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Abstract. In this work, we study a scheduling problem with explorable
uncertainty. Each job comes with an upper limit of its processing time,
which could be potentially reduced by testing the job, which also takes
time. The objective is to schedule all jobs on a single machine with a
minimum total completion time. The challenge lies in deciding which
jobs to test and the order of testing/processing jobs.
The online problem was first introduced with unit testing time [5,6] and
later generalized to variable testing times [1]. For this general setting,
the upper bounds of the competitive ratio are shown to be 4 and 3.3794
for deterministic and randomized online algorithms [1]; while the lower
bounds for unit testing time stands [5,6], which are 1.8546 (deterministic)
and 1.6257 (randomized).
We continue the study on variable testing times setting. We first enhance
the analysis framework in [1] and improve the competitive ratio of the
deterministic algorithm in [1] from 4 to 1 +

√
2 ≈ 2.4143. Using the new

analysis framework, we propose a new deterministic algorithm that fur-
ther improves the competitive ratio to 2.316513. The new framework also
enables us to develop a randomized algorithm improving the expected
competitive ratio from 3.3794 to 2.152271.

Keywords: Explorable uncertainty, Online scheduling algorithms, To-
tal completion time, Competitive analysis, Amortized analysis

1 Introduction

In this work, we study the single-machine Scheduling with Uncertain Processing
time (SUP) problem with the minimized total completion time objective. We
are given n jobs, where each job has a testing time tj and an upper limit uj of
its real processing time pj ∈ [0, uj ]. A job j can be executed (without testing),
taking uj time units. A job j can also be tested using tj time units, and after
it is tested, it takes pj time to execute. Note that any algorithm needs to test a
job j beforehand to run it in time pj . The online algorithm does not know the
exact value of pj unless it tests the job. On the other hand, the optimal offline
⋆ The work is partially supported by University of Liverpool Covid Recovery Fund.
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algorithm knows in advance each pj even before testing. Therefore, the optimal
strategy is to test job j if and only if tj + pj ≤ uj and execute the shortest job
first, where the processing time of a job j is min{tj + pj , uj} [1, 5, 6]. However,
since the online algorithm only learns about pj after testing j, the challenge to
the online algorithm is to decide which jobs to test and the order of tasks that
could be testing, execution, or execution-untested.

It is typical to study uncertainty in scheduling problems, for example, in the
worst case scenario for online or stochastic optimization. Kahan [15] has intro-
duced a novel notion of explorable uncertainty where queries can be used to ob-
tain additional information with a cost. The model of scheduling with explorable
uncertainty studied in this paper was introduced by Dürr et al. recently [5,6]. In
this model, job processing times are uncertain in the sense that only an upper
limit of the processing time is known, and can be reduced potentially by testing
the job, which takes a testing time that may vary according to the job. An online
algorithm does not know the real processing time before testing the job, whereas
an optimal offline algorithm has the full knowledge of the uncertain data.

One of the motivations to study scheduling with uncertain processing time
is clinic scheduling [3, 16]. Without a pre-diagnosis, it is safer to assign each
treatment the maximum time it may need. With pre-diagnosis, the precise time
a patient needs can be identified, which can improve the performance of the
scheduling. Other applications are, as mentioned in [5,6], code optimization [2],
compression for file transmission over network [20], fault diagnosis in mainte-
nance environments [17]. Application in distributed databases with centralized
master server [18] is also discussed in [1].

In addition to its practical motivations, the model of explorable uncertainty
also blurs the line between offline and online problems by allowing a restricted
uncertain input. It enables us to investigate how uncertainty influences online
decision quality in a more quantitative way. The concept of exploring uncertainty
has raised a lot of attention and has been studied on different problems, such
as sorting [13], finding the median [11], identifying a set with the minimum-
weight among a given collection of feasible sets [8], finding shortest paths [10],
computing minimum spanning trees [14], etc. More recent work and a survey can
be found in [7,10,12]. Note that in many of the works, the aim of the algorithm
is to find the optimal solution with the minimum number of testings for the
uncertain input, comparing against the optimal number of testings.

Another closely related model is Pandora’s box problem [4,9,19], which was
based on the secretary problem, that was first proposed by Weitzman [19]. In
this problem, each candidate (that is, the box) has an independent probability
distribution for the reward value. To know the exact reward a candidate can
provide, one can open the box and learn its realized reward. More specifically,
at any time, an algorithm can either open a box, or select a candidate and
terminate the game. However, opening a box costs a price. The goal of the
algorithm is to maximize the reward from the selected candidate minus the total
cost of opening boxes. The Pandora’s box problem is a foundational framework
for studying how the cost of revealing uncertainty affects the decision quality.
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More importantly, it suggests what information to acquire next after gaining
some pieces of information.

Previous works. For the SUP problem, Dürr et al. studied the case where
all jobs have the same testing time [5, 6]. In the paper, the authors proposed a
Threshold algorithm for the special instances. For the competitive analysis,
the authors proposed a delicate instance-reduction framework. Using this frame-
work, the authors showed that the worst case instance of Threshold has a
special format. An upper bound of the competitive ratio of 2 of Threshold is
obtained by the ratio of the special format instance. Using the instance-reduction
framework, the authors also showed that when all jobs have the same testing time
and the same upper limit, there exists a 1.9338-competitive Beat algorithm. The
authors provided a lower bound of 1.8546 for any deterministic online algorithm.
For randomized algorithms, the authors showed that the expected competitive
ratio is between 1.6257 and 1.7453.

Later, Albers and Eckl studied a more general case where jobs have variable
testing time [1]. In the paper, the authors proposed a classic and elegant frame-
work where the completion time of an algorithm is divided into contribution
segments by the jobs executed prior to it. For the jobs with “correct” execu-
tion order as they are in the optimal solution, their total contribution to the
total completion time is charged to twice the optimal cost by the fact that the
algorithm does not pay too much for wrong decisions of testing a job or not.
For the jobs with “wrong” execution order, their total contribution to the total
completion time is charged to another twice the optimal cost using a comparison
tree method, which is bound with the proposed (α, β)-SORT algorithm. The au-
thors also provide a preemptive 3.2361-competitive algorithm and an expected
3.3794-competitive randomized algorithm.

In the works [1, 5, 6], the objective of minimizing the maximum completion
time on a single machine was also studied. For the uniform-testing-time setting,
Dürr et al. [5, 6] proposed a ϕ-competitive deterministic algorithm and a 4

3 -
competitive randomized algorithm, where both algorithms are optimal. For a
more general setting, Albers and Eckl [1] showed that variable testing time does
not increase the competitive ratios of online algorithms.

Our contribution. We first analyze the (α, β)-SORT algorithm proposed
in the work [1] in a more amortized sense. Instead of charging the jobs in the
correct order and in the wrong order to the optimal cost separately, we manage
to partition the tasks into groups and charge the total cost in each of the groups
to the optimal cost regarding the group. The introduction of amortization to
the analysis creates room for improving the competitive ratio by adjusting the
values of α and β. The possibility of picking α > 1 helps balance the penalty
incurred by making a wrong guess on testing a job or not. On the other hand,
the room for different β values allows one to differently prioritize the tasks that
provide extra information and the tasks that immediately decide a completion
time for a job. By this new analysis and the room of choosing different values of
α and β, we improve the upper bound of the competitive ratio of (α, β)-SORT
from 4 to 1 +

√
2. With the power of amortization, we improve the algorithm by
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Testing time Upper limit Upper Bound Lower bound
Deterministic 1 Uniform 1.9338 [5, 6] 1.8546 [5, 6]

Variable 2 [5, 6]
Variable Variable 4 [1] → 2.414 (Theorem 1)

2.316513 (Theorem 2)
(Prmp.) 3.2361 [1]

2.316513 (Theorem 2)
Randomized 1 Variable 1.7453 [5, 6] 1.6257 [5, 6]

Variable Variable 3.3794 [1]
2.152271 (Theorem 3)

Table 1: Summary of the results. The results from this work are bold and in red.

further prioritizing different tasks using different parameters. The new algorithm,
PCPα,β , is 2.316513-competitive. This algorithm is extended to a randomized
version with an expected competitive ratio of 2.152271. Finally, we show that
under the current problem setting, preempting the execution of jobs does not
help in gaining a better algorithm. A summary of the results can be found in
Table 1.

Paper organization. In Section 2, we introduce the notation used in this
paper. We also review the algorithm and analysis of the (α, β)-SORT algorithm
proposed in the work [1]. In Section 3, we elaborate on how amortized analysis
helps to improve the competitive analysis of (α, β)-SORT (Subsection 3.1). Upon
the new framework, we propose a better algorithm, PCPα,β , in Subsection 3.2. In
Subsection 3.3, we argue that the power of preemption is limited in the current
model. Finally, we show how amortization helps to improve the performance of
randomized algorithms. For the sake of the page limit, we leave the proofs in
the full version.

2 Preliminary

Given n jobs 1, 2, · · · , n, each job j has a testing time tj and an upper limit uj

of its real processing time pj ∈ [0, uj ]. A job j can be executed-untested in uj

time units or be tested using tj time units and then executed in pj time units.
Note that if a job is tested, it does not need to be executed immediately. That
is, for a tested job, there can be tasks regarding other jobs between its testing
and its execution.

We denote by pA
j the time spent by an algorithm A on job j, i.e., pA

j = tj +pj

if A tests j, and pA
j = uj otherwise. Similarly, we denote by p∗

j the time spent
by OPT, the optimal algorithm. Since OPT knows pj in advance, it can decide
optimally whether to test a job, i.e., p∗

j = min{uj , tj + pj}, and execute the jobs
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in the ascending order of p∗
j . We denote by cost(A) the total completion time of

any algorithm A.
The tasks regarding a job j are the testing, execution, or execution-untested

of j (taking tj , pj , or uj , respectively). We follow the notation in the work
of Albers and Eckl [1] and denote c(k, j) as the contribution of job k in the
completion time of job j in the online schedule A. That is, c(k, j) is the total
time of the tasks regarding job k before the completion time of job j. The
completion time of job j in the schedule A is then

∑n
k=1 c(k, j). Similarly, we

define c∗(k, j) as the contribution of job k in the completion time of job j in the
optimal schedule. As observed, OPT schedules in the order of p∗, c∗(k, j) = 0
if k is executed after j in the optimal schedule, and c∗(k, j) = p∗

k otherwise.
We denote by i <o j if the optimal schedule executes job i before job j. We

also define i >o j and i =o j similarly (in the latter case, job i and job j are
the same job). The completion time of job j in the optimal schedule is denoted
by c∗

j =
∑

i≤oj p∗
i . The total completion time of the optimal schedule is then∑n

j=1 c∗
j . Note that there is an optimal strategy where p∗

i ≤ p∗
j if i ≤o j.

2.1 Review (α, β)-SORT algorithm [1]

For completeness, we summarise the (α, β)-SORT algorithm and its analysis
proposed in the work of Albers and Eckl [1].

Intuitively, the algorithm tests a job j if and only if uj ≥ α · tj . Depending on
whether a job is tested or not, the job is transformed into one task (execution-
untested task) or two tasks (testing task and execution task). These tasks are
then maintained in a priority queue for the algorithm to decide their processing
order. More specifically, a testing task has a weight of β · tj , an execution task
has a weight of pj , and an execution-untested task has a weight of uj . (See
Algorithm 1.) After the tasks regarding the jobs are inserted into the queue, the
algorithm executes the tasks in the queue and deletes the executed tasks, starting
from the task with the shortest (weighted) time. If the task is a testing of a job
j, the resulting pj is inserted into the queue after testing. (See Algorithm 2.)
Intuitively, both α and β are at least 1. The precise values of α and β will be
decided later based on the analysis.

Analysis [1]. Recall that c(k, j) is the contribution of job k of the completion
time of job j, and the completion time of job j is cA

j =
∑n

k=1 c(k, j). The key

Algorithm 1 (α, β)-SORT algorithm [1]
Initialize a priority queue Q
for j = 1, 2, 3, · · · , n do

if uj ≥ α · tj then
Insert a testing task with weight β · tj into Q

else
Insert an execution-untested task with weight uj into Q

Queue-Execution(Q) ▷ See Algorithm 2
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Algorithm 2 Procedure Queue-Execution (Q)
procedure Queue-Execution(Q)

while Q is not empty do
x← Extract the smallest-weight task in Q
if x is a testing task for a job j then

Test job j ▷ It takes tj time
Insert an execution task with weight pj into Q

else if x is an execution task for a job j then
Execute (tested) job j ▷ It takes pj time

else ▷ x is an execution-untested task for a job j
Execute job j untested ▷ It takes uj time

idea of the analysis is that given job j, partitioning the jobs (say, k) that are
executed before j into two groups, k ≤o j or k >o j. Since the algorithm only
tests a job j when uj ≥ αtj , pA

k ≤ max{α, 1 + 1
α } · p∗

k. Therefore, the total cost
incurred by the first group of jobs is at most max{α, 1 + 1

α } · cost(OPT). Note
that the ratio, in this case, reflects the penalty to the algorithm that makes a
wrong guess on testing a job or not.

For the second group of jobs, the authors proposed a classic and elegant
comparison tree framework to charge each c(k, j) with k >o j to the time that
the optimal schedule spends on job j. More specifically, c(k, j) ≤ max{(1 +
1
β )α, 1 + 1

α , 1 + β} · p∗
j for any k and j. Hence, the total cost incurred by the

second group of jobs can be charged to max{(1 + 1
β )α, 1 + 1

α , 1 + β} · cost(OPT).
By summing up the c(k, j) values for all pairs of k and j, the total completion

time of the algorithm is at most

max{α, 1 + 1
α

} + max{(1 + 1
β

) · α, 1 + 1
α

, 1 + β}.

When α = β = 1 (which is the optimal selection), the competitive ratio is 4.

2.2 Our observation

As stated by Albers and Eckl [1], α = β = 1 is the optimal choice in their analysis
framework. Therefore, it is not possible to find a better α and β to tighten the
competitive ratio under the current framework. However, the framework can be
improved via observations.

For example, given that α = β = 1, consider two jobs k and j, where
(tk, uk, pk) = (1 + ε, 1 + 3ε, 1 + 3ε) and (tj , uj , pj) = (1, 1 + 4ε, 1 + 2ε). By
the (α, β)-SORT algorithm, both k and j are tested. The order of the tasks re-
garding these two jobs is tj , tk, pj , and finally pk. On the other hand, in the
optimal schedule, p∗

k = uk = 1 + 3ε and p∗
j = uj = 1 + 4ε. Since k ≤o j,

as shown in Figure 1, both c(k, j) and c(j, k) are charged to 2p∗
k, separately.

Note that although c(k, j) = tk in this example, the worst-case nature of the
analysis framework fails to capture the fact that the contribution from the tasks
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regarding k to the completion time of j is even smaller than p∗
k. This observation

motivates us to establish a new analysis framework.

Fig. 1: An example where p∗
k is charged four times. The light blue and dark blue

segments represent c(k, j) and c(j, k), respectively. The red segment represents
p∗

k.

3 Deterministic algorithms

In this section, we first enhance the framework by equipping it with amortized
analysis in Subsection 3.1. Using amortized arguments, for any two jobs k ≤o j,
we manage to charge the sum of c(k, j) + c(j, k) to p∗

k. The new framework not
only improves the competitive ratio but also creates room for adjusting α and
β.

Finally, in Subsection 3.2, we improve the (α, β)-SORT algorithm based on
our enhanced framework.

3.1 Amortization

We first bound c(k, j) + c(j, k) for all pairs of jobs k and j with k ≤o j by a
function r(α, β) · c∗(k, j). Then, we can conclude that the algorithm is r(α, β)-
competitive by the following argument:

cost((α, β)-SORT) =
n∑

j=1

n∑
k=1

c(k, j) =
n∑

j=1
(

∑
k<oj

(c(k, j) + c(j, k)) + c(j, j))

≤
n∑

j=1
r(α, β) · (

∑
k<oj

c∗(k, j) + c∗(j, j)) = r(α, β) · cost(OPT)

To bound c(k, j) + c(j, k) by the cost of tasks k, we first observe that it is
impossible that c(k, j) = pA

k and c(j, k) = pA
j at the same time. More specifically,

depending on whether the jobs k and j are tested or not, the last task regarding
these two jobs does not contribute to c(k, j) + c(j, k). Furthermore, the order of
these jobs’ tasks in the priority queue provides a scheme to charge the cost of
the tasks regarding j to the cost of tasks regarding k.



8 A. H.-H. Liu et al.

(a) k is not tested and c(k, j) = uk (b) k is not tested and c(k, j) = 0

(c) k is tested and c(k, j) = 0 (d) k is tested and c(k, j) = tk +pk

(e) k is tested and c(k, j) = tk

Fig. 2: The red arrows illustrate how to charge c(k, j)+c(j, k) to the cost of tasks
regarding k. Each row in the sub-figures is a permutation of how the tasks are
executed. The circles and rectangles are testing tasks and execution tasks after
testing, respectively. The rectangles with curly tops are execution tasks without
testing. The tasks in gray are from the job k, and the tasks in white are from
the job j. The light blue and dark blue line segments under the tasks represent
the contribution c(k, j) and c(j, k), respectively.

Figure 2 shows how the charging is done. Each row in the subfigures is a
permutation of how the tasks regarding job j and k are executed. The gray
objects are tasks regarding k, and the white objects are tasks regarding j. The
circles, rectangles, and rectangles with the wavy top are testing tasks, execution
tasks, and execution-untested tasks, respectively. The horizontal lines present the
values of c(k, j) (light blue) and c(j, k) (dark blue). The red arrows indicate how
the cost of a task regarding j is charged to that of a task regarding k according
to the order of the tasks in the priority queue. The charging c(k, j) + c(j, k) to
the cost of tasks regarding k results in Lemmas 1 and 2. For the sake of space,
the proof is provided in the full paper.
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Lemma 1. If (α, β)-SORT does not test job k,

c(k, j) + c(j, k) ≤ (1 + 1
β

)uk.

Lemma 2. If (α, β)-SORT tests job k,

c(k, j) + c(j, k) ≤ max{2tk + pk, (1 + β)tk, tk + (1 + 1
β

)pk}.

Now, we can bound the competitive ratio of the (α, β)-SORT (Theorem 1).
The idea is, depending on whether job k is tested or not by the optimal schedule,
the expressions in Lemmas 1 and 2 can be written as a function of α, β, and p∗

k.
By selecting the values of α and β carefully, we can balance the worst case ratio
in the scenario where k is executed-untested by the algorithm (Lemma 1) and
that in the scenario where k is tested by the algorithm (Lemma 2).

Theorem 1. The competitive ratio of (α, β)-SORT is at most

max{α(1 + 1
β

), 1 + 1
α

+ 1
β

, 1 + β, 2, 1 + 2
α

} (1)

By choosing α = β =
√

2, (α, β)-SORT algorithm is (1 +
√

2)-competitive. The
choice is optimal for expression (1).

Note that by Theorem 1, the (α, β)-SORT algorithm is 3-competitive when
α = β = 1, which matches the observation in Figure 1.

Our analysis framework provides room for adjusting the values of α and β.
By selecting the values of α and β, we can tune the cost of tasks regarding k that
is charged. By selecting a value of α other than 1, we can balance the penalty
of making a wrong decision on testing a job or not. The capability of selecting a
value of β other than 1 allows us to prioritize the testing tasks (which are scaled
by β) and the execution tasks (which immediately decide a completion time of
a job). Finally, the performance of the algorithm is tuned by finding the best
values of α and β.

However, recall that the parameter α encodes the penalty for making a wrong
guess on testing a job or not. When α =

√
2, the penalty for testing a job we

should not test is more expensive than that for executing-untested a job that we
should test. It inspires us to improve the algorithm further.

3.2 An improved algorithm

Surprisingly, the introduction of amortization even sheds light on further im-
provement of the algorithm. We propose a new algorithm, Prioritizing-Certain-
Processing-time (PCPα,β). The main difference between PCPα,β and (α, β)-SORT
is that in the PCPα,β algorithm after a job j is tested, an item with weight tj +pj

is inserted into the queue instead of pj (see Algorithm 3). Intuitively, we priori-
tize a job by its certain (total) processing time pA

j , which can be tj + pj or uj .
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Algorithm 3 Procedure Updated Queue-Execution (Q)
procedure Updated Queue-Execution(Q)

while Q is not empty do
x← Extract the smallest-weight task in Q
if x is a testing task for a job j then

Test job j ▷ It takes tj time
Insert an execution task with weight tj + pj into Q

else if x is an execution task for a job j then
Execute (tested) job j ▷ It takes pj time

else ▷ x is an execution-untested task for a job j
Execute job j untested ▷ It takes uj time

Then, we can charge the total cost of tasks regarding a wrong-ordered j to βtk

or pA
k all at once.
The new algorithm PCPα,β (Algorithm 1 combined with Algorithm 3) has

an improved estimation of c(k, j) + c(j, k) when c(j, k) = tj + pj . However,
when there is only one task regarding j contributing to c(j, k), the estimation of
c(k, j) + c(j, k) may increase. Formally, we have the following two lemmas.

Lemma 3. Given two jobs k ≤o j, if PCPα,β does not test job k,

c(k, j) + c(j, k) ≤ (1 + 1
β

)uk.

Lemma 4. Given two jobs k ≤o j, if PCPα,β tests job k,

c(k, j) + c(j, k) ≤ max{2tk + pk, βtk, (1 + 1
β

)(tk + pk)}.

Similar to the proof of Theorem 1, we have the following competitiveness
results of the PCPα,β algorithm.

Theorem 2. The competitive ratio of PCPα,β is at most

max{α(1 + 1
β

), 1 + 1
α

+ 1
β

+ 1
αβ

, β, 2, 1 + 2
α

} . (2)

By choosing α = 1+
√

5
2 and β = 1+

√
5+

√
2(7+5

√
5)

4 , the competitive ratio of

PCPα,β is 1+
√

5+
√

2(7+5
√

5)
4 ≤ 2.316513. The choice is optimal for expression (2).

The selection of golden ratio α balances the penalty of making a wrong guess
for testing a job or not.

Note that using the analysis proposed in the work of Albers and Eckl [1] on
the new algorithm that put tj + pj back to the priority list after testing job j,
the competitive ratio is max{α, 1 + 1

α } + max{α, 1 + 1
α , β}. The best choice of

the values is α = ϕ and β ∈ [1, ϕ], and the competitive ratio is at most 2ϕ.
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Algorithm 4 Rand-PCPβ algorithm
Initialize a priority queue Q
for j = 1, 2, 3, · · · , n do

Let rj ← uj

tj

if rj < 1 then
Pj ← 0

else if rj > 3 then
Pj ← 1

else
Pj =

3r2
j −3rj

3r2
j

−4rj +3

Choose one of βtj and uj randomly with probability Pj for βtj and 1−Pj for uj

Insert a testing task with weight βtj into Q if βtj is chosen, and insert an
execution-untested task with weight uj into Q otherwise
Updated Queue-Execution(Q) ▷ See Algorithm 3

3.3 Preemption

We show that preempting the tasks does not improve the competitive ratio.
Intuitively, we show that given an algorithm A that generates a preemptive
schedule, we can find another algorithm B that is capable of simulating A and
performs the necessary merging of preempted parts. The simulation may make
the timing of A’s schedule gain extra information about the real processing times
earlier due to the advance of a testing task. However, a non-trivial A can only
perform better by receiving the information earlier. Thus, B’s non-preemptive
schedule has a total completion time at most that of A’s schedule.

Lemma 5. In the SUP problem, if there is an algorithm that generates a pre-
emptive schedule, then we can always find another algorithm that generates a
non-preemptive schedule and performs as well as the previous algorithm in terms
of competitive ratios.

4 Randomized algorithm

The amortization also helps improve the performance of randomized algorithms.
We combine the PCPα,β algorithm with the framework in the work of Albers
and Eckl [1], where instead of using a fixed threshold α, a job j is tested with
probability Pj , which is a function of uj , tj , and β.

Our randomized algorithm. For any job j with uj

tj
< 1 or uj

tj
> 3, we

insert uj or βtj into the queue, respectively. For any job j with 1 ≤ uj

tj
≤ 3,

we insert βtj into the queue with probability Pj and insert uj with probability
1 −Pj . Once a testing task tj is executed, we insert tj + pj into the queue. (See
Algorithms 4 and 3.)

Analysis. The following lemma can be proven using Lemma 3 and Lemma 4.
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Lemma 6. The expected total completion time of the n jobs is at most∑
j

∑
k≤oj

(1 + 1
β

)uk(1 − Pk) + max{2tk + pk, βtk, (1 + 1
β

)(tk + pk)}Pk,

where Pk is the probability that job k is tested.

Depending on whether the jobs are tested or not in the optimal schedule, the
expected total completion time can be expressed by functions with the variables:
the probability, the parameters of the jobs, and β. We design the probability Pk

by balancing the costs between the worst cases where p∗
k = uk or p∗

k = tk + pk.
Note that there are cases where the “ideal” value of Pk is outside the range [0, 1].
We take care of these special cases by setting Pk as 0 or 1 if the ideal value is
smaller than 0 or larger than 1, respectively.

Theorem 3. Let rk denote uk

tk
. The expected competitive ratio of Rand-PCPβ

is at most

max
k

(1 + 1
β )uk(1 − Pk) + max{2tk + pk, βtk, (1 + 1

β )(tk + pk)}Pk

p∗
k

, where

Pk = (β + 1)(rk − 1)
β(max{ 2

rk
+ 1, β

rk
, (1 + 1

β )(1 + 1
rk

)} − max{2, β, 1 + 1
β } + rk − 1) + rk − 1

if rk ∈ [1, 3], Pk = 0 if rk < 1, and Pk = 1 if rk > 3. By choosing β = 2, the
ratio is 3(7+3

√
6)

20 ≤ 2.152271. The choice of β is optimal.

5 Conclusion

In this work, we study a scheduling problem with explorable uncertainty. We en-
hance the analysis framework proposed in the work [1] by introducing amortized
perspectives. Using the enhanced analysis framework, we are able to balance the
penalty incurred by different wrong decisions of the online algorithm. In the end,
we improve the competitive ratio significantly from 4 to 2.316513 (deterministic)
and from 3.3794 to 2.152271 (randomized). An immediate open problem is if one
can further improve the competitive ratio by a deeper level of amortization.

Additionally, we show that preemption does not improve the competitive
ratio in the current problem setting, where all jobs are available at first. It may
not be true in the fully online setting, where jobs can arrive at any time. Thus,
another open problem is to study the problem in the fully online model.
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