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Table S1 List of study lakes, their locations (region, latitude, and longitude), morphological attributes (lake surface area; km2, mean 

water depth; m), time span of the record, parameters used to apply the model, biome, and the references. The abbreviations used 

are: water depth at coring site (Zcore), mean lake-water depth (Zmean), sediment core P burial rates (Lcore), sediment core total P 

concentrations (Pcon), core mass accumulation rates (MAR), sediment accumulation rates (SAR), dry bulk density (DBD), loss on 

ignition (LOI), total organic carbon (TOC), water contents (W), sediment-inferred mean lake-wide P burial rates (Lsed). 

Region No Name Lat (°N) Long (°E) 
Lake area 

(km2) 
Zmean (m) 

Time span 

(year) 
Parameters Biome References 

China 1 Chaohu 31.567 117.558 770 3 772 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Temperate Broadleaf 

& Mixed Forests 
Zan et al. (2012) 

China 2 Daihai 40.567 112.683 160 7.4 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Temperate 

Grasslands, Savanna 

& Shrublands 

Gao et al. (2006) 

and Sun et al. 

(2021) 

China 3 Dali 43.300 116.592 228 6.8 1897 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Temperate 

Grasslands, Savanna 

& Shrublands 

Zhen (2016) 

China 4 Dongping 35.917 116.167 627 3 <200 
Pcon, Zmean, 

Zcore, MAR 

Temperate Broadleaf 

& Mixed Forests 
Chen (2012) 

China 5 Dagze Co 31.900 87.533 245 18.5 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Montane Grasslands & 
Shrubs 

Liang et al. (2021) 

China 6 Honghu 29.808 113.325 344 1.34 1143 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Temperate Broadleaf 

& Mixed Forests 
Chen et al. (2004) 



3 
 

China 7 Hulun 48.925 117.342 2339 3.25 3935 

Pcon, Zmean, 

Zcore, DBD, 

SAR 

Temperate 

Grasslands, Savanna 

& Shrublands 

Lü et al. (2016) 

China 8 Longgan 40.567 115.800 316 4 <200 
Pcon, Zmean, 

Zcore, MAR 

Temperate Broadleaf 

& Mixed Forests 

Wu and Wang 

(2006) 

China 9 Poyang 43.300 116.300 2933 5 1897 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Temperate 
Grasslands, Savanna 

& Shrublands 

Guo (2016) 

China 10 Shijiu 35.917 118.850 210 4.1 <200 
Pcon, Zmean, 

Zcore, SAR, LOI 
Temperate Broadleaf 

& Mixed Forests 
Yao and Xue 

(2009) 

China 11 Taibai 31.900 115.800 26 3 1462 
Pcon, Zmean, 

Zcore, MAR 

Temperate Broadleaf 

& Mixed Forests 
Yang et al. (2005) 

China 12 Wang 29.875 115.375 42 3.7 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Temperate Broadleaf 

& Mixed Forests 
Dong (2012) 

China 13 Dongting 28.925 111.917 2433 6.4 <200 
Pcon, Zmean, 

Zcore, MAR 

Temperate Broadleaf 

& Mixed Forests 
Ji et al. (2018) 

China 14 Zhangdu 40.567 114.733 42 1.2 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Temperate 

Grasslands, Savanna 

& Shrublands 

Zhang et al. (2013) 

China 15 Bosten 43.300 87.067 992 8 8585 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Montane Grasslands & 

Shrubs 
Chen. (2006) 
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China 16 Wudalianchi 48.725 126.175 8.2 9.2 <200 
Pcon, Zmean, 

Zcore, MAR 

Temperate 

Grasslands, Savanna 

& Shrublands 

Gui et al. (2011) 

China 17 Gahai 31.900 100.550 35 9 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Montane Grasslands & 

Shrubs 
Sha et al. (2017) 

China 18 Nam Co 30.717 90.658 1920 42 6773 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Montane Grasslands & 

Shrubs 
Mügler et al. (2010) 

China 19 Qinghai 36.892 100.192 4346 21 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Montane Grasslands & 

Shrubs 
Sha et al. (2017) 

China 20 Xingyun 24.333 102.775 34.7 7 8900 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Tropical & Subtropical 

Moist Broadleaf 

Forests 

Ma (2021) and Liu 

(2021) 

China 21 Chenghai 26.542 100.658 77 26 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Tropical & Subtropical 

Moist Broadleaf 

Forests 

Zan et al. (2012) 

China 22 Dianchi 24.850 102.658 300 3 <200 
Lcore, Zmean, 

Zcore, 

Tropical & Subtropical 

Moist Broadleaf 

Forests 

Tang (2021) 

China 23 Erhai 25.783 100.200 250 10.2 <200 
Pcon, Zmean, 

Zcore, MAR 

Tropical & Subtropical 

Moist Broadleaf 
Forests 

Liu et al. (2019) 
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China 24 Fuxian 24.492 102.883 211 87 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Tropical & Subtropical 

Moist Broadleaf 

Forests 

Wang et al. (2014) 

China 25 Tiancai 26.633 99.708 0.02 6 11,510 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Temperate Conifer 

Forests 
Chen et al. (2018) 

China 26 Lugu 27.717 100.792 48 40 <200 Lcore, Zmean, Zcore 
Temperate Conifer 

Forests 
Chen et al. (2021) 

China 27 Qionghai 27.808 102.358 27.9 10.3 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Tropical & Subtropical 

Moist Broadleaf 

Forests 

Zhang et al. (2018) 

China 28 Jingpohu 43.908 128.608 91.5 13.3 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Temperate Broadleaf 

& Mixed Forests 

Zhang et al. (2018); 

Liao and Li (2018) 

China 29 Qilu 24.175 102.767 37 4.5 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Tropical & Subtropical 

Moist Broadleaf 

Forests 

Yang (2020) 

China 30 Yangzonghai 24.908 102.992 31 20 <200 
Pcon, Zmean, 

Zcore, MAR 

Tropical & Subtropical 

Moist Broadleaf 

Forests 

Wu et al. (2021) 

China 31 Huguangyan 21.150 110.283 2.3 12 <200 Lcore, Zmean, Zcore 

Tropical & Subtropical 

Moist Broadleaf 

Forests 

He (2021) 
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China 32 East lake 30.550 114.383 28 2.2 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Temperate Broadleaf 

& Mixed Forests 
Yang et al. (2004) 

China 33 Yam Co 28.825 90.942 638 30 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Montane Grasslands & 

Shrubs 
He (2021) 

China 34 Taihu 31.250 120.250 2425 2.1 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Temperate Broadleaf 

& Mixed Forests 
Mi et al. (2014) 

China 35 Nansi 34.892 116.958 1280 1.6 <200 
Pcon, Zmean, 

Zcore, MAR 

Temperate Broadleaf 

& Mixed Forests 
Ding (2017) 

China 36 Shengjin 30.375 117.083 133 1.3 <200 
Pcon, Zmean, 

Zcore, SAR, W 
Temperate Broadleaf 

& Mixed Forests 
Cheng et al. (2020) 

China 37 Xiannv 27.817 114.942 50 12 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Temperate Broadleaf 

& Mixed Forests 
Zhou (2019) 

China 38 Changdang 31.608 119.558 89 1.1 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Temperate Broadleaf 

& Mixed Forests 

Zhang et al. (2018) 

and Liu et al. 

(2022) 

China 39 Gucheng 31.267 118.917 25 1.6 <200 
Pcon, Zmean, 

Zcore, MAR 

Temperate Broadleaf 

& Mixed Forests 

Yao et al. (2008) 

and Xu et al. (2021) 

China 40 Chiba 29.292 113.350 18 6 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Temperate Broadleaf 

& Mixed Forests 
Zhang (2015) 



7 
 

China 41 Gaoyou 32.883 119.258 675 1.4 <200 
Pcon, Zmean, 

Zcore, MAR 

Temperate Broadleaf 

& Mixed Forests 
Li et al. (2013) 

Europe 42 Grane Lanso 56.020 9.451 0.1 8 <200 
Pcon, Zmean, 

Zcore, SAR, LOI 

Temperate Broadleaf 

& Mixed Forests 
Klamt et al. (2017) 

Europe 43 
Renstrandtras

ket 
60.430 25.898 0.3 1.2 <200 

Pcon, Zmean, 

Zcore, SAR, LOI 
Boreal Forests/Taiga 

Vaalgamaa and 

Korhola (2007) 

Europe 44 Annsjon 63.267 12.550 65 15 <200 
Pcon, Zmean, 

Zcore, SAR, W 
Boreal Forests/Taiga 

Paraskova et al. 

(2014) 

Europe 45 Erken 59.850 18.583 24 9 <200 
Pcon, Zmean, 

Zcore, SAR, W 

Temperate Broadleaf 

& Mixed Forests 

Paraskova et al. 

(2014) 

Europe 46 Bret 46.513 6.772 0.4 13 <200 
Pcon, Zmean, 

Zcore, MAR 

Temperate Broadleaf 

& Mixed Forests 

Thevenon et al. 

(2013) 

Europe 47 Lugano  45.970 8.858 1.1 33 <200 Lcore, Zmean, Zcore 
Temperate Conifer 

Forests 
Tu et al. (2019) 

Europe 48 Burgäschi 47.170 7.669 0.21 16 <200 Lcore, Zmean, Zcore 
Temperate Broadleaf 

& Mixed Forests 
Tu et al. (2020) 

Europe 49 Bala 52.897 -3.609 4.1 24 <200 
Pcon, Zmean, 

Zcore, MAR 

Temperate Broadleaf 

& Mixed Forests 
Rowan et al. (2012) 

Europe 50 Ballybeg 52.812 -8.993 0.2 2.7 <200 Lcore, Zmean, Zcore 
Temperate Broadleaf 

& Mixed Forests 
Taylor et al. (2006) 

Europe 51 Crans 54.455 -6.905 0.1 6.7 <200 Lcore, Zmean, Zcore 
Temperate Broadleaf 

& Mixed Forests 
Taylor et al. (2006) 

Europe 52 Egish 54.063 -6.791 1.2 3.3 <200 Lcore, Zmean, Zcore 
Temperate Broadleaf 

& Mixed Forests 
Taylor et al. (2006) 
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Europe 53 Inchiquin 52.953 -9.088 1.2 10.2 <200 Lcore, Zmean, Zcore 
Temperate Broadleaf 

& Mixed Forests 
Taylor et al. (2006) 

Europe 54 Mullagh 53.814 -6.973 0.4 2.3 <200 Lcore, Zmean, Zcore 
Temperate Broadleaf 

& Mixed Forests 
Taylor et al. (2006) 

Europe 55 Sillan 54.007 -6.927 1.7 6 <200 Lcore, Zmean, Zcore 
Temperate Broadleaf 

& Mixed Forests 
Taylor et al. (2006) 

Europe 56 White Lough 54.115 -6.965 0.1 6.2 <200 
Pcon, Zmean, 

Zcore, MAR 

Temperate Broadleaf 

& Mixed Forests 

Anderson et al. 

(2012) 

Europe 57 Friary Loch 54.445 -6.847 0.1 4.5 <200 Lsed 
Temperate Broadleaf 

& Mixed Forests 
Jordan et al. (2002) 

North 

America 
58 Bear 42.000 -111.330 280 29 <200 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Deserts & Xeric 

Shrublands 

Smoak and 

Swarzenski (2004) 

North 
America 

59 Champlain 44.586 -73.300 1331 19.5 <200 Lcore, Zmean, Zcore 
Temperate Broadleaf 

& Mixed Forests 
Levine et al. (2018) 

North 

America 
60 Geneserath 45.596 -85.532 2 10.4 <200 Lcore, Zmean, Zcore 

Temperate Broadleaf 

& Mixed Forests 

Sawyers et al. 

(2016) 

North 

America 
61 Highland 44.522 -69.785 5.4 5.5 <200 Lcore, Zmean, Zcore 

Temperate Broadleaf 

& Mixed Forests 
Norton et al. (2008) 

North 

America 
62 Salmon 44.522 -69.785 24.9 7 <200 Lcore, Zmean, Zcore 

Temperate Broadleaf 

& Mixed Forests 
Norton et al. (2008) 

North 

America 
63 Joes Pond 44.410 -72.222 1.6 7 <200 

Pcon, Zmean, 

Zcore, SAR, LOI 

Temperate Broadleaf 

& Mixed Forests 
Dixit et al. (2000) 

North 

America 
64 Kenoza 42.791 -71.054 1 17 <200 

Pcon, Zmean, 

Zcore, SAR, LOI 

Temperate Broadleaf 

& Mixed Forests 
Dixit et al. (2000) 
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North 

America 
65 French Pond 43.192 -71.776 0.2 4.2 <200 

Pcon, Zmean, 

Zcore, SAR, LOI 

Temperate Broadleaf 

& Mixed Forests 
Dixit et al. (2000) 

North 

America 
66 Mattamuskeet  35.509 -76.149 162 1 <200 Lcore, Zmean, Zcore 

Temperate 

Grasslands, Savanna 

& Shrublands 

Waters et al. (2010) 

North 

America 
67 Okeechobee 27.150 -80.780 1730 2.7 <200 

Pcon, Zmean, 

Zcore, SAR, LOI 

Flooded Grassland & 

Savannas 

Engstrom et al. 

(2006) 

North 

America 
68 Panasoffkee 28.806 -82.124 18.1 1.3 <200 Lcore, Zmean, Zcore 

Temperate 

Grasslands, Savanna 

& Shrublands 

Brenner et al. 

(2006) 

North 

America 
69 Pepin 44.536 -92.312 1730 5.4 <200 Lsed 

Temperate Broadleaf 

& Mixed Forests 

Engstrom et al. 

(2009) 

North 

America 
70 Russell 44.009 -71.653 0.2 10 <200 

Pcon, Zmean, 

Zcore, SAR, W 

Temperate Broadleaf 

& Mixed Forests 
Dixit et al. (2001) 

North 

America 
71 Willard 43.023 -72.017 0.4 8 <200 

Pcon, Zmean, 

Zcore, SAR, W 

Temperate Broadleaf 

& Mixed Forests 
Dixit et al. (2001) 

North 

America 
72 St. Croix 44.948 -92.755 35.3 9.7 <200 Lsed 

Temperate 

Grasslands, Savanna 

& Shrublands 

Triplett et al. (2009) 

North 

America 
73 

Lake of the 

Woods 
40.063 -119.562 450 60 <200 Lsed 

Deserts & Xeric 

Shrublands 
Edlund et al. (2017) 

North 

America 
74 Harris 28.783 -81.800 75 3.5 11,427 

Pcon, Zmean, 

Zcore, SAR, W 

Temperate 
Grasslands, Savanna 

& Shrublands 

Kenney et al. 
(2016); Moyle et al. 

(2021) 
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Europe 75 Lac d’Annecy 45.860 6.170 27 41.5 11,500 
Pcon, Zmean, 

Zcore, SAR, W 

Temperate Conifer 

Forests 

Loizeau et al. 

(2001); Moyle et al. 

(2021) 

Europe 76 Plesne 48.780 13.870 0.075 8.3 11,478 
Pcon, Zmean, 

Zcore, MAR 

Temperate Broadleaf 

& Mixed Forests 

Kopáˇcek et al. 

(2007); Norton et 

al. (2016); Moyle et 
al. (2021) 

Europe 77 Hatchmere 53.250 -2.670 0.0345 1.5 11,497 Lsed 
Temperate Broadleaf 

& Mixed Forests 

Boyle et al. (2015); 

Moyle et al. (2021) 

Europe 78 Peipsi 58.650 27.460 3555 7.1 10,265 
Pcon, Zmean, 

Zcore, SAR, LOI 

Temperate Broadleaf 

& Mixed Forests 

Kisand et al. 

(2017); Moyle et al. 

(2021) 

North 

America 
79 

Sargent 

Mountain 

Pond 

44.330 -68.270 0.0075 1 11,466 Lcore, Zmean, Zcore 
Temperate Broadleaf 

& Mixed Forests 

Norton et al. 

(2011); Moyle et al. 

(2021) 

Europe 80 
Dudinghauser 

See 
53.910 12.210 0.188 1.2 4533 

Pcon, Zmean, 

Zcore, SAR, LOI 

Temperate Broadleaf 

& Mixed Forests 

Selig et al. (2007); 

Moyle et al. (2021) 

Europe 81 Tiefer See 53.790 12.290 0.159 5 11,456 
Pcon, Zmean, 

Zcore, SAR, LOI 
Temperate Broadleaf 

& Mixed Forests 
Selig et al. (2007); 
Moyle et al. (2021) 

Europe 82 Schulzensee 53.290 12.800 0.485 2.6 11,666 
Pcon, Zmean, 

Zcore, SAR, LOI 

Temperate Broadleaf 

& Mixed Forests 

Selig et al. (2007); 

Moyle et al. (2021) 

Europe 83 Lac d’Anterne 45.990 6.800 0.12 6.3 10,160 Lsed 
Temperate Conifer 

Forests 

Giguet-Covex et al. 

(2011); Moyle et al. 

(2021) 
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North 

America 
84 Jackson Pond 37.430 -85.730 0.035 1.5 

1762-

10,933 
Lcore, Zmean, Zcore 

Temperate Broadleaf 

& Mixed Forests 

Filippelli and Souch 

(1999); Moyle et al. 

(2021) 

North 

America 
85 

Anderson 

Pond 
36.030 -85.500 0.13 1.6 

5230-

14,910 
Lcore, Zmean, Zcore 

Temperate Broadleaf 

& Mixed Forests 

Filippelli and Souch 

(1999); Moyle et al. 

(2021) 

North 

America 
86 Dry 34.120 -116.830 0.05 0.5 9172 Lcore, Zmean, Zcore 

Mediterranean 

Forests, Woodland & 

Scrub 

Filippelli and Souch 

(1999); Moyle et al. 

(2021) 

North 

America 
87 Kokwaskey 50.120 -121.830 0.46 / 11,265 Lsed 

Temperate Conifer 

Forests 

Filippelli and Souch 

(1999); Moyle et al. 

(2021) 

Europe 88 Windermere 54.340 -2.940 14.76 21.3 11,391 
Pcon, Zmean, 

Zcore, SAR, LOI 

Temperate Broadleaf 

& Mixed Forests 

Mackereth (1966); 

Moyle et al. (2021) 

Europe 89 
Ennerdale 

Water 
54.520 -3.380 2.999 17.8 11,247 

Pcon, Zmean, 

Zcore, SAR, LOI 

Temperate Broadleaf 

& Mixed Forests 

Mackereth (1966); 

Moyle et al. (2021) 

Europe 90 Esthwaite 54.360 -2.990 1.004 6.9 11,248 
Pcon, Zmean, 

Zcore, SAR, LOI 

Temperate Broadleaf 

& Mixed Forests 

Mackereth (1966); 

Moyle et al. (2021) 

Europe 91 Kråkenes 62.033 5.000 0.055 / 11,493 Lsed 
Temperate Conifer 

Forests 

Boyle et al. (2013); 

Moyle et al. (2021) 

North 

America 
92 

Laguna 

Zoncho 
8.810 -82.960 0.75 3 3115 Lsed 

Tropical & Subtropical 

Moist Broadleaf 

Forests 

Filippelli et al. 

(2010); Moyle et al. 

(2021) 
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North 

America 
93 

Lower Joffre 

Lake 
50.370 122.500 0.104 / 10,681 Lsed 

Temperate Conifer 

Forests 

Filippelli et al. 

(2006); Moyle et al. 

(2021) 

Europe 94 Sämbosjön 57.160 12.420 0.23 / 9839 Lcore, Zmean, Zcore 
Temperate Broadleaf 

& Mixed Forests 

Digerfeldt and 

Håkansson (1993) 

Europe 95 Trummen 56.860 14.830 1 1 11,119 Lcore, Zmean, Zcore 
Temperate Broadleaf 

& Mixed Forests 
Digerfeldt (1972); 
Moyle et al. (2021) 

Europe 96 Immeln 56.270 14.330 24 7.2 11,033 

Pcon, Zmean, 

Zcore, SAR, 

DBD 

Temperate Broadleaf 
& Mixed Forests 

Digerfeldt (1974); 
Moyle et al. (2021) 

Europe 97 Kuzi 57.030 25.330 0.063 / 11,407 Lsed 
Temperate Broadleaf 

& Mixed Forests 
Moyle et al. (2021) 

South 

Africa 
98 Malawi -12.020 34.460 29600 292 <200 Lcore, Zmean, Zcore 

Tropical & Subtropical 

Grasslands, Savannas 

& Shrublands 

Otu et al. (2011) 

South 

Africa 
99 Sibaya -27.348 32.684 65 12 <200 

Pcon, Zmean, 

Zcore, SAR, LOI 

Tropical & Subtropical 

Moist Broadleaf 

Forests 

Humphries and 

Benitez-Nelson 
(2013) 

South 
Africa 

100 Victoria 0.350 31.000 68000 40 <200 
Pcon, Zmean, 

Zcore, MAR 

Tropical & Subtropical 

Grasslands, Savannas 
& Shrublands 

Campbell et al. 
(2003) 

Australia 101 Alexandrina -35.440 139.080 649 2.8 7564 
Pcon, Zmean, 

Zcore, MAR 

Mediterranean 

Forests, Woodland & 

Scrub 

Barnett (1994) 
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Europe 102 Soppensee 47.092 8.083 0.227 13 11,500 
Lcore, Zmean, 

Zcore 

Temperate Broadleaf 

& Mixed Forests 
Tu et al. (2021) 

Europe 103 Fuglsø 56.191 10.535 0.014 1.5 11,117 
Lcore, Zmean, 

Zcore 

Temperate Broadleaf 

& Mixed Forests 
Klamt et al. (2021) 

South 

America 
104 Blanca -34.883 -54.833 0.6 2 7310 

Pcon, Zmean, 

Zcore, SAR, LOI 

Tropical & Subtropical 

Grasslands, Savannas 

& Shrublands 

Garcı´a-Rodrı´guez 

et al. (2010) 

South 

America 
105 Laja -36.900 -71.083 87 54 2000 

Pcon, Zmean, 

Zcore, SAR, LOI 

Temperate Broadleaf 

& Mixed Forests 
Urrutia et al. (2010) 

Western 

Asia 
106 Kinneret 32.824 35.588 168 25.6 <200 

Lcore, Zmean, 

Zcore 

Mediterranean 

Forests, Woodland & 

Scrub 

Hambright et al. 

(2004） 

North 

America 
107 Simcoe 44.463 -79.335 722 14 <200 

Pcon, Zmean, 

Zcore, MAR 

Temperate Broadleaf 

& Mixed Forests 

Hiriart-Baer et al. 

(2011) 

South 

America 
108 Lagoa Negra -19.067 -57.517 0.49 1.56 9476 

Pcon, Zmean, 

Zcore, SAR, 

TOC 

Tropical & Subtropical 

Dry Broadleaf Forests 

Oliveira Bezerra et 

al. (2019) 
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Table S2 Estimated global lake P burial rates and total P sink from three intervals during 

11,500-4000 cal BP, 4000-100 cal BP, and 100 cal BP to the present time. The global 

estimation is based on sediment-inferred mean lake-wide P burial rates (Lsed) of 108 lakes in 

this study and is weighted by global biomes following the methodology of Anderson et al. 

(2020). 

 
 

11,500-4000 

(cal BP) 

4000-100  

(cal BP) 

100 cal BP to the 

present 

Global lake P burial rate 

(Tg yr-1) 

0.156 0.321 1.544 

Global lake P burial (Tg) 1171 1252 262 

Global lake P sink during 

the Holocene (Tg) 

 

2686 

 

 
S1 Generalized additive model (GAM) smoothing 

The GAM-smoothed trends for the mean values of the 100-year bins are mostly similar to 

GAM-smoothed trends for all compiled data (Fig. S4, S5), confirming the reliability of using 

GAM-smoothing approaches to reflect changes of lake P burial rates at centennial to millennial 

timescales over the Holocene. Therefore, the GAM smoothing on 100-year-binned means was 

used to assess the major variations of P burial rates at both global and regional scales.  
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Fig. S1. Lsed for each of the global biomes (a) over the last 11,500 years (bin widths = 200 years) and (b) over the past 200 years 

(bin widths = 20 years). 
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Fig. S2. The breakpoint (vertical dashed red line, at 50 cal BP, 1900 CE at range 0-100 cal 

BP, 1850-1950 CE) detected on the mean values of sediment-inferred mean lake-wide P burial 

rates (Lsed) globally, binned by 100-yr intervals during the Holocene; the data were log10 

transformed. 
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Fig. S3. (a) The comparison of GAM-smoothed trends of sediment-inferred mean lake-wide P 

burial rates (Lsed) of the global average and China from year 1850 CE to 2020 CE (solid 

curves, k=10, method = "REML") with 95% confidence intervals (shaded envelopes). (b) 

Historical sources of phosphorus (P) fertilizers (manure and mineral fertilizers) used in 

agriculture globally; data source is from Cordell et al. (2009). (c) P losses to inland waters in 

mainland China since 1850 (Liu et al., 2016) and P inputs with manure and mineral fertilizers 

to arable land in China since 1950 (Li et al., 2015). 
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Fig. S4. The comparison of generalized additive model (GAM) based trends fitted to the means 

of P data in 100-yr bins (blue curve, basis dimension k=30) and the compiled raw P data (red 

curve, basis dimension k=400) in 108 lakes during the Holocene, with 95% confidence 

intervals on the predicted means (blue and red shaded envelopes, respectively); the blue and 

red fits are the results of a GAM with restricted maximum likelihood (REML) smoothness 

selection; the data of sediment-inferred mean lake-wide P burial rates (Lsed) (shown as grey 

points) were log10 transformed.  
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Fig. S5. The comparison of GAM-based trends fitted to the means of P data in 100-yr bins 

(blue curves, basis dimension k=30) and the compiled raw P data (red curves, basis dimension 

k=400 for China, Europe, and North America and k=100 for South America) from lakes in (a) 

China, (b) Europe, (c) North America, and (d) South America during the Holocene, with 95% 

confidence intervals on the predicted means (blue and red shaded envelopes, respectively); 

the blue and red fits are the results of a GAM with restricted maximum likelihood (REML) 

smoothness selection; the data of sediment-inferred mean lake-wide P burial rates (Lsed) 

(shown as gray points) were log10 transformed.  
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Fig. S6. The 100-yr-binned median and mean values for Lsed P burial rates during the 

Holocene from different regions. 

 

S2 Lake P burial rates in recent times 
The 20-yr binned means of sites in China, Europe, and Africa and of the global average all 

exhibited continuous and significant increases over the last 150 years (Fig. S7-S9; Fig. S12), 

whereas the curves of North America and South America showed no significant trends over 

time (Fig. S10; S11). Furthermore, Lsed P burial rates in North America declined slightly during 

the 21st century (Fig S9), probably because of the efforts of lake-watershed P management 

in the region.  

 



21 
 

 
Fig. S7. (a) Sediment-inferred mean lake-wide P burial rates (Lsed) of the all-data average, 

binned by 20-yr intervals from 1850 CE to 2010 CE and by 10-yr intervals from 2010 CE to 

2020 CE; the red dots and bold horizontal black lines in the boxplot indicate the mean values 

and median values of the intervals, respectively. (b) The binned mean values in (a) vs. time 

and the linear regression line (in red color) between time and the binned mean values; the red 

shaded envelope indicates 95% confidence intervals of the regression line.  
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Fig. S8. (a) Sediment-inferred mean lake-wide P burial rates (Lsed) in China, binned by 20-yr 

intervals from 1850 CE to 2010 CE and by 10-yr intervals from 2010 CE to 2020 CE; the red 

dots and bold horizontal black lines in the boxplot indicate the mean values and median values 

of the intervals, respectively. (b) The binned mean values in (a) vs. time and the linear 

regression line (in red color) between time and the binned mean values; the red shaded 

envelope indicates 95% confidence intervals of the regression line.  
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Fig. S9. (a) Sediment-inferred mean lake-wide P burial rates (Lsed) in Europe, binned by 20-

yr intervals from 1850 CE to 2010 CE and by 10-yr intervals from 2010 CE to 2020 CE; the 

red dots and bold horizontal black lines in the boxplot indicate the mean values and median 

values of the intervals, respectively. (b) The binned mean values in (a) vs. time and the linear 

regression line (in red color) between time and the binned mean values; the red shaded 

envelope indicates 95% confidence intervals of the regression line.  

 



24 
 

 
Fig. S10. (a) Sediment-inferred mean lake-wide P burial rates (Lsed) in North America, binned 

by 20-yr intervals from 1850 CE to 2010 CE and by 10-yr intervals from 2010 CE to 2020 CE; 

the red dots and bold horizontal black lines in the boxplot indicate the mean values and median 

values of the intervals, respectively. (b) The binned mean values in (a) vs. time and the linear 

regression line (in red color) between time and the binned mean values.  
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Fig. S11. (a) Sediment-inferred mean lake-wide P burial rates (Lsed) in South America, binned 

by 20-yr intervals from 1850 CE to 2010 CE and by 10-yr intervals from 2010 CE to 2020 CE; 

the red dots indicate the mean values of the intervals. (b) The binned mean values in (a) vs. 

time and the linear regression line (in red color) between time and the binned mean values; 

the red shaded envelope indicates 95% confidence intervals of the regression line. 
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Fig. S12. (a) Sediment-inferred mean lake-wide P burial rates (Lsed) in Africa, binned by 20-

yr intervals from 1850 CE to 2010 CE and by 10-yr intervals from 2010 CE to 2020 CE; the 

red dots and bold horizontal black lines in the boxplot indicate the mean values and median 

values of the intervals, respectively. (b) The binned mean values in (a) vs. time and the linear 

regression line (in red color) between time and the binned mean values; the red shaded 

envelope indicates 95% confidence intervals of the regression line. 
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Fig. S13. Generalized additive model (GAM) plots showing the partial effects of selected 

explanatory variables on the global sediment-inferred mean lake-wide P burial rates (Lsed) 

during 11,500-100 cal BP.  
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Fig. S14. GAM diagnostic plots showing the distribution of residuals and relationship 

between response and model fitted values.  
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