
Randomized and quantum query complexities of1

finding a king in a tournament2

Nikhil S. Mande #3

University of Liverpool, UK4

Manaswi Paraashar #5

University of Copenhagen, Denmark6

Nitin Saurabh #7

Indian Institute of Technology Hyderabad, India8

Abstract9

A tournament is a complete directed graph. It is well known that every tournament contains at least10

one vertex v such that every other vertex is reachable from v by a path of length at most 2. All such11

vertices v are called kings of the underlying tournament. Despite active recent research in the area,12

the best-known upper and lower bounds on the deterministic query complexity (with query access13

to directions of edges) of finding a king in a tournament on n vertices are from over 20 years ago,14

and the bounds do not match: the best-known lower bound is Ω(n4/3) and the best-known upper15

bound is O(n3/2) [Shen, Sheng, Wu, SICOMP’03]. Our contribution is to show tight bounds (up to16

logarithmic factors) of Θ̃(n) and Θ̃(
√

n) in the randomized and quantum query models, respectively.17

We also study the randomized and quantum query complexities of finding a maximum out-degree18

vertex in a tournament.19

2012 ACM Subject Classification Theory of computation → Quantum complexity theory; Theory20

of computation → Oracles and decision trees21

Keywords and phrases Query complexity, quantum computing, randomized query complexity,22

tournament solutions, search problems23

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2324

1 Introduction25

A tournament is a complete directed graph. Many important properties of tournaments were26

studied by Landau [18] in the context of modelling dominance relations among a flock of27

chickens. Relevant to our paper is the notion of a king in a tournament. This notion was28

defined by Maurer [19], also with the goal of identifying a reasonable measure of dominance29

to identify a ‘most dominant’ chicken in a flock. Soon after Maurer’s article, Reid [22] showed30

existence of tournaments in which all vertices are kings. Tournaments also arise naturally31

in social choice theory where directions of edges depict preferences. A large amount of32

work has been devoted to defining a notion of a ‘winner’ in a tournament, and determining33

the complexity of finding such winners. For instance, Dey [11] studied the complexity of34

certain tournament solutions with motivations from social choice theory. The monograph by35

Moon [20] sparked a line of research on tournaments and their structural properties.36

A natural computational model to study the complexity of computing specific properties37

of a tournament, or more generally, a graph, is that of query complexity. In this setting an38

algorithm may query presence/directions of edges in an unknown input graph. The goal is39

to minimize the number of such queries made in the worst case. There is a rich literature on40

query complexity of graph problems, starting over 50 years ago [24, 23, 28, 15, 9, 12, 10, 11].41

The famous Aanderaa-Karp-Rosenberg conjecture [24] or evasiveness conjecture posits that42

the query complexity of any non-trivial monotone graph property on n-vertex graphs has43

maximal deterministic query complexity, i.e.,
(

n
2
)
. While the deterministic and randomized44
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23:2 Randomized and quantum query complexities of finding a king in a tournament

variants of this conjecture are wide open, the quantum version was recently resolved in the45

positive [1] using Huang’s breakthrough resolution of the sensitivity conjecture [16].46

Our work deals with the query complexity of certain graph problems. In the next section,47

we describe the main graph problem of interest to us, and prior work on it.48

1.1 Related work49

It is well known that every tournament has at least one vertex v such that every other vertex50

is reachable from v via a path of length at most 2 (see Lemma 4 for a proof). Such a vertex51

v is called a king in the underlying tournament. Formally, one may define the following52

relation that captures this definition.53

▶ Definition 1 (Kings in a tournament). Let T be a complete directed graph on n vertices.54

Identify the orientation of the tournament with a string T in {0, 1}(
n
2), one variable ({i, j}55

with i ̸= j ∈ [n]) per edge (between vertex i and vertex j) defining its direction. Define the56

relation KINGn ⊆ {0, 1}(
n
2) × [n] by57

(T, v) ∈ KINGn if ∀u ∈ [n], either v → u or ∃w such that v → w → u.58

Here the directions of the edges v → u and v → w → u are as in T .59

A natural question arises: what is the query complexity of finding a king in an n-vertex60

tournament? The study of this was initiated by Shen, Sheng and Wu [25]. They showed an61

algorithm with query complexity O(n3/2) and also showed a non-matching lower bound of62

Ω(n4/3). For the upper bound, they crucially used the fact that a king in an in-neighbourhood63

of an arbitrary subset of vertices is also a king in the original tournament (see Lemma 5).64

An outline of their upper bound is as follows: first arbitrarily choose a sub-tournament65

of a fixed size and find the maximum-out-degree vertex in it by querying all edges in this66

sub-tournament. Remove this vertex along with its out-neighbours, and proceed iteratively.67

When the number of remaining vertices is small enough, find a king using brute force (query68

all the edges in the remaining sub-tournament). Simple manipulation of parameters gives69

an upper bound of O(n3/2). For the lower bound they design an adversary who answers70

an algorithm’s queries using a fixed strategy, and show that every algorithm must make71

Ω(n4/3) queries in the worst case. Ajtai et al. [3] independently showed the same bounds, in72

a different context. Despite active recent research in the area (see the next paragraph), these73

bounds from over 20 years ago remain state-of-the-art. It can be shown that a vertex with74

maximum out-degree is a king (see Lemma 4 and its proof). However, finding a vertex with75

maximum out-degree is known to be hard: it has deterministic query complexity Ω(n2) [4].76

Biswas et al. [6] recently showed that the adversary used by [3, 25] to show an Ω(n4/3)77

lower bound cannot be used to prove a stronger lower bound. They additionally showed a78

query complexity upper bound of O(n4/3) on finding a vertex from which at least half of79

all vertices are reachable by paths of length at most 2. They also considered variants of80

kings, and the complexity of finding such vertices. In a more recent work, Lachish, Reidl and81

Trehan [17] showed an O(n4/3)-query algorithm to find a vertex from which at least ( 1
2 + 2

17 )82

of the vertices are reachable by paths of length at most 2.83

1.2 Our contributions84

While the question of pinning down the deterministic query complexity of finding a king has85

been open and unimproved since the work of Shen, Sheng and Wu [25], the corresponding86
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question in the randomized and quantum query models does not seem to have been studied in87

the literature. Our contribution is to give tight bounds in these models. We refer the reader88

to Section 2 for a formal description of these models. Let R(·) and Q(·) denote bounded-error89

randomized and quantum query complexity, respectively. Our main theorems are as follows.90

▶ Theorem 2. For all positive integers n,91

R(KINGn) = O(n log logn), R(KINGn) = Ω(n),92

Q(KINGn) = O(
√
n polylog(n)), Q(KINGn) = Ω(

√
n).93

We mentioned earlier that a vertex of maximum out-degree in a tournament is a king, and94

finding a vertex of maximum out-degree is known to have deterministic query complexity95

Ω(n2). We show that even the randomized query complexity is Ω(n2), and we also show96

bounds for the quantum query complexity of this task. Define the relation MODn ⊆97

{0, 1}(
n
2) × [n] to consist of the elements (T, v) where v is a maximum out-degree vertex in98

the n-vertex tournament described by T .99

▶ Theorem 3. For all positive integers n,100

R(MODn) = Θ(n2), Q(MODn) = O(n3/2), Q(MODn) = Ω(n).101

We suspect that Q(MODn) = Θ(n3/2), but we leave open the problem of closing the gap102

between the upper and lower bounds in the quantum setting.103

Sketch of randomized upper bound for finding a king As mentioned in Section 1.1, the104

upper bound of Shen, Sheng and Wu crucially uses the fact that a king in the in-neighbourhood105

of an arbitrary vertex is also a king in the original tournament (Lemma 5). A simple counting106

argument shows that a uniformly random vertex in an n-vertex tournament has out-degree107

Ω(n) with high probability. This suggests a natural randomized iterative algorithm: in each108

step sample a few vertices and query all edges incident on them, until a vertex with large109

out-degree in the current sub-tournament is seen. We then remove this vertex along with all110

its out-neighbours from the tournament, and iterate. Since a random vertex has out-degree111

that is linear in the number of vertices with high probability, this process results in a small112

sub-tournament (with at most
√
n vertices) after O(logn) iterations. At this point we can113

afford to query the entire remaining sub-tournament to find a king in it, and it can be shown114

by applying Lemma 5 iteratively that this vertex is also a king the original tournament.115

Sketch of quantum upper bound for finding a king Our quantum algorithm follows the116

same structure as our randomized one, but we run into some issues during a naive simulation.117

The following are the issues, along with how we handle them:118

When trying to sample a vertex with high out-degree, we cannot afford to query all edges119

incident on a vertex to compute its out-degree since our algorithm needs to have query120

complexity essentially O(
√
n). To circumvent the need of querying all edges incident on121

a vertex to compute its in-degree, we use the subroutine of approximate counting [8] that122

returns an approximation of the in-degree but offers a quadratic speedup. It may seem123

like one could use a classical algorithm for approximate counting here, but such a classical124

sampling-based algorithm would require Ω̃(n) queries if the number of in-neighbours is125

small, say polylog(n) (see the fourth bullet as to why such a case may arise).126

A second issue that arises is when we need to sample a vertex from the current sub-127

tournament. It is no longer clear how to do this in the quantum setting since we do not128
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23:4 Randomized and quantum query complexities of finding a king in a tournament

explicitly know the vertices remaining. However, we keep track of the set of vertices W129

whose out-neighbours have effectively been removed in previous iterations. The number130

of iterations of the algorithm, and hence the size of W , is bounded by O(logn). We131

then use key properties of Grover’s search algorithm: first set up a uniform superposition132

over all vertices. Next we ‘mark’ the vertices in the current sub-tournament (call such133

vertices ‘good’) using O(logn) queries: for a given vertex we only need to check if it is an134

out-neighbour of any of the vertices in W . Making these queries in superposition allows135

us to mark the good vertices in O(logn) queries. We then apply the Grover iterate a136

suitable number (at most O(
√
n)) of times. At this point we make a measurement in the137

computational basis: by the correctness of Grover’s algorithm, the probability of seeing138

a good vertex (i.e., a vertex in the current sub-tournament) is large. The structure of139

Grover’s algorithm implies that conditioned on not seeing a bad vertex, each good vertex140

is seen with equal probability. This effectively simulates sampling a uniformly random141

vertex from the current sub-tournament.142

Having sampled a vertex v from the in-neigbourhood of W , the randomized algorithm143

next computes the out-degree of v in the in-neighbourhood of W . We cannot afford to do144

this exactly since we do not explicitly know the in-neighbourhood of W , and moreover145

it may be very large. We are able to get around this using similar ideas to that in the146

previous bullet.147

Finally, it is no longer clear how to do the final brute-force step in the last remaining148

sub-tournament since we do not explicitly know the remaining
√
n vertices. To handle149

this, we first modify the randomized algorithm so as to only have O(polylog(n)) vertices150

remaining in this ‘brute-force’ step, while still having only O(logn) iterations overall.151

Thus, the query complexity so far is still Õ(
√
n). We can then use Grover’s search152

repeatedly (or an improvement thereof, Theorem 11) to find all the remaining vertices153

with high probability in Õ(
√
n) queries. At this point we can find a king in the remaining154

sub-tournament using O(polylog(n)) queries. By the same argument as in the randomized155

case, this vertex is also a king in the original tournament.156

Sketch of lower bounds for finding a king To show our lower bounds, we restrict our157

attention to a special class of tournaments, described below. Fix an arbitrary tournament158

T on n vertices where vertex n is a source. This immediately implies that vertex n is the159

unique king. For each i ∈ [n− 1], define the tournament Ti to be T with edges incident on160

vertex i flipped so as to make vertex i the source. Note that these sets of edges are disjoint161

for every i ̸= j. If we assign one variable to each such set and promise that at most one of162

them has value 1 (i.e., has edges in the opposite direction from those in T ), an algorithm that163

finds a king in these tournaments (which are unique by construction) also solves the Search164

problem on n− 1 input variables. Our lower bounds of Ω(n) and Ω(
√
n) on the randomized165

and quantum query complexities, respectively, then immediately follow from corresponding166

well-known lower bounds on the complexity of the Search problem.167

Sketch of bounds for finding a maximum out-degree vertex In the randomized setting,168

we use Yao’s minimax principle (Lemma 21). By this principle, it suffices to exhibit a hard169

distribution on input tournaments such that any deterministic algorithm with small query170

complexity must make large error when inputs are drawn from this distribution. We now171

describe the distribution: fix an n-vertex regular tournament, say T with n odd and each172

vertex having out-degree exactly (n−1)/2 (such a tournament is easy to construct iteratively,173

for example) and flip a uniformly random edge of T . This causes a unique vertex of the174
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new tournament to be a maximum out-degree vertex. Intuitively, finding this vertex is as175

hard as finding the edge that has been flipped, and it is well known that searching for a176

marked element among k elements has randomized query complexity Ω(k). We formalize177

this argument in Theorem 20. Our quantum lower bound uses similar ideas, and involves a178

reduction from the Search problem on an
(

n
2
)
-bit string, which has quantum query complexity179

Ω(n) [7]. For the quantum upper bound, we use a maximum finding routine over the degrees180

of the vertices. Each degree can be computed using n− 1 queries, and the maximum can be181

found in O(
√
n) queries [13], giving us an O(n3/2) upper bound.182

2 Preliminaries183

All logarithms in this paper are base 2. We use the notation polylog(n) to denote a quantity184

that is logc n for a constant c > 0 (independent of n). For a positive integer n, we use the185

notation [n] to denote the set {1, 2, . . . , n}. For an event X, let I[X] denote the indicator of186

X, i.e., I[X] = 1 if X occurs, and I[X] = 0 if X does not occur.187

2.1 Tournaments188

A tournament T on a vertex set V is a complete graph such that each edge is directed.189

Throughout this paper, unless mentioned otherwise, we consider tournaments T on n vertices190

and denote the vertex set by V = [n]. Such a tournament has
(

n
2
)

directed edges. We identify191

an n-vertex tournament with a binary string in {0, 1}(
n
2): an element of [n] corresponds to the192

label of a vertex, and there is one variable ({i, j} with i ̸= j ∈ [n]) per edge (between vertex193

i and vertex j) that defines its direction. For a tournament T and vertex v ∈ V , let N−(v)194

denote the set of in-neighbours of v, i.e., N−(v) = {u ∈ [n] \ {v} |u→ v is an edge in T}195

and let N+(v) denote the set of out-neighbours of v (i.e., {u ∈ [n] \ {v} |v → u is an edge}).196

Also, let d+(v) = |N+(v)| and d−(v) = |N−(v)| denote the out-degree and in-degree of v,197

respectively. Since T is a tournament, d+(v) + d−(v) = (n − 1) for all v ∈ V . For S ⊆ V ,198

let T [S] be the tournament induced on the vertices in S. For a subset W ⊆ V , define199

W− = {v ∈ V | v → w is an edge for all w ∈W}. If W = ∅ then define W− = V . A vertex200

v ∈ V is a king if every vertex in V \{v} is reachable from v by a path of length at most 2. This201

is formally captured in Definition 1 and repeated below for convenience. Define the relation202

KINGn ⊆ {0, 1}(
n
2)×[n] by (G, v) ∈ KINGn if ∀u ∈ [n]\{v} , either v → u or ∃w : v → w → u.203

Here the directions of the edges v → u and v → w → u are as in the tournament G. A204

well-known fact about tournaments is that every tournament has a king. We give a proof for205

completeness.206

▶ Lemma 4 (Folklore). Let T ∈ {0, 1}(
n
2) be a tournament. Then there exists a vertex v ∈ [n]207

such that (T, v) ∈ KINGn.208

Proof. Consider a vertex v of maximum out-degree. We show that such a vertex is a king.209

Consider the partition of V into three disjoint sets: {v}, N+(v) and N−(v). Clearly, every210

vertex in N+(v) is at a distance at 1 from v. Towards a contradiction, assume that there211

is a vertex w in N−(v) such that there is no path of length 2 of the form v → u→ w, for212

some u ∈ N+(v). Thus every vertex in N+(v) is an out-neighbour of w. Since v is also an213

out-neighbour of w, the out-degree of w is greater than that of v, which is a contradiction. ◀214

The above lemmas shows that any vertex with maximum out-degree in a tournament is a215

king in that tournament. However, as discussed in Section 1.1, finding a vertex of maximum216

out-degree is known to be hard. We need the following result due to [19].217
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23:6 Randomized and quantum query complexities of finding a king in a tournament

▶ Lemma 5 ([19]). Let T ∈ {0, 1}(
n
2) be a tournament and v ∈ [n]. If a vertex u in N−(v)218

is a king in T [N−(v)], then u is a king in T .219

The proof of the above lemma is easy: If u is a king of the tournament T [N−(v)], then220

every vertex in N−(v) is at a distance at most 2 from u. Also, since u is an in-neighbour of v,221

every vertex in N+(v) is at a distance 2 from u. We also need the following lemma from [19].222

▶ Lemma 6 ([19]). Let T ∈ {0, 1}(
n
2) be a tournament.

∑n
i=1 d

+(i) =
∑n

i=1 d
−(i) =

(
n
2
)
.223

We also need the following observation on the structure of a tournament (see e.g., [4]).224

▶ Lemma 7. Let T ∈ {0, 1}(
n
2) be a tournament and k ≥ 0. Then, the number of vertices v225

such that d+(v) ≤ k is at most 2k + 1.226

2.2 Query complexity227

A deterministic decision tree T on m variables is a binary tree where the internal nodes are228

labeled by variables and leaves are labeled with elements of a set R. Each internal node has a229

left child, corresponding to an edge labeled 0, and a right child corresponding to an edge labeled230

1. On an input x ∈ {0, 1}m, T ’s computation traverses a path from root to leaf as follows. At231

an internal node, the variable associated with that node is queried: if the value obtained is 0,232

the computation moves to the left child, otherwise it moves to the right child. The output of233

T on input x, denoted by T (x), is the label of leaf node reached. We say that a decision tree T234

computes the relation f ⊆ {0, 1}m×R if (x, T (x)) ∈ R for all x ∈ {0, 1}m. The deterministic235

query complexity of f , is D(f) := minT :T computes f depth(T ). A randomized decision treeA is236

a distribution DA over deterministic decision trees. On input x ∈ {0, 1}m, the computation of237

A proceeds by first sampling a deterministic decision tree T according to DA, and outputting238

the label of the leaf reached by T on x. We say A computes f with bounded error if for every239

input x, Pr[(x,A(x)) ∈ R] ≥ 2/3. The randomized query complexity of f ⊆ {0, 1}m ×R is240

defined as follows. R(f) = min A computing f
with error ≤1/3

maxT :DA(T )>0 depth(T ).241

2.3 Preliminaries for quantum query complexity242

We refer the reader to [21, 26] for basics of quantum computing. A quantum query algorithm243

A computing a relation f ⊆ {0, 1}m × R begins in an input-independent initial state244

|ψ0⟩, applies a sequence of unitaries U0, Ox, U1, Ox, · · · , UT , and performs a measurement.245

Here, the unitaries U0, U1, . . . , UT are independent of the input. The unitary operation Ox246

represents the ‘query’ operation, and maps |i⟩|b⟩ to |i⟩|b ⊕ xi⟩ for all i ∈ [m] and |0⟩ to247

|0⟩. We say that A is a bounded-error algorithm computing f if for all x ∈ {0, 1}m, the248

probability of outputting b ∈ R such that (x, b) ∈ f is at least 2/3. The bounded-error249

quantum query complexity of f , denoted by Q(f), is the least number of queries required for250

a quantum query algorithm to compute f with error at most 1/3.251

We also need some basic notions from Grover’s search algorithm [14], a fundamental252

quantum algorithm, referring the reader to [26, Chapter 7] for more details. In the search253

problem, a quantum algorithm is given quantum query access to a string x ∈ {0, 1}n. It is254

convenient to work with the ‘phase-query’ unitary Ox,± which satisfies Ox,±|i⟩ = (−1)xi |i⟩.255

The goal is to find an i ∈ [n] such that xi = 1 with probability at least 2/3 if such an i exists,256

otherwise return that there is no such element. An i which satisfies xi = 1 is also called a257

marked element and thus the goal is to find a marked element with high probability, if such258

an element exists.259
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Let t := |{i ∈ [n] : xi = 1}|. Grover’s algorithm starts with the uniform superposition260

|U⟩ = 1√
n

∑n
i=1 |i⟩, and proceeds by applying Grover’s iterate (which is an application of261

Ox,± followed by a reflection about |U⟩) several times. After k applications of Grover’s262

iterate the resulting state is263

sin((2k + 1)θ)
∑

i:xi=1
|i⟩+ cos((2k + 1)θ)

∑
i:xi=0

|i⟩, (1)264

where θ = arcsin(
√
t/n). It is known that Grover’s algorithm finds a marked element in x265

(if it exists) with O(
√
n) applications of the query oracle Ox,±, and probability at least 2/3.266

Standard error reduction yields the following theorem.267

▶ Theorem 8. Given query access to x ∈ {0, 1}n, there is a quantum algorithm that decides268

whether the Hamming weight of x is 0 or returns an i ∈ [n] such that xi = 1, with error at269

most δ. The query complexity of this algorithm is O(
√
n · log(1/δ)).270

Grover’s algorithm is known to be asymptotically optimal.271

▶ Theorem 9 ([7]). A quantum algorithm that solves the Search problem with error 2/5 on272

n-bit inputs must have query complexity Ω(
√
n), even when the inputs are promised to have273

Hamming weight either 0 or 1.274

The following theorem, due to Dürr and Høyer [13], is a generalization of Grover’s search275

algorithm, to find the maximum number in an input list.276

▶ Theorem 10 ([13]). Let T be an unsorted table of n items. There exists a quantum query277

algorithm of cost O(
√
n) that has query access to T and returns the maximum element of T278

with probability at least 2/3.279

We require the following theorem, essentially due to Boyer et al. [7].1280

▶ Theorem 11 ([7]). Given query access to x ∈ {0, 1}n with |x| ≥ k, there is a quantum281

algorithm that outputs, with query complexity O(
√

(n/k) log(1/δ)) and error probability at282

most δ, an index i ∈ [n] with xi = 1.283

We obtain the following immediate corollary by repeating the algorithm in Theorem 11 k284

times and updating the ‘marked’ elements after each application.285

▶ Corollary 12. Given an input parameter k and query access to x ∈ {0, 1}n, there is a286

quantum algorithm that does the following with query complexity O(
√
nk log log(n)) and error287

probability at most 1/polylog(n):288

If |x| ≥ k, it returns k distinct indices i1, . . . , ik ∈ [n] such that xij
= 1 for j ∈ [k].289

If |x| < k, it outputs all indices i with xi = 1, along with the information that |x| < k.290

Our quantum algorithm also uses quantum approximate counting as a sub-routine. Here,291

an algorithm is given query access to a string x ∈ {0, 1}n. The indices i ∈ [n] such that292

xi = 1 are again called ‘marked’. For an input parameter ε the goal of the algorithm is to293

output a multiplicative (1 ± ε)-approximation of the number of marked indices of x. An294

optimal quantum algorithm for approximate counting was first given by Brassard et al. [8].295

We use a version due to Aaronson and Rall [2].296

1 Their bound is for bounded-error algorithms and does not have polylogarithmic factors in the query
complexity. Standard error reduction gives us Theorem 11.
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▶ Theorem 13 ([2]). There exists a quantum algorithm that, given ε > 0 and query297

access to a string x ∈ {0, 1}n, outputs an estimate K̃ of K = |{i : xi = 1}| such that298

K(1 − ε) ≤ K̃ ≤ K(1 + ε) with probability at least (1 − δ). The query complexity of this299

algorithm is O(
√
n/K · 1/ε · log(1/δ)).300

3 Randomized algorithm301

Throughout this section and the next, unless mentioned otherwise, a tournament T is assumed302

to be in {0, 1}(
n
2), and its vertex set is denoted by V = [n]. Query algorithms are assumed303

to have classical/quantum query access to the edge directions of T , that is, the individual304

bits of the corresponding
(

n
2
)
-bit string.305

In this section we give a randomized algorithm for finding a king in a tournament306

T ∈ {0, 1}(
n
2) with query complexity O(n log logn) and success probability at least 2/3. First,307

we make the following simple observation, which shows that a randomly chosen vertex from308

V = [n] has a large number of out-neighbours with high probability.309

▶ Lemma 14 (Out-degree of a random vertex is large). For all positive integers n, a tournament310

T ∈ {0, 1}(
n
2) and a vertex v ∈ V chosen uniformly at random, d+(v) ≥ ⌊(n − 1)/5⌋ with311

probability at least 3/5.312

Proof. From Lemma 7, |{v ∈ V | d+(v) < ⌊(n−1)/5⌋}| ≤ 2((n−1)/5−1)+1 = (2n−7)/5 <313

2n/5. Thus, the fraction of vertices with out-degree at least ⌊(n− 1)/5⌋ is at least 3/5. ◀314

Lemma 14 suggests a natural randomized query algorithm, given in Algorithm 1. We315

show in Theorem 15 that the algorithm makes O(n log logn) queries to T in the worst case,316

and returns a king with probability at least 2/3.317

Algorithm 1 Randomized Query Algorithm

1: Input: Query access to edge directions of a tournament T ∈ {0, 1}(
n
2) where V = [n].

2: while |V | ≥
√
n do

3: t← |V |, k ← ⌈log logn⌉
4: v1, . . . , vk ←vertices chosen uniformly at random from V

5: w ← arg maxu∈{v1,...,vk} d
+(u) ▷ querying all edges incident on

{v1, . . . , vk} in T [V ] and breaking
ties arbitrarily

6: if d+(w) = t− 1 then
7: Return w

8: else if d+(w) < ⌊(t− 1)/5⌋ then
9: Return a random vertex v ∈ V

10: else ▷ ⌊(t− 1)/5⌋ ≤ d+(w) < t− 1 here
11: V ← N−(w) ▷ This is the in-neighbourhood of w

in the set V , and not in the whole
vertex set [n].

12: continue
13: end if
14: end while
15: w ← a king in T [V ] ▷ query all edges in the

sub-tournament T [V ]
16: Output w
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▶ Theorem 15. Let n > 0 be a positive integer. Then, R(KINGn) = O(n log logn).318

Proof. Consider Algorithm 1. We first analyze the query cost of the algorithm. For the319

correctness, we define ‘bad events’, argue correctness of the algorithm conditioned on no bad320

event occurring, and then upper bound the probability of a bad event happening.321

Query complexity In order to upper bound the query complexity, first note that each322

iteration of the while loop (Line 2) uses k · |V | ≤ |V | log logn queries in the worst case.323

Furthermore, the while loop goes into the next iteration (Line 12) if and only if |V | >
√
n324

(Line 2) and a vertex w of out-degree at least ⌊(t − 1)/5⌋ has been found in Line 5 (see325

comment on Line 10). This means that the size of the vertex set reduces by a factor of326

at least 4/5 in the next iteration of the while loop. In particular, this means in the i’th327

iteration of the while loop, we have |V | ≤ (4/5)i · n, and thus there are O(logn) iterations328

of the while loop in the worst case. Finally, Line 15 accounts for at most O(n) queries since329

|V | <
√
n here. The worst-case query complexity is thus upper bounded by330

n+
O(log n)∑

i=0

(
4
5

)i

· n ·O(log logn) = O(n log logn).331

Bad event, and correctness assuming no bad event The event of Line 9 occurring332

during the run (i.e., Line 8 being triggered in any iteration) is defined to be the bad event.333

Conditioned on the bad event not occurring, the algorithm either terminates on Line 7 or334

Line 16. Clearly when the algorithm terminates on Line 7 or Line 16, the output vertex is335

a king in the sub-tournament being considered at the moment. If the while loop has not336

even completed once, the current sub-tournament is the same as the original tournament,337

and we are done. If the while loop has completed at least once, the sub-tournament being338

considered at the moment is the sub-tournament of a tournament T ′ (which itself may be339

a sub-tournament of T ) induced by the in-neighbourhood of a specific vertex. Applying340

Lemma 5, we conclude that the king in the current sub-tournament is also a king in T ′, and341

also the whole tournament by applying Lemma 5 repeatedly now. Hence conditioned on the342

bad event not occurring, the algorithm indeed outputs a correct answer.343

Probability of bad event From Lemma 14, the probability that Line 8 is run in an iteration344

is at most (2/5)k ≤ 1/ loglog 2.5 |V | ≤ 1/ log1.3 n. By a union bound, the probability that345

Line 8 gets executed in any of the O(logn) iterations is at most O(logn)/ log1.3(n) = o(1). ◀346

4 Quantum algorithm347

For W ⊆ [n] and v ∈ V , we can decide whether v is an out-neighbour of any w ∈ W by348

making |W | queries, by checking xwv for all w ∈W . Similarly, |W | queries are sufficient to349

decide whether v is an in-neighbour of some vertex w ∈W . This simple classical algorithm350

can easily be simulated in the quantum setting, which gives us the following observation.351

▶ Observation 16. For a tournament T ∈ {0, 1}(
n
2) and a known subset of the vertices352

W ⊆ V , there exists a unitary transformation that maps the basis state |v⟩ to (−1)I[v∈W −]|v⟩353

using |W | queries to T . In other words, there is a unitary transformation that has query cost354

|W | and ‘marks’ vertices in W−.355

Before proving the main theorem of this section, we give two lemmas (proven in the356

appendix). The algorithm in these lemmas will be used in the proof of the main theorem.357
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▶ Lemma 17. Let T ∈ {0, 1}(
n
2) be a tournament, W ⊆ V and t = Θ(log logn) be an integer.358

There exists a quantum algorithm In-Sample(T,W, t), Algorithm 2, that with error probability359

at most 1/(polylog(n)), returns a set of uniformly distributed and independent samples from360

W− of size t. The query complexity of this algorithm is O(|W | ·
√
n · polyloglog(n)).361

Algorithm 2 The In-Sample(T, W, t) algorithm for sampling many uniformly independent samples
from a subset of vertices

1: Input: Query access to the adjacency matrix of a tournament T ∈ {0, 1}(
n
2) where

V = [n], W ⊆ V such that |W−| ≥ log100 n, and t ∈ N such that t = Θ(log logn).
2: N ← 104n

3: |ϕ⟩ ←
∑N

i=1
1√
N
|i⟩ ▷ |ϕ⟩ is used as the starting state in

Line 8 and Line 14 with vertices in
W− ⊆ [n] marked (by first checking
if j ∈ [N ] satisfies j ≤ n, and
marking such a j using |W | queries).

4: if W = ∅ then
5: S ← t samples from uniform superposition over V
6: Return S

7: else
8: w̃ ← estimate of |W−| from Theorem 13 with ε = 1/100, δ = 1/polylog(N) =

1/polylog(n).
9: w′ ← ⌊w̃/2⌋

10: k̃ ←
⌊(

π

400 arcsin
√

w′/N
+ 1

2

)⌋
11: R← ∅
12: count← 0
13: while count < O(t polyloglog(n)) do
14: |ψi⟩ ← state obtained by applying Grover’s iterate k̃ times on |ϕ⟩, with vertices

in W− being the marked elements
15: vi ← measurement outcome of |ψi⟩ in computational basis
16: if vi ∈W− then ▷ query edges between vi and W

17: R← R ∪ {vi}
18: end if
19: count← count + 1
20: if |R| = t then ▷ If we have collected enough samples
21: Return R ▷ This is a set of uniformly

distributed and independent samples
from W− of size t (See Lemma 17)

22: end if
23: end while
24: end if
25: Return [t] ▷ The algo makes error in this case.

▶ Lemma 18. Let T ∈ {0, 1}(
n
2) be a tournament, W be a subset of V satisfying |W−| ≥362

log100 n and u be a vertex in V . There exists a quantum algorithm Decide-High-Out-363

Degree(T,W, u), Algorithm 3, that returns with error probability at most 1/(polylog(n)), True364

if the out-degree of u in W− is at least |W−|/5 and False if the out-degree of u in W− is at365

most |W−|/10. The query complexity of this algorithm is O(|W | ·
√
n polylog(n)).366
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Algorithm 3 The Decide-High-Out-Degree(T, W, u) subroutine

1: Input: Query access to the edge directions of a tournament T ∈ {0, 1}(
n
2) where V = [n],

W ⊆ V such that |W−| ≥ log100 n, and u ∈ V .
2: w̃1 ← estimate of |W−| using Theorem 13 with ε = 1/100, δ = 1/polylog(n).

▷ Since the algorithm is given W is
input, it can decide whether v ∈ W−

by making |W | queries.
3: w̃2 ← estimate of |N+(u) ∩W−| using Theorem 13 with ε = 1/100, δ = 1/polylog(n).

▷ Note that we do not have query
access to the presence/absence of
a vertex v in N+(u) ∩ W−. However
such a query can be implemented with
1 + |W | queries: check if v → u is
an edge, and check if v → w is an
edge for any w ∈W.

4: if w̃2/w̃1 ≥ 99/505 then
5: return True
6: else
7: return False
8: end if

We now show our main result of this section.367

▶ Theorem 19. Let n > 0 be a positive integer. Then Q(KINGn) = O(
√
n polylog(n)).368

Proof. Consider Algorithm 4. We first analyze the query cost of the algorithm. For the369

correctness, we define ‘bad events’, argue correctness of the algorithm conditioned on no bad370

event occurring, and then upper bound the probability of a bad event happening.371

Query complexity First we upper bound |W | at the end of the run of the algorithm. The372

while loop in Line 3 runs for at most O(logn) iterations. The algorithm starts with W373

initialized to ∅ and is updated only in Line 14 where one new element is added to W . Thus374

we have |W | = O(logn).375

Consider Line 5. Since |W | = O(logn) and k = log100 n, by Corollary 12 the number of376

queries in this step is upper bounded by O(|W |
√
n polylog(n)) = O(

√
n polylog(n)), and377

thus the overall cost of queries executed in this line over at most O(logn) iterations is also378

O(
√
n polylog(n)).379

In Line 9, the In-Sample algorithm (Algorithm 2) is called at most O(logn) times with380

t = Θ(log logn) and |W | = O(logn). Thus by Lemma 17, the cost of this step is upper381

bounded by O(|W |
√
n polylog(n)) = O(

√
n polylog(n)).382

Now consider the for loop in Line 11. This loop is executed at mostO(logn) times and each383

iteration of this loop invokes the algorithm Decide-High-Out-Degree, with |W | = O(logn), at384

most |S| many times. Since |S| = O(polylog(n)) (see Lemma 17) the query cost in this loop385

is upper bounded by O(|W | · |S| ·
√
n polylog(n)) = O(

√
n polylog(n)) in the worst case.386

The only remaining step in Line 23. In this case, since |U | ≤ log100 n throughout the387

algorithm, at most O(polylog(n)) queries are made.388

Bad event, and correctness assuming no bad event If any of the following events happen,389

we say that a bad event has happened for Algorithm 4:390
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(I) The algorithm in Corollary 12 which is used in Line 5 gives an incorrect answer.391

(II) The algorithm In-Sample (Algorithm 2) in Line 9 fails to return a set of Ω(t) =392

Ω(log logn) uniformly distributed and independent samples from W−.393

(III) The set S obtained from In-Sample in Line 9 does not contain a vertex of out-degree394

at least |W−|/5 in W−.395

(IV) The algorithm Decide-High-Out-Degree (Algorithm 3) in Line 13 returns False.396

We prove the correctness of the algorithm assuming that these bad events do not happen.397

Consider the j’th iteration of the while loop in Line 3, for j ≥ 1, and let W (j) denote the398

set W in this iteration. W (j) is updated only in Line 14 by a v which satisfies v ∈ (W (j))−.399

This is because each vertex of the set S belongs to W− (see Line 16 of Algorithm 2). In400

the next iteration of the while loop, (W (j+1))− is defined as (W (j))− ∩ N−(v). Thus by401

applying Lemma 5 iteratively, (W (j+1))− contains a king in the tournament T [(W (j))−], and402

hence a king in T .403

Assuming that the bad events do not happen, we now argue that in O(logn) iterations404

the size of W− becomes smaller than log100 n. In this case U = W− because of the property405

of Corollary 12 used in Line 5, and the algorithm correctly returns the king in Line 23 by a406

similar argument as in the previous paragraph by iteratively applying Lemma 5. The analysis407

is similar to that of proof of Theorem 15. Since Decide-High-Out-Degree (Algorithm 3) in408

Line 13 does not return False, the out-degree of v in (W (j))− must be at least |(W (j))−|/10.409

Thus |(W (j+1))−| ≤ (9/10) · |(W (j))−|, and after O(logn) iterations the size of W− is410

smaller than logn < log100 n.411

Probability of bad event The probability of events I, II, IV are each upper bounded by412

O(1/polylog(n)) by Corollary 12, Lemma 17 and Lemma 18, respectively. The probability413

of event III conditioned on II not happening is upper bounded by (2/5)Θ(log log(n)) =414

O(1/polylog(n)), thus the probability of event III is upper bounded by O(1/polylog(n)). The415

number of times that the events I, II, III can happen is at most O(logn), and IV can happen416

is at most O(polylog(n)), a union bound implies the probability of a bad event happening is417

upper bounded by O(1/polylog(n)). ◀418

5 Lower bounds419

We show our lower bounds in this section. We first show our lower bounds for the query420

complexity of finding a vertex of maximum out-degree, and then our lower bounds for finding421

a king in a tournament.422

5.1 Maximum out-degree423

We show in this subsection that the randomized query complexity of finding a vertex of424

maximum out-degree in an n-vertex tournament is Ω(n2). This task is formally defined as425

the relation MODn ⊆ {0, 1}(
n
2) × [n]: (G, v) ∈ MODn if d+(v) ≥ d+(w) ∀w ̸= v ∈ [n]. Here426

the out-degrees of v, w are according to the tournament G.427

▶ Theorem 20. For sufficiently large positive integers n, R(MODn) ≥ n2/100.428

We use Yao’s minimax principle [27], stated below in a form convenient for us.429

▶ Lemma 21 (Yao’s minimax principle). For a relation f ⊆ {0, 1}m×R, we have R(f) ≥ k if430

and only if there exists a distribution µ : {0, 1}m → [0, 1] such that Dµ(f) ≥ k. Here, Dµ(f)431
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Algorithm 4 Quantum Algorithm

1: Input: Query access to the edge directions of a tournament T ∈ {0, 1}(
n
2) with V = [n]

2: W ← ∅, t← Θ(log logn), and COUNT← O(logn)
▷ Recall that ∅− := V

3: while COUNT > 0 do
4: COUNT← COUNT− 1
5: U ← the output of the algorithm in Corollary 12 with the string in {0, 1}[n] as input

where indices corresponding to vertices in W− are equal to 1 (marked), and k = log100 n

▷ query access to this string can be
done using |W | edge queries to T

6: if |U | < log100 n then
7: break ▷ Go to Line 23
8: else
9: S ← In-Sample(T,W, t) ▷ We reach here if |W−| ≥ log100 n

(Line 7 gets executed otherwise)
10: S′ ← S

11: for v ∈ S do
12: S′ ← S′ \ {v}
13: if Decide-High-Out-Degree(T,W, v) == True then

▷ Decide-High-Out-Degree can be
applied since |W−| ≥ log100 n

14: W ←W ∪ {v}
15: break ▷ Go to Line 3
16: end if
17: if S′ == ∅ then
18: Return a random vertex v ∈ V
19: end if
20: end for
21: end if
22: end while
23: Return a king in U ▷ query all edges in T [U ]

is the minimum depth of a deterministic decision tree that computes f to error at most 1/3432

when inputs are drawn from the distribution µ.433

Proof of Theorem 20. Assume without loss of generality that n is odd. We construct a hard434

distribution µ on n-vertex tournaments. We show that any deterministic query algorithm435

of cost less than n2/100 must make error at least 1/3 on inputs drawn from µ, and this436

would prove the theorem by Yao’s principle (Lemma 21). Let G be a fixed n-vertex regular437

tournament where every vertex has out-degree exactly (n− 1)/2 (such a tournament is easy438

to construct, by induction, for example). The distribution µ is defined by taking G and439

flipping the direction of a uniformly random edge. Note that all resultant tournaments have440

a unique vertex with maximum out-degree.441

Consider a deterministic query algorithm (decision tree) that queries less than n2/100442

edges. Consider the leaf L of this tree for which answers of all queries on its path are443

consistent with directions of edges in G. Say the label of this leaf is vertex i. Consider the444

set S of all unqueried edges on the path to L that are not incident on vertex i. We have445

|S| ≥
(

n
2
)
− n2

100 − (n− 1). For each e ∈ S, the graph Ge defined by flipping the direction of446
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e in G reaches the leaf L. Moreover, the unique maximum out-degree vertex of Ge is not447

vertex i since e is not incident on i by the definition of S. This implies that the tree outputs448

the wrong answer on Ge. By the definition of µ, we have µ(Ge) = 1/
(

n
2
)

for all e ∈ S. Thus,449

the mass of inputs under µ on which the decision tree makes an error is at least450

∑
e∈S

µ(Ge) ≥
(

n
2
)
− n2

100 − n+ 1(
n
2
) >

97
100 >

1
3 ,451

where the second-to-last inequality holds for sufficiently large n. Lemma 21 yields the452

theorem. ◀453

We now give our quantum bounds for MODn.454

▶ Theorem 22. For all positive integers n, Q(MODn) = O(n3/2),Q(MODn) = Ω(n).455

Proof. For the upper bound we apply the maximum finding subroutine in Theorem 10 to456

the degree sequence of the input tournament. Finding the degree of a vertex (and hence a457

query of the maximum-finding algorithm) can be done with n− 1 edge queries. Thus, this458

algorithm has cost O(
√
n · (n− 1)) = O(n3/2).459

For the lower bound, we give a reduction from the Search problem on an
(

n
2
)
-bit string.460

As in the proof of the randomized lower bound, assume n is odd and let G be a fixed461

n-vertex regular tournament where every vertex has out-degree exactly (n− 1)/2. Towards a462

contradiction, suppose we have an algorithm A that finds a maximum out-degree vertex in463

an n-vertex graph with query complexity o(n) and probability at least 2/3. We use A to464

solve the Search problem on
(

n
2
)
-bit strings with the promise that the input has Hamming465

weight at most 1. On input x ∈ {0, 1}(
n
2) with |x| ≤ 1, do the following:466

1. Run the algorithm A on the tournament G⊕ x. Here G⊕ x denotes the bitwise XOR of467

G and x. Suppose the output is v ∈ [n].468

2. Run a (99/100)-error Search algorithm with query cost O(
√
n) on the n− 1 indices of x469

that are indexed by pairs with one element as v (that is, indexed by the edges adjacent470

to v in the corresponding tournament).471

3. Output the index returned by the search algorithm.472

The cost of this algorithm is clearly o(n) +O(
√
n). For the correctness, first note that when473

|x| = 1 and G is such that all out-degrees are equal, the tournament G⊕ x has exactly one474

maximum out-degree vertex. Thus, by the correctness of A, it outputs this vertex with475

probability at least 2/3. Observe that the edge flipped in G⊕ x from G is adjacent to this476

vertex. In the event that the first step outputs the correct vertex, the edge that has been477

flipped in G⊕ x from G (i.e., the index {i, j} with x{i,j} = 1) is caught in the second step478

with probability at least 99/100. Thus, this gives an algorithm solving the Search problem479

on
(

n
2
)
-bit strings with the promise that the input has Hamming weight at most 1, with480

success probability at least (2/3) · (99/100) > 3/5. The query cost of this algorithm is o(n)481

from the first step, by our assumption, and O(
√
n) from the second step. Thus the total cost482

is o(n), which is a contradiction in view of Theorem 9. ◀483

We leave open the question of closing the gap in Theorem 22.484

5.2 Finding a king485

We show an Ω(n) lower bound for the randomized query complexity of finding a king in a486

tournament, and an Ω(
√
n) quantum query lower bound. To show these lower bounds, we487

restrict our attention on input tournaments of a particular structured form that have the488
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property that there is only one king (which is a source in the tournament). We then show a489

lower bound on the randomized and quantum query complexities of finding a king in these490

promised inputs, by a reduction from the Search problem on n− 1 variables with the promise491

that the input has Hamming weight either 0 or 1, for which we know an Ω(n) lower bound in492

the randomized setting and an Ω(
√
n) lower bound in the quantum setting. Our reductions493

use a simple modification of block sensitivity.494

We require the following relation.495

▶ Definition 23. Let n be a positive integer. Define the relation USEARCHn ⊆ {0, 1}n ×496

{∅} ∪ [n] as (0n, ∅) ∈ USEARCHn and (x, i) ∈ USEARCHn when x = ei.497

▷ Claim 24. Let n be a positive integer. Then,498

R(KINGn) ≥ R(USEARCHn−1), Q(KINGn) ≥ Q(USEARCHn−1).499

Proof. Consider an arbitrary input x ∈ {0, 1}(
n
2) such that the vertex n is the source. For500

each j ∈ [n−1], let Vj ⊆
[(

n
2
)]

be the set of edges incident on vertex j that need to be flipped501

in the input x to make vertex j the source. We first make the following two observations:502

Vj ∩ Vk = ∅ ∀j ̸= k ∈ [n− 1],
n−1⋃
i=1

Vj =
[(
n

2

)]
. (2)503

The first observation follows by considering an edge from vertex ℓ to vertex m. This edge only504

appears in Vm. Clearly every edge belongs to exactly one Vj , proving the second observation.505

Using these two observations, the input set {0, 1}(
n
2) can also be expressed as {0, 1}V1 ×506

{0, 1}V2 × · · · × {0, 1}Vn−1 . For the remaining part of this proof we treat inputs to be of the507

latter form. In fact, we only restrict our attention to the case where each coordinate in a508

‘block’ has the same value.509

For a string y ∈ {0, 1}n−1, define the tournament xy =
⊗n−1

i=1 y
Vi
i . Thus we have the510

following tournaments when |y| ≤ 1:511

xej
=
{

0V1 × · · · × 0Vj−1 × 1Vj × 0Vj+1 × · · · × 0Vn−1 y = ej−1

0V1 × · · · × 0Vn−1 y = 0n−1.
512

In other words, xej
equals the tournament x with variables in Vj flipped, and x0n−1 = x.513

Note that vertex j is the source (and thus the unique king) in the tournament xej
. Thus,514

finding a king in the set of tournaments
{
xej : j ∈ [n− 1]

}
is the same as finding a source515

in these tournaments. Thus, a query algorithm finding a king in the restricted input set516

xy : |y| ≤ 1 yields a query algorithm for USEARCHn−1 on input y, which proves the claim. ◀517

From the well-known lower bounds of Q(USEARCHn−1) = Ω(
√
n) [5] and R(USEARCHn−1) =518

Ω(n), we obtain our main theorem of this section.519

▶ Theorem 25. Let n be a positive integer and KINGn ⊆ {0, 1}(
n
2) × [n]. Then,520

R(KINGn) = Ω(n), Q(KINGn) = Ω(
√
n).521
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A Proofs of Lemmas from Section 4592

In this section we prove Lemma 17 and Lemma 18.593

Proof of Lemma 17. Consider Algorithm 2. We first analyze the query cost of the algorithm.594

For the correctness, we define ‘bad events’, argue correctness of the algorithm conditioned595

on no bad event occurring, and then upper bound the probability of a bad event happening.596

Query complexity597

We upper bound the worst-case query complexity of the algorithm. Line 8 of the algorithm598

case costs O(|W | ·
√
N ·polylog(N)) from Theorem 13. The while loop from Line 13 runs for599

O(t · polyloglog(N)) = O(polyloglog(N)) times, and each Grover’s iterate in each of these600

iterations makes O(|W | ·
√
N) queries in Line 14. Also, Line 16 uses |W | many queries. Thus,601

the overall query cost of the algorithm is upper bounded by O(|W | ·
√
N · polyloglog(N)).602

Since N = 104n, we have an upper bound of O(|W | ·
√
n · polyloglog(n)).603

Bad event, and correctness assuming no bad event604

If the estimate in Line 8 is incorrect or if the algorithm has reached Line 25 is not in W−
605

then we say that a bad event has occurred for Algorithm 2. We assume that these events606

have no happened. Thus the estimate in Line 8 is correct then w̃ satisfies607

|W−|(1− 1/100) ≤ w̃ ≤ |W−|(1 + 1/100).608

Define w′ = ⌊w̃/2⌋, thus w′ satisfies the following equations.609

|W−|/4 ≤ w′ ≤ |W−|,610

1/2 ·
√
|W−|/N ≤

√
w′/N ≤

√
|W−|/N. (3)611

Let x = |W−|/N . Since |W−| ≥ 0 and |W−| ≤ n, we have612

0 ≤ x ≤ 1/104.613

Let C = 1/104. For x ∈ [0,
√
C] and A ≥ 1 (whose value is to be fixed later), define614

g(x) = A arcsin x/2− arcsin x.615
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The derivative of g is given by616

g′(x) = A/2√
1− x2/4

− 1√
1− x2

617

≥ A√
4− x2

− 1√
1− C

618

≥ A/2− 1√
1− C

.619

Thus for A = 3
√

1− C the above derivative is positive for all x ∈ [0,
√
C]. Since g(0) = 0,620

we have, for A arcsin x/2 ≥ arcsin x.621

From monotonicity of arcsin in [0, 1] and Equation (3) we have622

arcsin(1/2 ·
√
|W−|/N) ≤ arcsin(

√
w′/N) ≤ arcsin(

√
|W−|/N)623

1/A · arcsin(
√
|W−|/N) ≤ arcsin(

√
w′/N) ≤ arcsin(

√
|W−|/N). (4)624

In Line 10 we choose k̃ to be
⌊(

π

400 arcsin
√

w′/N
+ 1

2

)⌋
. From Equation (4) we have625 (

π

400 arcsin
√
|W−|/N

+ 1
2

)
≤

(
π

400 arcsin
√
w′/N

+ 1
2

)
≤ (A+ 1) ·

(
π

400 arcsin
√
|W−|/N

+ 1
2

)
.

(5)

626

which implies627 (
π

400 arcsin
√
|W−|/N

− 1
2

)
≤

⌊(
π

400 arcsin
√
w′/N

+ 1
2

)⌋
≤ (A+ 1) ·

(
π

400 arcsin
√
|W−|/N

+ 1
2

)
.

(6)

628

From Equation (1), if we apply Grover’s iterate k times then the resulting state in Line 14 is629

of the following form:630

β
∑

v∈W −

|v⟩+
√

(1− β2)
∑

v∈W +

|v⟩, (7)631

where β = sin((2k + 1) · arcsin
√
|W−|/N). From Equation (6) we have632

π

200 ≤ (2k̃ + 1) · arcsin
√
|W−|/N ≤ (A+ 1) π

200 + (A+ 2) arcsin(
√
|W−|/N) < π/2,633

where the last inequality follows due to the choice of A (A ≤ 3) and since
√
|W−|/N ≤ 1/100.634

Thus after k̃ iterations, β2 = sin2((2k̃+ 1) · arcsin
√
|W−|/N) is a constant smaller than π/2.635

Since we have assumed that the bad event in Line 25 has not occurred, this means that t636

sample obtained is in W−. From Equation 7 each vertex in W− has an equal probability of637

being sampled. Clearly, for different iterations of the while loop in Line 13 the samples are638

independent. Also, in this case the algorithm returns in Line 21 after t iterations and hence639

Ω(t) uniformly distributed and independent samples from W− are returned.640

Probability of bad event641

The probability of the bad event happening in Line 8 by Theorem 13 is O(1/polylog(n)). To642

upper bound the probability of the algorithm reaching Line 25, observe that with probability643

β2 = Ω(1) (see Equation (7)) a vertex sampled in Line 15 is in the set W−. Thus the644

probability that after O(t polyloglog(n)), less than t vertices are seen in W− is upper645

bounded by O(1/polylog(n)) by a Chernoff bound. ◀646
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Proof of Lemma 18. Consider Algorithm 3. We first analyze the query cost of the algorithm.647

For the correctness, we define a ‘bad event’, argue correctness of the algorithm conditioned648

on the bad event not occurring, and then upper bound the probability of the bad event649

happening.650

Query complexity651

The only queries used are in Line 2 and Line 3 of the algorithm. The query cost of these652

steps are upper bounded by O(|W | ·
√
n · polylog(n)) by Theorem 13.653

Bad event, and correctness assuming no bad event654

The only bad event for Algorithm 3 are that either the estimates Line 2 or Line 3 is incorrect.655

Let us assume that the bad event has not happened. Then656

(1− 1/100)|W−| ≤ w̃1 ≤ (1 + 1/100)|W−|,657

and658

(1− 1/100)|N+(u) ∩W−| ≤ w̃2 ≤ (1 + 1/100)|N+(u) ∩W−|.659

We have660

99
101 ·

|N+(u) ∩W−|
|W−|

≤ w̃2

w̃1
≤ 101

99 ·
|N+(u) ∩W−|

|W−|
.661

Thus if |N+(u)∩W−|/|W−| ≥ 1/5 then w̃2/w̃1 ≥ 99/505 and if |N+(u)∩W−|/|W−| ≤ 1/10662

then w̃2/w̃1 ≤ 101/990.663

Probability of bad event664

By Theorem 13 and a union bound, the probability of the bad event is upper bounded by665

O(1/polylog(n)). ◀666
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