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Aims Diversified cardiovascular/non-cardiovascular multi-morbid risk and efficient machine learning algorithms may facili-
tate improvements in stroke risk prediction, especially in newly diagnosed non-anticoagulated atrial fibrillation (AF)
patients where initial decision-making on stroke prevention is needed. Therefore the aims of this article are to
study common clinical risk assessment for stroke risk prediction in AF/non-AF cohorts together with cardiovascu-
lar/ non-cardiovascular multi-morbid conditions; to improve stroke risk prediction using machine learning
approaches; and to compare the improved clinical prediction rules for multi-morbid conditions using machine
learning algorithms

...................................................................................................................................................................................................
Methods and
results

We used cohort data from two health plans with 6 457 412 males/females contributing 14,188,679 person-years of
data. The model inputs consisted of a diversified list of comorbidities/demographic/ temporal exposure variables,
with the outcome capturing stroke event incidences. Machine learning algorithms used two parametric and two
nonparametric techniques. The best prediction model was derived on the basis of non-linear formulations using
machine learning criteria, with the highest c-index was obtained for logistic regression [0.892; 95% confidence
interval (CI) 0.886–0.898] with consistency on external validation (0.891; 95% CI 0.882–0.9). These were signifi-
cantly higher than those based on the conventional stroke risk scores (CHADS2: 0.7488, 95% CI 0.746–0.7516;
CHA2DS2-VASc: 0.7801, 95% CI 0.7772–0.7831) and multi-morbid index (0.8508, 95% CI 0.8483–0.8532). The
machine learning algorithm had good internal and external calibration and net benefit values.

...................................................................................................................................................................................................
Conclusion In this large cohort of newly diagnosed non-anticoagulated AF/non-AF patients, large improvements in stroke risk

prediction can be shown with cardiovascular/non-cardiovascular multi-morbid index and a machine learning ap-
proach accounting for dynamic changes in risk factors.
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Introduction

Atrial fibrillation (AF) is the commonest cardiac rhythm disorder and
confers a five-fold greater risk of stroke.1 The risk of stroke is not

homogeneous and depends on the presence of various clinical risk
factors. The more common and validated stroke risk factors have
been used to formulate clinical risk scores for stroke risk stratifica-
tion, but all clinical scores only have modest predictive value for
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identifying the ‘high risk’ patients that actually sustain stroke events,
with c-indexes (a statistical measure of prediction) of �0.6.1,2 More
complicated clinical risk scores or the addition of biomarkers will al-
ways statistically improve on risk prediction, but the absolute differ-
ence in c-index is often modest, and clinical utility improvements
using decision curve analysis are marginal.3,4 Indeed, the debate is
unsettled as to whether adding biomarkers improves the clinical util-
ity of current risk scores, especially since many biomarkers are non-
specific and are affected by non-cardiac conditions or are predictive
of both thrombotic and bleeding events.4,5

In addition, some complicated clinical risk scores or biomarker-
based scores have been derived from highly selected clinical trial
cohorts of anticoagulated patients, whether on warfarin or a direct
oral anticoagulant (DOAC).6–8 Improvements in risk prediction are
particularly needed, especially in newly diagnosed non-anticoagulated
patients where decision-making on stroke prevention with oral anti-
coagulation (OAC) is being considered. Also, many AF patients have
pre-existing conditions not accounted for in the existing clinical risk
scores that introduce variability that impacts tool performance, for
example, valvular heart disease, sleep apnoea, and chronic kidney
disease.9

In addition, existing clinical risk stratification scores mostly rely on
baseline factors and the use of linear terms for the calculation of
stroke risk; however, the clinical risk is dynamic and stroke risk
changes with age and incident risk factors.10–12 With the advent of ef-
ficient machine learning technologies, it may be possible to develop
complex models, which piece together important clinical and demo-
graphic parameters in non-linear formulations, to enhance markedly
the performance of such rules. If successful, this has the potential to
improve the practice of medicine.13,14 In the absence of selecting im-
portant clinical and demographic variables for use in improving the
practice of medicine for specific outcomes, the performance of risk
models will be at best slightly improved using machine learning tech-
niques relative to conventional methods.15,16 With the above in
mind, the application of machine learning techniques should take into
account the non-linear effects of prior history of stroke, older age,
and multi-morbid conditions.

In the present study, our aim was to perform a comparative assess-
ment of stroke risk prediction in a large non-anticoagulated US co-
hort via the use of machine learning algorithms compared to the
CHADS2 and CHA2DS2-VASc risk scores.17,18 Given the association
of stroke with multiple comorbidities beyond the CHADS2 and
CHA2DS2-VASc scores, a new multi-morbid index was generated
accounting for both cardiovascular and non-cardiovascular clinical
history and were comparatively compared to the conventional
stroke risk indices and the machine learning algorithms. Model per-
formance attributes are examined in terms of calibration, discrimin-
ation, and clinical utility.19–21

Methods

We studied a non-anticoagulated (i.e. not exposed to warfarin or
DOAC) population of patients with and without AF. It was drawn from
the Commercial plan for the working population and their families (18–
64 years) and Medicare plan for the elderly (> 65 years) and those with
disabilities (> 18 years) which were used as the primary sources of data.

The Medicare plan was derived from the Medicare Advantage and
Medicare-Medicaid Advantage (for dual eligible Medicare beneficiaries)
enrolment. During the study period (1 January 2016 to 30 June 2020), the
targeted population from both plans contributed 2 912 241 males and 3
535 030 females, with follow-up data of 7 656 600 and 6 532 079 person-
years, respectively. The population had complete coverage for both med-
ical and pharmacy benefits and was identified from the pharmacy and
medical claim databases. IRB approval was not required for the extraction
of data from the claim databases; however, compliance with US privacy
laws and Company governance is required for use of data.

Population identification
The process of identifying the non-anticoagulated AF and non-AF popula-
tions consisted of several steps: (a) obtain the pharmacy claims for OAC
medications (Warfarin or coumadin, eliquis or apixaban, pradaxa or dabi-
gatran etexilate, xarelto or rivaroxaban) together with the member iden-
tification; (b) obtain the medical claims for AF members using ICD-10
codes (I480, I481, I4811, I4819, I482, I4820, I4821, I483, I484, I489, I4891,
I4892), and extract the associated identification parameters; (c) identify
the AF and non-AF members who are not on OACs. Each medication
was analysed using both NDC (National Drug Code) and GPI (Generic
Product Identifier) codes (see suppl. table S1 for the respective NDC
codes for each of the anti-coagulants). This is because NDCs can be am-
biguous and many codes exist for a single product, leading to inaccuracies
in the dispensing of drugs. Therefore, GPI was used to ensure consist-
ency, with many (from NDC) to one (to GPI) mapping. The medical
claims were obtained for primary and secondary AF and non-AF ICD 10
codes.

Parameter identification
The index condition for an AF target was identified as having two or
more medical claims during the period of 1 January 2017 to 30 March
2020. The date of the first claim was the index date. The incidence of
stroke outcome was identified as the first event, which occurred after the
index date until the end of the study period (30 June 2020). Patients were
censored when they had their first stroke, or (as we intended to deter-
mine risk without attenuation by anticoagulation use) when AF patients
were initiated on OAC.

Comorbid conditions for the AF cohorts were tracked starting from 1
January 2016 until the day prior to the index date. The stroke outcome
and comorbid conditions were identified from medical claims using pri-
mary and/or secondary diagnoses. Supplementary material online, Table
S2 provides a list of ICD 10 codes for input and output conditions.
Gender and age were documented from the medical databases. Age was
categorized into four groups (18–54, 55–64, 65–74, and >_75 years) and
was also assessed as a continuous variable.

For non-AF cohorts who are not on anticoagulants, a patient had to
have a history of a minimum of 6 months for comorbid conditions upon
entry into the study, after which the first incidence of stroke was consid-
ered the outcome for these cohorts. As such, the equivalent of AF index
date for non-AF cohorts was 6 months after entry into the study.

A comorbid condition or stroke outcome was identified as present
(‘1’) or absent (‘0’) and acted as a binary outcome. Gender was treated as
a binary variable with ‘1’ for a female and ‘0’ for a male. Recent research
has shown that the inclusion of AF duration in stroke risk prediction,
which has not been traditionally used in modelling, tends to improve the
discrimination validity of the model. In this study, exposure time to AF or
non-AF was assessed in two ways: (i) time duration in days from the AF
index date or non-AF status date (6 months after entry into the study) to
the end of follow-up or benefits; (ii) time duration in days from the last
prior stroke case to the AF/non-AF index date. The CHADS2 and
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CHA2DS2-VASc scores were computed as originally described in the
literature.

Strategy for model development/validation
The large dataset utilized in this study is drawn from the diverse geo-
graphical areas covering the US continent. Therefore, the prediction of
stroke risk should be coherent to all geographical areas. With this in
mind, the training and validation samples were drawn at random from the
primary data sources with equal representations of the outcome events.
Model development was performed on two-third of the whole popula-
tion (training sample). Validation was performed on the remaining one-
third of the data (validation sample) once the model developed on the
training sample was deemed appropriate on the grounds of clinical mean-
ingfulness and other criteria specific to the predictive algorithm in use.

Model validation was based on calibration (internal and external), dis-
crimination, and clinical utility.19–22 Calibration was assessed graphically
between the predicted and observed outcomes for the training and valid-
ation samples after being subjected to regression smoothing methods
such as a locally weighted least squares regression smoother or ‘loess’ al-
gorithm. Discrimination was evaluated using the C-statistic. In addition,
external validation was performed using cumulative lift measures. Clinical
utility was assessed using decision curve analysis in terms of the net bene-
fit measure at a given probability threshold which reflects the risk at
which one is indifferent about the treatment under consideration, with a
balance between both sensitivity and specificity in terms of appropriate
values.

In this study, we compared the machine learning-based algorithms
against the two common stroke risk scores (i.e. CHADS2 and CHA2DS2-
VASc scores). We also compared the machine learning-based algorithms
against a multi-morbid index.

The multi-morbid index was developed by employing a logistic regres-
sion model on the basis of the training sample using main effects with
comorbid history, demographic variables (gender, age group as explained
above), and other variables (AF status—1 for AF group and 0 for non-AF
group via the use of ICD 10 codes as explained before; Medicare status—
1 for Medicare plan and 0 for Commercial plan). On the basis of this ana-
lysis, the multi-morbid index was constructed as the sum of multi-morbid
conditions (2 points for the presence of hypertension or diabetes melli-
tus; 19 points for the presence of prior stroke history; 1 point for con-
gestive heart failure, vascular disease, valvular disease, coronary artery
disease, chronic kidney disease, sleep apnoea, chronic obstructive pul-
monary disease, alcohol use or disorders, prior history of major bleeding,
inflammatory disease, and lipid disorders; and 0 point for the absence of
condition), gender (1 point for female and 0 for male), and age group (0
point for 18–54 years; 4 points for 55–64 years; 8 points for 65–74 years;
and 12 points for >75 years). In essence, the multi-morbid index is an en-
hancement of the CHA2DS2-VASc score by accounting for non-cardio-
vascular conditions, additional cardiovascular events, additional weights
for stroke history and age groups, as well as an additional age group cat-
egory from 55 to 64 years). Based on main effect analysis using logistic re-
gression, it was determined that the weight for prior history of stroke
should be increased to 19 points and the hypertension and diabetes melli-
tus weights should be amplified to 2 points. There were 4 points for 55–
64 years age group, 8 points for 65–74 years age group, and 12 points for
>75 years age group. There was 1 point for each of the following add-
itional conditions: coronary artery disease, valvular disease, sleep apnoea,
chronic kidney disease, chronic obstructive pulmonary disease/bronchi-
ectasis, prior history of major bleeding, alcohol use or disorders, inflam-
matory disease, and lipid disorders. The index ranged from 0 to 44 points.

Four machine learning algorithms were employed, that is, two para-
metric (logistic regression and neural network) and two non-parametric

(decision tree, gradient boosting)23–25 (see Supplementary material on-
line, Table S3 for greater details). The inputs to stroke outcome were the
baseline characteristics of comorbid history and demographic variables.
In addition, we assessed (i) the temporal characteristics of exposure to
AF/non-AF status until the end of follow-up time; and (ii) exposure time
from last prior stroke event in comorbid history to AF/non-AF index
date. The Statistical Analysis Software Enterprise Miner 15.1 was used to
implement these algorithms in a JAVA Web Platform. There was no fund-
ing for the study.

Results

Our final study cohort consisted of 6,457,412 persons [mean (SD)
age 43.9 (15.8) years; 55% female] with mean CHADS2 and
CHA2DS2-VASc scores of 0.17 (SD 0.50) and 0.83 (SD 0.88), re-
spectively. For the AF patients, there were 128,047 persons [mean
(SD) age 69.4 (12.4) years; 44% female] with mean CHADS2 and
CHA2DS2-VASc scores of 1.08 (SD 1.23) and 2.28 (SD 1.72), re-
spectively). The non-AF cohort included 6,329,365 persons [mean
(SD) age 43.4 (15.4) years; 55% female] with mean CHADS2 and
CHA2DS2-VASc scores of 0.15 (SD 0.45) and 0.80 (SD 0.83),
respectively.

For the training and validation samples in AF cohorts, the preva-
lence of hypertension was the highest (34.5%) followed by lipid disor-
ders (28.9%), coronary artery disease (15.9%), congestive heart
failure (13.7%), valvular disease (12.8%), then chronic obstructive pul-
monary disease (12.6%). For the training and validation samples in
non-AF cohorts, the comorbidities are summarized in Table 1. In gen-
eral, the non-AF cohort had significantly less comorbid conditions
than AF cohorts. The entirety of AF and non-AF cohorts was not tak-
ing anticoagulants.

Comparative assessment of stroke risk
indices
Table 2 shows the incidence rates in cases per 100 person-years for
the CHADS2 and CHA2DS2-VASc scores as well as the multi-morbid
index scores. The results are provided for low-, medium-, and high-
risk scores for both the AF and non-AF cohorts. In general, the
CHADS2 scores had the highest incidence rates followed by the
CHA2DS2-VASc scores, then the multi-morbid index scores for all
three risk levels and AF/non-AF cohorts. The incidence rates for the
AF cohorts were significantly much higher than those for the non-AF
cohorts at the 5% level.

Table 3 shows a summary of three sets of models based on the
three types of stroke risk indices for the training samples. Set 1 is only
based on the stroke risk index and sets 2 and 3 based on (i) the
stroke risk index/AF group status and (ii) stroke risk index/AF group
status/Medicare group status, respectively. The C indices were higher
for set 3, followed by set 2, then set 1. Figure 1 shows similar results
based on external validation.

Figure 2 shows the clinical utility of three sets of stroke risk-based
models. In general, any of the models has a higher net benefit than
the ‘treat all’ and ‘treat none’ strategies, therefore, these models are
clinically useful at designated probability thresholds. The multi-mor-
bid index-based models have the highest net benefit in terms of
stroke cases per 100 patients adjusted for any false positives at a given
probability threshold.
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stroke risk scores
Based on the training samples, the highest c-index was obtained for
logistic regression at 0.892 [95% confidence interval (CI) 0.886–
0.898]. This was followed by gradient boosting (C-index 0.886, 95%
CI 0.88–0.891), decision tree (C-index 0.883, 95% CI 0.877–0.889),

and finally neural network (C-index 0.86, 95% CI 0.852–0.868). As
such, the non-linear formulations of machine learning incrementally
outperformed the aforementioned stroke risk indices.

External validation of the machine learning algorithms showed
similar performance (Figure 3). The area under the curve values were
(Figure 3A): logistic regression (C index 0.891, 95% CI 0.882–0.9),

...................................................... .......................................................

....................................................................................................................................................................................................................

Table 1 Baseline characteristics and common stroke risk scores for the training and validation cohorts used in devel-
opment and validation of stroke risk prediction algorithms

Baseline characteristics Training Validation

AF cohort Non-AF cohort AF cohort Non-AF cohort

Gender

Females 37 166 (43.5) 2 319 398 (55.0) 18 581 (43.6) 1 159 958 (55.0)

Males 48 221 (56.5) 1 900 372 (45.0) 24 079 (56.4) 949 637 (45.0)

Age (years), mean (SD) 69.4 (12.4) 43.4 (15.4) 69.5 (12.4) 43.4 (15.4)

Comorbid history

Congestive heart failure 11 794 (13.8) 25 196 (0.6) 5809 (13.6) 12 706 (0.6)

Hypertension 29 406 (34.4) 287 805 (6.8) 14 710 (34.5) 143 973 (6.8)

Diabetes mellitus 9621 (11.3) 138 542 (3.3) 4693 (11.0) 69 157 (3.3)

Stroke 5191 (6.1) 20 134 (0.5) 2541 (6.0) 10 184 (0.5)

Vascular disease 9713 (11.4) 43 103 (1.0) 4786 (11.2) 21651 (1.0)

Valvular disease 10 925 (12.8) 40 835 (1.0) 5466 (12.8) 20 408 (1.0)

Coronary artery disease 13 681 (16.0) 73 927 (1.8) 6742 (15.8) 37 055 (1.8)

Chronic sleep apnoea 5862 (6.9) 168 053 (4.0) 2959 (6.9) 83 557 (4.0)

Chronic kidney disease 8035 (9.4) 49 140 (1.2) 3903 (9.1) 24 233 (1.1)

Chronic pulmonary obstructive disease/bronchictasis 10814 (12.7) 104 430 (2.5) 5303 (12.4) 52260 (2.5)

Major bleeding 5398 (6.3) 50 757 (1.2) 2485 (5.8) 25277 (1.2)

Alcohol use 1175 (1.4) 32 224 (0.8) 600 (1.4) 15823 (0.8)

Alcohol disorders 369 (0.4) 3886 (0.1) 179 (0.4) 1889 (0.1)

Inflammatory diseases 3587 (4.2) 58 683 (1.4) 1739 (4.1) 29 148 (1.4)

Lipid disorders 24 776 (29.0) 552 165 (13.1) 12272 (28.8) 276356 (13.1)

CHADS2

0 34 928 (40.9) 3 728 127 (88.3) 17 292 (40.5) 1 863 678 (88.3)

1 26 731 (31.3) 385 001 (9.1) 13600 (31.9) 192 552 (9.1)

2 12 193 (14.3) 86 216 (2.0) 6128 (14.4) 43 107 (2.0)

3 6893 (8.1) 16 055 (0.4) 3433 (8.0) 8099 (0.4)

4 3069 (3.6) 3575 (0.1) 1450 (3.4) 1766 (0.08)

5 1229 (1.4) 706 (0.02) 605 (1.4) 349 (0.02)

6 344 (0.4) 90 (0.002) 152 (0.4) 44 (0.002)

CHA2DS2-VASc

0 12 998 (15.2) 1583 140 (37.4) 6382 (15.0) 791 561 (37.5)

1 18 660 (21.9) 2 157 098 (51.1) 9285 (21.8) 1 078 028 (51.1)

2 19 372 (22.7) 295 969 (7.0) 9859 (23.1) 148 304 (7.0)

3 16 226 (19.0) 123 012 (2.9) 8194 (19.2) 61 149 (2.9)

4 8447 (9.9) 44 523 (1.1) 4219 (9.9) 22 523 (1.1)

5 5210 (6.1) 11 842 (0.3) 2546 (6.0) 5966 (0.3)

6 2732 (3.2) 3186 (0.1) 1342 (3.1) 1556 (0.1)

7 1199 (1.4) 816 (0.02) 582 (1.4) 417 (0.02)

8 446 (0.5) 155 (0.004) 212 (0.5) 82 (0.004)

9 97 (0.1) 29 (0.001) 39 (0.1) 9 (0.0004)

Values are numbers (%) unless stated otherwise.
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..gradient boosting (C index 0.881, 95% CI 0.872–0.89), decision tree
(C index 0.881, 95% CI 0.872–0.89), and neural network (C index
0.859, 95% CI 0.848–0.87).

Figure 3B demonstrates that the logistic regression algorithm out-
performed the gradient boosting and neural network algorithms in
external validation in terms of cumulative lift. While the area under

................................................................................. ......................................................................

............................................................... ....................................................

.....................................................................................................................................................................................................................

Table 2 Stroke outcomes for three stroke risk indices. Values are cohort size, number of incidence cases, and inci-
dence rate in cases per 100 person-years (95% CI)

AF cohort Non-AF cohort

Stroke risk index Cohort

size

Stroke outcome Cohort

size

Stroke outcome

No. of events Incidence rate

‘cases/100

person-years’ (95% CI)

No. of

events

Incidence rate

‘cases/100

person-years’ (95% CI)

CHADS2

Low risk (0) 52 220 4566 5.12 (4.97–5.27) 5 591 805 35497 0.30 (0.29–0.30)

Medium risk (1) 40 331 5064 6.17 (6.00–6.34) 577 553 20130 1.38 (1.36–1.40)

High risk (2–6) 35 496 8636 8.87 (8.68–9.06) 160 007 23899 5.19 (5.13–5.26)

CHA2DS2-

VASc

Low risk (0) 19 380 1172 3.59 (3.38–3.79) 2 374 701 11737 0.23 (0.22–0.23)

Medium risk (1) 27 945 2461 4.78 (4.59–4.97) 3 235 126 20794 0.30 (0.30–0.31)

High risk (2–9) 80 722 14 633 7.93 (7.80–8.06) 719 538 46995 2.54 (2.52–2.56)

Multi-morbid

index

Low risk (0) 6400 256 2.46 (2.16–2.76) 1796173 5391 0.14 (0.14–0.14)

Medium risk (1–4) 16809 1113 3.79 (3.57–4.01) 3241527 16402 0.24 (0.24–0.24)

High risk (5–44) 104838 16897 7.38 (7.27–7.49) 1291665 57733 1.86 (1.84–1.88)

....................................................................................................................................................................................................................

Table 3 CHADS2-, CHA2DS2VASc-, and multi-morbid index-based stroke risk prediction models: C-statistic, varia-
bles, and corresponding odds ratios (95% CI)/significance levels

Model description Model no. C-statistic Variable Odds ratio (95% CI) Significance level

CHADS2-based 1 0.749 CHADS2 3.55 (3.53–3.58) <0.0001

2 0.770 AF status 3.17 (3.14–3.19) <0.0001

CHADS2 3.14 (3.06–3.22) <0.0001

3 0.835 Medicare status 5.87 (5.76–5.98) <0.0001

AF status 2.36 (2.30–2.42) <0.0001

CHADS2 2.18 (2.16–2.20) <0.0001

CHA2DS2-VASc-based 4 0.781 CHA2DS2-VASc 2.47 (2.46–2.48) <0.0001

5 0.797 AF status 2.94 (2.86–3.01) <0.0001

CHA2DS2-VASc 2.28 (2.27–2.30) <0.0001

6 0.830 Medicare status 4.67 (4.57–.77) <0.0001

AF status 2.67 (2.60–2.73) <0.0001

CHA2DS2-VASc 1.69 (1.68–1.70) <0.0001

Multi-morbid index-based 7 0.845 Multi-morbid index 1.21 (1.21–1.21) <0.0001

8 0.851 AF status 2.73 (2.66–2.80) <0.0001

Multi-morbid index 1.20 (1.20–1.20) <0.0001

9 0.858 Medicare status 2.88 (2.82–2.94) <0.0001

AF status 2.46 (2.40–2.52) <0.0001

Multi-morbid index 1.16 (1.15–1.17) <0.0001
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Figure 1 External validation for three sets of three clinical rule-based models: (A) Set 1: multi-morbid index ‘MMC1’ (C index 0.8451, 95% CI
0.8427–0.8476), CHADS2 (C index 0.7488, 95% CI 0.746–0.7516), CHA2DS2VASc (C index 0.7801, 95% CI 0.7772–0.7831); (B) Set 2: multi-morbid
index/AF status (C index 0.8508, 95%CI 0.8483–0.8532), CHADS2/AF status (C index 0.7694, 95% CI 0.7667–0.7722), CHA2DS2VASc/AF status (C
index 0.796, 95% CI 0.7931–0.7989); (C) Set 3: multi-morbid index/AF status/Medicare status (C index 0.8577, 95% CI 0.8553–0.86), CHADS2/AF
status/Medicare status (C index 0.8343, 95% CI 0.8319–0.8368), CHA2DS2VASc/AF status/Medicare status (C index 0.8285, 95% CI 0.8259–0.8312).
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the curve provides a measure of true positives vs. false positives, the
cumulative lift demonstrates a snapshot of the ratio of the percentage
of patients with stroke events reached during a treatment campaign
to the percentage of patients targeted. The cumulative lifts for 5% of
member targeted were 10.21, 9.61, and 9.21, respectively for the lo-
gistic regression, gradient boosting, and neural network algorithms.
Thus, 51.1% or 16 639 events (predicted using logistic regression),

48.8% or 15 913 events (predicted using gradient boosting), and
47.6% or 15 525 events (predicted using neural network) of patients
with stroke events were reached when 5% of members were
targeted.

Supplementary material online, Figure S1 indicates the incremental
improvement of the machine learning-based logistic regression algo-
rithm over the full multi-morbid index-based model in terms of

0

1

2

3

4

5

6

7

8

9

10

11

03520251015

Cu
m

ul
a�

ve
 Li

�

% of Members Targeted

Logis�c Regression Gradient Boos�ng Neural Network

(a)

(b)

Figure 3 External validation of machine learning algorithms—(A) ROC for decision tree (blue); logistic regression (red), neural network (dark
grey); gradient boosting decision tree (brown), baseline (purple); (B) cumulative lifts for logistic regression, gradient boosting, and neural network.
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clinical utility. At a probability threshold of 3.75%, the machine learn-
ing algorithm produced a net benefit of 1.0 true stroke events relative
to the 0.94 stroke event achieved using the full multi-morbid-index-
based model. At this probability threshold, both models are much
more clinically useful relative to the all treatment strategy; yet the
machine learning algorithm provided a total of 14 441 true stroke
events relative to the 12 642 events using the full-multi-morbid
index-based model.

Supplementary material online, Figure S2 shows the importance of
the multi-morbid index, AF status, and Medicare status as variables in
the machine learning-based algorithms. For simple indices, one can
opt for the full multi-morbid index-based model; however, complex
formulations such as machine learning-based algorithms afford us the
opportunity to capture more events for severe clinical outcomes
such as stroke.

Discussion

In this large contemporary cohort of newly diagnosed non-anticoagu-
lated patients with AF/non-AF, our principal findings are the demon-
stration of improved stroke risk prediction using cardiovascular and
non-cardiovascular multi-morbid conditions and machine learning
approaches, compared to the two conventional clinical risk scores,
the CHADS2 and CHA2DS2-VASc scores. Indeed, the highest c-
index was obtained for logistic regression (0.892), with consistency
on external validation (0.891).

The present study based on a large US cohort validates the clinical
meaningfulness of the CHADS2 and CHA2DS2-VASc scores17,18

developed on smaller sample sizes approximately 20 and 10 years
ago, respectively, which showed good calibration even in this con-
temporary cohort. The discriminant validity of these tools showed
moderately good c-indexes of >0.7. In an independent PCORI sys-
tematic review and evidence appraisal, the CHADS2, CHA2DS2-
VASc, and ABC-stroke scores had the best prediction for stroke
events.2 While the CHADS2 was simple, its use has been super-
ceded by the CHA2DS2-VASc score in many contemporary guide-
lines, given the default has shifted to offer stroke prevention (which Is
OAC) unless the patient is ‘low risk’ (and the CHA2DS2-VASc score
could help initially identify those low-risk patients).3 Nonetheless,
both clinical risk scores are simplifications, have modest predictive
value, and do not account for the dynamic nature of risk.

This study also constructed a multi-morbid index consisting of car-
diovascular and non-cardiovascular comorbid conditions. In general,
it had more discriminatory power than the two conventional clinical
scores as it explained more of the variance in stroke outcome.
Additionally, the multi-morbid index, which is a modification of the
CHA2DS2-VASc score in terms of more comorbid conditions,
changed weights for prior stroke, hypertension, and diabetes mellitus,
and lowered the age threshold to >_55 years with more weights for
different age groups, provided the best performance from among the
stroke risk indices.

In the present study, we gain an additional improvement in stroke
risk prediction in AF/non-AF cohorts from the use of various comor-
bid conditions and their synergistic effects with age, gender, and tem-
poral exposure using claims information. This considerable gain was
achieved due to the non-linear formulations of aforementioned

variables via machine learning algorithms, leading to a c-index with lo-
gistic regression of 0.892, with consistency on external validation
(0.891), as well as resulting in net benefit values better than the ‘treat
all’ strategy or current clinical risk scores. In addition, at the 3.75%
risk threshold, the machine learning model showed better clinical util-
ity in comparison to the three-stroke risk indices across all levels of
probability thresholds.

The inclusion of AF exposure in terms of the cumulative temporal
exposure not taking anticoagulant medication from the index date to
the end of follow-up or benefits as well as from the last prior stroke
event to the AF/non-AF index date added considerable explanation
of the variability in stroke risk prediction. This emphasizes the im-
portance of temporal exposure of AF status in stroke risk prediction,
given the dynamic nature of stroke risk and how risk can be influ-
enced by incident risk factors, ageing, and AF progression.10–12,26 The
relationship among prior clinical history as measured by the multi-
morbid index and demographic variables showed considerable im-
provement in stroke risk prediction due to the non-linear formula-
tions reported by using machine learning algorithms in terms of two-
factor interactions.27

Practical implications
From clinical risk, one can predict stroke risk to a reasonable degree
via the diversified comorbid history and age/gender information and
simple clinical risk scores. The present study in a contemporary co-
hort expanded the utility of stroke risk prediction for patients with
additional comorbidities and using machine learning techniques. The
ability to improve predictive precision, which was also translated into
improved clinical utility could facilitate dynamic stroke risk assess-
ments. The possible incorporation of machine learning risk prediction
into Apps and smart mobile health (mHealth) technology would en-
able ‘real time’ dynamic assessments of stroke (and possibly bleeding)
risk. Indeed, the AF patient pathway (or ‘patient journey’) would re-
quire risk reassessment(s) at intervals, when not on antithrombotic
therapy (e.g. when newly diagnosed), and while on aspirin (e.g. with
background vascular disease) and post-OAC (whether on warfarin
or DOAC). Machine learning could adapt to these treatment changes
over time, as well as incident risk factors, and is the subject of ongoing
analyses.

The potential opportunities here are illustrated by our Mobile
Health (mHealth) technology to improve optimization of integrated
care in patients with Atrial Fibrillation App program (mAFA) which
investigated mHealth technology for improved screening and inte-
grated care in patients with AF, facilitating early diagnosis, dynamic
(re)assessments of risk profiles, and holistic AF management.28 In our
prospective randomized clinical trial, this integrated care approach
significantly reduced the composite outcome of ‘ischaemic stroke/
systemic thromboembolism, death, and rehospitalization’ compared
with usual care.29 Prospective dynamic monitoring and re-assessment
of bleeding risk using the HAS-BLED score was associated with less
major bleeding events, a reduction in modifiable bleeding risk factors,
and increased OAC uptake; in contrast, bleeding rates were higher
and OAC use decreased by 25% in the ‘usual care’ arm, when the
baseline was compared to 12 months. Incorporation of a dynamic
machine learning model into our mHealth technology would facilitate
‘real time’ assessment of stroke risk, facilitating mitigation of modifi-
able risk factors (e.g. blood pressure control).
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..Limitations
Our study is limited by its observational design, but currently repre-
sents the largest contemporary cohort of non-anticoagulated ‘real
world’ patients for the assessment of stroke risk and comparisons of
risk prediction models. As with observational cohorts, the possibility
of residual confounding remains.30

Data availability
Data are available as presented in the article. According to US laws
and corporate agreements, our own approvals to use the Anthem
and IngenioRx data sources for the current study do not allow us to
distribute or make patient data directly available to other parties.

Conflict of interest: The authors have no conflict of interest for
the published work.

References
1. Ding WY, Harrison S, Gupta D, Lip GYH, Lane DA. Stroke and bleeding risk

assessments in patients with atrial fibrillation: concepts and controversies. Front
Med 2020;7:54.

2. Borre ED, Goode A, Raitz G, Shah B, Lowenstern A, Chatterjee R et al.
Predicting thromboembolic and bleeding event risk in patients with non-valvular
atrial fibrillation: a systematic review. Thromb Haemost 2018;118:2171–2187.

3. Lip GYH, Banerjee A, Boriani G, Chiang CE, Fargo R, Freedman B et al.
Antithrombotic therapy for atrial fibrillation: CHEST guideline and expert panel
report. Chest 2018;154:1121–1201.

4. Esteve-Pastor MA, Roldan V, Rivera-Caravaca JM, Ramirez-Macias I, Lip GYH,
Marin F. The use of biomarkers in clinical management guidelines: a critical ap-
praisal. Thromb Haemost 2019;119:1901–1919.

5. Rivera-Caravaca JM, Marin F, Vilchez JA, Galvez J, Esteve-Pastor MA, Vicente V et
al. Refining stroke and bleeding prediction in atrial fibrillation by adding consecu-
tive biomarkers to clinical risk scores. Stroke 2019;50:1372–1379.

6. Hijazi Z, Lindback J, Alexander JH, Hanna M, Held C, Hylek EM et al. The ABC
(age, biomarkers, clinical history) stroke risk score: a biomarker-based risk score
for predicting stroke in atrial fibrillation. Eur Heart J 2016;37:1582–1590.

7. Hijazi Z, Oldgren J, Lindback J, Alexander JH, Connolly SJ, Eikelboom JW et al.
The novel biomarker-based ABC (age, biomarkers, clinical history)-bleeding risk
score for patients with atrial fibrillation: a derivation and validation study. Lancet
2016;387:2302–2311.

8. Oldgren J, Hijazi Z, Lindback J, Alexander JH, Connolly SJ, Eikelboom JW et al.
Performance and validation of a novel biomarker-based stroke risk score for
atrial fibrillation. Circulation 2016;134:1697–1707.

9. Szymanski FM, Lip GY, Filipiak KJ, Platek AE, Hrynkiewicz-Szymanska A, Opolski
G. Stroke risk factors beyond the CHA(2)DS(2)-VASc Score: can we improve
our identification of "high stroke risk" patients with atrial fibrillation? Am J Cardiol
2015;116:1781–1788.

10. Chao TF, Lip GYH, Liu CJ, Lin YJ, Chang SL, Lo LW et al. Relationship of aging
and incident comorbidities to stroke risk in patients with atrial fibrillation. J Am
Coll Cardiol 2018;71:122–132.

11. Chao TF, Lip GYH, Lin YJ, Chang SL, Lo LW, Hu YF et al. Incident risk factors
and major bleeding in patients with atrial fibrillation treated with oral anticoagu-
lants: a comparison of baseline, follow-up and delta HAS-BLED scores with an

approach focused on modifiable bleeding risk factors. Thromb Haemost 2018;47:
768–777.

12. Yoon M, Yang PS, Jang E, Yu HT, Kim TH, Uhm JS et al. Dynamic changes of
CHA2DS2-VASc score and the risk of ischaemic stroke in Asian patients with
atrial fibrillation: a Nationwide Cohort Study. Thromb Haemost 2018;118:
1296–1304.

13. Deo RC. Machine learning in medicine. Circulation 2015;132:1920–1930.
14. Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M et al.

Artificial intelligence in cardiology. J Am Coll Cardiol 2018;71:2668–2679.
15. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve

cardiovascular risk prediction using routine clinical data? PLoS One 2017;12:
e0174944.

16. Tiwari P, Colborn KL, Smith DE, Xing F, Ghosh D, Rosenberg MA. Assessment
of a machine learning model applied to harmonized electronic health record
data for the prediction of incident atrial fibrillation. JAMA Netw Open 2020;3:
e1919396.

17. Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ.
Validation of clinical classification schemes for predicting stroke: results from the
National Registry of Atrial Fibrillation. JAMA 2001;285:2864–2870.

18. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratifica-
tion for predicting stroke and thromboembolism in atrial fibrillation using a novel
risk factor-based approach: the euro heart survey on atrial fibrillation. Chest
2010;137:263–272.

19. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven
steps for development and an ABCD for validation. Eur Heart J 2014;35:
1925–1931.

20. Austin PC, Steyerberg EW. Graphical assessment of internal and external calibra-
tion of logistic regression models by using loess smoothers. Stat Med 2014;33:
517–535.

21. Grant SW, Collins GS, Nashef SAM. Statistical Primer: developing and validating
a risk prediction model. Eur J Cardio-Thorac Surg 2018;54:203–208.

22. Pencina MJ, D’Agostino RB Sr. Evaluating discrimination of risk prediction mod-
els: the C statistic. JAMA 2015;314:1063–1064.

23. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann
Stat 2001;29:1189–1232.

24. Li X, Liu H, Du X, Zhang P, Hu G, Xie G, et al. Integrated machine learning
approaches for predicting ischemic stroke and thromboembolism in atrial fibrilla-
tion. AMIA Annual Symposium Proceedings/AMIA Symposium AMIA Symposium 2016;
2016:799–807.

25. Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal 2002;38:
367–378.

26. Ogawa H, An Y, Ikeda S, Aono Y, Doi K, Ishii M, on behalf of the Fushimi AF
Registry Investigators et al. Progression from paroxysmal to sustained atrial fibril-
lation is associated with increased adverse events. Stroke 2018;49:2301–2308.

27. Han L, Askari M, Altman RB, Schmitt SK, Fan J, Bentley JP et al. Atrial fibrillation
burden signature and near-term prediction of stroke: a machine learning analysis.
Circ Cardiovasc Qual Outcomes 2019;12:e005595.

28. Guo Y, Lane DA, Wang L, Chen Y, Lip GYH, Eckstein J, et al.; the mAF-App II
Trial Investigators. Mobile Health (mHealth) technology for improved screening,
patient involvement and optimising integrated care in atrial fibrillation: the mAFA
(mAF-App) II randomised trial. Int J Clin Pract 2019;73:e13352.

29. Guo YL, Wang L et al. Mobile Health to improve optimization of integrated care
in patients with atrial fibrillation: mAFA-II trial. J Am Coll Cardiol 2020;75:
1523–1534.

30. Breiman L, Friedman J, Stone CJ, Olshen RA, Classification and Regression Trees.
London, UK: Taylor & Francis; 1984.

G.Y.H. Lip et al.556


	tblfn1



