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The Hamiltonian approach can be used successfully to study the real time evolution of a non-Abelian lattice
gauge theory on the available noisy quantum computers. In this work, results from the real-time evolution of
SU(2) pure gauge theory on IBM hardware are presented. The long real-time evolution spanning dozens of
Trotter steps with hundreds of CNOT gates and the observation of a traveling excitation on the lattice were
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consists of using the same physics circuit as a noise-mitigation circuit.
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Real time evolution and a traveling excitation in SU(2) pure gauge theory on a quantum computer E. Mendicelli

1. Introduction and motivations

The quantum computers available in the current noisy intermediate-scale quantum (NISQ) era [1] repre-
sent a prototype of the future in which the quantum computer will be as fault-tolerant as the classical computer
[2]. Conceptually the quantum computer offers interesting possibilities for the computation of lattice gauge
theories as explained by the authors of [3]. Compared to a classical computer where the storage of the state
vectors scales exponentially, the scaling on a quantum computer can be polynomial. Polynomial scaling
makes it computationally feasible to use the Hamiltonian formulation in place of the common Lagrangian
formulation, which requires the use of a Monte Carlo method. Furthermore, the Hamiltonian formalism
gives direct access to the real-time dynamics of the theory, and it is completely free of the infamous sign
problem [4, 5] that affects the Monte Carlo method, opening the possibility of a rigorous study of theories
with non-zero baryon density.

However the use of the current quantum hardware is not free from challenges. In fact, the quantum
resources are limited in terms of number of qubits and their connectivity with each other. The available
gates, in particular the CNOT gate, are noisy due to their imperfect realization leading to errors in the
measurements. Furthermore, the hardware makes mistakes in reading the state of the qubits, and finally there
is a general shortage of computational quantum resources.

These opportunities and the challenges of the available quantum hardware forced us to set two main
goals at the base of this work. The first goal is to use a gate-based quantum hardware to study the real-time
dynamics of an SU(2) pure gauge theory on a small lattice in its Hamiltonian formulation. Secondly, to
explore the available error mitigation techniques to mitigate the hardware error and extract a signal from
noisy data.

2. SU(2) pure gauge lattice theory

Our interest in the study of the SU(2) model resides in the fact that it is the smallest and simplest non-
Abelian gauge theory. Of equal importance, it is also conceptually close to the Quantum Chromodynamics
theory that is based on SU(3). The SU(2) Hamiltonian in the common notation by Byrnes and Yamamoto
[6] reads:

�̂� =
𝑔2

2
©«
∑︁

𝑖=links
�̂�2
𝑖 − 2𝑥

∑︁
𝑖=plaquettes

□̂𝑖
ª®¬ , (1)

where the only free parameter is the gauge coupling 𝑔, or the more convenient parameter 𝑥 ≡ 2/𝑔4. The first
term in �̂� is the chromoelectric field operator representing the stored chromoelectric energy on the lattice
equal to 𝑗 ( 𝑗 + 1) per each link. The second term is the chromomagnetic term that contains the plaquette
operator □̂𝑖 made by the trace of the product of the 4 gauge links of the 𝑖th plaquette, and can add or subtract
fluxes of energy on the lattice plaquettes.

Only two lattices are considered in this work, both a single row with closed boundary conditions, but
one with 2 plaquettes and the other with 5. The energy spectrum of the theory is infinite, but considering
the limitations of the current quantum hardware a truncation is necessary. Therefore we truncated the
Hamiltonian allowing only the two lowest eigenstates for 𝑗 = 0 and 𝑗 = 1/2, so only four states are present,
as shown in Fig. 1.
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Real time evolution and a traveling excitation in SU(2) pure gauge theory on a quantum computer E. Mendicelli

Figure 1: The four possible states available on the 2-plaquette lattice after the 𝑗𝑚𝑎𝑥 = 1/2 truncation. Each solid line
means a 𝑗 = 1/2 flux of energy is present, while the dashed line a 𝑗 = 0 meaning no energy is present.

These four states are obtained by applying the plaquette operators to the vacuum state and obeying the
SU(2) Gauss law. The interested reader can find the detailed formal derivation in previous work [7, 8]. The
truncated theory can be encoded on the quantum hardware using one qubit for each plaquette. Therefore the
4 states in Fig. 1 can be represented with the following choice of qubits:

1) −→ |0⟩|0⟩, 2) −→ |0⟩|1⟩, 3) −→ |1⟩|0⟩, 4) −→ |1⟩|1⟩ (2)

The truncated 2-plaquette Hamiltonian representation can be rewritten in gates as follows:

2
𝑔2 𝐻 =

©«
0 −2𝑥 −2𝑥 0

−2𝑥 3 0 −𝑥
−2𝑥 0 3 −𝑥

0 −𝑥 −𝑥 9
2

ª®®®®¬
=

3
8
(7 − 3𝑍0 − 𝑍0𝑍1 − 3𝑍1) −

𝑥

2
(3 + 𝑍1)𝑋0 −

𝑥

2
(3 + 𝑍0)𝑋1

The Hamiltonian has two regimes, one for large 𝑥 and one for small 𝑥. For 𝑥 < 1 the Hamiltonian off-diagonal
elements whose presence is due to the chromomagnetic operator are small. Therefore the dominant states
are weakly coupled chromoelectric eigenstates. In this regime, the single-plaquette states will move across
the lattice as shown in Fig. 2.
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Figure 2: Exact calculation of the time evolution for the 2-plaquette lattice for 𝑥 < 1. The left panel is at 𝑥 = 0.1 while
the right panel at 𝑥 = 0.6. The red (blue) solid curve is the exact probability of the left (right) plaquette having an energy
flux of 𝑗 = 1/2 over time. In both panels the small diagrams using the notation of Fig. 1 indicate the system state.

A traveling exitation is the interpretation of the phenomena present in the left panel of Fig. 2 where
for 𝑥 < 1 the probability of having an energy flux in the left plaquette (red curve) drops from 100% at
time 𝑡 = 0 to close to 0% at time 𝑡 = 240 while the probability of right plaquette (blue curve) does the
opposite. Similarly in the right panel, the now larger value of 𝑥 superimposes some high frequencies. That
the excitation propagation time is shorter for larger 𝑥 is clearly visible by comparing the pseudo-period of
the left panel at 𝑥 = 0.1 with the one present in the right panel at 𝑥 = 0.6.

For 𝑥 > 1 the chromomagnetic contribution dominates mixing of the single-plaquette states. This is
evident by the presence of many higher frequencies superimposed to the single-plaquettes transitions in
Fig. 3.
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Figure 3: Exact calculation of the time evolution for the 2-plaquette lattice for 𝑥 > 1. The left panel is at 𝑥 = 1.5 while
the right panel is at 𝑥 = 5.0. The red (blue) solid curve is the exact probability of the left (right) plaquette having an
energy flux of 𝑗 = 1/2 over time.

At larger values of 𝑥, higher frequencies are present as can be seen moving from the left panel at 𝑥 = 1.5
to the right panel at 𝑥 = 5.0 in Fig. 3.

A python code running inside the IBMQ quantum lab [9] accesses the quantum resources and implements
the time evolution operator and the needed error mitigation techniques. These are both described in the
following sections.

3. Time evolution on the quantum hardware

The time evolution of the SU(2) theory can be studied using a quantum computer once the time evolution
operator 𝑒−𝑖𝐻𝑡 has been written in gates. This can be done by approximating the time evolution operator:

𝑒−𝑖( 3
8 (7−3𝑍0−𝑍0𝑍1−3𝑍1 )− 𝑥

2 (3+𝑍1 )𝑋0− 𝑥
2 (3+𝑍0 )𝑋1)𝑡 (3)

for small time step 𝑑𝑡 through the use of the second order Suzuki-Trotter expansion [10]:

𝑒−𝑖𝐻𝑡 = 𝑒
−𝑖∑𝑚

𝑗=1 𝐻 𝑗 𝑡 =
©«

𝑚∏
𝑗=1

𝑒−𝑖𝐻 𝑗 𝑑𝑡/2
1∏

𝑗=𝑚

𝑒−𝑖𝐻 𝑗 𝑑𝑡/2ª®¬
𝑁𝑡

+𝑂

(
𝑚2𝑡 𝑑𝑡

)
A single second-order Suzuki-Trotter step written in gates requires 6 CNOT gates as shown in Fig. 4 that

are further reduced to 4 in view of cancellations after combination with neighbouring time steps.
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Figure 4: A single second-order Suzuki-Trotter step for the 2-plaquette lattice.

The cancellations of the edge CNOT gates from neighbouring time steps and the combination of the
edge rotation gates is done at code level to minimize the total number of gates. The time evolution circuit
can be submitted to the quantum hardware to study how a chosen initial state evolves in real time as shown
in Fig. 5.
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Figure 5: Real-time evolution of the state with only a 𝑗 = 1/2 flux of energy in the left plaquette for the 2-plaquette
lattice case at gauge coupling 𝑥 = 2.0 and time step 𝑑𝑡 = 0.08. The red solid (blue dashed) curve is the exact probability
of the left (right) plaquette having an energy flux of 𝑗 = 1/2 over time. In the upper panel: The red left-pointing (blue
right-pointing) triangles are the physics data from runs on the quantum hardware ibm_lagos. The red (blue) error bars
without symbols are the error mitigation data from runs on ibm_lagos. In the lower panel the triangles are the final
results of our error mitigation method that processes the upper panel data through the self-mitigation equation Eq. (4).

The graph in Fig. 5 presents the result from studying the real-time evolution of the 2-plaquette system
starting in the state with only a 𝑗 = 1/2 flux of energy in the left plaquette. In the upper panel the data
represented by triangles are obtained by running the time evolution circuits together with two error mitigation
techniques, the mitigation of measurement error and randomized compiling. The error bars without symbol
are the results of the error-estimation circuits needed for our self-mitigation method. In the lower panel the
final result is obtained by processing the upper panel data with self-mitigation.

The two main features are: the long-time range that spans dozens of time steps with up to 400 CNOT
gates, and the ability of our error mitigation method to extract a signal from noisy data as shown in the lower
panel. For 𝑡 > 4 the signal in the upper panel appears to be dominated by noise but in the corresponding
lower panel, where the points have been error mitigated with self-mitigation, they are corrected and close to
the exact result. The final agreement with the exact curve is not perfect, but only a small discrepancy remains.

In the following sections all the error mitigation techniques and the measurement protocol used in this
work are described.

4. Error mitigation techniques

The common available quantum computers are noisy. The imperfect realization gives rise to results
littered with errors limiting their usefulness. To extend the usability and extract value from the existing
NISQ hardware, researchers are developing and using methods to reduce the hardware error. Even if the
time evolution study is a conceptual, simple process its circuit realization requires the use of many gates, in
particular many CNOT gates that are the noisiest, therefore a comprehensive set of error mitigation techniques
is needed:
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1. Mitigation of measurement error [11]:
This is a procedure used to correct the errors that the hardware makes in measuring the qubit’s state. If
we are working with 𝑛 qubits, there are 2𝑛 possible pure states in which the result of the measurement of
the system can be found. Each of these 2𝑛 states have to be recreated on the hardware with a dedicated
circuit and measured to construct the 2𝑛 × 2𝑛 calibration matrix, whose entries are the probabilities
that a particular state, once measured, has a superposition with another state. In case of no hardware
errors, for example on the simulator, the calibration matrix is diagonal, meaning that the states have
no superposition with each other. In the case of a 2-plaquette lattice we use 2 qubits, therefore there
are 4 mitigation circuits as shown in Fig. 6.

Figure 6: The four circuits needed by the mitigation of measurement error for the 2-plaquette case.

Finally the calibration matrix is then applied through a fitting procedure called sequential least squares
programming to mitigate the measurement error present in the physical circuit.

2. Randomized compiling [12] (Pauli-twirling):
This is a technique used to transform the CNOT coherent noise into incoherent noise. This is done by
creating new physics circuits in which each original CNOT gate is equivalently substituted by a CNOT
gate “surrounded” by Pauli or identity gates. It can be shown that there are 16 possible ways to rewrite
a CNOT gate as shown in Fig. 7:
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Figure 7: The 16 possible ways to rewrite a CNOT gate using combinations of Pauli gates and the identity.

Therefore, the physics circuit has to be run a sufficient number of times to randomly access many
possible combinations for the surrounding gate of each CNOT gate in the original physics circuit. The
final physics measurement is obtained by averaging the measurement of these runs.

3. Zero-noise extrapolation [13]:
The method consists to study the circuit noise by creating copies of the original circuits where the
noise is artificially increased by replacing each CNOT gate by odd multiples (triplet, quintet etc.) as
shown in Fig. 8.

Gates Gates Gates

Gates Gates Gates

Gates Gates Gates

Gates Gates Gates

Figure 8: On the left the original circuit, on the right the same circuit in which the CNOT gates are replaced by a CNOT
triplet.

The zero-noise limit is extracted by fitting the circuit’s measurements with a function of the CNOT
multiples, as the intercept of the curve with the y-axis.
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4. Self-mitigation:
This method belongs to a class of error mitigation techniques in which an extra circuit is used to
estimate the hardware errors. The error estimation circuit should be as similar as possible to the gate
structure of the physics circuit and should have a known exact result. The estimation of the hardware
error from the error estimation circuits is used to mitigate the hardware error on the physics circuit.

With the self-mitigation method, the error estimation circuit is identical to the physics circuit.

Figure 9: Schematic representation of how the time evolution steps are organized in the error mitigation circuits versus
the physics circuit.

As shown in Fig. 9 the physics circuit does 𝑁 time steps forward in time. In comparison the error esti-
mation circuit does half time steps forward and half backward, returning to the initial state. Therefore,
the error estimation circuit has the same gates in the same order and the identical or opposite variable
inside the rotation gates, and accordingly it closely reproduces the physics circuit noise. The hardware
error can be estimated in the disparity between the final state of the error estimation circuit and the
initial state. Due to the variability of the hardware the two circuits have to run back-to-back to ensure
the hardware noise affecting them is similar (if not identical). Therefore the error mitigated final result
for the physics circuit is obtained through the self-mitigation equation:

𝑃true − 1
2

𝑃computed − 1
2

�����
physics run

=
𝑃true − 1

2

𝑃computed − 1
2

�����
mitigation run

(4)

5. Measurement protocol

Using the 7 qubits quantum hardware ibm_lagos allows one to run a sequence of 300 circuits back to
back we chose 104 hits. To further clarify our approach, the protocol used is as follows:

1. Submit the 2𝑛 circuits for the mitigation of measurement error. (4 circuits for the 2-plaquette and 32
circuits for the 5-plaquette case.)

2. Submit the randomized compiling circuits for the error estimation circuit and the physics circuit. (148
circuits for the error estimation circuits and 148 for the physics circuits for the 2-plaquette case. 134
error estimation circuits and 134 physics circuits for the 5-plaquette case.)

3. Collect all the measurements.

4. Apply the measurement-error calibration matrix to the error estimation circuit and the physics circuit
results.

7
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5. Use the self-mitigation equation to mitigate the hardware error and extract the mitigated value of the
measurements.

6. Calculate the final error for the error estimation and the physics results as the sum in quadrature of the
statistical error from the 104 hits and the error from the bootstrap samples.

6. Numerical Results

The developed method can be used to study interesting features of the theory, for example the traveling
excitation across the 2-plaquette lattice. As we already described in Sec. 2 to observe traveling excitation we
need to consider a value of the gauge coupling 𝑥 < 1, where the chromoelectric part dominates and therefore
the single-plaquette states are the main contributor.

Figure 10: Real-time excitation obtained as an evolution of the state with only a 𝑗 = 1/2 flux of energy in the left
plaquette for the 2-plaquette lattice case at gauge coupling 𝑥 = 0.8 and 2 time steps per point with 𝑑𝑡 = 0.12. The red
solid (blue dashed) curve is the exact probability of the left (right) plaquette having an energy flux of j=1/2 over time.
The red left-pointing (blue right-pointing) triangles are the physics data from calculations done on the quantum hardware
ibm_lagos and processed by self-mitigation.

The physical interpretation of the phenomenon can be clearer if we interpret the closed loop with 𝑗 = 1/2
that is a gauge invariant excitation as an approximation of a SU(2) glueball. Therefore, the traveling excitation
is like a particle moving across the lattice from left to right.

The analytical method and measurement protocol can be extended to a larger lattice. On the 7 qubits
hardware ibm_lagos, the longest qubit chain with nearest-neighbour connectivity has 5 qubits, therefore
avoiding the use of swap gates and using 1 qubit for each plaquette, the largest implementable lattice has 5
plaquettes.

8
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Figure 11: Real-time evolution of the state with only a 𝑗 = 1/2 flux of energy in the left plaquette for the 5-plaquette
lattice case at gauge coupling 𝑥 = 2.0 and 4 Trotter steps per point at different values of 𝑑𝑡. The black solid, blue
dashed, and the red dotted curves are respectively the exact probability that the flux of energy 𝑗 = 1/2 is in the centre
plaquette, the two edge plaquettes and the two neighbours to the centre plaquette. The solid black circle, blue triangle,
and red square are the corresponding data from the quantum hardware ibm_lagos after self-mitigation. The open circle,
triangle, and square are quantum data from ibm_lagos after using both self-mitigation and zero-noise extrapolation.

The results in Fig. 11 are obtained from 4 jobs each with 134 runs using 4 second-order Trotter steps with
different step size and totalling 94 CNOT gates for each point. The agreement is reasonable but not perfect
as can be seen from the comparison of the filled data points with the exact curves, and can be improved as
shown by the empty symbols using the zero-noise extrapolation using up to a CNOT triplet. In contrast to
Fig. 10, the curves cannot be interpreted as a traveling excitation because at the value used for the gauge
coupling x=2.0, the chromomagnetic contribution dominates.

7. Summary

This work demonstrates that an IBM gate-based quantum computer can be successfully used to study
the real-time evolution of a non-Abelian lattice gauge theory on a small lattice. As shown in Fig. 5 the
real-time evolution study of a SU(2) theory was extended to a time range much larger than previous studies
on non-Abelian gauge theories [7, 8, 14, 15]. Furthermore, in Fig. 10 we reported the observation of an
example of a real-time dynamical process: a SU(2) local excitation moving across the lattice. To obtain
these results we used well-known error mitigation techniques such as measurement mitigation and random-
ized compiling. By themselves, these error mitigation techniques are not sufficient. To extract signal at
large-time, we introduced a new approach called self-mitigation, which uses the same physics circuit as its
own noise-mitigation circuit. In Fig. 11 we not only show that the current quantum hardware can be used
for the time evolution study of a larger lattice, but that self-mitigation can be successfully combined with
the mitigation method called zero-noise extrapolation to increase the error mitigation. Self-mitigation was
introduced in [16] and was used in [17]. A similar approach was used in [18].

An interested reader may find the article by the same authors useful [16], as the original Lattice 2022
talk was based on it.

9



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
2
5

P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
2
5

Real time evolution and a traveling excitation in SU(2) pure gauge theory on a quantum computer E. Mendicelli

8. Acknowledgements

The present work was supported in part by a Discovery Grant from the Natural Sciences and Engineering
Research Council (NSERC) of Canada and by an NSERC Undergraduate Student Research Award. The
authors acknowledge the use of IBM Quantum services for this work. The views expressed are those of the
authors, and do not reflect the official policy or position of IBM or the IBM Quantum team.

References

[1] J. Preskill, Simulating quantum field theory with a quantum computer, 1811.10085.
[2] D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error rate, SIAM

Journal on Computing 38 (2008) 1207 [quant-ph/9906129].
[3] C.W. Bauer et al., Quantum Simulation for High Energy Physics, 2204.03381.
[4] Z.-X. Li and H. Yao, Sign-Problem-Free fermionic quantum Monte Carlo: Developments and

applications, Annual Review of Condensed Matter Physics 10 (2019) 337 [1805.08219].
[5] C. Gattringer and K. Langfeld, Approaches to the sign problem in lattice field theory, Int. J. Mod.

Phys. A 31 (2016) 1643007 [1603.09517].
[6] T. Byrnes and Y. Yamamoto, Simulating lattice gauge theories on a quantum computer, Phys. Rev. A

73 (2006) 022328 [quant-ph/0510027].
[7] S. A Rahman, R. Lewis, E. Mendicelli and S. Powell, SU(2) lattice gauge theory on a quantum

annealer, Phys. Rev. D 104 (2021) 034501 [2103.08661].
[8] N. Klco, M.J. Savage and J.R. Stryker, SU(2) non-Abelian gauge field theory in one dimension on

digital quantum computers, Phys. Rev. D 101 (2020) 074512 [1908.06935].
[9] “Ibm quantum lab.” http://quantum-computing.ibm.com/.

[10] N. Hatano and M. Suzuki, Finding exponential product formulas of higher orders, in Quantum
Annealing and Other Optimization Methods, A. Das and B. K. Chakrabarti, eds., (Berlin, Heidelberg),
pp. 37–68, Springer Berlin Heidelberg (2005), DOI [math-ph/0506007].

[11] S. Bravyi, S. Sheldon, A. Kandala, D.C. Mckay and J.M. Gambetta, Mitigating measurement errors in
multiqubit experiments, Phys. Rev. A 103 (2021) 042605 [2006.14044].

[12] J.J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via randomized
compiling, Physical Review A 94 (2016) [1512.01098].

[13] Y. Li and S.C. Benjamin, Efficient variational quantum simulator incorporating active error
minimization, Phys. Rev. X 7 (2017) 021050 [1611.09301].

[14] A. Ciavarella, N. Klco and M.J. Savage, Trailhead for quantum simulation of SU(3) Yang-Mills lattice
gauge theory in the local multiplet basis, Phys. Rev. D 103 (2021) 094501 [2101.10227].

[15] M. Illa and M.J. Savage, Basic elements for simulations of standard model physics with quantum
annealers: Multigrid and clock states, 2202.12340.

[16] S.A. Rahman, R. Lewis, E. Mendicelli and S. Powell, Self-mitigating Trotter circuits for SU(2) lattice
gauge theory on a quantum computer, Phys. Rev. D 106 (2022) 074502 [2205.09247].

[17] Y. Y. Atas, J. F. Haase, J. Zhang, V. Wei, S. M. L. Pfaendler, R. Lewis and C. A. Muschik, Real-time
evolution of SU(3) hadrons on a quantum computer, 2207.03473.

[18] R.C. Farrell, I.A. Chernyshev, S.J.M. Powell, N.A. Zemlevskiy, M. Illa and M.J. Savage, Preparations
for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions: (I) Axial Gauge,
2207.01731.

10

https://arxiv.org/abs/1811.10085
https://doi.org/10.1137/S0097539799359385
https://doi.org/10.1137/S0097539799359385
https://arxiv.org/abs/quant-ph/9906129
https://arxiv.org/abs/2204.03381
https://doi.org/10.1146/annurev-conmatphys-033117-054307
https://arxiv.org/abs/1805.08219
https://doi.org/10.1142/S0217751X16430077
https://doi.org/10.1142/S0217751X16430077
https://arxiv.org/abs/1603.09517
https://doi.org/10.1103/PhysRevA.73.022328
https://doi.org/10.1103/PhysRevA.73.022328
https://arxiv.org/abs/quant-ph/0510027
https://doi.org/10.1103/PhysRevD.104.034501
https://arxiv.org/abs/2103.08661
https://doi.org/10.1103/PhysRevD.101.074512
https://arxiv.org/abs/1908.06935
https://doi.org/10.1007/11526216_2
https://arxiv.org/abs/math-ph/0506007
https://doi.org/10.1103/PhysRevA.103.042605
https://arxiv.org/abs/2006.14044
https://doi.org/10.1103/physreva.94.052325
https://arxiv.org/abs/1512.01098
https://doi.org/10.1103/PhysRevX.7.021050
https://arxiv.org/abs/1611.09301
https://doi.org/10.1103/PhysRevD.103.094501
https://arxiv.org/abs/2101.10227
https://arxiv.org/abs/2202.12340
https://doi.org/10.1103/PhysRevD.106.074502
https://arxiv.org/abs/2205.09247
https://arxiv.org/abs/2207.03473
https://arxiv.org/abs/2207.01731

	Introduction and motivations
	SU(2) pure gauge lattice theory 
	Time evolution on the quantum hardware
	Error mitigation techniques
	Measurement protocol
	Numerical Results
	Summary
	Acknowledgements

