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Abstract: Building occupancy profiles are critical in thermal and energy simulations. However,
determining an accurate occupancy profile is difficult due to its stochastic nature. In most simulations,
the occupant activities are usually represented by fixed yearly schedules, which are often derived from
guides and other similar sources and may not represent the simulated building accurately. Therefore,
an inaccuracy in defining occupancy profiles can be a source of error in building simulations. Over the
past few years machine learning has become very popular due to its ability to reveal hidden patterns
and relationships between data and this makes it suitable for investigating patterns in occupancy
data. This study proposes a novel hybrid model combining the Graph Neural Network and the
Long Short-term Memory neural network (LSTM) to predict the occupancy of individual rooms on
a typical office floor. The proposed Graph LSTM model can produce high-resolution occupancy
profiles of an office that are in good agreement with the reference occupancy profiles of the same
office. The reference occupancy profiles for this office were derived from an agent-based model using
AnyLogic and were not used in the training of the neural network. The proposed Graph LSTM model
outperformed other neural networks tested such as the Recurrent Neural Network (RNN), the Gated
Recurrent Unit (GRU) and LSTM. When Graph LSTM is compared to the other neural networks
tested, there is a range of improvement between 13.5 and 14.6% in the index of agreement, 38.3 and
46.8% in mean absolute error and 34.4 and 40.0% in root mean square error, when averaging the
differences over the whole office.

Keywords: occupancy; energy simulation; neural networks; GNN; LSTM; RNN; GRU; RNN

1. Introduction

The built environment is responsible for approximately 42% of all global carbon
dioxide (CO2 ) emissions [1], with 28% occurring during the building operation stage [2].
This includes energy used for heating, cooling, lighting, and other appliances. Recognized
by the International Energy Agency [3], the energy consumption of a typical building is
mainly determined by the following six parameters: the climate, the building envelope, the
building services, the indoor environment quality, the building operation and maintenance,
and the occupant behavior. The first four have been studied extensively, hence they can be
predicted and represented accurately in a model. However, the latter two rely heavily on
human behavior and activities, which are often unpredictable.

The occupancy of the space is the direct reflection of the occupant’s activities. The
number of people present in a space will contribute to the internal gain accordingly,
therefore directly affecting the HVAC usage, and other electricity consumption, such
as lighting and other appliances [4]. A reliable occupancy profile is critical in building
thermal and energy simulations. Moreover, it can also be used when the building is in
operation to aid the building services to operate more efficiently [5].
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It is challenging to determine an accurate occupancy model due to its stochastic nature.
In many simulations, the occupant activities are usually represented by fixed schedules,
neglecting the high levels of uncertainty in human behavior. This leads to simulations
where all occupants carry out the same actions, thus producing incorrect hourly demand
peaks [6]. Therefore, inaccuracy in defining occupancy profile is a significant source of
error in building thermal and energy simulations.

The most common occupancy profiles applied in energy simulation are the occupancy
profile from ASHRAE standard 90.1 [7] and the EnergyPlus typical schedule [8]. These
simple profiles fail to capture the complexity of actual circumstances, leading to more
inaccuracy in simulation results [9]. Clevenger and Haymaker [10] found that the variation
in energy use when altering occupancy profile and their environmental preference can
be as high as 150%. With the weather data, building envelope, and building services
defined and held constant, the variations are still significant [11]. This is also recognized
by the International Energy Agency as occupant behavior and is one of the six factors that
cause variation in energy usage in buildings [12]. Therefore, to produce a more reliable
result through building energy modeling, a more complex occupancy profile with the
consideration of occupant behavior will be more favorable [13].

The popularity of machine learning (ML) has raised dramatically over recent decades.
This is due to the improvement in computational power and the availability of data. The
application of ML in the building industry has also surged, from areas such as architecture
and construction to building operations. Due to the ability of ML in interpreting hidden
patterns and relationships between data, it was applied by a few studies on predicting
occupancy, such as using K-Nearest Neighbors (KNN), Support Vector Machine (SVM),
Artificial Neural Network (ANN), and decision tree [14–17]. However, most studies focused
on only the total occupancy of the whole office space, e.g., the total occupant count of the
whole building or floor. However, different room types in an office may exhibit unique
occupancy. Deep learning, as a part of a subset of ML, has proven to be highly effective
for pattern recognition. The main tool for deep learning is neural networks. By including
more features in the neural networks, they can be used for more targeted purposes. For
example, Graph Neural Network (GNN) is where the data structure of the processed data
is represented in graphs. The set of objects and their relationships are modeled as nodes
and edges. The edges can be directed or undirected based on the relationships between the
objects. Common applications of the GNN focus on node classification, link prediction, and
clustering, in areas such as text generation, image recognition, science, knowledge graph,
and graph generation. Another example is the Recurrent Neural Network (RNN), where a
recurrent neuron is added to a standard ANN. As the recurrent neuron is unfolded through
time, the hidden state of the last time step is fed to the current time step as additional
input. It is particularly useful in cases where future data are dependent on the past, such
as predicting stock prices. To further improve the RNN, a gated unit could be applied to
the RNN, such as Long Short-Term Memory (LSTM) cell or Gated Recurrent Unit (GRU).
An LSTM cell would decide which information is allowed on the cell state by learning
which information is essential, and decide whether to keep or forget the information during
training. The GRU cell is a simplified version of the LSTM cell. GRU does not have a cell
state and instead uses only the hidden state to convey the information. There has been
limited research conducted using neural networks for occupancy prediction.

This study proposes a hybrid model framework combining GNN and LSTM neural
network based on the one adopted by Qi et al. [18] for PM2.5 forecasting to predict the
occupancy of individual rooms in an office environment. The proposed model was not
applied in any previous study to predict room occupancy. The two deep-learning methods
were chosen due to the outstanding performance of the GNN in representing spatial
relationships by allowing the representation of the information as a graph structure to
include information such as connectivity between rooms. And the LSTM in predicting
temporal relationships by retaining essential information in its hidden state.
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The rest of the paper is presented as follows: Section 2 provides the background of the
previous work conducted on building occupancy studies using machine learning. Section 3
introduces the methodology of this work, which includes the proposed framework for the
hybrid GNN and LSTM in the context of occupancy prediction in an office environment,
and a simulated case study that was used to verify the framework. Section 4 presents and
analyses the result produced. In Section 5, the discussion of the result is shown. Lastly, the
conclusion sums up the work conducted and any potential future work to be performed.

2. Background

The energy used in a building is highly dependent on its occupancy; however, oc-
cupancy is hard to predict due to its stochastic nature. Several recent studies focus on
studying occupancy using ML methods. A popular approach to predicting occupancy
is using data from environmental sensors, such as the indoor air temperature, relative
humidity, CO2 concentration, VOC content, and air pressure. Applying an ML model to
determine the relationship between the occupancy and the environmental data collected,
then utilizing the established relationship to predict the occupancy in the future. The most
common approach includes KNN, SVM, ANN [14–16], and several data-mining methods
such as decision tree [19].

Anand et al. [20] produced a model where the real-time occupancy data were derived
from Wi-Fi sensing, and processed through k-means clustering to identify occupancy pat-
terns. The predicted result shows an error as low as 6.9% compared to the actual result.
Wang et al. [14] used Wi-Fi data in combination with other environmental data and pre-
dicted occupancy using KNN, SVM, and ANN. The robustness of the occupancy predicted
was improved by combining environmental sensor data with Wi-Fi data. Jiang et al. [21]
used the CO2 concentration measurement and applied it to Feature Scaled Extreme Learn-
ing Machine, the accuracy of the occupancy reported was up to 94%. Another work done by
Szczurek et al. [16] used CO2 concentration, indoor air temperature, and relative humidity
as inputs, KNN was recognized as more efficient than linear discriminant functions. Yang
and Becerik-Gerber [22] used data from light, sound, and motion detectors, along with CO2
concentration, air temperature, relative humidity, and passive infrared sensor in three typi-
cal offices to the Autoregressive Moving Average model (ARMA), Neural Network, Markov
Chain, and Logistic Regression algorithms for occupancy prediction. ARMA and Neural
Network yielded more accurate results than the other model tested. Ryu and Moon [23]
implemented Hidden Markov Model to the collected CO2 data and produced occupancy
prediction with an accuracy of between 85% and 93.2%. Peng et al. [15] investigated the
use of motion signals as the input of a back propagation ANN. With the combination of
ANN and look-up table, the result yielded the highest accuracy.

Data mining is also a popular ML research methodology applied in pattern recognition
for occupancy. Liang et al. [17] applied clustering to determine the patterns of the collected
occupancy data from an office. A decision tree was used to learn the schedule rules, which
were then used for predicting the occupancy profile. The model output results with a
deviation lower than 5%. D’Oca and Hong [19] created a three-step data-mining framework
using supervised and unsupervised learning. First, a decision-tree model was applied to
the occupancy collected from 16 offices. Then, a rule induction algorithm was adopted for
learning a pruned set of rules on the results from the first step. Lastly, patterns of occupancy
schedules were extracted using k-means cluster analysis. Four typical occupancy profiles
of the office environment were recognized.

The above studies provide valuable insight into possible ML techniques in occupancy
prediction. Although they all provide promising results in terms of accuracy, the studies
tend to focus on a larger scale. For example, they only investigated the occupancy of a
whole office, instead of the individual rooms, despite the apparent differences in occupancy
for each room type. Determining the relationships between each room in an office is a
possible approach for predicting more accurate occupancy. However, this may require a
more elaborate ML model to accomplish.
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In terms of the work conducted on hybrid GNN and LSTM model, Qi et al. [18]
introduced a hybrid model that combines Gated Graph Neural Network and LSTM (GC-
LSTM) for modeling and forecasting the spatiotemporal variation of PM2.5 concentrations
between different observation station. Moreover, the combination of GNN and LSTM
is also popular in traffic studies. Lu et al. [24] were the first to produce a Graph LSTM
for capturing the spatial and temporal relationships simultaneously. The model is used
for traffic speed prediction, where the results proved that the proposed method could
apprehend the spatial–temporal dependencies and produced better prediction than the
baseline methods, including standard Gated Recurrent Units (GRU) and LSTM.

3. Methodology

The modeling part of the project is divided into two main stages. The first stage is
creating the occupancy data through agent-based and discrete event modeling. The second
stage is the construction and training of the neural networks. The first stage of this study is
a crucial enabling step to test the proposed neural network. The occupancy profiles used
by D’Oca and Hong [19] and collected by Luo et al. [25] were analyzed, but the profiles
did not have high enough resolution that covers individual office rooms, and was not
suitable for the study of this paper. Duarte et. al. [26] reported on the difficulty of obtaining
data on occupant behavior. Several other studies as reported by Anand et al. [27] have
shown the growing interest in this field and the various monitoring methods that are being
developed to capture occupant behavior in more detail. A lot of these studies, though,
focus on the interaction of occupants with building systems, rather than just movement in
space. Often in the literature and online databases, it is possible to obtain limited data for
occupancy where the data available is either not of high resolution, or does not contain a
suitable and more complex office type. As a result, the more robust way to obtain high-
accuracy, high-resolution data for occupancy to be used as a reference case, would be
through monitoring. However, that was not possible during the period of this research
as due to the COVID-19 pandemic it was not possible to access offices and obtain such
data. To overcome this problem and create a reference case to test how the proposed model
would perform, occupancy data and profiles were derived through occupancy simulations.

3.1. Modeling and Simulation of Occupancy Data

To generate these occupancy profiles AnyLogic software [28] was used. Figure 1
illustrates the main steps in the first stage of the research. The agent-based and discrete
event modeling was completed using AnyLogic. First, the AnyLogic model was created,
then the geometric data of the five simulated office layouts was input. To simulate the
office environment, agent-based simulation was conducted by defining logistics such as
schedules and probability events. Then the simulation was conducted on all five layouts
individually in a span of 200 simulated workdays. Finally, the model output the raw
occupant count to be further implemented in the next stage.

Figure 1. Flow chart of the AnyLogic simulation stage of the research.

Agent-based modeling was used to model the movement of people in a small office
space for a day. To better reflect the real office environment, the most common office
activities were modeled in AnyLogic, and the occupants were mapped as individual agents.
The schedule of the agents is shown in Figure 2. The simulation is conducted between
6:00 and 23:00, with a total of 27 agents, including 25 employees and 2 managers. Every
minute, the number of occupants in each room is recorded, resulting in 1021 data points
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per simulation per room. The model is built with the pedestrian library in AnyLogic, with
the addition of JavaScript to specify the probability events.

Figure 2. Flow chart of the schedule applied for the simulation of the office.

All agents arrive evenly between 8:00 and 9:00. Upon arrival, the role of the agents
will be specified, and two agents will be set up as the manager and located in a separate
office. Based on the population of smokers in the UK in 2018 [29], 15% of the agents will
be set as smokers. This enables the possibility of triggering the smoking event. From 9:00
to 12:00, the agents will stay at their assigned tables. During this time, the specification
of the possible events is listed in Table 1. Lunch break for all agents will happen between
12:00 and 13:30, and all events will be suspended during this period, agents will either stay
at their Table (50% possibility), go to the staff lounge (30% possibility), or decide to leave
the office (20% possibility). After a lunch break, all agents will go back to their desks, and
the meeting event will resume. All possible events in the afternoon will be the same as in
the morning. The regular working day is over at 17:00; however, the agents will have a
10% chance of staying for overtime. The length of overtime has a uniform distribution of
between 30 min and 240 min. All agents will leave before 21:00.

Table 1. Specification of the possible events modeled.

Event Event Probability Numbers of Agent Duration Location

Printing 25% 1 5–10 min Printing room
Tea break 25% 1 2–6 min Staff lounge

Toilet break 25% 1 2–3 min Toilet
Smoking 25% 1 5–15 min Outside

Small discussion every 30 min 2–3 5–10 min Desk
Meeting 40% every 30 min 4–12 40–120 min Meeting room

Overtime 10% / 30–240 min Own desk
Day off 10% / whole day /

The events modeled can be categorized into two types, independent tasks, and group
events. Printing, tea breaks, toilet breaks, and smoking are independent for each agent
and only involve one agent at a time. Every half to one hour (triangularly distributed with
45 min as mean), the independent events listed above have the possibility of occurrence of
25%. Once this happens, a cool-down period of 2 h will be applied. Group events include
small group discussions and meetings. Small group discussions will happen every 30 min
involving 2 or 3 agents and will be located randomly at one of the agent’s desks. The event
time will be uniformly distributed between 5 and 10 min. For meetings, the number of
people involved is uniformly distributed between 4 and 12, and the meeting length of 40 to
120 min. Every 30 min, there is a possibility of 40% to trigger a meeting. For cases with
multiple meeting rooms, the meeting will be prioritized to be held in one meeting room
first. Only when the first meeting room is occupied, the second one will be used.
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The office model consists of six types of rooms: main office space, manager office,
meeting room, printing room, staff lounge, and toilet. A total of five layouts were created in
AnyLogic to generate occupancy data, the 5 layouts have a different combination of main
office space and meeting room count. The layouts shown in Figure 3 were applied as the
training set for the training of the neural networks in the next stage. Layout 5, shown in
Figure 4, was the testing set used for verifying the neural networks later.

Figure 3. Office layouts used for the AnyLogic simulation and the training of the neural network:
(a) Layout 1. (b) Layout 2. (c) Layout 3. (d) Layout 4.

Figure 4. Office Layout 5, applied for the AnyLogic simulation and the testing for the neural network.

Due to the limitation of simulating and outputting in batch in AnyLogic, the total
simulation conducted was 200 for each office layout, yielding a total of 1000 sets of data.
Each set consists of the number of people in each room from 6:00 to 23:00 at a one-minute
time step. As the events in the model are all based on the probability given, the output
each time will be slightly different, but still maintain a similar trend throughout all cases.
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3.2. Neural Networks Construction and Testing

After the occupancy profiles from AnyLogic simulations were obtained, they were
used to research the proposed neural network framework. Figure 5 shows the flow chart of
the steps performed in the neural network construction and testing stage of this research.

Figure 5. Flow chart of the neural network construction and testing stage of the research.

This study proposed a model combining GNN and LSTM to study and predict the
occupancy of each room in office settings. Three baseline neural networks, RNN, GRU,
and LSTM are also constructed for comparison. The neural networks are constructed
using Python with PyTorch Geometric and TensorFlow. The methodology adopted by
Qi et al. [18] on creating a hybrid GCN and LSTM model for forecasting PM2.5 is a useful
reference for this study. They applied a graph convolution operation to represent the
spatial feature of each PM2.5 monitoring station. Then, the temporal features of the data
are processed by LSTM. The input used for the LSTM is the combination of the graph
convolutional features and the original signals. This study employed a similar framework
for the construction of the Graph LSTM to determine the spatial dependency of each office
room and the occupancy time series.

To represent different layouts in the same matrix, all data are pre-processed using
MATLAB before using as the input of the neural network. For each set, the occupancy data
are combined with a room indicator, as shown in Figure 6. As the maximum number of
rooms for this study is ten rooms, all occupancy is updated into matrix X1021×10, where
each column represents the occupancy of each room. If the room is not present in the
layout, the whole column will be zero. A matrix of dummy variables I1021×10 is also added
to indicate if each room is presented in the layout. The whole column will be 0 if the room
does not exist in the layout, and 1 if the room exists. The combination of the new occupancy
matrix and the matrix of room indicator is then the input used to create the neural network.

Figure 6. Pre-processed matrix for the baseline neural networks.

By stacking the matrix created above for all training sets together, a 3D array containing
all training data is produced (Figure 7). This array is then input into the respective baseline
neural networks for training. After training is completed, the 2D matrix from Figure 6 of
the test set is fed to the trained neural network model, and the predicted occupant count
for each room based on the test set is rounded to the nearest integer to better represent
occupant count, and collected for later analysis.
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Figure 7. 3D array input for the training of the baseline neural network.

The Graph LSTM is constructed using PyTorch Geometric, an extension library for
PyTorch built for deep learning on graphs and various other irregular structures [30]. To
apply the GNN, the data are transformed into a graph structure, G = (V, E). Where the
nodes V indicate each room in the office and the edges E are their connectivity. The graph
structure is represented by their corresponding adjacency matrix A. Figure 8 shows the
graph structure and the corresponding adjacency matrix for Layout 4. Please note that
the graph structures illustrated below are only to demonstrate the connectivity between
the nodes, and the number of nodes and edges, the length of the edge, and the location
of the nodes are irrelevant in this case. Each row and column of the adjacency matrix
represents the nodes in the structure, the corresponding value in the adjacency matrix will
be 1 if a connection is present, and 0 otherwise. In this case, the rows and columns of the
adjacency matrix represented each room of the office, ‘1’ indicated the two rooms were
connected and agents were able to move between the rooms, and ‘0’ is where the rooms
were not connected and agents were not able to move between the two rooms. As the edges
are non-directed, all adjacency matrices applied are symmetrical. Moreover, the distance
between the rooms was not considered in this problem to simplify the model and reduce
training time.

Figure 8. The graph structure and adjacency matrix for Layout 4: (a) Graph structure. (b) Adjacency
matrix A.
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Figure 9 illustrated the proposed Graph LSTM model. The input layer consists of graph
signal Xt, which includes the occupancy data of each room at each time step for all training
sets, and adjacency matrix A. This input is then passed through a graph convolution layer
to compute the spatial features Ht. The combination of the spatial features Ht calculated
and the graph signal Xt, is then fed to the LSTM layer. Next, the product from the LSTM
layer is directed through an output layer, where the predicted occupancy value will be
computed and rounded to the nearest integer before outputting for further analysis.

Figure 9. Proposed Graph LSTM architecture, modified from the framework created by Lu et al. [24].

The detailed settings for all experiments are kept the same and are listed in Table 2.
For training and validation, the inputs are the data from layouts 1 to 4, and the test set is the
data from Layout 5. This is to ensure the neural networks have learned the relationships
between the different room and their occupancy pattern, by exposing them to multiple
different layouts. In addition, the data chosen for the test set is the layout that was not used
in training, hence, testing the ability of the neural network model in predicting occupancy
of layouts with room combinations that the network has not seen before. Five hidden layers
are applied for all neural networks, and each layer has 64 neurons. The learning rate is
set as 1× 10−3 , and the maximum epoch is 200. To prevent overfitting, a validation set is
adopted to employ early stopping if there is no decrease in loss for ten consecutive epochs.
Mean squared error is applied as the loss function for this study.

Table 2. Experimental settings for baseline neural networks.

Parameter Value

Number of data points 10,005,800
Training set 64%

Validation set 16%
testing set 20%, Layout 5

Hidden layer 5
Neuron in each layer 64

Learning rate 1× 10−3

Early stopping patience 10
Maximum epoch 200

Loss function Mean square error (MSE)

Three evaluation metrics are applied to the test set to assess the performance of the
proposed model, Index of agreement (IA), mean absolute error (MAE), and root mean
square error (RMSE). IA with a value closer to one implies a higher agreement between
the predicted and the actual result. For MAE and RMSE, the lower the error, the better the
model. IA, MAE, and RMSE are formulated as follows:

IA = 1− ∑T
i=1(oi − pi)

2

∑T
i=1(|pi − ō|+ |oi − ō|)2

(1)
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MAE =
1
T

T

∑
i=1
|oi − pi| (2)

RMSE =

√√√√ 1
T

T

∑
i=1

(oi − pi)2 (3)

oi: Ground truth occupancy at time step i.
pi: Predicted occupancy at time step i.
ō: Average occupancy.

4. Results and Analysis

This section will start by presenting the office occupancy profiles produced from the
AnyLogic simulation. Then, the predicted occupancy from the neural network is compared
with the simulated data to examine the performance of the proposed Graph LSTM model.

4.1. AnyLogic Generated Occupancy Profiles

For all five office layouts, the simulation in AnyLogic produced a similar occupancy
pattern for each room. Figure 10 shows a set of total occupant counts produced using
Layout 2. The space is occupied between 8:00 and 21:00, with higher occupancy during
regular working hours, a small drop during lunch break, and a sharp decrease when
overtime started. This overall trend is as expected and is similar to the office occupancy
provided by ASHRAE [7]. As seen in the figure below, compared to the ASHRAE profile,
the occupancy data produced from the simulation fluctuate more during working hours, as
the model accounted for the possibility of agents leaving the office for a short period.

Figure 10. Whole office occupant count produced from AnyLogic compared with the occupancy
profile provided by ASHRAE for Layout 2.

Figure 11 shows the occupancy profile of one simulated day of all individual rooms
from layouts 1 and 5. From analyzing the overall pattern of the data presented, all rooms
have a highly fluctuated profile due to events created in the model, where the agents had
to travel to different rooms. The areas such as the main offices, where most rooms are
connected, often show large peaks due to the occupants passing through to reach another
location. Each simulation of the same layout generates slightly different occupancy due to
the nature of the probability settings, but the overall trend remains similar.

The data produced using AnyLogic were in good agreement with the ASHRAE
occupancy profile [7] at a whole office level. At an individual room level, the profiles
created by AnyLogic appear realistic as the model captured the fluctuations in occupancy,
which come from the activities and movement taking place within the office.
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Figure 11. Occupancy result of an individual office room from AnyLogic simulation for (a) Layout 1.
(b) Layout 5.

4.2. Predicted Occupancy Profiles from Neural Networks

The four predicted Neutral Network (proposed Graph LSTM, RNN, GRU, and LSTM)
occupancy profiles for each room are plotted against the corresponding AnyLogic simulated
occupancy profiles for comparison purposes.

Figure 12 shows the AnyLogic data and neural network predicted occupancies of the
main office 1 in one set of data produced with Layout 5. All models predicted the overall
occupancy trend of the space well. As the complexity of the neural network increases, the
detail of the outputs improves. The three baseline neural networks, RNN, GRU, and LSTM,
tend to produce a profile with relatively constant occupancy, where only the general trend
and the larger spikes were predicted. Moreover, the forecasted occupant count is usually
lower than the actual value. Although the Graph LSTM produced a highly noisy result, the
overall trend fits the AnyLogic simulation result well.

Figure 12. The simulated and predicted occupant count of Layout 5, main office 1.

The results of the meeting rooms are analyzed next. Figure 13 shows the predicted
occupant count of meeting room 1. The pattern for meeting room 2 is similar. However,
as meeting room 3 was underutilized in the AnyLogic simulation, all neural networks
predicted 0 occupancy throughout the day. Therefore, the data from this room is deemed
unsuitable for further analysis. Like the results for the main offices, all neural network
models capture the overall trend of the space well. However, the baseline model tends to
underestimate the occupant count, and the Graph LSTM produced a high amount of noise.
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Figure 13. The simulated and predicted occupant count of meeting room 1.

As shown in Figure 14 all neural network models were able to forecast the trend of
the occupancy of the staff lounge well, with one plateau during lunch break and several
small spikes throughout working hours. As the break event in the AnyLogic simulation
was based on probability and only lasted for a short period, the occurrence pattern is less
distinct. Hence, all models failed to predict most of the small spikes during working hours.
Similar to the results shown in the previously analyzed room types, the baseline neural
network models produced inaccurate occupant count by overestimating the value, and
although the Graph LSTM predicted the overall value correctly, the output was extremely
noisy with fluctuation of up to 7 counts.

Figure 14. The simulated and predicted occupant count of staff lounge.

The results from the neural networks for the manager’s office are shown in Figure 15.
The Graph LSTM can represent the overall trend decently, despite the noise presented.
However, the baseline results produced relatively constant occupancy and failed to include
more details. A possible explanation is that the room is always occupied at a meager
occupant count. This limited the amount of detail that could be included in the training data.

Figure 16 presented the predicted occupancy of the printing room. The Graph LSTM
produced a highly accurate result that models all the larger fluctuations and most of the
small variations compared to the simulated result. However, the baseline neural networks
all output a relatively flat occupant count with a maximum of one.

The predicted occupant count of the toilet is plotted in Figure 17. All baseline neural
networks, RNN, GRU, and LSTM, produced a constant zero occupant count throughout
the simulation day. The Graph LSTM was the only one to forecast the day, with higher
accuracy in the afternoon.
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Figure 15. The simulated and predicted occupant count of manager office.

Figure 16. The simulated and predicted occupant count of printing room.

Figure 17. The simulated and predicted occupant count of toilet.

To further analyze the predicted occupancy profile for individual rooms under dif-
ferent neural networks, the evaluation matrices, IA, MAE, and RMSE, were computed
and shown in Table 3. The Graph LSTM presented the best performance across all three
evaluation matrices for all rooms.

For IA, the closer the value is to one, the lower the model prediction error. IA is
a unit value; therefore, it is used to compare the performance of the neural network
models between the application in different rooms. Figure 18 plotted the IA of all rooms
in Layout 5. For all main offices, meeting rooms, and staff lounge, all neural networks
show promising results, with the Graph LSTM slightly outperforming the baseline neural
networks by between 0.03% to 5.75%. In the rest of the rooms, all neural network models
did not perform as well as in the previously analyzed rooms. The manager room shows
the lowest IA of 0.6741 for RNN and the highest IA of 0.8769 for Graph LSTM. For the
printing room, all baseline neural networks produced an agreement of 63–65%, which is
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around 30% lower than the 95% agreement for the Graph LSTM. Among all room types, the
forecast of the toilet produced the worst IA, of 0.2058 for all baselines and 0.7592 for Graph
LSTM. The Graph LSTM was only able to forecast most of the afternoon value accurately
(Figure 17), but it was already a huge jump in performance with a 72.9% increase in IA.

Table 3. Performance of all models on individual rooms.

Main
Office 1

Main
Office 2

Main
Office 3

Meeting
Room 1

Meeting
Room 2

Staff
Lounge

Manager
Office

Printing
Room Toilet

RNN
IA 0.9609 0.9692 0.9058 0.9380 0.9451 0.9675 0.6741 0.6305 0.2058

MAE 0.8041 0.2880 0.2929 0.711 1.0382 0.3408 0.4089 0.3105 0.0833
RMSE 1.4290 1.0073 0.7647 1.1651 1.5427 1.0958 0.7774 0.6792 0.3145

GRU
IA 0.9687 0.9650 0.9447 0.9416 0.9538 0.9678 0.6779 0.6505 0.2058

MAE 0.8012 0.3379 0.2302 0.6983 0.9354 0.3585 0.4721 0.2733 0.0833
RMSE 1.2843 1.0691 0.6806 1.1288 1.4013 1.1188 0.7704 0.6512 0.3145

LSTM
IA 0.9680 0.9659 0.9374 0.9388 0.9530 0.9666 0.7183 0.6357 0.2058

MAE 0.7933 0.3232 0.2086 0.7023 0.9138 0.3359 0.4055 0.2644 0.0833
RMSE 1.3009 1.0677 0.6892 1.1596 1.4034 1.1149 0.7246 0.6520 0.3145

Graph LSTM
IA 0.9690 0.9818 0.9611 0.9758 0.9660 0.9801 0.8769 0.9537 0.7592

MAE 0.7444 0.2782 0.1675 0.3937 0.7914 0.2370 0.1459 0.0891 0.0676
RMSE 1.2820 0.7780 0.5190 0.7767 1.1851 0.7717 0.3846 0.3018 0.2637

Figure 18. Index of agreement of each room in Layout 5.

The overall performance of the proposed Graph LSTM model and the baseline models
are summarized in Table 4. This is calculated by taking the average value of the evaluation
metrics for the rooms presented. The Graph LSTM shows the best performance among all
neural networks tested from all three evaluation metrics. The differences in IA between
the three baselines are very close or less than 0.1, with LSTM presenting a slightly higher
IA among them all. The IA of the Graph LSTM is 13.5% higher than the IA of the LSTM.
Due to the square difference, the IA is more sensitive to extreme values, implying the
presence of more extreme error in the baseline results. The MAE of all models is lower
than 0.5 occupant count. Graph LSTM produced the lowest value of 0.3239, which is 38.3%
lower than the LSTM baseline and 46.8% lower than the RNN result. Like IA, due to the
square difference, RMSE penalizes large errors more severely. The four models computed
all resulted in higher RMSE than MAE, indicating the presence of some extreme errors.
Compared to the baseline neural networks, the Graph LSTM produced an RMSE of 40.1%,
34.4%, and 34.6% lower than RNN, GRU, and LSTM, respectively. All neural network
models created produced an IA value very close to one, and a relatively low MAE and
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RMSE value, indicating the models’ ability to predict occupancy, with the proposed Graph
LSTM slightly outperforming the baseline neural networks.

Table 4. Overall performance of all models constructed.

Model IA MAE RMSE

RNN 0.8000 0.4753 0.9750
GRU 0.8084 0.4656 0.9354
LSTM 0.8099 0.4478 0.9636

Graph LSTM 0.9360 0.3239 0.6958

5. Discussion

The baseline neural network models (RNN, GRU, and LSTM) all show promising
results for room types such as main office space and meeting room, where the occupancy
profiles have a more stable and recognizable pattern. However, they failed to model the
rooms that depend on more random events, such as the toilet and printing room. Hence,
the occupancy profiles that did not have a distinct pattern for the neural networks to learn
from resulted in poor prediction. Compared to the baseline neural networks, the Graph
LSTM model predicted highly detailed and accurate occupant counts. This prediction
provided a valuable reference for cases where a detailed occupancy pattern is required. For
cases where highly detailed occupancy patterns are not needed, the baseline models offer
sufficient performance with a simpler approach.

To apply the occupancy in thermal and energy simulations, the implementation of
a more detailed occupancy profile can directly improve the accuracy of heat gain from
humans in a space and therefore outputs such as thermal and energy performance, carbon
dioxide concentration, and HVAC sizing and operation. Occupancy profiles can also have
an impact on daylight and artificial lighting simulations. As different types of rooms may
require various levels of occupancy profile details, which may also change throughout the
lifetime of a building, it is good practice to include a range of potential profiles as part of
simulations. The Graph LSTM model could provide those alternative occupancy profiles,
depending on how it is trained. Therefore, more training from telephone center offices
would produce different profiles versus training from a standard office setup.

Although the Graph LSTM produced a more accurate prediction of occupancy profiles,
the results produced were very noisy. The highly fluctuated result from the Graph LSTM
could be caused by overfitting. Overfitting occurs when the deep-learning network tries
to fit all the noise during training leading to highly fluctuated results. As this model is
highly complex and involves many more parameters than the baseline neural networks, it
may include more unwanted noise. Moreover, the training sets applied all have similar
trends, but all present various minor fluctuations due to the small number of occupants
traveling between spaces randomly. To reduce overfitting, a range of measures exist that
can be tested in the future, but which were beyond the scope of this research.

• First, the model could be simplified by reducing the number of hidden layers or
neurons, which reduces the total number of parameters, and hence, limiting the ability
of the model in fitting the noise.

• Second, the training data can be pre-processed to smooth out some noise; however,
this may not be ideal for rooms such as the toilet or the printing room, where the
occupancy only consists of small spikes. Furthermore, the pre-processing may smooth
out the occupant count spikes when they are passing through a space. Therefore,
this can only be used where the study does not require the consideration of room
connectivity.

• Thirdly, adjusting the settings for early stopping could reduce overfitting. Although early
stopping was already applied for this experiment, the results were still overfitted.
This implies the settings may not be ideal for this Graph LSTM model. Possible
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adjustments that could be tested in the future include reducing the number of epochs
before triggering early stopping when there is no decrease in loss.

The proposed model can also be improved by adding more features as input and
increasing the amount of training data, e.g., the inclusion of the room size or the distance
between different rooms as input. As the structure of the Graph data is particularly suitable
for representing spatial relationships, the inclusion of room size can aid the neural network
in determining the travel time of occupants between rooms. The type of office can also be
specified as the feature. The training for this study only included a basic office; the data of
different types of offices with various occupancy patterns can be included for training to
extend the representation of the model. As a result, different versions of the Graph LSTM
could exist, each one trained for a specific office type, thus producing alternative occupancy
profiles, as needed for simulations.

Lastly, the produced model is highly dependent on the data used for training. For
this study, the training data were simulated from AnyLogic and were based on a range
of logical assumptions. If monitored data were used for training, it is possible that the
performance of the model would be different.

Regarding the accuracy of occupancy predictions against actual occupancy, the latter
might vary significantly over time based on climate changes, changes in occupant behavior
(i.e., different occupants over time, another company taking office space, etc.), and, as a
result, making it difficult to assess the accuracy of an occupancy prediction. If the training
data given to a model captures all these variations over time and the future occupancy
of an office is in line with past behavior, it can be expected that the predicted occupancy
would be fairly accurate. Therefore, the authors see that the proposed model can be very
useful when used for generating occupancy profiles that are specific to a given office design
so that they can be used in thermal and energy simulations to better understand building
performance. This would be invaluable when occupancy data do not exist, if ASHRAE
occupancy profiles are not appropriate for usage, or when higher-resolution occupancy
data are needed.

6. Conclusions

This study proposed a novel neural network by combining the Graph Neural Network
and the LSTM to predict the occupancy of individual rooms in an office layout. The Graph
LSTM structure was chosen due to its excellent performance in high spatiotemporal depen-
dency tasks. The following was concluded from the research:

• The proposed Graph LSTM model and all the baseline models tested are all capable
of predicting the occupancy for each room of a given office layout unseen by the
model before.

• The Graph LSTM model outperformed the baseline neural networks tested when
evaluated using metrics such as IA, MAE, and RMSE. The IA of the Graph LSTM is
13.5% higher than the IA of the LSTM, 14.6% higher than RNN, and 13.6% higher
than GRU. The MAE of all models is lower than the 0.5 occupant count. Graph LSTM
produced the lowest value of 0.3239, which is 38.3% lower than the LSTM baseline
and 46.8% lower than the RNN result. The Graph LSTM produced RMSE of 40.1%,
34.4%, and 34.6% lower than RNN, GRU, and LSTM, respectively. All neural network
models created produced an IA value very close to 1, and a relatively low MAE and
RMSE value, indicating the models’ abilities to predict occupancy, with the proposed
Graph LSTM slightly outperforming the baseline neural networks.

• All baseline neural network models were able to capture the occupancy of the rooms
with more regular occupancy patterns, such as the occupancy of main office spaces
and meeting rooms well with IA of between 0.9374 to 0.9687. But they failed to predict
the occupancy of rooms that were based on more random events, such as the toilet
and printing room. On the other hand, the Graph LSTM produced occupancy more
accurately for all room types.
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Although the proposed model shows excellent results compared to the baseline test,
the result produced by the Graph LSTM was very noisy, due to the occurrence of overfitting
in the trained model. Measures to reduce noise in the results were discussed, which include
reducing the number of hidden layers, pre-processing training data, and adjusting the
settings for early stopping. These measures could be tested in future developments of
the model.

Overall, the Graph LSTM model shows a high potential in the application of predicting
office occupancy. In future studies, the model can benefit from improving its representabil-
ity by adding more features such as room size and office type. It will also be beneficial to be
trained and tested using monitored occupancy data as it may exhibit different performance
compared to using simulated data for training.
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ANN Artificial Neural Network
ARMA Autoregressive Moving Average model
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GNN Graph Neural Network
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LSTM Long Short-Term Memory Neural Network
MAE Mean absolute error
ML Machine Learning
RNN Recurrent Neural Network
RMSE Root mean square error
SVM Support Vector Machine
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