean were not large enough to assume that COMI scores and BMI are correlated. 

InFigure 3.41, medians, ranges as well as lower and upper quartiles of baseline COMI scores are 

visualised, grouped by previous treatment. 
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Figure 3.41: Box plot of baseline COMI scores, grouped by previous treatment. 

There are slight differences between mean and standard variation of COMI scores between categories 

of previous treatment. Patients that had prior surgery have larger baseline COMI scores than patients 

with no prior surgery. Considering standard deviation however, differences were not large enough to 

assume that COMI scores and prior treatment were correlated. In Figure 3.42, medians, ranges, as 

well as lower and upper quartiles of of baseline COMI scores are visualised, grouped by smoking 

status. 

 

Figure 3.42: Box plot of baseline COMI scores, grouped by smoking status. 

It seems that non-smokers have slightly lower baseline COMI scores, however the difference in means 

is very low (0.21 points on COMI score scale). It cannot be assumed that there is a dependency 
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between baseline COMI scores and smoking status. In Figure 3.43, median, range, as well as lower and 

upper quartiles of baseline COMI scores are visualised, grouped by the occurrence of complications 

during surgery. 

 

Figure 3.43: Box plot of baseline COMI scores, grouped by complications. 

Similar to previous cases, it cannot be assumed that there is a dependency between baseline COMI 

scores and the occurrence of complications during surgery. 

In summary, the only considerable possibilities of associations between baseline COMI scores and 

other variables were for country IDs, ASA morbidity and surgeon credentials. This needs to be kept in 

mind in later analyses. 

Analyses if any of the patient characteristics were associated with treatment outcome, is subject of 

Chapter 5. 

3.6 Comparison of patient characteristics and COMI outcomes between the 
NERVES trial and the Spine Tango registry 

The following variables are directly comparable between the two data sources: age, sex, weeks of 

symptoms, level of disc, BMI, and COMI scores. These are compared in Table 3.17. 
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Variable NERVES trial Spine Tango registry 

Age   mean (s.d.) 41.94 (9.046) 47.38 (14.122) 

Sex   female 

   Male 

63 (50.81%) 

61 (49.19%) 

8,033 (46.56%) 

9,219 (53.44%) 

Weeks of symptoms  mean (s.d.) 

   <3 months 

   3-12 months 

   >12 months 

21.38 (10.164) 

27 (21.77%) 

97 (78.23%) 

 

NA 

727 (31.07%) 

415 (17.74%) 

1,198 (51.20%) 

Level of Spine  L5 / S1 

   L4 / L5 

   L3 / L4 

   L2 / L3 

   L1 / L2 

   Other 

75 (60.48%) 

47 (37.90%) 

2 (1.61%) 

 

 

 

7,510 (43.53%) 

7,571 (43.88%) 

1,370 (7.94%) 

442 (2.56%) 

30 (0.17%) 

329 (1.91%) 

BMI     27.83 (5.982) 28.394 (8.590) 

COMI score  Baseline 

    

 

7.158 (s.d. 1.686) 

18 weeks: 3.333 (s.d. 2.581) 

30 weeks: 2.878 (s.d. 2.423) 

42 weeks: 2.796 (s.d. 2.144) 

54 weeks: 2.779 (s.d. 2.434) 

7.688 (s.d. 1.744) 

3 mon.: 4.642 (s.d. 2.937) 

6 mon.: 4.518 (s.d. 2.814) 

9 mon.: 4.459 (s.d. 2.858) 

1 year: 3.935 (s.d. 3.049) 

Table 3.17: Comparable statistics from the NERVES trial and the Spine Tango registries. Each statistic 
is based on a complete case analysis. 

Patients in the Spine Tango registry were slightly older than in the NERVES trial. In the registry data 

set, there were more men than women, whereas in the NERVES trial there were more women than 

men. However, both sources were close to a 1-1 distribution of sex. The Spine Tango registry 

categorized the duration of symptoms, whereas the NERVES data set did not. As a result, the mean 

and standard deviation could not be computed for the registry data. However, the NERVES data was 

categorized to enable a comparison of the distribution. In the NERVES trial, patients were selected 

based on the duration of their symptoms, and those with symptoms lasting more than 12 months 

were excluded. Consequently, the distribution of categories differs significantly between the two data 

sources. In both data sources, S1/L5 and L5/L4 were the most frequent locations. 

In the NERVES trial, COMI outcomes were collected in specific time points (baseline, 18 weeks, 30 

weeks past randomisation etc), whereas in the registry data set, they were categorised in weeks or 

years past surgery. However, the following pairs of intervals were regarded as similar and comparable: 



95 
 

18 weeks and 3 months, 30 weeks and 6 months, 42 weeks and 9 months, and 54 weeks and 1 year. 

The means and 95% confidence intervals for these intervals are compared in Figure 3.44. 

 

Figure 3.44: Means and 95% confidence intervals of COMI scores at each collected timepoint (blue = 
Spine Tango, red = NERVES. Time-point coding: T0_A = Baseline of Spine Tango data set, T0_B = 
Baseline of NERVES dataset, T1_A = 3 months in ST, T1_B = 18 weeks in NERVES, T2_A = 6 months in 
ST, T2_B = 30 weeks in NERVES, T3_A = 9 months in ST, T3_B = 42 weeks in NERVES, T4_A = 1 year in 
ST, T4_B = 54 weeks in NERVES.  

Because of the larger sample size in Spine Tango (even for the less frequently collected time points) 

the confidence intervals are smaller than for the NERVES data set. However, in Table 3.17 shows that 

variation in the Spine Tango data set was higher. Both baseline and follow-up means are higher in the 

Spine Tango data set, compared to the RCT environment of the NERVES trial. The reasons for this 

should be addressed in future research. There are a number of possible reasons for this, including 

difference in patient population (international real-world practice vs RCT with inclusion criteria), which 

can be seen in the difference in the duration of symptoms. Additionally, the patient population in the 

NERVES trial was UK only, whereas Spine Tango is an international registry.  
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3.7 Summary 

The purpose of this chapter was to compare the routinely collected data from the Spine Tango registry 

and the NERVES trial. The focus was on a thorough descriptive analysis, as well as an analysis of 

dependencies between collected patient covariates in each of the sources. The data from the Spine 

Tango registry and the NERVES trial differed in several ways. Already in their set-up there is one 

obvious difference, which is that the NERVES trial compared outcomes between microdiscectomies 

and transforaminal epidural steroid injections (TFESI). Hence, the study population was randomised 

and split into two treatment arms. The Spine Tango registry is a database on which observational data 

from surgeries are routinely collected.  

Regarding the collection of variables, the NERVES trial collected data on sex, age, prolapsed disc 

volume, BMI, symptom duration, and spinal level. The Spine Tango registry encompassed a broader 

spectrum of variables, including sex, age, surgeon credentials, country ID, spinal level, ASA morbidity 

status, smoking status, and BMI. 

Upon analysing these datasets, notable observations emerged. Both datasets featured an equal 

distribution of male and female patients, along with similar mean BMI values across the entire 

population. However, there were distinct variations in the distribution of spinal surgery levels between 

the NERVES trial and the Spine Tango registry. Moreover, patients within the Spine Tango registry 

exhibited higher average ages and COMI scores. Both datasets captured key outcomes like COMI, ODI, 

and complications, aligning with the findings in Chapter 2. Interestingly, in the Spine Tango dataset, 

variations in collected outcomes were observed between countries, possibly linked to reporting 

guidelines. 

Regarding data completeness in outcomes, the NERVES trial displayed a low rate of missing data, with 

only 17.18% of COMI questionnaires missing for the 18 weeks after randomization. In contrast, the 

registry data had 46% missingness for baseline questionnaires, and 41% of those with available 

baseline data had no follow-up data. Questionnaires were collected in more time intervals in the 

registry dataset, although there seem to be main check-in times such as 3 months, 1 year and 2 years 

after surgery. Within the Spine Tango dataset, a distinct pattern of missingness in patient covariates 

(BMI, smoking status, duration of symptoms, previous treatment) was observed. These gaps in the 

covariate data were attributed to changes in the data collection forms over time, leading to 

inconsistent reporting. 

While complications were rare in the NERVES trial, the extensive data in the registry allowed for a 

more in-depth exploration of complication occurrence, potentially associated with prior surgeries. 
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This chapter's findings emphasize the comparability not only in terms of patient population but also 

the collected measurements and their corresponding descriptive statistics. However, the differences 

in collected covariates between the two sources highlight the importance of establishing a core set of 

covariates to ensure comparability across data types within this patient population.  

Importantly, this chapter lays the groundwork for subsequent analyses, highlighting the registry's 

potential in more complex models to predict patient outcomes. Up to this point, associations between 

patient covariates and COMI scores at baseline were investigated. Dependencies between variables 

such as country ID and previous treatment or surgeon credentials (potentially due to differences in 

guidelines and reporting standards between countries) as well as age and level of spine or ASA 

morbidity, need to be considered in further analyses. The large amount of data in the registry allows 

for the use of more complex models that can consider a wider range of variables and provide more 

accurate prognostic factor analysis. In Chapter 5, further analysis will be conducted about COMI scores 

and their dependency on baseline variables using prognostic factor analysis.  

As seen in this chapter, outcomes in the Spine Tango registry were not collected consistently, since 

patients are not followed up as rigorously as in a RCT. It is therefore of crucial importance to explore 

the performance of imputation methods that could deal with this missing data. The following chapter 

will conduct a simulation study, using real-world data from the Spine Tango registry. It aims to 

determine if data should be imputed at the item-level of the COMI questionnaires or at the score-

level. Multiple missingness scenarios will be considered, along with varying cut-off points to identify 

when a questionnaire should be considered missing. By determining the optimal approach for 

handling missing data, valuable recommendations can be derived for sciatica-affected patients that 

consider undergoing microdiscectomy.  
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Chapter 4: How to handle missingness of 

values in data from registries regarding 

Patient-Reported Outcome Measures 

(PROMs) 
 

4.1 Chapter Outline 

The aim of this chapter is to identify an appropriate method for imputing missing data in patient-

reported outcome measures in routinely collected data. It is expected that data collection could be 

affected by substantial missing data in both outcomes and baseline characteristics. These gaps would 

reduce a complete case analysis (CCA) sample size significantly. Especially missingness of items or 

complete questionnaires of the assessed quality of life is investigated. To do this, a simulation study 

using data from the Spine Tango registry was conducted. The study used patients with complete 

outcome and baseline questionnaires as a basis, and artificially introduced missing data at both the 

item and questionnaire levels. This simulation covered several parameters, such as the mechanism of 

missingness, the method of imputation (at the item and questionnaire score level). Investigating the 

precision of imputation methods of questionnaire data provides insights of the data collection in this 

registry and can support a recommended cut-off point of questionnaire items. By identifying a 

recommended method for imputing questionnaire data, subsequent analysis can be done on larger 

sample sizes. 

4.2 Introduction 

Data collected from registries may have a higher rate of missing data in comparison to data gathered 

from randomized controlled trials (RCTs). This is possibly due to the collection of data over extended 

time periods. Any changes in collected patient characteristics, protocols, or the addition of new 

countries or sites participating in the registry can result in inconsistent variables within the dataset. 

Especially regarding outcomes this could potentially reduce the available sample size. In RCTs, 

outcomes are collected at previously defined time points, whereas in registries, timepoints may be 

dependent on preferences of patients and clinical sites.  
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When only small percentages of values are missing, analysing the subset of complete observations 

(Complete Case Analysis) can be valid. However, it assumes the missingness of data points to be 

missing completely at random (MCAR), which can be ruled out in most clinical trials (Pedersen et al., 

2017). Imputation is a statistical method that is used to estimate missing data. It involves using 

available data to make reasonable assumptions about the missing data, and then using these 

assumptions to fill in the gaps in the data. There are several different methods of missing data 

imputation, each of which has its own strengths and limitations. Some common methods include: 

mean imputation, single imputation, or multiple imputation (Austin et al., 2021, Mehrotra et al., 2017, 

Zhang, 2016). In general, missing data imputation can help to reduce the impact of missing data on 

the accuracy and reliability of PROMs, and can provide a more complete and more accurate picture of 

the patient's condition and treatment response. If the number of complete cases is less than 90%, 

imputation of missing data leads to more accurate statistical results (Eekhout et al., 2014). 

Throughout this work, data from the spinal registry Spine Tango is used not only for analysis and the 

development of prognostic models, but also to study methods of imputation in the setting of routinely 

collected data. To date, over 750,000 forms (134,458 surgery forms) from five continents have been 

collected (EUROSPINE, 2022b). The most commonly patient reported outcome measure for quality of 

life and lower back and leg pain was the Core Outcome Measures Index (COMI), which was recorded 

pre-surgery and at follow-up visits. It is a quality-of-life (QoL) questionnaire based on the items 

proposed by an expert group for the use in clinical routine, quality management and research (Deyo 

et al., 1998). It covers not only pain intensity and its effect on quality of life, but also allows patients 

to report complications, overall satisfaction and further surgeries. 

The population in focus are patients that underwent microdiscectomy due to disc herniations. 

Although being one of the most measured outcomes, COMI scores had high percentages of 

missingness, in baseline, but also past surgery.  

The focus of this chapter is, whether one should impute single missing items in questionnaires and 

then compute the total score of the patients (even if all items are unanswered), or if one should 

impute the total score directly. Commonly, the evaluation of questionnaires allows for a few items to 

be missing and still calculate a percentage score of answered items, but it will consider the complete 

outcome as missing if item-missingness is too large. Several simulations will be performed to 

investigate how to choose such cut-off points appropriately, with a variety of missing data 

percentages. There are three types of mechanisms of missing data, missing completely at random 

(MCAR), missing at random (MAR), and missing not at random (MNAR), which will be explained in 

detail. The simulation procedure will be performed for each of these mechanisms to find out if there 
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is an overall superior imputation method. The focus of this chapter is to investigate imputation of 

baseline questionnaires. The general goal was to explore to what extent this could result in accurate 

imputations and to investigate if the imputation of single items could reduce the overall missing data 

of questionnaire scores, especially in cases where the cut-off threshold is sensitive. Outcome 

questionnaire imputation was additionally explored, although this can be considered as ethically 

controversial and will probably not find application in real-world scenarios.  

4.3 Mechanisms of missingness 

Missing data can have a significant impact on the accuracy and reliability of patient-reported outcome 

measures (PROMs), as it can lead to bias and distorted results. This can be particularly problematic in 

the context of low-back pain, where the condition can be complex and difficult to assess accurately.  

There are several mechanisms that can cause missing data in patient-reported outcome measures 

(PROMs) and understanding these mechanisms can help to identify the appropriate methods for 

handling missing data. In general, three types of mechanisms are defined by the following 

classifications. 

4.3.1 Missing completely at random (MCAR) 

The mechanism causing missing data does not depend on either observed or unobserved data. In this 

case, a subset of the data would be representative for the entire dataset. Analysis results would have 

larger standard deviations, but there would not be any systematic error. This mechanism is very rare 

though, especially in clinical research (Arnab, 2017). 

4.3.2 Missing at random (MAR) 

In this mechanism, missing values are not directly related to the variable being measured, but rather 

are influenced by other observed variables. For example, if data is collected on patients' ages and 

genders during a trial and some patients have missing age data, this mechanism suggests that the 

cause of the missing values may not be related to the age variable itself, but rather may be related to 

the patient's gender. If this type of missing data is not properly accounted for in subsequent analyses, 

it could lead to biased results. Techniques such as multiple imputation can help to reduce this bias, 

but it is not always possible to confirm that the data meet the criteria for this mechanism (MAR). As a 

result, sensitivity analyses may be needed to evaluate the potential impact of missing not at random 

(MNAR) data on the estimated results” (Jakobsen et al., 2017). 
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4.3.3 Missing not at random (MNAR) 

When missing values depend not only on other observed variables, but also on the variable itself that 

has missing values, the data are classified as missing not at random (MNAR). Using the previous 

example, this would mean that a missing value for the age variable may be influenced by both the 

patient's gender and their age. It is not possible to definitively determine, based on the observed data 

alone, whether the data meet the criteria for MNAR or MAR. No statistical method can completely 

account for the potential bias that may be introduced by MNAR data, as these methods rely on 

assumptions that cannot be tested using only the observed data (Jakobsen et al., 2017). 

MAR and MNAR are common mechanisms of missing data in clinical studies, and it is important to 

properly address these issues to avoid bias in the analysis results. If these mechanisms are not handled 

appropriately, the estimated benefits and harms of a treatment may be inaccurate. While advanced 

imputation methods can help to mitigate the impact of missing data, a high percentage of missing 

data can still reduce the representativeness of the sample and bias any estimates produced through 

analysis.  

The appropriate method for handling missing data will depend on the mechanism of missingness. For 

example, if the missing data is missing completely at random (MCAR), then simple methods such as 

mean or median imputation may be sufficient. However, if the missing data is missing at random 

(MAR) or missing not at random (MNAR), then more complex methods such as multiple imputation 

may be needed to accurately estimate the missing data. It is important to carefully consider the 

mechanism of missingness when developing a plan for handling missing data in PROMs.  

Even with strict trial conduct and protocols, as it is the case in prospective randomised clinical trials 

(RCT), there usually occurs some missing data which can have several reasons. For example, 

unreadable answers that could not be transcribed, patients not answering questions due to individual 

reasons or that patients could not be contacted anymore. Especially difficult to handle are missing 

data that are missing due to an underlying cause which is directly connected to the trial purpose. As 

example, consider a survey about depression. Regarding the patients who did not answer some of the 

survey questions or did not respond at all, it is likely that their level of depression is associated with 

their response. Missing data can therefore seriously compromise analysis results if not handled 

appropriately. The higher the percentage of missing values, the more biased a complete case analysis 

would be, and in the above example the effect of depression would be underestimated, because 

rather severe cases were left out (Jakobsen et al., 2017). When dealing with routinely collected data, 

percentages of missingness could be even higher. It is therefore important to use appropriate 

techniques to impute missing data. Methods of imputation 
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One generally distinguishes between “single imputation” and “multiple imputation”. Single 

imputation is a method used to handle missing data by replacing the missing values with single 

estimated values. One commonly used approach in single imputation is to impute the missing value 

with the mean, median, or mode of the non-missing values for that variable. However, this can result 

in an underestimation of variance of the variable, which is why this method should be used with 

caution (Pedersen et al., 2017). The most common approaches of single imputation will be reviewed 

in the following.  

4.3.4 Single imputation 

4.3.4.1 Last observation carried forward 

This method imputes a missing value with the last observation of the individual and is therefore 

specific for longitudinal data. It assumes though, that the observation has not changed since the last 

measured observation, which is most often unrealistic, and leads to an underestimation of treatment 

effects. 

4.3.4.2 Single imputation: Regression imputation 

In this method, the imputed value is predicted from a regression equation that is obtained by all 

complete observations. This implies though, that imputed values fall directly on a regression line with 

non-zero slope and therefore a correlation of 1 between predictors and outcome. This can be adjusted 

by adding a small error term to the equation which preserves variability and estimated parameters 

are less biased.  

4.3.4.3 Single imputation: Mean imputation 

Mean imputation replaces a missing value by the mean of all other available cases. This is a 

straightforward and easy method but leads to underestimated variances of the observations, as well 

as covariances and correlations. Therefore, this method often causes biased estimates, irrespective of 

the underlying missing data mechanism (Eekhout et al., 2014). 

4.3.5 Multiple Imputation 

Multiple imputation is another statistical method used to handle missing data by generating multiple 

plausible values for the missing observations. It involves generating multiple datasets, each with 

differing imputed values. Each dataset containing imputed values is analysed separately and the 

results are then combined using Rubin’s Rules. One popular method within MI is the Chained 

Equations approach. This approach iteratively imputes each missing variable conditional on the 
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observed values of the other variables, allowing for complex relationships between variables to be 

captured during the imputation process.  

In the following, a brief overview of the technique using chained equations (as used in the R-package 

‘mice’)  is provided, as detailed by Azur et al. (Azur et al., 2011). 

• Step 1: Initially, a simple imputation technique, such as imputing the mean or median, is 

applied to all missing values in the dataset, creating 'place holder' imputations. 

• Step 2: Subsequently, the 'place holder' imputations for one variable ('var') are reverted to 

missing. 

• Step 3: The values of the variable 'var,' as of Step 2, undergo a regression analysis against the 

remaining variables in the dataset. 

• Step 4: Predictions (imputations) for the missing values of 'var' are derived from the regression 

model. These imputed values are used when 'var' is employed as an independent variable in 

subsequent regression models. 

• Step 5: Steps 2–4 are repeated for each variable with missing data, constituting one iteration 

or 'cycle.' After one cycle, all missing values are replaced with imputed values generated from 

regressions reflecting the observed data relationships. 

• Step 6: Steps 2–4 are reiterated for several cycles, with imputations being updated at each 

cycle. 

It's important to note that while Multiple Imputation can be a powerful method for handling missing 

data, it doesn't guarantee perfect imputations. Careful consideration of the underlying data and the 

assumptions of the imputation models is essential for accurate and valid results. 

In many cases the multiple imputation technique is considered to be more accurate and reliable than 

other methods of missing data imputation, because it considers the uncertainty associated with the 

missing data (Jakobsen et al., 2017). It is particularly useful in situations where the missing data is not 

missing completely at random, as it can provide a more accurate estimate of the missing data by 

considering the relationships between the observed and missing data. There exist many different 

types of multiple imputation methods and covering all of them would exceed the scope of this project. 

Most of the methods differ in their choice of “plausible values” regarding the type of variable 

(continuous, binary, categorical etc). 

The multiple imputation package ‘mice’ in R has standard techniques for numeric data, factor data 

with 2 levels, factor data with 2 or more unordered levels and factor data with 2 or more ordered 

levels (van Buuren and Groothuis-Oudshoorn, 2011). It detects the type of variable, and uses an 
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appropriate method, but this can be specified and individualized. The number of plausible values and 

iterations can also be adjusted. There are several methods that can be selected such as classification 

and regression trees, random forest imputation or predictive mean matching (PMM).  

Predictive mean matching is a technique for filling in missing values in a dataset by using values from 

other observations that are similar (Morris et al., 2014). It is a specific method for Steps 3 and 4 in the 

previous overview. The process involves calculating the mean of each variable for each individual in 

the dataset and using these means to predict the missing values for each individual. To fill in a missing 

value, the method searches for other individuals in the dataset with similar mean values for the 

variables that are not missing, and then takes a random sample of these similar individuals. The 

observed values for the missing variable from this sample are used to fill in the missing value. This 

method preserves any skewedness of the imputed variable, boundaries of its values and detects if the 

variable is discrete or continuous. It includes the use of the linear regression model of the form 

Y = Xβ +  ε.  

The variables of this formula are explained as follows: 

- Y is a vector of outcomes of length N (N is the number of total patients).  

- X is a p-dimensional vector of patient covariates where p is the number of included patient 

baseline covariates (including an intercept). 

- β is p-dimensional vector of coefficients. 

- ε is a N-dimensional vector of error terms, each of which are each assumed to be normally 

distributed (all εi are assumed from the same distribution).  

The following description outlines the essential steps of this process, which have been adapted from 

the following sources: (Morris et al., 2014, StatisticsGlobe, 2022, Vink et al., 2014). 

Step 1: Begin by estimating a linear regression model as follows: 

- Utilize the variable to be imputed, denoted as Y, along with a well-selected set of 

predictors, denoted as X. 

- Limit the analysis to complete cases, employing X and Y to estimate the model and derive 

the coefficients represented by b.  

Step 2: Proceed by drawing random samples from the posterior predictive distribution of b, yielding a 

new set of coefficients denoted as b*. For a comprehensive explanation of this Bayesian step, please 

refer to (Yuan, 2005). 

Step 3: Calculate predicted values for both observed and missing values of Y: 
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- Use the b coefficients to compute predicted values for the observed Y. 

- Employ the b* coefficients to compute predicted values for missing Y. 

Step 4: For each case where Y is missing, identify the closest predicted values (typically three) among 

cases where Y is observed. To illustrate, consider the following example. 

- Yi is missing, with its predicted value calculated as 10 based on b*. 

- The dataset includes five observed cases of Y with values 6, 3, 22, 7 and 12. 

- Predicted values based on b for these five observed cases are 7, 2, 20, 9 and 13. 

- The algorithm selects the three closest values to the missing Yi, which are 7, 9 and 13. 

Step 5: Randomly select one of these three close cases and impute the missing value Yi with the 

observed value of this close case. For example: 

- The algorithm randomly draws from 6, 7, and 12 (the observed values corresponding to 

the predicted values 7, 9, and 13). 

- The algorithm selects 12 and substitutes this value for Yi. 

Marshall et al. (Marshall et al., 2010) compared a variety of imputation methods. They concluded, that 

multiple imputation using PMM was the preferred choice, at least for missingness up to 50%. This 

method will be used in the following simulation study in which imputation of items in questionnaires 

and imputing scores are compared in different scenarios of mechanism of missingness, probability of 

missingness and cut-off points of questionnaire score calculation. 

4.4 Literature review 

Eekhout et al. conducted a literature review regarding the reporting of missing data in questionnaires 

and the methods used for analysis. It was found that 78% lacked clear information about the 

measurement instruments, and although advanced techniques such as multiple imputation are 

available, CCA was the most frequently reported method (81%). It is a viable method if the missing 

data percentages are low, but for higher percentages, it reduces the power of analysis since the 

sample size is reduced. CCA also assumes that missing data occurs completely at random (MCAR), 

which can often be ruled out depending on the clinical background. The comparison between missing 

data methods for item-level and total score-level missingness in questionnaire data is seldom made in 

a single study (Eekhout et al., 2012). 

In 2010, Marshall et al., conducted a simulation study regarding missing covariate data techniques in 

the development of prognostic models. For multiple scenarios of missingness percentages, data were 

generated and then imputed using single imputation, multiple imputation or CCA. A Cox proportional 
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hazard model fit was used to compare the performance of the imputation techniques. CCA showed 

unbiased regression estimates, but inflated standard errors, which affected the significance of the 

covariates in the model. It was shown that single imputation techniques underestimate variability.  

Multiple imputation using the predictive mean matching (PMM) method produced the least biased 

estimates. However, when 50% or more cases had missing data, underlying the missing completely at 

random (MCAR) or missing at random (MAR) mechanism, regression coefficients were still biased. As 

for missing not at random (MNAR) this bias occurred where 10% or more cases were incomplete 

(Marshall et al., 2010). Several studies focused only on imputation of items but did not compare them 

to methods of imputation of complete scores (Burns et al., 2011, Buuren, 2010, Hawthorne and Elliott, 

2005, Roth et al., 1999). For example, Burns et al. investigated item imputation of a questionnaire for 

cognitive status in dementia, where missing item-level data are frequently reported. A simulation was 

conducted, which found multiple imputation (MI) to be the superior method to estimate missing 

items, although “serious decrements in estimation occurred when 50% or more of item-level data 

were missing” (Burns et al., 2011).  

Eekhout et al. conducted a simulation study to compare item-level versus score level imputation 

(Eekhout et al., 2014). Data from an RCT regarding low-back pain, specifically the questionnaire Pain 

Coping Inventory (PCI), was used to create data sets for the simulation. It was found that MI methods 

at item-level outperformed models applied to total scores.  

This study focusses on data from an international registry, therefore observational and routinely 

collected data and specifically the low-back/leg pain questionnaire COMI for patients with sciatica. 

4.5 Design of simulations 

Simulation studies are used in order to investigate the behaviour of statistical methods. They use 

generated data sets and allow to quantify bias and resilience of the used methods in different 

scenarios (varying sample size or other parameters). Although the design, analysis, presentation and 

reporting of such simulation studies should be done rigorously in medical data science, many pointed 

out that researchers still fail to do (Burton et al., 2006, Hauck and Anderson, 1984, Hoaglin and 

Andrews, 1975). 

Morris et al. recommend to systematically approach a simulation study by using the ‘ADEMP’ structure 

(Aims, Data-generating mechanism, Estimands, Methods, Performance measures) in order to cover 

all important aspects (Morris et al., 2019). The aims are typically about estimating the performance 

for different sample sizes, variance estimations, robustness or misspecification of different methods, 

but could also be proof-of-concept or to investigate extreme cases in which methods fail. Data-
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generating mechanisms should be as close to the real-life data for which the methods will be used 

later and can either be an appropriate underlying probability distribution from which new data will be 

sampled, or drawing with replacement and therefore bootstrapping actual real-life data to the desired 

sample size. The choice of mechanism depends on the projects aims and the availability of a 

parametric model. Estimands are quantities that are used to compare the performance of different 

methods. These quantities may be model parameters, outcome measures, hypothesis power, 

prognostic ability, or some other metric depending on the goals of the project. ‘Methods’ is a rather 

generic term that can refer to a model for analysis or some procedure such as a decision rule or as in 

our case, the method of imputation of missing data. Performance measures are numerical quantities 

used to assess the performance of a method. These measures may include the variance of estimates, 

bias, coverage, degrees of freedom, and others. One important performance measure is the Monte 

Carlo error, which is defined as the standard deviation of the simulated estimates divided by the 

square root of the number of simulations. This measure should be low (e.g., less than 0.05) in order 

to ensure that the number of simulations was sufficient. 

The aim of this simulation study is to identify an appropriate method for imputing missing data in 

patient-reported outcome measures in routinely collected data. Especially missingness of items or 

complete questionnaires of the assessed quality of life is investigated. It will be investigated if COMI 

questionnaires should be imputed (if at all) on an item- or score-level. This imputation is considered 

for baseline questionnaires. Additionally, even the performance for the imputation of 3-month 

outcome questionnaires is considered. However, this was solely out of curiosity and would raise 

ethical concerns if applied in real-life.  

Instead of creating a simulation dataset from scratch, the dataset of patients from the Spine Tango 

registry that had complete data regarding COMI questionnaires at baseline (6,008 patients) was used. 

This assures that the investigated methods are applicable to a real-world scenario. Missing data is then 

artificially introduced on both the item and questionnaire level. This missingness can be created in 

several ways. The parameters that were considered were the probability of missingness in an 

individual and the mechanism of missingness (MCAR, MAR, MNAR). The computation of COMI scores 

often allows for single items to be missing, so that a COMI score would still be calculated if only e.g. 7 

items were answered (by averaging over the number of answered items). Some studies define a cut-

off point of possible missing items, the excess of which would result in the entire questionnaire to be 

considered missing. If sensitive, this cut-off point can reduce the sample size of available scores and 

therefore the power of analyses performed on the data set. However, score calculation on a small 

subset of items could lead to biased scores. This choice of cut-off point is also subject of investigation 

in this study, to identify a recommended cut-off point for the COMI questionnaire.  
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The main estimand is the accuracy of the methods, namely item-wise and score-wise imputation, in 

terms of their ability to recover missing items and maintain the overall population statistics, such as 

the mean and standard deviation of the baseline COMI (Core Outcome Measure Index) scores. 

Specifically, this accuracy is assessed by the root-mean-square error (RMSE). This measure is defined 

as the square root of the mean of the squared difference between the estimated and true COMI 

scores. The RMSE is computed for each simulation iteration, and subsequently, the mean RMSE across 

all iterations is determined for each combination of scenarios (of probability of missingness, 

mechanism of missingness and cut-off point). Furthermore, we compare the mean and standard 

errors of population COMI scores, averaged over all simulation iterations within a given scenario, to 

the true mean and standard error values obtained before introducing artificial missingness. 

As performance measure the Monte Carlo error was considered, to make sure that the number of 

simulations was sufficient for reliable results. Additionally, the feasibility of the methods was 

considered in terms of time of computation, which can be an important factor in large data sets.  

For each mechanism of missingness N simulations for each combination of probability of missingness 

and choice of cut-off point will be run. For each of these iterations, missing data will be introduced 

using the ampute()function of the ‘mice’R-package and then imputed by both item-wise and 

score-wise imputation of COMI. Imputation will be performed using the mice()function of the 

‘mice’ R-package, in which the number of computed datasets with imputed data can be specified 

by the parameter m. This parameter will be set to the number N of simulation iterations.  

When imputing item-wise, all items of the questionnaire, independent of the number of missing items 

is imputed and the score afterwards calculated. In this method, the cut-off point is not relevant. For 

the score-wise imputation, the scores will first be calculated regarding the cut-off point of the 

iteration. For those individuals who had too much missingness of a questionnaire, the score will be 

considered missing and imputed directly.  

An overview of the scenarios of this missingness is provided in Figure 4.1. 
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Figure 4.1: Overview of simulation scenarios. C = Cut-off point for the calculation of COMI scores, P = 

probability of missingness in an individual. 

4.5.1 Patient population 

Not all patients had COMI questionnaires available. For details of the total patient population that was 

identified according to the clinical definition of sciatica, see Chapter 3. The subset of patients that had 

complete baseline COMI questionnaires available was 6,008 patients. However, missing values of 

patient covariates were present. Only considering patients with complete data, would reduce the 

sample size further to 4,312 patients. To maintain the larger dataset for this simulation study, the 

missing values of the patient characteristics were imputed using predictive mean matching. In this 

case, MI was used to create one single dataset without missing data, by only iterating the “mice()” 

function once (m=1). It cannot be assumed that the results of any subsequent analyses are not 

affected by using this technique to create this initial dataset. Nevertheless, this was used to maintain 

the sample size. The same simulations were performed on the dataset of patients that had all variable 

complete (4,312) as a sensitivity analysis to support the robustness of the results. The result of the 

same simulations on the complete case analysis set are included in Appendix F. 

An overview in form of descriptive statistics of the dataset before and after imputing missing patient 

covariates is shown in Table 4.1. 

Variable Before imputation After imputation 

Sex  Female 

  Male 

2,822 (46.97%) 

3,186 (53.03%) 

2,822 (46.97%) 

3,186 (53.03%) 

Age Mean 49.02 

(s.d. 14.57) 

Mean 49.02  

(sd 14.57) 
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Surgeon cred. Board-certified neurosurgeon 

  Specialized spine surgeon 

  Neurosurgeon in training 

  Board-certified orthopedic surgeon 

  Orthopedic surgeon in training 

  Other 

  Missing 

2,785 (46.35%) 

2,139 (35.60%) 

589 (9.80%) 

212 (3.53%) 

80 (1.33%) 

26 (0.43%) 

177 (2.95%) 

2,860 (47.60%) 

2,217 (36.90%) 

603 (10.04%) 

217 (3.61%) 

84 (1.40%) 

27 (0.45%) 

Country ID A 

  B 

  C 

  D 

  E 

  F 

  G 

  H 

  Other 

  Missing 

1,945 (32.37%) 

2,381 (39.63%) 

23 (0.38%) 

426 (7.09%) 

248 (4.13%) 

194 (3.23%) 

138 (2.30%) 

108 (1.80%) 

110 (1.83%) 

177 (2.95%) 

2,210 (36.78%) 

2,520 (41.94%) 

27 (0.45%) 

431 (7.17%) 

254 (4.23%) 

196 (3.26%) 

144 (2.40%) 

112 (1.86%) 

114 (1.90%) 

Level of Spine L5/S1 

  L4/L5 

  L3/L4 

  L2/L3 

  L1/L2 

  Other 

2,637 (43.89%) 

2,260 (37.62%) 

480 (7.99%) 

162 (2.70%) 

7 (0.12%) 

102 (1.70%) 

2,637 (43.89%) 

2,260 (37.62%) 

480 (7.99%) 

162 (2.70%) 

7 (0.12%) 

102 (1.70%) 

Prev. Treat. None 

  <3 mon. conservative 

  3-6 mon. conservative 

  6-12 mon. conservative 

  >12 mon. conservative 

  Surgical 

  Missing 

835 (13.90%) 

1,181 (19.66%) 

1,335 (22.22%) 

854 (14.21%) 

767 (12.77%) 

227 (3.78%) 

809 (13.47%) 

993 (16.53%) 

1,347 (22.42%) 

1,518 (25.27%) 

996 (16.58%) 

884 (14.71%) 

270 (4.49%) 

ASA Morbidity 1 

  2 

  3 

  4 

2,564 (42.68%) 

2,325 (38.70%) 

361 (6.01%) 

7 (0.12%) 

2,932 (48.80%) 

2,661 (44.29%) 

407 (6.77%) 

8 (0.13%) 
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  Missing 751 (12.50%) 

Table 4.1: Descriptive statistics of baseline patient characteristics before and after imputation 

(N=6,008). 

4.5.2 Introducing missing data 

In each simulation iteration, missing data will be generated in items from COMI questionnaires using 

different probabilities and mechanisms of missingness, which can be specified using the ampute()-

function in the mice-package in R. Amputing data is a term used in this package that generates 

missing data in a complete dataset. 

This multivariate amputation procedure was programmed for general use by Schouten et al. (Schouten 

et al., 2018). Figure 4.2 shows an overview of the process with which missing values are generated.  

 

Figure 4.2: Schematic overview of ampute-function in the R-package mice. Figure taken from 

(Schouten et al., 2018) in the section “Multivariate amputation”. 

The dataset will be divided into k subsets, where the value of k is determined by the number of 

different patterns of missing data. This value can be customized to meet specific needs. In this case, a 

pattern for every possible way that an item could be missing in the dataset was created. For example, 

if there are 8 items in a questionnaire, there are 8 different ways that a single item could be missing. 
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If two items are missing, there are 28 different patterns of missingness. The formula for calculating 

the number of patterns is: 

𝑛!

(𝑛 − 𝑘)! 𝑘!
 

where n is the total number of items and k is the number of missing items. 

In this simulation design, there were 255 patterns of missingness. It was not assumed that any 

particular pattern was more likely to occur than any other, so each pattern had a frequency of 1/255. 

However, the possibility that the entire questionnaire could be missing was also considered, which 

was assumed to be more likely to occur than any specific pattern of missingness. It was assumed that 

the total frequency of missingness for the entire questionnaire was approximately 10%. As a result, 

the frequency of each pattern was specified as 1/280 and the frequency of complete missingness as 

25/280 (rounded for simplicity when coding frequencies).  

Specifying weights is only interesting when dealing with the MAR and MNAR mechanism and will be 

explained in depth later. Each subset will then create missingness with the probability p regarding the 

pattern that specifies the subset. The other rows will be left complete. Afterwards, all subsets are 

merged again. This will produce a data set that has an expected number of rows (patients) of (p x 

number of patients) to have missingness in any way. In order to cover a wide range of scenarios, this 

value will be ranging between 0.1 and 0.9 with increments of 0.1 (9 scenarios). Scores will then be 

computed with respect to the currently defined cut-off point of when a questionnaire is considered 

missing. This cut-off point will have a range of 1 to 8 (8 scenarios). A cut-off point of 1 means that a 

questionnaire is considered missing if one or more items are missing, whereas a cut-off point of 8 

means that a questionnaire is only then considered missing if all 8 items are missing. This results in a 

total of 72 scenarios.  

4.5.3 Simulation set-up 

For each scenario with different cut-off points, probabilities of missingness, and mechanisms of 

missingness, a total of N simulations will be conducted. The mean and a 95% confidence interval of 

the RMSE will be calculated for both score-based and item-based imputation. In the imputation 

process, the number of iterations in the “mice()”-function can be set to m=N in order to obtain N 

different datasets, each using PMM. Initial simulations showed that N=50 simulations were sufficient 

to achieve a Monte Carlo error smaller than 0.05. 

In short, the process of each simulation is summarised in the following steps in pseudo-code: 

# loop through each cut-off point 
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# loop through each probability of missingness 

        # loop through each simulation 

                # generate missing data 

             Generate_missingdata(mechanism, probability) 

 

             # impute data set with both methods 

             impute_data_method1() 

             impute_data_method2() 

           

             # calculate RMSE for both methods 

             rmse1 = calc_rmse(method1) 

             rmse2 = calc_rmse(method2) 

           

# calculate mean and standard deviation of RMSE of  

# N simulation iterations 

          mean_rmse1 = calc_mean(rmse1) 

         stddev_rmse1 = calc_stddev(rmse1) 

          mean_rmse2 = calc_mean(rmse2) 

          stddev_rmse2 = calc_stddev(rmse2) 

When presenting tables of RMSEs or population means, conditional formatting is used to colour high 

errors (large RMSEs or large error from true population mean) appropriately. Colouring boundaries 

are chosen to be the same for each simulation set-up, in order to provide visual aid for comparing 

methods. Hereby, darker colours stand for more inaccurate values. To clearly distinguish between 

tables displaying RMSE values and those displaying population mean estimates, the colour scheme 

has been differentiated, with the former represented in red and the latter in yellow. For RMSE tables, 

the darkest colour possible is reached at the highest error of all simulation results, whereas a 

theoretical RMSE value of 0 would not be coloured. For population means, the largest error of all 

simulations was a difference of 1.59 to the true population mean (maximum value of both baseline 
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and 3-month outcome simulations). The colour-code is designed so that a correct estimation would 

not be coloured and the higher the error from the true value, the darker the colour. Hereby the colour-

code is symmetric (same increase in colouring for both under- and overestimation). Figure 4.3 shows 

the colour coding for both RMSE and population means. 

 

Figure 4.3: Colour coding scales for RMSE (red) and population mean (yellow).  

4.6 Questionnaires at baseline for missing data underlying MCAR mechanism 

In order to generate missing items in a given data set, the function ampute() is used. In this function 

the mechanism of missingness can be specified, which in this simulation will be missing completely at 

random (MCAR). The procedure of the simulation is designed according to the script above, with a 

number of simulations of N=50 (as previously mentioned this was sufficient to achieve a Monte Carlo 

error smaller than 0.05) for each scenario combination (72) of cut-off points and probability of 

missingness. 

The results regarding RMSE are shown in Table 4-2 and 4-3. Each table shows each combination of 

scenarios for the RMSE using item-based imputation and score-based imputation. 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.42 0.59 0.71 0.83 0.92 1.01 1.09 1.17 1.25

2 0.41 0.58 0.71 0.83 0.92 1.01 1.09 1.17 1.24

3 0.41 0.58 0.71 0.83 0.93 1.01 1.10 1.17 1.24

4 0.42 0.58 0.72 0.82 0.92 1.01 1.09 1.17 1.24

5 0.41 0.58 0.71 0.82 0.92 1.01 1.09 1.17 1.24

6 0.42 0.58 0.72 0.82 0.92 1.02 1.09 1.18 1.24

7 0.41 0.58 0.71 0.83 0.92 1.01 1.09 1.17 1.24

8 0.41 0.59 0.71 0.82 0.93 1.01 1.09 1.16 1.24  

Table 4.2: Mean of RMSE of each combination of probability of amputed missingness and cut-off point, 

using item-based imputation method. RMSE was averaged over number of simulations (N=50). 
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In Table 4.2 the means of the RMSE are shown for the item-based imputation method. It becomes 

clear that the cut-off point of questionnaires does not matter in this method, since every item is 

imputed and scores are calculated afterwards. Standard deviations of the RMSE (simulation estimand) 

were rather low, with a range of 0.014 and 0.024. The goal was to achieve a Monte Carlo error 

(standard deviation of estimand divided by number of simulations) of less than 0.05. Having 50 

simulation iteration makes sure that this is achieved, even if standard deviations become much larger.  

In Table 4.3, the RMSE mean of each combination is shown for the score-based imputation. 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.75 1.08 1.31 1.52 1.71 1.86 2.02 2.16 2.30

2 0.71 1.02 1.25 1.45 1.62 1.79 1.92 2.07 2.21

3 0.64 0.92 1.12 1.31 1.47 1.62 1.75 1.89 2.02

4 0.55 0.78 0.96 1.11 1.26 1.39 1.52 1.63 1.75

5 0.48 0.68 0.84 0.98 1.10 1.21 1.33 1.42 1.53

6 0.46 0.65 0.81 0.94 1.05 1.16 1.25 1.36 1.44

7 0.46 0.65 0.79 0.93 1.04 1.15 1.25 1.34 1.43

8 0.45 0.66 0.80 0.92 1.05 1.15 1.25 1.34 1.43  

Table 4.3: Mean of RMSE of each combination of probability of amputed missingness and cut-off point, 

using score-based imputation method. RMSE was averaged over number of simulations (N=50). 

There are two types of pattern visible for the score-based imputation, when analysing the table of 

mean RMSEs. Errors become larger, the higher probability of missingness (similar to item-based 

imputation), but additionally, the errors also become larger, the smaller the cut-off point of 

questionnaires. This is due to the lost information that is introduced by disregarding available items 

of uncompleted questionnaires. Score imputation does not accurately impute these questionnaires 

and it would be better to take scores based on the items that are available. Standard deviations of the 

RMSE (simulation estimand) were again low with a range of 0.018 to 0.046. 

How these two methods performed for the calculation of the population mean and standard deviation 

of baseline scores will now be analysed. For each combination the population mean was calculated 

and presented in Table 4.4 and 4.5. It needs to be reminded, that the true population baseline COMI 

score mean was 7.69 (s.d. 1.74). 
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Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 7.69 7.69 7.69 7.69 7.69 7.69 7.70 7.70 7.71

2 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.70

3 7.69 7.69 7.69 7.69 7.70 7.69 7.69 7.69 7.70

4 7.69 7.69 7.69 7.69 7.70 7.70 7.70 7.70 7.70

5 7.69 7.69 7.69 7.69 7.70 7.69 7.70 7.70 7.70

6 7.69 7.69 7.69 7.70 7.69 7.69 7.70 7.69 7.70

7 7.69 7.69 7.69 7.69 7.69 7.70 7.70 7.70 7.70

8 7.69 7.69 7.69 7.69 7.69 7.69 7.70 7.70 7.70  

Table 4.4: Estimated population mean of COMI baseline scores for each scenario, using item-based 

imputation. 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 7.69 7.69 7.68 7.68 7.68 7.68 7.69 7.67 7.68

2 7.69 7.68 7.68 7.68 7.68 7.68 7.68 7.68 7.67

3 7.69 7.68 7.69 7.68 7.69 7.68 7.68 7.69 7.70

4 7.69 7.68 7.68 7.68 7.69 7.70 7.68 7.68 7.69

5 7.68 7.69 7.68 7.68 7.69 7.69 7.68 7.68 7.69

6 7.69 7.68 7.68 7.68 7.68 7.69 7.68 7.68 7.69

7 7.68 7.69 7.68 7.69 7.68 7.69 7.68 7.68 7.69

8 7.69 7.68 7.68 7.69 7.68 7.69 7.68 7.69 7.68  

Table 4.5: Estimated population mean of COMI baseline scores for each scenario, using score-based 

imputation. 

The range of the population mean was accurately restored by both methods, with a range of [7.69 – 

7.71] for the item-wise imputation and a range of [7.67 – 7.70] for the score-wise imputation. The 

ranges of estimated standard deviation of population mean baseline COMI scores were [1.74 – 1.75] 

and [1.75 – 2.15] for item- and score-based imputation respectively. Score-based imputation tended 

more to slightly overestimating the true standard deviation of 1.74. 

4.7 Questionnaires at baseline for missing data underlying MAR mechanism 

Data sets were again generated using the ampute() function, but the mechanism of missingness 

was now indicated as MAR. This means that the missingness can depend on other measured variables. 

One can specify weights, so that some measured variables have a higher effect on the missingness 

than others. The computation of the probability of a missing value is then a linear combination of each 

weight and variable.  

For simplicity, the vector of weights for each pattern was equally distributed over the non-missing 

variables. For future simulation studies, this can be further explored by adapting reasonable 

assumptions about this distribution in a given patient population. For further information see 

(Schouten et al., 2018). It is expected that both methods to have higher RMSEs than for missingness 
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under the MCAR mechanism, especially for higher percentages of total missingness. Otherwise, the 

scenarios are the same as in the previous simulation study, with each having N=50 simulation 

iterations. Specifically, taking into account the possible patterns of missingness for a given cut-off 

point calculation and probability of missingness, amputation of missing data in each simulation 

iteration is created by specifying the mechanism to “MAR” in the ampute() function. The imputation 

however, is the same over all scenarios.  

The results regarding RMSE are shown in Table 4-6 and 4-7. Each table shows each combination of 

scenarios for the RMSE using item-based imputation and score-based imputation. 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.41 0.58 0.71 0.82 0.92 1.01 1.09 1.18 1.24

2 0.40 0.58 0.71 0.82 0.92 1.01 1.09 1.17 1.24

3 0.42 0.57 0.71 0.82 0.92 1.01 1.09 1.17 1.25

4 0.41 0.58 0.71 0.82 0.92 1.01 1.10 1.17 1.25

5 0.41 0.58 0.71 0.82 0.92 1.01 1.09 1.17 1.25

6 0.41 0.58 0.71 0.82 0.92 1.01 1.09 1.17 1.25

7 0.41 0.58 0.70 0.82 0.92 1.01 1.10 1.17 1.25

8 0.42 0.58 0.71 0.82 0.92 1.01 1.09 1.17 1.25  

Table 4.6: Mean of RMSE of each combination of probability of amputed missingness and cut-off point, 

using item-based imputation method. RMSE was averaged over number of simulations (N=50). 

In Table 4.6 the mean of the RMSE is shown for the item-based imputation method. It becomes clear 

that the cut-off point of questionnaires does not matter in this method, since every item is imputed 

and scores are calculated afterwards. Standard deviations of the RMSE (simulation estimand) were 

low with a range of 0.015 to 0.026.  

In Table 4.7, the means and standard deviations of each combinations are shown for the score-based 

imputation. 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.75 1.07 1.32 1.54 1.73 1.92 2.09 2.25 2.41

2 0.72 1.02 1.25 1.45 1.64 1.81 1.96 2.11 2.27

3 0.64 0.90 1.12 1.29 1.46 1.60 1.75 1.88 2.02

4 0.53 0.77 0.95 1.10 1.23 1.37 1.50 1.62 1.74

5 0.46 0.66 0.82 0.95 1.07 1.20 1.30 1.41 1.52

6 0.43 0.62 0.77 0.90 1.01 1.13 1.23 1.33 1.43

7 0.43 0.62 0.76 0.89 1.02 1.12 1.23 1.32 1.42

8 0.44 0.62 0.77 0.90 1.01 1.12 1.22 1.32 1.42  

Table 4.7: Mean of RMSE of each combination of probability of amputed missingness and cut-off point, 

using score-based imputation method. RMSE was averaged over number of simulations (N=50). 
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The same pattern as in the MCAR mechanism could be observed that score-based imputation was 

worse than item-based imputation for scenarios with high missingness and small cut-off points. 

Standard deviations of the RMSE (simulation estimand) were low with a range of 0.017 to 0.051.  

How these two methods performed for the calculation of the population mean and standard deviation 

of baseline scores will now be analysed. For each combination the population mean (and standard 

deviation) was calculated and is presented in Tables 4.8 and 4.9. It needs to be reminded, that the 

true population baseline COMI score mean was 7.69 (s.d. 1.74). 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.70

2 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.70

3 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.70

4 7.69 7.69 7.69 7.69 7.70 7.69 7.69 7.70 7.70

5 7.69 7.69 7.69 7.69 7.69 7.70 7.70 7.70 7.70

6 7.69 7.69 7.69 7.69 7.69 7.70 7.70 7.70 7.70

7 7.68 7.69 7.69 7.69 7.69 7.69 7.70 7.69 7.70

8 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69  

Table 4.8: Estimated population mean of COMI baseline scores for each scenario, using item-based 

imputation. 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 7.64 7.59 7.53 7.48 7.43 7.37 7.31 7.28 7.26

2 7.65 7.61 7.57 7.53 7.49 7.47 7.44 7.45 7.47

3 7.66 7.64 7.62 7.60 7.59 7.59 7.59 7.59 7.62

4 7.68 7.67 7.67 7.67 7.67 7.66 7.66 7.67 7.67

5 7.69 7.69 7.70 7.70 7.70 7.70 7.70 7.69 7.69

6 7.69 7.70 7.71 7.72 7.72 7.71 7.71 7.71 7.70

7 7.70 7.70 7.71 7.71 7.71 7.72 7.71 7.71 7.70

8 7.70 7.70 7.71 7.71 7.72 7.72 7.71 7.70 7.70  

Table 4.9: Estimated population mean of COMI baseline scores for each scenario, using score-based 

imputation. 

Both methods were able to accurately restore the true population mean of baseline COMI scores. 

However, item-based imputation was more accurate, with a range of [7.68 – 7.70], compared to the 

score-based imputation, which had a range of [7.26 – 7.72]. The ranges of estimated standard 

deviation of population mean baseline COMI scores were [1.74 – 1.75] and [1.75 – 2.15] for item- and 

score-based imputation respectively. Score-based imputation tended more to slightly overestimating 

the true standard deviation of 1.74.  

4.8 Questionnaires at baseline for missing data underlying MNAR mechanism 
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In this scenario it is assumed that missingness can be dependent not only on other variables, but on 

the missing value itself. In the extreme case for which the missingness of a variable is only dependent 

on itself, this means that the weight vector of a specific pattern is the inverted vector of the pattern, 

with ones for the variables that are amputed as missing and zeros for all other variables that are not 

amputed. However, mixed patterns are also possible. In this case, to test the robustness of the 

imputation methods, the extreme case is assumed. This should make the imputation less precise with 

both methods, which is why it is expected that imputation methods fail for lower percentages of 

missingness, have higher RMSEs and imprecise estimates of baseline score mean. The results 

regarding RMSE are shown in Table 4.10 and 4.11. 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.38 0.55 0.68 0.79 0.89 0.98 1.06 1.14 1.23

2 0.39 0.55 0.69 0.79 0.90 0.98 1.06 1.14 1.22

3 0.39 0.55 0.69 0.78 0.89 0.97 1.07 1.15 1.23

4 0.38 0.55 0.68 0.79 0.89 0.97 1.07 1.15 1.22

5 0.38 0.55 0.68 0.79 0.89 0.98 1.06 1.14 1.22

6 0.38 0.55 0.68 0.79 0.88 0.98 1.06 1.14 1.22

7 0.38 0.55 0.69 0.79 0.89 0.98 1.07 1.14 1.23

8 0.38 0.55 0.68 0.79 0.89 0.98 1.06 1.14 1.22  

Table 4.10: Mean of RMSE of each combination of probability of amputed missingness and cut-off 

point, using item-based imputation method. RMSE was averaged over number of simulations (N=50). 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.72 1.05 1.32 1.56 1.78 2.00 2.20 2.41 2.63

2 0.70 1.01 1.25 1.47 1.68 1.87 2.04 2.21 2.36

3 0.61 0.89 1.12 1.30 1.47 1.63 1.79 1.93 2.05

4 0.51 0.74 0.93 1.08 1.22 1.36 1.49 1.62 1.73

5 0.43 0.63 0.78 0.92 1.05 1.17 1.27 1.38 1.49

6 0.40 0.59 0.73 0.86 0.98 1.09 1.20 1.29 1.41

7 0.40 0.58 0.74 0.86 0.98 1.08 1.19 1.30 1.40

8 0.39 0.58 0.73 0.85 0.98 1.08 1.18 1.29 1.39  

Table 4.11: Mean of RMSE of each combination of probability of amputed missingness and cut-off 

point, using item-based imputation method. RMSE was averaged over number of simulations (N=50). 

Standard deviations of the RMSE estimates for item-based imputation ranged from 0.013 to 0.028 and 

from 0.021 to 0.069. Even though score-based imputation had larger standard deviation, the main 

difference lies between their mean RMSEs. Even missing data underlying the MNAR mechanism could 

be handled by the item-based imputation, whereas score-based imputation performed much more 

inaccurate, especially in scenarios with high missingness and small cut-off points.  
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Again, the mean and standard deviation of baseline scores in each scenario for item-based and score-

based imputation were investigated and compared to the true baseline score mean and standard 

deviation, which were 7.686 and 1.744 respectively. 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 7.65 7.62 7.59 7.57 7.56 7.55 7.56 7.59 7.63

2 7.65 7.62 7.59 7.57 7.55 7.55 7.56 7.58 7.62

3 7.65 7.62 7.59 7.57 7.55 7.55 7.56 7.58 7.62

4 7.65 7.62 7.59 7.57 7.55 7.55 7.56 7.58 7.63

5 7.65 7.62 7.59 7.57 7.56 7.55 7.56 7.58 7.62

6 7.65 7.62 7.59 7.57 7.56 7.55 7.56 7.58 7.62

7 7.65 7.62 7.58 7.57 7.55 7.55 7.56 7.59 7.63

8 7.65 7.62 7.59 7.57 7.56 7.55 7.56 7.58 7.63  

Table 4.12: Estimated population mean of COMI baseline scores for each scenario, using item-based 

imputation. 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 7.59 7.50 7.40 7.28 7.16 7.04 6.91 6.79 6.71

2 7.60 7.51 7.42 7.34 7.23 7.16 7.09 7.08 7.15

3 7.62 7.55 7.48 7.42 7.37 7.34 7.32 7.33 7.44

4 7.64 7.59 7.55 7.51 7.49 7.48 7.47 7.50 7.57

5 7.65 7.62 7.60 7.57 7.56 7.56 7.56 7.59 7.62

6 7.66 7.64 7.62 7.60 7.59 7.59 7.60 7.61 7.63

7 7.66 7.64 7.62 7.61 7.60 7.60 7.61 7.61 7.64

8 7.66 7.64 7.62 7.61 7.60 7.59 7.60 7.61 7.65  

Table 4.13: Estimated population mean of COMI baseline scores for each scenario, using score-based 

imputation. 

Overall, the performance of both methods when amputing missing data using the MAR mechanism 

was very similar to the performance when missing data was underlying the MCAR mechanism. The 

mice() function using predictive mean matching can recover data reliably, but item-based 

imputation could restore population means more accurately and had lower RMSEs than score-based 

imputation. It was surprising that imputing data that is missing under the MNAR mechanism did not 

perform much worse than for other mechanisms. In fact, in some scenarios it even had (slightly) lower 

mean RMSEs. Method performance regarding both RMSEs and population means of baseline COMI 

scores showed, that item-based imputation was superior over score-based imputation. This can be 

explained by the loss of information that is introduced by disregarding the answered items of 

questionnaires that had high item-missingness. Item-based imputation was better suited to recover 

the missing items and produced lower RMSEs and more precise estimates of population COMI baseline 

score means.  
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To further test the limits of the methods, the total missingness will be increased. The missingness 

probabilities will remain the same (0.1 to 0.9), but the pattern of missingness will be changed so that, 

in case of missingness, all items are missing. This also means that cut-off points will not be relevant, 

as there will only be either complete or completely missing questionnaires. The missingness will be 

applied under MCAR, MAR, and MNAR as before, and the score-based imputation will be compared 

to the item-based imputation again. 

4.9 MCAR, MAR and MNAR in scenarios of high questionnaire-missingness 

To further test the limits of the methods, the total missingness will be increased. The missingness 

probabilities will remain the same (0.1 to 0.9), but the pattern of missingness will be changed so that, 

in case of missingness, all items are missing. This also means that cut-off points will not be relevant, 

as there will only be either complete or completely missing questionnaires. The missingness will be 

applied under MCAR, MAR, and MNAR as before, and the score-based imputation will be compared 

to the item-based imputation again. This will be done by comparing RMSEs of estimates and the 

accuracy to restore the true population mean of baseline scores. In Table 4.14 the RMSEs are 

summarised for each mechanism of missingness and method of imputation. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

item-based 0.77 1.09 1.34 1.55 1.73 1.89 2.05 2.19 2.30

score-based 0.77 1.09 1.34 1.54 1.72 1.89 2.04 2.18 2.32

item-based 0.79 1.11 1.36 1.56 1.74 1.90 2.06 2.19 2.34

score-based 0.78 1.11 1.34 1.54 1.73 1.89 2.05 2.18 2.33

item-based 0.73 1.08 1.36 1.62 1.85 2.09 2.33 2.59 2.90

score-based 0.74 1.08 1.36 1.62 1.86 2.10 2.33 2.60 2.94

Imputation type  
Probability

MCAR

MAR

MNAR
 

Table 4.14: RMSEs of both imputation methods for all mechanisms of missingness. Columns are 

ordered regarding the probability of missingness (complete questionnaire missingness). 

Standard deviations of these estimates did not exceed 0.09 and were similar for both imputation 

techniques for each probability of missingness. Both methods performed very similar for each scenario 

and produced larger RMSEs with larger amounts of missingness. RMSE values reached up to 2.94, so 

over the minimal clinically important difference of the COMI score. When missing data is too 

substantial, neither method could restore the data accurately. When questionnaires are either 

complete or completely missing, it seems that the methods do not differ much in performance. 

In Table 4.15 the estimated population means are summarised for each mechanism of missingness 

and method of imputation. 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Item-based 7.69 7.69 7.70 7.69 7.69 7.69 7.70 7.68 7.69

Score-based 7.69 7.68 7.68 7.69 7.68 7.68 7.68 7.69 7.68

Item-based 7.69 7.69 7.68 7.68 7.68 7.68 7.67 7.66 7.55

Score-based 7.69 7.68 7.68 7.68 7.68 7.67 7.67 7.67 7.66

Item-based 7.58 7.46 7.33 7.19 7.03 6.86 6.66 6.43 6.13

Score-based 7.58 7.46 7.32 7.18 7.03 6.85 6.66 6.42 6.10

Imputation type  
Probability

MCAR

MAR

MNAR
 

Table 4.15: Estimated population means of baseline COMI scores for both imputation methods and 

all mechanisms of missingness. Columns are ordered regarding the probability of missingness 

(complete questionnaire missingness). 

When the data was missing due to MCAR or MAR mechanisms, the population mean of the baseline 

COMI scores could be restored, even when a large amount of data was missing. This might be due to 

the large sample size, so that even for 90% of questionnaire missingness, there were still enough 

patients to get a realistic estimate. However, when the data was missing due to an MNAR mechanism, 

the population mean was underestimated. Standard deviations of these estimates were similar for 

both imputation methods and ranged between 1.75 and 2.02 for MNAR (higher standard deviations 

were observed for higher probabilities of missingness). Standard deviations therefore were 

systematically overestimated in both methods, whereas population means were underestimated. 

4.10 Missing data in outcomes at 3 months past surgery 

This next simulation study will focus on identifying the most effective imputation technique for 

handling missing data in outcome questionnaires among patients who had baseline questionnaires 

available. This experimental design, if applied in real-world, raises ethical concerns, but nevertheless 

was explored, to investigate how the imputation methods would perform for outcome questionnaires. 

Hereby, the items of the baseline questionnaires were available and, in case of MAR and MNAR, are 

also considered as possibly connected to missingness in outcome items for the creation of missing 

data.  

This simulation was based on the subset of the previous set of patients, who had not only had baseline 

but also 3-month outcome COMI questionnaires available. This led to an inclusion of 2,128 patients. 

Simulations are set-up as previously, for MCAR, MAR and MNAR for several scenarios of probability of 

missingness and cut-off points. The main question is, if outcome questionnaires could also reliably be 

restored by either imputation method, and for which scenarios one has to expect bias to be 

introduced. Baseline items of the COMI score were included in both the creation of missingness, as 

well as part of the imputation. 



123 
 

Previously, it was found that item-based imputation was superior to score-based imputation for 

handling missing data in baseline questionnaires. Only when questionnaires were either complete or 

completely missing, the performance of both methods was equal. Both methods struggled to get 

precise estimates per patient when missing data was high (large RMSEs). However, when data is 

missing underlying the MCAR or MAR mechanism, population means of baseline scores could be 

restored. When data is missing underlying the MNAR mechanism, bias is introduced and estimates 

inaccurate.  

The following six tables (4.16 – 4.21) show the mean RMSEs of both imputation methods over 50 

simulations for each scenario for MCAR, MAR and MNAR. 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.52 0.73 0.89 1.03 1.14 1.29 1.37 1.46 1.54

2 0.50 0.74 0.88 1.05 1.15 1.27 1.37 1.46 1.55

3 0.51 0.73 0.89 1.04 1.15 1.26 1.36 1.47 1.56

4 0.52 0.73 0.89 1.01 1.15 1.28 1.36 1.47 1.54

5 0.52 0.72 0.88 1.03 1.17 1.28 1.35 1.46 1.55

6 0.51 0.72 0.89 1.02 1.15 1.24 1.36 1.47 1.57

7 0.52 0.72 0.88 1.03 1.15 1.25 1.35 1.46 1.55

8 0.51 0.73 0.88 1.03 1.16 1.26 1.37 1.46 1.55  

Table 4.16: Mean of RMSE of each combination of probability of amputed missingness and cut-off 

point, using item-based imputation method and MCAR missingness. RMSE was averaged over number 

of simulations (N=50). 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 1.21 1.72 2.11 2.41 2.70 2.97 3.20 3.47 3.85

2 1.13 1.62 1.98 2.29 2.55 2.80 3.05 3.26 3.47

3 1.01 1.46 1.76 2.01 2.27 2.48 2.70 2.91 3.07

4 0.81 1.15 1.41 1.63 1.81 2.02 2.20 2.36 2.52

5 0.64 0.89 1.10 1.27 1.45 1.62 1.74 1.84 1.98

6 0.55 0.76 0.95 1.09 1.23 1.35 1.46 1.59 1.69

7 0.52 0.74 0.89 1.03 1.19 1.30 1.41 1.53 1.60

8 0.53 0.76 0.91 1.05 1.20 1.31 1.41 1.52 1.63  

Table 4.17: Mean of RMSE of each combination of probability of amputed missingness and cut-off 

point, using score-based imputation method and MCAR missingness. RMSE was averaged over 

number of simulations (N=50). 
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Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.53 0.75 0.92 1.06 1.18 1.28 1.40 1.48 1.58

2 0.55 0.75 0.92 1.07 1.19 1.28 1.39 1.48 1.60

3 0.53 0.73 0.91 1.06 1.19 1.30 1.39 1.48 1.56

4 0.53 0.76 0.92 1.08 1.19 1.30 1.39 1.49 1.58

5 0.53 0.76 0.91 1.06 1.19 1.30 1.40 1.49 1.56

6 0.52 0.75 0.92 1.07 1.18 1.30 1.40 1.48 1.57

7 0.54 0.75 0.92 1.08 1.19 1.29 1.40 1.50 1.57

8 0.51 0.75 0.92 1.07 1.20 1.29 1.41 1.48 1.57  

Table 4.18: Mean of RMSE of each combination of probability of amputed missingness and cut-off 

point, using item-based imputation method and MAR missingness. RMSE was averaged over number 

of simulations (N=50). 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 1.22 1.73 2.13 2.44 2.73 2.98 3.20 3.43 3.66

2 1.14 1.66 2.03 2.31 2.59 2.84 3.05 3.27 3.49

3 1.01 1.45 1.77 2.06 2.30 2.53 2.72 2.91 3.10

4 0.81 1.20 1.45 1.68 1.90 2.07 2.23 2.36 2.53

5 0.65 0.93 1.13 1.32 1.48 1.62 1.74 1.88 1.95

6 0.55 0.79 0.97 1.13 1.25 1.37 1.48 1.57 1.69

7 0.55 0.76 0.94 1.10 1.19 1.30 1.44 1.52 1.62

8 0.53 0.75 0.94 1.09 1.23 1.30 1.42 1.53 1.61  

Table 4.19: Mean of RMSE of each combination of probability of amputed missingness and cut-off 

point, using score-based imputation method and MAR missingness. RMSE was averaged over number 

of simulations (N=50). 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.59 0.84 0.96 1.09 1.22 1.29 1.40 1.48 1.57

2 0.58 0.79 0.98 1.10 1.22 1.33 1.40 1.49 1.58

3 0.59 0.81 0.97 1.10 1.21 1.32 1.41 1.51 1.58

4 0.57 0.79 0.95 1.10 1.22 1.30 1.40 1.49 1.59

5 0.58 0.81 0.98 1.09 1.22 1.31 1.42 1.52 1.55

6 0.58 0.80 0.98 1.12 1.23 1.30 1.42 1.49 1.58

7 0.59 0.80 0.96 1.10 1.22 1.31 1.39 1.50 1.57

8 0.61 0.80 0.95 1.11 1.22 1.31 1.39 1.47 1.57  

Table 4.20: Mean of RMSE of each combination of probability of amputed missingness and cut-off 

point, using item-based imputation method and MNAR missingness. RMSE was averaged over number 

of simulations (N=50). 
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Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 1.31 1.86 2.27 2.57 2.87 3.12 3.34 3.55 3.74

2 1.23 1.77 2.13 2.45 2.71 2.97 3.15 3.35 3.51

3 1.11 1.55 1.85 2.13 2.40 2.58 2.75 2.95 3.12

4 0.88 1.24 1.52 1.72 1.91 2.10 2.26 2.38 2.54

5 0.70 0.96 1.19 1.36 1.51 1.62 1.74 1.87 1.96

6 0.60 0.82 1.01 1.16 1.29 1.38 1.51 1.58 1.71

7 0.56 0.80 0.97 1.11 1.23 1.32 1.43 1.54 1.63

8 0.58 0.80 0.96 1.10 1.23 1.32 1.44 1.52 1.62  

Table 4.21: Mean of RMSE of each combination of probability of amputed missingness and cut-off 

point, using score-based imputation method and MNAR missingness. RMSE was averaged over 

number of simulations (N=50). 

Interestingly, the methods performed similarly for each mechanism of missingness. For both 

imputation methods the mean RMSE values increase with increasing probability of missingness. Item-

based imputation again showed the same pattern as previously, when baseline COMI questionnaire 

items were imputed. Cut-off points do not play a big role, since items are imputed anyway. For score-

based imputation, not only high probability of missingness, but also smaller cut-off points introduce 

errors. It is therefore concluded, that item-based imputation is superior over score-based imputation, 

regarding mean RMSEs of outcome questionnaires. Overall, RMSE values were larger than for baseline 

COMI imputation, regardless of the method. 

The following six tables (4.22 – 4.27) show the population mean of COMI outcome scores at 3 months 

past surgery over 50 simulations for each scenario. It should be reminded, that the population mean 

of COMI scores at 3 months past surgery is 4.11 (s.d. 2.91). 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 4.11 4.10 4.11 4.11 4.11 4.11 4.12 4.11 4.13

2 4.11 4.11 4.11 4.10 4.11 4.11 4.10 4.13 4.13

3 4.11 4.10 4.11 4.11 4.11 4.11 4.12 4.11 4.12

4 4.11 4.11 4.11 4.10 4.12 4.11 4.12 4.14 4.11

5 4.11 4.10 4.11 4.10 4.12 4.10 4.11 4.12 4.12

6 4.11 4.11 4.11 4.10 4.11 4.10 4.11 4.11 4.12

7 4.11 4.10 4.11 4.10 4.11 4.12 4.11 4.11 4.12

8 4.11 4.11 4.11 4.11 4.12 4.10 4.11 4.12 4.14  

Table 4.22: Estimated population mean of COMI baseline scores for each scenario, using item-based 

imputation and MCAR missingness. 
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Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 4.11 4.10 4.13 4.11 4.12 4.08 4.06 4.09 4.45

2 4.11 4.12 4.11 4.12 4.13 4.13 4.14 4.12 4.12

3 4.11 4.11 4.10 4.11 4.09 4.09 4.12 4.09 4.10

4 4.11 4.11 4.11 4.12 4.12 4.11 4.13 4.14 4.12

5 4.11 4.11 4.11 4.11 4.13 4.12 4.12 4.13 4.14

6 4.11 4.11 4.12 4.11 4.11 4.12 4.12 4.12 4.12

7 4.11 4.11 4.12 4.11 4.12 4.12 4.12 4.13 4.13

8 4.11 4.12 4.12 4.12 4.12 4.12 4.13 4.13 4.14  

Table 4.23: Estimated population mean of COMI baseline scores for each scenario, using score-based 

imputation and MCAR missingness. 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 4.10 4.10 4.09 4.09 4.09 4.09 4.09 4.10 4.09

2 4.10 4.09 4.09 4.09 4.09 4.09 4.10 4.10 4.10

3 4.10 4.10 4.09 4.09 4.09 4.09 4.10 4.10 4.11

4 4.10 4.09 4.09 4.08 4.08 4.10 4.09 4.10 4.11

5 4.10 4.09 4.09 4.09 4.08 4.09 4.08 4.09 4.11

6 4.10 4.09 4.10 4.09 4.09 4.09 4.10 4.09 4.11

7 4.10 4.10 4.09 4.09 4.08 4.07 4.08 4.10 4.10

8 4.10 4.10 4.09 4.09 4.08 4.09 4.09 4.09 4.11  

Table 4.24: Estimated population mean of COMI baseline scores for each scenario, using item-based 

imputation and MAR missingness. 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 4.09 4.08 4.06 4.05 4.01 4.01 3.95 4.02 4.10

2 4.09 4.09 4.09 4.04 4.04 4.03 4.04 4.03 4.08

3 4.10 4.09 4.09 4.07 4.08 4.07 4.09 4.09 4.12

4 4.11 4.10 4.09 4.09 4.09 4.09 4.10 4.11 4.13

5 4.11 4.11 4.11 4.12 4.11 4.10 4.11 4.13 4.13

6 4.11 4.10 4.11 4.12 4.11 4.11 4.12 4.12 4.12

7 4.11 4.12 4.11 4.12 4.11 4.10 4.11 4.12 4.11

8 4.11 4.11 4.11 4.12 4.12 4.12 4.11 4.13 4.13  

Table 4.25: Estimated population mean of COMI baseline scores for each scenario, using score-based 

imputation and MAR missingness. 

Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 4.06 4.02 3.99 3.98 3.98 3.98 4.00 4.04 4.06

2 4.06 4.03 4.00 3.98 3.97 3.99 4.00 4.03 4.07

3 4.06 4.02 3.99 3.99 3.98 3.99 3.98 4.02 4.06

4 4.06 4.02 4.00 3.98 3.98 3.99 3.99 4.02 4.06

5 4.06 4.02 4.00 3.98 3.98 3.98 4.00 4.02 4.07

6 4.06 4.02 4.00 3.98 3.98 3.99 4.00 4.03 4.06

7 4.06 4.02 4.00 3.99 3.97 3.98 3.99 4.03 4.07

8 4.06 4.02 4.00 3.98 3.98 3.98 4.00 4.03 4.06  

Table 4.26: Estimated population mean of COMI baseline scores for each scenario, using item-based 

imputation and MNAR missingness. 
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Cut-off point  
Probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 3.92 3.74 3.56 3.40 3.26 3.14 3.02 2.92 2.99

2 3.95 3.78 3.62 3.49 3.39 3.30 3.30 3.32 3.52

3 3.98 3.86 3.75 3.69 3.61 3.64 3.64 3.73 3.92

4 4.03 3.95 3.89 3.86 3.85 3.84 3.88 3.94 4.01

5 4.06 4.02 3.99 3.96 3.97 3.98 4.00 4.01 4.09

6 4.07 4.05 4.03 4.01 4.02 4.03 4.05 4.06 4.10

7 4.08 4.05 4.04 4.03 4.03 4.04 4.04 4.07 4.11

8 4.08 4.05 4.04 4.03 4.03 4.05 4.05 4.07 4.10  

Table 4.27: Estimated population mean of COMI baseline scores for each scenario, using score-based 

imputation and MNAR missingness. 

In most cases, the population mean could be restored accurately, since even in scenarios of high 

percentages of missingness, due to the large sample size, there are still enough values left to obtain a 

realistic estimate. When data is missing not at random (MNAR) errors are introduced the higher the 

percentage of missingness. However, by choosing a higher cut-off point, this can be prevented. 

Interestingly, population means rather tended to be underestimated for both baseline and outcome 

questionnaires.  

4.11 Discussion 

In general, imputing missing data in questionnaires is more effective when using item-based 

imputation rather than score-based imputation. This finding holds value beyond the scope of this 

study and could potentially apply to similar datasets in various clinical areas. The robustness of item-

based imputation in handling missing data across specific items within the questionnaire suggests a 

broader applicability, especially when maintaining the accuracy of imputed values is paramount. 

It's important to note that if missing data is only present in the overall questionnaire, but not in specific 

items within the questionnaire, then either method will perform equally well. In such scenarios, 

selecting between the two approaches could consider computational efficiency, making score-based 

imputation an attractive option due to its lower computational cost. 

However, in cases where there is missing data in specific items within the questionnaire, our results 

emphasize the superiority of item-based imputation. This method consistently demonstrated lower 

root mean squared error (RMSE) values and effectively restored population means (COMI scores), 

enhancing the accuracy of imputation outcomes. It is worth highlighting that when employing score-

based imputation, the choice of high cut-off points is pivotal to avoid information loss and minimize 

the introduction of errors. 
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Importantly, the conclusions drawn from this study extend to both baseline and outcome 

questionnaires. Although the imputation of outcomes was found to be comparatively less accurate 

than that of baseline questionnaires, the overarching trend remains consistent. Researchers and 

practitioners engaging with similar datasets should consider these findings as a valuable reference for 

guiding their imputation strategies. 

Considering these findings, it is prudent to acknowledge that while the current study offers insights 

specific to our dataset, the principles underlying imputation efficacy could extend to other comparable 

datasets and clinical contexts. Future simulation studies could provide additional validation and insight 

into selecting appropriate imputation methods, which should be taken into consideration prior to 

implementing imputation techniques. By drawing attention to these factors, this study contributes to 

a broader understanding of imputation strategies and their implications, not only within our specific 

domain but potentially across related domains as well. 

While the concept of conducting a simulation study to evaluate imputation models on a given dataset 

is undeniably valuable, it's important to acknowledge the practical considerations that can influence 

its implementation. A simulation study demands a substantial investment of time and effort, often 

surpassing the scope of a specific project. Furthermore, while the insights acquired from such studies 

might have the potential for broader relevance, their direct applicability to distinct questionnaires or 

datasets could be limited. 

The importance of comprehending the underlying mechanisms of missingness should not be 

underestimated for any study. By discerning whether data is missing completely at random (MCAR), 

missing at random (MAR), or missing not at random (MNAR), researchers gain a deeper understanding 

of their dataset. The identification of missingness patterns not only aids in understanding the patient 

population but can also illuminate potential biases or the reliability of results, if imputation methods 

are employed.  

In the earlier Chapter 3, the analysis focussed on examining associations among patient covariates 

within the Spine Tango registry. In the upcoming chapter, this dataset will be utilised to employ more 

sophisticated techniques in order to uncover risk factors linked to unfavourable outcomes related to 

COMI scores or surgical complications. While a method to impute missing data in questionnaires was 

explored, the substantial patient sample size within the registry, even when accounting for those with 

available questionnaires, led to the choice of conducting a complete case analysis. In essence, the 

identification of risk factors constitutes a significant focus within this study. 
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Chapter 5: Predictive Modelling with Spine 

Tango data 

5.1 Chapter Outline 

The aim of this chapter is to perform a prognostic factor analysis of the Spine Tango data, using 

techniques such as regression and mixed-effect models. Outcomes that are considered included the 

COMI score and complications during surgery. The objective was to identify risk factors that can help 

optimise individual treatments, thereby enhancing routine healthcare and decision-making. 

5.2 Introduction 

Large datasets can give further insights into real-world practice and allow for a thorough prognostic 

factor research. Observational registries allow for continuous data collection over indefinite time for 

numerous patients. One can therefore gain additional insight in subgroup demographics of the patient 

population and rare events. This chapter will focus on the sciatica affected patient population of the 

Spine Tango registry and explore several model approaches in order to analyse prognostic factors 

associated with quality of life improvement after surgery. As primary outcome the focus will be on the 

Core Outcome Measures Index (COMI). For each of the commonly measured timepoints post-surgery 

a linear regression model will be fitted in order to identify predictive factors. Sensitivity analyses will 

be carried out to assess the stability of the model fit. 

Another model approach that was explored is logistic regression. According to the minimal clinically 

important difference (MCID) of COMI scores, outcomes will be dichotomized into “significant 

improvement” or “no significant improvement”. Similar to the procedure of model exploration, this 

will be done for 3-month, 1-year and 2-year outcome timepoints.  

Since patient-reported outcome measures (PROMs) in the Spine Tango registry had high amounts of 

missingness and inconsistency in their follow-ups, a longitudinal model was considered to integrate 

follow-up data from every patient that had a baseline measurement available.  

Complications are rare, but the amount of data still allows for a logistic regression models to be fitted 

on the data with complication occurrence as outcome. For this, complications were grouped into 

several categories according to a clinician’s expertise. Afterwards, logistic regression models were 

applied to each of these categories to identify risk factors pre-surgery. The identification of such risk 
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factors can inform individual treatment decisions, potentially supporting or discouraging surgery or 

alternative treatments. Additionally, this knowledge contributes to improved decision-making in 

routine healthcare. 

5.3 Literature Review 

Several studies have shown that in a heterogeneous group of conditions, observational studies can 

provide useful insights into the outcomes of interventions that have been implemented into every day 

clinical practice. Results from well-designed observational studies can be similarly trustworthy as 

results from randomised controlled trials (RCTs) (Benson and Hartz, 2000, Colditz, 2010). In 2000, 

EUROSPINE developed a registry for the collection of spinal surgery data in collaboration with the 

University of Bern. To date, over 750,000 forms (134,458 surgery forms) from five continents have 

been collected (EUROSPINE, 2022b). The most commonly patient reported outcome measure for 

quality of life and lower back and leg pain was the COMI, which was recorded pre-surgery and at 

follow-up visits.  

Sobottke et al. identified ASA morbidity status, age and blood loss as risk factors for adverse events in 

patients with spinal stenosis within the Spine Tango registry (Sobottke et al., 2012). Zehnder et al. 

performed multiple logistic regression models on general and surgical complications and identified 

ASA and prior surgery at the same level as predictive factors for patients with lumbar degenerative 

diseases that underwent surgery within the Spine Tango registry (Zehnder et al., 2021). Sunderland et 

al. analysed the success of lumbar decompression surgery by using COMI score improvement, but did  

and identified ASA morbidity status 3, age, lateral stenosis (pathological factor), revision surgery, and 

surgeon in training as prognostic factors (Sunderland et al., 2021). Sobottke et al. used COMI scores 

as outcomes in order to identify predictors for the improvement of QoL for patients with lumbar spinal 

canal stenosis that underwent open decompression surgery (Sobottke et al., 2017). The main predictor 

was baseline COMI scores, but the number of prior surgeries, lower patient comorbidity and rigid or 

dynamic stabilization also had partially prognostic influence. The preoperative status of each outcome 

was a prognostic factor for its own postoperative outcome. Fewer previous surgeries, rigid or dynamic 

stabilization, and lower patient comorbidity also had a partially prognostic influence for one or the 

other outcome. Staub, L.P., et al. developed predictive models for 1-year clinical outcome after 

decompression surgery using data from the Spine Tango registry, using linear regression and LASSO. 

Although model accuracy was good overall, considerable uncertainty on individual level was pointed 

out (Staub et al., 2020). Aghayev, E., et al. determined risk factors for negative global treatment 

outcomes as self-assessed by patients undergoing surgical treatment for lumbar spinal stenosis and 

could identify high baseline, department-level and potentially country-level factors as associated with 
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treatment outcome (Aghayev et al., 2020). No literature was found that utilizes the Spine Tango 

registry within the subset of the sciatica-affected patient population that underwent 

microdiscectomy. 

5.4 Methods 

Throughout this chapter, data from the Spine Tango registry was used. In Chapter 3, 3,530 patients 

were identified that fit the sciatica population and had both baseline and follow-up baseline COMI 

scores available. Of all the measured patient characteristics, the following were included in the model 

approaches after consultation with the multi-disciplinary supervisor team (neurologist, neuro 

surgeon, biostatistician): sex, age, surgeon credentials, country ID, level of spine, ASA morbidity status, 

BMI, smoking status, baseline scores and previous treatment. Most of them showed very low amount 

of missingness (less than 3% of patients). There was 12% of missing data for previous treatment and 

17% for ASA morbidity. To not further reduce the sample size by analysing on a complete case dataset, 

each of these characteristics were imputed using the multiple imputation toolbox ‘mice’ in R, but with 

m=1 iteration since only one complete dataset is required. Specifically, predictive mean matching), 

was chosen for filling these, gaps, which is applicable to different data types (continuous and 

categorical), as well as suitable for large data sets. It is a flexible approach to be considered when 

missing data is possible not missing completely at random (MCAR) and preserves original data 

structure and variability (Bailey et al., 2020, StatisticsGlobe, 2022). BMI and smoking status had high 

missingness, largely due to change in collection forms throughout the years, and were not imputed, 

but analysed in their respective subset (48% patients had missing smoking status and 33% missing BMI 

in this patient set).  

An exact sample size calculation was not performed. However, the general rule of thumb, which 

recommends a minimum of 10 events per predictor parameter (EPP), was followed. Although this 

approach is sometimes criticised, the study's robustness is supported by a substantial sample size of 

3,530 patients, ensuring sufficient statistical power for the conducted analyses (Riley et al., 2019).  

As seen in Chapter 3, there are a few covariates that have categories with very low numbers of 

patients, such as spinal disc level “L1 / L2” or ASA morbidity classification of 4. These will be considered 

with caution and checked if they were the only reason why a parameter was considered significant by 

the model fit. In some cases, when the number of patients in sub-categories was small, these patients 

were excluded. It needs to be reminded, that outcome collection was dependent on the country. 

Therefore, there are no measurements for 2-year outcomes, e.g. for country G. To simplify the 

categorisation, patients who received treatment for less than three months or between three to six 
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months were combined and referred to as "less than 6 months." Similarly, those who received 

treatment between six to twelve months and over twelve months were grouped together as "6 to 

twelve months" and "more than twelve months," respectively. A sensitivity analysis of this 

recategorization has not been done in the scope of this project. However, Figure 3.41 shows that the 

treatment outcome was very similar in the grouped categories.  

Country C did not have any measurements in this subset of patients (the 3,530 patients that have both 

baseline and follow-up COMI scores available) and was therefore excluded. There was correlation 

between categories of surgeon credentials and country ID. Countries H, D and E did not report surgeon 

in training and the only country that listed “other” as surgeon credential was country A. This will be 

examined further, in case surgeon credentials shows significance regarding treatment outcome. 

Model approaches included in this chapter are:  

• linear regression with COMI scores at 3 months, 1 year and 2 years (additionally done on the 

subset of patients that had BMI and smoking status available), 

• Logistic regression with dichotomised outcome (significant improvement of COMI scores and 

no significant improvement of COMI scores), 

• Longitudinal mixed model approach (additionally done cut-off data at 3 months, 1 year and 2 

years for comparison with previous models), 

• Joint model approach, and 

• Logistic regression with complication as outcome. 

For all modelling approaches that used COMI scores on its continuous scale, the root mean squared 

error (RMSE) is computed (root of mean square difference between true scores and estimated score 

by the model) in order to compare models. Additionally, all estimated effects, 95% confidence 

intervals and p-values are presented. 

For linear regression, the R2, which is a measure for the outcome variation that could be explained 

with the model, was used to assess the model fit. For logistic regression approaches the area under 

the receiver operating characteristic (ROC) curve was used to assess the model fit. It shows the true 

positive rate against the true negative rate for various thresholds. The area under this curve (AUC) is 

used to measure the model's ability to predict outcomes. For mixed-model approaches, there are 

several formulas that are somewhat an equivalent to the R2 of linear regression models. One of the 

most common ones was developed by D. Zhang and extends the proportion of explained variance 

(Zhang, 2020). Moreover, it defines this proportion into variation explained by the whole model, fixed 

effects only, and random effects only. This measure is implemented in the “rsq”-package in R. To 

compare the joint model approach with the mixed-model, the longitudinal sub-model was compared 
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regarding the estimated effects, 95% confidence intervals and p-values. For the logistic regression with 

complication as outcome, considering the small incidence of complications, COMI baseline scores 

were not included as predictive factor.  

5.5 Linear regression approaches 

When intending to develop a prognostic model, the first approach often is a multivariate linear 

regression model of the form 

Yi = Xiβ + εi  

( 1 ) 

The variables of this formula are explained as follows: 

- Yi is the outcome for the i-th patient, where i ranges from 1 to N (N is the number of total 

patients).  

- Xi is a (p+1)-dimensional vector of patient covariates (+1 extra value for model intercept). 

- β = (β0, β1, …, βp)T is a (p+1)-dimensional vector of coefficients, where p is the number of 

included patient baseline covariates. β0 is the value of the intercept of the linear model.  

- εi is an error term, which are each assumed to be normally distributed (all εi  are assumed from 

the same distribution).  

Ordered categorical characteristics such as level of spine, previous treatment and ASA morbidity status 

were ordered accordingly where previous treatment “none”, level of spine “L5 / S1” and ASA 

morbidity status “ASA 1” were set as reference category. For the other characteristics, the most 

common category was set as reference. There were three main outcome time points available, as seen 

in Figure 5.1. 
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Figure 5.1: Number of COMI questionnaires collected on each day before/after surgery.  

The number of patients with 3-month, 1-year and 2-year outcome available were 2,127, 2,190 and 

1,670 respectively. For patients that had more than one measurement in the same interval (for 

example if a patient had answered the COMI questionnaire multiple times at the 3-month time 

interval), the measurements were averaged. To preserve the assumption of independence between 

data rows (1 per patient) it was required that one patient could not have more than one measurement 

in each interval. Considering their close temporal proximity, it is presumed that the scores are similar. 

Averaging was employed to avoid any random selection bias. For each of these outcome time points 

a model of the form ( 1 ) was fitted to identify prognostic factors and quantify their association with 

the outcome.  
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Figure 5.2: Histograms of COMI scores at baseline (top left), 3 months (top right), 1 year (bottom left) 

and 2 years (bottom right) after surgery. 

The histograms in Figure 5.2 show that the COMI scores are skewed to the maximum score (10) for 

baseline and towards the minimum score (0) for scores after surgery.  

5.5.1 Linear regression – COMI Scores at three months past surgery 

The first model approach considers three-month COMI scores as primary outcome and includes 2,127 

patients in total. The model of the form ( 1 ) was fitted using the lm() function in R. The table of 

coefficients, their 95% confidence interval and p-values are displayed in Table 5.1. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.496 [0.697, 2.295] <0.001 
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Sex   Female 

   Male 

Reference 

-0.059385 

 

[-0.301, 0.182] 

 

0.505 

Age -0.008098 [-0.018, 0.002] 0.203 

Surgeon Credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.149 

-0.065 

0.198 

-0.210 

0.244 

 

[-0.434, 0.136] 

[-0.461, 0.331] 

[-0.923, 1.412] 

[-1.122, 0.702] 

[-0.923, 1.412] 

 

0.413 

0.770 

0.714 

0.970 

0.814 

Country ID  A 

   B 

   D 

   E 

   F 

   G 

   H 

   Other 

Reference 

-0.570 

1.301 

-0.320 

-0.914 

-2.456 

-1.248 

-0.421 

 

[-0.841 -0.300] 

[-0.130, 2.732] 

[-0.9778, 0.336] 

[-1.763, -0.065] 

[-4.124, -0.788] 

[-2.778, 0.280] 

[-1.305, 0.440] 

 

<0.001 

0.069 

0.325 

0.034 

0.004 

0.116 

0.507 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.192 

0.299 

0.625 

 

[-0.529, 0.144] 

[-0.050, 0.647] 

[0.042, 1.208] 

 

0.323 

0.093 

0.035 

Level of Spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3 

   L1/L2 

   Other 

Reference 

-0.031 

-0.284 

0.208 

4.095 

-0.087 

 

[-0.291, 0.228] 

[-0.775, 0.205] 

[-0.576, 0.993] 

[-1.394, 9.584] 

[-1.008, 0.833] 

 

0.927 

0.325 

0.567 

0.155 

0.803 

ASA Morbidity  1 

   2 

   3 

   4 

Reference 

0.518 

0.754 

4.539 

 

[0.251, 0.786] 

[0.204, 1.303] 

[0.669, 8.410] 

 

<0.001 

0.007 

0.022 

Baseline COMI score 0.400 [0.331, 0.470] <0.001 

Table 5.1: Coefficient estimates, 95% confidence intervals and p-values of variables in the linear 

regression model with 3-month COMI scores. 
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The country in which the intervention took place, previous treatment (especially prior surgery), 

baseline COMI scores and ASA morbidity status seem to be associated with treatment outcome for 

COMI scores at 3-months past surgery. Specifically, COMI outcome scores from country B, F and G 

were lower than from the reference country A. Prior surgery and ASA morbidity scores of 2, 3 or 4 

were associated with higher COMI outcome scores. 

The R2 of a given model is a goodness-of-fit measure for linear models. It identifies the variance in the 

outcome that is explained by the included input parameters, in this case patient characteristics. It is 

computed by dividing the residual mean square error by the total mean square error. The result is 

subtracted from 1. Values close to 1 represent a good fit and show that the model explains large 

proportions of outcome variation, whereas values close to zero show the opposite. The linear 

regression model with 3-month COMI scores as outcome had an R2 of 0.098 and could therefore only 

explain a small fraction of the outcome variability.  

Prediction accuracy was assessed using the root mean squared error (RMSE), which can be described 

as the average distance between real values and the corresponding predicted value on the regression 

line. The model after AIC model selection has a RMSE of 2.618, which is even higher than the minimal 

clinically important difference (MCID) of the COMI questionnaire score, which is 2.2. It can therefore 

be said that prediction accuracy is low. 

Only a small percentage of outcome variation could be explained by the model which demonstrates a 

poor accuracy when used for individual predictions. However, significance in some of the patient 

covariates (previous treatment, ASA morbidity status, baseline COMI scores and country) shows that 

prognostic factors could be identified. 

In order to investigate if these variables were consistently predictive for COMI outcomes, the same 

method of model fitting were applied to other outcome time points. 

5.5.2 Linear regression – COMI Scores at one-year past surgery 

This approach will be the same as for 3-month outcomes, the only difference being that 1-year 

outcomes of COMI scores, and therefore a set of 2,190 patients will be used. A total of 1,389 of these 

patients were also part of the 3-month outcome set. At this time point there were no patients that 

had surgery at the level “L1 / L2”. Again lm()was used to fit this model and included the same patient 

characteristics. A table of estimates, 95%-confidence intervals and p-values is displayed in Table 5.2.  

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.129 [0.345, 1.914] 0.005 

Sex   Female Reference   
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   Male -0.089 [-0.330, 0.152] 0.470 

Age -0.008 [-0.017, 0.002] 0.135 

Surgeon credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.036 

0.496 

-0.170 

0.022 

-0.091 

 

[-0.330, 0.257] 

[-0.026, 0.916] 

[-0.867, 0.526] 

[-1.042, 1.087] 

[-1.282, 1.099] 

 

0.809 

0.081 

0.631 

0.822 

0.750 

Country ID  A 

   B 

   D 

   E 

   F 

   G 

   H 

   Other 

Reference 

-0.793 

1.756 

-0.229 

-0.670 

-0.518 

-0.425 

-0.271 

 

[-1.073, -0.512] 

[-0.365, 3.878] 

[-0.727, 0.270] 

[-1.427, 0.086] 

[-1.679, 0.643] 

[-2.293, 1.442] 

[-1.673, 1.131] 

 

<0.001 

0.154 

0.419 

0.089 

0.443 

0.655 

0.773 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.069 

0.226 

1.533 

 

[-0.414, 0.275] 

[-0.128, 0.581] 

[0.913, 2.153] 

 

0.692 

0.211 

<0.001 

Level of spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3 

   Other 

Reference 

-0.221 

-0.606 

0.199 

0.274 

 

[-0.482, 0.040] 

[-1.095, -0.117] 

[-0.570, 0.968] 

[-0.729, 1.277] 

 

0.107 

0.020 

0.666 

0.558 

ASA Morbidity  1 

   2 

   3 

   4 

Reference 

0.408 

0.863 

1.654 

 

[0.130, 0.669] 

[0.234, 1.316] 

[-2.777, 5.173] 

 

0.003 

0.002 

0.317 

Baseline COMI score 0.379 [0.309, 0.445] <0.001 

Table 5.2: Coefficient estimates, 95% confidence intervals and p-values of variables in linear 

regression with 1-year COMI scores. 
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There are some differences between the model fit of 1-year and 3-month outcomes. Level of spine of 

“L3 / L4” had a significant p-value and had lower COMI outcome scores, which was not the case in the 

3-month model.  

The reverse can be observed for countries F and G, for which now there are no significant p-values. 

ASA morbidity of stage 4 did not show a significant p-value either. However, it has to be considered 

that there were very few observations in this subgroup (3). The covariates with considerable 

significance in terms of p-value and confidence intervals were the same among both outcome times, 

namely country B, prior surgery, baseline COMI scores and ASA morbidity (ASA 1 was reference 

category).  

Prediction accuracy was again assessed using RMSE. For the model after AIC model selection, this error 

is 2.712 and therefore similarly large as the error in the 3-month outcome model. The R2 of this model 

was 0.095. The prediction accuracy and goodness of fit therefore remain poor. Finally, the same will 

be done for 2-year outcomes. 

5.5.3 Linear regression – COMI Scores at two years past surgery 

Again, the approach will be the same, now including 1,679 patients. A total of 1,138 and 1,352 of these 

patients were also part of the 3-month and 1-year outcome set, respectively. Again lm() was used 

to fit this model and included the same patient characteristics and applied the AIC model selection 

algorithm. A table of estimates, 95%-confidence intervals and p-values is displayed in Table 5.3. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.321 [0.386, 2.256] 0.005 

Sex   Female 

   Male 

Reference 

-0.323 

 

[-0.603, -0.042] 

 

0.024 

Age -0.007 [-0.018, 0.003] 0.223 

Surgeon credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.332 

0.250 

-0.427 

0.165  

-0.080 

 

[-0.667, 0.003]  

[-0.180, 0.679]  

[-1.300, 0.445]   

[-0.964, 1.294]  

[-1.386, 1.225] 

 

0.055 

0.254 

0.333 

0.774 

0.904 

Country ID  A 

   B 

   D 

Reference 

-0.860 

-2.500 

 

 [-1.181, -0.540] 

[-6.140, 1.140] 

 

<0.001 

0.385 
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   E 

   F 

   H 

-0.206 

-0.209 

-2.341 

[-0.822, 0.410] 

[-1.220, 0.802] 

[-5.621, 0.939] 

0.511 

0.686 

0.161 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.185 

0.190 

0.753 

 

[-0.571, 0.201]  

[-0.211, 0.591]  

[0.036, 1.471] 

 

0.349 

0.351 

0.040 

Level of spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3 

   Other 

Reference 

0.128 

-0.224 

0.693 

0.628 

 

[-0.169, 0.424] 

[-0.798, 0.349] 

[-0.751, 2.138] 

[-0.601, 1.857] 

 

0.405 

0.444 

0.149 

0.315 

ASA Morbidity  1 

   2 

   3 

Reference 

0.554 

1.481 

 

[0.243, 0.865] 

[0.842, 2.121] 

 

0.001 

<0.001 

Baseline COMI score 0.346 [0.265, 0.428] <0.001 

Table 5.3: Coefficient estimates, 95% confidence intervals and p-values for linear regression with 2-

years COMI scores. 

Counties in category G and “other” did not have 2-year outcomes available. Additionally, no patients 

that were classified as ASA category 4 had 2-year outcomes available. At this timepoint, male patients 

appear to have performed significantly better than female patients at 2 years after surgery. Similar to 

the 3-month outcomes, country B was associated with lower COMI outcome scores than in country A. 

Again, surgery at level L3/L4 was associated with lower COMI outcome scores than at level L5/S1. 

To summarize, the following variables were consistently detected as correlated to outcome (although 

significances of categories of these variables were not always consistent): country ID, baseline COMI 

scores, ASA morbidity and prior surgery. In the 1- and 2-year outcomes, surgery at L3/L4 was detected 

to perform better than the reference category L5/S1.  

The RMSE and R2 of the model are 2.734 and 0.089 respectively. The model approach therefore shows 

a similarly poor prediction accuracy, similar to the 3-month and 1-year outcomes. A summary of the 

model fit statistics at all time points is given in Table 5.4. 
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Model statistics  
Time intervals

3 months 1 year 2 years

RMSE 2.618 2.712 2.734

Significant variables Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores

Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores, 

Level of spine

Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores, 

Sex

R2 0.098 0.095 0.089

Number of patients 2,127 2,190 1,679  

Table 5.4: Summary of model fit statistics of linear regression approaches. Column headers are the 

time point of the primary outcome in the regression model. 

None of the models had an R2 of more than 0.1 and can be regarded as poor fit in terms of their ability 

to explain outcome variability and predict individual treatment outcome.  

5.5.4 Linear regression – Subsets of BMI and Smoking status 

BMI and smoking status were available only to a subset of patients. Initial missing data percentage 

was large, which is why these two variables were not imputed. In this section the subsets of patients 

that had these variables available are analysed to investigate if these two variables could help improve 

goodness of fit. It must be reminded throughout the following analyses, that there were no 

measurements at 1 and 2 years available for country D and countries in category “other”. For country 

G there was no 2-year outcome available and only 6 and 9 measurements for the BMI and smoking 

status subset respectively. Estimates for these cases should therefore be interpreted with caution.  

The details about estimates, 95%-confidence intervals, and p-values for the model with COMI scores 

as outcome are displayed in Tables 5.5-5.7. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.637 [0.468, 2.806] 0.006 

Sex   Female 

   Male 

Reference 

0.137 

 

[-0.157, 0.431] 

 

0.357 

Age -0.009 [-0.021, 0.003] 0.163 

Surgeon credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

Reference 

-0.201 

-0.051 

-0.256 

0.055 

 

[-0.550, 0.148]  

[-0.540, 0.439] 

[-1.484, 0.972]  

[-1.174, 1.283]  

 

0.259 

0.837 

0.680 

0.930 
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   Other 0.044 [-0.760, 0.848] 0.942 

Country ID  A 

   B 

   E 

   F 

   G 

   H 

   Other 

Reference 

-0.398 

-0.265 

-0.943 

-2.677 

-1.125 

-0.444 

 

[-0.760, -0.036]  

[-1.053, 0.524]  

[-2.117, 0.231]  

[-4.567, -0.787]  

[-2.676, 0.426]  

[-3.651, 2.761] 

 

0.031 

0.509 

0.111 

0.005 

0.153 

0.786 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.217 

0.328 

0.640 

 

[-0.605, 0.170]  

[-0.076, 0.732]  

[-0.069, 1.350] 

 

0.273 

0.112 

0.074 

Level of spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3 

   Other 

Reference 

-0.069 

-0.217 

-0.042 

0.033 

 

[-0.383, 0.245]  

[-0.816, 0.382]  

[-0.966, 0.882]  

[-0.987, 1.052] 

 

0.665 

0.476 

0.928 

0.950 

ASA Morbidity  1 

   2 

   3 

Reference 

0.457 

0.706 

 

[0.130, 0.785]  

[0.001, 1.412] 

 

0.006 

0.050 

BMI   <20 

   20 - 25 

   25 - 30 

   30 – 35 

   >35 

Reference 

-0.509 

-0.385 

-0.003 

-0.487 

 

[-1.246, 0.228] 

[-1.130, 0.359] 

[-0.797, 0.791] 

[-1.414, 0.439] 

 

0.174 

0.304 

0.944 

0.301 

Baseline COMI score 0.425 [0.341, 0.510] <0.001 

Table 5.5: Coefficient estimates, 95% confidence intervals and p-values for linear regression with 3-

month COMI scores on a patient subset that included BMI. Cases for which BMI was exactly 25 were 

included in “20 – 25”. The same method applies to other categories.  

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.343 [0.191, 2.495] 0.022 

Sex   Female 

   Male 

Reference 

0.100 

 

[-0.201, 0.400] 

 

0.516 
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Age -0.014 [-0.027, -0.002] 0.030 

Surgeon credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.175 

0.259 

-0.585 

-0.359 

-0.190 

 

[-0.535, 0.184] 

[-0.246, 0.764] 

[-1.439, 0.269] 

[-1.953, 1.236] 

[-1.417, 1.036] 

 

0.259 

0.313 

0.178 

0.656 

0.761 

Country ID  A 

   B 

   E 

   F 

   G 

   H 

Reference 

-0.907 

0.057 

0.643 

-0.258 

-0.290 

 

[-1.287, -0.528] 

[-0.538, 0.653] 

[-1.105, 2.391] 

[-1.579, 1.062] 

[-2.199, 1.619] 

 

<0.001 

0.852 

0.469 

0.701 

0.765 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.077 

0.140 

1.393 

 

[-0.482, 0.329] 

[-0.277, 0.557] 

[0.647, 2.139] 

 

0.710 

0.509 

<0.001 

Level of spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3 

   Other 

Reference 

-0.301 

-0.447 

0.233 

0.118 

 

[-0.383, 0.245]  

[-0.816, 0.382]  

[-0.966, 0.882]  

[-0.987, 1.052] 

 

0.665 

0.476 

0.928 

0.950 

ASA Morbidity  1 

   2 

   3 

   4 

Reference 

0.431 

0.923 

-3.297 

 

[0.097, 0.766] 

[0.212, 1.634] 

[-8.099, 1.505] 

 

0.012 

0.011 

0.262 

BMI   <20 

   20 - 25 

   25 - 30 

   30 – 35 

   >35 

Reference 

-0.141 

-0.104 

0.31 

0.034 

 

[-0.875, 0.592]  

[-0.843, 0.634] 

[-0.482, 1.102]  

[-0.920, 0.989] 

 

0.707 

0.781 

0.441 

0.944 

Baseline COMI score 0.388 [0.302, 0.475] <0.001 
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Table 5.6: Coefficient estimates, 95% confidence intervals and p-values for linear regression with 1-

year COMI scores on a patient subset that included BMI. Cases for which BMI was exactly 25 were 

included in “20 – 25”. The same method applies to other categories. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 0.749 [-0.176, 1.674] 0.291 

Sex   Female 

   Male 

Reference 

-0.198 

 

[-0.563, 0.168] 

 

0.288 

Age -0.016 [-0.030, -0.001] 0.044 

Surgeon credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.632 

-0.405 

0.256 

-0.500 

-0.002 

 

[-1.707, 0.443] 

[-0.845, 0.035] 

[-0.305, 0.817] 

[-2.703, 1.704] 

[-1.358, 1.355] 

 

0.247 

0.073 

0.370 

0.657 

0.998 

Country ID  A 

   B 

   E 

   F 

   H 

Reference 

-0.21 

0.168 

0.633 

-2.144 

 

[-0.758, 0.339] 

[-0.603, 0.938] 

[-1.216, 2.482] 

[-5.519, 1.231] 

 

0.454 

0.667 

0.502 

0.211 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.198 

-0.025 

0.496 

 

[-0.663, 0.267] 

[-0.509, 0.460] 

[-0.460, 1.452] 

 

0.404 

0.921 

0.305 

Level of spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3 

   Other 

Reference 

0.233 

0.033 

0.365 

0.835 

 

[-0.157, 0.623] 

[-0.768, 0.835] 

[-0.896, 1.626] 

[-0.500, 2.171] 

 

0.239 

0.935 

0.566 

0.218 

ASA Morbidity  1 

   2 

   3 

Reference 

0.615 

1.671 

 

[-0.009, 1.238] 

[0.822, 2.520] 

 

0.003 

<0.001 
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BMI   <20 

   20 - 25 

   25 - 30 

   30 – 35 

   >35 

Reference 

0.092 

0.429 

0.576 

0.444 

 

[-0.806, 0.989] 

[-0.471, 1.329] 

[-0.376, 1.528] 

[-0.699, 1.587] 

 

0.840 

0.344 

0.233 

0.442 

Baseline COMI score 0.405 [0.300, 0.509] <0.001 

Table 5.7: Coefficient estimates, 95% confidence intervals and p-values for linear regression with 2-

year COMI scores on a patient subset that included BMI. Cases for which BMI was exactly 25 were 

included in “20 – 25”. The same method applies to other categories. 

Overall, variables and categories that had significant p-values were similar to the analysis approaches 

without the inclusion of BMI, the only difference being that age was associated with lower COMI 

outcomes at 1- and 2-years after surgery. None of the models indicated that BMI was associated with 

treatment outcome.  

The details about estimates, 95%-confidence intervals and p-values for the model on the subset of 

patients that had smoking status available are displayed in Tables 5.8-5.10. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.541 [0.426, 2.656] 0.006 

Sex   Female 

   Male 

Reference 

0.151 

 

[-0.176, 0.479] 

 

0.372 

Age -0.011 [-0.024, 0.001] 0.122 

Surgeon credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

0.18 

-0.209 

-0.1 

-0.03 

2.225 

 

[-1.411, 1.772] 

[-0.614, 0.195] 

[-0.680, 0.481] 

[-1.513, 1.454] 

[-0.043, 4.494] 

 

0.824 

0.308 

0.735 

0.969 

0.054 

Country ID  A 

   B 

   E 

   F 

   G 

   H 

   Other 

Reference 

-0.59 

-0.44 

-1.315 

-3.098 

-1.001 

-0.646 

 

[-1.021, -0.159] 

[-1.279, 0.398] 

[-2.715, 0.085] 

[-5.330, -0.867] 

[-2.593, 0.590] 

[-3.828, 2.536] 

 

0.003 

0.301 

0.066 

0.007 

0.219 

0.691 
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Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.239 

0.374 

0.797 

 

[-0.695, 0.217] 

[-0.101, 0.849] 

[-0.019, 1.614] 

 

0.305 

0.121 

0.056 

Level of spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3 

   Other 

Reference 

-0.077 

-0.246 

0.256 

-0.284 

 

[-0.436, 0.283] 

[-0.909, 0.415] 

[-0.757, 1.270] 

[-1.386, 0.818] 

 

0.673 

0.467 

0.619 

0.614 

ASA Morbidity  1 

   2 

   3 

Reference 

0.453 

0.651 

 

[0.084, 0.822] 

[-0.146, 1.448] 

 

0.016 

0.108 

Smoking status  Non-smoker 

   Smoker 

Reference 

0.747 

 

[0.338, 1.156] 

 

<0.001 

Baseline COMI score 0.395 [0.299, 0.491] <0.001 

Table 5.8: Coefficient estimates, 95% confidence intervals and p-values for linear regression with 3-

month COMI scores on a patient subset that included smoking status.  

There was only one measurement for country D, which was therefore disregarded. In the following 

subset of 1-year outcomes there were no measurements for country group D or “other”. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.5 [0.386, 2.614] 0.007 

Sex   Female 

   Male 

Reference 

-0.086 

 

[-0.431, 0.258] 

 

0.625 

Age -0.014 [-0.029, 0.001] 0.052 

Surgeon credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.556 

-0.238 

0.405 

0.034 

0.869 

 

[-1.511, 0.398] 

[-0.667, 0.190] 

[-0.200, 1.009] 

[-2.268, 2.336] 

[-1.728, 3.466] 

 

0.254 

0.276 

0.190 

0.977 

0.505 

Country ID  A 

   B 

   E 

Reference 

-1.038 

-0.042 

 

[-1.455, -0.622] 

[-0.674, 0.590] 

 

<0.001 

0.895 
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   F 

   G 

   H 

0.944 

-0.661 

-0.356 

[-1.098, 2.987] 

[-2.146, 0.824] 

[-2.271, 1.560] 

0.363 

0.382 

0.715 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.129 

0.254 

1.905 

 

[-0.595, 0.337] 

[-0.230, 0.737] 

[0.997, 2.813] 

 

0.590 

0.300 

<0.001 

Level of spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3 

   Other 

Reference 

-0.352 

-0.261 

0.359 

0.013 

 

[-0.723, 0.018] 

[-0.987, 0.465] 

[-0.656, 1.375] 

[-1.183, 1.209] 

 

0.062 

0.479 

0.484 

0.983 

ASA Morbidity  1 

   2 

   3 

Reference 

0.578 

0.935 

 

[0.196, 0.961] 

[0.144, 1.726] 

 

0.003 

0.021 

Smoking status  Non-smoker 

   Smoker 

Reference 

0.751 

 

[0.324, 1.179] 

 

0.001 

Baseline COMI score 0.357 [0.259, 0.456] <0.001 

Table 5.9: Coefficient estimates, 95% confidence intervals and p-values for linear regression with 1-

year COMI scores on a patient subset that included smoking status. 

In the following subset of 2-year outcomes there were no measurements for country group D, G or 

“Other”. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.543 [0.193, 2.894] 0.025 

Sex   Female 

   Male 

Reference 

-0.31 

 

[-0.727, 0.106] 

 

0.147 

Age -0.021 [-0.038, -0.003] 0.019 

Surgeon credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.282 

-0.326 

0.219 

-1.37 

0.187 

 

[-1.439, 0.876] 

[-0.836, 0.185] 

[-0.446, 0.884] 

[-4.036, 1.296] 

[-2.479, 2.853] 

 

0.629 

0.211 

0.519 

0.308 

0.890 
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Country ID  A 

   B 

   E 

   F 

   H 

Reference 

-0.497 

-0.269 

0.921 

-2.199 

 

[-1.074, 0.080] 

[-1.066, 0.527] 

[-1.272, 3.115] 

[-5.050, 0.652] 

 

0.093 

0.504 

0.407 

0.203 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.437 

-0.082 

0.749 

 

[-0.980, 0.106] 

[-0.635, 0.471] 

[-0.339, 1.837] 

 

0.113 

0.771 

0.176 

Level of spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3 

   Other 

Reference 

0.146 

0.107 

0.518 

0.027 

 

[-0.300, 0.592] 

[-0.831, 1.045] 

[-0.894, 1.929] 

[-1.428, 1.482] 

 

0.520 

0.822 

0.472 

0.971 

ASA Morbidity  1 

   2 

   3 

Reference 

0.83 

1.793 

 

[0.362, 1.298] 

[0.834, 2.751] 

 

0.001 

<0.001 

Smoking status  Non-smoker 

   Smoker 

Reference 

0.635 

 

[0.098, 1.173] 

 

0.020 

Baseline COMI score 0.395 [0.277, 0.513] <0.001 

Table 5.10: Coefficient estimates, 95% confidence intervals and p-values for linear regression with 2-

year COMI scores on a patient subset that included smoking status. 

Results are very similar to prior approaches that did not include smoking status. However, smoking 

status was significant in each of the outcome time points for COMI scores. More precisely, smokers 

were associated with higher COMI outcome scores than non-smokers.  

R2 values of the models including BMI were 0.108, 0.109 and 0.106 for the 3-month, 1-year and 2-year 

model respectively. R2 values of the models including smoking status were 0.120, 0.129 and 0.127 for 

the 3-month, 1-year and 2-year model respectively. 

RMSEs of the models including BMI were 2.878, 2.791 and 2.811 respectively and for the models 

including smoking status RMSEs were 2.561, 2.617 and 2.697 for the 3-month, 1-year and 2-year 

model respectively.  

Each of the models had R2 values and root mean squared errors similar to the linear model approaches 

with the full set of available patients for each time point and can therefore be described having a poor 
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fit. It should be pointed out though, that smoking status is consistently correlated to treatment 

outcome and should be considered in modelling approaches if available.  

Overall, even though patient characteristics could be identified as associated to treatment outcome, 

model fits in terms of R2 and RMSE is poor. There remains large outcome variation that cannot be 

explained by this model approach, which is why other approaches were explored. As illustrated in 

Figure 5.2, COMI scores deviate from normality and are constrained within the range of 0 and 10. 

Linear regression assumes the outcome to be unbounded, which is a limitation of the application to 

this outcome and opens the possibility for future research to incorporate advanced analytical 

techniques, such as tobit regression, to accommodate this distribution. It's important to note that 

while this analysis holds promise, given the current scope of this project, it was not pursued. Instead, 

the exploration of logistic regression was pursued. The reasoning was to simplify the outcome, before 

exploring more complex models such as mixed models. By transforming COMI to a binary outcome 

and using this approach, it was hoped to identify factors that are associated with successful treatment 

outcome (significant improvement), as opposed to unsuccessful (no significant improvement). 

5.6 Logistic regression approaches 

Another common approach that uses one specific outcome measurement is a logistic regression 

model. For this, the outcome needs to be binary. Therefore, the treatment outcome was dichotomized 

into “significant improvement” or “no significant improvement”. The threshold for the treatment 

outcome to be successful was decided based on the minimal clinically important difference of the 

COMI score, which was 2.2 points (Mannion et al., 2016). The model approach is based on formula  

( 2 ).  

Logit(pi) = ln (
pi

1 − pi
) = 𝑋𝑖β + 𝜀𝑖 

( 2 ) 

Where pi is the probability of the outcome of patient i being successful. The rest of the annotation is 

defined in the same way as in formula ( 1 ). For all further model the glm() function in R with the 

specification family = “binomial” was used.  

5.6.1 Logistic regression – Treatment success using COMI scores at three months, 1 year 

and 2 years after surgery 

This model approach classified successful treatment based on a point decrease of greater or equal 2.2 

on the COMI score scale (0-10). For each of the time points a logistic model of the form ( 2 ) was fitted 
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and a stepwise AIC model selection algorithm applied in order to eliminate non-significant variables. 

The individuals who fell under categories ASA 4 and country IDs D and H were excluded from the 

respective analyses of 1-year and 2-year outcomes due to their low representation in the datasets. 

Additionally, there were no individuals from country G and “other” countries in the 2-year dataset.  

A table of Odds ratios, 95%-confidence intervals and p-values for 3-month outcomes is displayed in 

Table 5.11. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept -1.12 [-1.723, -0.510] <0.001 

Gender    Female 

   Male 

Reference 

-0.004 

 

[-0.191, 0.183] 

 

0.969 

Age <0.001 [-0.008, 0.008] 0.984 

Surgeon credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

0.129 

0.082 

0.283 

0.190 

0.140 

 

[-0.091, 0.351] 

[-0.222, 0.391] 

[-0.447, 1.072] 

[-0.515, 0.959] 

[-0.728, 1.055] 

 

0.251 

0.598 

0.461 

0.609 

0.756 

Level of spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3 

   Other 

Reference 

0.014 

0.119 

0.052 

0.005 

 

[-0.187, 0.215] 

[-0.260, 0.507] 

[-0.646, 0.568] 

[-0.686, 0.730] 

 

0.894 

0.543 

0.887 

0.989 

Country ID  A 

   B 

   D 

   E 

   F 

   G 

   H 

   Other 

Reference 

0.263 

-0.756 

0.101 

0.480 

2.462 

0.742 

0.293 

 

[0.054, 0.473] 

[-1.845, 0.313] 

[-0.404, 0.626] 

[-0.194, 1.216] 

[0.763, 5.388] 

[-0.479, 2.261] 

[-0.371, 1.007] 

 

0.014 

0.162 

0.700 

0.179 

0.021 

0.272 

0.400 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

Reference 

0.067     

-0.273    

 

[-0.197, 0.328] 

[-0.541, -0.006] 

 

0.618  

0.045 
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   Surgical -0.536    [-0.973, -0.095] 0.017 

ASA Morbidity  1 

   2 

   3 

Reference 

-0.236  

-0.257    

 

[-0.443, -0.029] 

[-0.676, 0.173] 

 

0.025 

0.256 

Baseline COMI score 0.227 [0.174, 0.281] <0.001 

Table 5.11: Odds ratios, 95% confidence intervals and p-values of variables of logistic regression 

using 3-month successful treatment, based on clinically significant COMI score changes. 

A table of Odds ratios, 95%-confidence intervals and p-values for 1-year outcomes is displayed in 

Table 5.12. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept -1.056 [-1.674, -0.438] 0.001 

Gender    Female 

   Male 

Reference 

0.035 

 

[-0.160, 0.230] 

 

0.725 

Age 0.004 [-0.004, 0.011] 0.333 

Surgeon credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

0.07 

-0.356 

0.018 

-0.017 

0.633 

 

[-0.491, 0.631] 

[-0.662, -0.051]  

[-0.220, 0.257] 

 [-0.919, 0.885] 

[-0.419, 1.685] 

 

0.807 

0.022 

0.883 

0.971 

0.233 

Level of spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3 

   Other 

Reference 

0.159 

0.251 

-0.292 

-0.136 

 

[-0.052, 0.369] 

[-0.162, 0.665] 

[-0.898, 0.315] 

[-0.899, 0.628] 

 

0.139 

0.230 

0.345 

0.725 

Country ID  A 

   B 

   D 

   E 

   F 

   G 

   H 

   Other 

Reference 

0.592 

-0.367 

0.147 

0.667 

0.272 

0.732 

0.138 

 

[0.361, 0.823] 

[-1.910, 1.176] 

[-0.248, 0.543] 

[0.003, 1.331] 

[-0.619, 1.164] 

[-0.896, 2.360] 

[-0.968, 1.244] 

 

<0.001 

0.640 

0.465 

0.049 

0.547 

0.373 

0.804 
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Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

0.137 

-0.118 

-0.809 

 

[-0.138, 0.412] 

[-0.395, 0.160] 

[-1.266, -0.352] 

 

0.330 

0.405 

0.001 

ASA Morbidity  1 

   2 

   3 

Reference 

-0.212 

-0.567 

 

[-0.429, 0.003] 

[-0.982, -0.152] 

 

0.054 

0.009 

Baseline COMI score 0.215 [0.161, 0.269] <0.001 

Table 5.12: Odds ratios, 95% confidence intervals and p-values of variables of logistic regression 

using 2-year successful treatment, based on clinically significant COMI score changes. 

A table of Odds ratios, 95%-confidence intervals and p-values for 2-year outcomes is displayed in 

Table 5.13. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept -0.923 [-1.643, -0.205] <0.012 

Gender    Female 

   Male 

Reference 

0.215 

 

[-0.008, 0.440] 

 

0.059 

Age 0.003 [-0.006, 0.012] 0.549 

Surgeon credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

0.185 

-0.346 

0.165 

-0.188 

0.331 

 

[-0.087, 0.461] 

[-0.669, -0.021] 

[-0.547, 0.915] 

[-1.055, 0.786] 

[-0.667, 1.491] 

 

0.183 

0.036 

0.655 

0.683 

0.538 

Level of spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3 

   Other 

Reference 

0.019 

0.165 

-0.570 

-0.863 

 

[-0.219, 0.259] 

[-0.299, 0.651] 

[-1.265, 0.160] 

[-1.763, 0.037] 

 

0.872 

0.495 

0.114 

0.057 

Country ID  A 

   B 

   E 

   F 

Reference 

0.437 

0.461 

-0.089 

 

[0.177, 0.701] 

[-0.053, 1.003] 

[-0.848, 0.724] 

 

0.001 

0.086 

0.822 

Previous Treatment None Reference   
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   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

0.109  

-0.131    

-0.258    

[-0.203, 0.418] 

[-0.445, 0.177] 

[-0.807, 0.311] 

0.489 

0.405 

0.363 

ASA Morbidity  1 

   2 

   3 

Reference 

-0.282 

-0.729    

 

[-0.531, -0.035] 

[-1.215, -0.235] 

 

0.025 

0.003 

Baseline COMI score 0.214 [0.152, 0.277] <0.001 

Table 5.13: Odds ratios, 95% confidence intervals and p-values of variables of logistic regression 

using 2-year successful treatment, based on clinically significant COMI score changes. 

The models used to predict outcomes at three different time points all included country ID, ASA 

morbidity, and baseline COMI scores as important factors. Again, country B was associated with better 

treatment outcomes. However, in the logistic regression the estimates are Odds ratios, with a positive 

value indicating a higher chance of having significant improvement, in comparison to the reference 

category. Similarly, patients with ASA morbidity status of 2 or 3 had a lower chance for significant 

improvement, compared to patients with ASA morbidity of 1. A one-unit increase in COMI baseline 

score is associated with an increase of the chance of not having a significant improvement. 

The 2-year outcome model was the only one in which previous treatment was not considered during 

model selection, which raises questions for further discussion. The linear regression model used at 1 

year after surgery included the level of the spine as a factor, while the logistic regression model did 

not. Overall, the main predictive factors were similar across both linear regression and logistic 

regression approaches.  

There are measures that attempt to quantify something similar to the R2 in linear models like the Cox-

Snell R2 or the McFadden R2, but the most common model performance measure for a logistic 

regression is the receiver operating characteristic (ROC) curve, which shows the true positive rate 

against the true negative rate for various thresholds. The area under this curve (AUC) is used to 

measure the model's ability to predict outcomes. The closer the AUC value is to one, the better the fit 

of the model and the worst fit would be similar to a coin toss at 0.5. 

The ROC-curves for the above models are displayed in Figure 5.3. 
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Figure 5.3: Areas under ROC-curves of logistic regression models for each time point past surgery. 

95%-confidence intervals of the areas under ROC-curves were 0.633 [0.608, 0.657], 0.650 [0.626, 

0.675] and 0.649 [0.621, 0.677] for dichotomised 3-month, 1-year and 2-year outcomes respectively. 

Neither of these ROC-curves represent a good predictive ability of the model regarding the precision 

of individual predictions or a good model fit. For the purpose of identifying prognostic factors 

however, these were mostly consistent with the results of the linear regression analyses that were 

performed previously. Due to the similarities of the model fit and the factors that were identified to 

be associated with treatment outcome, a subset of analysis of patients that had BMI or smoking status 

available was not performed.  

5.6.2 Summary 

Overall, linear and logistic regression with one outcome time point had poor fit and therefore also 

poor ability to predict outcomes for patient when only baseline data is available. There seems to be a 

lot of unexplained outcome variation left, which is why other modelling approaches were explored. 

The main take away is that a few consistent patient characteristics were identified that were 

correlated to treatment outcome, even if the fit was poor. ASA morbidity status, prior treatment, 

where prior surgery had the lowest p-values, baseline COMI scores and country were considered to 

be correlated in most of the models and smoking status was correlated consistently in the models that 

used the subset of patients that answered it. The identification of a few country IDs for which 

outcomes were different from the reference country 6 is also helpful for the Spine Tango registry and 

clinicians in these countries. It was found out that BMI was not significant regarding outcomes, which 

is why it was not considered in future modelling approaches. While smoking status was found to be 

significant, the subset of patients with available data on smoking status was notably smaller. As such, 

there is a need for more consistent measurement of smoking status and its inclusion in the 

development of a core outcome set for this patient population and treatment. However, for future 

model approaches, the focus will be on all available patients, without incorporating BMI or smoking 

status.  
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Every model approach so far only focussed on one specific outcome timepoint and therefore did not 

use the rest of the available data for the model fit. The next step is to explore if models that 

incorporate all available data points past surgery will be have a better fit.  

5.7 Longitudinal mixed-effects model – COMI scores 

In prior model approaches, outcome measures were defined at one chosen time point. Therefore, all 

other available data points were disregarded and information is lost. A longitudinal model that 

includes all available data points for each patient, could potentially achieve better model fit and be 

able to explain treatment outcome and changes over time. The approach works similar to a linear 

multivariate model, with the difference being that the outcome variable is time dependent. Instead 

of categorising COMI scores in “3 months”, “1 year” and “2 years”, exact values of weeks past surgery 

were used and treated as continuous variable. This led to a dataset containing 6,704 measurements 

of 3,530 patients. Again, factor levels were ordered either by size (country ID, surgeon credentials) so 

that the largest category is reference, or clinically (ASA morbidity, level of spine, previous treatment). 

Similar to previous model approaches, previous treatment was regrouped into “none”, “less than 6 

months conservative treatment”, “more than 6 months conservative treatment” and “surgical”, 

where patients that had combinations such as “conservative and surgical treatment” were regarded 

into the “surgical” category. No previous treatment was chosen as reference category. Level of spine 

was ranked as following: “L5/S1” (reference category), “L4/L5”, “L3/L4” or “L2/L3” and “other”, where 

“other” also included “L1/L2” due to low count. ASA morbidity categories were ranked ascending with 

“ASA 1” being reference category. All patient baseline covariates were considered as constant over 

time. Although some of them might change over time, there are no repeat measurements available 

and therefore not considered time-dependent in the model approaches. The only time-dependent 

variables were the outcome scores and the time variable (in weeks) itself as input variable. Figure 5.4 

shows a random sample of patients and their progression in COMI scores over time, to give a first 

impression of treatment improvement. 
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Figure 5.4 a) and b): a) COMI score progression over time for 100 random patients of data set 

individually (left) and b) overlapping (right). 

Most patients show an initial improvement shortly after surgery. COMI scores then often stay constant 

for the following time intervals. However, there are some patients for who it continues to improve 

and also patients for who COMI scores become worse again after the initial improvement. Most 

patients have baseline scores of more than 5, but it seems that there is a wide spread of initial values 

between 5 and 10 on the score range before surgery.  

Mixed effects models contain both fixed and random effects and are useful for datasets with repeated 

measurements on the same statistical units (in this case patients). Fixed effects are constant across all 

individuals, whereas random effects vary for each individual. This allows for a large number of 

potential models to be explored, but the focus is on the most straight-forward approaches, namely 

including random intercepts, slopes and both. The model is based on formula ( 3 ). 

 

Yi(t) = Xi(t)β + Zi(𝑡)ui + εi 

( 3 ) 

In this formula β and εi are defined in the same way as in the linear regression model ( 1 ). Yi(t) and 

Xi(t) are similarly defined as in the linear regression model, with the only difference that they are 

time-dependent, with t denoting the time. Zi(t) is a time-dependent (1 x q)-dimensional design vector 

of the q random effects that are considered in the model that can be seen as equivalent to Xi(t). ui is 

a (q x 1)-dimensional vector of random effect coefficients, which can be seen as equivalent to β. 

However, this vector is individually defined for each patient. It is assumed to all ui are independent 
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and identically distributed of the normal distribution ~𝑁(0, 𝐷). For further details on the distribution 

of random effects, see (Daniels and Zhao, 2003). 

When adding random effects, one has to include the desired variable as both fixed and random effect 

in the model specification. The coefficients will then automatically be fitted and if an effect is purely 

random, the fixed coefficient will be zero and if it is purely a fixed effect then the random coefficient 

will be zero. 

Comparing this model approach to others is complex because it incorporates more time points. As a 

result, traditional measures such as loglikelihood may not be comparable. The model also allows for 

the inclusion of more patients, which is expected to lead to a better model fit. To evaluate the 

effectiveness of this approach, it will be compared to linear regression using the same subsets of 

patients. The prediction accuracy will be determined by comparing the root mean square errors of 

both methods. Additionally, the root mean square errors will be calculated for all available patients to 

evaluate the improvement from including more patients in the model. For example, there are patients 

in the mixed model at 1 year, that did not have a 1-year outcome and are therefore not included in 

the 1-year linear regression model. However, they had outcomes at different intervals (between 

surgery and 1 year) that can be used to fit the mixed model. Therefore, the mixed model can 

potentially include more patients at each time-point.  

Additionally, there are several formulas that are somewhat an equivalent to the R2 of linear regression 

models. One of the most common ones was developed by D. Zhang and extends the proportion of 

explained variance (Zhang, 2020). Moreover, it defines this proportion into variation explained by the 

whole model, fixed effects only, and random effects only. This measure is implemented in the “rsq”-

package in R and will be used for all subsequent mixed-effects models. It will from now on be notated 

as Rz
2. All mixed-model analyses were done using the lme() function of the “nlme”-package in R 

(Pinheiro et al., 2013). 

5.7.1 Mixed model in comparison to linear regression model at 3 months past surgery 

The first model approach includes a random intercept. This allows each patient to have an individual 

intercept, which makes a lot of sense due to the variance of baseline values. In order to obtain a fair 

comparison with prior linear regression models, this model considers the same set of patients that 

were used in the linear regression model at 3 months past surgery and disregards later measurements. 

However, there were measurements for these patients between surgery and the 3-month outcome. 

The data set included 2,188 measurements from 2,127 patients. Only a few patients have more than 

one measurement in this dataset, since the 3-month interval is one of the first and later outcomes 

should not be included in the model fit when prediction accuracy is examined. Therefore, this data set 



158 
 

is nearly identical to the data set of the linear regression with 3-month outcomes. Model results 

regarding fixed effects are displayed in Table 5.14. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 2.441 [1.468, 3.414] <0.001 

Weeks past surgery -0.067 [-0.108, -0.026] 0.002 

Sex   Female 

   Male 

Reference 

-0.068 

 

[-0.308, 0.171] 

 

0.580 

Age -0.009 [-0.018, 0.000] 0.073 

Surgeon Credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.197 

-0.155 

-0.03 

0.008 

0.048 

 

[-0.482, 0.087] 

[-0.552, 0.242] 

[-0.936, 0.876] 

[-0.898, 0.914] 

[-0.741, 0.837] 

 

0.178 

0.445 

0.949 

0.986 

0.936 

Country ID  A 

   B 

   D 

   E 

   F 

   G 

   H 

   Other 

Reference 

-0.596 

1.636 

-0.116 

-0.622 

-2.224 

-0.768 

-0.137 

 

[-0.866, -0.327] 

[0.187, 3.084] 

[-0.775, 0.543] 

[-1.461, 0.217] 

[-3.822, -0.625] 

[-2.266, 0.729] 

[-1.007, 0.733] 

 

<0.001 

0.027 

0.730 

0.144 

0.006 

0.306 

0.756 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.19 

0.319 

0.927 

 

[-0.531, 0.150] 

[-0.033, 0.670] 

[0.338, 1.516] 

 

0.273 

0.081 

0.002 

Level of Spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3  

   Other 

Reference 

-0.012 

-0.226 

0.207 

0.096 

 

[-0.271, 0.247] 

[-0.712, 0.260] 

[-0.576, 0.990] 

[-0.815, 1.007] 

 

0.930 

0.361 

0.603 

0.835 
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ASA Morbidity  1 

   2 

   3 

   4 

Reference 

0.519 

0.888 

4.762 

 

[0.255, 0.784] 

[0.343, 1.433] 

[0.879, 8.646] 

 

<0.001 

0.002 

0.016 

Baseline COMI score 0.399 [0.329, 0.468] <0.001 

Table 5.14: Coefficient estimates of fixed effects, 95% confidence intervals and p-values for mixed-

effects model including random intercepts. Dataset of the same patients as in linear regression up to 

3-month data. 

The variables with significant p-values are the same as in previous modelling approaches, the only 

difference being that weeks past surgery additionally has a significant p-value. A one-week increase is 

associated with a lower COMI score (by 0.067 points).  

For this current model fit the Rz
2 of the total model was 0.638, consisting of the fixed component of 

0.103 and the random component of 0.535. The fixed component is very close to the R2 that was found 

in linear regression models, which underlines, that linear regression models struggle to explain 

outcome variation. The addition of random intercepts led to an increase of proportion of explained 

outcome variation by 0.540 (0.638-0.098) and could therefore improve the model fit. However, this 

random component can only aid in individual predictions, if the coefficients of the random effects 

have been estimated. This estimation is possible only when post-surgery measurements are available 

for a given patient. Therefore, while the model fits more precisely by adjusting for individual 

progression, it does not necessarily imply that pre-surgery predictions can be made more accurately. 

Including only random intercepts assumes that there is a linear decrease in COMI scores after surgery 

that is the same for the entire patient population. Figure 5.4 however shows that progression can be 

very different for patients, which is why the model was extended by adding random slopes. This allows 

each patient to have an individual intercept and slope instead of having the same estimates for the 

full population. Details of the fixed effects of the resulting model can be found in Table 5.15. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 2.444 [1.466, 3.422] <0.001 

Weeks past surgery -0.067 [-0.109, -0.026] 0.002 

Sex   Female 

   Male 

Reference 

-0.065 

 

[-0.305, 0.176] 

 

0.596 

Age -0.009 [-0.018, 0.000] 0.070 

Surgeon Credentials BC-N Reference   
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   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

-0.196 

-0.156 

-0.032 

0.001 

0.051 

[-0.479, 0.086] 

[-0.550, 0.238] 

[-0.936, 0.872] 

[-0.907, 0.909] 

[-0.736, 0.838] 

0.181 

0.441 

0.945 

0.999 

0.932 

Country ID  A 

   B 

   D 

   E 

   F 

   G 

   H 

   Other 

Reference 

-0.596 

1.626 

-0.117 

-0.62 

-2.226 

-0.766 

-0.136 

 

[-0.865, -0.327] 

[0.185, 3.067] 

[-0.776, 0.541] 

[-1.461, 0.221] 

[-3.828, -0.625] 

[-2.266, 0.733] 

[-1.005, 0.732] 

 

<0.001 

0.027 

0.728 

0.146 

0.006 

0.307 

0.758 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.189 

0.32 

0.926 

 

[-0.530, 0.151] 

[-0.029, 0.669] 

[0.339, 1.513] 

 

0.276 

0.080 

0.003 

Level of Spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3  

   Other 

Reference 

-0.012 

-0.225 

0.205 

0.111 

 

[-0.270, 0.247] 

[-0.709, 0.258] 

[-0.574, 0.984] 

[-0.799, 1.022] 

 

0.930 

0.365 

0.607 

0.811 

ASA Morbidity  1 

   2 

   3 

   4 

Reference 

0.52 

0.889 

4.765 

 

[0.254, 0.786] 

[0.343, 1.434] 

[0.821, 8.709] 

 

<0.001 

0.002 

0.016 

Baseline COMI score 0.399 [0.330, 0.468] <0.001 

Table 5.15: Coefficient estimates of fixed effects, 95% confidence intervals and p-values for mixed-

effects model including random intercepts and slopes. Dataset of the same patients as in linear 

regression up to 3-month data. 

The patient characteristics with significant p-values are the same as in the random intercept model, 

which shows consistency of these variables to be connected to treatment outcome, even after 

including additional random effects. The total model Rz
2 of 0.644 is split in the fixed effects component 

of 0.103 and the random effects component of 0.541. In order to compare this model to the prior less 
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complex model that included only random intercepts, an ANOVA was performed. Using ANOVA to 

compare models tests the hypothesis if the residual sums of squares are different between the models 

and quantifies the p-value for the decision. Comparison could have also been made using the AIC 

values of each model; however, ANOVA additionally implies a hypothesis of superiority of one model 

and calculates the p-value of that hypothesis. A p-value of 0.818 showed, that the model fit was not 

significantly improved by including random slopes. 

Looking closer at the progression of COMI scores, one finds that many patients have an L-shaped curve 

consisting of an initial improvement and constant progression after. Linear graphs to fit the data is 

therefore not capturing this trajectory. Additionally, there is doubt that some of the linear graphs are 

accurate, since they resulted from patients that only had 2 measurements available. There is reason 

to assume, that more measurements would also reveal a non-linear progression. It is also crucial to 

assume, that COMI scores cannot be negative. Linear models with negative slopes could potentially 

lead to negative estimates, especially when long-term outcomes are computed. It is therefore 

reasonable to assume that COMI-score progression is non-linear, especially for long-term outcome 

modelling. To approach this non-linearity polynomial functions of the patient covariates can be 

considered; however, combinations are infinite and therefore non-linear time terms that fit the shape 

of the progression curve were explored. 

In the following model approaches a random intercept and a random slope were included. 

Furthermore, several non-linear time terms were explored as both random effects and fixed effects.  

The most stable approach was including the term 𝑓(𝑡) = 1
𝑡⁄ , where t denotes time in weeks past 

surgery. Several other terms, such as 𝑓1(𝑡) =  1
𝑡2⁄   or 𝑓2(𝑡) =  exp (−2𝑡) were considered, but none 

improved the model fit more than 𝑓(𝑡) = 1
𝑡⁄ , which is why 𝑓(𝑡) was picked for further investigations. 

Details of the fixed effects of the resulting model can be found in Table 5.16. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 0.499 [-1.367, 2.365] 0.596 

Weeks past surgery 0.018 [-0.062, 0.098] 0.667 

𝒇(𝒕) 9.877 [1.531, 18.223] 0.019 

Sex   Female 

   Male 

Reference 

-0.065 

 

[-0.305, 0.176] 

 

0.599 

Age -0.009 [-0.018, 0.000] 0.091 

Surgeon Credentials BC-N 

   SSS 

   N-t 

Reference 

-0.198 

-0.144 

 

[-0.482, 0.085] 

[-0.545, 0.257] 

 

0.176 

0.478 
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   BC-O  

   O-t 

   Other 

-0.045 

-0.041 

0.101 

[-0.954, 0.863] 

[-0.900, 0.818] 

[-0.686, 0.888] 

0.922 

0.930 

0.866 

Country ID  A 

   B 

   D 

   E 

   F 

   G 

   H 

   Other 

Reference 

-0.602 

1.632 

-0.133 

-0.647 

-2.457 

-0.76 

-0.18 

 

[-0.872, -0.332] 

[0.183, 3.080] 

[-0.790, 0.525] 

[-1.489, 0.195] 

[-4.259, -0.655] 

[-2.254, 0.734] 

[-1.047, 0.687] 

 

<0.001 

0.026 

0.693 

0.129 

0.003 

0.311 

0.682 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.168 

0.335 

0.95 

 

[-0.507, 0.171] 

[-0.018, 0.688] 

[0.370, 1.530] 

 

0.332 

0.067 

0.002 

Level of Spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3  

   Other 

Reference 

-0.017 

-0.237 

0.218 

0.096 

 

[-0.277, 0.242] 

[-0.723, 0.249] 

[-0.566, 1.003] 

[-0.817, 1.008] 

 

0.896 

0.339 

0.582 

0.835 

ASA Morbidity  1 

   2 

   3 

   4 

Reference 

0.516 

0.864 

4.692 

 

[0.251, 0.781] 

[0.319, 1.409] 

[0.785, 8.599] 

 

<0.001 

0.003 

0.018 

Baseline COMI score 0.400 [0.331, 0.469] <0.001 

Table 5.16: Coefficient estimates of fixed effects, 95% confidence intervals and p-values for mixed-

effects model including random intercepts, slopes and non-linear time terms. Dataset of the same 

patients as in linear regression up to 3-month data. 

An increase of the time term t was associated with a decrease in COMI scores (considering that the 

term 𝑓(𝑡) is decreases with increasing t) . The model including 𝑓(𝑡) had a Rz
2 of 0.651, consisting of a 

fixed effects component of 0.107 and a random effects component of 0.544. Weeks past surgery and 

therefore the linear slope did not have a significant p-value after including the non-linear time term, 

which supports our assumption, that COMI score progression is not linear. However, the Rz
2 could not 
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be significantly increased and an ANOVA also revealed (p = 0.487) that this model did not fit the data 

better than the model that only considered a random intercept.  

Since the Rz
2 can only be interpreted as roughly similar to the R2 of the previous linear regression 

models, RMSE values were also computed. Table 5.17 shows that RMSE values were smaller when 

considering random effects.  

3 months

RMSE 2.75

Significant variables Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores

R
2 0.098

RMSE 1.117

Significant variables Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores,

Weeks past surgery

Rz
2 0.638

RMSE 1.301

Significant variables Country, 

Previous treatment,

ASA morbidity, 

Baseline COMI scores,

Weeks past surgery

Rz
2 0.644

RMSE 1.387

Significant variables Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores,

Non-linear time term

Rz
2 0.651

2,127Number of included patients
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Li
ne

ar
 r

eg
re

ss
io

n
M

ix
ed

-m
o

de
l

R
an

do
m

 in
te

rc
ep

t
R

an
do

m
 in

te
rc

ep
t 

an
d 

sl
o

pe

R
an

do
m

 in
te

rc
ep

t,
 

sl
o

pe
 a

nd
 n

o
n-

lin
ea

r 

ti
m

e 
te

rm

 

Table 5.17: Model fit statistics of linear regression and mixed modelling approach for COMI scores at 

three months past surgery. 

One major limitation of these model approaches is, that they barely consider more data points than 

the linear regression model, since the 3-month outcome is one of the earliest in the data set. This 

means that most patient progressions consist of two data points and therefore linear. However, this 

linearity is possibly misleading. Insights regarding the effect of random slopes or non-linear time terms 

could differ, when analysing datasets with longer time intervals. 
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5.7.2 Mixed model in comparison to linear regression model at one year past surgery 

Again, the first model approach includes a random intercept. In order to obtain a fair comparison with 

prior linear regression models, this model considers the same set of patients that were used in the 

linear regression model at 1-year past surgery and disregards later measurements. The data set 

included 3,129 measurements from 2,190 patients. Model details regarding fixed effects are displayed 

in Table 5.18. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.899 [1.179, 2.620] <0.001 

Weeks past surgery -0.013 [-0.016, -0.010] <0.001 

Sex   Female 

   Male 

Reference 

-0.063 

 

[-0.282, 0.157] 

 

0.579 

Age -0.011 [-0.021, -0.002] 0.013 

Surgeon Credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.119 

0.279 

-0.067 

0.202 

-0.100 

 

[-0.393, 0.155] 

[-0.079, 0.637] 

[-0.706, 0.573] 

[-0.751, 1.155] 

[-1.170, 0.969] 

 

0.376 

0.127 

0.838 

0.677 

0.854 

Country ID  A 

   B 

   D 

   E 

   F 

   G 

   H 

   Other 

Reference 

-0.79 

1.474 

-0.287 

-0.48 

-0.238 

-0.769 

0.343 

 

[-1.042, -0.537] 

[-0.462, 3.410] 

[-0.756, 0.181] 

[-1.187, 0.227] 

[-1.380, 0.904] 

[-2.530, 0.993] 

[-0.862, 1.548] 

 

<0.001 

0.133 

0.229 

0.183 

0.682 

0.393 

0.573 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.063 

0.348 

1.188 

 

[-0.359, 0.234] 

[0.042, 0.654] 

[0.639, 1.737] 

 

0.679 

0.026 

<0.001 

Level of Spine  L5/S1 

   L4/L5 

   L3/L4 

Reference 

-0.233 

-0.416 

 

[-0.471, 0.004] 

[-0.864, 0.033] 

 

0.055 

0.068 
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   L2/L3  

   Other 

0.096 

0.279 

[-0.611, 0.804] 

[-0.638, 1.195] 

0.787 

0.551 

ASA Morbidity  1 

   2 

   3 

   4 

Reference 

0.554 

1.013 

1.635 

 

[0.317, 0.790] 

[0.540, 1.487] 

[-1.111, 4.382] 

 

<0.001 

<0.001 

0.240 

Baseline COMI score 0.378 [0.316, 0.439] <0.001 

Table 5.18: Coefficient estimates of fixed effects, 95% confidence intervals and p-values for mixed-

effects model including random intercepts. Dataset of the same patients as in linear regression up to 

1-year data. 

The variables with significant p-values are the same as in in the 3-month dataset. For this current 

model fit the Rz
2 of the total model was 0.651, consisting of the fixed component of 0.100 and the 

random component of 0.551, which is also very close to the 3-month approach. In addition to the 3-

month model, higher age was considered with smaller COMI outcome scores.  

A summary of the fixed effects of the random intercept and random slope model is summarised in 

Table 5.19. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.853 [0.576, 3.130] 0.004 

Weeks past surgery -0.013 [-0.018, -0.009] <0.001 

Sex   Female 

   Male 

Reference 

-0.247 

 

[-0.655, 0.161] 

 

0.235 

Age -0.01 [-0.026, 0.006] 0.253 

Surgeon Credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.035 

0.339 

0.436 

0.616 

0.179 

 

[-0.519, 0.448] 

[-0.322, 1.000] 

[-0.747, 1.620] 

[-0.682, 1.915] 

[-1.778, 2.136] 

 

0.887 

0.319 

0.468 

0.521 

0.876 

Country ID  A 

   B 

   D 

   E 

   F 

Reference 

-0.397 

3.833 

-0.391 

0.014 

 

[-0.863, 0.069] 

[0.667, 6.999] 

[-1.303, 0.520] 

[-1.360, 1.388] 

 

0.096 

0.018 

0.399 

0.984 
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   G 

   H 

   Other 

2.354 

1.332 

0.912 

[-1.329, 6.037] 

[-0.389, 3.053] 

[-1.302, 3.126] 

0.085 

0.332 

0.418 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.143 

-0.191 

1.038 

 

[-0.683, 0.396] 

[-0.757, 0.374] 

[0.051, 2.025] 

 

0.601 

0.506 

0.038 

Level of Spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3  

   Other 

Reference 

-0.425 

-0.624 

-0.066 

-0.346 

 

[-0.874, 0.023] 

[-1.438, 0.190] 

[-1.265, 1.132] 

[-2.200, 1.507] 

 

0.062 

0.130 

0.914 

0.699 

ASA Morbidity  1 

   2 

   3 

   4 

Reference 

0.283 

0.223 

-2.907 

 

[-0.155, 0.722] 

[-0.626, 1.073] 

[-6.478, 0.664] 

 

0.204 

0.606 

0.108 

Baseline COMI score 0.420 [0.308, 0.533] <0.001 

Table 5.19: Coefficient estimates of fixed effects, 95% confidence intervals and p-values for mixed-

effects model including random intercepts and slopes. Dataset of the same patients as in linear 

regression up to 1-year data. 

The patient characteristics with significant p-values are the same as in the random intercept model, 

with the only difference being that age was not considered significantly associated with outcome 

scores. The total model Rz
2 of 0.698 is split in the fixed effects component of 0.100 and the random 

effects component of 0.598. This value increased after adding random slopes to patients and resulted 

in a better model fit. Again, ANOVA was used to decide if this more complex model is significantly 

better. A p-value of 0.031 indicates, that the model fit was significantly improved by including random 

slopes. 

Considering the L-shaped progression of COMI scores of many patients, a non-linear time term of the 

form 𝑓(𝑡) = 1
𝑡⁄  was included. The resulting fixed effects are summarised in Table 5.20. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 0.658 [-0.203, 1.518] 0.133 

Weeks past surgery 0.007 [-0.001, 0.015] 0.083 

𝒇(𝒕) 12.079 [7.476, 16.683] <0.001 
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Sex   Female 

   Male 

Reference 

-0.062 

 

[-0.281, 0.156] 

 

0.580 

Age -0.012 [-0.021, -0.002] 0.012 

Surgeon Credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.112 

0.259 

-0.124 

0.211 

-0.115 

 

[-0.374, 0.150] 

[-0.099, 0.617] 

[-0.769, 0.520] 

[-0.740, 1.163] 

[-1.176, 0.945] 

 

0.404 

0.156 

0.706 

0.662 

0.832 

Country ID  A 

   B 

   D 

   E 

   F 

   G 

   H 

   Other 

Reference 

-0.794 

1.267 

-0.293 

-0.659 

-0.423 

-0.805 

0.085 

 

[-1.046, -0.542] 

[-0.662, 3.197] 

[-0.764, 0.178] 

[-1.371, 0.054] 

[-1.583, 0.737] 

[-2.588, 0.978] 

[-1.113, 1.282] 

 

<0.001 

0.197 

0.222 

0.069 

0.475 

0.373 

0.890 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.071 

0.341 

1.181 

 

[-0.367, 0.224] 

[0.035, 0.648] 

[0.633, 1.729] 

 

0.636 

0.029 

<0.001 

Level of Spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3  

   Other 

Reference 

-0.238 

-0.383 

0.099 

0.278 

 

[-0.477, 0.000] 

[-0.829, 0.063] 

[-0.599, 0.797] 

[-0.640, 1.197] 

 

0.051 

0.093 

0.780 

0.552 

ASA Morbidity  1 

   2 

   3 

   4 

Reference 

0.559 

1.015 

2.247 

 

[0.324, 0.794] 

[0.544, 1.486] 

[-1.322, 5.816] 

 

<0.001 

<0.001 

0.099 

Baseline COMI score 0.377 [0.315, 0.440] <0.001 

Table 5.20: Coefficient estimates of fixed effects, 95% confidence intervals and p-values for variables 

of the mixed-effects model including random intercepts, slopes and non-linear time terms. Dataset 

of the same patients as in linear regression up to 1-year data. 
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In this model, higher age was considered to be associated with lower outcome scores again, similar to 

the approach with random intercepts. The model including 𝑓(𝑡) had a Rz
2 of 0.740, consisting of a fixed 

effects component of 0.101 and a random effects component of 0.639. Weeks past surgery and 

therefore the linear slope did not have a significant p-value after including the non-linear time term, 

which supports our assumption, that COMI score progression is not linear. However, the Rz
2 was only 

increased by 0.006. Again, ANOVA was used to decide if this more complex model is significantly 

better. A p-value of <0.042 indicates, that the model fit was significantly improved by including the 

non-linear time term.  

A summary of all descriptive statistics, including the RMSEs are shown in Table 5.21. 

3 months 1 year

RMSE 2.75 2.812

Significant variables Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores

Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores

R2 0.098 0.095

RMSE 1.117 1.301

Significant variables Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores,

Weeks past surgery

Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores,

Weeks past surgery,

Age

Rz
2 0.638 0.651

RMSE 1.301 1.09

Significant variables Country, 

Previous treatment,

ASA morbidity, 

Baseline COMI scores,

Weeks past surgery

Country, 

Previous treatment,

Baseline COMI scores,

Weeks past surgery,

Rz
2 0.644 0.698

RMSE 1.387 0.951

Significant variables Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores,

Non-linear time term

Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores,

Age,

Non-linear time term

Rz
2 0.651 0.704

2,127 2,190Number of included patients
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Table 5.21: Model fit statistics of linear regression and mixed modelling approach for COMI scores at 

three months and 1-year past surgery.  

It becomes clear that the inclusion of random effects, compared to linear regression, produces a much 

better model fit regarding RMSEs. Even though the Rz
2 is not directly comparable to the R2 in linear 
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regression, it seems that the proportion of explained outcome variation was much higher in mixed-

models than in linear regression. At the 1-year interval, the non-linear time term as random effect fit 

the best, suggesting that the progression of COMI scores is not linear. This was not the case in the 3-

month model. However, this was likely due to the fact that most patients had only 1 measurement 

after surgery and progression therefore appeared linear.  

5.7.3 Mixed model in comparison to linear regression model at 2 years past surgery 

Again, the first model approach includes a random intercept. In order to obtain a fair comparison with 

prior linear regression models, this model considers the same set of patients that were used in the 

linear regression model at 2 years past surgery and disregards later measurements. The data set 

included 4,268 measurements from 1,678 patients. Similar to the analyses of prior datasets, model 

specifications with random intercepts, random intercepts and slopes, as well as the inclusion of a non-

linear time term of the form 𝑓(𝑡) was performed. The following tables (Table 5.22 – 5.24) show details 

of the fixed effects of these models.   

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.682 [0.882, 2.482] <0.001 

Weeks past surgery -0.006 [-0.007, -0.006] <0.001 

Sex   Female 

   Male 

Reference 

-0.178 

 

[-0.423, 0.068] 

 

0.153 

Age -0.009 [-0.019, 0.001] 0.082 

Surgeon Credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.244 

0.169 

-0.396 

0.164 

-0.009 

 

[-0.536, 0.049] 

[-0.204, 0.543] 

[-1.165, 0.373] 

[-0.826, 1.153] 

[-1.126, 1.108] 

 

0.102 

0.373 

0.310 

0.744 

0.987 

Country ID  A 

   B 

   D 

   E 

   F 

   H 

Reference 

-0.786 

-2.627 

-0.317 

-0.502 

-2.133 

 

[-1.062, -0.509] 

[-5.655, 0.402] 

[-0.865, 0.231] 

[-1.443, 0.439] 

[-4.186, 0.921] 

 

<0.001 

0.303 

0.256 

0.295 

0.170 

Previous Treatment None 

   <6 mon. cons. 

Reference 

-0.184 

 

[-0.503, 0.136] 

 

0.257 
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   >6 mon. cons. 

   Surgical 

0.279 

0.933 

[-0.051, 0.610] 

[0.345, 1.522] 

0.096 

0.002 

Level of Spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3  

   Other 

Reference 

0.005 

-0.366 

0.425 

0.389 

 

[-0.258, 0.269] 

[-0.866, 0.135] 

[-0.391, 1.241] 

[-0.689, 1.467] 

 

0.971 

0.151 

0.304 

0.478 

ASA Morbidity  1 

   2 

   3 

Reference 

0.445 

1.116 

 

[0.188, 0.701] 

[0.600, 1.632] 

 

<0.001 

<0.001 

Baseline COMI score 0.387 [0.317, 0.456] <0.001 

Table 5.22: Coefficient estimates of fixed effects, 95% confidence intervals and p-values of variables 

of the mixed-effects model including random intercepts. Dataset of the same patients as in linear 

regression up to 2-year data. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.607 [0.811, 2.404] <0.001 

Weeks past surgery -0.006 [-0.007, -0.006] <0.001 

Sex   Female 

   Male 

Reference 

-0.158 

 

[-0.400, 0.084] 

 

0.202 

Age -0.009 [-0.019, 0.001] 0.073 

Surgeon Credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.236 

0.155 

-0.399 

0.134 

0.008 

 

[-0.528, 0.055] 

[-0.215, 0.525] 

[-1.170, 0.372] 

[-0.859, 1.127] 

[-1.089, 1.105] 

 

0.113 

0.410 

0.307 

0.790 

0.989 

Country ID  A 

   B 

   D 

   E 

   F 

   H 

Reference 

-0.778 

-2.665 

-0.341 

-0.523 

-2.134 

 

[-1.052, -0.505] 

[-5.604, 0.273] 

[-0.895, 0.213] 

[-1.474, 0.429] 

[-4.293, 0.024] 

 

<0.001 

0.287 

0.225 

0.280 

0.180 

Previous Treatment None Reference   
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   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

-0.175 

0.313 

0.955 

[-0.492, 0.142] 

[-0.013, 0.640] 

[0.370, 1.540] 

0.279 

0.060 

0.001 

Level of Spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3  

   Other 

Reference 

-0.006 

-0.364 

0.374 

0.306 

 

[-0.269, 0.257] 

[-0.861, 0.134] 

[-0.436, 1.184] 

[-0.774, 1.385] 

 

0.962 

0.150 

0.363 

0.576 

ASA Morbidity  1 

   2 

   3 

Reference 

0.438 

1.081 

 

[0.181, 0.695] 

[0.568, 1.594] 

 

<0.001 

<0.001 

Baseline COMI score 0.393 [0.324, 0.463] <0.001 

Table 5.23: Coefficient estimates of fixed effects, 95% confidence intervals and p-values of variables 

of mixed-effects model including random intercepts and slopes. Dataset of the same patients as in 

linear regression up to 2-year data. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.009 [0.182, 1.836] 0.017 

Weeks past surgery 0 [-0.002, 0.001] 0.889 

𝒇(𝒕) 8.318 [5.224, 11.412] <0.001 

Sex   Female 

   Male 

Reference 

-0.157 

 

[-0.396, 0.081] 

 

0.204 

Age -0.009 [-0.019, 0.000] 0.074 

Surgeon Credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.247 

0.145 

-0.399 

0.12 

-0.014 

 

[-0.538, 0.045] 

[-0.226, 0.517] 

[-1.173, 0.375] 

[-0.868, 1.108] 

[-1.104, 1.075] 

 

0.096 

0.442 

0.309 

0.811 

0.981 

Country ID  A 

   B 

   D 

   E 

   F 

Reference 

-0.774 

-3.086 

-0.294 

-0.587 

 

[-1.048, -0.500] 

[-7.836, 1.663] 

[-0.846, 0.257] 

[-1.527, 0.353] 

 

<0.001 

0.195 

0.300 

0.222 
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   H -2.238 [-4.349, -0.127] 0.155 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.186 

0.298 

0.888 

 

[-0.500, 0.127] 

[-0.028, 0.625] 

[0.308, 1.467] 

 

0.247 

0.073 

0.003 

Level of Spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3  

   Other 

Reference 

0.009 

-0.318 

0.362 

0.318 

 

[-0.253, 0.272] 

[-0.814, 0.177] 

[-0.446, 1.170] 

[-0.756, 1.391] 

 

0.949 

0.209 

0.378 

0.560 

ASA Morbidity  1 

   2 

   3 

Reference 

0.439 

1.104 

 

[0.183, 0.696] 

[0.593, 1.614] 

 

<0.001 

<0.001 

Baseline COMI score 0.389 [0.320, 0.459] <0.001 

Table 5.24: Coefficient estimates of fixed effects, 95% confidence intervals and p-values of variables 

of mixed-effects model including random intercepts, slopes and non-linear time terms. Dataset of 

the same patients as in linear regression up to 2-year data. 

Similarly to the models with 1-year outcomes, the inclusion of non-linear time term random effects 

perfomed best regarding Rz
2 values. A comparison table of all the model statistics is shown in Table 

5.25.  
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3 months 1 year 2 years

RMSE 2.75 2.812 2.85

Significant variables Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores

Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores,

Level of spine

Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores,

Sex

R2 0.098 0.095 0.087

RMSE 1.117 1.301 1.387

Significant variables Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores,

Weeks past surgery

Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores,

Weeks past surgery,

Age

Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores,

Weeks past surgery,

Rz
2 0.638 0.651 0.670

RMSE 1.301 1.09 0.972

Significant variables Country, 

Previous treatment,

ASA morbidity, 

Baseline COMI scores,

Weeks past surgery

Country, 

Previous treatment,

ASA morbidity, 

Baseline COMI scores,

Weeks past surgery

Country, 

Previous treatment,

ASA morbidity, 

Baseline COMI scores,

Weeks past surgery

Rz
2 0.644 0.698 0.735

RMSE 1.387 0.951 0.967

Significant variables Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores,

Non-linear time term

Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores,

Age,

Non-linear time term

Country, 

Previous treatment, 

ASA morbidity, 

Baseline COMI scores,

Non-linear time term

Rz
2 0.651 0.704 0.764

2,127 2,190 1,678Number of included patients

Model statistics           
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Table 5.25: Model fit statistics of all linear regression and mixed model approaches. 

For this direct comparison with linear regressions, the same patients were considered for each time 

point.  

Overall, mixed models had lower RMSE values, meaning better prediction accuracy. This is due to 

random effects that allow each patient to have an individual intercept slope or non-linear time term 

that can describe the individual outcome progression more accurately. 

However, this approach only considered the same patient data set that was used in the linear 

regression model, in order to get a fair comparison. There are more patients available, that do not 
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have 2-year outcomes, but measurements between surgery and two years. These could be included 

in order to improve model fit and incorporate all available data.  

5.7.4 Mixed model at 2 years past surgery including all available patients 

This approach used data from patients who had undergone surgery and had information available for 

up to 2 years. Data beyond 3 years was not included due to a lack of observations. This resulted in a 

dataset of 6,681 measurements from 3,520 patients, which is larger than the previous 2-year model 

that had 4,268 measurements from 1,678 patients. However, the Root Mean Squared Error (RMSE) 

could only be calculated using the same patients as before, as the true values of 2-year outcomes were 

needed. shows the summary of the fixed effects coefficients of the model including random 

intercepts, slopes and non-linear time term. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.401 [0.808, 1.994] <0.001 

Weeks past surgery -0.001 [-0.003, 0.001] 0.588 

𝒇(𝒕) 8.283 [6.644, 9.923] <0.001 

Sex   Female 

   Male 

Reference 

-0.14 

 

[-0.313, 0.033] 

 

0.116 

Age -0.012 [-0.018, -0.005] 0.001 

Surgeon Credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.217 

0.056 

-0.206 

-0.064 

0.225 

 

[-0.426, 0.008] 

[-0.246, 0.359] 

[-0.758, 0.346] 

[-0.779, 0.650] 

[-0.739, 1.188] 

 

0.103 

0.716 

0.432 

0.860 

0.647 

Country ID  A 

   B 

   D 

   E 

   F 

   G 

   H 

   Other 

Reference 

-0.584 

-0.092 

-0.243 

-0.808 

-0.723 

-1.149 

-0.464 

 

[-0.790, -0.377] 

[-0.713, 0.528] 

[-0.626, 0.140] 

[-1.276, -0.340] 

[-1.596, 0.149] 

[-2.143, -0.155] 

[-1.106, 0.178] 

 

<0.001 

0.771 

0.214 

0.001 

0.105 

0.024 

0.160 

Previous Treatment None 

   <6 mon. cons. 

Reference 

-0.114 

 

[-0.350, 0.123] 

 

0.345 
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   >6 mon. cons. 

   Surgical 

0.089 

0.864 

[-0.157, 0.336] 

[0.450, 1.279] 

0.477 

<0.001 

Level of Spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3  

   L1/L2  

   Other 

Reference 

-0.068 

-0.273 

0.361 

3.26 

0.19 

 

[-0.255, 0.119] 

[-0.632, 0.087] 

[-0.410, 1.132] 

[-0.524, 7.044] 

[-0.533, 0.913] 

 

0.476 

0.137 

0.217 

0.090 

0.607 

ASA Morbidity  1 

   2 

   3 

   4 

Reference 

0.445 

0.65 

0.371 

 

[0.260, 0.629] 

[0.282, 1.018] 

[-1.814, 2.556] 

 

<0.001 

0.001 

0.740 

Baseline COMI score 0.382 [0.332, 0.431] <0.001 

Table 5.26: Coefficient estimates of fixed effects, 95% confidence intervals and p-values of variables 

of the mixed-effects model including random intercepts, slopes and non-linear time terms. This 

dataset includes all available patient data up to 2 years of follow-up. 

Significant variables and their estimates are similar to the model with the smaller sample size of 

patients. However, higher age was again significantly associated with smaller COMI outcome scores.  

The patient covariates that were included in the model were the same as in the prior 2-year model. 

The Rz
2 of the model was 0.740, with a fixed component of 0.107 and a random component of 0.633. 

The model fit did not improve, with a slightly higher RMSE (0.990) than the previous 2-year model 

(0.967). 

5.7.5 Inclusion of smoking status and BMI 

Smoking status was only available for 1,841 and BMI only for 2,358 from a previous total of 3,520 

patients. The most recent model specification was fitted on the data of patients up to two years of 

follow-up, for each of the subsets of patients that had smoking status/BMI available. Details of the 

fixed effects are shown in Table 5.27 and Table 5.28. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.634 [0.769, 2.499] <0.001 

Weeks past surgery -0.001 [-0.004, 0.001] 0.631 

𝒇(𝒕) 8.705 [6.631, 10.779] <0.001 

Sex   Female Reference   
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   Male 0.039 [-0.176, 0.254] 0.723 

Age -0.016 [-0.024, -0.007] <0.001 

Surgeon Credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.229 

0.094 

-0.443 

-0.04 

0.093 

 

[-0.498, 0.039] 

[-0.304, 0.492] 

[-1.067, 0.181] 

[-0.991, 0.911] 

[-0.919, 1.105] 

 

0.096 

0.641 

0.164 

0.933 

0.856 

Country ID  A 

   B 

   D 

   E 

   F 

   G 

   H 

   Other 

Reference 

-0.452 

-0.369 

-0.103 

-0.726 

-0.58 

-0.995 

-0.517 

 

[-0.721, -0.183] 

[-1.476, 0.738] 

[-0.561, 0.355] 

[-1.459, 0.006] 

[-1.560, 0.399] 

[-2.083, 0.093] 

[-2.845, 1.811] 

 

0.001 

0.512 

0.660 

0.052 

0.242 

0.069 

0.662 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.25 

-0.037 

0.667 

 

[-0.525, 0.025] 

[-0.327, 0.253] 

[0.168, 1.165] 

 

0.076 

0.803 

0.009 

Level of Spine  L5/S1 

   L4/L5 

   L3/L4 

   L2/L3  

   Other 

Reference 

-0.157 

-0.265 

0.101 

0.163 

 

[-0.390, 0.077] 

[-0.720, 0.190] 

[-0.380, 0.583] 

[-0.624, 0.949] 

 

0.183 

0.250 

0.772 

0.689 

ASA Morbidity  1 

   2 

   3 

Reference 

0.562 

1.103 

 

[0.330, 0.794] 

[0.616, 1.591] 

 

<0.001 

<0.001 

BMI   <20 

   20 - 25 

   25 - 30 

   30 – 35 

   >35 

Reference 

-0.387 

-0.324 

-0.022 

-0.367 

 

[-0.925, 0.151] 

[-0.860, 0.212] 

[-0.600, 0.556] 

[-1.041, 0.306] 

 

0.158 

0.237 

0.940 

0.288 

Baseline COMI score 0.400 [0.339, 0.460] <0.001 
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Table 5.27: Coefficient estimates, 95% confidence intervals and p-values of mixed-effect model 

including random intercepts, slopes and non-linear time terms. Data is from a subset of patients that 

had BMI available. Cases for which BMI was exactly 25 were included in “20 – 25”. The same method 

applies to other categories. 

Variable Estimate 95% Confidence Interval p-Value 

Intercept 1.482 [0.667, 2.297] <0.001 

Weeks past surgery 0 [-0.002, 0.002] 0.959 

𝒇(𝒕) 8.723 [6.457, 10.989] <0.001 

Sex   Female 

   Male 

Reference 

-0.013 

 

[-0.313, 0.033] 

 

0.914 

Age -0.015 [-0.024, -0.006] 0.003 

Surgeon Credentials BC-N 

   SSS 

   N-t 

   BC-O  

   O-t 

   Other 

Reference 

-0.313 

0.064 

0.286 

1.723 

-0.245 

 

[-1.004, 0.377] 

[-0.414, 0.542] 

[-0.892, 1.464] 

[-0.301, 3.746] 

[-0.559, 0.069] 

 

0.375 

0.793 

0.631 

0.093 

0.128 

Country ID  A 

   B 

   D 

   E 

   F 

   G 

   H 

   Other 

Reference 

-0.536 

-0.327 

-0.178 

-0.337 

-1.174 

-0.967 

0.098 

 

[-0.835, -0.236] 

[-1.396, 0.741] 

[-0.663, 0.307] 

[-1.223, 0.549] 

[-2.293, -0.055] 

[-2.057, 0.124] 

[-2.393, 2.589] 

 

<0.001 

0.549 

0.474 

0.451 

0.039 

0.080 

0.938 

Previous Treatment None 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

-0.352 

-0.121 

0.831 

 

[-0.682, -0.022] 

[-0.459, 0.217] 

[0.243, 1.419] 

 

0.036 

0.483 

0.006 

Level of Spine  L5/S1 

   L4/L5 

   L3/L4 

Reference 

-0.229 

-0.345 

0.159 

 

[-0.488, 0.029] 

[-0.845, 0.155] 

[-0.573, 0.890] 

 

0.085 

0.178 

0.672 
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   L2/L3  

   Other 

-0.012 [-0.905, 0.880] 0.979 

ASA Morbidity  1 

   2 

   3 

Reference 

0.582 

1.159 

 

[0.318, 0.847] 

[0.633, 1.686] 

 

<0.001 

<0.001 

Smoker   No 

   Yes 

Reference 

0.613 

 

[0.319, 0.908] 

 

<0.001 

Baseline COMI score 0.378 [0.309, 0.446] <0.001 

Table 5.28: Coefficient estimates, 95% confidence intervals and p-values of mixed-effect model 

including random intercepts, slopes and non-linear time terms. Data is from a subset of patients that 

had smoking status available.  

On the subset of patients with BMI available, none of the BMI sub-categories had significant p-values. 

This indicates that BMI is not associated with treatment outcome. The inclusion of smoking status 

however, indicated that smokers had higher COMI scores after intervention than non-smokers. The 

inclusion led to an increase of the Rz
2 to 0.759 (fixed effect component 0.131, random effect 

component 0.628). It should therefore be included in patient forms further on.  

5.7.6 Limitations 

The mixed-effects approach has shown better model fit than linear and logistic regression, but it has 

its limitations. Many patients did not have more than one or two measurements after surgery, which 

can produce misleading linearity in plots and good fits that do not accurately reflect real behaviour 

when measured more frequently. This is why further model specifications with more random effects 

were not explored. Another limitation is in prediction modelling. The estimates for random effects for 

individual patients improve the fit significantly, but these estimates cannot be computed for new 

patients for which there are no measurements yet. Mixed-effects models are more suitable for 

predicting a later outcome value when prior values (past surgery) are available and the random effects 

of patients are already estimated. For new patients without prior measurements, only fixed effects 

can be utilized. 

5.8 Joint modelling approach 

In the source material of the Spine Tango data set, there was another variable that was considered as 

helpful regarding modelling approaches. In forms from follow-up visits it was noted, if there was a 

further follow-up planned or not. However, this was this question was only part of the 2011 version 

of the forms. Whether or not further follow-ups are scheduled could be an indicator that the 
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treatment was successful and the patient can be considered as “healed”. In modelling terms, this can 

be interpreted as endpoint.  

Joint modelling is a statistical approach that combines two modelling approaches. It is used to analyse 

data sets that have both longitudinal and time-to event data. Like the mixed-effects approach, it allows 

for the incorporation of both individual-level and population-level information in the analysis, 

resulting in a more comprehensive understanding of the data. For subsequent analysis, the R-package 

“joineRML” was used (Hickey et al., 2018). The standard joint model in this package is based on 

formulas ( 4 ). 

   ℎ𝑖(𝑡) = ℎ0(𝑡) exp{𝛾𝑇𝑤𝑖 +  𝛼𝑧𝑖
𝑇(𝑡)𝑢𝑖}, 

 

                 𝑦𝑖(𝑡) =  𝑚𝑖(𝑡) +  𝜀𝑖  

                               =  𝑥𝑖
𝑇(𝑡)𝛽 +  𝑧𝑖

𝑇(𝑡)𝑢𝑖 +  𝜀𝑖   , 

( 4 ) 

The second part of the equation system is the same model as the longitudinal mixed-effects model 

from the previous section. The sum of fixed and random effects of each individual are integrated in 

combination with a scaling parameter α into the hazard function of a Cox-model (common time-to-

event model). Parameters γ and wi are vectors of coefficients and patient covariates (Abd ElHafeez et 

al., 2021). These do not necessarily need to be the same as in the longitudinal formula.  

Regarding the data set that is provided, a joint model could utilise the information of “further follow-

up scheduled” or “no further follow-up scheduled” as endpoint of a survival model, in addition to the 

longitudinal data of COMI scores.  

In a survival analysis, censored data refers to observations for which the time of an event of interest 

has not yet occurred. For example, in a study of the survival of patients with a particular disease, 

censorship might occur when a patient is lost to follow-up, withdraws from the study, or is still alive 

at the end of the study period. Censored data can introduce bias into the analysis if not properly 

accounted for. In a survival model, censored data is typically handled using survival analysis, which 

uses statistical methods to model the probability of an event occurring at a given time. There are two 

main types of censoring: right censoring and left censoring. Right censoring occurs when the event of 

interest has not yet occurred at the time of observation, while left censoring occurs when the event 

of interest occurred prior to the start of the study. Therefore, the available data set from the Spine 

Tango registry was considered right censored.  
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The analysis will be designed in a such a way that the model fit can be compared to the model fit of a 

similar mixed-model. Therefore, patients who had both longitudinal COMI scores up to 2 years as well 

as the variable of “further follow-up scheduled” available were considered. Measurements at later 

time points were excluded. The number of patients that could be utilised for this analysis approach 

was 2,773, with 5,233 longitudinal observations. Since COMI is a patient-reported outcome, there 

were cases for which there were COMI scores available, even though no further follow-up was 

scheduled. It is important to note that while some cases were accurately labeled as having 'no further 

follow-up,' there were instances where participants did undergo further follow-up despite the 

indication. For the application of the “joineRML”-package, these values were removed, since the 

package considers this as an end-point, regardless of whether further follow-up may have occurred in 

some instances. By doing so, the aim was to maintain consistency in the analysis and interpretation of 

results.. This reduced the number of observations from 5,233 to 3,866 and the number of patients 

from 2,773 to 2,320. 

There are a few specifications that need to be considered before applying the “mjoint()”-function 

to fit the model). One can specify the included patient variables for the longitudinal model, as well for 

the survival model. The number of possible model specification is therefore very large and the AIC 

model selection algorithm that was used in prior methods does not work on joint model objects. 

Therefore, the variables that were associated with treatment outcome in the mixed-model approach 

were considered. Analysis of fit was assessed regarding the RMSE and loglikelihood values and residual 

standard errors.  

5.8.1 Results 

The dataset of 3,866 measurements from 2,320 patients was first used to fit a mixed-effects model 

and a Cox-model separately to identify predictive patient covariates. The separate Cox-model 

identified sex, surgeon type, country ID, age and previous treatment as associated with survival. On 

this dataset, the mixed-effects model identified 𝑓(𝑡), age, surgeon type, country ID, previous 

treatment, ASA morbidity and baseline COMI scores as associated with COMI outcomes scores. These 

covariates were then used to fit the joint model using the mjoint()-function, using the same set of 

patients.  

The RMSE was calculated for 2-year post-surgery measurements, but not all patients had this 

available. A subset was selected and 2-year outcomes were predicted using the mixed-model and joint 

model. The RMSE values were 1.289 and 1.290, respectively, for the joint and mixed-effects models. 

This similarity is due to the mixed-effects model being based on the same formula as the longitudinal 
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part of the joint model ( 4 ). The loglikelihoods were -12,241 and -9,102 and the residual standard 

errors were 1.701 and 1.707 for the joint and mixed-effects models, respectively.  

The details of the mixed-effects model are provided in Table 5.29. 

Variable Estimate 95% confidence interval p-value 

Age -0.018 [-0.027, -0.010] <0.001 

Surgeon type  BC-N 

   SSS 

   N-t 

   BC-O 

   O-t 

   Other 

Reference 

-0.345 

0.124 

-0.101 

-0.114 

0.034 

 

[-0.610, -0.079] 

[-0.262, 0.510] 

[-0.701, 0.499] 

[-1.053, 0.826] 

[-1.029, 1.098] 

 

0.011 

0.529 

0.742 

0.813 

0.950 

Country ID   A 

   B 

   D 

   E 

   F 

   G 

   H 

   Other 

Reference 

-0.504 

0.138 

-0.309 

-0.746 

-0.842 

-1.730 

-0.020 

 

[-0.773, -0.236] 

[-0.557, 0.833] 

[-0.765, 0.147] 

[-1.298, -0.195] 

[-1.872, 0.188] 

[-2.917, -0.543] 

[-1.452, 1.413] 

 

<0.001 

0.697 

0.185 

0.008 

0.109 

0.004 

0.978 

Previous treatment none 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

0.554 

0.261 

-0.009 

 

[0.175, 0.934] 

[-0.045, 0.567] 

[-0.237, 0.180] 

 

0.005 

0.079 

0.761 

ASA    1 

   2 

   3 

Reference 

0.387 

0.677 

 

[0.154, 0.621] 

[0.212, 1.143] 

 

0.002 

0.005 

Baseline COMI score 0.432 [0.369, 0.495] <0.001 

* 𝒇(𝒕) 7.636 [6.137, 9.135] <0.001 

Table 5.29: Coefficient estimates, 95%-confidence intervals and p-values for the variables in the 

mixed-effects model. * Function 𝑓(𝑡) is defined as previously, with t denoting time in weeks past 

surgery. 

Details of the longitudinal sub-model of the joint model are shown in Table 5.30. 
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Variable Estimate 95% confidence interval p-value 

Age -0.018  <0.001 

Surgeon type  BC-N 

   SSS 

   N-t 

   BC-O 

   O-t 

   Other 

Reference 

-0.336 

0.120 

-0.113 

-0.126 

0.017 

 

[-0.604, -0.068] 

[-0.261, 0.501] 

[-0.763, 0.538] 

[-1.011, 0.759] 

[-1.086, 1.119] 

 

0.014 

0.536 

0.734 

0.780 

0.976 

Country ID   A 

   B 

   D 

   E 

   F 

   G 

   H 

   Other 

Reference 

-0.568 

-0.044 

-0.301 

-0.811 

-0.941 

-1.742 

-0.125 

 

[-0.840, -0.296] 

[-0.743, 0.656] 

[-0.788, 0.185] 

[-0.374, -0.248] 

[-1.917, 0.034] 

[-2.890, -0.595] 

[-1.828, 1.578] 

 

<0.001 

0.903 

0.225 

0.005 

0.059 

0.003 

0.885 

Previous treatment none 

   <6 mon. cons. 

   >6 mon. cons. 

   Surgical 

Reference 

0.553 

0.275 

-0.032 

 

[0.171, 0.935] 

[-0.032, 0.582] 

[-0.241, 0.177] 

 

0.005 

0.079 

0.761 

ASA    1 

   2 

   3 

Reference 

0.385 

0.676 

 

[0.148, 0.623] 

[0.205, 1.146] 

 

0.002 

0.005 

Baseline COMI score 0.426 [0.357, 0.496] <0.001 

* 𝒇(𝒕) 9.252 [7.607, 10.896] <0.001 

Table 5.30: Coefficient estimates, 95%-confidence intervals and p-values for the variables in the 

longitudinal sub-model of the joint model. * Function 𝑓(𝑡) is defined as previously, with t denoting 

time in weeks past surgery. 

Coefficients and p-values are very similar between those two models. Notably, procedures by 

specialised spinal surgeons were associated with lower COMI outcome scores compared to board-

certified orthopedic surgeons and previous treatment of less than 6 months was associated with 

higher COMI outcome scores compared to no previous treatment.  
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5.8.2 Conclusion 

Both methods performed very similar, the only difference being their loglikelihood value. Although 

the longitudinal sub-model of the joint model is based on the same formula as the mixed model, the 

coefficients are not necessarily the same, however very similar. This is because the model fit of a joint 

model is done in combination with the Cox-model.  

Overall, using a joint model did not improve prediction accuracy in terms of RMSE values. This 

indicates that there is no strong link between COMI outcomes and the practitioner’s decision for “no 

further follow-up”. One reason for this might be, that COMI is a patient reported outcome, whereas 

the practitioners’ decision is made during visits. Some patients supplied COMI measurements after 

being discharged. For this analysis, such measurements were removed, as the software does not 

support longitudinal measurements recorded after the event of interest. 

5.9 Prediction modelling with complications as outcome 

Predictions regarding the quality of life questionnaire COMI scores, although model fit could be 

improved by using mixed effect models, had low accuracy. Substantial variation in treatment 

outcomes was left unexplained by the measured patient characteristics. However, factors that are 

associated with treatment outcome regarding quality of life could be identified. Instead of using 

quality of life one can also explore models that use complications during surgery as outcome. Since 

the occurrence of complications is a binary variable, logistic regression is a logical approach. This could 

identify factors that are connected with risks during surgery and help decide which treatment option 

might be optimal for a given patient.  

All sciatica patients from surgery forms were considered (17,252). Of those 17,252 patients, 236 that 

had a missing value for surgery complication were excluded. Considering the rare incidence of 

complications (4.37%) the following patient baseline characteristics were excluded from this analysis: 

BMI, smoking status, Baseline COMI scores. The following characteristics were considered as 

potentially associated with the occurrence of complications: age, sex, level of spinal disc surgery, 

surgeon credentials, previous treatment, country, ASA Morbidity status. Missing values of covariates 

were imputed using the ‘mice’ package in R. Covariates that were inconsistently collected over the 

years and have substantial amount of missingness were analysed with the same methods in separate 

case distinctions.  

Categories of complications were grouped into durotomies, serious complications (cauda equina 

damage, nerve root damage, vascular injury and bleeding inside spinal canal) and other minor 

complications (bleeding outside spinal canal, wound infection and other). The few cases of surgery at 
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wrong level (3) were excluded as well, resulting in a total sample size of 17,013 patients. For each case 

binary variables for the occurrence of complications and their subcategories were created. Logistic 

regression was then performed for each of the cases to identify risk factors.  

The prevalence of the complications is displayed in Table 5.31. 

Complication N = 17,013 

Any complication 743 (4.37%) 

Durotomy 659 (3.87%) 

Serious complications 57 (0.34%) 

Other minor complications 37 (0.22%) 

Table 5.31: Prevalence of complication categories in total numbers and percentages. 

Goodness of model fit was, as previously, assessed using area under ROC-curves, which are displayed 

in Table 5.32. 

Outcome Area under ROC-curve 95% Confidence Interval 

Any complication 0.676 [0.651, 0.688] 

Durotomy 0.682 [0.660, 0.698] 

Serious complications 0.712 [0.640, 0.769] 

Other minor complications 0.833 [0.764, 0.892] 

Table 5.32: Areas under ROC-curves and their confidence intervals for logistic regression models for 

adverse event categories. 

Due to the prevalence shown in Table 5.31, AUROC values for serious complications and other minor 

complications should be interpreted with caution.  

For each of these models, the estimates and confidence intervals of variables are displayed in Table 

5.33. 
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 Any complication 

OR (95% CI), p-value 

Durotomy 

OR (95% CI), p-value 

Serious complications OR (95% CI), p-

value 

Other/minor complications 

OR (95% CI), p-value 

Intercept -3.635 [-3.951, -3.319], p<0.001 -3.885 [-4.197, -3.511], p<0.001 -5.746 [-6.865, -4.627], p<0.001 -6.641 [-8.075, -5.207], p<0.001 

Surgeon  BC-N 

  SSS 

  N-t 

  BC-O  

  O-t 

  Other 

Reference 

0.157 [-0.014, 0.328], p=0.076 

0.089 [-0.159, 0.336], p=0.482 

-0.189 [-0.591, 0.214], p=0.357 

-0.699 [-1.600, 0.201], p=0.127 

-0.283 [-0.991, 0.426], p=0.543 

 

0.157 [-0.023, 0.337], p=0.095  

0.096 [-0.161, 0.353], p=0.464 

-0.116 [-0.539, 0.307], p=0.590 

-1.112 [-2.266, 0.042], p=0.058  

-0.173 [-0.798, 0.452], p=0.710 

 

-0.312 [-0.973, 0.349], p=0.348 

0.151 [-0.321, 0.623], p=0.731 

-0.371 [-1.394, 0.652], p=0.591 

1.34 [-0.020, 2.561], p=0.076 

NA in this outcome category 

 

0.672 [-0.075, 1.418], p=0.076 

0.074 [-0.436, 0.584], p=0.925 

0.049 [-1.584, 1.683], p=0.953 

NA in this outcome category  

NA in this outcome category 

Prev. treat. None 

  <6 mon. conservative 

  >6 mon. conservative 

  Prior surgery 

Reference 

-0.045 [-0.247, 0.157], p=0.665 

0.148 [-0.061, 0.357], p=0.165 

0.935 [0.641, 1.228], p<0.001 

Reference 

-0.015 [-0.228, 0.198], p=0.893 

0.143 [-0.079, 0.365], p=0.205 

0.923 [0.613, 1.234], p<0.001 

Reference 

-0.435 [-1.188, 0.318], p=0.249 

0.06 [-0.671, 0.791], p=0.872 

1.175 [0.231, 2.119], p=0.009 

 

-0.401 [-1.003, 0.201], p=0.436 

-0.006 [-1.034, 1.022], p=0.991 

NA in this outcome category 

Sex  Female 

  Male 

Reference 

-0.280 [-0.429, -0.131], p<0.001 

Reference 

-0.011 [-0.260, 0.238], p=0.929 

 

-0.018 [-0.558, 0.522], p=0.945 

Reference 

-0.747 [-1.384, -0.110], p=0.031 

Country ID A 

  B 

  C 

  D 

  E 

  F 

  G 

  H 

  Other 

Reference 

-0.347 [-0.548, -0.146], p=0.001 

-1.98 [-2.543, -1.417], p<0.001 

-1.561 [-2.119, -1.003], p<0.001 

0.512 [0.174, 0.850], p=0.003 

0.296 [-0.150, 0.742], p=0.191 

-0.201 [-0.889, 0.486], p=0.568 

0.071 [-0.711, 0.853], p=0.857 

0.167 [-0.300, 0.634], p=0.478 

Reference 

-0.519 [-0.737, -0.302], p<0.001 

-2.084 [-2.697, -1.472], p<0.001 

-1.686 [-2.309, -1.062], p<0.001 

0.48 [0.127, 0.832], p=0.008 

0.184 [-0.297, 0.665], p=0.454 

-0.134 [-0.827, 0.558], p=0.702 

-0.033 [-0.873, 0.807], p=0.938 

-0.232 [-0.792, 0.328], p=0.418 

 

0.255 [-0.434, 0.944], p=0.458 

-0.366 [-1.613, 0.880], p=0.570 

NA in this outcome category  

0.585 [-0.756, 1.926], p=0.396 

-0.048 [-2.076, 1.980], p=0.963 

NA in this outcome category  

-15.7 [-6264.897, 6233.497], p=0.995 

1.425 [0.572, 2.278], p=0.008 

Reference 

1.998 [1.037, 2.958], p<0.001 

NA in this outcome category  

0.957 [-1.588, 3.501], p=0.228 

1.322 [-1.369, 4.013], p= 0.128 

2.213 [0.769, 3.657], p=0.003 

NA in this outcome category  

2.506 [0.323, 4.689], p=0.024 

2.345 [0.893, 3.798], p=0.002 

Age 0.006 [0.001, 0.011], p=0.038 0.007 [-0.002, 0.016], p=0.152 0.001 [-0.021, 0.024], p=0.896 -0.015 [-0.042, 0.012], p=0.268 

Lvl. Spine  L5 / S1 

  L4 / L5 

Reference 

0.507 [0.336, 0.678], p<0.001 

Reference 

0.577 [0.396, 0.758], p<0.001 

 

0.06 [-0.542, 0.663] , p=0.838 

 

-0.055 [-0.799, 0.689], p=0.886 
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  L3 / L4 

  L2 / L3 

  L1 / L2 

  Other 

0.519 [0.231, 0.808], p<0.001 

0.703 [0.283, 1.123], p<0.001 

1.804 [0.638, 2.970], 0=0.002 

0.572 [0.093, 1.051], p=0.019 

0.552 [0.246, 0.858], p<0.001 

0.769 [0.324, 1.214], p<0.001 

0.346 [-0.769, 1.461], p=0.745 

0.727 [0.245, 1.210], p=0.003 

-0.08 [-1.207, 1.047], p=0.888 

0.261 [-1.269, 1.790], p=0.738 

2.611 [-0.807, 6.028], p=0.019 

NA in this outcome category 

0.467 [-0.718, 1.652], p=0.438 

0.46 [-1.187, 2.107], p=0.581 

3.248 [1.630, 4.866], p<0.001 

NA in this outcome category 

Morbidity ASA 1 

  ASA 2 

  ASA 3 

  ASA 4 

Reference 

0.196 [0.032, 0.361], p=0.021 

0.383 [0.078, 0.688], p=0.014 

1.396 [0.292, 2.500], p=0.013 

Reference 

0.216 [0.041, 0.390], p=0.016 

0.347 [0.020, 0.675], p=0.038 

0.732 [-0.748, 2.213], p=0.330 

 

0.026 [-0.554, 0.606], p=0.931 

0.295 [-0.818, 1.408], p=0.615 

2.985 [0.781, 5.189], p=0.008 

 

0.418 [-0.378, 1.215], p=0.285 

0.976 [-0.332, 2.284], p=0.114 

3.01 [0.688, 5.332], p=0.011 

Table 5.33: Odds ratios (OR), 95% confidence intervals and p-values of variables.  
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To analyse patients with answered smoking status or BMI, similar analyses were conducted on subsets 

containing complete data for these columns. However, neither smoking status nor BMI showed 

significant p-values in any of the adverse category models. Given the reduction in sample size when 

fitting models with available BMI or smoking status data, coupled with the rare occurrence of 

complications, these results were considered unreliable and were not reported. 

Adverse events that are included in the other/minor category appears to be rather due to different 

guidelines between countries and therefore a reporting issue, rather than a difference in the patient 

demographic. 

Logistic regression models with complications as outcome variable could identify a few risk factors. 

Similar to the studies done by Sobottke et al. and Zehnder et al., ASA morbidity status and prior surgery 

could be identified as risk factor for any adverse events (Sobottke et al., 2017, Zehnder et al., 2021). 

Prior surgery was the only risk factor for serious adverse events such as nerve root damage during 

surgery. Risk factors for any other complications such as durotomies, bleeding, wound infections are 

disc levels other than L5/S1, ASA morbidity status of 3 or 4 and prior surgery. Durotomies were more 

common for surgery on women. 350 (52.95%) of all durotomies were female (only 46.58% of all 

patients were female). Additionally, the occurrence rates of complications differed slightly between 

countries. 

5.10 Discussion 

The large number of patients and outcomes in the Spine Tango registry allowed for multiple model 

approaches to be explored and is therefore a powerful source of insight into real-world healthcare. 

The amount of missing data however, especially concerning patient-reported outcome measures was 

challenging for the model approaches and reduced the sample size significantly. Additionally, changes 

in surgery forms caused high missingness in other potentially significant covariates, such as smoking 

status, BMI or duration of symptoms. More consistency would help improving model fits by increasing 

sample size.  

Linear and logistic regression approaches had low model fits and poor prediction accuracy for COMI 

scores. Model fit could be improved significantly, when including all available data points from 

patients, especially when allowing for random intercepts and non-linear functions of time past 

surgery. Models that include random effects, allow each individual to have a unique estimate of the 

regarding variable. After exploring multiple model approaches, the mixed-effects model including 
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random intercepts and a random non-linear time term of the form  𝑓(𝑡) = 1
𝑡⁄ , where t is time past 

surgery, fit the data the best and could identify factors associated with improvement of QoL. For most 

patients QoL improves over time after surgery, although the progression can be different for each 

individual. The model was capable of identifying subgroups of patients regarding their longitudinal 

outcome progression. Mixed effects models were superior over linear and logistic regression in terms 

of model fit and prediction accuracy, measured by RMSE. However, there are limitations when used 

as prognostic model. Estimates of random effects cannot be computed for patients for who there are 

no past-surgery measurements available. Prognosis of treatment outcome for new patients is 

therefore only possible using fixed effects.  

Patient characteristics that were correlated with treatment outcome were consistent throughout 

most modelling approaches and included sex, age, ASA morbidity, previous treatment and baseline 

COMI scores. Similar to the results of Sobottke et al. prior surgery and higher COMI scores at baseline 

were with worse outcomes post-surgery (Sobottke et al., 2017). Differences between countries were 

detected in all models and confirms previous findings by Aghayev et al., the reasons of which needs 

to be discussed further (Aghayev et al., 2020). Smoking status, which has been included since surgery 

forms of 2011, was also consistently considered as correlated to treatment outcome (Sobottke et al., 

2012, Zehnder et al., 2021). 

Even though model fit could be improved significantly by including random effects, there still is 

significant variation in treatment outcome, that is left unexplained. This could be due to the 

subjectivity of quality of life, but there could also be factors that are associated with treatment 

outcome, such as size of disc, intensity of protrusion or MRI scans, which are not routinely collected. 

It needs to be investigated, if there are measures that are not routinely collected, but associated with 

treatment outcome, and if they could potentially be integrated in a registry. The non-existence of a 

core outcome set leads to an inconsistency in measurements in this disease area. This means that 

analysis of specific characteristics, as seen for smoking status, needs to be done on subsets and 

therefore a significant reduction of the sample size.  

A joint model approach utilising the time to event variable “further follow-up scheduled” was 

considered to improve the prediction of COMI outcomes. To compare it to the prior mixed-model, this 

was done on the same subset of patients. The prediction accuracy regarding RMSE values however, 

did not indicate a significant improvement. 

While this study has provided valuable insights into the modelling of the COMI outcomes using the, 

it's important to acknowledge several limitations in the approach undertaken. Notably, one limitation 

lies in the assumption of linear effects for continuous covariates. The decision to model continuous 
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covariates with linear effects might not fully capture complex relationships that could exist between 

these variables and the outcomes. Other functional forms, such as fractional polynomials or splines, 

could potentially better represent these associations, allowing for more accurate modelling and 

prediction. By only considering linear effects, the study might have missed nuanced and non-linear 

relationships that could be present in the data. Exploring alternative functional forms in future 

analyses could provide a more comprehensive understanding of the relationships between continuous 

covariates and the outcomes of interest.  

Logistic regression models with complications as outcome variable could identify a few risk factors. 

Similar to the studies done by Sobottke et al. and Zehnder et al. ASA morbidity status and prior surgery 

could be identified as risk factor for any adverse events (Sobottke et al., 2012, Zehnder et al., 2021). 

Furthermore, level of spine other than S1/L5 and age were detected as risk factor as well. Prior surgery 

was the only risk factor for serious adverse events such as nerve root damage during surgery. The 

occurrence rates of complications differed slightly between countries, which could partly be caused 

by reporting policies, but it’s possible that the quality of procedures is different across countries too. 

When dealing with logistic regression models and rare binary outcomes (where one category is 

significantly less frequent than the other), it is important to interpret estimates cautiously. In the 

future, more advanced methods can be explored for further analysis. 

To summarize, outcome modelling using the patient-reported outcomes questionnaire COMI had poor 

predictability. A mixed-effects model approach had a good model fit, but outcome prediction for new 

patients is challenging. Some factors that are associated with QoL improvement could be identified, 

such as prior surgery, country, baseline QoL scores and time after surgery. However, there still seemed 

to be a lot of unexplained variation in outcome. Logistic regression approaches of outcome modelling 

with adverse events showed slightly better prediction accuracy and could identify a few risk factors, 

depending on the category of adverse events, that can help clinicians decide if surgery is appropriate. 

  



191 
 

 

Chapter 6: Conclusions and further work 
 

6.1 Literature review and descriptive analysis 

The purpose behind comparing the two data sources was to analyse both observational studies and 

randomized controlled trials (RCTs) within the context of sciatica-affected patients who underwent 

microdiscectomy. This analysis had two primary objectives: firstly, to assess the utilization of registries 

in these studies, and secondly, to examine the alignment in methods and outcomes between RCTs 

and observational studies. This alignment would emphasize the potential of routinely collected data 

for the use in RCTs.  

The findings from the literature review clearly point to significant alignment between these two types 

of publications, particularly in terms of the gathered outcomes. Even though a standardized core 

outcome set was lacking for the studied patient population, key metrics such as ODI, visual or analogue 

pain scales, and the SF-36 were consistently captured across both RCTs and observational studies. This 

suggests that observational studies can provide valuable complementary data to RCTs by offering 

information on real-world practices and potentially more accurate estimates through larger sample 

sizes. Registries can be used in both RCTs and observational studies for patient identification, tracking 

progress, and data collection. However, only one RCT and 22 observational studies in the reviewed 

publications used a registry. While setting up registries can be costly, integrating existing registries in 

RCTs can save money and even enable certain studies that would not have been feasible otherwise. 

Registry-based RCTs are a modern trial design that combines the benefits of large-scale registries with 

randomization, allowing for larger patient populations and cost-effective long-term follow-up (James 

et al., 2015). 

Shifting to the analysis of available data in this study, the NERVES trial and the Spine Tango registry 

were closely examined to assess similarities. It becomes evident that the NERVES trial and the Spine 

Tango registry diverge in terms of captured outcomes, baseline covariates, data collection timeframes, 

and the presence of missing data. The NERVES trial primarily focused on ODI scores as its main 

outcome at 18 weeks, although data collection extended up to 54 weeks post-randomization. In 

contrast, the Spine Tango registry represents an ongoing data collection initiative without a 

predefined study protocol or specific goal, tracking outcomes for up to 3 years post-surgery. It's 

important to note that both sources incorporated the COMI questionnaire, albeit in varying versions. 



192 
 

Further discrepancies emerged in terms of patient characteristics and surgery details gathered from 

the two sources. Details like prior treatment, ASA morbidity, and surgeon credentials were 

documented in the Spine Tango registry but not in the RCT. These differences may stem from pre-

specified regulations that eliminate the need for notation (e.g., excluding patients with prior surgery).  

The Spine Tango registry faced notable issues with missing data, primarily due to changes in forms 

over the years that introduced inconsistency in collected variables. Particularly, patient-reported 

outcomes were inconsistently obtained, significantly reducing the sample size for subsequent analysis. 

This underscores the necessity for guidelines on handling missing patient-reported outcome data, 

including establishing a threshold for allowable missing items before disregarding a questionnaire.  

While outcomes are often comparable in studies, measured patient covariates differed. This 

underscores the importance of a core covariate set for this patient population to enhance 

comparability and deepen the understanding of the indication and procedure. This becomes 

particularly crucial when establishing a registry for RCTs; incorporating standardized core 

measurement sets specific to the studied patient population would facilitate uniform data collection 

across trials and registries. 

One of the main future research projects in this field is therefore, to establish a standardized core 

outcome and covariate sets specific to the patient population undergoing microdiscectomy for 

sciatica. This would enhance comparability across different studies, including randomized controlled 

trials (RCTs) and observational studies, leading to more robust and consistent insights into treatment 

outcomes and patient characteristics. 

Enhancing the consistency of data collection in routinely collected data could lead to more 

comprehensive datasets, aligning closely with data collected in RCTs. This makes insights from 

registries more comparable and can aid in the planning of RCTs, potentially integrating registries in 

the form of patient identification and data collection. Given the issues encountered with missing data 

in the Spine Tango registry, future research could also explore strategies to minimize missing patient-

reported outcome data. Developing guidelines for handling missing data and motivating patients to 

complete questionnaires at key timepoints can help maintain the integrity of large sample sizes and 

improve the reliability of registry-based analyses.  

Noteworthy examples, including the TASTE-trial, the DETO2X-AMI trial, the SORT OUT trials, and the 

SAFE-PCI for women trials, illustrate how integrating infrastructure for routinely collected data can 

significantly enhance the quality of RCTs. To establish a registry tailored to RCTs, the inclusion of 
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standardized core measurement sets specific to the studied patient population is pivotal. Such an 

approach ensures uniform data collection across registries and trials. To enhance data accuracy and 

comprehensiveness, these registries should seamlessly integrate with various data sources, including 

electronic health records and administrative databases. Comprehensive patient data collection 

becomes crucial when cross-referencing between registries and other sources is unfeasible. 

Furthermore, registries must possess the capability to track participants over time and gather follow-

up data for a thorough assessment of long-term intervention outcomes.  However, this study design 

has shown effectiveness in other clinical areas and could potentially be applied in studies regarding 

surgical interventions for herniated discs as well. However, despite its advantages, there are several 

limitations and essential prerequisites for effectively integrating registries in RCTs. Given the potential 

cost-effectiveness and advantages of using existing registries in RCTs, future research should delve 

into methodologies and best practices for integrating registry data into clinical trial designs. The 

above-mentioned studies provide valuable examples of how registry infrastructure can enhance the 

quality of RCTs across various clinical domains and it is important to increase awareness of this option 

so that future eligible trials consider it. However, this approach is only effective if a registry routinely 

collects all the outcomes that a trial plans to collect, or several registries can be cross-referenced for 

individuals. Additionally, it would be important to identify all the registries that meet these criteria, so 

that clinical trial planners can check if a suitable registry could be used for their study. Awareness 

should also be raised about which parts of a clinical trial can be integrated with a registry, such as site 

and patient identification, data collection, and endpoint detection.  

Further methodological work is needed to establish guidelines for registry implementation, including 

data protection, informatics guidelines for registry programming, data quality, and integration of data 

from multiple sources to improve completeness and accuracy. Regulatory guidelines that support this 

trial design should also be established to ensure patient privacy, data protection, and ethical 

considerations are met (Good Clinical Practice). Guidelines such as this, in combination of motivating 

payment tariffs such as the spinal best practice tariff on compliance with the British Spine Registry, 

can impact the general quality of observational registry data (Habeebullah et al., 2021). 

6.2 Addressing Missing Data in Patient-Reported Outcome Measures 

As mentioned, missing data in COMI outcomes reduced the sample size of the Spine Tango dataset 

significantly. The conducted simulation study in Chapter 4 explored how to handle missing data, either 

on the item-level or the score level. This study builds upon research by Marshall et al., who looked at 

missing data in covariates, by extending the investigation to patient-reported outcome 
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questionnaires, in particular for the COMI questionnaire, a domain where missing data is a frequent 

challenge. Previous work by Eekhout et al. (Eekhout et al., 2014) suggested using item-level multiple 

imputation methods in a simulation study with the Pain Coping Inventory (PCI) for low-back pain.  

Unlike typical simulation studies that use artificial data, the simulation study in this thesis used actual 

patient data from the Spine Tango registry, a less common approach. The aim was to confirm 

Eekhout's results for the COMI questionnaire, indicating generalizability, or to identify differences that 

should be considered in future studies using imputation for questionnaire data. 

Overall, the findings of the simulation study emphasize the effectiveness of item-based imputation 

over score-based imputation. This confirmation of the results by Eekhout et al. might therefore extend 

beyond the study's scope and could apply to similar datasets across various clinical fields. Item-based 

imputation proved robust in handling missing data for specific questionnaire items, particularly when 

precision in imputation matters. It's worth noting that these results were obtained using the PMM 

method exclusively. Further investigations into whether similar results hold when employing 

alternative imputation methods could be a subject of future research. 

When only the entire questionnaire is missing data but not specific items, both imputation methods 

offer similar results. In such cases, computational efficiency could guide the choice, favouring score-

based imputation due to lower computational burden. However, when missing data is isolated to 

certain items within the questionnaire, item-based imputation is superior. It consistently yields lower 

root mean squared error (RMSE) values and restores population means (COMI scores) more 

accurately. The results hold for most scenarios due to ample sample size, but as missingness increases, 

errors rise, especially under missing not at random (MNAR) conditions. In score-based imputation, 

selecting high cut-off points becomes essential to prevent errors. For the COMI questionnaire, 

sensitive cut-off points should be avoided. 

While the study's focus is specific to its dataset, the principles governing imputation efficacy could 

likely extend to similar datasets and clinical contexts. Further validation and insight can be gained from 

future simulation studies, which should be consulted before applying imputation techniques. 

However, conducting simulation studies requires significant time and effort, often exceeding project 

scopes. While their insights can be widely relevant, applying them directly to different questionnaires 

or datasets requires careful consideration. 

In essence, this research offers a comprehensive view of missing data imputation strategies by 

connecting insights from various studies. The simulation study directly comparing item-level and total 
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score-level imputation methods enriches our understanding of their effectiveness in real-world 

scenarios. 

While the thesis emphasizes the relevance of its findings to the COMI questionnaire, future research 

should explore the transferability of these insights to other patient-reported outcome questionnaires 

with distinct characteristics. Conducting similar simulation studies for different questionnaires can 

help researchers identify nuances and patterns specific to each instrument, leading to more informed 

decisions when choosing imputation methods. To further enhance the practical utility of imputation 

techniques, future research projects should undertake benchmarking exercises that validate the 

effectiveness of different imputation strategies using real-world datasets with known missing data 

patterns. This validation process would provide a reference for researchers and practitioners when 

selecting the most suitable imputation approach for their specific datasets. 

6.3 Prognostic Modelling for Enhanced Decision Making 

Several approaches of prognostic modelling were considered in this work regarding multiple 

outcomes. The goal was to develop a model that could identify risk factors for non-significant change 

in COMI scores and complications during surgery and thereby aid in decision making. Of all the 

variables that are available in the source data, the following patient characteristics were considered 

as potentially connected to treatment outcome: sex, age, surgeon credentials, country ID, level of 

spine, ASA morbidity status, BMI, smoking status, previous treatment, and baseline COMI scores.  

Simple models such as linear and logistic regression using COMI scores could identify which patient 

characteristics were consistently connected to outcomes, which included country ID, previous 

treatment, ASA morbidity and baseline COMI scores. However, these models exhibited poor fit. 

Hence, a more complex model approach was considered by fitting a longitudinal mixed effects model 

using COMI scores as outcome. More data points could be included in contrast to linear and logistic 

regression, where only one time point must be chosen as primary outcome. Risk factors that were 

identified in previous models could be confirmed and including random effects also allowed for 

adjusting the model to individual patients and therefore achieving a better model fit. However, for 

patients that were not used to train the model and for which first measurements are not available, 

estimates cannot be calculated without further assumptions and the use of advanced Bayesian models 

(Fong et al., 2010).  

A joint model approach was considered, utilising the variable “further follow-up scheduled” from 

follow-up surgery forms as time to event variable. Patient data up of COMI scores up to 2 years were 
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included in the fit of this model and a mixed model for comparison. However, prediction accuracy 

regarding RMSE values did not improve. 

Again, it needs to be reminded that one main limitation is the data quality. Longitudinal models (both 

mixed-model and joint model) work best when each individual has numerous outcome 

measurements, but most patients have only one or two measurements after surgery, which can lead 

to misleading linearity in plots and good fits that do not accurately reflect real behaviour when 

measured more frequently. Additionally, the data set needed to be reduced to an appropriate format 

for the “mjoint()” R-function, which requires there to be no further measurements after “no 

further follow-up scheduled”. This shows that the chosen endpoint “no further follow-up” was not a 

consistent indicator for successful treatment. Patients that were not scheduled for further follow-up 

still had COMI outcomes after. Reason for this could be that COMI questionnaires are patient-

reported, and surgery forms are from practitioners.  

Using complications during surgery was also considered as treatment outcome and logistic regression 

models were fitted to identify risk factors for different types of complications. These risk factors 

predominantly included prior surgery, ASA morbidity, sex, age, and level of spine. This finding parallels 

the studies conducted by Sobottke et al. and Zehnder et al., where ASA morbidity status and prior 

surgery were identified as risk factors for adverse events (Sobottke et al., 2017, Zehnder et al., 2021). 

However, due to the rare occurrence of complications, estimates of subgroups of patient covariates 

should be interpreted with caution.  

Models that used quality-of-life outcomes had unexplained variation in treatment outcomes that need 

further examination with medical experts and practitioners. Clinicians should explore ways to improve 

this variability, such as educating patients about outcome responses and emphasizing the importance 

of honest and accurate responses. Other techniques for measuring quality of life and pain would also 

be helpful to reduce reliance on subjective patient responses. Additional measurements, such as the 

size of the disc and information from MRI scans and estimated disc prolapse, could potentially improve 

the precision of the models. Incorporating additional clinical measures, such as disc size, MRI scan 

information, and estimated disc prolapse, could significantly enhance the precision of the prognostic 

models. Future research should explore ways to integrate these relevant clinical factors into the 

modelling process, which may lead to a more comprehensive understanding of treatment outcomes 

and risk factors. 

Data quality emerged as a concern, with missing data present in both form changes and on an 

individual level. Longitudinal models, which benefit from multiple measurements over time, perform 

better when multiple measurements are available for each individual. However, many patients in the 
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study had only one or two measurements post-surgery. As the Spine Tango registry is an observational 

database, improving individual-level missing data can be challenging, relying on each participating 

research unit. Despite the data limitations resulting in smaller subsets and less accurate model fits, 

risk factors remained consistently identified across various model approaches, which can aid 

healthcare providers in decision-making. Future research could explore strategies to encourage and 

facilitate longitudinal data collection, potentially utilizing technology to enable patients to submit 

outcome measurements more frequently, thereby creating a more comprehensive dataset aligning 

with longitudinal modelling requirements. 

Sunderland et al. investigated lumbar decompression surgery success using COMI score improvement 

and identified ASA morbidity status, age, lateral stenosis, revision surgery, and surgeon training as 

prognostic factors (Sunderland et al., 2021). The Spine Tango registry has been a valuable resource for 

studies on patients with spinal conditions. Studies that used this data source regarding similar patient 

populations, like that by Sobottke et al., employed COMI scores as outcomes to identify predictors for 

quality of life improvement after open decompression surgery for lumbar spinal canal stenosis, 

revealing the influence of baseline COMI scores, number of prior surgeries, patient comorbidity, and 

stabilization techniques (Sobottke et al., 2017). Staub et al. developed predictive models for 1-year 

clinical outcomes after decompression surgery using data from the Spine Tango registry, pointing out 

considerable uncertainty on individual level (Staub et al., 2020). Aghayev et al. identified high baseline, 

department-level, and potentially country-level factors associated with negative global treatment 

outcomes for patients undergoing surgical treatment for lumbar spinal stenosis (Aghayev et al., 2020).  

In conclusion, this study's findings demonstrate the challenges and potential of prognostic modelling 

in the context of spinal surgery outcomes. Despite limitations in data quality and model fitting, 

consistent risk factors have been identified across various modelling approaches that complement the 

results found in similar patient populations, providing valuable insights for healthcare decision-

making. Future research can explore strategies to enhance data collection, incorporate additional 

clinical measures, and overcome the limitations of observational data to yield more accurate and 

informative prognostic models.  
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Appendix 

Appendix A: COMI version in the Spine Tango registry 

Question 1:  Which of the following problems troubles you the most? Please tick ONE BOX only. 

  (  ) back pain 

  (  ) leg / buttock pain 

(  ) sensory disturbances in the back/legs/buttocks, e.g. tingling ‘pins and needles’,   
numbness 

  (  ) none of the above 

Question 2:  For the following 2 questions (2a and 2b) we would like you to indicate the severity 
of your pain, by ticking the appropriate box (where "0" = no pain, "10" = worst pain 
you can imagine). There are separate questions for back pain and for leg pain 
(sciatica)/buttock pain. 

Question 2a: How severe was your back pain in the last week? 

  No pain 0 (  ) 1 (  ) 2 (  ) 3 (  ) 4 (  ) 5 (  ) 6 (  ) 7 (  ) 8 (  ) 9 (  ) 10 (  )  worst pain 

Question 2b: How severe was your leg pain in the last week? 

  No pain 0 (  ) 1 (  ) 2 (  ) 3 (  ) 4 (  ) 5 (  ) 6 (  ) 7 (  ) 8 (  ) 9 (  ) 10 (  )  worst pain 

Question 3:  During the past week, how much did your back problem interfere with your normal 
work (including both work outside the home and housework)? 
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  (  ) not at all 

(  ) a little bit 

(  ) moderately 

(  ) quite a bit 

(  ) extremely 

Question 4:  If you had to spend the rest of your life with the symptoms you have right now, how 
would you feel about it? 

  (  ) very satisfied 

(  ) somewhat satisfied 

(  ) neither satisfied nor dissatisfied 

(  ) somewhat dissatisfied 

(  ) very dissatisfied 

Question 5:  Please reflect on the last week. How would you rate your quality of life? 

  (  ) very good 

(  ) good 

(  ) moderate 

(  ) bad 

(  ) very bad 

Question 6: During the past 4 weeks, how many days did you cut down on the things you usually 
do (work, housework, school, recreational activities) because of your back problem? 

  (  ) none 

(  ) between 1 and 7 days 

(  ) between 8 and 14 days 

(  ) between 15 and 21 days 

(  ) more than 21 days 

Question 7: During the past 4 weeks, how many days did your back problem keep you from going 
to work (job, school, housework)?  

  (  ) none 

(  ) between 1 and 7 days 

(  ) between 8 and 14 days 

(  ) between 15 and 21 days 

(  ) more than 21 days 

Appendix B: COMI version in NERVES trial 
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In addition to optional follow-up sections and private patient details, the following items are included 

throughout the examination interval.Question 1:  During the past week, how bothersome have 

each of the following symptoms been? 

Question 1a: Low back pain 

  (  ) Not at all bothersome 

  (  ) Slightly bothersome 

(  ) Moderately bothersome 

  (  ) Very bothersome 

  (  ) Extremely bothersome 

Question 1b:  Leg pain (sciatica) 

  (  ) Not at all bothersome 

  (  ) Slightly bothersome 

(  ) Moderately bothersome 

  (  ) Very bothersome 

  (  ) Extremely bothersome 

Question 2: During the past week, how much did pain interfere with your normal work (including 
both work outside the home and housework)? 

  (  ) Not at all 

(  ) A little bit 

(  ) Moderately 

(  ) Quite a bit 

(  ) Extremely 

Question 3: If you had to spend the rest of your life with the symptoms you have right now, how 
would you feel about it? 

  (  ) Very satisfied 

(  ) Somewhat satisfied 

(  ) Neither satisfied nor dissatisfied 

(  ) Somewhat dissatisfied 

(  ) Very dissatisfied 

Question 4:  During the past 4 weeks, about how many days did you cut down on the things you 
usually do for more than half the day because of back pain or leg pain (sciatica)?  

___ (number of days) 

Question 5:  During the past 4 weeks, how many days did low back pain or leg pain (sciatica) keep 
you from going to work or school? 
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___ (number of days) 

 

Appendix C: List of papers of observational studies included in literature review in 

Chapter 2 
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Appendix E: Associations between patient covariates in the Spine Tango data set  

1) Sex vs other patient covariates 

Combination of categorical and continuous variables (KS-test) 

Sex - Age: KS-test: 0.331 

Combinations of two categorical variables (Chi-Square test) 

Second variable Chi-square test p-value 

Surgeon Type 0.019 

Country 0.002 

Level of Spine 0.316 

Previous Treatment 0.041 

Smoking Status 0.024 

BMI 0.013 

Morbidity 0.076 

Complication 0.294 

COMI available 0.316 

 

Plots of frequencies for the significant Chi-square results 
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Although there were significant p-values for the Chi-square tests of these variable combinations, these 

plots of frequencies of the sub-categories vs the sub-categories of the other variable did not show 

systematic dependencies. Notably, it seems that a BMI of 25-30 and a smoking status “yes” was slightly 

more frequent in males than in females.  

2) Age vs other patient covariates 

Combination of categorical and continuous variables (KS-test) 

Second variable KS-test test p-value 

Surgeon Credentials BC-N - SSS 
   BC-N - N-t 
   BC-N - BC-O  
   BC-N - O-t 
   BC-N – Other 
   SSS - N-t 
   SSS - BC-O  

0.940 
0.215 
0.006 
0.052 
<0.001 
0.940 
0.052 
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   SSS - O-t 
   SSS – Other 
   N-t - BC-O  
   N-t - O-t 
   N-t – Other  
   BC-O - O-t 
   BC-O – Other 
   O-t – Other 

0.101 
<0.001 
0.795 
0.001 
0.293 
0.049 
0.027 
0.810 

Country ID  A - B 
   A - C 
   A - D 
   A - E 
   A - F 
   A - G 
   A - H 
   A - I 
   A - Other 
   B - C 
   B - D 
   B - E 
   B - F 
   B - G 
   B - H 
   B - I 
   B – Other 
   C - D 
   C - E 
   C - F 
   C - G 
   C - H 
   C - I 
   C – Other 
   D - E 
   D - F 
   D - G 
   D - H 
   D - I 
   D – Other 
   E - F 
   E - G 
   E - H 
   E - I 
   E – Other 
   F - G 
   F - H 
   F - I 
   F – Other 
   G - H 
   G - I 
   G – Other 
   H - I 

0.002 
0.027 
0.024 
<0.001 
<0.001 
0.007 
0.036 
0.811 
0.022 
0.374 
0.585 
0.046 
0.004 
0.001 
0.009 
0.007 
<0.001 
<0.001 
0.140 
0.001 
<0.001 
0.618 
0.033 
0.038 
0.001 
0.201 
0.001 
0.342 
0.117 
0.431 
0.001 
0.006 
0.048 
0.304 
0.771 
0.002 
<0.001 
0.882 
0.129 
0.250 
0.034 
0.198 
<0.001 
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   H – Other 
   I - Other 

0.3246 
0.7611 

Previous Treatment None - <6mon. 
   None - >6mon. 
   None – Surgical 
   <6mon. - >6mon. 
   <6mon. - Surgical 
   >6mon. - Surgical 

0.197 
0.164 
0.105 
0.618 
0.078 
0.381 

Level of Spine  L5/S1 – L4/L5 
   L5/S1 -  L3/L4 
   L5/S1 - L2/L3 
   L5/S1 – L1/L2 
   L5/S1 – Other 
   L4/L5 -  L3/L4 
   L4/L5 - L2/L3 
   L4/L5 – L1/L2 
   L4/L5 – Other 
   L3/L4 - L2/L3 
   L3/L4 – L1/L2 
   L3/L4 – Other 
   L2/L3 – L1/L2 
   L2/L3 – Other 
   L1/L2 - Other 

<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
0.0339 
0.1222 
<0.001 
0.6753 
<0.001 
0.02293 
<0.001 
0.102 

Smoker   No - Yes 0.013 

BMI   <20 vs – 20-25 
   <20 vs – 25-30 
   <20 vs – 30-35 
   <20 vs – >35 
   20-25 vs – 25-30 
   20-25 vs – 30-35 
   20-25 vs – >35 
   25-30 vs – 30-35 
   35-30 vs – >35 
   35-30 vs >35 

0.1778 
<0.001 
<0.001 
0.614 
<0.001 
<0.001 
0.005 
0.519 
<0.001 
<0.001 

COMI available  Yes – No 0.076 

Complication  No - Yes <0.001 

 

Although there are many significant p-values detected, the distribution of age in the sub-categories 

did not show systematic dependencies between age and the respective paired variable.  

Histograms for age distribution colored by subgroups 
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3) Surgeon credentials vs other variables:  

Chi-square results 
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Second variable Chi-square test p-value 

Level of Spine 0.041 

Smoking Status 0.248 

BMI 0.173 

Morbidity 0.094 

Complication 0.037 

COMI available 0.316 

 

Plots of frequencies for the significant Chi-square results 

 

Although there were significant p-values for the Chi-square tests of these variable combinations, these 

plots of frequencies of the sub-categories vs the sub-categories of the other variable did not show 

systematic dependencies. Notably, L4/L5 was more frequent than L5/S1 for the category of surgeon 

type “NA” and less frequent in the category of orthopaedic surgeons in training.  

4) Country ID vs other variables 

Chi-square results 

Second variable Chi-square test p-value 

Level of Spine <0.001 
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Smoking Status <0.001 

BMI <0.001 

Complication 0.081 

COMI available <0.001 

 

Plots of frequencies for the significant Chi-square results 

 

Although there were significant p-values for the Chi-square tests of these variable combinations, these 

plots of frequencies of the sub-categories vs the sub-categories of the other variable did not show 

systematic dependencies. Noteworthy were country D, G and “other”, for which these frequencies 

could differ. However, these were the categories with low count of patients.  

5) Level of Spine vs other variables 

Chi-square results 

Second variable Chi-square test p-value 

Previous Treatment 0.083 

Smoking Status 0.263 

BMI <0.001 

Morbidity 0.067 
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Complication <0.001 

COMI available <0.001 

 

Plots of frequencies for the significant Chi-square results 

 

Although there were significant p-values for the Chi-square tests of these variable combinations, these 

plots of frequencies of the sub-categories vs the sub-categories of the other variable did not show 

systematic dependencies. Notably, patients that had surgery at the L1/L2 level had less often COMI 

available and a slightly higher rate for complications.  

6) Previous Treatment vs other variables 

Chi-square results 

Second variable Chi-square test p-value 

Smoking Status 0.171 

BMI 0.106 

Morbidity  

COMI available <0.001 

 

Plots of frequencies for the significant Chi-square results 
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Although there were significant p-values for the Chi-square tests of these variable combinations, these 

plots of frequencies of the sub-categories vs the sub-categories of the other variable did not show 

systematic dependencies. 

7) Smoking status vs other variables 

Chi-square results 

Second variable Chi-square test p-value 

BMI  

Morbidity 0.174 

Complication 0.318 

COMI available 0.291 

 

Plots of frequencies for the significant Chi-square results 

 

Although there were significant p-values for the Chi-square tests of these variable combinations, these 
plots of frequencies of the sub-categories vs the sub-categories of the other variable did not show 
systematic dependencies. 

8) BMI vs other variables 
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Chi-square results 

Second variable Chi-square test p-value 

Complication 0.028 

COMI available 0.431 

 

Plots of frequencies for the significant Chi-square results 

 

Although there were significant p-values for the Chi-square tests of these variable combinations, 

these plots of frequencies of the sub-categories vs the sub-categories of the other variable did not 

show systematic dependencies. 

9) ASA Morbidity status vs other variables 

Chi-square results 

Second variable Chi-square test p-value 

Complication 0.068 

COMI available 0.080 

 

10) Complication vs COMI availability 

Chi-square results 

Second variable Chi-square test p-value 

COMI available 0.010 

 

Plots of frequencies for the significant Chi-square results 
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Although there were significant p-values for the Chi-square tests of these variable combinations, these 
plots of frequencies of the sub-categories vs the sub-categories of the other variable did not show 
systematic dependencies. 
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Appendix F: Results of simulations with dataset of patients with complete data 

All simulations in this Appendix part are programmed the same way as the simulations in Chapter 4, 

the only difference being the sample size of patients. The dataset used here, is the complete case 

analysis (CCA) of patients that had no missingness in any covariates, which were 4,312. This was done 

as a sensitivity analysis, to support the results from Chapter 4, that used a larger sample of patients, 

but with imputed covariates. 

Questionnaires at baseline for missing data underlying MCAR mechanism 

The results regarding RMSE are shown in Appendix Table 1 and 2. Each table shows each combination 

of scenarios for the RMSE using item-based imputation and score-based imputation. 

Cut-off point  Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 0.41 0.58 0.71 0.82 0.92 1.01 1.08 1.16 1.23 

2 0.40 0.58 0.72 0.82 0.92 1.01 1.08 1.16 1.24 

3 0.41 0.59 0.71 0.82 0.92 1.00 1.08 1.17 1.23 

4 0.42 0.57 0.71 0.81 0.91 1.00 1.09 1.16 1.22 

5 0.42 0.58 0.71 0.81 0.91 1.01 1.09 1.16 1.23 

6 0.41 0.58 0.71 0.81 0.92 1.01 1.10 1.16 1.24 

7 0.42 0.58 0.72 0.82 0.91 0.99 1.09 1.16 1.22 

8 0.40 0.58 0.72 0.82 0.92 1.01 1.09 1.16 1.23 

Appendix Table 1: Mean of RMSE of each combination of probability of amputed missingness and 
cut-off point, using item-based imputation method. RMSE was averaged over number of simulations 
(N=50). 

Cut-off point  Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 0.76 1.07 1.31 1.51 1.69 1.86 2.01 2.15 2.30 

2 0.70 1.01 1.24 1.44 1.61 1.78 1.92 2.07 2.20 

3 0.65 0.91 1.14 1.30 1.46 1.60 1.74 1.89 2.00 

4 0.55 0.78 0.98 1.12 1.26 1.39 1.51 1.62 1.73 

5 0.49 0.68 0.84 0.97 1.09 1.21 1.33 1.42 1.53 

6 0.45 0.65 0.81 0.95 1.05 1.16 1.26 1.35 1.45 

7 0.48 0.66 0.81 0.94 1.05 1.15 1.25 1.34 1.44 

8 0.45 0.65 0.80 0.92 1.04 1.15 1.25 1.34 1.44 

Appendix Table 2: Mean of RMSE of each combination of probability of amputed missingness and 
cut-off point, using score-based imputation method. RMSE was averaged over number of 
simulations (N=50). 

Comparing these results with the results in Chapter 4, it can be observed that the values in the tables 

are nearly identical, only differing by a maximum margin of 0.02. Specifically, the root mean square 

errors (RMSEs) ranged from 0.40 to 1.24 for item-wise imputation, and from 0.45 to 2.30 for score-

wise imputation in this simulation utilizing CCA. Notably, these ranges closely mirror the ranges 
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observed in Chapter 4, namely 0.41 to 1.25 for item-wise imputation, and 0.45 to 2.30 for score-wise 

imputation. 

For each combination the population mean was calculated and presented in Appendix Table 3 and 4. 

Cut-off point  Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 7.67 7.67 7.67 7.67 7.66 7.67 7.66 7.68 7.67 

2 7.67 7.67 7.66 7.67 7.67 7.68 7.67 7.67 7.67 

3 7.66 7.66 7.67 7.67 7.66 7.67 7.68 7.67 7.68 

4 7.67 7.67 7.67 7.67 7.66 7.67 7.68 7.68 7.68 

5 7.67 7.67 7.67 7.67 7.67 7.67 7.66 7.67 7.68 

6 7.66 7.67 7.67 7.67 7.67 7.67 7.68 7.68 7.67 

7 7.67 7.67 7.67 7.68 7.67 7.67 7.66 7.67 7.67 

8 7.67 7.67 7.67 7.67 7.67 7.67 7.67 7.68 7.67 

Appendix Table 3: Estimated population mean of COMI baseline scores for each scenario, using item-
based imputation. 

Cut-off point  Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 7.67 7.66 7.66 7.67 7.63 7.65 7.63 7.65 7.61 

2 7.67 7.67 7.66 7.67 7.66 7.65 7.66 7.65 7.67 

3 7.66 7.66 7.66 7.66 7.67 7.66 7.67 7.64 7.66 

4 7.66 7.67 7.66 7.66 7.66 7.66 7.65 7.66 7.67 

5 7.67 7.67 7.67 7.67 7.67 7.67 7.65 7.67 7.67 

6 7.67 7.67 7.67 7.66 7.67 7.67 7.67 7.67 7.66 

7 7.66 7.66 7.67 7.67 7.66 7.67 7.67 7.67 7.66 

8 7.66 7.67 7.67 7.67 7.67 7.67 7.67 7.67 7.66 

Appendix Table 4: Estimated population mean of COMI baseline scores for each scenario, using 
score-based imputation. 

It appears that the population mean of COMI baseline scores was systematically estimated smaller 

than in the simulation done in Chapter 4 (by a small margin), however, on this sample size, the true 

population mean was smaller as well, with a mean and standard deviation of 7.66 (s.d. 1.74). 

Questionnaires at baseline for missing data underlying MAR mechanism 

The results regarding RMSE are shown in Appendix Table 5 and 6. Each table shows each combination 

of scenarios for the RMSE using item-based imputation and score-based imputation. 

Cut-off point  Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 0.41 0.57 0.71 0.81 0.94 0.99 1.08 1.18 1.25 

2 0.41 0.57 0.69 0.82 0.92 0.99 1.09 1.15 1.23 

3 0.42 0.57 0.72 0.82 0.92 1.00 1.09 1.15 1.23 

4 0.40 0.57 0.71 0.83 0.90 1.01 1.07 1.17 1.24 

5 0.42 0.58 0.71 0.82 0.91 1.00 1.08 1.16 1.22 

6 0.40 0.57 0.71 0.83 0.93 1.01 1.09 1.17 1.22 

7 0.39 0.57 0.71 0.83 0.93 1.02 1.11 1.17 1.23 

8 0.41 0.58 0.70 0.82 0.91 0.99 1.09 1.17 1.24 
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Appendix Table 5: Mean of RMSE of each combination of probability of amputed missingness and 
cut-off point, using item-based imputation method. RMSE was averaged over number of simulations 
(N=50). 

Cut-off point  Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 0.72 1.06 1.30 1.53 1.71 1.90 2.08 2.22 2.34 

2 0.70 1.01 1.26 1.44 1.62 1.78 1.95 2.06 2.22 

3 0.63 0.90 1.12 1.28 1.44 1.60 1.74 1.87 2.00 

4 0.54 0.75 0.93 1.11 1.24 1.37 1.48 1.63 1.75 

5 0.47 0.65 0.81 0.94 1.07 1.19 1.32 1.40 1.51 

6 0.44 0.63 0.78 0.90 1.02 1.13 1.23 1.35 1.44 

7 0.42 0.61 0.77 0.90 1.03 1.15 1.25 1.33 1.42 

8 0.42 0.63 0.77 0.89 1.01 1.14 1.24 1.35 1.42 

Appendix Table 6: Mean of RMSE of each combination of probability of amputed missingness and 
cut-off point, using score-based imputation method. RMSE was averaged over number of 
simulations (N=50). 

The results for the MAR mechanism align with those observed for the MCAR mechanism. In Chapter 

4, the RMSE ranges for item-wise imputation were 0.40 to 1.25, while in the CCA simulation, they were 

0.39 to 1.25. For score-wise imputation, the ranges were 0.43 to 2.41 in Chapter 4 and 0.42 to 2.34 in 

the CCA simulation. Notably, the score-wise imputation exhibited slightly smaller RMSEs. 

For each combination the population mean was calculated and presented in Appendix Table 7 and 8. 

Cut-off point  Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 7.67 7.66 7.67 7.67 7.66 7.67 7.68 7.67 7.67 

2 7.66 7.67 7.67 7.67 7.67 7.66 7.66 7.66 7.68 

3 7.66 7.67 7.66 7.67 7.66 7.65 7.67 7.68 7.67 

4 7.66 7.67 7.67 7.67 7.66 7.66 7.67 7.66 7.66 

5 7.67 7.67 7.66 7.67 7.68 7.67 7.67 7.67 7.67 

6 7.66 7.66 7.67 7.68 7.66 7.67 7.67 7.67 7.69 

7 7.66 7.66 7.66 7.67 7.66 7.66 7.68 7.67 7.66 

8 7.67 7.67 7.67 7.66 7.68 7.67 7.67 7.66 7.67 

Appendix Table 7: Estimated population mean of COMI baseline scores for each scenario, using item-
based imputation. 

Cut-off point  Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 7.64 7.56 7.54 7.48 7.45 7.34 7.30 7.30 7.29 

2 7.63 7.59 7.53 7.54 7.51 7.46 7.44 7.49 7.53 

3 7.65 7.62 7.60 7.58 7.57 7.56 7.57 7.56 7.61 

4 7.66 7.65 7.65 7.64 7.64 7.65 7.63 7.62 7.64 

5 7.67 7.67 7.68 7.68 7.69 7.68 7.68 7.69 7.67 

6 7.67 7.67 7.69 7.70 7.71 7.69 7.69 7.69 7.68 

7 7.67 7.68 7.69 7.68 7.69 7.68 7.69 7.69 7.68 

8 7.68 7.68 7.69 7.69 7.69 7.69 7.69 7.67 7.68 

Appendix Table 8: Estimated population mean of COMI baseline scores for each scenario, using 
score-based imputation. 
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Again, considering the true population mean of this smaller sample size (7.66) the results exhibit a 

high degree of similarity, even mirroring the under-estimation of mean population COMI scores for 

high missingness and sensitive cut-off points, when imputing score-wise. 

Questionnaires at baseline for missing data underlying MNAR mechanism 

The results regarding RMSE are shown in Appendix Table 9 and 10. Each table shows each combination 

of scenarios for the RMSE using item-based imputation and score-based imputation. 

Cut-off point  Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 0.39 0.55 0.70 0.80 0.89 0.97 1.08 1.14 1.22 

2 0.38 0.54 0.67 0.80 0.90 0.98 1.06 1.15 1.22 

3 0.37 0.55 0.68 0.79 0.88 0.98 1.06 1.14 1.23 

4 0.38 0.54 0.68 0.79 0.89 0.98 1.05 1.13 1.23 

5 0.39 0.55 0.69 0.79 0.89 0.98 1.06 1.13 1.22 

6 0.39 0.56 0.68 0.80 0.90 0.98 1.06 1.15 1.23 

7 0.37 0.55 0.68 0.78 0.89 0.97 1.05 1.14 1.22 

8 0.39 0.55 0.68 0.80 0.88 0.98 1.05 1.14 1.22 

Appendix Table 9: Mean of RMSE of each combination of probability of amputed missingness and 
cut-off point, using item-based imputation method. RMSE was averaged over number of simulations 
(N=50). 

Cut-off point  Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 0.71 1.06 1.30 1.56 1.76 1.96 2.21 2.37 2.60 

2 0.67 0.99 1.25 1.45 1.68 1.84 2.01 2.18 2.33 

3 0.62 0.89 1.09 1.32 1.47 1.63 1.76 1.92 2.03 

4 0.53 0.75 0.92 1.09 1.21 1.36 1.48 1.59 1.72 

5 0.43 0.63 0.79 0.94 1.06 1.16 1.27 1.38 1.50 

6 0.40 0.59 0.75 0.86 0.97 1.10 1.19 1.30 1.40 

7 0.40 0.58 0.73 0.85 0.98 1.09 1.19 1.30 1.40 

8 0.42 0.58 0.73 0.86 0.97 1.10 1.18 1.30 1.40 

Appendix Table 10: Mean of RMSE of each combination of probability of amputed missingness and 
cut-off point, using score-based imputation method. RMSE was averaged over number of 
simulations (N=50). 

Cut-off point  Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 7.63 7.60 7.56 7.55 7.54 7.53 7.54 7.56 7.60 

2 7.63 7.60 7.57 7.54 7.54 7.53 7.54 7.56 7.61 

3 7.63 7.60 7.56 7.54 7.54 7.54 7.54 7.56 7.60 

4 7.63 7.60 7.57 7.54 7.54 7.53 7.55 7.57 7.60 

5 7.63 7.60 7.57 7.54 7.54 7.53 7.54 7.57 7.60 

6 7.63 7.60 7.57 7.54 7.54 7.53 7.55 7.55 7.60 

7 7.63 7.59 7.57 7.55 7.53 7.53 7.54 7.56 7.60 

8 7.63 7.59 7.57 7.54 7.54 7.53 7.54 7.57 7.60 

Appendix Table 11: Estimated population mean of COMI baseline scores for each scenario, using 
item-based imputation. 
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Cut-off point  Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 7.58 7.47 7.39 7.25 7.17 7.05 6.87 6.83 6.69 

2 7.59 7.50 7.41 7.32 7.23 7.16 7.10 7.10 7.17 

3 7.60 7.52 7.47 7.39 7.36 7.33 7.32 7.32 7.47 

4 7.62 7.57 7.53 7.49 7.48 7.46 7.48 7.51 7.57 

5 7.63 7.60 7.58 7.55 7.54 7.54 7.55 7.58 7.61 

6 7.64 7.62 7.59 7.58 7.58 7.58 7.58 7.60 7.63 

7 7.64 7.61 7.60 7.59 7.57 7.57 7.58 7.60 7.63 

8 7.64 7.62 7.60 7.58 7.59 7.58 7.59 7.61 7.64 

Appendix Table 12: Estimated population mean of COMI baseline scores for each scenario, using 
score-based imputation. 

Questionnaires at baseline for missing data underlying MNAR mechanism 

In Appendix Table 13 the RMSEs are summarised for each mechanism of missingness and method of 

imputation. 

Imputation type  Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

MCAR 
item-based 0.77 1.09 1.33 1.52 1.71 1.89 1.99 2.18 2.27 

score-based 0.78 1.07 1.33 1.54 1.72 1.88 2.04 2.19 2.31 

MAR 
item-based 0.79 1.12 1.34 1.55 1.74 1.91 2.05 2.13 2.25 

score-based 0.79 1.11 1.32 1.53 1.72 1.87 2.02 2.19 2.26 

MNAR 
item-based 0.72 1.11 1.36 1.60 1.84 2.09 2.31 2.56 2.81 

score-based 0.74 1.10 1.35 1.61 1.86 2.10 2.29 2.58 2.96 

Appendix Table 13: RMSEs of both imputation methods for all mechanisms of missingness. Columns 
are ordered regarding the probability of missingness (complete questionnaire missingness). 

In Appendix Table 16 the estimated population means are summarised for each mechanism of 

missingness and method of imputation. 

Imputation type  Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

MCAR 
item-based 7.68 7.67 7.65 7.70 7.65 7.65 7.64 7.70 7.61 

score-based 7.67 7.67 7.66 7.66 7.65 7.63 7.58 7.64 7.57 

MAR 
item-based 7.67 7.65 7.67 7.68 7.67 7.68 7.64 7.66 7.56 

score-based 7.67 7.65 7.67 7.65 7.68 7.69 7.71 7.57 7.56 

MNAR 
item-based 7.56 7.43 7.30 7.17 7.00 6.83 6.64 6.43 6.21 

score-based 7.55 7.43 7.31 7.16 7.00 6.83 6.69 6.44 6.04 

Appendix Table 14: Estimated population means of baseline COMI scores for both imputation 
methods and all mechanisms of missingness. Columns are ordered regarding the probability of 
missingness (complete questionnaire missingness). 

Overall, the same patterns can be observed for this study on the sample size of patients with complete 

covariate data. This speaks for the robustness of the results in Chapter 4. A complete case analysis of 
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the missing data in outcomes at 3 months past surgery was not done, since this sub-chapter was 

experimental by nature and imputing questionnaire scores or items raises ethical concerns.  


