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energy sectors. To this end, we set up a Generalized Autoregressive Conditional Het-4

eroskedasticity - Extreme Value Theory Value-at-Risk specification (or GARCH-EVT-5

VaR hereafter) to flexibly model extreme risks. Moreover, we focus on two international6

crude oil futures markets and ten Chinese energy futures markets to measure the extreme7

risk spillovers. Our findings point to two main results. First, we find significant evidence8

of extreme risk spillovers from the two international crude oil markets to Chinese energy9

futures markets, which are asymmetric. More specifically, the spillover effects across10

extreme risks are more significant than those measured with the return series. Second,11

some Chinese energy future markets also exhibit internal extreme risk spillovers from the12

petrochemical sector to the coal sector. These findings reveal the potential vulnerability13

of Chinese energy sectors and call for active risk management policies to better hedge14

Chinese energy futures markets against extreme events.15

Keywords: Connectedness; Network analysis; Energy futures markets; Extreme risk spillovers16
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1 Introduction17

The focus on extreme risk spillovers of crude oil market for China is important for at18

least two reasons. On the one hand, while crude oil market is a global market, it has shown19

over the two last decades an excessive volatility and extreme risk caused by different shocks:20

a demand shock (2008-2009 global financial crisis, COVID-19, etc.), a supply shock (shale21

revolution in 2014, failure of Russia-Saudi Arabia meeting in March 2020, etc.) and a (geo)-22

political shock (geopolitical tensions in Gulf countries, COVID-19 lockdown related measures,23

the war in Ukraine in 2022, etc.). These different events have disturbed the pricing of oil24

on the global market and caused a significant volatility, which has also disturbed regional or25

local oil markets. For example, the price of the WTI turned negative for the first time in the26

history in April 2020.27

On the other hand, in addition to being an important trade partner, China has become28

the biggest oil consumer country in the world. Oil price has become increasingly dependent29

on Chinese oil demand. In fact, the decline of Chinese economy in 2020 and therefore the30

decline of Chinese oil consumption of 30% has caused a serious oil price correction during the31

coronavirus pandemic. At the same time, more evidence shows the dependence of Chinese32

energy sectors on oil price. At the beginning of 2023, the China Petroleum and Chemical33

Industry Association announced that China’s external dependence on crude oil imports in34

2022 was more than 70%. China imported 508.28 million tons of crude oil, which decreased35

by 0.9% year-on-year, but the cost increased by 41.4% year-on-year. This indicates that the36

import burden increased sharply.37

For this reason, it is important to assess further interactions and risk spillovers between38

the global oil market and Chinese Energy Futures markets (Pan et al., 2021, Si et al., 2021,39

Wen et al., 2021, Duan et al., 2023a). This is particularly interesting, considering the fact40

that the excessive oil price volatility and the relative short establishment of Chinese futures41

markets are always used for hedging strategies and their small-scale market size (Chun et al.,42

2014, Ji et al., 2018, Shen et al., 2018, Yang et al., 2021, Duan et al., 2023b). While still in43

their infancy, China’s energy futures markets are crucial for China to strengthen its internal44
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energy supply and demand structure, hedge risks, enrich financial investment products, and45

expand its global impact. It is crucial to investigate the network architecture of the Chinese46

energy futures market, the interaction between network nodes, and their sensitivity to changes47

in the price of crude oil (Chen et al., 2021, Niu & Hu, 2021).48

In the literature, previous studies showed further evidence of spillover effects between the49

global crude oil market and Chinese energy markets (Yang & Zhou, 2020, Yang et al., 2021,50

Gong et al., 2021, Li et al., 2022, Ouyang et al., 2022, Ren et al., 2022), suggesting that the51

Chinese domestic market is closely linked to the international crude oil market. However, the52

investigation of these spillover effects is still challenging and inconclusive. Furthermore, the53

channels behind these spillover effects are not investigated.54

Unlike previous related papers that have always limited their analyses of extreme risk55

spillovers to a few energy markets (Zhang & Sun, 2016, Geng et al., 2021b, Ahmad & Rais,56

2018, Gong et al., 2021, Ouyang et al., 2022, Ren et al., 2023, Wang et al., 2023), this study57

extends this literature by considering a large class of key Chinese energy commodities and a58

more flexible econometrics framework. To achieve this, we construct a multi-energy market59

analysis framework and we provide a large matrix analysis for potential losses in the Chinese60

energy futures market. In particular, we focus on 10 different Chinese energy commodities61

that include almost all the major energy futures markets in China. Additionally, we analyze62

their further spillover effects with regard to two international major crude oil markets: the63

WTI and the Brent, as well as across Chinese energy futures markets.64

Methodologically, we proceed in different steps. On the one hand, we propose to compute65

the extreme risk or the highest loss for each energy market using the Value at Risk (VaR)66

based on the Extreme Value Theory (EVT) and the Generalized Auto-Regressive Conditional67

Heteroskedasticity (GARCH) model. On the other hand, we test and estimate the extreme68

risk spillover effects among the energy markets under consideration using the methodology69

proposed by Diebold & Yilmaz (2009, 2012).The approach they created fits the peculiarities70

of financial data and depicts the situation at the extreme tail better, and increases accuracy71

by basing it on the concepts of variance decomposition and time-varying likelihood. The72
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performance of extreme spillover among energy futures markets matches properly with this73

proven method for measuring spillover effect.74

Overall, our results point to two interesting findings. First, we find that the global oil75

market constitutes a net transmitter of risk to Chinese energy futures markets, suggesting fur-76

ther vulnerability/dependence of the Chinese energy sectors to the international oil market.77

Second, there is no denying the existence of cross-market risk spillover among these energy78

futures markets, but it does always depend on the couple of domestic energy sectors under79

consideration. More specifically, the petrochemical sector has the leading role in risk trans-80

mission to the coal sector but not for all other sectors. A significant extreme risk spillover81

effect across domestic sectors is a sign of close integration between the Chinese energy futures82

markets. The performance of extreme risk spillover can be exploited to assess diversification83

investment.84

The contribution of our current study is twofold. On the one hand, unlike the related85

previous literature that focuses on risk transmission across return or volatility spillover, we86

propose to investigate risk spillover effects via an extreme risk way, which is particularly87

relevant to reproduce risk transmission induced by extreme events. On the other hand, by88

focusing on a large class of key Chinese Energy futures markets, we provide a more complete89

analysis of the Chinese network structure of energy markets, while identifying leading sectors90

and vulnerable sectors to risk spillovers. This categorization is particularly useful to set up91

an efficient risk management strategy.92

The rest of the paper is organized as follows. Section 2 briefly presents the related93

literature on extreme risk estimation methods. Section 3 discusses the methodology related94

to the value at risk (VaR) and the connectedness measurement methods. The data and95

preliminary analysis are presented in Section 4. Section 5 discusses the main empirical results96

related to extreme risk spillovers among the energy futures. The last section concludes.97
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2 Literature98

While the investigation of spillover’s effects between energy markets is not a new question99

(Lin & Tamvakis, 2001, Haigh & Holt, 2002), previous studies have basically conducted this100

question either for developed economies or for oil countries producers to test their dependence101

to the oil sector. Further, several previous studies considered often a couple of two markets102

(i.e. dynamic volatility spillovers across oil and natural gas futures markets, carbon and fossil103

energy markets (Gong et al., 2021), and spillover’s effect between oil and stock market (Jawadi104

& Arouri, 2011), etc.105

The analysis of spillover’s effects for energy sectors for China and through a multi-analysis106

is still scarce and inconclusive in particular about the drivers of these spillover’s effects. But107

the energy futures market is playing a bigger and bigger part in China’s economic system108

lately as a sector that has received considerable support from the Chinese government (Lv109

et al., 2020). The copula-based model developed by Wen & Nguyen (2017) validates the110

potential for risk diversification that comes with China’s energy futures, which may be used111

in conjunction with gold and other commodity markets to reduce investor risk. Through the112

use of the VAR(1)-DCC-GARCH(1,1) model, Lin & Chen (2019) and Cao et al. (2022) proved113

the long-term persistence and significant spillover effects among the financial markets, carbon114

trading market, and coal futures market. Li et al. (2022) recently investigated the volatility115

spillovers of international crude oil markets on seven major Chinese energy markets, and116

the authors associated these spillovers to the COVID-19 pandemic. Further, most previous117

studies examine the spillover’s effect assumption using first and second moments, which are118

not suitable enough to capture inter-market spillovers caused by extreme events and extreme119

risks, source of systemic risk by excellence (Wu et al., 2021).120

Even, for the energy futures market, given the important and frequent shifts in energy121

prices, the focus on spillover’s effect around the extreme values is relevant and it enables us122

to capture further extreme risk co-movement. To this end, the Extreme Value Theory (EVT),123

always used to investigate extreme events, is a relevant framework (McNeil & Frey, 2000). In124

such context, Marimoutou et al. (2009) calculated the VaR of the oil market and found that125
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conditional extreme theory performs better than traditional methods. Feng et al. (2012) also126

used GARCH-EVT-VaR model to study the risk spillover of carbon futures and spot markets127

in extreme risk conditions. They found that a dynamic VaR calculated with GARCH fully128

estimates the risk of carbon return fluctuation, and that a dynamic VaR based on GARCH-129

EVT is more accurate than a dynamic VaR based on GARCH. Youssef et al. (2015) confirmed130

that considering asymmetry and fat tails in the behavior of energy commodity price returns131

combined with filtering processes, such as EVT, improves risk management assessments and132

hedging strategies in the highly volatile energy market.133

That is, it is however worth to recall that the VaR approach measures only the maxi-134

mum of potential losses and one needs to adopt other methods to estimate spillover effects135

among markets. Obviously, there are a variety of ways to analyze risk transmission. Tiwari136

et al. (2020) used the delta conditional value at risk (∆CoVaR) to capture the risk spillovers137

across the oil and stock markets. Diebold & Yilmaz (2009) applied a measure of volatil-138

ity connectedness based on variance decomposition, which includes the generalized vector139

auto-regressive framework in the spillover measurement so that the variable ordering remains140

unchanged. Their method has been extended and improved several times later by the same141

authors (Diebold & Yilmaz, 2012, 2014). Since then, this method of risk spillover measure-142

ment has been widely used. Xiao et al. (2020) used it to estimate the connectedness of 18143

commodities in China. Naeem et al. (2020) applied this approach and its extension in the fre-144

quency domain to investigate the temporal and frequency links between the electricity, carbon,145

and clean energy markets, as well as oil price demand and supply shocks. Geng et al. (2021a)146

applied a connectedness network analysis to explore the dynamic information connectedness147

effect of the natural gas market, uncertainty, and the stock market in North America and148

Europe.149

In this study, given the suitability and enough flexibility of the Diebold & Yilmaz (2009,150

2012, 2014) method in measuring the spillover effects among markets, we apply this approach151

hereafter to examine risk transmission across energy futures markets. In particular, in line152

with Ouyang et al. (2022), we propose to investigate linkages between oil market and energy153
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futures in China as well as spillovers across Chinese domestic energy sectors. To this end, we154

propose a GARCH-EVT-VaR measure for extreme risk and we build a framework similar to155

Diebold & Yilmaz (2012)’s work to measure extreme risk spillovers.156

3 Econometric Methodology157

Our methodology refers to two types of financial econometrics framework. First, we158

estimate the VaR of each energy futures sequence while relying on GARCH-EVT models, which159

can provide a more accurate estimation of extreme tails. Second, we provide a connectedness160

matrix of pairwise VaRs using Diebold & Yilmaz (2009, 2012, 2014)’s approach.161

3.1 The VaR estimation162

We propose to model the daily return of the energy futures price by the following163

GARCH(p, q) model to capture the further clustering and heteroskedasticity effects in the164

data:165

Rt+1 = µt+1 + εt+1

εt+1 = zt+1σt+1

σ2
t+1 = ω +

p∑
i=1

αiε
2
t+1−i +

q∑
i=1

βiσ
2
t+1−i,

(1)

where µt+1, σt+1 denote the conditional mean and volatility of the energy future return given166

all the information up to time t, respectively. εt is an independent and identically distributed167

error term and zt ∼ N(0, 1).168

The simplest form of this equation, corresponds to a GARCH (1,1) model, which is the169

most commonly used specification in practice. This specification has only one lagged squared170

term of unexpected returns and one autoregressive term, i.e.,171

σ2
t+1 = ω + α1ε

2
t + β1σ

2
t , with α1 + β1 < 1. (2)

In practice, this specification is useful to produce a standard residual sequence that satis-172

fies the approximate independent homo-distribution, and the elimination of variance dynamic173
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assumptions required by the EVT framework. Regarding the EVT framework, it is impor-174

tant to recall that, basically elaborated by Emil Julius Gumbel who proposed the Gumbel175

distribution, the EVT is often used to analyze probabilistic rare situations. In this paper, we176

propose to apply the Peaks Over Threshold (POT) modeling of EVT, which models extreme177

events while focusing not only on the largest (maximum) events but also on all events greater178

than some large preset threshold. Accordingly, the EVT holds that tails follow the following179

Generalized Pareto distribution (GPD):180

GPD(y; ξ, β) =


1 −

(
1 + ξy

β

)− 1
ξ if ξ > 0

1 − e(− y
β ) if ξ = 0

, (3)

where the so-called tail-index parameter ξ controls the shape of the tail of the distribution and181

in particular how quickly the tail goes to zero when the extreme, y, goes to infinity. It can be182

estimated with the Maximum Likelihood Estimate (MLE). In practice, before we estimate it,183

the tail should be defined, and a threshold u should be set. If the value exceeds the threshold,184

it is in the tail. The value of the parameters in the estimation of the GPD distribution is taken185

only from the tail—that is, from the value that is not smaller than the threshold u. If u is186

too large, the tail value will be very small and this estimate will not be stationary. However,187

if u is too small, the tail value will be too large to conform to the hypothesis of the EVT188

model, leading to biased results. That is, using the empirical estimation method proposed by189

Christoffersen (2012), we select the threshold u which could guarantee that the number of tail190

values is about 50.191

The tail-index parameter ξ of the GPD distribution can be estimated with the Hill esti-

mator. The key idea behind the Hill estimator is to approximate the GPD distribution (3)

by

F (y) = 1 − cy−1/ξ ≈ 1 − (1 + ξy/β)−1 = GPD (y; ξ, β) ,

for y > u and ξ > 0. Then, we can use the maximum likelihood estimation methods(MLE) to192

get the Hill estimator as follows,193

ξ = 1
Tu

Tu∑
i=1

ln
(

yi

u

)
, for yi > u , (4)
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where Tu is the number of observations y larger than u. The parameter c is estimated by194

c = Tu

T
u1/ξ , (5)

where T is the total number of observations. The cumulative density function for observations195

beyond u is accordingly approximated by196

F (y) = 1 − cy
1
ξ = 1 − Tu

T

(
y

u

) 1
ξ

. (6)

Dynamic VaR is commonly used to measure the risk of returns in practice, since it will197

change drastically in according to a drastic change in returns. The dynamic VaR from the198

EVT combined with the variance model can be calculated as:199

VaRp
t+1 = µt+1 + σP F,t+1F

−1
1−p (7)

where the loss quantile F−1
1−p is given by200

F−1
1−p = u

 p(
Tu

T

)
−ξ

(8)

and σP F,t+1 is estimated by using the GARCH model.201

3.2 Connectedness202

Based on a vector auto-regression (VAR) model, the decomposition of the generalized203

forecasting error variance is an essential part of the framework of Diebold & Yilmaz (2012).204

First, we set up the following Generalized VAR (GVAR) model:205

Xt =
P∑

i=1
ΦiXt−i + εt (9)

where: Xt stands for an N × 1 vector of the possible endogenous variables. Φi stands for the206

N × N auto-regressive coefficient matrices, while ε ∼ (0, Σ) is a vector of independent and207

identically distributed disturbances with 0 mean and Σ covariance matrix. We can represent208

the VaR process explained above as:209

Xt =
∞∑

i=1
Biεt−i (10)
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where: Bi denotes an N × N coefficient matrix, which satisfies a recursion of the form210

Bi = Φ1Bi−1+Φ2Bi−2+· · ·+ΦpBi−p. B0 among them is the N×N identity matrix, while Bi = 0211

when i < 0. Then, based on the H-step ahead Forecasting Error Variance Decomposition212

(FEVD) method, we define our own variance components and cross-variance components for213

the energy markets in our work. The spillover index θij(H) is the cross-variance components214

defined as:215

θij(H) =
σ−1

jj

∑H−1
h=0 (e′iBhΣej)2∑H−1

h=0 (e′iBhΣB′hei)
(11)

where: Σ denotes the covariance matrix of the vector of errors ε, and σjj represents the216

standard deviation of the error term of the jth equation and ei is a selection vector with the217

ith element as 1 and the remaining elements as 0. Then, we standardize the spillover index in218

Eq.(11) as follows:219

θ̃ij(H) = θij(H)/
N∑

j=1
θij(H) (12)

with ∑N
j=1 θ̃ij(H) = 1 and ∑N

ij=1 θ̃ij(H) = N by construction. Among them, the θ̃ij(H) is the220

pairwise directional connectedness which is from j to i at the level H. And then total spillover221

index can be calculated as:222

C(H) =
∑N

ij=1,j ̸=i θ̃ij(H)∑N
ij=1 θ̃ij(H)

× 100 =
∑N

ij=1,j ̸=1 θ̃ij(H)
N

× 100 (13)

Next, we further measure the total direct connectedness of individual markets to analyze223

the specific market’s contribution to the process of risk spillovers. We concentrate on each224

single market and assess the total risk it receives or transfers. The from connectedness that225

measures the shocks from all other sectors to sector i is calculated as:226

Ci←∗(H) =
∑N

j=1,j ̸=i θ̃ij(H)∑N
ij=1 θ̃ij(H)

× 100 =
∑N

j=1,j ̸=1 θ̃ij(H)
N

× 100. (14)

The connectedness, which represents the total risk that released by market i to the other227

11 markets in the network in the framework is computed as:228

C∗←i(H) =
∑N

j=1,j ̸=i θ̃ji(H)∑N
ij=1 θ̃ji(H)

× 100 =
∑N

j=1,j ̸=1 θ̃ji(H)
N

× 100. (15)
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Finally, we specify the net directional connectedness of market i to all other markets as:229

Ci(H) = C∗←i(H) − Ci←∗(H) (16)

Hereafter, We will construct a connectedness table to visualize the connectedness network.230

The elements in this table will show the pairwise directional connectedness between each two231

markets.232

4 Data and Preliminary Analysis233

4.1 The Data234

Figure 1 shows the energy markets selected for this study and the criteria used to classify235

them. The Chinese energy markets include coal, fuel oil, etc, while the international crude236

oil markets are the Brent and WTI crude oil markets. We divide the 10 energy markets in237

China and the two dominant international crude oil markets into upstream and downstream238

players based on the industry characteristics. Also, based on the industry chains, they are239

divided into the petrochemical industrial chain and the coal industrial chain. Table 1 shows240

the symbols of all of the energy futures markets. We obtained daily price data for energy241

futures from the Wind database. Considering the time of the establishment of Chinese energy242

futures markets and the data availability and representativity, we select the daily price series243

of the main futures contracts of the 12 energy commodities from June 17, 2014, to March244

22, 2022. The data include all the main energy futures listed and traded on Chinese futures245

exchanges (see Table 1).246
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Figure 1: Energy industrial chains.

Table 1: Symbol of commodities

Commodity Symbol Exchange Commodity Symbol Exchange

Bitumen BU SHFE Polypropylene PP DCE
Fuel oil FU SHFE Methanol MA ZCE
Coke J DCE Pure Terephthalic Acid TA ZCE
Coking Coal JM DCE Steam Coal ZC ZCE
Polyethylene L DCE Brent Crude Oil Brent ICE
Polyvinyl Chloride V DCE WTI Crude Oil WTI NYMEX

Note: This table lists the abbreviations for the energy futures markets in this paper. In addition, SHFE,

DCE, ZCE, ICE and NYMEX correspond to the Shanghai Futures Exchange, Dalian Commodity Ex-

change, Zhengzhou Commodity Exchange, Intercontinental Exchange and New York Mercantile Exchange,

respectively.
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4.2 Preliminary Analysis247

We transform daily prices into logarithm and we compute the return series as a first248

different of prices in logarithm. Table 2 shows the main descriptive statistics of these series249

and we note different remarks. First, the coke (noted J) and coking coal (noted JM) futures250

price log returns show highest average values (0.062 and 0.071, much larger than the others),251

while polyethylene (noted L) has the lowest returns (–0.015). Four of the 12 commodities252

show negative average returns (i.e., the futures markets for bitumen (noted BU), Polyethylene253

(noted L), Polypropylene (noted PP), and Pure Terephthalic Acid (noted TA), indicating that254

the average return on futures trading in these markets is not satisfactory. Second, the WTI255

crude oil (WTI) shows the biggest standard deviation value, followed by fuel oil (FU) and256

Brent crude oil (Brent), which is inline with the volatility excess that has characterized the oil257

sector over the last period. Third, except for methanol (MA), the returns of all commodities258

are apparently left biased. The WTI crude oil series has the highest left skew, suggesting259

that there are numerous small gains and sudden extreme losses in the WTI market. Fourth,260

the kurtosis of steam coal (ZC), Brent crude oil (Brent), and WTI crude oil is much larger261

than 3, showing that their tail of the distribution of returns is fatter and has an obviously262

higher peak shape. Therefore, most of the data are clustered in a similar manner, making the263

application of Extreme Value Theory to these data a prior appropriate method. Finally, the264

results of Augmented Dickey-Fuller (ADF) tests show that all return series under consideration265

are stationary at the 99% confidence level.266

Next, We present the performance of the VaR and return series for each energy futures267

market in Figure 2. The red colour in the figure represent the VaR performance, and the268

blue colour represents the energy returns. Overall, we note a high volatility. Every energy269

futures market experiences frequent and erratic oscillations, but when measured along the270

vertical axis, China’s energy futures market primarily varies between [-10, 10], with a few271

exceptions. Only the swings in the global crude oil market can reach -30 or -50, however.272

This demonstrates that the change in the crude oil market is more difficult to foresee and273

may has a greater damaging impact, while the change in the China energy futures market is274

14



rather steady. We also point to further evidence of significant clustering effects regardless of275

the energy futures market.276
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Figure 2: Returns and VaRs.
Note: Figure 2 shows the price returns series and Value-at-Risk measured of twelve energy futures markets

from June 17, 2014 to March 22, 2022: BU, Bitumen; FU, Fuel oil; J, Coke; JM, Coking coal; L,

Polyethylene; MA, Methanol; PP, Polypropylene; TA, Pure Terephthalic Acid; V, Polyvinyl Chloride; ZC,

Steam Coal, as well as as those of the WTI and Brent crude oil futures markets.
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Table 2: Descriptive statistics of commodity returns.

Commodity Mean(%) Std Min Max Skewness Kurtosis ADF

BU -0.007 2.077 -10.502 10.263 -0.099 6.288 -40.519***

FU 0.005 2.849 -22.461 21.311 -0.088 13.189 -45.076***

J 0.062 2.265 -15.621 9.112 -0.648 7.144 -42.005***

JM 0.071 2.355 -14.509 13.467 -0.361 8.372 -44.167***

L -0.015 1.417 -9.621 7.622 -0.228 7.682 -42.771***

MA 0.004 1.804 -10.093 8.434 -0.01 5.637 -41.903***

PP -0.013 1.522 -10.431 6.807 -0.422 7.655 -42.052***

TA -0.008 1.57 -8.402 6.782 -0.135 5.702 -42.350***

V 0.002 1.419 -8.349 7.091 -0.23 6.904 -41.399***

ZC 0.029 2.033 -23.327 11.303 -1.525 20.915 -41.090***

Brent 0.000 2.623 -30.856 15.449 -1.504 26.023 -43.974***

WTI 0.001 3.262 -48.081 24.131 -2.049 43.803 -11.409***

No. of Obersevations 1812

Note: ADF denotes the statistic of ADF test for the return series. (∗∗∗) denotes the rejection of unit

root at the 1% significance level. BU, Bitumen; FU, Fuel oil; J, Coke; JM, Coking coal; L, Polyethylene;

MA, Methanol; PP, Polypropylene; TA, Pure Terephthalic Acid; V, Polyvinyl Chloride; ZC, Steam Coal,

WTI and Brent, are the symbols for Energy Futures markets and the two international crude oil futures

markets respectively.

5 Empirical results277

5.1 Results of Estimate of the Value at Risk278

First, we need to test for presence of an Auto-regressive Conditional Heteroscedasticity279

(ARCH) effect in the data before performing a GARCH model. The results of the Lagrange280

Multiplier test (LM test) that we reported in Table 3, do not reject the alternative hypothesis281
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of an ARCH effect in the data. Second, with reference to the Akaike information criterion282

(AIC) rule, the GARCH (1,1) model seems as the most suitable specification to represent the283

returns of the energy futures markets under consideration284

Furthermore, for a matter of robustness, we measure the efficiency of the VaR model used285

in this work, following the backtesting methods of Kupiec (1995) and Christoffersen (1998).286

Briefly, assuming that the predicted VaR on day t is V aRt+1, when the actual loss on day287

t + 1 exceeds this VaR, it is said that the model fails to measure the VaR of day t + 1. If the288

violation rate of the model is statistically consistent with the assumed violation rate, then it289

can be considered that the model can accurately and effectively measure the risk at a given290

significance level.291

Thus, we applied the Christoffersen (1998) independence test to assess the predictive292

performance of the VaR model. Measured volatilities may be interdependent or interfere with293

each others, and the occurrence of one violation may not be independent of the occurrence of294

a previous violation. However, a successful VaR model should try to satisfy the independence.295

Then, we construct the independence statistic LRIND and if the chi-square test of this statistic296

is significant at a certain significance level, the model can be seen as invalid.In addition, we297

carried out the Christoffersen conditional coverage test to compute the LRcc statistic and the298

Kupiec unconditional coverage test to estimate LRuc. If the p-values of these testing statistics299

are large enough, the model is considered as effective.300
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Table 3: Results of Lagrange Multiplier test

Commodity P-value Commodity P-Value

BU 0.0006 PP 0.0068

FU 0.0005 TA 0.0000

J 0.0003 V 0.0000

JM 0 ZC 0.0000

L 0.0268 Brent 0.0000

MA 0.4918 WTI 0.0000

Note: a LM statistic with a p-value less than 10% denotes the presence of an ARCH effect at the significance

level of 10%.
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Table 4: Backtesting Results

Commodity Violation Rate(%)
LRuc LRIND LRcc

T-Statistic p-value T-Statistic p-value T-Statistic p-value

BU 1.159 0.434 0.507 1.368 0.242 2.255 0.324

FU 0.938 0.071 0.789 2.075 0.150 2.216 0.330

J 0.938 0.071 0.789 2.075 0.149 2.216 0.330

JM 0.993 0.001 0.977 0.361 0.548 0.363 0.834

L 0.938 0.071 0.789 0.322 0.570 0.463 0.794

MA 0.938 0.071 0.789 0.322 0.570 0.463 0.794

PP 0.938 0.071 0.789 0.322 0.570 0.463 0.794

TA 0.938 0.074 0.789 0.323 0.571 0.463 0.794

V 1.159 0.434 0.507 10.325 0.001 11.212 0.004

ZC 1.049 0.043 0.837 5.981 0.015 6.068 0.048

Brent 0.828 0.576 0.448 2.525 0.112 3.671 0.160

WTI 0.938 0.071 0.790 6.852 0.009 6.993 0.030

Note: We construct independence statistic LRIND, if the chi-square test of it is significant at a certain significance level, the model is

invalid. In addition, we also carry out Christoffersen conditional coverage test to compute the statistic LRcc and Kupiec unconditional

coverage test to compute the statistic LRuc. The significance level is set as 5%. When p-value of the test is greater than 5%, it is

considered to have passed the test.
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Overall, as shown in Table 4, the violation rates of the VaR performance for all energy301

futures markets are stable and nearly at the risk level α = 0.01. According to the results of the302

unconditional coverage test, independence test, and conditional coverage test, the GARCH-303

EVT-VaR model can accurately forecast the VaR, and the proposed model is thus effective.304

5.2 Static connectedness: Full sample305

After confirming the accuracy of the VaR model, we propose to continue with the test of306

inter-market risk spillover’s effects. To this end, we first show the main descriptive statistics307

of the VaR series for all energy futures markets in Table 5.308

From Table 5, we can see that the average VaR of fuel oil (FU) is the largest (7.592),309

indicating that the average maximum possible loss of fuel oil futures market is the largest310

among these markets. Both international oil markets also point a high level of losses on311

average. In contrast, the Polyvinyl Chloride Futures market (V) shows the smallest average312

maximum possible loss, showing that its extreme risk may be smaller than the others. Further,313

for several Chinese energy future markets (J, JM, ZC) as well as the two oil international314

markets, the variance of the VaR is significantly high suggesting further evidence of volatility315

excess of their losses. Also, We note that the Kurtosis of the VaR for fuel oil, Brent, and WTI316

crude oil futures is so high, indicating that their VaR have a more dispersed distribution and317

a leptokurtic excess. Overall, this finding might point to further interconnectedness between318

international oil markets and the Chinese energy future markets.319

Next, we apply the spillover tests of Diebold & Yilmaz (2012) to better characterize the320

spillover’s effects among these 12 energy futures markets as well their interactions with the321

international oil market. The static, full sample extreme risk spillovers in the network are322

summarized in Table 6. The total extreme risk spillover index is 41.65 for the full sample,323

meaning that the spillover effect between energy future markets explains 41.65% of the total324

net extreme risks of the energy futures markets network. This value is close to 50%, indicating325

that nearly half of the extreme risk spillovers in the market network are due to risk contagion326

or exacerbation caused by inter-market links. This result is relevant and it indicates that327
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even an unusual extreme risk in just one market can affect the prices and performance of328

other energy futures markets. The conclusion is established when China’s energy futures329

markets are confronted with the impact of the international crude oil market, showing that330

once China’s energy futures market network is brought into the impact of the international331

crude oil market, there is a noticeable inter-market risk spillover effect. More information on332

the crude oil market’s specific influence on the Chinese energy futures markets is now available333

in Table 6.334

Table 5: Main Descriptive Statistics of Commodity VaRs

Commodity Mean Std Skewness Kurtosis

BU 5.521 0.8 -0.606 6.54

FU 7.592 0.977 2.733 13.563

J 5.941 1.174 0.311 3.076

JM 5.979 1.297 0.652 3.288

L 3.684 0.416 0.107 2.201

MA 4.498 0.392 0.591 5.9

PP 4.171 0.453 0.807 3.716

TA 4.024 0.543 0.388 3.254

V 3.418 0.628 0.928 5.184

ZC 5.012 1.32 1.472 5.088

Brent 6.147 1.333 2.521 12.569

WTI 7.009 1.682 3.72 21.497

No. of Obersevations 1812

Note: This tables reports the main statistics for the VaR for ten Chinese energy futures markets (BU,

Bitumen, FU, Fuel oil, J, Coke, JM, Coking coal, L, Polyethylene, MA, Methanol, PP, Polypropylene, TA,

Pure Terephthalic Acid, V, Polyvinyl Chloride, ZC, Steam Coal) and the WTI and Brent crude oil futures

markets.
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Table 6: VaR Connectedness Matrix of Commodity (Full sample)

BU FU J JM L MA PP TA V ZC Brent WTI From

BU 51.1 2.84 0.89 0.11 3.42 3.29 5.34 8.45 2.1 0.05 12.09 10.32 48.9

FU 1.62 75.42 0.17 0.17 2.13 0.71 1.81 2.45 0.33 0.1 8.03 7.06 24.58

J 2.17 0.05 62.75 13.47 2.32 3.15 7.01 1.71 2.47 4.64 0.18 0.07 37.25

JM 0.79 0.02 16.67 58.27 1.44 2.94 8.64 0.76 4.82 5.33 0.22 0.1 41.73

L 3.07 1.59 1.84 0.46 47.11 5.02 18.43 4.96 9.62 0.39 4.18 3.33 52.89

MA 3.49 1.43 2.29 0.25 5.5 58.49 10.01 6.04 7.04 1.2 2.45 1.81 41.51

PP 2.28 1.41 3.48 0.59 16.86 5.54 51.23 4.22 6.93 0.4 3.72 3.34 48.77

TA 5.82 2.23 0.53 0.14 4.11 3.24 7.06 56.89 2.23 0.92 8.97 7.85 43.11

V 3.8 1.04 1.92 0.48 9.23 7.21 8.64 2.56 60.52 1.88 1.52 1.2 39.48

ZC 0.23 0.39 2.23 4.93 0.53 2.43 1.72 1.22 3.69 82.48 0.12 0.02 17.52

Brent 2.05 1.23 0.32 0.01 1.97 1.43 3.21 2.79 0.29 0.04 45.75 40.9 54.25

WTI 1.51 0.64 0.16 0.01 1.23 1.1 3 1.75 0.2 0.02 40.17 50.2 49.8

To 26.82 12.88 30.5 20.64 48.74 36.07 74.87 36.91 39.73 14.98 81.65 76

Net -22.07 -11.7 -6.75 -21.09 -4.15 -5.43 26.1 -6.2 0.25 -2.55 27.4 26.21 41.65

Note: This table reports the connectedness of a market i to another market j. The results are based on the 10-day forecast error variance

and the underlying VAR is estimated with 2 lags for the Ten Chinese energy futures marketsand the WTI and Brent international crude

oil futures markets.
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Table 7: Net VaR connectedness matrix of commodity: Full sample.

BU FU J JM L MA PP TA V ZC Brent WTI

BU 0 1.22 -1.28 -0.69 0.35 -0.2 3.06 2.62 -1.69 -0.18 10.04 8.81

FU -1.22 0 0.11 0.15 0.54 -0.72 0.39 0.22 -0.72 -0.29 6.8 6.42

J 1.28 -0.11 0 -3.2 0.48 0.87 3.54 1.18 0.55 2.41 -0.14 -0.09

JM 0.69 -0.15 3.2 0 0.98 2.69 8.04 0.62 4.34 0.4 0.21 0.09

L -0.35 -0.54 -0.48 -0.98 0 -0.48 1.58 0.85 0.39 -0.14 2.21 2.09

MA 0.2 0.72 -0.87 -2.69 0.48 0 4.47 2.8 -0.17 -1.23 1.02 0.71

PP -3.06 -0.39 -3.54 -8.04 -1.58 -4.47 0 -2.84 -1.71 -1.32 0.51 0.34

TA -2.62 -0.22 -1.18 -0.62 -0.85 -2.8 2.84 0 -0.32 -0.3 6.18 6.1

V 1.69 0.72 -0.55 -4.34 -0.39 0.17 1.71 0.32 0 -1.81 1.22 1

ZC 0.18 0.29 -2.41 -0.4 0.14 1.23 1.32 0.3 1.81 0 0.07 0.01

Brent -10.04 -6.8 0.14 -0.21 -2.21 -1.02 -0.51 -6.18 -1.22 -0.07 0 0.73

WTI -8.81 -6.42 0.09 -0.09 -2.09 -0.71 -0.34 -6.1 -1 -0.01 -0.73 0

Note: This table shows the net connectedness between each two energy markets.
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Table 8: Return connectedness matrix of commodity: Full sample.

BU FU J JM L MA PP TA V ZC Brent WTI From

BU 43.36 2.88 2.59 2.6 5.31 6.2 5.61 8.52 4.19 0.79 9.16 8.78 56.64

FU 4.57 68.97 0.42 0.33 1.43 2.2 1.59 4.59 0.5 0.11 8.03 7.26 31.03

J 2.77 0.29 46.43 23.91 2.64 4.47 3.9 2.22 5.26 7.5 0.36 0.23 53.57

JM 2.78 0.21 23.59 46.01 2.39 4.42 2.99 1.68 5.13 10.5 0.15 0.14 54

L 4.47 0.77 2.06 1.9 36.64 9.62 22.3 5.82 10.94 1.02 2.35 2.1 63.36

MA 5.9 1.37 3.93 3.75 10.86 40.74 11.79 7.43 7.12 2.36 2.63 2.12 59.26

PP 4.62 0.81 2.99 2.3 21.68 10.02 35.58 5.95 10.07 1.22 2.54 2.22 64.42

TA 8.5 2.81 2.31 1.65 6.86 7.78 7.38 42.96 3.76 0.76 8 7.24 57.04

V 4.11 0.3 4.86 5 12.86 7.54 12.29 3.81 42.97 3.51 1.46 1.28 57.03

ZC 1.1 0.15 9.99 13.83 1.63 3.62 2.03 1.05 4.87 60.34 0.72 0.67 39.66

Brent 2.69 1.02 0.37 0.17 1.74 1.14 1.51 1.65 0.84 0.19 49.22 39.46 50.78

WTI 2.67 0.86 0.25 0.16 1.38 0.86 1.38 1.68 0.74 0.14 39.76 50.12 49.88

To 44.18 11.48 53.35 55.61 68.79 57.88 72.77 44.41 53.42 28.1 75.16 71.51

Net -12.46 -19.55 -0.21 1.62 5.43 -1.38 8.35 -12.63 -3.61 -11.56 24.38 21.63 53.05

Note: This table reports the return connectedness of a market i to another market j. The results are based on the 10-day forecast error

variance and the underlying VAR is estimated with two lags.
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Table 9: Net return connectedness matrix of commodity (Full sample)

BU FU J JM L MA PP TA V ZC Brent WTI

BU 0 -1.68 -0.19 -0.18 0.84 0.3 1 0.02 0.07 -0.31 6.48 6.11

FU 1.68 0 0.13 0.11 0.66 0.83 0.79 1.78 0.19 -0.04 7.01 6.4

J 0.19 -0.13 0 0.32 0.58 0.55 0.91 -0.09 0.4 -2.49 -0.01 -0.02

JM 0.18 -0.11 -0.32 0 0.49 0.67 0.69 0.04 0.13 -3.33 -0.02 -0.03

L -0.84 -0.66 -0.58 -0.49 0 -1.24 0.62 -1.04 -1.92 -0.61 0.61 0.72

MA -0.3 -0.83 -0.55 -0.67 1.24 0 1.77 -0.35 -0.42 -1.26 1.5 1.26

PP -1 -0.79 -0.91 -0.69 -0.62 -1.77 0 -1.43 -2.22 -0.82 1.03 0.85

TA -0.02 -1.78 0.09 -0.04 1.04 0.35 1.43 0 -0.05 -0.29 6.35 5.56

V -0.07 -0.19 -0.4 -0.13 1.92 0.42 2.22 0.05 0 -1.37 0.62 0.54

ZC 0.31 0.04 2.49 3.33 0.61 1.26 0.82 0.29 1.37 0 0.53 0.53

Brent -6.48 -7.01 0.01 0.02 -0.61 -1.5 -1.03 -6.35 -0.62 -0.53 0 -0.29

WTI -6.11 -6.4 0.02 0.03 -0.72 -1.26 -0.85 -5.56 -0.54 -0.53 0.29 0

Note: This table shows the net return connectedness matrix between each two energy markets.

Overall, The performance of the VaR connectedness between the individual markets is335

confirmed. For example, the WTI crude oil futures market has a maximum pairwise connect-336

edness of 40.17 with the Brent oil futures market, showing that the Brent market receives337

40.17% of its shocks from the WTI. This connection is no a surprise as volatilities of the338

two major international crude oil markets are often influenced by the same factors (demand339

shock, supply shock, geopolitical tensions, etc), which might explain their spillover effects340

(Klein, 2018). From Table 6, we can also see that the top five pairwise connectedness pairs341

are WTI-Brent, PP-L, J-JM, Brent-BU, and WTI-BU. The smallest pairwise connectedness342

was found in the pairs JM-WTI, ZC-Brent, JM-TA, FU-J, and FU-JM. The energy futures343

market in China, particularly the market for bitumen, is obviously more significantly impacted344

by crude oil (WTI or Brent). Surprisingly, however, the risk spillover effect of coke futures on345
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coking coal futures and polypropylene futures on polyethylene futures exceeds that of crude346

oil. This demonstrates that it is important to consider the potential of spillover between fu-347

tures markets that deal with related subject matters. These results confirm that there is more348

connectedness between commodities from the same sector and less connectedness between two349

sectors. Indeed, as revealed in Table 7, we find evidence of not only of an extreme risk flowing350

from the upstream to the downstream severe, but there are also some mutual impacts.351

Furthermore, to better clarify the superiority of the extreme risk framework, we also mea-352

sure inter-market risk spillovers for the price return series itself and we report the main results353

in Table 8. Accordingly, we find that the total net return spillover is about 53.05, which is354

higher than the total net extreme risk spillover. In addition, to represent the net connect-355

edness effect between different energy markets more clearly, we report the net connectedness356

between two markets directlyi in Table 9 and we visualize the static network performance357

in Figure 3(a) and Figure 3(b). Accordingly, we find that the risk spillover effects are more358

intuitive. The negative values represent the role of net risk spillover receivers. In Figure 3,359

the red circles in Figures 3(a) and 3(b) represent each energy market, and the size represents360

the relative position in the spillover effect. The line between the different circles represents361

the risk spillover relationship, while the direction of the arrows represents the transmitter to362

the recipient. The thickness of the line also indicates the strength of the spillover relationship.363

The analysis of this finding points to the relevance and dynamics of spillover’s effects between364

the Chinese energy future markets and the international oil market. We note for example that365

the international oil market plays an important role that is more pronounced for the WTI366

than for the brent. Furthermore, it appears that the polypropylene market shows the highest367

and more strongest actors in terms of spillover’s transmission. Finally, when comparing 3(a)368

and 3(b), we note that the use of ETV is helpful to capture more significant interconnection369

and spillover’s effects across Chinese energy future markets.370

Overall, from Figure 3, we can note that the most influential markets of the VaR con-371

nectedness network are the Brent and WTI crude oil markets, as well as the polypropylene372

market. These markets are equally dominant in the net connectedness network, but the role373
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(a) VaR Connectedness Network (b) Return Connectedness Network

Figure 3: connectedness network: Full sample.

Note: This figure reproduces the connectedness across ten Chinese energy futures markets (BU, Bitumen, FU,

Fuel oil, J, Coke, JM, Coking coal, L, Polyethylene, MA, Methanol, PP, Polypropylene, TA, Pure Terephthalic

Acid, V, Polyvinyl Chloride, ZC, Steam Coal) and the WTI and Brent nternational crude oil futures markets.
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Table 10: Net receivers and net transmitters of petrochemical sector and coal sector

Net Receivers Net Transmitters

Return

Petrochemical Sector BU, FU, TA Brent, WTI

Coal Sector J, V, MA, ZC JM, L, PP

VaR

Petrochemical Sector BU, FU, TA Brent, WTI

Coal Sector J, JM, L, MA, ZC V, PP

Note: Ten Chinese energy futures markets: BU, Bitumen; FU, Fuel oil, J, Coke, JM, Coking coal, L,

Polyethylene, MA, Methanol, PP, Polypropylene, TA, Pure Terephthalic Acid, V, Polyvinyl Chloride, ZC,

Steam Coal. WTI and Brent are two international crude oil futures markets.

of the other markets in both networks has changed. For example, the JM market is an obvious374

risk receiver in the VaR connectedness network, and the PP market has a very strong influence375

on it. Otherwise, when considering the return connectedness network, the JM market becomes376

a transmitter of spillover effects, while the PP market does not have a prominent impact on377

it. To sum up, We summarize the main performance of each energy futures market in the378

spillover process more clearly in Table 10.379

From an extreme risk perspective (Table 10), the coal industry is almost always a net380

receiver of spillovers, but its role as a net receiver is not as pronounced in the return-based381

spillover outcomes. We can see that the markets of the net transmitters and receivers in382

the petrochemical industry do not change in any way across the different network structures,383

but the sub-markets in the coal industry have a more differentiated function. The significant384

disruption outside the international crude oil market makes it necessary for the Chinese gov-385

ernment to manage the risk diffusion from the international energy market, and we can see386

that the TA, BU, and FU markets are some of the most vulnerable domestic energy markets.387

At the same time, the extreme risk spillover effects of the PP and V markets on the JM market388

cannot be ignored. Based on the network structure, managers can very clearly know which389
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market pairs should be focused on for management.390

5.3 Total dynamic extreme risk spillovers391

The analysis static spillover across energy future markets in a static framework is how-392

ever restrictive as it neglects the fluctuations in the target markets’ conditions over time, in393

particular when considering commodities. Indeed, the links between the commodities prices394

are likely to be time-varying especially throughout periods of turmoil. The static spillover395

analysis may therefore be biased and misleading. To deal with this problem and double check396

the robustness of our conclusions, we set up a rolling window–based analysis model about397

the spillovers among these markets. In particular, with reference to Naeem et al. (2020) and398

Mensi et al. (2021), we set the rolling window length to 200 days, which is the approximate399

number of trading days in a year. The dynamic extreme risk spillovers are shown in Figure400

4 and show different interesting results. Indeed, we can see that on July 7, 2015, and on401

March 22, 2022, the total spillovers fluctuate around 40% and 70.00%, with the lowest value402

occurring in September 2016 and the highest occurring in July 2020. Interestingly, it appears403

that the influence of risk spillover is small before a crisis and during recovery periods after404

economic crises, while it is significantly higher during periods of market turbulence and insta-405

bility. That is, our analysis captures the most spillovers effects caused by endogenous (i.e. oil406

supply shock) or exogenous (i.e. monetary policy shift, COVID-19 shock, trade war between407

China and the USA, etc) factors.408

That is, we note that for some major events, the total extreme risk spillovers increased409

significantly. For example, The first one was around the Chinese stock market crash in June410

2015 and that of crude oil in late 2015 (shale revolution), during which the prices of com-411

modities fell sharply and caused a panic in the market. In the following months, the risk412

transmission among the international crude oil market has increased, and the systemic risk413

in the domestic markets was serious as well. Second, in the following year, the commodity414

futures price index in the oil industry continued to decline, the energy futures markets suf-415

fered from serious losses, and the total spillovers remained high. The third was the outbreak416
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Figure 4: Total Extreme Risk Spillover Dynamic: The rolling window in this study is set as

200 days, while the predictive window for variance decomposition is set as 10 days.

Figure 5: Total return spillover dynamic.
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of COVID-19 at the beginning of 2020, during which the increase in total spillovers was close417

to 20%. The COVID-19 outbreak resulted in a significant decrease in the demand for energy418

products (i.e. Oil consumption in China decreased of 30 % and further disturbed the stabi-419

lization of the energy system. In addition, the export of energy derivatives in global trade420

plummeted, especially China’s coal exports. Specifically, they fell of 46.67 %, hitting a 7-year421

low. Moreover, there was the global energy crisis in 2021 and the Russia–Ukraine conflict in422

early 2022. Another noteworthy phenomenon is the aggregate dynamic extreme risk spillover,423

which represents the risk transfer between the international crude oil market and the Chinese424

futures market. We can see that this spillover of extreme risk is consistently prominent at the425

200-day window. This also suggests that the link between the international crude oil market426

and the Chinese energy market has always been close and that the impact of risk contagion427

may be long-lasting and serious, which is an issue that all stakeholders need to be aware of.428

As a matter of robustness to highlight the usefulness of our EVT analysis, we also carry429

out and report the dynamic return spillover (Figure 5). Accordingly, we observe more peaks430

and troughs in the dynamic extreme risk spillover (Figure 4) than in the dynamic return431

spillover (Figure 5), giving more credit to the EVT framework. Indeed, from Figure 5, the432

fluctuations are much smoother, and there are no obvious steep changes. In other words,433

the total extreme risk spillover is more sensitive when compared with the return spillover434

in responding to events. This suggests that return-based spillover risk does not accurately435

reflect shocks from extreme events and may overlook potential risks that are well hidden.436

This is consistent with our findings when using static spillover analysis, which demonstrates437

the robustness of our EVT analysis. Therefore, the EVT approach is more suitable to assess438

spillover’s effects from the perspective of extreme risk.439

5.4 Net Dynamic Extreme Risk Spillovers440

For instance, we describe the net extreme risk spillover of each energy futures market441

for further understanding of the risk transmission channels. The dynamic performance of the442

markets’ net extreme risk spillover is plotted in Figure 6. The part above the horizontal scale443
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of 0 represents the net spillover effect transmission, while the part below it represents the net444

spillover effect receiving.445

Figure 6: Net Extreme Risk Spillover of each Energy Market
Note: This figure plots net extreme risk spillover for Ten Chinese energy futures markets (BU, Bitumen, FU,

Fuel oil, J, Coke, JM, Coking coal, L, Polyethylene, MA, Methanol, PP, Polypropylene, TA, Pure Terephthalic

Acid, V, Polyvinyl Chloride, ZC, and Steam Coal), and the two international crude oil futures markets (WTI

and Brent).

From Figure 6, we note that the occurrence of extreme events exacerbates risk spillover446

effects and may shift the direction of the spillover transmission. For example, the JM market447

is a clear net receiver (the colored portion is largely below the horizontal line), and the PP448

market is a prominent net passer in these domestic energy markets (the colored portion is449
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Figure 7: Net return spillover of each energy market.
Note: This figure plots net return spillover for Ten Chinese energy futures markets (BU, Bitumen, FU, Fuel

oil, J, Coke, JM, Coking coal, L, Polyethylene, MA, Methanol, PP, Polypropylene, TA, Pure Terephthalic

Acid, V, Polyvinyl Chloride, ZC, and Steam Coal), and the two international crude oil futures markets (WTI

and Brent).
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largely above the horizontal line). Further, the stability of the Chinese energy futures market450

is significantly weaker than that of the global crude oil futures market when extreme events451

occur. For instance, from the surge of COVID-19 in early 2020 to the energy crisis in 2021,452

the roles of most Chinese energy futures markets have changed at least twice, while the WTI453

and Brent futures are always the net spillover transmitters. Therefore, it is important to454

adjust the viewpoints of extreme risk transmission over time to implement appropriate risk455

management strategies.456

We also compute and report the dynamic net return spillover in Figure 7. Accordingly, we457

note that for individual markets, the return spillover effects also behave more smoothly and458

with much less volatility. In fact, the focus on return series interaction generally underestimate459

the extreme risk for China’s domestic market. When comparing these two figures, we note460

that the risk spillover is more serious from an extreme risk perspective. The risk based461

on return measurement may "absorb" certain swings, but the sharp variations it overlooked462

are one of the most probable causes of risk for these energy futures markets, which may be463

the possible explanation for the outcomes of these two figures. Therefore, the extreme risk464

spillovers framework can provide a more accurate and cautious estimation of risk spillovers465

among China’s energy futures markets, especially in periods of high uncertainty. This is466

particularly relevant to assess an appropriate risk management framework.467

6 Conclusion468

This study explores the issue of risk spillover between the global crude oil market and469

the Chinese energy futures markets, as well as the risk spillover effects among local Chinese470

futures markets. To this end, we set up a methodological framework that we define while471

considering the industrial chain and market network elements. Econometrically, we measure472

the Value-at-Risk of each market as well as inter-market connectedness based on the GARCH-473

EVT model. Through analysing the spillover’s effect assumption from the perspective of474

energy futures returns and extreme risk perspective, we find a significant evidence of of risk475
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transmission between these markets from the perspective of spillover effects of extreme risks.476

Indeed, we provide new insights into which perspective is better for examining inter-market477

risk spillovers through a comparison of extreme risk spillovers and return series, comparing the478

results of extreme risk spillover effects with the return series’ spillovers for the energy markets479

network. Thus, we validate the strength and direction of risk spillovers among 12 markets480

and demonstrate the accuracy of our model formulation. This study reveals that extreme risk481

analysis, as opposed to typical return series analysis, is more effective in capturing changes482

in risk spillovers. According to empirical findings in this paper, the Chinese energy futures483

market is dependent on the global oil market. We also discover that there are considerable484

risk spillovers across the Chinese domestic energy futures market.485

Specifically, based on a static connectedness network analysis of the full sample, we iden-486

tify the net receivers in the petrochemical and coal industries, as well as the net transmitters487

comparatively. We observe that in most instances, the coal sector is exposed to high risks that488

are transmitted from the petrochemical sector. Additionally, the analysis from the VaR and489

return viewpoint demonstrates that the two energy futures markets with the highest pairwise490

connectedness always originate from the same industrial chain and that excessive risk spillovers491

can alter the degree of pairwise connectedness between certain commodities. We also analyze492

dynamic spillovers with the rolling window and find that the occurrence of extreme events493

increased the overall risk spillover in the markets. In addition, the spillover based on extreme494

risk is more sensitive to the crisis than the spillover based on the return series. Chinese energy495

futures reverse the roles of transmitters or receivers quite frequently over time, while inter-496

national crude oil futures are always net transmitters. Finally, for Chinese domestic energy497

futures markets, return spillovers obviously underestimate the spillover effect, implying that498

return spillovers cannot represent extreme risk spillovers. Therefore, there is a need to develop499

more scientific econometric models to predict and address extreme risk spillovers in China’s500

energy futures markets.501

For regulators and market participants, these findings have a variety of implications. First,502

regulators should put more emphasis on how each of the two highly interconnected markets503
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performs when establishing policies for the purpose to reduce extreme risk and provide risk504

spillover alerts. Second, our findings may be useful in illuminating for stakeholders the true505

function of each market in the risk spillover process. Third, we warn about the possibility of506

extreme occurrences and their consequences through our research of potential risk spillovers507

between markets. The results demonstrate that when a crisis arises, investors should pay508

attention to more than just the markets’ capacity to confront risks; as well, they need to509

consider how these markets tie into the overall network of the energy market.510

Finally, it is critical to keep in mind how dependent China’s domestic energy markets are511

on global crude oil markets, which lack the capacity to bear the dangers posed by global crude512

oil futures markets. In order to prevent serious risk transmission through inter-market chains513

and thereby increase market efficiency for China, regulators should encourage the improvement514

of market mechanisms, such as licensing price constraints and bank restrictions.515
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