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Abstract 28 

Common genetic variants associated with lung cancer have been well studied in the past decade. 29 

However, only 12.3% heritability has been explained by these variants. In this study, we 30 

investigate the contribution of rare variants (RVs) (minor allele frequency <0.01) to lung cancer 31 

through two large whole exome sequencing case-control studies. We first performed gene-based 32 

association tests using a novel Bayes Factor statistic in the International Lung Cancer Consortium, 33 

the discovery study (European, 1042 cases vs. 881 controls). The top genes identified are further 34 

assessed in the UK Biobank (European, 630 cases vs. 172 864 controls), the replication study. 35 

After controlling for the false discovery rate, we found two genes, CTSL and APOE, significantly 36 

associated with lung cancer in both studies. Single variant tests in UK Biobank identified 4 RVs 37 

(3 missense variants) in CTSL and 2 RVs (1 missense variant) in APOE stongly associated with 38 

lung cancer (OR between 2.0 and 139.0).  The role of these genetic variants in the regulation of 39 

CTSL or APOE expression remains unclear. If such a role is established, this could have important 40 

therapeutic implications for lung cancer patients.   41 

 42 

Author summary 43 

Lung cancer (LC) is the leading cause of cancer death accounting for 18% of all cancer deaths.  44 

Previous studies have suggested genetic contribution to the disease. Common genetic variants 45 

associated with LC have been well studied through large, collaborative, genome-wide association 46 

studies (GWASs) in the past decade. However, they explained only about 12.3% of LC heritability. 47 

It is therefore hypothesized that the unexplained variability might be partially due to rare variants 48 

(RVs). In this study, we applied a novel gene-based test statistic based on a Bayes Factor approach, 49 

to whole exome sequencing data from the International Lung Cancer consortium (ILCCO). 50 
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Independent replication of the top genes identified was performed using the UK Biobank data. We 51 

found two genes, CTSL and APOE, significantly associated with LC in both studies. Within these 52 

two genes, several RVs showed strong associations with lung cancer in the UK Biobank data. 53 

These findings could suggest potential molecular mechanisms leading to lung cancer and more 54 

importantly, possible therapeutic targets for personalized treatment.  55 
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Introduction 56 

Lung cancer (LC) is the most commonly diagnosed cancer in men and the third most commonly 57 

occurring cancer in women worldwide as estimated in 2018 [1], with an estimated 2.3 millions 58 

new cancers diagnosed annually. It is the leading cause of cancer death worldwide with 1.8 million 59 

annual deaths accounting for 18% of all cancer deaths [1].  Although reduction of tobacco 60 

consumption remains the most appropriate strategy to reduce LC burden, only 10%–15% of all 61 

smokers eventually develop LC [2-4]. In Asian countries, up to 30%–40% of lung cancer cases 62 

occur in never smokers [4], which  suggests a possible role of genetic factors among others.  63 

Common genetic variants associated with LC have been identified through large, collaborative, 64 

genome-wide association studies (GWASs), including susceptibility loci at CHRNA3/5, TERT, 65 

HLA, BRCA2, CHEK2 [5,6]. Yet, they explained only about 12.3% of LC heritability reported in 66 

a recent GWAS[7]. It is therefore hypothesized that some of the unexplained variability might be 67 

due to rare variants (RVs) [8]. A recent study was able to identify 48 germline RVs with deleterious 68 

effects on LC in known candidate genes such as 𝐵𝑅𝐶𝐴2 in a sample of 260 case patients with the 69 

disease and 318 controls [9]. More recently, Liu et al. [10] identified 25 deleterious RVs associated 70 

with LC susceptibility, including 13 reported in ClinVar. Of the five validated candidates, the 71 

authors identified two pathogenic variants in known LC susceptibility loci, ATM p.V2716A (Odds 72 

Ratio 19.55, 95%CI [5.04,75.6]) and MPZL2 p.I24M frameshift deletion (Odds Ratio 3.88, 95%CI 73 

[1.71,8.8]); and three in novel LC susceptibility genes including POMC, STAU2 and MLNR.  74 

To improve the detection of RVs in sequencing studies, we recently proposed a gene-based test 75 

for case-control study designs using a Bayes Factors (BF) statistic [11], comparing the total RV 76 

counts between cases and controls. Informative priors can be included in this setting, making the 77 

BF also sensitive to allelic distribution differences at single variant sites between cases and 78 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039693/#ref1
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controls. To elucidate the inherited germline RVs associated with LC, we applied our novel BF 79 

approach to whole exome sequencing (WES) data from the International Lung Cancer consortium 80 

(ILCCO) [10], with the goal  to identify new genes associated with LC specifically focused on  81 

RVs as well as potential causal variants within these genes. Independent replication of the most 82 

promising genes and RVs was performed in the UK Biobank data [12].  83 

 84 

Methods 85 

Ethics Statement 86 

All participants provided written informed consent, and the study was reviewed and approved by 87 

institutional ethic committee of each study site including HSPH-MGH, University Health Network 88 

and Mount Sinai Hospital in Toronto (Toronto), University of Liverpool in UK (Liverpool) and 89 

IARC. 90 

 91 

Study population for gene-based and RV discovery 92 

Case patients with LC and matched healthy individuals were identified from four independent case 93 

series that form the ILCCO consortium, including Harvard University School of Public 94 

Health/Massachusetts General Hospital (HSPH-MGH), University Health Network and Mount 95 

Sinai Hospital in Toronto (Toronto), University of Liverpool in UK (Liverpool) and the 96 

International Agency for Research on Cancer (IARC). The original data includes 2047 samples, 97 

of which 44 are HapMap controls and 68 were flagged by the Center for Inherited Disease 98 

Research (CIDR) as duplicates, related individuals or quality control outliers. Whole exome 99 

sequencing was performed for selected LC cases and frequency-matched unaffected controls, to 100 

identify novel common and rare genetic variants associated with LC risk. To enrich the relevance 101 
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of genetics in the cases, LC patients were preferentially selected from those with a family history 102 

of LC among first-degree relative or early-onset (<60 years). About the same number of controls 103 

were selected, frequency-matched by age and sex with the cases. To adjust for population 104 

stratification, principal components (PCs) were derived from the genome-wide data from the 105 

ILCCO. The analysis was restricted to those with European ancestry. The representation of the top 106 

3 PCs (S1 Fig) identified one outlier participant with possible non-European ancestry, and was 107 

removed from the analysis. We further removed 10 individuals with genotype missing rate >10% 108 

and one individual was flagged with very low heterozygosity rate (> 6 standard deviations below 109 

the mean heterozygosity). After the filtering steps, a total of 1923 subjects remained in the study 110 

and were included in the analyses. All participants provided written informed consent, and the 111 

study was reviewed and approved by institutional ethic committee of each study site including 112 

HSPH-MGH, University Health Network and Mount Sinai Hospital in Toronto (Toronto), 113 

University of Liverpool in UK (Liverpool) and IARC. 114 

 115 

Study population for gene-based and RV replication 116 

We used UK Biobank WES data as the validation set [13,14]. Among the total number of 200,643 117 

samples, our analysis includes all LC patients after excluding those diagnosed at most 5 years 118 

before any other primary cancers and controls with no cancer diagnosis history. We also  removed 119 

at random one individual from each pair of individuals closer than 3rd degree relatives (kinship 120 

coefficient > 0.0884), and subjects who self-reported a non-white ethnic background. After the 121 

filtering, 173,494 individuals remained in the study. 122 

 123 

Germline Sequencing/QC 124 
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ILCCO: The sequencing of whole exomes and additional targeted regions of DNA samples from 125 

all 4 different sites was performed at the CIDR. Targeted regions were selected based on previous 126 

associations with LC or with histological LC subtypes from GWASs on common variants [5,6]. 127 

After initial quality control (QC) analysis by CIDR [10], the mean on-target coverage was 52X 128 

and more than 97% of targeted bases had a depth greater than 10X. Further QC analysis was 129 

performed including the following steps: i) Exclusion of variants with QUAL<100 indicating a 130 

low probability that there is a variant at a site  or mean GQ<50 indicating low probabilities that 131 

genotype calls were correct across individuals at a site so that Ts/Tv ratio is greater than 2 (S2 Fig); 132 

ii) Exclusion of singleton variants (variant with occurrence of only 1 minor allele) when minor 133 

allele has GQ<50 or depth <20; iii) Exclusion of non-biallelic variants and variants on the sex 134 

chromosome; iv) Exclusion of variants with p-value of Hardy-Weinberg equilibrium test <1e-7 in 135 

the control samples ; v) Set individual genotype as missing if GQ<30 or depth<10; vi) Exclusion 136 

of variants with minor allele frequency (MAF)>1% (MAF was estimated using study population). 137 

The MAF distribution of the remaining RVs is given in Table 1. 138 

Table 1. MAF distribution of genetic variants in the discovery study (ILCCO) 139 

MAF 0 (0,0.01) [0.01,0.05) [0.05,0.5) Total 
#(Rare Variants) 136485 1022101 60288 129789 1348663 
Proportion (%) 10.12 75.79 4.47 9.62 100 

 140 
 141 

UK Biobank: We performed the following QC steps for all genes selected in the discovery set: i) 142 

exclude variants that are not bi-allelic and those with QUAL<10; ii) filter out variants with mean 143 

GQ<30 as well as singleton variants with depth <20 or GQ<40; iii) set genotype missing if 144 

depth<10 or GQ<20, and exclude variants with missing genotype rate >10%; iv) exclude variants 145 

with MAF>1% (MAF estimated using study population). 146 
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In both the discovery and replication studies, for our gene-based analyses, we considered -/+ 1k 147 

bp up- and down-stream sites of each gene (including non-exonic RVs) for the analysis. 148 

 149 

Gene-based analysis 150 

To increase the power of discovering genes associated with LC, we applied a gene-based approach 151 

based on a Bayes Factor (BF) statistic that we recently developed, to both the discovery and 152 

replication studies [11]. It was designed specifically to test the association between a set of RVs 153 

located in the same region or in a gene and a disease outcome in the context of case-control designs. 154 

An advantage of our BF approach over existing methods is the possibility to introduce an 155 

“informative” prior to gain power to detect gene-based associations, where this prior is sensitive 156 

to allelic differences between cases and controls for a particular gene (S1 Text). Compared to the 157 

commonly-used SKAT gene-based test [15], our BF approach is more sensitive to an excess of 158 

small p-values from single RV tests within each gene while SKAT has better power to detect genes 159 

exhibiting systematic allelic differences between cases and controls across all RVs. This difference 160 

was discussed in details in [11] and illustrated on two genes that showed large discrepancy in 161 

overall ranking when applying these two approaches [11]. In this study, we applied two versions 162 

of the BF test statistic, BFKS and BFSKAT, where either a Kolmogorov-Smirnov (KS) or SKAT p-163 

value is used as informative prior. This gave us higher chance to detect genes that may have 164 

different underlying RV allelic distribution differences between cases and controls. The respective 165 

advantage of each approach is described in details in the S1 Text. In this paper, we mainly focused 166 

on BFKS and used BFSKAT as a secondary analysis. 167 

To assess the sensitivity of the association tests on confounding variables, we conducted sensitivity 168 

analyses on the genome-wide significant genes and adjusted our analyses for age, sex, smoking 169 
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and the top 5 PCs used to control for population stratification. Both the BF and the prior 170 

components (KS or SKAT p-value) were adjusted. The extention of BFKS and BFSKAT incorporating 171 

covariates is described in S1 Text. 172 

 173 

Single RV-based analysis 174 

For the two genes that passed a gene-based replication genome-wide significance level (see below), 175 

i.e., APOE and CTSL, we performed single RV tests only with UK Biobank since this study has 176 

larger coverage of RVs. We used the Firth’s bias-reduced logistic regression to deal with sparse 177 

allelic counts [16]. Analyses were adjusted for age, sex, smoking status (ever vs. never smoking) 178 

and the top five PCs. RVs that pass a FDR adjusted q value [17] of 0.01 were selected.  179 

 180 

Significance threshold for gene-based replication analysis 181 

We denote Pd the P value for selecting genes in the discovery cohort (ILCCO) and Pr the P value 182 

for selecting a gene in the replication cohort (UK Biobank). We set  𝛾 as  the significance threshold 183 

for selecting genes in the discovery cohort and which will be followed-up for replication in UK 184 

biobank and 𝜆 the significance level in the replication cohort. To control the gene-based family-185 

wise error rate (FWER) 𝛼, we can determine 𝛾 and 𝜆 such that, 186 

𝐹𝑊𝐸𝑅("!#$,	""#') = 𝑃𝑟(𝑉³1) ≤ 𝛼, 187 

where V is number of genes declared achieved signficiance levels in both discovery and validation 188 

studies, 𝑃) ≤ 𝛾	𝑎𝑛𝑑	𝑃* ≤ 𝜆 , where 𝛾	𝑎𝑛𝑑	𝜆  were determined through permutation analysis, as 189 

follows. First, we repeated analyses of ILCCO (discovery set) and UK Biobank (validation set) 190 

studies 100 times, where each time the phenotype of individuals was permuted. Second, we 191 

determined the two thresholds such that among 100 replicates, the number of identified significant 192 
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genes is less or equal to 100 × 𝛼 = 100 × 0.05 = 5, for a genome-wide control of FWER≤ 5%. 193 

We found the following thresholds, 𝛾 =5×10-4 and 𝜆 =0.05 in the discovery and validation study, 194 

respectively, when using BFKS as the test statistic (i.e., our main statistic). Therefore, in our 195 

application analysis, the set of genes that  passed a significance threshold of 𝛾 =5×10-4 in the 196 

discovery (ILCCO) cohort and 𝜆 =0.05 in the replication (UK Biobank) cohort were declared 197 

associated with the disease and replicated.  198 

 199 

Results 200 

Characteristics of patients in the discovery and replication studies 201 

Our discovery study (ILCCO) includes 1042 lung cancer cases and 881 controls (HSPH-MGH, 202 

426 cases and 270 controls; Toronto, 259 cases and 258 controls; Liverpool, 64 cases and 69 203 

controls; IARC, 293 cases and 284 controls). The replication study (UK Biobank) includes a total 204 

of 630 cases and 172,864 controls.  In the discovery study, the distributions of sex and age are 205 

comparable between cases and controls. However, in the replication study, there is an excess of 206 

males in cases compared to controls (52.7% vs. 45.2%, P=1.9×10-4) and cases are older age at 207 

enrollment compared to controls (mean=62.0 vs. 56.7 years, P<2.2×10-16) (Table 2). As expected, 208 

there is a higher proportion of never smokers in controls compared to cases (35.2% vs. 11.8% 209 

P<2.2×10-16 and 54.6% vs. 14.8% P<2.2×10-16 in the discovery and replication study, respectively). 210 

 211 
Table 2. Basic demographic characteristics in the discovery and validation studies 212 
 213 
  Discovery (ILCCO) Replication (UK Biobank) 

 controls cases  controls cases  
 n=881 n=1042 p-value n=172864 n=630 p-value 

Sex, No. (%)     NS     1.9E-04 
M 513 (58.2) 613 (58.8)  78163 (45.2) 332 (52.7)  
F 368 (41.8) 429 (41.2)  94701 (54.8) 298 (47.3)  
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Age, mean 
(SD) 60.8 (11.8) 62.2 (12.3) 

NS 
56.7 (8.0) 62.0 (5.8) 

<2.2E-16 

       
Smoking, No. 
(%)   

<2.2E-16 
  

<2.2E-16 

Never 310 (35.2) 123 (11.8)  94378 (54.6) 93 (14.8)  
Former 375 (42.6) 421 (40.4)  61770 (35.7) 319 (50.6)  
Current 193 (21.9) 492 (47.2)  16119 (9.3) 214 (34.0)  
Missing 3 (0.3) 6 (0.6)  597 (0.3) 4 (0.6)  

NS: not significant 214 

 215 

Gene-Based analysis 216 

In the discovery study, a total of 13,872 genes with at least 20 bi-allelic RVs were analyzed based 217 

on the QC pipeline described. The QQ plots corresponding to 2log(BFKS) and 2log(BFSKAT) 218 

statistics are presented in Fig 1 and confirm that they are both asymptotically distributed as 𝜒+(3). 219 

Using a significance level of 𝛾 =5×10-4 in the discovery cohort (see Methods section), a total of 220 

17 genes based on BFKS and 14 genes using BFSKAT (Tables 3-4) were selected for replication. The 221 

2 top genes are CTSL (P=4.9×10-5) and TBX4 (P=6.5×10-5) with BFKS, VAV2 (P=1.9×10-5) and 222 

DENND4B (P=4.3×10-5) with BFSKAT. Four genes are found by both test statistics including CTSL, 223 

TBX4, C8orf44, and DGKB. Using a significance level of 𝜆 =0.05 (see Methods section) in the 224 

replication study, we were able to replicate only one gene, CTSL (P=2.7×10-3), when using the 225 

BFKS test and the two genes APOE (P=1.9×10-3) and CTSL (P=6.9×10-6) based on the BFSKAT test 226 

(Tables 3-4). For each gene identified in the discovery set, we calculated an overall p-value in 227 

Ttables 3-4 by combining p-values from the discovery and validation sets using Fisher’s method 228 

[18]. 229 

 230 

Sensitivity analysis 231 
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We found that the association signal for CTSL did not change much after adjustment for 232 

confounders using BFKS (unadjusted: discovery p-value=4.87E-05, validation p-value=2.75E-03; 233 

adjusted: discovery p-value=2.84E-05, validation p-value=3.88E-03) (S1 Table) and BFSKAT 234 

(unadjusted: discovery p-value=4.30E-04, validation p-value=1.31E-05; adjusted: discovery p-235 

value=1.32E-03, validation p-value=4.33E-05) (S2 Table). While the adjusted association using 236 

BFSKAT on APOE (discovery p-value=2.12E-03, validation p-value=8.24E-03) (S2 Table) was not 237 

as significant as the unadjusted BFSKAT (discovery p-value=2.56E-04, validation p-value=4.01E-238 

03). Of note, in this analysis, 9 out of 1923 individuals were removed from ILCCO study due to 239 

the missing smoking status and 761 out of 173,494 individuals were removed from UK Biobank 240 

study due to the missing values of smoking and/or PCs. 241 

 242 

Table 3. Results of gene-based analyses using BFKS testa in the discovery and replication 243 
studies  244 

Rank Genes Chr #(Sites)  Discovery (ILCCO) Replication (UK Biobank) Combined P 

    KS Pb  BFKS Pc KS Pb BFKS Pc Fisher’s method 

1 CTSL 9 25 1.32E-03 4.87E-05 8.43E-01 2.75E-03 2.26E-06 
2 TBX4 17 37 1.48E-03 6.49E-05 9.67E-01 9.96E-01 6.88E-04 
3 RASL10B 17 53 4.05E-04 6.75E-05 1.00E+00 9.81E-01 7.03E-04 
4 MUC3A 7 94 1.30E-04 7.33E-05 5.95E-01 6.42E-01 5.16E-04 
5 AMN 14 22 1.68E-04 8.08E-05 9.07E-01 9.71E-01 8.20E-04 
6 KRTAP19-4 21 21 3.38E-05 1.27E-04 8.74E-02 8.76E-02 1.38E-04 
7 KRTAP19-5d 21 20 3.38E-05 1.28E-04 NA NA NA 
8 CPB2 13 25 1.74E-03 1.46E-04 1.00E+00 6.71E-01 1.01E-03 
9 C8orf44 8 38 1.11E-02 2.17E-04 6.74E-01 1.82E-01 4.39E-04 
10 ZW10 11 48 6.49E-04 2.23E-04 8.79E-01 7.19E-01 1.56E-03 
11 INHA 2 68 1.05E-04 2.51E-04 1.00E+00 9.04E-01 2.13E-03 
12 DGKB 7 79 3.33E-02 3.27E-04 9.73E-01 9.34E-01 2.77E-03 
13 FBXO6 1 55 2.09E-03 3.34E-04 3.47E-01 3.51E-01 1.18E-03 
14 PHF12 17 82 2.00E-03 3.57E-04 1.00E+00 8.35E-01 2.71E-03 
15 LEMD3 12 46 8.70E-04 3.58E-04 1.00E+00 9.98E-01 3.20E-03 
16 OR5AC2 3 70 1.09E-04 3.85E-04 1.00E+00 1.00E+00 3.41E-03 
17 FGF8 10 38 9.89E-02 4.52E-04 9.93E-01 7.29E-01 2.97E-03 
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a. Bayes factor (BF) approach using Kolmogorov-Smirnov (KS) test as prior 245 
b. P value of KS test 246 
c. P value of BF with KS prior 247 
d. Genes with #(sites)<20 were excluded from BF test 248 

 249 
Table 4. Results of gene-based analyses using BFSKATa in the discovery and replication 250 
studies 251 
 252 
Rank Genes Chr #(Sites) Discovery (ILCCO) Replication (UK Biobank) Combined P 

    SKAT Pb BFSKAT Pc SKAT Pb BFSKAT Pc Fisher’s method 

1 VAV2 9 121 3.09E-04 1.95E-05 6.72E-01 5.72E-01 1.39E-05 
2 DENND4B 1 69 2.21E-05 4.31E-05 9.96E-01 6.35E-01 3.15E-04 
3 TBX4 17 37 1.95E-03 8.41E-05 8.21E-01 9.41E-01 8.27E-04 
4 RHBDL3 17 27 9.09E-03 1.06E-04 1.63E-01 2.91E-01 3.51E-04 
5 C8orf44 8 38 5.89E-03 1.19E-04 9.97E-01 2.52E-01 3.43E-04 
6 CCT8 21 46 2.43E-02 2.41E-04 9.87E-01 9.99E-01 2.25E-03 
7 SIGLEC11 19 24 3.10E-03 2.46E-04 7.23E-01 5.81E-01 1.41E-03 
8 APOE 19 25 2.65E-04 2.56E-04 6.10E-03 4.01E-03 1.52E-05 
9 POMK 8 33 3.00E-02 3.27E-04 9.54E-01 7.50E-01 2.29E-03 
10 DGKB 7 79 4.34E-02 4.20E-04 3.79E-01 5.10E-01 2.02E-03 
11 CTSL 9 25 1.29E-02 4.30E-04 3.08E-03 1.31E-05 1.13E-07 
12 CPB2 13 25 5.55E-03 4.42E-04 2.98E-01 2.65E-01 1.18E-03 
13 ITGB6 2 61 3.23E-02 4.93E-04 9.83E-01 9.40E-01 4.02E-03 
14 VCPIP1 8 39 1.73E-02 4.94E-04 8.73E-01 7.00E-01 3.10E-03 

a. Bayes factor (BF) approach using SKAT as prior 253 
b. P value of SKAT test 254 
c. P value of BF with SKAT prior 255 

 256 

Single RV-based analysis 257 

In UK Biobank, a total of 155 bi-allelic RVs for CTSL and 174 for APOE were included in the 258 

analysis.  In CTSL, 4 RVs were found associated with LC at an FDR q-value of 0.01, including 259 

variant at positions 87728433 (rs771328780), 87729621 (rs778002071), 87730426 (rs777251059) 260 

and 87727608 (rs112682750) on chromosome 9 (Table 5), where the last 3 were missense variants. 261 

In APOE, 2 RVs passed this significance level, including variant at position 44907893 (rs number 262 

not available) and 44906640 (rs1568615382) on chromosome 19. Most of the variants found to be 263 
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associated with LC risk are very rare (MAF<10-4 in controls), except one missense variant in CTSL, 264 

rs112682750,  has a MAF of 7.7×10-3.  265 
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Table 5. Results of single RV-based association analysis in the genes CTSL and APOE using UK Biobank data 

Gene 
(Variant, 
position) 
 

ClinVar 
Significan
ce [3719] 

Overall 
(N=173,494) 

 

Cases 
(N=630) 

Controls 
(N=172,864) 

Association 

  MAF #Carriers MAF #Carriers MAF #Carriers P 
valuea 

FDR 
q-

valueb 

Odds 
Ratioa 

(95% CI) 
CTSL 
(rs771328780, 
chr9: 87,728,433) 

Unknown 4.0E-5 14 1.6E-03 2 3.5E-05 12 6.7E-5 7.1E-4 83.9 
(18.2-387.2) 

CTSL 
(rs778002071, 
chr9: 87,729,621) 

Missense 2.0E-05 7 7.9E-4 1 1.7E-05 6 8.0E-4 4.3E-3 139.0 
(20.7-933.7) 

CTSL 
(rs777251059, 
chr9: 87,730,426) 

Missense 1.4E-05 5 7.9E-04 1 1.2E-05 4 3.9E-3 9.8E-3 54.8 
(7.8-382.6) 

CTSL 
(rs112682750, 
chr9: 87,727,608) 

Missense 
7.8E-03 2694 1.5E-02 19 7.7E-03 2675 7.8E-03 0.01 2.0 

(1.3,3.1) 

APOE 
(chr19: 
44,907,893) 

Unknown 1.2E-05 4 7.9E-04 1 8.7E-06 3 2.8E-4 5.5E-3 276.3 
(38.5-1985.3) 

APOE 
(rs1568615382 
chr19: 
44,906,640) 

Missense 3.2E-05 11 7.9E-04 1 2.9E-05 10 1.4E-4 0.01 90.0 
(15.5-523.9) 

aBased on the Firth biased-corrected logistic regression [165] 
bOnly RVs with a q-value £ 0.01 were selected. 
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All the 6 RVs are associated with increased LC risk as indicated by an odds-ratio>1 in UK Biobank. 

One of the 6 RVs was present in ILCCO, rs112682750 in CTSL, but it did not show association 

with LC after adjustment for age, sex, smoking and PCs (P=0.19). 

 

Genomic region analysis of rs112682750 in CTSL 

Using cancer cell lines from the USCS genome browser, a genomic analysis of the region around 

rs112682750 indicates that this variant is located within a promoter/enhancer region of CTSL in 

lung related cells (S3 Fig). This suggests that rs112682750 might affect the transcription of CTSL.  

 

Annotation of Single RVs in CTSL and APOE 

We searched functional annotation for the 6 associated RVs identified from CTSL and APOE 

using  Ensembl Variant Effect Predictor (VEP) [1920], Combined Annotation Dependent 

Depletion (CADD) [2021,2122] and Functional Annotation of Variants – Online Resource 

(FAVOR) [2223]. The search results indicated that rs778002071 (CTSL) was categorized as 

deleterious nonsynonymous variant, according to all three annotation resources, and the rest 5 RVs 

were predicted to be tolerated (benign) by at least one resource (Table 6).
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Table 6 Functional annotation of rare variants in the genes CTSL and APOE 
 

    Variant Effect Predictor (VEP) FAVOR CADDf 

     PolyPhen SIFT   
aPC-Protein-

Functione  

SNP Allele 
Amino 
acids Codons Categorya Valb Categoryc Vald Category PHRED Percentile PHRED 

rs771328780  
(CTSL, 87,728,433) G - - - - -   intronic 2.97 - 3.90 

rs778002071  
(CTSL, 87,729,621) A G/S Ggc/Agc possibly 

damaging 0.861 deleterious 0.02 exonic, 
nonsynonymous 28.03 0.16 26.10 

rs777251059  
(CTSL, 87,730,426) C G/A gGt/gCt benign 0.059 tolerated 0.33 - - - 21.60 

rs112682750  
(CTSL, 87,727,608) C N/T aAt/aCt benign 0.001 tolerated 0.99 exonic, 

nonsynonymous 22.17 0.61 15.00 

 - 
(APOE, 44,907,893) A Q caG/caA - - - - - - - 3.97 

rs1568615382  
(APOE,  44,906,640) G A/T Gct/Act Possibly 

damaging 0.536 tolerated 0.09 - - - 22.9 

a. PolyPhen category of change [38919].  
b. PolyPhen score: It predicts the functional significance of an allele replacement from its individual features. Range: [0, 1] (default: 0) [38919].   
c. SIFT category of change [394024].   
d. SIFT score, ranges from 0.0 (deleterious) to 1.0 (tolerated). Range: [0, 1] (default: 1) [394024].  
e. Protein function annotation PC: the first PC of the standardized scores of “SIFTval, PolyPhenVal, Grantham, Polyphen2_HDIV_score, 
Polyphen2_HVAR_score, MutationTaster_score, MutationAssessor_score” in PHRED scale. Range: [2.974, 86.238] [2223].  
f. The CADD score in PHRED scale (integrative score). A higher CADD score indicates more deleterious. Range: [0.001, 84] [2021,2122].  
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Discussion 

By focusing on rare variants using whole exome sequencing data, we identified two new genes, 

CTSL and APOE, associated with LC in the ILCCO study, that were replicated in the UK Biobank 

study. In CTSL, 3 missense RVs and 1 RV with unknown significance were discovered as 

associated with LC in the UK Biobank study. In APOE, 1 missense variant and 1 with unknown 

significance were discovered.  

The Cathepsin L gene (CTSL), is a ubiquitously expressed lysosomal endopeptidase that is 

primarily involved in terminal degradation of intracellular and endocytosed proteins [2125]. CTSL 

has recently gained attentions for its roles in SARS-CoV2 entry to host cell by cleaving receptor-

bound viral spike protein, which results in further activation and infection[2426,2527]. While 

potential functional connection between viral infection and lung cancer susceptibility remains to 

be established, CTSL also has roles relevant in tumorigenesis and progression. CTSL upregulation 

has been reported in a wide range of human malignancies including ovarian, breast, prostate, lung, 

gastric, pancreatic and colon cancers [2628]. Importantly, evidence indicates that CTSL expression 

may be linked to cancer grade and stage. In LC patients, higher CTSL activity has been reported 

compared to non-malignant tissue as well as association between tumor grade and upregulated 

serum levels [2729]. The role of CTSL in promoting tumor progression and metastatic 

aggressiveness has also been suggested [2830]. Significant interest in the development of CTSL 

intervention strategies has also emerged. For example, CTSL downregulation through RNA 

interference in different tumor models (including glioma, osteosarcoma, myeloma and melanoma) 

resulted in consistent inhibition of tumorigenicity and invasiveness of neoplastic cells [29-3231-

34]. The identification of patients who might benefit from anti-CTSL therapy remains an important 

clinical question. The identification of new RVs that correlate with LC risk in our study could 
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therefore help identify these patients. Although the impacts of these variants to CTSL levels or 

activity in early vs. late stages of lung tumorigenesis need to be established, potential regulatory 

function of the most common variant we identified in CTSL, rs112682750, for instance, could be 

hypothesized.  

The apolipoprotein E gene (APOE) codes for a protein associated with lipid particles, that mainly 

functions in lipoprotein-mediated lipid transport between organs via the plasma and interstitial 

fluids. APOE is also associated with atherosclerogenesis, which itself has been involved in tumor 

development. APOE has been shown to act as a growth factor that can influence carcinogenesis 

[3335]. In patients with LC, the levels of APOE gene expression were significantly higher in cancer 

tissue than in adjacent non-cancer tissue [3436]. Serum APOE has also been associated with lymph 

node metastasis in lung adenocarcinoma patients [3537]. It was also reported that high expression 

of APOE promotes cancer cell proliferation and migration and contributes to an aggressive clinical 

course in patients with lung adenocarcinoma [3638]. APOE has also raised interest for therapeutic 

interventions. For instance, APOE was involved in the inhibition of melanoma metastasis and 

angiogenesis by stimulating the immune response to tumor cells [3739]. Identification of genetic 

variants that could regulate APOE expression could therefore have important therapeutic 

implications.  Of note, APOE was only detected with one version of our BF approach (i.e., BFSKAT) 

and further validation of this gene is warranted. 

The strengths of our study include the large sample sizes available for discovery and replication 

of the gene-based analyses and the use of UK Biobank data for RV discoveries. Our statistical 

approach for gene discovery, the Bayes Factor statistic, has also been shown to have increased 

power compared to competing approaches such as SKAT and the Burden test [11]. Another 

significant  advantage is its sensitivity to detect single RV associations through the definition of 
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informative priors. Under our statistical framework, the discovery of RVs can therefore be thought 

as a two-step approach where the first step is a gene-based analysis and the second step, an RV 

association test within the set of significantly associated genes.  

Our study contrasts with Liu et al.'s analysis of the ILLCO data [10] in several aspects. They 

performed single RV analyses focusing only on suspected deleterious variants. In a second step, 

they performed gene-based tests using only genes that included RVs that were significantly 

associated with LC after controlling for multiple comparisons from a Burden test. In comparison, 

we tested all the genes in the discovery cohort and did not make any assumption regarding the 

possible functional effect of the RVs.  

The discovery of RVs in the context of sequencing studies remains a field of intensive research. 

The limitations of this study include the need for further validation and characterization of the two 

genes and RVs identified, in particular to correlate them with disease progression outcomes and 

LC subtypes. Also, the benefit for therapeutic interventions may be considered as it could lead to 

a more personalized treatment of LC patients targeting specific gene/pathway mechanisms such as 

the immune response system. 

 



 22 

References 

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 
2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 
countries. CA Cancer J Clin. 2018 Nov;68(6):394-424. 

2. Mattson ME, Pollack ES, Cullen JW. What are the odds that smoking will kill you? Am J 
Public Health. 1987 Apr;77(4):425-31. doi: 10.2105/ajph.77.4.425. Erratum in: Am J Public 
Health 1987 Jul;77(7):818. 

3. Scagliotti GV, Longo M, Novello S. Nonsmall cell lung cancer in never smokers. Curr Opin 
Oncol. 2009 Mar;21(2):99-104.  

4. Lee YJ, Kim JH, Kim SK, Ha SJ, Mok TS, Mitsudomi T, Cho BC. Lung cancer in never 
smokers: change of a mindset in the molecular era. Lung Cancer. 2011 Apr;72(1):9-15.  

5. Timofeeva MN, Hung RJ, Rafnar T, Christiani DC, Field JK, Bickeböller H, Risch A, McKay 
JD, Wang Y, Dai J, Gaborieau V, McLaughlin J, Brenner D, Narod SA, Caporaso NE, Albanes 
D, Thun M, Eisen T, Wichmann HE, Rosenberger A, Han Y, Chen W, Zhu D, Spitz M, Wu 
X, Pande M, Zhao Y, Zaridze D, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova 
E, Mates D, Bencko V, Foretova L, Janout V, Krokan HE, Gabrielsen ME, Skorpen F, Vatten 
L, Njølstad I, Chen C, Goodman G, Lathrop M, Benhamou S, Vooder T, Välk K, Nelis M, 
Metspalu A, Raji O, Chen Y, Gosney J, Liloglou T, Muley T, Dienemann H, Thorleifsson G, 
Shen H, Stefansson K, Brennan P, Amos CI, Houlston R, Landi MT; Transdisciplinary 
Research in Cancer of the Lung (ILCCO) Research Team. Influence of common genetic 
variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. Hum Mol 
Genet. 2012 Nov 15;21(22):4980-95. 

6. Wang Y, McKay JD, Rafnar T, Wang Z, Timofeeva MN, Broderick P, Zong X, Laplana M, 
Wei Y, Han Y, Lloyd A, Delahaye-Sourdeix M, Chubb D, Gaborieau V, Wheeler W, 
Chatterjee N, Thorleifsson G, Sulem P, Liu G, Kaaks R, Henrion M, Kinnersley B, Vallée M, 
LeCalvez-Kelm F, Stevens VL, Gapstur SM, Chen WV, Zaridze D, Szeszenia-Dabrowska N, 
Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Krokan HE, 
Gabrielsen ME, Skorpen F, Vatten L, Njølstad I, Chen C, Goodman G, Benhamou S, Vooder 
T, Välk K, Nelis M, Metspalu A, Lener M, Lubiński J, Johansson M, Vineis P, Agudo A, 
Clavel-Chapelon F, Bueno-de-Mesquita HB, Trichopoulos D, Khaw KT, Johansson M, 
Weiderpass E, Tjønneland A, Riboli E, Lathrop M, Scelo G, Albanes D, Caporaso NE, Ye Y, 
Gu J, Wu X, Spitz MR, Dienemann H, Rosenberger A, Su L, Matakidou A, Eisen T, Stefansson 
K, Risch A, Chanock SJ, Christiani DC, Hung RJ, Brennan P, Landi MT, Houlston RS, Amos 
CI. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat Genet. 
2014 Jul;46(7):736-41. doi: 10.1038/ng.3002. Epub 2014 Jun 1. Erratum in: Nat Genet. 2017 
Mar 30;49(4):651. 

7. McKay JD, Hung RJ, Han Y, Zong X, Carreras-Torres R, Christiani DC, Caporaso NE, 
Johansson M, Xiao X, Li Y, Byun J, Dunning A, Pooley KA, Qian DC, Ji X, Liu G, Timofeeva 
MN, Bojesen SE, Wu X, Le Marchand L, Albanes D, Bickeböller H, Aldrich MC, Bush WS, 
Tardon A, Rennert G, Teare MD, Field JK, Kiemeney LA, Lazarus P, Haugen A, Lam S, 
Schabath MB, Andrew AS, Shen H, Hong YC, Yuan JM, Bertazzi PA, Pesatori AC, Ye Y, 
Diao N, Su L, Zhang R, Brhane Y, Leighl N, Johansen JS, Mellemgaard A, Saliba W, Haiman 
CA, Wilkens LR, Fernandez-Somoano A, Fernandez-Tardon G, van der Heijden HFM, Kim 
JH, Dai J, Hu Z, Davies MPA, Marcus MW, Brunnström H, Manjer J, Melander O, Muller 
DC, Overvad K, Trichopoulou A, Tumino R, Doherty JA, Barnett MP, Chen C, Goodman GE, 



 23 

Cox A, Taylor F, Woll P, Brüske I, Wichmann HE, Manz J, Muley TR, Risch A, Rosenberger 
A, Grankvist K, Johansson M, Shepherd FA, Tsao MS, Arnold SM, Haura EB, Bolca C, 
Holcatova I, Janout V, Kontic M, Lissowska J, Mukeria A, Ognjanovic S, Orlowski TM, Scelo 
G, Swiatkowska B, Zaridze D, Bakke P, Skaug V, Zienolddiny S, Duell EJ, Butler LM, Koh 
WP, Gao YT, Houlston RS, McLaughlin J, Stevens VL, Joubert P, Lamontagne M, Nickle DC, 
Obeidat M, Timens W, Zhu B, Song L, Kachuri L, Artigas MS, Tobin MD, Wain LV; 
SpiroMeta Consortium, Rafnar T, Thorgeirsson TE, Reginsson GW, Stefansson K, Hancock 
DB, Bierut LJ, Spitz MR, Gaddis NC, Lutz SM, Gu F, Johnson EO, Kamal A, Pikielny C, Zhu 
D, Lindströem S, Jiang X, Tyndale RF, Chenevix-Trench G, Beesley J, Bossé Y, Chanock S, 
Brennan P, Landi MT, Amos CI. Large-scale association analysis identifies new lung cancer 
susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat 
Genet. 2017 Jul;49(7):1126-1132 

8. Manolio, T., Collins, F., Cox, N., Goldstein, D., Hindorff, L., Hunter, D.J., et. al. (2009) 
Finding the missing heritability of complex diseases. Nature, 461, 747–753. 

9. Liu, Y., Lusk, C.M., Cho, M.H., Silverman, E.K., Qiao, D., Zhang, R. et al. (2018) Rare 
variants in known susceptibility loci and their contribution to risk of lung cancer. Journal of 
Thoracic Oncology, 13, 1483–1495. 

10. Liu Y, Xia J, McKay J, Tsavachidis S, Xiao X, Spitz MR, Cheng C, Byun J, Hong W, Li Y, 
Zhu D, Song Z, Rosenberg SM, Scheurer ME, Kheradmand F, Pikielny CW, Lusk CM, 
Schwartz AG, Wistuba II, Cho MH, Silverman EK, Bailey-Wilson J, Pinney SM, Anderson 
M, Kupert E, Gaba C, Mandal D, You M, de Andrade M, Yang P, Liloglou T, Davies MPA, 
Lissowska J, Swiatkowska B, Zaridze D, Mukeria A, Janout V, Holcatova I, Mates D, Stojsic 
J, Scelo G, Brennan P, Liu G, Field JK, Hung RJ, Christiani DC, Amos CI. Rare deleterious 
germline variants and risk of lung cancer. NPJ Precis Oncol. 2021 Feb 16;5(1):12. 

11. Xu J, Xu W, Briollais L. A Bayes factor approach with informative prior for rare genetic 
variant analysis from next generation sequencing data. Biometrics. 2021 Mar;77(1):316-328. 

12. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, 
Delaneau O, O'Connell J, Cortes A, Welsh S, Young A, Effingham M, McVean G, Leslie S, 
Allen N, Donnelly P, Marchini J. The UK Biobank resource with deep phenotyping and 
genomic data. Nature. 2018 Oct;562(7726):203-209.  

13. Backman, J.D., Li, A.H., Marcketta, A. et al. Exome sequencing and analysis of 454,787 UK 
Biobank participants. Nature 599, 628–634 (2021).  

14. Szustakowski, J.D., Balasubramanian, S., Kvikstad, E. et al. Advancing human genetics 
research and drug discovery through exome sequencing of the UK Biobank. Nat 
Genet53, 942–948 (2021).  

15. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing 
data with the sequence kernel association test. Am J Hum Genet. 2011 Jul 15;89(1):82-93. doi: 
10.1016/j.ajhg.2011.05.029. Epub 2011 Jul 7. PMID: 21737059; PMCID: PMC3135811. 

16. Firth D (1993). Bias reduction of maximum likelihood estimates. Biometrika 80, 27-38. Heinze 
G, Schemper M (2002). A solution to the problem of separation in logistic regression. Statistics 
in Medicine 21: 2409-2419. 

17. Storey, John D. (2002). "A direct approach to false discovery rates". Journal of the Royal 
Statistical Society, Series B (Statistical Methodology). 64 (3): 479–498. 

18. Cinar, O. & Viechtbauer, W. (2022). The poolr package for combining independent and 
dependent p values. Journal of Statistical Software, 101(1), 1–
42. https://doi.org/10.18637/jss.v101.i01 



 24 

19. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, 
Sunyaev SR. A method and server for predicting damaging missense mutations. Nat 
Methods. 2010 Apr;7(4):248-9. doi: 10.1038/nmeth0410-248. PMID: 20354512; PMCID: 
PMC2855889.  

19.20. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F. 
The Ensembl Variant Effect Predictor. Genome Biology. 2016 Jun;17(1):122. doi: 
10.1186/s13059-016-0974-4 

20.21. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework 
for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014 Feb 2. 
doi: 10.1038/ng.2892. PubMed PMID: 24487276. 

21.22. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M.  CADD: predicting the 
deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2018 Oct 29. 
doi: 10.1093/nar/gky1016. PubMed PMID: 30371827. 

22.23. Li X, Li Z, Zhou H, Gaynor SM, Liu Y, Chen H, Sun R, Dey R, Arnett DK, Aslibekyan S, 
Ballantyne CM, Bielak LF, Blangero J, Boerwinkle E, Bowden DW, Broome JG, Conomos 
MP, Correa A, Cupples LA, Curran JE, Freedman BI, Guo X, Hindy G, Irvin MR, Kardia SLR, 
Kathiresan S, Khan AT, Kooperberg CL, Laurie CC, Liu XS, Mahaney MC, Manichaikul AW, 
Martin LW, Mathias RA, McGarvey ST, Mitchell BD, Montasser ME, Moore JE, Morrison 
AC, O’Connell JR, Palmer ND, Pampana A, Peralta JM, Peyser PA, Psaty BM, Redline S, 
Rice KM, Rich SS, Smith JA, Tiwari HK, Tsai MY, Vasan RS, Wang FF, Weeks DE, Weng 
Z, Wilson JG, Yanek LR, NHLBI Trans-Omics for Precision Medicine (TOPMed) 
Consortium, TOPMed Lipids Working Group, Neale BM, Sunyaev SR, Abecasis GR, Rotter 
JI, Willer CJ, Peloso GM, Natarajan P, and Lin X. Dynamic incorporation of multiple in silico 
functional annotations empowers rare variant association analysis of large whole-genome 
sequencing studies at scale. Nature Genetics 2020; 52(9): 969-983. PMID: 32839606. 
DOI: 10.1038/s41588-020-0676-4. 

 Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, 
Sunyaev SR. Nat Methods 7(4):248-249 (2010).  

24. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic 
Acids Res. 2003 Jul 1;31(13):3812-4. doi: 10.1093/nar/gkg509. PMID: 12824425; PMCID: 
PMC168916. 

23.25. Dennemärker J, Lohmüller T, Müller S, Aguilar SV, Tobin DJ, Peters C, Reinheckel T. 
Impaired turnover of autophagolysosomes in cathepsin L deficiency. Biol Chem. 2010 
Aug;391(8):913-22.  

24.26. Zhao, MM., Yang, WL., Yang, FY. et al. Cathepsin L plays a key role in SARS-CoV-2 
infection in humans and humanized mice and is a promising target for new drug 
development. Sig Transduct Target Ther 6, 134 (2021).  

25.27. Dong, Q., Li, Q., Duan, L. et al. Expressions and significances of CTSL, the target of 
COVID‐19 on GBM. J Cancer Res Clin Oncol 148, 599–608 (2022). 
https://doi.org/10.1007/s00432-021-03843-9 

26.28. Chauhan SS, Goldstein LJ, Gottesman MM. Expression of cathepsin L in human tumors. 
Cancer Res. 1991 Mar 1;51(5):1478-81. 

27.29. Chen Q, Fei J, Wu L, Jiang Z, Wu Y, Zheng Y, Lu G. Detection of cathepsin B, cathepsin 
L, cystatin C, urokinase plasminogen activator and urokinase plasminogen activator receptor 
in the sera of lung cancer patients. Oncol Lett. 2011 Jul;2(4):693-699. 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0974-4
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0974-4
http://dx.doi.org/10.1038/ng.2892
http://www.ncbi.nlm.nih.gov/pubmed/24487276
http://dx.doi.org/10.1093/nar/gky1016
http://www.ncbi.nlm.nih.gov/pubmed/30371827
https://urldefense.proofpoint.com/v2/url?u=https-3A__pubmed.ncbi.nlm.nih.gov_32839606&d=DwMFaQ&c=WO-RGvefibhHBZq3fL85hQ&r=IiiPyTgyx7bOauv-2jmo4pu4968nyjZ7ExHbyh38mRs&m=CTMyNKKTtX8cA4UnMwykDeVsFn0mberIDkJQMkaaYwM&s=BoEbZ0bGsiSni0RUcYDCYBr7WA6kwQrBpWt-EYeBQIM&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.1038_s41588-2D020-2D0676-2D4&d=DwMFaQ&c=WO-RGvefibhHBZq3fL85hQ&r=IiiPyTgyx7bOauv-2jmo4pu4968nyjZ7ExHbyh38mRs&m=CTMyNKKTtX8cA4UnMwykDeVsFn0mberIDkJQMkaaYwM&s=CoxO5LvqeOSw_7u_9lkC8RgQqvbG2ZZ7oskRgRgm2y8&e=


 25 

28.30. Sudhan DR, Siemann DW. Cathepsin L targeting in cancer treatment. Pharmacol Ther. 
2015 Nov;155:105-16.  

29.31. Kirschke H, Eerola R, Hopsu-Havu VK, Brömme D, Vuorio E. Antisense RNA 
inhibition of cathepsin L expression reduces tumorigenicity of malignant cells. Eur J Cancer. 
2000 Apr;36(6):787-95. 

30.32. Krueger S, Kellner U, Buehling F, Roessner A. Cathepsin L antisense oligonucleotides in 
a human osteosarcoma cell line: effects on the invasive phenotype. Cancer Gene Ther. 2001 
Jul;8(7):522-8.  

31.33. Levicar N, Dewey RA, Daley E, Bates TE, Davies D, Kos J, Pilkington GJ, Lah TT. 
Selective suppression of cathepsin L by antisense cDNA impairs human brain tumor cell 
invasion in vitro and promotes apoptosis. Cancer Gene Ther. 2003 Feb;10(2):141-51. 

32.34. Yang Z, Cox JL. Cathepsin L increases invasion and migration of B16 melanoma. Cancer 
Cell Int. 2007 May 8;7:8.  

33.35. Chen YC, Pohl G, Wang TL, Morin PJ, Risberg B, Kristensen GB, Yu A, Davidson B, 
Shih IeM. Apolipoprotein E is required for cell proliferation and survival in ovarian cancer. 
Cancer Res. 2005 Jan 1;65(1):331-7. 

34.36. Trost Z, Marc J, Sok M, Cerne D. Increased apolipoprotein E gene expression and protein 
concentration in lung cancer tissue do not contribute to the clinical assessment of non-small 
cell lung cancer patients. Arch Med Res. 2008 Oct;39(7):663-7. 

35.37. Luo J, Song J, Feng P, Wang Y, Long W, Liu M, Li L. Elevated serum apolipoprotein E 
is associated with metastasis and poor prognosis of non-small cell lung cancer. Tumour Biol. 
2016 Aug;37(8):10715-21.  

36.38. Su WP, Chen YT, Lai WW, Lin CC, Yan JJ, Su WC. Apolipoprotein E expression 
promotes lung adenocarcinoma proliferation and migration and as a potential survival marker 
in lung cancer. Lung Cancer. 2011 Jan;71(1):28-33. 

37.39. Pencheva N, Tran H, Buss C, Huh D, Drobnjak M, Busam K, Tavazoie SF. Convergent 
multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and 
angiogenesis. Cell. 2012 Nov 21;151(5):1068-82. 

38. Landrum MJ, Kattman BL. ClinVar at five years: Delivering on the promise. Hum Mutat. 2018 
Nov;39(11):1623-1630. 

39.1. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov 
AS, Sunyaev SR. Nat Methods 7(4):248-249 (2010).  

40.1. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. 
Nucleic Acids Res. 2003 Jul 1;31(13):3812-4. doi: 10.1093/nar/gkg509. PMID: 12824425; 
PMCID: PMC168916. 

 

  



 26 

Figures 

Fig 1. QQ plot of ILCCO WES study.  

The departure of the right tail from the 45 degree line represents the association signals from the 

study. (A) illustrates results using BF with KS prior. Under the null hypothesis (no association 

between genes and phenotype), 2logBFks~𝜒+(3). (B) shows results using BF with SKAT prior. 

Similarly, 2logBFSKAT ~ 𝜒+(3) under the null hypothesis.  
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