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Density functions of periodic sequences of continuous events
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Abstract

Periodic Geometry studies isometry invariants of periodic point sets that are also continuous under
perturbations. The motivations come from periodic crystals whose structures are determined in
a rigid form but any minimal cells can discontinuously change due to small noise in measure-
ments. For any integer k ≥ 0, the density function of a periodic set S was previously defined
as the fractional volume of all k-fold intersections (within a minimal cell) of balls that have a
variable radius t and centers at all points of S. This paper introduces the density functions for
periodic sets of points with different initial radii motivated by atomic radii of chemical elements
and by continuous events occupying disjoint intervals in time series. The contributions are explicit
descriptions of the densities for periodic sequences of intervals. The new densities are strictly
stronger and distinguish periodic sequences that have identical densities in the case of zero radii.
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1 Motivations for the density
functions of periodic sets

This work substantially extends the previous
conference paper [3] in Discrete Geometry and
Mathematical Morphology 2022. The past work
explicitly described the density functions for peri-
odic sequences of zero-sized points. The new work
extends these analytic descriptions to periodic
sequences whose points have non-negative radii.

The proposed extension to the weighted case is
motivated by crystallography and materials chem-
istry [1] because all chemical elements have differ-
ent atomic radii. In dimension 1, the key motiva-
tion is the study of periodic time series consisting
of continuous and sequential (non-overlapping)
events represented by disjoint intervals. Any such

interval [a, b] ⊂ R for a ≤ b is the one-dimensional
ball with the center a+b

2 and radius b−a
2 .

The point-set representation of periodic crys-
tals is the most fundamental mathematical model
for crystalline materials because nuclei of atoms
are well-defined physical objects, while chemical
bonds are not real sticks or strings but abstractly
represent inter-atomic interactions depending on
many thresholds for distances and angles.

Since crystal structures are determined in a
rigid form, their most practical equivalence is rigid
motion (a composition of translations and rota-
tions) or isometry that maintains all inter-point
distances and includes also mirror reflections [22].

Now we introduce the key concepts. Let Rn be
Euclidean space, Z be the set of all integers.
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2 Density functions of periodic sequences

Definition 1.1 (a lattice Λ, a unit cell, a motif, a
periodic point set). For any linear basis v1, . . . , vn

of Rn, a lattice is Λ = {
n∑

i=1

civi : ci ∈ Z}. The unit

cell U(v1, . . . , vn) = {
n∑

i=1

civi : 0 ≤ ci < 1} is the

parallelepiped defined by the basis above. A motif
M ⊂ U is any finite set of points p1, . . . , pm ∈ U .
A periodic point set [22] is the Minkowski sum
S =M + Λ = {u+ v | u ∈M,v ∈ Λ}. ■

In dimension n = 1, a lattice is defined by any
non-zero vector v ∈ R, any periodic point set S
is a periodic sequence {p1, . . . , pm}+ vZ with the
period v equal to the length of the vector v.

Definition 1.2 (density functions for periodic
sets of points with radii). Let a periodic set S =
Λ +M ⊂ Rn have a unit cell U . For every point
p ∈ M , fix a radius r(p) ≥ 0. For any integer
k ≥ 0, let Uk(t) be the region within the cell U
covered by exactly k closed balls B̄(p; r(p) + t)
for t ≥ 0 and all points p ∈ M and their transla-
tions by Λ. The k-th density function ψk[S](t) =
Vol[Uk(t)]/Vol[U ] is the fractional volume of the
k-fold intersections of these balls within U . ■

In Definition 1.2, the balls are growing at all
points of S, because centers p ∈M are translated
by all lattice vectors v ∈ Λ. The initially different
radii ri are motivated by real lengths of continuous
events in periodic time series for n = 1 and also
by atomic radii of different chemical elements for
n = 3. Another (possibly, non-linear) growth of
radii lead to more complicated density functions.

The density ψk[S](t) can be interpreted as the
probability that a random (uniformly chosen in U)
point q is at a maximum distance t to exactly k
balls with initial radii r(p) and all centers p ∈ S.

For k = 0, the 0-th density ψ0[S](t) mea-
sures the fractional volume of the empty space not
covered by any expanding balls B̄(p; r(p) + t)

In the simplest case of radii r(p) = 0, the infi-
nite sequence Ψ[S] = {ψk(t)}+∞

k=0 was called in
[6, section 3] the density fingerprint of a periodic
point set S. For k = 1 and small t > 0 while
all equal-sized balls B̄(p; t) remain disjoint, the
1st density ψ1[S](t) increases proportionally to tn

but later reaches a maximum and eventually drops
back to 0 when all points of Rn are covered of by at

least two balls. See the densities ψk, k = 0, . . . , 8
for the square and hexagonal lattices in [6, Fig. 2].

The original densities helped find a missing
crystal in the Cambridge Structural Database,
which was accidentally confused with a slight per-
turbation (measured at a different temperature)
of another crystal (polymorph) with the same
chemical composition, see [6, section 7].

The new weighted case with radii r(p) ≥ 0 in
Definition 1.2 is even more practically important
due to different Van der Waals radii, which are
individually defined for all chemical elements.

The key advantage of density functions over
other isometry invariants of periodic crystals
(such as symmetries or conventional representa-
tions based on a geometry of a minimal cell) is
their continuity under perturbations, see details in
section 2 reviewing the related past work.

The only limitation is the infinite size of den-
sities ψk(t) due to the unbounded parameters:
integer index k ≥ 0 and continuous radius t ≥ 0.

We state the following problem in full general-
ity to motivate future work on these densities.

Problem 1.3 (computation of ψk). Verify if the
density functions ψk[S](t) from Definition 1.2 can
be computed in a polynomial time (in the size m
of a motif of S) for a fixed dimension n. ■

The main contribution of this work is the
full solution of Problem 1.3 for n = 1. Despite
ψk[S](t) depends on infinitely many k and t,
Theorems 3.2, 4.2, 5.2, 6.2, and Corollary 6.5.

2 Review of related past work

Due to close contacts between bonded atoms,
dense packings approximate real crystals. Hence
dense periodic packings were studied for various
objects including tetrahedra in R3 [18] and were
optimized for all regular polygons and each of the
17 crystallographic groups in R2 [16, 17].

Periodic Geometry was initiated in 2020 by the
problem [12, section 2.3] to design a computable
metric on isometry classes of lattices, which is
continuous under perturbations of a lattice basis.

Though, a Voronoi domain is combinatorially
unstable under perturbations, its geometric shape
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Density functions of periodic sequences 3

was used to introduce two continuous metrics [12,
Theorems 2, 4] requiring approximations due to a
minimization over infinitely many rotations.

Similar minimizations over rotations or other
continuous parameters are required for the com-
plete invariant isosets [2] and density functions,
which can be practically computed in low dimen-
sions [14] whose completeness was proved for
generic periodic point sets in R3 [6, Theorem 2].
The density fingerprint Ψ[S] turned out to be
incomplete [6, section 5] in the example below.

Example 2.1 (periodic sequences S15, Q15 ⊂ R).
Widdowson et al. [22, Appendix B] discussed
homometric sets that can be distinguished by
the invariant AMD (Average Minimum Distances)
and not by diffraction patterns. The sequences

S15 = {0, 1, 3, 4, 5, 7, 9, 10, 12}+ 15Z,
Q15 = {0, 1, 3, 4, 6, 8, 9, 12, 14}+ 15Z

have the unit cell [0, 15] shown as a circle in Fig. 1.

Fig. 1 Circular versions of the periodic sets S15, Q15.

These periodic sequences [7] are obtained as
Minkowski sums S15 = U + V + 15Z and Q15 =
U − V + 15Z for U = {0, 4, 9}, V = {0, 1, 3}. ■

For rational-valued periodic sequences, [7,
Theorem 4] proved that r-th order invariants
(combinations of r-factor products) up to r = 6
are enough to distinguish such sequences up to a
shift (a rigid motion of R without reflections).

The AMD invariant was extended to the Point-
wise Distance Distribution (PDD), whose generic
completeness [20, Theorem 4.4] was proved in
any dimension n ≥ 1. However there are finite
sets in R3 [13, Fig. S4] with the same PDD,
which were distinguished by more sophisticated
distance-based invariants in [19, 21].

The subarea of Lattice Geometry devel-
oped continuous parameterizations for the moduli

spaces of lattices considered up to isometry in
dimension two [5, 11] and three [8].

For 1-periodic sequences of points in Rn, com-
plete isometry invariants with continuous and
computable metrics appeared in [10], see related
results for finite clouds of unlabeled points [9, 15].

3 The 0-th density function ψ0

This section proves Theorem 3.2 explicitly describ-
ing the 0-th density function ψ0[S](t) for any
periodic sequence S ⊂ R. All intervals are con-
sidered closed and called disjoint if their open
interiors (not endpoints) have no common points.

For convenience, scale any periodic sequence
S to period 1 so that S is given by points
0 ≤ p1 < · · · < pm < 1 with radii r1, . . . , rm,
respectively. Since the expanding balls in R are
growing intervals, volumes of their intersections
linearly change with respect to the variable radius
t. Hence any density function ψk(t) is piecewise
linear and uniquely determined by corner points
(aj , bj) where the gradient of ψk(t) changes.

To prepare the proof of Theorem 3.2, we first
consider Example 3.1 for the simple sequence S.

Example 3.1 (0-th density function ψ0). Let the
periodic sequence S = {0, 13 ,

1
2} + Z have three

points p1 = 0, p2 = 1
3 , p3 = 1

2 of radii r1 = 1
12 ,

r2 = 0, r3 = 1
12 , respectively. Fig. 2 shows each

point pi and its growing interval

Li(t) = [(pi−ri)−t, (pi+ri)+t] of the length 2ri+2t

for i = 1, 2, 3 in its own color: red, green, blue.

By Definition 1.2 each density function
ψk[S](t) measures a fractional length covered by
exactly k intervals within the unit cell [0, 1]. It is
convenient to periodically map the endpoints of
each growing interval to the unit cell [0, 1].

For instance, the interval [− 1
12 − t, 1

12 + t] of
the point p1 = 0 ≡ 1 (mod 1) maps to the red
intervals [0, 1

12 + t]∪ [ 1112 − t, 1] shown by solid red
lines in Fig. 2. The same image shows the green
interval [ 13 − t, 13 + t] by dashed lines and the blue
interval [ 5

12 − t, 7
12 + t] by dotted lines.

At the moment t = 0, since the starting inter-
vals are disjoint, they cover the length l = 2( 1

12 +
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4 Density functions of periodic sequences

Fig. 2 The sequence S = {0, 1
3
, 1
2
} + Z has the points of

weights 1
12
, 0, 1

12
, respectively. The intervals around the red

point 0 ≡ 1 (mod 1), green point 1
3
, blue point 1

2
have the

same color for various radii t, see Examples 3.1, 4.1, 5.1.

0 + 1
12 ) = 1

3 . The non-covered part of [0, 1] has
length 1 − 1

3 = 2
3 . So the graph of ψ0(t) at t = 0

starts from the point (0, 23 ), see Fig. 3 (right).

Fig. 3 Left: the 0-th density function ψ0(t) for the 1-
period sequence S = {0, 1

3
, 1
2
}+Z with radii 0. Right: the

0-th density ψ0(t) for the 1-period sequence S whose points
0, 1

3
, 1
2
have radii 1

12
, 0, 1

12
, respectively, see Example 3.1.

At the first critical moment t = 1
24 when the

green and blue intervals collide at p = 3
8 , only the

intervals [ 18 ,
7
24 ] ∪ [ 58 ,

7
8 ] of total length

5
12 remain

uncovered. Hence ψ0(t) linearly drops to the point
( 1
12 ,

5
12 ). At the next critical moment t = 1

8 when
the red and green intervals collide at p = 5

24 , only
the interval [ 1724 ,

19
24 ] of length

1
12 remain uncovered,

so ψ0(t) continues to ( 18 ,
1
12 ).

The graph of ψ0(t) finally returns to the t-axis
at the point ( 16 , 0) and remains there for t ≥ 1

6 .

The piecewise linear behavior of ψ0(t) can be
described by specifying the corner points in Fig. 3:
(0, 23 ), (

1
24 ,

5
12 ), (

1
8 ,

1
12 ), (

1
6 , 0). ■

Theorem 3.2 extends Example 3.1 to any peri-
odic sequence S and implies that the 0-th density
function ψ0(t) is uniquely determined by the
ordered gap lengths between successive intervals.

Theorem 3.2 (description of ψ0). Let a periodic
sequence S = {p1, . . . , pm} + Z consist of disjoint
intervals with centers 0 ≤ p1 < · · · < pm < 1 and
radii r1, . . . , rm ≥ 0. Consider the total length l =

2
m∑
i=1

ri and gaps between successive intervals gi =

(pi − ri) − (pi−1 + ri−1), where i = 1, . . . ,m and
p0 = pm − 1, r0 = rm. Put the gaps in increasing
order: g[1] ≤ g[2] ≤ · · · ≤ g[m].

Then the 0-th density ψ0[S](t) is piecewise lin-
ear with the following (unordered) corner points:

(0, 1− l) and (
g[i]
2 , 1− l−

i−1∑
j=1

g[j]− (m− i+1)g[i])

for i = 1, . . . ,m, so the last corner is (
g[m]

2 , 0).

If any corners are repeated, e.g. when g[i−1] =
g[i], these corners are collapsed into one corner. ■

Proof By Definition 1.2 the 0-th density function
ψ0(t) measures the total length of subintervals in the
unit cell [0, 1] that are not covered by any of the grow-
ing intervals Li(t) = [pi−ri−t, pi+ri+t], i = 1, . . . ,m.
For t = 0, since all initial intervals Li(0) are disjoint,

they cover the total length 2
m∑
i=1

ri = l.

Then the graph of ψ0(t) at t = 0 starts from the
point (0, 1 − l). So ψ0(t) linearly decreases from the
initial value ψ0(0) = 1− l except for m critical values
of t where one of the gap intervals [pi + ri + t, pi+1 −
ri+1−t] between successive growing intervals Li(t) and
Li+1(t) shrinks to a point. These critical radii t are
ordered according to the gaps g[1] ≤ g[2] ≤ · · · ≤ g[m].

The first critical radius is t = 1
2g[1], when a short-

est gap interval of the length g[1] is covered by the

growing successive intervals. At this moment t = 1
2g[1],

all m growing intervals Li(t) have the total length
l + mg[1]. Then the 0-th density ψ0(t) has the first

corner points (0, 1− l) and (
g[1]
2 , 1− l −mg[1]).

The second critical radius is t =
g[2]
2 , when all

intervals Li(t) have the total length l+g[1]+(m−1)g[2],

i.e. the next corner point is (
g[2]
2 , 1 − l − g[1] − (m −



205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Springer Nature 2021 LATEX template

Density functions of periodic sequences 5

1)g[2]). If g[1] = g[2], then both corner points coincide,
so ψ0(t) will continue from the joint corner point.

The above pattern generalizes to the i-th critical
radius t = 1

2g[i], when all covered intervals have the

total length
i−1∑
j=1

g[j] (for the fully covered intervals)

plus (m− i+ 1)g[i] (for the still growing intervals).

For the final critical radius t =
g[m]

2 , the whole
unit cell [0, 1] is covered by the grown intervals because
m∑
j=1

g[j] = 1− l. The final corner is (
g[m]

2 , 0). □

Example 3.3 applies Theorem 3.2 to get ψ0

found for the periodic sequence S in Example 3.1.

Example 3.3 (using Theorem 3.2). The sequence
S = {0, 13 ,

1
2} + Z in Example 3.1 with points

p1 = 0, p2 = 1
3 , p3 = 1

2 of radii r1 = 1
12 , r2 = 0,

r3 = 1
12 , respectively, has l = 2(r1 + r2 + r3) =

1
3

and the initial gaps between successive intervals
g1 = p1 − r1 − p3 − r3 = (1− 1

12 )− ( 12 + 1
12 ) =

1
3 ,

g2 = p2 − r2 − p1 − r1 = ( 13 − 0)− (0 + 1
12 ) =

1
4 ,

g3 = p3 − r3 − p2 − r2 = ( 12 − 1
12 )− ( 13 + 0) = 1

12 .
Order the gaps: g[1] =

1
12 < g[2] =

1
4 < g[3] =

1
3 .

1− l = 1− 1
3 = 2

3 ,

1− l − 3g[1] =
2
3 − 3

12 = 5
12 ,

1− l − g[1] − 2g[2] =
2
3 − 1

12 − 2
4 = 1

12 ,

1− l − g[1] − g[2] − g[3] =
2
3 − 1

12 − 1
4 − 1

3 = 0.
By Theorem 3.2 ψ0(t) has the corner points
(0, 1− l) = (0, 23 ),

( 12g[1], 1− l − 3g[1]) = ( 1
24 ,

5
12 ),

( 12g[2], 1− l − g[1] − 2g[2]) = ( 18 ,
1
12 ),

( 12g[3], 1 − l − g[1] − g[2] − g[3]) = ( 16 , 0). See the
graph of the 0-th density ψ0(t) in Fig. 3. ■

By Theorem 3.2 any 0-th density function
ψ0(t) is uniquely determined by the (unordered)
set of gap lengths between successive intervals.
Hence we can re-order these intervals with-
out changing ψ0(t). For instance, the periodic
sequence Q = {0, 12 ,

2
3} + Z with points 0, 12 ,

2
3 of

weights 1
12 ,

1
12 , 0 has the same set ordered gaps

g[1] = 1
12 , d[2] = 1

3 , d[3] = 1
2 as the periodic

sequence S = {0, 13 ,
1
2}+ Z in Example 3.1.

The above sequences S,Q are related by the
mirror reflection t 7→ 1 − t. One can eas-
ily construct many non-isometric sequences with
ψ0[S](t) = ψ0[Q](t). For any 1 ≤ i ≤ m − 3,
the sequences Sm,i = {0, 2, 3, . . . , i + 2, i + 4, i +
5, . . . ,m + 2} + (m + 2)Z have the same interval
lengths d[1] = · · · = d[m−2] = 1, d[m−1] = d[m] = 2
but are not related by isometry (translations and
reflections in R) because the intervals of length 2
are separated by i−1 intervals of length 1 in Sm,i.

4 The 1st density function ψ1

This section proves Theorem 4.2 explicitly describ-
ing the 1st density function ψ1[S](t) for any
periodic sequence S of disjoint intervals. To pre-
pare the proof of Theorem 4.2, Example 4.1 finds
ψ1[S] for the sequence S from Example 3.1.

Fig. 4 Left: the trapezoid functions ηR, ηG, ηB and the
1st density function ψ1(t) for the 1-period sequence S
whose points 0, 1

3
, 1
2
have radii 1

12
, 0, 1

12
, see Example 4.1.

Right: The trapezoid functions ηGB , ηBR, ηRG and the
2nd density function ψ2(t) for the 1-period sequence S
whose points 0, 1

3
, 1
2
have radii 1

12
, 0, 1

12
, see Example 5.1.
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6 Density functions of periodic sequences

Example 4.1 (ψ1 for S = {0, 13 ,
1
2} + Z). The

1st density function ψ1(t) can be obtained as a
sum of the three trapezoid functions ηR, ηG, ηB ,
each measuring the length of a region covered by
a single interval of one color, see Fig. 2.

At the initial moment t = 0, the red intervals
[0, 1

12 ] ∪ [ 1112 , 1] have the total length ηR(0) = 1
6 .

These red intervals [0, 1
12 + t] ∪ [ 1112 − t, 1] for

t ∈ [0, 18 ] grow until they touch the green interval
[ 7
24 ,

3
8 ] and have the total length ηR(

1
8 ) =

1
6 +

2
8 =

5
12 in the second picture of Fig. 2. So the graph of
the red length ηR(t) linearly grows with gradient
2 from the point (0, 16 ) to the corner point ( 18 ,

5
12 ).

For t ∈ [ 18 ,
1
6 ], the left red interval is shrink-

ing at the same rate (due to the overlapping green
interval) as the right red interval continues to grow
until t = 1

6 , when it touches the blue interval
[ 14 ,

3
4 ]. Hence the graph of ηR(t) remains constant

for t ∈ [ 18 ,
1
6 ] up to the corner point ( 16 ,

5
12 ).

After that, the graph of ηR(t) linearly
decreases (with gradient −2) until all red intervals
are fully covered by the green and blue intervals
at moment t = 3

8 , see the 6th picture in Fig. 2.

Hence the trapezoid function ηR has the piece-
wise linear graph through the corner points (0, 16 ),
( 18 ,

5
12 ), ( 16 ,

5
12 ), ( 38 , 0). After that, ηR(t) = 0

remains constant for t ≥ 3
8 . Fig. 4 shows the

graphs of ηR, ηG, ηB and ψ1 = ηR + ηG + ηB . ■

Theorem 4.2 extends Example 4.1 and proves
that any ψ1(t) is a sum of trapezoid functions
whose corners are explicitly described. We con-
sider any index i = 1, . . . ,m (of a point pi or a
gap gi) modulo m so that m+ 1 ≡ 1 (mod m).

Theorem 4.2 (description of ψ1). Let a periodic
sequence S = {p1, . . . , pm} + Z consist of disjoint
intervals with centers 0 ≤ p1 < · · · < pm < 1
and radii r1, . . . , rm ≥ 0, respectively. Consider
the gaps gi = (pi − ri) − (pi−1 + ri−1), between
successive intervals, where i = 1, . . . ,m and p0 =
pm− 1, r0 = rm. Then the 1st density ψ1(t) is the
sum ofm trapezoid functions ηi, i = 1, . . . ,m, with
the corners (0, 2ri), (

gi
2 , g + 2ri), (

gi+1

2 , g + 2ri),

( gi+gi+1

2 + ri, 0), where g = min{gi, gi+1}.

Hence ψ1(t) is determined by the unordered
set of unordered pairs (gi, gi+1), i = 1, . . . ,m. ■

Proof The 1st density ψ1(t) equals the total length
of subregions covered by exactly one of the intervals
Li(t) = [pi − ri − t, pi + ri + t], i = 1, . . . ,m, where all
intervals are taken modulo 1 within [0, 1].

Hence ψ1(t) is the sum of the functions η1i, each
measuring the length of the subinterval of Li(t) not
covered by other intervals Lj(t), j ∈ {1, . . . ,m}−{i}.

Since the initial intervals Li(0) are disjoint, each
function η1i(t) starts from the value η1i(0) = 2ri and
linearly grows (with gradient 2) up to ηi(

1
2g) = 2ri+g,

where g = min{gi, gi+1}, when the growing interval
Li(t) of the length 2ri+2t = 2ri+g touches its closest
neighboring interval Li±1(t) with a shortest gap g.

If (say) gi < gi+1, then the subinterval covered
only by Li(t) is shrinking on the left and is grow-
ing at the same rate on the right until Li(t) touches
the growing interval Li+1(t) on the right. During
this growth, when t is between 1

2gi and 1
2gi+1, the

trapezoid function ηi(t) = g remains constant.

If gi = gi+1, this horizontal line collapses to one
point in the graph of ηi(t). For t ≥ max{gi, gi+1},
the subinterval covered only by Li(t) is shrinking on
both sides until the neighboring intervals Li±1(t) meet
at a mid-point between their initial closest endpoints
pi−1 + ri−1 and pi+1 − ri+1. This meeting time is

t =
pi+1−ri+1−pi−1−ri−1

2 =
gi+2ri+gi+1

2 ,

which is also illustrated by Fig. 5. So the trape-
zoid function ηi has the corners (0, 2ri), (

gi
2 , 2ri + g),

(
gi+1

2 , 2ri + g), (
gi+gi+1

2 + ri, 0) as expected. □

Fig. 5 The distances g, s, g′ between line intervals used in
the proofs of Theorems 4.2 and 5.2, shown here for k = 3.

Example 4.3 applies Theorem 4.2 to get ψ1

found for the periodic sequence S in Example 4.1.

Example 4.3 (using Theorem 4.2 for ψ1). The
sequence S = {0, 13 ,

1
2} + Z in Example 4.1 with

points p1 = 0, p2 = 1
3 , p3 = 1

2 of radii r1 = 1
12 ,

r2 = 0, r3 = 1
12 , respectively, has the initial gaps

between successive intervals g1 = 1
3 , g2 = 1

4 , g3 =
1
12 , see all the computations in Example 3.3.

Case (R). In Theorem 4.2 for the trapezoid func-
tion ηR = η1 measuring the fractional length
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covered only by the red interval, we set i = 1.
Then ri =

1
12 , gi =

1
3 and gi+1 = 1

4 , so

gi+gi+1

2 + ri =
1
2 (

1
3 + 1

4 ) +
1
12 = 3

8 ,
g = min{gi, gi+1} = 1

4 , g + 2ri =
1
4 + 2

12 = 5
12 .

Then ηR = η1 has the following corner points:

(0, 2ri) = (0, 16 ), ( gi2 , g + 2ri) = ( 16 ,
5
12 ),

( gi+1

2 , g + 2ri) = ( 18 ,
5
12 ),

( gi+gi+1

2 + ri, 0) = ( 38 , 0),

where the two middle corners are accidentally
swapped due to gi > gi+1 but they define the same
trapezoid function as in the first picture of Fig. 4.

Case (G). In Theorem 4.2 for the trapezoid func-
tion ηG = η2 measuring the fractional length
covered only by the green interval, we set i = 2.
Then ri = 0, gi =

1
4 and gi+1 = 1

12 , so

gi+gi+1

2 + ri =
1
2 (

1
4 + 1

12 ) + 0 = 1
6 ,

g = min{gi, gi+1} = 1
12 , g + 2ri =

1
12 + 0 = 1

12 .

Then ηG = η2 has the following corner
points exactly as shown in the second picture of
Fig. 4 (left):

(0, 2ri) = (0, 0), ( gi2 , g + 2ri) = (18 ,
1
12 ),

( gi+1

2 , g + 2ri) = ( 1
24 ,

5
12 ),

( gi+gi+1

2 + ri, 0) = (16 , 0).

Case (B). In Theorem 4.2 for the trapezoid func-
tion ηB = η3 measuring the fractional length
covered only by the blue interval, we set i = 3.
Then ri =

1
12 , gi =

1
12 and gi+1 = 1

3 , so

gi+gi+1

2 + ri =
1
2 (

1
12 + 1

3 ) +
1
12 = 7

24 ,
g = min{gi, gi+1} = 1

12 , g + 2ri =
1
12 + 2

12 = 1
4 .

Then ηB = η3 has the following corner points:

(0, 2ri) = (0, 16 ), ( gi2 , g + 2ri) = ( 1
24 ,

1
4 ),

( gi+1

2 , g + 2ri) = ( 16 ,
1
4 ),

( gi+gi+1

2 + ri, 0) = ( 7
24 , 0)

exactly as shown in the third picture of Fig. 4. ■

5 Higher density functions ψk

This section proves Theorem 5.2 describing the k-
th density function ψk[S](t) for any k ≥ 2 and a
periodic sequence S of disjoint intervals.

To prepare the proof of Theorem 5.2, Exam-
ple 5.1 computes ψ2[S] for S from Example 3.1.

Example 5.1 (ψ2 for S = {0, 13 ,
1
2} + Z). The

density ψ2(t) can be found as the sum of the trape-
zoid functions ηGB , ηBR, ηRG, each measuring the
length of a double intersection, see Fig. 2.

For the green interval [ 13 −t,
1
3 +t] and the blue

interval [ 5
12 − t, 7

12 + t], the graph of the function
ηGB(t) is piecewise linear and starts at the point
( 1
24 , 0) because these intervals touch at t = 1

24 .

The green-blue intersection [ 5
12−t,

1
3+t] grows

until t = 1
6 , when the resulting interval [ 14 ,

1
2 ]

touches the red interval on the left. At the same
time, the graph of ηGB(t) is linearly growing (with
gradient 2) to the corner ( 16 ,

1
4 ), see Fig, 4.

For t ∈ [ 16 ,
7
24 ], the green-blue intersection

interval becomes shorter on the left, but grows at
the same rate on the right until t = 7

24 when [ 18 ,
5
8 ]

touches the red interval [ 58 , 1] on the right, see
the 5th picture in Fig. 2. So the graph of ηGB(t)
remains constant up to the point ( 7

24 ,
1
4 ).

For t ∈ [ 7
24 ,

5
12 ] the green-blue intersection

interval is shortening from both sides. So the
graph of ηGB(t) linearly decreases (with gradient
−2) and returns to the t-axis at the corner ( 5

12 , 0),
then remains constant ηGB(t) = 0 for t ≥ 5

12 .

Fig. 4 shows all trapezoid functions for double
intersections and ψ2 = ηGB + ηBR + ηRG. ■

Theorem 5.2 (description of ψk for k ≥ 2). Let
a periodic sequence S = {p1, . . . , pm} + Z consist
of disjoint intervals with centers 0 ≤ p1 < · · · <
pm < 1 and radii r1, . . . , rm ≥ 0, respectively.
Consider the gaps gi = (pi − ri) − (pi−1 + ri−1)
between the successive intervals of S, where i =
1, . . . ,m and p0 = pm − 1, r0 = rm.

For k ≥ 2, the density function ψk(t) equals
the sum of m trapezoid functions ηk,i(t), i =
1, . . . ,m, each having the following corner points:
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8 Density functions of periodic sequences

( s2 , 0), (
g+s
2 , g), ( s+g′

2 , g), ( g+s+g′

2 , 0), where g, g′

are the minimum and maximum values in the pair

{gi + 2ri, gi+k + 2ri+k−1}, and s =
i+k−1∑
j=i+1

gj +

2
i+k−2∑
j=i+1

rj . For k = 2, we have s = gi+1.

Hence ψk(t) is determined by the unordered
set of the ordered tuples (g, s, g′), i = 1, . . . ,m. ■

Proof The k-th density function ψk(t) measures the
total fractional length of k-fold intersections among m
intervals Li(t) = [pi − ri − t, pi + ri + t], i = 1, . . . ,m.
Now we visualize all such intervals Li(t) in the line R
without mapping them modulo 1 to the unit cell [0, 1].

Since all radii ri ≥ 0, only k successive inter-
vals can contribute to k-fold intersections. So a k-fold
intersection of growing intervals emerges only when
two intervals Li(t) and Li+k−1(t) overlap because
their intersection should be also covered by all the
intermediate intervals Li(t), Li+1(t), . . . , Li+k−1(t).

Then the density ψk(t) equals the sum of the m
trapezoid functions ηk,i, i = 1, . . . ,m, each equal to

the length of the k-fold intersection ∩i+k−1
j=i Lj(t) not

covered by other intervals. Then ηk,i(t) remains 0 until
the first critical moment t when 2t equals the distance
between the points pi + ri and pi+k−1 − ri+k−1 in R,

see Fig. 5, so 2t =
i+k−1∑
j=i+1

gj + 2
i+k−2∑
j=i+1

rj = s. Hence

t = s
2 and ( s2 , 0) is the first corner point of ηk,i(t).

At t = s
2 , the interval of the k-fold intersection

∩i+k−1
j=i Lj(t) starts expanding on both sides. Hence

ηk,i(t) starts increasing (with gradient 2) until the
k-fold intersection touches one of the neighboring
intervals Li−1(t) or Li+k(t) on the left or on the right.

The left interval Li−1(t) touches the k-fold inter-

section ∩i+k−1
j=i Lj(t) when 2t equals the distance from

pi−1 + ri−1 (the right endpoint of Li−1) to pi+k−1 −
ri+k−1 (the left endpoint of Li+k−1), see Fig. 5, so

2t =

i+k−1∑
j=i

gj + 2

i+k−2∑
j=i

rj = gi + 2ri + s.

The right interval Li+k−1(t
′) touches the k-fold

intersection ∩i+k−1
j=i Lj(t

′) when 2t′ equals the distance

from pi + ri (the right endpoint of Li) to pi+k − ri+k

(the left endpoint of Li+k), see Fig. 5, so

2t′ =
i+k∑

j=i+1

gj + 2

i+k−1∑
j=i+1

rj = s+ gi+k + 2ri+k−1.

If (say) gi + 2ri = g < g′ = gi+k + 2ri+k−1, the

k-fold intersection ∩i+k−1
j=i Lj(t) first touches Li−1 at

the earlier moment t before reaching Li+k(t
′) at the

later moment t′. At the earlier moment, ηk,i(t) equals

2(t− s
2 ) = gi + 2ri = g and has the corner ( g+s

2 , g).

After that, the k-fold intersection is shrinking on
the left and is expanding at the same rate on the right.
So the function ηk,i(t) = g remains constant until the
k-fold intersection touches the right interval Li+k(t

′).

At this later moment t′ =
s+gi+k

2 + ri+k−1 = g′,

ηk,i(t
′) still equals g and has the corner ( s+g′

2 , g).

If gi + 2ri = g′ > g = gi+k + 2ri+k−1, the grow-
ing intervals Li−1(t) and Li+k−1(t) touch the k-fold

intersection ∩i+k−1
j=i Lj(t) in the opposite order. How-

ever, the above arguments lead to the same corners

( g+s
2 , g) and ( s+g′

2 , g) of ηk,i(t). If g = g′, the two
corners collapse to one corner in the graph of ηk,i(t).

The k-fold intersection ∩i+k−1
j=i Lj(t) becomes fully

covered when the intervals Li−1(t), Li+k(t) touch. At
this moment, 2t equals the distance from pi−1 + ri−1

(the right endpoint of Li−1) to pi+k − ri+k (the

left endpoint of Li+k), see Fig. 5, so 2t =
i+k∑
j=i

gj +

2
i+k−1∑
j=i

rj = gi+2ri+s+gi+k+2ri+k−1 = g+s+g′.

The graph of ηk,i(t) has the corner ( g+s+g′

2 , 0). □

Example 5.3 applies Theorem 5.2 to get ψ2

found for the periodic sequence S in Example 3.1.

Example 5.3 (using Theorem 5.2 for ψ2). The
sequence S = {0, 13 ,

1
2} + Z in Example 4.1 with

points p1 = 0, p2 = 1
3 , p3 = 1

2 of radii r1 = 1
12 ,

r2 = 0, r3 = 1
12 , respectively, has the initial gaps

g1 = 1
3 , g2 = 1

4 , g3 = 1
12 , see Example 3.3.

In Theorem 5.2, the 2nd density function
ψ2[S](t) is expressed as a sum of the trapezoid
functions computed via their corners below.

Case (GB). For the function ηGB measuring the
double intersections of the green and blue inter-
vals centered at p2 = pi and p3 = pi+k−1, we
set k = 2 and i = 2. Then we have the radii
ri = 0 and ri+1 = 1

12 , the gaps gi =
1
4 , gi+1 = 1

12 ,
gi+2 = 1

3 , and the sum s = gi+1 = 1
12 . The pair

{gi + 2ri, gi+2 + 2ri+1} = { 1
4 + 0, 13 + 2

12} has the
minimum value g = 1

4 and maximum value g′ = 1
2 .
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Then η2,2[S](t) = ηGB has the following corners
as in the top picture of Fig. 4 (right):

( s2 , 0) = ( 1
24 , 0),

( g+s
2 , g) = ( 12 (

1
4 + 1

12 ),
1
4 ) = (16 ,

1
4 ),

( s+g′

2 , g) = (12 (
1
12 + 1

2 ),
1
4 ) = ( 7

24 ,
1
4 ),

( g+s+g′

2 , 0) = (12 (
1
4 + 1

12 + 1
2 ), 0) = ( 5

12 , 0).

Case (BR). For the trapezoid function ηBR mea-
suring the double intersections of the blue and red
intervals centered at p3 = pi and p1 = pi+k−1,
we set k = 2 and i = 3. Then we have the
radii ri = 1

12 = ri+1, the gaps gi = 1
12 , gi+1 =

1
3 , gi+2 = 1

4 , and s = gi+1 = 1
3 . The pair

{gi + 2ri, gi+2 + 2ri+1} = { 1
12 + 2

12 ,
1
4 + 2

12} has
the minimum g = 1

4 and maximum g′ = 5
12 .

Then η2,3[S](t) = ηBR has the following corners
as expected in the second picture of Fig. 4 (right):

( s2 , 0) = (16 , 0),

( g+s
2 , g) = (12 (

1
4 + 1

3 ),
1
4 ) = ( 7

24 ,
1
4 ),

( s+g′

2 , g) = (12 (
1
3 + 5

12 ),
1
4 ) = (38 ,

1
4 ),

( g+s+g′

2 , 0) = ( 12 (
1
4 + 1

3 + 5
12 ), 0) = (12 , 0).

Case (RG). For the trapezoid function ηRG mea-
suring the double intersections of the red and
green intervals centered at p1 = pi and p2 =
pi+k−1, we set k = 2 and i = 1. Then we have
the radii ri =

1
12 and ri+1 = 0, the gaps gi =

1
3 ,

gi+1 = 1
4 , gi+2 = 1

12 , and s = gi+1 = 1
4 . The pair

{gi + 2ri, gi+2 + 2ri+1} = { 1
3 + 2

12 ,
1
12 + 0} has

the minimum g = 1
12 and maximum g′ = 1

2 . Then
η2,1[S](t) = ηRG has the following corners:

( s2 , 0) = (18 , 0),

( g+s
2 , g) = ( 12 (

1
12 + 1

4 ),
1
12 ) = (16 ,

1
12 ),

( s+g′

2 , g) = (12 (
1
4 + 1

2 ),
1
12 ) = (38 ,

1
12 ),

( g+s+g′

2 , 0) = (12 (
1
12 + 1

4 + 1
2 ), 0) = ( 5

12 , 0).

as expected in the third picture of Fig. 4 (right). ■

6 Properties of new densities

This section proves the periodicity of the sequence
ψk with respect to the index k ≥ 0 in Theorem 6.2,
which was a bit unexpected from original Defini-
tion 1.2. We start with the simpler example for
the familiar 3-point sequence in Fig. 2.

Example 6.1 (periodicity of ψk in the index k).
Let the periodic sequence S = {0, 13 ,

1
2} + Z have

three points p1 = 0, p2 = 1
3 , p3 = 1

2 of radii
r1 = 1

12 , r2 = 0, r3 = 1
12 , respectively. The ini-

tial intervals L1(0) = [− 1
12 ,

1
12 ], L2(0) = [ 13 ,

1
3 ],

L3(0) = [ 5
12 ,

7
12 ] have the 0-fold intersection mea-

sured by ψ0(0) = 2
3 and the 1-fold intersection

measured by ψ1(0) =
1
3 , see Fig. 3 and 4.

By the time t = 1
2 the initial intervals will grow

to L1(
1
2 ) = [− 7

12 ,
7
12 ], L2(

1
2 ) = [− 1

6 ,
5
6 ], L3(

1
2 ) =

[− 1
12 ,

13
12 ]. The grown intervals at the radius t = 1

2
have the 3-fold intersection [− 1

12 ,
7
12 ] of the length

ψ3(
1
2 ) =

2
3 , which coincides with ψ0(0) =

2
3 .

With the extra interval L4(
1
2 ) = [ 5

12 ,
19
12 ] cen-

tered at p4 = 1, the 4-fold intersection is L1 ∩
L2 ∩ L3 ∩ L4 = [ 5

12 ,
7
12 ]. With the extra inter-

val L5(
1
2 ) = [ 56 ,

11
6 ] centered at p5 = 4

3 , the
4-fold intersection L2 ∩ L3 ∩ L4 ∩ L5 is the single
point 5

6 . With the extra interval L6(
1
2 ) = [ 1112 ,

13
12 ]

centered at p6 = 3
2 , the 4-fold intersection is

L3∩L4∩L5∩L6 = [ 1112 ,
13
12 ]. Hence the total length

of the 4-fold intersection at t = 1
2 is ψ4(

1
2 ) = 1

3 ,
which coincides with ψ1(0) =

1
3 .

For the larger t = 1, the six grown intervals

L1(1) =
[
− 13

12 ,
13
12

]
, L2(1) =

[
− 2

3 ,
4
3

]
,

L3(1) =
[
− 7

12 ,
19
12

]
, L4(1) =

[
− 1

12 ,
25
12

]
,

L5(1) =
[
1
3 ,

7
3

]
, L6(1) =

[
5
12 ,

31
12

]
have the 6-fold intersection

[
5
12 ,

13
12

]
of length

ψ6(1) =
2
3 coinciding with ψ0(0) = ψ3(

1
2 ) =

2
3 . ■

Corollary 6.2 proves that the coincidences in
Example 6.1 are not accidental. The periodicity of
ψk with respect to k is illustrated by Fig. 6.

Theorem 6.2 (periodicity of ψk in the index k).
The density functions ψk[S] of a periodic sequence
S = {p1, . . . , pm} + Z consisting of disjoint inter-
vals with centers 0 ≤ p1 < · · · < pm < 1 and radii
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10 Density functions of periodic sequences

Fig. 6 The densities ψk, k = 0, . . . , 9 for the 1-period sequence S whose points 0, 1
3
, 1
2
have radii 1

12
, 0, 1

12
, respectively. The

densities ψ0, ψ1, ψ2 are described in Examples 3.1, 4.1, 5.1 and determine all other densities by periodicity in Theorem 6.2.

r1, . . . , rm ≥ 0, respectively, satisfy the periodicity
ψk+m(t+ 1

2 ) = ψk(t) for any k ≥ 0 and t ≥ 0. ■

Proof When the grown intervals have a radius t + 1
2 ,

their (k+m)-fold intersection has the fractional length
equal to ψk+m(t + 1

2 ) and can be a union of several
intervals. Let I be one of these intervals, p be the mid-
point of I. Collapsing the interval [p − 1

2 , p + 1
2 ] of

length 1 to p removes exactly m points from S.

If we decrease by 1
2 the radius ri + t + 1

2 of any
interval Ji centered at a point to the left of p, the right
endpoint of Ji remains at the same position, because
the center of Ji moved by 1

2 closer to p. Similarly,
the collapse above preserves the left endpoint of any
interval centered at a point to the right of p.

Hence the interval I around p remains between
its original endpoints and now belongs to the k-fold
intersection of all intervals without considering the
removed m intervals whose endpoints were within the
interval [p− 1

2 , p+
1
2 ) that was collapsed to p.

Taking all intervals I that form the (k + m)-
fold intersection, we get the k-fold intersection of the
shorter intervals, so ψk+m(t+ 1

2 ) = ψk(t). □

Example 6.3 (Theorem 6.2 for m = 1 in Fig. 7).
Let a 1-period sequence S have one point p1 = 0
of a radius 0 < r < 1

2 . The grown interval [−r −
t− 1

2 , r+t+
1
2 ] around 0 has the 1-fold intersection

I = [r+ t− 1
2 ,

1
2 − r− t] centered at p = 0 and not

covered by the adjacent intervals centered at ±1,
so ψ1(t+

1
2 ) = 1− 2(t+ r).

After collapsing [− 1
2 ,

1
2 ] to 0, which is excluded

from S, the periodic sequence has new points ± 1
2

of the smaller radius r+ t. The new shorter inter-
vals have the same endpoints − 1

2 + (r + t) and
1
2−(r+t) around p = 0. Now I = [r+t− 1

2 ,
1
2−r−t]

is not covered by any shorter intervals, so the
get the same length of the 0-fold intersection:
ψ0(t) = 1− 2(t+ r). ■

Fig. 7 Top: Example 6.3 illustrates the proof of
Theorem 6.2 for m = 1. Bottom: the density functions ψk

of S = Z whose points have a radius 0 < r < 1
4
satisfy the

periodicity ψk+1(t+
1
2
) = ψk(t) for any k ≥ 0 and t ≥ 0.
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Fig. 8 The densities ψk, k = 0, . . . , 10, distinguish (already for k ≥ 2) the sequences (scaled down by period 15) S15 =
{0, 1, 3, 4, 5, 7, 9, 10, 12}+ 15Z (top) and Q15 = {0, 1, 3, 4, 6, 8, 9, 12, 14}+ 15Z (bottom), where the radius ri of any point
is the half-distance to its closest neighbor. These sequences with zero radii have identical ψk for all k, see [3, Example 10].

The symmetry ψm−k(
1
2 − t) = ψk(t) for k =

0, . . . , [m2 ], and t ∈ [0, 12 ] from [3, Theorem 8]
no longer holds for points with different radii.
For example, ψ1(t) ̸= ψ2(

1
2 − t) for the periodic

sequence S = {0, 13 ,
1
2} + Z, see Fig. 4, 4. If all

points have the same radius r, [3, Theorem 8]
implies the symmetry after replacing t by t+ 2r.

The main results of [3] implied that all den-
sity functions cannot distinguish the non-isometric
sequences S15 = {0, 1, 3, 4, 5, 7, 9, 10, 12} + 15Z
and Q15 = {0, 1, 3, 4, 6, 8, 9, 12, 14}+15Z of points
with zero radii. Example 6.4 shows that the den-
sities for sequences with non-zero radii are strictly
stronger and distinguish the sequences S15 ̸∼= Q15.
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Example 6.4 (ψk for S15, Q15 with neighbor
radii). For any point p in a periodic sequence S ⊂
R, define its neighbor radius as the half-distance
to a closest neighbor of p within the sequence S.

This choice of radii respects the isometry in the
sense that periodic sequences S,Q with zero-sized
radii are isometric if and only if S,Q with neighbor
radii are isometric. Fig. 8 shows that the densi-
ties ψk for k ≥ 2 distinguish the non-isometric
sequences S15 and Q15 scaled down by factor 15
to the unit cell [0, 1], see Example 2.1. ■

Corollary 6.5 (computation of ψk(t)). Let
S,Q ⊂ R be periodic sequences with at most m
motif points. For k ≥ 1, one can draw the graph
of the k-th density function ψk[S] in time O(m2).
One can check in time O(m3) if Ψ[S] = Ψ[Q]. ■

Proof To draw the graph of ψk[S] or evaluate the k-
th density function ψk[S](t) at any radius t, we first
use the periodicity from Theorem 6.2 to reduce k to
the range 0, 1, . . . ,m. In time O(m logm) we put the
points from a unit cell U (scaled to [0, 1] for conve-
nience) in the increasing (cyclic) order p1, . . . , pm. In
time O(m) we compute the gaps gi = (pi−ri)−(pi−1+
ri−1) between successive intervals.

For k = 0, we put the gaps in the increasing order
g[1] ≤ · · · ≤ g[m] in time O(m logm). By Theorem 3.2

in time O(m2), we write down the O(m) corner points
whose horizontal coordinates are the critical radii
where ψ0(t) can change its gradient.

We evaluate ψ0 at every critical radius t by sum-
ming up the values ofm trapezoid functions at t, which
needs O(m2) time. It remains to plot the points at all
O(m) critical radii t and connect the successive points
by straight lines, so the total time is O(m2).

For any larger fixed index k = 1, . . . ,m, in time
O(m2) we write down all O(m) corner points from
Theorems 4.2 and 5.2, which leads to the graph of
ψk(t) similarly to the above argument for k = 0.

To decide if the infinite sequences of density func-
tions coincide: Ψ[S] = Ψ[Q], by Theorem 6.2 it suffices
to check only if O(m) density functions coincide:
ψk[S](t) = ψk[Q](t) for k = 0, 1, . . . , [m2 ].

To check if two piecewise linear functions coincide,
it remains to compare their values at all O(m) critical
radii t from the corner points in Theorems 3.2, 4.2, 5.2.
Since these values were found in time O(m2) above,
the total time for k = 0, 1, . . . , [m2 ] is O(m3). □

All previous examples show densities with a
single local maximum. However, the new R code
[4] helped us discover the opposite examples.

Fig. 9 For the periodic sequence S = {0, 1
8
, 1
4
, 3
4
} + Z

whose all points have radii 0, the 2nd density ψ2[S](t) has
the local minimum at t = 1

4
between two local maxima.

Fig. 10 For the sequence S =
{
0, 1

81
, 1
27
, 1
9
, 1
3

}
+Z whose

all points have radii 0, ψ2[S] equal to the sum of the shown
five trapezoid functions has three maxima.

Example 6.6 (densities with multiple maxima).
Fig. 9 shows a simple 4-point sequence S whose
2nd density ψ2[S] has two local maxima. Figs. 10
and 11 show complicated sequences whose density
functions have more than two maxima. Fig. 12
shows that two local maxima are more common
than one maximum for random sequences. ■
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Fig. 11 For the sequence S =
{
0, 1

64
, 1
16
, 1
8
, 1
4
, 3
4

}
+ Z

whose all points have radii 0, ψ3[S] has 5 local maxima.

7 Conclusions and future work

In comparison with the past work [3], the key
contributions of this paper are the following.

• Definition 1.2 extended the density functions ψk

to any periodic sets of points with radii ri ≥ 0.

• Theorems 3.2, 4.2, 5.2 explicitly described all ψk

and allowed us to justify a quadratic algorithm for
computing any ψk for any periodic sequence S of
points with radii in Corollary 6.5, illustrated by
new Examples 3.1, 3.3, 4.1, 4.3, 5.1, 5.3, 6.1, 6.3.

• Theorem 6.2 now proves the periodicity of the
density functions ψk with respect to k in much
greater detail than its simpler analog [3, Theorem
8], which was stated only for points with radii 0.

• The code [4] helped us distinguish the sequences
S15 ̸∼= Q15 in Example 6.4 and quantify frequen-
cies of random sequences whose density functions
have multiple local maxima, see Example 6.6.

Here are the open problems for future work.

• Verify if density functions ψk[S](t) for small
values of k distinguish all non-isometric periodic
point sets S ⊂ Rn at least with radii 0.

• Characterize the periodic sequences S ⊂ R
whose all density functions ψk for k ≥ 1 have a
unique local maximum, not as in Example 6.6.

• Similar to Theorems 3.2, 4.2, 5.2, analytically
describe the density function ψk[S] for periodic
point sets S ⊂ Rn in higher dimensions n > 1.

• Design an incremental algorithm to compute all
ψk[S] when a new point is added to a motif of S.

This research was supported by the grants of
the UK Engineering Physical Sciences Research
Council (EP/R018472/1, EP/X018474/1) and the
Royal Academy of Engineering Industrial Fellow-
ship (IF2122/186) of the last author. We thank all
reviewers for their time and helpful advice.
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