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Abstract

Three-quark potentials are studied in great details in the three-dimensional SU(3) pure gauge theory 
at finite temperature, for the cases of static sources in the fundamental and adjoint representations. For 
this purpose, the corresponding Polyakov loop model in its simplest version is adopted. The potentials in 
question, as well as the conventional quark–anti-quark potentials, are calculated numerically both in the 
confinement and deconfinement phases. Results are compared to available analytical predictions at strong 
coupling and in the limit of large number of colours N . The three-quark potential is tested against the 
expected � and Y laws and the 3q string tension entering these laws is compared to the conventional qq̄

string tension. As a byproduct of this investigation, essential features of the critical behaviour across the 
deconfinement transition are elucidated.
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1. Introduction

The interest in studying the interquark potential for a three-quark system is not a recent issue 
at all. It has instead a long history due to its importance in the spectroscopy of baryons. The 
first studies date back to the mid ‘80s [1,2] and after more than a decade a new turn of research 
has started around the year 2000 which continues till now [3–17]. New results are somewhat 
contradictory, which could be reasonably explained by the difficulty of accurate measurements 
of the three-quark potential. But from these discussions spanning many years, two main Änsatze 
emerged to describe the three-quark potential: the � law and the Y law. Denoting by r1, r2, r3
the sides of the triangle having the quarks at its vertices, the � law is defined by

V3 = 1

2
σqq(r1 + r2 + r3) = σqq � , (1)

which describes a potential linearly rising with half the perimeter of the triangle. The Y law 
describes the three-quark potential as linearly rising with the minimal total length of the flux 
lines connecting the three quarks,

V3 = σqq Y , (2)

where Y is the sum of the distances of the three quarks from the Fermat-Torricelli point F, which 
is the point such that this sum is the least possible. When all inner angles of the triangle are less 
than 2π/3, one has

Y =
√

r2
1 + r2

2 + r2
3 + 4

√
3A

2
, (3)

where A is the area of the triangle; if one of the angles is larger than 2π/3, we have instead

Y = min (r1 + r2, r1 + r3, r2 + r3) ≡ � , (4)

which gives rise to the � law,

V3 = σqq � . (5)

Some earlier [4,8,9] and the most recent studies [13,16] in the SU(3) pure gauge theory seem 
to support the Y -ansatz, while other simulations [3,5–7] prefer the �-ansatz, at least for not 
too large triangles. An even more complicated picture emerged after simulations of the simpler, 
Z(3) Potts model in two-dimensions, which is believed to capture the most essential features 
of the gauge model [7,10]. Namely, it was conjectured that there might be a smooth crossover 
between the � law and the Y law when the size of triangles grows (see, however, [11] where this 
scenario has been criticized). Also, the paper [10] proposes a new ansatz in which both the Y law 
and the � law are present.

In this paper we are going to study an SU(3) spin model which is an effective model for 
Polyakov loops and can be derived from the original gauge theory in the strong coupling region. 
For simplicity, we consider, following [10], only its two-dimensional version. Our primary goal 
is to get some analytical predictions for the three-point correlation function of the Polyakov 
loops and compare them with numerical simulations. For that we use the SU(3) spins both in 
the fundamental and adjoint representations. The main tool of our analytical investigation is 
the large-N expansion. Within this expansion we demonstrate that the fundamental three-point 
correlator is described by a sum of the Y and � laws. The � contribution is not present. In turn, 
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the connected part of the adjoint three-point correlation follows the � law in the confinement 
phase. In addition, we study the critical region of the model and confirm that it belongs to the 
universality class of the two-dimensional Z(3) spin model.

This paper is organized as follows. In the next section we introduce our notations, define 
SU(N) Polyakov loop model and its dual. Certain analytical predictions for two- and three-point 
correlation functions are obtained in the strong coupling expansion and in the large-N limit. 
Moreover, we check the restoration of the rotational symmetry for the 3-quark system. Section 3
outlines some details of our numerical simulations. Here we compare numerical data with the 
strong coupling expansion and study the critical behaviour of the model using the finite-size 
scaling analysis. Section 4 presents the results of Monte Carlo simulations for the fundamental 
and adjoint two- and three-point correlations in the confinement region. Results for the same 
quantities above critical temperature are described in Section 5. In Section 6 we summarize our 
results.

2. The model and theoretical expectations

2.1. Partition and correlation functions

We work on a 2d Euclidean lattice � = L2, with sites x = (x1, x2), xn ∈ [0, L − 1], and 
denote by en the unit vector in the n-th direction. Periodic boundary conditions (BC) are imposed 
in all directions. Let W(x) ∈ SU(N), and TrW be the character of SU(N) in the fundamental 
representation. Consider the following partition function on �, which describes the interaction 
of non-Abelian spins:

Z�(β,N) =
∫ ∏

x

dW(x) exp

[
β
∑
x,n

Re TrW(x)TrW ∗(x + en)

]
. (6)

The trace of an SU(N) matrix can be parameterized with the help of N angles, e.g. by taking 
W = diag(eiω1, · · · , eiωN ), subject to the constraint 

∏
k eiωk = 1. In this parameterization the 

action has the form

Re TrW(x)TrW ∗(x + en) =
N∑

i,j=1

cos
[
ωi(x) − ωj (x + en)

]
. (7)

The invariant measure for SU(N) is given by

∫
dW =

2π∫
0

D(ω)D∗(ω) δ

(∑
k

ωk

)
N∏

k=1

dωk

2π
, (8)

where

D(ω) =
∏
k<l

(
eiωk − eiωl

)
(9)

and δ(x) is the periodic delta-function. Due to this constraint, the SU(N) model is invariant only 
under the global discrete shift ωk(x) → ωk(x) + 2πn

N
for all k and x. This is just the global Z(N)

symmetry.
The main subjects of this work are the two- and three-point correlation functions for the SU(3)

model. In the fundamental representation these correlations are given by
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	f
2(β,R) = 〈

TrW(0)TrW ∗(R)
〉
, (10)

	f
3(β, {xi}) = 〈 TrW(x1)TrW(x2)TrW(x3) 〉 , (11)

while in the adjoint representation the correlations are written as

	ad
2 (β,R) = 〈 χad(W(0))χad(W(R)) 〉 , (12)

	ad
3 (β, {xi}) = 〈 χad(W(x1))χad(W(x2))χad(W(x3)) 〉 , (13)

where we use the relation χad(W) = TrWTrW∗ − 1.
The partition function (6) can be regarded as the simplest effective model for the Polyakov 

loops which can be derived in the strong coupling region of 3d lattice gauge theory (LGT) at 
finite temperature (see, e.g., [18] and references therein). Namely, the integration over the spatial 
gauge links on the anisotropic (d + 1)-dimensional lattice with two couplings βs and βt ≡ β

in the limit βs = 0 and for β sufficiently small leads to the d-dimensional spin model (6). It 
describes the deconfinement phase transition of the pure gauge theory, which is of second order 
for SU(3) if d = 2. It is widely assumed that the phase transition is in the universality class of 
the two-dimensional Z(3) (Potts) model. The inverse correlation length (mass gap) is the string 
tension of the gauge theory. The correlation length diverges when approaching the critical point 
with the critical index ν = 5/6. Another important critical index η, which is a characteristic of 
the massless phase, equals 4/15 exactly at the critical point. Thus, on the basis of the universality 
arguments [19] we expect the same values for these indices also in the effective SU(3) Polyakov 
loop model. More on the critical behaviour of three-dimensional SU(N) LGTs can be found in 
Refs. [20,21].

The model (6) cannot be solved exactly at any finite N and D > 1. Therefore, to get some 
analytical predictions for the behaviour of the three-point correlation functions we consider the 
large-N limit of the model. This limit can in turn be solved exactly by using the dual representa-
tion which we are going to describe shortly.

2.2. Dual representation

In some applications the dual formulation of the Polyakov loop model (6) can be useful. Such 
formulation for the SU(3) model has been derived in [22]. Here we use the dual representation 
obtained by some of us in [23,24]. This form of dual theory is valid for all N and can be used 
both for numerical simulations and for the study of the large-N limit of the theory. For the 2d

theory the partition function (6) on the dual lattice takes the form

Z�(β,N) =
∞∑

{r(x)}=−∞

∞∑
{q(l)}=0

∞∑
{k(l)}=−∞

∏
p

QN(s(p), s̄(p))

×
∏

l

⎡
⎢⎣

(
β
2

)|r(x)−r(x+en)+k(l)N |+2q(l)

(q(l) + |r(x) − r(x + en) + k(l)N |)!q(l)!

⎤
⎥⎦ , (14)

where QN(s, ̄s) results from the invariant integration over the SU(N) measure,

QN(s, s̄) =
∑

λ
min(s,s̄)

d(λ) d(λ + |k|N) . (15)

Here d(λ) is the dimension of the irreducible representation λ of the permutation group Ss , 
s − s̄ = kN and
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s(p) = 1

2
k(p)N +

∑
l∈p

(
q(l) + 1

2
|r(l)|

)
, (16)

k(p) = k(l1) + k(l2) − k(l3) − k(l4) , li ∈ p ,

r(l) = r(x) − r(x + en) + k(l)N . (17)

λ is enumerated by the partition λ = (λ1, λ2, · · · , λl(λ)) of s, i.e.
∑l(λ)

i=1 λi = s, where l(λ) is the 
length of the partition and λ1 ≥ λ2 · · ·λl(λ) > 0. The sum in (15) is taken over all λ’s such that 
l(λ) ≤ N and the convention λ + qN ≡ (λ1 + q, · · · , λN + q) has been adopted. For the exact 
expressions of the different correlation functions we refer the reader to the paper [24].

2.3. Large-N solution

Using the dual representation (14), one can construct an exact solution of the model in the 
large-N limit [25] and even estimate the first non-trivial corrections specific for the SU(N)

group. As an example, we give here the expression for the most general correlation function and 
for the partition function in the confinement region in the presence of sources

〈
∏
x

(TrW(x))η(x)
(
TrW ∗(x)

)η̄(x) 〉 = Z(η, η̄)

Z(0,0)
, (18)

Z(η, η̄) =
∞∫

−∞

∏
x

dα(x)dσ (x) (α(x) + iσ (x))η(x) (α(x) − iσ (x))η̄(x)

e−∑
x,x′ Gx,x′ (α(x)α(x′)+σ(x)σ (x′)) ∏

x

(
1 + 2

N !Re(α(x) − iσ (x))N
)

. (19)

The Gaussian part describes the solution in the large-N limit, while the product over x in the 
second line presents the first correction due to SU(N). Gx,x′ is the massive two-dimensional 
Green function for the scalar field.

This solution, together with a similar one in the deconfinement phase, enables one to calculate 
both fundamental and adjoint two- and three-point correlations in that limit. Different results are 
obtained in the small and large β regions separated by the deconfinement phase transition. If we 
take N = 3, then for the confinement phase we get

	f
2(β,R) ∼ G(β,R) , (20)

	f
3(β, {xi}) ∼

∑
y

3∏
i=1

G(β, |xi − y|) , (21)

	ad
2 (β,R) ∼ G(β,R)2 + Mad(β)2 , (22)

	ad
3 (β, {xi}) ∼

3∏
i=1

G(β, |xi − xi+1|)

+ Mad(β)

3∑
i=1

G(β, |xi − xi+1|)2 + Mad(β)3 (23)

and in the deconfinement phase we get

	f (β,R) ∼ Mf(β)2 exp [α(β)G(β,R)] , (24)
2
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	f
3(β, {xi}) ∼ Mf(β)3 exp

[
α(β)

3∑
i=1

G(β, |xi − xi+1|)
]

, (25)

	ad
2 (β,R) ∼ (Mad(β) + 1)2 exp [4α(β)G(β,R)] − 2Mad(β) − 1 , (26)

	ad
3 (β, {xi}) ∼ (Mad(β) + 1)3 exp

[
4α(β)

3∑
i=1

G(β, |xi − xi+1|)
]

−
3∑

i=1

(Mad(β) + 1)2 exp
[
4α(β)G(β, |xi − xi+1|)

]
+ 3Mad(β) + 2 . (27)

In the equations above the Green function in the thermodynamical limit is given by

G(β,x) =
2π∫

0

dω1dω2

(2π)2

ei
∑

n ωnxn

m(β) + 2 −∑2
n=1 cosωn

∼ e−m(β)R

√
R

, (28)

where R2 = x2
1 + x2

2 and the functional dependence of the mass m on β is different in the con-
fined and deconfined phases. In the confinement phase the mass m(β) coincides with the qq̄

string tension, while in the deconfinement phase this quantity has the meaning of screening mass. 
Mf(β) and Mad(β) define the fundamental and adjoint magnetizations at a given β , correspond-
ingly. They also depend on the considered phase. For example, Mf(β) = 0 in the confined phase. 
α(β) is another R-independent quantity which appears due to Gaussian integration around the 
large-N solution. All four quantities—m(β), α(β), Mf(β), Mad(β)—are known exactly in the 
large-N expansion.

2.4. 3q potential

In what follows our strategy relies on the assumption that the large-N formulae (20)–(27)
remain qualitatively valid (up to one correction explained below) at finite N , in particular for 
N = 3. We expect that the most essential difference between the large-N limit and the N = 3
case exhibits itself in the vicinity of the critical point. Indeed, both our solution [25] and the 
mean-field solution of Ref. [26] reveal the existence of a third order phase transition at large N . 
Meanwhile, as described above, the SU(3) Polyakov loop model belongs to the universality class 
of the two-dimensional Z(3) model. It means, in particular that the critical behaviour of two-
and three-point correlation functions is described by a different set of the critical indices ν and η. 
Therefore, we shall use (20)–(27) as fitting functions, where the quantities m(β), α(β), Mf(β), 
Mad(β) are unknown parameters to be found from fits of numerical data. In most cases, we use 
the asymptotic expansion for the Green function G(β, x) given on the right-hand side of Eq. (28). 
As we explained above, only the critical indices appearing in these quantities can vary with N . 
Also, we introduce here another quantity, namely the index η, in order to describe the power 
dependence of the correlation function, R−η, on the distance. This could again be important in 
the vicinity of the critical point. In general, this introduces a correction to the potential of the 
form

VCoulomb = η lnD , D = R,Y,�,� , (29)

and is interpreted as the Coulomb part of the full potential in the two-dimensional theory.
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Since the asymptotic behaviour of G(β, x) is known, it follows that we actually know the 
large-distance behaviour of all two- and three-point functions listed above, but 	f

3(β, {xi}). The 
behaviour of the latter can be analyzed by the saddle-point method when at least one side of the 
triangle is large enough. We find two types of the behaviour:

1. All inner angles of the triangle are less than 2π/3. The three-point fundamental correlation 
function is given by the sum of two terms corresponding to Y and � laws

	f
3(β, {xi}) ≈ A

e−σqqqY

√
Y

+ B
e−σqqq�

√
�

, (30)

where A, B are constants and σqqq = σqq̄ . This behaviour resembles the behaviour of the 
three-point correlation function in the Z(3) spin model [10].

2. One of the angles is larger than 2π/3. In this case the asymptotics is described by the above 
formula with A = 0. Thus, only the � law is present. This again agrees with the Z(3) spin 
model.

Let us also emphasize that we could not find the � law contribution in our large-N approach. 
Nevertheless, we attempt to fit numerical data both to Y and � laws in the following. Finally, let 
us stress that the connected part of the three-point adjoint correlation follows the � law in the 
confinement phase, as is seen from Eq. (23).

2.5. Strong coupling expansion

When β is sufficiently small, one can use the conventional strong coupling expansion to 
demonstrate the exponential decay of the fundamental two- and three-point correlation func-
tions. Instead, adjoint correlations stay constant over large distance. To check our codes we have 
calculated the leading orders of the strong-coupling expansion for the two-point correlator at 
distance R = 1 and for the three-point correlator in the isosceles-triangle geometry T with base 
b = 2 and height h = 1. The results read

	f
2(β,1) = 1

2
β + 1

8
β2 + 9

8
β3 + 385

384
β4 +O(β5) , (31)

	f
3(β,T ) = 1

8
β3 + 1

2
β4 + 145

128
β5 + 29

8
β6 +O(β7) , (32)

	ad
2 (β,1) = 1

4
β2 + 1

6
β3 + 17

8
β4 +O(β5) , (33)

	ad
3 (β,T ) = 27

16
β6 + 487

192
β7 +O(β8) . (34)

For arbitrary isosceles triangle T with base b and height h one obtains

	f
3(β,T ) ∼ βh+b ≡ βYl . (35)

On a cubic lattice Yl = h +b is the minimal sum of the lattice distances from the triangle vertices 
to an arbitrary lattice point. Then, according to Eq. (2),

V3 = σqq Yl , σqq ≈ lnβ (36)

in the strong coupling region on the finite lattice. Thus, strictly speaking the strong coupling 
expansion predicts not an exact Y law, as it is often stated in the literature, but rather a Yl law. 
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Fig. 1. Comparison of the three point correlation function 	
f
3 at β = 0.41 with the fit using Yl and Y laws.

In general, Yl > Y and we expect that the rotational symmetry will be restored quickly with β
and the triangle sides increasing. This should result in the restoration of the genuine Y law. To 
demonstrate that such a restoration really takes place, we have studied the three-point correlation 
function for triangles with 2 ≤ b ≤ 10 and 6 ≤ h ≤ 14 at β = 0.41. The fact that the rotational 
symmetry is already restored at this value of β is shown on Fig. 1, where we compare numerical 
data with the fits of the form e−σqqqD/Dη for D = Yl and D = Y . Clearly, D = Y describes data 
better than D = Yl .

3. Details of numerical simulations

To calculate the correlation functions from numerical simulations we used two different ap-
proaches. The first is the simulation of the model in terms of the eigenvalues ωi(x) of the SU(3)

spins, described in more detail in [21]. In this approach (denoted as standard in the following), 
an updating sweep consisted in the combination of a local Metropolis update of each lattice site, 
followed by two updates by the Wolff algorithm, consisting in Z(3) reflections of the clusters. 
An alternative approach is the simulation of the dual model (14), using the heatbath update for 
the link variables k, q and the dual site variables r . In this case, we can measure only observables 
invariant under the global Z(3) symmetry.

In both approaches we measured two- and three-point correlation functions in the fundamental 
and adjoint representations, taking for the two point correlation function pairs of points separated 
by R in one of the two lattice directions, with R = 2, 4, . . . , L/2. For the three-point correlation 
functions two geometries were studied: isosceles triangles with base b and height h, and right-
angled triangles with the catheti (of lengths a1 and a2) along the two lattice directions. In both 
cases, b and h, and a1 and a2, took independent values in the set {2, 4, . . . , L/2}.

In addition to the two- and three-point correlations (10)–(13), the magnetizations and their 
susceptibilities were measured:

Mf = 〈χf(Wx)〉 = 〈TrWx〉 , (37)
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Fig. 2. Two-point (left) and three-point (right) correlation functions in the fundamental representation versus β . The 
green solid lines represent the strong coupling expansions, given respectively in Eqs. (31) and (32). (For interpretation of 
the colours in the figure(s), the reader is referred to the web version of this article.)

Mad = 〈χad(Wx)〉 = 〈
TrWx TrW ∗

x − 1
〉
, (38)

χ
(Mf)
L = L2

(〈
(χf(Wx))

2
〉
− 〈χf(Wx)〉2

)
, (39)

χ
(Mad)
L = L2

(〈
(χad(Wx))

2
〉
− 〈χad(Wx)〉2

)
. (40)

The x-dependent values are averaged over all sites of the lattice.
For each simulation we performed 104 thermalization updates, and then made measurements 

every ten whole lattice updates (sweeps), collecting a statistics of 105–106. To estimate statistical 
errors a jackknife analysis was performed at different blocking over bins with size varying from 
500 to 10000.

A comparison of the two simulation methods showed that the dual code performs better at 
small values of β , while giving much larger fluctuations than the standard one when β is close to 
its critical value. What is more important—at larger values of β for the fundamental correlation 
function the fluctuations rapidly increase with the distance between the points. Due to this, most 
of the results presented here have been obtained in the standard approach, and the dual code was 
used only for cross-check purposes.

3.1. Comparison with strong coupling

To test our algorithms we performed a set of simulations at small values of β (β < 0.15), and 
compared the obtained values of 	f

2, 	f
3, 	ad

2 and 	ad
3 with the corresponding determinations in 

the strong coupling expansion (Eqs. (31)–(34)). The results of the comparison are shown in Fig. 2
for the correlations in the fundamental representation, and in Fig. 3 for the correlations in the ad-
joint representation. It can be seen that the two-point correlation, both in the fundamental and 
adjoint representation, is in good agreement with the strong coupling expansion. For the three-
point correlation, due to its small absolute value, statistical errors in the standard simulation are 
too large to make any statement about agreement with the strong coupling prediction. The results 
for the adjoint correlation from the dual code are compatible with the strong coupling expansion 
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Fig. 3. Two-point (left) and three-point (right) correlation functions in the adjoint representation versus β . The solid green 
lines represent the strong coupling expansions, given respectively in Eqs. (33) and (34). The round (square) symbols refer 
to simulations in the standard (dual) formulation.

Fig. 4. Scatter plots of the complex magnetization Mf at β = 0.1,0.42,0.44 on a 32 × 32 lattice.

up to β = 0.1. Since the results of the two simulation codes agree in the region around βc, where 
most of our simulations were carried out, we are confident in the reliability of our measurements.

3.2. Critical behaviour

A clear indication of the two-phase structure of the model is provided by the scatter plots of 
the complex magnetization at different values of β , shown in Fig. 4.

To precisely locate the βc at which the phase transition occurs, we have studied the magneti-
zation susceptibility for different lattice sizes L, extracting the value of βpc(L) from a fit of the 
peak of the susceptibility with a Lorentzian function. The obtained values of βpc(L) have been 
fitted with the scaling law for a second order transition (see the left panel of Fig. 5)

βpc(L) = βc + A

L1/ν
(41)

with the following resulting parameters:
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Fig. 5. Fits of the βpc(L) values determined from the magnetization susceptibility χ(Mf)
L

(left) and of the peak value of 
the magnetic susceptibility (right) versus the lattice size L. The solid red lines give the result of the fits with the scaling 
functions in Eqs. (41) and (42), respectively.

A = −0.0675(62), βc = 0.4242748(39), ν = 0.835(17), χ2
r = 1.18 .

The value for the critical index ν is in agreement with the critical index ν = 5/6 of the two-
dimensional three-state Potts model, to whose universality class our model is believed to belong. 
A direct extraction of the critical exponent ν, performed in the subsection 4.3, gives a compatible 
result, which is sensitive to the choice of the region of β values where critical scaling is supposed 
to hold.

As a second check of the order of the phase transition and of the universality class, we studied 
the dependence of the peak value of the magnetic susceptibility for different lattice sizes using 
the scaling law (see the right panel of Fig. 5)

χ
(M)
L (βpc)(L) = BLγ/ν . (42)

We found

B = 0.0282(27), γ /ν = 1.737(17), χ2
r = 0.30 .

The obtained value for γ /ν is in agreement with the hyperscaling relation 2 − η = γ /ν for the 
three-state Potts model, which gives η ≈ 0.263. The expected value of η is 4/15. These findings 
support the Z(3) universality class of the present Polyakov loop spin model.

4. Correlation functions in confinement phase

4.1. Extraction of σqq from 	f
2

The potential parameter σqq is extracted from the measurements of the observable 	f
2. Fol-

lowing Eq. (20) and the explanation in subsection 2.4, we expect

	f
2(R) = A

e−σqq R

Rη
. (43)

One can extract σqq from the following ratio:
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σ eff
qq (R) ≡ −1

2
ln

[
	f

2(R)

	f
2(R − 2)

]
= σqq + η

2
ln

[
R

R − 2

]
. (44)

We have compared our Monte Carlo data for σ eff
qq (R) with the formula σqq +η/2 ln [R/(R − 2)]. 

The interval of β values that we considered for the extraction of σqq was [0.41, 0.42], since for 
β < 0.41 the two-point correlation drops too fast to be of any use. The values of σ eff

qq obtained in 
the selected range of β do not show any significant difference when moving from a 64 × 64 to a 
128 × 128 lattice, thus making unnecessary to perform simulation on even larger lattices.

As an alternative method for extracting σqq , we measured the wall–wall correlation function,

	ww
2 (R) =

〈
1

L3

L∑
x,y1,y2=1

TrW(x,y1)TrW †(x + R,y2)

〉
, (45)

which is known to obey the exponential decay law, with no power corrections,

	ww
2 (R) = Ae−σqq R . (46)

Introducing, similarly to (44),

σ eff
ww(R) ≡ −1

2
ln

[
	ww

2 (R)

	ww
2 (R − 2)

]
, (47)

we found that σ eff
ww(R) exhibits a long plateau at each considered β value; we took as plateau 

value σww the value of σ eff
ww(R) at the smallest value of R after which all values of σ eff

ww(R) agree 
within statistical uncertainties. Results for the 128 × 128 lattice are summarized in Table 1: we 
can see that results of σqq obtained from the fitting of σ eff

qq (R) according to (44) are in good 
agreement with the plateau values of σww. We ascribe the difference between the σqq values 
obtained for different choices of Rmin to possible systematic effects arising from the difficulty to 
extract the parameters of the exponential decay corrected by a power law and to our treating of 
the correlation function errors as independent values. These systematic errors seem also to result 
in a value of σww being in most cases slightly higher than the estimates of σqq .

4.2. Extraction of σqqq from 	f
3

First we studied the dependence of 	f
3 on the geometry, considering � and Y laws. In Fig. 6

we see that if we consider σ to be proportional to σww we get a reasonable collapse for all β
values except the largest one (β = 0.424), which might be too close to the critical point for our 
lattice size, L = 128. Still this does not allow us to discriminate between the two laws.

We turned therefore to fits with the two laws of the three-point correlation function for small 
(σwwY < 2) triangles, excluding those having an angle larger than 2π/3. The results of these fits 
for β = 0.423 are shown in Fig. 7. In this case the fit with the � law gives A = 2.319(14), σ =
0.0631(4), η = 0.503(4), χ2

r = 28.6, while the fit with the Y law gives A = 2.502(17), σ =
0.0573(3), η = 0.506(5), χ2

r = 4.67. For all values of β the Y law performed better than the �
law (giving smaller χ2

r ), the difference getting more and more clear for larger values of β .
To extract σqqq we followed a procedure similar to the one used for σqq . We supposed, ac-

cording to (21) and (30), the decay law

	f
3(R) = B

e−σqqq R

. (48)

Rη
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Table 1
Best-fit parameters η and σqq , obtained from fits of the Monte Carlo values for σ eff

qq
(R) with the function σqq +

η/2 ln [R/(R − 2)] on a 128 × 128 lattice. The second and third columns give the minimum and maximum values 
of the distance R considered in the fit. The last column gives the determination of σww.

β Rmin Rmax η σqq χ2
r σww

0.41 4 20 0.6242(36) 0.3309(12) 0.60 0.3436(49)
6 20 0.659 (14) 0.3245(28) 0.35
8 20 0.735 (50) 0.3144(69) 0.28
10 20 0.61 (18) 0.327 (19) 0.31

0.412 4 20 0.6274(33) 0.29939(10) 0.70 0.3101(32)
6 20 0.601 (14) 0.3044 (27) 0.49
8 20 0.595 (54) 0.3051 (72) 0.59
10 20 0.62 (18) 0.303 (19) 0.74

0.414 4 26 0.6439(34) 0.2620 (10) 0.75 0.2733(16)
6 26 0.620 (13) 0.2663 (25) 0.60
8 26 0.600 (44) 0.2687 (57) 0.66
10 26 0.60 (0.12) 0.269 (13) 0.75

0.415 4 22 0.6480(25) 0.2434(16) 0.58 0.2501(20)
6 22 0.6330(93) 0.2460(17) 0.47
8 22 0.611 (28) 0.2487(38) 0.50
10 22 0.560 (83) 0.2537(84) 0.55

0.416 4 26 0.6553(43) 0.2242(13) 1.63 0.2356(14)
6 26 0.623 (13) 0.2296(24) 1.04
8 26 0.640 (61) 0.2305(53) 1.16
10 26 0.57 (10) 0.235 (11) 1.29

0.417 4 28 0.6649(31) 0.20343(94) 1.19 0.2144(10)
6 28 0.6349(69) 0.2084 (12) 0.43
8 28 0.627 (21) 0.2093 (27) 0.47
10 28 0.598 (52) 0.2121 (86) 0.51

0.418 4 28 0.6747(28) 0.18187(83) 1.12 0.1927(13)
6 28 0.6515(75) 0.1857 (13) 0.61
8 28 0.647 (22) 0.1863 (28) 0.67
10 28 0.598 (49) 0.1909 (50) 0.66

0.419 4 36 0.6835(35) 0.16037(97) 1.62 0.1700(21)
6 36 0.668 (10) 0.1628 (18) 1.48
8 36 0.667 (27) 0.1630 (34) 1.59
10 36 0.690 (58) 0.1609 (57) 1.69

0.42 4 36 0.6938(38) 0.13758(53) 0.69 0.1476(13)
6 36 0.6841(54) 0.13900(90) 0.59
8 36 0.670 (13) 0.1405 (15) 0.58
10 36 0.652 (26) 0.1421 (25) 0.59

0.423 4 56 0.7756(16) 0.05295(40) 1.33 0.05809(56)
6 56 0.7887(37) 0.05143(52) 0.87
8 56 0.7841(68) 0.05185(73) 0.89
10 56 0.781 (11) 0.0521(90) 0.92

0.424 4 52 0.8844(44) 0.02306(68) 3.84 0.01612(30)
6 52 0.9089(44) 0.02073(53) 1.30
8 52 0.9132(71) 0.02040(69) 1.33
10 52 0.903 (11) 0.02106(90) 1.31



O. Borisenko et al. / Nuclear Physics B 940 (2019) 214–238 227
Fig. 6. 	f
3 versus σ� (left) and σY (right), for the isosceles geometry. In both cases the value of σww is used for σ .

Fig. 7. Comparison of the three-point correlation 	f
3 with the fit using the � law (left) and the Y law (right) for β = 0.423

isosceles triangles with the angles less than 2π/3 and Y < 35.

In this subsection R is a distance parameter depending on the geometry, that could be � or Y , 
respectively for the � and Y laws, given in Eqs. (1) and (2). In this proposed fitting function we 
excluded the second term, corresponding to the � law, since, for the size of triangles considered 
in the fitting procedure, we could hardly distinguish it from the first one, corresponding to the Y
law.2

We calculated the following ratio

σ eff
qqq = − 1

R1 − R2
ln

[
	f

3(R1)

	f
3(R2)

]
(49)

2 Recently, a new method was suggested to reveal the distinction between the � and Y laws, based on the use of 
hyperspherical three-body variables [17].
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Fig. 8. σ eff
qq

versus R, σ eff
ww versus R and σ eff

qqq versus � (left) and Y (right) at β = 0.41 on a 128 × 128 lattice, for the 
isosceles geometry.

for the pairs of triangles (b + 2, h + 2) and (b, h) for the isosceles geometry and (a1 + 2, a2 + 2)

and (a1, a2) for the right-angled geometry, where R1 and R2 are the distance parameters of the 
two triangles. The ratio is equal to

σ eff
qqq = − 1

R1 − R2
ln

[
	f

3(R1)

	f
3(R2)

]
= σqqq + η

R1 − R2
ln

[
R1

R2

]
, (50)

where, for sufficiently large distances we can assume R1 ∼ R2 ∼ R and get

σ eff
qqq = − 1

R1 − R2
ln

[
	f

3(R1)

	f
3(R2)

]
R�1� σqqq + η

R
. (51)

It turned out that for part of the triangle pairs σ eff
qqq and its jackknife error estimate could 

not be extracted reliably, due to one of the correlation functions being too close to zero. We 
removed from the study all the triangle pairs in which for at least one of the triangles, at least 
one of the jackknife samples gave negative correlation. The actual number of the triangle pairs 
for which the extraction of σ eff

qqq was possible, strongly depends on the value of β; for example, 
for the isosceles geometry we had 274 triangle pairs for β = 0.41, 558 for β = 0.42 and 783 for 
β = 0.423.

After extracting σ eff
qqq , we plotted it directly against the half-perimeter � and against the sum 

Y of the distances of the triangle vertices from the Fermat-Torricelli point. We overlapped these 
plots with the plots of σ eff

qq and σ eff
ww versus R (Figs. 8–10). We see that on the plots for the �

law the values of σ eff
qqq fail to collapse into a single line, while the collapse is much better for 

the Y law for all β values we studied. The residual spread of the points can be at least partially 
explained by different triangle pairs having different R1 −R2 values, which are not distinguished 
on these plots. Another observation that supports the Y law is that the collapse line for the σ eff

qqq

closely matches the line of σ eff
qq , which suggests that not only the sigma values entering the two-

and the three-point correlation are the same if we consider the Y law, but also that the parameters 
η are similar in these cases.
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Fig. 9. Same as Fig. 8 at β = 0.42.

Fig. 10. Same as Fig. 8 at β = 0.423.

It is worth mentioning that in our study the results of the extraction of σ eff
qqq are compared for 

triangles that have strongly different geometries: there are triangles that have similar Y distance, 
but some of them can have a small base and a large height, while others can have small heights 
and large bases. In particular, we did not exclude triangles with angles larger than 2π/3 from the 
study of σ eff

qqq , despite the fact that for them the Fermat-Torricelli point coincides with one of the 
vertices, thus leading to a different dependence of Y on h and b. The fact that even these “ex-
treme” triangles obey the Y law is explicitly demonstrated in Fig. 11 (instead, the most outlying 
data points turn out to be the ones with smallest triangle base), where the caption σqqq(Y → �)

implies that for such triangles the Fermat-Torricelli point coincides with one of the vertices turn-
ing the Y law into the � law. As can be seen from Figs. 8–10 these differences in geometry give 
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Fig. 11. Same as Fig. 10 (right) with data points for triangles having an angle larger than 2π/3 explicitly marked as 
σqqq (Y → �).

negligible corrections to the values of σ eff
qqq up to β = 0.423, providing us with an additional 

point in support of the Y law.

4.3. Extraction of critical index ν from the scaling of the two-point string tension

We used the values of the string tension obtained from the wall–wall correlation function close 
to the critical point to extract the critical index ν.

The values of σww, as well as the result of the fit in the region 0.422 < β < βc with the scaling 
function

σ = A(βc − β)ν , (52)

A = 12.5(2.8), βc = 0.424255(34), ν = 0.806(37), χ2
r ≈ 3.69 ,

are shown in the Fig. 12. The value of the critical index ν obtained in this way is compatible 
with both the critical index ν = 5/6 of the three-state Potts model and with our previous estimate 
in (41). We note, however, that the scaling region in this case is extremely narrow, and the value 
of ν is quite sensitive to the inclusion of the points outside this region.

4.4. Adjoint correlations in the confinement phase

We have performed measurements of the two- and three-point correlation functions in the 
adjoint representation, defined in Eqs. (12) and (13), at some values of β below the critical one.

Following formulae (22) and (23) and replacing in them the massive Green function G(β, R)

with its asymptotic behaviour, we got the following models:
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Fig. 12. σww versus β . The solid green line gives the result of the fit with the analytic form A(βc − β)ν .

	ad
2 (R) = M2

ad + A
exp[−2σR]

R2η
. (53)

	ad
3 ({xi}) = A3

3∏
i=1

exp [−σ |xi − xi+1|]
|xi − xi+1|η

+ MadA
2

3∑
i=1

exp [−2σ |xi − xi+1|]
|xi − xi+1|2η

+ M3
ad . (54)

Note that 	ad
3 ({xi}) exhibits the �-law decay after subtracting terms proportional to (powers of) 

the magnetization.
The results of the fitting of the adjoint correlations to the models in Eqs. (53) and (54) are 

given in Table 2 (see also Figs. 13 and 14).
Unusually low χ2

r values in the fits arise due to treating the measurements of the correlations 
at different distances as independent despite being obtained from the same set of measurements. 
This fact makes the error estimates of the fit parameters unreliable. Also, the estimation of the 
η value is inaccurate, since it describes short-range corrections to the exponential decay, on 
which only a few points in the fitting range have impact. This fact is especially visible from the 
covariance between η and σ which is very close to −1.

Despite that, the fact that the parameters σ and M show some degree of stability when going 
from the description of the two-point correlation to the three-point one, and also the compatibility 
of the results for σ with the σqq and σww values given in Table 1, support the validity of the 
suggested descriptions for the adjoint correlations.

We would like to stress that the values of Mad extracted from the fits do agree with direct 
measurements of this quantity as defined in Eq. (38).
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Table 2
Parameters extracted from the fits of the 	ad

2 and 	ad
3 at some given β < βc. For each value of β the first line contains the 

result of the fit of 	ad
2 to (53), and the next lines contain the result of the fit of the values of 	ad

3 obtained for the isosceles 
triangles with fixed base b to (54).

β b M A σ η χ2
r

0.41 0.557288(39) 0.743(12) 0.284(34) 0.57(10) 0.11
2 0.55102(39) 0.8567(90) 0.308(16) 0.419(53) 0.094
4 0.55637(15) 0.777(22) 0.348(21) 0.278(80) 0.21
6 0.55716(10) 0.742(61) 0.330(33) 0.32(15) 0.27
8 0.557269(75) 0.65(11) 0.354(43) 0.17(22) 0.25

0.415 0.645366(83) 0.792(18) 0.235(26) 0.499(79) 0.023
2 0.63984(75) 0.878(13) 0.244(22) 0.400(73) 0.047
4 0.64379(29) 0.825(30) 0.247(24) 0.376(94) 0.051
6 0.64501(21) 0.791(67) 0.255(30) 0.34(14) 0.036
8 0.64526(17) 0.77(13) 0.250(40) 0.36(22) 0.062

0.42 0.79511(12) 0.870(16) 0.134(16) 0.531(53) 0.0078
2 0.79391(79) 0.907(11) 0.143(13) 0.452(48) 0.048
4 0.79353(24) 0.880(24) 0.140(14) 0.450(59) 0.064
6 0.79433(30) 0.885(50) 0.136(16) 0.474(83) 0.040
8 0.79487(26) 0.90(10) 0.132(23) 0.51(14) 0.040

Fig. 13. 	ad
2 versus R at β = 0.41 (left) and β = 0.42 (right). The solid green line gives the result of the fit with the 

function in Eq. (53).

5. Correlation functions in deconfinement phase

Using the same approach adopted in the subsection 4.4 for the description of adjoint cor-
relations in the confinement phase, we get the following models for the correlations in the 
deconfinement phase from Eqs. (24)–(27):

	f
2(R) = M2

f exp

[
α

exp[−mR]
η

]
, (55)
R
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Fig. 14. 	ad
3 versus the height of triangles with base b = 4 and β = 0.41 (left) and β = 0.42 (right). The solid green line 

gives the result of the fit with the function in Eq. (54).

	f
3(β, {xi}) = M3

f exp

[
α

3∑
i=1

exp[−m|xi − xi+1|]
|xi − xi+1|η

]
, (56)

	ad
2 (R) = (Mad + 1)2 exp

[
4α

exp[−mR]
Rη

]
− 2Mad − 1 , (57)

	ad
3 ({xi}) = (Mad + 1)3 exp

[
4α

3∑
i=1

exp[−m|xi − xi+1|]
|xi − xi+1|η

]

−
3∑

i=1

(Mad + 1)2 exp

[
4α

exp[−m|xi − xi+1|]
|xi − xi+1|η

]
+ 3Mad + 2 , (58)

where m can be interpreted as the chromoelectric screening mass.
We used these formulae to describe the correlation functions measured above βc. The remarks 

given at the end of subsection 4.4 apply here as well. The results of the fits are gathered in 
Table 3 for the fundamental correlations (see also Figs. 15 and 16) and in Table 4 for the adjoint 
ones (see also Figs. 17 and 18). We see that the values of M and m extracted from the fits for 
two-point and three-point correlations are compatible. Moreover, the m values extracted from 
the fits of the fundamental and adjoint correlations are also compatible between themselves (the 
same should not apply to the M values, since they represent the average magnetization in two 
different representations). This supports the validity of the formulae (55)–(58) for the description 
of the correlation functions in the deconfinement phase.

Also in this case, we found that the values of Mad extracted from the fits do agree with direct 
measurements of this quantity as defined in Eq. (38).

In the deconfinement phase the value of m becomes the inverse correlation length for the 
connected part of the correlation, as can be seen from the Taylor expansion of the outer exponent 
in Eq. (55). When we approach the critical point from above the value of m should vanish as

m = Adec(β − βc)
ν . (59)
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Table 3
Parameters extracted from the fits of 	f

2 and 	f
3 at β > βc. For each value of β the first line contains the result of the fit 

of 	f
2 to (55), and the next lines contain result of the fit of the values of 	f

3 obtained for isosceles triangles with fixed 
base b to (56).

β b M α m η χ2
r

0.425 1.15180(36) 0.4186(45) 0.1031(76) 0.527(29) 0.028
2 1.17711(55) 0.2368(36) 0.1089(80) 0.510(34) 0.051
4 1.16585(43) 0.2600(80) 0.1055(96) 0.531(48) 0.028
6 1.16034(48) 0.287(17) 0.100(11) 0.572(70) 0.0093
8 1.15729(53) 0.314(31) 0.095(14) 0.61(10) 0.0036

0.43 1.4678468(36) 0.18067(16) 0.3663(25) 0.7054(77) 0.00012
2 1.474944(26) 0.11717(43) 0.3905(62) 0.574(21) 0.0029
4 1.469304(13) 0.1292(12) 0.3754(66) 0.610(26) 0.0019
6 1.468205(12) 0.1490(32) 0.3541(85) 0.728(40) 0.0014
8 1.467957(11) 0.1714(88) 0.348(13) 0.808(71) 0.0012

0.435 1.582348(16) 0.1364(26) 0.560(77) 0.71(23) 0.0039
2 1.586050(80) 0.0908(24) 0.568(44) 0.58(14) 0.012
4 1.582808(45) 0.0997(67) 0.542(49) 0.67(18) 0.0077
6 1.582422(37) 0.122(20) 0.512(61) 0.87(27) 0.0047
8 1.582353(30) 0.194(61) 0.436(73) 1.37(37) 0.0052

0.44 1.6581470(11) 0.11482(22) 0.722(13) 0.687(37) 0.0020
2 1.660580(28) 0.0744(10) 0.789(40) 0.34(12) 0.0077
4 1.658353(11) 0.0754(49) 0.780(63) 0.34(23) 0.0088
6 1.6581876(83) 0.069(18) 0.89(13) 0 ± 0.55 0.0085
8 1.6581549(54) 0.090(53) 0.80(17) 0.36(91) 0.0042

Fig. 15. 	f
2 versus R at β = 0.43 (left) and β = 0.44 (right). The solid green line gives the result of the fit with the 

function in Eq. (55).

The ratio Adec/A, where A is the amplitude for the scaling of σ in the deconfinement phase 
given by Eq. (52), equals 2.657 for 2d Z(3) universality class [27]. Using this universal ratio 
and the parameters obtained in subsection 4.3, we have calculated the prediction that Eq. (59)
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Table 4
Parameters extracted from the fits of 	ad

2 and 	ad
3 at β > βc. For each value of β the first line contains the result of the fit 

of 	ad
2 to (57), and the next lines contain result of the fit of the values of 	ad

3 obtained for isosceles triangles with fixed 
base b to (58).

β b M α m η χ2
r

0.425 1.52849(31) 0.04314(83) 0.086(16) 1.097(63) 0.0062
2 1.54873(77) 0.03227(73) 0.100(15) 1.008(59) 0.022
4 1.53420(47) 0.0348(16) 0.093(17) 1.043(81) 0.0087
6 1.53086(50) 0.0385(35) 0.084(20) 1.11(12) 0.0046
8 1.52966(53) 0.0422(64) 0.079(23) 1.17(16) 0.0049

0.43 1.9422411(77) 0.0385(23) 0.335(17) 1.079(93) 0.019
2 1.95648(20) 0.02654(42) 0.369(19) 0.891(64) 0.018
4 1.94449(13) 0.0287(14) 0.345(32) 0.97(13) 0.016
6 1.94279(11) 0.0343(38) 0.316(40) 1.15(19) 0.021
8 1.94237(10) 0.0458(89) 0.275(44) 1.43(24) 0.017

0.435 2.159588(31) 0.03716(58) 0.546(69) 0.96(21) 0.026
2 2.17020(25) 0.02495(70) 0.530(61) 0.89(20) 0.051
4 2.16073(12) 0.0270(35) 0.51(11) 0.96(42) 0.033
6 2.15976(76) 0.033(12) 0.49(16) 1.16(69) 0.023
8 2.159588(60) 0.063(28) 0.38(12) 1.87(67) 0.028

0.44 2.3244414(44) 0.03673(14) 0.727(26) 0.840(76) 0.00080
2 2.33305(39) 0.0234(13) 0.74(14) 0.64(43) 0.011
4 2.32509(12) 0.0236(25) 0.729(67) 0.65(25) 0.017
6 2.324522(75) 0.0245(64) 0.801(92) 0.45(38) 0.0087
8 2.324454(56) 0.060(48) 0.56(21) 1.7(29) 0.015

Fig. 16. 	ad
3 versus the height of triangles with base b = 4 at β = 0.43 (left) and β = 0.44 (right). The solid green line 

gives the result of the fit with the function in Eq. (56).

gives for the values of m. It turns out that for β = 0.425 the predicted value m = 0.100(35) is in 
good agreement with the values of m in Tables 3, 4, while for larger values of β this agreement 
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Fig. 17. 	ad
2 versus R at β = 0.43 (left) and β = 0.44 (right). The solid green line gives the result of the fit with the 

function in Eq. (57).

Fig. 18. 	ad
3 versus the height of triangles with base b = 4 at β = 0.43 (left) and β = 0.44 (right). The solid green line 

gives the result of the fit with the function in Eq. (58).

becomes worse (m = 0.52(15) for β = 0.43). This might be explained by the scaling holding 
only in a narrow region around βc, similarly to Fig. 12.

6. Summary

In this study we performed an extensive analysis of a two-dimensional effective SU(3)

Polyakov loop model. Differently from other approaches of the same kind, in our effective model 
the basic degrees of freedom are traces of SU(3) matrices and not Z(3) spins. The partition func-
tion is therefore integrated with a group-invariant measure. The motivation for this choice is that 
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it can help to catch some important features of the (2 + 1)-dimensional SU(3) lattice gauge 
theory at finite temperature that escape approaches based on the centre degrees of freedom. For 
example, one cannot define adjoint correlation functions in Z(3) models. Our main goal was to 
examine the behaviour of the three-quark potential below the critical point and to distinguish 
between possible scenarios for the three-point correlation function decay: the � law and the Y
law. Considering the triangle whose vertices are the positions of the three sources, the � poten-
tial depends on the perimeter of this triangle, while the Y potential depends on the sum Y of 
the distances of its vertices from the Fermat-Torricelli point. Other studies accomplished in the 
paper include investigation of the two- and three-point correlation functions in the adjoint repre-
sentation both below and above critical point and calculation of critical indices in the vicinity of 
the deconfinement phase transition.

Our main findings can be summarized as follows:

• Similarly to the pure gauge SU(3) LGT and Z(3) spin model, the leading contribution to 
the three-point fundamental correlation function in the strong coupling region is described 
by the Yl law, as explained in section 2.5. Exact Y law is restored as soon as the rotational 
symmetry is also restored.

• From the study of the large-N limit of the model we also obtained the general form for 
the two- and three-point correlations in fundamental and adjoint representations both above 
and below the critical point. The analytical results suggest that the fundamental three-point 
correlation behaves as in Eq. (30), i.e. it is described by a combination of Y and � laws if all 
angles of the triangle are less than 2π/3 or by only the � law if any of the angles is larger 
than 2π/3. We have not found analytical support in favour of � law (one possibility is that 
this law is suppressed in the large-N limit). The comparison with the results of numerical 
simulations shows that these forms can indeed be used to describe the behaviour of the 
corresponding correlations.

• The critical behaviour across the deconfinement transition supports the universality conjec-
ture that this model is in the universality class of the two-dimensional Z(3) spin model. In 
particular, we have determined the critical indices ν and η from finite size scaling (the index 
ν has been also evaluated directly from the two-point correlation). Their values agree well 
with the values in the Potts model.

• The fact that the assumption of Y law gives much better collapse of the effective string 
tension to a single curve, when different locations of the three sources are taken with the same 
value of Y , indicates that in this effective model the Y law is preferred. We have found the 
agreement of the effective string tensions for the two- and three-point correlation functions. 
Moreover, all string tensions appearing in the two-quark potential and in the three-quark 
potential with Y or � law agree up to uncertainties. This result is also supported by the 
analytic study of the model in the large-N limit. Since our results are supportive of the Y
law even for small triangles, we do not observe a smooth crossover from � to Y law as 
conjectured in [6,10]. For triangles with one of the angles larger than 2π/3 the three-point 
fundamental correlation function follows the � law.

• In the deconfinement phase the screening masses for fundamental two- and three-point cor-
relations also coincide up to numerical errors.

• Adjoint correlations share a similar pattern in the deconfinement phase, namely the cor-
responding screening masses are consistent with each other for two- and three-point cor-
relators. Moreover, they seem to coincide in the deconfined phase with the fundamental 
screening masses.
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• In the confined phase the connected part of the adjoint two-point correlation equals the square 
of the fundamental one after subtraction of magnetization. The connected part of the adjoint 
three-point correlation is consistent with the � law below the critical point and agrees with 
the large-N predictions.

This work can be straightforwardly extended to the case of three dimensions, which is cer-
tainly more relevant from the physical point of view, though being technically more involved. 
Another possible extension is to consider the three-quark system in different colour channels, 
both in the confined and in the deconfined phase (see, e.g., Ref. [28]).
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