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Abstract

Computations of screening masses in finite-temperature QCD at finite
density are plagued by the sign problem and have been performed so far
with an imaginary chemical potential. Here, we use a dual formulation of a
Polyakov-loop model which allows the determination of screening masses at
real baryon chemical potential. This is a second paper in a series devoted
to a detailed study of dual Polyakov-loop models at finite density. While
the first paper was mainly devoted to establishing the phase diagram of the
model, here we compute correlation functions of the Polyakov loops and
the second-moment correlation length at non-zero chemical potential. This
enables us to evaluate numerically the screening masses from correlations
of the real and imaginary parts of the Polyakov loops. We also compute
these masses in the mean-field approximation and compare with numerical
results. In addition, we provide a quantitative improvement of the general
phase diagram presented in the first paper.
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1 Introduction

Understanding the properties of strongly interacting matter at finite temperatures
and densities is exceedingly important in many areas of research, including cosmol-
ogy, astrophysics of compact objects and phenomenology of heavy-ion collisions.
Numerical investigations on a Euclidean space-time lattice, based on Monte-Carlo
methods, are hindered by the notorious sign problem: in presence of a non-zero
baryon chemical potential the Boltzmann weight turns complex and cannot be used
to sample thermal ensemble configurations. Many approaches have been designed
in the last decades to circumvent or mitigate this problem, such as Taylor expan-
sion around zero baryon chemical potential, reweighting to small baryon chemical
potential, simulations at imaginary potential, complex Langevin simulations and
others (see, e.g., [1–4]).

Recent times have witnessed the development of radically new approaches that
aim to fully solve the sign problem by expressing the original partition function
and observables in terms of different, usually integer-valued, degrees of freedom,
so to make the resulting Boltzmann weight positive definite. These formulations
are conventionally called “dual”, even though sometimes different names are used,
such as “flux line representation” [5].

While several strategies have been developed to get dual formulations for non-
Abelian lattice models with fermions [6–8], a dual formulation with a positive
Boltzmann weight is not yet available for full QCD. In some limiting regimes,
however, it has been possible to construct formulations either positive or such
that the sign problem is less severe. This is the case of the strong-coupling limit
of QCD, where the SU(N) lattice gauge theory (LGT) can be mapped onto a
monomer-dimer and closed baryon loop model [9] (see also Ref. [10] and references
therein). Other cases include many effective Polyakov-loop models which can be
derived from the full lattice QCD in some specific limits. Examples of such dual
models with positive Boltzmann weight are known in the wider context of the
SU(N) [11–14] and U(N) groups [7].

In this paper we focus on a 3-dimensional effective Polyakov-loop model, de-
scribing the (3+1)-dimensional SU(N) LGT with one flavor of staggered fermions
at finite baryon density. It is defined on a 3-dimensional hypercubic lattice Λ = L3,
with L the linear extension and a unit lattice spacing; x⃗ ≡ x = (x1, x2, x3),
xi ∈ [0, L − 1] denote the sites of the lattice, l = (x⃗, ν) is the lattice link in
the direction ν; eν is a unit vector in the direction ν and Nt is the lattice size in
the temporal direction of the underlying (3+1)-dimensional LGT; periodic bound-
ary conditions are imposed in all directions. The general form of the partition
function of the model reads [15,16]

ZΛ(β, m̄, µ̄;N) ≡ Z =

∫ ∏
x

dU(x) exp

[
β
∑
x,ν

ReTrU(x)TrU †(x+ eν)

]
×

∏
x

A(m̄) det [1 + h+U(x)] det
[
1 + h−U

†(x)
]
. (1)

In this model the matrices U(x) play the role of Polyakov loops, the only gauge-
invariant operators surviving the integration over spatial gauge fields and over
quarks. TrU denotes the fundamental character of SU(N). Integration in (1) is
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performed with respect to the Haar measure on SU(N). The effective coupling
constant β is a complicated function of the original gauge coupling (its precise
form is not important here). The constants A(m̄) and h± are given by

A(m̄) = eNNt arcsinh am̄ ≈ e
Nm̄
T , h± = e−(arcsinh am̄∓aµ̄)Nt ≈ e−

m̄∓µ̄
T . (2)

The pure-gauge part of the effective action is invariant only under global discrete
transformations U(x) → ZU(x), Z ∈ Z(N). This is the global Z(N) symme-
try. The quark contribution violates this symmetry explicitly. Another important
feature of the Boltzmann weight is that it becomes complex in the presence of a
chemical potential, as follows from (1). Therefore, the model cannot be studied
by direct Monte-Carlo methods if µ is non-zero.

The model defined in Eq. (1) has been investigated in the large-N limit of U(N)
at non-zero µ in [17]; it was found that the dependence on the chemical potential
drops out from the free energy. Moreover, a third-order phase transition has been
reported in this limit. The large-N limit of the SU(N) case was studied in [18,19].
In Refs. [20,21] a mean-field approximation was used to study the SU(3) model.

Dual formulations with positive Boltzmann weight of the model defined in
Eq. (1) have been constructed in Refs. [7, 11], thus making Monte-Carlo simula-
tions feasible [12, 13, 22]. Mean-field and Monte-Carlo studies turned out to be
in quantitative agreement for the energy density and expectation values of the
Polyakov loops. In some regions of the parameters β, h and µ the phase dia-
gram of the model has been revealed, but long-distance correlations and, hence
the screening masses, have not been computed so far (see, however, [23]).

In a previous paper [24], we have studied an alternative dual form of the parti-
tion function (1), originally derived in [14] (its explicit expression is given below).
By a finite-size scaling of the magnetization susceptibility, we have studied in great
details the phase diagram of the model, identifying three regions in the parameter
space (β, h, µ) according to the type of the critical behavior: first or second order
phase transition, or crossover. We have computed expectation values of Polyakov
loop, baryon density and quark condensate, finding good agreement with mean-
field predictions both at zero and non-zero µ. In general, we have found that the
overall qualitative picture of the phase diagram and the behavior of all observables
fully agree with Refs. [13, 22]. We have also observed that, in general, all the ob-
servables considered in that work are sensitive to the chemical potential, exhibiting
a less steep variation across transition when the coupling β (which corresponds to
the temperature in the underlying QCD theory) is increased. Qualitatively, the
effect of increasing µ has shown to play the same role of the reduction of the quark
mass.

In the present paper we exploit the same dual form of the effective Polyakov-
loop model adopted in [24] to study several correlations of the Polyakov loops and
to extract screening (electric and magnetic) masses at finite chemical potential.
We consider also the determination of the second-moment correlation length. To
the best of our knowledge, this kind of analysis has never been done so far in
the framework of dual formulations of SU(N) effective Polyakov-loop models. It
is important not only to size the effect of a non-zero baryon chemical potential
on screening effects in the deconfined phase, but also for the investigation of the
elusive oscillating phase at finite density [25–27], which is ultimately connected to
the complex spectrum of the theory.
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For a general review of the screening masses in lattice QCD at finite tem-
perature we refer to [28]. Simulations at imaginary chemical potential with two
flavors of Wilson fermions and with (2+ 1) flavor of staggered fermions have been
performed in Ref. [29] and Ref. [30], correspondingly.

We describe now the dual form of the partition function (1). This dual repre-
sentation will be used in the next Sections for numerical simulations of the model.
All details of the derivation can be found in [14]. In the case of one flavor of
staggered fermions the partition function (1) can be presented, after an exact
integration over Polyakov loops, as

Z =
∞∑

{r(l)}=−∞

∞∑
{s(l)}=0

∏
l

(
β
2

)|r(l)|+2s(l)

(s(l) + |r(l)|)!s(l)!
∏
x

A(m̄)RN(n(x), p(x)) , (3)

n(x) =
2d∑
i=1

(
s(li) +

1

2
|r(li)|

)
+

1

2

d∑
ν=1

(rν(x)− rν(x− eν)) , (4)

p(x) =
2d∑
i=1

(
s(li) +

1

2
|r(li)|

)
− 1

2

d∑
ν=1

(rν(x)− rν(x− eν)) , (5)

where li, i = 1, ..., 2d are 2d links attached to a site x and

RN(n, p) =
∞∑

q=−∞

N∑
k,l=0

∑
σ⊢n+k

δn+k,p+l+qN d(σ/1k)d(σ + qN/1l) hk
+h

l
− . (6)

The sum over σ runs over all partitions of n + k, and d (σ/1m) is the dimen-
sion of a skew representation defined by a corresponding skew Young diagram,
σ + qN = (σ1 + q, . . . , σN + q) (for more details we refer the reader to Ref. [14]).
Equation (3) is valid for all SU(N) groups and in any dimension. Clearly, all fac-
tors entering the Boltzmann weight of (3) are positive. Hence, this representation
is suitable for numerical simulations. The Kronecker delta-function in expres-
sion (6) represents the N -ality constraint on the admissible configurations of the
integer-valued variables s(l) and r(l). This constraint can be exactly resolved only
in the pure gauge model when h± = 0. In this case the dual representation (3) has
been already tested by us on the example of a 2-dimensional SU(3) model, where
we studied correlation functions and three-quark potential [23].

In the following Sections we study the dual representation (3) via Monte-
Carlo simulations for the 3-dimensional SU(3) model. In this case the function
RN(n, p;h±) takes the form

R3(n, p) = Q3(n+ 1, p)
(
h+ + h2

− + h+h
3
− + h3

+h
2
−
)

(7)

+ Q3(n, p)
(
1 + h3

+ + h3
− + h3

+h
3
−
)
+Q3(n, p+ 1)

(
h− + h2

+ + h3
+h− + h2

+h
3
−
)

+ Q3(n+ 1, p+ 1)
(
h+h− + h2

+h
2
−
)
+Q3(n+ 2, p)h+h

2
− +Q3(n, p+ 2)h2

+h− .

The function Q3(n, p) is the result of the group integration and is given by [31]

QN(n, p) =
∑

λ⊢min(n,p)

d(λ) d(λ+ |q|N) , (8)
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where d(λ) is the dimension of the permutation group Sr in the representation λ,
q = (p− n)/N (when q is not an integer, QN(n, p) = 0).

Important is the fact that both local observables and long-distance quantities
can be computed with the help of this dual representation. Explicit expressions
for the correlation functions of the Polyakov loops will be given in Section 3.

The paper is organized as follows. In the next Section we present a mean-field
study of the correlations for SU(3) Polyakov-loop model and calculate the screen-
ing masses analytically. In Section 3 we give the definitions of several Polyakov-
loop correlators both in the standard and in the dual formulations; we define
also in this context the second-moment correlation length. Then, we present our
numerical Monte-Carlo results for Polyakov-loop correlation functions, screening
masses and second-moment correlation length. In Section 4 we summarize our
main results and outline the future work. In Appendix we present improved phase
diagram of the Polyakov-loop model.

2 Analytic study of the correlations

First of all, we would like to derive some analytic predictions for the behavior of the
correlations and screening masses. Here we calculate the partition and correlation
functions of SU(3) model following the approach of Refs. [18,19] developed for the
large-N limit. All results presented in this and next Sections are given in terms of
dimensionless quantities m = m̄/T and µ = µ̄/T .

Consider the following change of variables:

ReTrU(x) = 3ρ(x) cosω(x) ,

ImTrU †(x) = 3ρ(x) sinω(x) . (9)

The partition function can then be rewritten as

Z =

∫ ∏
x

ρ(x)dρ(x)
dω(x)

2π
exp [S(ρ(x), ω(x))] . (10)

The full action in new variables takes the form

S(ρ(x), ω(x)) = Sg +
∑
x

(
ln
√

J(x) + ln 2 +
3

2
ln 3 + lnQ(x)

)
, (11)

where Sg is the gauge part of the action

Sg = 9β
∑
x,n

ρ(x)ρ(x+ en) cos(ω(x)− ω(x+ en)) . (12)

J(x) is the Jacobian of the transformation [32]

J(x) = 1− 3

4

(
1 + ρ2(x)

)2
+ 2ρ3(x) cos 3ω(x) (13)

and Q(x) represents the quark contribution

Q(x) = cosh 3m+ cosh 3µ+ 6 cosh 2m ρ(x) cos(ω(x)− iµ) + 9 coshm ρ2(x)

+ 6 coshm ρ(x) cos(ω(x) + 2iµ) + 18ρ2(x) cos(2ω(x) + iµ) . (14)
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The integration in (10) is performed over the domain where J(x) > 0.
Firstly, we look for constant, translation invariant solutions of the saddle-point

equations

18dβρ+
1

2J

∂

∂ρ
J +

1

Q

∂

∂ρ
Q = 0 , (15)

1

2J

∂

∂ω
J +

1

Q

∂

∂ω
Q = 0 . (16)

Secondly, we expand the full action around the saddle points. If ρ0, ω0 are the
saddle points, we make the substitution ρ(x) → ρ0 +

1
3
ρ(x), ω(x) → ω0 +

1
3
ω(x)

and expand in powers of fluctuations. The action becomes

S(ρ(x), ω(x)) = Scl(ρ0, ω0) + β
∑
x,n

ρ(x)ρ(x+ en) (17)

−1

2
βρ20

∑
x,n

(ω(x)− ω(x+ en))
2 −

∑
x

(
b1ρ

2(x) + b2ω
2(x)− b3ρ(x)ω(x)

)
.

Here, Scl is the classical action and coefficients bi are functions of ρ0, ω0. These
coefficients are very lengthy and cumbersome, so we choose not to give here their
precise expressions. Important is that b1 and b2 are always real and non-vanishing,
while b3 is purely imaginary and non-zero only when the chemical potential is
non-vanishing. Finally, we calculate the correlation functions by integrating over
quadratic fluctuations. For the arbitrary normalized correlations of the fundamen-
tal characters of the Polyakov loops

Γ(η, η̄) = ⟨
∏
x

ρη(x)+η̄(x)(x) eiω(x)(η(x)−η̄(x)) ⟩ , (18)

one obtains

Γ(η, η̄) =
∏
x

ρ
η(x)+η̄(x)
0 eiω0(η(x)−η̄(x)) exp

[
1

4N2βρ20

∑
x,x′

(A1(x, x
′) + A2(x, x

′))

]
, (19)

A1(x, x
′) =

1√
C1C2

(C1η(x)η(x
′) + C2η̄(x)η̄(x

′)) (Gx,x′(m1)−Gx,x′(m2)),(20)

A2(x, x
′) = 2η(x)η̄(x′) (Gx,x′(m1) +Gx,x′(m2)) . (21)

We have used the following notation for the Green function:

Gx,x′(m) =
1

Ld

L−1∑
kn=0

e
2πi
L

∑d
n kn(xn−x′

n)

m+ f(k)
, f(k) = d−

d∑
n=1

cos
2π

L
kn . (22)

Constants C1,2 define the screening masses and are given below. This general
result allows one to compute any invariant or non-invariant observable by choosing
the appropriate values of the sources η(x) and η̄(x). E.g., the magnetization
M = ⟨ρ(x)eiω(x)⟩ and its complex conjugate become

M = ρ0e
iω0 exp

[
C1

4N2βρ20
√
C1C2

(G0(m1)−G0(m2))

]
, (23)

M∗ = ρ0e
−iω0 exp

[
C2

4N2βρ20
√
C1C2

(G0(m1)−G0(m2))

]
, (24)
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where G0(m) is the zero-distance Green function.
Since we have two components of the mean Polyakov loop ( ⟨TrU⟩ and

〈
TrU †〉,

or equivalently ⟨ReTrU⟩ and
〈
ImTrU †〉), we have four components of the Polyakov

loop correlation function, which can be gathered in the correlation matrix [30]

Γ(x, y) =

(
⟨ReTrU(x) ReTrU(y)⟩ ⟨ReTrU(x) ImTrU(y)⟩
⟨ImTrU(x) ReTrU(y)⟩ ⟨ImTrU(x) ImTrU(y)⟩

)
. (25)

The off-diagonal terms vanish if µ = 0, and the coefficients in the exponential decay
of the connected parts in diagonal terms define the magneticmM = m1 and electric
mE = m2 screening masses. For µ > 0 the electric and magnetic sector mix, so
each correlation matrix element should be a sum of two terms – one decaying with
mM , and second with mE. Eigenvalues of the correlation matrix (25) turn out to
be

M1,2 =
1

2
MM∗

[
F1 ±

√
F2(C1)F2(C2)

]
, (26)

F1 = exp

[
1

2N2βρ20
(GR(m1) +GR(m2))

]
− 1 , (27)

F2(Ci) = exp

[
Ci

2N2βρ20
√
C1C2

(GR(m1)−GR(m2))

]
− 1 . (28)

Notice that, if m1 ≤ m2, one obtains in the limit of large separation R:

M1 =
MM∗

2N2βρ20
GR(m1) , (29)

M2 =


MM∗

2N2βρ20
GR(m2) , if m1 ≤ m2 ≤ 2m1 ,

MM∗

2N2βρ20

(
GR(m2) +

1
16N2βρ20

(
2− C1+C2√

C1C2

)
G2

R(m1)
)

, if m2 ≥ 2m1 .

(30)
Then, for example, the connected part of the Polyakov loop correlation becomes

⟨ TrU(0)TrU∗(R) ⟩ = MM∗(GR(m1) +GR(m2)) ∼ M1 +M2 . (31)

The masses m1 and m2 play the role of the magnetic and electric screening masses
and are given by

m1,2 =
1

2βρ20

(
C3 ∓

√
C1C2

)
, (32)

C1,2 = b2 + (dβ − b1)ρ
2
0 ± ib3ρ0 , C3 = b2 + (b1 − dβ)ρ20 . (33)

These expressions for screening masses are the main result of the mean-field anal-
ysis. Let us make a few comments on these expressions.

• Using explicit expressions for the coefficients bi, one proves that m2 ≥ 2m1,
i.e., the electric mass is at least two times larger than the magnetic mass.
Monte-Carlo simulations support this conclusion.
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• If µ is non-vanishing then b3 ̸= 0 and masses may, in principle, become
complex andm1 = m∗

2. In this case the correlation would decay exponentially
and exhibit oscillatory behavior as follows from Eq. (31). Such behavior is
typical for a liquid phase which exists in Z(3) spin model in the presence of
external complex magnetic field [27] and in the large-N limit of the SU(N)
Polyakov-loop model [19]. However, for the SU(3) model studied here we
were not able to find a set of parameters for which the product C1C2 is
negative and masses are complex. Either the oscillating region is very narrow
or it is not realized in this model.

• The behavior versus β of the two screening masses predicted by analytic
expressions (32), (33) is shown in Fig. 1. This can be compared with re-
sults of Monte-Carlo simulations presented below. One finds a reasonable
qualitative, and sometime even quantitative, agreement.

One can see that both masses grow when going away from the transition point,
with the higher mass having very rapid growth after entering the ordered phase.
Both masses have their minimum at the transition point, with lower mass getting
closer to zero at the transition.
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Figure 1: Dependence on β of the screening masses m1 (blue curve) and m2 (red
curve) obtained from the analytic expressions (32), (33) for h = 0.01, µ = 0 (left),
h = 0.01, µ = 0.9635 (center), and h = 0.01, µ = 2.0 (right).

3 Monte-Carlo results for correlations and screen-

ing masses

In this Section we present results of simulations and describe the behavior of
the screening masses extracted from the exponential decay of the Polyakov-loop
correlations. These masses will be compared with the masses computed from the
second-moment correlation length. Details of the lattice setup and update are
described in Ref. [24]. In this study we used lattices with sizes L = 20, 24 and
sometimes L = 32. The phase diagram described in Ref. [24] was obtained from
simulations mainly on the lattice L = 20. The larger lattices we used here gave
us the possibility to quantitatively improve the phase diagram of the model. Such
improved diagram is briefly described in the Appendix.
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3.1 Two-point correlation functions

To see the impact of non-zero chemical potential on the correlation function be-
havior, we calculated the values of the two-site correlation functions for several
values of parameters. We considered six kinds of correlation functions:

Γnn(R) = ⟨TrU(0)TrU(R)⟩ , Γrr(R) = ⟨ReTrU(0)ReTrU(R)⟩ ,

Γnc(R) =
〈
TrU(0)TrU †(R)

〉
, Γri(R) = ⟨ReTrU(0) ImTrU(R)⟩ , (34)

Γcc(R) =
〈
TrU †(0)TrU †(R)

〉
, Γii(R) = ⟨ImTrU(0) ImTrU(R)⟩ .

The correlation matrix (25) takes the form

Γ(R) =

(
Γrr(R) Γri(R)
Γri(R) Γii(R)

)
. (35)

In the dual formulation the correlation functions can be written as

Γnn(R) =

〈
R3(n(0) + 1, p(0))

R3(n(0), p(0))

R3(n(R) + 1, p(R))

R3(n(R), p(R))

〉
,

Γnc(R) =

〈
R3(n(0) + 1, p(0))

R3(n(0), p(0))

R3(n(R), p(R) + 1)

R3(n(R), p(R))

〉
, (36)

Γcc(R) =

〈
R3(n(0), p(0) + 1)

R3(n(0), p(0))

R3(n(R), p(R) + 1)

R3(n(R), p(R))

〉
.

These formulas work for R > 0. For R = 0 both shifts to the n, p variables happen
at the same point, so only one ratio remains. The correlations Γrr, Γri and Γii can
be obtained as linear combinations of Γnn, Γnc and Γcc.

The expressions (36) become unusable when h = 0, and can have bad con-
vergence properties for very small h, or very large µ values. We have checked by
comparing the numerical results with the strong coupling expressions for small β
values, that the results can be relied on for h > 0.005 and µ < 3.

Since we work at non-zero h, the average traces can become non-zero, making
the large-distance correlation function constant even in the disordered phase. Due
to that, we introduce the connected correlation functions:

Γnn,conn(R) = Γnn(R)− ⟨TrU⟩2 ,

Γnc,conn(R) = Γnc(R)− ⟨TrU⟩
〈
TrU †〉 , (37)

Γcc,conn(R) = Γcc(R)−
〈
TrU †〉2 .

One expects an exponential decay for these connected correlations

Γ(R) = A
exp(−mR)

R
, (38)

at least in the disordered phase.
Samples of correlation function behavior at different points of the phase dia-

gram are shown in Fig. 2. One can see that, indeed, both in disordered and ordered
phases, the correlations decay exponentially. An interesting property is that, while
the mass gap, corresponding to the slope of the plots, remains the same for Γnn,
Γnc, Γcc, Γrr and Γri correlation functions, it is much larger for the Γii correlation
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function. Also the mass gap for the Γii correlation remains more or less constant,
and in particular does not vanish in the vicinity of the phase transition.
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Figure 2: Behavior of the correlation functions on lattice with L = 20 for different
values of parameters β, h and µ. Solid lines represent the best fit to the function
(38) with periodic contribution (R → L−R). Plots on the left are in the disordered
phase, in the middle – near the phase transition (crossover) point, on the right –
in the ordered phase.

At µ = 0 the off-diagonal terms Γri(R) are zero, and one can define magnetic
and electric correlation masses as the exponential decay rates for, correspondingly,
real-real and imaginary-imaginary connected correlations,

Γrr,conn(R) ∼ e−mMR

R
, Γii,conn(R) ∼ e−mER

R
. (39)

At non-zero µ the correlation matrix has non-zero off-diagonal elements, and
each element has contributions from two masses:

Γconn(R) = A1
e−m1R

R
+ A2

e−m2R

R
. (40)

While for small µ values the coefficients for the contribution of the smaller mass
to Γii, and of the larger mass to Γrr are small, they make the extraction of the
masses (especially the larger one) difficult. Diagonalizing the correlation matrix
Γ(R), one can get contributions that depend purely on m1 or m2 like in µ = 0
case, which we fit to the exponential decay behavior to obtain the two masses.

The masses extracted from fitting the diagonalized correlation matrix are shown
in Fig. 3. One can see that the smaller mass behavior defines the transition: it
rapidly drops to a small, but non-zero value, at the first-order transition point; it
drops to zero (or, more precisely to a small value that goes to zero with L → ∞)
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at the second-order transition point; it has a smooth minimum in the case of
crossover. The higher mass remains constant and of the order of one in the disor-
dered phase, and starts to grow rapidly around the transition, thus meaning that
the corresponding correlation drops very fast in the ordered phase and vanishes at
distances of a couple of lattice spacings, making therefore very difficult to estimate
the mass in that phase. Such behavior agrees well with the mean-field prediction
m2 ≥ 2m1.

3.2 Second moment correlation length

Since in many cases the distances on which the correlation length can be deter-
mined reliably does not exceed five lattice spacings, the mass gap extracted from
fitting the exponential decay of the correlation functions has a large uncertainty.

An alternative to this approach is to extract from data second-moment corre-
lation length of the (diagonalized) correlation functions Γ1, Γ2:

χj =
1

L3

∑
R

Γj(R) ,

Fj =
1

L3

∑
R

Γj(R) cos
2πR1

L
, (41)

ξ2,j =

√
χj

Fj
− 1

2 sin π
L

,

where the summation is taken over all vectors R = (R1, R2, R3) on the lattice.

Assuming Γj(R) = A e−mR

R
, and taking the thermodynamic limit L → ∞, we

can replace summation by the integration, and trigonometric functions by their
Taylor expansions. Then the integration gives ξ2,j = 1

m
+ O(1/L). Existence of

larger masses mk in the correlation function spectrum introduces a finite correc-
tion that becomes larger when the ratio mk/m becomes closer to 1. Thus, in
general ξ2,j ̸= 1

m
even in thermodynamic and continuum limit. We introduce a

“second-moment mass gap” m
(ξ2)
j = 1/ξ2,j as an approximation to the actual mass

gap m. To make this approximation closer to the actual mass gap, and to attempt
extracting m2, we have to perform the diagonalization of the correlation matrix
and take the second moment of the diagonalized correlation functions, thus re-
moving corrections from m2 to m

(ξ2)
1 . Since χj and Fj are linear in Γj, we apply

diagonalization to the χ and F matrices to obtain χ1,2 and F1,2 – the moments of
the correlation functions corresponding to the lower and higher masses.

The “second-moment mass gaps” extracted in this way are compared with the
mass gaps extracted from the correlation function fits in Fig. 3. One can see
that the lower masses extracted from the correlation function fits and from the
second-moment correlation length are in good agreement, especially close to the
transition. The higher masses get very large errors in the ordered phase for µ = 0,
and the diagonalization needed for non-zero µ results in large errors for the higher
masses at any β. The behavior of the higher mass in the disordered phase at
µ = 0 is the same as for the mass extracted from the correlation function fit, up
to a shift, that can be explained by a corrections from higher masses.

11
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Figure 3: Dependence on β of the lower and higher screening masses extracted
from the diagonalized correlation function fits (blue and violet markers), and from
the diagonalized second-moment correlation lengths (yellow and green markers)
around the transition point for h = 0.01, µ = 0, L = 16 (left, first order phase
transition), h = 0.01, µ = 0.9635, L = 24 (center, second order phase transition),
and h = 0.01, µ = 2.0, L = 16 (right, crossover). The data points where the error
estimate is above 1/3 of the mass value are removed for plot clarity.

4 Summary

In this paper we studied the dual formulation of SU(3) lattice gauge theory with
one flavor of static staggered fermions. In this approximation the original theory
can be first mapped onto an effective Polyakov-loop model. The latter can be
further mapped onto a dual formulation with a positive weight. The main idea
of this study is to reveal the behavior of the screening masses and the second
moment correlation length at finite baryon density. We used a simple mean-field
approximation and Monte-Carlo simulations to accomplish such study. Let us
briefly summarize our main results.

• Using the larger lattices and better statistics we have quantitatively improved
the phase diagram presented in Ref. [24]. No qualitative changes have been
found.

• To get an idea of how the screening masses behave, we used the mean-field
approximation to calculate the correlation matrix of the Polyakov loops. Two
screening masses have been extracted analytically from the correlations of
the real and imaginary parts of the Polyakov loops. In all cases their behavior
agrees with expectations. Especially good agreement with Monte-Carlo data
is found in the vicinity of the second-order phase transition.

• We have computed numerically all possible correlations of the Polyakov
loops. The screening masses and the second-moment correlation length have
been obtained from the fitting of the connected correlations to the expo-
nential decay. In all three cases (first-, second-order phase transitions and
crossover) one observes a reasonable agreement with the expectations and
with the mean-field results for the lower magnetic mass. The second, higher
mass grows very rapidly after the transitions, preventing us from obtaining
good fits. The general trend is that when µ is increased, the screening masses

12



exhibit a less steep variation across transition when the coupling β (which
corresponds to the temperature in the underlying QCD theory) is increased.

• Both the mean-field and numerical results do not show the existence of the
complex mass spectrum in the theory which was found in two-dimensional
QCD with the static quarks [25, 26], in Z(3) spin model with the complex
magnetic field [27] and in the large-N limit of the :Polyakov-loop model
similar to the one studied here [19].

The two main approximations used to obtain the dual formulation with a posi-
tive Boltzmann weight are the strong coupling approximation for the Wilson action
and calculation of the quark determinant in the static approximation. In Ref. [14]
we have presented a dual formulation valid at all values of the temporal gauge cou-
pling constant. This formulation preserves the positivity of the Boltzmann weight.
Therefore, one of the possible direction for the future work is an extension of the
present simulations to the dual representation derived in [14]. Another direction
is to include the leading corrections to the static quark determinant. It is not yet
clear at the moment if such corrections preserve the positivity of the dual weight.
This problem is currently under investigation.

Acknowledgments

Numerical simulations have been performed on the ReCaS Data Center of
INFN-Cosenza. O.B. and A.P. acknowledge support from the INFN/NPQCD
project. V.C. acknowledges support by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) through the CRC-TR 211 ‘Strong-interaction
matter under extreme conditions’ – project number 315477589 – TRR 211. E.M.
was supported in part by a York University Graduate Fellowship Doctoral - In-
ternational. This work is (partially) supported by ICSC – Centro Nazionale di
Ricerca in High Performance Computing, Big Data and Quantum Computing,
funded by European Union – NextGenerationEU.

A Improved phase diagram

The larger lattices used in the present work create the possibility to refine the
phase diagram of the model in the (h, µ)-plane. As in the previous work, we
performed a standard finite-size scaling analysis on the peak value of the magneti-
zation susceptibility χ. Since we had to explore a three-parameter space, we could
not afford to perform high-statistic simulations if not on lattices with linear sizes
L = 16 and 24. We determined χ for several β values in the transition region and
fitted them to a Lorentzian, thus getting the position of the peak, which gives the
pseudocritical coupling βpc, and its height. Comparing the dependence of the peak
height on the lattice size L with the scaling law

χL(βpc) = ALγ/ν , (42)

we estimated the critical-index ratio γ/ν and collected all our determinations, as
many as 165, in Table 2.
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We can see that, within uncertainties, the values of γ/ν are spread in a range
between 3, which implies a first-order transition, and 0, which holds for crossover,
passing through the second order 3-dimensional Ising value, γ/ν = 1.9638(8) [33].
These sparse values of γ/ν are evidently an artifact of the relatively small lattice
sizes we could simulate. If we could approach the thermodynamic limit, we would
see that values of γ/ν concentrate around the values of 3. (first order), 1.9638(8)
(second order in the 3-dimensional Ising class) and 0 (crossover). This is expected
since we know that at µ = 0 in the pure gauge limit of QCD, or for heavy enough
quark masses, there is a whole region of first-order deconfinement transitions in
the mu,d-ms plane (the famous Columbia plot), delimited by a line of second-order
critical points in the 3-dimensional Ising class [34]: thereafter, for lower quark
masses, the crossover region is met. In the simulations of our effective Polyakov-
loop model at non-zero density toward the thermodynamic limit we should see the
continuation of the line of second-order critical points to non-zero values of the
chemical potential. For the lattice volumes considered in our study, we are not
able to make a clear-cut assignment of each choice of the parameters h and µ to
one of the three transition regions. Using the determination of γ/ν, we tried to
make this assignment, extending and modifying the three possible options (first
order, second order and crossover) as seen in Table 1. This makes no sense in the
thermodynamic limit, but can be helpful in the present context. In Table 1 we
introduced a color code, to identify which of these regions a given parameter pair
(h, µ) falls in.

γ/ν color phase

γ/ν ≥3 green first order
2.50 ≤ γ/ν < 3 light green more first order than second order

1.98 < γ/ν < 2.50 yellow more second order than first order
1.94 ≤ γ/ν ≤ 1.98 red very close to second order
1.85 ≤ γ/ν < 1.94 brown more second order than crossover
0.3 ≤ γ/ν < 1.85 magenta more crossover than second order
0 ≤ γ/ν < 0.3 blue crossover

Table 1: Color code used to characterize the different phases depending on the
value of γ/ν.

In Fig. 4(left) each parameter pair (h, µ) considered in our simulations is rep-
resented by a colored dot in the (h, µ) plane, according to the color code defined
in Table 1, allowing us to sketch a tentative phase diagram in the right panel of
the same figure.

We have not performed simulations in the absence of an external field. To
find the critical value βg at h = 0, i.e. for the pure gauge theory, and at µ = 0.,
we performed a simple fit of the form βc(h) = βg + ah, as suggested in [13]. We
obtained the following values βg = 0.2741(2), a = −0.50(2). The value of βg agrees
very well with the value quoted in the literature, βg = 0.2741 and reasonably well
with the mean-field result βg = 0.2615.

Another important question concerns the shape of the critical line shown in the
right panel of Fig. 4 in the heavy-dense limit, h → 0, µ → ∞. From the data we
have, one cannot make unambiguous conclusions about its behavior. Nevertheless,
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Figure 4: (Left) Assignment of each parameter pair (h, µ) to a transition region
according to the color code of Table 1. (Right) Estimated phase diagram.

data are well fitted by the function µc = −a lnh − bh2 + c, with a = 0.988(17),
b = 1406(201), c = −3.4(1).

This shows that the line of second order phase transition might persist in the
heavy-dense limit of QCD.
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