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Abstract 

Image-based Semantic Segmentation of Large-scale Terrestrial Laser Scanning 
Point Clouds  
 
by Yuanzhi Cai 
 

Large-scale point cloud data acquired using terrestrial laser scanning (TLS) often need 
to be semantically segmented to support many applications. To this end, various three-
dimensional (3D) methods and two-dimensional (i.e., image-based) methods have 
been developed. For large-scale point cloud data, 3D methods often require extensive 
computational effort. In contrast, image-based methods are favourable from the 
perspective of computational efficiency. However, the semantic segmentation 
accuracy achieved by existing image-based methods is significantly lower than that 
achieved by 3D methods. On this basis, the aim of this PhD thesis is to improve the 
accuracy of image-based semantic segmentation methods for TLS point cloud data 
while maintaining its relatively high efficiency. 
 
In this thesis, the optimal combination of commonly used features was first found, and 
an efficient manual feature selection method was proposed. It was found that existing 
image-based methods are highly dependent on colour information and do not provide 
an effective means of representing and utilising geometric features of scenes in images. 
To address this problem, an image enhancement method was developed to reveal the 
local geometric features in images derived by the projection of point cloud coordinates. 
Subsequently, to better utilise neural network models that are pre-trained on three-
channel (i.e., RGB) image datasets, a feature extraction method (LC-Net) and a feature 
selection method (OSTA) were developed to reduce the higher dimension of image-
based features to three. Finally, a stacking-based semantic segmentation (SBSS) 
framework was developed to further improve segmentation accuracy. By integrating 
SBSS, the dimension-reduction method (i.e. OSTA) and locally enhanced geometric 
features, a mean Intersection over Union (mIoU) of 76.6% and an Overall Accuracy 
(OA) of 93.8% were achieved on the Semantic3D (Reduced-8) benchmark. This set 
the state-of-the-art (SOTA) for the semantic segmentation accuracy of image-based 
methods and is very close to the SOTA accuracy of 3D method (i.e., 77.8% mIoU and 
94.3% OA). Meanwhile, the integrated method took less than 10% of the processing 
time (52.64s versus 563.6s) of the fastest SOTA 3D method. 
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Chapter 1: Introduction 

1.1. Background 

Terrestrial laser scanning (TLS) can acquire up to hundreds of millions of millimetre-

accurate three-dimensional (3D) data points (i.e., point cloud) within minutes. This 

data acquisition technology is used in many applications in civil engineering, such as 

building/city information modelling (BIM/CIM) and structure/slope deformation 

monitoring. All of which can benefit from semantic segmentation (i.e., assign a class 

label to each data point) of TLS point clouds. For example, accurate semantically 

segmented point clouds can be used to improve the speed and accuracy of registration, 

generate semantically enhanced BIM/CIM models, and automate deformation 

monitoring. 

 

Existing methods for semantic segmentation of point clouds can be divided into two 

categories based on the dimension of data representation (e.g., point, voxel and pixel) 

used by their classifiers, namely 3D methods and two-dimensional (2D) methods (i.e., 

image-based methods). Because it is inherently more suitable to represent the spatial 

information of a point cloud in 3D, 3D methods often achieve higher segmentation 

accuracies than those of image-based methods. However, 3D methods are relatively 

inefficient, with their processing time growing exponentially with the volume of input 

point cloud data. Image-based methods project a point cloud as multichannel image(s) 

(different channels contain different features) and then segment multichannel image(s) 

using 2D semantic segmentation networks. The segmentation accuracies of image-

based methods are relatively lower due to the projection-induced loss and distortion of 
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spatial information of the point cloud. However, thanks to high computational 

efficiency of 2D semantic segmentation networks, the processing time required by 

image-based methods can be several orders of magnitude lower than that of 3D 

methods.  

 

In summary, semantic segmentation of point clouds using existing methods suffers 

from either low accuracy (image-based methods) or low efficiency (3D methods). 

However, achieving accurate and efficient semantic segmentation of TLS point clouds 

is highly desirable for civil engineering applications, especially for time-sensitive tasks 

such as deformation monitoring. 

 

1.2. Aim and objectives 

The aim of this thesis is to establish new approaches to improve the accuracy of image-

based methods for semantic segmentation of TLS point clouds while high 

computational efficiency is maintained. To achieve this aim, the following objectives 

and questions are considered. 

 

Objective 1. Select the optimal feature combination from commonly used image-

based features for semantic segmentation of TLS point clouds. 

Question 1-1: Can higher semantic segmentation accuracy be achieved using 

fewer features than using all available features? 

Question 1-2: Can an efficient manual feature selection method be developed to 

select the optimal feature combination? 
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Objective 2. Develop novel image-based geometric features to improve 

segmentation accuracy of TLS point clouds. 

Question 2-1: Can novel image-based geometric features be developed to 

improve segmentation accuracy? 

Question 2-2: Can accurate semantic segmentation of TLS point clouds be 

achieved without using colour information? 

Question 2-3: How to better utilise a model pre-trained on a large-scale RGB 

image dataset to improve segmentation accuracy? 

 

Objective 3. Develop novel dimension reduction methods to transform multichannel 

images into 3-channel images to better utilise model(s) pre-trained on large-scale 

RGB image datasets. 

Question 3-1: For multichannel images that are not derived from TLS point cloud 

data, e.g., multispectral images, is it still true that using an appropriate 3-channel 

combination will give a higher semantic segmentation accuracy than using all 

available channels? 

Question 3-2: Can a novel feature extraction method be developed to avoid 

repetitive testing of different channel combinations while achieving semantic 

segmentation accuracy comparable to the optimal 3-channel combination for 

multichannel images? 

Question 3-3: Can a novel feature selection method be developed to efficiently 

and automatically select the optimal 3-channel combination for the semantic 

segmentation of multichannel images? 

Question 3-4: For the developed feature extraction method and feature selection 

method, which one gives a higher semantic segmentation accuracy? 
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Objective 4. Develop a novel framework to improve the semantic segmentation 

accuracy of images. 

Question 4-1: Can a novel image semantic segmentation framework be 

developed to improve segmentation accuracy? 

Question 4-2: How accurate can the image-based semantic segmentation method 

br achieved on TLS point clouds by integrating the methods developed in this 

thesis? 

 

1.3. Thesis layout 

The organisation of the subsequent chapters of this thesis is illustrated in Figure 1-1, 

starting with a literature review chapter, followed by five chapters corresponding to 

the five methods developed for the four objectives in Section 1.2, and ending with a 

conclusion chapter. The content of these chapters is summarised as follows. 

 
 

Figure 1-1: Flowchart for achieving each objective. 
 

Chapter 2: Literature review 

This chapter provides a concise overview of deep learning-based semantic 

segmentation methods for point clouds, discusses their pros and cons, and reflects on 

potential improvement for image-based methods. 
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Chapter 3: Manual feature selection (published) 

This chapter presents a manual feature selection framework for the semantic 

segmentation of multichannel images. The optimal combination of commonly used 

features is selected for image-based semantic segmentation of TLS point clouds. The 

importance and patterns of feature selection are discussed.  

 

Chapter 4: Locally enhanced image-based geometric features (published) 

This chapter presents locally enhanced image-based geometric features for the 

semantic segmentation of TLS point clouds. The feasibility of excluding colour 

information and the importance of retaining the first layer’s weights of the pre-trained 

model (i.e., the importance of dimension reduction) were investigated. 

 

Chapter 5: Automatic feature extraction (published) 

This chapter presents an automatic feature extraction method that compresses 

multispectral images into 3-band images for semantic segmentation. The semantic 

segmentation accuracies achieved using all bands and using different 3-band 

combinations are also presented for the multispectral dataset used. 

 

Chapter 6: Automatic feature selection (preparing for publication) 

This chapter presents an automatic feature selection method for the semantic 

segmentation of multichannel images. For the case of using a 3-channel image as input, 

the feature selection method developed in this chapter and the feature extraction 
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method developed in Chapter 5 are compared on a multichannel benchmark dataset 

derived from TLS point clouds and a multispectral benchmark dataset. 

 

Chapter 7: Stacking-based semantic segmentation framework (published) 

This chapter presents a stacking-based semantic segmentation framework that 

improves segmentation accuracy by learning the preferred resizing scales for different 

object classes. Furthermore, for the image-based semantic segmentation of TLS point 

clouds, the accuracy achieved by integrating methods developed in this thesis is 

demonstrated in the results section of this chapter. 

 

Chapter 8: Conclusion 

This chapter summarises the key results from Chapters 3 to 7 including the answers to 

the research questions in Chapter 1, followed by key recommendations for future work. 

  



Chapter 2: Literature Review 
 

33 
 

Chapter 2: Literature Review 

2.1. Benchmark data 

Several datasets have been established to evaluate the performance of deep learning 

algorithms for point cloud segmentation. The characteristics of these datasets are 

summarised in Table 2-1. These datasets are acquired by different types of sensors, 

including RGB-D cameras, Mobile Laser Scanners (MLS), Aerial Laser Scanners 

(ALS) and Terrestrial Laser Scanners (TLS).  

Table 2-1: Summary of point cloud semantic segmentation datasets 
 Sensors Total points (M) Scans Points per scans (M) RGB 
Oakland (Munoz et al., 2009) MLS 2 17 0.1 No 
Totonto-3D (Tan et al., 2020) MLS 78 4 19.5 Yes 
Paris-Lille-3D (Roynard et al., 2018) MLS 143 3 47.7 No 
S3DIS (Armeni et al., 2016) RGB-D 273 272 1.0 Yes 
IQmulus (Vallet et al., 2015) MLS 300 10 30.0 No 
DALES (Varney et al., 2020) ALS 505 40 12.6 No 
Semantic3D (Hackel et al., 2017) TLS 4009 30 133.3 Yes 
SemanticKITTI (Behley et al., 2019) MLS 4549 43552 0.1 No 
 

As the only TLS dataset, Semantic3D is used in this thesis. It contains a training set 

and a test set, each having 15 annotated point clouds collected in urban scenes. The 

points are labelled as eight classes (i.e., man-made terrain, natural terrain, high 

vegetation, low vegetation, buildings, hard scape, scanning artefacts, cars).  

2.2. Deep learning for point cloud semantic segmentation 

The goal of semantic segmentation of point clouds is to classify points into subsets 

according to their semantics. It involves learning both global features of a point cloud 

and fine-grained details of each data point. As mentioned in Chapter 1, existing 

segmentation methods can be categorised into 3D methods and image-based methods. 

The evolution of 3D and image-based methods is briefly introduced in Sections 2.2.1 
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and 2.2.2, respectively, and their performances in terms of accuracy and efficiency on 

Semantic3D are shown in Section 2.2.3. 

2.2.1. Three-dimensional methods 

Depending on the type of main segmentation network/module used, 3D methods can 

be divided into point MLP methods, point convolution methods, graph-based methods 

and 3D CNN methods.  

2.2.1.1. Point MLP methods 

The pioneering work of point MLP methods is PointNet (Charles et al., 2017). In 

PointNet, point-wise (local) features are learned using weight-sharing MLP, and 

global features are learned with symmetric pooling. A series of point MLP methods 

have been developed subsequently, with a focus on the development of better global 

feature learning techniques. Representative ones include neighbouring feature pooling 

(Engelmann et al., 2019; Hu et al., 2021; Jiang et al., 2018; Qi et al., 2017; Zhang et 

al., 2019; H. Zhao et al., 2019), attention-based aggregation (Chen et al., 2019; Wen 

et al., 2020; Jiancheng Yang et al., 2019; C. Zhao et al., 2019), local-global feature 

concatenation (Arandjelovic et al., 2018; Wen et al., 2020; Y. Zhao et al., 2019) and 

recurrent neural modules (Engelmann et al., 2017; Huang et al., 2018; Ye et al., 2018). 

2.2.1.2. Point convolution methods 

Point convolution methods aim to develop convolution operators that can handle a raw 

point cloud (Hua et al., 2018; Jeppesen et al., 2019; S. Wang et al., 2018). The most 

famous one is Kernel Point Convolution (KPConv) (Thomas et al., 2019). The 

convolution weights of KPConv are based on Euclidean distances between kernel 

points. The locations of kernel points are chosen based on an optimisation function for 

maximizing the coverage of a spherical space. Based on KPConv, researchers have 

developed a series of modified methods (Lai et al., 2022; Y. Li et al., 2022; Lin et al., 
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2021; Liu et al., 2020; M. Xu et al., 2021; Yan et al., 2022). Similar to the PointNet-

based methods, these modified methods focus on better aggregation of neighbouring 

features to learn global features. Techniques used are similar to those used in PointNet-

based methods. 

2.2.1.3. Graph-based methods 

The first graph-based method is superpoint graph (SPG) (Landrieu and Simonovsky, 

2018). SPG segments a point cloud in three steps: geometrically homogeneous 

partitioning of the original point cloud space, embedding original points as superpoints, 

and segmenting the superpoint graph with graph neural networks. Follow-up studies 

have made substantial improvements on these three steps. For example, supervised 

oversegmention (Landrieu and Boussaha, 2019), graph embedding module (Zhiheng 

and Ning, 2019) and attention mechanisms (C.-Q. Huang et al., 2022; L. Wang et al., 

2019; Wen et al., 2021; Zhiheng and Ning, 2019) have been used for better partition, 

embedding and feature aggregation, respectively. 

2.2.1.4. 3D CNN methods 

Huang and You (Jing Huang and Suya You, 2016) are the first researchers to represent 

a raw point cloud in voxels and segment voxels with standard 3D CNN. The 

subsequent study can be grouped into two themes. The first (main) theme is to reduce 

computational consumption (Meng et al., 2019), in which research is focused primarily 

on the development and utilisation of sparse discretization representations (Choy et al., 

2019; Graham et al., 2018; Park et al., 2023; Tang et al., 2020; You et al., 2020). The 

second theme is similar to other types of methods, i.e. improving the ability of 3D 

CNN to aggregate features (Yuhong Chen et al., 2022). 
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2.2.2. Image-based methods 

Image-based methods first project a 3D point cloud as 2D image(s) and then use 2D 

networks to perform segmentation. Initially, researchers projected point clouds from 

multiple views (Boulch et al., 2017; Lawin et al., 2017; Tatarchenko et al., 2018).  This 

requires the processing of multiple images to segment a point cloud from a single scan, 

which is less efficient. Therefore, projecting point clouds as spherical panoramic 

images, with the scanning device as the centroid, has become the dominant method in 

subsequent studies (Milioto et al., 2019; B. Wu et al., 2018; Wu et al., 2019).  

2.2.3. Performance comparison of 3D and image-based methods on Semantic3D 

The performances of the existing methods on Semantic3D are summarised in Table 2-

2.  

Table 2-2: Quantitative comparison of existing methods on Semantic3D (Reduced-8) (%). 

  Time 
(s) 

Params 
(M) mIoU OA man- 

made natural. high 
veg 

low 
veg buildings hard 

scape 
Scanning 

art cars 

3D 
methods 

RF MSSF 
(Thomas et al., 2018) 1643.75 - 62.7 90.3 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6 

ShellNet 
(Zhang et al., 2019) 3000 0.48 69.3 93.2 96.3 90.4 83.9 41.0 94.2 34.7 43.9 70.2 

OctreeNet 
(F. Wang et al., 2020) 184.84 - 59.1 89.9 90.7 82.0 82.4 39.3 90.0 10.9 31.2 46.0 

GACNet 
(L. Wang et al., 2019) 1380 - 70.8 91.9 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8 

SPGraph 
(Landrieu and 
 Simonovsky, 2018) 

3000 0.25 73.2 94.0 97.4 92.6 87.9 44.0 83.2 31.0 63.5 76.2 

KPConv 
(Thomas et al., 2019) 600 14.9 74.6 92.9 90.9 82.2 84.2 47.9 94.9 40.0 77.3 79.7 

RandLA-Net 
(Q. Hu et al., 2020) - 0.95 77.4 94.8 95.6 91.4 86.6 51.5 95.7 51.5 69.8 76.8 

SCF-Net 
(Fan et al., 2021) 563.6 - 77.6 94.7 97.1 91.8 86.3 51.2 95.3 50.5 67.9 80.7 

RFCR 
(Gong et al., 2021) - - 77.8 94.3 94.2 89.1 85.7 54.4 95.0 43.8 76.2 83.7 

Image- 
based 
methods 

DeePr3SS 
(Lawin et al., 2017) - 134 58.5 88.9 85.6 83.2 74.2 32.4 89.7 18.5 25.1 59.2 

SnapNet 
(Boulch et al., 2018) 3600 29 59.1 88.6 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4 
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Since most studies reported their performances on Semantic3D's reduced-8 test set, 

this test set is also used in this thesis. The reduced-8 test set is popular because it 

contains only 3% of the data points of the standard test set, which allows less efficient 

methods to complete the test within a reasonable period of time. The accuracies of 

most 3D methods are much higher than those of image-based methods. This has led 

most researchers to focus on improving 3D methods. There are only two image-based 

methods (based on multi-view projection), the performances of which on Semantic3D 

are reported. Their performances in terms of accuracy and efficiency are far inferior to 

those of the state-of-the-art (SOTA) 3D methods. 

2.3. Reflections 

Although the SOTA 3D methods are far more accurate and efficient than image-based 

methods according to Table 2-2, it is still argued that image-based methods have great 

potential for the following reasons.  

 

Firstly, an image-based method with the spherical projection is much more efficient 

than 3D methods, but has not been used by researchers for semantic segmentation of 

TLS point clouds. For example, SqueezeSeg took only approximately 8.7 milliseconds 

to process a single point cloud (B. Wu et al., 2018). In contrast, improving efficiency 

of 3D methods is extremely difficult. This is because aggregating local features to 

learn global features in 3D methods has to rely on nearest neighbour search or 

memory-hungry index structure. The computational consumption of either technique 

grows exponentially with the number of processed points. This limits the use of 3D 

methods for efficient semantic segmentation of high-density TLS point clouds in 

practical applications. 
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Secondly, it is thought that image-based methods still have great potential in terms of 

accuracy. This judgement is inspired by the fact that image segmentation networks can 

achieve up to 86% mIoU on the Cityscpaes image dataset (Cordts et al., 2016), which 

is also collected in urban scenes and includes even finer classes (more classes) to be 

segmented. Despite this, existing image-based methods have two notable weaknesses. 

First, they do not use SOTA image segmentation networks. Second, they often use all 

the possible features available for segmentation and do not select more suitable image 

features for segmentation. Therefore, this thesis begins with a detailed investigation 

(Chapter 3) to address those two issues. The study in the subsequent chapters (Chapters 

4-7) is based on new findings and reflections emerging during the course of the 

research, as outlined below. The experiments in Chapter 3 suggest that image-based 

methods cannot effectively learn geometric features from existing image features. 

Therefore, novel locally enhanced image-based geometric representations are 

developed in Chapter 4. The experiments in Chapter 4 show that using the appropriate 

three-channel combination can make better use of the pre-trained model to achieve 

higher segmentation accuracy. This motivates the study of dimension reduction 

methods in Chapters 5 and 6. Finally, considering the very high resolution (VHR) of 

the spherical panoramic images projected from the TLS point clouds, in Chapter 7, a 

novel semantic segmentation framework is developed to improve the segmentation 

accuracy of VHR images. 
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Chapter 3: Manual feature selection 

 

This chapter is based on the published paper: Cai, Y., Huang, H., Wang, K., Zhang, 

C., Fan, L., Guo, F., 2021. Selecting Optimal Combination of Data Channels for 

Semantic Segmentation in City Information Modelling (CIM). Remote Sens. 13, 1367. 

https://doi.org/10.3390/rs13071367  

 

Note: The research presented in this chapter improves the segmentation accuracy of 

image-based methods by using state-of-the-art image segmentation network and 

manually selecting the best feature combination. 

  

https://doi.org/10.3390/rs13071367
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3.1. Introduction 

Over the last decade, the concept of city information modelling (CIM) has received a 

growing interest in many fields, such as surveying engineering and civil engineering 

(Stojanovski, 2018). Generally, CIM provides valuable benefits for stakeholders, 

including enhancing the public management process and establishing an intelligent 

digital platform to store, control, and understand big data. Xu et al., (2014) suggested 

that geographic information systems (GIS) and building information modelling (BIM) 

can be integrated to facilitate and achieve the CIM concept. GIS models are utilized to 

represent graphical and geometrical information, while BIM models are applied to 

characterize semantic and topological information. Nonetheless, issues of model 

accuracy and timely information update are challenging (Lu and Lee, 2017). 

Furthermore, it is challenging to automatically identify the discrepancies between the 

as-built and as-planned models, which would cause significant delays, for example, in 

responding to project modification management (Golparvar-Fard et al., 2011; Kim et 

al., 2020). 

 

A popularly used technique to create the as-built model is the 3D reconstruction, which 

has been developed to present the latest as-is information for infrastructures and the 

city. To acquire the point cloud data, laser scanning technologies such as light 

detection and ranging (LiDAR), terrestrial laser scanning system (TLS), and aerial 

laser scanning system (ALS) have been usually adopted. Many studies have presented 

that the main advantages of the TLS technologies include high point density (about 

one billion points per scan) and high geometric accuracy (up to millimetres) (Badenko 

et al., 2019; Bernat, 2014). Therefore, TLS is more appropriate for CIM applications 
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(requires high accuracy and density data). In addition, unlike the data collected in the 

typical remote sensing applications (e.g., satellite images and ALS), the TLS can 

collect image information of the scene immediately after completing the laser scanning. 

With the coordinate transformation matrix (usually provided by the manufacturer), the 

colour information (RGB) can be directly mapped to the corresponding laser point. In 

this case, the data obtained through TLS usually has seven aligned channels of data: 

RGB from the camera sensor and XYZ and I (intensity). 

 

After acquiring raw point clouds that can provide accurate geometric information for 

CIM, the semantic segmentation technique is usually adopted to obtain the semantic 

information from the raw point cloud. In addition to the seven channels in the raw 

point cloud, additional channels can be derived to describe the scene. The widely used 

two types are the depth channel and the normal vector channel generated by XYZ. 

However, in practice, not all channels can bring a positive improvement to semantic 

segmentation. Several studies in the remote sensing application have indicated the 

importance of selecting an optimal combination of data channels regarding 

multispectral datasets. For instance, Xie et al., (2018) presented a novel hyperspectral 

band approach to select an optimal band for image classification based on clustering-

based selection methods. Their results indicated that the proposed method was more 

effective and able to generate better band selection results. Li et al., (2018) utilized 

discrete particle swarm optimization to model the various errors (i.e., reconstruction, 

imaging, and demosaicing errors) associated with spectral reconstruction for optimal 

channel combination. The optimization results reduced the time in the computational 

process. Abdalla et al., (2019) developed a robust DL method to group the RGB 

channels for automatic colour calibration for plants. Bhuiyan et al., 
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(2020)experimented with testing the optimal three-channel combination in model 

prediction using very high spatial resolution (VHSR) multispectral (MS) satellite 

images. Their findings emphasized the importance of considering input MS channels 

and the careful selection of optimal channels of DL network predictions for mapping 

applications. Park et al., (2020) presented a novel image prioritization method to select 

the limited channel based on cloud coverage for nanosatellite application. By reducing 

the channels, they achieved an extremely low computational power and light network 

on a nanosatellite. 

 

The abovementioned studies have provided insightful guidance for optimal channel 

combinations for image channels. However, these researches mainly investigated the 

optimal combination of channels in land-use mapping, agricultural, and disaster 

monitoring, focusing on the region highlight field (e.g., icewedge polygons). There is 

no agreement on the optimal combination of channels that should be used for CIM 

applications in urban scenes. For example, Pierdicca et al., (2020) presented the deep 

learning (DL) framework using 12 channels as input: XYZ coordinates, X’Y’Z’ 

normalized coordinates, colour features (HSV channels), normal features (in X, Y, and 

Z direction) for cultural heritage point cloud segmentation. Alshawabkeh, (2020) 

developed a novel dataset to evaluate the feasibility of combined LiDAR data and 

images for object segmentation by integrating RGBD channels (i.e., colour and depth 

information). In the joint 3D object detection and semantic segmentation, Meyer et al., 

(2019) used RGB together with aligned LiDAR information (point’s range, height, 

azimuth angle, intensity, and indication of occupation) as the input of their networks. 

Lawin et al., (2017) transformed the XYZ channels into depth and normal information 
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and particularly investigated the improvements in 3D semantic segmentation by using 

the depth, colour, and normal information.  

 

Thus, the present chapter aims to explore a simple optimal combination of data 

channels based on their semantic segmentation performance in the urban scenario. To 

more objectively evaluate the gain from the combination of channels, the performance 

of various channel combinations will be tested on different published encoder-to-

decoder segmentation networks in this study. Objectives are set to accomplish the aim 

as follows: (1) To determine the optimal group of channels in terms of its overall 

accuracy (OA) and mean intersection over union (mIoU); and (2) to empirically verify 

the robustness of the optimal channel combination across different networks.  

 

The remainder of this chapter is organized as follows. Section 3.2 will introduce the 

selected benchmark dataset and the proposed framework and experiment arrangement 

for the optimal channel combination selection. Then, the performance of various 

channel combinations on different networks is summarized in Section 3.3. Findings 

are drawn in Section 3.4 and Section 3.5. 

3.2. Materials and Methodology 

3.2.1. Paradigms for semantic segmentation 

According to the comprehensive survey proposed by Guo et al., (2021), point cloud 

semantic segmentation approaches in the DL framework can be divided into three 

paradigms: Projection-based, point-based, and discretization-based. The projection-

based methods usually project a 3D point cloud into 2D images, including multi-view 

and spherical images. The point-based methods directly work on irregular point clouds 
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by applying dedicated local feature convolutions. The discretization-based methods 

usually convert a point cloud into volumetric rasterization to create an ordered grid of 

point clouds. 

 

The point-based and discretization-based approach is directly processed on the 3D data, 

which is extremely time-consuming or memory-costly in sampling training and 

inferencing. For example, in the work of RandLA-Net (Q. Hu et al., 2020), they 

evaluate the time consumption of recent representative works on Sequence 08 of the 

SemanticKITTI with 81,920 total number of points, where the best test result was 442 

points/s. On the contrary, the SnapNet (Boulch et al., 2018) test 30 M points used even 

worse arithmetic. The average processing time is about 32 min, and the corresponding 

process speed is about 15,625 points/s, which is 35 times faster than the point-based 

method. Meanwhile, for the CIM application, the total number of points is up to 108 

per scan. Therefore, the point-based and discretization-based approaches are not 

efficient enough in terms of time. On the other hand, the performance of multi-view 

segmentation methods is dependent on viewpoint selection and occlusions. Therefore, 

in this chapter, spherical image-based semantic segmentation is adopted. 

3.2.2. Study Materials 

The online large-scale point cloud segmentation benchmark dataset Semantic3D is 

used in this case study (Hackel et al., 2017). This benchmark dataset contains 15 

annotated point clouds representing different city scenes, where the points are labelled 

as eight classes (i.e., 1: Man-made terrain, 2: Natural terrain, 3: High vegetation, 4: 

Low vegetation, 5: Buildings, 6: Hard scape, 7: Scanning artefacts, 8: Cars). Each point 

cloud is obtained by a separate scanning. The basic information of 15 labelled point 

clouds is summarized in Table 3-1. 
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Table 3-1: Summary of basic information of 15 labelled point clouds. 
Index Preview Name Number of Points Description Propose 

1 

 

bildstein1 29302501 church in bildstein Train 

2 

 

bildstein3 23765246 church in bildstein Test 

3 

 

bildstein5 24671679 church in bildstein Train 

4 

 

domfountain1 35494386 cathedral in feldkirch Train 

5 

 

domfountain2 35188343 cathedral in feldkirch Test 

6 

 

domfountain3 35049972 cathedral in feldkirch Train 

7 

 

untermaederbrunnen1 16658648 fountain in balgach Train 

8 

 

untermaederbrunnen3 19767991 fountain in balgach Test 

9 

 

neugasse 50109087 neugasse in st. gallen Test 

10 

 

sg27_1 161044280 railroad tracks Train 

11 

 

sg27_2 248351425 town square Train 

12 

 

sg27_4 280994028 village Test 

13 

 

sg27_5 218269204 crossing Train 

14 

 

sg27_9 222908898 soccer field Train 

15 

 

sg28_4 258719795 town Train 

http://www.semantic3d.net/view_dbase.php?chl=1&orderBy=name&orderStyle=ASC
http://www.semantic3d.net/img/full_resolution/semantic-8-bildstein1.jpg
http://www.semantic3d.net/img/full_resolution/semantic-8-bildstein3.jpg
http://www.semantic3d.net/img/full_resolution/semantic-8-bildstein5.jpg
http://www.semantic3d.net/img/full_resolution/semantic-8-domfountain1.jpg
http://www.semantic3d.net/img/full_resolution/semantic-8-domfountain2.jpg
http://www.semantic3d.net/img/full_resolution/semantic-8-domfountain3.jpg
http://www.semantic3d.net/img/full_resolution/semantic-8-untermaederbrunnen1.jpg
http://www.semantic3d.net/img/full_resolution/semantic-8-untermaederbrunnen3.jpg
http://www.semantic3d.net/img/full_resolution/semantic-8-neugasse.jpg
http://www.semantic3d.net/img/full_resolution/semantic-8-sg27_1.jpg
http://www.semantic3d.net/img/full_resolution/semantic-8-sg27_2.jpg
http://www.semantic3d.net/img/full_resolution/semantic-8-sg27_4.jpg
http://www.semantic3d.net/img/full_resolution/semantic-8-sg27_5.jpg
http://www.semantic3d.net/img/full_resolution/semantic-8-sg27_9.jpg
http://www.semantic3d.net/img/full_resolution/semantic-8-sg28_4.jpg
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3.2.3. Methodology 

The way to select the optimal group of data channels for semantic segmentation 

consists of two parts: Data pre-processing and two-step verification. In the data pre-

processing stage, which is shown in Figure 3-1, the first step is to convert the data of 

different channels in the point clouds into a panoramic (PAN) image separately. The 

next step is to slip the PAN image into subsets. The data in the panoramic form usually 

have a large resolution. For example, PAN image resolution for a normal scale single 

laser scan station with around thirty million laser points can be higher than 3000 x 

7200. Such a large resolution requires a high graphic memory size for the hardware. 

The PAN form data needs to be split into pieces with smaller sizes according to the 

hardware performance. The PAN images are augmented by random cropping with 512 

x 512 and random horizontal flipping. 

 

Figure 3-1: Detailed steps of the data preprocess. 
 

Additionally, for the laser data in CIM, the “invalid” data often occurs. When the 

emitted laser beam points to the sky and does not return, there would be no valid 

coordinates and intensity, as a result, “zero” appears in the dataset. Therefore, to 

accelerate the convergence speed of neural network training, the proportion of such 

anomalous data in the comprehensive data is required to be adjusted. 
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Before grouping the data from different channels into different combinations, the 

image entropy (𝐻𝐻) for each channel should be calculated (Gull and Skilling, 1984). 

Entropy is a statistical measure of randomness that can be used to characterize the 

texture or the contained information of the input image. The entropy of an image can 

be calculated by the first order from its histogram which provides the occurrence 

frequency (or probability) of all different grey levels in the image. The first-order 

image entropy is calculated as follows, where 𝑝𝑝𝑖𝑖 is the probability of grey level 𝑌𝑌: 

𝐻𝐻 = −� 𝑝𝑝𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖
255

𝑖𝑖
 (3-1) 

Using the entropy, those possible channels that are richer in information can be roughly 

determined. Therefore, in the subsequent channel grouping in this chapter, some 

meaningless combinations are targeted and filtered out to reduce the time for choosing 

the optimal channel combination. In the channel grouping, the R, G, and B channels 

from the image are integrated with the I (intensity) channel acquired by the laser 

scanner to investigate the effect of intensity on semantic segmentation results. 

Alternatively, the R, G, and B channels from the image can be combined with the X, 

Y, and Z channels from the laser scanner, respectively, to compare the performance 

gained from the different channels. After that, the datasets for semantic segmentation 

are prepared, and all the images with appropriate sizes are stored according to the 

predefined combinations. 

 

In selecting the optimal channel combination, a two-step verification strategy is 

applied to speed up identifying potential optimal combinations. First, networks with 

fewer parameters are applied to quickly estimate the potential optimal channel 

combinations. Then, networks with a deeper structure are adopted to verify the 

robustness of the optimal channel combinations. If the results show a high consistency 
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across all the different networks, a reliable basis can be achieved for further subsequent 

substitutions or changes to the neural networks. 

 

The encoder-to-decoder architecture for semantic segmentation is applied in this 

research. The encoder generates the feature maps for the input image, while the 

decoder uses the learned deconvolution layers to recover the image to the original size 

from the feature maps. The encoder-to-decoder structure can achieve better 

performance in reducing the information loss problem than those of the fully 

convolutional structure (Ronneberger et al., 2015). In addition, the structure of 

encoder-to-decoder is more flexible, as the encoder and decoder can be chosen from 

the commonly used neural network structures, respectively. For example, the encoder 

can be chosen from the ResNet (He et al., 2016), MobileNetV2 (Sandler et al., 2018), 

Xception (Chollet, 2017), Inception-ResNet-v2 (Szegedy et al., 2017) and HRCNet 

(Xu et al., 2020). The performance of different neural networks with varying 

complexity is evaluated in terms of overall accuracy (OA) and mean intersection over 

union (mIoU). 

3.2.4. Experiment arrangement 

It is necessary to ensure that the test data is similar to the data used for network training 

(Hand, 2008). Therefore, the selection of test data is based on the following reasons. 

First, it is noticed that point clouds 1-3, point clouds 4-6, and point clouds 8-9 are 

collected from three city scenes, respectively. Hence, a random point cloud from each 

scene is selected as the test data (i.e., point clouds 2, 5, and 8). Since the remaining 6 

point clouds (i.e., point clouds 9-15) are collected from six different city scenes, to 

keep the test-to-train ratio similar to the previous selection (around 1/3), two point 

clouds (i.e., point clouds 9 and 12) are randomly selected as the test data. Therefore, a 
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total of five labelled point clouds were selected for testing, and the remaining ten were 

used to train the semantic segmentation networks, as shown in Table 3-1. 

 

The pre-processing of the dataset follows the proposed method demonstrated in 

Section 3.2, where the size of the input images is taken as 512x512 to contain enough 

context information for semantic segmentation. Before deciding the combination of 

channels, it is necessary to check the image entropy first to avoid the combination with 

very little information. 

 

As indicated in Figure 3-2, among the 15 scans provided by the Semantic 3D, the 

entropy values of RGB tend to be consistent. All of them remain in the top three, 

followed by intensity, but the performance is not stable for the other four channels (X, 

Y, Z, D). Therefore, the RGB channels from the image sensor dominate the subsequent 

channel combinations. Moreover, to verify the improvement of the data from the laser 

scanning on the semantic segmentation, the remaining channels are combined with 

RBG separately. 

 

Figure 3-2: The entropy of different channel data. 
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As shown in Table 3-2, a total of 13 combinations of channels are investigated in this 

research. These combinations are designed to investigate the effect of channels X, Y, 

Z, D, and intensity on the segmentation performance. Nine popular networks are used 

in this study, which includes two basic U-net with different depths, seven networks 

having the same decoder (i.e., DeepLab v3+) (Chen et al., 2018b), and different 

backbones (i.e., ResNet18, ResNet50, ResNet101, MobileNetV2, Xception, Inception-

ResNet-v2, HRCNet). All the structures of networks are the same as the original 

implementation. Finally, the cross-entropy loss is used in this study. 

Table 3-2: Combinations of channels. 
Index 1 2 3 4 5 6 7 

Combination 8 Channels RGB XYZD IXYZD IRGB IRGBX IRGBY 

Index 8 9 10 11 12 13 - 

Combination IRGBZ IRGBD RGBX RGBY RGBZ RGBD - 

 

The experiment is carried out on a PC with a processor of AMD Ryzen 9 3950X, RAM 

of 64 GB, and two GPUs of NVIDIA GeForce GTX 2080Ti. In addition, MATLAB 

2020b is used for programming on the operating system of Windows 10. For a fair 

comparison through the whole experiment process, all the training used the same 

training protocol, which is a widely used strategy in deep learning research (Jingdong 

Wang et al., 2021; Zhao et al., 2018, 2017). More specifically, the SGD optimizer with 

a base learning rate of 0.05, a momentum of 0.9, and a weight decay of 0.001 was 

adopted in this study. The step learning rate policy was applied, which drops the 

learning rate by a factor of 0.1 every 10 epochs. For data augmentation, random image 

extraction and random horizontal flipping were applied (as described in the data 

process step). The total number of augmented images was 384 K, which were divided 

into 50 groups for training (50 epochs). Due to the limited physical memory on GPU 

cards, the “batchsize” was set as 16 (a total of 24 K iterations), and synchronized batch 
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normalization across GPU cards was adopted during training. Similar to (Jingdong 

Wang et al., 2021; Zhao et al., 2018, 2017), by applying random data augmentation 

and batch normalization, all the networks used in this study are considered to be 

resistant to overfitting. 

3.3. Results 

Figure 3-3 and Figure 3-4 demonstrate the mIoU and OA performance of the 13 

combinations using nine networks. It is found that only the intensity channel brings a 

stable improvement of the segmentation performance. As shown in Table 3-3, the 

intensity channel improves mIoU and OA by an average of 3.24% and 2.01%, 

respectively. In contrast, it is found that the X, Y, and Z channels impair the 

segmentation performance. Table 3-3 shows that the X, Y, and Z channels reduce the 

mIoU by 2.84%, 2.97%, and 0.63%, respectively, and reduce the OA by 2.69%, 4.05%, 

and 3.46%, respectively. Finally, it is found that the effect of D channel depends on 

the criteria used for performance evaluation. More specifically, an additional channel 

of distance improves the mIoU by 3.09%, while reducing the OA by 2.0%. Since mIoU 

represents the average of the segmentation accuracy of each class, which indicates that 

the D channel is beneficial for the segmentation of imbalanced classes (classes with 

less data, i.e., difficult for segmentation). 
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Figure 3-3: Mean intersection over union (mIoU) on test point clouds. 
 

 

Figure 3-4: Overall accuracy (OA) on test point clouds. 
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Table 3-3: Average improvement by adding different channels. 

Base channels Additional 
channels 

Improvement on 
mIoU 

Improvement on 
OA 

RGB + Intensity 1.95% 1.43% 
XYZD + Intensity 4.47% 6.06% 
RGBX + Intensity 1.87% 0.63% 
RGBY + Intensity 3.17% 0.21% 
RGBZ + Intensity 1.50% 1.54% 
RGBD + Intensity 6.46% 1.74% 
Average 3.24% 2.01% 
RGB + X -3.69% -1.52% 
IRGB + X -1.90% -3.85% 
Average -2.84% -2.69% 
RGB + Y -3.62% -3.60% 
IRGB + Y -2.31% -4.43% 
Average -2.97% -4.05% 
RGB + Z -0.47% -3.47% 
IRGB + Z -0.72% -3.36% 
Average -0.63% -3.46% 
RGB + D 0.77% -2.00% 
IRGB + D 5.47% -1.88% 
Average 3.08% -2.00% 

 

3.4. Discussion 

Based on the aforementioned results, it is inferred that the combination of IRGBD 

channels provides the best mIoU performance, while the combination of IRGB 

channels provides the best OA performance. These inferences are confirmed in Table 

3-4 and Table 3-5, where the highest value of mIoU and OA for each network is 

highlighted as green and yellow, respectively. It is observed that the optimal 

combination of channels is the same for all networks, which shows the robustness of 

the optimal combination.  
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Table 3-4: The mIoU of seven networks regarding different combinations of channels (the highest 
mIoU for each network is marked as green). 

 8C RGB XYZD IXYZD IRGB IRGBX IRGBY 
U-Net-3 Layer 22.3% 29.5% 12.9% 18.2% 31.3% 31.2% 27.0% 
U-Net-4 Layer 24.2% 34.3% 6.3% 17.1% 35.4% 32.5% 36.9% 

ResNet18 33.4% 37.2% 32.6% 32.5% 39.7% 40.5% 38.6% 
ResNet50 36.6% 42.6% 28.5% 36.2% 43.6% 40.6% 39.0% 

ResNet101 37.3% 44.1% 33.7% 37.5% 45.2% 40.8% 40.9% 
Mobilenetv2 42.1% 40.8% 37.6% 40.3% 45.3% 39.3% 39.7% 

Xception 40.3% 41.6% 36.4% 41.2% 44.0% 44.0% 44.5% 
Inception-ResnetV2 42.8% 43.6% 40.9% 43.4% 45.6% 44.7% 44.9% 

HRCNet 43.0% 44.6% 40.8% 43.6% 45.7% 44.8% 43.2% 
 IRGBZ IRGBD RGBX RGBY RGBZ RGBD - 

U-Net-3 Layer 29.5% 37.2% 27.9% 23.0% 25.6% 31.0% - 
U-Net-4 Layer 34.4% 41.0% 30.3% 25.8% 36.3% 34.4% - 

ResNet18 38.7% 42.7% 37.5% 36.4% 35.9% 40.6% - 
ResNet50 41.7% 49.0% 39.0% 37.1% 41.6% 40.9% - 

ResNet101 44.1% 50.8% 40.9% 39.2% 42.5% 42.4% - 
Mobilenetv2 43.7% 53.3% 38.5% 38.0% 39.7% 45.6% - 

Xception 44.6% 49.3% 43.1% 42.1% 45.8% 45.2% - 
Inception-ResnetV2 45.6% 47.9% 41.9% 42.3% 41.7% 40.4% - 

HRCNet 46.6% 53.7% 42.7% 42.2% 46.0% 45.9% - 

 

Table 3-5: The OA of seven networks regarding different combinations of channels (the highest OA 
for each network is marked as yellow). 

 8C RGB XYZD IXYZD IRGB IRGBX IRGBY 
U-Net-3 Layer 55.7% 74.3% 27.6% 37.7% 75.3% 74.8% 71.0% 
U-Net-4 Layer 57.5% 76.2% 37.6% 38.1% 78.5% 77.6% 72.4% 

ResNet18 64.3% 83.1% 60.8% 63.6% 83.7% 80.7% 80.7% 
ResNet50 72.5% 84.5% 54.0% 66.9% 85.6% 81.7% 81.2% 

ResNet101 73.2% 84.7% 60.7% 67.1% 86.9% 81.9% 82.0% 
Mobilenetv2 83.2% 86.0% 65.4% 66.8% 86.7% 80.0% 76.8% 

Xception 70.2% 87.0% 64.3% 70.5% 87.6% 83.2% 85.4% 
Inception-ResnetV2 77.1% 82.5% 64.4% 72.0% 87.0% 81.2% 83.0% 

HRCNet 83.9% 87.6% 65.3% 72.2% 87.8% 83.3% 82.9% 
 IRGBZ IRGBD RGBX RGBY RGBZ RGBD - 

U-Net-3 Layer 68.1% 72.0% 71.8% 65.6% 63.7% 67.9% - 
U-Net-4 Layer 74.8% 76.7% 71.9% 67.2% 67.5% 74.8% - 

ResNet18 82.2% 81.3% 78.8% 79.9% 80.0% 81.6% - 
ResNet50 81.8% 82.4% 81.8% 79.8% 84.5% 82.8% - 

ResNet101 82.5% 85.8% 81.5% 79.9% 84.6% 82.9% - 
Mobilenetv2 85.8% 85.4% 81.1% 80.7% 79.9% 85.8% - 

Xception 82.5% 86.0% 83.1% 87.5% 84.2% 86.2% - 
Inception-ResnetV2 83.9% 85.3% 84.7% 86.2% 85.0% 77.4% - 

HRCNet 87.1% 87.3% 84.3% 86.6% 85.1% 87.1% - 

 

In the meantime, by ranking the mIoU and OA of all the 13 channel combinations for 

seven networks, as shown in Table 3-6 and Table 3-7, it is found that the worst channel 

combination also presents a high consistency across the seven networks, but the 

consistency decreases for other combinations ranked in the middle. This indicates that 

the channel combinations with respect to extreme cases are more consistent than others. 
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Table 3-6: Ranking of the mIoU performance of 13 channel combinations for seven networks. 
 1 2 3 4 5 6 7 

U-Net-3 Layer IRGBD IRGB IRGBX RGBD RGB IRGBZ RGBX 
U-Net-4 Layer IRGBD IRGBY RGBZ IRGB IRGBZ RGBD RGB 

ResNet18 IRGBD RGBD IRGBX IRGB IRGBZ IRGBY RGBX 
ResNet50 IRGBD IRGB RGB IRGBZ RGBZ RGBD IRGBX 

ResNet101 IRGBD IRGB RGB IRGBZ RGBZ RGBD IRGBY 
Mobilenetv2 IRGBD RGBD IRGB IRGBZ 8C RGB IXYZD 

Xception IRGBD RGBZ RGBD IRGBZ IRGBY IRGB IRGBX 
Inception-ResnetV2 IRGBD IRGB IRGBZ IRGBY IRGBX RGB IXYZD 

HRCNet IRGBD IRGBZ RGBZ RGBD IRGB IRGBX RGB 
 8 9 10 11 12 13 - 

U-Net-3 Layer IRGBY RGBZ RGBY 8C IXYZD XYZD - 
U-Net-4 Layer IRGBX RGBX RGBY 8C IXYZD XYZD - 

ResNet18 RGB RGBY RGBZ 8C XYZD IXYZD - 
ResNet50 IRGBY RGBX RGBY 8C IXYZD XYZD - 

ResNet101 RGBX IRGBX RGBY IXYZD 8C XYZD - 
Mobilenetv2 IRGBY RGBZ IRGBX RGBX RGBY XYZD - 

Xception RGBX RGBY RGB IXYZD 8C XYZD - 
Inception-ResnetV2 8C RGBY RGBX RGBZ XYZD RGBD - 

HRCNet IXYZD IRGBY 8C RGBX RGBY XYZD - 

 

Table 3-7: Ranking of the OA performance of 13 channel combinations for seven networks. 
 1 2 3 4 5 6 7 

U-Net-3 Layer IRGB IRGBX RGB IRGBD RGBX IRGBY IRGBZ 
U-Net-4 Layer IRGB IRGBX IRGBD RGB IRGBZ RGBD IRGBY 

ResNet18 IRGB RGB IRGBZ RGBD IRGBD IRGBX IRGBY 
ResNet50 IRGB RGB RGBZ RGBD IRGBD IRGBZ RGBX 

ResNet101 IRGB IRGBD RGB RGBZ RGBD IRGBZ IRGBY 
Mobilenetv2 IRGB RGB IRGBZ RGBD IRGBD 8C RGBX 

Xception IRGB RGBY RGB RGBD IRGBD IRGBY RGBZ 
Inception-ResnetV2 IRGB RGBY IRGBD RGBZ RGBX IRGBZ IRGBY 

HRCNet IRGB RGB IRGBD RGBD IRGBZ RGBY RGBZ 
 8 9 10 11 12 13 - 

U-Net-3 Layer RGBD RGBY RGBZ 8C IXYZD XYZD - 
U-Net-4 Layer RGBX RGBZ RGBY 8C IXYZD XYZD - 

ResNet18 RGBZ RGBY RGBX 8C IXYZD XYZD - 
ResNet50 IRGBX IRGBY RGBY 8C IXYZD XYZD - 

ResNet101 IRGBX RGBX RGBY 8C IXYZD XYZD - 
Mobilenetv2 RGBY IRGBX RGBZ IRGBY IXYZD XYZD - 

Xception IRGBX RGBX IRGBZ IXYZD 8C XYZD - 
Inception-ResnetV2 RGB IRGBX RGBD 8C IXYZD XYZD - 

HRCNet RGBX 8C IRGBX IRGBY IXYZD XYZD - 

 

Moreover, it is noticed that the simple mixture of all the available channels (i.e., 

column 8C in Table 3-4 and Table 3-5) always results in a worse performance 

compared to that of combinations with fewer channels. To explore this thoroughly, for 
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channel combinations 8C, RGB, IRGB, and IRGBD, the training curves for networks 

with the Inception-ResnetV2 backbone are plotted in Figure 3-5, and two test images 

are used to obtain the feature maps and corresponding segmentation results for 

comparison, as demonstrated in Figure 3-6 and Figure 3-7.  

 

Figure 3-5: Training accuracy for combinations of 8C (all the channels), RGB (color), IRGB 
(intensity and color), and IRGBD (intensity, color and depth) using networks of Inception-ResnetV2 

backbone. 
 

 

0

10

20

30

40

50

60

70

80

90

100

0 6,000 12,000 18,000 24,000

8C RGB IRGB IRGBD



Chapter 3: Manual feature selection 
 

57 
 

Figure 3-6: Feature maps and segmentation results for four combinations for the building-road joint 
image. 

 
 

Figure 3-7: Feature maps and segmentation results for four combinations in the street view image. 
 

From Figure 3-5, it is observed that the training process of combination of 8C 

converges much slower than others, which might indicate that the network struggled 

to learn the "correct" feature when there is a mixture of "useful" and "useless" data 

input. Taking the segmentation results in Figure 3-6 as an example, compared to the 

result of RGB combination, the additional I channel (i.e., IRGB) does help remove the 

mislabelled pixels in the wall region, but it also causes the mislabelling of the whole 

bottom part of the wall. The segmentation result is even worse for the 8C combination, 

which completely fails to distinguish the building and the road. A similar situation 

occurs for the street view test, as shown in Figure 3-7. Compared to the segmentation 

results for the RGB combination, the 8C combination causes a large mislabelling area 

around the road sign. Both test image results show that the IRGBD combination yields 

the best segmentation results. 
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The average time of single training for nine networks is summarized in Figure 3-8, 

where the average time of Xception (17.2 h) is two times more than that of ResNet18 

(7.5 h). Moreover, since the channel analysis requires a series of comparative tests to 

ascertain the optimal channel combination, the differences in training time between 

the networks are magnified. For example, the total channel analysis time for ResNet18 

and Xception are 97.4 and 193.6 h, respectively. Since the previous investigation 

shows a high consistency of optimal channel combination across different networks, 

the efficiency can be improved significantly by conducting the channel analysis on a 

small network before training on more sophisticated networks. In addition, the total 

inference time (including PAN image generation, inference, back projection) is around 

170 k points/s. 

 

Figure 3-8: Summary of the average time of single training for nine network structures. 
 

Finally, since the IRGBD channel combination and HRCNet got the best performance 

(mIoU is more critical than OA) in the previous testing, they were selected to evaluate 

the performance on the Semantic3D (reduced-8) test dataset. The reason to choose the 
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point-based methods) are often tested on the reduced-8 test dataset as they cannot 

handle high density point clouds efficiently. The complete training dataset (15 point 

clouds) was used in this stage, and the training protocol remains the same as mentioned 

in Section 3.2.4. The quantitative segmentation results are summarized in Table 3-8 

below, where XJTLU outperforms previous best image-based methods by 4.4% 

regarding mIoU, and even outperforms several recently published point/discretization-

based methods, which show the effectiveness of the proposed methods. 

Table 3-8: Quantitative results of different approaches on Semantic3D (reduced-8). Accessed on 16 
March 2021 (the overperformed methods are marked in grey). 

  mIoU 
(%) 

OA 
(%) 

man- 
made 

natural 
terrain 

high 
veg 

low 
veg buildings hard- 

scape 
scanning 

art cars 

Point/ 
discretization 

-based 
methods 

SEGCloud 
(Tchapmi et al., 2017) 61.3 88.1 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3 

RF MSSF 
(Thomas et al., 2018) 62.7 90.3 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6 

Edge-Con 
(Contreras and Denzler, 2019) 59.5 87.9 84.5 70.9 76.6 26.1 91.4 18.6 56.5 51.4 

ShellNet 
(Zhang et al., 2019) 69.3 93.2 96.3 90.4 83.9 41.0 94.2 34.7 43.9 70.2 

OctreeNet 
(F. Wang et al., 2020) 59.1 89.9 90.7 82.0 82.4 39.3 90.0 10.9 31.2 46.0 

GACNet 
(L. Wang et al., 2019) 70.8 91.9 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8 

RandLA-Net 
(Q. Hu et al., 2020) 77.4 94.8 95.6 91.4 86.6 51.5 95.7 51.5 69.8 76.8 

Projection 
-based  

methods 

DeePr3SS 
(Lawin et al., 2017) 58.5 88.9 85.6 83.2 74.2 32.4 89.7 18.5 25.1 59.2 

SnapNet 
(Boulch et al., 2018) 59.1 88.6 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4 

XJTLU 
(This study) 63.5 89.4 85.4 74.4 74.6 31.9 93.0 25.2 41.5 82.0 

 

3.5. Summary 

With the development of CIM, there is an increasing demand for high precision 

semantic segmentation information. Data fusion is an emerging method to improve the 

segmentation performance. However, without a selection of effective data fusion 

sources, extra effort is required in both data collection and processing. Therefore, an 

efficient data fusion approach is proposed in this chapter by exploring the optimal 

combination of data channels. The analysis on the performance of different 
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combinations of data channels is applied to obtain the optimal combination by 

adopting various neural networks. The robustness of the optimal combination is proved 

using a case study, which demonstrates the feasibility of the proposed data fusion 

channel selection. The findings can be utilized to achieve a significant improvement 

on efficiency by adopting a simple structured network for the channel analysis before 

applying a more complex network. In addition, the case study demonstrates that, 

without adopting this framework, a simple mixture of available data sources impairs 

the segmentation performance, which shows the necessity of channel selection in data 

fusion. Finally, using the selected channel combination and network, this study 

achieved the best performance among image-based methods and outperformed several 

recent point/discretization-based methods.  

 

Although the feasibility of the proposed method has been investigated on 2D 

convolutional neural networks, other types of networks exist that could be used for 

semantic segmentation in CIM, such as vision transformer (Wu et al., 2020) and point-

based network (Q. Hu et al., 2020). Therefore, future work will focus on the 

investigation of the robustness of the optimal combination of data sources among 

different types of networks. 
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Chapter 4: Locally enhanced image-based geometric 

features 

 

This chapter is based on the published paper: Cai, Y., Fan, L., Atkinson, P.M., Zhang, 

C., 2022a. Semantic Segmentation of Terrestrial Laser Scanning Point Clouds Using 

Locally Enhanced Image-Based Geometric Representations. IEEE Trans. Geosci. 

Remote Sens. 60, 1–15. https://doi.org/10.1109/TGRS.2022.3161982  

 

Note: The research presented in this chapter improves the segmentation accuracy of 

image-based methods by developing novel image-based geometric features. 

  

https://doi.org/10.1109/TGRS.2022.3161982
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4.1. Introduction 

The rapid development of three-dimensional (3D) data acquisition technologies has 

led to various types of sensors, such as terrestrial laser scanning (TLS) devices, RGB-

D cameras and LiDAR (R. Zhang et al., 2018). Among these instruments, TLS stands 

out for its ability to quickly acquire large-volume (hundreds of millions of points per 

scan) and high-precision (millimetre level) point cloud data and is, therefore, used 

widely in applications where high-quality point cloud data are required. These may 

include, but are not limited to, 3D building reconstruction (Cai et al., 2021a; Cai and 

Fan, 2021; Cao et al., 2021; Fan and Cai, 2021; Huang et al., 2021), vegetation and 

forest assessments (Fan et al., 2014; Liu et al., 2019; Safaie et al., 2021; Zheng et al., 

2021), and cultural heritage management (Guo et al., 2021; Montuori et al., 2014). 

 

In addition to the high-precision geometric information provided by TLS point clouds, 

semantic segmentation is often required as the basis for more complex purposes in the 

aforementioned applications. The goal of semantic segmentation of point clouds is 

mainly to annotate each data point with a semantic label, which is often based on the 

geometry, the reflection intensity and sometimes the colour information provided by 

the data point itself and its neighbours. This can be achieved via traditional supervised 

classification methods (Guo et al., 2021; Vosselman et al., 2017; Weinmann et al., 

2015) or deep learning approaches (Cai et al., 2021b; Charles et al., 2017; Jaritz et al., 

2019; Landrieu and Simonovsky, 2018; Qi et al., 2017). Compared to traditional 

classification methods using handcrafted features (e.g., support vector machines, 

random forests and conditional random fields), deep learning methods are becoming 

increasingly popular because they can automatically learn the feature representations 

needed for segmentation from raw data, avoid complex feature design, and typically 
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result in higher segmentation accuracy (Q. Hu et al., 2020; Pan et al., 2019; R. Zhang 

et al., 2018).  

 

Existing point cloud segmentation methods can be categorized into three major groups 

based on the form of the input data: point-based, voxel-based and image-based 

methods. The pioneering work on point-based methods is PointNet (Charles et al., 

2017), which used shared Multi-Layer Perceptrons (MLPs) to learn pre-point features 

and used symmetrical pooling functions to learn global features. On the basis of 

PointNet, many other point-based networks have been proposed in recent years, which 

can be subdivided into pointwise MLP methods, graph-based methods, point 

convolution methods, and RNN-based methods(Guo et al., 2021). This class of 

algorithm can typically achieve high accuracy, and the state-of-the-art (SOTA) method 

is the RFCR (Gong et al., 2021) in this category, which achieved an Overall Accuracy 

(OA) of 94.3% and a mean Intersection over Union (mIoU) of 77.8% on the 

Semantic3D (reduced-8) (Gong et al., 2021; Hackel et al., 2017). However, while 

point-based methods are focused on increasing the segmentation accuracy of point 

clouds, their high computational cost makes them too costly for practical application 

to large-scale TLS point clouds. For example, for a use case where the processing time 

was revealed (Hackel et al., 2017), it ranges from 10 to 50 minutes to process 4-point 

clouds containing 80 million points in Semantic3D (reduced-8).  

 

For the second class of voxel-based methods (Choy et al., 2019; Graham et al., 2018; 

Meng et al., 2019; Silberman et al., 2012; F. Wang et al., 2020), they first convert the 

point cloud into a dense/sparse discrete voxel representation and then apply the 3D 

convolutional neural network (CNN). Since 3D convolutional networks are extremely 
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computationally intensive and consume significant amounts of Graphics Processing 

Unit (GPU) memory, such methods have to make careful trade-offs in terms of 

segmentation accuracy and processing time. From the published performance of these 

methods on various benchmark datasets (Armeni et al., 2016; Geiger et al., 2013, 2012; 

Hackel et al., 2017; Silberman et al., 2012), such methods are not only less accurate 

than the first type of method, but also very slow in processing and, therefore, are 

considered unsuitable for processing large-scale TLS point cloud data.  

 

The image-based methods utilize 2D convolutional neural networks (CNNs) to 

segment multi-channel images generated from point cloud data. There are two 

approaches for image generation. The first approach (Boulch et al., 2018; Lawin et al., 

2017; Tatarchenko et al., 2018) projects point cloud data from multiple virtual camera 

views onto a plane, while the second approach (Cai et al., 2021b; Milioto et al., 2019; 

B. Wu et al., 2018; Wu et al., 2019) projects the point cloud data as a panoramic image 

centred at the scanner. The second approach is more efficient than the multi-view ones 

because processing is limited to only one panoramic image for each point cloud 

obtained (Boulch et al., 2018; Cai et al., 2021b). Coupled with the use of 2D CNNs 

(much more efficient than those networks used in point-based and voxel-based 

methods), the panoramic images offer an extremely fast approach to segmenting point 

cloud data. For example, the SOTA image-based method (Cai et al., 2021b) takes only 

5.13s to process the Semantic3D (reduced-8) (Hackel et al., 2017) test dataset. 

However, it was noticed that its segmentation accuracy (Cai et al., 2021b) was 

relatively low compared to the SOTA point-based method RFCR (Gong et al., 2021), 

achieving an OA of only 89.4% and a mIoU of 63.5% on Semantic3D (reduced-8). 

Therefore, image-based methods are ideal for processing large-scale TLS point cloud 
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data, but such methods available in the literature suffer from the problems elaborated 

in the next paragraph, which also form the likely basis for any further improvements 

in their segmentation accuracy.  

 

Three types of information of TLS point clouds can be considered for semantic 

segmentation (i.e., geometric information (coordinates and their derivatives), intensity 

and RGB if images were taken). In the existing image-based methods, it was noticed 

that combinations of feature channels considered (Boulch et al., 2018; Cai et al., 2021b; 

Lawin et al., 2017; Tatarchenko et al., 2018) always included the RGB information, 

without which the segmentation accuracy degraded significantly. This is not surprising 

as the true colours include rich information about the objects to be segmented. 

However, this means that those methods are highly reliant on the RGB information 

and cannot effectively handle the cases where the RGB information is missing (no 

images taken) or is mismatched to point clouds due to moving objects in the scene or 

the imperfect matching between images and point clouds taken separately. In addition, 

the geometric information was either not considered or not used in an effective way. 

In contrast, point-based and voxel-based methods perform well for point clouds with 

only coordinate information (Q. Hu et al., 2020; Landrieu and Simonovsky, 2018; 

Meng et al., 2019; Thomas et al., 2019), indicating that geometric features are valuable 

for point cloud semantic segmentation. Hence, it is reasonable to speculate that the 

application scope and segmentation accuracy of image-based approaches can be 

improved further if the geometric information contained in the point cloud is utilized 

effectively. 

 

Therefore, under the umbrella of image-based methods, this study aims to improve and 
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generalize this class of methods by considering the characterization of the geometric 

information of scenes/objects in the panoramic images derived from coordinates of 

point cloud data. The increase in accuracy relates to the semantic segmentation while 

the generalization refers to cases where the RGB information is missing in the point 

cloud data. To this end, an image enhancement method is proposed to characterize the 

local geometric features in the images. Based on the enhanced images, this research 

proposes a new combination of feature channels without the RGB information. In the 

CNN used for extracting the semantic information in this study, the Atrous Spatial 

Pyramid Pooling (ASPP) module (Chen et al., 2018a) is considered to aggregate multi-

scale high-level features from HRNet (Jingdong Wang et al., 2021). In past studies 

(Chen et al., 2018a, 2018b, 2017), the aggregation was typically executed using 

coarse-resolution feature maps. However, in this study, the finest-resolution feature 

maps in HRNet are used for the aggregation, the outputs of which are concatenated 

with multiple low-level features for segmentation.  

 

The main contributions of this research are the establishment of a new image 

enhancement method for characterizing effectively the local geometric features in the 

panoramic images derived from point clouds, and the finding that the utilization of 

those local geometric features can increase the segmentation accuracy of image-based 

methods. The approach proposed in this study offers a better alternative channel 

combination to replace those involving the RGB channels, which is very useful for 

cases where the RGB information is absent or inaccurate 
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4.2. Methodology  

The methodology considered in this research involves the following key steps. Firstly, 

the information (e.g., intensity and XYZ coordinates) contained in the unstructured 

point cloud data was projected into a multichannel panoramic image using the 

transformation relationship between the Cartesian coordinate system and the spherical 

coordinate system. Secondly, the local-based enhancement was applied to the 

panoramic image channels that contain geometric information such as XYZ coordinates 

and range. Lastly, semantic information was extracted from the panoramic image using 

a pre-trained customized CNN, and back-projected to the raw point cloud data to 

obtain semantically segmented point cloud. More detailed descriptions of these steps 

are provided in Sections 4.2.3-4.2.6. 

4.2.1. Study data 

The large-scale Sementic3D dataset (Hackel et al., 2017) was used to demonstrate and 

evaluate the proposed method, which contains a total of 30 labelled TLS point clouds 

collected at 10 different scenes. Point cloud data were labelled into eight classes, 

namely: made terrain, natural terrain, high vegetation, low vegetation, buildings, hard 

scape, scanning artefacts and cars. The ground reference labels for 15 training point 

clouds are available from the dataset supplier.  The online evaluation frequency of test 

set results is limited to once every three days. Therefore, except for Section 4.3.4 where 

the test set was used for comparison with the state-of-the-art results, all other 

experiments were conducted on the training set. More specifically, for Sections 4.3.2-

4.3.3, the performance of the proposed method was evaluated by employing 5-fold 

cross-validation on the Semantic3D training dataset. 
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4.2.2. Segmentation accuracy metrics 

To evaluate the segmentation performance, the same evaluation metrics as used in the 

Semantic3D online evaluation were used in this study, i.e., OA and mIoU. The OA 

metric is the ratio of correctly classified points (regardless of class) to the total number 

of points. The mIoU metric is the mean IoU of all classes. For class 𝑌𝑌, the IoU metric 

is the ratio of correctly classified pixels to the total number of ground reference data 

and predicted pixels in that class. The formulae for the aforementioned metrics are 

shown in Equations 4-1, 4-2 and 4-3. 

OA =
TP

Total number of points
 (4-1) 

IoU =
TP

TP + FN + FP
 (4-2) 

mIoU =
∑ IoU𝑖𝑖
𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (4-3) 

where TP, FN, FP, 𝑌𝑌,𝑁𝑁 represent the true positive, false negative, false positive points 

classified, index of class and total number of classes, respectively. 

 

In general, OA provides a quick and computationally inexpensive estimate of the 

percentage of correctly classified points, while mIoU provides a measurement of 

accuracy that not only penalizes false positives, but also increases the penalty against 

segmentation errors in small classes. Since the numbers of points contained in the eight 

classes of the Semantic3D benchmark dataset are highly imbalanced (shown in Figure 

4-1), mIoU is considered more critical in this research. 
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Figure 4-1: The distribution of the classes of points in Semantic3D dataset. 
 

4.2.3. Point cloud to image projection 

Many terrestrial laser scanners collect point cloud data through vertically rotating 

optics that are mounted on a horizontally rotating base. Since their rotational steps are 

usually fixed throughout a single scan, the point cloud data obtained would 

theoretically have fixed inclination and azimuthal resolutions. These two resolutions 

are typically the same. In other words, if the point cloud data are considered as vectors 

originating from the origin (i.e., the scanner’s optical centre), these vectors will be 

uniformly distributed in a spherical space centred at the origin. Therefore, TLS point 

clouds are inherently suitable to be projected into spherical coordinate systems. Based 

on this, the following method for point cloud to image projection was used in this study, 

which is demonstrated using the example shown in Figure 4-2.a. Firstly, the Cartesian 

coordinates of the point cloud data were transformed into spherical coordinates using 

Equations 4-4, 4-5 and 4-6. 

𝑟𝑟𝑟𝑟𝑛𝑛𝑙𝑙𝑟𝑟 (𝑟𝑟) = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 (4-4) 

inclination (𝜃𝜃) = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎
𝑧𝑧
𝑟𝑟

 (4-5) 

azimuth (𝜑𝜑) = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑛𝑛
𝑦𝑦
𝑥𝑥

 (4-6) 
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(a) 

 
(b) 

 
(c) 

Figure 4-2: Key stages in the projection process: (a). The raw input point cloud, (b). All points scaled 
to a spherical surface at a distance of 1 from the origin (i.e., the center of the scanner), (c). The 

panoramic image rasterized from the spherical surface. 
 

Secondly, the position of each data point in the unit spherical surface (i.e., 

"continuous" spherical image) is determined by its inclination 𝜃𝜃 and azimuth 𝜑𝜑, as 

shown in Figure 4-2.b. Thirdly, by using a specific angular resolution 𝜔𝜔 to discretize 

the "continuous" spherical image, a rasterized spherical image is obtained. To ensure 

the image continuity, the image angular resolution should be slightly larger than the 
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scanner angular resolution. Finally, by mapping the available information (e.g., RGB, 

intensity, range) to the rasterized spherical image and splitting it from a certain azimuth 

(e.g.,180° used in the subsequent experiments), the multichannel panoramic image is 

obtained (e.g., the RGB panoramic image in Figure 4-2.c). More specifically, for a 

data point of the inclination 𝜃𝜃 and the azimuth 𝜑𝜑 in the spherical coordinate system, 

its pixel location in the panoramic image is determined using Equation 4-7. 

��
90 − 𝜃𝜃
𝜔𝜔

� , �
180 − 𝜑𝜑

𝜔𝜔
�� (4-7) 

where the former element represents the row location for the inclination 𝜃𝜃, the latter 

element represents the column location for the azimuth 𝜑𝜑, 𝜔𝜔 is the angular resolution, 

⌈𝑥𝑥⌉ rounds 𝑥𝑥 to the nearest integer greater than or equal to 𝑥𝑥.  

 

Because of the fine angular resolutions of laser scanners, the resolution of the projected 

panoramic image could be ultra-high. For example, the equivalent panoramic image 

size of the point cloud captured using the RTC360's finest resolution is 8333×20334 

pixels. 

 

During the point cloud to image projection, it is often the case that a single image pixel 

contains multiple data points. In this case, the pixel values in the panoramic feature 

image (e.g., RGB image) were taken as the average values of multiple data points, 

while the pixel values (labelled classes) in the labelled panoramic image (labelled 

image used for training) were taken as the ones corresponding to the rarest class to 

increase network segmentation accuracy regarding the imbalanced class (typically, the 

class with fewer data is harder to segment).  
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4.2.4. Enhancement of image-based geometric features 

As shown in Figure 4-3.a, the panoramic RGB image is relatively clear. However, 

objects in the grayscale images obtained by projecting the XYZ coordinates and the 

range information were not shown clearly, such as the panoramic image of the Z 

coordinate shown in Figure 4-3.b. Due to this phenomenon, existing image-based 

methods (Boulch et al., 2018; Cai et al., 2021b; Lawin et al., 2017) rely mainly on the 

RGB information, and this type of grayscale images was usually used as auxiliary 

information only. 

 
Figure 4-3: Illustrations of image enhancement effects: (a). The panoramic image projected from RGB 
channels, (b). The panoramic image projected from Z coordinate, (c). A local RGB image extracted 
from the box in (a), (d). The distribution histogram of the pixel values in (c), (e). The local Z coordinate 
image extracted from the box in (b), (f). The distribution histogram of the pixel values in (e), (g). The 
enhanced local Z coordinate image. (h) The distribution histogram of the pixel values in (g), (i). The 
enhanced Z coordinate image without overlapping. (j). The enhanced Z coordinate image with 
overlapping. 
 

By comparing the pixel value distribution histograms (Figure 4-3.d and Figure 4-3.f) 

of the RGB image (Figure 4-3.c) and Z-coordinate image (Figure 4-3.e) for the same 

local area (area within the 256*256 white box in Figure 4-3.a and Figure 4-3.b), it was 
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found that the distribution of grayscale values of the Z coordinate image was extremely 

concentrated compared to the RGB image. This is due to the fact that the range of 

variation in the coordinates of adjacent local data points is relatively small compared 

to that of the whole dataset. Based on this observation and the fact that CNNs are good 

at learning local features rather than global ones, the proposed enhancement method is 

local-based and its detailed description is presented as follows. 

 

Firstly, for a given local area, the grayscale values are redistributed so that their 

histogram conforms to the Rayleigh Distribution defined in Equation 4-8. 

𝑓𝑓(𝑧𝑧) =
𝑧𝑧
𝜎𝜎2

𝑟𝑟�−
𝑧𝑧2
2𝜎𝜎2�, 𝑧𝑧 ≥ 0 (4-8) 

where the value of σ is taken as 0.4 so that the expected value of mean grayscale values 

is 0.5. After this local enhancement was applied, the "hidden" geometrical features in 

Figure 4-3.e are revealed clearly in Figure 4-3.g, and the corresponding redistributed 

histogram is shown in Figure 4-3.h. Intuitively, the enhanced Z coordinate image 

(Figure 4-3.g) contains many detailed geometric features that are distinct from the 

RGB image in Figure 4-3.c. 

 

In the above example, the local enhancement method essentially magnifies the Z 

coordinate differences within the local area. However, if there is a general trend for 

the values within adjacent local areas, applying the local enhancement method 

individually to each area will result in discontinuous pixel values at the edges of the 

local areas. For example, the Z-values of the grass area on the right side of Figure 4-3.a 

gradually increases from the bottom to the top. If the local enhancement method is 

applied without overlap (the sizes of the local areas are taken as 256*256 pixels) 

between two adjacent local areas, the bottom pixels of the top local area (e.g., Figure 
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4-3.g) are set close to black and the top pixels of the bottom local area (i.e., the local 

area right below the area representing by Figure 4-3.g) are set close to white. This 

leads to those horizontal edge discontinuities on the right side of Figure 4-3.i. This 

phenomenon is the reason for choosing the Rayleigh distribution instead of a uniform 

distribution in this research. In general, an image with a uniformly distributed 

histogram will contain the most information (Gonzalez et al., 2009). However, 

adopting the uniformly distributed histogram means that more points will be 

distributed close to the two extremes (i.e., zero or one), which will exacerbate the 

discontinuity at the edges. 

 

To minimize the edge discontinuity, an overlapped local enhancement was used in this 

study. More specifically, the panoramic image was firstly divided into square areas of 

the same size that overlap each other by one-eighth of the edge length, and the local 

enhancement method was applied to each square area. During this process, symmetric 

padding was used to fill in the blank areas when the actual image area was insufficient. 

Finally, for the overlapping part, the pixel values were taken as the average of the 

values of the overlapped pixels. The Z coordinate image enhanced using this method 

is shown in Figure 4-3.j, where the size of the local square area was taken as 256*256 

pixels (same as for Figure 4-3.i) for this example. It can be observed that the edge 

discontinuity was effectively mitigated by the overlapping strategy. It should be 

noticed that the size of the local area has a significant effect on the final enhanced 

image, and the selection of a proper size is demonstrated in Section 4.3.2. 

4.2.5. Semantic segmentation network structure 

To obtain the semantic information from the fine-resolution panoramic images, a 

customized CNN was adopted in this research, which consists of two parts: a backbone 
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and a segmentation head. The entire network structure is shown in Figure 4-4, which 

is named as HR-EHNet to indicate that it is designed for the segmentation of fine-

resolution enhanced panoramic images.  

 

Figure 4-4: Illustration of the HR-EHNet network structure: upsampling and downsampling were 
implemented by bilinear interpolation and strided 3x3 convolution, respectively; The colored blocks 

that represent multiple residual convolution operations were performed. 
 

The backbone part is responsible for extracting features from the input images 

(Jingdong Wang et al., 2021). Although there are various backbone structures available 

(Chollet, 2017; Gao et al., 2021; J. Hu et al., 2020; Sandler et al., 2018; Szegedy et al., 

2017; Jingdong Wang et al., 2021), only HRNet was designed for processing fine-

resolution images (Jingdong Wang et al., 2021), which has widely been adopted for 

excellent semantic segmentation results (Borse et al., 2021; Xu et al., 2020; Yu et al., 

2021; Yuan et al., 2020). As such, it was adopted in this study. More specifically, the 

HRNet_W48 version (larger version) was adopted, where the number 48 indicates the 

network width of the finest resolution branch. The basic network structure of HRNet 

is depicted in Figure 4-4. Different from most used single-branch backbones (He et al., 

2016), the HRNet has four parallel branches corresponding to four downsample levels 

(4, 8, 16, and 32, respectively). As for the width of the network (i.e., the number of 

feature map channels/ the number of convolutional kernels), HRNet adopts a scheme 
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where the number of channels is doubled accordingly whenever the resolution of a 

feature map decreases (Jingdong Wang et al., 2021). Compared to single-branch 

backbones, HRNet significantly increases the network depth (i.e., the number of 

convolutional layers) with respect to fine-resolution features, and meanwhile retains 

coarse-resolution features to provide global contextual information. Since a deeper 

network structure extends the receptive field and enhances the discrimination of each 

pixel, the fine-resolution segmentation task could benefit from the deep fine-resolution 

branch in HRNet.  

 

The segmentation head is responsible for interpreting the extracted features from the 

backbone to assign an appropriate label to each pixel. The ASPP segmentation head 

was adopted in this study, which was first proposed by (Chen et al., 2018a) and adopted 

widely by others (Cai et al., 2021b; Chen et al., 2018b, 2017; Takikawa et al., 2019). 

The ASPP module employs several parallel atrous (dilated) convolutions with 

different dilation rates to extract semantic information from different spatial scales 

(Chen et al., 2018b). The commonly used output stride for the ASPP module is 16 or 

8 (16 most commonly in the literature), which means that its input resolution 

corresponds to a downsampling level of 16 or 8, respectively. This is because most of 

the backbones are single-branch structures, which generate only high-level features at 

a relatively high downsampling level. This is not the case for HRNet. Therefore, the 

ASPP module is attached to the end of the first branch (corresponding to a 

downsampling level of 4) to take advantage of the fine-resolution features in HR-Net. 

It was ascertained in previous research (Chen et al., 2018b, 2017) that the proper 

dilation rate combination for ASPP with an output stride of 16 includes 6, 12 and 18, 

which should be multiplied by 2 (i.e., 12, 24 and 36) when an output stride of 8 was 
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used. Hence, for an output stride of 4, the dilation rate combination is taken as 24, 48 

and 72 in this research.  Finally, similar to the DeeplabV3+ (Chen et al., 2018b), the 

output of ASPP is concatenated with three groups of low-level features (corresponding 

to the outputs of the first three stages of the first branch) for the final segmentation. 

4.2.6. Pretraining of network and transfer learning 

For image semantic segmentation, it is a consensus that a higher segmentation 

accuracy can be obtained using pre-trained networks (Ling Shao et al., 2015; Shahin 

Shamsabadi et al., 2020). This step was also employed in this research where the 

Cityscapes dataset (Cordts et al., 2016) was used for network pretraining. Similar to 

Semantic3D, Cityscapes was focused on semantic segmentation in urban scenes and 

was collected mainly in Europe. Cityscapes contains 5,000 finely labeled fine-

resolution RGB images, which were originally divided into 2975, 500, and 1525 

images for training, validation and testing, respectively (Cordts et al., 2016). However, 

since it is beneficial to use a larger dataset for the pretraining, all the training and 

validation images were used as the training set in this study. Pixels in these images are 

labelled into 30 classes. Compared to Semantic3D, Cityscapes covers a wider range of 

urban scenes, has a greater variety of annotations, and suffers from a greater class 

imbalance. 

 

The training protocol for conducting pre-training followed previous research (Chen et 

al., 2018a; Jingdong Wang et al., 2021; Zhao et al., 2018, 2017). The stochastic 

gradient descent with momentum (SGDM) optimizer was adopted. The base learning 

rate, the momentum and the weight decay were set to 0.01, 0.9, and 0.0005, 

respectively. The poly learning rate policy was used for dropping the learning rate, 

where the power was set to 0.9. The focal loss function (Lin et al., 2020) was adopted 
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to address the issues of imbalanced classes. The size of the input images was set as 

512*1024 pixels. The images were augmented by random cropping, random resize 

(0.5~2) and random horizontal flipping. Finally, HR-EHNet was trained for 180,000 

iterations with a mini-batch size of 8 and synchronized batch normalization. 

 

Since HR-EHNet was pre-trained using the RGB images of Cityscapes, the number of 

convolutional kernel channels in the first convolutional layer was three, which accepts 

only three-channel images as its input. However, subsequent experiments in Section 

4.3.2-4.3.3 need to use input images with various numbers of channels for comparison. 

Therefore, in those experiments, the first convolutional layer of the pre-trained HR-

EHNet was replaced by a new convolutional layer where its kernel channel number is 

equal to the number of input features. Meanwhile, the channel number of the 

convolutional kernels in the last two convolutional layers of the pre-trained HR-EHNet 

corresponds to the total number of classes (i.e., 19) for Cityscapes. This was replaced 

by new convolution layers with kernels of 8 channels to accommodate the number of 

classes in Sementic3D. The weights in these convolution layers were initialized 

randomly. When HR-EHNet was fine-tuned using the images generated from 

Semantic3D, almost the same training protocols as those in pre-training were used, 

except that the iteration numbers were reduced to 60,000 and 75,000 for the training 

with five-fold cross-validation and for completing the training with the training set, 

respectively. 

4.3. Experiment and results  

4.3.1. Information loss from point clouds to images 

One of the most frequently quoted drawbacks of image-based approaches is the 

inevitable information loss during the process where point cloud data are projected to 
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images (Guo et al., 2021). However, based on the literature surveyed in this research, 

no previous studies have quantitatively evaluated the information loss in that process. 

Therefore, a quantitative analysis of information loss was carried out for the projection 

method proposed in the first place. In this study, the degree of information loss was 

quantified by comparing the labelling information of the Semantic3D training dataset 

before and after a complete projection process (i.e., point cloud to image, followed by 

image to point cloud), in which OA and mIoU were used as the evaluation metrics. 

Following the projection process described in Section 4.2.3 and using a set of angular 

resolutions equal to 1/n degree (where n equals 1, 2, 3, ... 50), the corresponding OA 

and mIoU were recorded and shown in Figure 4-5. 

 
Figure 4-5: Plot of accuracy (OA and mIoU) versus angular resolution. 

 

It is observed in Figure 4-5 that OA and mIoU decreased gradually with increasing 

angular resolution, and the decreasing rate of mIoU was much higher. Although there 

was almost no information loss when extremely small angular resolutions were used 

(e.g., OA = 0.998, mIoU = 0.991for the angular resolutions of 1/50 degree), this will 
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result in excessive computational demands for subsequent image processing and leave 

many noisy blank pixels in projected images (e.g., Figure 4-6.a). The angular 

resolution of 1/20 degree (i.e., an image size of 3600*7200 pixels) was used in this 

research to perform the point cloud-image projection, as it can provide visually clean 

projected images (e.g., Figure 4-6.b) with a relatively low information loss (OA =

 0.993, mIoU =  0.97). 

 

Figure 4-6: Effects of an excessive angular resolution on the projected image: (a). Many black empty 
pixels for an angular resolution of 1/50 degree, (b). A continuous image without empty pixels for an 

angular resolution of 1/20 degree. 
 

4.3.2. Effect of local enhancement area on the segmentation results 

As mentioned in Section 4.2.4, the size of the local square area used during 

enhancement has an impact on the enhanced images produced. For example, the 

enhanced images of the Z coordinate using a local area of 128*128, 32*32, and 8*8 

pixels were shown in Figure 4-7.a, Figure 4-7.b and Figure 4-7.c, respectively, in 

addition to that using a size of 256*256 pixels in Figure 4-3.j. It is seen that there are 

notable differences in the enhanced images when different local patch sizes are used. 
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Figure 4-7: Impacts of the local enhancement area on the enhancement results: (a). 128*128 pixels, 
(b). 32*32 pixels, (c). 8*8 pixels. 

 

To determine an appropriate local patch size for enhancement and to test its effects on 

the segmentation results, an experiment was conducted for eight local patch sizes (8*8, 

16*16... 1024*1024, i.e., 23~10 ∗ 23~10). Four groups of original grayscale images 

were used in this experiment, which were projected from XYZ coordinates and range 

(D) in Semantic3D, respectively. Each group contain 15 images (corresponding to 15 

training point clouds) with a size of 3600*7200 pixels (i.e., an angular resolution of 

1/20 degree). These original images were enhanced using each of the eight different 

sizes, leading to a total of 32 groups of enhanced images. The pre-trained HR-EHNet 

was fine-tuned on these 36 groups of single-channel images, respectively. The 

segmentation performances of each group are shown in Figure 4-8. 
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(a) (b) 

Figure 4-8: Impacts of the local enhancement area on the enhancement results: (a). OA, (b). mIoU. 
 

From Figure 4-8, it is seen that the segmentation accuracy of the network was 

significantly increased by using the image enhancement in this experiment. However, 

it was also noticed that the accuracies of the networks trained using the enhanced 

images derived from X or Y coordinates were considerably less than those based on Z 

coordinates and range in terms of both OA and mIoU metrics. Therefore, these two 

types of information (i.e., X and Y coordinates) were not considered in the subsequent 

sections (i.e., Section 4.3.3 to the end of this chapter). In addition, it is observed that 

for the images derived from Z coordinates and range, the OA and mIoU metrics were 

relatively similar when the image enhancement was performed using local area sizes 

from 32*32 pixels to 256*256 pixels. This suggests that the local area size for the 

image enhancement does not require careful adjustments as long as it is within that 

range. Nevertheless, since it can be seen from Figure 4-8.b that the images obtained 

from Z coordinates and range with a local area size of 64*64 pixels produced the 

highest mIoU index, this size was selected for this research. 
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4.3.3. Selecting combinations of feature channels 

In this section, various combinations of the channels were tested, including the 

enhanced Z coordinate images (𝐼𝐼e), enhanced range images (𝐷𝐷e), and intensity images 

(I) where the raw intensity values of Semantic3D dataset were used without any 

corrections. This is followed by tests on conventional combinations involving RGB 

channels (IRGBD and IRGB) that were demonstrated to be relatively accurate channel 

combinations in previous studies (Cai et al., 2021b). In addition, the combinations of 

𝐼𝐼e and 𝐷𝐷e with IRGB and IRGBD were tested. A total number of eight combinations 

of channels were investigated in this research. The test results are shown in Table 4-1.  

Table 4-1: quantitative results of different channel combinations on the semantic3d training set (five-
fold cross-validation). 

Channels Index mIoU 
(%) 

OA 
(%) 

man- 
made natural high 

veg 
low 
veg buildings hard 

scape 
scanning 

art cars 

𝐼𝐼e𝐷𝐷e 1 68.4 89.3 85.3 75.0 81.9 41.3 95.3 33.7 42.2 92.5 
𝐼𝐼𝐼𝐼e 2 66.4 90.1 86.5 75.1 68.3 45.3 93.4 26.8 49.2 86.3 
𝐼𝐼𝐷𝐷e 3 64.5 88.7 85.5 73.9 71.8 24.0 93.6 27.8 51.5 88.1 
𝐼𝐼𝐼𝐼e𝐷𝐷e 4 70.8 91.9 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8 
IRGB 5 63.8 90.0 85.2 76.5 80.5 39.6 92.7 31.4 33.7 71.0 

IRGBD 6 66.0 90.4 85.4 74.4 74.6 31.9 93.0 45.2 41.5 82.0 
𝐼𝐼RGB𝐼𝐼e𝐷𝐷e 7 68.8 90.9 86.5 78.7 83.7 40.6 95.2 41.3 41.9 82.5 
𝐼𝐼RGB𝐷𝐷𝐼𝐼e𝐷𝐷e 8 68.7 90.6 86.4 76.9 81.8 51.0 94.8 36.9 43.5 78.0 

 

Based on the first four sets of experiments, it is observed that using I, 𝐼𝐼e , and 𝐷𝐷e 

together is more accurate than any combination of two of them. In addition, it is clear 

that the segmentation accuracy achieved by the 𝐼𝐼𝐼𝐼e𝐷𝐷e combination was significantly 

higher than those achieved by the IRGB and the IRGBD combinations. For 

comparisons of the segmentation accuracy with respect to each class, the segmentation 

accuracy of 𝐼𝐼𝐼𝐼e𝐷𝐷e was found to be higher than the other two combinations (IRGB and 

IRGBD) in most of the classes, especially in recognizing high vegetation and low 

vegetation. It was also found that the integration of 𝐼𝐼e𝐷𝐷e  to IRGB or IRGBD 

significantly increased their segmentation accuracy in comparison to IRGB or IRGBD 
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alone, but both cases failed to exceed the segmentation accuracy (mIoU and OA) 

achieved by the combination 𝐼𝐼𝐼𝐼e𝐷𝐷e. However, it was also observed that  𝐼𝐼𝐼𝐼e𝐷𝐷e did not 

perform best for some individual classes. The likely reasons are presented in the 

following. An individual channel may be favourable to the segmentation of a particular 

class. However, when multiple channels are combined, their interactions also play an 

important role in the segmentation accuracy of that particular class. In other words, the 

network will take into account the trade-off between the contribution of each channel 

(similar to a weighted average effect) to achieve a higher overall segmentation 

accuracy for all classes.  Consequently, the accuracy of the segmented results of 

individual classes with or without the use of a particular channel may vary from one 

to another. 

4.3.4. Final performance of HR-EHNet 

Based on the experimental results in Table 4-1, the channel combination 𝐼𝐼𝐼𝐼e𝐷𝐷e was 

selected as the final input to HR-EHNet, which happened to be a three-channel image. 

This means that for this particular combination, the first convolutional layer of the pre-

trained HR-EHNet is unnecessarily replaced with a randomly initialized one. 

According to previous work (Pan et al., 2019), the operation of replacing the first 

convolutional layer could reduce the segmentation accuracy. Therefore, an experiment 

was conducted to determine whether to retain the pre-trained first convolutional layer 

in the final version of HR-EHNet. More specifically, the fourth experiment in Table 

4-1 was repeated on the condition that the first pre-trained convolutional layer of HR-

EHNet was retained. The corresponding segmentation results are summarized in Table 

4-2. As expected, the strategy of retaining the first pre-trained convolutional layer is 

beneficial for segmentation accuracy in mIoU and, therefore, adopted in the final 

version of HR-EHNet. All the prerequisites for performing the final training of HR-
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EHNet have now been determined. Therefore, the pre-trained HR-EHNet was fine-

tuned with the complete training set (i.e., 15 images with 𝐼𝐼𝐼𝐼e𝐷𝐷e feature channels and 

a size of 3600*7200 pixels) for 75,000 iterations according to the training protocols 

described in Section 4.2.6. 

Table 4-2: Impacts of retaining or replacing the first layer of the pre-trained network on the 
segmentation results when 𝐼𝐼𝐼𝐼e𝐷𝐷e were used as the input channels (five-fold cross-validation). 

First layer mIoU OA man- 
made natural high 

 veg 
low 
 veg buildings hard  

scape 
scanning  

art cars 

Replaced 70.8  91.9  86.4  77.7  88.5  60.6  94.2  37.3  43.5  77.8  
Remain 73.1  91.6  85.5  76.1  89.3  57.3  95.1  46.8  46.8  88.2  

 

The performance of HR-EHNet was evaluated on the Semantic3D (reduced-8) test 

dataset, which contains four point clouds. The four pseudo colour images of 𝐼𝐼𝐼𝐼e𝐷𝐷e and 

the corresponding segmentation results are illustrated in Figure 4-9. Through visual 

inspection, it is observed that the majority of the objects are correctly segmented and 

that most of the mislabels are concentrated at the edges where different objects 

intersect. These two-dimensional segmentation results were projected onto each data 

point in the point clouds to produce the segmented point clouds, which were uploaded 

to the online evaluation system of Semantic3D. The evaluation results have been made 

publicly available in the Semantic3D website under the name HR-EHNet (𝐼𝐼𝐼𝐼e𝐷𝐷e). The 

quantitative results of HR-EHNet and the recently published methods on Semantic3D 

(reduced-8) are summarized in Table 4-3. Without RGB channels, HR-EHNet 

significantly outperforms the best outcomes of the previous image-based methods by 

2.7% (OA) and 10.7% (mIoU), and meanwhile performed better than most of the 

point-based methods. It is also noted that HR-EHNet achieved the best segmentation 

accuracy with respect to high vegetation and cars among all the published methods. 
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Table 4-3: Quantitative results (%) of different approaches on Semantic3D (reduced-8). 

  Time 
(s) 

Params 
(M) mIoU OA man- 

made natural. high 
veg 

low 
veg buildings hard 

scape 
Scanning 

art cars 

Point- 
based  
Methods 

RF MSSF 
(Thomas et al., 2018) 1643.75 - 62.7 90.3 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6 

ShellNet 
(Zhang et al., 2019) 3000 0.48 69.3 93.2 96.3 90.4 83.9 41.0 94.2 34.7 43.9 70.2 

OctreeNet 
(F. Wang et al., 2020) 184.84 - 59.1 89.9 90.7 82.0 82.4 39.3 90.0 10.9 31.2 46.0 

GACNet 
(L. Wang et al., 2019) 1380 - 70.8 91.9 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8 

SPGraph 
(Landrieu and 
 Simonovsky, 2018) 

3000 0.25 73.2 94.0 97.4 92.6 87.9 44.0 83.2 31.0 63.5 76.2 

KPConv 
(Thomas et al., 2019) 600 14.9 74.6 92.9 90.9 82.2 84.2 47.9 94.9 40.0 77.3 79.7 

RandLA-Net 
(Q. Hu et al., 2020) - 0.95 77.4 94.8 95.6 91.4 86.6 51.5 95.7 51.5 69.8 76.8 

RFCR 
(Gong et al., 2021) - - 77.8 94.3 94.2 89.1 85.7 54.4 95.0 43.8 76.2 83.7 

Projection- 
based 
Methods 

DeePr3SS 
(Lawin et al., 2017) - 134 58.5 88.9 85.6 83.2 74.2 32.4 89.7 18.5 25.1 59.2 

SnapNet 
(Boulch et al., 2018) 3600 29 59.1 88.6 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4 

XJTLU 
(Cai et al., 2021b) 5.13 70.6 63.5 89.4 85.4 74.4 74.6 31.9 93.0 25.2 41.5 82.0 

HR-EHNet  
(This study) 11.72 73.6 74.2 92.1 85.1 75.5 89.6 55.9 95.5 50.8 48.3 92.5 

 

 
 

Figure 4-9: (a). The pseudo color images of 𝐼𝐼𝐼𝐼e𝐷𝐷e feature channels for the point clouds in 
Semantic3D (reduced-8) test set, (b). The corresponding segmentation results (The legend is only for 

the visualization of the segmentation results in (b)).  
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The time spent on each step of HR-EHNet is recorded in Table 4-4. The data used in 

this test is the Semantic3D (reduced-8) test dataset, where the four-point clouds 

contain a total of 78.7 million data points. The inference was conducted with an AMD 

3700X @3.6GHz CPU and an NVIDIA RTX2080Ti GPU. The total processing time 

was 11.72s, which was much faster than the other methods in Table 4-3 except XJTLU 

(Cai et al., 2021a). As shown in Table 4-4, HR-EHNet is slower than XJTLU because 

of the additional image enhancement step used. 

Table 4-4: The times taken by each step of HR-EHNet to process the Semantic3D (reduced-8) test 
dataset. 

 Time (s) % of total time 
Point cloud-image projection 0.17 1.5% 

Enhancement 6.89 58.8% 
Inference with neural network 4.55 38.8% 
Image-point Cloud projection 0.11 1.0% 

Total time 11.72 - 

 

4.4. Discussion 

The core idea of HR-EHNet is to provide CNNs with distinguishable local geometric 

characteristics by enhancements of images derived from point cloud data. In this 

research, local image enhancement was implemented by a hand-crafted algorithm. 

Although the image enhancement method proposed was experimentally demonstrated 

to be effective and insensitive to the local patch size, it consumed more than half of 

the processing time as shown in Table 4-4. Considering that image enhancement is a 

relatively simple task in comparison to image segmentation, it is worth investigating 

how to reduce its processing time in the future. For example, one potential solution is 

to use the current image enhancement results as the target images to train a relatively 

simple neural network. 

 

In this research, not all possible channel combinations were tested and as such there is 
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no guarantee that 𝐼𝐼𝐼𝐼e𝐷𝐷e is the best among all possible channel combinations. This is 

because the computational effort required would be enormous and the focus of this 

research was not on screening the optimal channel combinations. As such, developing 

an efficient way to identify optimal channel combinations is highly desirable in future 

research. Nevertheless, the results in this research showed that the channel 

combination 𝐼𝐼𝐼𝐼e𝐷𝐷e represents a promising choice. 

 

The experimental results in Section 4.3.3 show that adding additional information (e.g., 

RGB or RGBD) to 𝐼𝐼𝐼𝐼e𝐷𝐷e had a negative impact on the overall results (i.e., mIoU and 

OA). The primary reason for this phenomenon is the low reliability of the RGB images 

as mentioned Section 4.1. For example, the RGB and the 𝐼𝐼e images of the same scene 

are shown in Figure 4-10.a and Figure 4-10.b, respectively. The RGB image shows a 

cyclist that does not exist in the 𝐼𝐼e  image because the acquisition was not done 

simultaneously. The experimental results in Table 4-1 indicate that such false RGB 

information is an obstacle for neural networks to learn correct features.  

 
 

Figure 4-10: Incorrect RGB information in TLS point cloud data: (a). The RGB image contains the 
cyclist that were not scanned by TLS, (b). The enhanced Z image for the same scene.  
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More evidence is shown in Figure 4-11, where Figure 4-11.b shows the classes 

predicted using the pseudo colour images of 𝐼𝐼𝐼𝐼e𝐷𝐷e in Figure 4-11.a, and Figure 4-11.d 

shows the classes predicted using 𝐼𝐼RGB𝐼𝐼e𝐷𝐷e (i.e., 𝐼𝐼𝐼𝐼e𝐷𝐷e in Figure 4-11.a and the RGB 

images in Figure 4-11.c). For Scene 1, it is seen that the vehicle in Figure 4-11.b was 

correctly segmented using only 𝐼𝐼𝐼𝐼e𝐷𝐷e . However, when the erroneous RGB 

information was added, chaotic segmentation results (Figure 4-11.d) were obtained. A 

similar situation occurred for the vase in Scene 2. Nevertheless, Table 4-1 shows that 

for some particular classes (i.e., buildings, hardscape, man-made and natural), 

combining RGB information with 𝐼𝐼𝐼𝐼e𝐷𝐷e  improved their segmentation accuracies. 

This is because the accuracy of the RGB information is uncertain. When the RGB 

information of a particular class is accurate, it may be beneficial to include the RGB 

information for the segmentation of that particular class. For example, although the 

vehicle was segmented incorrectly in Scene 1 in Figure 4-11.d due to the erroneous 

RGB information, the vegetation at the windows was segmented correctly due to the 

correct and high contrast RGB information. However, when the RGB information of 

two adjacent classes does not show clear contrast, the inclusion of it may be 

problematic for the segmentation as demonstrated in the next paragraph. Future 

research may address the quality of RGB information from two perspectives. The most 

straightforward solution is to design a TLS strategy that simultaneously collects point 

cloud and imagery data to reduce as much false information as possible. The second 

possible solution is to design a neural network structure to enhance its ability to 

discriminate correct information from redundant/false information.  
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Figure 4-11: Comparisons between  𝐼𝐼𝐼𝐼e𝐷𝐷e and 𝐼𝐼RGB𝐼𝐼e𝐷𝐷eon segmentation results for three scenes: (a). 
The pseudo color images of 𝐼𝐼𝐼𝐼e𝐷𝐷e, (b). The segmentation results using the corresponding 𝐼𝐼𝐼𝐼e𝐷𝐷e 

images, (c) The RGB images, (d). The segmentation results using the feature combination of 
𝐼𝐼RGB𝐼𝐼e𝐷𝐷e. 

 

Compared with other segmentation methods, HR-EHNet was found to performance 

excellently in the recognition of plants and vehicles. This finding suggests its potential 

application to applications such as forest classification and autonomous driving. The 

possible reason for lower accuracies in the other methods for these two types of objects 

is that the use of the RGB information may cause confusion to neural networks if plants 

or vehicles have similar colours (i.e., spectra) to their surrounding objects. In contrast, 

HR-EHNet performs semantic segmentation mainly via the geometric features in the 

enhanced images, which are independent of colour and can replace RGB images. For 

example, although the RGB colours of the vegetation in Scene 2 and Scene 3 seem to 

be accurate visually, the segmentation results obtained after adding the RGB 
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information became worse due to its similarity to the surrounding objects. Furthermore, 

this characteristic is presumed to have significant advantages in terms of resistance to 

adversarial attacks, which may offer better security for certain applications such as 

autonomous driving. There are many studies demonstrating that deep learning relying 

on RGB images is vulnerable to colour perturbation attacks (Duan et al., 2020; Eykholt 

et al., 2018; Shahin Shamsabadi et al., 2020). For example, shining light from a laser 

pointer on a stop sign may cause neural networks to fail to recognize the stop sign, 

which poses a significant safety challenge for autonomous driving (Duan et al., 2020). 

Thus, it may be beneficial to extend the idea in this research to point cloud data that 

are used typically for a wider range of applications, including autonomous driving.  

 

At present, there is only one TLS point cloud dataset (i.e., Semantic3D) publicly 

available for evaluating algorithms. Although Semantic3D is a large point cloud 

dataset in terms of the number of data points, it is small when it is processed as an 

image dataset (i.e., project each point cloud as a panoramic image), in comparison to 

image datasets such as the Cityscapes and Mapillary Vistas datasets (Cordts et al., 

2016; Hackel et al., 2017; Zhang et al., 2021). Therefore, establishing a larger point 

cloud dataset would be extremely beneficial to the development of relevant research 

fields. It is also thought interesting to explore the feasibility of few-shot learning using 

the relatively small existing point cloud dataset. 

 

Only 15 labelled panoramic images can be derived from the Semantic3D training set, 

which is not sufficient to support the decent training of HR-EHNet from scratch. 

Therefore, the Cityscapes dataset - that was taken in similar urban scenes and 

semantically labelled - was used for the network pre-training in this study. However, 
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such semantically labelled images are often not publicly available. In contrast, 

unlabelled image datasets can readily be obtained for various application scenarios, 

through online resources and/or field acquisitions. Therefore, it is interesting to 

investigate how to effectively use techniques such as self-supervised learning (He et 

al., 2020; Pathak et al., 2016; Z. Wu et al., 2018; Zhan et al., 2019; Zhang et al., 2017) 

to pre-train networks using unlabelled images. 

4.5. Summary 

In this chapter, a novel image enhancement method was proposed to characterize 

effectively the local geometric features in the panoramic images derived from TLS 

point cloud data. The enhanced images (i.e., enhanced Z-coordinates 𝐼𝐼e, and enhanced 

range 𝐷𝐷e) alone and in various combinations of other popular feature channels (i.e., 

intensity 𝐼𝐼, RGB, range 𝐷𝐷) were used in a pre-trained CNN to assess the potential for 

semantic segmentation of the Semantic 3D datasets. It was found that compared with 

the commonly used channel combinations IRGB or IRGBD, the proposed combination 

𝐼𝐼𝐼𝐼e𝐷𝐷e produced more accurate semantic segmentation predictions. By fine-tuning the 

customized pre-trained HR-EHNet with the channel combination 𝐼𝐼𝐼𝐼e𝐷𝐷e , an OA of 

92.1% and a mIoU of 74.2% were obtained on the Semantic3D (reduced-8) test dataset, 

which substantially outperformed the other image-based methods. This suggests that 

effective utilization of local geometric features in images can increase the 

segmentation accuracy of image-based methods. This study also offers a better 

alternative channel combination to replace those involving the RGB channels, which 

may be extremely useful for cases where the RGB information is absent or inaccurate.  
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Chapter 5: Automatic feature extraction  

 

This chapter is based on the published paper: Cai, Y., Fan, L., Zhang, C., 2022b. 

Semantic Segmentation of Multispectral Images via Linear Compression of Bands: An 

Experiment Using RIT-18. Remote Sens. 14, 2673. 

https://doi.org/10.3390/rs14112673  

 

Note: The experiments in Chapter 4 (Table 4-2) show that using the pre-trained 

weights intact (i.e., retaining the weights of the first layer) can improve segmentation 

accuracy. This requires the number of channels of the input images to match that of 

the pre-trained images i.e. for multichannel images it is required to reduce the 

dimensionality to 3. There are two types of dimension reduction methods. One is 

feature extraction and the other is feature selection. This chapter develops a learnable 

feature extraction method. The effectiveness of the proposed method is demonstrated 

in this chapter with a multispectral semantic segmentation dataset named RIT-18. The 

test results on Semantic3D can be found in Chapter 6. 

 

 

  

https://doi.org/10.3390/rs14112673
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5.1. Introduction 

Semantic segmentation of images is a fundamental task in computer vision, in which 

a label is assigned to each pixel. For remotely sensed imagery, its semantic 

segmentation (known as pixel-based classification previously) is the basis for many 

applications, such as forest monitoring, cloud detection, and land-use planning 

(Dechesne et al., 2017; Dong et al., 2018; Goldblatt et al., 2018; Marmanis et al., 2018). 

There are sensors that can capture images with more than three bands (e.g., 

multispectral and hyperspectral images). Compared to the three bands obtained by 

RGB cameras, the additional spectral information of multispectral images could be 

used to, potentially, achieve a higher segmentation accuracy. However, semantic 

segmentation of multispectral images is challenging due to the limited training samples 

and high-dimensional features. 

 

Compared to RGB sensors with fixed spectral bands, the spectral bands between 

different multispectral sensors are usually different. This means that the multispectral 

image datasets obtained by different multispectral sensors are unique. Coupled with 

the fact that data annotation is very time-consuming, the total amount of annotated 

data available for a specific multispectral semantic segmentation task is typically very 

limited. Therefore, relative lightweight networks (Boulch et al., 2018; Kemker et al., 

2018; Lawin et al., 2017; Mateo-García et al., 2020; Saxena et al., 2020) were often 

used for multispectral semantic segmentation to avoid overfitting. However, it is a 

consensus that deeper and wider neural networks that have been pre-trained on large-

scale datasets can achieve a higher segmentation accuracy compared to lighter neural 

networks without pre-training. Many neural networks developed for RGB images have 

become deeper and wider and achieved excellent performances on many challenging 



Chapter 5: Automatic feature extraction 
 

95 
 

benchmark datasets. Hence, the accuracy of multispectral semantic segmentation may 

be improved significantly if the multispectral images can be tailored properly to fit the 

pre-trained state-of-the-art networks. Due to the peak phenomenon (Kallepalli et al., 

2014; Sima and Dougherty, 2008; Theodoridis and Koutroumbas, 2001), direct 

feeding of multispectral images to networks developed originally for three-channel 

images often leads to poor segmentation accuracy (Bhuiyan et al., 2020; Cai et al., 

2022a, 2021b). The most direct solution to this problem is to reduce the input image 

dimension to three. 

 

There are mainly two types of methods for image dimensionality reduction, i.e., feature 

extraction (Bandos et al., 2009; Belkin and Niyogi, 2003; Bhatti et al., 2022; Farrell 

and Mersereau, 2005; Fauvel et al., 2009; Jing Wang and Chein-I Chang, 2006; 

Roweis and Saul, 2000; Tenenbaum et al., 2000) and band selection (Bhuiyan et al., 

2020; Hu et al., 2019; Roy et al., 2021b; Su et al., 2011; Sun et al., 2020; W. Sun et 

al., 2022; Zhu et al., 2021). The representative feature extraction methods include 

principle component analysis-based methods (Farrell and Mersereau, 2005; Fauvel et 

al., 2009; Uddin et al., 2021; Xiuping Jia and Richards, 1999; Zabalza et al., 2014), 

independent component analysis-based methods (Jing Wang and Chein-I Chang, 

2006), linear discriminant analysis-based methods (Bandos et al., 2009; Du, 2007; 

Wang et al., 2017), and locality preserving projection-based methods (Deng et al., 

2018; Li et al., 2012). Most of these methods perform linear transformations of the 

original spectral bands to optimize their objectives. One common objective in the 

feature extraction methods is to retain as much information as possible in the processed 

images (in which the dimension is reduced). Existing feature extraction methods are 

generally fast in processing, but the changes in the original spectral reflectance may 



Chapter 5: Automatic feature extraction 

96 
 

cause difficulties in physical interpretations and hinder the applications where physical 

spectral measurements are required. In addition, since the optimization objectives of 

those methods are not on the segmentation accuracy of the neural networks, they do 

not guarantee a decent performance in segmentation. 

 

Band selection refers to the selection of a subset of spectrum bands from the original 

image. Depending on the usage of labelled images during the selection process, band 

selection can be categorized as unsupervised (S. Huang et al., 2022; Jia et al., 2022, 

2016; MartÍnez-UsÓMartinez-Uso et al., 2007; Q. Wang et al., 2019, 2018; B. Xu et 

al., 2021) and supervised (Cao et al., 2016; Chang et al., 1999; Demir and Ertürk, 2008; 

Feng et al., 2017; Guo et al., 2006; Huang and He, 2005; Keshava, 2004; Yang et al., 

2011) methods. The former one is to select the most representative bands based on 

their statistical characteristics, such as dissimilarity, information entropy, information 

divergence, or correlation. The latter one typically uses the labelled images to select a 

band combination that maximizes class separability. In general, the band selection 

methods require an iterative trial of band combinations, which is more computationally 

intensive than the feature extraction methods. As for the advantages, unsupervised 

band selection methods are more popular among scholars as they do not require 

labelled data and have more application scenarios. Meanwhile, the supervised band 

selection methods have been proven to achieve better segmentation accuracy than 

other types of existing methods.  

 

Motived by the aforementioned limitations of the current methods and inspired 

initially by the fact that adjacent bands of the multispectral/hyperspectral images are 

usually relatively similar, a hot-pluggable head structure for the linear compression 
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(referred to as LC-Net) of bands is proposed in this study for a supervised feature 

extraction, which directly optimizes the segmentation accuracy. The main advantages 

of LC-Net are its compatibility with existing networks and faster training speed while 

maintaining similar accuracy compared to the supervised grid search (SGS). The 

structure of LC-Net can be kept as simple as possible, which adds negligible 

computational costs to the training and inference processes. The effectiveness of LC-

Net was tested using three different networks on the RIT-18 benchmark dataset 

(Kemker et al., 2018) in this study. 

5.2. Materials and Methods 

5.2.1. Study Data 

The RIT-18 (Kemker et al., 2018) multispectral dataset used in this study is a six-band 

multispectral dataset that includes visible RGB bands (band 3 for R, band 2 for G, and 

band 1 for B) and three near-infrared bands (bands 4–6). It contains a training image 

with a resolution of 9393 × 5642 and a test image with a resolution of 8833 × 6918. 

Each pixel of the images in RIT-18 is assigned to one of the eighteen classes. A 

comparison between RIT-18 and other commonly used publicly available 

multispectral datasets is summarized in Table 5-1. It shows that RIT-18 has the largest 

number of labelled classes and the finest ground sample distance (GSD) compared to 

ISPRS Vaihingen and Potsdam (Rottensteiner et al., 2012), Zurich Summer (Volpi and 

Ferrari, 2015), and L8 SPARCS (Hughes and Hayes, 2014). Together with the highly 

unbalanced classes, as shown in Figure 5-1, they make RIT-18 a very challenging 

dataset. In addition, as a 6-band dataset, RIT-18 has a total of 20 combinations of three 

bands, which is neither too many (120 possible combinations), as in L8 SPARCS, nor 

too few, as in other datasets. Therefore, as a challenging but computationally 

affordable dataset, RIT-18 was considered in this study. 
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Table 5-1: Summary of five commonly used multispectral datasets. 

Dataset Sensor(s) GSD (m) Number  
of classes 

Number  
of bands 

Distribution of bands 

Vaihingen Green/Red/IR 0.09 5 3 Green, Red, IR 

Potsdam VNIR 0.05 5 4 Blue, Green, Red, NIR 

Zurich Summer QuickBird 0.61 8 4 Blue, Green, Red, NIR 

L8 SPARCS Landsat 8 30 5 10 Coastal, Green, Red, NIR, SWIR-1, 
SWIR-2, Pan, Cirrus, TIRS 

RIT-18 VNIR 0.047 18 6 Blue, Green, Red, NIR-1, NIR-2, NIR-3 

 

 
(a) 

 
(b) 

Figure 5-1: Percentage of each class in RIT-18: (a) training image (%), (b) test image (%).  
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To avoid any confusion, it is worth mentioning that there are 18 classes in the training 

images but only 16 classes in the test images, which explains why 16 classes are shown 

in Section 5.3 and Section 5.4.  

5.2.2. LC-Net (contains modifications that do not affect the results in this chapter) 

Despite the rich spectral information contained in the multispectral images, these 

additional bands cause new challenges, not only in terms of more GPU memory and 

computational consumption but also in the peak phenomenon (Kallepalli et al., 2014; 

Sima and Dougherty, 2008; Theodoridis and Koutroumbas, 2001). This phenomenon 

shows that the use of additional features (e.g., spectral bands) introduces complexity 

to the classifier and increases the number of parameters and training data needed to 

achieve the same classification accuracy (using fewer features). Directly using more 

features may lead to worse classification results (Hughes, 1968; Theodoridis and 

Koutroumbas, 2001). To address this problem, LC-Net is proposed in this study to 

reduce the number of input channels for the subsequent network at the initial stage. 

This prevents the subsequent network from receiving too many features while allowing 

the network to choose its preferred features. 

 

The LC-Net is defined as a 1 × 1 group convolution layer with 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑝𝑝𝑔𝑔𝑔𝑔𝑝𝑝 bands per 

group at the initial stage of the networks. Based on the original band number 𝑛𝑛𝑔𝑔𝑝𝑝𝑖𝑖𝑔𝑔𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜, 

𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑝𝑝𝑔𝑔𝑔𝑔𝑝𝑝 is determined as follows: 

𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑝𝑝𝑔𝑔𝑔𝑔𝑝𝑝 = 𝑟𝑟𝑙𝑙𝑟𝑟𝑛𝑛𝑟𝑟 𝑟𝑟𝑝𝑝 𝑎𝑎𝑙𝑙 𝑎𝑎ℎ𝑟𝑟 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 𝑌𝑌𝑛𝑛𝑎𝑎𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟(
𝑛𝑛𝑔𝑔𝑝𝑝𝑖𝑖𝑔𝑔𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜

3
) (5-1) 

For cases where the number of original bands is not divisible by three, 𝑛𝑛𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏 blank 

band(s) is added to the original multispectral image, 𝑛𝑛𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏 is calculated as: 

𝑛𝑛𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏 = 3 × 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑝𝑝𝑔𝑔𝑔𝑔𝑝𝑝 − 𝑛𝑛𝑔𝑔𝑝𝑝𝑖𝑖𝑔𝑔𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 (5-2) 
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As adding a blank band does not provide any new features to the model, it does not 

introduce additional complexity and, thus, does not suffer from the peaking 

phenomenon. This setup will compress 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑝𝑝𝑔𝑔𝑔𝑔𝑝𝑝 adjacent input bands in sequence 

without any overlap. The operation of LC-Net for RIT-18 dataset is shown in Figure 

5-2. More specifically, each band was multiplied by a weight, and, after that, two 

adjacent bands (i.e., bands 1 and 2, bands 3 and 4, and bands 5 and 6 for the RIT-18 

dataset) were added together to form three new bands. The weights applied to the 

bands were randomly initialized and iteratively updated during the training.  

 

Figure 5-2: Linear combinations of two adjacent bands without any overlap for the RIT-18 dataset. 
 

In addition, for a more comprehensive understanding, the performance of combining 

non-adjacent bands was also tested. The implementation details are shown in Section 

5.2.5. Unless stated otherwise, the LC-Net referred to in the following sections is based 

on the combination of adjacent bands.  

 

As shown in Figure 5-3, the feature maps obtained from LC-Net can be fed to any 

existing networks for subsequent processing after passing through a batch 

normalization layer. There is no non-linear activation layer used after the batch 

normalization layer, not only because it is not consistent with the linear compression 

that LC-Net aims to achieve but also because the application of activation functions to 

low-dimensional features (3 dimensions in this case) can degrade network 

performance, as demonstrated by many studies (Chollet, 2017; Sandler et al., 2018; X. 

Zhang et al., 2018). 
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Figure 5-3: Apply LC-Net to the networks. 
 

The subsequent networks shown in Figure 5-3 include an encoder and a decoder. For 

the encoder (i.e., backbone), the networks used in this study consist of ResNet50 (He 

et al., 2016), HRNet-w18 (Jingdong Wang et al., 2021), and Swin-tiny (Liu et al., 

2021a), which are popular convolutional neural networks and vision transformers. All 

the backbones are pre-trained using the ImageNet dataset (Russakovsky et al., 2015). 

For the decoder, the same decoder structure of Fully Convolutional Networks  

(Shelhamer et al., 2017) is used for all the networks adopted in this study. The detailed 

network structures faithfully follow their original implementations and are described 

in detail in Section 5.2.3. 

5.2.3. Network Structure 

The backbones (i.e., ResNet (He et al., 2016), HRNet (Jingdong Wang et al., 2021), 

and Swin (Liu et al., 2021a)) used in this study can be considered three milestones in 

the network’s structure design. For example, the residual connection proposed by 

ResNet (He et al., 2016) has become a standard paradigm for subsequent network 

designs. The basic block design of ResNet (He et al., 2016) is shown in Figure 5-4, 

which consists of a stack of convolution layers, a Batch Normalization (BN) layer, and 

a Rectified Linear Unit (ReLU). The complete ResNet (He et al., 2016) is constructed 
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by connecting the stem and the multiple basic blocks in a series. The detailed 

architecture specifications of ResNet-50 are presented in Table 5-2. The overall design 

follows two rules: One is to apply the same hyperparameters (the width and filter size) 

to the blocks of the same spatial resolution. The other is that when the spatial resolution 

is reduced by half, the width of the block doubles. The second rule ensures that all 

blocks have approximately the same computational complexity in terms of floating-

point operations (FLOPs). Similar to residual connection, these two rules were applied 

to most network designs, including Swin (Liu et al., 2021a) and HRNet (Jingdong 

Wang et al., 2021). 

 

Figure 5-4: Basic block designs for ResNet, HRNet, and Swin.  
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As shown in Table 5-2, the macro design of Swin (Liu et al., 2021a) is similar to that 

of ResNet (He et al., 2016). Both are single-branch structures. As the network depth 

increases, the spatial resolution gradually decreases, and the width increases. Their 

main differences are within the basic blocks, as shown in Figure 5-4 and Table 5-2. 

The basic block of Swin is built by a Multi-head Self-Attention (MSA) module with 

shifted windows (win. shift) and relative position bias (rel. pos), followed by a two 

Multi-Layer Perceptron (MLP) with a Gaussian Error Linear Unit (GELU) in between. 

For clarity, the MLP layers in Swin (Liu et al., 2021a) are noted as a “1 × 1 convolution” 

in Figure 5-4 since they are equivalent. 

Table 5-2: Detailed architecture specifications of ResNet50 and Swin-tiny, where the bracket indicates 
a residual block, and the number outside the brackets is the number of stacked blocks for the stage. 

 Output Size ResNet50 Swin-Tiny 

Stem 𝐻𝐻
4 ×

𝑊𝑊
4  

7 × 7, 64, stride 2 
3 × 3 max pool, stride 2 4 × 4, 96, stride 4 

Resolution 1 
𝐻𝐻
4 ×

𝑊𝑊
4  �

1 × 1, 64
3 × 3, 64 
1 × 1, 256

� × 3 
�

1 × 1, 96 × 3
𝑀𝑀𝑀𝑀𝑀𝑀,𝑤𝑤7 × 7,𝐻𝐻 = 3, 𝑟𝑟𝑟𝑟𝑙𝑙.𝑝𝑝𝑙𝑙𝑎𝑎.

1 × 1, 96
� 

�1 × 1, 384
1 × 1, 96 � 

× 2 

Resolution 2 
𝐻𝐻
8 ×

𝑊𝑊
8  �

1 × 1, 128
3 × 3, 128 
1 × 1, 512

� × 4 
�

1 × 1, 192 × 3
𝑀𝑀𝑀𝑀𝑀𝑀,𝑤𝑤7 × 7,𝐻𝐻 = 6, 𝑟𝑟𝑟𝑟𝑙𝑙.𝑝𝑝𝑙𝑙𝑎𝑎.

1 × 1, 192
� 

�1 × 1, 768
1 × 1, 192� 

× 2 

Resolution 3 
𝐻𝐻
16

×
𝑊𝑊
16

 �
1 × 1, 256
3 × 3, 256 
1 × 1, 1024

� × 6 
�

1 × 1, 384 × 3
𝑀𝑀𝑀𝑀𝑀𝑀,𝑤𝑤7 × 7,𝐻𝐻 = 12, 𝑟𝑟𝑟𝑟𝑙𝑙. 𝑝𝑝𝑙𝑙𝑎𝑎.

1 × 1, 384
� 

�1 × 1, 1536
1 × 1, 384 � 

× 6 

Resolution 4 
𝐻𝐻
32 ×

𝑊𝑊
32 �

1 × 1, 512
3 × 3, 512 
1 × 1, 2048

� × 3 
�

1 × 1, 768 × 3
𝑀𝑀𝑀𝑀𝑀𝑀,𝑤𝑤7 × 7,𝐻𝐻 = 24, 𝑟𝑟𝑟𝑟𝑙𝑙. 𝑝𝑝𝑙𝑙𝑎𝑎.

1 × 1,768
� 

�1 × 1,3072
1 × 1, 768 � 

× 2 

FLOPs  4.1 × 109 4.4 × 109 
Parameters  25.6 × 106 28.3 × 106 

 

The main innovation of HRNet (Jingdong Wang et al., 2021) is the use of four parallel 

branches of the same depth, corresponding to four down-sampling levels (4, 8, 16, and 

32). Compared to single-branch backbones, HRNet (Jingdong Wang et al., 2021) 
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significantly increases the network depth with respect to fine-resolution features. This 

proves to be beneficial for pixel-level image processing tasks (Borse et al., 2021; Xu 

et al., 2020; Yu et al., 2021). The basic block and detailed architecture specifications 

of HRNet-w18 are shown in Figure 5-4 and Table 5-3, respectively. 

Table 5-3: Detailed architecture specifications of HRNet-w18, where the bracket indicate a residual 
block, and the number outside the brackets is the number of stacked blocks for the stage. 

 Output 
Size Stem Stage 1 Stage 2 Stage 3 Stage 4 

Resolution 
1 

𝐻𝐻
4

×
𝑊𝑊
4  

3 × 3, 64, 
stride 2 

3 × 3, 64, 
stride 2 

�
1 × 1, 64
3 × 3, 64

1 × 1, 256
�× 4 �3 × 3, 18

3 × 3, 18�× 4 �3 × 3, 18
3 × 3, 18� × 16 �3 × 3, 18

3 × 3, 18�× 12 

Resolution 
2 

𝐻𝐻
8 ×

𝑊𝑊
8    �3 × 3, 36

3 × 3, 36�× 4 �3 × 3, 36
3 × 3, 36� × 16 �3 × 3, 36

3 × 3, 36�× 12 

Resolution 
3 

𝐻𝐻
16 ×

𝑊𝑊
16    �3 × 3, 72

3 × 3, 72� × 16 �3 × 3, 72
3 × 3, 72�× 12 

Resolution 
4 

𝐻𝐻
32 ×

𝑊𝑊
32     �3 × 3, 144

3 × 3, 144�× 12 

FLOPs 4.3 × 109 
Parameters 21.3 × 106 

 

5.2.4. Training Setting 

The experiment was carried out on a PC with a processor of AMD Ryzen 9 3950X, 

RAM of 64 GB, and two GPUs of NVIDIA GeForce GTX 3090. In addition, the 

PyTorch framework (MMSegmentation Contributors, 2020) in Ubuntu (20.04) was 

used for programming the experiment. For a fair comparison of the whole experiment 

process, all the training used the same training protocol, which is a strategy used 

widely in the research of deep learning (Dosovitskiy et al., 2020; Liu et al., 2021a; Xie 

et al., 2021). More specifically, the AdamW optimizer was adopted with the following 

setup: a base learning rate of 0.00006, a weight decay of 0.01, a linear learning rate 

decay, and a linear warmup of 1500 iterations. 
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For the data augmentation, the images with a size of 512 × 512 were extracted 

randomly, in addition to the application of a random horizontal and vertical flipping. 

Due to the limited physical memory of GPU cards, the batch size was set to be 16, and 

synchronized batch normalization across the GPU cards was adopted during the 

training. The total number of training iterations was 15,000. Similar to (Jingdong 

Wang et al., 2021; Zhao et al., 2018, 2017), by applying the random data augmentation 

and the batch normalization, all the networks used in this study are considered resistant 

to overfitting. 

5.2.5. Comparisons 

To check the performance (i.e., segmentation accuracy and efficiency) of using LC-

Net, the proposed approach was compared with three commonly used approaches. 

 

The first one is the Direct Feeding (DF) approach, which is to modify the first 

convolutional layer (typically 3 kernel channels) in the networks (i.e., ResNet50, 

HRNet-w18, and Swin-tiny) so that the number of kernel channels is identical to the 

number of bands of the input image. In the case of RIT-18 (6 bands), the modified first 

convolutional layer has 6 kernel channels, the initial parameters of which are randomly 

allocated. 

 

The second approach is Principal Component Analysis (PCA). More specifically, the 

singular value decomposition method is adopted for extracting the first three principal 

components. The extracted 3-band images are used as the network input. 
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The third approach is a Supervised Grid Search (SGS), in which the optimal 

combination of the 3-band is determined by trialling all possible combinations. As the 

most fundamental band selection method, it ensures the selection of the optimal band 

combination. To facilitate fairer comparisons between those approaches, the 

parameters in the first convolutional layer of the pre-trained backbones were randomly 

reset in the DF approach, the SGS approach, and the LC-Net approach. 

 

Further to the aforementioned three approaches, two alternative means of band 

compressions are also investigated in this study, which is detailed in the next two 

paragraphs. 

 

The band compression using adjacent bands (i.e., Figure 5-2) in LC-Net is based on 

the assumption that the neighbouring bands are often more similar to each other and, 

therefore, less effective information may be lost in this way. To test whether this 

hypothesis is necessary, a compression of non-adjacent bands (e.g., bands 1 and 3, 

bands 2 and 5, and bands 4 and 6) in the same means was also tested to explore the 

differences. 

 

In addition to the compressions of two bands into one to form a 3-band image using 

RIT-18, another test is considered, in which all bands are compressed to form each 

band of the 3-band input image (i.e., all bands are compressed three times, and a new 

band is produced each time). This is referred to as the Linear Combination of All Bands 

(LCAB). Since the number of output bands is not constrained by the number of input 

bands, the LCAB approach is more flexible than LC-Net. However, since each band 
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of the output image is a linear combination of all input bands, LCAB potentially suffers 

from a greater influence of the mixed spectral information received. 

5.3. Results 

The results of the PCA, DF, and LC-Net approaches are summarized in Table 5-4. The 

segmentation accuracy using the PCA approach was considerably lower than those of 

the other two approaches and, therefore, was not analysed in detail. It was observed 

that the use of LC-Net brought consistent improvements in the final segmentation 

performance. In comparison to those using the DF approach, an average improvement 

of 12.1% in overall accuracy (OA) was achieved by adding LC-Net. Meanwhile, for 

the more critical accuracy metric, i.e., the mean accuracy (MA), the use of LC-Net led 

to an average improvement of 14.0% compared to those obtained using the DF 

approach. The processing time introduced by the extra learnable parameters (six 

weights in these cases) was found to be negligible.  

Table 5-4: Summary of the key performance of PCA, DF, LC-NET, and CoinNet (%). 

Class 
ResNet50 HRNet-w18 Swin-Tiny CoinNet 

PCA DF LC-Net PCA DF LC-Net PCA DF LC-Net - 
Road Markings 0.0 33.6 40.6 0.0 3.2 73.3 0.0 13.3 63.1 85.1 

Tree 72.7 91.5 90.1 8.8 78.1 85.4 80.2 82.1 88.3 77.6 
Building 13.3 54.4 69.2 0.0 58.0 62.2 0.0 61.3 65.0 52.3 
Vehicle 0.0 50.5 53.2 0.0 54.6 55.7 0.0 38.5 49.5 59.8 
Person 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Lifeguard Chair 0.0 82.1 66.3 0.0 32.2 79.5 0.0 39.1 99.5 0.0 
Picnic Table 0.0 4.0 9.9 0.0 22.6 22.7 0.0 32.4 12.6 0.0 
Orange Pad 0.0 0.0 0.0 0.0 95.8 0.0 0.0 83.1 0.0 0.0 

Buoy 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 
Rocks 1.2 84.3 93.3 5.3 73.1 91.5 4.0 88.0 90.3 84.8 

Low Vegetation 0.0 1.7 4.9 0.6 11.4 5.6 0.0 2.9 19.0 4.1 
Grass/Lawn 86.2 95.2 95.4 97.4 97.5 95.1 84.1 94.9 95.5 96.7 
Sand/Beach 92.0 10.0 93.4 86.2 94.0 94.0 96.3 76.1 95.9 92.1 
Water/Lake 58.2 96.9 97.6 89.3 95.9 98.1 93.4 98.8 94.3 98.4 
Water/Pond 13.2 14.2 95.9 0.0 7.0 98.0 43.0 63.3 98.2 92.7 

Asphalt 77.6 51.0 91.0 72.9 42.7 92.9 78.6 53.4 90.9 90.4 
Overall Accuracy 73.8 68.7 90.7 69.5 82.4 90.4 81.2 84.6 91.0 88.8 
Mean Accuracy 25.9 41.8 56.3 22.5 44.1 59.6 30.0 48.0 60.1 52.1 
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It is worth mentioning that the best semantic segmentation results obtained in this 

study (i.e., Swin-tiny+ LC-Net) outperformed the traditional machine learning and 

deep learning approaches reported in the literature (Kemker et al., 2017; Pan et al., 

2019; Saxena et al., 2020). For example, the best results (those fine-tuned without 

additional data) so far on RIT-18 were achieved by CoinNet (Pan et al., 2019), which 

were exceeded by 2.2% and 8.0% in terms of OA and MA, respectively, using the 

proposed approach. 

 

To check the effectiveness of the results using LC-Net, the accuracy of the 

segmentation results using a trial selection of all possible combinations (20 in total) of 

the three bands was also investigated in this study. Table 5-5 shows the segmentation 

accuracies of the networks used with different combinations of the three input bands.  

Table 5-5: Comparison of accuracies and computational cost using PCA, DF, LC-Net, and SGS (%). 
The numbers shown in the “Input Method” column for SGS indicate which three bands were used as 

the input images to the subsequent networks. 

Input Method 
ResNet50 HRNet-w18 Swin-Tiny 

OA MA Training 
hours OA MA Training 

hours OA MA Training 
hours 

PCA 73.8 25.9 3.6 69.5 22.5 3.9 81.2 30 4 
DF 68.7 41.8 3.6 82.4 44.1 3.9 84.6 48 4 

LC-Net 90.7 56.3 3.6 90.4 59.6 3.9 91.0 60.1 4 

SGS 

123 72.6 39.7 

72 

72.3 43.0 

77 

72.8 43.5 

80 

124 88.7 53.2 88.4 56.5 88.9 57.0 
125 86.7 51.4 86.4 54.7 87.0 55.2 
126 88.6 53.1 88.3 56.4 88.9 56.9 
134 85.4 53.2 85.1 56.5 85.7 57.0 
135 78.8 43.3 78.4 46.6 79.1 47.1 
136 74.5 43.8 74.1 47.1 74.7 47.6 
145 88.8 51.2 88.5 54.5 89.1 55.0 
146 86.4 52.8 86.1 56.1 86.6 56.6 
156 89.3 54.4 89.8 57.7 89.6 58.2 
234 86.3 51.9 85.9 55.2 86.5 55.7 
235 78.5 51.5 78.2 54.8 78.7 55.3 
236 81.0 44.1 80.7 47.3 81.3 47.8 
245 87.8 53.3 87.4 56.6 88.1 57.1 
246 85.4 49.6 85.1 52.9 85.7 53.4 
256 88.2 51.4 87.9 54.7 88.5 55.2 
345 89.3 50.7 88.9 54.0 89.5 54.5 
346 89.1 53.7 88.8 57.0 89.4 57.5 
356 89.4 55.7 89.0 57.8 89.8 59.3 
456 47.5 33.5 47.2 36.8 47.8 37.3 
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It was observed that the accuracies achieved under each combination varied. For the 

three networks considered, the accuracy of the most accurate combination was on 

average 1.30% lower and 1.07% lower than those of LC-Net for the OA metric and 

the MA metric, respectively. In addition to this, LC-Net requires much less time than 

the band selection method because it only needs to be trained once. A visual 

comparison between DF, SGS, and LC-Net for Swin-tiny is shown in Figure 5-5. It is 

observed that the results of DF are notably worse than the other two methods. 

 

Figure 5-5: RIT-18 segmentation results for Swin-tiny on the test image: (a) ground truth, (b) 
segmentation map using the DF approach, (c) segmentation map using the SGS approach, (d) 

segmentation map using LC-Net. 
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The aforementioned results are based on a particular compression of two adjacent 

bands into one (i.e., one from bands 1 and 2, one from bands 3 and 4, and one from 

bands 5 and 6). No adjacent bands were also considered for the band compression. 

Table 5-6 shows the comparisons between the performances of LC-Net using adjacent 

bands or non-adjacent bands. Very small differences were observed in the overall 

accuracies. In addition, the segmentation accuracies of LCAB are shown for 

comparison to LC-Net in Table 5-6. Significant degradation in the segmentation 

accuracy was observed. 

Table 5-6: Performance of LC-Net and LCAB (%). 

Methods  
The Formation of 3 Input 

Bands to the Networks 
from the Original 6 Bands 

ResNet50 HRNet-w18 Swin-Tiny 

OA MA OA MA OA MA 

LC-Net (12), (34), (56) 90.7 56.3 90.4 59.6 91.0 60.1 
LC-Net (non-adjacent) (13), (25), (46) 90.8 56.2 90.2 59.4 91.2 59.0 

LCAB (1–6), (1–6), (1–6) 84.1 53.4 87.1 54.2 88.6 55.0 

 

5.4. Discussion 

The segmentation results of ResNet50+ LC-Net, HRNet-w18+ LC-Net, and Swin-

tiny+ LC-Net are shown in Figure 5-6. Compared to the ground truth (Figure 5-6.a), it 

was seen that the majority of the pixels were correctly labelled using any of those 

networks. To understand the likely causes for the mislabelled pixels by the networks, 

the spectral information (i.e., the RGB images of bands 1–3 and the pseudo colour 

images of bands 4–6) of RIT-18 is shown in Figure 5-7. After the visual comparisons 

between Figure 5-6 and Figure 5-7, it was found that segmentation errors appeared 

mainly in three types of areas: the object edges, shaded areas, and changes in terrain. 

In contrast to extensive attention received in the field of semantic segmentation 

(Marmanis et al., 2018; Yuan et al., 2020) for improving the segmentation accuracy at 

the object edges, the latter two error sources have not received much attention. To 

address these issues, it is necessary to identify the causes of the segmentation errors in 



Chapter 5: Automatic feature extraction 
 

111 
 

those regions. A relatively large mislabelled local area was marked with a black dashed 

box in both Figure 5-6 and Figure 5-7, where a continuous area of low-level vegetation 

was segmented as other classes (mainly tree or grass/lawn). As shown in Figure 5-7, 

the area is a valley where the surrounding trees cast shadows, which resulted in abrupt 

changes in the spectral characteristics of the low-level vegetation. Another common 

reason worth considering for the low segmentation accuracy of a particular class in the 

test set is the under-representation of that class in the training set. For RIT-18, the 

proportion of low-level vegetation in the training data ranks seventh among all classes. 

The eighth, ninth, and tenth classes in the training data are rocks, buildings, and road 

signs, with 1.27%, 0.45%, and 0.39%, respectively. Their segmentation accuracy 

(Swin-tiny + LC-Net) on the test set was 90.3%, 65.0%, and 63.1%, respectively, 

which are all much higher than that of low-level vegetation. Therefore, the lack of 

training data may not be the reason for the low segmentation accuracy of low-level 

vegetation, and the abrupt changes in the spectral characteristics are likely to be the 

cause of the mis-segmentation. Similarly, the shadows of trees on the sandy beach 

surface seemed to cause a mix of mislabelled pixels as enveloped by a solid purple 

box. Therefore, future studies may consider pre-identifying areas with shadows and 

topographic changes and treating them separately. This may require additional 

labelling of such areas or additional data, such as digital elevation models and solar 

information about the target area. 
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Figure 5-6: RIT-18 segmentation results of the test image: (a) ground truth, (b) segmentation map 
from ResNet50+ LC-Net, (c) segmentation map from HRNet-w18+ LC-Net, (d) segmentation map 

from Swin-tiny+ LC-Net. 
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Figure 5-7: (a) RGB image (bands 3, 2, and 1) of the RIT-18 test image; (b) pseudo color image of 

bands 4–6 of the RIT-18 test image. 
 

While the results demonstrate that adding LC-Net to the networks can improve the 

overall segmentation performance, not every segmented class can benefit from LC-

Net, as shown in Figure 5-8. The likely reason for this is that LC-Net forces the neural 

networks to perform a relatively aggressive band compression in the initial stage, 

which inevitably causes a certain amount of information loss. Since the weights of LC-

Net were randomly initialized and the weights in the backbone were also different, the 

lost information may, by chance, include the one that is important for a specific class. 

This conjecture can be inferred to some extent by the information in Table 5-7, where 

the final weights of LC-Net associated with the three network structures were recorded 

and showed no specific pattern. Therefore, future studies may focus on finding more 

effective band compression methods. For example, more complex (e.g., a 3 × 3 

convolutional kernel), nonlinear (e.g., adding the activation function after the LC-Net), 

and multilayer band compression methods might be able to compress more effective 

information into the same number of bands. 



Chapter 5: Automatic feature extraction 

114 
 

 

LC-Net compresses the number of bands in RIT-18 to half of its original number. 

However, the optimal level of the band compression (with respect to the number of 

bands) may not be exactly half of the original number. As such, future research may 

focus on how to set the degree of the band compression as a learnable variable to 

improve the network performance further. 

 

Figure 5-8: The effect of the addition of LC-Net on the segmentation accuracy of different classes 
against the DF approach (%). 

 

Table 5-7: Final weights in LC-Net used in the three networks considered. 
 Final Weights in LC-Net 
 ResNet50 + LC-Net HRNet-w18 + LC-Net Swin-tiny + LC-Net 

Band 1 0.048  −0.066  0.253  
Band 2 −0.893  0.201  −0.159  
Band 3 0.927  −0.464  0.220  
Band 4 1.100  −0.722  0.470  
Band 5 −0.931  −0.555  0.530  
Band 6 0.460  −0.417  0.348 
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5.5. Summary 

Neural networks have been proven to be powerful tools for semantic segmentation 

with respect to RGB images. However, the application of those networks to 

multispectral images that have many more bands usually requires a tedious and time-

consuming trial band selection process. To solve this problem, a simple LC-Net is 

proposed in this study to automatically reduce the number of bands to fit that required 

by networks via an embedded learning process at almost no cost. It was found that the 

accuracies (in terms of OA and MA) of the semantic segmentation on RIT-18 were 

significantly improved (12.1% and 14.03%, respectively) when LC-Net was added to 

the networks considered. In comparison to the SGS of the optimal combination of three 

bands (from 20 possible combinations for RIT-18), the segmentation accuracies using 

LC-Net were found to be slightly higher than those of the optimal combination of three 

bands obtained through the time-consuming exhaustive selection. Meanwhile, the 

computational cost of LC-Net was much less than the trial selection process. 
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Chapter 6: Automatic feature selection  

 

This section is based on a journal article being prepared for submission. I declare that 

this paper are purely my own work as the first authorship. The ideas and experiments 

were developed by myself, discussed and approved by my supervisors (Lei Fan is the 

corresponding author). 

 

Yuanzhi Cai 

Lei Fa 

 

Note: This chapter develops a task-adaptive feature selection method. The 

performance of the proposed method is compared with various dimension reduction 

methods including the one proposed in Chapter 5. 
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6.1. Introduction 

Multichannel image refers to image data containing more than three channels 

(typically less than ten channels). It is also known as multispectral image when only 

spectral channels are included. Semantic segmentation of multichannel image is the 

basis for many remote sensing applications, such as cloud detection (S. Chen et al., 

2022; L. Peng et al., 2022; Zhang et al., 2022), land use/ land cover classification 

(Aryal et al., 2022; Song et al., 2021) and forest monitoring (Anees and Aryal, 2014; 

Rajbhandari et al., 2019). 

 

Although additional channels provide more information for semantic segmentation, it 

is not desirable to use extra channels than are necessary for many practical applications. 

Firstly, there is always a cost associated with the acquisition of additional channels. 

For example, the quest for additional spectral channel(s) by multispectral sensors not 

only entails higher financial costs, but often leads to compromises in spatial resolutions. 

Secondly, higher segmentation accuracy can be achieved by excluding unnecessary 

channels that are impacted by noise and false information, and excessive less relevant 

channels (Cai et al., 2022a, 2021b, 2020; Chang, 2022; Chang and Ma, 2022; Lo et al., 

2023; Q. Wang et al., 2020).  

 

For some widely recognised classes of objects (e.g., clouds and water bodies), their 

preferred channel(s) for segmentation have been studied for decades. However, these 

studies are insufficient to meet the challenges in demand for semantic segmentation. 

On one hand, it is often required to segment multiple classes simultaneously. On the 

other hand, more refined object classes and new data are constantly introduced for 
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segmentation. Therefore, an automated channel selection method that can adapt to the 

needs of different tasks is highly desirable. 

 

Currently, the main type of imagery data investigated in the field of channel selection is 

hyperspectral images. In this context, a channel selection task often needs to select 

dozen(s) of channels out of one to two hundred candidate channels. Due to the fine 

spectral resolution of a hyperspectral image, its neighbouring channels often contain 

features that are very similar to each other. Consequently, it is possible to achieve 

semantic segmentation accuracy in the satisfactory range using hyperspectral images 

with removal of redundant channels and can sometimes achieve even higher accuracy 

than using the original hyperspectral channels (S. Huang et al., 2022; Jia et al., 2022; 

Sun and Du, 2019; Q. Wang et al., 2018; Zhai et al., 2019). Coupled with the fact that 

the removal of redundant channels does not rely on labelling information, unsupervised 

methods have become the dominant research direction for channel selection. In 

unsupervised methods, channel selection is typically performed by using one or a 

combination of ranking, clustering and search strategies to optimise various criteria, 

such as entropy (Gong et al., 2016; Sotoca et al., 2007; H. Sun et al., 2022), variants of 

PCA (Chang et al., 1999; Lee et al., 1990; Roger, 1994), and minimising similarity 

(Datta et al., 2015; Du and Yang, 2008; Jia et al., 2016; Rodriguez and Laio, 2014). 

These methods select channels based on the characteristics of the input data themselves 

and do not take into account the preferences of classes to be segmented. In other words, 

they are not task-adaptive. 

 

There are also supervised channel selection methods that make use of label information. 

The major difference between supervised and unsupervised methods lies in their 
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optimisation criteria. More specifically, additional criteria such as prediction accuracy 

(Archibald and Fann, 2007), mutual information criteria (Feng et al., 2015, 2014; Guo 

et al., 2006; Peng et al., 2005) and Fisher score (Gu et al., 2012) became available to 

supervised methods due to the presence of label information. Although existing 

supervised methods are task-adaptive, they often suffer from the following common 

deficiencies. Firstly, most methods use criteria other than prediction accuracy, which 

diverts the optimisation process from obtaining the highest prediction accuracy and is 

likely to lead to selecting channel combinations with sub-optimal accuracy. Secondly, a 

majority (sometimes all) of excluded channels in most channel selection strategies were 

determined by evaluating individual channels. Since “the m best features are not the best 

m features” (Cover, 1974; Jain et al., 2000; Peng et al., 2005), using such selection 

strategies is not the best solution. Finally, most of the existing supervised methods 

require training multiple classifiers and/or training classifier(s) multiple times, which 

leads to low computational efficiency.  

 

As an attempt to resolve the aforementioned issues associated with existing supervised 

methods, a novel one-shot task-adaptive (OSTA) channel selection method is proposed 

in this study. OSTA has the following characteristics: a) directly optimising for 

segmentation accuracy, b) considering channel interactions (i.e., no channel is excluded 

individually), c) integrating channel selection and network fine-tuning within a 

relatively efficient and predictable timeframe. All these characteristics are realised by 

formulating the channel selection as a pruning process for a supernet. As such OSTA 

consists of three stages, namely the training stage of the supernet, the pruning stage, and 

the fine-tuning stage. In this study, the effectiveness and the efficiency of OSTA are 

tested using four datasets, including an eight-band cloud detection dataset named L7 
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Irish (Hughes and Hayes, 2014), a ten-band cloud detection dataset named L8 Biome 

(Foga et al., 2017), a six-band very-high resolution dataset named RIT-18 (Kemker et 

al., 2018) and an eight-channel image dataset that is transformed from a terrestrial laser 

scanning (TLS) point cloud dataset named Semantic3D (Hackel et al., 2017). The major 

contributions of this chapter are:  

(1). Development of a novel channel selection method (i.e., OSTA) to overcome the 

following main issues with the existing methods. They are not dedicated to optimising 

segmentation accuracy, do not take full account of channel interactions and require 

repeated training of classifier(s).  

(2). Comprehensive evaluation of channel selection methods by exhaustive testing of 

the accuracy performance of 3-channel combinations on four benchmark datasets.  

(3). In addition to channel selection, this study also leads to some interesting findings: 

a) there are channel combinations that are robust to the network initialisation; b) the 

coastal aerosol band has been neglected in the past research for cloud detection but 

turns out to be an importance channel for cloud detection according to this study; c) 

training with channel combinations other than the selected one can improve the 

semantic segmentation accuracy. 

6.2. Methodology  

6.2.1. OSTA 

The overall training strategy of OSTA is shown in Figure 6-1. It starts with a supernet 

training stage that accounts for 15% of the total training iterations. At this first stage, 

the objective of the supernet training is to perform semantic segmentation using any 

combination of channels, and during the training the learning rate increases linearly 

from zero to the target value. Subsequently, the channel combinations used for training 
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are progressively pruned according to their validation accuracies until only one 

combination remains. This pruning process accounts for 35% of the total training 

iterations. In the final stage, the remaining 50% of the total training iterations are used 

to fine-tune the semantic segmentation network (SSN) for the selected channel 

combination. The poly learning rate policy is used in the latter two stages. 

 

Figure 6-1: Percentages of training iterations of the three stages in OSTA and the learning rate 
schedule. 

 

The essence of OSTA is to select the channel combination with the best validation 

accuracy. This can ensure two points: a) a good generalisation performance (i.e., 

accuracy) of the selected channel combination, b) the combination of “best m features” 

is taken into account as none of the channels is removed individually. More detailed 

explanations of these three stages are as follows. 

6.2.1.1. Supernet training 

The supernet has two parts: an input layer that is pruned later, which treats each 

channel combination as one of its input channels (ICs), and a subsequent weight-

sharing SSN which takes individual inputs from each input channel (IC) for semantic 

segmentation. The key to a successful supernet training is to train each candidate 

channel (also known as path or branch) fairly, to which many studies have been 

devoted (Chu et al., 2021, 2020; T. Huang et al., 2022; C. Peng et al., 2022; Su et al., 

2021). Fortunately, fair training of candidate channels can be easily achieved in OSTA 
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by randomly sampling ICs during the training. Therefore, pruning from a supernet is 

inherently suitable for implementing channel selection. 

6.2.1.2. Pruning 

To minimise the additional amount of computation required for pruning, a discrete 

forward-only pruning strategy that is based on validation accuracy is proposed. More 

specifically, the training of the SSN is paused uniformly for n times during the pruning 

stage, where n is the number of ICs to be pruned. At each pause, the segmentation 

accuracy of the SSN on the validation set is tested for each remaining IC. The IC with 

the worst validation accuracy is removed in subsequent training. By repeating the 

training of the SSN and the pruning of an IC in sequence, the selected channel 

combination (SCC) (i.e., selected IC) is obtained at the end of the pruning stage. Since 

only one layer in the supernet needs to be pruned, the validation accuracy can serve as 

the equivalent of gradients in OSTA. 

6.2.1.3. Fine-tuning 

This stage is to fine-tune the SSN on the SCC. Since validation accuracy is not required 

for this stage, the validation set can be merged into the training set to fine-tune the 

SSN. 

6.2.2. Establishment of benchmarks 

6.2.2.1. Benchmark data 

Four semantic segmentation datasets are used in this study, including L7 Irish (Hughes 

and Hayes, 2014), L8 Biome (Foga et al., 2017), RIT-18 (Kemker et al., 2018) and 

Semantic3D (Hackel et al., 2017), and they are used as follows. 
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L7 Irish and L8 Biome are processed in the same way as both datasets contain 

multispectral satellite images and are labelled with the same 4 classes (i.e., shadow, 

clear sky, thin cloud and thick cloud). Each dataset is partitioned evenly into a training 

set (75%) and a test set (25%). More specifically, the last of every four images is used 

for testing, according to the order of the images on their official website. As for the 

label configurations, two commonly used ones (L. Peng et al., 2022; Yang et al., 2022) 

are tested in this study. In the first configuration, classes of shadow and clear sky are 

merged into a single class of background. Datasets with this configuration (i.e., 

background, thin cloud and thick cloud) are denoted as L7 Irish 3C and L8 Biome 3C. 

The second configuration is established upon the first one, where classes of thin cloud 

and thick cloud are further merged into a single class of cloud. Datasets with this 

configuration (i.e., background and cloud) are denoted as L7 Irish 2C and L8 Biome 

2C. For L7 Irish and L8 Biome, the bands used in this study are blue (B), green (G), 

red (R), near-infrared (NIR), short-wave infrared (SWIR), thermal low gain (TLG), 

thermal high gain (THG) and mid-infrared (MIR), and coastal aerosol (CA), B, G, R, 

NIR, SWIR1, SWIR2, cirrus (C), thermal 1 (T1) and thermal 2 (T2), respectively.  

 

RIT-18 is a six-band (B, G, R, NIR1, NIR2, NIR3) image dataset having 18 labelled 

classes. The original validation set of RIT-18 is used as the test set in this study. 

 

Semantic3D is originally a point cloud dataset having 8 labelled classes, which is 

transformed into an eight-channel image dataset in this study. The original training set 

of Semantic3D is partitioned into a training set and a test set as in the previous study 

(Cai et al., 2021b). Each point cloud data is transformed into an eight-channel image 

using spherical projection and the enhancement method proposed in (Cai et al., 2022a). 
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Specifically, the following feature channels are included: R, G, B, intensity (I), z-

coordinate image (Z), depth image (D), enhanced z-coordinate image (Ze), and 

enhanced depth image (De).  

 

The key characteristics of benchmark data used are summarised in Table 6-1. Since 

the original images are too large to be fed into the network, they are cropped into 

smaller images without overlaps. The crop sizes are shown in Table 6-1. To calculate 

the validation accuracy, the training set is partitioned into a sub-training set and a sub-

validation set with a similar class distribution in the first two stages of OSTA. 

Table 6-1: Summary of benchmark data used. 

Dataset No. 
classes 

No. 
channels 

No. and size of image(s) 
Crop size 

No. cropped images 
Training Testing Sub-training Sub-validation Testing 

L7 Irish 2C 2 8 155, ≈8000×8000 51, ≈8000×8000 1024×1024 10012 100 3246 
L7 Irish 3C 3 8 155, ≈8000×8000 51, ≈8000×8000 1024×1024 10012 100 3246 
L8 Biome 2C 2 10 72, ≈8000×8000 24, ≈8000×8000 1024×1024 5041 50 1555 
L8 Biome 3C 3 10 72, ≈8000×8000 24, ≈8000×8000 1024×1024 5041 50 1555 
RIT-18 18 6 1, 9393×5642 1, 8833×6918 1024×1024 48 12 63 
Semantic3D 8 8 10, 3600×7200 5, 3600×7200 1024×2048 128 32 80 

 

6.2.2.2. Benchmark methods 

There are three types of benchmark methods used in this study. They are briefly 

introduced in this section. 

 

The first one is the direct feeding (DF), which uses the original multichannel image as 

the input data for the SSN. DF is considered as a baseline method. 

 

The second type of methods are channel selection methods, which select the “best 

channel combination” as input data for the SSN. Different channel selection methods 

will result in different “best channel combination” depending on the selection criteria 

and selection strategy used. To provide the most comprehensive comparison, this study 
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exhaustively tested all possible channel combinations using supervised grid search 

(SGS). Although the SGS test results have implicitly included all the segmentation 

accuracies that can be achieved using existing channel selection methods, this study 

also explicitly compared three recent channel selection methods, including BS-Nets 

(Cai et al., 2020), ONR (Q. Wang et al., 2020) and DARecNet-BS (Roy et al., 2021a). 

 

The third type of methods are feature extraction methods, which use the extracted new 

feature channels as input data for the SSN. Although feature extraction methods have 

been criticized for not preserving the original channels, it is still interesting to test the 

segmentation accuracy they can obtain. Two feature extraction methods are used for 

benchmarking in this study, namely principal component analysis (PCA) and LC-Net 

(Cai et al., 2022b). The former is a classical feature extraction method, while the latter 

is a task-adaptive feature extraction method that performs a linear compression of the 

input data dimensions by learning. 

6.2.2.3. Training setting 

For a fair comparison, the same SSN is used for all tested methods. Specifically, the 

backbone and decoder of SSN are ConvNeXt-T (Z. Liu et al., 2022) and UperNet 

(Xiao et al., 2018), respectively, given their proven performance (Cai et al., 2023). 

Unless otherwise specified, ConvNeXt-T is initialised with the ImageNet pre-trained 

weights. The training strategy used is the same as the original implementation (Z. Liu 

et al., 2022) except for the following points. The total number of training iterations is 

set as 10k. The sizes of the input patches used for the network training are set to 1/4 

of the crop size in Table 6-1, i.e., 512×512 for L7 Irish, L8 Biome and RIT-18, and 

512×1024 for Semantic3D. It is worth noting that the segmentation accuracy can 

significantly be improved by adjusting the histogram of the benchmark datasets to 
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match the distribution of the pre-training dataset, which is implemented in this study. 

Finally, the accuracy evaluation for the Semantic3D data is based on the accuracy of 

the image results. 

 

Except for DF, both channel selection and feature extraction methods require a 

predetermined dimension reduction target. In this study, the dimension reduction 

target of three was tested, i.e., the number of channels of the original multichannel 

image was reduced to three. The rationale for testing this setup is as follows. Firstly, 

for two of the benchmark data used (i.e., RIT-18 and Semantic3D), previous studies 

(Cai et al., 2022a, 2022b) showed that a better segmentation accuracy was achieved 

using a properly selected three channels than that using more channels. Secondly, 

higher accuracy can be obtained when fine-tuning with data similar to the pre-training 

data. Coupled with the fact that most state-of-the-art computer vision models are pre-

trained on RGB datasets, it is often desirable to reduce the dimension of multichannel 

images to 3 in practical applications. For example, compressing four-channel images 

(i.e., red, green, blue and thermal) into three-channel images (i.e., 0.5×(red + thermal), 

0.5×(green + thermal), 0.5×(blue + thermal)) has become a popular fusion method in 

the field of crack detection (F. Liu et al., 2022; Pozzer et al., 2022; Jun Yang et al., 

2019). 

6.2.3. Evaluation metrics 

In total, six evaluation metrics are used in this study to measure the performance of 

OSTA, as shown in Table 6-2. Mean accuracy (mA) and mean intersection over union 

(mIoU) are used as the major accuracy metrics for RIT-18 and other three datasets (i.e., 

L7 Irish, L8 Biome, and Semantic3D), respectively. In addition, two novel accuracy 

metrics are proposed in this study, namely combination accuracy percentile (CAP) and 
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difference in combination accuracy (DCA). CAP measures the ranking of OSTA test 

accuracy against the accuracies of all combinations tested in SGS. This metric 

represents the percentage of SGS combinations that their test accuracies are exceeded 

by OSTA. DCA measures the difference between the test accuracy of “SCC in OSTA” 

(SCCOSTA) and the test accuracy of SCCOSTA in SGS. This metric describes the impact 

of the first two training stages of OSTA on the test accuracy of SCCOSTA. This indicator 

can help better understand the role of the different stages of OSTA 

 

The measure of efficiency is based on the ratio of consumptions (time and memory) 

with OSTA to consumptions without OSTA (i.e., direct training SSN). This allows the 

evaluation metrics to show the additional consumption caused by channel selection in 

percentage. 

Table 6-2: Evaluation metrics used in OSTA. 

Accuracy 

Mean accuracy (mA) 
1
C
�

TPc
Number of pointsc

C

c=1
 

Mean intersection over union (mIoU) 
1
C
�

TPc
TPc + FPc + FNc

C

c=1
 

Combination accuracy percentile (CAP) 

Percentage of SGS-derived combinations with test accuracies lower 
than OSTA accuracy. For an OSTA accuracy that is not identical to 
the SGS accuracy, its CAP is obtained by linear interpolation based 
on the two nearest larger and smaller SGS accuracies. 

Difference in combination accuracy (DAC) Accuracy of SCCOSTA − Accuracy of SCCOSTAin SGS 

Efficiency 
Ratio of additional time (RAT) 

Time of training OSTA
Time of direct training SSN

− 100%  

Ratio of additional memory (RAM) 
Memory of training OSTA

Memory of direct training SSN
− 100%  

Where TPc, FPc, and FNc represent the true positive, false positive and false negatives of class c, 
respectively. 

 

6.3. Experiments and results 

6.3.1. Semantic segmentation on benchmarks 

The qualitative semantic segmentation results are visualised in Figure 6-2, where the 

horizontal and vertical coordinates show the relative accuracy (CAP) and absolute 
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accuracy (mIoU/mA), respectively. Each data point regarding the SGS method 

represents the segmentation accuracy of each three-channel combination tested. 

 

  

  

  
Figure 6-2: Semantic segmentation results on benchmark data. 

 

DF is the worst one among all benchmark methods. For all benchmark data, a 

randomly selected 3-channel combination would likely achieve higher accuracy than 

DF. This demonstrates the value of band selection for semantic segmentation of 

multichannel images. The reason for this is that fine-tuning with data that has the same 

channel number as the pre-training data can result in higher accuracy, as mentioned in 

Section 6.2.2.3. 

 

It was noticed that the CAPs of existing dimension reduction methods (i.e., PCA, LC-

Net, BS-Net, ONR and DARecNet) were unstable across benchmark data. This 

indicates that they are short of task adaptability. In contrast, the proposed OSTA 
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achieved the highest accuracy (i.e., saturated CAP of 100%) in all tests, which proved 

its effectiveness. It was surprising that OSTA was able to outperform the  highest SGS 

accuracy. Since existing channel selection methods train the SSN with the SCC alone, 

the highest SGS accuracy is usually considered to be the upper limit achievable. 

Investigating the reason why OSTA can exceed this upper limit is one of the focuses 

of subsequent ablation study (Section 6.3.3). 

 

The quantitative segmentation accuracies are summarised in Table 6-3, together with 

the index of the SCC and the DCA where applicable. It was found that even for the 

same object (i.e., cloud), SGS selected different channel combinations for different 

granularity of annotation (L7 Irish 3C verse L7 Irish 2C and L8 Biome 3C verse L8 

Biome 2C). This demonstrates the importance of task adaptive capacity for channel 

selection methods. In addition, it was noticed that the SCC were different for OSTA 

and SGS. This observation was further investigated in Section 6.3.3 

Table 6-3: Summary of the semantic segmentation results on benchmark data. 
 L7 Irish 3C L8 Biome 3C RIT-18 

Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % Index mA % CAP % DCA % 
DF - 57.39 8.33 - - 59.24 2.21 - - 48.41 0 - 
Feature 
extraction 

PCA - 58.31 35.04 - - 62.96 27.64 - - 58.99 8.21 - 
LC-Net - 60.38 89.96 - - 65.27 85.56 - - 64.86 95.96 - 

Channel  
selection 

BS-Nets  42 57.68 14.29 0 30 63.97 62.50 0 4 64.09 70.00 0 
ONR  36 59.78 78.57 0 81 63.89 56.67 0 7 63.99 65.00 0 
DARecNet 32 59.38 67.86 0 82 63.35 41.67 0 3 64.33 80.00 0 
SGS 50 61.54 100.00 0 3 67.94 100.00 0 19 65.32 100.00 0 
OSTA 56 62.49 100.00 +1.42 9 68.38 100.00 +1.69 19 66.53 100.00 +1.21 

 L7 Irish 2C L8 Biome 2C Semantic3D 
Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % 

DF - 68.59 11.45 - - 76.97 0 - - 61.44 4.47 - 
Feature 
extraction 

PCA - 70.52 45.71 - - 83.99 17.92 - - 66.13 49.68 - 
LC-Net - 72.67 91.84 - - 87.00 89.17 - - 69.67 93.79 - 

Channel  
selection 

BS-Nets  42 70.76 50.00 0 30 86.72 73.33 0 34 68.72 80.36 0 
ONR  36 72.10 78.57 0 81 87.19 95.83 0 27 62.96 10.71 0 
DARecNet 32 71.04 51.79 0 82 87.12 90.83 0 43 65.26 35.71 0 
SGS 56 74.91 100.00 0 106 87.32 100.00 0 56 70.27 100.00 0 
OSTA 50 75.40 100.00 +1.69 23 87.63 100.00 +0.42 36 70.86 100.00 +1.08 

 

6.3.2. Efficiency of OSTA 

The efficiency performances of OSTA are shown in Table 6-4. It was observed that 

the RAM of OSTA was equal to zero. This was because the calculations required for 
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the proposed pruning method were the same as the forward calculations for training 

and did not require additional GPU memory. 

The calculation for estimating RATs and the measured RATs are shown in Table 6-4. 

The number of equivalent pruning iterations required for L7 Irish, L8 Biome, RIT-18 

and Semantic3D was calculated to be 398.8%, 196.7%, 6.27% and 127.6% of the 

number of total training iterations, respectively. The final estimated RAT values were 

much smaller than these values (i.e., 83.3%, 196.7%, 1.35% and 32.54%, respectively) 

because a pruning iteration took much less time than a training iteration. The estimated 

RATs were close to, but slightly lower than the actual measured values. This is because 

parallelism was not perfect during the actual calculation. Nevertheless, this proves that 

the time consumption of OSTA was predictable. 

Table 6-4: Efficiency metrics and calculation of OSTA. 
 L7 Irish L8 Biome RIT-18 Semantic3D 
RAM 0 0 0 0 

RAT 

Calculation 
steps for 
estimation 

Patches to be processed in each  
epoch of sub-validation set 100 × 4 = 400 50 × 4 = 200 12 × 4 = 48 32 × 4 = 128 

Total number of 3-channel  
combinations 56 120 20 56 

Total number of epochs of sub- 
validation set during pruning 

56 + 55…+ 2  
= 1595 

120 + 119…+ 2  
= 7259 

20 + 19… + 2  
= 209 

56 + 55… + 2  
= 1595 

Total equivalent pruning iterations 400 × 1595 / 16 
= 39875 

200 × 7259 / 16 
= 90737.5 

48 × 209 / 16 
= 627 

128 × 1595 / 16 
= 12,760 

Ratio between equivalent pruning  
and training iterations 398.8% 907.4% 6.27% 127.6% 

Ratio between time of a pruning 
and a training iteration (measured) 20.9% 21.7% 21.5% 25.5% 

Estimated RAT 398.8% × 20.9% 
= 83.3% 

907.4% × 21.7%  
= 196.7% 

6.27% × 21.5%  
= 1.35% 

127.6% × 25.5%  
= 32.54% 

Measured RAT 85.5% 198.1% 1.71% 37.7% 

 

6.3.3. Ablation study 

6.3.3.1. Replacing for pruning stage 

The pruning had two components, including the pruning criteria and the pruning 

strategy. The effect of using different pruning criteria on the final accuracy was first 

tested. The test results are shown in Table 6-5. The highest accuracies were achieved 

when using the validation accuracy as the pruning criterion. In addition, these SCCs 
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all achieved higher accuracies in Tests 1 to 3 than they did in the SGS (i.e., positive 

DCAs). This suggested that the pruning criteria were not the reason for obtaining a 

positive DCA. 

Table 6-5: Results of replacing pruning criteria. 
 Pruning criteria L7 Irish 3C L8 Biome 3C RIT-18 

Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % Index mA % CAP % DCA % 
OSTA Validation accuracy 56 62.49 100.00 +1.42 9 68.38 100.00 +1.69 19 66.53 100.00 +1.21 
Test 1 Train accuracy 34 60.75 94.90 +0.40 16 66.73 96.94 +0.81 14 65.45 100.00 +1.57 
Test 2 PCA 42 58.53 41.14 +0.85 90 64.56 76.33 +0.92 8 65.00 97.17 +1.23 
Test 3 Entropy 49 58.23 31.92 +0.77 65 65.72 89.11 +0.37 20 64.01 66.00 +1.89 

  L7 Irish 2C L8 Biome 2C Semantic3D 
Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % 

OSTA Validation accuracy 50 75.40 100.00 +1.69 23 87.63 100.00 +0.42 36 70.86 100.00 +1.08 
Test 1 Train accuracy 53 73.65 98.02 +1.16 28 87.40 90.76 +0.49 21 69.61 93.32 +0.62 
Test 2 PCA 42 71.47 63.17 +0.71 90 83.59 11.67 +0.33 51 67.70 60.04 +0.46 
Test 3 Entropy 49 71.98 73.75 +0.39 65 85.45 35.42 +0.75 1 63.12 12.69 +1.25 

 

In the second ablation experiment, a very aggressive pruning strategy was tested. It 

ranked the validation accuracy for all channel combinations once at the end of the 

supernet training (i.e., stage 1) and the combination with the highest accuracy was 

selected for subsequent fine-tuning. The original iterations used for pruning were 

merged into the fine-tuning stage in this strategy. The results in Table 6-6 suggested 

that an overaggressive pruning strategy could lead to a remarkable drop in the final 

accuracy. Nevertheless, relatively large positive DCAs were still obtained in this 

ablation experiment, suggesting that the main cause for the positive DCA would not 

be in the pruning stage. 

Table 6-6: Results of replacing pruning strategy. 
 Pruning strategy L7 Irish 3C L8 Biome 3C RIT-18 

Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % Index mA % CAP % DCA % 

OSTA Discrete forward-only  
pruning strategy 56 62.49 100 +1.42 9 68.38 100.00 +1.69 19 66.53 100 +1.21 

Test 4 Ranking at the end of 
stage 1 13 60.56 92.52 +0.73 16 66.51 95.56 +0.59 16 65.24 99.30 +0.95 

  L7 Irish 2C L8 Biome 2C Semantic3D 
Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % 

OSTA Discrete forward-only  
pruning strategy 50 75.40 100 +1.69 23 87.63 100.00 +0.42 36 70.86 100 +1.08 

Test 4 Ranking at the end of 
stage 1 39 73.95 98.57 +1.37 32 87.38 100.00 +0.38 11 69.95 96.16 +0.75 
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6.3.3.2. Replacing for supernet training stage 

The results of ablation on the supernet training stage are shown in Table 6-7. When 

the linear warmup was removed, the poly learning rate policy was used for all stages 

of OSTA. Meanwhile, when the supernet training was removed, OSTA was started 

directly from the pruning stage. From the results of Test 5-7, it is clear that the entire 

supernet training stage was the key to achieving the positive DCA. 

Table 6-7: Results of removing linear warmup and/or supernet training stage. 

 
Removing L7 Irish 3C L8 Biome 3C RIT-18 

Linear 
warmup 

Supernet 
training Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % Index mA % CAP % DCA % 

OSTA N N 56 62.49 100.00 +1.42 9 68.38 100.00 +1.69 19 66.53 100.00 +1.21 
Test 5 Y N 56 62.36 100.00 +1.29 2 68.31 100.00 +1.50 19 66.25 100.00 +0.93 
Test 6 N Y 53 61.06 98.13 +0.63 23 67.49 98.90 +0.51 19 65.77 100.00 +0.45 
Test 7 Y Y 26 60.57 92.63 -0.02 1 66.49 95.49 +0.28 10 64.69 92.00 +0.04 

  L7 Irish 2C L8 Biome 2C Semantic3D 
Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % 

OSTA N N 50 75.40 100.00 +1.69 23 87.63 100.00 +0.42 36 70.86 100.00 +1.08 
Test 5 Y N 33 74.13 98.84 +0.56 2 87.54 100.00 +0.26 36 70.66 100.00 +0.87 
Test 6 N Y 33 73.70 98.09 +0.13 81 87.41 100.00 +0.22 56 70.59 100.00 +0.32 
Test 7 Y Y 12 73.44 94.54 +0.04 96 87.34 100.00 +0.14 55 70.11 97.29 -0.14 

 

Based on this finding, an additional set of tests was conducted. The selected 

combinations by OSTA were used to directly fine-tune the trained supernet. The 

results in Table 6-8 confirmed that using the trained supernet as a pre-trained model 

can improve DCA, and indicated that the pruning stage can further boost DCA. 

Table 6-8: Results of directly fine-tuning the trained supernet with selected combinations by OSTA. 

 
Direct fine-tune the 
trained supernet  
on channel combination 

L7 Irish 3C L8 Biome 3C RIT-18 

Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % Index mA % CAP % DCA % 

OSTA - 56 62.49 100.00 +1.42 9 68.38 100.00 +1.69 19 66.53 100.00 +1.21 
Test 8 Selected by OSTA  56 62.06 100.00 +1.09 9 68.13 100.00 +1.44 19 66.05 100.00 +0.73 

  
L7 Irish 2C L8 Biome 2C Semantic3D 

Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % 
OSTA - 50 75.40 100.00 +1.69 23 87.63 100.00 +0.42 36 70.86 100.00 +1.08 
Test 8 Selected by OSTA  50 74.87 99.94 +1.16 23 87.43 100.00 +0.22 36 70.48 100.00 +0.70 

 

6.3.3.3. Replacing for pretrained weights in SSN 

As shown in Table 6-7, pruning from different initial conditions may select different 

channel combinations, which can be interpreted from the following perspective. For a 

given dataset and SSN, the “best” channel combination may not be fixed for different 
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initial values of parameters used. Therefore, two additional network initialization 

methods were tested in this ablation study, including a SSN fine-tuning on the 

Cityscapes (Cordts et al., 2016) (based on parameters trained on ImageNet) and a 

randomly initialized SSN. Due to the tremendous amount of work required for 

benchmarking, only the Semantic3D data was tested. Semantic3D was chosen because 

it contains scenes similar to that in the Cityscapes. It is of interest to test the effect of 

using a dataset from similar scenes to pre-train the SSN on segmentation accuracy. 

Table 6-9: Results of replacing for pretrained weights in SSN. 
 ImageNet Cityscapes Random 

Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % Index mIoU % CAP % DCA % 
DF - 61.44 4.47 - - 64.58 17.86 - - 45.77 86.31 - 
Feature 
extraction 

PCA - 66.13 49.68 - - 63.85 14.17 - - 35.46 9.69 - 
LC-Net - 69.67 93.79 - - 70.30 96.76 - - 46.79 91.84 - 

Channel  
selection 

BS-Nets  34 68.72 80.36 0 34 69.63 87.50 0 34 38.33 33.93 0 
ONR  27 62.96 10.71 0 27 64.08 16.07 0 27 33.08 7.14 0 
DARecNet 43 65.26 35.71 0 43 67.41 53.57 0 43 45.79 87.50 0 

Top 10 
in SGS 

56 70.27 100.00 0 36 71.19 100.00 0 26 52.70 100.00 0 
55 70.25 98.21 0 46 70.88 98.21 0 46 50.08 98.21 0 
46 69.98 96.43 0 55 70.17 96.43 0 11 49.62 96.43 0 
36 69.78 94.64 0 56 70.13 94.64 0 36 47.13 94.64 0 
52 69.55 92.86 0 21 70.02 92.86 0 25 46.83 92.86 0 
25 69.30 91.07 0 19 69.86 91.07 0 6 46.76 91.07 0 
11 69.20 89.29 0 14 69.82 89.29 0 33 46.56 89.29 0 
21 68.99 87.50 0 34 69.63 87.50 0 43 45.79 87.50 0 
19 68.80 85.71 0 5 69.57 85.71 0 56 45.76 85.71 0 
44 68.76 83.93 0 39 69.46 83.93 0 21 45.34 83.93 0 

OSTA 36 70.86 100.00 +1.08 46 71.39 100.00 +0.51 26 55.97 100.00 +3.27 

 

The results are summarised in Table 6-9, which supported the speculation that using 

different pre-training parameters would lead to changes in the “best” channel 

combination. Nevertheless, OSTA achieved the highest accuracy for all the 

initialisation cases tested, again proving its task adaptive capability. In addition, almost 

all methods achieved better absolute segmentation accuracies (mIoU) using the 

cityscapes pre-trained SSN than using the ImageNet pre-trained SSN. This illustrates 

the importance of similarity between the fine-tuning and pre-training data for the fine-

tuning accuracy. 
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6.4. Discussion 

6.4.1. Most robust combination 

It was found that some channel combinations from SGS in Table 6-9 achieved 

promising CAPs regardless of the initialisation values used for the parameters, which 

are summarised in Table 6-10. Among these combinations, the combination 46 

achieved excellent CAPs for all cases with an average value of 97.62%. The channel 

combination with such a characteristic is referred to as the most robust combination 

(MRC). Designing selection criteria for MRC is meaningful future work. The detailed 

segmentation results for the channel combinations in Table 6-10 are shown in Table 

6-11, which might provide some inspiration for readers. For example, by changing the 

dimension used for sorting (Table 6-12), it was seen that combinations 46 and 36 

dominated the highest segmentation accuracy for the two most difficult classes, i.e., 

hard scape and scanning artefacts, respectively. 

Table 6-10: Summary of recurring channel combinations in the Top 10 of SGS. 
Index Channels CAP % 

ImageNet Cityscapes Random Average Standard deviation 
11 R B De 89.29 67.86 96.43 84.52 14.87 
36 G Ze De 94.64 100.00 94.64 96.43 3.09 
46 B Ze De 96.43 98.21 98.21 97.62 1.03 
55 Z Ze De 98.21 96.43 75.00 89.88 12.92 
56 D Ze De 100.00 94.64 85.71 93.45 7.22 

 

Table 6-11: Detailed segmentation results for combinatios in Table 6-10. 

Pretrained 
weights Index CAP % mIoU % 

IoU % 

Man-made Natural High 
Veg. 

Low 
Veg. Buildings Hard 

scape 
Scanning 
artefacts Cars 

ImageNet 

11 89.29 69.20 91.81 83.67 88.17 62.04 89.27 31.47 36.17 71.01 
36 94.64 69.78 92.49 83.91 88.84 63.85 88.00 30.57 39.21 71.16 
46 96.43 69.98 92.83 83.60 87.80 66.66 88.40 35.08 35.06 70.43 
55 98.21 70.25 92.78 84.83 89.38 65.61 88.57 31.00 39.22 70.64 
56 100.00 70.27 92.66 86.71 90.19 70.23 88.00 34.64 24.16 75.23 

Cityscapes 

11 67.86 68.70 90.07 81.15 86.29 60.17 87.41 31.69 40.73 72.08 
36 100.00 71.19 92.43 83.66 88.94 62.38 89.93 36.05 43.35 72.78 
46 98.21 70.88 92.42 83.86 88.46 61.47 89.96 36.42 43.01 71.46 
55 96.43 70.17 92.97 83.46 87.87 62.56 87.60 34.49 39.17 73.21 
56 94.64 70.13 92.31 85.42 89.45 61.93 90.20 36.26 33.69 71.75 

Random 

11 96.43 49.62 82.28 47.90 84.62 33.08 77.34 14.67 28.70 28.39 
36 94.64 47.13 62.99 33.83 85.35 30.75 76.38 20.30 31.6 35.88 
46 98.21 50.08 76.69 51.08 82.90 31.51 78.51 21.12 27.46 31.36 
55 75.00 44.89 77.68 33.78 76.35 23.78 72.02 20.27 27.87 27.35 
56 85.71 45.76 81.61 44.43 69.63 26.98 75.74 20.34 24.71 22.61 
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Table 6-12: Replication of Table 6-11, re-arranged in the vertical direction according to the 
combination used. The bolded one indicate the best accuracy for that class were achieved by using 

corresponding combination. 

Index Pretrained 
weights CAP % mIoU % 

IoU % 

Man-made Natural High 
Veg. 

Low 
Veg. Buildings Hard 

scape 
Scanning 
artefacts Cars 

11 
ImageNet 89.29 69.20 91.81 83.67 88.17 62.04 89.27 31.47 36.17 71.01 
Cityscapes 67.86 68.70 90.07 81.15 86.29 60.17 87.41 31.69 40.73 72.08 
Random 96.43 49.62 82.28 47.90 84.62 33.08 77.34 14.67 28.70 28.39 

36 
ImageNet 94.64 69.78 92.49 83.91 88.84 63.85 88.00 30.57 39.21 71.16 
Cityscapes 100.00 71.19 92.43 83.66 88.94 62.38 89.93 36.05 43.35 72.78 
Random 94.64 47.13 62.99 33.83 85.35 30.75 76.38 20.30 31.60 35.88 

46 
ImageNet 96.43 69.98 92.83 83.60 87.80 66.66 88.40 35.08 35.06 70.43 
Cityscapes 98.21 70.88 92.42 83.86 88.46 61.47 89.96 36.42 43.01 71.46 
Random 98.21 50.08 76.69 51.08 82.90 31.51 78.51 21.12 27.46 31.36 

55 
ImageNet 98.21 70.25 92.78 84.83 89.38 65.61 88.57 31.00 39.22 70.64 
Cityscapes 96.43 70.17 92.97 83.46 87.87 62.56 87.60 34.49 39.17 73.21 
Random 75.00 44.89 77.68 33.78 76.35 23.78 72.02 20.27 27.87 27.35 

56 
ImageNet 100.00 70.27 92.66 86.71 90.19 70.23 88.00 34.64 24.16 75.23 
Cityscapes 94.64 70.13 92.31 85.42 89.45 61.93 90.20 36.26 33.69 71.75 
Random 85.71 45.76 81.61 44.43 69.63 26.98 75.74 20.34 24.71 22.61 

 

6.4.2.  Coastal aerosol band for cloud detection 

The CA band has always been ignored in the field of cloud detection. When L8 Biome 

was established, the CA band was not used to label clouds, as stated in (Foga et al., 

2017) that “Band 1 (coastal aerosol) was never used”. However, this study suggested 

that CA might be an important channel for cloud detection. As shown in Table 6-13, 

the CA band was frequently present in the top 10 of all SGS channel combinations for 

the L8 Biome benchmark data. In particular, 8 of those top 10 combinations included 

the CA band for segmenting clouds into thin and thick clouds. In the future, it would 

be of interest to use methods such as Bradley-Terry model (Stein et al., 2005) to 

statistically analyse the error matrices generated by different channel combinations. 

New index might be developed for cloud detection. In addition, it is conjecture that for 

other remote sensing tasks, “CA band” could also exist. 
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Table 6-13: Top 10 in SGS for cloud detection benchmark data. 
 L7 Irish 3C L7 Irish 2C L8 Biome 3C L8 Biome 2C 

Index Band 1 Band 2 Band 3 Index Band 1 Band 2 Band 3 Index Band 1 Band 2 Band 3 Index Band 1 Band 2 Band 3 

Top 10 
in SGS 

50 NIR TLG THG 56 TLG THG MIR 3 CA B NIR 106 NIR SWIR2 T1 
56 TLG THG MIR 50 NIR TLG THG 10 CA G NIR 22 CA NIR SWIR1 
5 B G THG 33 G SWIR MIR 23 CA NIR SWIR2 107 NIR SWIR2 T2 

25 G R THG 12 B NIR SWIR 2 CA B R 23 CA NIR SWIR2 
26 G R MIR 27 G NIR SWIR 9 CA G R 96 R SWIR2 T1 
53 SWIR TLG THG 39 R NIR THG 22 CA NIR SWIR1 81 G SWIR2 T1 
34 G TLG THG 26 G R MIR 74 G NIR T1 103 NIR SWIR1 T1 
6 B G MIR 38 R NIR TLG 1 CA B G 60 B SWIR2 T1 

15 B NIR MIR 53 SWIR TLG THG 37 B G R 27 CA SWIR1 SWIR2 
39 R NIR THG 34 G TLG THG 16 CA R NIR 57 B SWIR1 T1 

 

6.4.3. Training with channel combinations other than the selected one 

It was found that both the supernet training and the pruning stages boosted DCA. These 

two stages shared common operations in that they both used channel combinations 

other than SCC to train the SSN. Training in this way could force the SSN to learn to 

use channel-invariant features for semantic segmentation. This is the reason why SCC 

in OSTA can achieve higher accuracy than training SSN with SCC alone (i.e., in SGS). 

This may provide insight for the development of new methods for model pre-training 

and/or data augmentation. In addition, it is conjectured that this mechanism can be 

used to reduce the domain-shift problem caused by the different spectrums used in 

image sensors. Integration of this mechanism with existing methods (Aryal and 

Neupane, 2023; Z. Li et al., 2022; Yan et al., 2020) may lead to better solutions for 

domain adaptation. 

6.4.4. Limitation of OSTA 

The major limitation of OSTA is that it still requires the prerequisite setting of 

dimension reduction target. Therefore, developing a channel selection method that can 

automatically determine the optimal number of channels is meaningful for future work. 
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A complementary future work is to develop pre-trained models based on multichannel 

image datasets. This will not only benefit the task of channel selection, but will greatly 

facilitate the advancement of the field of multichannel image processing. 

6.5. Summary 

This study confirmed that it was always desirable to use fewer feature channels to 

achieve higher semantic segmentation accuracy. Although many channel selection 

methods have been developed to achieve this aim, they have several limitations. 

Limitations affecting the semantic segmentation accuracy come from the use of 

selection criteria other than segmentation accuracy and the use of evaluation of 

individual channels to select channel combinations. Meanwhile, the limitation 

affecting efficiency comes from the repetitive training of classifier(s). A one-shot task-

adaptive (OSTA) channel selection method was proposed in this study to determine a 

channel combination with the-state-of-art accuracy of semantic segmentation, in 

comparison to the existing methods. OSTA was based on the concept of pruning from 

a supernet, which integrated the channel selection and SSN training processes, thus 

avoiding repetitive training of SSN. The limitations affecting accuracy were addressed 

by using the semantic segmentation accuracy of different channel combinations on the 

validation set as the pruning criterion in OSTA. The effectiveness and efficiency of 

OSTA were tested using four datasets, including L7 Irish, L8 Biome, RIT-18 and 

Semantic3D. OSTA achieved the highest semantic segmentation accuracies in all 

benchmark tests. Compared to a single training session of SSN, OSTA did not require 

extra memory footprint, and took a minimum of 1.71% to a maximum of 198.1% extra 

time (predictable) to select the best 3-channel combination for four datasets tested. 
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To the best knowledge of the authors, OSTA was found to be the first channel selection 

method that produced a semantic segmentation accuracy exceeding the highest 

accuracy obtained by exhaustive tests of channel combinations. Experiments 

suggested that this was because training the SSN with extra channel combinations 

could improve the semantic segmentation accuracy. This mechanism can potentially 

be used to develop new pre-training/data augmentation methods. 

 

Experiments also revealed that in addition to the “best channel combinations”, there 

was a most robust channel combination that achieved excellent accuracy performance 

regardless of the network parameter initialisation method used. It is recommended that 

future work be devoted to design selection criteria for this type of channel combination. 

 

It was also interesting to find out that the coastal aerosol band was important for cloud 

detection. New cloud detection methods could be developed in the future based on this 

finding. 
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Chapter 7: Stacking-based semantic segmentation 

framework 

 

This chapter is based on the published paper: Cai, Y., Fan, L., Fang, Y., 2023a. SBSS: 

Stacking-Based Semantic Segmentation Framework for Very High-Resolution 

Remote Sensing Image. IEEE Trans. Geosci. Remote Sens. 61, 1–14. 

https://doi.org/10.1109/TGRS.2023.3234549  

 

Note: This chapter develops a novel framework to improve the semantic segmentation 

accuracy for images. The different methods developed in this thesis are also integrated 

in this chapter and its performance is tested on Semantic3D. 
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7.1. Introduction 

Semantic segmentation is a fundamental task for many remote sensing applications, 

such as land cover classification, cloud detection and urban scene understanding (Cai 

et al., 2022a, 2021b; Yang Chen et al., 2022a, 2022b; Ding et al., 2020; Hansch and 

Hellwich, 2021; Tokarczyk et al., 2015; Wei and Hansch, 2022). With the rapid 

development of imaging technology, the resolution of the acquired images has 

significantly improved. This trend is also reflected in the publicly available semantic 

segmentation datasets. For example, the image resolutions are approximately 480p 

(480×367) in the PASCAL VOC2012 dataset (Everingham et al., 2012), 2k 

(2048×1024) in the Cityscapes (2016) dataset (Cordts et al., 2016), and 4k (4096×2160 

to 3840×2160) in the recently released UAVid (2020) dataset (Lyu et al., 2020). For a 

fixed imaging distance, higher camera resolution means finer spatial resolution of an 

image acquired. The rich spatial details in Very High Resolution (VHR) images 

provide an opportunity for more accurate semantic segmentation of a target scene. 

However, the use of VHR images poses a new challenge to the semantic segmentation 

task, i.e., the simultaneous segmentation of objects with large scale discrepancies. This 

is caused by the fact that the fine spatial resolution of VHR images enables 

segmentation of objects at smaller scales. 

 

Extensive research has been conducted to address this challenge, where deep learning 

has become the dominant approach. A typical semantic segmentation neural network 

consists of two components: the encoder and the decoder. The encoder is responsible 

for extracting features from an input image at multiple down-sampling scales. 

Subsequently, by interpreting these extracted features, the decoder assigns an 
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appropriate label to each pixel in the image. Various designs have been proposed for 

these two components to achieve better segmentation performance. 

 

Encoders can broadly be divided into single branch networks and multi-branch 

networks, according to their macro designs. The representative single-branch encoder 

networks include VGGNet (Simonyan and Zisserman, 2015), ResNet (He et al., 2016), 

Xception (Chollet, 2017), MobileNetV2 (Sandler et al., 2018), Swin (Liu et al., 2021b) 

and ConvNeXt (Z. Liu et al., 2022), which extract features at progressively reduced 

scales in a tandem fashion. The representative multi-branch networks include BiSeNet 

(Yu et al., 2018) and HRNet (Jingdong Wang et al., 2021). BiSeNet uses the spatial 

path and the context path to extract high-resolution spatial details and global contextual 

information, respectively. HRNet uses four parallel branches to extract high-level 

features at four down-sampling scales simultaneously.  

 

A critical aspect of the decoder design is to expand the receptive field to model long-

range dependencies without reducing the spatial resolution. Based on the mechanisms 

for long-range dependency modelling, decoders can be classified as convolution-based 

networks and dot-product attention-based networks. The well-known convolution-

based ones include U-Net (Ronneberger et al., 2015), Spatial Pyramid Pooling (SPP) 

(He et al., 2015), Pyramid Pooling Module (PPM) (Zhao et al., 2017) and Atrous 

Spatial Pyramid Pooling (ASPP) (Chen et al., 2018a, 2018b, 2017), which rely mainly 

on the pyramid-like structure. Meanwhile, the success of dot-product attention-based 

networks is due to their global modelling ability. However, the computational cost of 

the dot-product attention mechanism increases quadratically with the size of the 

features used (Dosovitskiy et al., 2020). Therefore, efficient use of this mechanism is 
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a main focus of the relevant previous research, which includes Dual Attention Network 

(DANet) (Li et al., 2021), Disentangled Non-Local Neural Networks (DNLNet) (Yin 

et al., 2020), Object Context network (OCRNet) (Yuan et al., 2020), Attentive Bilateral 

Contextual network (ABCNet) (Li et al., 2021) and Multiattention Network (MANet) 

(R. Li et al., 2022).  

 

Although there are various designs of segmentation networks, they share one common 

characteristic, which is that features can only be extracted on a predefined set of scales. 

Due to computational constraints, it is impractical to extract features at too many scales 

(currently up to four scales) in a segmentation network. However, there is no guarantee 

that those pre-defined scales are the optimal ones for a given application scenario. To 

enable a segmentation network to analyse images at a wider range of scales, it is the 

common practice to use a test-time data augmentation called the Multi Scale (MS) test. 

The MS resizes the original images to various scales and feeds them into a 

segmentation network. The output segmentation maps are then often assembled by 

average voting. In addition, the MS is typically used in conjunction with training-time 

multi-scale data augmentation. When both methods are used, the entire segmentation 

framework falls under an ensemble learning technique called bootstrap aggregating 

(Bagging) (Breiman, 1996). More specifically, images at different scales are used as 

the bagging samples in this process. The role of bagging is to reduce the variance of 

errors among multiple predictions using different bagging samples (Breiman, 2001; 

Bühlmann and Yu, 2002). In other words, the MS works best if the prediction error for 

each class is randomly distributed over the scales used for the image resizing. The MS 

has become the default method for testing the best performance of a segmentation 
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network. However, it is worth investigating whether there is a better method to fuse 

the segmented maps resulting from input images of different resizing scales. 

 

It is common sense that the size distribution of objects of different classes in an image 

is similar to that in reality, despite the effects of perspective. For example, larger 

objects in reality are usually also larger in images (e.g., buildings often occupy a large 

area in street view images). Meanwhile, studies have shown that the size of the 

effective receptive field for a network is limited (Ding et al., 2022; Kim et al., 2021; 

Luo et al., 2017). Therefore, it is hypothesised that for a given segmentation network 

and a dataset, each class may have its preferred resizing scale for segmentation. More 

specifically, the classes that typically have large objects may prefer to be shrunk so 

that they can be fitted into the effective receptive field and segmented as a whole, while 

the classes that typically have small objects may prefer to be zoomed in to avoid 

becoming indistinguishable after being downsampled by the segmentation network. In 

other words, the prediction errors for each class may have biases related to the resizing 

scales. 

 

Based on this hypothesis and inspired by previous studies (Leblanc and Tibshirani, 

1996; Wolpert, 1992), a Stacking-Based Semantic Segmentation (SBSS) framework 

was proposed in this study to reduce the error associated with the resizing scales. In 

the SBSS framework proposed, a segmentation map obtained at the smaller scale is 

gradually corrected by a learnable Error Correction Module (ECM) using a 

segmentation map obtained at a larger resizing scale. This process starts with an initial 

segmentation map at the smallest scale considered and is repeated multiple times (each 

time, a larger scale was used). The computational complexity of the SBSS framework 
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is flexible, which can be altered by assigning different Error Correction Schemes 

(ECS). In particular, two ECS were proposed in this study, namely ECS-MS and ECS-

SS, which have similar Floating-point operations (Flops) to the MS test and the Single-

Scale (SS) test, respectively. The ECS-MS is designed for the applications requiring 

the highest possible segmentation accuracy. Meanwhile ECS-SS is designed for 

applications where Graphics Processing Unit (GPU) memory is limited. The 

effectiveness of the SBSS framework was demonstrated on four datasets, including 

Cityscapes, UAVid, LoveDA and Potsdam, which cover a variety of scenarios (e.g., 

urban and rural) and acquisition perspectives (e.g., street levels, inclined drones and 

aerial views). 

7.2. SBSS framework 

7.2.1. Overview of SBSS framework 

For n selected scales (sorted from the smallest to the largest), the workflow of the 

SBSS framework is illustrated in Figure 7-1 where 𝑌𝑌 = 1~𝑛𝑛. The explanations of the 

abbreviations used are listed in Table 7-1. To implement SBSS, an initial segmentation 

map (𝑌𝑌1) is required, which is obtained using the following two steps: (1) an original 

input image is resized to the smallest scale considered; (2) the resized input image (𝑋𝑋1) 

is fed to a segmentation network to obtain the initial segmentation map. 
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Figure 7-1: Workflow of one iteration of the SBSS framework, in which 𝑌𝑌𝑖𝑖 and 𝑋𝑋𝑖𝑖+1 are the input 
maps; 𝑌𝑌𝑖𝑖→𝑖𝑖+1,s,c is the output map of one iteration and the segmentation map (i.e., a new 𝑌𝑌𝑖𝑖) for the 

next iteration; the loop is ended when 𝑌𝑌 + 1 =  𝑛𝑛 (i.e., the number of scales used in SBSS); the area(s) 
A are determined by the error correction scheme, and are also applied to 𝑋𝑋𝑖𝑖+1 and 𝑌𝑌𝑖𝑖→𝑖𝑖+1. 

 

Table 7-1: The explanations of the abbreviations used in Figure 7-1. 
Abbreviations Explanations 
𝑌𝑌𝑖𝑖  The segmentation map of the ith scale. 
𝑌𝑌𝑖𝑖→𝑖𝑖+1  The segmentation map resized from the ith to the (𝑌𝑌 + 1)th scale. 
𝑌𝑌𝑖𝑖,s  The selected area in 𝑌𝑌𝑖𝑖 for error correction. 
𝑋𝑋𝑖𝑖+1  The input image that is resized to the (𝑌𝑌 + 1)th scale. 
𝑋𝑋𝑖𝑖+1,s  The selected area from 𝑋𝑋𝑖𝑖+1 for error correction. 
𝑌𝑌𝑖𝑖+1,s  The segmentation map obtained using 𝑋𝑋𝑖𝑖+1,s as the input. 
𝑌𝑌𝑖𝑖+1,s,c  The corrected map 𝑌𝑌𝑖𝑖+1,s of the selected area.  
𝑌𝑌𝑖𝑖→𝑖𝑖+1,s,c  The corrected map 𝑌𝑌𝑖𝑖→𝑖𝑖+1. 

 

The segmentation map (𝑌𝑌𝑖𝑖) at the beginning of the workflow is used in two parallel 

processes. In one process, 𝑌𝑌𝑖𝑖 is simply resized to a next scale to obtain the resized map 

𝑌𝑌𝑖𝑖→𝑖𝑖+1 . In the other process, 𝑌𝑌𝑖𝑖  is fed into an error correction scheme (detailed in 

Section 7.2.3) to determine the area(s) where error correction is required (for ease of 

demonstration, only one local area is shown in Figure 7-1). Once the local area is 

identified, it is used to crop the local segmentation information 𝑌𝑌𝑖𝑖,s  from 𝑌𝑌𝑖𝑖 , and 

meanwhile to crop the local image 𝑋𝑋𝑖𝑖+1,s from the input image (𝑋𝑋𝑖𝑖+1) that is resized to 

the i+1 scale. The resized input image of the local area is also fed into the segmentation 

network to obtain its corresponding segmentation information 𝑌𝑌𝑖𝑖+1,s . The two 

segmentation maps (i.e., 𝑌𝑌𝑖𝑖,s and 𝑌𝑌𝑖𝑖+1,s) of the selected area are processed in an error 
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correction module (detailed in Section 7.2.2), which results in a corrected map 𝑌𝑌𝑖𝑖+1,s,c 

of the selected area. The segmentation information in 𝑌𝑌𝑖𝑖+1,s,c is used to replace that in 

the corresponding pixels in 𝑌𝑌𝑖𝑖→𝑖𝑖+1 , which produces an updated segmentation map 

𝑌𝑌𝑖𝑖→𝑖𝑖+1,s,c . If additional rounds of the iteration process are considered, 𝑌𝑌𝑖𝑖→𝑖𝑖+1,s,c  is 

essentially the segmentation map (𝑌𝑌𝑖𝑖) used at the beginning of the workflow in the next 

round. Otherwise, it is the output (i.e., 𝑌𝑌𝑜𝑜−1→𝑜𝑜,s,c ) of the last round. The final 

segmentation map is obtained by resizing 𝑌𝑌𝑜𝑜−1→𝑜𝑜,s,c to the size of the original input 

image. 

 

There are three main components in the SBSS framework, including a segmentation 

network, ECS and ECM. The segmentation network can be any existing network that 

provides a reasonably good initial segmentation result. The ECS is also flexible. For 

example, one can choose to correct the entire segmentation map or only select areas 

within it. All of these allow SBSS to be applied to various application scenarios with 

different demands. More detailed descriptions of the ECM and the two proposed ECS 

(ECS-MS and ECS-SS) are given in Section 7.2.2 and Section 7.2.3 respectively. 

7.2.2. Error correction module 

The proposed error correction module is shown in Figure 7-2. The segmentation map 

(𝑌𝑌𝑖𝑖,s) at a lower scale is first resized to a higher scale to obtain the resized map 𝑌𝑌𝑖𝑖→𝑖𝑖+1,s. 

𝑌𝑌𝑖𝑖→𝑖𝑖+1,s is concatenated with the segmentation map 𝑌𝑌𝑖𝑖+1,𝑠𝑠 using the input image at a 

higher scale. Subsequently, they (i.e., 𝑌𝑌𝑖𝑖+1,𝑠𝑠  and 𝑌𝑌𝑖𝑖→𝑖𝑖+1,s ) are fed into an Error 

Correction Network (ECN) to obtain the initial corrected segmentation map 

(𝑌𝑌𝑖𝑖+1,s,c,initial). Finally, an Adaptive Confidence Threshold (ACT) is used to replace 
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the corresponding pixels in 𝑌𝑌𝑖𝑖→𝑖𝑖+1,s with the more confident pixels in 𝑌𝑌𝑖𝑖+1,s,c,initial to 

obtain corrected segmentation information 𝑌𝑌𝑖𝑖+1,s,c.  

 

Figure 7-2: Error correction module. 
 

7.2.2.1. Error Correction Network: 

The detailed structure of the ECN is presented in Figure 7-3. For a dataset having C 

classes, its segmentation map also has C channels. Each channel of the segmentation 

map records the segmentation probability of its corresponding class. Therefore, 

concatenating the two segmentation maps will result in a feature map with a channel 

number of 2C, which is used as the input to the ECN. The input features are processed 

through the stem block and two residual blocks. The resulting feature map (96 channels) 

is then compressed by a pointwise convolution layer (with C kernels) to output the 

initial corrected segmentation map (𝑌𝑌𝑖𝑖+1,s,c,initial). The weights of the ECN are not 

shared across scales (i.e., the ECN is trained separately for each scale). 

 

Figure 7-3: Structures of the error correction network (left), the stem block (middle), and the residual 
block (right). 
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The structure of the residual block is designed in reference to the basic block of 

ConvNeXt (Z. Liu et al., 2022). Similar to ConvNeXt's study, it is found that better 

results were achieved using blocks with large convolutional kernels than those with 

small 3x3 kernels (e.g., ResNet block). The other minor modification is the removal 

of the normalisation layer. This is because a small decrease in segmentation accuracy 

was observed when using the normalisation layer in this study. 

7.2.2.2. Adaptive confidence threshold 

The objective of using the ACT is to select pixels that have low confidence levels in 

𝑌𝑌𝑖𝑖→𝑖𝑖+1,s  but high confidence levels in the initial corrected segmentation map 

(𝑌𝑌𝑖𝑖+1,s,c,initial). The ACT is implemented as follows. For each pixel in a segmentation 

map, its value in each channel represents the confidence level of belonging to the 

corresponding class, and the values in all channels are summed to one. Thus, the 

confidence level of each pixel in 𝑌𝑌𝑖𝑖+1,s,c,initial is its maximum value over all channels. 

The confidence map for 𝑌𝑌𝑖𝑖+1,s,c,initial  and 𝑌𝑌𝑖𝑖→𝑖𝑖+1,s  are denoted as 𝑌𝑌𝑖𝑖+1,s,c,initial
confidence  and 

𝑌𝑌𝑖𝑖→𝑖𝑖+1,s
confidence, respectively. An Adaptive Confidence (AD) map is produced to match the 

objective of the adaptive confidence threshold, as shown in Equation 7-1 where “.∗” 

represents the element-wise multiplication. 

𝑀𝑀𝐷𝐷 = �1 − 𝑌𝑌𝑖𝑖→𝑖𝑖+1,s
confidence�.∗ 𝑌𝑌𝑖𝑖+1,s,c,initial

confidence  (7-1) 

The ACT was set to be the median pixel value in the AD map. Finally, the regions in 

the AD map that exceed the threshold are recorded and the results within that region 

in 𝑌𝑌𝑖𝑖→𝑖𝑖+1,s are replaced with the results in 𝑌𝑌𝑖𝑖+1,s,c,initial to obtain 𝑌𝑌𝑖𝑖+1,s,c. 

7.2.3. Error correction scheme 

In the SBSS framework, apart from the segmentation network used, ECS also has a 

significant impact on the overall computational load. The commonly used metrics for 
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quantifying computational load include Flops and GPU memory footprints. For a 

given network structure, the main factors affecting Flops and GPU memory footprints 

are the total number and the size of the input patches, respectively. Therefore, the focus 

of developing an ECS is on the selection of areas to be corrected and on the choice of 

a patch size that does not exceed the GPU memory limit. With reference to the Flops 

required for the two commonly used test methods (i.e., MS and SS), two ECS (ECS-

MS and ECS-SS) are proposed in this study. It is worth noting that the SBSS 

framework using ECS-MS and ECS-SS are abbreviated as SBSS-MS and SBSS-SS in 

subsequent sections. Moreover, for image patch extraction, the non-overlapping 

sliding window approach is used in this study. 

7.2.3.1. Error correction scheme with Flops at the multi-scale test level 

The MS has widely been adopted to obtain the highest possible segmentation accuracy. 

The commonly used set of scales is {0.5, 0.75, 1.0, 1.25, 1.5, 1.75}(Jingdong Wang et 

al., 2021; Junjue Wang et al., 2021). Under this setting, the original image is resized 

using each of those six scales before being processed by a segmentation network. The 

total size of the image patches that need to be processed by MS is shown in Table 7-2, 

which is almost nine times that of the original image.  

Table 7-2: Comparison of the total size of the images to be processed by MS and SBSS-MS. 
 Scales 0.5 0.75 1.0 1.25 1.5 1.75 Sum 

MS 

Selection percentage of non-
overlapping patches 100% 100% 100% 100% 100% 100% - 

Ratio of the total size of the patches 
to the original image 25% 56% 100% 156% 225% 306% 869% 

ECS-MS 

Selection percentage of non-
overlapping patches 100% 100% 100% 100% 100% 0% - 

Ratio of the total size of the patches 
to the original image 25% 56% 100% 156% 225% 0% 563% 

 

The proposed ECS-MS also processes all the image patches at each scale used, but 

with less scales. As shown in Table 7-2, the scale 1.75 is discarded in ECS-MS, which 

is to compensate for the additional Flops for ECM. Since the Flops of ECM are quite 
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small compared to that of the segmentation network, the current ECS-MS setup is 

conservative. The exact Flops for ECS-MS and MS are given in Section 7.3.5. 

7.2.3.2. Error correction scheme with Flops at the single-scale test level 

The SS is often used when computational resources are limited, which only analyses 

the original image (i.e., at scale 1.0). Based on such considerations, the ECS-SS is 

designed in this study. The ECS-SS analyses images at four scales: {0.25, 0.5, 1.0, 1.5}. 

To keep the flops consumed by ECS-SS similar to SS, ECS-SS is unable to analyse all 

the image patches at four scales. Therefore, a selection strategy is designed for ECS-

SS to analyse only part of the image patches. As shown in Table 7-3, for the two 

smaller scales (i.e., 0.25 and 0.5), all image patches are selected because of their 

relatively small total size compared to the original image. While for the latter two 

scales (i.e., 1.0 and 1.5), only part of the image patches is selected. The selection is 

based on the confidence map at that scale (i.e., 𝑌𝑌𝑖𝑖→𝑖𝑖+1,s
confidence). Patches with relatively 

low confidence accumulations are selected for analysis. With this setup, SBSS-SS 

allows the use of images at a wider range of scales for analysis while keeping the total 

size of the images to be processed at 75% of that of SS. Similar to ECS-MS, the Flops 

saved by using ECS-SS are compensation for the extra Flops involved in ECM, and 

the exact Flops are provided in Section 7.3.5. 

Table 7-3: Comparison of the total size of the images to be processed by SS and SBSS-SS. 
 Scales 0.25 0.5 1.0 1.5 Sum 

SS 
Selection percentage of non-overlapping patches 0% 0% 100% 0% - 
Ratio of the total size of the patches to the original image 0% 0% 100% 0% 100% 

ECS-SS 
Selection percentage of non-overlapping patches 100% 100% 25% 8.33% - 
Ratio of the total size of the patches to the original image 6.25% 25% 25% 18.75% 75% 
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7.3. Experiments and results 

7.3.1. Datasets and implementation details 

7.3.1.1. Datasets 

The effectiveness of the proposed SBSS framework was tested on four datasets, 

including Cityscapes, UAVid, LoveDA and Potsdam. The key characteristics of these 

datasets are summarised in Table 7-4. The partition of the training, validation and test 

sets for the first three datasets follows their original implementations. For the Potsdam 

dataset, the RGB images with IDs of 2_13, 2_14, 3_13, 3_14, 4_13, 4_14, 4_15, 5_13, 

5_14, 5_15, 6_13, 6_14, 6_15 and 7_13 were used as the testing set (the same set of 

images was also used as the validation set in this study), while the remaining 24 RGB 

images were used for training.  

Table 7-4: Summary of four datasets used. 

Dataset 
Number of images Number of 

classes 
Image  

resolution Training set Validation set Test set 
Cityscapes 2975 500 1525 19 2048×1024 

UAVid 200 70 150 8 4096×2160 or 3840×2160 
LoveDA 2522 1669 1796 7 1024×1024 
Potsdam 24 - 14 6 6000×6000 

 

7.3.1.2. Training setting 

The training settings used in this study are summarized in Table 7-5. Most of these 

settings were consistent across three datasets used. The crop size used was different as 

it was set to be proportional to the original image in the dataset. For the UAVid dataset 

which has two different image sizes, all images were resized to 4096 × 2160 for ease 

of processing. The total training iterations for LoveDA and Potsdam were significantly 

less than those of the other two datasets, due to the relatively small sizes of LoveDA 

and Potsdam. 
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Table 7-5: Training setting for the segmentation network. 
Dataset Cityscapes UAVid LoveDA Potsdam 
Patch size 1024×512 1024×540 512×512 750×750 
Total training iterations 80 k 80 k 15 k 15 k 
Pretraining dataset ImageNet-1k 
Optimizer Stochastic Gradient Descent (SGD) 
Initial learning rate 0.01 
Learning rate schedule Poly learning rate policy with a power of 0.9 
Momentum 0.9 
Weight decay 0.0005 
Batch size 16 
Loss function Cross entropy 
Data augmentation Random cropping, random resize (0.25~2), random horizontal flipping, photo metric 

distortion 

 

After the segmentation networks had been trained, they were used to generate 

segmentation maps for each scale required to train the ECN. The ECN was trained 

using settings similar to those in Table 7-5. The differences include: no pretraining, no 

random scaling and photometric distortion being used, the total number of training 

iterations, and the initial learning rate that was reduced to one tenth of that in Table 

7-5. 

7.3.1.3. Evaluation metrics 

The segmentation accuracy was evaluated using mean Intersection over Union (mIoU) 

in this study. Based on the confusion matrix, the mIoU is computed as: 

mIoU =
1
𝐶𝐶
�

𝑇𝑇𝑇𝑇𝑐𝑐
𝑇𝑇𝑇𝑇𝑐𝑐 + 𝐹𝐹𝑇𝑇𝑐𝑐 + 𝐹𝐹𝑁𝑁𝑐𝑐

𝐶𝐶

𝑐𝑐=1
 (7-2) 

Where 𝑇𝑇𝑇𝑇𝑐𝑐, 𝐹𝐹𝑇𝑇𝑐𝑐, and 𝐹𝐹𝑁𝑁𝑐𝑐 represent the true positive, false positive and false negatives 

of class 𝑎𝑎, respectively. 

7.3.2. Scale related segmentation error 

The study is based on the hypothesis that different classes have their preferences for 

the resizing scale used. Extensive experiments were conducted in this study to confirm 

the validity of this hypothesis, which is presented in this section. 
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Table 7-6: Input scales that achieve the highest segmentation accuracy for different classes. 

Method Backbone 
Cityscapes 

(Patch size of 1024×512) 
UAVid 

(Patch size of 1024×540) 
Road Sidewalk Person Bicycle Building Tree Static car Human 

FCN HRNet-w18 0.75 0.75 1.50 1.50 0.75 0.50 0.75 1.75 
BiSeNetV1 ResNet50 0.75 0.75 1.75 1.50 0.75 0.50 1.00 1.75 

PSPNet ResNet50 0.75 0.75 1.50 1.50 0.50 0.50 1.00 1.75 
DeepLabV3+ ResNet50 0.75 0.75 1.50 1.25 0.50 0.50 0.50 1.50 

DANet ResNet50 0.75 0.75 1.75 1.50 0.50 0.75 1.00 1.50 
GCNet ResNet50 0.75 0.75 1.50 1.50 0.75 0.50 1.00 1.50 

DNLNet ResNet50 0.75 0.75 1.50 1.50 0.75 0.75 1.00 1.25 
UperNet ResNet50 0.75 0.75 1.50 1.50 0.75 0.50 1.00 1.75 
UperNet Swin-T 0.75 0.75 1.75 1.50 0.50 0.75 1.00 1.75 
UperNet ConvNeXt-T 0.75 0.75 1.75 1.50 0.75 0.50 0.75 1.25 

Method Backbone 
LoveDA 

(Patch size of 512×512) 
Potsdam 

(Patch size of 750×750) 
Agricultural Water Forest Barren Building Impervious Tree Car 

FCN HRNet-w18 0.50 0.50 1.00 1.00 0.75 1.00 1.00 1.50 
BiSeNetV1 ResNet50 0.75 0.75 1.25 1.00 1.00 1.00 1.25 1.50 

PSPNet ResNet50 0.50 0.75 1.25 1.00 0.75 1.00 1.25 1.50 
DeepLabV3+ ResNet50 0.50 0.50 1.25 1.00 0.75 1.00 1.25 1.25 

DANet ResNet50 0.50 0.75 1.50 1.00 0.75 1.00 1.00 1.25 
GCNet ResNet50 0.50 0.75 1.25 1.00 0.75 1.00 1.00 1.25 

DNLNet ResNet50 0.50 0.75 1.25 1.00 0.75 1.00 1.25 1.25 
UperNet ResNet50 0.50 0.75 1.25 1.00 0.75 1.00 1.00 1.50 
UperNet Swin-T 0.50 0.75 1.50 1.00 0.75 1.25 1.00 1.25 
UperNet ConvNeXt-T 0.50 0.75 1.75 1.00 0.75 1.00 1.25 1.25 

 

In total, ten segmentation networks of similar sizes were tested in this study, including 

HRNet (Jingdong Wang et al., 2021), BiSeNetV1 (Yu et al., 2018), PSPNet (Zhao et 

al., 2017), DeepLabV3+ (Chen et al., 2018b), DANet (Li et al., 2021), GCNet (Cao et 

al., 2019), DNLNet (Yin et al., 2020), UperNet (Xiao et al., 2018), Swin (Liu et al., 

2021b), and ConvNeXt (Z. Liu et al., 2022). These networks are representative works 

in the field of semantic segmentation. In the experiments, these networks were trained 

on the training sets of the four datasets. For each dataset, the input images in the 

validation set were resized to a set of scales {0.5, 0.75, 1.0, 1.25, 1.5, 1.75}, generating 

six new validation sets at these scales. The SS tests were performed on these newly 

generated validation sets. The scale corresponding to the highest segmentation 

accuracy obtained for each class was recorded. To facilitate the presentation of the 
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experimental results in reasonably sized tables, four classes were randomly selected in 

each dataset and their preferred resizing scales are presented in Table 7-6. It was 

observed that the preferred resizing scale for a class is usually the opposite of the size 

of the image area occupied by that class. For example, the classes that usually occupy 

larger areas in the image prefer to be segmented using smaller resizing scales. These 

experimental results proved the validity of the hypothesis of this study. 

7.3.3. Segmentation network choice 

In the SBSS framework, the role of the segmentation network is to provide the raw 

segmentation map at multiple scales. A more accurate raw segmentation map is 

beneficial to improve the final segmentation accuracy of the SBSS framework. The 

segmentation accuracies of those ten networks (presented in Section 7.3.2) using SS 

on the validation set are summarised in Table 7-7. The highest segmentation accuracies 

were achieved by ConvNeXt-T in all tests, and was therefore chosen as the 

segmentation network for the SBSS framework in this study. 

Table 7-7: Segmentation accuracy (mIoU) on validation sets using single scale tests (%). 

Method Backbone 

Cityscapes UAVid LoveDA Potsdam 
Patch size Patch size Patch size Patch size 

1024 
×512 

512 
×256 

1024 
×540 

512 
×270 

512 
×512 

256 
×256 

750 
×750 

375 
×375 

FCN HRNet-w18 75.73 68.85 73.75 72.40 51.20 49.60 85.49  76.69 
BiSeNetV1 ResNet50 75.06 58.55 73.19 71.60 49.36 45.90 84.70  81.78  
PSPNet ResNet50 77.90 72.68 73.42 72.03 51.49 49.74 85.85  84.26  
DeepLabV3+ ResNet50 78.66 74.35 73.65 72.40 50.71 48.72 85.73  84.22  
DANet ResNet50 78.64 74.36 73.63 72.54 51.36 50.28 86.06  84.98  
GCNet ResNet50 77.68 73.49 73.33 72.22 50.80 49.64 85.82  84.70  
DNLNet ResNet50 78.31 74.50 73.47 72.33 51.25 50.27 85.61  84.65  
UperNet ResNet50 77.65 71.92 73.94 72.34 51.04 48.75 85.62  83.62  
UperNet Swin-T 77.47 74.99 74.06 72.57 52.42 50.30 86.07  85.01  
UperNet ConvNeXt-T 78.84 75.52 74.26 72.68 52.52 50.47 86.41  85.12  

 

7.3.4. Ablation study on the test setting 

To evaluate the effectiveness of the different components within the SBSS framework, 

extensive ablation experiments were conducted in this study. The experimental setup 
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and the corresponding results are presented in Table 7-8. For each dataset, experiments 

were conducted with two input patch sizes. The larger one represented the input size 

typically used in previous studies. The other input size was half of the larger one, which 

was used to simulate the scenario of limited GPU memories.  

Table 7-8: The quantitative results of the ablation studies on validation sets of four datasets. 

Method 
Cityscapes UAVid LoveDA Potsdam 

Patch 
size 

mIoU 
(%) 

Patch 
size 

mIoU 
(%) 

Patch 
size 

mIoU 
(%) 

Patch 
size 

mIoU 
(%) 

MS 
1024 
×512 

81.32 
1024 
×540 

75.76 
512 

×512 

53.18 
750 

×750 

87.34 
ECS-MS + ACT 81.64 76.14 53.91 87.43 
ECS-MS + ECN 82.82 76.53 55.77 87.61 
SBSS-MS (ECS-MS + ACT + ECN) 83.05 76.78 56.28 87.68 
SS 

512 
×256 

75.52 
512 

×270 

72.34 
256 

×256 

50.47 
375 

×375 

85.12 
ECS-SS + ACT 76.15 72.73 51.03 85.45 
ECS-SS + ECN 78.11 73.57 51.66 86.15 
SBSS-SS (ECS-SS + ACT + ECN) 78.52 73.85 51.98 86.35 

 

As shown in Table 7-8, using either the ACT or the ECN alone improved the 

segmentation accuracy by an average of 0.43% or 1.40% respectively, which justified 

the design of the ECM. In addition, an average improvement of 1.55% and 1.81% in 

segmentation accuracy was achieved by using SBSS-MS and SBSS-SS, respectively. 

 

To visually validate the effectiveness of the proposed SBSS framework, a comparison 

of the segmentation results generated by MS and SBSS-MS is shown in Figure 7-4. It 

can be observed that the segmentation results obtained using SBSS-MS had less 

visually fragmented areas compared to the MS (e.g., the areas within the red box in 

the example images of UAVid, LoveDA and Potsdam). In the meantime, the 

segmentation example from Cityscapes showed that SBSS-MS was also able to 

segment objects that were completely missed by MS. 
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Figure 7-4: Qualitative comparisons between MS and SBSS-MS on the Cityscapes, UAVid, LoveDA 

and Potsdam validation sets. 
 

7.3.5. Complexity and the speed of the SBSS framework 

For a comprehensive comparison of the efficiency of SBSS with the other methods, 

experiments were conducted on the Cityscapes validation set, the results of which are 

recorded in Table 7-9. All models in the experiments were implemented using the 

PyTorch framework. The training time was measured with four NVIDIA GTX 3090 

GPUs. The inference speed was measured in terms of the number of tasks (original 

images rather than single patches) per second, and calculated as the average value of 

500 tests on a single NVIDIA GTX 3090 GPU. 

 

For the multi-scale test level comparisons, the SBSS-MS achieved both the highest 

speed (0.85 Task/s) and the highest accuracy (mIoU of 83.05%). 
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Table 7-9: Comparison of the efficiency of the SBSS framework with other methods on cityscapes 
validation set. 

Method Backbone Test 
method Patch size mIoU 

(%) 
Parameters 

(M) 

Flops per 
patch 
(G) 

Flops per 
task 
(G) 

Training 
Time 
(h) 

Task/s 

FCN HRNet-w18 MS 1024×512 79.47 48.98 356.91 13919.49 9.88 0.44 
BiSeNetV1 ResNet50 MS 1024×512 79.31 59.24 197.91 7718.49 10.73 0.81 
PSPNet ResNet50 MS 1024×512 80.55 48.98 356.91 13919.49 15.79 0.54 
DeepLabV3+ ResNet50 MS 1024×512 81.18 43.59 352.72 13756.08 16.32 0.49 
DANet ResNet50 MS 1024×512 81.09 49.85 398.30 15533.70 15.18 0.48 
GCNet ResNet50 MS 1024×512 80.40 49.63 395.46 15422.94 19.35 0.53 
DNLNet ResNet50 MS 1024×512 80.73 50.02 399.76 15590.64 14.53 0.47 
UperNet ResNet50 MS 1024×512 80.17 66.42 473.65 18472.35 14.17 0.50 
UperNet Swin-T MS 1024×512 79.99 59.84 469.04 18292.56 14.25 0.48 
UperNet ConvNeXt-T MS 1024×512 81.32 60.14 467.15 18218.85 18.25 0.53 
SBSS-MS ConvNeXt-T ECS-MS 1024×512 83.05 60.99 490.51 11281.76 22.18 0.85 
FCN HRNet-w18 SS 1024×512 75.73 48.98 356.91 1427.64 9.88 4.31 
BiSeNetV1 ResNet50 SS 1024×512 75.06 59.24 197.91 791.64 10.73 7.91 
PSPNet ResNet50 SS 1024×512 77.90 48.98 356.91 1427.64 15.79 5.25 
DeepLabV3+ ResNet50 SS 1024×512 78.66 43.59 352.72 1410.88 16.32 4.74 
DANet ResNet50 SS 1024×512 78.64 49.85 398.30 1593.20 15.18 4.72 
GCNet ResNet50 SS 1024×512 77.68 49.63 395.46 1581.84 19.35 5.14 
DNLNet ResNet50 SS 1024×512 78.31 50.02 399.76 1599.04 14.53 4.55 
UperNet ResNet50 SS 1024×512 77.65 66.42 473.65 1894.60 14.17 4.89 
UperNet Swin-T SS 1024×512 77.47 59.84 469.04 1876.16 14.25 4.63 
UperNet ConvNeXt-T SS 1024×512 78.84 60.14 467.15 1868.60 18.25 5.12 
SBSS-SS ConvNeXt-T ECS-SS 512×256 78.52 60.78 123.79 1485.54 21.53 6.50 

 

In the single scale test level comparisons, the input patch size of the other methods was 

set to four times the size of the SBSS-SS. The rationale for this setting is as follows. It 

was noticed that the segmentation accuracy decreased when using smaller patches, as 

shown in Table 7-7. Meanwhile, Table 7-8 shows that SBSS-SS improved the 

segmentation accuracy compared to SS. In addition, the memory footprint was 

proportional to the patch size. For example, with the same network, a memory footprint 

with a patch size of 512 x 256 is a quarter of the one that uses a patch size of 1024 x 

512. Therefore, it is meaningful to test whether SBSS-SS using a smaller patch size 

can achieve similar accuracy to other methods using a larger patch size. The results in 

Table 7-9 show that this can be achieved with SBSS-SS, which achieves mIoU 

(78.52%) that is merely (0.32%) lower than the highest one (78.84%). 
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7.3.6. Quantitative results on Cityscapes, UAVid, LoveDA and Potsdam test sets 

To further confirm the effectiveness of the proposed SBSS, an experimental 

comparison between the SBSS and other state-of-the-art methods was conducted on 

the test set of each dataset considered. The input patch sizes used for the different 

datasets were the same as those listed in Table 7-8. Apart from the Potsdam dataset 

that was evaluated offline, the segmentation results were submitted to the online 

servers dedicated for other dataset for evaluation, and the performance results are 

summarised in Table 7-10, Table 7-11, Table 7-12 and Table 7-13. 

 

Because of the strict limitations on the test frequency in the Cityscapes test server, 

only the segmentation results from the proposed methods (SBSS-MS and SBSS-SS) 

were submitted for evaluation. The performance results of the other methods on the 

Cityscapes dataset were taken directly from their original publications. It is worth 

mentioning that since these methods were obtained with different training sets, 

backbones, training and test setups, it is probably not very rigours to simply compare 

the results in Table 7-10. Nevertheless, those results show that SBSS-MS achieved the 

highest segmentation accuracy, which confirms the effectiveness of the proposed 

method. 
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Table 7-10: Quantitative comparison results on the cityscapes test set. the input patch sizes used in 
SBSS-MS and SBSS-SS are 1024×512 and 512×256 respectively. 

Method Backbone Trained on Test method mIoU (%) 
PSPNet ResNet101 Train MS 78.4 
BiSeNetV1 ResNet101 Train & Val SS 78.9 
PSANet ResNet101 Train & Val MS 80.1 
DenseASPP DenseNet201 Train & Val MS 80.6 
SETR ViT-L Train & Val MS 81.1 
Segmenter ViT-L Train & Val MS 81.3 
DANet ResNet101 Train & Val MS 81.5 
HRNet HRNet-w48 Train & Val MS 81.6 
EANet ResNet101 Train & Val MS 81.7 
OCR ResNet101 Train & Val MS 81.8 
DNL ResNet101 Train & Val MS 82.0 
SegFormer MiT-B5 Train & Val MS 82.2 
SBSS-SS ConvNeXt-T Train & Val ECS-SS 80.3 
SBSS-MS ConvNeXt-T Train & Val ECS-MS 82.6 

 

The UAVid and the LoveDA datasets are less restricted in terms of the test frequency 

in the test servers. The Potsdam dataset can be tested offline. As such, for fairer 

comparisons, the segmentation results from the applications of all the methods 

(including the proposed one and the others) to these three datasets were obtained using 

the same settings for training and testing. The training and test settings were the same 

as those used in Section 7.3.1.2 and Section 7.3.4, respectively. The proposed SBSS-

MS achieved the highest segmentation accuracy at the multi-scale test level on all three 

datasets. At the same time, SBSS-SS achieved comparable segmentation accuracy to 

the other methods using a smaller patch size (i.e., smaller memory footprint) at the 

single scale test level on all three datasets. 
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Table 7-11: Quantitative comparison results on the uavid test set (%). 
Method Backbone Test 

method 
Patch  
size mIoU Building Static 

Car Tree Moving 
Car Clutter Road Human Vegetation 

FCN HRNet-w18 MS 1024×540 71.11 89.85 69.08 81.86 78.03 71.80 83.89 28.08 66.30 
BiSeNetV1 ResNet50 MS 1024×540 69.03 88.57 65.03 81.47 73.18 69.64 82.20 26.55 65.57 
PSPNet ResNet50 MS 1024×540 69.76 88.96 63.84 81.34 75.84 70.61 82.81 29.37 65.27 
DeepLabV3+ ResNet50 MS 1024×540 71.06 89.44 71.10 81.65 77.23 71.01 82.81 29.43 65.84 
DANet ResNet50 MS 1024×540 70.22 89.36 66.43 81.46 75.53 70.96 82.83 29.60 65.59 
GCNet ResNet50 MS 1024×540 69.62 89.24 63.80 81.25 74.87 70.69 82.69 29.34 65.06 
DNLNet ResNet50 MS 1024×540 69.67 88.89 63.74 81.58 75.58 70.42 82.74 28.84 65.58 
UperNet ResNet50 MS 1024×540 70.87 89.35 68.66 81.68 77.30 71.00 83.10 30.20 65.67 
UperNet Swin-tiny MS 1024×540 70.43 89.17 65.11 81.33 78.16 70.43 82.71 29.66 65.63 
UperNet ConvNeXt-T MS 1024×540 71.22  89.81  69.57  81.78  77.92  71.14  82.57  30.83  66.11  
SBSS-MS  ConvNeXt-T ECS-MS 1024×540 72.99 91.05 76.00 82.50 78.20 73.06 83.57 31.95 67.59 
FCN HRNet-w18 SS 1024×540 69.34  88.90  66.29  80.45  75.94  69.62  81.91  27.82  63.78  
BiSeNetV1 ResNet50 SS 1024×540 67.31  87.32  63.11  80.06  70.26  67.47  80.40  26.62  63.25  
PSPNet ResNet50 SS 1024×540 68.23  88.09  61.47  80.13  73.98  69.04  81.19  28.65  63.25  
DeepLabV3+ ResNet50 SS 1024×540 69.57  88.56  68.21  80.43  75.98  69.27  81.22  29.17  63.69  
DANet ResNet50 SS 1024×540 68.61  88.48  63.27  80.31  73.38  69.47  81.56  28.70  63.75  
GCNet ResNet50 SS 1024×540 67.95  88.27  61.03  79.84  72.52  69.00  81.19  29.07  62.71  
DNLNet ResNet50 SS 1024×540 68.14  87.92  60.57  80.35  73.50  68.80  81.47  28.89  63.63  
UperNet ResNet50 SS 1024×540 69.24  88.35  66.18  80.31  75.60  69.23  81.53  29.67  63.03  
UperNet Swin-tiny SS 1024×540 69.13  88.44  64.04  80.33  76.14  69.14  81.74  29.33  63.89  
UperNet ConvNeXt-T SS 1024×540 70.05  89.22  67.64  80.91  76.07  69.84  81.34  30.59  64.77  
SBSS-MS  ConvNeXt-T ECS-SS 512×270 70.00  88.19  70.50  81.37  76.08  68.80  82.31  27.50  65.25  

 

Table 7-12: Quantitative comparison results on the loveda test set (%). 
Method Backbone Test  

method 
Patch  
size mIoU Background Building Road Water Barren Forest Agricultural 

FCN HRNet-w18 MS 512×512 52.74 45.33 59.60 56.26 80.62 17.81 48.92 60.64 
BiSeNetV1 ResNet50 MS 512×512 50.46 44.73 55.36 55.52 77.85 14.07 45.80 59.87 
PSPNet ResNet50 MS 512×512 52.43 45.42 57.50 58.96 79.24 17.98 48.66 59.21 
DeepLabV3+ ResNet50 MS 512×512 52.55 44.99 56.88 59.35 79.19 18.41 48.83 60.19 
DANet ResNet50 MS 512×512 50.92 44.05 54.15 54.97 77.62 19.33 47.12 59.17 
GCNet ResNet50 MS 512×512 52.76 45.80 58.30 57.94 79.55 18.47 48.50 60.76 
DNLNet ResNet50 MS 512×512 52.59 45.33 57.13 57.59 79.60 19.01 48.23 61.27 
UperNet ResNet50 MS 512×512 52.30 45.44 57.32 59.17 79.16 18.00 47.66 59.38 
UperNet Swin-tiny MS 512×512 53.22 46.29 58.66 58.86 80.91 17.88 47.88 62.03 
UperNet ConvNeXt-T MS 512×512 53.57  46.51 60.26 59.95 80.53 17.12 48.14 62.50 
SBSS-MS  ConvNeXt-T ECS-MS 512×512 54.50 46.31 62.35 58.66 82.06 19.59 49.48 63.07 
FCN HRNet-w18 SS 512×512 51.08 43.78 57.56 54.33 78.59 16.95 47.13 59.24 
BiSeNetV1 ResNet50 SS 512×512 48.67 42.50 53.38 53.62 76.93 14.03 42.79 57.42 
PSPNet ResNet50 SS 512×512 50.63 44.15 54.72 56.54 76.81 17.49 47.13 57.54 
DeepLabV3+ ResNet50 SS 512×512 50.54 43.35 54.40 56.96 76.61 17.65 47.08 57.69 
DANet ResNet50 SS 512×512 49.18 42.18 42.18 58.29 56.23 20.36 48.79 61.78 
GCNet ResNet50 SS 512×512 50.82 44.47 55.55 55.63 77.35 17.54 46.64 58.56 
DNLNet ResNet50 SS 512×512 50.56 43.85 54.22 54.88 77.04 17.51 46.68 59.76 
UperNet ResNet50 SS 512×512 50.27 43.75 54.81 56.58 76.93 17.20 45.75 56.87 
UperNet Swin-tiny SS 512×512 51.63 44.85 55.96 56.54 80.06 17.87 45.58 60.62 
UperNet ConvNeXt-T SS 512×512 52.19  44.89 62.05 59.16 79.75 16.74 47.22 55.55 
SBSS-MS  ConvNeXt-T ECS-SS 256×256 52.15 44.69 58.88 58.32 79.14 16.52 46.68 60.82 
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Table 7-13: Quantitative comparison results on the potsdam test set (%). 
Method Backbone Test method Patch  

size mIoU Impervious 
surface Building Low 

vegetation Tree Car 

FCN HRNet-w18 MS 750×750 86.79  88.10  94.06  78.85  80.78  92.17  
BiSeNetV1 ResNet50 MS 750×750 86.37  87.74  93.53  78.43  80.24  91.90  
PSPNet ResNet50 MS 750×750 85.81  87.26  93.37  77.14  79.59  91.68  
DeepLabV3+ ResNet50 MS 750×750 86.85  88.20  94.16  78.37  80.79  92.75  
DANet ResNet50 MS 750×750 86.85  87.87  93.76  78.53  80.99  93.09  
GCNet ResNet50 MS 750×750 86.91  88.35  93.83  78.52  80.95  92.90  
DNLNet ResNet50 MS 750×750 86.76  88.18  93.75  78.08  80.89  92.91  
UperNet ResNet50 MS 750×750 86.84  88.27  93.87  78.52  80.96  92.56  
UperNet Swin-tiny MS 750×750 87.01  88.52  94.31  79.06  81.16  92.01  
UperNet ConvNeXt-T MS 750×750 87.34  88.82  94.58  79.27  81.60  92.44  
SBSS-MS  ConvNeXt-T ECS-MS 750×750 87.68  88.95  94.88  79.42  81.82  93.34  
FCN HRNet-w18 SS 750×750 85.49  87.30  92.97  77.32  79.45  90.43  
BiSeNetV1 ResNet50 SS 750×750 84.66  86.23  92.34  76.54  78.11  90.06  
PSPNet ResNet50 SS 750×750 85.81  87.26  93.37  77.14  79.59  91.68  
DeepLabV3+ ResNet50 SS 750×750 85.68  87.32  93.43  76.83  79.33  91.51  
DANet ResNet50 SS 750×750 86.01  87.49  93.48  77.16  79.86  92.05  
GCNet ResNet50 SS 750×750 85.82  87.47  93.24  77.04  79.67  91.70  
DNLNet ResNet50 SS 750×750 85.61  87.21  93.10  76.35  79.54  91.84  
UperNet ResNet50 SS 750×750 85.62  87.28  92.90  77.09  79.64  91.17  
UperNet Swin-tiny SS 750×750 86.07  87.88  93.75  77.92  79.99  90.81  
UperNet ConvNeXt-T SS 750×750 86.41  88.07  94.04  78.15  80.52  91.27  
SBSS-SS  ConvNeXt-T ECS-SS 375×375 86.35  87.93  93.82  78.06  80.55  91.40  

 

7.3.7. Qualitative Analysis of the Segmentation Results 

As introduced in Section 7.1, the objective of the proposed SBSS is to reduce the error 

associated with the resizing scales. While the efficiency and the effectiveness of SBSS 

were demonstrated in Section 7.3.4, Section 7.3.5 and Section 7.3.6, it is informative 

to appreciate what kind of errors associated with the resizing scales were corrected by 

SBSS. The class building was chosen for analysis because the segmentation of 

buildings is crucial for many applications and this class happens to be present in all 

four datasets used. 

 

The top four plots of Figure 7-5 show the segmentation accuracy (IoU) of buildings 

for the four datasets when they were tested with SS at different resizing scales. It was 

observed that the segmentation accuracies of buildings in the Cityscapes, UAVid and 

Potsdam datasets were generally higher when smaller resizing scales were used. This 
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is consistent with the fact that these datasets were collected in urban scenes, where 

buildings are expected to be relatively large objects. However, as the LoveDA dataset 

includes many images of rural scenes where buildings are comparatively smaller 

objects than forests and water bodies, a larger resizing scale was favourable.  

 
Figure 7-5: Segmentation accuracy (IoU %) of buildings using different resizing scales. The 

horizontal coordinates (of the top 4 plots) for SS refer to the resizing scale used. The horizontal 
coordinates (of the bottom 4 plots) for MS and SBSS represent the utilisation of all the scales that are 
equal to and smaller than the current scale (e.g., the coordinate value 1 represents the case where the 

scales 0.5, 0.75 and 1 were all used). 
 

In addition, the segmentation accuracies of the MS and SBSS-MS were tested as 

follows. The scale started with the smallest one (i.e., 0.5), followed by a stepwise 

increase (with an increment of 0.25 each time) until the largest scale of 1.75 was 

reached. In each test, all the scales that are equal to or smaller than a particular scale 

were used. For example, for the scale 1, the following scales 0.5, 0.75 and 1 were used. 

The results are shown in the bottom four plots of Figure 7-5, suggesting that the 

accuracy of MS did not always increase when more and larger scales were used. For 

example, the accuracy of MS on the UAVid and Potsdam datasets decreased after 

using scales larger than 0.75 and 1.5, respectively. To investigate the causes of this 

phenomenon, the segmentation results of a UAVid image using SS at six resizing 

scales and those for MS and SBSS-MS using the scales from 0.5 to 1.75 are plotted in 

Figure 7-6.  
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Figure 7-6: Visual comparisons between SS, MS and SBSS-MS on the UAVid validation set. The 
numbers in brackets represent the resizing scales used. 

 

As shown in Figure 7-6, when the scale increased, SS yielded more fragmented and 

erroneous results for the large building on the right. The likely reasons for this are 

presented in the following. First, the use of a large resizing scale introduced additional 

difficulties for the global context information modelling. Second, the complex 

building facade in Figure 7-6 made correct segmentation more dependent on modelling 

global information rather than local one. Since MS never learns at which scale the 

segmentation results are more reliable for the building, the final results obtained using 

the average voting inevitably inherit some of the errors in the segmentation results at 

relatively large scales. In contrast, SBSS-MS preserved the correct segmentation 

results for buildings in a more intelligent way.  
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Apart from this type of erroneous segmentation of a large area of the building, there is 

another common type of error that occurs at the edges of the building. To verify 

whether SBSS-MS can handle this type of error, a comparison was made between 

results generated by SBSS-MS using two different sets of resizing scales (i.e., 0.5-1.0 

and 0.5-1.75), and the results are shown in Figure 7-7. It shows that using the SS results 

at three larger scales (i.e., 1.25, 1.5 and 1.75), SBSS-MS improved the segmentation 

accuracy at the building edges.  

 

Figure 7-7: Visual comparisons between SBSS-MS using different set of resizing scales on the 
UAVid validation set. 

 

Also, it is worth mentioning that although building was used as the example class for 

the demonstration, the aforementioned two kinds of improvements are expected to be 

applicable to the other classes. For example, SBSS-MS corrected the car that was mis-

segmented in MS (the top left part in Figure 7-6). The segmentation improvement at 

the object edges in Figure 7-7 was also valid for other classes such as tree and road. 
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7.3.8. Exploring the potential for higher accuracy 

The computational complexity of SBSS-MS has been strictly limited in the previous 

sections (i.e., Section 7.3.4, Section 7.3.5 and Section 7.3.6) to facilitate a fair 

comparison with the other methods. However, it is of interest to discover the accuracy 

that can be achieved by SBSS-MS when adequate computational resources are 

available. 

 

The results in Table 7-7 show that the segmentation accuracy decreased considerably 

when smaller patch sizes were used. Therefore, this study tested the case of directly 

performing the segmentation on the entire image in the first place. As the memory of 

the GPU used is limited, only the LoveDA dataset, which has a relatively small original 

image size, was tested. In addition, on the basis of using the whole image for 

segmentation, the case of using more resizing scales (i.e., 0.5-2.0) was tested. 

 

The quantitative results of the test are shown in Table 7-14, suggesting that using the 

whole image for segmentation did improve the segmentation accuracy slightly (0.21% 

in mIoU), but using more scales was a more effective way (1.09% in mIoU) in 

comparison. The segmentation results for the second and third settings in Table 7-14 

show that by using larger resizing scales SBSS-MS improved the segmentation 

accuracy for all classes. Meanwhile, Figure 7-8 suggests that the improvement was 

mainly at the edges of the objects. 

Table 7-14: Quantitative comparison for SBSS-MS using different input methods on the LoveDA test 
set (%). 

Method Patch  
size 

Scales 
used mIoU Background Building Road Water Barren Forest Agricultural 

SBSS-MS  512×512 0.5-1.5 54.50 46.31 62.35 58.66 82.06 19.59 49.48 63.07 
SBSS-MS  Entire image 0.5-1.5 54.71 46.92 62.20 58.17 82.24 19.78 49.41 64.22 
SBSS-MS  Entire image 0.5-2.0 55.59 48.30 62.85 58.22 83.06 21.02 49.76 65.93 
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Figure 7-8: Qualitative comparisons between SBSS-MS with different setting on the LoveDA 
validation set. 

 

7.3.9. Integrating developed methods for the semantic segmentation of TLS point 

clouds (additional results to the published version) 

The semantic segmentation accuracy that can be achieved by integrating the methods 

developed in this thesis was tested in this section. More specifically, the SBSS-MS 

developed in this chapter was used along with the OSTA developed in Chapter 6. The 

training strategies used are summarised in Table 7-15. The combination of features 

selected by the integration method is blue, enhanced z-coordinate image and enhanced 

depth image. The quantitative comparison between the integration method and other 

methods is shown in Table 7-16. The integrated method achieved the highest accuracy 

among image-based methods and is very close to the accuracy of the SOTA 3D 
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methods. The processing time of the integrated method was less than one tenth of that 

of the SOTA 3D method (SCF-Net). 

Table 7-15: Training setup for the integrated method. 
Input feature channel Red; Green; Blue; Intensity; Z-coordinate image; Depth image;  

Enhanced z-coordinate image; Enhanced depth image 
Dimension reduction method OSTA 
Scales used in SBSS-MS 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 
Patch size 1200×600 
Total training iterations 80 k 
Pretraining dataset Cityscapes and ImageNet-1k 
Optimizer AdamW 
Initial learning rate 10-4 
Learning rate schedule Poly learning rate policy with a power of 1.0 
Minimum Learning rate Zero 
Warmup ratio 10-6 
Weight decay 0.05 
Batch size 16 
Loss function Cross entropy 
Data augmentation Random cropping, random resize (0.5~2), random horizontal flipping, photo metric 

distortion 

 

Table 7-16: Quantitative comparison of different methods on Semantic3D (Reduced-8) (%). 

  Time 
(s) 

Params 
(M) mIoU OA man- 

made natural. high 
veg 

low 
veg buildings hard 

scape 
Scanning 

art cars 

3D 
methods 

RF MSSF 
(Thomas et al., 2018) 1643.75 - 62.7 90.3 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6 

ShellNet 
(Zhang et al., 2019) 3000 0.48 69.3 93.2 96.3 90.4 83.9 41.0 94.2 34.7 43.9 70.2 

OctreeNet 
(F. Wang et al., 2020) 184.84 - 59.1 89.9 90.7 82.0 82.4 39.3 90.0 10.9 31.2 46.0 

GACNet 
(L. Wang et al., 2019) 1380 - 70.8 91.9 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8 

SPGraph 
(Landrieu and 
 Simonovsky, 2018) 

3000 0.25 73.2 94.0 97.4 92.6 87.9 44.0 83.2 31.0 63.5 76.2 

KPConv 
(Thomas et al., 2019) 600 14.9 74.6 92.9 90.9 82.2 84.2 47.9 94.9 40.0 77.3 79.7 

RandLA-Net 
(Q. Hu et al., 2020) - 0.95 77.4 94.8 95.6 91.4 86.6 51.5 95.7 51.5 69.8 76.8 

SCF-Net 
(Fan et al., 2021) 563.6 - 77.6 94.7 97.1 91.8 86.3 51.2 95.3 50.5 67.9 80.7 

RFCR 
(Gong et al., 2021) - - 77.8 94.3 94.2 89.1 85.7 54.4 95.0 43.8 76.2 83.7 

Image- 
based 
methods 

DeePr3SS 
(Lawin et al., 2017) - 134 58.5 88.9 85.6 83.2 74.2 32.4 89.7 18.5 25.1 59.2 

SnapNet 
(Boulch et al., 2018) 3600 29 59.1 88.6 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4 

XJTLU 
(Cai et al., 2021b) 5.13 70.6 63.5 89.4 85.4 74.4 74.6 31.9 93.0 25.2 41.5 82.0 

HR-EHNet  
(Cai et al., 2022a) 11.72 73.6 74.2 92.1 85.1 75.5 89.6 55.9 95.5 50.8 48.3 92.5 

Integration of  
developed methods 52.64 61.0 76.6 93.8 87.3 76.3 88.1 59.6 95.1 54.4 59.2 92.9 
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7.4. Future work 

In this study, the final segmentation result is obtained by fusing the segmentation 

results at a predefined set of resizing. However, the results in Table 7-6 indicate that 

the optimal scale for each class varies from case to case. Therefore, the performance 

of SBSS could be further improved by developing algorithms that can adaptively select 

a set of scales for analyses. Similarly, it can be speculated that such adaptive 

algorithms would also be useful for choosing how many patches to analyse at each 

scale. In the course of this study, it was noticed that the error distribution has a pattern 

not only in the dimension of resizing scales, but also in the spatial dimension. For 

example, errors are more likely to occur at the edge of a patch. This characteristic 

could be taken into consideration in future study. 

 

In addition to an improvement of the SBSS framework itself, future research could 

consider combining the SBSS framework with other existing methods such as edge-

aware segmentation (Jung et al., 2022; A. Li et al., 2022; Marmanis et al., 2018; Zheng 

et al., 2020) or object-based segmentation (Yuan et al., 2020; C. Zhang et al., 2018). 

When visually inspecting the differences between ground truth, MS and SBSS-MS 

segmentation results (e.g., Figure 7-4 and Figure 7-8), it was found that although 

SBSS-MS could obtain more accurate segmentation results than MS, there are still 

cases where an object is segmented into pieces. Therefore, integration with those 

studies (e.g., (Jung et al., 2022; A. Li et al., 2022; Marmanis et al., 2018; Yuan et al., 

2020; C. Zhang et al., 2018; Zheng et al., 2020)) that specifically address this issue 

may further improve segmentation accuracy. 
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7.5. Summary 

This study experimentally demonstrated that different classes in images have their 

preferred resizing scales for semantic segmentation. On this basis, the SBSS 

framework was proposed, which uses a learnable ECM to fuse segmentation results 

that are more likely to be correct at each resizing scale, and an ECS to control the 

computational complexity. Extensive experiments were conducted on the four 

benchmark datasets considered, i.e., Cityscapes, UAVid, LoveDA and Potsdam 

datasets. The results show that SBSS achieved promising performances in the various 

scenarios considered. Specifically, SBSS-MS achieved a higher segmentation 

accuracy with less Flops, faster speed, and similar memory footprint compared to MS. 

Meanwhile, SBSS-SS achieved a similar segmentation accuracy with a quarter of the 

memory footprint, similar Flops and speed compared to SS. In the future, more 

sophisticated ECS and ECM can be proposed to further improve the performance of 

SBSS or to adapt it to specific application requirements. 
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Chapter 8: Conclusion 

Terrestrial lasering scanning has widely been used for high precision 3D large-scale 

scene recording. Semantic segmentation of TLS point clouds is the basis of intelligent 

development of many applications. However, existing point cloud semantic 

segmentation methods are either inferior in accuracy (image-based methods) or in 

efficiency (3D methods). This thesis improves the semantic segmentation accuracy of 

image-based methods on TLS point clouds while preserving relatively high efficiency 

by developing image-based geometric features, an automatic feature selection method, 

and a stacking-based semantic segmentation framework. The image-based semantic 

segmentation method with the improvement techniques developed can achieve an 

accuracy comparable to the state-of-the-art 3D methods and only requires less than a 

tenth of the processing time of the fastest 3D method (Fan et al., 2021). 

8.1. Key results 

This section presents the key results with respect to each of the research objectives and 

questions described in Section 1.2, as well as additional important results. 

 

Objective 1. Select the optimal feature combination from commonly used image-

based features for semantic segmentation of TLS point clouds. 

Key results 1-1: It was found the segmentation accuracies achieved using 

appropriate feature combinations were significantly higher than using all 

available features. This highlights the importance of feature selection for image-

based semantic segmentation of TLS point clouds. 

Key results 1-2: It was found that the optimal feature combination was robust to 

different network structures. Based on this, an efficient manual feature selection 
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method was developed in Chapter 3, which uses a lightweight network for feature 

selection before fine-tuning a more complex network. 

Key results 1-3a: It was found that different optimal feature combinations might 

exist when different accuracy metrics (i.e., IRGB for OA and IRGBD for mIoU) 

were used. This indicates that the optimal feature combination has its 

corresponding preconditions.  

Key results 1-4a: It was noticed that existing image-based methods relied heavily 

on colour information for semantic segmentation. This indicates that existing 

image-based methods do not fully exploit the geometric information. 

 

Objective 2. Develop novel image-based geometric features to improve 

segmentation accuracy of TLS point clouds. 

Key results 2-1: Locally enhanced image-based geometric features were 

developed in Chapter 4. It was observed that using the image-based geometric 

features together with the optimal feature combinations selected in Chapter 3 

could significantly improve the segmentation accuracy compared to using these 

optimal feature combinations alone. 

Key results 2-2: It was also shown that using only image-based geometric 

features and intensity feature (i.e., 𝐼𝐼𝐼𝐼e𝐷𝐷e ) achieved the highest segmentation 

accuracy among all the feature combinations tested. To the best of the author’s 

knowledge, this is the first image-based method that can achieve even higher 

segmentation accuracy without using colour information. 

Key results 2-3: It was noticed that using a 3-feature combination as input had a 

unique advantage in that the segmentation accuracy can be further improved by 

retaining the weights within the first layer of the pre-trained model. 



Chapter 8: Conclusion 
 

175 
 

Objective 3. Develop novel dimension reduction methods to transform multichannel 

images into 3-channel images (i.e., containing 3 features) to better utilise model(s) 

pre-trained on large-scale RGB image datasets. 

Key results 3-1: For the multispectral dataset RIT-18, which has 18 classes and 

relatively reliable feature channels, using appropriate 3-feature combinations can 

still achieve significantly higher accuracies than that using all features. This was 

concluded from a fair comparison that the parameters of the first layer of the pre-

trained models were randomly initialized for all tests. Given the Key results 2-3 

and Key result 3-1, together with the fact that the existing models are all pre-

trained with 3-channel RGB datasets (mainly ImageNet), it is reasonable to set 

the goal of dimension reduction as obtaining three feature dimension. 

Key results 3-2: An end-to-end feature extraction method LC-Net was developed 

in Chapter 5, which learns to compress adjacent features through iterative training 

to obtain a combination of three new features. The semantic segmentation 

accuracy of LC-Net is comparable to the optimal 3-channel combination for RIT-

18 obtained by exhaustive trial and error. 

Key results 3-3: A one-shot task-adaptive channel selection method (OSTA) was 

developed in Chapter 6, which formulates channel selection as a pruning process 

for a supernet. The outcomes of six groups of experiments (L7Irish3C, L7Irish2C, 

L8Biome3C, L8Biome2C, RIT-18 and Semantic3D) demonstrated the 

effectiveness and efficiency of OSTA. OSTA achieved the highest segmentation 

accuracies in all tests (62.49% (mIoU), 75.40% (mIoU), 68.38% (mIoU), 87.63% 

(mIoU), 66.53% (mA) and 70.86% (mIoU), respectively). It even exceeded the 

highest accuracies of exhaustive tests (61.54% (mIoU), 74.91% (mIoU), 67.94% 

(mIoU), 87.32% (mIoU), 65.32% (mA) and 70.27% (mIoU), respectively), where 
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all possible channel combinations were tested. All of this can be accomplished 

within a predictable and relatively efficient timeframe, ranging from 101.71% to 

298.1% times the time required to train the segmentation network alone. 

Key results 3-4: For all the tests, OSTA achieved semantic segmentation 

accuracies higher than LC-Net. 

Key results 3-5a: Training the semantic segmentation network with extra feature 

combinations in the early stage can improve the final accuracy.  

Key results 3-6a: The optimal feature combination can be influenced by the 

parameter initialization method used. However, it was found that there were 

robust feature combinations that performed well with all initialization methods 

tested. 

Key results 3-7a: The coastal aerosol band has been neglected in the past research 

for cloud detection but turns out to be an important channel for cloud detection 

according to this study. 

 

Objective 4. Develop a novel image semantic segmentation framework to 

improve segmentation accuracy. 

Key results 4-1: A stacking-based semantic segmentation framework (SBSS) 

was developed in Chapter 7, which can improve the segmentation accuracy by 

learning the preferred resizing scales for different object classes.  

Key results 4-2: By integrating the methods developed in this thesis, the semantic 

segmentation accuracy of image-based methods on TLS point clouds has been 

raised to an unprecedented level. The improved image-based method achieved a 

76.6% mIoU and 93.8% OA on the Semantic3D benchmark (reduced8) with a 

total processing time of only 52.64 s. 
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8.2. Future work 

Based on the research presented in this thesis, the following key recommendations are 

made for future work. 

Recommendation 1: It is recommended to establish a much larger dataset than the 

existing one (Semantic3D) to facilitate the development of this field. 

Recommendation 2: It is recommended to develop TLS technology that acquires all 

information simultaneously to avoid inconsistent representation of objects by 

different modalities. 

Recommendation 3: The aim of this thesis is to improve the accuracy of image-based 

methods while maintaining high efficiency. It is also worth investigating from the 

opposite direction, i.e. to improve the efficiency of the 3D method while 

maintaining high accuracy. The key to successfully conducting this study may lie 

in finding the fundamental differences between image-based and 3D methods. 

Recommendation 4: It is recommended to develop pre-trained models that are 

trained using multichannel images. It is expected that this will substantially 

improve the accuracy for downstream tasks using multichannel images. 

Recommendation 5: On the basis of the realization of Recommendation 4, it is 

recommended to develop feature selection methods that can automatically 

determine the optimal number of features. 
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