
Deep Reinforcement Learning for Continuous
Control of Material Thickness

Oliver Dippel1,2[0000−0002−6252−2248], Alexei Lisitsa1[0000−0002−3820−643X], and
Bei Peng1[0000−0003−0152−3180]

1 University of Liverpool, Liverpool, United Kingdom
2 Centre for Doctoral Training in Distributed Algorithms, Liverpool, United

Kingdom
{oliver.dippel, lisitsa, bei.peng}@liverpool.ac.uk

Abstract. To achieve the desired quality standards of certain manufac-
tured materials, the involved parameters are still adjusted by knowledge-
based procedures according to human expertise, which can be costly
and time-consuming. To optimize operational efficiency and provide deci-
sion support for human experts, we develop a general continuous control
framework that utilizes deep reinforcement learning (DRL) to automat-
ically determine the main control parameters, in situations where simu-
lation environments are unavailable and traditional PID controllers are
not viable options. In our work, we aim to automatically learn the key
control parameters to achieve the desired outlet thickness of the manu-
factured material. We first construct a surrogate environment based on
real-world expert trajectories obtained from the true underlining man-
ufacturing process to achieve this. Subsequently, we train a DRL agent
within the surrogate environment. Our results suggest a Proximal Policy
Optimization (PPO) algorithm combined with a Multi-Layer Perceptron
(MLP) surrogate environment to successfully learn a policy that continu-
ously changes parameter configurations optimally, achieving the desired
target material thickness within an acceptable range.

Keywords: Reinforcement Leaning · Deep Learning · Real World Man-
ufacturing. · Intelligent Decision Support

1 Introduction

In recent years reinforcement learning (RL) has achieved groundbreaking success
in sequential decision-making problems by utilizing function approximation in
deep learning [10]. The resulting deep reinforcement learning (DRL) methods
have achieved superhuman performance in domains ranging from Atari [19] to
Go [23] to chip floorplanning [17]. DRL has also been successful in industrial
applications such as robotics [11, 12] and the sanitary area [20]. These works
demonstrate the potential of DRL to solve complex control tasks with high-
dimensional state and/or action spaces and provide valuable contributions to
modern engineering.

In current manufacturing processes, the traditional Proportional Integral Deriva-
tive (PID) controller [3] is commonly used in combination with the expertise of
human operators to optimize the process. The PID controller’s simplicity in
implementation and tuning [24] makes it well-suited for most control problems
without much mathematical modelling and analysis [2]. However, PID controllers
face the challenge of planning ahead to avoid driving either the control effort or
the process variable outside their acceptable ranges, which constrains control and
does not handle dynamic environments well. Furthermore, in environments with
multi-variable control issues and conflicting requirements, PID controllers suffer
a multi-objective problem [15]. In this work, we investigate dynamic environ-
ments in which PID controllers are not used due to their aforementioned short-
comings. We deal with complex industrial manufacturing processes where the
main challenge is finding a (semi-) automatic continuous control policy, primar-
ily due to non-existing simulation environments, non-existing PID controllers,
and major barriers to online testing such as high implementation costs. How-
ever, expert empirical data is usually collected in these industrial manufacturing
processes. Hence, we aim to develop a general control framework that enables us
to train a DRL agent to deal with dynamic, uncertain, and (soft-) constrained
environments by utilizing expert empirical data.

Inspired by [16], our control framework can be summarized as follows. First,
to overcome the difficulty of building a precise simulator, we train a surrogate
model using authentic real-world data to forecast the thickness of the manu-
factured material given the input parameter configuration. Second, we use this
trained surrogate model as an environment for training a DRL agent, with the
ultimate goal of learning a policy that continuously “finds" the optimal key
control parameter configuration to achieve the desired outlet thickness of the
manufactured material.

While numerous parameters may be pertinent to an industrial manufacturing
process, our focus is on managing the thermal profile at distinct stages of the
procedure, which is crucial for determining certain properties of the material
and for eliminating significant defects. Managing the thermal profile demands
continuous control due to fluctuations caused by unobserved or not controllable
exogenous factors, which can cause the material thickness to vary even when all
controllable parameters remain constant. The need for continuous control arises
from the constant changes in the material target thickness, requiring continuous
parameter adjustments.

In order to find the optimal setting for our framework, we test various estab-
lished DRL algorithms, namely PPO [22], DDPG [13] and DQN [18], in diverse
surrogates, including Random Forest (RF) and Multilayer Perceptron (MLP) en-
vironments. We compare their respective performances and determine the most
effective combination. Our experimental results show that the combination of
PPO with the MLP surrogate is the most effective one. It can rapidly and ac-
curately identify the optimal material thickness-inducing parameters to meet
the desired thickness needs and reduce the loss incurred during the process,
even under uncertain environmental conditions. Our approach is capable of in-

Fig. 1: Material Profile: The black rectangle denotes the optimal product, while
the grey rectangle represents the actual fabrication. Any excess material above
the black line signifies potential material savings, whereas falling below the black
threshold indicates an unsellable product.

corporating these uncertainties, encoded in the state, into the decision-making
process. Furthermore, our experiments demonstrate that, interestingly, although
both RF and MLP surrogate models achieve equally good accuracy in predicting
the material thickness, the MLP surrogate model proves to be a superior sim-
ulation environment for training the DRL agent to develop an effective policy
for addressing the underlying control problem. In addition, to validate if our
trained surrogate model can provide a good approximation to an existing sim-
ulation environment for training a DRL agent, we utilize the widely recognized
Mountain Car simulation environment [4]. We show that the PPO agent trained
in the MLP surrogate environment achieves similar final performance to the
PPO agent trained in the Mountain Car environment, demonstrating the ability
of our MLP surrogate model to serve as a reliable approximation of a simulation
environment.

In this work, we successfully use a DRL agent trained solely on empirical data
to control the material thickness in unknown environmental conditions. Our
control framework offers a practical solution to comparable industrial control
problems where simulation environments are unavailable and traditional PID
controllers are not viable options.

2 Background

2.1 Material Thickness Control

The parameters determining the material thickness of certain industrial pro-
cesses are often still adjusted by human experts. However, unconsidered factors
can cause material thickness to vary, even when all controllable parameters are
held constant. Moreover, in many industrial processes, a time delay between the
change of a process parameter and the resulting material thickness adaptation is
common and impedes the control process even more. This delay can be caused

by a variety of factors, such as the time required for a machine to respond to
new changes. As a result, accurate prediction of the material thickness based
on process parameters can be challenging. The unknown process-specific delay
can be learnt using an internal dynamics model or accounted for by shifting the
match of process parameter changes and the resulting material thickness adap-
tation by a certain process-specific factor. In this work, we focus on the latter
approach, measuring the time between parameter changes and target thickness
convergence. We then adjust our empirical training data by the observed lag
time. By incorporating this lag into our training data for our predictive sur-
rogate models, we can more accurately predict product quality and optimize
manufacturing processes for improved efficiency and quality control.

In accordance with the requirements of the customer, various material thick-
nesses are manufactured, while the surface exhibits inherent roughness that we
aim to enhance. Figure 1 shows the material profile, where the black rectangle
signifies the ideal material thickness, and the grey rectangle represents the actual
underlying profile. The objective is to ensure that the material thickness is at
least as thick as the optimal black rectangle at every point, while being as close
as possible to the optimum.

Various parameters in different zones of the manufacturing process are consid-
ered to determine the material thickness and can affect the material properties.
In this work, we focus on controlling the heating-related parameters only, which
are key parameters that contribute to most of the material thickness variability
and can be influenced by external factors.

2.2 Data

For our experiments, we use empirical data collected by the material manu-
facturer. The data originates from different thickness runs over the course of
different years, and is selected based on the quality of the data, e.g., no sensor
failures. Measurements are acquired in a short time interval during the entire
manufacturing process and cover a wide range of material thicknesses, resulting
in a set of multiple distinct target thickness values.

When adjusting the heat parameters, a natural lag occurs which causes the
material thickness to change only after a certain time. As a result, observed
heat and measured material thickness do not align at the same time. To account
for this difference, we train a machine learning model to predict the material
thickness given the heating parameter at several time shifts. In this case, the heat
measurements are equated with thickness measurements, which are measured
8 ∗ k, with k = {0, 1, ..., 20} minutes later. To evaluate the predictive power, we
use 10-fold cross-validation for each time shift between 0 and 160 minutes. We
do not test for possible transitions longer than 160min due to data preservation.
Our results show that a lag of 72min results in the lowest mean absolute error
(MAE) and is therefore considered consequently. It is important to note that
this is an empirical finding based on our data sample and may not generalize to
other datasets.

2.3 Reinforcement Learning

Markov Decision Process. Reinforcement learning considers the problem of
a goal-directed agent interacting with an uncertain environment and trying to
maximize its long-term expected cumulative reward. The underlying decision-
making problem can be modelled as a Markov Decision Process (MDP), which
can be represented by a tuple < S,A, P,R, γ >. At each discrete timestep t, the
agent is in an environment state st ∈ S, which is a momentary representation
of the world the agent finds itself in. The agent then selects an action at ∈ A to
take to influence the environment. After executing action at, the agent moves to
the next state st+1 with some probability defined by the state transition function
P (st+1|st, at), and receives a numeric reward rt specified by the reward function
R(st, at). γ ∈ [0, 1] is a discount factor specifying how much immediate rewards
are preferred to future rewards.

Through the training process, the agent can learn a stochastic policy π(at|st) :
S×A → [0, 1], which is a per-state action probability distribution that fully de-
fines an agent’s behavior. The goal of the agent is to find the optimal policy π∗,
which maximizes the expected cumulative discounted reward, denoted as follows:

Gt =

∞∑
k=0

γkrt+k, (1)

where rt is the reward received at timestep t. When the agent follows some policy
π, a so-called trajectory τ is generated, forming a sequence of states, actions,
and rewards. In DRL, the policy π is represented by a neural network, which
can be seen as a universal function approximator [9]. With the use of neural
networks, reinforcement learning can become more unstable, as high correlations
between actions and states may cause network weights to oscillate. To overcome
this problem, we can use the experience replay mechanism to store the agent’s
experiences at each timestep and randomly sample a small batch of experiences
to facilitate learning [14].

State-Value Function and Action-Value Function. The state-value
function and action-value function are two important concepts in MDPs, which
can be used to predict future rewards. The state-value function V π(s) of an
MDP can be defined as: V π(s) = Eπ[Gt|st = s], which estimates the expected
total discounted reward the agent will receive starting from state s and following
some policy π thereafter. The action-value function Qπ(s, a) of an MDP can be
defined as Qπ(s, a) = Eπ[Gt|st = s, at = a], which estimates the expected total
discounted reward the agent will receive after taking action a in state s and
following some policy π thereafter. These equations can be recursively defined
using the Bellman equation [25]:

V π(s) =
∑
a

π(a|s)
∑
s′

P (s′|s, a)
[
R(s, a) + γV π(s′)

]
. (2)

Qπ(s, a) =
∑
s′

P (s′|s, a)
[
R(s, a) + γ

∑
a′

π(a′|s′)Qπ(s′, a′)
]
. (3)

3 Related Work

While DRL has shown impressive performance in a large variety of complex
sequential decision-making problems, in the literature, there have only been a
few attempts at applying DRL to real-world manufacturing to control material
thickness.

Process control has been addressed in several works. [6, 8, 26, 29] use a DQN,
[28] use PPO and [27, 7] use a DDPG approach. Of existing work, the approach
proposed by [16] and [5] is closest to the control framework presented in this
paper. To control the flatness of steel [5] combines PPO with ensemble learning
to reduce the risk of falling into local optima. In [16], the aim is to control
heating and speed process parameters, called “recipe", in an industrial electric
furnace with the goal of reaching a specific desired outlet temperature. Typically,
the recipe is discovered by a trial-and-error procedure of human experts, leaving
room for improvement in terms of time and cost invested to discover a recipe. To
solve the problem of parameter identification, [16] train a DQN [18] agent, whose
policy decisions yield such a recipe. A classic environment in the context of RL
is provided by a “self-prediction" model. This model is a RF which predicts the
outlet temperature of a material given the heat and speed parameters. The data
used to train the “self-prediction" model is acquired by simulation.

In contrast to the work of [16], we focus on tackling the problem of controlling
material thickness. Furthermore, we compare the performance of three different
DRL algorithms instead of only using DQN. DQN aims to learn a good estimate
of the optimal action-value function in order to find the greedy deterministic
policy. Standard DQN only works for discrete action tasks since maximizing
a complex nonlinear action-value function at each update becomes difficult in
continuous action tasks. However, using a discrete action space for temperature
adjustments is questionable since it can lead to discretization errors or sparse
rewards. By the introduction of an unnecessary discretization hyperparameter,
we are running the risk of overshooting if the step size is too large. At the same
time, a step size too small can result in sparse rewards, making it more difficult
for the agent to learn. To overcome this problem, we use a continuous action
space. We choose DDPG [13] and PPO [22] due to their competitive performance
in continuous control tasks and compare them against the performance of DQN
in a discrete action setting. In addition, [16] rely on simulated data to train
their self-prediction model, whereas we utilize an authentic real-world dataset
to acquire knowledge of the intrinsic dynamics of a manufacturing process. Their
self-prediction model is based on a RF approach, but we demonstrate that its
capacity for generalization to unobserved instances can be inadequate compared
to an MLP approach. This inadequacy can hinder the training of the RL agent
and lead to unnecessary complex policies. Our experimental results demonstrate
that, interestingly, although both RF and MLP surrogate models achieve equally
good accuracy in predicting the material thickness, the MLP surrogate model
acts as a better simulation environment for training the DRL agent to learn a
more effective policy for solving our problem.

4 Methodology

In this section, we present our control framework that utilizes DRL to auto-
matically determine the main control parameters to achieve the desired outlet
thickness of the material. We start by describing the self-prediction model and
refer to it as a surrogate model. To train the surrogate model, we use real-world
data to predict the thickness value of the material. We then discuss how this
learned surrogate model is used as a simulation environment for training the
DRL agent and how the material thickness control problem is formulated as an
RL problem in our framework.

4.1 Surrogate Model

0 5 10 15 20 25 30 35 40
Parameter Set Index

2

4

6

8

10

12

Th
ick

ne
ss

MLP
RF
True

Fig. 2: Predicted thicknesses from either the RF or MLP surrogate model versus
the true thickness values. Test data is randomly drawn and consists of 40 different
parameter constellations from the empirical dataset.

An RL agent learns how to solve a sequential decision-making problem through
real-time interaction with an uncertain environment. The agent learns what ac-
tions to take based on a scalar reward signal provided by the environment.
In most RL works, (simulation) environments are pre-given with well-defined
reward functions. However, we entirely lack a simulation environment for the
real-world material process due to its complexity and variability. Hence, real-
world data collected from an industrial process is extremely valuable, providing
a good representation of the internal dynamics. In our work, we utilize avail-
able real-world process data from a production site to build our own simulation
environment by learning a good representation of the data itself.

We explore two surrogate models: a Random Forest (RF) with 128 decision
trees and a MLP with one hidden layer containing 128 units. These surrogates
are trained end-to-end in a supervised manner on the full dataset, using L2 loss
to predict material thickness from input parameters. We assess surrogate model

performance through 10-fold cross-validation (80/20 split) using L1 loss. To en-
sure comparability, both RF and MLP machting an L1 loss of approximately
0.02. These trained surrogate models serve as the simulation environment for
training the subsequent DRL agent. They provide state updates and scalar re-
wards after agent actions. Figure 2 showcases the surrogate models’ predictive
accuracy for material thickness based on input parameters.

In our experiments, we find that, even though both RF and MLP surrogate
models achieve equally good accuracy in predicting the material thickness, the
MLP surrogate model demonstrates superior generalization performance over the
RF surrogate model, acting as a better simulation environment for training the
DRL agent. Specifically, the RF surrogate model, when presented with previously
unseen parameter configurations, has a tendency to predict the most frequently
observed material thickness value. This results in a significant degree of volatility
in the predicted material thickness, even when input parameters exhibit only
minor changes.

4.2 Reward Structure

We now explain how the trained surrogate model is used to determine the nu-
meric reward signal sent to the RL agent. Typically, when designing the reward
function for an RL problem, we aim to align the rewards with the long-term goal
as best as possible. Without further reward engineering, we follow the approach
used in [16]. Specifically, we define the reward function by taking the difference
between the previous and the current material thickness compared to the target
thickness and normalizing the resulting value by the target thickness:

rt =
|MTt−1 −MT target| − |MTt −MT target|

MT target
. (4)

With MTt−1 being the previous and MTt the currently observed material thick-
ness. If the agent’s action choice results in a material thickness within a certain
acceptance interval, an additional reward of +1 is provided to the agent and the
current episode is terminated early. Noticeably, the acceptance interval might
differ between different target material thickness runs. Mostly, the acceptance
interval is set to be [MT target − 0.2,MT target − 0.1], with the lower bound
determined by the customer’s minimum tolerance. A target thickness of 2mm
constitutes an exception, as empirically we never observe thicknesses below 2mm
and the exact reason is unknown to us. Consequently, the maximum cumulative
reward the agent can earn within one episode, assuming an initial random state
with a material thickness of 2mm, is approximately 1.75 for a target thickness
of 8mm. Further experiment results refer to a target thickness of 8mm.

4.3 State and Action Spaces

The state space consists of the current measured heat of several different zones
and the actual material thickness observed, denoted as follows:

st = (FH1
t , FH2

t , ..., FHJ
t ,MTt) ∈ S, (5)

where FHj
t is the heat the jth zone and MTt is the material thickness currently

observed based on the trained surrogate model. At each timestep t of an episode,
the RL agent takes an action at in environment state st, moves to the next state
st+1 and receives a scalar reward rt. Such a sequence describes a trajectory τt
by which the agent uses to learn to maximize the expected cumulative reward.

We consider both continuous and discrete action spaces by modelling the
temperature of each zone as a continuous action or as a set of discrete actions.
For the continuous action setting, the action space is defined as:

at = {α1
t , α

2
t , ..., α

J
t } ∈ A, (6)

where αj
t implies the increase or decrease in temperature of the jth zone. Hence,

the agent is able to change each zone temperature at every timestep t. The natu-
ral limitation in the actions is the maximum or minimum observed temperature
of the respective zone with an action range of [−10, 10].

In the discrete action setting, the state representation stays the same. How-
ever, the action space doubles and we insert an action-step size ζ, which defines
a hyperparameter in our setting. The action space in the discrete setting is then
defined as:

at = {α1
t , α

2
t , ..., α

J
t , α

J+1
t , ..., αJ+J

t } ∈ A, (7)

where α1
t , ..., α

J
t implies an increase in temperature of the jth zone by ζ = 10◦C

and αJ+1
t , ..., αJ+J

t implies a decrease in temperature of the jth zone by ζ =
−10◦C.

4.4 Agent Description

This work compares the performance of three different DRL algorithms in var-
ious surrogate model environments. We now give a brief summary of the DRL
methods used.

The first is PPO [22], a policy gradient method that aims to optimize a
stochastic policy in a stable and sample-efficient manner similar to Trust Region
Policy Optimization (TRPO) [21]. Different to TRPO, PPO uses a clipped sur-
rogate objective function that constrains the update to a small region around
the current policy, preventing large policy updates while ensuring policy sus-
tainability. Secondly, we use DDPG [13], an actor-critic algorithm that learns a
deterministic policy, meaning it directly outputs the optimal action for a given
state. It combines deep neural networks with the traditional actor-critic algo-
rithm to handle high-dimensional continuous action spaces. And thirdly DQN
[18], a Q-learning algorithm that uses a deep neural network to estimate the
action-value function. It employs an experience replay buffer and a separate
target network to stabilize the learning process and prevent overfitting.

5 Experiments

We train the DRL agent by interacting with the surrogate model. All experiments
use the same hyperparameters, run for 1000 episodes with 10 random seeds and
limit episodes to 2000 timesteps. If the agent reaches the target thickness within
an acceptable range, it receives +1 reward, ending the episode early. Initial states
are randomly sampled from empirical data, excluding those already within the
acceptable range. Action limits are based on observed data. We use γ = 0.999
for all experiments. Surrogate models include Random Forest (RF) and Multi-
Layer Perceptron (MLP), while DRL agents encompass DQN, DDPG, and PPO.
We evaluate their performance combinations for solving the continuous control
problem. Experimental results are reported for a target thickness of 8mm.

As we do not have a simulation environment or access to online testing for
our control problem, it is intriguing to determine whether the surrogate model
can accurately depict the dynamics of the actual underlying environment. We
validate our approach by comparing the performance of a PPO agent either
trained in the Mountain Car Gym environment (continuous) [4] or trained in
the MLP surrogate environment. The training of the MLP surrogate is based
on expert trajectories generated from an optimal policy for the Mountain Car
Gym environment. In this environment, the agent receives a negative reward of
−0.1 ∗ action2 for each step in which the car fails to reach the final position on
the hill and a positive reward of +100 upon reaching the final position.

PPO. We use 8 parallel environments and approximate policy and value
functions using neural networks with a 2-layer, 64-unit fully-connected MLP ar-
chitecture. The policy network outputs adjustments for each of the six zones as
mean and standard deviation from a normal distribution. We train these net-
works using stochastic gradient ascent and descent, both using Adam optimizer
at a learning rate of 0.004. Advantages are computed with Generalized Advan-
tage Estimation (GAE) as suggested [1] and minibatch normalization with a size
of 68 and a lambda of 0.95 during training

DDPG. We maintain two networks: a policy network mapping states to ac-
tions and a critic network assessing expected cumulative rewards. Both networks
have MLP architectures with 2 hidden layers of 64 units each and ReLU non-
linearities. We train the actor and critic networks using Adam optimizer with a
learning rate of 0.004. We employ soft updates for the target networks and an
exploration strategy based on the Ornstein-Uhlenbeck process.

DQN. We use a Q-network and a target network as twin initialization. Both
networks consist of 2 hidden layers with 64 units and ReLU non-linearities. The
parameters of the Q-network are updated via Adam optimizer with a learning
rate of 0.004. The target network parameters are soft updates of the Q-network
parameters. Exploration is performed during training using ϵ greedy. The output
of the network is of size number of zones ∗ 2 and the index of the maximum
value indicates which zone temperature is to be increased or decreased.
The left pane of figure 3 shows the mean cumulative reward attained by the
agent during training for a fixed target thickness, using various surrogate models
and DRL algorithm combinations in our framework. The maximum cumulative

0 20 40 60 80 100
Episodes

−40

−20

0

20

40

60

80

100

M
ea

n
Ep

iso
de

 R
et
ur
n

Mountain Car Env.
MLP Env.

Fig. 3: Left: Mean episode return achieved during training when using various
surrogate model and DRL algorithm combinations in our framework. The mean
across 10 random seeds is plotted and the ± standard deviation is shown shaded.
Right: Mean episode return achieved during training for a PPO agent either
trained in the Mountain Car simulation environment or trained in our MLP
surrogate environment.

reward achievable ranges between approximately [1.1, 1.75], depending on the
difference between the initial material thickness and the target thickness. We can
see that the combination of PPO and the MLP surrogate model performs the best
among the tested algorithms and surrogate models. It quickly and successfully
converges to the maximum attainable reward and learns policies to accurately
identify the optimal parameter configuration for the target material thickness
within an acceptance interval.

Moreover, when trained in the MLP surrogate environment, all three DRL
algorithms demonstrate superior performance compared to their performance in
the RF surrogate environment. Compared to PPO, DQN and DDPG are more
sensitive to the choice of the surrogate model. Specifically, when trained in the
RF surrogate environment, both DQN and DDPG exhibit significantly worse
performance in terms of both absolute performance and learning speed, com-
pared to when they are trained in the MLP surrogate environment. The RF
surrogate model tends to revert to the most commonly observed target thick-
ness for unseen parameter configurations, thereby introducing noise in the reward
signal. Additionally, the DQN algorithm’s discrete and fixed step size of 10◦C
seems to cause the predicted target thickness of the RF surrogate model to vary
significantly, further increasing the noise in the reward signal and prolonging the
training process. Whereas the discrete step size does not appear to pose any is-
sues for the combination of DQN and MLP surrogate. In our setting, DPPG fails
to converge to a good policy completely in the RF surrogate environment and
exhibits highly volatile training performance in the MLP surrogate environment.

Surrogate validation. In this work, we consider industrial manufacturing
processes where online evaluation is unfeasible due to significant financial costs
and the absence of compatible simulations. Consequently, the question arises as

to whether our trained surrogate model can provide a good approximation to
a simulation environment for training the DRL agent to learn (sub-) optimal
performance. To assess this, we utilize the well-known continuous Mountain Car
simulation environment from Gym. The state space of the Mountain Car con-
sists of the position of the car on the x-axis and its velocity, with the agent’s
action limited to a continuous scale within the range of [−1, 1], representing the
directional force applied on the car.

To demonstrate the ability of an RL agent to learn an effective policy through
our surrogate model, we first train a PPO agent end-to-end in the Mountain Car
environment, using a neural network with 2 hidden layers of 64 units. Subse-
quently, we use the resulting policy to produce expert trajectories in the Moun-
tain Car environment for 1000 episodes. These trajectories of states s, actions a
and next states s′ are preserved as training data for the surrogate model. We use
the MLP surrogate model, with the states s and actions a as input parameters
to predict the next state s′. We employ the same MLP architecture as mentioned
above and train it for 5000 episodes with a batch size of 32, resulting in an L2
loss of < 0.01. Upon successful training of the surrogate model, we train another
PPO agent using the surrogate predictions (to provide reward signal and state
updates) instead of using the Gym environment.

Our argument posits that a few predictions emulate the true dynamics with
a high degree of accuracy, and thus, each 50th state update is undertaken by
the dynamics of the true environment to stabilize the training procedure. Sub-
sequently, we compare the policy trained with the MLP surrogate model to the
policy trained exclusively in the Mountain Car environment. The right pane of
figure 3 shows the training curves of both PPO agents in either the true Moun-
tain Car environment or in the MLP surrogate environment. We can observe
that the PPO agent trained in the MLP surrogate environment requires more
training iterations to converge compared to the PPO agent trained in the Moun-
tain Car environment, but ultimately achieves similar performance levels. This
demonstrates that our MLP surrogate model serves as a reliable approximation
of the Mountain Car simulation environment.

6 Conclusion and Future Work

In this paper, we proposed a new framework in which we successfully train a
DRL agent in a surrogate environment based on real-world data. Our aim is
to continuously control the optimal input parameters to achieve a desired pre-
specified material thickness in a manufacturing process while reducing the loss
incurred during the process. To achieve this, we first established an RL envi-
ronment by training a surrogate model (i.e., an MLP model) on real-world data
to predict the material thickness given the input parameters. We then trained
a PPO agent by interacting with the established RL environment, to automat-
ically find the main control parameters that lead to the desired target material
thickness. To the best of our knowledge, this is the first time a DRL approach has
been successfully used to control material thickness in a manufacturing process

using real-world data. We validate our approach by showing that a DRL agent
trained in our MLP surrogate environment can achieve similar final performance
to the one trained in the Mountain Car simulation environment.

Our framework is general and can be applied to similar control problems
where no simulations and online testing are available but access to empirical
data is given. Our results identified the optimal pairing of a DRL algorithm
with a surrogate environment to be the PPO algorithm when coupled with the
MLP surrogate. This is a general recommendation, although a solution tailored
to the problem should achieve equal or better results. We argue that rising envi-
ronmental complexity should be encountered with a fine-tuned surrogate model
to minimize the reality gap. In future work, a human-in-the-loop is considered.
While other methods are not applicable such as real-world testing due to enor-
mous costs.

References

1. Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Girgin, S., Marinier, R.,
Hussenot, L., Geist, M., Pietquin, O., Michalski, M., et al.: What matters for on-
policy deep actor-critic methods? a large-scale study. In: International conference
on learning representations (2021)

2. Araki, M.: Pid control. Control Systems, Robotics and Automation: System Anal-
ysis and Control: Classical Approaches II pp. 58–79 (2009)

3. Bennett, S.: Development of the pid controller. IEEE Control Systems Magazine
13(6), 58–62 (1993)

4. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym (2016)

5. Deng, J., Sierla, S., Sun, J., Vyatkin, V.: Reinforcement learning for industrial
process control: A case study in flatness control in steel industry. Computers in
Industry 143, 103748 (2022)

6. Dornheim, J., Link, N., Gumbsch, P.: Model-free adaptive optimal control of
episodic fixed-horizon manufacturing processes using reinforcement learning. In-
ternational Journal of Control, Automation and Systems 18, 1593–1604 (2020)

7. Gamal, O., Mohamed, M.I.P., Patel, C.G., Roth, H.: Data-driven model-free in-
telligent roll gap control of bar and wire hot rolling process using reinforcement
learning. International Journal of Mechanical Engineering and Robotics Research
10(7), 349–356 (2021)

8. Guo, F., Zhou, X., Liu, J., Zhang, Y., Li, D., Zhou, H.: A reinforcement learning
decision model for online process parameters optimization from offline data in
injection molding. Applied Soft Computing 85, 105828 (2019)

9. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural networks 2(5), 359–366 (1989)

10. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444
(2015)

11. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor
policies. The Journal of Machine Learning Research 17(1), 1334–1373 (2016)

12. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection.
The International journal of robotics research 37(4-5), 421–436 (2018)

13. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D.: Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971 (2015)

14. Lin, L.J.: Reinforcement learning for robots using neural networks. Carnegie Mellon
University (1992)

15. Martínez, M.A., Sanchis, J., Blasco, X.: Multiobjective controller design handling
human preferences. Engineering applications of artificial intelligence 19(8), 927–
938 (2006)

16. Mazgualdi, C.E., Masrour, T., Hassani, I.E., Khdoudi, A.: A deep reinforcement
learning (DRL) decision model for heating process parameters identification in
automotive glass manufacturing. In: Artificial Intelligence and Industrial Applica-
tions. pp. 77–87. Springer International Publishing (2021)

17. Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J.W., Songhori, E., Wang, S., Lee,
Y.J., Johnson, E., Pathak, O., Nazi, A., et al.: A graph placement methodology
for fast chip design. Nature 594(7862), 207–212 (2021)

18. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

19. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. nature 518(7540), 529–533 (2015)

20. Ruelens, F., Claessens, B.J., Quaiyum, S., De Schutter, B., Babuška, R., Belmans,
R.: Reinforcement learning applied to an electric water heater: From theory to
practice. IEEE Transactions on Smart Grid 9(4), 3792–3800 (2016)

21. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy
optimization. In: International conference on machine learning. pp. 1889–1897.
PMLR (2015)

22. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (Jul 2017)

23. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of go with deep neural networks and tree search. nature 529(7587),
484–489 (2016)

24. Stewart, G., Samad, T.: Cross-application perspectives: Application and market
requirements. The impact of control technology pp. 95–100 (2011)

25. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
(2018)

26. Wu, T., Zhao, H., Gao, B., Meng, F.: Energy-saving for a velocity control system
of a pipe isolation tool based on a reinforcement learning method. International
Journal of Precision Engineering and Manufacturing-Green Technology pp. 1–16
(2021)

27. Yu, J., Guo, P.: Run-to-run control of chemical mechanical polishing process based
on deep reinforcement learning. IEEE Transactions on Semiconductor Manufac-
turing 33(3), 454–465 (2020)

28. Zinn, J., Vogel-Heuser, B., Gruber, M.: Fault-tolerant control of programmable
logic controller-based production systems with deep reinforcement learning. Jour-
nal of Mechanical Design 143(7), 072004 (2021)

29. Zirngibl, C., Dworschak, F., Schleich, B., Wartzack, S.: Application of reinforce-
ment learning for the optimization of clinch joint characteristics. Production En-
gineering 16(2-3), 315–325 (2022)

