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1 Introduction26

The impossibility for two agents to agree to disagree is established by Aumann (1976)’s27

seminal agreement theorem. More precisely, if two Bayesian agents with a common28

prior receive private information and have common knowledge of their posterior beliefs,29

then these posteriors must be equal. In other words, distinct posterior beliefs cannot30

be common knowledge among Bayesian agents with the same prior beliefs. In this31

sense, agents cannot agree to disagree.1 The impossibility of agreeing to disagree has32

important implications for any interactive situation where, loosely speaking, the mutual33

acknowledgement of distinct views or assessments is relevant, e.g. trade, speculation,34

political positions, or legal judgements.2 The array of potential applications for the35

agreement theorem is vast.36

Here, we explore agreeing to disagree in an extended framework with lexicographic37

beliefs. A lexicographic belief is a sequence of beliefs, where the different beliefs are38

given in descending order of importance.3 The sequence’s first component can be viewed39

as the agent’s primary doxastic attitude, its second component as his secondary dox-40

astic attitude, etc. Intuitively, a lexicographically-minded agent deems his first belief41

fundamentally more likely than his secondary belief, which in turn is fundamentally42

more likely than his tertiary belief, etc. Lexicographic beliefs resolve the problem of43

conditioning on events with probability zero. Revising beliefs based on hypotheses that44

are initially deemed impossible is relevant to hypothetical reasoning. An apt example45

are games. It can be important for a player to consider what would happen, if an46

opponent were to pick an unexpected choice, in order to act rationally himself.47

In game theory, lexicographic beliefs do play a prominent role and have effectively48

been put into action to model caution and trembles.4 In particular, they shed essential49

light on the foundations of weak dominance arguments and have served to unravel a50

1An extensive literature on agreeing to disagree has emerged. Most contributions reconsider
Aumann’s impossibility theorem in more general frameworks. Notably, Bonanno and Nehring
(1997) as well as Ménager (2012) provide comprehensive surveys on this literature. Some more
recent contributions to the agreeing to disagree literature include Dégrement and Roy (2012),
Hellman and Samet (2012), Bach and Perea (2013), Heifetz et al. (2013), Hellman (2013),
Demey (2014), Lehrer and Samet (2014), Chen et al. (2015), Dominiak and Lefort (2015),
Tarbush (2016), Bach and Cabessa (2017), Gizatulina and Hellman (2019), Pacuit (2018),
Tsakas (2018), Liu (2019), as well as Contreras-Tejada et al. (2021).

2A prominent analysis of economic consequences of agreeing to disagree is Milgrom and
Stokey’s (1982) so-called no-trade theorem. Accordingly, if two traders agree on a prior efficient
allocation of goods, then upon receiving private information it cannot be common knowledge
that they both have an incentive to trade.

3Formally, lexicographic beliefs are modelled in their most general form by lexicographic
probability systems due to Blume et al. (1991a).

4By now lexicographic beliefs have become a widespread tool in game theory and have
been used, for instance, by Kreps and Wilson (1982), Kreps and Ramey (1987), Blume et al.
(1991b), Brandenburger (1992a), Börgers (1994), Stahl (1995), Mailath et al. (1997), Asheim
(2001, 2002), Govindan and Klumpp (2003), Asheim and Perea (2005), Brandeburger et al.
(2008), Yang (2015), Dekel et al. (2016), Lee (2016), as well as Cantonini and De Vito (2018,
2020).
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fundamental game-theoretic paradox: the so-called inclusion-exclusion problem.5 The51

paradox arises whenever a player is required to include all, yet to exclude some, choices52

for an opponent. This startling tension is inherent in (iterated) weak dominance, also53

called (iterated) admissibility, which constitutes one of the most long-standing ideas in54

game theory going back at least to Gale (1953).55

For an illustration of the inclusion-exclusion problem, consider the two player game56

depicted in Figure 1 with players Alice and Bob, where Alice chooses a “row” (a or b)57

and Bob picks a “column” (y or z). The unique strategy for Alice in line with weak58

dominance is a. Intuitively, against all choices of Bob, a never yields less than b, and59

against the particular strategy y of Bob, a induces a strictly higher payoff than b.60

For Bob, y is strictly worse than z against all of Alice’s choices. However, it seems61

impossible to support a with consistent beliefs, since on the one hand, Alice needs to62

assign positive probability to both y and z to render a uniquely optimal for her, while63

on the other hand, she should assign probability zero to the never optimal choice y for64

Bob. The remedy to the paradox lies in lexicographic beliefs. They are capable of not65

excluding any choice from consideration yet at the same time deeming some choices66

much more – indeed infinitely more – likely than others. With lexicographic beliefs, the67

inclusion-exclusion riddle evaporates. In the preceding example, a lexicographic belief68

for Alice that assigns probability one to z in its first level and probability one to y in69

its second level would already form a consistent doxastic attitude filtering out a as her70

unique optimal strategy.71

y z
a 1, 0 0, 1
b 0, 0 0, 1

Fig. 1. A two player game

In terms of Aumann’s impossibility theorem the question of whether agreeing to72

disagree is possible or not gains in depth if lexicographic beliefs are admitted and hypo-73

thetical reasoning can thereby be captured. For example, consider merchants forming74

beliefs about the arrival of a sea shipment. A primary contingency could revolve around75

the usual meteorological conditions that can affect the length of sea travel. Suppose76

that a secondary contingency would include fundamentally less likely factors affect-77

ing arrival like a pirate attack. If common knowledge of their posterior beliefs implies78

agents to agree on their beliefs given the primary contingency, then they could possibly79

still disagree with regards to the secondary contingency. Whether or not the agents do,80

could have different implications for the actions they take based on their (lexicographic)81

beliefs.82

In general, given the importance of lexicographic beliefs in game theory on the one83

hand, and given Aumann’s seminal impossibility result on agreeing to disagree on the84

5The inclusion-exclusion problem has first been identified by Samuelson (1992), when show-
ing that the solution concept of iterated weak dominance can be inconsistent with common
knowledge assumptions.



4

other hand, it seems intriguing to ask how the agreement theorem is affected if standard85

probabilities are replaced by lexicographic probability systems. To address this ques-86

tion we define the notion of lexicographic Aumann structure, where the agents hold a87

sequence of priors on the basis of which they compute a sequence of posteriors in the88

style of Blume et al. (1991a). In our framework, a weak agreement theorem in the sense89

of merely identical first level posteriors obtains. However, we provide a disagreement90

result establishing that agents can actually agree to disagree on their posteriors be-91

yond the first lexicographic level. Aumann’s impossibility theorem does therefore not92

directly generalize to full-fledged lexicographic reasoning. Based on this observation, we93

introduce a condition which essentially states that every lexicographic level prior either94

neglects or considers the agents’ private information synchronically. This condition can95

be viewed as a variant of standard mutual absolute continuity from probability the-96

ory. With the assistance of mutual absolute continuity, we provide a strong agreement97

theorem which establishes the impossibility of agreeing to lexicographically disagree.98

Naturally, the question arises whether our lexicographic agreement theorems can99

be applied to game theory. It would be particularly illuminating to gain novel in-100

sights about classical solution concepts based on lexicographic agreeing to disagree. A101

prominent class of solution concepts in game theory is based on the idea of trembles.102

Intuitively, with a very small probability a player may make a mistake – “his hand103

might tremble” – in implementing his optimal strategy. So-called tremble equilibria104

formalize this intuition by postulating equilibrium behaviour as the limiting case when105

the trembles vanish. The most fundamental solution concept of this kind is Selten’s106

(1975) perfect equilibrium.6 A typical feature of tremble equilibria requires all trembles107

to satisfy some full support condition. In this sense, tremble equilibria also formalize108

cautious players, which suggests a link to lexicographic beliefs. Indeed, Blume et al.109

(1991b) investigate this link and provide a reformulation of perfect equilibrium as well110

as of proper equilibrium in terms of lexicographic conjectures, which are lexicographic111

beliefs about choices.112

However, a characterization of tremble equilibria in terms of interactive thinking113

is still missing. Such an endeavour would imperatively involve higher-order beliefs,114

thereby moving beyond the basic doxastic layer of conjectures. Full interactive reason-115

ing is modelled by imposing conditions on belief hierarchies which in turn assemble116

different layers of iterated beliefs. Conjectures, as beliefs about (opponents’) choices,117

only constitute the first such layer. In order to fully describe the interactive thinking118

of players, it is crucial to also model their beliefs about their opponents’ conjectures,119

their beliefs about their opponents’ beliefs about their opponents’ conjectures, etc. Due120

to their infinite nature belief hierarchies are cumbersome objects, but fortunately they121

can be represented in a compact way by means of epistemic models due to Harsanyi122

(1967-68). The epistemic program in game theory has employed such models to un-123

veil the interactive reasoning assumptions implicitly endorsed by solution concepts in124

games.125

6Other tremble equilibria have been proposed in the literature, for instance, Myerson’s
(1978) proper equilibrium, van Damme’s (1984) quasi-perfect equilibrium, as well as Harsanyi
and Selten’s (1988) uniformly perfect equilibrium.
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Our lexicographic agreement theorems are capable of shedding some light on the126

interactive reasoning underlying perfect equilibrium in games. Our framework of lexi-127

cographic Aumann structures with a common prior is capable of shedding some light128

on the interactive reasoning assumptions underlying tremble equilibria. Indeed, we pro-129

vide epistemic conditions for perfect equilibrium. The epistemic hypotheses of mutual130

primary belief in caution, mutual primary belief in rationality, and common knowledge131

of conjectures characterize perfect equilibrium in terms of interactive reasoning. Our132

lexicographic agreement theorems play a prominent role in attaining our epistemic foun-133

dation. By means of the weak agreement theorem, all opponents of any given player134

can be ensured to hold the same marginal lexicographic conjecture about him. The135

strong agreement theorem is used to derive an independence property of the players’136

lexicographic conjectures.137

We proceed as follows. The remainder of this section demarcates our model and138

results from the related literature. In Section 2, Blume et al.’s (1991a) lexicographic139

probability systems are incorporated into state-based interactive epistemology. Core140

notation is fixed and key concepts are defined. Section 3 contains a weak agreement141

theorem (WAT) with lexicographic probability systems, while Section 4 brings the142

deeper lexicographic levels into focus. Incongruity can obtain beyond the first level as143

our disagreement result (DIS) shows. In Section 5, under mutual absolute continuity, a144

lexicographically strong agreement theorem (SAT) is developed. We subsequently turn145

to games. In Section 6, Selten’s (1975) seminal solution concept of perfect equilibrium146

is presented. A reformulation of this tremble equilibrium by means of lexicographic147

conjectures is furnished along the lines of Blume et al. (1991b) in Section 7. Epistemic148

conditions that characterize perfect equilibrium are put forth in Section 8. Finally,149

Section 9 offers some concluding remarks.150

1.1 Related Literature151

By establishing agreement theorems with lexicographic beliefs and providing epistemic152

conditions for perfect equilibrium, our contribution is twofold. On the one hand, we are153

connected to the literature on agreeing to disagree that has emerged since Aumann‘s154

seminal (1976) impossibility result. On the other hand, the application of our lexico-155

graphic agreement theorems to epistemically characterize perfect equilibrium adds to156

the foundations of game theory.157

Our framework extends standard Aumann structures (Aumann, 1974 and 1976) by158

modelling the agents’ beliefs with Blume et al.’s (1991a) lexicographic probability sys-159

tems instead of mere probability distributions. Within this enriched set-up, we explore160

agreeing to disagree. Aumann’s (1976) agreement theorem obtains as a special case of161

WAT, if the lexicographic common prior is truncated at the first level.162

A lexicographic approach to agreeing to disagree is also taken by Bach and Perea163

(2013). Notably, their framework admits lexicographic beliefs as priors yet delivers a164

standard posterior for every agent. In contrast, by using lexicographic probability sys-165

tems, we also model the posteriors as lexicographic beliefs. This does not only formally166

but also conceptually make an essential difference, as the agents’ decision-relevant be-167

liefs are the posteriors which are extended in our framework. A further restriction of168



6

Bach and Perea (2013) is a non-overlapping support requirement on lexicographic pri-169

ors, which we do not impose. The agreement theorem of Bach and Perea (2013) is170

implied as another special case of WAT, if the lexicographic posteriors are truncated171

at the first level.172

Once lexicographic posteriors enter the picture novel insights emerge. Somewhat173

surprisingly, our possibility result DIS establishes that agents can actually agree to174

disagree with a lexicographic mindset. In fact, if a non-overlapping support requirement175

on lexicographic priors were to be desired, DIS would still remain valid. The additional176

assumption of mutual absolute continuity brings about our impossibility result SAT,177

which can be viewed as a lexicographic agreement theorem in sensu stricto.178

In general, lexicographic probability systems deal with the problem of how to pro-179

ceed if something is learned to which initially probability zero was assigned. An alterna-180

tive tool for extending probabilities to handle conditioning on measure zero events are181

conditional probability systems due to Rényi (1955). They have prominently been used182

in game theory to define the reasoning concept of common strong belief in rationality for183

extensive forms by Battigalli and Sinaicalchi (2002). Lexicographic probability systems184

can be related to conditional probability systems and equivalences have been estab-185

lished under certain conditions (e.g. Hammond, 1994; Halpern, 2010; Tsakas, 2014).186

Lexicographic agreeing to disagree is thus indirectly also related to Tsakas (2018), who187

establishes two agreement theorems with conditional probability systems. However, his188

results cannot be directly compared to ours, since the models are too different. While189

we extend Aumann’s partitional model by lexicographic probability systems, Tsakas190

(2018) uses type structures in the style of Battigalli and Siniscalchi (1991). In particu-191

lar, the way in which the agents’ posteriors enter the picture is inherently distinct. In192

Tsakas’ (2018) framework, the agreement concerns a single posterior per agent, while193

our agreement theorems deal with lexicographic posteriors. Besides, already the com-194

putation of the first level posterior in our framework depends on which prior assigns195

positive probability to the conditioning event (i.e. the respective agent’s information196

cell in lexicographic Aumann structures). In contrast, the determination of the condi-197

tioning event to derive the posterior in Tsakas’ (2018) model is independent from the198

prior.199

In the game-theoretic part of our paper, we explore the epistemic foundation of200

Selten’s (1975) solution concept of perfect equilibrium. A reformulation of perfect equi-201

librium by means of lexicographic conjectures constitutes the first step. Although such202

a reformulation has already been established by Blume et al. (1991b), our Lemma 1203

provides a similar construction for the sake of completeness and self-containedness. Be-204

ing concerned with the players’ interactive reasoning, epistemic foundations go beyond205

conjectures into the players’ belief hierarchies. Our Theorems 3 and 4 provide an episte-206

mic characterization of perfect equilibrium. They can be viewed as developping Blume207

et al.’s (1991a) analysis of perfect equilibrium in terms of lexicographic conjectures fur-208

ther into the full game-theoretic reasoning realm. In some sense, our relation to Blume209

et al. (1991b) with regard to perfect equilibrium is analogous to the relation of Au-210

mann and Brandenburger (1995) to Harsanyi (1973) with regard to Nash equilibrium:211

while Harsanyi (1973) has proposed the interpretation of Nash equilibrium in terms212

of conjectures, Aumann and Brandenburger (1995) have taken this crucial insight into213
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an epistemic framework, unveiling the underlying interactive reasoning assumptions214

of Nash equilibrium. Our game-theoretic results could be perceived of as generalizing215

Aumann and Brandenburger (1995) from Nash equilibrium to perfect equilibrium.7216

For the special case of two players, perfect equilibrium has been characterized epis-217

temically by Perea (2012). The supply of epistemic conditions for perfect equilibrium218

involving any finite number of players has still been an open question though, which219

our Theorems 3 and 4 address. An epistemic analysis of equilibrium notions faces two220

considerable challenges once more than two players are considered. Firstly, for a given221

player, all opponents have to share the same belief about the player’s choice (“problem222

of projection”). Secondly, any player’s belief about his opponents’ choices needs to be223

independent (“problem of independence”). Our lexicographic agreement theorems turn224

out to be pivotal in resolving these intricacies. Besides his restriction to the two player225

case, Perea’s (2012) type-based framework is distinct from our state-based lexicographic226

Aumann structures with a common prior. Epistemic conditions for the special setting of227

two players are provided by our Proposition 2, which can thus be juxtaposed with Perea228

(2012). Our hypotheses of mutual primary belief in caution and mutual primary belief229

in rationality are weaker variants of his common full belief in caution and common full230

belief in primary belief in rationality, respectively. Furthermore, mutual knowledge of231

lexicographic conjectures embodies a correct beliefs assumption among our epistemic232

conditions. In contrast, Perea’s (2012) correct beliefs assumption essentially states that233

each player believes his opponent to only lexicographically deem possible the player’s234

actual lexicographic belief hierarchy. While his epistemic operator is thus doxastic and235

the uncertainty is spanned by the full belief hierarchies, our correct beliefs assumption236

uses the stronger operator of knowledge but only concerns the players’ conjectures in237

terms of uncertainty. Finally, Perea’s (2012) notion of caution is more restrictive than238

ours. A player is cautious according to Perea (2012), whenever, if he lexicographically239

deems possible a type for any opponent, then he also lexicographically deems possi-240

ble any strategy for that type. In contrast, a player already satisfies caution in our241

game-theoretic framework, whenever his lexicographic conjecture deems possible any242

strategy for all of his opponents.243

2 Preliminaries244

In state-based interactive epistemology, knowledge and beliefs are modelled within the
framework of Aumann structures. Formally, an Aumann structure

A :“
`

Ω, pIiqiPI , p
˘

consists of a finite set Ω of possible worlds (also called states of the world), a finite245

set I of agents, a possibility partition Ii of Ω for every agent i P I, and a common246

7There are some significant differences though. While Aumann and Brandenburger (1995)
define knowledge as probability one belief in type-based structures, we use the standard notion
of knowledge in state-based Aumann models to define common knowledge of conjectures.
Also, our proofs critically build on (lexicographic) agreeing to disagree, whereas the proofs
of Aumann and Brandenburger take a different route without using (standard) agreeing to
disagree.
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prior p : Ω Ñ r0, 1s such that
ř

ωPΩ ppωq “ 1. The cell of Ii containing the world ω is247

denoted by Iipωq and assembles those worlds deemed possible by agent i at world ω.248

It is standard to impose the so-called non-null information assumption which ensures249

that no information is excluded a priori, i.e. p
`

Iipωq
˘

ą 0 for all i P I and for all ω P Ω.250

Agents reason about events which are defined as sets of possible worlds. The com-
mon prior p naturally extends to a measure p : 2Ω Ñ r0, 1s on the event space by setting
ppEq “

ř

ωPE ppωq for all E P 2Ω . Agents are Bayesians and consequently update the
common prior with their private information as follows: the posterior belief of agent i
in event E at world ω is given by

p
`

E | Iipωq
˘

“
p
`

E X Iipωq
˘

p
`

Iipωq
˘

and forms the decision-relevant belief of the agent.251

Knowledge is formalized in terms of events. The event of agent i knowing event E,
denoted by KipEq, is defined as

KipEq :“ tω P Ω : Iipωq Ď Eu.

If ω P KipEq, then i is said to know E at ω. Mutual knowledge is given by

KpEq :“
č

iPI

KipEq.

Setting K0pEq :“ E, higher-order mutual knowledge is inductively defined by

KmpEq :“ K
`

Km´1pEq
˘

for all m ą 0. Mutual knowledge can also be denoted as 1-order mutual knowledge. The
conjunction of all higher-order mutual knowledge yields common knowledge, which is
formally defined as

CKpEq :“
č

mą0

KmpEq

for all E P 2Ω . This is often called the iterative definition of common knowledge. An
equivalent formulation due to Aumann (1976) is based on the meet of the agents’ pos-
sibility partitions and typically denoted as the meet definition of common knowledge.8

Accordingly, common knowledge is constructed as

CKpEq :“
 

ω P Ω :
`

ľ

iPI

Ii
˘

pωq Ď E
(

8Given two partitions P1 and P2 of some set S, the partition P1 is called finer than the
partition P2 (or P2 coarser than P1), if each cell of P1 is a subset of some cell of P2. Given n
partitions P1,P2, . . . ,Pn of S, the finest partition that is coarser than P1,P2, . . . ,Pn is called
the meet of P1,P2, . . . ,Pn and is denoted by

Źn
i“1 Pi. Moreover, given x P S, the cell of the

meet
Źn

i“1 Pi containing x is denoted by
`
Źn

i“1 Pi

˘

pxq.
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for all E P 2Ω , where p
Ź

iPI Iiqpωq is the cell of the meet that contains the world ω.9252

Lexicographic beliefs are modelled in line with Blume et al. (1991a)’s notion of253

lexicographic probability systems. The following definition provides a direct adaptation254

of Blume et al. (1991a, Definition 3.1) to the interactive setting with multiple agents.255

Definition 1. Let Ω be a set of possible worlds, I be a set of agents, and Mi ą 0 be
some integer. A lexicographic probability system for agent i P I (i-LPS) is a tuple

ρi “ pp
1
i , . . . , p

Mi
i q,

where pmi P ∆pΩq for all m P t1, . . . ,Miu.256

Lexicographic beliefs are thus sequences of standard beliefs. The index numbers of a257

lexicographic probability system are also referred to as lexicographic levels.258

Incorporating lexicographic probability systems into Aumann structures gives rise259

to the notion of lexicographic Aumann structures.260

Definition 2. A lexicographic Aumann structure is a tuple

AL “
`

Ω, I, pIiqiPI , pρiqiPI
˘

,

where261

– Ω is a set of possible worlds,262

– I is a set of agents,263

– Ii Ď 2Ω is a possibility partition of Ω for every agent i P I,264

– ρi “ pp
1
i , . . . , p

Mi
i q is an i-LPS for every agent i P I,265

– for every agent i P I and for every world ω P Ω, there exists a lexicographic level266

m P t1, . . . ,Miu such that pmi
`

Iipωq
˘

ą 0.267

The fifth item of Definition 2 ensures that no information is excluded a priori, and268

formally reflects the idea of caution. Actually, this condition can be seen as the lex-269

icographic analogue to Aumann (1976)’s requirement for all information cells to be270

non-null events in the standard framework of Aumann structures. Caution could also271

be modelled as follows: for all i P I and for all ω P Ω there exists m P t1, . . . ,Miu272

such that pmi pωq ą 0. Such a condition is stronger, as it requires that every world – as273

opposed to only the information received – is deemed possible at some lexicographic274

level. The fifth item of Definition 2 is thus preferable.275

Agents use their information to reason lexicographically about events. Formally, we276

adjust Blume et al. (1991a, Definition 4.2) to the context of lexicographic Aumann277

structures.278

9In fact, Brandenburger and Dekel (1987) propose a more general definition of common
knowledge that can be used without the non-null information assumption holding (e.g. in
situations where the set Ω of possible worlds is uncountable). They require posterior beliefs
to be proper regular conditional probabilities and modify the agents’ possibility partitions
appropriately in the case of null cells. Their notion of common knowledge is iterative and
based on knowledge as probability 1 posterior belief.
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Definition 3. Let AL be a lexicographic Aumann structure, ω P Ω be some world, and
i P I be some agent. The conditional lexicographic probability system of agent i given
his information at world ω (ω-conditional i-LPS) is the tuple

ρωi “
´

pm1
i

`

¨ | Iipωq
˘

, . . . , pmL
i

`

¨ | Iipωq
˘

¯

where279

– the finite sequence of indices pmlq
L
l“0 is inductively defined by m0 :“ 0 and ml :“280

min
 

m P N : ml´1 ă m ďMi and pmi
`

Iipωq
˘

ą 0
(

if l ą 0;281

– pml
i

`

E | Iipωq
˘

“
p
ml
i

`

EXIipωq
˘

p
ml
i

`

Iipωq
˘ for all E P 2Ω and for all l P t1, . . . , Lu.282

An essential difference between lexicographic Aumann structures and the standard283

framework resides in the former equipping agents with multiple levels of – and not284

unique – posteriors beliefs. Technically, the sequence pmlq
L
l“1 of indicies belonging to285

the ω-conditional i-LPS ρωi depends on both i and ω and should thus strictly speaking286

be written as pmi,ω,lq
Li,ω

l“1 . For the sake of simplicity, the shortcut notation pmlq
L
l“1287

is adopted, whenever the dependence on i and ω is clear from the context. Fur-288

thermore, attention is restricted to the first L lexicographic posterior levels, where289

L :“ mintLi,ω ą 0 : i P I and ω P Ωu, in order to ensure that the conditional lex-290

icographic probability systems of every agent at every world have the same length.291

This restriction is only imposed for technical reasons, so that the lexicographic level292

posteriors the agents interactively reason about exist for all agents. Otherwise events293

such as “equal posteriors at all lexicographic levels” could not be properly defined.294

Besides, note that the lexicographic character of lexicographic probability systems ac-295

tually crystallizes in two ways: an agent’s prior as well as posterior are furnished with296

a lexicographic structure.297

The common prior assumption in Aumann structures can be directly generalized298

to the lexicographic setting.299

Definition 4. Let AL be a lexicographic Aumann structure. The lexicographic Au-300

mann structure AL satisfies the common prior assumption (CPA), if there exists ρ “301

pp1, . . . , pM q P
`

∆pΩq
˘M

such that M “ mintMi P N : i P Iu and pmi “ pm for all302

i P I and for all m P t1, . . . ,Mu. In this case, the tuple ρ is called common prior and303

ALCP “
`

Ω, I, pIiqiPI , ρ
˘

is called lexicographic Aumann structure with a common304

prior.305

With the existence of a common prior, the ω-conditional i-LPS thus becomes:

ρωi “ ρp¨ | Iipωqq “
´

pm1
`

¨ | Iipωq
˘

, . . . , pmL
`

¨ | Iipωq
˘

¯

Analogously to the case of subjective priors, the sequence pmlq
L
l“1 of indices should306

strictly speaking be written as pmi,ω,lq
L
l“1, which we refrain from doing whenever the307

dependence on i and ω is clear from the context.308

To preempt any potential confusion about the lexicographic notation: the prior309

levels are denoted by m P t1, . . . ,Mu, while the posterior levels are represented by310
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l P t1, . . . , Lu. The l-th posterior level corresponds to the prior level ml P t1, . . . ,Mu311

for all l P t1, . . . , Lu.312

According to so-called Harsanyi consistency, differences in agents’ beliefs are to be313

attributed entirely to differences in the agents’ information. This doctrine extends to314

our more general set-up with lexicographic beliefs. Indeed, Definition 3 ensures that315

posterior heterogeneity is already excluded in the case of the common prior assumption316

being satisfied, if the agents face symmetric information (i.e. receive precisely the same317

information). Consequently, distinct posteriors need to be due to information variety.318

As an illustration of our formal framework as embodied by Definitions 1 to 4,319

consider again the sea shipment allusion from Section 1. A lexicographic Aumann320

structure (cf. Definition 2) would represent a situation, where different merchants hold321

contingent prior beliefs and are equipped with private information about the arrival322

of some sea shipment. Suppose that Ω “ tω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8u comprises eight323

worlds. The eight worlds describe eight possible scenarios that are conceivable by all324

the merchants:325

‚ the shipment arrives in fine weather with no pirate attack occurring (ω1 P Ω),326

‚ the sea shipment does not arrive in fine weather with no pirate attack occurring327

(ω2 P Ω),328

‚ the shipment arrives in adverse weather with no pirate attack occurring (ω3 P Ω),329

‚ the shipment does not arrive in adverse weather with no pirate attack occurring330

(ω4 P Ω),331

‚ the shipment arrives in fine weather with pirates attacking (ω5 P Ω),332

‚ the shipment does not arrive in fine weather with pirates attacking (ω6 P Ω),333

‚ the shipment arrives in adverse weather with pirates attacking (ω7 P Ω),334

‚ the shipment does not arrive in adverse weather with pirates attacking (ω8 P Ω).335

Suppose that some merchant i P I deems it substantially more likely that a pirate attack336

does not occor. In fact, he only considers the latter to be a hypothetical contingency337

but he nonetheless does not discard it entirely from his thinking. Suppose further that338

i enjoys access to a reliable meteorological source which is signalling fine weather con-339

ditions. Such a state of mind could be modelled in our framework as follows. Merchant340

i’s information partition could be given by Ii “
 

tω1, ω2, ω5, ω6u, tω3, ω4, ω7, ω8u
(

and341

suppose that his subjective prior would be given by an i-LPS (cf. Definition 1) as342

follows: ρi “ pp1
i , p

2
i q such that p1

i pω1q “
4
9 , p1

i pω2q “ p1
i pω3q “

1
9 , and p1

i pω4q “
3
9 ,343

as well as p2
i pω5q “

1
4 , p2

i pω6q “
1
8 , p2

i pω7q “
1
8 , and p2

i pω8q “
1
2 . Assume that the344

shipment does arrive under fine weather conditions while withstanding a pirates’ at-345

tack. Formally speaking, ω5 becomes the actual state of the world. The relevant poste-346

rior of merchant i is the ω5-conditional i-LPS (cf. Definition 3) which then obtains347

as ρω5
i “

´

pm1
i

`

¨ | Iipω5q
˘

, pm2
i

`

¨ | Iipω5q

¯

such that pm1
i

`

ω1 | Iipω5q
˘

“ 4
5 and348

pm1
i

`

ω2 | Iipω5q
˘

“ 1
5 , as well as pm2

i

`

ω5 | Iipω5q
˘

“ 2
3 and pm2

i

`

ω6 | Iipω5q
˘

“ 1
3 .349

Moreover, in the case of the merchants being like-minded – for instance due to similar350

relevant past experiences with sea shipments – a common prior (cf. Definition 4) could351

be imposed. The sequence of prior beliefs would then be the same for all merchants,352

i.e. there would exist ρ “ pp1, . . . , pM q such that ρj “ ρ for all j P I.353
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3 Weak Agreement354

Since the agents hold levels of posterior beliefs, agreement becomes a multifarious355

notion. Identical beliefs can obtain (or not) at different lexicographic layers. In fact, it356

is now shown that common knowledge of lexicographic posteriors ensures the agents’357

first level posterior beliefs to coincide.358

Theorem 1 (WAT). Let ALCP be a lexicographic Aumann structure with a common
prior, E Ď Ω be some event, and ω P Ω be some world. If

CK
´

č

iPI

č

lPt1,...,Lu

 

ω1 P Ω : pml
`

E | Iipω1q
˘

“ pml
`

E | Iipωq
˘(

¯

‰ H,

then
pm1

`

E | Iipωq
˘

“ pm1
`

E | Ijpωq
˘

for all i, j P I.359

Proof. Let j P I be some agent, Aj Ď Ω be some set such that p
Ź

iPI Iiqpωq “
Ť

ω1PAj
Ijpω1q and Ijpω1qXIjpω2q “ H for all ω1, ω2 P Aj . Moreover, letm P t1, . . . ,Mu

be the first lexicographic level such that pm
`

p
Ź

iPI Iiqpωq
˘

ą 0. Consider some world

ω̄ P Aj . If pm
`

Ijpω̄q
˘

ą 0, then pm1
`

¨ | Ijpω̄q
˘

“ pm
`

¨ | Ijpω̄q
˘

, and by Bayesian
updating,

pm1
`

E | Ijpω̄q
˘

¨ pm
`

Ijpω̄q
˘

“ pm
`

E X Ijpω̄q
˘

holds. Alternatively, if pm
`

Ijpω̄q
˘

“ 0, then pm
`

E X Ijpω̄q
˘

“ 0. Since pm1
`

¨ | Ijpω̄q
˘

is well-defined,
pm1

`

E | Ijpω̄q
˘

¨ pm
`

Ijpω̄q
˘

“ pm
`

E X Ijpω̄q
˘

holds trivially. Therefore,

pm1
`

E | Ijpω1q
˘

¨ pm
`

Ijpω1q
˘

“ pm
`

E X Ijpω1q
˘

obtains for all ω1 P Aj .360

As

Aj Ď p
ľ

iPI

Iiqpωq Ď CK
´

č

iPI

č

lPt1,...,Lu

 

ω1 P Ω : pml
`

E | Iipω1q
˘

“ pml
`

E | Iipωq
˘(

¯

Ď
č

iPI

č

lPt1,...,Lu

 

ω1 P Ω : pml
`

E | Iipω1q
˘

“ pml
`

E | Iipωq
˘(

,

it is the case that pmlpE | Iipω1qq “ pmlpE | Iipωqq, for all i P I for all l P t1, . . . , Lu and
for all ω1 P Aj . In particular, pm1pE | Ijpω1qq “ pm1pE | Ijpωqq holds for all ω1 P Aj . It
follows that

pm1pE | Ijpωqq ¨ pm
`

Ijpω1q
˘

“ pm
`

E X Ijpω1q
˘

holds for all ω1 P Aj . Summing over all ω1 P Aj and using countable additivity yields

pm1
`

E | Ijpωq
˘

“
pm

`

E X p
Ź

iPI Iiqpωq
˘

pm
`

p
Ź

iPI Iiqpωq
˘ .
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Since j has been chosen arbitrarily, it can be concluded that

pm1
`

E | Iipωq
˘

“ pm1
`

E | Ijpωq
˘

for all i, j P I. �361

Agents can thus not agree to disagree on their first level posterior beliefs. The preceding362

result remains silent though on any lexicographic level deeper than level one. In this363

sense, WAT establishes a form of weak agreement within the lexicographic framework.364

Note that it is not possible to establish WAT by simply truncating the lexicographic365

Aumann structure at the first prior level and then applying Aumann’s proof of his366

original agreement theorem to this simpler structure. This is because the first level367

prior may not assign positive probability to some agent’s information cell, which in368

turn implies that a deeper level prior needs to be invoked to compute his first level369

posterior. Such possibilities need to be accommodated by the proof of weak agreement370

theorem.371

For the special case of exclusively admitting the first level posteriors – formally, only372

considering pm1
i

`

¨ | Iipωq
˘

for all ω P Ω and for all i P I – our framework of lexicographic373

Aumann structures becomes essentially equivalent to Bach and Perea (2013)’s model,374

which only employs a lexicographic common prior but unique posteriors. Their non-375

overlapping support condition across lexicographic prior levels is not assumed in our376

framework though. Thus, WAT can be seen as a generalization of Bach and Perea377

(2013, Theorem 1). If not only the posteriors but also the common prior are restricted378

to a single probability measure, i.e. M “ 1, then Aumann (1976)’s model can be379

recovered and WAT becomes the original agreement theorem.380

4 Disagreement381

Attention is now focussed on the deeper lexicographic levels. It turns out that agents382

can agree to disagree on posteriors beyond the first lexicographic level.383

Proposition 1 (DIS). There exist a lexicographic Aumann structure ALCP with a
common prior, some event E Ď Ω, and some world ω P Ω, such that

CK
´

č

iPI

č

lPt1,...,Lu

 

ω1 P Ω : pmlpE | Iipω1qq “ pmlpE | Iipωqq
(

¯

‰ H

and
pml˚ pE | Iipωqq ‰ pml˚ pE | Ijpωqq

for some i, j P I and for some l˚ P t2, . . . , Lu.384

Proof. Let ALCP “
`

Ω, I, pIiqiPI , ρ
˘

be a lexicographic Aumann structure with a com-385

mon prior, where386

– Ω “ tω1, ω2, ω3, ω4u,387

– I “ tAlice,Bobu,388

– IAlice “
 

tω1, ω2u, tω3, ω4u
(

,389
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– IBob “ tΩu,390

– and ρ “ pp1, p2, p3q with p1pω1q “ 1, p2pω2q “
1
3 , p2pω3q “

2
3 , p3pω4q “ 1.391

Consider the event E “ tω1, ω3u. Observe that

pm1
`

E | IAlicepωq
˘

“ p1
`

E | IAlicepωq
˘

“ 1

for all ω P tω1, ω2u, and

pm1
`

E | IAlicepωq
˘

“ p2
`

E | IAlicepωq
˘

“ 1

for all ω P tω3, ω4u.
10 Consequently, pm1

`

E | IAlicepωq
˘

“ 1 obtains at every world
ω P Ω. Also, observe that

pm1
`

E | IBobpωq
˘

“ p1
`

E | IBobpωq
˘

“ 1

for all ω P Ω. Therefore, Alice’s and Bob’s first level posterior beliefs of E coincide.392

Moreover, it is the case that

pm2
`

E | IAlicepωq
˘

“ p2
`

E | IAlicepωq
˘

“ 0

for all ω P tω1, ω2u, and

pm2
`

E | IAlicepωq
˘

“ p3
`

E | IAlicepωq
˘

“ 0

for all ω P tω3, ω4u. Hence, pm2
`

E | IAlicepωq
˘

“ 0 obtains at every world ω P Ω. Also,

pm2
`

E | IBobpωq
˘

“ p2
`

E | IBobpωq
˘

“
2

3

holds at every world ω P Ω. Therefore, Alice’s and Bob’s second level posterior beliefs393

of E do not coincide.394

Taking ω “ ω1 guarantees that

CK
´

č

iPI

č

lPt1,...,Lu

 

ω1 P Ω : pmlpE | Iipω1qq “ pmlpE | Iipωqq
(

¯

“ CKpΩq “ Ω ‰ H,

while

pm2pE | IAlicepωqq “ 0 ‰
2

3
“ pm2pE | IBobpωqq

obtains at the second lexicographic level m2. �395

A possibility result on agreeing to disagree thus emerges with lexicographic probability396

systems. Common knowledge of the agents’ lexicographic posteriors does manifestly397

not suffice to establish agreement at all lexicographic levels. The agents can entertain398

10Recall that in the expressions pm1
`

E | IAlicepω1q
˘

and pm1
`

E | IAlicepω3q
˘

, index m1

is a shortcut notation for the two different indices mAlice,ω1,1 and mAlice,ω3,1, respectively.
Hence, equalities pm1

`

E | IAlicepω1q
˘

“ p1
`

E | IAlicepω1q
˘

and pm1
`

E | IAlicepω3q
˘

“ p2
`

E |
IAlicepω3q

˘

imply that mAlice,ω1,1 “ 1 and mAlice,ω3,1 “ 2, respectively.
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distinct posteriors at lexicographic levels beyond one, and at the same time acknowledge399

this divergence. This result is somewhat surprising as it lexicographically counters400

Aumann’s impossibility theorem. Besides, note that DIS would still apply and the401

same proof would remain valid, if a disjoint support condition were to be imposed on402

the lexicographic level priors.403

Conceptually, DIS raises the question as to what drives the disagreement in a404

lexicographically enriched set-up. From Aumann’s agreement theorem, it is typically405

concluded that asymmetric information does not suffice to explain heterogeneity in406

posterior beliefs of Bayesian agents with a common prior. Consequently, disagreement407

can be reached by either weakening the common knowledge assumption or the common408

prior assumption. Such a conclusion does no longer apply in our lexicographic frame-409

work, since by DIS heterogeneous posteriors can obtain despite common knowledge410

of posteriors as well as the common prior remaining intact. In contrast to Aumann’s411

original set-up with standard beliefs, the lexicographic beliefs in our framework are412

capable of capturing hypothetical reasoning. The conceptual conclusion of Aumann’s413

impossibility result with regard to disagreement is thus refined by DIS which detects414

hypothetical reasoning as a third source for heterogeneity in posterior beliefs.415

5 Strong Agreement416

The impossibility theorem of WAT is weak in the sense that it only affects the first417

lexicographic posterior level and agreement can already fall apart at the second level418

as DIS shows. Further assumptions about the agents’ like-mindedness are thus needed419

for a stronger result yielding equal posteriors at every lexicographic level. For this420

purpose an adaptation of absolute mutual absolute continuity from probability theory421

is introduced.422

Definition 5. Let ALCP be a lexicographic Aumann structure with a common prior
and ω P Ω be some world. The common prior ρ is mutually absolutely continuous,
whenever

pm
`

Iipωq
˘

“ 0, if and only if, pm
`

Ijpωq
˘

“ 0

for all ω P Ω, for all i, j P I, and for all m P t1, . . . ,Mu.423

Mutual absolute continuity ensures that at every lexicographic level the corresponding424

common prior handles the agents’ information in synchrony. In any conceivable con-425

tingency, either the received private information at a world is deemed possible for all426

agents or it is excluded for everyone. Mutual absolute continuity can thus be viewed427

as a kind of lexicographic “same-excluding” condition.428

The interpretation of the common prior assumption in the original Aumann struc-429

tures with standard beliefs as agent like-mindedness can be adapted to our framework430

with lexicographic beliefs. The lexicographic common prior adds a contingent form of431

like-mindedness that also covers the different layers of hypothetical reasoning a pri-432

ori. In this sense a lexicographic common prior that is mutually absolutely continuous433

constitutes an intensified like-mindedness assumption, where the players’ hypothetical434

reasoning conditional on their information is aligned. In fact, this condition ensures435
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that for every posterior level the agents’ conditional beliefs are computed with the436

same level prior. If the agents violate intensified like-mindedness, then it can happen437

that at some posterior level they base their updated beliefs on distinct level priors.438

In other words, the lexicographic like-mindedness a priori gets lost in the process of439

Bayesian updating. The lexicographic Aumann structure constructed in the proof of440

DIS illustrates this phenomenon.441

Formally, our mutual absolute continuity condition imposed on the common prior
is closely related to the standard notion in probability theory which concerns two
probability measures. Let µ and ν be measures on some set Ω, and define µ ăă ν, if
νpF q “ 0 implies µpF q “ 0 for all F P 2Ω . Let the two measures µ and ν be called
standard mutually absolutely continuous, whenever µ ăă ν and ν ăă µ.11 Observe
that the common prior ρ induces for every level m P t1, . . . ,Mu and for every player
i P I a measure µmi : 2Ω Ñ r0, 1s given by

µmi pF q :“

$

&

%

0 if F “ H
ř

ωPF

pm
`

Iipωq
˘

|Iipωq|
otherwise,

for all F P 2Ω . Now, if µmi pF q “
ř

ωPF

pm
`

Iipωq
˘

|Iipωq|
ą 0 for some F P 2Ω , then there exists442

ω1 P F such that pm
`

Iipω1q
˘

ą 0. By the mutual absolute continuity condition of Defini-443

tion 5, pm
`

Ijpω1q
˘

ą 0 thus holds too, and consequently µmj pF q “
ř

ωPF

pm
`

Ijpωq
˘

|Ijpωq|
ą 0.444

Conversely, if pm
`

Iipωq
˘

ą 0 for some ω P Ω, then µmi ptωuq ą 0. By standard mutual445

absolute continuity, µmj ptωuq ą 0 hence also obtains, and consequently pm
`

Ijpωq
˘

ą 0.446

Therefore, the following formal characterization our mutual absolute continuity adap-447

tation in terms of standard mutual absolute continuity from probability theory ensues.448

Remark 1. Let ALCP be a lexicographic Aumann structure with a common prior. The449

common prior ρ is mutually absolutely continuous, if and only if, µmi and µmj are450

standard mutually absolutely continuous for all i, j P I and for all m P t1, . . . ,Mu.451

Mutual absolute continuity in line with Definition 5 can thus be viewed as a variant of452

standard mutual absolute continuity from probability theory.453

In fact, our condition of Definition 5 is also similar to Stuart (1997)’s use of mutual454

absolute continuity.12 Accordingly, if some agent’s belief assigns a positive probability455

to a state (which essentially corresponds to a possible world in our framework), then456

so do all the other agents. Even though Stuart (1997) does not impose any priors,457

an agent’s belief in his model can be viewed as a posterior. While the underlying458

idea of Stuart’s (1997) mutual absolute continuity and ours is the same – some form459

of synchronicity in both consideration and omission – his version concerns posterior460

beliefs and possible worlds, whereas ours refers to prior beliefs and information.461

11In probability theory, two mutually absolutely continuous measures are sometimes also
called equivalent.

12In Stuart (1997), mutual absolute continuity plays an important role in establishing all
period defection in the normal-form model of the finitely repeated prisoners’ dilemma.
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It turns out that mutual absolute continuity together with the common prior as-462

sumption and common knowledge of posteriors implies that the agents’ posterior beliefs463

coincide at all lexicographic levels.464

Theorem 2 (SAT). Let ALCP be a lexicographic Aumann structure with a common
prior, E Ď Ω be some event, and ω P Ω be some world. If ρ is mutually absolutely
continuous and

CK
´

č

iPI

č

lPt1,...,Lu

 

ω1 P Ω : pml
`

E | Iipω1q
˘

“ pml
`

E | Iipωq
˘(

¯

‰ H,

then
pml

`

E | Iipωq
˘

“ pml
`

E | Ijpωq
˘

for all i, j P I and for all l P t1, . . . , Lu.465

Proof. We first show that if ρ is mutually absolutely continuous, then the lexicographic
indices of the ω1-conditional i-LPS ρω

1

i are the same for all ω1 P p
Ź

iPI Iiqpωq and for all
i P I. Let j P I, ω1 P p

Ź

iPI Iiqpωq as well as pmlq
L
l“1 and pm1lq

L
l“1 be the indices of ρωj and

ρω
1

j , respectively. Since ω1 P p
Ź

iPI Iiqpωq, the world ω1 is doxastically reachable from

ω, i.e., there exists a sequence pP kqNk“1 of information cells such that ω P P 1, ω1 P PN ,
and P k XP k`1 ‰ H for all 1 ď k ă N . Since ρ is mutually absolutely continuous, it is
the case that, pmpP kq “ 0 if and only if pmpP k`1q “ 0 for all m P t1, . . . ,Mu and for
all 1 ď k ă N . Thus, pmpP 1q “ 0 if and only if pmpPN q “ 0 for all m P t1, . . . ,Mu.
Since ω P Ijpωq X P 1, ω1 P Ijpω1q X PN and ρ is mutually absolutely continuous, it
follows that pm

`

Ijpωq
˘

“ 0 if and only if pmpP 1q “ 0 and pm
`

Ijpω1q
˘

“ 0 if and

only if pmpPN q “ 0, and thus pm
`

Ijpωq
˘

“ 0 if and only if pm
`

Ijpω1q
˘

“ 0, for all m
P t1, . . . ,Mu. Consequently, pmlq

L
l“1 “ pm

1
lq
L
l“1. Now, towards a contradiction, suppose

that there exist j1 P I and l P t1, . . . , Lu such that m1l ‰ m2l , where pm2l q
L
l“1 are the

indices of ρω
1

j1 . Without loss of generality, suppose that l is the least such index. Then,

either m1l ă m2l , in which case, pm
1
l

`

Ijpω1q
˘

ą 0 and pm
1
l

`

Ij1pω1q
˘

“ 0, or m1l ą m2l ,

in which case, pm
2
l

`

Ijpω1q
˘

“ 0 and pm
2
l

`

Ij1pω1q
˘

ą 0. In both cases, a contradiction
with the mutual absolute continuity of ρ obtains. Consequently, pmlq

L
l“1 “ pm

1
lq
L
l“1 “

pm2l q
L
l“1 “: pm̄lq

L
l“1. The ω1-conditional i-LPS can then be written as

ρω
1

i “ρp¨ | Iipω1qq “
´

pm̄1
`

¨ | Iipω1q
˘

, . . . , pm̄L
`

¨ | Iipω1q
˘

¯

for all i P I and for all ω1 P p
Ź

iPI Iiqpωq.466

We are now ready to derive agreement in posteriors. Let j1 P I and Aj1 Ď Ω such
that p

Ź

iPI Iiqpωq “
Ť

ω1PAj1
Ij1pω1q and Ij1pω1qXIj1pω2q “ H for all ω1, ω2 P Aj1 . Note

that

Aj1 Ď p
ľ

iPI

Iiqpωq Ď CK
´

č

iPI

č

lPt1,...,Lu

 

ω1 P Ω : pml
`

E | Iipω1q
˘

“ pml
`

E | Iipωq
˘(

¯

Ď
č

iPI

č

lPt1,...,Lu

 

ω1 P Ω : pml
`

E | Iipω1q
˘

“ pml
`

E | Iipωq
˘(

.
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Consider some l1 P t1, . . . , Lu. It follows that

pml1
`

E | Ij1pωq
˘

“ pml1
`

E | Ij1pω1q
˘

“
pml1

`

E X Ij1pω1q
˘

pml1
`

Ij1pω1q
˘ “

pm̄l1
`

E X Ij1pω1q
˘

pm̄l1
`

Ij1pω1q
˘

for all ω1 P Aj1 . Consequently,

pml1
`

E | Ij1pωq
˘

¨ pm̄l1
`

Ij1pω1q
˘

“ pm̄l1
`

E X Ij1pω1q
˘

,

for all ω1 P Aj1 . Summing over all ω1 P Aj1 and using countable additivity yields

pml1
`

E | Ij1pωq
˘

“
pm̄l1

`

E X p
Ź

iPI Iiqpωq
˘

pm̄l1
`

p
Ź

iPI Iiqpωq
˘ “ pm̄l1

`

E | p
ľ

iPI

Iiqpωq
˘

.

Since j1 and l1 have been chosen arbitrarily, it can be concluded that

pml
`

E | Iipωq
˘

“ pml
`

E | Ijpωq
˘

for all i, j P I and for all l P t1, . . . , Lu. �467

It is thus impossible for lexicographically-minded agents to agree to disagree whenever468

mutual absolute continuity is satisfied. In contrast to WAT, which only ensures a weak469

form of agreement at the first posterior level, SAT establishes strong agreement at all470

lexicographic posterior levels.471

From a conceptual perspective, agreement is only ensured in the lexicographically472

enriched framework by a substantial strengthening of the agents’ like-mindedness. It473

does not suffice to require a common prior at all reasoning levels. On top of that, each474

of these priors also has to synchronically consider or synchronically neglect the agents’475

information in order to reconcile their updating. Together with common knowledge of476

posteriors, the assumption of intensified like-mindedness drives the homogeneity of the477

posteriors in our lexicographic framework.478

The particular lexicographic Aumann structure constructed in the proof of DIS479

suggests that SAT qualifies as tight with respect to the mutual absolute continuity480

condition.13 There the other two key assumptions, i.e. common prior as well common481

knowledge of posteriors, but not mutual absolute continuity hold, while the consequent,482

i.e. lexicographically identical posterior beliefs, fails.483

Continuity in agreeing to lexicographically disagree follows from SAT in the sense484

that equal prior beliefs up to some lexicographic prior level imply equal posterior beliefs485

up to a corresponding lexicographic posterior level. Suppose that the common prior as-486

sumption is weakened such that the agents’ priors coincide up to some level M̄ ă M ,487

and modify the initial lexicographic Aumann structure by truncating the agent’s lexico-488

graphic priors at M̄ , which is equivalent to imposing a common prior ρ “ pp1, . . . , pM̄ q.489

By SAT it follows that common knowledge of lexicographic posteriors at some world490

ω P Ω implies equal posterior measures for every level l P
 

1, . . . ,mintLi,ω P N : i P Iu
(

491

in the truncated structure, and hence also up to level mintLi,ω P N : i P Iu in the initial492

lexicographic Aumann structure. In this sense, the lexicographic impossibility result of493

SAT is continuous.494

13Tightness is interpreted in the style of Aumann and Brandenburger (1995), i.e. whether
dropping only one assumption of a result were to already break its conclusion.
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6 Perfect Equilibrium495

Next, we turn to game theory where some of our results on lexicographic agreeing to
disagree are employed for an epistemic analysis of tremble equilibria. In game theory,
strategic interaction of multiple agents is modelled, and possible outcomes are predicted
based on different assumptions. Static games with complete information constitute the
most elementary analytical framework. Formally, such games are represented by a tuple

Γ “
`

I, pSiqiPI , pUiqiPI
˘

consisting of a finite set I of players and finite non-empty strategy sets Si as well as496

real-valued utility functions Ui with domain
Ś

jPI Sj for every player i P I. In terms497

of notation, the set S´i :“
Ś

jPIztiu Sj refers to the product set of the i’s opponents’498

strategy combinations. The tuple Γ “
`

I, pSiqiPI , pUiqiPI
˘

is often also referred to as499

normal form. As background hypotheses it is stipulated that all players choose their500

strategies simultaneously and that the ingredients of the game, i.e. the normal form, is501

common knowledge among the players. Solution concepts propose plausibility criteria502

or decision rules in line with which the players are supposed to act. Formally, a solution503

concept defines a subset SC Ď
Ś

iPI Si of the set of all strategy combinations as possible504

outcomes of the game.505

The solution concept of Nash equilibrium – due to Nash (1950) and (1951) – requires506

players to choose utility maximizing against fixed strategies of the opponents. In order507

to ensure existence of an equilibrium point in any game, also randomizations over508

strategies are admitted. The set of choice objects for every player i P I is thus enlarged509

from Si to ∆pSiq, where a typical element σi of ∆pSiq is called a mixed strategy of510

player i. The utility functions Ui are extended from
Ś

jPI Sj to
Ś

jPI

`

∆pSjq
˘

for every511

player i P I by an expected utility computation. A tuple of mixed strategies σ “ pσjqjPI512

constitutes a Nash equilibrium, whenever513

s˚i P arg maxsiPSi

!

ÿ

s´iPS´i

`
â

jPIztiu

σj
˘

ps´iq ¨ Uipsi, s´iq
)

(1)

for all s˚i P supppσiq and for all i P I.14 If equation (1) holds, s˚i is called a best514

response to σ´i, where σ´i :“ pσjqjPIztiu. Player i is said to strictly prefer a strategy si515

to some other strategy s1i given σ´i, whenever
ř

s´iPS´i
p
Â

jPIztiu σjqps´iq¨Uipsi, s´iq ą516
ř

s´iPS´i
p
Â

jPIztiu σjqps´iq ¨ Uips
1
i, s´iq holds.517

In classical game theory, the multiplicity of Nash equilibria in many games has518

been deemed unsatisfactory and refinements have thus been sought. A particular class519

of equilibrium refinements is based on the idea that players can make mistakes with520

small probability. Phrased in more vivid terms: players possibly tremble when imple-521

menting their strategies. In line with this intuition, various tremble equilibria have been522

14Given a probability measure p P ∆pXq on some set X its support is defined as suppppq :“
tx P X : ppxq ą 0u. Fixing K P N and probability measures pk on sets Xk for all k P t1, . . . ,Ku,
Â

kPt1,...,Ku pk denotes the product measure on the set
Ś

kPt1,...,KuXk.
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proposed in the literature. The most basic such solution concept is Selten’s (1975) per-523

fect equilibrium.15 Essentially, attention is restricted to Nash equilibria that obtain as524

limits of sequences of perturbed strategy combinations. While originally introduced by525

Selten (1975, Section 8) as a solution concept for dynamic games, perfect equilibrium526

has also been widely used in static games. A formal definition of perfect equilibrium527

for the class of static games ensues as follows.528

Definition 6. Let Γ be a game and σ “ pσiqiPI P
Ś

iPI ∆pSiq be a tuple of mixed529

strategies. The tuple σ constitutes a perfect equilibrium of Γ , if there exists a sequence530

of tuples of mixed strategies pσkqkPN “
`

pσki qiPI
˘

kPN P
`
Ś

iPI ∆pSiq
˘N

such that531

(i) limkÑ8 σ
k “ σ;532

(ii) for all i P I and for all k P N, it is the case that supppσki q “ Si;533

(iii) for all i P I and for all k P N, if si P supppσiq, then si is a best response to σk´i.534

A perfect equilibrium thus always coincides with the limit of a sequence of trembles.535

Moreover, for every player, his perfect equilibrium mixed strategy only assigns posi-536

tive probability to strategies that are best responses to any of the opponents’ tremble537

combinations. It can be shown that a perfect equilibrium must be a Nash equilibrium538

(Selten, 1975, Lemma 9). This result essentially rests on the fact that the expected util-539

ities are continuous in mixed strategy profiles. Conversely, Nash equilibrium does not540

imply perfect equilibrium. The latter solution concept thus is stronger than the former.541

In classical parlance, perfect equilibrium constitutes a refinement of Nash equilibrium.542

The following example illustrates these two solution concepts.543

Example 1. Consider the two player game depicted in Figure 1 with players Alice and544

Bob, where Alice chooses a “row” (a or b) and Bob picks a “column” (y or z). The545

mixed strategy tuple σ “ pσAlice, σBobq, where σAlicepaq “ 1 and σBobpyq “ 1, forms546

a Nash equilibrium, as a is a best response to σBob and y is a best response to σAlice.547

To see that σ also constitutes a perfect equilibrium, construct a sequence of tuples of548

mixed strategies pσkqkPNzt0u “
`

pσkAlice, σ
k
Bobq

˘

kPNzt0u by setting σkAlicepaq “ 1 ´ 1
k`1 ,549

σkAlicepbq “ 0 ` 1
k`1 , σkBobpyq “ 1 ´ 1

k`1 and σkBobpzq “ 0 ` 1
k`1 for all k P Nzt0u.550

Observe that limkÑ8 σ
k “ σ as well as supppσkAliceq “ SAlice and supppσkBobq “ SBob551

for all k P Nzt0u. Moreover, a is a best response to σkBob for all k P Nzt0u and y is a552

best response to σkAlice for all k P Nzt0u. It follows that σ is a perfect equilibrium.

y z
a 1, 1 0, 0
b 0, 0 0, 0

Fig. 2.

553

15Other tremble equilibria are, for instance, Myerson’s (1978) proper equilibrium, van
Damme’s (1984) quasi-perfect equilibrium, as well as Selten and Harsanyi’s (1988) uniformly
perfect equilibrium.
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The mixed strategy tuple σ1 “ pσ1Alice, σ
1
Bobq, where σ1Alicepbq “ 1 and σ1Bobpzq “ 1554

also constitutes a Nash equilibrium, since b is a best response to σBob and z is a555

best response to σAlice. However, it does not form a perfect equilibrium. Suppose that556

there exists a sequence of full support mixed strategy tuples pσkAlice, σ
k
BobqkPNzt0u P557

`

∆pSAliceq ˆ∆pSBobq
˘Nzt0u

with limit point σ1. Then, b cannot be a best response to558

σkBob for any k P Nzt0u. Indeed, as soon as y receives positive probability, only a can559

be a best reponse for Alice. It follows that σ1 is not a perfect equilibrium. ♣560

7 Lexicographic Characterization561

It is known that tremble equilibria with their sequences of full support mixed strat-562

egy tuples can be characterized in terms of lexicographic conjectures. The latter can563

be modelled as lexicographic probability systems in which for every player the set of564

opponents’ choice combinations defines the basic space of uncertainty. Perfect equilib-565

rium and proper equilibrium have been reformulated with lexicographic conjectures by566

Blume et al. (1991b) and shown to be equivalent to their notion of lexicographic Nash567

equilibrium plus further restrictions, respectively. In this section we define lexicographic568

perfect equilibrium and lexicographic semi-perfect equilibrium. While these two solu-569

tion concepts phrased in terms of lexicographic conjectures essentially correspond to570

variants of Blume et al.’s (199b) lexicographic Nash equilibrium, our definitions are571

aligned with our formal framework and formulated in a direct way.572

Some further concepts and notation need to be introduced. Let Γ be a game

and i P I be some player. A sequence βi “ pb1i , . . . , b
L
i q P

`

∆pS´iq
˘L

of probabil-
ity measures, for some L P N, is called player i’s lexicographic conjecture. For the
sake of simplicity we assume the same number L of levels for all i P I. A lexico-
graphic conjecture βi is cautious, whenever for all j P Iztiu and for all sj P Sj , there

exists some lexicographic level l˚ P t1, . . . , Lu such that margSj
bl
˚

i psjq ą 0, where

margSj
bl
˚

i psjq :“
ř

s´pi,jqPS´pi,jq
bl
˚

i ps´pi,jq, sjq for all sj P Sj . Given a strategy si P Si

and a lexicographic conjecture βi “ pb
1
i , . . . , b

L
i q P

`

∆pS´iq
˘L

,

ulipsi, βiq :“
ÿ

s´iPS´i

blips´iq ¨ Uipsi, s´iq

is player i’s level-l expected utility for all l P t1, . . . , Lu. Equipped with a lexicographic

conjecture βi P
`

∆pS´iq
˘L

, player i strictly lex-prefers a strategy si P Si to some other
strategy s1i P Si, whenever there exists a lexicographic level l˚ P t1, . . . , Lu such that

ul
˚

i psi, βiq ą ul
˚

i ps
1
i, βiq and ulipsi, βiq “ ulips

1
i, βiq

for all l ă l˚. A strategy s˚i P Si is called lex-optimal given βi, if there exists no
strategy si P Si such that i strictly lex-prefers si to s˚i . Similarly, player i is said to be
lex-indifferent between si and s1i, whenever ulipsi, βiq “ ulips

1
i, βiq for all l P t1, . . . , Lu.

Player i weakly lex-prefers si to s1i, if he strictly lex-prefers the former to the latter
or feels lex-indifferent. A lexicographic conjecture βi is called lexicographic product
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conjecture, if bli “
Â

jPIztiumargSj
bli holds for all l P t1, . . . , Lu, and is formally written

as

βi :“
â

jPIztiu

margSj
βi :“

`
â

jPIztiu

margSj
b1i , . . . ,

â

jPIztiu

margSj
bLi
˘

.

Conceptually, a player with a lexicographic product conjecture treats his opponents’573

choices as uncorrelated.16
574

Selten’s (1975) solution concept of perfect equilibrium can be expressed in terms of575

lexicographic conjectures.576

Definition 7. Let Γ be a finite game, σ “ pσiqiPI P
Ś

iPI

`

∆pSiq
˘

be a tuple of mixed577

strategies, and L P N. The tuple σ constitutes a lexicographic perfect equilibrium of Γ ,578

if there exist a tuple β “ pβiqiPI P
´

`

∆pS´iq
˘L

¯

iPI
of lexicographic conjectures and a579

lexicographic product measure π “ pπ1, . . . , πLq P
`

∆p
Ś

iPI Siq
˘L

such that for all i P I,580

the following properties hold:581

(a) βi “ pb
1
i , . . . , b

L
i q is cautious;582

(b) σi “ margSi
b1j for all j P Iztiu;583

(c) if si P supppσiq, then si is lex-optimal given βi;584

(d) βi “
Â

jPIztiumargSj
βi;585

(e) margS´i
π “ βi.586

A lexicographic formulation of perfect equilibrium thus builds on an interpretation of587

mixed strategies as conjectures. In this regard, condition (b) blocks any doxastic ambi-588

guity by requiring that for a given player all opponents share the same belief about his589

choice. The trembles of the classical definition are mimicked via condition (a) which590

requires the lexicographic conjectures to be cautious. The best response property of the591

perfect equilibrium tuple is ensured by condition (c) according to which only choices592

supported by the player’s lexicographic conjecture receive positive probability. Epis-593

temic independence is built in via condition (d) postulating that the players’ lexico-594

graphic conjectures are the product of their marginals. Each of the lexicographic beliefs595

are required by condition (e) to stem from a joint source. In essence, lexicographic per-596

fect equilibrium corresponds to Blume et al.’s (1991b) lexicographic Nash equilibrium597

plus full support at all lexicographic levels, a common prior, and some independence598

condition.599

The classical and the lexicographic versions of perfect equilibrium are equivalent.600

Lemma 1. Let Γ be a finite game and σ P
Ś

iPI

`

∆pSiq
˘

be a tuple of mixed strate-601

gies. The tuple σ constitutes a perfect equilibrium of Γ , if and only if, σ constitutes a602

lexicographic perfect equilibrium of Γ .603

Proof. See Appendix.604

16While players by assumption do choose independently of course, it is well known that
this does not preclude the possibility that beliefs about opponents’ choices violate statistical
independence. Essentially, the reason lies in two distinct forms of independence – causal and
epistemic – which do not imply each other.
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The classical formulation (Definition 6) and the lexicographic variant (Definition 7)605

of perfect equilibrium can thus be used interchangeably. Lemma 1 is by and large606

equivalent to Blume et al. (1991b, Proposition 7), where classical perfect equilibrium607

is characterized in terms of their notion of lexicographic Nash equilibrium plus some608

additional assumptions. For the sake of completeness and self-containedness we explic-609

itly show the equivalence. However, since Lemma 1 lies outside the focus of this paper610

its proof is deferred to the Appendix.611

A possibly meaningful weakening of lexicographic perfect equilibrium would obtain,612

if conditions (d) and (e) of Definition 7 were to be dropped.613

Definition 8. Let Γ be a finite game, σ “ pσiqiPI P
Ś

iPI

`

∆pSiq
˘

be a tuple of mixed614

strategies, and L P N. The tuple σ constitutes a lexicographic semi-perfect equilibrium615

of Γ , if there exists a tuple β “ pβiqiPI P
´

`

∆pS´iq
˘L

¯

iPI
of lexicographic conjectures616

such that for all i P I, the following properties hold:617

(a) βi “ pb
1
i , . . . , b

L
i q is cautious;618

(b) σi “ margSi
b1j for all j P Iztiu;619

(c) if si P supppσiq, then si is lex-optimal given βi.620

A lexicographic semi-perfect equilibrium does admit a player’s lexicographic conjec-621

ture about his opponents’ choices to not be independent. Accordingly, he may deem622

it lexicographically possible for some opponents’ choices to be correlated. Note that623

correlated beliefs at some level do not imply the belief that players do not choose in-624

dependently from each other. Even though the actions of any two players in a static625

game are entirely autonomous, the reasoning leading to these actions might be related626

in a way that makes them correlated from the perspective of a third player. Also, in627

contrast to perfect equilibrium, more flexibility about the lexicographic conjectures is628

permitted by Definition 8, as they no longer need to be projections of a joint source.629

The solution concept of lexicographic semi-perfect equilibrium basically coincides with630

Blume et al.’s (1991b) notion of lexicographic Nash equilibrium plus some full support631

property.632

It is clear that perfect equilibrium implies semi-perfect equilibrium, as the latter633

requires two properties less than the former. The following example shows that the634

converse does not hold though.635

Example 2. Consider the three player game depicted in Figure 2 with players Alice,636

Bob, and Claire, where Alice chooses a “row” (a or b), Bob picks a “column” (y or z),637

and Claire selects a “matrix” (left, middle, or right).638

y z
a 1, 1, 2 0, 0, 0
b 0, 0, 0 1, 1, 0

left

y z
a 1, 1, 2 0, 0, 0
b 0, 0, 0 1, 1, 2

middle

y z
a 1, 1, 0 0, 0, 0
b 0, 0, 0 1, 1, 2

right

Fig. 3.
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It is first shown that the mixed strategy tuple σ “ pσAlice, σBob, σClaireq, where639

σAlicepaq “ σAlicepbq “ 0.5, σBobpyq “ σBobpzq “ 0.5, and σClairepmiddleq “ 1 forms640

a lexicographic semi-perfect equilibrium. Define conjectures βAlice “ pb1Alice, b
2
Aliceq,641

βBob “ pb
1
Bob, b

2
Bobq, and βClaire “ pb

1
Claire, b

2
Claireq such that642

b1Alice “ 0.5 ¨ py,middleq ` 0.5 ¨ pz,middleq,

b2Alice “ 0.5 ¨ py, leftq ` 0.5 ¨ pz, rightq
˘

,

b1Bob “ 0.5 ¨ pa,middleq ` 0.5 ¨ pb,middleq,

b2Bob “ 0.5 ¨ pa, leftq ` 0.5 ¨ pb, rightq
˘

,

b1Claire “ 0.5 ¨ pa, yq ` 0.5 ¨ pb, zq,

b2Claire “ 1 ¨ pa, yq.

Each of the three conjectures is cautious, as all choices of all respective opponents’643

receive positive probability at some lexicographic level. Moreover,644

margSAlice
b1Bob “ margSAlice

b1Claire “ 0.5 ¨ a` 0.5 ¨ b “ σAlice,

margSBob
b1Alice “ margSBob

b1Claire “ 0.5 ¨ y ` 0.5 ¨ z “ σBob,

margSClaire
b1Alice “ margSClaire

b1Bob “ middle “ σClaire.

Observe that a and b are lex-optimal given βAlice, y and z are lex-optimal given βBob,645

as well as middle is lex-optimal given βClaire. Consequently, σ constitutes a lexico-646

graphic semi-perfect equilibrium. However, σ is not lexicographic perfect, as b1Claire’s647

probability measure violates independence and property pdq of Definition 7 is thus not648

satisfied. ♣649

It could be interesting to explore new solution concepts based on various weaken-650

ings of lexicographic perfect equilibrium such as lexicographic semi-perfect equilibrium.651

Another possibility would be to also admit conjectures that violate the projection prop-652

erty on the first lexicographic level. A corresponding perfect equilibrium variant could653

then be defined directly in terms of lexicographic conjectures and be required to satisfy654

the conditions (a) and (c) of Definition 7. We leave such thoughts for further research.655

8 Epistemic Characterization656

We now explore the interactive reasoning assumptions of perfect equilibrium and thereby657

extend the work of Blume et al. (1991b). While Blume et al. (1991b) characterize perfect658

equilibrium in terms of lexicographic conjectures, they do not perform any epistemic659

analysis involving higher-order beliefs to unveil the interactive thinking that drive play-660

ers to choose in line with this solution concept. The latter is precisely the focus of this661

section. A key role will be played by our results on lexicographic agreeing to disagree.662

In particular, the weak agreement theorem (WAT) as well as the strong agreement663

theorem (SAT) turn into essential ingredients to establish an epistemic foundation for664

perfect equilibrium.665
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In game theory, reasoning is captured by means of epistemic structures that are666

added to the formal framework. Different patterns or assumptions about reasoning667

can then be expressed in the form of epistemic hypotheses. Classical solution concepts668

can be characterized in terms of reasoning by epistemic conditions. In this way, the669

interactive thinking a solution concept requires on behalf of the players so that they670

act in line with its prediction is made explicit.671

Before we turn to reasoning foundations, some more formal structure and notions672

have to be fixed. First of all, the basic framework of games as embodied by Γ needs673

to be enlarged by an epistemic dimension. To this end we introduce the notion of a674

lexicographic Aumann model.675

Definition 9. Let Γ be a finite game. A lexicographic Aumann model of Γ is a tuple

AΓLCP “
`

Ω, ρ, I, pIi, ŝiqiPI
˘

where676

– Ω is a set of possible worlds,677

– ρ “ pp1, . . . , pM q is a common prior,678

– I is the set of players from Γ ,679

– Ii Ď 2Ω is player i’s possibility partition of Ω for all i P I,680

– ŝi : Ω Ñ Si is player i’s choice function that is Ii-measurable for all i P I, i.e.,681

ŝipw
1q “ ŝipwq for all w,w1 P Ω such that w1 P Iipωq,682

– for every player i P I and for every world ω P Ω, there exists a level m P t1, . . . ,Mu683

such that pm
`

Iipωq
˘

ą 0.684

A lexicographic Aumann models thus corresponds to a lexicographic Aumann struc-685

ture (Definition 2) supplemented by choice functions for every player that connect the686

interactive epistemology to games. It then becomes possible to express game-theoretic687

events and interactive beliefs as well as knowledge about these.688

The event that player i chooses strategy si P Si is formalized as

rsis :“ tω P Ω : ŝipωq “ siu

and the event that i’s opponents choose s´i P S´i is given by

rs´is :“
č

jPIztiu

rsjs.

Note that the Ii-measurability of ŝi ensures that either Iipωq Ď rsis or Iipωq Ď rsisA.689

A lexicographic conjecture function can be defined as β̂i : Ω Ñ
`

∆pS´iq
˘L

, where690

β̂ipωqps´iq “
`

b̂1i pωqps´iq, . . . , b̂
L
i pωqps´iq

˘

:“ ρ
`

rs´is | Iipωq
˘

“

´

pm1
`

rs´is | Iipωq
˘

, . . . , pmL
`

rs´is | Iipωq
˘

¯

for all ω P Ω and for all s´i P S´i. From the Ii-measurability of the level posteriors
it follows that β̂i is Ii-measurable too, i.e. β̂ipω

1q “ β̂ipωq for all ω1 P Iipωq. Hence,
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for every lexicographic conjecture βi of player i, the lexicographic conjecture function
induces a coarsening of Ii of the form

rβis :“ tω P Ω : β̂ipωq “ βiu.

As b̂lipωqps´iq “ pml
`

rs´is | Iipωq
˘

, it is the case that

margSj
b̂lipωqpsjq “ pml

`

rsjs | Iipωq
˘

for all ω P Ω, for all l “ 1, . . . , L, for all sj P Sj , and for all j P Iztiu.691

Epistemic hypotheses can be formalized by means of events. Some assumptions that
will be used for the purpose of describing the interactive thinking underlying perfect
equilibrium are now spelled out. The set

Ti :“ tω P Ω : β̂ipωq is cautiousu

denotes the event that player i is cautious and the event that all players are cautious
is given by

T :“
č

iPI

Ti.

The set
Ri :“ tω P Ω : ŝipωq is lex-optimal given β̂ipωqu

constitutes the event that player i is rational and the event that all players are rational
is denoted by

R :“
č

iPI

Ri.

Given some event E Ď Ω, the set

PBipEq :“ tω P Ω : pm1
`

E | Iipωq
˘

“ 1u

represents the event that player i primarily believes in E and the event that all players
primarily believe in E is given by

PB :“
č

iPI

PBi.

Note that primary belief concerns the first lexicographic posterior level l “ m1 which692

may differ from the first lexicographic prior level m “ 1.693

As a preliminary observation we provide an epistemic foundation for perfect equi-694

librium in the special case of two player games.695

Proposition 2. Let Γ be a finite game with two players i and j, AΓLCP be some696

lexicographic Aumann model of Γ , and ω˚ P Ω be some world. If ω˚ P PBpT q X697

PBpRqXK
`

rβ̂ipω
˚qs X rβ̂jpω

˚qs
˘

, then there exists a pair of mixed strategies pσi, σjq P698

∆pSiq ˆ∆pSjq such that699

(i) σi “ b̂1j pω
˚q and σj “ b̂1i pω

˚q;700

(ii) the pair of mixed strategies pσi, σjq constitutes a perfect equilibrium of Γ .701
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Proof. (i) Define βi :“ β̂ipω
˚q and βj :“ β̂jpω

˚q as well as σi :“ b1j and σj :“ b1i . Then,702

σi “ b̂1j pω
˚q and σj “ b̂1i pω

˚q directly obtains.703

(ii) Let k P ti, ju be one of the two players and ´k be his opponent. As ω˚ P

K
`

rβ̂ipω
˚qs X rβ̂jpω

˚qs
˘

Ď K´k
`

rβ̂kspω
˚q
˘

, it follows that I´kpω˚q Ď rβ̂kpω
˚qs and

consequently β̂kpωq “ β̂kpω
˚q for all ω P I´kpω˚q. As ω˚ P PBpT q Ď PB´kpTkq, it is

the case that

pm1
`

Tk | I´kpω˚q
˘

“
pm1

`

Tk X I´kpω˚q
˘

pm1

`

I´kpω˚q
˘ “ 1

and thus there exists ω1 P TkXI´kpω˚q. Then, β̂kpω
1q is cautious and β̂kpω

1q “ β̂kpω
˚q “704

βk. It follows that βk is cautious too. Since k has been chosen arbitrarily, property (a)705

of Definition 7 obtains. In addition, σk “ b1´k “ margSk
b1´k ensures that property (b) of706

Definition 7 is satisfied. Next consider some strategy sk P supppσkq “ supppb̂1´kpω
˚qq.707

Then, b̂1´kpω
˚qpskq “ pm1

`

rsks | I´kpω˚q
˘

ą 0, and thus there exists ω1 P rsks X708

supp
`

pm1
`

¨ | I´kpω˚q
˘˘

Ď rsks X I´kpω˚q. Consequently, ŝkpω
1q “ sk and β̂kpω

1q “709

β̂kpω
˚q. Also, as ω˚ P PBpRq Ď PB´kpRkq, it is the case that pm1

`

Rk | I´kpω˚q
˘

“ 1710

and thus supp
`

pm1
`

¨ | I´kpω˚q
˘˘

Ď Rk. Hence, ω1 P Rk, i.e. ŝkpω
1q “ sk is lex-optimal711

given β̂kpω
1q “ β̂kpω

˚q “ βk. This establishes property (c) of Definition 7. Besides,712

note that βk “ margS´k
βk “

Â

jPIztkumargSj
βk holds trivially as there is only one713

opponent for each player, which establishes property (d) of Definition 7. Finally, define714

π :“ βi
Â

βj . Then, margS´k
π “ βk directly follows, and property (e) of Definition 7715

is satisfied. �716

The reasoning assumptions underlying perfect equilibrium, if attention is restricted to717

two players thus consist of mutual primary belief in caution, mutual primary belief in718

rationality, and mutual knowledge of conjectures.719

In order to tame the complications arising once more than two players are admitted,720

the epistemic conditions need to be tightened. The problem of projection can be tackled721

by strengthening mutual knowledge of conjectures to common knowledge. By the aid of722

WAT, an epistemic foundation then ensues for the notion of lexicographic semi-perfect723

equilibrium.724

Lemma 2. Let Γ be a finite game, AΓLCP be some lexicographic Aumann model of Γ ,725

and ω˚ P Ω be some world. If ω˚ P PBpT q X PBpRq X CK
`
Ş

iPI rβ̂ipω
˚qs

˘

, then there726

exists a tuple of mixed strategies pσ˚i qiPI P
Ś

iPI

`

∆pSiq
˘

such that727

(i) σ˚i “ margSi
b̂1j pω

˚q for all i P I and for all j P Iztiu;728

(ii) the tuple of mixed strategies pσ˚i qiPI constitutes a lexicographic semi-perfect equilib-729

rium of Γ .730

Proof. (i) Consider the tuple of lexicographic conjectures
`

β̂ipω
˚q
˘

iPI
at world ω˚. Let

i P I be some player. Observe that rβ̂jpω
˚qs Ď rb̂ljpω

˚qs Ď rmargSi

`

b̂ljpω
˚q
˘

s for all
l “ 1, . . . , L and for all j P Iztiu. Then, by monotonicity of common knowledge,

CK
´

č

jPIztiu

“

β̂jpω
˚q
‰

¯

Ď CK
´

č

jPIztiu

č

lPt1,...,Lu

“

margSi
b̂ljpω

˚q
‰

¯

‰ H.
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As margSi
b̂ljpωqpsiq “ pml

`

rsis | Ijpωq
˘

for all ω P Ω, for all j P Iztiu, for all l P
t1, . . . , Lu, and for all si P Si,

CK
´

č

jPIztiu

č

lPt1,...,Lu

 

ω P Ω : pml
`

rsis | Ijpωq
˘

“ pml
`

rsis | Ijpω˚q
˘(

¯

‰ H

holds for all si P Si. By Theorem 1, it follows that

pm1
`

rsis | Ijpω˚q
˘

“ pm1
`

rsis | Ikpω˚q
˘

for all si P Si as well as for all j, k P Iztiu, and thus

margSi
b̂1j pω

˚q “ margSi
b̂1kpω

˚q

for all j, k P Iztiu. For every player i P I, define σ˚i :“ margSi
b̂1i1pω

˚q for some i1 P Iztiu.731

Then, σ˚i “ margSi
b̂1j pω

˚q holds for all i P I and for all j P Iztiu.732

(ii) Consider the tuple of lexicographic conjectures
`

β̂ipω
˚q
˘

iPI
, where β̂ipω

˚q “733

`

b̂1i pω
˚q, . . . , bLi pω

˚q
˘

for all i P I. Let i, j P I be two players such that i ‰ j. Since734

ω˚ P CK
`
Ş

iPI rβ̂ipω
˚qs

˘

Ď Kj

`

rβ̂ipω
˚qs

˘

, it follows that Ijpω˚q Ď rβ̂ipω˚qs, and thus735

β̂ipωq “ β̂ipω
˚q for all ω P Ijpω˚q. Note that supp

´

pm1
`

¨ | Ijpω˚q
˘

¯

Ď Ijpω˚q. More-736

over, as ω˚ P PBjpTiq, the equation pm1
`

Ti | Ijpω˚q
˘

“ 1 holds, thus supp
´

pm1
`

¨ |737

Ijpω˚q
˘

¯

Ď Ti. Now, consider ω1 P supp
´

pm1
`

¨ | Ijpω˚q
˘

¯

. Then, ω1 P Ijpω˚qXTi. Con-738

sequently, on the one hand β̂ipω
1q “ β̂ipω

˚q and on the other hand β̂ipω
1q is cautious.739

Therefore, β̂ipω
˚q is cautious, which establishes property (a) of Definition 8.740

By part (i), the property σ˚i “ margSi
b̂1j pω

˚q holds for all i P I and for all j P Iztiu.741

Thus property (b) of Definition 8 obtains.742

Let i, j P I such that i ‰ j and consider some si P supppσ˚i q “ supp
`

margSi
b̂1j pω

˚q
˘

.743

Thus, margSi
b̂1j pω

˚qpsiq “ pm1
`

rsis | Ijpω˚q
˘

ą 0. Hence, there exists ω˝ P supp
´

pm1
`

¨ |744

Ijpω˚q
˘

¯

Ď Ijpω˚q such that ŝipω
˝q “ si. As shown above, it is also the case that745

β̂ipωq “ β̂ipω
˚q for all ω P Ijpω˚q. Consequently, β̂ipω

˝q “ β̂ipω
˚q. Since ω˚ P PBpRq Ď746

PBjpRiq, it holds that pm1pRi | Ijpω˚qq “ 1, i.e. ω1 P Ri for all ω1 P supp
´

pm1
`

¨ |747

Ijpω˚q
˘

¯

. Thus, ω˝ P Ri, i.e. ŝipω
˝q is lex-optimal given β̂ipω

˝q. As ŝipω
˝q “ si and748

β̂ipω
˝q “ β̂ipω

˚q, it follows that si is lex-optimal given β̂ipω
˚q, which establishes prop-749

erty (c) of Definition 8.750

Therefore, pσ˚i qiPI constitutes a lexicographic semi-perfect equilibrium of Γ . �751

The weak agreement theorem (WAT) plays a major role in the preceding result, as752

it ensures that players always agree on their marginal conjectures about any common753

opponent they face in the game. The possibility that any two players entertain distinct754

beliefs about a third player’s choice is thereby blocked and the problem of projection755

solved. Formally, condition (i) of Theorem 2 and property (b) of Definition 8 are driven756

by WAT.757
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Yet additional armoury has to be invoked to establish an epistemic foundation for758

perfect equilibrium in the general set-up of many player games. Requiring the common759

prior to be mutually absolutely continuous enables the application of SAT, which can760

be used in turn to resolve the problem of independence.761

Theorem 3. Let Γ be a finite game, AΓLCP be some lexicographic Aumann model of Γ762

such that the common prior ρ is mutually absolutely continuous, and ω˚ P Ω be some763

world. If ω˚ P PBpT qXPBpRqXCK
`
Ş

iPI rβ̂ipω
˚qs

˘

, then there exists a tuple of mixed764

strategies pσ˚i qiPI P
Ś

iPI

`

∆pSiq
˘

such that765

(i) σ˚i “ margSi
b̂1j pω

˚q for all i P I and for all j P Iztiu;766

(ii) the tuple of mixed strategies pσ˚i qiPI constitutes a perfect equilibrium of Γ .767

Proof. (i) Consider the tuple of lexicographic conjectures
`

β̂ipω
˚q
˘

iPI
at world ω˚. For768

every player i P I, define σ˚i :“ margSi
b̂1i1pω

˚q for some i1 P Iztiu. Part (i) of Theorem769

2 ensures that σ˚i “ margSi
b̂1j pω

˚q for all i P I and for all j P Iztiu.770

(ii) By Lemma 2, properties (a), (b), and (c) of Definition 7 hold. Let i P I be some771

player and l P t1, . . . , Lu be some lexicographic level. Since CK
´

Ş

jPI

“

β̂jpω
˚q
‰

¯

‰ H,772

it is the case that773

CK
´

“

margS´i
b̂lipω

˚q
‰

¯

‰ H

CK
´

“

margSi`1
b̂lipω

˚q
‰

¯

‰ H

CK
´

č

jPti,i`1u

“

margS´pi,i`1q
b̂ljpω

˚q
‰

¯

‰ H.

Consider some opponents’ strategy combination s´i P S´i. As b̂lipω
˚qp¨q “ pml

`

r¨s |774

Iipω˚q
˘

, it follows that775

CK
´

 

ω P Ω : pml
`

rs´is | Iipωq
˘

“ pml
`

rs´is | Iipω˚q
˘(

¯

‰ H

CK
´

 

ω P Ω : pml
`

rsi`1s | Iipωq
˘

“ pml
`

rsi`1s | Iipω˚q
˘(

¯

‰ H

CK
´

č

jPti,i`1u

 

ω P Ω : pml
`

rs´pi,i`1qs | Ijpωq
˘

“ pml
`

rs´pi,i`1qs | Ijpω˚q
˘(

¯

‰ H

By the proof of Theorem 2, there exist some indices αl, βl and γl independent from i,776

i` 1 and ω such that777

pml
`

rs´is | Iipωq
˘

“ pαl
`

rs´is | p
ľ

i1PI

Ii1qpω˚q
˘

pml
`

rsi`1s | Iipωq
˘

“ pβl
`

rsi`1s | p
ľ

i1PI

Ii1qpω˚q
˘

pml
`

rs´pi,i`1qs | Iipωq
˘

“ pml
`

rs´pi,i`1qs | Ii`1pωq
˘

“ pγl
`

rs´pi,i`1qs | p
ľ

i1PI

Ii1qpω˚q
˘
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for all ω P p
Ź

iPI Iiqpω˚q. Since ρ is mutually absolutely continuous, the first part of the
proof of Theorem 2 ensures that the lexicographic levels of ρp¨ | Iipωqq are the same for
all ω P p

Ź

iPI Iiqpω˚q, and thus αl “ βl “ γl :“ m̄l. Moreover, since either Iipωq Ď rsis
or Iipωq Ď rsisA, the following property holds

p
`

E X rsis | Iipωq
˘

“ p
`

E | Iipωqq ¨ pprsis | Iipωq
˘

for all probability measures p P ∆pΩq, for all E Ď Ω and for all i P I. Let P :“ tPi`1 P778

Ii`1 : Pi`1 Ď p
Ź

iPI Iiqpω˚qu be the possibility cells of player i`1 included in the meet779

cell of ω˚. By using the above properties together with the law of total probability, it780

follows that781

pml
`

rs´is | Iipω˚q
˘

“ pm̄l
`

rs´is | p
ľ

jPI

Ijqpω˚q
˘

“
ÿ

Pi`1PP
pm̄l

`

rs´is | Pi`1

˘

¨ pm̄l
`

Pi`1 | p
ľ

jPI

Ijqpω˚q
˘

“
ÿ

Pi`1PP
pm̄l

`

rs´pi,i`1qs | Pi`1

˘

¨ pm̄l
`

rsi`1s | Pi`1

˘

¨ pm̄l
`

Pi`1 | p
ľ

jPI

Ijqpω˚q
˘

“
ÿ

Pi`1PP
pm̄l

`

rs´pi,i`1qs | p
ľ

jPI

Ijqpω˚q
˘

¨ pm̄l
`

rsi`1s | Pi`1

˘

¨ pm̄l
`

Pi`1 | p
ľ

jPI

Ijqpω˚q
˘

“ pm̄l
`

rs´pi,i`1qs | p
ľ

jPI

Ijqpω˚q
˘

¨
ÿ

Pi`1PP
pm̄l

`

rsi`1s | Pi`1

˘

¨ pm̄l
`

Pi`1 | p
ľ

jPI

Ijqpω˚q
˘

“ pm̄l
`

rs´pi,i`1qs | p
ľ

jPI

Ijqpω˚q
˘

¨ pm̄l
`

rsi`1s | p
ľ

jPI

Ijqpω˚q
˘

“ pm̄l
`

rs´pi,i`1qs | Ii`1pω
˚q
˘

¨ pm̄l
`

rsi`1s | Iipω˚q
˘

.

Analogously,782

pm̄l
`

rs´pi,i`1qs | Ii`1pω
˚q
˘

“ pm̄l
`

rs´pi,i`1,i`2qs | Ii`2pω
˚q
˘

¨ pm̄l
`

rsi`2s | Ii`1pω
˚q
˘

ensues, and thus783

pm̄l
`

rs´is | Iipω˚q
˘

“ pm̄l
`

rs´pi,i`1,i`2qs | Ii`2pω
˚q
˘

¨ pm̄l
`

rsi`2s | Ii`1pω
˚q
˘

¨ pm̄l
`

rsi`1s | Iipω˚q
˘

.

By induction, it follows that784

pml
`

rs´is | Iipω˚q
˘

“
ź

jPIzti´1u

pm̄l
`

rsj`1s | Ijpω˚q
˘

.

Consequently,785

b̂lipω
˚qps´iq “ pml

`

rs´is | Iipω˚q
˘

“
ź

jPIzti´1u

pm̄l
`

rsj`1s | Ijpω˚q
˘

“
ź

jPIzti´1u

margSj`1
b̂ljpω

˚qpsj`1q

“
ź

jPIzti´1u

margSj`1
b̂lipω

˚qpsj`1q “
ź

jPIztiu

margSj
b̂lipω

˚qpsjq.
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Therefore, β̂ipω
˚q “

Â

jPIztiumargSj
β̂ipω

˚q, which establishes property (d) of Defini-786

tion 7.787

Furthermore, let i P I and j, j1 P Iztiu be some players, si P Si be some strategy788

for player i, and l P t1, . . . , Lu be some lexicographic level. Observe that789

margSi
b̂ljpω

˚qpsiq “ pml
`

rsis | Ijpω˚q
˘

“ pm̄l
`

rsis | p
ľ

i1PI

Ii1qpω˚q
˘

“ pml
`

rsis | Ij1pω˚q
˘

“ margSi
b̂lj1pω

˚qpsiq

and therefore, margSi
β̂jpω

˚q “ margSi
β̂j1pω

˚q for all i P I and for all j, j1 P Iztiu. Now,790

take i, i1 P I such that i ‰ i1 and define the lexicographic product measure791

π :“ β̂ipω
˚q bmargSi

β̂i1pω
˚q “

`
â

jPIztiu

margSj
β̂ipω

˚q
˘

bmargSi
β̂i1pω

˚q.

We show that margS´k
π “ β̂kpω

˚q for all k P I. First, the definition of π combined792

with property (d) of Definition 7 ensures that793

margS´i
π “

â

jPIztiu

margSj
β̂ipω

˚q “ β̂ipω
˚q.

If k P Iztiu, then the equality of the marginal conjectures established above together794

with property (d) of Definition 7 implies that795

margS´k
π “

`
â

jPIzti,ku

margSj
β̂ipω

˚q
˘

bmargSi
β̂i1pω

˚q

“
`

â

jPIzti,ku

margSj
β̂kpω

˚q
˘

bmargSi
β̂kpω

˚q

“
â

jPIztku

margSj
β̂kpω

˚q “ β̂kpω
˚q.

Consequently, π and
`

β̂ipω
˚q
˘

iPI
satisfy property (e) of Definition 7.796

Therefore, pσ˚i qiPI forms a lexicographic perfect equilibrium of Γ , and thus, by797

Lemma 1, a perfect equilibrium of Γ . �798

The property that a player’s belief about his opponents’ strategies is independent poses799

a rather intricate matter in the proof of Theorem 3 and its accomplishment is assisted by800

our strong agreement theorem (SAT). The effective application of the two lexicographic801

agreement theorems (WAT and SAT) in establishing epistemic conditions for perfect802

equilibrium once again underlines the power that Aumann’s seminal impossibility result803

on agreeing to disagree is capable of unfolding.804

The following result addresses the converse direction by ensuring that the epistemic805

conditions of Theorem 3 always exist and can be aligned with any perfect equilibrium.806

Theorem 4. Let Γ be a finite game and σ “ pσiqiPI P ˆiPI p∆pSiqq be a tuple of mixed807

strategies that constitutes a perfect equilibrium of Γ . Then, there exists a lexicographic808

Aumann model AΓLCP of Γ with a world ω˚ P Ω such that the common prior ρ is809

mutually absolutely continuous, ω˚ P PBpT q X PBpRq X CK
`
Ş

iPI rβ̂ipω
˚qs

˘

, as well810

as σi “ margSi
b̂1j pω

˚q for all i P I and for all j P Iztiu.811
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Proof. By Lemma 1, σ forms a lexicographic perfect equilibrium and there exist a tuple812

β “ pβiqiPI P
´

`

∆pS´iq
˘L

¯

iPI
of lexicographic conjectures and a lexicographic product813

measure π “ pπ1, . . . , πLq P
`

∆p
Ś

iPI Siq
˘L

in line with the properties (a) to (e) of814

Definition 7. Construct the lexicographic Aumann model AΓLCP “
`

Ω, ρ, I, pIi, ŝiqiPI
˘

815

of Γ , where816

‚ Ω “
 

ωs : s “ psiqiPI P
Ś

iPI Siu,817

‚ pm P ∆pΩq is defined by pmpωsq “ πmpsq for all ωs P Ω and for all m P t1, . . . ,Mu,818

with M “ L,819

‚ Iipωsq “ Ω for all ωs P Ω and for all i P I,820

‚ ŝi : Ω Ñ
Ś

iPI Si is defined by ŝipω
sq “ si, for all ωs P Ω and for all i P I.821

As Iipωsq “ Ω for all ωs P Ω and for all i P I, it directly follows that pm
`

Iipωsq
˘

“822

pm
`

Ijpωsq
˘

“ 1, and thus pl
`

Iipωsq
˘

“ 0 if and only if pl
`

Ijpωsq
˘

“ 0, for all ωs P823

Ω, for all m P t1, . . . ,Mu, and for all i, j P I. Therefore, ρ is mutually absolutely824

continuous.825

Since pm
`

Iipωsq
˘

“ 1 for all ωs P Ω, for all m P t1, . . . ,Mu, and for all i P I,826

Definition 3 ensures that ml “ l for all l P t1, . . . , Lu. Consider some player i P I, some827

world ωs P Ω, and some lexicographic level l P t1, . . . , Lu. It follows that828

b̂lipω
sqps1´iq “ pml

`

rs1´is | Iipωsq
˘

“
pl
`

Iipωsq X rs1´is
˘

pl
`

Iipωsq
˘ “

plpΩ X rs1´isq

plpΩq
“
plprs1´isq

1

“ πlpts P
ą

iPI

Si : s´i “ s1´iuq “
ÿ

siPSi

πlpsi, s
1
´iq “ margS´i

πlps1´iq “ blips
1
´iq

for all s1´i P S´i, where the last equality is due to property (e) of Definition 7. Con-829

sequently, β̂ipω
sq “ βi for all ωs P Ω and for all i P I. Hence, rβ̂ipω

sqs “ tωs
1

P Ω :830

β̂ipω
s1q “ β̂ipω

squ “ tωs
1

P Ω : β̂ipω
s1q “ βiu “ Ω for all ωs P Ω as well as for all i P I,831

and thus CK
`
Ş

iPI rβ̂ipω
sqs

˘

“ CKpΩq “ Ω.832

Next consider some world ωs P Ω and some player i P I. Since β̂ipω
sq “ βi, property833

(a) of lexicographic perfect equilibrium ensures that β̂ipω
sq is cautious, i.e. ωs P Ti. It834

follows that Ti “ Ω, and thus T “
Ş

jPI Tj “ Ω. Consequently, supp
`

pm1p¨ | Iipωsqq
˘

Ď835

T and hence pm1pT | Iipωsqq “ 1, i.e. ωs P PBipT q. Also, by properties (b) and (e) of836

Definition 7, it follows that837

pm1
`

¨ | Iipωsq
˘

“ p1p¨ | Ωq “ p1 “ π1 “
â

jPI

margSj
π1

“
â

jPI

margSj
margS´pj`1q

π1 “
â

jPI

margSj
b1j`1 “

â

jPI

σj

Let ωs
1

P supp
´

pm1
`

¨ | Iipωsq
˘

¯

. Then, s1 P suppp
Â

jPI σjq, i.e. s1j P supppσjq for all838

j P I. By property (c) of Definition 7, s1j is lex-optimal given βj , and hence ŝjpω
s1q is839

lex-optimal given β̂jpω
s1q, i.e. ωs

1

P Rj for all j P I. Thus ωs
1

P
Ş

jPI Rj “ R. Hence,840
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supp
´

pm1
`

¨ | Iipωsq
˘

¯

Ď R. Thus, pm1
`

R | Iipωsq
˘

“ 1, i.e. ωs P PBipRq. Since i has841

been chosen arbitrarily, ωs P
Ş

iPI PBipT q X
Ş

iPI PBipRq “ PBpT q X PBpRq. As ωs842

has been picked arbitrarily too, PBpT q X PBpRq “ Ω obtains.843

Finally, let ω˚ P Ω be some world and i P I be some player. Then, ω˚ P PBpT q X844

PBpRqXCK
`
Ş

iPI rβ̂ipω
˚qs

˘

. Furthermore, property (b) of Definition 7 guarantees that845

σi “ margSi
b1j “ margSi

b̂1j pω
˚q for all j P Iztiu. Since i has been chosen arbitrarily,846

σi “ margSi
b̂1j pω

˚q for all i P I and for all j P Iztiu. �847

Accordingly, the sufficient conditions for perfect equilibrium put forth by Theorem848

3 are not too strong in the sense that every perfect equilibrium is attainable with849

them. The conjunction of Theorems 3 and 4 constitutes an epistemic characterization850

of perfect equilibrium in terms of mutual primary belief in caution, mutual primary851

belief in rationality, and common knowledge of conjectures.852

The epistemic program in game theory has shed light on the reasoning assumptions853

underlying Nash equilibrium.17 The decisive – yet conceptually not unproblematic –854

implicit property of Nash equilibrium lies in some correct beliefs assumption. By re-855

quiring common knowledge of conjectures, Theorems 3 and 4 show that a significant856

dose of doxastic inerrancy also underlies the more general solution concept of perfect857

equilibrium. In contrast, common knowledge of rationality is not required in terms of858

reasoning: it is not even needed at the first lexicographic level. A central conceptual859

insight due to Aumann and Brandenburger (1995) for Nash equilibrium – interactive860

beliefs in rationality do not enter the picture but only an interactive correct beliefs861

condition does – is thus fortified by Theorems 3 and 4 in the more general context862

of perfect equilibrium.18 Both Nash equilibrium and perfect equilibrium hence only863

require iterated – and thus truly interactive – beliefs about conjectures and not about864

rationality or anything else. Consequently, some correct beliefs property constitutes the865

essence of these solution concepts. Nonetheless, the reasoning foundation for perfect866

equilibrium stretches beyond the one for Nash equilibrium. Indeed, some notion of cau-867

tion is needed in order to reflect the inherent trembles property of perfect equilibrium,868

which is absent from Nash equilibrium though.869

9 Conclusion870

When interactive epistemology is enriched by lexicographic probability systems, three871

results on agreeing to disagree obtain. If the agents’ posteriors are common knowledge,872

the weak agreement theorem ensures the first lexicographic level posteriors to coincide.873

Somewhat unexpectedly, however, disagreement cannot be excluded without further874

17For instance, Brandenburger, 1992b; Aumann and Brandenburger, 1995; Perea, 2007;
Barelli, 2009; Bach and Tsakas, 2014; Bonanno, 2018; Bach and Perea, 2019

18As Aumann and Brandenburger (1995) as well as Brandenburger (1992b) highlight, com-
mon knowledge enters the picture in an unexpected way for Nash equilibrium to ensue: what
is needed is common knowledge of the players’ conjectures but not of the players’ rationality
(cf. Aumann and Brandenburger, 1995, p. 1163), and then only in games with more than two
players (cf. Brandenburger, 1992b, p. 96).
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assumptions on the deeper lexicographic levels. In line with our disagreement result,875

agreement can already fail on the second lexicographic level. Imposing mutual absolute876

continuity on top of common knowledge of posteriors, the strong agreement rules out877

posterior disagreement at any lexicographic level.878

The impossibility of lexicographic agreeing to disagree becomes an essential tool879

to shed light on interactive reasoning in games. Epistemic conditions are provided for880

the classical solution concept of perfect equilibrium. In particular, the weak agree-881

ment theorem and the strong agreement theorem fundamentally assist in overcoming882

the challenges that arise with more than two players. The reasoning assumptions un-883

derlying perfect equilibrium are identified in our lexicographic framework by mutual884

primary belief in caution, mutual primary belief in rationality, and common knowledge885

of conjectures. The solution concept’s key epistemic ingredient thus lies in an interac-886

tive correct beliefs assumption, while caution as well as rationality only appear in a887

non-iterated doxastic way on the first lexicographic level.888

From a conceptual perspective, our results on the (im)possibility of lexicographic889

agreeing to disagree are relevant for situations when reasoning about ordered layers890

of contingencies is considered. Notably the original conclusion of Aumann’s agreement891

theorem breaks down. Agreeing to disagree becomes conceivable once hypothetical892

contingencies enter the picture. This could have intriguing consequences for economic893

applications such as the possibility of trade. We leave such considerations for future894

research.895

Appendix896

The proof of Lemma 1 requires some additional results that are laid out first.897

Given a game Γ , some player i P I, some strategy si P Si of player i, and some
general – not necessarily product – probability measure q P ∆pS´iq, player i’s expected
utility of strategy si is defined as

uipsi, qq :“
ÿ

s´iPS´i

qps´iq ¨ Uipsi, s´iq.

Let X be a finite space, let L ą 0 be an integer, let α “ pa1, . . . , aLq P
`

∆pXq
˘L

be
a tuple of probability measures and let r “ pr1, . . . , rL´1q P p0, 1qL´1 be a tuple of real
numbers. Let r ˝ α be defined by

r ˝ α :“

$

’

&

’

%

a1 if L “ 1

p1´ r1q ¨ a1 ` r1 ¨ p1´ r2q ¨ a2 ` r1 ¨ r2 ¨ p1´ r3q ¨ a3 ` . . .`

r1 ¨ r2 ¨ . . . ¨ rL´2 ¨ p1´ rL´1q ¨ aL´1 ` r1 ¨ r2 ¨ . . . ¨ rL´1 ¨ aL
if L ą 1

Observe that r ˝ α P ∆pXq, since898

ÿ

xPX

pr ˝ αqpxq “ p1´ r1q ` r1 ¨ p1´ r2q ` r1 ¨ r2 ¨ p1´ r3q ` . . .`

r1 ¨ r2 ¨ . . . ¨ rL´2 ¨ p1´ rL´1q ` r1 ¨ r2 ¨ . . . ¨ rL´1 “ 1.
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Lemma A.1. Let Γ be a game, i P I be a player, s1i, s
2
i P Si be two strategies of899

player i, βi “ pb
1
i , . . . , b

L
i q P

`

∆pS´iq
˘L

be a lexicographic conjecture of player i, and900

prnqnPN “
`

pr1
n, . . . , r

L´1
n q

˘

nPN P
“

p0, 1qL´1
‰N

be a sequence such that limnÑ8 rn “ 0 P901

RL´1. Then, the following properties hold:902

(i) If uips
1
i, rn ˝ βiq ą uips

2
i , rn ˝ βiq for all n P N, then i strictly lex-prefers s1i to s2i .903

(ii) If uips
1
i, rn ˝ βiq ě uipsi, rn ˝ βiq for all n P N and for all si P Si, then s1i is904

lex-optimal given βi.905

(iii) If s1i is lex-optimal given βi, then there exist a subsequence prnk
qkPN of prnqnPN and906

an index K P N such that uips
1
i, rnk

˝ βiq ě uipsi, rnk
˝ βiq for all k ě K and for907

all si P Si.908

Proof. (i) Observe that limnÑ8 rn “ 0 implies909

lim
nÑ8

rn ˝ βi “ lim
nÑ8

“

p1´ r1
nq ¨ b

1
i ` r

1
n ¨ p1´ r

2
nq ¨ b

2
i ` . . .` r

1
n ¨ r

2
n ¨ . . . ¨ r

L´1
n ¨ bLi

‰

“ b1i .

In addition, for each l P t1, . . . , Lu, define910

∆l :“ ulips
1
i, βiq ´ u

l
ips
2
i , βiq “

ÿ

s´iPS´i

blips´iq ¨
“

Uips
1
i, s´iq ´ Uips

2
i , s´iq

‰

.

Suppose that uips
1
i, rn ˝ βiq ą uips

2
i , rn ˝ βiq for all n P N. It follows that911

ÿ

s´iPS´i

prn ˝ βiqps´iq ¨
“

Uips
1
i, s´iq ´ Uips

2
i , s´iq

‰

“ p1´ r1
nq ¨∆

1 ` r1
n ¨ p1´ r

2
nq ¨∆

2 ` ¨ . . . ¨ `r1
n ¨ r

2
n ¨ . . . ¨ r

L´1
n ¨∆L ą 0

(2)

for all n P N. Consequently,912

0 ď lim
nÑ8

ÿ

s´iPS´i

prn ˝ βiqps´iq ¨
“

Uips
1
i, s´iq ´ Uips

2
i , s´iq

‰

“
ÿ

s´iPS´i

lim
nÑ8

prn ˝ βiqps´iq ¨
“

Uips
1
i, s´iq ´ Uips

2
i , s´iq

‰

“
ÿ

s´iPS´i

b1i ps´iq ¨
“

Uips
1
i, s´iq ´ Uips

2
i , s´iq

‰

“ ∆1.

If ∆1 ą 0, then u1
i ps

1
i, βiq ą u1

i ps
2
i , βiq and thus i strictly lex-prefers s1i to s2i . If ∆1 “ 0,913

then define the truncated tuples β
p2q
i :“ pb2i , . . . , b

L
i q and pr

p2q
n qnPN :“

`

pr2
n, . . . , r

L´1
n q

˘

nPN.914

Property (2) together with the fact that ∆1 “ 0 ensures that915

0 ă
ÿ

s´iPS´i

prn ˝ βiqps´iq ¨
“

Uips
1
i, s´iq ´ Uips

2
i , s´iq

‰

“ p1´ r1
nq ¨∆

1 ` r1
n ¨

ÿ

s´iPS´i

prp2qn ˝ β
p2q
i qps´iq ¨

“

Uips
1
i, s´iq ´ Uips

2
i , s´iq

‰

“ r1
n ¨

ÿ

s´iPS´i

prp2qn ˝ β
p2q
i qps´iq ¨

“

Uips
1
i, s´iq ´ Uips

2
i , s´iq

‰
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for all n P N, and thus916

ÿ

s´iPS´i

prp2qn ˝ β
p2q
i qps´iq ¨

“

Uips
1
i, s´iq ´ Uips

2
i , s´iq

‰

ą 0

for all n P N. Consequently,917

0 ď lim
nÑ8

ÿ

s´iPS´i

prp2qn ˝ β
p2q
i qps´iq ¨

“

Uips
1
i, s´iq ´ Uips

2
i , s´iq

‰

“
ÿ

s´iPS´i

lim
nÑ8

prp2qn ˝ β
p2q
i qps´iq ¨

“

Uips
1
i, s´iq ´ Uips

2
i , s´iq

‰

“
ÿ

s´iPS´i

b2i ps´iq ¨
“

Uips
1
i, s´iq ´ Uips

2
i , s´iq

‰

“ ∆2.

If ∆2 ą 0, then u2
i ps

1
i, βiq ą u2

i ps
2
i , βiq and u1

i ps
1
i, βiq “ u1

i ps
2
i , βiq, and thus i strictly918

lex-prefers s1i to s2i . If ∆2 “ 0, then by continuing in this fashion for l ě 3, property919

(2) ensures that eventually there exists l˚ P t1, . . . , Lu such that ∆l˚ ą 0 and ∆l “ 0920

for all 0 ă l ă l˚. Equivalently, ul
˚

i ps
1
i, βiq ą ul

˚

i ps
2
i , βiq and ulips

1
i, βiq “ ulips

2
i , βiq for921

all 0 ă l ă l˚. Therefore, i strictly lex-prefers s1i to s2i .922

(ii) Let si P Si. Suppose that uips
1
i, rn ˝ βiq ě uipsi, rn ˝ βiq for all n P N. If923

uips
1
i, rn ˝ βiq “ uipsi, rn ˝ βiq for all n P N, then by similar arguments as in the proof924

of Lemma A.1 (i), it follows that ∆l “ 0 for all l P t1, . . . , Lu. Consequently, i weakly925

lex-prefers s1i to si. If uips
1
i, rn ˝ βiq ą uipsi, rn ˝ βiq for some n˚ P N, then again by926

similar arguments as in the proof of Lemma A.1 (i), there exists l˚ P t1, . . . , Lu such927

that ∆l˚ ą 0 and ∆l “ 0 for all 0 ă l ă l˚. Hence, i weakly lex-prefers s1i to si and, as928

si has been chosen arbitrarily, s1i is thus lex-optimal given βi.929

(iii) Consider a subsequence prnk
qkPN of prnqnPN that satisfies the following property:930

for every si P Si, if uipsi, rnk
˝ βiq ą uips

1
i, rnk

˝ βiq for infinitely many indices k P N,931

then uipsi, rnk
˝ βiq ą uips

1
i, rnk

˝ βiq all k P N. Since limnÑ8 rn “ 0, it is the case932

that limkÑ8 rnk
“ 0. Suppose that s1i is lex-optimal given βi. By the contraposition of933

Lemma A.1 (i), for all si P Si, it is not the case that uipsi, rnk
˝ βiq ą uips

1
i, rnk

˝ βiq934

for all k P N. The contraposition of the property of the sequence prnk
qkPN then ensures935

that, for all si P Si, it is not the case that uipsi, rnk
˝ βiq ą uips

1
i, rk ˝ βiq for infinitely936

many indices k P N. Equivalently, for all si P Si, there exists Kpsiq P N such that937

uips
1
i, rnk

˝ βiq ě uipsi, rnk
˝ βiq for all k ě Kpsiq. Consequently, uips

1
i, rnk

˝ βiq ě938

uipsi, rnk
˝ βiq for all k ě maxtKpsiq : si P Siu and for all si P Si. �939

Lemma A.2. Let Γ be a game and ψ : ∆p
Ś

iPI Siqˆ∆p
Ś

iPI Siq Ñ R be the function
defined by

ψpσ, σ̃q :“ sup
 

r P R : σpsq ´ r ¨ σ̃psq ě 0, for all s P
ą

iPI

Si
(

.

Then, ψ satisfies the following properties:940

(1) ψpσ, σ̃q “ 1, if and only if, σ “ σ̃.941

(2) If supppσ̃q Ď supppσq, then σpsq ´ ψpσ, σ̃q ¨ σ̃psq “ 0 for some s P supppσq.942
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(3) The function ψp¨, σ̃q : ∆p
Ś

iPI Siq Ñ R is continuous, for all σ̃ P ∆p
Ś

iPI Siq.943

Proof. (1) Suppose that ψpσ, σ̃q “ 1. Then σ´1 ¨ σ̃ ě 0 and thus σ ě σ̃. If σps1q ą σ̃ps1q944

for some s1 P
Ś

iPI Si, then 1 “
ř

sP
Ś

iPI Si
σpsq ą

ř

sP
Ś

iPI Si
σ̃psq “ 1, which is a945

contradiction. Therefore σ “ σ̃. Conversely, suppose that σ “ σ̃. Define Ψr :“
 

r P R :946

σpsq ´ r ¨ σ̃psq ě 0, for all s P
Ś

iPI Si
(

. Since σ´ 1 ¨ σ̃ “ 0, then 1 P Ψr. Let ε ą 0 and947

let s P supppσq “ supppσ̃q. Then σpsq´p1` εq ¨ σ̃psq “ ´ε ¨ σ̃psq ă 0. Hence, p1` εq R Ψr948

for all ε ą 0. Therefore, ψpσ, σ̃q “ suprPR Ψr “ 1.949

(2) Towards a contradiction, suppose that supppσ̃q Ď supppσq and σpsq ´ ψpσ, σ̃q ¨950

σ̃psq ą 0 for all s P supppσq. Let s̄ P arg min
 

σpsq ´ ψpσ, σ̃q ¨ σ̃psq : s P supppσ̃q
(

951

and define r :“ pσps̄q´ψpσ,σ̃q¨σ̃ps̄qq
σ̃ps̄q and ψ1pσ, σ̃q :“ ψpσ, σ̃q ` r. Since supppσ̃q is finite,952

s̄ is well defined. Moreover, as s̄ P supppσ̃q Ď supppσq, then σps̄q ´ ψpσ, σ̃q ¨ σ̃ps̄q ą 0,953

hence r ą 0, and thus ψ1pσ, σ̃q ą ψpσ, σ̃q. Let s P
Ś

iPI Si. If s P p
Ś

iPI Siqzsupppσq,954

then σpsq “ σ̃psq “ 0, and thus σpsq ´ ψ1pσ, σ̃q ¨ σ̃psq “ 0. If s P supppσqzsupppσ̃q,955

then σpsq ą 0 and σ̃psq “ 0, and thus σpsq ´ ψ1pσ, σ̃q ¨ σ̃psq ą 0. If s P supppσ̃q, then956

σpsq ´ ψpσ, σ̃q ¨ σ̃psq ě σps̄q ´ ψpσ, σ̃q ¨ σ̃ps̄q ą σps̄q ´ ψ1pσ, σ̃q ¨ σ̃ps̄q “ σps̄q ´ rψpσ, σ̃q `957

rs ¨ σ̃ps̄q “ σps̄q ´ ψpσ, σ̃q ¨ σ̃psq ´ r ¨ σ̃ps̄q “ 0. Consequently, σpsq ´ ψ1pσ, σ̃q ¨ σ̃psq ě 0958

for all s P
Ś

iPI Si and ψ1pσ, σ̃q ą ψpσ, σ̃q, which contradicts the supremacy of ψpσ, σ̃q.959

(3) Let σ̃ P ∆p
Ś

iPI Siq and let pσkqkPN be a sequence such that limkÑ8 σ
k “ σ.960

Then, limkÑ8 ψpσ
k, σ̃q “ ψplimkÑ8 σ

k, σ̃q “ ψpσ, σ̃q, and thus ψp¨, σ̃q is continuous. �961

Lemma A.3. Let pσkqkPN P
`

∆p
Ś

iPI Siq
˘N

be a sequence of mixed strategy profiles.962

Then, there exist a lexicographic probability measure π “ pπ1, . . . , πLq P
`

∆p
Ś

iPI Siq
˘L

963

and a sequence prnqnPN “
`

pr1
n, . . . , r

L´1
n q

˘

nPN P
“

p0, 1qL´1
‰N

with limnÑ8 rn “ 0 such964

that a subsequence pσknqnPN of pσkqkPN satisfies σkn “ rn ˝ π for all n P N.965

Proof. Consider a subsequence pσknqnPN of pσkqkPN that satisfies the following property:966

for every s P
Ś

iPI Si, if σknpsq “ 0 for infinitely many indices n P N, then σknpsq “ 0967

for all n P N. Then, there exists some index N P N such that the subsequence pσknqněN968

of pσknqnPN satisfies the following property: for every s P
Ś

iPI Si, if σkN psq “ 0, then969

σknpsq “ 0 for all n ě N . By the Bolzano–Weierstrass Theorem, there exists some970

convergent subsequence of pσknqněN , denoted by pσkqkPN for the sake of simplicity,971

with limit π1 :“ limkÑ8 σ
k.972

Either σk “ π1 infinitely often or σk “ π1 finitely often. Suppose that σk “ π1
973

infinitely often. Let pσknqnPN be a subsequence of pσkqkPN such that σkn “ π1 for all974

n P N, let prnqnPN be the empty sequence, and let π “ pπ1q. It follows that σkn “ π1 “975

rn ˝ π for all n P N, which completes the proof in this case.976

Otherwise, suppose that σk “ π1 finitely often. Then, there exists N P N such that977

σk ‰ π1 for all k ě N . Let pσknqnPN be a subsequence of pσkqkPN such that σkn ‰ π1
978

for all n P N. This subsequence is denoted by pσkqkPN for the sake of simplicity. By979

Lemma 9 (1), ψpσk, π1q ‰ 1 for all k P N. Consider the then well-defined sequence980

pπ2
kqkPN given by981

π2
k :“

σk ´ ψpσk, π1q ¨ π1

1´ ψpσk, π1q
(3)
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for all k P N. Note that for every s P
Ś

iPI Si and for each k P N, if σkpsq “ 0, then982

π1psq “ 0 and thus π2
kpsq “ 0. It follows that supppπ2

kq Ď supppσkq for all k P N. In983

addition, Lemma 9 (2) ensures that for every k P N, there exists s P supppσkq such that984

σkpsq´ψpσk, π1q¨π1psq “ 0, and thus s R supppπ2
kq. Consequently, supppπ2

kq Ĺ supppσkq985

for all k P N.986

Equation (3) can be rewritten as987

σk “ ψpσk, π1q ¨ π1 `
“

1´ ψpσk, π1q
‰

¨ π2
k (4)

for all k P N, where ψpσk, π1q P p0, 1q. Lemma 9 (3) and Lemma 9 (1) ensure that988

limkÑ8 ψpσ
k, π1q “ ψplimkÑ8 σ

k, π1q “ ψpπ1, π1q “ 1. Consider the sequence pr1
kqkPN989

defined by990

r1
k :“ 1´ ψpσk, π1q (5)

for all k P N, where limkÑ8 r
1
k “ 1 ´ limkÑ8 ψpσ

k, π1q “ 0. Equations (4) and (5)991

imply that992

σk “ p1´ r1
kq ¨ π

1 ` r1
k ¨ π

2
k (6)

for all k P N.993

By similar reasoning applied to the sequence pπ2
kqkPN, it follows that there exists994

a convergent subsequence pπ2
kn
qnPN of pπ2

kqkPN, also denoted as pπ2
kqkPN for the sake995

of simplicity, with limit π2 :“ limkÑ8 π
2
k. Either π2

k “ π2 infinitely often or π2
k “ π2

996

finitely often.997

Suppose that π2
k “ π2 infinitely often. Let pπ2

kn
qnPN be a subsequence of pπ2

kqkPN998

such that π2
kn
“ π2 for all n P N, let prnqnPN “

`

pr1
kn
q
˘

nPN and let π “ pπ1, π2q.999

Equation (6) ensures that1000

σkn “ p1´ r1
knq ¨ π

1 ` r1
kn ¨ π

2 “ rn ˝ π

for all n P N, which completes the proof in this case.1001

Otherwise, suppose that π2
k “ π2 finitely often. There exist sequences pπ3

kqkPN and1002

pr2
kqkPN such that the following properties hold:1003

π2
k “ p1´ r2

kq ¨ π
2 ` r2

k ¨ π
3
k (7)

π3
k :“

π2
k ´ ψpπ

2
k, π

2q ¨ π2

1´ ψpπ2
k, π

2q
and supppπ3

kq Ĺ supppπ2
kq for all k P N

r2
k :“ 1´ ψpπ2

k, π
2q for all k P N and lim

kÑ8
r2
k “ 0.

Equations (6) and (7) imply that1004

σk “ p1´ r1
kq ¨ π

1 ` r1
k ¨

“

p1´ r2
kq ¨ π

2 ` r2
k ¨ π

3
k

‰

. (8)

Iterating the same reasoning for the sequences pπlkqkPN for l ě 3 guarantees that1005

there exist a lexicographic level L P N, π “ pπ1, . . . , πLq P
`

∆p
Ś

iPI Siq
˘L

, and1006

prnqnPN P
“

p0, 1qL´1
‰N

such that limnÑ8 rn “ 0 and σkn “ rn ˝ π for all n P N.1007

Note that the iterative process necessarily terminates after finitely many rounds, since1008

the set
Ś

iPI Si is finite and supppσkq Ľ supppπ2
kq Ľ supppπ3

kq Ľ . . . for all k P N. �1009
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Equipped with Lemmas A.1, A.2, and A.3, we can now proceed to formally establish1010

Lemma 1.1011

Proof. (ñ): Suppose that σ constitutes a perfect equilibrium of Γ . Then, there exists1012

a sequence of tuples of mixed strategies pσkqkPN such that properties (i), (ii), and (iii)1013

of Definition 6 hold. By Lemma 9, there exists a lexicographic probability measure1014

π “ pπ1, . . . , πLq P
`

∆p
Ś

iPI Siq
˘L

and a sequence prnqnPN “
`

pr1
n, . . . , r

L´1
n q

˘

nPN P1015

“

p0, 1qL´1
‰N

with limnÑ8 rn “ 0 such that some subsequence pσknqnPN of pσkqkPN can1016

be expressed as σkn “ rn ˝ π for all n P N. For every i P I, define the lexicographic1017

conjecture βi :“ margS´i
π. We show that pσkqkPN, pβiqiPI , and π satisfy properties (a),1018

(b), (c), (d), and (e) of Definition 7.1019

First, note that property (e) of Definition 7 is directly satisfied. Since σkn “ rn ˝ π
is a product measure for all n P N, it follows that π is a tuple of product measures.
Consequently,

βi “ margS´i
π “

â

jPIztiu

margSj
π “

â

jPIztiu

margSj
margS´i

π “
â

jPIztiu

margSj
βi

for all i P I, which yields property (d) of Definition 7. Moreover, property (i) ensures
that σ “ limnÑ8 σ

kn “ limnÑ8prn ˝ πq “ π1. Hence,

σi “ margSi
σ “ margSi

π1 “ margSi
margS´j

π1 “ margSi
b1j

for all i P I and all j P Iztiu, which establishes property (b) of Definition 7. Fur-1020

thermore, property (ii) guarantees that σkni has full support for all i P I and for all1021

n P N. Thus, π and hence βi, is cautious for all i P I, which establishes property (a)1022

of Definition 7. Finally, let si P supppσiq. By property (iii), si is a best response to1023

σkn´i “ margS´i
prn ˝ πq “ rn ˝ βi for all n P N. By Lemma 9 (ii), si is lex-optimal given1024

βi, which corresponds to property (c) of Definition 7. Therefore, σ “ pσiqiPI constitutes1025

a lexicographic perfect equilibrium of Γ .1026

(ð): Suppose that σ constitutes a lexicographic perfect equilibrium of Γ . Then,1027

there exists a tuple of lexicographic conjectures β “ pβiqiPI and a lexicographic prod-1028

uct measure π “ pπ1, . . . , πLq satisfying properties (a), (b), (c), (d), and (e) of Defini-1029

tion 7. Consider the sequence prnqnPN “
`

p 1
n`1 , . . . ,

1
n`1 q

˘

nPN P
“

p0, 1qL´1
‰N

. Note that1030

limnÑ8 rn “ 0. For every i P I and for every n P N, define σni :“ margSi
prn ˝ πq and1031

σn :“ pσni qiPI . We show that there exists a subsequence of pσnqnPN satisfying properties1032

(i), (ii), (iii) of Definition 6.1033

Let i P I be some player. Since rn ˝ π is a product measure and properties (e) and1034

(b) hold,1035

lim
nÑ8

σni “ lim
nÑ8

margSi
prn ˝ πq “ lim

nÑ8
margSi

margS´j
prn ˝ πq

“ lim
nÑ8

margSi
prn ˝ margS´j

πq “ lim
nÑ8

margSi
prn ˝ βjq

“ margSi
lim
nÑ8

prn ˝ βjq “ margSi
b1j “ σi

for all j P I such that i ‰ j. This establishes property (i) of Definition 6. In addition,1036

let j P Iztiu, sj P Sj , and n P N. Property (a) ensures that there exists a level1037
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l˚ P t1, . . . , Lu such that margSj
bl
˚

i psjq ą 0. It follows that1038

σnj psjq “ margSj
prn ˝ πqpsjq “ margSj

margS´i
prn ˝ πqpsjq

“ margSj
prn ˝ margS´i

πqpsjq “ margSj
prn ˝ βiqpsjq ą 0.

Hence, supppσnj q “ Sj , which yields property (ii) of Definition 6. Besides, let si P1039

supppσiq. Property (c) ensures that si is lex-optimal given βi. By Lemma 9 (iii),1040

there exists some subsequence prnk
qkPN of prnqnPN and some index K P N such that1041

uipsi, rnk
˝ βiq ě uips

1
i, rnk

˝ βiq for all k ě K and for all s1i P Si. Property (e) guaran-1042

tees that1043

rnk
˝ βi “ prnk

˝ margS´i
πq “ margS´i

prnk
˝ πq

“
â

jPIztiu

margSj
prnk

˝ πq “
â

jPIztiu

σnk
j .

Hence, si is a best response to σnk
´i for all k ě K, i.e. the subsequence pσnk

´i qkěK1044

satisfies property (iii) of Definition 6. Consequently, the subsequence pσnkqkěN satisfies1045

properties (i), (ii), (iii) of Definition 6. Therefore, σ constitutes a perfect equilibrium1046

of Γ . �1047
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