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Trajectory PMB Filters for Extended Object
Tracking Using Belief Propagation

Yuxuan Xia, Ángel F. Garcı́a-Fernández, Florian Meyer, Jason L. Williams, Karl Granström, and Lennart Svensson

Abstract—In this paper, we propose a Poisson multi-Bernoulli
(PMB) filter for extended object tracking (EOT), which directly
estimates the set of object trajectories, using belief propagation
(BP). The proposed filter propagates a PMB density on the
posterior of sets of trajectories through the filtering recursions
over time, where the PMB mixture (PMBM) posterior after the
update step is approximated as a PMB. The efficient PMB ap-
proximation relies on several important theoretical contributions.
First, we present a PMBM conjugate prior on the posterior of sets
of trajectories for a generalized measurement model, in which
each object generates an independent set of measurements. The
PMBM density is a conjugate prior in the sense that both the
prediction and the update steps preserve the PMBM form of
the density. Second, we present a factor graph representation
of the joint posterior of the PMBM set of trajectories and
association variables for the Poisson spatial measurement model.
Importantly, leveraging the PMBM conjugacy and the factor
graph formulation enables an elegant treatment on undetected
objects via a Poisson point process and efficient inference on
sets of trajectories using BP, where the approximate marginal
densities in the PMB approximation can be obtained without
enumeration of different data association hypotheses. To achieve
this, we present a particle-based implementation of the proposed
filter, where smoothed trajectory estimates, if desired, can be
obtained via single-object particle smoothing methods, and its
performance for EOT with ellipsoidal shapes is evaluated in a
simulation study.

Index Terms—Multi-object tracking, extended object tracking,
random finite sets, sets of trajectories, factor graph, particle belief
propagation.

I. INTRODUCTION

Multi-object tracking (MOT) refers to the process of es-
timating object trajectories of interest based on sequences of
noisy sensor measurements obtained from multiple sources [1],
[2]. Conventional MOT algorithms are usually tailored to the
point object assumption, where each object is modelled as a
point without spatial extent, and it gives rise to at most one
measurement at each time step. This assumption is, however,
unrealistic for modern high-resolution radar and Lidar sensors,
for which it is common that an object gives rise to multiple
measurements per time scan. The tracking of such an object is

Y. Xia and L. Svensson are with the Department of Electrical Engineering,
Chalmers University of Technology, Gothenburg, Sweden. E-mail: first-
name.lastname@chalmers.se. A. F. Garcı́a-Fernández is with the Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool,
United Kingdom, and also with the ARIES research centre, Universidad
Antonio de Nebrija, Madrid, Spain. F. Meyer is with the Scripps Institution of
Oceanography and the Department of Electrical and Computer Engineering,
University of California San Diego, La Jolla, CA, USA. J. L. Williams is with
the Commonwealth Scientific and Industrial Research Organization, Brisbane,
Australia. K. Granström is with Zoox Inc., San Francisco, CA, USA. The
work of K. Granström was done when he was with Chalmers University of
Technology.

called extended object tracking (EOT), and overviews of EOT
literature can be found in [3], [4]. The focus of this paper is
on multiple EOT.

Various extended object measurement models exist in the
literature, including, e.g., the Poisson spatial model [5], the
set cluster process [6], [7], the Set of Points on a Rigid Body
model [8], [9], and the physics-based model [10]. Among these
different measurement models, it is most common to use the
Poisson spatial model, where the set of object detections is
modelled by an inhomogeneous Poisson point process (PPP).
The PPP measurement likelihood has a simple factorization,
which avoids explicit associations between measurements and
points on objects, thereby making it convenient to use in EOT.

The Poisson spatial model has been used in many multiple
EOT algorithms, which can be, in general, summarized into
two categories. The first category contains methods based on
random vectors, including, e.g., the multiple hypothesis tracker
(MHT) [11], the probabilistic MHT [12], the joint (integrated)
probabilistic data association filter [13]–[15], graph-based fil-
ters [16]–[18] using belief propagation (also known as the
sum-product algorithm (SPA)), and the box particle filter [19].
The second category contains methods based on random finite
sets (RFSs) [20], including the probability hypothesis density
(PHD) filter [21]–[26], the cardinalized PHD filter [27], filters
based on labelled RFSs [28]–[31], the Poisson multi-Bernoulli
mixture (PMBM) filter [32]–[35], and its approximation the
Poisson multi-Bernoulli (PMB) filter [36], [37].

For estimating object trajectories, MOT methods based on
random vectors link an object state estimate with a previous
estimate or declare the appearance of a new object. For RFSs-
based MOT methods, one approach to estimating trajectories
is to add a unique label to each single-object state such that
each object can be identified over time [25], [28]–[30]. This
track labelling procedure may work well in some cases, but it
often becomes problematic in challenging scenarios [38]–[40].
A more advantageous approach is to compute the multi-object
posterior on sets of trajectories [40], which captures all the
information about the trajectories. In the context of EOT, this
has led to the development of the trajectory PHD filter [26]
and the trajectory PMBM (TPMBM) filter [34].

Common to all the multiple extended object filters is that the
data association problem, due to the unknown correspondences
between measurements and objects, needs to be efficiently
addressed to keep the computational complexity at a tractable
level. A common way is to handle the data association problem
in two stages: first, clustering algorithms are used to find a
set of reasonable measurement partitions; second, for each
partition, the explicit assignment of measurement clusters to
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objects is either avoided using the principle approximation
[22], [23], [25], [27] or obtained using a 2D assignment algo-
rithm [28]–[30], [32], [34]–[37]. These two-step approaches
based on clustering and assignment (C&A) usually work well
in scenarios with well-spaced objects, but they may suffer
from a decreased performance in scenarios where objects move
in close proximity. To improve the tracking performance in
such scenarios, [24], [33] use sampling-based methods, which
work directly on the multi-object likelihood and solve the data
association problem in a single step without using clustering.
The simulation results in [33] showed that the sampling-based
methods outperform methods based on C&A in scenarios with
both distant and close objects. In addition, a method combining
hierarchical clustering and Gibbs sampling is presented in [41]
for automotive applications.

For both C&A and sampling-based methods, the exhaustive
enumeration of association hypotheses is avoided by truncating
hypotheses with negligible weights. Thus, their performance
might be limited in scenarios with high data association uncer-
tainty. A more scalable data association method for multiple
EOT, which avoids explicit enumeration of local association
hypotheses, is to directly compute the marginal multi-object
posterior, where the uncertainty of unknown data association
is marginalized out [14]–[17], [42]–[44]. The current state-of-
the-art multiple EOT algorithm is the SPA filter proposed in
[17] using particle belief propagation (BP), which is enabled
by a factor graph representation of the joint posterior of
the multi-object states and association variables. Simulation
results in [17] show that the SPA filter outperforms a PMBM
filter that uses C&A, in terms of both estimation error and
runtime. However, the multi-object models employed in [17]
are subject to two approximations, as compared to the standard
multi-object models [20]. First, newborn objects are always de-
tected with probability one. Second, object survival probability
is state-independent.

For the standard multi-object models [20] with PPP birth,
the posterior density is of the form PMBM [45] without ap-
proximation. The PMBM density has a compact representation
of global hypotheses with probabilistic object existence in each
Bernoulli component and undetected objects represented by a
PPP. The PMBM filtering recursions have been established
for both point objects [46] and extended objects [32], and the
resulting PMBM filters have achieved state-of-the-art perfor-
mance compared to other RFSs-based filters1. Moreover, in the
PMBM filters, the density of undetected objects is propagated
over time via a PPP, whereas in [17] and many other MOT
methods using BP [47], the explicit modelling of undetected
objects is ignored, and their PPP intensity becomes zero in the
filtering density due to the modelling assumption. To provide
full trajectory information, the PMBM filtering recursions have
been extended to consider the posterior on sets of trajectories
for both point objects [39] and extended objects [34]. Further-
more, the PMBM filtering recursions are recently extended in
[35] to consider a generalized measurement model, in which
each object generates an independent set of measurements,

1An online course on MOT that explains all details regarding PMBM
filtering and introduces sets of trajectories is available at https://www.yo
utube.com/channel/UCa2-fpj6AV8T6JK1uTRuFpw.

but the filtering recursions in [35] have not yet been further
generalized to consider posterior on sets of trajectories.

In this paper, we present the trajectory PMB (TPMB) filters
for EOT, where the marginal association probabilities and
Bernoulli densities in the update step are jointly obtained
using BP. By doing so, we leverage 1) the PMBM filtering
recursions on the posterior of sets of trajectories built on
the standard extended object models and 2) the efficient data
association method in [17] using BP. As a comparison, in
our previous work on extended object PMB filtering [37],
the PMB approximation is obtained by marginalizing the data
association uncertainties using truncated global hypotheses.
Furthermore, compared to previous works [47]–[49] that apply
BP only to the data association variables in RFSs-based
methods, this paper presents a complete pipeline for applying
BP to RFSs-based methods. That is, starting from the closed-
form filtering recursion to the factor graph formulation of the
joint posterior of sets of objects and association variables, and
the message passing equations.

In our preliminary work [34], we presented the PMBM
filtering recursions for multiple EOT on posterior of sets of
trajectories and an efficient track-oriented PMBM implemen-
tation. In addition, we have proposed multiple EOT using BP
in [17] using a random vector-based derivation. This paper is a
significant extension of [17], [34], and it contains the following
contributions:

• We extend the PMBM conjugacy on posterior of sets of
trajectories to consider a generalized measurement model
in [35], where each object generates an independent set
of measurements.

• We present a full pipeline for integrating TPMB filtering
and BP data association methods. To do so, we present
a factor graph representation of the PMBM set of tra-
jectories posterior and association variables, on an aug-
mented trajectory space. Importantly, by leveraging the
PMBM filtering recursions, we obtain a simpler and more
general derivation of the factor graph formulation, with
undetected objects represented by a PPP, as compared to
the derivation in [50, Section 1].

• We present the message passing equations, derived using
RFSs without the additional modelling assumptions made
in [17], for running BP on the constructed factor graph.
We also present particle implementations for two TPMB
filters: one estimates the set of alive trajectories and the
other estimates the set of all trajectories, which includes
both alive and dead trajectories. In addition, we show how
smoothed trajectory estimates, if desired, can be further
obtained using backward simulation [51].

• We evaluate the performance of several implementations
of TPMBM and TPMB filters using different data associ-
ation methods for EOT, including C&A, sampling-based
method and BP, with ellipsoidal shapes in a simulation
study. The results demonstrate that the TPMB filter using
BP has the best trajectory estimation performance.

The rest of the paper is organized as follows. In Section II,
we introduce the background on multi-object models, sets of
trajectories and PMBM. The problem formulation and PMBM
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filtering recursions are given in Section III. The factor graph
formulation and the corresponding equations for running loopy
BP are presented in Section IV and Section V, respectively.
The particle implementations of the proposed TPMB filters
are provided in Section VI. Simulation results are presented
in Section VII, and conclusions are drawn in Section VIII.

II. BACKGROUND

In this section, we first introduce the notations and the state
variables of interest, and then we give the densities/integrals
for trajectories and the general multi-object modelling. At last,
we present the PMBM density representation and the TPMB
approximation. More details on the background can be found
in [40], [52].

For a generic space D, the set of finite subsets of D is
denoted by F(D), and the cardinality of a set A ∈ F(D) is
|A|. We use ] to denote the union of sets that are mutually
disjoint, 〈f, g〉 to denote the inner product

∫
f(x)g(x)dx,

and the multi-object exponential fA, for some real-valued
function f , to denote the product

∏
x∈A f(x) with f∅ = 1

by convention. In addition, we use δx[·] and δx(·) to represent
the Kronecker delta and the generalized Dirac delta functions
centred at x, respectively [53], [54]. Here, x in δx(·) belongs
to the space of ν Cartesian products of space X , i.e., x ∈ X ν .

A. State variables

The single-object state xk ∈ X at time step k, where X
is a locally compact, Hausdorff and second-countable (LCHS)
space [20, Section 2.2.2], contains information of interest of a
single object, including its kinematic state (e.g., position and
velocity) and possibly also its extent state, which describes the
object shape and size. The set of object states at time step k
is an RFS xk = {x1

k, . . . , x
nk
k } ∈ F(X ). The measurements

collected by the sensor at time step k is zk = {z1
k, . . . , z

mk
k }

with single measurement zjk ∈ Rdz for j ∈ {1, . . . ,mk}, and
the sequence of measurement sets up to and including time
step k is denoted as z1:k.

The trajectory of an object is a finite sequence of its states at
consecutive time steps. In this paper, we follow the notational
convention in [40], [52], [55], [56] to denote a single trajectory
as X = (t, x1:ν) where t is the initial time step of the
trajectory, ν is its length and x1:ν = (x1, . . . , xν) is a finite
sequence of object states [40], [52], [55], [56]. The variable
(t, ν) belongs to the set I(k) = {(t, ν) : 0 ≤ t ≤ k, 1 ≤ ν ≤
k − t+ 1}. A single trajectory X up to time step k therefore
belongs to the space T(k) = ](t,ν)∈I(k){t} × X ν , which is
also LCHS [40, Appendix A]. The set of trajectories up to the
current time step k is denoted as Xk ∈ F(T(k)).

We note that trajectory X is a combination of discrete and
continuous states. Such a hybrid state is not uncommon in
MOT: a typical example is the interacting multiple model
[57]. We also note that the dimension of the state sequence
x1:ν becomes high for long trajectories. This, however, does
not necessarily make the computation of multi-object filtering
recursions complex at each time step, see, e.g., the efficient
MOT implementations in [39], [52].

B. Densities and integrals

Given a real-valued function π(·) on the single trajectory
space T(k), its integral is [52]∫

π(X)dX =
∑

(t,ν)∈I(k)

∫
π
(
t, x1:ν

)
dx1:ν , (1)

which goes through all possible start times, lengths and object
states of the trajectory. Since the single trajectory space T(k) is
LCHS, we can apply Mahler’s FISST theory set integral [20,
Section 3.3] to a space of sets of trajectories F(T(k)) [58].
Specifically, given a real-valued function f(·) on the space
F(Tk) of finite sets of trajectories, its set integral is∫

f(Xk)δXk =

∞∑
n=0

1

n!

∫
f({X1, . . . , Xn})d(X1, . . . , Xn).

(2)
A function f(·) is a multi-trajectory density of a random finite
set of trajectories if f(·) ≥ 0 and its set integral is one. The
reference measures and measure theoretic integrals for sets of
trajectories are defined in [58].

C. Multi-object modelling

1) Multi-object dynamic model: At time step k, new objects
appear in the sensor’s field of view, following a PPP with birth
intensity λBk (xk), independently of any existing objects. For
an existing object xk−1, it survives with probability pS(xk−1),
and if it survives, its state evolves with a Markovian transition
density gk(xk|xk−1), independently of any other objects. It is
also assumed that objects that have disappeared never reappear.

2) Multi-object measurement model: At time step k, the set
zk of measurements is the union of a set of object-generated
measurements and a set of clutter measurements. The measure-
ments from each object are independent of other objects and
of clutter measurements. The set of clutter measurements is a
PPP with Poisson intensity λCk (zk) = γCk µ

C
k (zk) where γCk is

the Poisson rate and µCk (zk) is the clutter spatial distribution.
A single object with state xk generates an independent set

wk of measurements with density `k(wk|xk). Note that in
terms of multi-object conjugate priors, the difference between
point and extended object tracking is only how the single-
object measurement likelihood `k(·|xk) is defined [28], [32].
For a point object, wk is a Bernoulli RFS with at maximum
one measurement, whereas for an extended object, wk is
commonly modelled as a PPP with state dependent Poisson
rate γk(xk) and spatial distribution `k(·|xk) [5]. For a set wk

of measurements generated by an extended object with state
xk, its Poisson set density is [20, Section 21.2.4]

`k(wk|xk) = e−γk(xk)
∏

zk∈wk

γk(xk)`k(zk|xk), (3)

and, accordingly, we have the effective probability of detec-
tion, i.e., the probability that object xk generates at least one
measurement

p(|wk| > 0|xk) = 1− `k(∅|xk) = 1− e−γk(xk),

where ∅ denotes an empty set.
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D. PMBM conjugate prior

Given the sequence of measurements z1:k up to time step k
and the multi-object models in Section II-C for point objects
where the set of object-generated measurement is a Bernoulli
RFS, the density fk|k′(·) of the set of trajectories at time step
k′ ∈ {k − 1, k} is a PMBM [39], [59] with

fk|k′(Xk) =
∑

Y]V=Xk

fpk|k′(Y)fmbmk|k′ (V), (4)

fpk|k′(Y) = e−〈λk|k′ ,1〉
[
λk|k′(·)

]Y
, (5)

fmbmk|k′ (V) =
∑

a∈Ak|k′

wak|k′
∑

]
n
k|k′
l=1 Xl=V

nk|k′∏
i=1

f i,a
i

k|k′
(
Xi
)
, (6)

f i,a
i

k|k′
(
Xi
)

=


1− ri,a

i

k|k′ Xi = ∅
ri,a

i

k|k′f
i,ai

k|k′(X) Xi = {X}
0 otherwise,

(7)

where the prior density at time step 0 is given by f0|0(·).
The multi-object density fk|k′(·) of the form (4) is shown
to be a multi-object conjugate prior [39], [45], where it can
be observed that the PPP fpk|k′(·) represents trajectories of
objects that are hypothesized to exist but have never been
detected2, and that the mixture of multi-Bernoulli (MB) com-
ponents fmbmk|k′ (·) represents potential trajectories that have
been detected at least once at some point to time step k′.
In (5), λk|k′(·) denotes the PPP intensity function, whereas
in (6) each MB component describes the distribution of de-
tected trajectories conditioned on global association hypothesis
a ∈ Ak|k′ , and its weight wak|k′ represents the probability
of the corresponding data association hypothesis [45]. In (6),
there are nk|k′ Bernoulli components, indexed by variable i,
and for each Bernoulli there are hik|k′ local hypotheses. The
density of the i-th Bernoulli component with local hypothesis
ai ∈ {1, . . . , hik|k′} is given by (7), where ri,a

i

k|k′ is the proba-

bility of existence and f i,a
i

k|k′(·) is the single-trajectory density
[59]. A global hypothesis a = (a1, . . . , ank|k′ ) ∈ Ak|k′ selects
a local hypothesis for each Bernoulli component, where the
selected local hypotheses together form a valid data association
and Ak|k′ is the set of global hypotheses that will be described
in Section III-C. The weight of global hypothesis a satisfies

wak|k′ ∝
nk|k′∏
i=1

wi,a
i

k|k′ (8)

where wi,a
i

k|k′ is the weight of local hypothesis ai for the i-th
Bernoulli component, and normalization is required to ensure
that

∑
a∈Ak|k′

wak|k′ = 1.
The explicit modelling of undetected objects is beneficial for

automotive applications, e.g., in traffic scenes where pedestri-
ans walking on side walks are occluded by parked vehicles
along the street. More examples can be found in [4], [32]. We
also note that MOT algorithms based on sets of trajectories,

2The set of undetected trajectories arises naturally from the standard multi-
object models with Poisson birth, see [45] for further explanations. The PPP of
undetected trajectories is independent of the MBM that represents trajectories
detected at some point.

e.g., the TPMBM filter [39] and the TPMB filter [52], do not
produce interrupted trajectories as this is an impossible event
according to the standard models.

E. Trajectory PMB approximation
The PMB is a special case of PMBM with a single MB

component. We can form PMB approximations using differ-
ent techniques, see, e.g., [37], [45], [52]. In this work, we
follow [52] where the best PMB approximation is defined by
using Kullback-Leibler divergence (KLD) minimization, on a
trajectory space with auxiliary variables [52]. The KLD on the
space of sets of trajectories with auxiliary variables is an upper
bound on the KLD for sets of trajectories without auxiliary
variables [52, Lemma 3].

1) PMBM with auxiliary variables: We extend the single
trajectory space with an auxiliary variable u ∈ Uk|k′ =
{0, 1, . . . , nk|k′}, such that (u,X) ∈ Uk|k′ × T(k), and we
denote a set of trajectories with auxiliary variables as X̃k ∈
F(Uk|k′ × T(k)). Given fk|k′(·) of the form (4), the density
f̃k|k′(·) on the space F(Uk|k′ × T(k)) can be defined as [52]

f̃k|k′
(
X̃k

)
= f̃pk|k′

(
Ỹk

) ∑
a∈Ak|k′

wak|k′

nk|k′∏
i=1

f̃ i,a
i

k|k′

(
X̃i
k

)
(9)

where, for a given X̃k, Ỹk = {(u,X) ∈ X̃k : u = 0} and
X̃i
k = {(u,X) ∈ X̃k : u = i}, and

f̃pk|k′

(
Ỹk

)
= e−〈λ̃k|k′ ,1〉

[
λk|k′(·)

]Ỹk , (10a)

λ̃k|k′(u,X) = δ0[u]λ̃k|k′(X), (10b)

f̃ i,a
i

k|k′

(
X̃i
k

)
=


1− ri,a

i

k|k′ X̃i
k = ∅

ri,a
i

k|k′f
i,ai

k|k′(X)δi[u] X̃i
k = {(u,X)}

0 otherwise.

(10c)

Here, the notation f̃k|k′(·) is adopted to clarify that it is the
distribution on the augmented space incoporating the auxiliary
variables. We also note that the sum over sets in (4) disappears
in (9) due to the use of auxiliary variables as now there is
only one possible partition of X̃k into Ỹk, X̃1

k, . . . , X̃
nk|k′

k

that provides a non-zero density.
2) PMB approximation: Given a PMBM density f̃k|k′(·) of

the form (9), the PMB density that minimizes the KLD from
f̃k|k′(·) has a closed form and is given by [52, Proposition 2]

f̃pmbk|k′ (X̃k) = f̃pk|k′(Ỹk)

nk|k′∏
i=1

f̃ ik|k′
(
X̃i
k

)
, (11a)

f̃ ik|k′(X̃) =


1− rik|k′ X̃ = ∅
rik|k′f

i
k|k′(X)δi[u] X̃ = {(u,X)}

0 otherwise,

(11b)

rik|k′ =

hi
k|k′∑
ai=1

wi,a
i

k|k′r
i,ai

k|k′ , (11c)

f ik|k′(X) =

∑hi
k|k′

ai=1 w
i,ai

k|k′r
i,ai

k|k′f
i,ai

k|k′(X)∑hi
k|k′

ai=1 w
i,ai

k|k′r
i,ai

k|k′

, (11d)
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wi,a
i

k|k′ =
∑

b∈Ak|k′ :bi=ai
wbk|k′ . (11e)

If we integrate out the auxiliary variables in (11), we obtain
the PMB density without auxiliary variables [52]

fpmbk|k′ (Xk) =
∑

]
n
k|k′
l=1 Xl]Y=Xk

fpk|k′(Y)

nk|k′∏
i=1

f ik|k′
(
Xi
)

(12)

where the i-th Bernoulli component f ik|k′(X
i) is parameterized

by rik|k′ in (11c) and f ik|k′(X) in (11d).

III. PROBLEM FORMULATION AND FILTERING
RECURSIONS

In this section, we present the problem formulations and the
PMBM filtering recursions based on the multi-object models
introduced in Section II-C with a generalized measurement
model.

A. Problem formulation

We consider the following two MOT problem formulations:
1) The set Xk of alive trajectories that exist at the current

time step, i.e., t+ ν − 1 = k for each (t, x1:ν) ∈ Xk.
2) The set Xk of all trajectories that have existed up to

the current time step k, i.e., t + ν − 1 ≤ k for each
(t, x1:ν) ∈ Xk.

It should be noted that the set of trajectories included in both
1) and 2) does not depend on the sensor model, but on the
object dynamic model in Section II-C. Therefore, trajectories
of objects that move outside the sensor’s field-of-view, and
appear in the field-of-view afterwards will always belong to
2), and will belong to 1) if the dynamic model indicates they
are alive.

For both problem formulations, the objective is to compute
the posterior density of the set Xk of trajectories at time step
k given the sequence z1:k of measurements up to time step k
using Bayesian recursive filtering.

B. Bayesian models for sets of trajectories

We proceed to give the Bayesian multi-trajectory dynamic
and measurement models for the two types of problem formu-
lations (see also [40], [52]), required for deriving the Bayesian
filtering recursions. The two multi-trajectory dynamic models
extend the multi-object dynamic model in Section II-C, where
each object evolves according to a Markov process, to trajec-
tories.

1) Dynamic model for sets of alive trajectories: Given the
set Xk−1 of alive trajectories at time step k − 1, each X =
(t, x1:ν) ∈ Xk−1 survives with probability pS(X) = pS(xν)
(i.e., the survival probability depends only on the final state
in the trajectory), and if it survives, its state (t, x1:ν) evolves
with a transition density [52, Sec. IV-A-1]

gk
(
t̄, y1:ν̄ |X

)
= δt[t̄]δν+1[ν̄]δx1:ν

(
y1:ν̄−1

)
gk
(
yν̄ |xν

)
, (13)

where the state yν̄ only depends on xν due to the Markov
property.

The set Xk is the union of the surviving trajectories and
the PPP newborn trajectories with birth intensity

λBk
(
t, x1:ν

)
= δk[t]δ1[ν]λBk (xν) . (14)

2) Dynamic model for sets of all trajectories: Given the
set Xk−1 of all trajectories at time step k − 1, each X =
(t, x1:ν) ∈ Xk−1 survives with probability pS(X) = 1 and
evolves with a transition density [52, Sec. IV-A-2]

gk
(
t̄, y1:ν̄ |X

)
= δt[t̄]

×


δν [ν̄]δx1:ν

(
y1:ν̄

)
ω̄ < k − 1

δν [ν̄]δx1:ν

(
y1:ν̄

) (
1− pS (xν)

)
ω̄ = k − 1

δν+1[ν̄]δx1:ν

(
y1:ν̄−1

)
pS (xν) gk (yν̄ |xν) ω̄ = k

(15)

where ω̄ = t̄+ ν̄−1 and the state yν̄ only depends on xν due
to the Markov property. The birth model is also a PPP with
intensity (14). Note that pS(X) refers to the probability that
a trajectory remains in the considered set of trajectories for
both problem formulations.

3) Measurement model for sets of trajectories: The mea-
surement model is the same for sets of alive trajectories and the
sets of all trajectories. Each trajectory (t, x1:ν) ∈ Xk generates
a set wk of measurements with density `k(wk|t, x1:ν) =
`k(wk|xν). The clutter model is a PPP as described in Section
II-C2.

C. Filtering recursions

We present the prediction and update for the multi-trajectory
dynamic and measurement models in Section III-B.

Proposition 1. Given the PMBM filtering density on the set
of trajectories at time step k−1 of the form (4), the predicted
density at time step k is a PMBM of the form (4), with

λk|k−1(X) = λBk (X) +
〈
λk−1|k−1, gk(X|·)pS(·)

〉
, (16a)

nk|k−1 = nk−1|k−1, (16b)

hik|k−1 = hik−1|k−1, (16c)

wi,a
i

k|k−1 = wi,a
i

k−1|k−1, (16d)

ri,a
i

k|k−1 = ri,a
i

k−1|k−1

〈
f i,a

i

k−1|k−1, p
S
〉
, (16e)

f i,a
i

k|k−1(X) =

〈
f i,a

i

k−1|k−1, gk(X|·)pS(·)
〉

〈
f i,a

i

k−1|k−1, p
S
〉 (16f)

where gk(·|·) and pS(·) are chosen depending on the problem
formulation.

The TPMBM prediction given in Proposition 1 is the same
as the one in [39] as it is not affected by the choice of the
measurement model.

Before presenting the update step, it is important to define
the set of feasible global hypotheses for a generalized measure-
ment model. We refer to measurement zjk using the pair (k, j)
and the set of all such measurement pairs up to (and including)
time step k is denoted by Mk. Then, a local hypothesis ai

for the i-th Bernoulli component has a set of measurement
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pairs denoted asMi,ai

k ⊆Mk, and the set Ak|k′ of all global
hypotheses satisfies

Ak|k′ =
{(
a1, . . . , ank|k′

)
: ai ∈

{
1, . . . , hik|k′

}
∀ i,

nk|k′⊎
i=1

Mi,ai

k′ =Mk′

}
(17)

where the recursive constructions of Mi,ai

k′ and Mk′ , with
M0 = ∅, will be given in Proposition 2.

We note that every global hypothesis needs to explain the
association of every measurement that has been received so
far. The same measurement cannot be associated to more than
one local hypothesis, but more than one measurement may
be associated to the same local hypothesis at the same time
step. Each global hypothesis therefore corresponds to a unique
partition of Mk′ , and the number of global hypotheses is
then given by the Bell number of |Mk′ | [32]. At each time
step, each measurement generates a new Bernoulli component,
corresponding to an undetected object detected for the first
time or clutter.

Proposition 2. Given the PMBM predicted density on the set
of trajectories at time step k of the form (4), and measurements
zk = {z1

k, . . . , z
mk
k }, the updated density is a PMBM of the

form (4), with

nk|k = nk|k−1 +mk, (18)
Mk =Mk−1 ∪ {(k, j)|j ∈ {1, . . . ,mk}} , (19)

λk|k(X) = `k(∅|X)λk|k−1(X). (20)

For Bernoulli components continuing from previous time steps
i ∈ {1, . . . , nk|k−1}, a new local hypothesis is included for
each previous local hypothesis and either a misdetection or an
update with a non-empty subset of zk. The updated number of
local hypotheses is hik|k = 2mkhik|k−1. For missed detection
hypotheses, i ∈ {1, . . . , nk|k−1}, ai ∈ {1, . . . , hik|k−1}, we
have

Mi,ai

k =Mi,ai

k−1, (21a)

`i,a
i,0

k|k =
〈
f i,a

i

k|k−1, `k(∅|·)
〉
, (21b)

wi,a
i

k|k = wi,a
i

k|k−1

(
1− ri,a

i

k|k−1 + ri,a
i

k|k−1`
i,ai,0
k|k

)
, (21c)

ri,a
i

k|k =
ri,a

i

k|k−1`
i,ai,0
k|k

1− ri,aik|k−1 + ri,a
i

k|k−1`
i,ai,0
k|k

, (21d)

f i,a
i

k|k (X) =
`k(∅|X)f i,a

i

k|k−1(X)

`i,a
i,0

k|k

. (21e)

Let w1
k, . . . ,w

2mk−1
k be the non-empty subsets of zk. For the

i-th Bernoulli component, i ∈ {1, . . . , nk|k−1}, with a local
hypothesis ãi ∈ {1, . . . , hik|k−1} in the predicted density, the
new local hypothesis generated by a set wj of measurements
has ai = ãi + hik|k−1j with j ∈ {1, . . . , 2mk − 1}, and

Mi,ai

k =Mi,ãi

k−1 ∪
{

(k, p) : zpk ∈ wj
k

}
, (22a)

`i,a
i,j

k|k =
〈
f i,ã

i

k|k−1, `k

(
wj
k|·
)〉

, (22b)

1 2 3

Fig. 1. An illustration of the local hypothesis structure in Proposition 2 for
the case nk|k−1 = 0 and mk = 3 where the time step k is omitted. In
this case, three Bernoulli components are created, one for each measurement.
The local hypotheses under these components are: 1) ∅ and {(k, 1)}, 2) ∅,
{(k, 2)} and {(k, 1), (k, 2)}, 3) ∅, {(k, 3)}, {(k, 1), (k, 3)}, {(k, 2), (k, 3)}
and {(k, 1), (k, 2), (k, 3)}.

wi,a
i

k|k = wi,ã
i

k|k−1r
i,ãi

k|k−1`
i,ai,j
k|k , (22c)

ri,a
i

k|k = 1, (22d)

f i,a
i

k|k (X) =
`k

(
wj
k|X

)
f i,ã

i

k|k−1(X)

`i,a
i,j

k|k

. (22e)

Each new Bernoulli component has a different number of local
hypotheses, each of which is created by a subset of zk. Let the
set Si of subsets of measurements associated to the i-th new
Bernoulli component (i ∈ {1, . . . ,mk}) be recursively built as

Si =
{{
zik
}}
∪

 ⋃
w∈∪i−1

j=1Si

{{
zik
}
∪w

} (23)

with S1 = {{z1
k}}, where {{zik}} denotes a set of subsets,

containing the single element set {zik}. According to (23), the
i-th new Bernoulli component has 2i−1 local hypotheses that
are created by non-empty subsets of measurements. Further,
let wi,ι

k denote the ι-th subset of measurements of the i-th
Bernoulli component (i = nk|k−1 + j, j ∈ {1, . . . ,mk}, ι ∈
{1, . . . , 2j−1}). Then, for the i-th Bernoulli component, there
are hik|k = 2j−1 + 1 local hypotheses, one corresponding to
a non-existent Bernoulli component (ai = 1)

Mi,1
k = ∅, wi,1k|k = 1, ri,1k|k = 0, (24)

and the others (ai = ι+ 1, ι ∈ {1, . . . , 2j−1}) have

Mi,ai

k =
{

(k, p) : zpk ∈ wi,ι
k

}
, (25a)

`i,ιk|k =
〈
λk|k−1, `k

(
wi,ι
k |·
)〉

, (25b)

wi,a
i

k|k = δ1

[∣∣∣wi,ι
k

∣∣∣] [λCk ]wi,ιk + `i,ιk|k, (25c)

ri,a
i

k|k =
`i,ιk|k

wi,a
i

k|k

, (25d)

f i,a
i

k|k (X) =
`k

(
wi,ι
k |X

)
λk|k−1(X)

`i,ιk|k
. (25e)

Proposition 2 is an extension of the PMBM update for sets
of objects [35, Theorem 1] to sets of trajectories, and a short
proof of Proposition 2 is given in Appendix A.

Compared to the local hypothesis representation in [35, The-
orem 1], in Proposition 2 each measurement, instead of each
non-empty subset of measurements, creates a new Bernoulli
component, and the i-th new potential object cannot generate
more than i measurements, see Fig. 1 for an example. These
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two different local hypothesis representations lead to the same
PMBM posterior, but the one in Proposition 2 facilitates the
development of efficient PMB approximation methods [37].

The established PMBM conjugacy on posterior of sets of
trajectories for a generalized object measurement model paves
the way for developing efficient inference methods on sets of
trajectories using more general object measurement models for
both online and offline applications, using, e.g., BP [47] and
Gibbs sampling [60]. A typical example is the extended object
trajectory PMBM filter presented in our preliminary work [34].
In the next section, we will elaborate on how to derive the
factor graph formulation of the update step by making use of
Proposition 2, with the objective to later develop BP algorithm
for online MOT.

IV. FACTOR GRAPH FORMULATION

The TPMB filters are computationally lighter alternatives
to the TPMBM filters. The prediction of the TPMB filter is a
special case of the TPMBM prediction with only one mixture
component. The update of the TPMB filter is obtained by
first performing a Bayesian update, which yields a PMBM
distribution, followed by a PMB approximation. The main
challenge of the PMB approximation is the efficient calcu-
lation of the marginal density of set of trajectories, where the
uncertainty on global hypotheses has been marginalized out.
To address this problem, the existing works [35], [37] first
prune global hypotheses with negligible weights using either
C&A [32], [34] or sampling-based methods [33], and then
approximately compute the marginal association probabilities
(11e) by enumerating the truncated global hypotheses. Also,
we note that, even if one manages to compute (11e), it may
still be computationally challenging to evaluate (11d) in closed
form, see, e.g., [61], [62].

The present work is motivated by an emergent approxi-
mation method for multiple EOT with Poisson spatial model
that is both accurate and scalable [17]. The approximation
is based on BP, which jointly computes the marginal density
of object states as well as the marginal association probabil-
ity of each measurement, without explicitly enumerating the
associations between measurement clusters and objects. To
apply the techniques in [16], [17] to PMB approximation, we
need to represent the joint posterior of set of trajectories and
association variables using a factor graph.

In this section, we give the factor graph representation of the
joint posterior of sets of trajectories and association variables,
required for developing efficient TPMB filters with Poisson
spatial model using BP.

A. Factor graph formulation

Following [17], we use the measurement-oriented associa-
tion vector βk = [β1

k, . . . , β
mk
k ]T where βjk ∈ {0, 1, . . . , nk|k}

for j ∈ {1, . . . ,mk}, to describe the object-to-measurement
associations. Specifically, βjk = i > 0 if and only if the j-
th measurement zjk is associated to the i-th potential object
(described by the i-th Bernoulli component), whereas βjk = 0
if the j-th measurement is a false alarm and thus not associ-
ated to a potential object. According to the local hypothesis

Fig. 2. Factor graph for the factorization in (27) where variable nodes are
represented using square and factor nodes are represented using circle. The
messages passing in loopy BP via X̃1

k and X̃
nk|k−1+mk
k are also illustrated

(in red lines) where their arguments and iteration indices are omitted for
brevity.

representation for new Bernoulli components in Proposition 2,
the j-th measurement zjk cannot be associated to new potential
objects with index i ∈ {nk−1|k + 1, . . . , nk−1|k + j − 1}, i.e.,
βjk ∈ {0, 1, . . . , nk−1|k, nk−1|k + j, . . . , nk|k}.

Proposition 3. Given a predicted TPMB density at time
step k of the form (11a), measurement set zk, and the PPP
measurement likelihood

`k (wk|X) = e−γk(X)
∏

zk∈wk

γk(X)`k(zk|X), (26a)

γk
(
t, x1:ν

)
= γk (xν) δk[t+ ν − 1], (26b)

`k
(
zk|t, x1:ν

)
= `k (zk|xν) δk[t+ ν − 1], (26c)

the joint posterior of the set of trajectories and measurement-
oriented association vector is

f̃k|k

(
X̃k, βk

)
∝ f̃pk|k

(
Ỹk

) nk|k−1∏
i=1

[
f i
k|k−1

(
X̃i
k

) mk∏
j=1

sk

(
X̃i
k, β

j
k; zjk

)]

×
nk|k∏

i=nk|k−1+1

[
f
i

k|k−1

(
X̃i
k

)
sk

(
X̃i
k, β

i−nk|k−1

k ; z
i−nk|k−1

k

)

×
i−nk|k−1−1∏

j=1

sk

(
X̃i
k, β

j
k; zjk

)]
(27)



8

where Ỹk and X̃i
k with i ∈ {1, . . . , nk|k} are defined as in

(9), and

f i
k|k−1

(
X̃
)

=


rik|k−1f

i
k|k−1(X)e−γk(X)δi[u] X̃ = {(u,X)}

1− rik|k−1 X̃ = ∅
0 otherwise,

(28)

f
i

k|k−1

(
X̃
)

=


λk|k−1(X)e−γk(X)δi[u] X̃ = {(u,X)}
1 X̃ = ∅
0 otherwise,

(29)

sk

(
X̃i
k, β

j
k; zjk

)

=


`k(zjk|X)γk(X)

λCk (zjk)
δi[u] X̃i

k = {(u,X)}, βjk = i

1 βjk 6= i

0 otherwise,

(30)

sk

(
X̃i
k, β

j
k; zjk

)

=


`k(zjk|X)γk(X)

λCk (zjk)
δi[u] X̃i

k = {(u,X)}, βjk = i

1 X̃i
k = ∅, βjk 6= i

0 otherwise.

(31)

The expression of the joint posterior (27) consists of three
factors, including f̃pk|k(·) and two products. The factor f̃pk|k(·)
describes the posterior density of the set of undetected trajec-
tories. The first product over i ∈ {1, . . . , nk|k−1} describes
the joint posterior of the set of existing trajectories and the
measurement-oriented association vector. The second product
over i ∈ {nk|k−1 + 1, . . . , nk|k} describes the joint posterior
of the set of newly detected trajectories and the measurement-
oriented association vector.

Each factor in the two products in (27) can be further fac-
torized as a product over several smaller factors. In particular,
factors (28) and (29) describe the set X̃i

k of trajectories prior
without relating to any measurements, respectively for existing
and newly detected objects. Factors (30) and (31) reflect the
likelihood of associating a particular measurement with its
corresponding Bernoulli component, respectively for existing
and newly detected objects. We note that an object may have
several associated measurements; the factorized likelihood in
(3) results in the factorized form of (27).

Proposition 3 is proved in Appendix B, and the factor graph
corresponding to (27) is illustrated in Fig. 2. By leveraging
Proposition 2 and RFSs, we can have a concise derivation of
the factor graph formulation of the joint posterior, which is
precisely built upon the multi-object models given in Section
II-C and the Poisson spatial measurement model (26) without
any further assumptions, as compared to the long and involved
derivation given in [50, Section 1].

B. Relation to the factor graph in [17]

The factor graph formulation in [17] is for the joint posterior
of set of object states and measurement-oriented association

variables, derived using random vectors. As a comparison, in
this work, we consider inference on sets of trajectories and
the factor graph formulation is derived using RFSs. Also note
that the factor graph in [17] also includes the time evolution of
multi-object dynamics but with the assumption that the object
survival probability pS is state-independent, whereas the factor
graph in Fig. 2 only focuses on the update step. It is also
possible to derive a factor graph formulation that considers the
joint posterior of set of trajectories and association variables
until the current time step, but this is not required for the
development of TPMB filters using BP.

Another important difference is that in the factor graph
shown in Fig. 2 we have one additional variable node and
factor node for the set of undetected trajectories, which is a
direct result of the explicit modelling of undetected trajectories
in the PMBM conjugate prior. This is not the case in [17],
where it is assumed that newborn objects are detected with
probability one such that the posterior of the set of undetected
objects is zero, and that the prior distribution for newborn
objects (cf. (29)) needs to be normalized by 1 − `k(∅|·) to
exclude the case that a newborn object may generate zero
measurement. The difference on the predicted number of
undetected objects at time step k is further elaborated in
Appendix C.

Note that both factor graph formulations are not unique. The
one in [17] depends on the mapping between measurements
and new potential objects, and a different mapping may result
in a different factorization of the posterior. The factorization
in (27) depends on the local hypothesis representation for new
Bernoulli components since there is a one-to-one mapping be-
tween global hypothesis and measurement-oriented association
vector. There is a family of hypothesis representations of the
posterior that only differ in the representation of new Bernoulli
components [37, Theorem 1]. Different hypothesis represen-
tations for the new Bernoulli components yield different joint
posteriors on the space of auxiliary variables, and therefore
the corresponding factorizations are also different.

V. LOOPY BELIEF PROPAGATION FOR EOT

The objective is to compute the marginal density of each
Bernoulli set X̃i

k of trajectory with i ∈ {1, . . . , nk|k}. Since
the factor graph in Fig. 2 has cycles, we apply loopy BP for
inference, where at each time step, messages are computed
and processed in parallel [17]. Loopy BP has been applied to
solve multiple point object tracking problems [47]. Since the
factor graph formulations are different for point and extended
objects, the message passing equations are also different. In
this section, we present the generic equations for message
passing and belief calculation for the factor graph in Fig. 2.
These equations resemble the message passing equations in
[17], but they are derived using RFSs. For notational brevity,
we omit the time index for all the messages.

A. Iterative message passing

The notations for the different messages are given as fol-
lows. At iteration p ∈ {1, . . . , P}, we denote the message
from variable node X̃i

k, i ∈ {1, . . . , nk|k}, to factor node
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sk(X̃i
k, β

j
k; zjk) or sk(X̃i

k, β
j
k; zjk), j ∈ {1, . . . ,mk}, by ε(p)

i,j (·)
and the message in the reverse direction by %(p)

j,i (·). In addition,
we also denote the message from factor node sk(X̃i

k, β
j
k; zjk) or

sk(X̃i
k, β

j
k; zjk) to variable node βjk by ϑ(p)

i,j (·) and the message
in the reverse direction by ϕ(p)

j,i (·).
1) Initialization: For p = 1, we set ε(1)

i,j (·) = f i
k|k−1

(·)

for i ∈ {1, . . . , nk|k−1} and ε
(1)
i,j (·) = f

i

k|k−1(·) for i ∈
{nk|k−1 + 1, . . . , nk|k}, where nk|k is given by (18). Further,
we introduce ε

(p)
i,j =

∫
ε

(p)
i,j ({X}) dX + ε

(p)
i,j (∅), where for

p = 1, i ∈ {1, . . . , nk|k−1}, we have

ε
(1)
i,j =

∫
f i
k|k−1

(
X̃
)
δX̃

=
∑

u∈Uk|k

∫
f i
k|k−1

({(u,X)})dX + f i
k|k−1

(∅)

= rik|k−1

∫
f ik|k−1(X)e−γk(X)dX + 1− rik|k−1, (32)

and for i ∈ {nk|k−1 + 1, . . . , nk|k},

ε
(1)
i,j =

∫
f
i

k|k−1

(
X̃
)
δX̃

=
∑

u∈Uk|k

∫
f
i

k|k−1({(u,X)})dX + fk|k−1(∅)

=

∫
λk|k−1(X)e−γk(X)dX + 1. (33)

By comparing the initialization step with the update of local
hypotheses in Proposition 2, it is not difficult to observe that
the initialization of message ε(1)

i,j (·), i ∈ {1, . . . , nk|k−1}, cor-
responds to the unnormalized misdetection hypothesis density
for the i-th Bernoulli component, and that the initialization of
message ε

(1)
i,j (·), i ∈ {nk|k−1, . . . , nk|k}, corresponds to the

unnormalized density of the second local hypothesis of the
i-th Bernoulli component but with `k(∅|·).

2) Measurement evaluation: We first describe the messages
ϑ

(p)
i,j (·), with i ∈ {1, . . . , nk|k−1}, j ∈ {1, . . . ,mk} and i ∈
{nk|k−1 +1, . . . , nk|k}, j ∈ {1, . . . , i−nk|k−1−1}, sent from
factor nodes sk(X̃i

k, β
j
k; zjk) to variable nodes βjk. Applying the

sum-product rule [63, Eq. (6)], we obtain an integral over the
Bernoulli set X̃i

k

Θ
(p)
i,j

(
βjk

)
=

∫
sk

(
X̃i
k, β

j
k; zjk

)
ε

(p)
i,j

(
X̃i
k

)
δX̃i

k. (34)

We then plug (30) into (34), which yields

Θ
(p)
i,j

(
βjk

)
=


∫
`k(zjk|X)γk(X)ε

(p)
i,j ({X})dX

λCk (zjk)
βjk = i

ε
(p)
i,j βjk 6= i.

(35)

After normalizing (35) by ε(p)
i,j , we obtain

ϑ
(p)
i,j

(
βjk

)
=


∫
`k(zjk|X)γk(X)ε

(p)
i,j ({X})dX

λCk (zjk)ε
(p)
i,j

βjk = i

1 βjk 6= i.
(36)

Note that multiplying messages by a constant does not alter
the resulting approximate marginals [63], but the above nor-
malization step makes it possible to perform data association
and measurement update more efficiently.

The messages ϑ(p)
i,j (·), with i ∈ {nk|k−1 +1, . . . , nk|k}, j =

i− nk|k−1, sent from factor nodes sk(X̃i
k, β

j
k; zjk) to variable

nodes βjk can be computed similarly. In particular, we have

ϑ
(p)
i,j

(
βjk

)
=


∫
`k(zjk|X)γk(X)ε

(p)
i,j ({X})dX

λCk (zjk)ε
(p)
i,j (∅)

βjk = i

1 βjk 6= i.
(37)

3) Data association: We proceed to describe the messages
ϕ

(p)
j,i (·), with i ∈ {1, . . . , nk|k−1}, j ∈ {1, . . . ,mk} and

i ∈ {nk|k−1 + 1, . . . , nk|k}, j ∈ {1, . . . , i − nk|k−1}, sent
from variable nodes βjk to factor nodes sk(X̃i

k, β
j
k; zjk) and

sk(X̃i
k, β

j
k; zjk), which can be expressed as [63, Eq. (5)]

ϕ
(p)
j,i

(
βjk

)
=

nk|k∏
i′=1
i′ 6=i

ϑ
(p)
i′,j

(
βjk

)
. (38)

By plugging (36) and (37) into (38), we obtain

ϕ
(p)
j,i

(
βjk

)
=

{
1 βjk ∈ {0, i}
ϑ

(p)
i,j (i) βjk ∈ {1, . . . , nk|k} \ {i}.

(39)

4) Measurement update: Next, the messages %(p)
j,i (·), with

i ∈ {1, . . . , nk|k−1}, j ∈ {1, . . . ,mk} and i ∈ {nk|k−1 +
1, . . . , nk|k}, j ∈ {1, . . . , i − nk|k−1 − 1}, sent from factor
nodes sk(X̃i

k, β
j
k; zjk) to variable nodes X̃i

k can be computed
as [63, Eq. (6)]

Υ
(p)
j,i

(
X̃i
k

)
=
∑
βjk

sk

(
X̃i
k, β

j
k; zjk

)
ϕ

(p)
j,i

(
βjk

)
. (40)

By plugging (30) and (39) into (40), we obtain

Υ
(p)
j,i

(
X̃i
k

)
=


(
`k(zjk|X)γk(X)

λCk (zjk)
+ ξ

(p)
i,j

)
δi[u] X̃i

k = {(u,X)}

ξ
(p)
i,j X̃i

k = ∅
(41)

where we denote

ξ
(p)
i,j =

nk|k∑
i′=1
i′ 6=i

ϑ
(p)
i′,j (i′) + 1. (42)

After normalizing (41) by ξ(p)
i,j , we obtain

%
(p)
j,i

(
X̃i
k

)
=


(
`k(zjk|X)γk(X)

λCk (zjk)ξ
(p)
i,j

+ 1

)
δi[u] X̃i

k = {(u,X)}

1 X̃i
k = ∅.

(43)

The messages %(p)
j,i (·), with i ∈ {nk|k−1 +1, . . . , nk|k}, j =

i− nk|k−1, sent from factor nodes sk(X̃i
k, β

j
k; zjk) to variable

nodes X̃i
k can be computed similarly. In particular, we have

%
(p)
j,i

(
X̃i
k

)
=


`k(zjk|X)γk(X)

λCk (zjk)ξ
(p)
i,j

δi[u] X̃i
k = {(u,X)}

1 X̃i
k = ∅.

(44)



10

5) Extrinsic information: At last, the messages ε(p+1)
i,j (·) at

iteration p + 1, sent from variable nodes X̃i
k to factor nodes

sk(X̃i
k, β

j
k; zjk), with i ∈ {1, . . . , nk|k−1}, j ∈ {1, . . . ,mk},

can be computed as [63, Eq. (5)]

ε
(p+1)
i,j

(
X̃i
k

)
= f i

k|k−1

(
X̃i
k

) mk∏
j′=1
j′ 6=j

%
(p)
j′,i

(
X̃i
k

)
, (45)

and similarly, for the messages ε(p+1)
i,j (·), sent from variable

nodes X̃i
k to factor nodes sk(X̃i

k, β
j
k; zjk) or sk(X̃i

k, β
j
k; zjk),

with i ∈ {nk|k−1 + 1, . . . , nk|k}, j ∈ {1, . . . , i− nk|k−1}, we
have

ε
(p+1)
i,j

(
X̃i
k

)
= fk|k−1

(
X̃i
k

) i−nk|k−1∏
j′=1
j′ 6=j

%
(p)
j′,i

(
X̃i
k

)
. (46)

B. Belief calculation

After the last iteration p = P , we can evaluate the belief
f̃ ik|k(·) for each Bernoulli component i ∈ {1, . . . , nk|k}, which
is proportional to the product of all coming messages [63]. In
particular, for i ∈ {1, . . . , nk|k−1},

f̃ ik|k

(
X̃i
k

)
∝ f i

k|k−1

(
X̃i
k

) mk∏
j=1

%
(P )
j,i

(
X̃i
k

)
, (47)

and for i ∈ {nk|k−1 + 1, . . . , nk|k},

f̃ ik|k

(
X̃i
k

)
∝ f ik|k−1

(
X̃i
k

) i−nk|k−1∏
j=1

%
(P )
j,i

(
X̃i
k

)
(48)

where normalization is required to ensure that f̃ ik|k(·) is a valid
set density.

VI. PARTICLE IMPLEMENTATION OF TRAJECTORY PMB
FILTERS USING BELIEF PROPAGATION

For general multi-object dynamic and measurement models,
the messages in BP typically cannot be evaluated in closed
form. In this section, we present the particle-based implemen-
tation3 of the TPMB filter with Poisson spatial measurement
model for both the set of alive trajectories and the set of all
trajectories. In addition, we discuss aspects that need to be
considered in practical implementations and how the proposed
implementation compares to the one in [17]. We note that only
the update step of the proposed TPMB filters involves BP.

We represent a single-trajectory density/intensity by

f
(
t, x1:ν

)
=

L∑
l=1

w(l)δt(l) [t]δν(l) [ν]δχ(l)

(
x1:ν

)
where the l-th particle has weight w(l) ≥ 0, and it represents
a single trajectory with start time t(l) and sequence of object

3In theory, it is possible to use a Rao-Blackwellized particle filter for BP,
where we only sample kinematic states while keeping an analytic represen-
tation of object extent state conditioned on its kinematic state. However,
because of the way extrinsic information (45), (46) is computed, doing so
requires an analytic representation for every possible non-empty subset of the
measurements, resulting in an exponential growth of local hypotheses.

states χ(l) ∈ X ν(l)

, where the length ν(l) is implicit in χ(l)

[64]. In addition, we denote the last state of χ(l) as χ(l).
Furthermore, we note that f(·) is a density if and only if∑L
l=1 w

(l) = 1, and that it can be fully described by the set
of parameters {(w(l), t(l), χ(l))}Ll=1.

For the set of alive trajectories, the single-trajectory density
of the i-th Bernoulli component is of the form

f ik|k′
(
t, x1:ν

)
=

Ld
k|k′∑
l=1

w
i,(l)
k|k′ δti,(l)

k|k′
[t]δ

k−ti,(l)
k|k′+1

[ν]δ
χ
i,(l)

k|k′

(
x1:ν

)
,

(49)
which implies that, if the corresponding trajectory exists, it
is alive at time step k with probability one. The PPP for
undetected trajectories has intensity

λk|k′
(
t, x1:ν

)
=

Lu
k|k′∑
l=1

w
0,(l)
k|k′ δt0,(l)

k|k′
[t]δ

k−t0,(l)
k|k′+1

[ν]δ
χ
0,(l)

k|k′

(
x1:ν

)
(50)

where
∑Lu

k|k′

l=1 w
0,(l)
k|k′ gives the expected number of undetected

trajectories.
For the set of all trajectories, the single-trajectory density

of the i-th Bernoulli component is of the form

f ik|k′
(
t, x1:ν

)
=

Ld
k|k′∑
l=1

w
i,(l)
k|k′ δti,(l)

k|k′
[t]δ

ν
i,(l)

k|k′
[ν]δ

χ
i,(l)

k|k′

(
x1:ν

)
,

(51)
and the Poisson intensity for undetected trajectories is of the
same form as (50). In the implementation, we do not account
for undetected trajectories that are not present at the current
time step since these are usually not of practical interest.

A. Prediction step

1) Set of alive trajectories: Assume that the filtering den-
sity for the alive trajectories is a PMB of the form (12) with
f ik−1|k−1(·) and λk−1|k−1(·) given by (49) and (50). Then,
the predicted density is a PMB of the form (12) with

λk|k−1

(
t, x1:ν

)
=

Luk−1|k−1∑
l=1

w
0,(l)
k|k−1δt0,(l)

k|k−1

[t]

× δ
k−t0,(l)

k|k−1
+1

[ν]δ
χ
0,(l)

k|k−1

(
x1:ν

)
+

Lb∑
l=1

w
b,(l)
k δk[t]δ1[ν]δ

χ
b,(l)
k

(
x1:ν

)
, (52a)

Luk|k−1 = Luk−1|k−1 + Lb, (52b)

t
0,(l)
k|k−1 = t

0,(l)
k−1|k−1, (52c)

x
0,(l)
k ∼ gk

(
·|χ0,(l)

k−1|k−1

)
, (52d)

χ
0,(l)
k|k−1 =

(
χ

0,(l)
k−1|k−1, x

0,(l)
k

)
, (52e)

w
0,(l)
k|k−1 = pS

(
χ

0,(l)
k−1|k−1

)
w

0,(l)
k−1|k−1, (52f)

w
b,(l)
k =

〈
λBk , 1

〉
/Lb, (52g)

χ
b,(l)
k ∼ λBk (·)/

〈
λBk , 1

〉
(52h)
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where Lb is the number of particles used to represent newborn
trajectories, and we can see that the prediction of undetected
trajectories comprises the prediction of existing particles and
the generation of new particles. As for the predicted Bernoulli
component, it is parameterized by

Ldk|k−1 = Ldk−1|k−1, (53a)

rik|k−1 = rik−1|k−1

Ldk|k−1∑
l=1

pS
(
χ
i,(l)
k−1|k−1

)
w
i,(l)
k−1|k−1, (53b)

t
i,(l)
k|k−1 = t

i,(l)
k−1|k−1, (53c)

x
i,(l)
k ∼ gk

(
·|χi,(l)k−1|k−1

)
, (53d)

χ
i,(l)
k|k−1 =

(
χ
i,(l)
k−1|k−1, x

i,(l)
k

)
, (53e)

w
i,(l)
k|k−1 =

pS
(
χ
i,(l)
k−1|k−1

)
w
i,(l)
k−1|k−1∑Ld

k|k−1

l=1 pS
(
χ
i,(l)
k−1|k−1

)
w
i,(l)
k−1|k−1

. (53f)

The proposal densities used in the above prediction step for
drawing samples are given by the motion model gk(·|·) and
the birth density λBk (·)/

〈
λBk , 1

〉
. If these densities are difficult

to sample from, then other proposal densities may be used for
importance sampling [65].

2) Set of all trajectories: Assume that the filtering density
for the set of all trajectories is a PMB of the form (12) with
f ik−1|k−1(·) and λk−1|k−1(·) given by (51) and (50). Then, the
predicted density is a PMB of the form (12) with λk|k−1(·)
given by (52) and f ik|k−1(·) parameterized by

rik|k−1 = rik−1|k−1, (54a)

Ldk|k−1 = Ldk−1|k−1

+

Ldk−1|k−1∑
l=1

δ
k−ti,(l)

k−1|k−1

[
ν
i,(l)
k−1|k−1

]
, (54b)

f ik|k−1

(
t, x1:ν

)
=

Ldk−1|k−1∑
l=1

w
i,(l)
k|k−1δti,(l)

k|k−1

[t]

× δ
ν
i,(l)

k|k−1

[ν]δ
χ
i,(l)

k|k−1

(
x1:ν

)
+

Ldk−1|k−1∑
l=1

[
1− pS

(
χ
i,(l)
k−1|k−1

)]
× wi,(l)k−1|k−1δti,(l)

k−1|k−1

[t]

× δ
k−ti,(l)

k−1|k−1

[
ν
i,(l)
k−1|k−1

]
δ
χ
i,(l)

k−1|k−1

(
x1:ν

)
,

(54c)

t
i,(l)
k|k−1 = t

i,(l)
k−1|k−1, (54d)

and if νi,(l)k−1|k−1 = k − ti,(l)k−1|k−1,

x
i,(l)
k ∼ gk

(
·|χi,(l)k−1|k−1

)
, (54e)

χ
i,(l)
k|k−1 =

(
χ
i,(l)
k−1|k−1, x

i,(l)
k

)
, (54f)

w
i,(l)
k|k−1 = pS

(
χ
i,(l)
k−1|k−1

)
w
i,(l)
k−1|k−1, (54g)

otherwise

χ
i,(l)
k|k−1 = χ

i,(l)
k−1|k−1, (54h)

w
i,(l)
k|k−1 = w

i,(l)
k−1|k−1. (54i)

We note that for each particle used to represent a Bernoulli
component, it remains unchanged if it corresponds to a dead
trajectory, and that a copy of it is created if it corresponds to
an alive trajectory. In the latter case, there is a change in the
weight for original particles to account for the probability that
the object dies, and for each copy, its weight is updated with
the survival probability and its state is propagated to the next
time step. The dimensions of particles may be high for long
trajectories, but this does not mean that the computation would
be infeasible. In the standard particle filter implementations,
the particle trajectory length also increases in time, see, e.g.,
[66, Eq. (40)]. The particle degeneracy problem in practical
implementations is dealt in Section VI-C3. We also note that
the particle implementation of the TPMB prediction step is
general, which also holds for TPMBM and is not limited to
EOT.

B. Update step

The update step is the same for both the set of alive trajec-
tories and the set of all trajectories, where for each Bernoulli
component we only update its probability of existence and
the weights of particles while leaving the states of particles
unchanged. Assume that the predicted density is a PMB of the
form (12) with parameters described in either Section VI-A1
or Section VI-A2, the updated Poisson intensity λk|k(·) for
undetected trajectories is described by{(

t
0,(l)
k|k−1, χ

0,(l)
k|k−1w

0,(l)
k|k−1e

−γk
(
χ
0,(l)

k|k−1

))}Luk|k−1

l=1

,

and the implementation of particle BP is given as follows,
where we omit the auxiliary variables in all the messages and
beliefs for notational brevity.

1) Initialization: Each message ε(p)
i,j (·) is represented by a

scalar and a set of weighted particles(
ε

(p)
i,j ,
{(
t
i,(l)
k|k , χ

i,(l)
k|k , w

(p,l)
i,j

)}Li
l=1

)
.

For p = 1 and i ∈ {1, . . . , nk|k−1}, we set{(
t
i,(l)
k|k , χ

i,(l)
k|k

)}Li
l=1

=
{(
t
i,(l)
k|k−1, χ

i,(l)
k|k−1

)}Ldk|k−1

l=1
,

w
(1,l)
i,j =

wi,(l)k|k−1e
−γk

(
χ
i,(l)

k|k−1

)
k − ti,(l)k|k−1 + 1 = ν

i,(l)
k|k−1

w
i,(l)
k|k−1 otherwise,

ε
(1)
i,j = rik|k−1

Ldk|k−1∑
l=1

δ
k−ti,(l)

k|k−1
+1

[
ν
i,(l)
k|k−1

]
w
i,(l)
k|k−1

× e−γk
(
χ
i,(l)

k|k−1

)
+ 1− rik|k−1,

and for i ∈ {nk|k−1 + 1, . . . , nk|k}, we set{(
t
i,(l)
k|k , χ

i,(l)
k|k , w

(1,l)
i,j

)}Li
l=1
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=

{(
t
0,(l)
k|k−1, χ

0,(l)
k|k−1, w

0,(l)
k|k−1e

−γk
(
χ
0,(l)

k|k−1

))}Luk|k−1

l=1

,

ε
(1)
i,j =

Luk|k−1∑
l=1

w
0,(l)
k|k−1e

−γk
(
χ
0,(l)

k|k−1

)
+ 1.

2) Measurement evaluation: For i ∈ {1, . . . , nk|k−1}, j ∈
{1, . . . ,mk} and i ∈ {nk|k−1 + 1, . . . , nk|k}, j ∈ {1, . . . , i−
nk|k−1 − 1}, we have

ϑ
(p)
i,j (i) =

1

λCk

(
zjk

)
ε

(p)
i,j

Li∑
l=1

w
(p,l)
i,j δ

k−ti,(l)
k|k +1

[
ν
i,(l)
k|k

]
× γk

(
χ
i,(l)
k|k

)
`k

(
zjk|χ

i,(l)
k|k

)
(55)

As for i ∈ {nk|k−1+1, . . . , nk|k}, j = i−nk|k−1, the message
ϑ

(p)
i,j (i) is obtained by replacing ε

(p)
i,j with ε

(p)
i,j (∅) in (55). It

should be noted that in (55) we only consider particles that
represent alive trajectories.

3) Data association, measurement update, and extrinsic
information: The data association and measurement update
steps do not need to be explicitly implemented. After com-
puting ϑ(p)

i,j (·), we can then obtain ξ(p)
j,i (·) using (42) and (55).

Each message ε(p+1)
i,j (·) is an unnormalized Bernoulli density,

represented by a scalar and a set of weighted particles(
ε

(p+1)
i,j ,

{(
t
i,(l)
k|k , χ

i,(l)
k|k , w

(p+1,l)
i,j

)}Li
l=1

)
,

which can be calculated by first computing the particle-based
representation of (43)/(44) and then plugging it into (45)/(46).
This yields, for i ∈ {1, . . . , nk|k−1}, j ∈ {1, . . . ,mk},

ε
(p+1)
i,j = rik|k−1

Li∑
l=1

w
(p+1,l)
i,j + 1− rik|k−1, (56)

w
(p+1,l)
i,j = w

(1,l)
i,j

mk∏
j′=1
j′ 6=j

[
`k

(
zj
′

k |χ
i,(l)
k|k

)
γk

(
χ
i,(l)
k|k

)
λCk

(
zj
′

k

)
ξ

(p)
i,j′

× δ
k−ti,(l)

k|k +1

[
ν
i,(l)
k|k

]
+ 1

]
, (57)

for i ∈ {nk|k−1 + 1, . . . , nk|k}, j ∈ {1, . . . , i− nk|k−1},

ε
(p+1)
i,j =

Li∑
l=1

w
(p+1,l)
i,j + 1, (58)

for i ∈ {nk|k−1 + 1, . . . , nk|k}, j ∈ {1, . . . , i− nk|k−1 − 1},

w
(p+1,l)
i,j = w

(1,l)
i,j

`k

(
z
i−nk|k−1

k |χi,(l)k|k

)
γk

(
χ
i,(l)
k|k

)
λCk

(
z
i−nk|k−1

k

)
ξ

(p)
i,i−nk|k−1

×
i−nk|k−1−1∏

j′=1
j′ 6=j

`k
(
zj
′

k |χ
i,(l)
k|k

)
γk

(
χ
i,(l)
k|k

)
λCk

(
zj
′

k

)
ξ

(p)
i,j′

+ 1

 ,
(59)

and for i ∈ {nk|k−1 + 1, . . . , nk|k}, j = i− nk|k−1,

w
(p+1,l)
i,j = w

(1,l)
i,j

j−1∏
j′=1

`k
(
zj
′

k |χ
i,(l)
k|k

)
γk

(
χ
i,(l)
k|k

)
λCk

(
zj
′

k

)
ξ

(p)
i,j′

+ 1

 .
(60)

4) Belief calculation: Each belief f̃ ik|k(·) is a Bernoulli RFS
density, parameterized by(

rik|k,
{(
t
i,(l)
k|k , χ

i,(l)
k|k , w

i,(l)
k|k

)}Li
l=1

)
,

which can be calculated similarly as the extrinsic information
ε

(p+1)
i,j (·) with the difference that the product in (57) and (59)

now needs to enumerate every element, and that normalization
is required to ensure that f̃ ik|k(·) is a valid density.

Specifically, we have, for i ∈ {1, . . . , nk|k−1},

w
(P,l)
i = w

(1,l)
i,1

mk∏
j′=1

[
`k

(
zj
′

k |χ
i,(l)
k|k

)
γk

(
χ
i,(l)
k|k

)
λCk

(
zj
′

k

)
ξ

(P )
i,j′

× δ
k−ti,(l)

k|k +1

[
ν
i,(l)
k|k

]
+ 1

]
, (61)

rik|k =
rik|k−1

∑Li
l=1 w

(P,l)
i

rik|k−1

∑Li
l=1 w

(P,l)
i + 1− rik|k−1

, (62)

and for i ∈ {nk|k−1 + 1, . . . , nk|k},

w
(P,l)
i = w

(1,l)
i,1

`k

(
z
i−nk|k−1

k |χi,(l)k|k

)
γk

(
χ
i,(l)
k|k

)
λCk

(
z
i−nk|k−1

k

)
ξ

(P )
i,i−nk|k−1

×
i−nk|k−1−1∏

j′=1

`k
(
zj
′

k |χ
i,(l)
k|k

)
γk

(
χ
i,(l)
k|k

)
λCk

(
zj
′

k

)
ξ

(P )
i,j′

+ 1

 ,
(63)

rik|k =

∑Li
l=1 w

(P,l)
i∑Li

l=1 w
(P,l)
i + 1

, (64)

and the normalized weight is given by

w
i,(l)
k|k =

w
(P,l)
i∑Li

l=1 w
(P,l)
i

. (65)

C. Practical considerations

1) Approximations for efficient implementation: For the
proposed particle implementation of TPMB, the computational
complexity of its prediction step scales linearly in the number
of Bernoulli components (potential trajectories). As for the up-
date step, its computational complexity for a fixed number of
message passing iterations scales quadratically in the number
of Bernoulli components and measurements [17].

Since the number of Bernoulli components increases with
time, we need to prune Bernoulli components with probability
of existence smaller than a threshold. For the implementation
considering the set of all trajectories, the number of particles
in the Bernoulli components quickly increases over time as
more particles are used to represent dead trajectories in the



13

prediction step. To avoid this, for the i-th Bernoulli compo-
nent, i ∈ {1, . . . , nk|k−1}, we first compute the probability
mass function of the trajectory end time tie

P
(
tie = t

)
=

Ldk|k∑
l=1

w
i,(l)
k|k δt

[
t
i,(l)
k|k + ν

i,(l)
k|k − 1

]
, (66)

and find those tie with probability (66) smaller than a threshold.
Then, we discard particles with the corresponding trajectory
end times and re-normalize the particle weights and the prob-
ability of existence rik|k. At last, we note that computational
complexity can be further reduced by censoring of messages
and reordering of measurements, see [16] for details.

2) Measurement-driven initialization of newly detected tra-
jectories: In the initialization step of particle BP described in
Section VI-B1, particles describing newly detected trajectories
are set as particles representing undetected trajectories. For
non-informative birth densities, e.g., a single Gaussian with
very large covariance and uniform distribution, it becomes
more advantageous to use importance sampling and directly
draw samples from a proposal density related to the measure-
ment likelihood `k(·|·)4 [48].

Specifically, in the initialization step, for i ∈ {nk|k−1 +

1, . . . , nk|k} and l ∈ {1, . . . , Luk|k−1}, we draw sample χi,(l)k|k
from a proposal density `′k(·|zi−nk|k−1

), and its corresponding
weight w(1,l)

i,j is given by

w
(1,l)
i,j ∝

∑Luk|k−1

l=1 w
0,(l)
k|k−1e

−γk
(
χ
0,(l)

k|k−1

)
K(χ

i,(l)
k|k − χ

0,(l)
k|k−1)

`′k(χ
i,(l)
k|k |zi−nk|k−1

)

where K(·) is a user-defined kernel function [48], typically
a multivariate Gaussian with suitable covariance. At last, the
weight w(1,l)

i,j needs to be normalized such that its sum is given

by
∑Luk|k−1

l=1 w
0,(l)
k|k−1e

−γk
(
χ
0,(l)

k|k−1

)
.

In practical scenarios, the birth density is typically uniform
or a Gaussian mixture. For these cases with state-independent
Poisson measurement rate γk, it is not necessary to consider
particle representation of the Poisson intensity of undetected
trajectories λk|k′(·), and consequently there is no need to draw
particles in the prediction step for undetected trajectories. In
particular, when the birth density is uniform, λk|k′(·) can be
approximately represented using only a scalar [48], whereas
when the birth density is a Gaussian mixture, λk|k′(·) can be
computed using the Gaussian implementation in [52]. For the
more general cases, one can also use a grid of points to model
the Poisson intensity of undetected objects [67].

3) Trajectory estimation: One problem with sequential im-
portance sampling is weight degeneracy, which can be reduced
by resampling particles that represent alive trajectories [65].
Furthermore, resampling can be used to cap the number of
particles in single-trajectory density/intensity representation.
We also note that, by keeping the full sample histories in the
prediction step, particle filtering provides an approximation to
the smoothing problem as a by-product. However, the resulting

4If `k(zk|xk) does not depend on all the elements of xk , one can draw
samples of elements of xk that do not depend on zk from a suitable proposal
density, e.g., a Gaussian or a uniform distribution.

approximation also tends to be degenerate for alive trajectories
at some point in the past as many particles may share the
same history at earlier time steps [68]. We proceed to describe
how to obtain reasonable trajectory estimates in the proposed
TPMB implementation.

We first select Bernoulli components with existence proba-
bility above a threshold, and then from each of them, we obtain
a single-trajectory estimate from a set of weighted particles
(i.e., a mixture of Dirac delta single-trajectory densities) as
follows. At time step k′, given the particle representation of
single-trajectory density of the i-th Bernoulli component,{(

w
i,(l)
k′|k′ , t

i,(l)
k′|k′ , χ

i,(l)
k′|k′

)}Ld
k′|k′

l=1
,

we extract and store the particle representation of the marginal
single-object state at time step k′,{(

w
i,(l)
k′|k′ , χ

i,(l)
k′|k′

)
: l ∈ Lik′

}
, (67a)

Lik′ =
{
l : k′ − ti,(l)k′|k′ + 1 = ν

i,(l)
k′|k′

}
(67b)

where νi,(l)k′|k′ is the length of χi,(l)k′|k′ . To extract the trajectory
estimate at time step k′ ≤ k, we first compute the probability
mass functions of the trajectory start time tis and end time tie,
which are given by

P
(
tis = t

)
=

Ldk|k∑
l=1

w
i,(l)
k|k δt

[
t
i,(l)
k|k

]
, (68)

and (66), respectively. Note that for the implementation con-
sidering the set of current trajectories, we have P (tie = k) = 1.

Next, we find the maximum a posteriori estimates t̂is and t̂ie
of the trajectory start and end times. Then, we can obtain the
object state estimate at time step k′ with t̂is ≤ k′ ≤ t̂ie by

x̂ik′ =
1∑

l∈Li
k′
w
i,(l)
k′|k′

∑
l∈Li

k′

w
i,(l)
k′|k′χ

i,(l)
k′|k′ , (69)

where {(wi,(l)k′|k′ , χ
i,(l)
k′|k′) : l ∈ Lik′} are pre-stored particles (67)

at previous time steps. This can be understood as using a
type of L-scan approximation [52] with L = 1 for the object
states. In the general L-scan approximation [55], past states
of the trajectories before the last L time steps are considered
independent, and no smoothing is performed when L = 1. For
Gaussian implementations, a larger L yields more smoothed
trajectory estimates. As for particle implementations, using a
large L does not necessarily improve the trajectory estimates
due to the particle history degeneracy problem.

At last, we note that, if desired, individual smoothed trajec-
tory estimate can be obtained using, e.g., backward simulation
[51], which is described in Appendix D. Backward simulation
can be applied either only at the final time step or in a sliding
window in the form of fixed-lag smoothing. Doing so does
not improve the accuracy of the data association results or the
object cardinality estimates. It is also possible to consider joint
backward simulation of the whole multi-trajectory distribution
[64], where improved data associations can be obtained during
backward smoothing.
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D. Discussion

The connection between the proposed TPMB filter and the
SPA filter [17] can be understood as follows. The SPA filter
may be seen as a TPMB filter for the set of alive trajectories,
where previous object states are marginalized out and the
PPP intensity of undetected objects is set to zero after the
update step. From another perspective, the TPMB filter may
be regarded as a derivation of the SPA filter using RFSs, with
undetected objects/trajectories propagated over time in parallel
using the standard PMBM equations for the PPP, which are
equivalent to a zero-measurement PHD filter [69].

There are several important differences between the pro-
posed TPMB filters and the SPA filter in [17]. First, the set
of undetected objects is explicitly modelled as a PPP in the
TPMB filters, and its Poisson intensity is propagated over
time. This becomes advantageous when the state-dependent
Poisson measurement rate γk(·) is small, which could happen
in, e.g., scenarios with low sensor resolution, occlusion, or
long distance between the sensor and the objects. One such
application is EOT with long-range automotive radar. Second,
the object survival probability pS(·) is state-dependent in the
TPMB filters.

Lastly, the TPMB filter directly reports trajectory estimates
from local trajectory hypotheses (trajectory Bernoulli compo-
nents), and therefore these trajectory estimates do not have
any gaps in between. As a comparison, the SPA filter in [17]
only estimates the set of object states at the current time step,
and post-processing is required to link object state estimates
at different time steps and to bridge possible gaps. In addition,
although for both implementations smoothed object state esti-
mates can be obtained using particle smoothing techniques, the
particle TPMB filters also provide smoothed estimate of the
start time and length of trajectories, in the sense that estimates
at early time steps may be refined at later time steps. This is
an important feature for MOT algorithms based on sets of
trajectories.

VII. SIMULATION RESULTS

In this section, we present the results from a Monte Carlo
simulation with 200 runs where the performance of the fol-
lowing multiple extended object trackers are compared5:

• Trajectory PMB filter using BP, referred to as TPMB-BP.
• PMB filter using BP, referred to as PMB-BP.
• The SPA filter [17].
• Trajectory PMBM and PMB filters using clustering and

assignment [34], referred to as TPMBM-CA and TPMB-
CA.

• Trajectory PMBM and PMB filters using stochastic opti-
mization [33], referred to as TPMBM-SO and TPMB-SO.

For all the TPMBM and TPMB filters, we consider the
implementations for the set of all trajectories. We also present

5MATLAB implementations of TPMB-BP and PMB-BP are available at
https://github.com/yuhsuansia/Trajectory-PMB-EOT-BP. MATLAB imple-
mentation of SPA is available at https://github.com/meyer-ucsd/EOT-TSP-21.
MATLAB implementations of TPMB(M)-CA and TPMB(M)-SO are available
at https://github.com/yuhsuansia/Extended-target-PMBM-tracker.

PMB-BP, which can be obtained from TPMB-BP by marginal-
izing out all the previous states after the prediction step [59],
and its trajectory estimates are obtained by linking object state
estimates that originate from the same first detection (i.e., the
same Bernoulli component). Note that TPMB-BP and PMB-
BP have the same filtering performance in terms of the set of
current object states estimate.

A. Single object model

There are several extended object models available in the
literature, see [3] for an overview. We consider the random
matrix model in [70], in which the object shape is approxi-
mated as an ellipse. The random matrix model has been used
in several PMBM implementations [32]–[34], [37], thereby
making the comparison easy.

The single-object state xk = (ek, Ek), represented using a
tuple [20, Eq. (21.88)], consists of a kinematic state vector,
which describes the two-dimensional position and velocity of
the object, and an extent state Ek, which is a 2×2 symmetric
positive definite matrix. We assume that the object moves
according to a nearly constant velocity model and its extent
remains unchanged over time. In this case, the object state
transition density is

gk(xk|xk−1) = N (ek;Fek−1 +Q)W (Ek;Ek−1/q, q) ,

F = I2 ⊗
[
1 Ts
0 1

]
, Q = σ2

qI2 ⊗
[
T 3
s /3 T 2

s /2
T 2
s /2 Ts

]
where I2 is a 2× 2 identity matrix, ⊗ denotes the Kronecker
product, Ts is the sampling period, σq is standard acceleration
deviation, and W (Ek;Ek−1/q, q) represents a Wishart distri-
bution with mean Ek and degree of freedom q. The single
measurement likelihood is

`k(zk|xk) = N (zk;Hek, ρEk +R),

H = I2 ⊗
[
1 0

]
, R = σ2

rI2

where ρ > 0 is a scaling factor and σr is the measurement
noise deviation.

The gamma distribution is the conjugate prior for the Pois-
son likelihood, whereas the Gaussian inverse-Wishart (GIW)
distribution is the conjugate prior for the multivariate Gaussian
likelihood with unknown mean and covariance. Therefore, the
single-object state density in TPMB(M)-CA and TPMB(M)-
SO is a gamma GIW (GGIW).

B. Simulation scenario

We consider the same scenario as in [17] where ten object
tracks intersect at the centre of the region of interest of size
[−150 m, 150 m] × [−150 m, 150 m]. The ten objects start
moving towards the centre from positions uniformly placed on
a circle of radius 75 m around the centre with initial velocity
10 m/s, and then they become closely-spaced for some time
before they separate. The extent of each object is obtained by
sampling from an inverse-Wishart distribution with mean 9I2
and degree of freedom 1000. The object survival probability
is pS = 0.99. The following parameters for the single object
model specified in Section VII-A are used: Ts = 0.2, σq = 1,
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Fig. 3. Example realization of true object trajectories. True object extents at
the times objects appear are also shown. The ten objects appear in pairs at time
step 3, 6, 9, 12, 15 and disappear also in pairs at time step 83, 86, 89, 92, 95,
respectively. The true object extents may (partly) overlap around the centre.

q = 1000, ρ = 1 and σr = 1. The PPP clutter is uniformly
distributed in the region of interest with mean γC = 10.
Three different settings for the mean number of measurements
in the Poisson spatial model are considered: γ ∈ {3, 5, 7},
and the corresponding effective probabilities of detection are
approximately 1− `(∅|·) ∈ {0.950, 0.993, 0.999}.

C. Implementation details

For all the implementations, the Poisson rate of PPP birth
is set to 0.01, and in the birth density, the velocity is Gaussian
distributed with zero mean and covariance 100I2, and the
extent is inverse-Wishart distributed with mean 9I2 and degree
of freedom 1000. For particle-based implementations, the po-
sition in the birth density is uniformly distributed in the region
of interest, whereas for GGIW implementations, the position
is Gaussian distributed with zero mean and covariance 1502I2,
and the Poisson measurement rate is gamma distributed with
shape 1000γ and scale 1000.

For implementations using particle BP, each particle de-
scribes both kinematic and extent states, and therefore more
particles are needed to guarantee a reasonable performance
as compared to particle-based implementation for point object
tracking [47]. Moreover, new kinematic and extent states are
obtained by sampling the Gaussian and Wishart distributions,
respectively. We note that it is not difficult to generate random
Wishart matrices. Empirical results show that the runtime
taken by sampling from the Gaussian and Wishart distributions
is rather marginal.

For PMB-BP and SPA, the number of particles is 2000,
whereas for TPMB-BP the number of particles is adaptive,
and we set Lb = 2000. Empirical results show that using 2000
particles is a good trade-off between runtime and estimation
performance. For all these three implementations, the number
of message passing iterations is set to 3, and the measurement-
driven initialization of newly detected objects, as described
in Section VI-C2, is used, where samples of state elements
that do not depend on the measurements are drawn from
the birth density. In addition, we use message censoring and

measurement reordering, as discussed in [16], to facilitate
track initialization and reduce computational complexity. Fur-
thermore, we prune Bernoulli components with probability of
existence smaller than 10−3. For TPMB-BP, we further discard
particles using (66) with threshold 10−4.

For GGIW implementations, we prune global hypotheses
(MBs) with weight smaller than 10−2 and Bernoulli compo-
nents with probability of existence smaller than 10−3. We also
prune GGIW components in the PPP intensity of undetected
objects with weight smaller than 10−3. In addition, we use
ellipsoidal gating with gate size 13.8 to reduce computational
complexity. For TPMB(M)-CA and TPMB(M)-SO, we con-
sider L-scan implementation with L = 1, i.e., no smoothing-
while-filtering is performed. Furthermore, Bernoulli compo-
nents with probability being alive at current time step smaller
than 10−4 are not updated. For TPMB(M)-CA, we first ap-
ply the density-based spatial clustering of applications with
noise (DB-SCAN) using 200 different distance values equally
spaced between 0.1 and 20 to obtain a set of different mea-
surement partitions, and then for each measurement partition
and global hypothesis a, we apply Murty’s algorithm6 [72] to
find the d1000wake best cluster-to-Bernoulli assignments. For
TPMB(M)-SO, the number of iterations in SO at time step k
is set to 10mk.

For all the implementations, the object/trajectory estimates
are extracted from Bernoulli components with probability of
existence no smaller than 0.5.

D. Performance evaluation

The trajectory estimation performance is evaluated using the
linear programming (LP) metric d(·, ·) for sets of trajectories
[56] with parameters: cut-off distance 20, order 1, and track
switch cost 2, see Appendix E for the detailed expression. The
LP metric is integrated with the Gaussian Wasserstein distance
(GWD) for performance evaluation of extended object esti-
mates with ellipsoidal extent [73]. In the simulated scenarios,
we apply the metric at each time step, and normalize it by the
time step. This enables a comparison of how the LP metric
(filtering performance) evolves over time.

We also apply the LP metric [56] at the final time step to
measure the smoothing error. Only the smoothing of kinematic
states is performed, which is given by the backward simulation
(with 100 iterations) and Rauch-Tung-Striebel smoother [65]
for particle-based and GGIW implementations, respectively.

E. Results

The filtering and smoothing estimation errors in terms of
the LP trajectory metric are presented in Fig. 4 and Fig. 5,
respectively. In addition, the decompositions of the trajectory
metrics into costs due to state estimation error, missed and
false detections, as well as track switches, are given in Table
I and Table II. The results show that implementations using
particle BP have the best estimation performance, followed by
implementations using SO.

6The C++ implementation in the Tracker Component Library [71] is used.
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(a) γ = 3
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(c) γ = 7

Fig. 4. Filtering performance with γ ∈ {3, 5, 7} in terms of the normalized LP trajectory metric over time. The line of PMB-BP almost overlaps the line of
SPA.
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Fig. 5. Smoothing performance (evaluated at the final time step) with γ ∈ {3, 5, 7} in terms of the LP trajectory metric over time. The line of PMB-BP
almost overlaps the line of SPA.

The different implementations have similar estimation per-
formance when objects are well-spaced. When objects become
closely-spaced, implementations using C&A and SO present
increased estimation error, and in particular, implementations
using C&A suffer from false detection error. This is because
the clustering algorithm does not yield reasonable results when
objects are in proximity: the generated measurement partitions
contain either many small clusters or a single big cluster. For
TPMB(M)-CA in the simulated scenario, the hypotheses with
many small clusters have higher likelihoods, and therefore they
tend to overestimate the number of objects. This also explains
why implementations using C&A show increased estimation
error when the Poisson measurement rate γ increases, which is
instead the opposite for implementations using SO or particle
BP that avoid clustering. Compared to implementations using
SO, implementations using particle BP enjoy a better trade-
off between estimation performance and runtime. When the
data association uncertainty is high, implementations using SO
need a significant number of iterations in the sampling step to
obtain hypotheses with high likelihoods. However, when the
objects are relatively well-spaced, implementations using SO
actually present better performance. This can be observed in
Fig. 5 around time step 15 to time step 20, and the difference
is most noticeable in the case γ = 7.

For the three different implementations using particle BP,
PMB-BP slightly outperforms SPA, and the moderate perfor-
mance advantage of PMB-BP over SPA can be explained by
the fact that PMB-BP also propagates the density of unde-
tected objects over time. TPMB-BP shows the best trajectory
estimation performance since estimates of trajectory end time
at earlier time steps may be improved at later time steps. This
is most obvious for the case γ = 3 where both PMB-BP and
SPA present increased false detection error when objects die.
When γ = 3, the effective probability of detection 0.95 is
smaller than the object survival probability 0.99. Therefore, it
is likely that the object death events cannot be immediately
reported by the multi-object filter.

The average runtime7 of different implementations is given
in Table III. As can be seen, PMB-BP and SPA are the fastest.
TPMB-BP is slower than TPMB-SO, but it has significantly
better estimation performance. It has been observed that a
time-consuming part of the current implementation of TPMB-
BP is the appending of particles representing dead trajectories
in the prediction step via struct arrays. Possible improvements
may be brought by using more efficient data structures.

7MATLAB implementations on a single core of an Intel(R) Xeon(R) Gold
6226R CPU @ 2.90GHz.
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TABLE I
FILTERING PERFORMANCE IN TERMS OF THE NORMALIZED LP TRAJECTORY METRIC (SUMMED OVER ALL THE TIME STEPS) AND ITS DECOMPOSITION

γ = 3 γ = 5 γ = 7
Total State Miss False Switch Total State Miss False Switch Total State Miss False Switch

TPMB-BP 1365.1 1230.4 121.2 11.0 2.6 1039.0 1009.0 20.4 8.1 1.5 921.7 890.0 3.9 26.4 1.3
PMB-BP 1448.4 1222.2 175.0 48.2 3.1 1091.4 995.8 75.7 18.5 1.4 962.4 886.2 21.7 53.5 1.1

SPA 1452.1 1225.5 174.4 49.2 3.1 1091.4 996.4 75.4 18.1 1.4 964.1 886.1 23.2 54.4 1.1
TPMBM-CA 2128.5 1394.2 337.4 379.7 17.2 2406.9 1258.0 99.4 1021.3 28.2 2827.4 1173.5 61.5 1553.9 38.5
TPMB-CA 2100.3 1374.9 319.0 390.1 16.3 2427.2 1236.8 86.2 1077.0 27.2 2846.9 1164.6 55.4 1589.3 37.6

TPMBM-SO 1710.8 1247.8 410.6 45.8 6.6 1241.5 1042.9 145.8 48.0 4.9 1070.0 923.8 93.9 47.8 4.5
TPMB-SO 1726.1 1242.2 396.4 81.1 6.3 1296.6 1057.6 128.7 104.8 5.4 1120.7 941.8 81.8 92.3 4.9

TABLE II
SMOOTHING PERFORMANCE (EVALUATED AT THE FINAL TIME STEP) IN TERMS OF THE LP TRAJECTORY METRIC AND ITS DECOMPOSITION

γ = 3 γ = 5 γ = 7
Total State Miss False Switch Total State Miss False Switch Total State Miss False Switch

TPMB-BP 906.1 832.9 65.8 6.4 1.0 698.9 681.2 11.4 5.7 0.6 623.7 606.6 1.8 14.8 0.5
PMB-BP 1052.9 840.2 75.1 136.4 1.2 724.2 679.7 21.0 22.9 0.6 654.6 606.5 4.8 42.9 0.5

SPA 1058.0 843.3 76.3 137.2 1.1 725.7 683.0 19.6 22.4 0.6 659.8 606.7 7.7 44.9 0.5
TPMBM-CA 1744.0 956.0 177.8 596.8 13.4 2464.0 900.2 56.5 1484.7 22.5 3140.8 867.3 39.9 2201.8 31.8
TPMB-CA 1726.7 911.5 161.3 643.2 10.6 2483.5 859.2 47.1 1557.5 19.5 3184.4 845.3 35.4 2275.7 28.0

TPMBM-SO 1117.5 820.7 212.3 79.7 4.9 810.2 671.7 83.7 51.0 3.7 723.0 602.5 60.4 56.8 3.4
TPMB-SO 1215.6 789.2 194.2 228.7 3.5 959.9 672.0 66.2 218.4 3.2 886.5 618.3 46.5 217.8 3.9

TABLE III
AVERAGE RUNTIME (IN SECONDS) FOR A COMPLETE MONTE CARLO RUN

OF DIFFERENT IMPLEMENTATIONS

γ = 3 γ = 5 γ = 7
TPMB-BP 88.2 86.6 107.5
PMB-BP 26.5 42.2 60.6

SPA 26.1 42.2 60.7
TPMBM-CA 144.7 304.4 452.8
TPMB-CA 103.4 236.3 375.4

TPMBM-SO 699.3 1330.9 2081.0
TPMB-SO 34.7 60.5 91.6

VIII. CONCLUSION

In this paper, we present a PMBM conjugate prior on the
posterior of sets of trajectories for a generalized measurement
model. We also present the factor graph representation of the
joint posterior of the PMBM set of trajectories and association
variables for the Poisson spatial measurement model. Based
on these important theoretical contributions, we present two
TPMB filters for multiple EOT implemented using particle BP:
one estimates the set of alive trajectories, and the other esti-
mates the set of all trajectories. The proposed implementations
show excellent performance advantages when objects move in
proximity, while also providing full trajectory information.

For the future work, it would be interesting to investigate
how to extend the current work to consider multi-scan data
associations [74] and tracking co-existing point and extended
objects [35]. Another interesting future work direction is to
study how to integrate the particle flow filter [75], which does
not suffer from the particle path degeneracy problem, into
filters based on sets of trajectories, such that one can directly
extract trajectory estimates from the multi-trajectory posterior
density.
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Femández, “Poisson multi-Bernoulli mixture trackers: Continuity
through random finite sets of trajectories,” in 21st International Con-
ference on Information Fusion. IEEE, 2018, pp. 1–8.

[40] Á. F. Garcı́a-Fernández, L. Svensson, and M. R. Morelande, “Multiple
target tracking based on sets of trajectories,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 56, no. 3, pp. 1685–1707, 2019.

[41] J. Honer and F. Schmieder, “Gibbs sampling of measurement partitions
and associations for extended multi-target tracking,” in 22th Interna-
tional Conference on Information Fusion. IEEE, 2019, pp. 1–8.

[42] F. Meyer and M. Z. Win, “Data association for tracking extended
targets,” in Military Communications Conference. IEEE, 2019, pp.
337–342.

[43] F. Meyer, Z. Liu, and M. Z. Win, “Scalable probabilistic data association
with extended objects,” in IEEE International Conference on Commu-
nications Workshops. IEEE, 2019, pp. 1–6.

[44] F. Meyer and M. Z. Win, “Scalable data association for extended object
tracking,” IEEE Transactions on Signal and Information Processing over
Networks, vol. 6, pp. 491–507, 2020.

[45] J. L. Williams, “Marginal multi-Bernoulli filters: RFS derivation of
MHT, JIPDA, and association-based member,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 51, no. 3, pp. 1664–1687, 2015.
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Supplementary Materials
APPENDIX A

In this appendix, we present a short proof of Proposition 2.
It has been shown in [35, Theorem 1] that the update of

a PMBM prior with single-object state in a LCHS space and
the generalized measurement model in Section II-C2 is also a
PMBM. Furthermore, given that the single-object state space
is LCHS, the single-trajectory space T(k′) is also LCHS [40,
Appendix A]. This means that finite set statistics [20] can be
used on sets of trajectories. Therefore, Proposition 2 can be
understood as an extension of the PMBM update for sets of
objects [35, Theorem 1] to sets of trajectories.

APPENDIX B

In this appendix, we prove Proposition 3. In what follows,
we first present the joint posterior of set of trajectories and
global hypothesis augmented with auxiliary variables, which
does not involve the summation over set partitions (cf. (9)).
Then, we proceed to describe how to rewrite the joint posterior
using the object-oriented and measurement-oriented associa-
tion variables [16]. At last, we show how to further simplify
such joint posterior to exclude the object-oriented association
variables.

A. Joint posterior of trajectories and global hypothesis

Given a predicted TPMB density at time step k of the
form (11a) and measurements zk, the joint posterior of set
of trajectory and global hypothesis is

f̃k|k(X̃k, a) = f̃k|k(X̃k|a)wak|kψ(a)

= wak|kf̃
p
k|k(Ỹk)

nk|k∏
i=1

f̃ i,a
i

k|k

(
X̃i
k

)
ψ(a)

∝ f̃pk|k(Ỹk)

nk|k∏
i=1

wi,a
i

k|k f̃
i,ai

k|k

(
X̃i
k

)
ψ(a)

= f̃pk|k(Ỹk)

nk|k∏
i=1

gi,a
i

k|k

(
X̃i
k

)
ψ(a) (70)

where the constraint on global hypothesis a can be expressed
as an indicator function

ψ(a) =

{
1
⊎nk|k
i=1 M

i,ai

k =Mk

0 otherwise,
(71)

and we introduce the unnormalized Bernoulli densities gi,a
i

k|k (·),
each of which is given by the product of a local hypothesis
density f̃ i,a

i

k|k (X̃i
k) and its corresponding weight wi,a

i

k|k . Using
their expressions presented in Proposition 2, we have, for i ∈
{1, . . . , nk|k−1},

gi,1k|k

(
X̃
)

=


rik|k−1`k(∅|X)f ik|k−1(X)δi[u] X̃ = {(u,X)}
1− rik|k−1 X̃ = ∅
0 otherwise,

(72)

for i ∈ {1, . . . , nk|k−1}, j ∈ {2, . . . , 2mk − 1}, ai = j + 1,

gi,a
i

k|k

(
X̃
)

=

{
rik|k−1`k

(
wj
k|X

)
f ik|k−1(X)δi[u] X̃ = {(u,X)}

0 otherwise,
(73)

for i ∈ {nk|k−1 + 1, . . . , nk|k−1 +mk},

gi,1k|k

(
X̃
)

=

{
1 X̃ = ∅
0 otherwise,

(74)

and for i = nk|k−1 + j, j ∈ {1, . . . ,mk}, ι ∈ {1, . . . , 2j−1},
ai = ι+ 1

gi,a
i

k|k

(
X̃
)

=


`k

(
wi,ι
k |X

)
λk|k−1(X)δi[u] X̃ = {(u,X)}

λCk

(
zjk

)
X̃ = ∅,wi,ι
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{
zjk

}
0 otherwise.

(75)

B. Data association variables

Until now, we have used variable a ∈ Ak|k to represent the
global hypotheses. To obtain a neat factor graph representation
of the joint posterior, it is useful to describe the Bernoulli-
to-measurement association Mi,ai

k using association vectors.
We first introduce the binary object-oriented association vector
αk = [α1

k
T
, . . . , α

nk|k
k

T
]T where

αik =


[
αi,1k , . . . , αi,mkk

]T
, i ∈ {1, . . . , nk|k−1}[

αi,1k , . . . , αi,jk

]T
, i = nk|k−1 + j, j ∈ {1, . . . ,mk}

and αi,jk = 1 if and only if the j-th measurement zjk is associ-
ated to the i-th potential object (described by the i-th Bernoulli
component). Note that the object-oriented association vector
corresponding to the j-th new Bernoulli component has length
j. This is a direct result of the local hypothesis representation
for new Bernoulli components specified in Proposition 2.

For TPMB filters8, from global hypothesis a ∈ Ak|k (17)
we can represent the data associations at time step k by object-
oriented or measurement-oriented association variables; the
latter has been introduced in Section IV-A. Using a hybrid rep-
resentation for both object-oriented and measurement-oriented
association variables makes it possible for developing many
scalable MOT algorithms using BP [47]. Later in Section B-D,
we will show that, for EOT with Poisson spatial model, the
factor graph constructed using the hybrid association vectors
can be simplified by marginalizing out the object-oriented
association vector.

8For the TPMB filter, the global hypothesis does not include the measure-
ment association history.
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C. Joint posterior of trajectories and association variables

We start by rewriting the unnormalized Bernoulli densities
gi,a

i

k|k (·) as functions of the object-oriented association vectors
αik. This is done by plugging (26) into (72), (73) and (75),
which yields, for i ∈ {1, . . . , nk|k−1},

gi,a
i

k|k

(
X̃
)

= f i
k|k−1

(
X̃
) mk∏
j=1

q̂k

(
X̃, αi,jk ; zjk

)
, (76)

and for i = nk|k−1 + j, j ∈ {1, . . . ,mk},

gi,a
i
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= f
i
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(77)

where the product over function q̂k in (77) reduces to 1 when
j = 1, f i

k|k−1
(·) and f

i

k|k−1(·) are respectively given in (28)
and (29), and

q̂k

(
X̃, αi,jk ; zjk

)

=


`k
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zjk|X

)
γk(X)δi[u] X̃ = {(u,X)}, αi,jk = 1

1 αi,jk = 0

0 otherwise,

(78)
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0 otherwise.
(79)

The third term in (79) is a result of (74), which represents the
case that the j-th measurement is associated to an existing po-
tential object and the corresponding new Bernoulli component
has zero existence probability.

We further observe that conditioned on the measurements
zk, the product

∏
zk∈zk λ

C
k (zk) is a constant. If we divide (70)

by this constant, the term λCk (·) in (79) reduces to 1 and can
be combined with the third term in (79) without changing the
proportionality of (70), which yields

qk
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(80)
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1 X̃ = ∅, αi,jk = 0

0 otherwise.

(81)

Using the above results, we can rewrite the joint posterior
of trajectories and global hypothesis (70) as the joint posterior
of trajectories and object-oriented association vector

f̃k|k
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X̃k, αk

)
∝ f̃pk|k
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i,j
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)]
ζ(αk) (82)

where ζ(αk) is an indicator function (cf. (71)) used to express
the constraint on αk. We note that ζ(αk) is a function of all
the binary variables αi,jk , and thus it is not efficient to run BP
directly on the factor graph constructed using (82). To solve
this problem, a computationally feasible solution is to stretch
ζ(αk) using the following binary indicator function, which
checks consistency for any pair (αi,jk , β

j
k) of object-oriented

and measurement-oriented association variables [16]:

Ψ
(
αi,jk , β

j
k

)
=

{
0 αi,jk = 1, βjk 6= i or αi,jk = 0, βjk = i

1 otherwise
(83)

for i ∈ {1, . . . , nk|k}, j ∈ {1, . . . ,mk}. Specifically, this
yields the following expression of the joint posterior of trajec-
tories and association variables
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, (84)

and its corresponding factor graph representation is illustrated
in Fig. 6.

D. A simplified representation of the joint posterior

For the factor graph shown in Fig. 6, each object-oriented
association variable node αi,jk is connected to two factor nodes,
one connecting αi,jk to a Bernoulli variable node X̃i and the
other connecting αi,jk to a measurement-oriented association
variable node βjk. This means that each variable node αi,jk
and its two neighbouring factor nodes can be combined into
a single factor node that directly connects variable nodes X̃i
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Fig. 6. Factor graph for the factorization in (84) where variable nodes are
represented using square and factor nodes are represented using circle.

and βjk, by marginalizing out αi,jk from the factorization (84).
In particular, we have

f̃k|k

(
X̃k, βk

)
=

∑
αi,jk ∈{0,1}

f̃k|k

(
X̃k, αk, βk

)
,

whose final expression is given by (27), and (30) and (31) can
be obtained by

sk
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.

This finishes the proof of Proposition 3.

APPENDIX C
In this appendix, we give the expressions of the predicted

number of undetected objects at time step k for both Bayesian
solution and the solution in [17] under the assumption that both
the Poisson measurement rate γ and survival probability pS

are state-independent, and that both the Poisson measurement
rate γ and the Poisson birth rate λ

B
are time-invariant.

Given the multi-object models in Section II-C, the Bayesian
solution is given by [20]

λ
u

k|k−1 = λ
B
(

1 + pSe−γ + · · ·+
(
pSe−γ

)k−1
)

= λ
B 1−

(
pSe−γ

)k
1− pSe−γ

. (85)

The solution in [17] is based on the assumption that newborn
objects are always effectively detected (with probability one).
This means that the probability that newborn objects generate
zero measurement is zero. Thus, the probability mass function
of Poisson measurement rate needs to be truncated to exclude
the zero-measurement case and normalized by the probability
(1 − e−γ) of generating non-zero measurement. In this case,
the predicted number of undetected objects at time step k is
a constant [17]

λ
u

k|k−1 = λ
B 1

1− e−γ
. (86)

It can be verified that (86) is an upper bound of (85), and that
the bound becomes tighter as k increases. A lower bound of
the bias of (86) is given by

λ
B (

1− pS
)
e−γ

(1− e−γ) (1− pSe−γ)
.

APPENDIX D

The backward simulation particle smoother works by sim-
ulating individual trajectories backward in time, starting from
the last time step. Many variants of the backward simulation
particle smoother exist [51]. In the simulation, we use the one
described in [51, Algorithm 4]. Here, we describe how to apply
backward simulation to the sets of particles representing the
marginal single-object states in the time interval of interest, as
described in Section VI-C3. The pseudocode in Algorithm 1
can be applied to the filtering densities of PMB-BP and SPA
with minor modification. Specifically, when there are gaps in
the trajectory, the missing state estimate is given by applying
the inverse dynamic model g−1(·|·) to valid state estimate at
future time steps.

Algorithm 1 Backward simulation particle smoother.

Input:
{(
w
i,(l)
k′|k′ , χ

i,(l)
k′|k′

)
: l ∈ Lik′

}
for k′ = t̂is, . . . , t̂

i
e, P

Output: Trajectory estimate χ̂i =
(
x̂i
t̂is
, . . . , x̂i

t̂ie

)
.

1: Normalize
{
w
i,(l)

t̂ie|t̂ie

}
l∈Li

t̂ie

to obtain
{
ŵ
i,(l)

t̂ie|t̂ie

}
l∈Li

t̂ie

.

2: Sample
{
bt̂ie(j)

}P
j=1

from Categorical

({
ŵ
i,(l)

t̂ie|t̂ie

}
l∈Li

t̂ie

)
.

3: Set x̃j
t̂ie

to χ
i,(bt̂ie

(j))

k′|k′ for j = 1, . . . , P .

4: x̂i
t̂ie

= 1
P

∑P
j=1 x̃

j

t̂ie
.

5: for k′ = t̂ie − 1 to t̂is do
6: for j = 1 to P do
7: Compute ŵl,j ∝ gk′+1

(
x̃jk′+1|χ

i,(l)
k′|k′

)
∀ l ∈ Lik′ and

normalize.
8: Draw bk′(j) ∼ Categorical

({
ŵl,j

}
l∈Li

k′

)
.

9: Set x̃jk′ to χi,(bk′ (j))k′|k′ .
10: end for
11: x̂ik′ = 1

P

∑P
j=1 x̃

j
k′ .

12: end for
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APPENDIX E

In this appendix, we present the LP metric [56, Proposition
2] used to evaluate the multi-trajectory estimation performance
in Section VII-D.

For 1 ≤ p <∞, cut-off distance c > 0, track switching cost
γ > 0 and a base metric db(·, ·) in the single object space X,
the LP metric between sets X and Y of trajectories in time
interval 1, . . . ,K is given by

d̄c,γp (X,Y) = min
Wk

k=1,...,K

(
K∑
k=1

tr
[(
Dk

X,Y

)T
W k
]

+
γp

2

K−1∑
k=1

|X|∑
i=1

|Y|∑
j=1

∣∣W k(i, j)−W k+1(i, j)
∣∣ 1

p

, (87)

where

Dk
X,Y(i, j) = d

(
xki ,y

k
j

)p
, (88a)

d (x,y) =


min(c, db(x, y)) x = {x},y = {y}
0 x = y = ∅
c

21/p otherwise,
(88b)

|X|+1∑
i=1

W k(i, j) = 1, j = 1, . . . , |Y|, (88c)

|Y|+1∑
j=1

W k(i, j) = 1, i = 1, . . . , |X|, (88d)

W k(|X|+ 1, |Y|+ 1) = 0, (88e)

W k(i, j) ≥ 0,∀i, j. (88f)

The LP metric is computable in polynomial time, and it can
be decomposed into costs for properly detected objects, missed
and false objects, and track switches. We refer the readers to
[56] for implementation details.


