
Disease Surveillance using Bayesian Methods

Thesis submitted in accordance with the requirements of the University of Liverpool for

the degree of Doctor in Philosophy by

Conor Rosato

October 2023

Disease Surveillance using Bayesian Methods Conor Rosato

Abstract

Developing Markov Chain Monte Carlo (MCMC) algorithms has been an active area of
research. Extensions of the original Metropolis-Hastings random walk (MHRW) algo-
rithm, such as Metropolis-adjusted Langevin algorithm (MALA), Hamiltonian Monte Carlo
(HMC) and the No-U-Turn Sampler (NUTS), include gradient information about the pos-
terior when proposing parameters in areas of higher probability within the target. Particle-
Markov Chain Monte Carlo (p-MCMC) is a similar parameter estimation algorithm that
utilises a particle filter to calculate an unbiased estimate of the log-likelihood which can be
used in the MHRW algorithm. However, as noted in the literature, obtaining gradients of
the log-likelihood w.r.t the parameters is difficult due to operations inherent to the particle
filter being non-differentiable. This obstacle has hindered the use of gradient based propos-
als within p-MCMC. Therefore, in this thesis, a novel method for obtaining the gradient
of the log-likelihood w.r.t the parameters by fixing the random number seed within the
particle filter is considered. This allows the particle filter to be posed as a deterministic
function, i.e. running the particle filter multiple times will result in the same resampling
realisations, log-likelihood and associated gradient estimates. When a different resampling
realisation occurs between two parameter values, a piecewise continuous estimate of the
log-likelihood and gradient occurs.

It is shown that these estimates are still compatible with gradient based proposals such
as MALA, HMC and NUTS. A comparison of these samplers is made when estimating
the parameters of two state-space models. Results indicate that although NUTS can make
multiple gradient evaluations per MCMC iteration, it can produce more accurate estimates
in shorter computation time. Frameworks for describing the differentiable particle filter and
NUTS in PyTorch and PyMC3, respectively are also provided. This allows the derivatives
and partial derivatives to be calculated via automatic differentiation. Particle filters have
been used extensively to model and track infectious disease epidemics, with p-MCMC
used to estimate the parameters of these models. Although gradient based proposals
are used in non-particle methods when modelling epidemiology, the standard proposal
when using p-MCMC is the MHRW. Applying the novel differentiable particle filter to
two epidemiological models, NUTS can recover the correct parameters in shorter run time
when compared to the MHRW proposal.

In the context of epidemiological modelling it is essential for public health officials to

i

Conor Rosato Disease Surveillance using Bayesian Methods

understand how a disease spreads through a population. This has recently come to the
forefront with the emergence of COVID-19. At the beginning of the pandemic it was vital
to gather accurate open-source datasets from which to infer how quickly the virus was
spreading. As well as parameter estimation, MCMC algorithms have the ability to make
forecasts of quantities of interest. Evaluating these predictions with simple scoring rules
gives an indication of how well the model represents reality. The scoring rule normalised
estimation error squared (NEES) can detect shortcomings within a model such as incorrect
parameters, resulting in forecasts that are over-confident or over-cautious. A detailed
description of why being cautious rather than confident is more desirable is provided.

NEES can also be used when evaluating the effectiveness of different open-source
datasets when making future predictions. A novel machine learning framework for de-
tecting COVID-19 symptomatic tweets in real-time in multiple languages is outlined. By
collating the tweets from the previous 24 hours a time series of symptomatic tweets can
be set up per geographic region. It is shown that, when compared with other traditional
data sources, such as positive test results, ingesting tweet data can result in more consis-
tent and accurate COVID-19 death predictions in the United States, United Kingdom and
European and South American countries.

ii

Acknowledgements

This thesis was supported by a EPSRC and ESRC studentship at the Centre for Doctoral
Training on Quantification and Management of Risk and Uncertainty in Complex Systems
Environments.

First of all I would like to thank my primary supervisor, Professor Simon Maskell and
my secondary supervisor Dr. John Harris for mentoring me throughout the duration of
my studies. Without their guidance and support this thesis would not have been possible.

I would also like to thank the whole signal processing research group at the University
of Liverpool for making my time such an enjoyable experience. In particular Dr. Lee
Devlin and Dr. Paul Horridge for their patience when responding to countless emails and
explaining concepts related to signal processing in a manageable way. I would also like to
give a special mention to Kelli Cassidy and Sara Parker for organising the research group.
Thank you to the friends I made as part of the Risk and Uncertainty research group.

I would also like to thank Professor. Thomas Schön for hosting me for a week to discuss
opportunities for future work which allowed me to experience Sweden and Dr. Jasmina
Panovska-Griffiths for being a great mentor during my secondment at the UK Health
Security Agency at such a difficult time during the COVID-19 pandemic.

I would also like to thank my family and friends. My parents for helping me financially,
emotionally and getting me to think about things other than football. Catriona, Alex and
Hannah for giving me much needed laughs during the past 5 years. I thank all my team
mates at the Mersey Harps and friends in the Cream Team for distracting me from my
work and reminding me of life outside of my PhD.

Finally I would like to thank Kira for her patience, support and guidance throughout
my studies.

iii

Conor Rosato Disease Surveillance using Bayesian Methods

iv

Contents

Abstract i

Acknowledgements iii

Contents viii

1 Introduction 4

1.1 Epidemiological Modelling . 4

1.2 Calibration . 6

1.3 Evaluating Forecasts . 9

2 Motivation, Contribution and Thesis Structure 10

2.1 Chapter 3 . 10

2.2 Chapter 4 . 10

2.3 Chapter 5 . 11

2.4 Chapter 6 . 11

2.5 Chapter 7 . 12

3 Technical Information 13

3.1 State-Space Models . 13

3.1.1 Linear Gaussian State-Space Model 14

3.1.2 Stochastic Volatility Model . 14

3.1.3 Earthquake Model . 15

3.1.4 SIR Epidemiological Model . 16

3.1.4.1 Continuous Model . 16

3.1.4.2 Discrete Model . 19

3.1.4.3 Observation Equation . 21

3.2 Particle Filter . 22

3.2.1 Choice of Proposal . 23

3.2.2 Estimation with Respect to the Posterior 24

3.2.3 Resampling . 25

v

Conor Rosato Disease Surveillance using Bayesian Methods

3.3 Markov Chain Monte Carlo . 26

3.3.1 Metropolis-Hastings Random Walk 27

3.3.2 Hamiltonian Monte Carlo . 27

3.3.3 No-U-Turn Sampler . 31

3.3.3.1 Generating a Trajectory . 31

3.3.3.2 Testing for U-turns . 31

3.3.3.3 Drawing a Sample from the Trajectory 32

3.3.3.4 Pertinent Elements of the Proof 32

3.3.3.5 Further Details . 32

3.4 Particle - Markov Chain Monte Carlo . 33

3.4.1 Application to SIR Model . 33

3.5 Evaluating a Markov Chain . 34

3.5.1 Effective Sample Size . 35

3.5.2 IACT . 35

3.5.3 Gelman Rubin . 36

3.6 Summary . 36

4 Efficient Learning of the Parameters of Non-Linear Models using Differ-
entiable Resampling in Particle Filters 37

4.1 Introduction . 37

4.2 Particle Filter . 38

4.2.1 Calculating the Likelihood . 38

4.2.2 Calculating the Gradient of the Likelihood 39

4.3 Calculating the Derivatives . 41

4.3.1 Derivative of the Particle States . 42

4.3.2 Derivative of the Proposal . 43

4.3.3 Derivative of the Prior . 43

4.3.4 Derivative of the Likelihood . 44

4.4 Resampling for a Differentiable Particle Filter 45

4.4.1 Discontinuities after a Resampling Realisation 46

4.5 Differentiable Particle Filters . 50

4.5.1 Soft Resampling . 50

4.5.2 Gumbel Softmax . 50

4.5.3 Optimal Transport . 51

4.5.4 Fisher’s Identity to Calculate Gradient of the Log-likelihood 51

4.6 Estimation of Parameters . 52

4.6.1 Hamiltonian Monte Carlo and the No-U-Turn Sampler 52

4.6.2 Metropolis-Adjusted Langevin Algorithm (MALA) 53

4.7 Numerical Experiments . 53

4.7.1 Linear Gaussian State-Space Model 54

4.7.1.1 Results . 54

vi

Disease Surveillance using Bayesian Methods Conor Rosato

4.7.2 Stochastic Volatility Model . 57

4.7.2.1 Results . 58

4.7.3 Epidemiological Models . 63

4.7.3.1 SEIR Model . 63

4.7.3.2 Observation Equation . 64

4.7.3.3 SIR Results . 64

4.7.3.4 SEIR Results . 67

4.8 Conclusions and Future Work . 71

5 Particle-NUTS using PyTorch and PyMC3 73

5.1 Introduction . 73

5.2 Differentiation Methods . 75

5.2.1 Numerical Differentiation . 75

5.2.2 Symbolic Differentiation . 75

5.2.3 Automatic Differentiation . 76

5.3 Particle-MCMC and PyMC3 . 77

5.4 Examples and Results . 78

5.4.1 Stochastic Volatility and Earthquake Count Models 78

5.4.1.1 Results . 78

5.4.2 SIR Disease Model . 79

5.4.2.1 Results . 79

5.5 Conclusions and Future Work . 84

6 Refining Epidemiological Forecasts with Simple Scoring Rules 85

6.1 Introduction . 85

6.2 Statistical Model . 87

6.2.1 Transmission Model . 88

6.2.2 Observation Model . 91

6.2.2.1 Death Data . 92

6.2.2.2 Hospital Admission Data 92

6.2.2.3 111 Call Data . 93

6.3 Scoring Rules . 94

6.3.1 Normalised Estimation Error Squared 95

6.4 Computational Experiments . 96

6.5 Results . 96

6.6 Conclusions and Future Work . 99

7 Using Twitter Data to Inform Disease Models 100

7.1 Introduction . 101

7.2 Data Collection . 103

7.2.1 United Kingdom NHS Region-Specific Surveillance Data 103

vii

Conor Rosato Disease Surveillance using Bayesian Methods

7.2.1.1 Deaths . 103
7.2.1.2 Hospital Admissions . 103
7.2.1.3 Zoe App . 103
7.2.1.4 111 Calls and 111 Online 104

7.2.2 Symptomatic Tweets . 104
7.2.2.1 Pre-processing Tweets . 105
7.2.2.2 Symptom Classifier Breakdown 105
7.2.2.3 Comparison of Tweets and Positive Test Results 107

7.2.3 Twitter Mobility Origin Destination Matrices 107
7.3 Models . 108

7.3.1 Model for Surveillance Data Comparison 108
7.3.1.1 Computational Experiments 109

7.3.2 Model for Utilising Origin Destination Matrices 111
7.4 Results . 112

7.4.1 Surveillance Data Comparison . 112
7.4.2 Origin Destination Matrices Analysis 119

7.5 Conclusions and Future Work . 120

8 Conclusions and Future Work 122

References 125

Appendices 143
A Information for Differentiating Kalman Filter 143

A.1 Partial versus total derivatives 143
A.2 Differentiating a Kalman Filter 144
A.3 Derivatives of multivariate log normal 146

B Matrix derivatives . 146
B.1 Derivative of a matrix inverse 146
B.2 Derivative of a matrix square root 146

C Code for Particle-NUTS using PyTorch and PyMC3 148
C.1 Particle filter code . 148
C.2 Calculating gradients . 149
C.3 Log-likelihood with gradient 150
C.4 Declaring PyMC3 Model 150

viii

Abbreviations

The following abbreviations can be found throughout this thesis:

ABM Agent Based Model

ABC Approximate Bayesian Computation

ACF Auto-Correlation Function

AD Automatic Differentiation

BERT Bidirectional Encoder Representations from Transformers

CRN Common Random Numbers

CPRS Continuous Ranked Probability Score

ESS Effective Sample Size

FI Fisher’s Identity

HMC Hamiltonian Monte Carlo

HPC High Performance Computer

IACT Integrated Auto-Correlated Time

ICU Intensive Care Unit

JBC Joint Bio-security Centre

LMC Langevin Monte Carlo

LGSSM Linear Gaussian State-Space Model

MCMC Markov Chain Monte Carlo

MALA Metropolis-Adjusted Langevin Algorithm

1

2 Conor Rosato

MHRW Metropolis-Hastings Random Walk

NHS National Health Service

NLP Natural Language Processing

NEES Normalised Estimation Error Squared

NUTS No-U-Turn Sampler

NGE Number of Gradient Evaluations

ODE Ordinary Differential Equations

O/D Origin/Destination

p-MCMC Particle- Markov Chain Monte Carlo

p-HMC Particle-HMC

p-NUTS Particle-NUTS

PPL Probabilistic Programming Language

ROW Rest of the World

RMSE Root Mean Square Errors

SBC Simulation Based Calibration

SMC Sequential Monte Carlo

SSM State-space Model

SDE Stochastic Differential Equations

SV Stochastic Volatility

SVM Support Vector Machine

SIR Susceptible, Infected and Recovered

UK United Kingdom

UKHSA United Kingdom Health Security Agency

UoL University of Liverpool

w.r.t With Respect To

WIS Weighted Interval Score

WHO World Health Organisation

Probability Distributions

Distribution Notation Parameters Mass Function

Binomial B(n, p) n ∈ N, p ∈ [0, 1]
(
n
k

)
pk(1− p)n−k

Negative Binomial NB(r, p) r ∈ N+, p ∈ [0, 1]
(
k+r−1

k

)
pr(1− p)k

Poisson P(λ) λ > 0 λk

k! e
−λ

Table 1: Parameterisation of discrete probability distributions used in the analysis of this
thesis.

Distribution Notation Parameters Density Function

Gamma G(α, β) α > 0, β > 0 βα

Γ(α)x
α−1e−βx

Normal N (µ, σ) µ ∈ (−∞,∞), σ > 0 1
σ
√
2π
e
− 1

2

(
x−µ

σ2

)

Uniform U(a, b) −∞ < α < b <∞
{

1
b−a , x ∈ [a, b]

0, otherwise

Table 2: Parameterisation of continuous probability distributions used in the analysis of
this thesis.

3

Chapter 1

Introduction

1.1 Epidemiological Modelling

Two methods for modelling diseases include: Agent-based models (ABMs) [1] which sim-

ulate interactions with individuals within the population based on a set of rules; and the

compartmental approach of splitting the population into unobservable compartments, for

example Susceptible, Infected and Recovered (SIR) [2] and allowing a fraction at every

timestep t, to progress to the next compartment. Although compartmental models do sim-

ulate interactions with individuals in a population, they don’t represent them explicitly like

ABMs. The compartmental model was utilised as far back as 1665 in London to describe

the rise of infected patients during the plague [3]. The model consists of three nonlinear

ordinary differential equations (ODE) and a set of parameters which govern how quickly

individuals progress through the compartments. The standard SIR model is described in

Section 3.1.4 and contains two parameters, β and γ which are the infection and recovery

rates, respectively. Knowing these parameters of a specific disease allows public health

officials and researchers to ascertain the reproductive number Rt at time t. This metric

quantifies the average number of secondary infections produced by a single infected person

and can be calculated by

Rt = β/γ. (1.1)

This gives an indication of how fast a disease is spreading through the population.

A popular method for representing the traditional SIR model is in a state-space model

4

Chapter 1. Introduction 5

(SSM) framework. SSMs are a favoured method for representing the dependence of latent

states in non-linear dynamical systems and have been widely used to model the dynamics

of communicable diseases in populations of interest by fitting to time series data. A SSM

consists of a state equation,

xt | xt−1 ∼ f(xt | xt−1, θ), (1.2)

which is parameterised by θ, where f is an arbitrary function that describes how the

dynamical system moves from the previous state to the current state, xt, at time t. The

SSM also includes an observation equation

yt | xt ∼ g(yt | xt, θ), (1.3)

where the arbitrary function g describes how the observation, yt, is linked to the state

equation. One of the advantages of the SIR model is its ability to model a wide range

of communicable diseases such as Ebola [4], influenza [5], HIV/AIDS [6] and COVID-19

[7]. However, not all communicable diseases or infections manifest at the same rates.

Extensions of the original SIR model attempt to account for this. For example the SEIR

model contains an extra exposed compartment which describes individuals that have been

exposed to the infection but are not themselves infectious yet. This mean latent period for

the disease is accounted for by an additional parameter, δ. Some examples can be found

here [8, 9, 10].

Particle filters [11, 12, 13] are a popular method for inferring the time-dependent hidden

states of SSM and have been previously applied to compartmental disease transmission

models [14, 15, 16, 17]. Particle filters estimate the states of an SSMs via a set of weighted

samples (particles). Each sample is a different hypothesis of the state of the system and the

combination of these samples at every timestep is an estimation of the posterior distribution

over the states. One of the benefits to using a particle filter is the ability to use stochastic

models such as stochastic differential equations (SDE) in place of an ODE. For example,

noise parameters can be added to the SIR ODE model as seen in [14, 15, 16, 17]. Another

popular method for stochastically modelling epidemics is described by Reed-Frost [18]

and assumes that people becoming infected with a disease follows a Binomial distribution

[19, 20].

6 Conor Rosato

1.2 Calibration

Calibration of epidemiological models using disease specific data is important when striving

to understand how a disease evolves with time. Inferring parameters such as the effective

contact and recovery rates, especially at the beginning of an outbreak, is vital for public

health officials when assessing how a disease spreads through a population. Two overarch-

ing methods used for estimating parameters in the context of epidemiological models, as

outlined in a recent systematic review [21], are optimisation and sampling algorithms. Op-

timisation algorithms include grid search and iterative, descent-guided optimisation while

sampling methods include MCMC techniques (see Section 3.3), p-MCMC (see Section 3.4),

Approximate Bayesian Computation (ABC) and history matching. One difference between

these two groups of techniques is that optimisation algorithms typically find point estimates

of the parameters1 while sampling methods can produce full Bayesian parameter estimates

which in-turn capture parameter uncertainty. A comparison of software packages that

include some of these optimisation and sampling algorithms can be found here [22].

MCMC methods sample from a probability distribution where the current sample de-

pends on the previous. Sampling in this manner produces a Markov Chain which gives

a distribution around the quantity being estimated. Bayesian calibration of the SSMs in

(1.2) and (1.3) is undertaken with the goal of estimating the parameter posterior distribu-

tion p(θ|y). This involves finding the set θ that best represents the data, y, using Bayes

theorem:

p(θ|y) = p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫

θ p(y|θ)p(θ)dθ
, (1.4)

where p(θ) is the prior, p(y|θ) the likelihood and p(y) the evidence. The likelihood and

the prior are easily calculated if their explicit forms are known. However, the integral in

(1.4) often becomes intractable in high dimensions. Therefore, the posterior is typically

estimated up to a normalisation constant, given by the integral.

The time until stationarity of the Markov chain is reached is dependent on its initial

starting point. It is therefore common practice to discard the first portion of the Markov

chain as burn-in. Burn-in is sometimes referred to as warm up which allows the sampler

to get to an acceptable part of the parameter space to start sampling. Hyper-parameter

1We note that optimisation algorithms can indeed provide uncertainty through methods such as likeli-
hood ratio.

Chapter 1. Introduction 7

tuning also occurs which ensures sampling is efficient (eg the mass matrix and step size

used in NUTS). Ensuring convergence to the correct posterior distribution, the Markov

chains are ergodic. Three popular MCMC algorithms are described in Section 3.3.

In the well understood MHRW proposal a set of parameters θ′ is drawn from a proposal

distribution which is commonly chosen to be a Gaussian centered around the current

position, θ, and a variance parameter, also known as step size, which is chosen by the

user. An accept or reject step is introduced that determines whether to accept θ′ as part

of the Markov chain or reject and revert back to θ. Such proposals can struggle to enable

the Markov chain to reach the stationary distribution when estimating large numbers of

parameters. A related issue can occur with Gibbs samplers when the correlation between

parameters is high. These issues can result in the sampler getting stuck in local maxima

within the target distribution, π(θ). HMC is a a gradient based sampler and is better at

proposing samples than a random-walk proposal due to the use of gradients. It was first

developed in the late 1980s [23] and in the last decade has become a popular approach when

implementing MCMC [24, 25]. It is an approach that simulates from a problem-specific

Hamiltonian system to generate samples. HMC is effective when the target distribution is

complex or multi-modal but is sensitive to hyperparameters which have to be determined

by the user. The No-U-Turn Sampler (NUTS) [26] is an adaptive version of HMC which

automates the selection of these hyperparameters. Probabilistic programming languages

(ppls) such as Stan [27] and PyMC3 [28] are tools that have been developed to allow users

to define and make inferences about probabilistic models using NUTS.

P-MCMC [29] combines the particle filter and MCMC to make state and parameter

estimates by performing Bayesian inference on non-linear non-Gaussian scenarios where

standard MCMC methods can fail. P-MCMC has been used to infer parameters of sim-

ulated genealogies and time series data [30], a dengue outbreak [31], non-communicable

diseases in Egypt [32], cholera in Bangladesh [33], COVID-19 in the United Kingdom (UK)

[34], the 2009 A/H1N1 pandemic in England [35] and an ABM in [36]. It has been sug-

gested in [37, 38] that a potential reason why p-MCMC has yet to become a mainstream

method for modelling epidemics is due to the complexity of the mathematics behind the

algorithm: [38] make the methodology more accessible by providing a step-by-step tutorial.

The standard proposal used in calibration of epidemiological models when using p-MCMC

is the MHRW [30, 32, 33, 34, 35, 36, 38] which inherits the same drawbacks as explained

above for MCMC.

In order to use gradient based proposals within p-MCMC, the gradient of the log-

8 Conor Rosato

likelihood w.r.t θ needs to be calculated. In order to obtain these gradients the particle

filter needs to differentiated. However, it has been noted in [39, 40, 41] that the stochastic

nature of both the sampling and resampling steps, that are inherently part of the particle

filter, are not differentiable. The reparameterisation trick was proposed in [42] to refor-

mulate the sampling operation into a differentiable function by sampling a noise vector in

advance and defining the likelihood for θ as being a deterministic function of this sampled

noise vector. However, resampling remains problematic. Differentiable resampling that is

compatible with Automatic Differentiation (AD) has been an active area of research in

machine learning. These include: leveraging the ideas of optimal transport to produce a

continuous approximation to the discrete distribution [43], a differentiable approximation

based on importance sampling (referred to as soft-resampling [44]) and continuous relax-

ations of discrete distributions [45, 46] (referred to as the Gumbel-Softmax). An overview

and comparison of these methods can be found here [47].

Extensions of the original p-MCMC algorithm described in Section 3.4 have focused

on including gradient information when proposing new parameters. Reference [48] shows

how to estimate the score (gradient) of the log-likelihood and the observed information

matrices at θ in SSMs using particle filter methods. The two methods proposed run

with computational complexity O(N) and O(N2), respectively. The first has a linear

computation cost but the performance decreases over time. The second has a computation

cost that increases quadratically with the number of particles N but performance does not

deteriorate over time, with [49] theoretically substantiating this claim. Reference [50] built

on this work to compute these terms with computational complexity O(N) and avoids

the quadratically increasing variance caused by particle degeneracy. In [51, 52, 53, 54]

the authors utilise the previous work of [50] to recursively estimate the score (gradient)

of the log-likelihood at θ. References [51] and [52] include Langevin Monte Carlo (LMC)

methods seen in [55] whilst [53] and [54] include first- and second-order Hessian information

about the posterior in the proposal. Use of the Hessian is shown to improve the mixing

of the Markov chain at the stationary phase and decrease the length of burn-in. However,

calculating a d×dmatrix of the second-order partial derivatives can become infeasible when

the dimensionality, d, becomes large. While [53], [54] do mention using HMC dynamics

within p-MCMC, no implementation of this approach has been described in the literature.

Chapter 1. Introduction 9

1.3 Evaluating Forecasts

Short-term forecasts of certain metrics can be useful when determining how well a model

represents reality. Calibration techniques can be compared in terms of accuracy e.g. death

forecasts can be compared against true deaths. By January 2020, new cases of the novel

coronavirus (COVID-19) had been seen throughout Asia, and by the time the World Health

Organisation (WHO) declared a global pandemic in March 2020, COVID-19 had spread

to over 100 countries. Therefore, it was imperative to establish reliable data feeds relating

to the pandemic so researchers and analysts could model the ongoing spread of the disease

and inform decision-making by government and public health officials. These datasets and

models must be open-source to facilitate collaboration between researchers and allow for

published results to be replicated and scrutinised. A popular interactive dashboard that

collates total daily counts of confirmed cases and deaths for countries, and in some cases,

regions within countries exists here [56]. These variables are traditionally used to calculate

metrics such as the reproduction number Rt, which is vital in understanding both the

number of people on average an infected person infects and the infection growth rate or

daily rate of new infections. The quality of the metrics calculated is heavily dependent on

the model and ingested data. Challenges do exist when ingesting multiple data streams at

once [57].

While it is possible to use deaths to provide a reliable information feed, the latency

of data derived from deaths is significant. In the context of COVID-19, confirmed cases

derived from positive test results potentially provide a lower latency data feed. However,

the sampling of those tested varies with time and the reason for testing is often not recorded.

Hospital admissions typically occur around 1-2 weeks after infection and can be considered

out of date in relation to the time of initial infection [58]. The extent to which these issues

are problematic is likely to vary over time and between countries. For example at the

beginning of the COVID-19 pandemic it took months for a reliable test which was available

to the public to be created so information about the spread was limited. Therefore, certain

countries may have had different testing capacities compared with others. Tweets relating

to influenza have been seen to correlate with actual influenza counts [59, 60, 61]. A pipeline

for collecting and analysing COVID-19 tweets could be set up in a short amount of time

and can be scaled up to multiple countries.

Chapter 2

Motivation, Contribution and

Thesis Structure

In the subsequent paragraphs, the main motivations and contributions of this thesis are

outlined and a description of the published works provided.

2.1 Chapter 3

Chapter 3 provides a summary of the main topics utilised throughout this thesis.

2.2 Chapter 4

The main motivation of this thesis was to provide an extension of p-MCMC that uses the

gradient of the log-likelihood w.r.t θ within the MCMC proposal. A recent published jour-

nal article proposed using first- and second-order Hessian information about the posterior

in a MALA proposal [54]. This prompted a meeting at Uppsala University, Sweden with

Professor. Thomas Schön, a co-author of [54]. We discussed how to develop their methods

to include HMC and NUTS proposals. This led to a novel implementation of the differ-

entiable particle filter which is described in Chapter 4. I used initial derivations provided

by Dr. Paul Horridge and Professor. Simon Maskell and calculated the gradients from

a particle filter which modelled different SSMs. These gradients enable use of gradient

based proposals such as MALA, HMC and NUTS. The work on which Chapter 4 is based

is published in the journal IEEE Transactions of Signal Processing [47]:

10

Chapter 2. Motivation, Contribution and Thesis Structure 11

• C. Rosato., L. Devlin., V. Beraud., P. Horridge., T. B. Schön. and S. Maskell.

“Efficient Learning of the Parameters of Non-Linear Models Using Differentiable

Resampling in Particle Filters,” in IEEE Transactions on Signal Processing, vol. 70,

pp. 3676-3692, 2022, doi: 10.1109/TSP.2022.3187868.

An application of the differentiable particle filter with NUTS, applied to epidemiological

models, is presented in Section 4.7.3. A comparison is made between the MHRW proposal,

the commonly chosen method when tracking diseases, and NUTS, when estimating the

parameters of the SIR and SEIR models. I coded the entirety of these algorithms, collected

and analysed the experimental results. The published version of these results appears in

[62]:

• C. Rosato., J. Harris., J. Panovska-Griffiths. and S. Maskell, “Inference of Stochas-

tic Disease Transmission Models Using Particle-MCMC and a Gradient Based Pro-

posal,” 2022 25th International Conference on Information Fusion (FUSION), 2022,

pp. 1-8, doi: 10.23919/FUSION49751.2022.9841249.

2.3 Chapter 5

The version of NUTS used in Chapter 4 is the original algorithm described in [26]. The

NUTS algorithm has been extensively developed in Stan and PyMC3, resulting in more

efficient samplers. Chapter 5 outlines a number of these developments, in addition to a

framework for calculating the gradients of a particle filter using AD and PyTorch. These

gradients can be used within a PyMC3 implementation of NUTS. A comparison between

NUTS and MHRW, when estimating the parameters of three SSMs using real datasets, is

presented. This work will be extended and submitted to a signal processing and machine

learning conference.

2.4 Chapter 6

Chapter 6 outlines a novel extended SEIR epidemiological model used to infer the spread

of COVID-19 in England. This model will be referred to as the University of Liverpool

(UoL) model throughout the remainder of this thesis. This work is published in [63]:

12 Conor Rosato

• R. E. Moore., C. Rosato. and S. Maskell. “Refining epidemiological forecasts with

simple scoring rules.” Philosophical Transactions of the Royal Society A 380.2233

(2022): 20210305.

My contribution to this work outlines how simple scoring rules can detect shortcomings in a

model when estimating COVID-19 deaths. In particular, using the scoring rule Normalised

Estimation Error Squared (NEES) it is possible to observe whether predictions are over-

confident or over-cautious. The model was used by the United Kingdom Health Security

Agency (UKHSA) (formerly known as the Joint Bio-security Centre (JBC)) to provide

weekly estimates of the reproductive number [64]. A brief summary of the UoL model is

published on the UK government website [65].

2.5 Chapter 7

During the initial phase of the epidemic, the availability of accurate and up-to-date data

sources was essential. One such method of data collection, previously used to detect disease

outbreaks such as measles and influenza, is via social media. In particular, Twitter and the

content of individual tweets has been found to be effective when detecting and localising

outbreaks of diseases in real-time. Chapter 7 outlines a method to detect symptomatic

COVID-19 tweets by training machine learning algorithms. Using the geo-location attached

to each tweet, time series consisting of aggregated counts can be collated and attributed to

a given country or region within a country. In the analysis of this chapter, 50 U.S states, 13

Latin American countries, 2 European countries and the 7 National Health Service (NHS)

areas in the UK were considered. This analysis necessitated machine learning classifiers

trained in English, Spanish, Italian, German and Portuguese. The flexibility of the UoL

model allows for different data sources to be ingested when making inferences pertinent to

the spread of COVID-19. Chapter 7 focuses on the usefulness of different publicly available

data sources when making predictions of COVID-19 related deaths. The work on which

Chapter 7 is based is published in the journal Information [66]:

• C. Rosato., R. E. Moore., M. Carter., J. Heap., J. Harris., J. Storopoli. and S.

Maskell. “Extracting Self-Reported COVID-19 Symptom Tweets and Twitter Move-

ment Mobility Origin/Destination Matrices to Inform Disease Models.”, Information

2023, 14, 170., doi: 10.3390/info14030170

Chapter 3

Technical Information

The aim of this chapter is to introduce the main topics utilised throughout this thesis.

These topics include SSMs and epidemiological models, particle filters and parameter es-

timation techniques such as MCMC and p-MCMC.

3.1 State-Space Models

SSMs have been used to model dynamical systems in a wide range of research fields (see [67]

for numerous examples). They are represented by two stochastic processes, {xt}t≥0 and

{yt}t≥0. The hidden state, xt, evolves according to a Markov process which is determined

by p (xt|xt−1, θ), and the observation is given by yt. The model can then be defined such

that

xt|xt−1 ∼ p (xt|xt−1, θ) (3.1)

and

yt|xt ∼ p (yt|xt, θ) , (3.2)

where the arbitrary functions f and g in (1.2) and (1.3) are given by probability distribu-

tions. The density of the initial latent state x0 is denoted µθ(x0). The SSM is parameterised

by an unknown vector of parameters θ contained in the parameter space Θ. The transition

and observation densities are given by (3.1) and (3.2), respectively. The SSMs used as

examples in the chapters of this thesis are presented below.

13

14 Conor Rosato

0 50 100 150 200 250
Time

4

2

0

2

4

St
at

e

(a)

0 50 100 150 200 250
Time

6

4

2

0

2

4

6

Ob
se

va
tio

ns

(b)

Figure 3.1: (a) The latent state and (b) observations for the LGSSM in Section 3.1.1 for
T =250 and true parameter values θ = {0.75, 1.2, 1}.

3.1.1 Linear Gaussian State-Space Model

The linear Gaussian state-space model (LGSSM) is one of the simplest SSMs. The latent

state and observation processes evolve according to a Gaussian distribution. The following

example of an LGSSM is presented in [68]:

xt | xt−1 ∼ N
(
xt;ϕxt−1, σ

2
v

)
, (3.3)

yt | xt ∼ N
(
yt;xt, σ

2
e

)
, (3.4)

where θ = {ϕ, σv, σe} are parameters with prior densities Normal(0, 1), Gamma(1, 1) and

Gamma(1, 1), respectively. The subplots (a) and (b) in Figure 3.1 show the latent state

and observations, respectively.

3.1.2 Stochastic Volatility Model

Stochastic volatility (SV) models are widely used to evaluate financial prices and securities

[69], since the variance of the latent process changes over time and is not constant. The

state xt is defined to be a monotonic function of the observation noise. SV models have

been represented by SSMs extensively in the literature. One example, presented in [68], is

Chapter 3. Technical Information 15

0 100 200 300 400 500
Time

4

2

0

2

4

Lo
g-

Re
tu

rn
s

Figure 3.2: Daily log-returns from the stochastic volatility model.

defined as follows:

x0 ∼ N
(
x0;µ,

σ2
v

1− ϕ2

)
, (3.5)

xt+1 | xt ∼ N
(
xt+1;µ+ ϕ (xt − µ) , σ2

v

)
, (3.6)

yt | xt ∼ N (yt; 0, exp (xt)) , (3.7)

where θ = {µ, ϕ, σv} are parameters with prior densities Normal(0, 1), Normal(0, 1) and

Gamma(2, 10), respectively. The observations (log-returns), yt are then given by

yt = 100 log

[
st
st−1

]
= 100 [log (st)− log (st−1)] , (3.8)

where st is the closing price. The daily log-returns corresponding to the closing prices

of the NASDAQ OMXS30 index are presented in Figure 3.2, where the index gives a

weighted average of the 30 most traded stocks at the Stockholm stock exchange. The data

is extracted from Quandl1 for the period between January 2, 2012 and January 2, 2014.

3.1.3 Earthquake Model

This example considers the annual number of earthquakes that occurred between 1900 and

2007 that reached over seven on the Richter scale.2 A time series representation of the

data is presented in Figure 3.3. The SSM is as described in [54, 70] and is presented below:

xt+1 | xt ∼ N (xt+1;ϕxt, σ) , (3.9)

yt | xt ∼ P (yt;µ exp (xt)) , (3.10)

1The data can be downloaded from https://data.nasdaq.com/data/NASDAQOMX/OMXS30
2https://www.usgs.gov/programs/earthquake-hazards/earthquakes

https://data.nasdaq.com/data/NASDAQOMX/OMXS30

16 Conor Rosato

1900 1920 1940 1960 1980 2000
Year

5
10
15
20
25
30
35
40

Co
un

ts

Figure 3.3: Earthquake counts.

where the distribution P corresponds to the Poisson distribution. The parameters θ =

[ϕ, σ, µ], where |ϕ| < 1, σ > 0 and µ > 0, each have uniform priors. Note that these priors

are taken from [54] and are improper.

3.1.4 SIR Epidemiological Model

3.1.4.1 Continuous Model

The SIR epidemiological model simulates the spread of disease through a population of

size P . The population is split into three unobservable compartments. At each timestep,

t, proportions of the population move from the susceptible to infected and infected to

recovered compartments. The number of individuals in each compartment are given by

the nonnegative variables St, It and Rt, such that St+It+Rt = P . The model assumes that

no births or deaths occur throughout the simulation period, i.e. that the population P is

constant, homogeneous mixing of infected and susceptible compartments and homogeneous

age and sex across the population. Chapter 6 outlines how the SIR model can be extended

to account for more realistic scenarios.

The system of differential equations simulating disease propagation under the SIR

model is as follows:

dS

dt
= −βIS

P
, (3.11)

dI

dt
=

βIS

P
− γI, (3.12)

dR

dt
= γI, (3.13)

Chapter 3. Technical Information 17

with discrete time approximation given by

St+1 = St −
βItSt

P
∆t, (3.14)

It+1 = It +
βItSt

P
− γIt∆t, (3.15)

Rt+1 = P − St+1 − It+1, (3.16)

where ∆t is the interval between timesteps. The effective transmission rate of the disease

and the mean recovery rate are given by β and γ, respectively. These parameters govern

how quickly the population moves through the compartments.

The reproductive number is calculated via (1.1). A value less than 1 indicates that

the virus is dying out and a value greater than 1 that the disease is continuing to spread

throughout the population. This is exemplified in the subplots of Figure 3.4. As Rt

increases, more of the susceptible population become infected and subsequently recover

within a fixed observation period. The peak of the epidemic is consequently observed at

an earlier point in time. During an outbreak of a disease, one of the main goals for public

health officials is to flatten the infectious curve. A number of methods for achieving this

in the context of COVID-19, are presented in [71].

It is possible to include stochasticity within the SIR model by adding stochastic fluc-

tuations to the disease dynamics. Inclusion of a noise term, ϵx, for each time-varying

parameter, x, mimics the randomness of the interactions between individuals in a popula-

tion [16, 17]. The noise terms corresponding to each parameter are independent and are

drawn from ϵx ∼ N (0,
√
x/P), such that, for example, ϵβ ∼ N (0,

√
β/P). The discrete

time approximation of the stochastic SIR model is then given by

St+1 = St −
βItSt

P
+ ϵβ∆t, (3.17)

It+1 = It +
βItSt

P
− γItϵβ + ϵγ∆t, (3.18)

Rt+1 = P − St+1 − It+1. (3.19)

18 Conor Rosato

0 5 10 15 20 25 30
Time

0

2000

4000

6000

8000

10000

Po
pu

la
tio

n
Co

un
t

Susceptible
Infected
Recovered

(a) β = 1.1, γ = 0.9, Rt = 1.2

0 5 10 15 20 25 30
Time

0

2000

4000

6000

8000

10000

Po
pu

la
tio

n
Co

un
t

Susceptible
Infected
Recovered

(b) β = 1.3, γ = 0.8, Rt = 1.6

0 5 10 15 20 25 30
Time

0

2000

4000

6000

8000

10000

Po
pu

la
tio

n
Co

un
t

Susceptible
Infected
Recovered

(c) β = 1.5, γ = 0.7, Rt = 2.1

0 5 10 15 20 25 30
Time

0

2000

4000

6000

8000

10000

Po
pu

la
tio

n
Co

un
t

Susceptible
Infected
Recovered

(d) β = 1.8, γ = 0.5, Rt = 3.6

Figure 3.4: Epidemic curves for varying β and γ for P = 10000.

Chapter 3. Technical Information 19

3.1.4.2 Discrete Model

A further method for incorporating stochasticity in the SIR model is to specify the number

of individuals leaving a compartment as a binomially distributed random variable. The

binomial probability, p, is defined as the rate at which individuals leave a compartment,

given by

p(S → I) = 1− e
−βitst

P , (3.20)

p(I → R) = 1− e−γ , (3.21)

where p(S → I) and p(I → R) denote the probability of leaving the susceptible and

infected compartments, respectively. The corresponding binomial distributions are

n(S → I) ∼ Binomial(St−1, p(S → I)), (3.22)

n(I → R) ∼ Binomial(It−1, p(I → R)), (3.23)

where n(S → I) and n(I → R) denote the total number of individuals leaving the sus-

ceptible and infected compartments, respectively. The complete discrete, stochastic SIR

model is therefore presented as

St+1 = St − n(S → I), (3.24)

It+1 = It + n(S → I)− n(I → R), (3.25)

Rt+1 = P − St+1 − It+1. (3.26)

Figure 3.5 shows how the incorporation of stochasticity generates different realisations of

epidemic curves within the population.

20 Conor Rosato

0 20 40 60 80 100 120
Time (Days)

2000

3000

4000

5000

6000

7000

8000

9000

10000

Po
pu

la
tio

n
Co

un
t

Susceptible Curve - Continuous

(a)

0 20 40 60 80 100 120
Time (Days)

0

250

500

750

1000

1250

1500

1750

Po
pu

la
tio

n
Co

un
t

Infected Curve - Continuous

(b)

0 20 40 60 80 100 120
Time (Days)

2000

4000

6000

8000

10000

Po
pu

la
tio

n
Co

un
t

Susceptible Curve - Discrete

(c)

0 20 40 60 80 100 120
Time (Days)

0

500

1000

1500

2000

Po
pu

la
tio

n
Co

un
t

Infected Curve - Discrete

(d)

Figure 3.5: 20 susceptible and infected curves for the continuous (top) and discrete (bot-
tom) models outlined in Sections 3.1.4.1 and 3.1.4.2, respectively, for P = 10000, I0 = 10,
β = 0.254 and γ = 0.111.

Chapter 3. Technical Information 21

3.1.4.3 Observation Equation

As the compartments of the SIR model are unobservable, in order to estimate the true

level of infection within the population, an observation equation (often referred to as the

likelihood) can be used to link the syndromic surveillance data to the infected compartment.

Relevant examples of syndromic data include prescription sales, disease specific positive test

results, general practice and hospital admissions data and social media posts mentioning

disease specific symptoms.

Specification of the likelihood is dependent on the surveillance data. One example is

to define the log of the observations, yt, such that

log yt ∼ N
(
it, σ

2
)
, (3.27)

where it is the proportion of infected individuals at time t [16, 17]. Another commonly

used approach is to model the observations using the negative binomial distribution:

yt ∼ NB (it, σ) , (3.28)

where σ is the over dispersion parameter [72] 3. The size of the peak in the syndromic data is

governed by the parameters within the observation equations (3.27) and (3.28). Figure 3.6

exemplifies this in subplots (a) and (b), where sensitivity analysis on the parameters b

and σ is presented. When considering real disease outbreaks it is essential to calibrate

epidemiological models to surveillance datasets. Information on undertaking this using

MCMC and p-MCMC is presented in Sections 3.3 and 3.4, respectively.

3This is the alternative parameterisation of the negative binomial distribution as defined by the Stan
Development Team [73].

22 Conor Rosato

0 20 40 60 80 100 120
Time (Days)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Po
pu

la
tio

n
Co

un
t

Normal Distribution
Infected Curve
b=0.25
b=0.35
b=0.45

(a)

0 20 40 60 80 100 120
Time (Days)

0

250

500

750

1000

1250

1500

1750

Po
pu

la
tio

n
Co

un
t

Negative Binomial Distribution
Infected Curve
=0.7
=0.8
=0.9

(b)

Figure 3.6: Realisations of the infected curve and the corresponding (a) log of observations
drawn from (3.27) for b = 0.25, 0.35, 0.45, (b) observations drawn from (3.28) for σ =
0.7, 0.8, 0.9.

3.2 Particle Filter

Particle filters have been used in many areas of research, such as finance [74], disease

modelling [75] and multiple target tracking [76], to infer time-dependent hidden states.

One benefit of using a particle filter is its ability to model SSMs that are nonlinear and

non-Gaussian. A method for including stochastic terms within the SIR model through

implementation of a particle filter is now presented.

To formulate the problem, consider t timesteps, where data is obtained at each incre-

ment of time. Let the transition and observation densities be parameterised by θ (which

has nθ dimensions), such that

p (y1:t, x1:t|θ) = p(y1|x1, θ)p (x1|θ)×
t∏

τ=2

p (yτ |xτ , θ) p (xτ |xτ−1, θ) , (3.29)

where the state xt has nx dimensions and the set of all data obtained up to time t, y1:t,

and the state sequence, x1:t, grow over time. If θ is known, a (conventional) particle filter

can be used as follows.

At every timestep t, the particle filter draws N samples (particles) from a proposal

distribution, q (x1:t|y1:t, θ), which is parameterised by the sequence of states and observa-

tions. The samples are statistically independent and each represents a different hypothesis

of the sequence of states of the system. The ith sample has an associated weight, w
(θ,i)
t ,

Chapter 3. Technical Information 23

which indicates the relative importance of each of the corresponding samples. A set of N

particles can then be represented as
{
x
(θ,i)
1:t , w

(θ,i)
t

}N

i=1
. At t = 0, the weights are fixed at

1/N .

The proposal distribution is constructed recursively by

q (x1:t|y1:t, θ) = q (x1|y1, θ)
t∏

τ=2

q (xτ |xτ−1, yτ , θ) , (3.30)

such that an estimate with respect to the joint distribution, p (y1:t, x1:t|θ), is posed as

follows: ∫
p (y1:t, x1:t|θ) f (x1:t) dx1:t ≈

1

N

N∑
i=1

w
(θ,i)
1:t f

(
x
(i)
1:t

)
. (3.31)

This is an unbiased estimate, where

w
(θ,i)
1:t =

p
(
y1|x(θ,i)1 , θ

)
p
(
x
(θ,i)
1 |θ

)
q
(
x
(θ,i)
1 |y1, θ

) ×
∏t

τ=2 p
(
yτ |x(θ,i)τ , θ

)
p
(
x
(θ,i)
τ |x(θ,i)τ−1 , θ

)
∏t

τ=2 q
(
x
(θ,i)
τ |x(θ,i)τ−1 , yτ , θ

) (3.32)

=w
(θ,i)
1:t−1

p
(
yt|x(θ,i)t , θ

)
p
(
x
(θ,i)
t |x(θ,i)t−1 , θ

)
q
(
x
(θ,i)
t |x(θ,i)t−1 , yt

) (3.33)

is a recursive formulation for the unnormalised weight, w
(θ,i)
1:t . The incremental weight is

determined by

σ
(
x
(θ,i)
t , x

(θ,i)
t−1 , θ

)
=

p
(
yt|x(θ,i)t , θ

)
p
(
x
(θ,i)
t |x(θ,i)t−1 , θ

)
q
(
x
(θ,i)
t |x(θ,i)t−1 , yt

) , (3.34)

where for t = 1,

σ
(
x
(θ,i)
1:1

)
=

p
(
y1|x(θ,i)1 , θ

)
p
(
x
(θ,i)
1 |θ

)
q
(
x
(θ,i)
1 |y1

) . (3.35)

3.2.1 Choice of Proposal

Three common approaches for specifying the proposal distribution are:

24 Conor Rosato

1. Using the transmission model as the proposal:

q
(
x
(θ,i)
t |x(θ,i)t−1 , yt

)
= p

(
x
(i)
t |x

(θ,i)
t−1 , θ

)
, (3.36)

which simplifies the weight update to

w
(θ,i)
1:t = p

(
yt|x(θ,i)t , θ

)
w

(θ,i)
1:t−1. (3.37)

2. Using the “optimal” proposal:

q
(
x
(θ,i)
t |x(θ,i)t−1 , yt

)
= p

(
x
(θ,i)
t |x(θ,i)t−1 , yt

)
(3.38)

with weights updated according to

w
(θ,i)
1:t = p

(
yt|x(θ,i)t−1 , θ

)
w

(θ,i)
1:t−1. (3.39)

This approach is only possible in certain situations. Note that the term “optimal”

in the context of the particle proposal means that the variance of the incremental

particle weights at the current timestep is minimized. This variance is, in fact, zero

since the weight in (3.39) is independent of xt (as explained in [77]).

3. Using the Unscented Transform to approximate the optimal proposal, as explained

in [78].

3.2.2 Estimation with Respect to the Posterior

It is often the case that estimates with respect to the posterior, p (x1:t|y1:t, θ), are needed.

This can be done using the fact that∫
p (x1:t|y1:t, θ)f (x1:t) dx1:t =

∫
p (y1:t, x1:t|θ)
p (y1:t|θ)

f (x1:t) dx1:t, (3.40)

where

p (y1:t|θ) =
∫

p (y1:t, x1:t|θ) dx1:t ≈
1

N

N∑
i=1

w
(θ,i)
1:t (3.41)

Chapter 3. Technical Information 25

in line with (3.31). Then,

∫
p (x1:t|y1:t, θ) f (x1:t) dx1:t ≈

1
1
N

∑N
i=1w

(θ,i)
1:t

1

N

N∑
i=1

w
(θ,i)
1:t f

(
x
(θ,i)
1:t

)
(3.42)

=
N∑
i=1

w̃
(θ,i)
1:t f

(
x
(θ,i)
1:t

)
, (3.43)

where

w̃
(θ,i)
1:t =

w
(θ,i)
1:t∑N

j=1w
(θ,j)
1:t

(3.44)

are the normalised weights.

As (3.43) is a ratio of estimates, it is a biased estimate, in contrast to (3.31).

3.2.3 Resampling

The algorithm described in the preceding sections is the sequential importance sampling

(SIS) algorithm. As time evolves, the normalised weights are increasingly skewed such that

one of the weights (3.44) becomes close to unity, while the others approach zero. This is

inevitable and cannot be avoided [79].

It is often suggested that monitoring the number of effective samples, Neff , where

Neff =
1∑N

i=1

(
w̃

(θ,i)
1:t

)2 , (3.45)

can be used to identify the need to resample. There are many resampling methods, some

of which are outlined and evaluated in [80]. However, they all share the same purpose—

to stochastically replicate particles with higher weights whilst eliminating ones with lower

weights. Multinomial resampling is commonly used in practice. This involves drawing from

the current particle set N times, proportionally to the associated weights of the particles.

The associated distribution is defined by

w̃
(θ,i)
1:t for i = 1, . . . , N. (3.46)

To keep the total unnormalised weight constant (such that the approximation (3.41)

is the same immediately before and after resampling), each newly-resampled sample is

26 Conor Rosato

assigned an unnormalised weight

1

N

N∑
i=1

w
(θ,i)
1:t . (3.47)

This is such that the normalised weights after resampling are 1
N .

Algorithm 1: Particle Filter

Input: θ, y1:T
1 Initialise: xi0, log(w

i
0)

2 for t = 1, . . . , T do
3 Calculate the number of effective samples, Neff , using (3.45).
4 If Neff < N/2, resample xit−1 as described in Section 3.2.3.
5 Sample the new particles xit using (3.2.1)
6 Evaluate the new log weights logwi

1:k using (3.34).

7 end
8 Evaluate the final log-likelihood, log p(y1:T |θ) using (3.41)

3.3 Markov Chain Monte Carlo

MCMC methods allow for approximate inference of the posterior in (1.4) that does not

require knowledge of the normalisation constant by considering

p(θ|y) ∝ p(y|θ)p(θ). (3.48)

MCMC methods stochastically explore π(θ) by simulating and representing a set of sam-

ples in the form of a Markov Chain (MC). The Markovian nature of the chain means that

the current sample only depends on the previous: they are memoryless. The key quantity

summarising a MC is the transition operator T (θ, θ′) which describes the probability of

moving from θ to θ′. The validity of the MC depends on T (θ, θ′) being irreducible such

that a point in the parameter space must be able to reach any other point in the space in

a finite number of steps. The chain should also be aperiodic, meaning periodic behaviour

should not be present. The time until the MC has converged and reached the station-

ary distribution of π(θ) is dependent on its initial starting point in the parameter space.

Therefore it is common practice to discard the initial portion of the chain as burn-in.

Ensuring convergence to the correct π(θ), the chain is ergodic. MCMC algorithms must

Chapter 3. Technical Information 27

obey detailed balance such that π(θ)T (θ, θ′) = π(θ′)T (θ′, θ). Three popular methods are

described in the subsequent sections.

3.3.1 Metropolis-Hastings Random Walk

The well-studied MHRW algorithm [81, 82, 83] splits T (θ, θ′) into two distinct steps: the

proposal step and the accept/reject step. Firstly, a set of parameters θ′ are drawn from a

proposal distribution q(θ|θ′). The proposal is typically assumed to be a Gaussian distri-

bution centered around the current position, θ, with variance, or step size, selected by the

user. Employing a small step-size can result in a proposal of θ′ that is too close to θ giving

rise to high autocorrelation within the MC. If the step-size is too big, θ′ may not be within

π(θ) resulting in a low acceptance rate which can affect the efficiency of the sampler. The

MHRW sampler can also suffer from the curse of dimensionality. As the dimensionality of

θ increases, it becomes much harder to find good approximations of π(θ).

Secondly, an acceptance step corrects for the fact that θ′ may not have been sampled

from π(θ). The acceptance probability, α(θ, θ′), is given by

α(θ, θ′) = min

{
1,

π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

}
. (3.49)

If the proposal is symmetric, as in the Gaussian case, q(θ|θ′) = q(θ′|θ) and the acceptance

probability simplifies to

α(θ, θ′) = min

{
1,

π(θ′)

π(θ)

}
. (3.50)

A random variable ut is drawn from a Uniform distribution on [0, 1]. If ut ≤ α(θ, θ′) then

θ′ is accepted as part of the MC. If ut > α(θ, θ′), θ′ is rejected and the MC reverts back to

θ. This process is repeated for M MCMC iterations and is outlined in Algorithm 2.

3.3.2 Hamiltonian Monte Carlo

HMC is a gradient based algorithm which uses Hamilton’s equations to generate new

proposals. Hamilton’s equations are a pair of differential equations that describe a system

in terms of its position and momentum where the potential of the system is defined by

U(θ) = − log(π(θ)). HMC introduces a momentum vector r which moves samples at θ

on a trajectory to θ′. The total energy or Hamiltonian of a system can be expressed as

H(θ, r) = U(θ) +K(r), and is comprised of the sum of the Kinetic energy K(r), which is

28 Conor Rosato

Algorithm 2: Metropolis-Hastings Random Walk

1 Initialise: θ0
2 for m = 1, . . . , M do
3 Sample θ′ from q(θ′|θ).
4 Compute acceptance probability, α(θ, θ′), using (3.50)
5 Sample ut from Uniform[0, 1]
6 if ut < α(θ, θ′) then
7 θ = θ′

8 else
9 θ = θ

10 end

11 end

independent of θ, where in the parameter space the samples are, and the potential energy

U(θ), which is independent on the momentum r.

Hamilton’s equations describe how the system evolves as a function of time and are:

dθ

dt
=

∂H(θ, r)

∂r
,
dr

dt
= −∂H(θ, r)

∂θ
. (3.51)

The joint density is

p(θ, r) ∝ exp(−H(θ, r)) = exp(−U(θ)) · exp(−K(r))

= p(θ)p(r), (3.52)

therefore θ and r are independent samples from the joint density so r can be sampled from

any distribution. For simplicity a Gaussian is often used, and we make that choice here.

Many numerical integration methods exist which discretise Hamilton’s equations and

can be seen in [84] with the leapfrog method being the go-to method for HMC. Leapfrog is a

symplectic method which means the Hamiltonian remains close to its initial value, though

not equal to it exactly, as the system is simulated. This means samples are generated

with a high accept/reject ratio so the target is explored efficiently. The acceptance step is

defined to be

α(θ, θ′) = min

{
1,

exp
{
L(θ′)− 1

2r
′ · r′

}
exp

{
L (θ0)− 1

2r0 · r0
}} . (3.53)

Chapter 3. Technical Information 29

As HMC is an MCMC method, it needs to be time-reversible to maintain detailed balance.

By negating t→ −t and r → −r in (3.53), Hamilton’s equations are defined to be

dθ

d− t
= −∂H(θ, r)

∂r
,
d− r

d− t
= −∂H(θ, r)

∂θ
. (3.54)

The form of the equations in (3.52) and (3.54) does not change. In other words, by simu-

lating a leapfrog trajectory with some momentum r, θ moves to θ′. If the same momentum

was negated to −r, θ′ would travel on the same trajectory to θ. The leapfrog step is also

volume-preserving. Applying the deterministic transformation (θ, r) → (θ′, r′) guarantees

that the samples are still from the same joint distribution. As outlined in [24], if the new

states were proposed with some non-Hamiltonian dynamics, the determinant of the Jaco-

bian matrix for the dynamics would need to be computed. However, the transformation

in HMC is both invertible and differentiable so the determinant of a voluming-preserving

transformation is one.

Finally, leapfrog is a low-order method which uses relatively few gradient evaluations

per step and is therefore computationally cheap. Note there are higher-order methods that

use more gradient evaluations per step to take many fewer steps which has been argued

that results in a lower total computational cost.

The samples generated are governed by a predetermined number of steps L of size ϵ,

decided by the user. HMC is highly sensitive to the choice of these parameters, particularly

L. If too large, computation time can be wasted as the trajectory can end close to where

it started and, if too small, the proposal can exhibit random-walk behaviour. An example

when sampling from a 2-dimensional Gaussian distribution can be seen in Figure 3.7.

Figure 3.7(a) and (b) outline how the choice of step-size and parameter L, respectively,

can have an impact on the efficiency of the sampler. In some cases it has been shown

that randomising L can be beneficial to avoid periodicities in the underlying Hamiltonian

dynamics [85].

Algorithm 3: Leapfrog

Input: θ, r, ϵ
1 r′ = r + 0.5 · ϵ · ∇L(θ)
2 θ′ = θ + ϵ · r′
3 r′ = r′ + 0.5 · ϵ · ∇L(θ)′
4 return θ′, r′

30 Conor Rosato

4 2 0 2 4
x

4

2

0

2

4

y

0.01
0.05
0.1
0.5

(a)

4 2 0 2 4
x

4

3

2

1

0

1

2

3

4

y

1
3
5
7

(b)

Figure 3.7: Sampling a 2-dimensional Gaussian distribution when changing the step-size
of HMC (a) and parameter L (b) for 10 MCMC iterations.

Algorithm 4: Hamiltonian Monte Carlo

1 Initialise: θ, ϵ, L, M
2 for m = 1, . . . , M do
3 Sample r ∼ N (0, I).
4 Set θ′ ← θ, r′ ← r
5 for i = 1, . . . , L do
6 θ′, r′ = Leapfrog(θ′, r′, ϵ) using Algorithm 3
7 end
8 Compute acceptance probability, α(θ, θ′), using (3.53)
9 Sample ut from Uniform[0, 1]

10 if ut < α(θ, θ′) then
11 θ = θ′

12 r = r′

13 else
14 θ = θ
15 r = r

16 end

17 end

Chapter 3. Technical Information 31

3.3.3 No-U-Turn Sampler

NUTS is an extension of HMC which adaptively finds a good number of leapfrog steps to

take, for a given step size, and therefore eliminates the need to tune this number. NUTS

does this by sampling from a trajectory of generated states in such a way that detailed

balance holds. Section 3.3.3.1 outlines how this trajectory is built while Section 3.3.3.2

describes the stopping criteria. Sections 3.3.3.3 and 3.3.3.4 outline how to sample from

the generated trajectory and why detailed balance holds, respectively. Further details are

presented in Section 3.3.3.5

3.3.3.1 Generating a Trajectory

NUTS generates samples both forwards and backwards in time from the initial state θ0 us-

ing leapfrog, by first sampling an initial momentum m0. To ensure reversibility, a Bernoulli

trial with probability 0.5 is undertaken to pick an initial direction d (either forwards +ϵ,

or backwards −ϵ) after which a leapfrog step is taken. Until a U-turn is detected, a new

direction is then sampled after every 2j leapfrog steps where j, initialized to zero, is in-

cremented by one after selecting a new direction. In doing so, NUTS builds a full binary

tree of height j where the number of steps taken between tests for a U-turn is double the

amount taken since the previous such test and each leaf node represents states along the

trajectory.

3.3.3.2 Testing for U-turns

The doubling process described above stops when the position and momentum states at the

far left (θ−, r−) and far right (θ+, r+) of the tree satisfy either of the following conditions:

(
θ+ − θ−

)
· r− < 0 or

(
θ+ − θ−

)
· r+ < 0. (3.55)

These conditions are met when the trajectory begins to double back on itself, i.e. begins

to U-turn. When building a trajectory, once one of these conditions is satisfied the current

subtree being built is discarded, and a sample from the resulting full tree (without the

discarded subtree) is taken. This process of discarding means that any state in the tree

can move to any other state without breaching the U-turn: This is important with respect

to ensuring that detailed balance is maintained.

32 Conor Rosato

3.3.3.3 Drawing a Sample from the Trajectory

In the original description of NUTS, slice sampling was undertaken to sample a new state

from the trajectory. This was done to account for the fact that by using leapfrog, the

Hamiltonian dynamics are approximated by numerical integration. Practically, an auxiliary

variable, u, is introduced which is sampled uniformly between 0 and H(θ0, r0). Once a

U-turn is detected (and the relevant subtree has been discarded) a sample is then uniformly

selected from the states which satisfy: H(θ, r) > u. This effectively prevents samples being

selected for which the dynamics were poorly modelled (and therefore would have had a

poor acceptance probability had HMC been used).

3.3.3.4 Pertinent Elements of the Proof

In following the steps above, the algorithm satisfies detailed balance and is therefore a

valid MCMC proposal. For a complete description, see Section 3.1.1 in [26]. The the more

pertinent points are outlined here.

For reversibility, a pair of states (θ, r) and (θ′, r′) must be able to transition to each

other. A subset of states are required that could be transitioned to B, where B is a subset

of a potentially larger set of all states observed C, to satisfy:

p(B, C|θ, r) = p(B, C|θ′, r′) (3.56)

This is true if the states in NUTS are generated deterministically, i.e. through doubling

the number of states. In this instance there will always be a series of directions that will

produce the required tree. Furthermore, by discarding the samples in the subtree being

generated which contain a U-turn, the possibility of extending the sequence of states is

removed such that it contains pairs of states for which the transition is possible from one

to the other but not in the other direction.

3.3.3.5 Further Details

The numerical integrator used to simulate the Hamiltonian dynamics is chosen to preserve

the geometric structure of the dynamics, i.e. has a unit determinant. NUTS uses the

leapfrog method, like HMC, which has this property. As a result, NUTS avoids the situation

where, due to numerical errors, some states in the trajectory are unlikely to be sampled.

To avoid excessively large trees, which can result from choosing too small a step size,

Chapter 3. Technical Information 33

it is necessary to upper bound the tree depth. Similarly to HMC, were NUTS able to

run with an exact integrator, all the states would be equally likely to be sampled and

computing of determinants related to the Jacobian is not required.

3.4 Particle - Markov Chain Monte Carlo

Particle-MCMC combines MCMC and a particle filter, two Monte Carlo methods that use

repeated sampling techniques to obtain numerical estimates related to a target distribu-

tion π(θ). Exact inference, using p-MCMC, of this target distribution is assumed to be

intractable. The original contribution of [29] uses a particle filter to calculate an unbiased

estimate of the marginal log-likelihood, p(y1:T |θ). The log-likelihood can be approximated

by summing the unnormalised particle filter weights in (3.41) for t = 1, .., T . This is a

byproduct of running the particle filter and so no additional calculations are required. The

resulting log-likelihood estimate can be used within the MHRW algorithm and allows the

acceptance probability to be formulated as

α(θ, θ′) = min

{
1,

p (θ′) p(y1:T |θ′)q(θ|θ′)
p(θ)p(y1:T |θ)q(θ′|θ)

}
, (3.57)

where p(θ) is the prior density and q(θ′|θ) the proposal. Algorithms 2 and 5 differ only in

their definition of the acceptance probability. Reference [29] prove that the Markov Chain

converges to the target distribution p(θ|y) when using a fixed number of N particles to

estimate p(y1:T |θ′). Use of the MHRW proposal in p-MCMC will inherit the same problems

as described above in the context of MCMC. To make use of more sophisticated proposals,

the gradient of the log posterior of the parameter, θ, must be estimated. This forms the

basis of Chapter 4.

3.4.1 Application to SIR Model

An example of inferring the parameters of the discrete SIR model outlined in Section 3.1.4.2

using p-MCMC with the MHRW proposal is presented below. The trace plots for the

parameters β (top) and γ (bottom) are presented in Figure 3.8. Four independent Markov

chains with different initial starting points were run for 550 MCMC iterations, with the

first 50 discarded as burn-in. Figures 3.8a and c present the entire Markov chain, while

figures 3.8b and 3.8d depict the first 60 iterations. The black vertical line shows the point

at which burn-in ends. The black horizontal line shows the true parameter value. By the

34 Conor Rosato

0 100 200 300 400 500
Iteration

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Tr
ac

e
pl

ot

(a)

0 10 20 30 40 50 60
Iteration

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Tr
ac

e
pl

ot

(b)

0 100 200 300 400 500
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ac

e
pl

ot

(c)

0 10 20 30 40 50 60
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ac

e
pl

ot

(d)

Figure 3.8: Trace plots of β and γ for 550 iterations (left) and the first 60 iterations (right).
The vertical black line indicates where burn-in ends at 50 iterations.

clear convergence of the Markov chains to the true value in all cases, it is evident that the

sampler is able to correctly recover the parameters of the SIR model.

3.5 Evaluating a Markov Chain

The sampling methods described above produce a Markov chain. Understanding how

well and how efficiently a Markov chain is sampling is crucial when making comparisons

between samplers. In the subsequent sections, the statistics for evaluating Markov chains

used throughout this thesis are provided. These metrics also give an indication of when

to terminate the sampling process. The ppls mentioned in Section 3.3.3 automatically

provide information regarding the effectiveness of the sampler. Three of these methods are

Chapter 3. Technical Information 35

Algorithm 5: Particle- MCMC

1 Initialise: θ0, y1:T
2 Run Algorithm 1 with θ0 to obtain estimate of the log-likelihood, log p(y1:T |θ),

calculated by (3.41)
3 for m = 1, . . . , M do
4 Sample θ′ from q(θ′|θ).
5 Run Algorithm 1 with θ′ to obtain estimates of the log-likelihood,

log p(y1:T |θ′), calculated by (3.41)
6 Compute acceptance probability, α(θ, θ′), using (3.57)
7 Sample ut from Uniform[0, 1]
8 if ut < α(θ, θ′) then
9 θ = θ′

10 log p(y1:T |θ)=log p(y1:T |θ′)
11 else
12 θ = θ
13 log p(y1:T |θ)=log p(y1:T |θ)
14 end

15 end

outlined below.

3.5.1 Effective Sample Size

The effective sample size (ESS) is an explicit approximation of the number of independent

samples it would take for the Markov chain to have the same estimation power as the

set of auto-correlated samples. Higher ESS values are desirable. The MCMC samplers

described in Section 3.3 differ with respect to run time. MHRW runs in less computation

time than HMC and NUTS because it does not make gradient evaluations. Depending on

the trajectory size, NUTS can make more gradient evaluations per MCMC iteration when

compared with HMC. Therefore, calculating the ESS per second from the time taken for

the sampler to finish running gives an indication of the efficiency of the sampler.

3.5.2 IACT

The integrated auto-correlated time (IACT) estimates the number of samples, on average,

it takes to draw an independent sample from a continuous Markov chain. This is also

known as mixing, with lower values more desirable.

36 Conor Rosato

3.5.3 Gelman Rubin

The Gelman-Rubin diagnostic [86] is a numerical method that determines if multiple chains

have converged by comparing the variances between chains. This diagnostic is commonly

used in ppls (where it is referred to as R̂) to ascertain if the sampler has correctly sampled

from the posterior. Stan’s documentation states that an R̂ value below 1.05 passes their

internal diagnostic check.

3.6 Summary

This chapter has outlined the main topics utilised throughout this thesis. Descriptions and

examples of SSMs and epidemiological models are provided in Sections 3.1 and 3.1.4, re-

spectively. An overview of the modelling and calibration of these SSMs with particle filters

and MCMC methods is presented in Sections 3.2 and 3.3, respectively. Finally, methods

for evaluating the Markov chains produced by the samplers are outlined in Section 3.5.

Chapter 4

Efficient Learning of the

Parameters of Non-Linear Models

using Differentiable Resampling in

Particle Filters

It has been widely documented that the sampling and resampling steps in particle fil-

ters cannot be differentiated. The reparameterisation trick was introduced to allow the

sampling step to be reformulated into a differentiable function. In this chapter, the repa-

rameterisation trick is extended to include the stochastic input to resampling therefore

limiting the discontinuities in the gradient calculation after this step. Knowing the gradi-

ents of the prior and likelihood distributions allows for the use of p-MCMC with NUTS as

the proposal when estimating parameters.

In this chapter, MALA, HMC with varying numbers of steps and NUTS are compared.

Considering three state-space models, it is shown that NUTS improves the mixing of the

Markov chain and can produce more accurate results in less computation time.

4.1 Introduction

This chapter aims to complement recent machine learning literature that addresses the

problem of differentiatiable resampling.

37

38 Conor Rosato

Use of the reparameterisation trick for resampling is described in [87], where the random

number seed is fixed in every simulation to produce common random numbers (CRN). The

core contribution of this chapter is to fix the random numbers used within the resampling

step such that the input to resampling can be conditioned. It is then possible to utilise

the estimated gradients within the framework of p-MCMC and to calculate gradient-based

proposals for θ. More specifically, this allows use of NUTS as the proposal. A further novel

contribution is the provision of full Bayesian parameter estimates (including variances).

This differs from existing literature on differentiable particle filtering in the neural network

community which focuses exclusively on point-estimates of parameters [39, 40, 41, 43]. The

performance of NUTS is also compared with that achieved by HMC and MALA.

An outline of the rest of the chapter is as follows: calculation of the likelihood and

gradients is described in Section 4.2.2, methods for propagating the derivatives of the

particle weights in Section 4.3 and an extension of the reparameterisation trick that includes

the stochastic input to resampling in Section 4.4. The likelihood and gradient estimates are

tested, particle-HMC (p-HMC) and particle-NUTS (p-NUTS) explained and comparative

numerical results detailed in the context of three applications in Section 4.7. Concluding

remarks are presented in Section 4.8.

4.2 Particle Filter

The processes and notation in the subsequent sections are the same as those used when

describing operations relating to the particle filter outlined in Section 3.2. Calculation

of an unbiased estimate of the likelihood, which is used within p-MCMC with an MH

proposal (see Section 3.4), is outlined in Section 4.2.1. Gradient based proposals require

the gradient of the likelihood w.r.t θ. Section 4.2.2 outlines how to obtain these gradients

from a particle filter using the reparameterisation trick.

4.2.1 Calculating the Likelihood

For t = 1, .., T an unbiased estimate of the log-likelihood can be estimated recursively by

summing the log-weights in (3.41):

p (y1:T |θ) ≈
1

N

N∑
i=1

w
(θ,i)
1:t . (4.1)

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 39

This is a byproduct of running the particle filter that is outlined in Section 3.2, therefore

additional calculations are not required.

4.2.2 Calculating the Gradient of the Likelihood

Following (4.1), an approximation to the gradient of the likelihood is given by a function

of the derivative of the weights1:

d

dθ
p(y1:t|θ) ≈

1

N

N∑
i=1

d

dθ
w

(θ,i)
1:t . (4.2)

For numerical stability, it is typically preferable to propagate values in logs. Applying the

chain rule to (3.41) and (4.2) gives

d

dθ
log p(y1:t|θ) ≈

1

N

1

p(y1:t|θ)
N∑
i=1

w
(θ,i)
1:t

d

dθ
logw

(θ,i)
1:t (4.3)

≈ 1

N

N∑
i=1

w̃
(θ,i)
1:t

d

dθ
logw

(θ,i)
1:t . (4.4)

Note that in (4.4), the weights w̃
(θ,i)
1:t are normalised, while the log weights are not. The

log weights can be calculated recursively by

logw
(θ,i)
1:t = logw

(θ,i)
1:t−1 + log σ

(
x
(θ,i)
t , x

(θ,i)
t−1 , θ

)
, (4.5)

such that

d

dθ
logw

(θ,i)
1:t =

d

dθ
logw

(θ,i)
1:t−1 +

d

dθ
log σ

(
x
(θ,i)
t , x

(θ,i)
t−1 , θ

)
, (4.6)

where

d

dθ
log σ

(
x
(θ,i)
t , x

(θ,i)
t−1 , θ

)
=

d

dθ
log p

(
x
(θ,i)
t |x(θ,i)t−1 , θ

)
+

d

dθ
log p

(
yt|x(θ,i)t

)
− d

dθ
log q

(
x
(θ,i)
t |x(θ,i)t−1 , θ, yt

)
. (4.7)

1Note that this approach differs from that advocated in [52, 53, 54], where a fixed-lag filter (with a
user-specified lag) is used to approximate the derivatives. In contrast, in this chapter, the derivatives of
the approximation of the likelihood are explicitly calculated.

40 Conor Rosato

Therefore, if the single measurement likelihood, d
dθ log p

(
yt|x(θ,i)t

)
, transition model,

d
dθ log p

(
x
(θ,i)
t |x(θ,i)t−1 , θ

)
, and proposal, d

dθ log q
(
x
(θ,i)
t |x(θ,i)t−1 , θ, yt

)
, can be differentiated, (an

approximation of) the derivative of the log-likelihood for the subsequent timestep can

be calculated. Thus, the log-likelihood derivatives are approximated recursively at each

timestep. There are, however, a number of challenges involved in this procedure.

If the particle filter uses the transition model as the proposal (as in (3.36)), the likeli-

hood in the weight update does not explicitly depend on θ. Equation (4.7) can therefore

be rewritten as

d

dθ
log σ

(
x
(θ,i)
t , x

(θ,i)
t−1 , θ

)
=

d

dθ
log p

(
yt|x(θ,i)t

)
. (4.8)

As such, one may initially suppose that d log σ/dθ = 0. If this were true, an induction

argument using (4.6) would show that the weight derivatives are always zero and therefore

give an approximation of zero for the gradient of the likelihood w.r.t θ. Intuitively incorrect,

the flaw in this reasoning is that the likelihood (somewhat implicitly) does, in fact, depend

on θ, since x
(θ,i)
t is dependent on θ: application of the chain rule to the remaining term in

(4.7) gives

d

dθ
log p

(
yt|x(θ,i)t

)
=

d

dx
log p (yt|x)

∣∣∣∣
x=x

(θ,i)
t

d

dθ
x
(θ,i)
t . (4.9)

Additionally, x
(θ,i)
t is a random variable sampled from the proposal. To overcome this,

the reparameterisation trick [42] can be used. Consider the derivative of the likelihood

for a fixed random number seed. More precisely, let ϵ
(i)
1:t be the vector of N (0, 1) random

variables used to sample from the proposal, such that, if ϵ
(i)
t is known, then x

(θ,i)
t is a

differentiable deterministic function of x
(θ,i)
t−1 . Under this consideration, the derivative of

the log-likelihood in (4.9) can be approximated in following way:

d

dθ
p (y|θ) = d

dθ

∫
p (y, ϵ1:t|θ) dϵ1:t (4.10)

=

∫
d

dθ
p (y, ϵ1:t|θ) dϵ1:t (4.11)

≈ 1

N

N∑
i=1

d

dθ
p
(
y|ϵ(i)1:t, θ

)
, (4.12)

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 41

where ϵ
(i)
1:t ∼ p(ϵ1:t) is fixed and, crucially, the derivatives in (4.12) can be calculated.

As a simple example, consider sampling from the dynamics of a random walk proposal

and let θ be the standard deviation of the process noise, such that

x
(θ,i)
t = x

(θ,i)
t−1 + θϵ

(i)
t (4.13)

and

d

dθ
x
(θ,i)
t =

d

dθ
x
(θ,i)
t−1 + ϵ

(i)
t . (4.14)

Then, (4.14) can be calculated recursively and used to derive (4.9).

More generally, to calculate the non-zero derivatives of the weights, the particle deriva-

tives dx
(θ,i)
t /dθ must be propagated. This is discussed in the following section.

4.3 Calculating the Derivatives

In order to propagate the derivatives of the particle weights in (4.6) and (4.7) the following

must be calculated:

• The derivatives of the particle states

dx
(θ,i)
t

dθ
(4.15)

• The derivatives of the proposal log pdfs

d

dθ
log q

(
x
(θ,i)
t |x(θ,i)t−1 , θ, yt

)
(4.16)

• The derivatives of the transition log pdfs

d

dθ
log p

(
x
(θ,i)
t |x(θ,i)t−1 , θ

)
(4.17)

• The derivatives of the single measurement likelihood log pdfs

d

dθ
log p

(
yt|x(θ,i)t−1

)
. (4.18)

42 Conor Rosato

Section 4.3.1 shows how to calculate these derivatives in turn.

4.3.1 Derivative of the Particle States

To calculate dx
(θ,i)
t−1 /dθ, suppose the proposal takes the form

q
(
x
(θ,i)
t |x(θ,i)t−1 , θ, yt

)
= N

(
x
(θ,i)
t ;µ

(
x
(θ,i)
t−1 , θ, yt

)
, C
(
x
(θ,i)
t−1 , θ, yt

))
, (4.19)

where µ (·) and C (·) are functions of the old particle state, the parameter and the obser-

vation. Such a generic description can articulate sampling from the prior, or defining a

proposal using a Kalman filter with the predicted mean and covariance given by the motion

model.

If the proposal noise ϵ
(i)
t ∼ N (·; 0, InX) is sampled in advance, the new particle states

can be written as a deterministic function:

x
(θ,i)
t = f(x

(θ,i)
t−1 , θ, yt, ϵ

(i)
t)

≜ µ(x
(θ,i)
t−1 , θ, yt) +

√
C(x

(θ,i)
t−1 , θ, yt)× ϵ

(i)
t . (4.20)

Care must be taken when computing the derivative of (4.20) w.r.t. θ since x
(θ,i)
t−1 is also a

function of θ, with different particles x
(θ,i)
t−1 sampled for different values of θ. By the chain

rule, the derivative is given by

dx
(θ,i)
t

dθ
=

d

dθ
f(x

(θ,i)
t−1 , θ, yt, ϵ

(i)
t) (4.21)

=
∂f

∂x
(θ,i)
t−1

dx
(θ,i)
t−1

dθ
+

∂f

∂θ

dθ

dθ
(4.22)

=
∂f

∂x
(θ,i)
t−1

dx
(θ,i)
t−1

dθ
+

∂f

∂θ
. (4.23)

Note that, the derivative df/dθ in (4.21) and the partial derivative ∂f/∂θ in (4.22) are not

equivalent — see Appendix A.1 for the distinction. In addition, the terms are generally

matrix-valued: ∂f/∂xit−1 is an nX × nX matrix, and dxit−1/dθ and ∂f/∂θ are nX × nΘ

matrices.

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 43

4.3.2 Derivative of the Proposal

The proposal log pdf can be written as

log q
(
x
(θ,i)
t |x(θ,i)t−1 , θ, yt

)
= Q

(
x
(θ,i)
t−1 , θ, yt, ϵ

(i)
t

)
, (4.24)

where, under the assumption of a Gaussian proposal and dropping the fixed values ϵ
(i)
t and

yt for notational convenience,

Q
(
x
(θ,i)
t−1 , θ

)
≜ log q

(
f(x

(θ,i)
t−1 , θ)|x

(θ,i)
t−1

)
(4.25)

= logN
(
f(x

(θ,i)
t−1 , θ);µ(x

(θ,i)
t−1 , θ), C(x

(θ,i)
t−1 , θ)

)
. (4.26)

Then, the derivative of the proposal log pdf is derived by

d

dθ
Q(x

(θ,i)
t−1 , θ) =

∂

∂f
logN (f ;µ,C)

(
df

dθ
+

dµ

dθ
+

dC

dθ

)
(4.27)

=
∂

∂f
logN (f ;µ,C)

(
∂f

∂x
(θ,i)
t−1

dx
(θ,i)
t−1

dθ
+

∂f

∂θ

)

+
∂

∂µ
logN (f ;µ,C)

(
∂µ

∂x
(θ,i)
t−1

dx
(θ,i)
t−1

dθ
+

∂µ

∂θ

)

+
∂

∂C
logN (f ;µ,C)

(
∂C

∂x
(θ,i)
t−1

dx
(θ,i)
t−1

dθ
+

∂C

∂θ

)
, (4.28)

where µ = µ(x
(θ,i)
t−1 , θ) and C = C(x

(θ,i)
t−1 , θ). The derivatives of logN (f ;µ,C) are provided

in Appendix A.3.

4.3.3 Derivative of the Prior

To calculate d
dθ log p

(
x
(θ,i)
t |x(θ,i)t−1 , θ

)
, let

P (x
(θ,i)
t−1 , θ, yt, ϵ

(i)
t) ≜ log p

(
f
(
x
(θ,i)
t−1 , θ, yt, ϵ

(i)
t

)
|x(θ,i)t−1 , θ

)
(4.29)

= logN
(
f
(
x
(θ,i)
t−1

)
; a
(
x
(θ,i)
t−1 , θ

)
,Σ(θ)

)
, (4.30)

44 Conor Rosato

where the transition model is assumed to have additive Gaussian noise that is independent

of x
(θ,i)
t−1 . Then,

d

dθ
P (x

(θ,i)
t−1 , θ) =

∂

∂f
logN (f ; a,Σ)

(
∂f

∂x
(θ,i)
t−1

dx
(θ,i)
t−1

dθ
+

∂f

∂θ

)

+
∂

∂a
logN (f ; a,Σ)

(
∂a

∂x
(θ,i)
t−1

dx
(θ,i)
t−1

dθ
+

∂a

∂θ

)

+
∂

∂Σ
logN (f ; a,Σ)

(
∂Σ

∂θ

)
. (4.31)

Note that, the derivatives of logN (f ; a,Σ) are evaluated at a(x
(θ,i)
t−1) (the prior mean) and

not at µ (the proposal mean), as was the case in (4.28).

4.3.4 Derivative of the Likelihood

To calculate d
dθ log p

(
yt|x(θ,i)t

)
, let

L(x
(θ,i)
t , θ, yt) ≜ log p

(
yt|x(θ,i)t

)
, (4.32)

where the right-hand side of (4.32) is the log-likelihood in (4.9). Consider the case in which

the likelihood is Gaussian with a variance that is independent of x
(θ,i)
t , such that

L(x
(θ,i)
t , θ, yt) ≜ logN

(
yt;h(x

(θ,i)
t , θ), R(θ)

)
. (4.33)

Then, by application of the chain rule,

d

dθ
L
(
x
(θ,i)
t , θ, yt

)
=

∂

∂h
logN (yt;h,R)

(
∂h

∂x
(θ,i)
t

dx
(θ,i)
t

dθ
+

∂h

∂θ

)

+
∂

∂R
logN (yt;h,R)

dR

dθ
. (4.34)

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 45

4.4 Resampling for a Differentiable Particle Filter

Unlike for the standard particle filter described in Section 3.2, the weight derivatives

d

dθ
w

(θ,i)
1:t (4.35)

and the particle derivatives

d

dθ
x
(θ,i)
t (4.36)

need to be resampled. The resampling procedure adopted in this chapter is as follows:

Let

c
(θ,i)
t =

∑i
j=1w

(j,θ)
1:t∑N

j=1w
(j,θ)
1:t

(4.37)

be the normalised cumulative weights and let

κi = κ
(
νit , w

1:N
1:t

)
=

N−1∑
j=0

[
νit > c

(j,θ)
t

]
(4.38)

be the index sampled for particle i, where νit ∼ Uniform((0, 1]) are independent for each

particle and timestep. The particle indices are sampled according to a categorical distri-

bution, giving a multinomial resampler, where each index is resampled with a probability

proportional to its weight. Alternative resampling schemes exist that could reduce the

variance of estimates.

The resampled weights are equal, while preserving the original sum:

x
′(θ,i)
t = x

(θ,κi)
t , (4.39)

w
′(θ,i)
1:t =

1

N

N∑
j=1

w
(θ,j)
1:t . (4.40)

From (4.40), it is clear that

d

dθ
w

′(θ,i)
1:t =

1

N

N∑
j=1

d

dθ
w

(θ,j)
1:t . (4.41)

46 Conor Rosato

Converting this derivative to the derivative of log weights, application of the chain rule

gives

d

dθ
logw

′(θ,i)
1:t =

1

N

1

w
′(θ,i)
1:t

N∑
j=1

w
(θ,j)
1:t

d

dθ
logw

(θ,j)
1:t (4.42)

=

N∑
j=1

w̃
(θ,j)
1:t

d

dθ
logw

(θ,j)
1:t , (4.43)

where w̃
(θ,j)
1:t are the normalised weights.

To obtain the particle gradient, note that, for differentiable κ,

d

dθ
x
′(θ,i)
t =

∂

∂κ
xt
(
θ, κ

(
νit , w

1:N
1:t

)) ∂

∂θ
κ
(
νit , w

1:N
1:t

)
+

d

dθ
xt
(
θ, κ

(
νit , w

1:N
1:t

))
. (4.44)

Since ∂κ/∂θ = 0, except where

νit = c
(θ,j)
t for i, j = 1, . . . , N, (4.45)

then

d

dθ
x
′(θ,i)
t =

d

dθ
x
(θ,κi)
t (4.46)

almost surely, such that derivative of the resampled state is obtained by taking the deriva-

tive of the parent particle.

4.4.1 Discontinuities after a Resampling Realisation

Sampling with CRN results in a deterministic function f(θ), such that evaluating the

function twice gives the same output. Different outputs are obtained when sampling with-

out CRN. When using CRN resampling, a discontinuity occurs in the estimate of the

log-likelihood in Figures 4.1 (a) and (c) when two distinct values of θ cause different re-

sampling realisations to occur. On the left of the discontinuity, resampling takes place at

the same times for all θ and all particles have the same parents at all resampling events:

the particles for different values of θ share a single family tree. On the right of the discon-

tinuity, resampling realisations, and so the family tree, change. Since the approximation

of the likelihood (and its gradient) is a function of the family tree, this change results in a

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 47

discontinuity in the likelihood approximation.

The best approach to limiting these discontinuities is to use a high-performance pro-

posal. This is exemplified when comparing results obtained using the prior with those

obtained using the optimal proposal (which can, in some settings, be derived using a

Kalman Filter). Consider the following simple example to demonstrate this point. Sup-

pose that the state is a single real number, with a motion model given by a random walk

with zero initial mean and standard deviation, of both the initial state and each subsequent

propagation of θ. Given the state and observations are independent of θ and are defined

by the target state plus errors of known and fixed variance, R:

p (x1) = N
(
x1; 0, θ

2
)
, (4.47)

p (xk | xk−1, θ) = N
(
xk;xk−1, θ

2
)
, (4.48)

p (yk | xk, θ) = N (yk;xk, R) . (4.49)

Appendix A.2 outlines how to calculate the mean and covariance of the optimal proposal

for each particle xit−1, in addition to the necessary derivatives.

Figure 4.1 presents results obtained when running Algorithm 6 and computing an

estimate of the log-likelihood and the associated gradient across a range of 500 values of

θ, equally spaced from 1 to 4, for N = 2000 particles and T = 250 observations. The

true value is θ=2. The log-likelihood and its gradient w.r.t. θ, at each instance of θ, is

presented in Figures 4.1 (a) and (b), respectively. Figures 4.1 (c) and (d) are magnified

instances of these plots. Results are shown for the Kalman Filter, two runs of multinomial

resampling (to indicate the difference in results when running the simulation twice) and

CRN resampling.

Figure 4.1 (a) shows no clear differences in the graphs of the log-likelihood for the

estimates given by the Kalman Filter and the estimates produced by the particle filter when

using different combinations of the prior and optimal proposal for CRN and multinomial

resampling. However, there is a notable difference when comparing the gradient of the

log-likelihood w.r.t. θ. Using the prior as the proposal results in large discontinuities in

the estimate when compared with the optimal proposal. Figures 4.1 (c) and (d) show that

using CRN and the optimal proposal produces piecewise continuous estimates. This is in

contrast to multinomial resampling where fluctutations are apparent. Using an optimal

proposal, or an approximation to such a proposal, in conjunction with CRN resampling

is therefore advocated. A good proposal will minimise the variance of the incremental

48 Conor Rosato

weights at the current timestep. The process of selecting a good proposal can be time

consuming, however, as outlined in [88], can be critical in obtaining favourable results in

other contexts.

Algorithm 6: Differentiable Particle Filter

Input: θ, y1:T
1 Initialise: xi0,

d
dθx

i
0, log(w

i
0),

d
dθ log(w

i
0)

2 for t = 1, . . . , T do
3 Calculate the number of effective samples, Neff , using (3.45).
4 If Neff < N/2, resample xit−1, log(w

i
1:k−1), dx

i
t−1/dθ, d log(w

i
1:t−1)/dθ as

described in Section 4.4.
5 Sample the new particles xit and calculate the partial derivatives

∂

∂θ
f(xit−1, θ),

∂

dxit−1

f(xit−1, θ).

6 Calculate the proposal mean, µ(xit−1), and covariance, C(xit−1), for each
particle xit−1, in addition to their derivatives

∂

∂θ
µ(xit−1),

∂

xit−1

µ(xit−1),
∂

∂θ
C(xit−1),

∂

xit−1

C(xit−1),

7 as seen in Section 4.3.1.

8 Estimate the particle gradients, d
dθx

i
t, using (4.3.1).

9 Estimate the derivatives of the prior, proposal and likelihood using the
methods outlined in Sections 4.3.2, 4.3.3 and 4.3.4, respectively.

10 Evaluate the new log weights, logwi
1:k, and log weight derivatives, d

dθ logw
i
1:t,

using (4.5) and (4.6), respectively.

11 end
12 Evaluate the final log-likelihood, log p(y1:T |θ), and associated derivative,

d
dθ log p(y1:T |θ), using (3.41) and (4.4), respectively.

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 49

1.0 1.5 2.0 2.5 3.0 3.5 4.0
630

620

610

600

590

580

570

560

550
Lo

gL
ik

el
ih

oo
d

Kalman Filter - True
Particle Filter - multinomial - Prior
Particle Filter - CRN - Prior
Particle Filter - multinomial - Optimal
Particle Filter - CRN - Optimal

(a)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

50

25

0

25

50

75

100

125

dL
og

Lik
el

ih
oo

d

Kalman Filter - True
Particle Filter - multinomial - Prior
Particle Filter - CRN - Prior
Particle Filter - multinomial - Optimal
Particle Filter - CRN - Optimal

(b)

4 3 2 1 0 1 2 3 4
1e 8+2

554.9

554.8

554.7

554.6

554.5

554.4

Lo
gL

ik
el

ih
oo

d

Kalman Filter - True
Particle Filter - multinomial - Optimal - 1
Particle Filter - multinomial - Optimal - 2
Particle Filter - CRN - Optimal

(c)

4 3 2 1 0 1 2 3 4
1e 8+2

17.6

17.5

17.4

17.3

17.2

dL
og

Lik
el

ih
oo

d

Kalman Filter - True
Particle Filter - multinomial - Optimal - 1
Particle Filter - multinomial - Optimal - 2
Particle Filter - CRN - Optimal

(d)

Figure 4.1: Plots of (a) the log-likelihood, (b) the gradient of the log-likelihood w.r.t. θ,
(c) a magnified section of the log-likelihood and (d) the associated gradient. All plots: true
values given by the Kalman Filter (black), particle filter using CRN resampling (red) and
multinomial resampling (blue and orange).

50 Conor Rosato

4.5 Differentiable Particle Filters

In the subsequent sections, the differentiable particle filters considered for comparison are

described. This comparison includes the novel method of using CRN described in this

chapter.

4.5.1 Soft Resampling

Soft resampling, introduced in [44] and utilised in [39], considers a differentiable approxima-

tion to resampling which involves drawing from the distribution q(n) = αw
(θ,i)
1:t +(1−α)/N ,

with α ∈ [0, 1] representing a trade-off parameter. If α = 1, regular resampling is used and

if α = 0 the algorithm performs subsampling. The new weights are calculated by

w
′(θ,i)
1:t =

w
(θ,i)
1:t

αw
(θ,i)
1:t + (1− α)1/N

. (4.50)

This gives non-zero estimates of the gradient because the dependency on the previous

weights is maintained. By changing α, this method trades resampling quality for biased

gradient estimates.

4.5.2 Gumbel Softmax

The Gumbel-Max trick [89] provides a method for sampling a variable, z, from a categorical

distribution containing class probabilities, πx. If it is assumed that the categorical samples

are one-hot vectors, z is sampled by

z = onehot (argmaxi {Gi + log (πi)}) (4.51)

where xi = Gi + log(πi) and Gi are independently sampled from Gumbel(0, 1). The

summation in (4.51) is similar to the reparametrisation trick described previously, however,

in this case, the argmax function is not differentiable. The work outlined in [45] and [46]

describes a differentiable approximation to argmax, called softmax, defined to be

z =
exp

(
xk
λ

)∑n
i=1 exp

(
xi
λ

) . (4.52)

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 51

The temperature parameter, λ, is defined by the user and controls how closely the resulting

Gumbel-softmax distribution approximates the categorical distribution.

4.5.3 Optimal Transport

A fully differentiable particle filter that resamples using optimal transport ideas proposed

in [90] is described in [43]. This method ensures unbiased gradient estimates whilst in-

corporating bias in the log-likelihood estimate. This requires additional hyper-parameters

and runs in O(N2) time complexity. It can therefore be computationally expensive.

4.5.4 Fisher’s Identity to Calculate Gradient of the Log-likelihood

As described in Chapter 1, [48] recursively computes the gradient of the log-likelihood

using Fisher’s Identity. This method is summarised as follows:

d

dθ
log p (y1:t|θ) =

1

p (y1:t|θ)
d

dθ
p (y1:t|θ) (4.53)

=
1

p (y1:t|θ)
d

dθ

∫
p (y1:t, x1:t|θ) dx1:t (4.54)

=
1

p (y1:t|θ)

∫
d

dθ
p (y1:t, x1:t|θ) dx1:t (4.55)

=

∫
p (y1:t, x1:t|θ)
p (y1:t|θ)

d

dθ
log p (y1:t, x1:t|θ) dx1:t (4.56)

=

∫
p (x1:t|y1:t, θ)

d

dθ
log p (x1:t, y1:t|θ) dx1:t (4.57)

≈ 1

N

N∑
i=1

w̃
(θ,i)
1:t

d

dθ
log p

(
x
(θ,i)
1:t , y1:t|θ

)
︸ ︷︷ ︸

α
(θ,i)
n

. (4.58)

The term inside the sum can be calculated recursively:

α(θ,i)
n = α

(θ,i)
n−1 +

d

dθ
log p

(
yt|x(θ,i)t−1

)
+

d

dθ
log p

(
x
(θ,i)
t |x(θ,i)t−1 , θ

)
, (4.59)

where log p
(
x
(θ,i)
t |x(θ,i)t−1 , θ

)
is the derivative of the prior and d

dθ log p
(
yt|x(θ,i)t−1

)
the deriva-

tive of the log-likelihood (see (3.34), (4.3.3) and (4.3.4), respectively).

Recent work outlines how to perform this calculation in the framework of PyTorch

without having to modify the forward pass [91]. A stop-gradient operator that stops the

52 Conor Rosato

gradients of the weights flowing into the resampling distribution is included. Much like the

method described in this chapter, minimal changes to the particle filtering algorithm need

to be employed.

References [48] and [49] focus on unbiased estimators of the gradient of the log-likelihood,

using the expectation of the gradient of the logarithm as the approximation. In this chap-

ter, the gradient of the logarithm of the expectation is instead used as the approximation.

A feature of the approximation considered here, perhaps surprisingly, is that all samples

from all iterations are used, whereas the approach in [48] and [49] recursively calculates

along the trajectory of each particle. If, as is likely, the particle trajectories are degen-

erate, the approach in [48] and [49] will face limitations in using the diversity of states

early in the trajectory to inform the gradient estimate. In short, choosing between the two

approximations is likely to become a bias-variance trade-off.

4.6 Estimation of Parameters

If there exists a prior, p (θ), for which the likelihood, p (y1:T |θ), or log-likelihood2 can

be calculated, then p-MCMC can be used to estimate p (θ|y1:T) ∝ p (θ) p (y1:T |θ). The

gradient of the log-posterior of θ is given by

∇ log p(θ|y1:t) = ∇ log p(θ) +∇ log p(y1:t|θ), (4.60)

where ∇ log p(θ) is the gradient of the log-prior and ∇ log p(y1:t|θ) the gradient of the

log-likelihood. If ∇ log p(θ|y1:t) is known, it is possible to reduce the correlation between

successive sampled states by proposing moves to distant states in π(θ) and maintain a high

probability of acceptance.

4.6.1 Hamiltonian Monte Carlo and the No-U-Turn Sampler

For description of the HMC and NUTS3 algorithms used in the subsequent sections, refer

to Sections 3.3.2 and 3.3.3, respectively.

2The log-likelihood is likely to be more stable numerically.
3Note, using CRN when calculating the gradient from a particle filter results in gradients that are a

deterministic function of the parameter. The Jacobian terms therefore cancel and integration over the
possible dynamic states is not required, as is the case for regular NUTS.

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 53

4.6.2 Metropolis-Adjusted Langevin Algorithm (MALA)

MALA is a MHRW proposal that includes gradient information about the log-posterior

(as seen in [54]):

θ′ = N

(
θ +

1

2
Γ∇ log p(θ|y1:T),Γ

)
, (4.61)

where Γ = γ2Id, for step size γ. In a similar way to [53], the algorithm is executed for

varying step size, with the step size that provides an acceptance rate of approximately 0.3

in the stationary phase selected. Although MALA is presented as an independent proposal,

it is a special case of HMC when L = 1.

Algorithm 7: Particle - HMC or NUTS

Input: θ0, y1:T , M , L
1 ℓ(θ), ∇L(θ) = Run Algorithm 6
2 ϵ = Find Reasonable ϵ(θ0)
3 for i = 1 to M do
4 HMC = Algorithm 1 in [26] or
5 NUTS = Algorithm 3 in [26]

6 end
7 Function Leapfrog(θ, r, y1:T , ∇L(θ)):
8 r′ = r + 0.5 · ϵ · ∇L(θ)
9 θ′ = θ + ϵ · r′

10 ℓ(θ), ∇L(θ)′ = Run Algorithm 6
11 r′ = r′ + 0.5 · ϵ · ∇L(θ)′
12 return θ′, r′, ℓ(θ)′, ∇L(θ)′

4.7 Numerical Experiments

In the subsequent sections, the differentiable particle filters and sampling algorithms (see

Sections 4.5 and 4.6, respectively) are evaluated when inferring the parameters in three

SSMs. The three examples are the LGSSM, SVM and epidemiological models presented

in Sections 3.1.1, 3.1.2 and 3.1.4.1, respectively.

54 Conor Rosato

4.7.1 Linear Gaussian State-Space Model

The following example corresponds to that in Section 3.1.1, all parameter notations and

priors remain the same.

The “optimal” proposal (3.38) is used within the particle filter and can be derived from

the properties of the distributions in (3.3) and (3.4). This gives

q (xt|xt−1, yt) = N
(
xt;σ

2
[
σ−2
e yt + σ−2

v ϕxt−1

]
, σ2
)
, (4.62)

where σ−2 = σ−2
v + σ−2

e . Weights are updated using (3.39) such that

w
(θ,i)
1:t = N

(
yt;ϕxt, σ

2
v + σ2

e

)
w

(θ,i)
1:t−1. (4.63)

4.7.1.1 Results

First, the differentiable particle filters described in Section 4.5 are compared in terms of

computation time and MSE between true and inferred values of θ = {ϕ, σv} in the LGSSM

described in Section 4.7.1. The true values of ϕ and σv are 0.7 and 1.2, respectively. NUTS

is used as the proposal and the particle filter run with varying numbers of particles, N ,

and observations, T , over M = 50 MCMC iterations. Results are presented in Table 4.1,

with the MSE and time taken in seconds averaged over 10 runs (with different random

number seeds).

Use of CRN and FI (Fisher’s identity) consistently results in the lowest computation

time. One reason for this is that minimal changes to the resampling step are introduced

when compared to the alternative methods considered in Table 4.1. For T = 25 and

T = 100, CRN results in the lowest MSE when running with N = 32, 64 and 128 and

N = 16, 32, 64, and 128, respectively. Optimal transport resampling results in lower MSE

estimates in some experiments, however, the computation time is considerably higher than

for CRN and FI.

C
h
a
p
ter

4.
E
ffi
cien

t
L
ea
rn
in
g
of

th
e
P
aram

eters
of

N
on

-L
in
ear

M
o
d
els

u
sin

g
D
iff
eren

tia
b
le

R
esa

m
p
lin

g
in

P
article

F
ilters

55

T=25 T=50 T=100

CRN SR GS OT FI CRN SR GS OT FI CRN SR GS OT FI

N
=
1
6 MSE 0.151 1.446 0.179 0.141 0.135 0.075 0.438 0.076 0.025 0.025 0.035 0.056 0.045 0.040 0.047

Time (sec) 593 730 554 2062 582 728 1423 765 6256 1590 939 2684 1018 4396 1005

N
=
3
2 MSE 0.112 0.899 0.174 0.124 0.121 0.077 0.297 0.078 0.020 0.021 0.035 0.050 0.045 0.035 0.036

Time (sec) 558 816 587 1667 589 790 1478 784 6839 1339 941 2601 1583 5292 1014

N
=
6
4 MSE 0.121 1.091 0.165 0.121 0.126 0.074 0.452 0.084 0.069 0.025 0.025 0.396 0.050 0.044 0.049

Time (sec) 552 747 852 1647 608 750 1481 1229 2303 1369 1952 2571 2959 5281 1022

N
=
1
2
8

MSE 0.129 1.576 0.135 0.142 0.162 0.078 0.318 0.074 0.082 0.027 0.026 0.825 0.043 0.044 0.044

Time (sec) 583 880 1152 1827 582 738 1452 1423 2592 1383 1586 2621 3034 5651 1020

Table 4.1: Average MSE and computation time in seconds for estimation of θ = {ϕ, σv} in the LGSS model for
varying N and T , using the differentiable particle filters outlined in Section 4.5: CRN = us, SR = soft resampling,
GS = gumbel-softmax, OT = optimal transport and FI = Fisher’s identity. Results are averaged over 10 runs using
different random number seeds with NUTS as the proposal.

56 Conor Rosato

N = 512 N = 1024
T (Secs) MSE NGE T (Secs) MSE NGE

MALA 4.342 0.306 9 6.288 0.300 9

H
M

C

L2 3.70 0.36±0.01 18 14.21 0.36±0.02 18
L4 7.26 0.31±0.02 36 32.34 0.31±0.04 36
L6 11.39 0.27±0.03 54 57.84 0.26±0.06 54
L8 18.86 0.25±0.05 72 54.18 0.25±0.07 72
L10 24.46 0.22±0.06 90 103.80 0.23±0.08 90

NUTS 35.77 0.23±0.08 106 69.91 0.19±0.07 66

Table 4.2: Computation time in seconds, MSE and the number of gradient evaluations
(NGE) for estimation of θ = {ϕ, σv, σe} in the LGSS model for varying N , using different
MCMC proposals. T = 100 observations, M = 10 MCMC iterations. CRN resampling is
used in all experiments. Results are averaged over 10 runs using different random number
seeds.

Next, the proposals outlined in Section 4.6 are compared. As explained previously,

using NUTS eliminates the need to manually select the length parameter, L, in HMC by

adaptively selecting the parameter at every iteration. Therefore, it is likely that NUTS

makes more than one target evaluation per iteration and so is more computationally costly

than MALA, where one evaluation is made, and HMC for certain values of L. As such,

in Table 4.2, the number of gradient evaluations is presented as well as the average MSE

between the true and inferred values of θ = {ϕ, σv, σe} and the computation time for the

LGSSM described in Section 4.7.1. The true values of ϕ, σv and σe are 0.7, 1.2 and 1,

respectively. The setup of the experiment is as follows: T = 100, M = 10 and N = 512,

1024. CRN resampling is used in all experiments. Table 4.2 exemplifies the benefit of

NUTS over HMC, without the need to optimise the number of steps, L: NUTS obtains a

lower MSE in a shorter run time than HMC.

Finally, results for use of NUTS and CRN resampling are presented alongside a com-

monly used diagnostic for determining whether three independent chains with different ini-

tial starting values of θ = {ϕ, σv, σe} have converged. Consider the initialisation N = 750

particles, T = 250 observations and M = 500 MCMC iterations (first 100 discarded as

burn-in). The true values of θ = {ϕ, σv, σe} are 0.7, 1.2 and 1, respectively. The trace and

density plots for the accepted samples of θ are given on the left and right of Figure 4.2 (a),

respectively. These plots provide an indication as to how well the chains have converged to

their stationary distributions. Figures 4.2(b)-(d) present 1-dimensional histograms, plotted

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 57

0.4

0.6

0.8

Trace Plot

0.25

0.50

0.75

Density

1

2

v

1.0
1.5
2.0

0 50 100 150 200 250 300 350 400

Iteration

0.5

1.0

1.5

e

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Frequency

0.5

1.0

1.5

(a)
 = 0.68+0.08

0.08

0.8
1.2
1.6
2.0

v

v = 1.21+0.27
0.21

0.5 0.6 0.7 0.8
0.3
0.6
0.9
1.2
1.5

e

0.8 1.2 1.6 2.0

v

0.3 0.6 0.9 1.2 1.5

e

e = 1.06+0.17
0.17

(b)

 = 0.67+0.07
0.10

1.0
01.2
51.5
01.7
5

v

v = 1.26+0.29
0.19

0.4 0.5 0.6 0.7 0.8
0.6
0.9
1.2
1.5

e

1.0
0

1.2
5

1.5
0

1.7
5

v

0.6 0.9 1.2 1.5

e

e = 1.01+0.17
0.13

(c)

 = 0.67+0.08
0.08

0.9
1.2
1.5
1.8
2.1

v

v = 1.22+0.30
0.22

0.4
8

0.5
6

0.6
4

0.7
2

0.8
00.5

00.7
51.0
01.2
51.5
0

e

0.9 1.2 1.5 1.8 2.1

v
0.5

0
0.7

5
1.0

0
1.2

5
1.5

0

e

e = 1.04+0.14
0.16

(d)

Figure 4.2: (a) Trace plots (left) and density estimates (right) of three independent chains
with different initial starting values of θ. Horizontal black lines indicate the true values.
(b)-(d) 1-dimensional corner plots for the three independent chains. Horizontal and vertical
black lines indicate the true values.

using [92], for the three chains. The uncertainties associated with the estimates of θ are

also provided. The mean estimate of θ derived from the three chains is [0.67, 1.23, 1.04] and

the corresponding Gelman-Rubin statistics (see Section 3.5.3) 1.0091, 1.007 and 1.0094,

respectively.

4.7.2 Stochastic Volatility Model

The following example corresponds to that in Section 3.1.2, all parameter notations and

priors remain the same.

The prior is set to be the proposal (3.36), such that the incremental log weight (3.34)

58 Conor Rosato

becomes

log σ
(
x
(θ,i)
t , x

(θ,i)
t−1 , θ

)
= log p

(
yt|x(θ,i)t

)
(4.64)

and the associated gradient (see (4.7))

d

dθ
log σ

(
x
(θ,i)
t , x

(θ,i)
t−1 , θ

)
=

d

dθ
log p

(
yt | x(θ,i)t−1

)
. (4.65)

4.7.2.1 Results

In this section, the proposals outlined in Section 4.6 when inferring the parameters of

the stochastic volatility model outlined in (3.5) - (3.7) are compared. Each simulation is

initialised with N = 5000 particles, T = 500 observations, M = 5000 MCMC iterations

(first 2000 discarded as burn-in) and uses CRN resampling. Initial values of θ are fixed

across all simulations.

The first and second rows of subplots (a), (b) and (c) in Figure 4.3 show the histogram

and trace plots of the accepted values of µ, ϕ and σv, respectively. These plots provide

a visual indication of how well each of the samplers perform. However, they should not

be the only measure used to asses convergence. Table 4.3 outlines a number of MCMC

diagnostics that determine if the sampler has converged to equilibrium. These include the

mean of the posterior samples, which, on its own, is not very informative, especially if the

inferred parameter is unknown.

From the trace plots, it is evident that for MALA and HMC, for some values of L, there

exists serial correlation between consecutive draws. This results in poor exploration of

the parameter space. NUTS has the least serial correlation between MCMC draws. This

observation is highlighted in the third row, where auto-correlation function (ACF) plots

for the simulations are shown. These plots present the auto-correlation for a Markov chain

up to a user-specified number of lags, selected to be 100. The desired ACF plot is large

at short lags but quickly drops towards zero. For MALA and a number of the HMC

simulations the ACF plots do not reach 0 within the specified 100 lags. The integrated

auto-correlation time (IACT) (see Section 3.5.2) is a measure of the area under the ACF

plot. This value gives an indication of the mixing within the Markov chain and should

therefore be minimised. Table 4.3 shows that using NUTS results in lower IACT scores for

parameters µ and σv and is comparable with HMC with L = 6 for ϕ.

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 59

0.4 0.2
0

2

4

6

8

10

De
ns

ity

MALA

0.20 0.15 0.10 0.05
0

5

10

15

20

25

HMC: L=2

0.5 0.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

HMC: L=4

0.4 0.2 0.0 0.2
0

1

2

3

4

HMC: L=6

0.5 0.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

HMC: L=8

0.5 0.0
0.0

0.5

1.0

1.5

2.0

2.5

HMC: L=10

0.5 0.0
0

1

2

3

4

RHMC

0.5 0.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0
NUTS

0 1000 2000 3000

Iteration
0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

Tr
ac

e
pl

ot

0 1000 2000 3000

Iteration

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0 1000 2000 3000

Iteration

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0 1000 2000 3000

Iteration

0.4

0.3

0.2

0.1

0.0

0.1

0 1000 2000 3000

Iteration

0.6

0.4

0.2

0.0

0.2

0 1000 2000 3000

Iteration

0.6

0.4

0.2

0.0

0 1000 2000 3000

Iteration

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0 1000 2000 3000

Iteration
0.6

0.4

0.2

0.0

0.2

0 25 50 75 100

Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

-C
or

re
la

tio
n

Fu
nc

tio
n

0 25 50 75 100

Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Lag
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Lag

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Lag
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.9 1.0
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
ns

ity

MALA

0.94 0.96 0.98 1.00
0

5

10

15

20

25

30

35
HMC: L=2

0.8 0.9 1.0
0

5

10

15

20

25

HMC: L=4

0.85 0.90 0.95 1.00
0

5

10

15

20

HMC: L=6

0.7 0.8 0.9 1.0
0

5

10

15

20

25

HMC: L=8

0.8 0.9 1.0
0

5

10

15

20

25

HMC: L=10

0.8 0.9 1.0
0

5

10

15

20

25

RHMC

0.8 0.9 1.0
0

5

10

15

20

NUTS

0 1000 2000 3000

Iteration

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Tr
ac

e
pl

ot

0 1000 2000 3000

Iteration
0.94

0.95

0.96

0.97

0.98

0.99

0 1000 2000 3000

Iteration

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

0 1000 2000 3000

Iteration
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0 1000 2000 3000

Iteration

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 1000 2000 3000

Iteration

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

0 1000 2000 3000

Iteration

0.80

0.85

0.90

0.95

1.00

0 1000 2000 3000

Iteration

0.80

0.85

0.90

0.95

1.00

0 25 50 75 100

Lag
0.2

0.0

0.2

0.4

0.6

0.8

Au
to

-C
or

re
la

tio
n

Fu
nc

tio
n

0 25 50 75 100

Lag
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Lag

0.0

0.2

0.4

0.6

0.8

0 25 50 75 100

Lag

0.2

0.0

0.2

0.4

0.6

0.8

0 25 50 75 100

Lag

0.0

0.2

0.4

0.6

0.8

0 25 50 75 100

Lag
0.2

0.0

0.2

0.4

0.6

0.8

Figure 4.3: Density, trace and auto-correlation function plots for parameters: µ (top) and
ϕ (bottom). First row: histograms of posterior estimate. Second row: trace plots and
estimated mean (red horizontal line). Third row: ACF plots with lag = 100.

60 Conor Rosato

0.2 0.4

v

0

1

2

3

4

5

6

De
ns

ity

MALA

0.05 0.10 0.15 0.20

v

0

2

4

6

8

10

12

14

16
HMC: L=2

0.0 0.2 0.4

v

0

1

2

3

4

5

6

HMC: L=4

0.1 0.2 0.3

v

0

1

2

3

4

5

6

7

8
HMC: L=6

0.0 0.2 0.4 0.6

v

0

1

2

3

4

5

6
HMC: L=8

0.0 0.2 0.4

v

0

1

2

3

4

5

6

7

8
HMC: L=10

0.2 0.4

v

0

1

2

3

4

5

6

7

8
RHMC

0.0 0.2 0.4

v

0

2

4

6

8

NUTS

0 1000 2000 3000

Iteration

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ac

e
pl

ot

0 1000 2000 3000

Iteration

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 1000 2000 3000

Iteration
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1000 2000 3000

Iteration
0.05

0.10

0.15

0.20

0.25

0 1000 2000 3000

Iteration

0.1

0.2

0.3

0.4

0.5

0 1000 2000 3000

Iteration
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1000 2000 3000

Iteration

0.1

0.2

0.3

0.4

0.5

0 1000 2000 3000

Iteration

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100

Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

-C
or

re
la

tio
n

Fu
nc

tio
n

0 25 50 75 100

Lag

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Lag
0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Lag
0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Lag
0.2

0.0

0.2

0.4

0.6

0.8

Figure 4.3: Density, trace and auto-correlation function plots for parameters: σv . First
row: histograms of posterior estimate. Second row: trace plots and estimated mean (red
horizontal line). Third row: ACF plots with lag = 100. (Cont)

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 61

The ESS is also shown in Table 4.3. Much like the IACT scores for parameters µ and

σv, NUTS provides better results than the other samplers and is slightly worse than HMC

with L = 6 for ϕ.

As explained previously, randomising the L parameter within HMC can avoid period-

icities in the underlying Hamiltonian dynamics. To do this we draw an L value from an

exponential distribution with a mean parameter of 2.5. To ensure this value is an integer

we round up. It is evident when looking at Table 4.3, randomising the L parameter in

HMC provides better results for µ when compared with HMC with fixed L but is still

worse than NUTS.

The mean estimates of θ differ slightly in each simulation to those presented in [68],

which were [−0.23, 0.97, 0.15]. We believe this disparity stems from [68] using the same

particle filter but a MHRW proposal for the parameters. However, when a reparam-

eterised model (described on page 29 of [68]) is used, they obtain estimates equal to

[−0.16, 0.96, 0.17], which are very similar to those seen in Table 4.3 when using NUTS,

[−0.17, 0.96, 0.18].

6
2

C
on

or
R
osato

MALA HMC RHMC NUTS
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

M
e
a
n µ -0.27 -0.12 0.01 -0.34 -0.01 -0.16 -0.20 -0.24 -0.16 -0.30 -0.17 -0.16 -0.17

ϕ 0.95 0.97 0.94 0.96 0.97 0.96 0.96 0.95 0.95 0.96 0.93 0.96 0.96
σv 0.19 0.13 0.23 0.18 0.14 0.16 0.18 0.19 0.2 0.17 0.23 0.19 0.18

IA
C
T µ 131 173 190 182 164 192 154 125 163 167 174 101 66

ϕ 125 158 175 100 98 139 35 68 79 73 144 63 36
σv 148 191 181 111 137 173 44 74 89 81 146 66 35

E
S
S

µ 15 5 1 2 8 1 12 16 4 11 1 30 50
ϕ 3 2 2 25 15 8 94 59 37 42 18 75 89
σv 2 1 2 26 6 6 71 50 34 44 16 55 102

Acc. rate 0.35 0.73 0.81 0.73 0.87 0.83 0.70 0.66 0.76 0.68 0.70 0.53 0.86

Table 4.3: IACT, ESS, mean estimate of θ and acceptance probability of the samplers, applied to the SV model for
N = 1000 particles and M = 5000 MCMC iterations. For each simulation of HMC, RHMC and NUTS the value of
ϵ is fixed. CRN resampling is used in all experiments.

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 63

4.7.3 Epidemiological Models

The SIR model in Section 3.1.4.1 is extended to include an exposed compartment. The

SEIR model follows a similar discrete time approximation to the SIR model. Table 4.4

provides a description of the parameters used in the SIR and SEIR models.

Similar to the stochastic volatility model example described in Section 4.7.2, the pro-

posal distribution is defined to be equivalent to the dynamics, such that

q
(
x
(θ,i)
t |x(θ,i)t−1 , yt

)
= p

(
x
(i)
t |x

(θ,i)
t−1 , θ

)
, (4.66)

simplifying the weight update to

w
(θ,i)
1:t = p

(
yt|x(θ,i)t

)
w

(θ,i)
1:t−1. (4.67)

The derivative of the log-likelihood is given by (4.4). Due to the simplification in (4.66),

the derivative of the particle weights w.r.t θ reduces to

d

dθ
w

(θ,i)
1:t =

d

dθ
p
(
yt|x(θ,i)t

)
w

(θ,i)
1:t−1 + p

(
yt|x(θ,i)t

) d

dθ
w

(θ,i)
1:t−1. (4.68)

As explained in Section 4.2.2, when calculating the derivatives of the particle states it

is evident that d
dθp
(
yt|x(θ,i)t

)
does not explicitly depend on θ, but x

(θ,i)
t does. Therefore,

in order for the derivative of the likelihood w.r.t θ to be non-zero, the derivative dx
(θ,i)
t /dθ

must first be calculated. Defining

x
(θ,i)
k = f(x

(θ,i)
t−1 , θ, yt, ϵ

i
t), (4.69)

the derivatives can be calculated using (4.21), (4.22) and (4.23).

As outlined in Chapter 1, MHRW is the commonly chosen proposal within p-MCMC

when modelling epidemics. Therefore, for this analysis, the MHRW proposal is compared

with NUTS.

4.7.3.1 SEIR Model

The discrete time approximation of the dynamics of the SEIR model is defined as follows:

64 Conor Rosato

Parameter Description Prior Information
P The total population -
st The proportion of people in the susceptible compartment 1− (e0 + i0)
et The proportion of people in the exposed compartment Unif(0.00016, 0.00024)
it The proportion of people in the infectious compartment Unif(0.00016, 0.00024)
rt The proportion of people in the recovered compartment -
β Mean rate of people an infected person infects per day HalfNormal (0.0, 0.5)
γ The proportion of infected recovering per day Normal(4.0, 5.0)
δ Length of incubation period Normal(4.0, 5.0)
R0 The total number of people an infected person infects -

Table 4.4: Table of the parameters and a description used in the statistical SIR and SEIR
models. Prior information is also included.

st+1 = st − βitst + ϵβ, (4.70)

et+1 = et + βitst − δet − ϵβ + ϵδ, (4.71)

it+1 = it + δet − γit + ϵγ − ϵδ, (4.72)

rt+1 = rt +−γit + ϵγ . (4.73)

4.7.3.2 Observation Equation

The log of the observations is given by (3.27). For the purpose of this analysis bl, ϕl and

σl are known which allows the likelihood to be formulated as

p
(
yt|x(θ,i)t

)
= logN

(
yt; bli

ϕt
t , σ2

l

)
. (4.74)

4.7.3.3 SIR Results

First, NUTS and MHRW proposals are compared in p-MCMC by inferring the parameters

of the SIR model presented in Section 3.1.4.1. The parameter and prior choices are the

same as those described in [16]. The dynamics in (7.9) and (7.10) are simulated for T = 125

days with a population of P = 5000. The true values of θ = [β, γ, v] are fixed at 0.254,

0.111 and 1.246, respectively. At t0, the number of susceptible individuals is 4990 and

the number of infected 10. Figure 4.4(a) presents the proportion of the population in

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 65

(a) (b)

(c) (d)

Figure 4.4: Simulated epidemic curves for the SIR model with θ = [β, γ, v] fixed at 0.254,
0.111 and 1.246, respectively (a), syndromic data simulated from the infected curve (b)
and log-likelihood and gradient of the log-likelihood w.r.t β (c) and (d), respectively. The
dashed horizontal line indicates a gradient of 0. True values of β are given by the dashed
vertical lines.

each compartment throughout the duration of the epidemic. Figure 4.4(b) presents the

simulated syndromic observations, y1:T , which are a fraction of the infected compartment.

Observations are drawn from (3.27), with parameters bl, ϕl and σl fixed at 0.25, 1.07 and

0.0012, respectively.

The particle filter is run to obtain estimates of the log-likelihood and the gradient of the

log-likelihood w.r.t β across a range of 100 values equally spaced between 0.248 and 0.260.

The log-likelihood should be maximised and a gradient of 0 observed when β = 0.254.

Results are provided in Figure 4.4(c) and (d).

The MSE between true and inferred values of θ for MHRW and NUTS, in addition

to the computation time in seconds for different numbers of particles, N , are presented

in Table 4.5. The MSE and computation time are averaged over 10 runs. Each run uses

a different random number seed and is run for 50 MCMC iterations. Different random

66 Conor Rosato

0 10 20 30 40 50
Iteration

0.16

0.18

0.20

0.22

0.24
Be

ta

MH: Traceplots of Beta, N=800

(a)

0 10 20 30 40 50
Iteration

0.12

0.14

0.16

0.18

0.20

0.22

Ga
m

m
a

MH: Traceplots of Gamma, N=800

(b)

0 10 20 30 40 50
Iteration

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Be
ta

NUTS: Traceplots of Beta, N=100

(c)

0 10 20 30 40 50
Iteration

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Ga
m

m
a

NUTS: Traceplots of Gamma, N=100

(d)

Figure 4.5: Trace plots of β and γ for 10 independent Markov chains with the same
initial values but different random number seeds, for MHRW (a)-(b) and NUTS (c)-(d)
simulations with similar computation times (see Table 4.5). True values indicated by
horizontal dashed line.

number seeds will produce different realisations when resampling occurs (see Section 4.4)

and so in turn, will converge to the true value of θ at different rates. Averaging over the 10

runs provides a more accurate representation of the typical convergence accuracy and the

computation time. This is exemplified in Figure 4.5 for MHRW (subplots: (a) and (b)) and

NUTS (subplots: (c) and (d)). Each trace plot represents an independent MCMC chain

with initial values: 0.15 and 0.21 for β and γ, respectively. Note that, for the MHRW

proposal, the step sizes of β and γ are as stated in [16]: 0.005 and 0.001, respectively.

Table 4.5 shows that NUTS minimises the MSE in less computation time when compared

with MHRW.

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 67

β γ Time (secs)

N=50
MHRW 0.0055 0.0095 2.3020
NUTS 0.0010 0.0006 25.4688

N=100
MHRW 0.0051 0.0095 3.9031
NUTS 0.0010 0.0006 31.9671

N=200
MHRW 0.0054 0.0094 7.6374
NUTS 0.0009 0.0097 51.1340

N=400
MHRW 0.0049 0.0097 17.4208
NUTS 0.0012 0.0008 101.5174

N=800
MHRW 0.0046 0.0094 39.4373
NUTS - - -

Table 4.5: Comparison of MSE and computation time for MHRW and NUTS proposals
for varying numbers of particles, N .

4.7.3.4 SEIR Results

The convergence of the Markov chain to the true parameters when running with different

numbers of particles, N , is now presented for the SEIR model in Section 4.7.3.1. Table 4.6

outlines the results when using NUTS with ∆ fixed at 0.0055. The simulation is run for

2000 samples, with the first 1000 discarded as burn-in. The true values of β, γ and δ

are 0.254, 0.111 and 0.400, respectively. Figures 4.6 (a) and (b) are the trace plots for β

when N = 16 and 256, respectively. It is evident that N = 256 results in a Markov chain

with better mixing, which in turn explores π(θ) more efficiently than for N = 16. This

result is supported by the acceptance rates in Table 4.6, where 53% and 20% of samples

are accepted for N = 256 and N = 16, respectively. The corresponding auto-correlation

function (ACF) plots are provided in Figures 4.6 (c) and (d). ACF plots present the

auto-correlation between samples in the Markov chain as a function of a user-specified lag,

selected to be 100. The plot that tends towards 0 in the fewest number of lags is considered

superior. This is the case for N = 256. Table 4.6 outlines the integrated auto-correlation

time (IACT) for each parameter. This is a numerical measure of the area under the ACF

68 Conor Rosato

0 200 400 600 800 1000
Iteration

0.25

0.30

0.35

0.40

0.45
Tr

ac
e

pl
ot

Trace plot for , N=16

(a)

0 200 400 600 800 1000
Iteration

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

Tr
ac

e
pl

ot

Trace plot for , N=256

(b)

0 20 40 60 80 100
Lag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Au
to

co
rre

la
tio

n

ACF for , N=16

(c)

0 20 40 60 80 100
Lag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Au
to

co
rre

la
tio

n

ACF for , N=256

(d)

Figure 4.6: Convergence plots for β in the SEIR model when using NUTS, for N = 16 and
256: trace plots (a)-(b), ACF plots (c)-(d).

plot, with correlation between consecutive samples decreasing with IACT value. The ESS

for varying N and the computation time in seconds are also provided in Table 4.6. Note

that the ESS and IACT scores do not monotonically rise and fall, respectively, when N is

between 16 and 128. This could be accountable to insufficient increments of N .

The predicted marginal distributions for the parameters β, γ and δ when using N =

256 and NUTS are presented in Figures 4.7 (a), (b) and (c), respectively. The predicted

distribution around the basic reproduction number, Rt, calculated by Rt = β/γ, is also

provided in Figure 4.7 (d).

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 69

0.20 0.25 0.30 0.35 0.40 0.45
0

2

4

6

8

10

12

14

De
ns

ity

Histogram for parameter

(a)

0.105 0.110 0.115 0.120 0.125 0.130
0

20

40

60

80

100

120

De
ns

ity

Histogram for parameter

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

Histogram for parameter

(c)

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
R0

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Histogram for parameter R0

(d)

Figure 4.7: Marginal distribution plots for β (a), γ (b), δ (c) and Rt (d), when using NUTS
and N = 256 for the SEIR model.

70 Conor Rosato

Num. Particles 16 32 64 128 256

Mean Estimate
β 0.287 0.273 0.293 0.299 0.286
γ 0.116 0.115 0.117 0.118 0.116
δ 0.368 0.429 0.337 0.321 0.379

IACT
β 66 16 35 17 2
γ 65 11 35 15 2
δ 69 17 26 9 7

ESS
β 16 46 21 65 81
γ 15 50 11 74 87
δ 13 38 30 63 73

Time (s) 5952 7798 9985 12831 21763

ESS/s
β 0.003 0.006 0.002 0.005 0.004
γ 0.003 0.006 0.001 0.006 0.004
δ 0.002 0.005 0.003 0.005 0.003

Acc. Rate 0.20 0.33 0.46 0.52 0.53

Table 4.6: Markov chain convergence statistics for varying N .

Chapter 4. Efficient Learning of the Parameters of Non-Linear Models using
Differentiable Resampling in Particle Filters 71

4.8 Conclusions and Future Work

This chapter outlines an extension of the reparameterisation trick that uses common ran-

dom numbers when performing the resampling step in a particle filter. Employing this

method limits the discontinuities encountered when calculating gradients used in HMC

and NUTS. These algorithms were applied to three problems, for which using NUTS was

found to improve the mixing of the Markov chain compared to MALA or HMC. Different

methods for resampling were compared. It was shown that CRN resampling produces more

accurate estimates in shorter run time.

Analysis using Hessian information about the log-posterior within MCMC proposals, as

considered in [53], was not included in this chapter. This is due to the generic complexity

of computing the second-order partial and full derivatives of the equations in Sections 4.2.2

and 4.3. An estimate of the state-dependent Hessian matrix could be derived, using the

gradients estimated in (4.60), via the Gaussian process construction provided in [93]. An

avenue for future work is therefore to incorporate the resulting Hessian matrix in the

proposal (4.61), in a similar manner to that of [53], or as the mass matrix within NUTS.

Doing so could provide additional performance gains over those reported herein.

An additional interesting direction for future work is to perform a broader comparison

of algorithms that can be applied to parameter estimation in SSMs. These include, but

are not limited to, SMC2 [94], nudging the particle filter [95] and the nested particle filter

[96].

The nested particle filter and SMC2 have two layers of SMC methods: one (an SMC

sampler with Nθ particles) estimates the density function over the static parameters, θ, and

the other (a particle filter with Nx particles) considers the dynamic states. The difference

between the two methods is that the nested particle filter runs in a purely recursive manner.

A detailed comparison of the nested particle filter and SMC2 can be seen in [96]. The

computational complexity of both methods is O(NθNxT), as in the methods described in

this chapter (assuming the simulation is run for Nθ MCMC steps).

In the nudging particle filter, particles are nudged towards regions of the state space

where the likelihood is deemed to be high. In [95], this method is applied to the p-

MCMC algorithm with a MHRW proposal (see Section 3.4). An outline of how gradient

nudging steps can be used within the framework of differentiable likelihoods and automatic

differentiation libraries is provided. This approach is applicable to the methods proposed

in this chapter, with the potential to offer improvements in performance.

72 Conor Rosato

Further note that there exists a trade-off between the theoretical concerns related to

convergence and the empirical performance achieved. Future work may involve derivation

of mathematical proofs of the regularity properties of the estimated derivatives considered

in this chapter.

Chapter 5

Particle-NUTS using PyTorch and

PyMC3

Chapter 4 outlines that the standard particle filter cannot be differentiated due to the

sampling and resampling steps. Recent developments have focused on how to make these

inherent operations of the particle filter compatible with automatic differentiation (AD)

libraries. In this chapter, a framework for calculating gradients from a particle filter using

PyTorch is presented. The resulting gradients can be used within PyMC3’s implementation

of the No-U-Turn sampler. We compare the proposed algorithm to p-MCMC with the

MHRW proposal and show that it samples more effectively and efficiently when inferring

the parameters of three SSMs that use real datasets.

5.1 Introduction

Automatic differentiation (AD) efficiently calculates the derivatives of functions with thou-

sands of inputs, making optimisation feasible. Optimisation algorithms, such as stochastic

gradient descent, have therefore become a widely used method in the machine learning

community. Existing AD frameworks include PyTorch [97], TensorFlow [98], Autograd

[99] and Julia [100]. Turing is a ppl that adds a thin layer to Julia code to easily describe

models using packages from Julia. A benefit of using Turing over Stan is that critical

comparisons of different samplers can be made. For example, Turing can make inferences

on continuous and discrete random variables using MHRW, Gibbs, HMC and NUTS. This

is in contrast to Stan which can only make inferences on continuous random variables

73

74 Conor Rosato

using NUTS. However, Turing is less mature than Stan so may lack specific tools and

functionality that Stan possesses.

PyTorch is primarily a machine learning framework that performs dynamic tensor com-

putations with AD and has been used in applications such as neural networks, computer

vision and natural language processing. A computational graph is created that contains

the operations used during the executable program in the form of a directed acyclic graph.

Two methods for building these graphs include statically and dynamically, which under-

pin TensorFlow and PyTorch, respectively. Nodes contained within the graph correspond

to mathematical operations. According to [101], PyTorch is easier to debug as the error

messages are more informed. This is in contrast to Theano where error messages are less

helpful. According to [102], PyTorch and Theano are comparative in terms of execution

speed.

The particle filter is inherently non-differentiable due to reasons explained in Chapter 4.

More specifically, the log-likelihood w.r.t θ, given by (3.41), cannot be differentiated. This

is due to the randomness in the sampling step and the discrete operation required for

multinomial resampling. The reparameterisation-trick outlined in Section 4.2.2 allows the

sampling operation to be formulated such that it is compatible with AD.

The novel method of fixing the random number seed within multinomial resampling,

which is outlined in Section 4.4, is applicable when using PyTorch. However, as described

in Section 4.4.1, calculating the gradient of the log-likelihood w.r.t to the parameters of the

particle filter can result in discontinuities. This gives biased gradients [43, 103], which can

affect subsequent results in optimisation algorithms, where the aim is for the log-likelihood

to be maximised. Sampling algorithms such as p-MCMC can correct for the disparity

between the proposal and the target distribution. Differentiable resampling compatible

with AD has been an active area of research in machine learning (see Section 4.5). A

detailed comparison of these methods when inferring the parameters of SSMs can be seen

in Section 4.7. The NUTS sampler used to obtain the results in Section 4.7 is the orig-

inal algorithm described in [26]. Since its publication in 2014, this algorithm has been

extensively developed to include features that have resulted in more effective sampling. A

number of these extensions are outlined in Section 5.3.

PyMC3 is a ppl that allows users to define models using Python syntax and to perform

Bayesian inference and parameter estimation using NUTS and MHRW. An advantage of

using ppls is that the user does not require an in-depth knowledge of the mechanics and

processes of MCMC. PyMC3 has the ability to define the log-likelihood and the gradient

Chapter 5. Particle-NUTS using PyTorch and PyMC3 75

of the log-likelihood, needed to sample using NUTS, as black box functions [104]. In

Section 5.3 a step-by-step process outlining how to calculate the gradient from a particle

filter using PyTorch is provided. This process can be passed into PyMC3 NUTS via a

custom Theano wrapper.

5.2 Differentiation Methods

Manually calculating the derivatives of non-trivial functions using chain and quotient rules

can be extremely time consuming and can result in errors. Three popular methods for

calculating the derivative of a function are numeric, symbolic and automatic differentiation.

These methods are described in Sections 5.2.1, 5.2.2 and 5.2.3, respectively.

5.2.1 Numerical Differentiation

Numerical differentiation is applied to a function f(x), with parameter x, such that its

derivative is defined by f ′(x). The simplest method to derive this derivative is to use finite

difference approximation, where the gradient of the function f(x) at the point x = h is

calculated as follows:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (5.1)

When approximating f ′(x) in (5.1), the smaller the value of h, the better the approxi-

mation. Three methods for estimating derivatives that compare the value of the function

at two points (first-order differentiation) are presented in Table 5.1. The truncation error

associated with each gradient calculation is also provided. This error is the difference be-

tween the analytical and numerical gradients. Numerical differentiation can be inefficient

for high dimensional functions due to the evaluation of n-dimensional gradients.

5.2.2 Symbolic Differentiation

Symbolic differentiation calculates the derivative of a function w.r.t its parameters and

outputs its mathematical expression. Unlike when calculating derivatives numerically,

where the output is an evaluation of the derivative at a given point, the output of symbolic

differentiation can be evaluated across the domain of the function. Symbolically, df(x,y)
dx

76 Conor Rosato

Method Formula Error

Forward f ′(x) = f(x+h)−f(x)
h O(h)

Backward f ′(x) = f(x)−f(x−h)
h O(h)

Central f ′(x) = f(x+h)−f(x−h)
2h O(h2)

Table 5.1: Methods for numerical differentiation.

can be expressed and evaluated at x = 1, y = 0.5 and then at x = 1.3, y = 0.9 with

no recalculation. This differs from AD (see Section 5.2.3). However, non-trivial functions

can result in overly complicated symbolic representations of the derivative which can be

expensive to evaluate.

5.2.3 Automatic Differentiation

AD is a set of techniques that enables automatic computation of derivatives of continu-

ous functions. Computation of the derivative is undertaken in parts and the flow of the

operations stored in a computational graph. Inputs and outputs are represented as nodes

that are connected by the operations joining the nodes. One benefit of storing the flow of

operations in a computational graph is that control flow statements, such as for loops and

if statements, can be used within the program. This differs from symbolic differentiation

(see Section 5.2.2).

AD can be performed in forward or reverse mode (often referred to as backpropagation

[105]). As operations are performed and the computational graph is created, forward mode

AD simultaneously calculates the derivatives and stores them in a derivative trace. This is

in contrast to reverse mode, where the derivative is calculated in two stages. Firstly, during

the forward pass, all variables are evaluated using the relevant mathematical operators

and are stored in memory. Secondly, the backward pass uses the chain rule to evaluate

the derivatives at each node, working backwards from the output. Two considerations

when choosing between forward and reverse mode are the memory storage required and

the computation time taken to evaluate the derivatives.

Chapter 5. Particle-NUTS using PyTorch and PyMC3 77

5.3 Particle-MCMC and PyMC3

In the subsequent sections, when discussing the particle filter, MHRW, NUTS, p-MCMC

with a MHRW proposal and p-MCMC with a NUTS proposal, we refer to the descriptions

in Sections 3.2, 3.3.1, 3.3.3, 3.4 and Chapter 4, respectively.

The advancements of NUTS in PyMC3 compared to the original implementation in

2014 include multinomial sampling in place of slice sampling, where each leaf node in

the tree is attributed to a transition probability [106]. One benefit of this change is that

sampling typically occurs deeper into the tree. The analysis involving NUTS in Chapter 4

did not use step size adaption and specified the identity matrix as the mass matrix within

NUTS. However, in PyMC3 the step size is optimised during three stages of burn-in: stages

1 and 3 involve a fast adaption period, while stage 2 is slow. Both the fast and slow periods

involve adapting the step size, however, the slow period is also used to learn the co-variance

associated with the mass matrix. A thorough explanation is provided in [107]. PyMC3

also allows for the step size to be “jittered” during sampling. This benefits the sampling

procedure when manoeuvring around regions of high curvature.

An additional advantage of using PyMC3 is that it facilitates definition of the log-

likelihood and the gradient of the log-likelihood as external functions. A simple graphical

representation is presented in Figure 5.1. Probability distributions or model functions that

are not provided by PyMC3 or written in different programming languages, for example

C or PyTorch, can therefore be used. An example of coding the particle filter described

in Section 3.2 in PyTorch is provided in Appendix C.1. The marginal likelihood of the

parameter set θ is calculated by summing the particle filter weights in the approximation

in (3.41). By declaring that θ requires a gradient, requires grad=True, and running the

.backward() method on the marginal log-likelihood, the gradients of θ are calculated. An

example of this process can be seen in Appendix C.2.

The workflow is simplified into four distinct processes as follows:

(i) Define the particle filter in PyTorch with inputs θ and y1:T and output log p(y1:T |θ)
(see Appendix C.1).

(ii) Define a wrapper function that includes the particle filter in (i) and runs .backward()

on log p(y1:T |θ) to obtain ∇ log p(y1:T |θ) (see Appendix C.2).

(iii) Define a black box function that provides θ to the wrapper function in (ii) and outputs

log p(y1:T |θ) and ∇ log p(y1:T |θ) to PyMC3 NUTS (see Appendix C.3).

78 Conor Rosato

(iv) Define the PyMC3 model that calls the black box function every time a gradient

evaluation is made within NUTS (see Appendix C.4).

PyMC3 Particle Filter

θ

p(y1:T |θ),
∇p(y1:T |θ)

Figure 5.1: A graphical representation of PyMC3’s external function. PyMC3 provides θ
to the particle filter (Algorithm 6) which in turn calculates p(y1:T |θ) and ∇p(y1:T |θ).

5.4 Examples and Results

In the experiments below, the particle filter is set-up with 128 particles and the dynamic

model is used as the proposal (see Section 3.36). MCMC is run for 2000 samples, where

the first 1000 are discarded as burn-in. NUTS has a target accept probability of 0.8.

5.4.1 Stochastic Volatility and Earthquake Count Models

The model, parameters and priors are those presented in Sections 3.1.2 and 3.1.3, for the

SVM and earthquake count models, respectively.

5.4.1.1 Results

Table 5.2 presents a quantitative comparison of the results obtained when using MHRW

and NUTS proposals within the PyMC3 sampler. The mean estimates for both samplers

are similar, however, using NUTS provides better mixing and is more efficient in terms of

effective samples per second.

Chapter 5. Particle-NUTS using PyTorch and PyMC3 79

For the stochastic volatility model, the IACT scores are smaller when using NUTS, with

the largest disparity between the two observed for the parameter σv, with IACT scores of

65 and 2 for MHRW and NUTS, respectively. This trend continues when considering the

results of the earthquake model. The IACT scores for ϕ and µ are over 4 times smaller

when using NUTS. For σ, the result is 3 times smaller. This is exemplified in Figure 5.2.

The ACF plot shows the auto-correlation for a Markov chain up to a user-specified number

of lags, selected as 100 in this case. A more efficient Markov chain will drop towards 0

after fewer lags. This can be seen for all parameters when using NUTS.

NUTS is also more efficient at drawing samples compared with MHRW in the stochastic

volatility model and has more than 3 times the efficiency of MHRW when drawing accepted

samples in the earthquake model. This improvement is to be expected as using gradient

information about the log-posterior will reduce the correlation between successive sampled

states by proposing moves to distant states in π(θ) and maintain a high probability of

acceptance.

5.4.2 SIR Disease Model

The stochastic SIR model is that presented in Section 3.1.4. In the experiments below a

Gamma(2,2) prior is placed on both β and γ.

5.4.2.1 Results

Firstly, data is simulated with known parameters to observe whether they are recovered

by the proposed algorithm. The parameters β and γ are fixed at 1.8 and 0.5, respectively,

which results in an Rt number of 3.6 (see Table 5.3). The simulation is run for 20 days and

the total population is 763, with 1 initial infected person. The resulting epidemic curves are

presented in Figure 5.3 (a). As the population is relatively small, we opt to use a Poisson

likelihood [108]. The incidence data represents a proportion of the infected compartment

and is simulated via Poisson(It). The corresponding curve can be seen in the top right of

Figure 5.3 (a). The marginal plots of β and γ are presented in Figure 5.3 (a). Table 5.3

shows that the estimated marginals encapsulate the true values. Running 4 independent

chains passed the threshold for R̂ with no divergent transitions when running NUTS. This

is exemplified in Figure 5.3 (a), where the mean of log(β) and log(γ) are plotted against

their true values. Divergence has been shown to deviate from the corresponding true value

[109].

80 Conor Rosato

Stochastic Volatility Model
Mean Estimate IACT ESS ESS/s

MHRW
µ 0.20±0.53 120 23 0.09
ϕ 0.93±0.04 81 59 0.23
σv 0.36±0.40 65 57 0.22

NUTS
µ 0.50±0.60 5 225 0.21
ϕ 0.94±0.04 6 146 0.14
σv 0.20±0.11 2 375 0.35

Earthquake Model
Mean Estimate IACT ESS ESS/s

MHRW
ϕ 0.56 ±0.16 17 104 0.04
σ 0.24 ±0.04 9 174 0.07
µ 19.48±3.09 29 106 0.04

NUTS
ϕ 0.53 ±0.13 4 423 0.23
σ 0.24 ±0.04 3 504 0.27
µ 20.02±1.53 5 502 0.27

Table 5.2: Results for the stochastic volatility model of Section 3.1.2 and the earthquake
model of Section 3.1.3 when using MHRW and NUTS as the proposal.

Chapter 5. Particle-NUTS using PyTorch and PyMC3 81

0 20 40 60 80 100
Lag

0.00

0.25

0.50

0.75

1.00

AC
F

MH
MH
MH v

NUTS
NUTS
NUTS v

1 0 1 2
0

50

100

150

200

250

De
ns

ity
 o

f

MH

2 1 0 1 2
0

25

50

75

100

125
NUTS

0 1000 2000 3000 4000 5000

1

0

1

2

Tr
ac

ep
lo

t o
f

0 200 400 600 800 1000
2

1

0

1

2

Stochastic Volatility Model

(a)

0 20 40 60 80 100
Lag

0.00

0.25

0.50

0.75

1.00

AC
F

MH
MH
MH
NUTS
NUTS
NUTS

5 10 15 20 25
0

50

100

150

De
ns

ity
 o

f

MH

14 16 18 20 22 24
0

20

40

60

80

100
NUTS

0 200 400 600 800 1000

5

10

15

20

25

Tr
ac

ep
lo

t o
f

0 200 400 600 800 1000
14

16

18

20

22

24

Earthquake Model

(b)

Figure 5.2: Comparison of results for (a) stochastic volatility model of Section 3.1.2 and
(b) earthquake model of Section 3.1.3 when using MHRW and NUTS as the proposal.

82 Conor Rosato

Simulated Data

β γ Rt

True Value 1.80 0.50 3.60
Estimated 1.82±0.04 0.51±0.01 3.61±0.12

Real Data

β γ Rt

Estimated 1.62±0.14 1.18±0.09 1.37±0.05

Table 5.3: Results for the SIR model in Section 3.1.4 when using NUTS as the proposal.

The same inference is undertaken with a real dataset consisting of common cold infec-

tions on Tristan da Cunha [108, 110]. This is a useful example, as the population on the

island is closed. The total population is 300, with 1 infected person at t0. The marginal

plots of β and γ in addition to the model fit plots for inferred incidence from the particle

filter are provided in Figure 5.3 (b). Table 5.3 outlines the estimated values of β and γ as

1.62±0.14 and 1.18±0.09, respectively. These results are within the range of those inferred

in [108].

Chapter 5. Particle-NUTS using PyTorch and PyMC3 83

0 200 400 600 800 1000
Iteration

0.75

0.50

0.25

0.00

0.25

0.50

M
CM

C
m

ea
n

True values
Mean of log(Beta)
Mean of log(Gamma)

0 5 10 15
0

200

400

600

Ep
id

em
ic

cu
rv

es

Susceptible
Infected
Recovered

0 5 10 15
0

100

200

300
Infected

1.70 1.75 1.80 1.85 1.90
0

50

100

150

200
De

ns
ity

 p
lo

ts Beta

0.46 0.48 0.50 0.52 0.54
0

50

100

150

200 Gamma

SIR Model Simulated Data

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Days

0

5

10

15

In
cid

en
ce

Observations
Posterior samples mean
95% confidence intervals

0 200 400 600 800 1000
1.2

1.4

1.6

1.8

2.0

Tr
ac

e
pl

ot
s Beta

0 200 400 600 800 1000

1.0

1.2

1.4 Gamma

1.2 1.4 1.6 1.8 2.0
0

50

100

150

200

De
ns

ity
 p

lo
ts Beta

1.0 1.2 1.4
0

50

100

150

200 Gamma

SIR Model Real Data

(b)

Figure 5.3: Results for the SIR model in Section 5.4.2 when simulating data in (a) and
using real data in (b), with NUTS as the proposal.

84 Conor Rosato

5.5 Conclusions and Future Work

In this chapter, a framework for computing ∇ log p(y1:T |θ) from a particle filter that can

be used by PyMC3 and NUTS is provided. Comparisons between MHRW and NUTS

proposals were made when inferring the parameters of three SSMs using real data.

In each of the three examples, the number of observations is small. This is because

the computational graph becomes large for large datasets, making gradient calculation

time consuming. As NUTS makes 2j leapfrog steps per MCMC iteration, the combined

computational time required for calculating gradients can become large, given the high

computation time for a single gradient evaluation. As an example, the computation time

required for evaluation of the gradient in Section 3.1.2 is presented in Figure 5.4. Compu-

tation time increases with increasing observations. If NUTS is run with a tree depth of 8,

256 gradient evaluations are needed. This can result in a single MCMC iteration taking

4.7 minutes to complete, decreasing the efficiency of the sampler.

A direction for future work is to run some aspects of the particle filter on a GPU.

PyTorch has in-built functionality that allows users to execute computations in parallel.

Future work will also involve incorporating the differentiable particle filter within SMC2

[94]. The method for differentiating the particle filter presented in this chapter and in

Chapter 4 could be incorporated into the SMC sampler layer, which has NUTS as the

proposal, as seen in [111].

128 256 512 1024

Observations

0.2

0.4

0.6

0.8

1.0

Se
co

nd
s

Figure 5.4: Computation time required for increasing observations.

Chapter 6

Refining Epidemiological Forecasts

with Simple Scoring Rules

Infectious disease model estimates constitute a significant part of the scientific evidence

used to inform the response to the COVID-19 pandemic in the UK. These estimates vary

strikingly in their bias and variability. Epidemiological forecasts should be consistent with

future observations. In this chapter, simple scoring rules are used to refine the forecasts

of a novel statistical model for multisource COVID-19 surveillance data by tuning its

smoothness hyperparameter. The usefulness of the normalised estimation error squared

(NEES) scoring rule in determining whether estimates are over-confident or over-cautious

is also highlighted.

6.1 Introduction

Forecasts relating to COVID-19 are essential for informing short- and long-term public

health decisions. However, forecasts can vary significantly depending on the statistical

model and the data used for calibration [65, 112, 113, 114, 115, 116]. Examples when esti-

mating the reproductive number Rt in the UK are presented in Figure 1 of both [64] and

[117]. Models using different datasets produce estimates with varying degrees of uncer-

tainty. It can therefore be challenging for public health officials to distinguish the forecast

that best represents reality. This can complicate decisions on measures such as school

closures, limiting individual contacts and implementing lockdowns.

Section 3.1.4 outlines the assumptions made when utilising the SIR model for disease

85

86 Conor Rosato

modelling. Extensions to this simple compartmental model include age stratification [72,

118], differentiating between age group contacts [72, 118], household transmission models

[118], simultaneous simulation of the spread of disease in different regions [72, 118, 119] and

the inclusion of interventions such as vaccination status [118] and non-pharmaceutical data

[119]. The SIR model can also be extended to model the capacity of healthcare setting, as

seen in [120].

In the UK, a joint effort has been undertaken to produce estimates of Rt, with no-

table examples presented in [64, 65]. Data used for this purpose includes death and non-

pharmaceutical intervention data [119], laboratory-confirmed COVID-19 diagnoses [72],

the UK’s National Health Service (NHS) Pathways data [121], hospital admissions data

[118] and positive test results [122]. An example of the differences in estimating Rt using

the models in [72, 120] is presented in [123]. Estimates of the Rt number are beneficial in

understanding the spread of COVID-19. However, given that Rt is unobservable, the accu-

racy of these estimates cannot be evaluated. Producing estimates of observable variables

allows for the use of scoring rules [124] to critically evaluate forecasts. Providing these

metrics with forecasts gives credence to the effectiveness of a statistical model. Examples

of observable variables that have been forecast include predicted deaths, hospital admis-

sions and intensive care unit (ICU) occupancy [125]; deaths, hospital admissions and ICU

occupancy [118]; daily hospital admissions [120] and daily case counts [122].

Quantile forecasts are one method for producing forecasts. Future observed variables

are random and unknown and can be represented by a forecast distribution. Quantile

forecasts are made at various quantiles of the forecast distribution. For example, if the

forecast distribution is assumed to be normally distributed, the 90% prediction interval is

defined by the 5% and 95% quantiles of the forecast distribution. A collection of quan-

tile forecasts from an ensemble of statistical models in the US and European nations are

presented in [113] and [126], respectively. Both articles use the weighted interval score

(WIS), which is an approximation of the continuous ranked probability score (CRPS) that

provides a measure of the absolute distance between forecast and observation. Reference

[113] outlines that variability when predicting COVID-19 related deaths between different

models is high. Use of the WIS of quantile forecasts of deaths, hospital admissions and

total hospital beds occupied is presented in [125]. It is argued in [127] that performing a

transformation of forecasts to the log scale before applying WIS and CRPS can mitigate

issues that arise when comparing forecasts that contain different orders of magnitude. This

can affect scoring rules that are based on absolute error.

Chapter 6. Refining Epidemiological Forecasts with Simple Scoring Rules 87

Forecasts can also be produced using probabilistic forecasts, where the entire distribu-

tion of forecasted values is used. Probabilistic forecasts can be produced using Bayesian

methods. One such method involves describing the statistical model in the ppl Stan. Stan

uses the high performance NUTS sampler to infer the parameters of the model by sampling

and calibrating to disease specific data. The ensemble of forecasts from the samples there-

fore makes up the probabilistic forecasts. Examples when using Stan for disease modelling

include estimation of Rt for influenza [128], Rt for COVID-19 [119], infection severity rates

for COVID-19 [129] and COVID-19 deaths [130]. One benefit of Stan is that it generates a

summary of the sampling statistics described in Section 3.5. This allows the user to know

whether the samples are statistically sound and are sampled correctly.

The simple scoring rule NEES is a popular method in the field of signal processing

and tracking for assessing uncertainties associated with forecasts [131]. NEES has been

used to argue the merits of extensions of the Kalman filter to specific non-linear settings,

where the extended Kalman filter is routinely overconfident [132]. The metric determines

whether the estimated variance of forecasts differs from the true variance. If the estimated

variance is larger than the true variance, the forecast is over-cautious and if the estimated

variance is smaller than the true variance, it is over-confident. This reasoning gives NEES

an advantage over other scoring rules. However, NEES is seldom used when forecasting in

the context of epidemiology. In this chapter, scoring rules are used to evaluate forecasts

made by an epidemiological model that is parameterised differently. Evaluating forecasts

using these scoring rules can help to diagnose model limitations.

6.2 Statistical Model

In the analysis of this chapter, the extended SIR disease transition model outlined in the

subsequent subsections is implemented in the ppl Stan. NUTS is used to infer the pa-

rameters, nowcast the number of people in each compartment and to calibrate to disease

specific data. The statistical model can be described in two succinct parts: the transmis-

sion model outlines how individuals migrate from one compartment to the next and the

observation model states how surveillance data links to the transmission model in the form

of calibration.

88 Conor Rosato

S E1 E2 I1 I2 P1 P2

D

R

β I1+I2
N S 2

dL
E1

2
dL
E2

2
dI
I1

2
dI
I2

2
dP
P1

2
dP
P2ω

2
dP
P2 (1− ω)

Figure 6.1: Flow diagram of the transmission model illustrating the movement of individ-
uals between states.

6.2.1 Transmission Model

The transmission model in Figure 6.1 is an extension of the simple SIR model outlined in

Section 3.1.4. This extension additionally captures two exposed (E), infected (I) and pend-

ing (P) compartments, one dead (D) and one recovered (R) compartment. The splitting

of the E, I, P compartments into two substates is inspired by [72]. Under this specifica-

tion, the amount of time spent in each state follows an Erlang rather than an Exponential

distribution. The assumptions made in this model are those discussed in Section 3.1.4,

i.e. homogeneous mixing of individuals, a closed population and only one region/location

is considered. Justification of these assumptions is outlined in Section 6.6. At time t0,

each individual within the population N is assigned to a compartment via the set of initial

Chapter 6. Refining Epidemiological Forecasts with Simple Scoring Rules 89

conditions:

S (0) = (N − 5)α1 + 1, (6.1)

E1 (0) =
1

2
(N − 5) (1− α1)α2 + 1, (6.2)

E2 (0) =
1

2
(N − 5) (1− α1)α2 + 1, (6.3)

I1 (0) =
1

2
(N − 5) (1− α1) (1− α2) + 1, (6.4)

I2 (0) =
1

2
(N − 5) (1− α1) (1− α2) + 1, (6.5)

P1 (0) = 0, (6.6)

P2 (0) = 0, (6.7)

R (0) = 0, (6.8)

D (0) = 0. (6.9)

At least one individual is assigned to the susceptible, exposed and infected compartments,

with no individuals attributed to pending, recovered or dead. The number of individuals

initially susceptible and infected are determined by the parameters α1 and α2, respectively.

Over time, infectious individuals make contact with those in the susceptible compartment

via mixing within the population. This results in a proportion of the susceptible becoming

exposed to the virus. After the latent period of infection, governed by dL, has elapsed,

an individual becomes infectious and migrates to the pending compartment. Infected

individuals then go on to recover or die from the virus.

90 Conor Rosato

The set of ODEs that govern this process for t > 0 is presented below:

dS(t)

dt
= −β(t)I1(t) + I2(t)

N
S(t), (6.10)

dE1(t)

dt
= β(t)

I1(t) + I2(t)

N
S(t)− 2

dL
E1(t), (6.11)

dE2(t)

dt
=

2

dL

[
E1(t)− E2(t)

]
, (6.12)

dI1(t)

dt
=

2

dL
E2(t)−

2

dI
I1(t), (6.13)

dI2(t)

dt
=

2

dI

[
I1(t)− I2(t)

]
, (6.14)

dP1(t)

dt
=

2

dI
I2(t)−

2

dP
P1(t), (6.15)

dP2(t)

dt
=

2

dP

[
P1(t)− P2(t)

]
, (6.16)

dR(t)

dt
=

2

dP
P2(t)

[
1− ω

]
, (6.17)

dD(t)

dt
=

2

dP
P2(t)ω. (6.18)

Table 6.1 gives a description of the parameters of the ODEs and their priors. The effective

contact rate parameter, β(t), describes the mean rate of infected individuals per unit time

that a susceptible individual comes in to contact with. This is estimated by

β(t) =

J∑
j=1

βj(t)χ[tj−1,tj)(t), (6.19)

where βj(t) is the mean rate of contacts per unit time in the jth time interval, defined as

follows:

βj(t) =
βj+1 − βj
tj − tj−1

(t− tj−1) + βj , (6.20)

and

χ[tj−1,tj)(t) =

1 if t ∈ [tj−1, tj),

0 if t /∈ [tj−1, tj).
(6.21)

The time between the first two mean contact rates, β2 − β1 in (6.20), is the time between

the beginning of the observation and the date of the first lockdown. Subsequent time

Chapter 6. Refining Epidemiological Forecasts with Simple Scoring Rules 91

Parameter Description Prior

S Susceptible compartment -
E Exposed compartment -
I Infected compartment -
P Pending compartment -
R Recovered compartment -
D Dead compartment -
N Total population -
dL Mean time from infected to infectious Normal+(4.0, 3.0)
dI Mean time infectious Normal+(5.0, 4.0)
dP Mean time in pending compartment Normal+(13.0, 4.0)
α1 Proportion initially susceptible Beta (5.0, 0.5)
α2 Proportion initially infected Beta (1.1, 1.1)
ω Infection fatality ratio (IFR) Beta (5.7, 624.1)
β1 Initial mean rate of contacts between individuals HalfNormal (0.0, 0.5)

β2, ..., βJ Mean rate of contacts between individuals Normal+ (βi−1, σβ)
1

ϕdeaths
, 1

ϕadmissions
, 1

ϕcalls
Negative binomial parameters Exponential (5.0)

ρadmissions,k, ρcalls,l Ratio of hospital admissions to potential patients Beta (1.1, 1.1)

Table 6.1: Description of the model parameters and their prior distributions. The symbol
+ indicates a distribution with its lower tail truncated at zero.

periods, βj+1 − βj for j > 1, are set to seven days. The effective contact rate β(t) is a

continuous piecewise linear function of time.

6.2.2 Observation Model

As explained in Section 6.1 different research groups use different datasets to calibrate

their statistical models. The observation model describes the link between the unob-

servable transmission model states and the observable data. Serological and death data

are assumed to follow binomial and negative binomial distributions, respectively, in [72].

Hospital admissions, ICU occupancy and death counts are either Poisson distributed or

binomially distributed for quantities that have a relatively low upper bound in [118]. The

analysis undertaken in this chapter assumes that death, hospital admission and 111 call

data follow a negative binomial distribution with mean parameter derived from the trans-

mission model and a data specific overdispersion parameter. Examples on how to derive

the death and hospital admissions negative binomial distributions can be found in Sec-

tions 6.2.2.1 and 6.2.2.2, respectively.

In the subsequent sections, the observation distributions for the surveillance datasets

used in this analysis are outlined. Due to the proposed model’s flexibility, this set-up is

92 Conor Rosato

also applicable to other geographic location and surveillance datasets. An example of this

is presented in Chapter 7.

6.2.2.1 Death Data

Death data used in this analysis was downloaded from the UK government website [133].

Aggregated death counts contain the individuals that died within 28 days of receiving a

positive COVID-19 test result. This data can be seen in Figure 6.2 (a). The number of

COVID-19 related deaths, dobs (t), observed on day t is assumed to follow the negative

binomial distribution1

dobs (t) ∼ NB (d (t) , ϕdeaths) , (6.22)

parameterised by an overdispersion parameter ϕdeaths. The mean, d (t), is the difference

between the count of individuals within the unobservable D compartment between times

t − 1 and t, such that d (t) = D (t) − D (t− 1). The observation begins on 24th March

2020.

6.2.2.2 Hospital Admission Data

Hospital admission data used in this analysis was downloaded from the UK government

website [134]. Aggregated admission counts contain the daily COVID-19 related hospital

admissions and the total number of COVID-19 patients. This data can be seen in Figure 6.2

(b). The number of COVID-19 related hospital admissions, hobs(t), on day t is assumed

to follow the negative binomial distribution

hobs (t) ∼ NB (h (t) , ϕadmissions) (6.23)

with

h (t) = ρadmissions (t)×
2

dI
I2, (6.24)

where ρadmissions (t) is the ratio of hospital admissions to potential patients and 2I2/dI is

the number of new members of the pending state. Similarly to β(t), ρadmissions (t) is a

continuous piecewise linear function, where

1Note that, the alternative parameterisation of the negative binomial distribution in [73] is used.

Chapter 6. Refining Epidemiological Forecasts with Simple Scoring Rules 93

ρadmissions(t) =

K∑
k=1

ρadmissions,k(t)χ[tk−1,tk)(t). (6.25)

In the kth time interval, the ratio of hospital admissions to potential patients, ρadmissions,k(t),

is given by

ρadmissions,k(t) =
ρadmissions,k+1 − ρadmissions,k

tk − tk−1
(t− tk−1) + ρadmissions,k. (6.26)

The function χ[tk−1,tk)(t) is defined analogously to the indicator function in (6.19), where

for the kth time interval,

χ[tk−1,tk)(t) =

1 if t ∈ [tk−1, tk),

0 if t /∈ [tk−1, tk).
(6.27)

All time intervals for hospital admissions are set to twelve weeks. The observation begins

on 24th March 2020.

6.2.2.3 111 Call Data

111 call surveillance data used in this analysis was downloaded from the UK govern-

ment website [135]. Aggregated call counts contain the individuals that reported potential

COVID-19 symptoms through NHS Pathways telephone service. This data can be seen in

Figure 6.2 (c).

The number of daily 111 calls, cobs (t), on day t is assumed to follow the negative

binomial distribution

cobs (t) ∼ NB (c (t) , ϕcalls) , (6.28)

where c (t) is the mean number of assessment calls on day t. This parameter is given by

the product of the ratio of symptom reporters to potential 111 calls, ρcalls (t), and the sum

of the number of new individuals in the infectious and pending states, such that

c (t) = ρcalls (t)×
(

2

dL
E2 +

2

dI
I2

)
. (6.29)

94 Conor Rosato

31
-M

ar-
20

20

30
-Apr-

20
20

30
-M

ay
-20

20

29
-Ju

n-2
02

0

29
-Ju

l-2
02

0

28
-Aug

-20
20

27
-Se

p-2
02

0

27
-Oct-

20
20

26
-Nov

-20
20

26
-Dec-

20
20

Date

0

200

400

600

800

1000

1200
Da

ily
 C

ou
nt

s

Deaths

(a)

31
-M

ar-
20

20

30
-Apr-

20
20

30
-M

ay
-20

20

29
-Ju

n-2
02

0

29
-Ju

l-2
02

0

28
-Aug

-20
20

27
-Se

p-2
02

0

27
-Oct-

20
20

26
-Nov

-20
20

26
-Dec-

20
20

Date

0

500

1000

1500

2000

2500

3000

3500

Da
ily

 C
ou

nt
s

Hospital Admissions

(b)

31
-M

ar-
20

20

30
-Apr-

20
20

30
-M

ay
-20

20

29
-Ju

n-2
02

0

29
-Ju

l-2
02

0

28
-Aug

-20
20

27
-Se

p-2
02

0

27
-Oct-

20
20

26
-Nov

-20
20

26
-Dec-

20
20

Date

0

20000

40000

60000

80000

Da
ily

 C
ou

nt
s

111 Calls

(c)

Figure 6.2: Time series of (a) deaths, (b) hospital admissions and (c) 111 calls in England
from 24th March 2020 to 31st December 2020.

The ratio ρcalls(t) is defined as for hospital admissions. The associated definitions (6.25),

(6.26) and (6.27) corresponding to call data are therefore not presented here. For 111 calls,

all time intervals are set to four weeks. The observation begins on 24th March 2020. A

strong correlation between numbers of 111 symptom reports and COVID-19 death reported

four weeks later has been observed [121].

6.3 Scoring Rules

The simple scoring rules described in Table 6.2 are methods for evaluating a probabilistic

forecast produced by a statistical model. The observed data is compared against the fore-

cast, resulting in a numerical score that is used to determine whether the model represents

Chapter 6. Refining Epidemiological Forecasts with Simple Scoring Rules 95

Scoring Rule Definition Reference

Logarithmic logs(P, x) = − log px Good [137]
Quadratic qs(P, x) = −2px + ∥p∥2 Wecker [138]
Spherical sphs(P, x) = − px

∥p∥ Czado, Gneit-
ing and Held [124]

Ranked probability rps(P, x) =
∑∞

k=0 {Pk − 1(x ≤ k)}2 Epstein [139]

Squared error ses(P, x) = (x− µP)
2 Czado, Gneit-

ing and Held [124]

Table 6.2: Scoring rules utilised in this chapter, where px is the probability mass of the
predictive distribution for an observed count x, the operator ∥p∥2 =

∑∞
k=0 p

2
k, Pk is the

value of cumulative predictive distribution for a count k, 1(·) is the indicator function, and
µP and σ2

P are the mean and variance of the predictive distribution.

reality. It is argued in [136] that a scoring rule is proper if the expected score for an

observation drawn from the forecast is maximised. In addition, scoring rules are strictly

proper if the maximum is unique.

6.3.1 Normalised Estimation Error Squared

The NEES score is defined by

NEES =
1

N

N∑
i=1

(xi − yi)TCi−1
(xi − yi), (6.30)

where Ci is the estimated variance of the forecast at day i. If xi is D-dimensional, then Ci

should be a D ×D matrix. The NEES score should be equivalent to the dimension, D, if

the algorithm is consistent. As such, in assessing death forecasts, the desired NEES value

is D ≈ 1. However, there are instances in which estimators generate over-cautious and

over-confident estimates. Over-cautious estimates cause the estimate variance to dominate

the squared estimation error, resulting in a NEES value of less than 1. Over-confident

estimates, which are arguably more damaging in terms of their impact on decision making,

alternatively cause the squared estimation error to dominate the estimate variance such

that the NEES value is greater than 1.

96 Conor Rosato

6.4 Computational Experiments

The statistical model outlined in Section 6.2 is calibrated with the England specific surveil-

lance data of Section 6.2.2. The start and end dates for the simulation period are 17th

February 2020 and 31st January 2021, respectively. The start dates in the surveillance

data are 24th March 2020. The analysis undertaken in this chapter takes into account

four prediction windows. The forecasting windows are defined to be between the dates

10th November 2020 - 17th November 2020, 5th December 2020 - 12th December 2020,

30th December 2020 - 6th January 2021 and 24th January 2021 - 31st January 2021. The

different simulations are 25 days apart.

Initial parameter values 1/ϕdeaths, 1/ϕadmissions, 1/ϕcalls, ρadmissions,1,..., ρadmissions,K+1

and ρcalls,1,...,ρcalls,L+1 are drawn using Stan’s default initialisation procedure. The param-

eters are selected uniformly between -2 and 2 on the unconstrained parameter space. For

parameters α1, α2, β1,..., βJ , dL, dI , dP and ω, the implementation draws uniformly from

custom intervals to prevent initialisation failures caused by unrealistic parameter values.

A bespoke numerical integrator is used to simulate the transmission model ODEs outlined

in Section 6.2.1.

The analysis was run on the University of Liverpool’s High-Performance Computer

(HPC). Each node has two Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz processors, a

total of 40 cores and 384 GB of memory. In the following experiments, six independent

Markov Chains each draw 512 samples, with the first 256 discarded as burn-in. On average,

it takes two hours per Markov Chain for one complete run.

Six smoothness hyperparameters for σβ, outlined in Table 6.3, were employed to high-

light the applicability of using scoring rules to evaluate forecasts. Smaller or larger values

of σβ, that restrict or loosen the random walk prior on the effective contact rate β(t), can

cause the model to under- or over-fit to the data, respectively.

6.5 Results

Table 6.3 presents the mean scores obtained when forecasting the number of deaths for

varying σβ. The results for each hyperparemeter are averaged over the prediction windows

outlined in Section 7.3.1.1. Results for the scoring rules LogS, QS, SphS, RPS, and SES

outlined in Table 6.2 are negatively inclined. The greater the value of the smoothness

hyperparameter, the better the results. The best score for each scoring rule is highlighted

Chapter 6. Refining Epidemiological Forecasts with Simple Scoring Rules 97

Scoring Rule σβ
0.0005 0.001 0.0025 0.005 0.01 0.05

LogS 9.242 7.992 7.632 7.285 7.011 7.088
QS 0.004 0.002 0.001 0.001 -0.001 0.000
SphS -0.004 -0.019 -0.024 -0.028 -0.042 -0.044
RPS 272.701 127.455 104.965 98.828 60.519 48.313
SES 669959 85439 261226 37660 37607 44607
NEES 5.454 1.094 1.834 1.850 1.687 1.009

Table 6.3: Mean scores, averaged over the four prediction windows outlined in Sec-
tion 7.3.1.1, for the 7-day forecasts for varying σβ when simulating from the statistical
model. The best scores for each scoring rule are highlighted in bold. For NEES, this is the
score closest to 1. For all other rules this is the lowest score.

in bold. The NEES score closest to 1 (1.009) is obtained when using the hyperparameter

0.05.

The highlighted scores in Table 6.2 are observed for the hyperparameters 0.01 and 0.05.

The results for the hyperparameters 0.0025 and 0.5 for the different predictions windows

are presented in Figure 6.3. In all cases the encapsulation of true deaths by the orange

confidence intervals highlight that a larger β parameter is better. In some cases when

β is 0.0025, the median sample resides outside the posterior distribution’s region of high

probability mass, as it does for the Hybrid Rosenbrock distribution [140]. However, with

the exception of NEES, none of the scoring rules classify this forecast as over-confident.

This highlights NEES as a valuable diagnostic tool that should be used alongside proper

scoring rules.

98 Conor Rosato

21-Mar-2020

20-Apr-2020

20-May-2020

19-Jun-2020

19-Jul-2020

18-Aug-2020

17-Sep-2020

17-Oct-2
020

16-Nov-2020

Date

0

200

400

600

800

1000

1200

Da
ily

 D
ea

th
s

 = 0.0025

21-Mar-2020

20-Apr-2020

20-May-2020

19-Jun-2020

19-Jul-2020

18-Aug-2020

17-Sep-2020

17-Oct-2
020

16-Nov-2020

Date

0

200

400

600

800

1000

1200

Da
ily

 D
ea

th
s

 = 0.05

22-Mar-2020

21-Apr-2020

21-May-2020

20-Jun-2020

20-Jul-2020

19-Aug-2020

18-Sep-2020

18-Oct-2
020

17-Nov-2020

17-Dec-2020

Date

0

200

400

600

800

1000

1200

Da
ily

 D
ea

th
s

 = 0.0025

22-Mar-2020

21-Apr-2020

21-May-2020

20-Jun-2020

20-Jul-2020

19-Aug-2020

18-Sep-2020

18-Oct-2
020

17-Nov-2020

17-Dec-2020

Date

0

200

400

600

800

1000

1200

Da
ily

 D
ea

th
s

 = 0.05

23-Mar-2020

22-Apr-2020

22-May-2020

21-Jun-2020

21-Jul-2020

20-Aug-2020

19-Sep-2020

19-Oct-2
020

18-Nov-2020

18-Dec-2020

17-Jan-2021

Date

0

200

400

600

800

1000

1200

Da
ily

 D
ea

th
s

 = 0.0025

23-Mar-2020

22-Apr-2020

22-May-2020

21-Jun-2020

21-Jul-2020

20-Aug-2020

19-Sep-2020

19-Oct-2
020

18-Nov-2020

18-Dec-2020

17-Jan-2021

Date

0

200

400

600

800

1000

1200

Da
ily

 D
ea

th
s

 = 0.05

26-Mar-2020

25-Apr-2020

25-May-2020

24-Jun-2020

24-Jul-2020

23-Aug-2020

22-Sep-2020

22-Oct-2
020

21-Nov-2020

21-Dec-2020

20-Jan-2021

Date

0

200

400

600

800

1000

1200

1400

1600

Da
ily

 D
ea

th
s

 = 0.0025

26-Mar-2020

25-Apr-2020

25-May-2020

24-Jun-2020

24-Jul-2020

23-Aug-2020

22-Sep-2020

22-Oct-2
020

21-Nov-2020

21-Dec-2020

20-Jan-2021

Date

0

200

400

600

800

1000

1200

Da
ily

 D
ea

th
s

 = 0.05

Figure 6.3: Forecasts for the hyperparameters β=0.0025 (left) and β=0.05 (right). Con-
fidence intervals of 1 standard deviation from the mean (orange), the mean sample (red)
and the true deaths are given by the black and green dots.

Chapter 6. Refining Epidemiological Forecasts with Simple Scoring Rules 99

6.6 Conclusions and Future Work

The use of simple scoring rules in helping to detect deficiencies in a statistical model

when making forecasts has been outlined in this chapter. The analysis of Section 7.3.1.1

shows that a smaller hyperparameter, σβ, as parameter estimates allows for more statistical

uncertainty to be propagated when forecasting. An example indicating that NEES is an

underappreciated scoring rule, due to its ability to detect over-confident and over-cautious

forecasts, is provided.

As mentioned in Section 6.1, a limitation of scoring rules is that only forecasts of

observable variables can be assessed. One method for evaluating latent quantities, such as

the growth rate and reproductive number Rt, is to use simulation based calibration (SBC)

[141]. This process involves simulating data from a model using parameters drawn from

the prior distribution. The posterior calibration over the independent simulated datasets

can then be tested against the inference algorithm.

Extending the statistical model in Section 6.2 to account for age stratification and

to simulate the simultaneous spread of a disease in different regions has not yet been

considered. This is due to the associated computational effort. One interesting direction

for future work is to use a sequential Monte Carlo (SMC) sampler [142] in place of the

MCMC sampling algorithm. An example of such a sampler that uses NUTS as the proposal

is presented in [111].

Chapter 7

Using Twitter Data to Inform

Disease Models

The emergence of the novel coronavirus (COVID-19) in December 2019 in Wuhan City,

Hubei Province, China [143] generated a need to quickly and accurately assemble up-to-

date information related to its spread. In this chapter, two methods in which Twitter data

is useful when modelling the spread of COVID-19 are proposed. Method (1): machine

learning algorithms trained in English, Spanish, German, Portuguese and Italian are used

to identify symptomatic individuals derived from Twitter. Using the geo-location attached

to each tweet, users are mapped to a geographic location to produce a time-series of po-

tential symptomatic individuals. An extended SEIRD epidemiological model is calibrated

with combinations of low-latency data feeds, including the symptomatic tweets, and death

data to infer the parameters of the model. The usefulness of the data feeds is then evaluated

when making predictions of daily deaths in 50 US States, 16 Latin American countries, 2

European countries and 7 NHS (National Health Service) regions in the UK. It is shown

that using symptomatic tweets can result in a 6% and 17% increase in mean squared error

accuracy, on average, when predicting COVID-19 deaths in US States and the rest of the

world, respectively, compared to using solely death data. Method (2): Origin/destination

(O/D) matrices, for movements between seven NHS regions, are constructed by determin-

ing when a user has tweeted twice in a 24 hour period in two different locations. We show

that by increasing and decreasing a social connectivity parameter within an SIR model is

found to affect the rate of spread of a disease.

100

Chapter 7. Using Twitter Data to Inform Disease Models 101

7.1 Introduction

The novel coronavirus (COVID-19) has, at the time of writing, resulted in over 6.88 million

deaths and 676 million confirmed cases worldwide [144]. By January 2020, new cases of

COVID-19 had been seen throughout Asia, and by the time the World Health Organisation

(WHO) declared a global pandemic in March 2020, the disease had spread to over 100

countries. It quickly became imperative to establish reliable data feeds relating to the

pandemic, such that researchers and analysts could model the ongoing spread of the disease

and inform decision-making by government and public health officials.

The latency and reliability of COVID-19 related data sources can vary. Death data

can be seen as reliable when compared with confirmed cases derived from positive test

results; however, observations of this data are typically delayed from the initial point of

infection. Delays also occur between the occurrence and reporting of deaths. The reliability

of confirmed cases is limited as the sampling of those tested varies with time and the reason

for testing is often not recorded. In addition, hospital admissions typically occur around

1–2 weeks after infection and so may be considered outdated in relation to the time of

initial infection. The extent to which these issues are problematic is likely to vary over

time and between countries. For example, reliable, publicly available tests only began to

become available a number of months after the outbreak and declaration of the COVID-

19 pandemic. As such, information on the spread of the disease was limited and varied

between countries. Twitter provides real-time data that overcome the timing limitations

of the aforementioned data sources. Correlation between tweets relating to influenza and

true influenza counts have been observed in [59, 60, 61]. In addition, it is possible to set up

a pipeline for collecting and analysing COVID-19 tweets that can be scaled up to multiple

countries in a short amount of time.

Infodemiology and infoveillance [145] refer to the ability to process and analyse data,

pertinent to disease outbreaks, that are created and stored digitally in real-time. The

availability of these data sets, particularly at the beginning of an outbreak, could provide

a noisy but accurate representation of disease dynamics. Prior to the pandemic, tweets re-

lating to influenza-like-illness symptoms were observed to substantially improve predicting

capacity [146] and to boost nowcasting accuracy by 13% [147]. Models allowing for early

warning detection of multiple diseases are proposed in [147, 148] through analysis of tweet

content in real time. Many research papers use social media to gain valuable information

relating to the COVID-19 pandemic. Natural language processing (NLP), in particular

102 Conor Rosato

determining the sentiment of tweets, is a popular research area. Reference [149] uses sen-

timent analysis and topic modelling to extract information from conversations relating to

COVID-19. When including these data within forecasting models a 48.83–51.38% improve-

ment in predicting COVID-19 cases was observed. Public sentiment relating to COVID-19

prevention measures is analysed in [150]. Depression trends among individuals are analysed

in [151]. Emotion was observed to change from fear to anger during the first stages of the

pandemic [152]. Misinformation and conspiracy theories propagated rapidly through the

Twittersphere [153]. Machine learning algorithms have been used to automatically detect

tweets containing self-reported symptoms mentioned by users [154], with [155] observing

symptoms reported by Twitter users to be similar to those used in a clinical setting. The

analysis in [149, 150, 152, 153, 154] is only conducted with the English language. Analysis

conducted in multiple languages is less common. Topic detection and sentiment analysis

are conducted in the Portuguese and English language in [156]. Misinformation is detected

in English, Hindi and Bengali in [157]. Researchers have yet to use symptomatic tweets in

multiple languages to calibrate epidemiological models.

Movement mobility patterns have been derived from anonymised cell phone [158, 159]

and Twitter [160, 161] data. Using movement between different geographic locations has

been shown to be an effective way of modelling the spread of disease [159, 162, 163, 164].

During an epidemic, limiting the movement of individuals with measures, such as school

closures and national lockdowns, can drive the reproduction number below 1 [119]. In

Italy, when analysing mobile phone movement data, less rigid lockdown measures led to an

insufficient decrease in COVID-19 cases when compared to a more rigid lockdown [165].

This chapter outlines two methods in which Twitter data can be used to help inform

disease models. Firstly, using machine learning algorithms trained in multiple languages,

symptomatic tweets tweets are detected. A time series of aggregated counts are then

used to calibrate an extended SIR compartmental disease model. A comparison is then

made with other publicly available data sources when predicting COVID-19 related deaths.

Secondly, origin/destination (O/D) matrices are derived from where people tweet in real

time. By using a multi-region SIR compartmental disease model, we show that restricting

movement between regions can have an effect on the spread of a disease.

Chapter 7. Using Twitter Data to Inform Disease Models 103

7.2 Data Collection

Methods for collecting UK NHS region-specific surveillance data and symptomatic tweets

are outlined in Sections 7.2.1 and 7.2.2, respectively. The O/D matrices derived from

Twitter mobility are described in Section 7.2.3. Two Twitter API developer credentials

were used for data collection, in line with the two objectives of this chapter: (1) querying

on COVID-19 keywords and (2) querying on geo-located tweets.

Note that testing methods and criteria for classifying deaths as COVID-19-related may

differ between geographic locations. All data sets and the associated code can be found on

the CoDatMo GitHub repository [166].

7.2.1 United Kingdom NHS Region-Specific Surveillance Data

Methods for collecting UK NHS region-specific surveillance data are presented in the fol-

lowing subsections. References for obtaining the data are given in Table 7.1. The NHS

regions in the UK support local systems and provide more connected and sustainable care

for patients through integrated care systems. Every individual born in the UK is entitled

to use this public health system.

7.2.1.1 Deaths

Aggregated death counts consist of individuals with COVID-19 as the cause of death on

their death certificate or those who died within 60 days of a positive test result.

7.2.1.2 Hospital Admissions

Aggregated admission counts consist of the daily COVID-19 related hospital admissions

and the total number of COVID-19 patients.

7.2.1.3 Zoe App

Aggregated Zoe App counts consist of entries of COVID-19 symptoms to a mobile App

developed in 2020 to help track COVID-19. Users can input COVID-19 symptoms as well

as stating whether they have been tested for COVID-19. The App has since broadened its

capacity to track other health related concerns such as cancer and high blood pressure.

104 Conor Rosato

Geographic Location Data Feed Start Date Reference

U.S States and the rest of the world Deaths 24 March 2020 [56]
Tests 1 March 2020 [56]

Twitter 13 April 2020 Section 7.2.2

U.K NHS Regions Deaths 24 March 2020 [133]
Hospital admissions 19 March 2020 [134]

Twitter 9 April 2020 Section 7.2.2
Zoe app 12 May 2020 [167]
111 calls 18 March 2020 [135]
111 online 18 March 2020 [135]

Table 7.1: A description of the data feeds used per geographic location, the simulation
start dates and references for where the feeds were obtained.

7.2.1.4 111 Calls and 111 Online

Aggregated 111 call and 111 online assessment counts consist of individuals that reported

potential COVID-19 symptoms through the NHS Pathways telephone and online assess-

ment services, respectively. The telephone service allows for individuals to speak to a

medical specialist regarding health concerns. The 111 online service provides informa-

tion on where is best to obtain help for the symptoms provided. During the COVID-19

epidemic, both services provided a method for individuals to report COVID-19 symptoms.

7.2.2 Symptomatic Tweets

The geographic locations considered when querying on keywords are:

· US: 50 States;

· Rest of the world: 2 European and 16 Latin American countries;

· UK: 7 NHS regions.

Table 7.1 provides a summary of surveillance data corresponding to each geographical

location. Death and positive case data for the US States and the rest of the world (ROW)

were downloaded from the dashboard operated by the Johns Hopkins University Center

for Systems Science and Engineering (JHU CSSE) [56].

Chapter 7. Using Twitter Data to Inform Disease Models 105

7.2.2.1 Pre-processing Tweets

Tweepy [168] is the Twitter API written in the programming language Python. The free

Twitter streaming API is used in this research, limiting the number of tweets available for

download to 1%. The premium API would allow for a higher percentage of tweets to be

collected. The API was filtered using 93 keywords in English, German, Italian, Portuguese

and Spanish that align with COVID-19 symptoms from the MedDRA database [169]. These

terms include those associated with fever, cough and anosmia. The full list of keywords

can be found here [166]. While other keywords (e.g., “COVID”) were considered, keywords

relating to symptoms gave rise to a large number of tweets corresponding to individuals

experiencing symptoms. Note that any choice of keywords will inevitably identify tweets

that are related to advice or general discussion of the disease. This motivated the use of

machine learning to post-process the output from the keyword-based queries, as is discussed

further in Section 7.2.2.2.

7.2.2.2 Symptom Classifier Breakdown

A multi-class support vector machine (SVM) [170] is trained with a set of annotated tweets

vectorised using a skip-gram model [171]. In the context of categorising tweets, the skip-

gram method finds the most related words for a given word by capturing the context

and semantic similarity between words. By training the algorithm with tweets relating

to COVID-19 symptoms, it will be able to distinguish between the classes below. The

annotated tweets are labelled according to the following classes:

1. Unrelated tweet;

2. User currently has symptoms;

3. User had symptoms in the past;

4. Someone else currently has symptoms;

5. Someone else had symptoms in the past.

The total number of tweets that mention symptoms, given by the sum of tweets in

classes 2–5, is calculated for each 24 hour period. Geo-tagged tweets are mapped to their

106 Conor Rosato

location, e.g. corresponding city, via a series of tests using country-specific shapefiles. Pre-

vious studies demonstrate that approximately 1.65% of tweets are geo-tagged [172], where

the exact position of the tweeter is recorded using longitude and latitude measurements.

For non-geo-tagged tweets, the author’s profile is assessed to ascertain whether they

provide an appropriate location. The server is deemed to be offline if any 15 minute period

within the previous 24 hours has no recorded tweets. After checking all 96 15 minute

periods, the count in each geographical area is multiplied by a correction factor:

reported tweet count = total tweet count · 96

96− downtime periods
. (7.1)

To ensure the labelled tweet data sets used for training and testing are balanced, under-

and over-represented classes are randomly up- and down-sampled. A subset of data is used

to train the classifier before testing on the remainder. The total number of labelled tweets

used for training and testing are provided in Table 7.2. Four metrics outlined in Table 7.2

are used to evaluate the classifier. These include the F1 score, accuracy, precision and

recall. True positive (TP) and true negative (TN) classifications are outcomes for which

the model correctly predicts positive and negative classes, respectively. Similarly, false

positive (FP) and false negative (FN) classifications are outcomes for which the model

incorrectly predicts positive and negative classes, respectively. Accuracy, precision, recall

and the F1 score, which is the harmonic mean of precision and recall, are given as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (7.2)

Precision =
TP

TP + FP
, (7.3)

Recall =
TP

TP + FN
, (7.4)

F1 =
2 · (Precision · Recall)
Precision + Recall

. (7.5)

Chapter 7. Using Twitter Data to Inform Disease Models 107

Language # of Data Used Performance Measures
Training Testing F1 Accuracy Precision Recall

English 1105 195 0.85 0.85 0.85 0.85
German 412 260 0.89 0.89 0.90 0.89
Italian 254 260 0.97 0.96 0.97 0.96

Portuguese 3507 619 0.77 0.77 0.78 0.80
Spanish 1530 270 0.82 0.85 0.82 0.85

Table 7.2: Testing, training and performance measures for the machine learning classifiers
for each language.

7.2.2.3 Comparison of Tweets and Positive Test Results

Figure 7.1 presents a comparison between the classified tweets and confirmed positive

test results for five US States and one South American country. Both time-series are

standardised between 0 and 1 and have been converted to a 7-day rolling average to smooth

out short-term fluctuations. It is evident that, at least in the context of these specific

examples, the classified tweets do (by eye) follow the trend of positive test results. In some

cases, such as Texas and Chile, there appears to be a lag between tweets and positive test

results. This could be caused by a reporting delay in these locations. A more rigorous

analyses, such as change point detection, could give a stronger indication of how well the

trends in the two time-series match. Note that, for some geographic locations, tweets align

less well with the corresponding case counts. This could be caused by issues associated

with how cases are recorded in each location or by the processing of the tweets.

7.2.3 Twitter Mobility Origin Destination Matrices

The data collection processes for the derivation of the O/D matrices are now presented.

The flow of individuals travelling from one location to another can be expressed as

an M × M matrix, where M is the number of locations in the simulation area. The

observation period of the data is 30 April 2020 to 31 May 2020. England is divided into

the seven NHS regions, which are treated as separate locations. Tweets with the geo-

location feature are collected using the same framework as described in Section 7.2.2.1;

however, different Twitter developer API credentials are used as tweets were not filtered

based on keywords. To determine where an individual tweeted, a shapefile containing

108 Conor Rosato

Figure 7.1: Plot of 7-day rolling average and standardised daily counts of positive COVID-
19 cases (blue) and self-reported symptomatic tweets (red) for different US States and one
South American country.

coordinates of the boundaries of the seven NHS regions is used.

If an individual tweets twice from two distinct locations, for example, London (Origin)

and South West (Destination), a movement is subsequently recorded. Figure 7.2 depicts

each of these movements in the form of an O/D matrix. Locations on the x- and y-axes

represent the origin and destination, respectively. Movements within regions, where an

individual tweets multiple times in different locations within the same region, have also

been collected. These are observed in the diagonal entries of the matrix.

7.3 Models

The model used for making inferences and death predictions when utilising different data

feeds is outlined in Section 7.3.1. The extended SIR disease model catering for movement

between different locations is described in Section 7.3.2.

7.3.1 Model for Surveillance Data Comparison

In this analysis, the statistical model outlined in Chapter 6 is used.The observation model

(described in Section 6.2.2) outlines the relationship between the transmission model (see

Section 6.2.1) and the surveillance data feeds in Table 7.1 during calibration. Daily counts

of the surveillance data feeds in Table 7.1 are assumed to follow a negative binomial

Chapter 7. Using Twitter Data to Inform Disease Models 109

Figure 7.2: Heat-maps of origin destination matrices derived from Twitter for NHS regions.
Locations on the x- and y-axes represent the origin and destination, respectively.

distribution parameterised by mean x (t) and over-dispersion parameter ϕx, such that

xobs (t) ∼ NB (x (t) , ϕx) , (7.6)

where x is data feed specific. See Sections 6.2.2.1 and 6.2.2.2 for a description of death

and hospital admissions data, respectively.

7.3.1.1 Computational Experiments

The time series considered in the analysis begins on 17 February 2020. The start dates

of each data feed follow those outlined in Table 7.1. The terminal time for the US States

and the ROW is fixed at 1 February 2021, while, for NHS regions, the terminal time is 7

January 2021. In all cases, forecasts are considered to include seven days.

Similar to the experiments in Chapter 6, the analysis is run on the University of Liv-

erpool’s High-Performance Computer (HPC). Each node has two Intel(R) Xeon(R) Gold

6138 CPU @ 2.00 GHz processors, a total of 40 cores and 384 GB of memory. In the

following experiments, six independent Markov chains each draw 2000 samples, with the

first 1000 discarded as burn-in. Run-time is dependent on the location of the data and the

110 Conor Rosato

US States and Rest of the World NHS Regions

9 July 2020 - 16 July 2020 11 November 2020 - 18 November 2020
17 October 2020 - 24 October 2020 21 November 2020 - 28 November 2020
25 January 2021 - 1 February 2021 1 December 2020 - 8 December 2020

- 11 December 2020 - 18 December 2020
- 21 December 2020 - 28 December 2020
- 31 December 2020 - 7 January 2021

Table 7.3: Prediction windows for the US States and the rest of the world, and NHS
regions.

date at which the prediction is made. However, it typically takes 4.5 hours per Markov

chain for a complete run.

Initially, the model is only calibrated with death data and forecasts produced for seven

daily death counts for the geographic locations described in Section 7.2.2 for the time

periods outlined in Table 7.3. These forecasts are set as the baseline when comparing

against forecasts incorporating low-latency data feeds.

Two metrics are used to determine the accuracy of the resulting forecasts. First, the

mean absolute error (MAE), which shows the average error over a set of predictions, is

calculated. This is given by

MAE =
1

N

N∑
i=1

|xi − yi|, (7.7)

where N is the number of predictions and xi and yi the predicted and true number of

deaths on day i, respectively. The percentage difference between forecasts, using only

deaths (MAED) and those combining deaths with low-latency data feeds (MAEDL), is

calculated as follows:

MAE % Diff =
MAEDL −MAED

MAED
, (7.8)

where a smaller percentage difference is preferred.

Secondly, the uncertainties associated with the forecasts are considered by assessing

the NEES score. A detailed description of this metric is provided in Section 6.3.1.

Chapter 7. Using Twitter Data to Inform Disease Models 111

7.3.2 Model for Utilising Origin Destination Matrices

An extension of the discrete time approximation SIR model that includes movement be-

tween geographic locations [159, 173] and is an extension of [174] is now described. The

population in location i is denoted Pi. At the beginning of the simulation, Pi is divided

into three compartments: susceptible, infected and recovered, denoted Si,t, Ii,t and Ri,t,

respectively, for timestep t. Note that, since the size of the population is fixed throughout

the simulation, subscript t is not required when denoting Pi. Location j represents the set

of locations connected to location i. The origin of the pandemic is simulated at a random

location, with a fraction of the susceptible compartment infected. The transmission rate

in location i on day t is given by βi,t, while mi,j is the count of individuals travelling from

location j to i. The global parameter γ describes the recovery rate.

The proportions of infected and susceptible individuals at location j at time t are

denoted xj,t and yj,t, respectively. The disease spreads via infected individuals travelling

according to the O/D matrices in Figure 7.2. The full extended SIR model is described as

follows:

Si,t+1 = Si,t −
βi,tSi,tIi,t

Pi
−

αSi,t
∑

j m
t
i,jxj,tβj,t

Pi +
∑

j m
t
i,j

, (7.9)

Ii,t+1 = Ii,t +
βi,tSi,tIi,t

Pi
+

αSi,t
∑

j m
t
i,jxj,tβj,t

Pi +
∑

j m
t
i,j

− γIi,t, (7.10)

Ri,t+1 = Ri,t + γIi,t. (7.11)

The number of infected individuals that move from all locations j to location i and

transmit the disease to the susceptible population is given by∑
j

mt
i,jxj,tβj,t. (7.12)

Uninfected individuals at location i are infected by individuals at location j with probability

αSi,t
∑

j m
t
i,jxj,tβj,t

Pi +
∑

j m
t
i,j

. (7.13)

This rate is dependent on α, which describes the intensity of the movement of individuals

and is referred to as the social connectivity parameter.

112 Conor Rosato

7.4 Results

In this section, results for the two objectives are outlined. Comparison of the accuracy

of death forecasts and findings on the impact of movement on the spread of a disease are

presented in Sections 7.4.1 and 7.4.2, respectively.

7.4.1 Surveillance Data Comparison

The NEES value and MAE percentage difference between the baseline, ingesting solely

deaths, and the incorporation of low-latency data feeds for the US States, the ROW,

and NHS regions are given in Tables 7.4–7.6, respectively. For all geographic locations,

the results are averaged over the prediction windows described in Table 7.3. A visual

representation of these predictions windows can be seen in Figure 7.3.

When ingesting solely death data, tweets, tests, and tweets and tests for US States, the

average NEES values are 1.696, 1.409, 1.483 and 1.269, respectively. The corresponding

results for the ROW are 0.433, 0.500, 1.198 and 0.723. As explained in Section 7.3.1.1, a

NEES value of ∼1 is desired, with values <1 and >1 indicating that the forecast is over-

cautious or over-confident, respectively. In both cases, ingesting any combination of the

data feeds provides a NEES value closer to 1 than the death only forecast.

MAE results for NHS regions are less consistent. Ingesting hospital admission, 111

call and 111 online data sets provide an average increase in performance of 22%, 17% and

22%, respectively. However, tweets and Zoe App data perform less well, with decreases

in performance of 2% and 124%, respectively. This issue may arise because, in these

feeds, symptoms are self-diagnosed. Consequently, the counts may include relatively large

numbers of individuals who do not have COVID-19.

NEES values for NHS regions when ingesting solely death, hospital admission, tweet,

Zoe App, 111 call and 111 online data are 0.662, 0.682, 1.044, 3.160, 0.916 and 0.912,

respectively. These results infer that, apart from Zoe App data, where forecasts are overly-

confident, ingesting all types of data feeds provides more consistent forecasts. Figure 7.5

exemplifies this finding. In the top image, the forecast encapsulates almost all true deaths.

However, when ingesting the Zoe App data, the forecast only encapsulates two out of the

seven true deaths, resulting in a NEES value of 6.202, which indicates an over-confident es-

timate.

Chapter 7. Using Twitter Data to Inform Disease Models 113

04-04-2020

09-05-2020

13-06-2020

18-07-2020

Date

0

50

100

150

200

250

Da
ily

 d
ea

th
s

Florida - Data: deaths, tests and tweets

04-04-2020

09-05-2020

13-06-2020

18-07-2020

Date

0

20

40

60

80

100

120

Da
ily

 d
ea

th
s

Georgia - Data: deaths, tests and tweets

25-03-2020

29-04-2020

03-06-2020

08-07-2020

12-08-2020

16-09-2020

21-10-2020

Date

0
50

100
150
200
250
300
350
400

Da
ily

 d
ea

th
s

Florida - Data: deaths, tests and tweets

25-03-2020

29-04-2020

03-06-2020

08-07-2020

12-08-2020

16-09-2020

21-10-2020

Date

0
25
50
75

100
125
150
175

Da
ily

 d
ea

th
s

Georgia - Data: deaths, tests and tweets

16-03-2020

20-04-2020

25-05-2020

29-06-2020

03-08-2020

07-09-2020

12-10-2020

16-11-2020

21-12-2020

25-01-2021

Date

0

100

200

300

400

Da
ily

 d
ea

th
s

Florida deaths forecast: deaths, tests and tweets data

16-03-2020

20-04-2020

25-05-2020

29-06-2020

03-08-2020

07-09-2020

12-10-2020

16-11-2020

21-12-2020

25-01-2021

Date

0

100

200

300

400

500

Da
ily

 d
ea

th
s

Georgia deaths forecast: deaths, tests and tweets data

Figure 7.3: Death forecasts in Florida (left) and Georgia (right) using test and tweet data.
The first, second and third prediction windows outlined in Table 7.3 are presented in the
first, second and third rows, respectively, with confidence intervals of 1 standard deviation
from the mean (orange), the mean sample (red) and the beginning of the prediction period
(blue). True deaths are given by the black and green dots.

114 Conor Rosato

Geographic Deaths Tests Twitter Tests and Twitter
Location NEES MAE % Diff NEES MAE % Diff NEES MAE % Diff NEES
Alaska 0.329 -36 0.334 -29 0.301 -92 0.302

Alabama 0.684 -29 1.874 -29 1.723 -2 1.000
Arkansas 0.275 3 0.317 -1 0.288 -1 0.313
Arizona 0.337 20 0.334 18 0.344 -20 0.244
California 0.611 6 0.709 9 0.802 5 1.206
Colorado 1.886 -25 0.401 -41 0.457 10 1.278

Connecticut 13.406 -8 1.922 -2 0.875 2 11.459
Delaware 3.020 -3 0.918 16 1.046 12 0.727
Florida 0.406 -24 0.179 13 0.353 -20 0.454
Georgia 0.550 9 0.325 41 0.891 -48 0.255
Hawaii 11.459 -12 28.114 -4 24.695 17 10.149
Iowa 19.176 5 7.720 4 1.476 -3 1.600
Idaho 0.914 0 0.809 2 1.791 7 0.986
Illinois 0.573 9 0.350 13 0.319 -116 1.091
Indiana 0.561 -17 0.652 -40 0.781 0 0.481
Kansas 1.021 1 1.037 -2 1.835 1 0.488

Kentucky 0.355 -4 0.374 10 0.548 -15 0.214
Louisiana 0.298 -7 0.305 -2 0.341 9 0.234

Massachusetts 0.351 3 0.342 -3 0.365 14 0.409
Maryland 0.485 -3 0.619 10 0.581 31 0.313
Maine 0.488 1 0.567 -28 0.796 -9 0.952

Michigan 0.592 -6 0.445 -7 0.453 4 0.850
Minnesota 0.683 9 1.019 11 1.200 51 0.747
Missouri 0.810 -7 1.165 -27 1.609 20 0.475

Mississippi 0.683 12 0.721 2 0.997 -15 0.320
Montana 5.034 4 2.244 -1 1.538 -5 5.189

North Carolina 0.908 -1 0.453 9 0.877 -19 0.570
North Dakota 0.513 -32 0.521 -18 0.544 -8 0.661

Nebraska 0.259 5 0.253 7 0.570 5 0.286
New Hampshire 0.252 -74 0.240 -148 0.430 -36 0.288

New Jersey 0.901 -7 0.788 -6 0.926 10 3.177
New Mexico 0.832 -28 0.738 -12 0.969 0 0.489

Nevada 2.129 -24 0.353 -12 0.425 -13 1.904
New York 0.496 31 0.146 3 0.135 -17 0.418

Ohio 0.263 63 0.675 54 0.468 3 0.337
Oklahoma 0.301 -5 0.369 0 0.621 8 0.256
Oregon 0.729 0 1.032 -2 1.692 -4 0.793

Pennsylvania 0.411 -7 0.385 0 0.426 10 0.402
Rhode Island 0.609 -9 0.546 -31 0.446 -2 1.699
South Carolina 2.072 -3 2.157 -4 5.601 -39 0.429
South Dakota 1.259 14 1.080 -2 1.089 2 5.050
Tennessee 0.794 15 1.191 14 1.687 -11 0.600
Texas 0.585 6 0.784 1 0.750 -71 0.706
Utah 0.499 -98 0.716 -127 1.196 13 0.632

Virginia 0.731 -10 0.396 6 0.864 9 0.676
Vermont 0.142 59 0.300 -1 0.163 40 0.043

Washington 0.608 -8 0.561 19 1.787 -1 0.782
Wisconsin 0.842 6 1.028 25 3.921 8 0.850

West Virginia 0.650 -6 0.547 2 1.042 7 0.291
Wyoming 1.939 5 0.951 -15 1.126 25 0.395

Average 1.696 -5 1.409 -6 1.483 -5 1.269

Table 7.4: US States: MAE and NEES when using deaths and deaths combined with
different low-latency data feeds, averaged over the prediction windows in Table 7.3. Lower
MAE % Diff and NEES∼1 = better. Only the English classifier was used.

Chapter 7. Using Twitter Data to Inform Disease Models 115

Geographic Lang Deaths Tests Twitter Tests and Twitter
Location NEES MAE % Diff NEES MAE % Diff NEES MAE % Diff NEES
Argentina ES 0.567 3 0.695 −17 0.904 −19 0.765
Bolivia ES 0.339 −85 0.207 −117 0.182 −118 0.195
Brazil PT 0.396 −4 0.405 11 0.578 4 0.493
Chile ES 0.371 15 0.439 14 0.506 10 0.425

Colombia ES 0.154 17 0.243 −46 0.164 −115 0.223
Costa Rica ES 0.423 6 0.583 18 3.060 2 0.786
Ecuador ES 0.156 −26 0.195 −99 0.234 −69 0.234

Guatemala ES 0.557 −19 0.670 −31 0.815 −31 0.713
Honduras ES 0.405 −8 0.381 −27 0.915 −41 0.541
Mexico ES 0.766 16 0.939 11 1.100 11 1.110

Nicaragua ES 0.091 −13 0.207 −24 1.340 −22 0.364
Panama ES 0.550 −20 0.421 −4 0.451 −7 0.368
Paraguay ES 0.535 28 0.877 −7 2.615 8 1.473

Peru ES 0.507 33 0.103 26 1.630 16 0.515
Uruguay ES 0.619 11 0.742 −13 0.899 −7 0.643
Venezuela ES 0.610 −14 0.713 −49 0.890 −91 0.603
Germany DE 0.379 5 0.613 15 2.131 14 1.570

Italy IT 0.360 17 0.557 29 3.149 34 1.991

Average 0.433 -6 0.500 -17 1.198 -24 0.723

Table 7.5: Rest of the World: MAE and NEES when using deaths and deaths combined
with different low-latency data feeds, averaged over the prediction windows in Table 7.3.
Lower MAE % Diff and NEES∼1 = better. Language column states which classifier was
used.

1
16

C
on

or
R
osato

Geographic Deaths Hospital Twitter Zoe App 111 Calls 111 Online
Location NEES MAE % Diff NEES MAE % Diff NEES MAE % Diff NEES MAE % Diff NEES MAE % Diff NEES

East of England 0.435 -13 0.419 -7 0.655 38 2.908 -15 0.820 -19 0.795
London 0.878 -36 0.666 -7 1.163 131 3.150 -43 0.750 -47 0.754
Midlands 0.635 -16 0.466 13 0.569 132 3.330 -19 0.418 -47 0.404

North East and Yorkshire 0.753 5 1.188 -4 0.824 153 2.325 -16 0.860 -14 0.888
North West 0.735 -1 0.756 17 1.408 129 3.285 -25 0.932 -25 0.934
South East 0.652 -24 0.805 -3 1.255 126 4.390 8 1.018 6 0.957
South West 0.545 -69 0.474 2 1.432 160 2.729 -8 1.617 -6 1.653

Average 0.662 -22 0.682 2 1.044 124 3.160 -17 0.916 -22 0.912

Table 7.6: NHS Regions: MAE and NEES when using deaths and deaths combined with different low-latency data
feeds, averaged over the prediction windows in Table 7.3. Lower MAE % Diff and NEES∼1 = better. Only the
English classifier was used.

Chapter 7. Using Twitter Data to Inform Disease Models 117

16-03-2020

20-04-2020

25-05-2020

29-06-2020

03-08-2020

07-09-2020

12-10-2020

16-11-2020

21-12-2020

25-01-2021

Date

0

200

400

600

800

Da
ily

 d
ea

th
s

Colombia - Data: deaths

16-03-2020

20-04-2020

25-05-2020

29-06-2020

03-08-2020

07-09-2020

12-10-2020

16-11-2020

21-12-2020

25-01-2021

Date

0
100
200
300
400
500
600
700
800

Da
ily

 d
ea

th
s

Colombia - Data: deaths and tests

16-03-2020

20-04-2020

25-05-2020

29-06-2020

03-08-2020

07-09-2020

12-10-2020

16-11-2020

21-12-2020

25-01-2021

Date

0

100

200

300

400

500

600

700

Da
ily

 d
ea

th
s

Colombia - Data: deaths and tweets

16-03-2020

20-04-2020

25-05-2020

29-06-2020

03-08-2020

07-09-2020

12-10-2020

16-11-2020

21-12-2020

25-01-2021

Date

0

100

200

300

400

500

600

700

Da
ily

 d
ea

th
s

Colombia - Data: deaths and tweets

Figure 7.4: Death forecasts in Colombia using combinations of data sets with confidence
intervals of 1 standard deviation from the mean (orange), the mean sample (red) and the
beginning of the prediction period (blue). True deaths are given by the black and green
dots.

118 Conor Rosato

(a)

(b)

Figure 7.5: Death forecasts in London using death and 111 call data (top) and Zoe App
and death data (bottom) with confidence intervals of 1 standard deviation from the mean
(orange), the mean sample (red) and the beginning of the prediction period (blue). The
black and green dots are the true deaths.

Chapter 7. Using Twitter Data to Inform Disease Models 119

7.4.2 Origin Destination Matrices Analysis

As explained in Section 7.2.3, a movement is recorded if an individual tweets twice in one

day in different locations over a 24 hour period. Counts are assumed to be a percentage

of the true population for the seven NHS regions. Figure 7.2 depicts these aggregated

movements as O/D matrices.

Figure 7.6 shows the effect of the social connectivity parameter, α, on the spread of a

disease and so exemplifies the role of α when simulating disease dynamics. This parameter

models the level of contact between individuals when travelling between locations. For

example, implementing a lockdown or using a personal car will correspond to increasing

values of α. SIR epidemic curves for England are presented on the top row and the infected

curves for each NHS region on the bottom row. Limiting contacts within the population

through specification of α = 0.2 results in the disease ceasing by day 15. For α = 0.5, the

peak number of infections occurs at approximately day 20 and consists of just over 0.1% of

the population. In contrast, when α = 0.9, the peak occurs at approximately day 10 and

0.3% of the population are infected. Simulations of the SIR curves under no movement

between NHS regions are also provided in the rightmost column of Figure 7.6.

120 Conor Rosato

Figure 7.6: Susceptible, infected and recovered epidemic curves for England (top) and
infected curves for NHS regions (bottom) for different social connectivity parameters and
no movement between regions.

7.5 Conclusions and Future Work

In this chapter, a method for detecting symptomatic COVID-19 tweets in multiple lan-

guages has been outlined. Calibrating the epidemiological model outlined in Section 7.3.1

with low-latency data feeds, including symptomatic tweets, was found to provide more

accurate and consistent forecasts of daily deaths when compared with using death data

alone. A method for extracting movement data from Twitter in the form of O/D matri-

ces was also presented. These movement data were utilised in an extended SIR model to

show how a disease originating in one region can quickly spread to others. Restricting

movement between regions can be an effective measure when limiting the onward spread

of COVID-19.

Incorporating symptomatic tweets for UK regions does not provide the same level of

improvement as for other geographic locations. One reason for this reduced improvement

could be that daily counts of tweets for NHS regions are less plentiful than for the US States

and the ROW. To overcome this, a premium Twitter API that allows the user to download

a higher percentage of tweets than that used in this analysis could be purchased. An

additional method to increase the hit rate of geo-located tweets is to use natural language

processing techniques to estimate the location of the tweet user, such as those outlined

in the review [175]. Another direction for future work is to train a more sophisticated

Chapter 7. Using Twitter Data to Inform Disease Models 121

classifier such as the Bidirectional Encoder Representations from Transformers (BERT)

classifier [176].

Calibrating the model in Section 7.3.1 with movement data was not explored in this

chapter due to the significant computational effort required. One interesting direction for

future work would be to use a sequential Monte Carlo (SMC) sampler [142] in place of

the MCMC sampling algorithm. An example of such a sampler that uses NUTS as the

proposal can be found in [111].

Chapter 8

Conclusions and Future Work

In this thesis, multiple Bayesian methods have been implemented to obtain information

pertinent to disease outbreaks. First, a novel method for differentiating the log-likelihood of

a particle filter with respect to its parameters was outlined. This advancement enables more

accurate inference when estimating the parameters of various SSMs, including stochastic

disease models, using p-MCMC, compared to the current state-of-the-art approaches. A

framework for differentiating the particle filter using AD and PyTorch as well as the NUTS

sampler from PyMC3 was provided.

In addition, an extended SIR compartmental statistical model, implemented in the

ppl Stan, was used to model the spread of COVID-19 in England. The high performance

MCMCmethod, NUTS, was used to infer the parameters of the model, nowcast the number

of individuals in each compartment and to make forecasts of COVID-19 related deaths. A

set of simple scoring rules were employed to evaluate forecasts and detect shortcomings in

the statistical model. The scoring rule NEES provides additional information to alternative

scoring rules by outlining over-confident and over-cautious forecasts.

The thesis also introduced a novel machine learning framework for detecting COVID-19

related symptoms from tweets. Machine learning algorithms trained in English, Spanish,

German, Portuguese and Italian were used to detect symptomatic COVID-19 individuals

from the content of their tweets. Symptomatic tweets were aggregated over every 24-hour

period, producing daily time series data. Data was obtained for 50 US States, 16 Latin

American countries, 2 European countries and 7 NHS regions in the UK. A comparison

of calibrating the statistical model with tweets and positive COVID-19 test results was

presented for the forecast of death counts. Symptomatic tweets resulted in 6% and 17%

122

Chapter 8. Conclusions and Future Work 123

increases in mean squared error accuracy, on average, when predicting COVID-19 deaths

in US states and the rest of the world, respectively, compared to using solely death data.

One limitation of the methods outlined in Chapter 4 for differentiating the particle

filter with CRN, that has been highlighted in the publication [177], is that the gradient

evaluations can be biased (see Figure 4.1). To be unbiased, the average gradient estimate of

multiple seeds would need to be taken and the limit considered as the number of seeds tends

to infinity. Another method could involve using different seeds at each NUTS iteration (so

that the gradients are consistent within a NUTS trajectory but the density function changes

between NUTS iterations).

One of the main drawbacks of using p-MCMC and MCMC is the lack of opportunity

for parallelisation due to the sequential nature of the two methods. One approach for

overcoming this issue is to use an SMC sampler in place of MCMC, with SMC2 replacing

p-MCMC. An advantage of using an SMC sampler and SMC2 is that they do not have

the same constraints as MCMC and p-MCMC. For example, they can bypass the burn-in

phase and do not need to be reversible.

SMC-Stan, an SMC variant of Stan, is presented in [178]. SMC-Stan allows the user to

make inferences on static statistical models described in the Stan programming language

by utilising the Stan back end. The original SMC sampler, presented in [142], uses the

random walk proposal (see Section 3.3.1) to propose new parameters at each SMC itera-

tion. However, SMC-Stan makes use of HMC and NUTS proposals (see Sections 3.3.2 and

3.3.3, respectively) as presented in [111]. SMC-Stan implements the advancement with

approximately optimal L-kernels proposed by [179].

When estimating the weekly reproduction rate Rt for England, the COVID-19 model of

Chapter 6 must be continuously calibrated with data from the beginning of the simulation

period. As such, assumptions must be made to produce estimates in a timely manner. A

parallel implementation of SMC-Stan would improve computation time and thus enable the

relaxing of a number of assumptions. One example would be to include age stratification.

Computation time is improved through the use of importance sampling. This removes the

requirement for the model to be calibrated with data from the beginning of the simulation

period each time an estimate is made.

SMC2 combines two SMC methods: one is an SMC sampler with Nθ particles that

makes estimates of the probability density function over the static parameters, θ. The

second is a particle filter with Nx particles that makes estimates of the dynamic states.

Although significant effort has been made to parallelise the resampling step within the

124 Conor Rosato

particle filter [180, 181, 182, 183], the main computational bottleneck associated with

SMC2 is the need to run Nθ particle filters. Future work will therefore involve parallelising

the particle filters and the resampling within the SMC sampler. An additional direction

for future work will involve using the differentiable particle filter outlined in Chapters 4

and 5 in a parallel implementation of SMC2.

As described in Chapter 4, methods for obtaining gradients from a particle filter can

result in biased or poorly estimated gradients. Therefore, considerations need to be made

when using differentiable particle filters within NUTS. One drawback when using gradi-

ents that are piecewise continuous is that NUTS’s integrator step size adaptation no longer

holds. Step size adaption is a calculation that relates the “acceptance statistic” to the as-

sociated step size. The step size should be positively correlated with the expectation of the

adaptation statistic, such that adjusting the step size should allow for convergence towards

the target. However, the presence of a discontinuity may result in the expected value of

the adaptation statistic failing to increase as the step size increases. This phenomenon is

more pronounced when running models in higher dimensions. Future work will consider

the relationship between step size adaption and piecewise continuous gradients in models

with higher dimensions. One method to overcome this issue is to use a numerical integrator

that can handle discontinuities in log-likelihood and gradient of the log-likelihood [184].

The discrete SIR model presented in Section 3.1.4.2 is commonly used in disease mod-

elling. An example where inferring the parameters using p-MCMC with a MHRW proposal

is seen in Section 3.4.1. As the particle state equations in (4.23) follow a discrete distribu-

tion and are non-differentiable, calibrating this model using p-MCMC or SMC2 is restricted

to MHRW proposals. Future work will therefore involve incorporating the ideas described

in [43, 89, 177] to approximate the discrete operation continuously.

Bibliography

[1] C. C. Kerr, R. M. Stuart, D. Mistry, R. G. Abeysuriya, K. Rosenfeld, G. R. Hart,

R. C. Núñez, J. A. Cohen, P. Selvaraj, B. Hagedorn, et al., “Covasim: an agent-

based model of covid-19 dynamics and interventions,” PLOS Computational Biology,

vol. 17, no. 7, p. e1009149, 2021.

[2] W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical theory

of epidemics,” Proceedings of the royal society of london. Series A, Containing papers

of a mathematical and physical character, vol. 115, no. 772, pp. 700–721, 1927.

[3] L. K. Whittles and X. Didelot, “Epidemiological analysis of the eyam plague outbreak

of 1665–1666,” Proceedings of the Royal Society B: Biological Sciences, vol. 283,

no. 1830, p. 20160618, 2016.

[4] A. Rachah and D. F. Torres, “Predicting and controlling the ebola infection,” Math-

ematical Methods in the Applied Sciences, vol. 40, no. 17, pp. 6155–6164, 2017.

[5] D. Osthus, K. S. Hickmann, P. C. Caragea, D. Higdon, and S. Y. Del Valle, “Forecast-

ing seasonal influenza with a state-space sir model,” The annals of applied statistics,

vol. 11, no. 1, p. 202, 2017.

[6] O. Zakary, A. Larrache, M. Rachik, and I. Elmouki, “Effect of awareness programs

and travel-blocking operations in the control of hiv/aids outbreaks: a multi-domains

sir model,” Advances in Difference Equations, vol. 2016, no. 1, pp. 1–17, 2016.

[7] Y.-C. Chen, P.-E. Lu, C.-S. Chang, and T.-H. Liu, “A time-dependent sir model for

covid-19 with undetectable infected persons,” Ieee transactions on network science

and engineering, vol. 7, no. 4, pp. 3279–3294, 2020.

125

126 Conor Rosato

[8] S. He, Y. Peng, and K. Sun, “Seir modeling of the covid-19 and its dynamics,”

Nonlinear dynamics, vol. 101, no. 3, pp. 1667–1680, 2020.

[9] P. E. Lekone and B. F. Finkenstädt, “Statistical inference in a stochastic epidemic

seir model with control intervention: Ebola as a case study,” Biometrics, vol. 62,

no. 4, pp. 1170–1177, 2006.

[10] L. K. Hotta, “Bayesian melding estimation of a stochastic seir model,” Mathematical

Population Studies, vol. 17, no. 2, pp. 101–111, 2010.

[11] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to nonlinear/non-

gaussian bayesian state estimation,” in IEE Proceedings F-radar and signal process-

ing, vol. 140, pp. 107–113, IET, 1993.

[12] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle

filters for online nonlinear/non-gaussian bayesian tracking,” IEEE Transactions on

signal processing, vol. 50, no. 2, pp. 174–188, 2002.

[13] A. Doucet, A. M. Johansen, et al., “A tutorial on particle filtering and smoothing:

Fifteen years later,” Handbook of nonlinear filtering, vol. 12, no. 656-704, p. 3, 2009.

[14] V. Dukic, H. F. Lopes, and N. G. Polson, “Tracking epidemics with google flu trends

data and a state-space seir model,” Journal of the American Statistical Association,

vol. 107, no. 500, pp. 1410–1426, 2012.

[15] P. Dawson, R. Gailis, and A. Meehan, “Detecting disease outbreaks using a combined

bayesian network and particle filter approach,” Journal of theoretical biology, vol. 370,

pp. 171–183, 2015.

[16] D. M. Sheinson, J. Niemi, and W. Meiring, “Comparison of the performance of

particle filter algorithms applied to tracking of a disease epidemic,” Mathematical

biosciences, vol. 255, pp. 21–32, 2014.

[17] N. M. Shahtori, C. Scoglio, A. Pourhabib, and F. D. Sahneh, “Sequential monte carlo

filtering estimation of ebola progression in west africa,” in 2016 American Control

Conference (ACC), pp. 1277–1282, IEEE, 2016.

[18] H. Abbey, “An examination of the reed-frost theory of epidemics,” Human biology,

vol. 24, no. 3, p. 201, 1952.

Bibliography 127

[19] K. E. Eilertson, J. Fricks, and M. J. Ferrari, “Estimation and prediction for a mecha-

nistic model of measles transmission using particle filtering and maximum likelihood

estimation,” Statistics in Medicine, vol. 38, no. 21, pp. 4146–4158, 2019.

[20] B. Ristic and P. Dawson, “Real-time forecasting of an epidemic outbreak: Ebola

2014/2015 case study,” in 2016 19th International Conference on Information Fusion

(FUSION), pp. 1983–1990, IEEE, 2016.

[21] C. M. Hazelbag, J. Dushoff, E. M. Dominic, Z. E. Mthombothi, and W. Delva, “Cal-

ibration of individual-based models to epidemiological data: A systematic review,”

PLoS computational biology, vol. 16, no. 5, p. e1007893, 2020.

[22] R. G. FitzJohn, E. S. Knock, L. K. Whittles, P. N. Perez-Guzman, S. Bhatia, F. Gun-

toro, O. J. Watson, C. Whittaker, N. M. Ferguson, A. Cori, et al., “Reproducible

parallel inference and simulation of stochastic state space models using odin, dust,

and mcstate,” Wellcome Open Research, vol. 5, 2020.

[23] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid monte carlo,”

Physics letters B, vol. 195, no. 2, pp. 216–222, 1987.

[24] R. M. Neal et al., “Mcmc using hamiltonian dynamics,” Handbook of markov chain

monte carlo, vol. 2, no. 11, p. 2, 2011.

[25] M. Betancourt, “A conceptual introduction to hamiltonian monte carlo,” arXiv

preprint arXiv:1701.02434, 2017.

[26] M. D. Hoffman, A. Gelman, et al., “The no-u-turn sampler: adaptively setting path

lengths in hamiltonian monte carlo.,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1593–

1623, 2014.

[27] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt,

M. Brubaker, J. Guo, P. Li, and A. Riddell, “Stan: A probabilistic programming

language,” Journal of statistical software, vol. 76, no. 1, pp. 1–32, 2017.

[28] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, “Probabilistic programming in python

using pymc3,” PeerJ Computer Science, vol. 2, p. e55, 2016.

128 Conor Rosato

[29] C. Andrieu, A. Doucet, and R. Holenstein, “Particle markov chain monte carlo meth-

ods,” Journal of the Royal Statistical Society: Series B (Statistical Methodology),

vol. 72, no. 3, pp. 269–342, 2010.

[30] D. A. Rasmussen, O. Ratmann, and K. Koelle, “Inference for nonlinear epidemiolog-

ical models using genealogies and time series,” PLoS computational biology, vol. 7,

no. 8, p. e1002136, 2011.

[31] A. Wigren, R. S. Risuleo, L. Murray, and F. Lindsten, “Parameter elimination in par-

ticle gibbs sampling,” Advances in Neural Information Processing Systems, vol. 32,

2019.

[32] S. El-Saadani, M. Saleh, and S. A. Ibrahim, “Quantifying non-communicable dis-

eases’ burden in egypt using state-space model,” PLOS ONE, vol. 16, pp. 1–23, 08

2021.

[33] A. A. Koepke, I. M. Longini Jr, M. E. Halloran, J. Wakefield, and V. N. Minin,

“Predictive modeling of cholera outbreaks in bangladesh,” The annals of applied

statistics, vol. 10, no. 2, p. 575, 2016.

[34] E. S. Knock, L. K. Whittles, J. A. Lees, P. N. Perez-Guzman, R. Verity, R. G.

FitzJohn, K. A. Gaythorpe, N. Imai, W. Hinsley, L. C. Okell, et al., “Key epi-

demiological drivers and impact of interventions in the 2020 sars-cov-2 epidemic in

england,” Science Translational Medicine, 2021.

[35] J. Dureau, K. Kalogeropoulos, and M. Baguelin, “Capturing the time-varying drivers

of an epidemic using stochastic dynamical systems,” Biostatistics, vol. 14, no. 3,

pp. 541–555, 2013.

[36] T. Lux, “Bayesian estimation of agent-based models via adaptive particle markov

chain monte carlo,” Computational Economics, pp. 1–27, 2021.

[37] M. Baguelin, G. F. Medley, E. S. Nightingale, K. M. O’Reilly, E. M. Rees, N. R. Wa-

terlow, and M. Wagner, “Tooling-up for infectious disease transmission modelling,”

Epidemics, vol. 32, p. 100395, 2020.

[38] A. Endo, E. Van Leeuwen, and M. Baguelin, “Introduction to particle markov-chain

monte carlo for disease dynamics modellers,” Epidemics, vol. 29, p. 100363, 2019.

Bibliography 129

[39] X. Ma, P. Karkus, D. Hsu, and W. S. Lee, “Particle filter recurrent neural networks,”

in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5101–

5108, 2020.

[40] H. Wen, X. Chen, G. Papagiannis, C. Hu, and Y. Li, “End-to-end semi-supervised

learning for differentiable particle filters,” in 2021 IEEE International Conference on

Robotics and Automation (ICRA), pp. 5825–5831, IEEE, 2021.

[41] R. Jonschkowski, D. Rastogi, and O. Brock, “Differentiable particle filters: End-to-

end learning with algorithmic priors,” arXiv preprint arXiv:1805.11122, 2018.

[42] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013.

[43] A. Corenflos, J. Thornton, G. Deligiannidis, and A. Doucet, “Differentiable particle

filtering via entropy-regularized optimal transport,” in International Conference on

Machine Learning, pp. 2100–2111, PMLR, 2021.

[44] P. Karkus, D. Hsu, and W. S. Lee, “Particle filter networks with application to visual

localization,” in Conference on robot learning, pp. 169–178, PMLR, 2018.

[45] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-

softmax,” arXiv preprint arXiv:1611.01144, 2016.

[46] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A continuous

relaxation of discrete random variables,” arXiv preprint arXiv:1611.00712, 2016.

[47] C. Rosato, L. Devlin, V. Beraud, P. Horridge, T. B. Schön, and S. Maskell, “Efficient

learning of the parameters of non-linear models using differentiable resampling in

particle filters,” IEEE Transactions on Signal Processing, vol. 70, pp. 3676–3692,

2022.

[48] G. Poyiadjis, A. Doucet, and S. S. Singh, “Particle approximations of the score and

observed information matrix in state space models with application to parameter

estimation,” Biometrika, vol. 98, no. 1, pp. 65–80, 2011.

[49] P. Del Moral, A. Doucet, and S. S. Singh, “Uniform stability of a particle approxi-

mation of the optimal filter derivative,” SIAM Journal on Control and Optimization,

vol. 53, no. 3, pp. 1278–1304, 2015.

130 Conor Rosato

[50] C. Nemeth, P. Fearnhead, and L. Mihaylova, “Particle approximations of the score

and observed information matrix for parameter estimation in state–space models

with linear computational cost,” Journal of Computational and Graphical Statistics,

vol. 25, no. 4, pp. 1138–1157, 2016.

[51] C. Nemeth and P. Fearnhead, “Particle metropolis adjusted langevin algorithms for

state space models,” arxiv. org, 2014.

[52] J. Dahlin, F. Lindsten, and T. B. Schön, “Particle metropolis hastings using langevin

dynamics,” in 2013 IEEE International Conference on Acoustics, Speech and Signal

Processing, pp. 6308–6312, IEEE, 2013.

[53] J. Dahlin, F. Lindsten, and T. B. Schön, “Second-order particle mcmc for bayesian

parameter inference,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 8656–8661, 2014.

[54] J. Dahlin, F. Lindsten, and T. B. Schön, “Particle metropolis–hastings using gradient

and hessian information,” Statistics and computing, vol. 25, no. 1, pp. 81–92, 2015.

[55] M. Girolami and B. Calderhead, “Riemann manifold langevin and hamiltonian monte

carlo methods,” Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), vol. 73, no. 2, pp. 123–214, 2011.

[56] E. Dong, H. Du, and L. Gardner, “An interactive web-based dashboard to track

covid-19 in real time,” The Lancet infectious diseases, vol. 20, no. 5, pp. 533–534,

2020.

[57] D. De Angelis, A. M. Presanis, P. J. Birrell, G. S. Tomba, and T. House, “Four

key challenges in infectious disease modelling using data from multiple sources,”

Epidemics, vol. 10, pp. 83–87, 2015.

[58] “Coronavirus (covid-19) latest insights: Comparisons.” https://www.

ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/

conditionsanddiseases/articles/coronaviruscovid19latestinsights/

overview#:~:text=The%20hospital%20admission%20rate%20and,in%20the%

20lags%20in%20trends. Accessed: 1 October 2021.

[59] E. Aramaki, S. Maskawa, and M. Morita, “Twitter catches the flu: detecting in-

fluenza epidemics using twitter,” in Proceedings of the 2011 Conference on empirical

methods in natural language processing, pp. 1568–1576, 2011.

https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19latestinsights/overview#:~:text=The%20hospital%20admission%20rate%20and,in%20the%20lags%20in%20trends
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19latestinsights/overview#:~:text=The%20hospital%20admission%20rate%20and,in%20the%20lags%20in%20trends
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19latestinsights/overview#:~:text=The%20hospital%20admission%20rate%20and,in%20the%20lags%20in%20trends
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19latestinsights/overview#:~:text=The%20hospital%20admission%20rate%20and,in%20the%20lags%20in%20trends
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19latestinsights/overview#:~:text=The%20hospital%20admission%20rate%20and,in%20the%20lags%20in%20trends

Bibliography 131

[60] A. A. Aslam, M.-H. Tsou, B. H. Spitzberg, L. An, J. M. Gawron, D. K. Gupta,

K. M. Peddecord, A. C. Nagel, C. Allen, J.-A. Yang, et al., “The reliability of tweets

as a supplementary method of seasonal influenza surveillance,” Journal of medical

Internet research, vol. 16, no. 11, p. e3532, 2014.

[61] D. A. Broniatowski, M. J. Paul, and M. Dredze, “National and local influenza surveil-

lance through twitter: an analysis of the 2012-2013 influenza epidemic,” PloS one,

vol. 8, no. 12, p. e83672, 2013.

[62] C. Rosato, J. Harris, J. Panovska-Griffiths, and S. Maskell, “Inference of stochastic

disease transmission models using particle-mcmc and a gradient based proposal,”

in 2022 25th International Conference on Information Fusion (FUSION), pp. 1–8,

IEEE, 2022.

[63] R. E. Moore, C. Rosato, and S. Maskell, “Refining epidemiological forecasts with

simple scoring rules,” Philosophical Transactions of the Royal Society A, vol. 380,

no. 2233, p. 20210305, 2022.

[64] J. Park, L. Bevan, A. Sanchez-Marroquin, G. Danelian, T. Bayley, H. Manley,

V. Bowman, T. Maishman, T. Finnie, A. Charlett, et al., “Combining models to

generate a consensus effective reproduction number r for the covid-19 epidemic sta-

tus in england,” medRxiv, pp. 2023–02, 2023.

[65] “Reproduction number (r) and growth rate: methodology.” https://www.gov.

uk/government/publications/reproduction-number-r-and-growth-rate-

methodology/reproduction-number-r-and-growth-rate-methodology. Ac-

cessed: 2022-09-07.

[66] C. Rosato, R. E. Moore, M. Carter, J. Heap, J. Harris, J. Storopoli, and S. Maskell,

“Extracting self-reported covid-19 symptom tweets and twitter movement mobility

origin/destination matrices to inform disease models,” Information, vol. 14, no. 3,

p. 170, 2023.

[67] A. Doucet, N. De Freitas, N. J. Gordon, et al., Sequential Monte Carlo methods in

practice, vol. 1. Springer, 2001.

https://www.gov.uk/government/publications/reproduction-number-r-and-growth-rate-methodology/reproduction-number-r-and-growth-rate-methodology
https://www.gov.uk/government/publications/reproduction-number-r-and-growth-rate-methodology/reproduction-number-r-and-growth-rate-methodology
https://www.gov.uk/government/publications/reproduction-number-r-and-growth-rate-methodology/reproduction-number-r-and-growth-rate-methodology

132 Conor Rosato

[68] J. Dahlin and T. B. Schön, “Getting started with particle metropolis-hastings for

inference in nonlinear dynamical models,” Journal of Statistical Software, vol. 88,

no. 1, pp. 1–41, 2019.

[69] J. Hull and A. White, “The pricing of options on assets with stochastic volatilities,”

The journal of finance, vol. 42, no. 2, pp. 281–300, 1987.

[70] R. Langrock, “Some applications of nonlinear and non-gaussian state–space mod-

elling by means of hidden markov models,” Journal of Applied Statistics, vol. 38,

no. 12, pp. 2955–2970, 2011.

[71] I. Fenemigho, E. Ukponmwan, E. C. Nnakwue, I. Udoete, C. Asuzu, A. Adaralegbe,

and U. Effiong, “Covid-19, flattening the curve: recommendations towards control

and managing a second wave,” Journal of Global Health Reports, vol. 4, p. e2020074,

2020.

[72] P. Birrell, J. Blake, E. Van Leeuwen, N. Gent, and D. De Angelis, “Real-time nowcast-

ing and forecasting of covid-19 dynamics in england: the first wave,” Philosophical

Transactions of the Royal Society B, vol. 376, no. 1829, p. 20200279, 2021.

[73] “Negative binomial distribution (alternative parameterization)..” https://mc-

stan.org/docs/2_19/functions-reference/nbalt.html#nbalt. Accessed: 2 Jan-

uary 2023.

[74] D. Lautier, A. Javaheri, and A. Galli, “Filtering in finance,” 2003.

[75] W. Yang, A. Karspeck, and J. Shaman, “Comparison of filtering methods for the

modeling and retrospective forecasting of influenza epidemics,” PLoS computational

biology, vol. 10, no. 4, p. e1003583, 2014.

[76] M. Jaward, L. Mihaylova, N. Canagarajah, and D. Bull, “Multiple object tracking

using particle filters,” in 2006 IEEE Aerospace Conference, pp. 8–pp, IEEE, 2006.

[77] C. Snyder, “Particle filters, the “optimal” proposal and high-dimensional systems,”

in Proceedings of the ECMWF Seminar on Data Assimilation for atmosphere and

ocean, pp. 1–10, 2011.

[78] R. Van Der Merwe, A. Doucet, N. De Freitas, and E. Wan, “The unscented particle

filter,” Advances in neural information processing systems, vol. 13, pp. 584–590, 2000.

https://mc-stan.org/docs/2_19/functions-reference/nbalt.html#nbalt
https://mc-stan.org/docs/2_19/functions-reference/nbalt.html#nbalt

Bibliography 133

[79] A. Doucet, S. Godsill, and C. Andrieu, “On sequential monte carlo sampling methods

for bayesian filtering,” Statistics and computing, vol. 10, no. 3, pp. 197–208, 2000.

[80] J. D. Hol, T. B. Schon, and F. Gustafsson, “On resampling algorithms for particle

filters,” in 2006 IEEE nonlinear statistical signal processing workshop, pp. 79–82,

IEEE, 2006.

[81] C. P. Robert and G. Casella, “The metropolis—hastings algorithm,” in Monte Carlo

Statistical Methods, pp. 231–283, Springer, 1999.

[82] D. Van Ravenzwaaij, P. Cassey, and S. D. Brown, “A simple introduction to markov

chain monte–carlo sampling,” Psychonomic bulletin & review, vol. 25, no. 1, pp. 143–

154, 2018.

[83] G. O. Roberts and J. S. Rosenthal, “General state space markov chains and mcmc

algorithms,” Probability surveys, vol. 1, pp. 20–71, 2004.

[84] N. Bou-Rabee and J. M. Sanz-Serna, “Geometric integrators and the hamiltonian

monte carlo method,” Acta Numerica, vol. 27, pp. 113–206, 2018.

[85] N. Bou-Rabee and J. M. Sanz-Serna, “Randomized hamiltonian monte carlo,” The

Annals of Applied Probability, vol. 27, no. 4, pp. 2159–2194, 2017.

[86] A. Gelman and D. B. Rubin, “Inference from iterative simulation using multiple

sequences,” Statistical science, vol. 7, no. 4, pp. 457–472, 1992.

[87] A. Lee, Towards smooth particle filters for likelihood estimation with multivariate

latent variables. PhD thesis, University of British Columbia, 2008.

[88] J. Elfring, E. Torta, and R. van de Molengraft, “Particle filters: A hands-on tutorial,”

Sensors, vol. 21, no. 2, p. 438, 2021.

[89] E. J. Gumbel, Statistical theory of extreme values and some practical applications: a

series of lectures, vol. 33. US Government Printing Office, 1954.

[90] G. Peyré, M. Cuturi, et al., “Computational optimal transport: With applications

to data science,” Foundations and Trends® in Machine Learning, vol. 11, no. 5-6,

pp. 355–607, 2019.

134 Conor Rosato

[91] A. Ścibior and F. Wood, “Differentiable particle filtering without modifying the for-

ward pass,” arXiv preprint arXiv:2106.10314, 2021.

[92] D. Foreman-Mackey, “corner. py: Corner plots,” Astrophysics Source Code Library,

pp. ascl–1702, 2017.

[93] A. G. Wills and T. B. Schön, “Stochastic quasi-newton with line-search regularisa-

tion,” Automatica, vol. 127, p. 109503, 2021.

[94] N. Chopin, P. E. Jacob, and O. Papaspiliopoulos, “Smc2: an efficient algorithm for

sequential analysis of state space models,” Journal of the Royal Statistical Society:

Series B (Statistical Methodology), vol. 75, no. 3, pp. 397–426, 2013.

[95] Ö. D. Akyildiz and J. Mı́guez, “Nudging the particle filter,” Statistics and Computing,

vol. 30, no. 2, pp. 305–330, 2020.

[96] D. Crisan and J. Miguez, “Nested particle filters for online parameter estimation in

discrete-time state-space markov models,” Bernoulli, vol. 24, no. 4A, pp. 3039–3086,

2018.

[97] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-

maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

[98] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale machine learning on

heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[99] D. Maclaurin, D. Duvenaud, and R. P. Adams, “Autograd: Effortless gradients in

numpy,” in ICML 2015 AutoML workshop, vol. 238, 2015.

[100] H. Ge, K. Xu, and Z. Ghahramani, “Turing: a language for flexible probabilis-

tic inference,” in International conference on artificial intelligence and statistics,

pp. 1682–1690, PMLR, 2018.

[101] “Deep learning frameworks: A survey of tensorflow, torch, theano, caffe, neon,

and the ibm machine learning stack.” https://www.microway.com/hpc-tech-

tips/deep-learning-frameworks-survey-tensorflow-torch-theano-caffe-

neon-ibm-machine-learning-stack/. Accessed: 1 October 2021.

https://www.microway.com/hpc-tech-tips/deep-learning-frameworks-survey-tensorflow-torch-theano-caffe-neon-ibm-machine-learning-stack/
https://www.microway.com/hpc-tech-tips/deep-learning-frameworks-survey-tensorflow-torch-theano-caffe-neon-ibm-machine-learning-stack/
https://www.microway.com/hpc-tech-tips/deep-learning-frameworks-survey-tensorflow-torch-theano-caffe-neon-ibm-machine-learning-stack/

Bibliography 135

[102] “convnet-benchmarks.” https://github.com/soumith/convnet-benchmarks. Ac-

cessed: 1 October 2021.

[103] P. Subramani, “A particle filter method of inference for stochastic differential equa-

tions,” Master’s thesis, University of Waterloo, 2022.

[104] “Using a ”black box” likelihood function.” https://docs.pymc.io/en/v3/pymc-

examples/examples/case_studies/blackbox_external_likelihood.html. Ac-

cessed: 2022-11-04.

[105] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[106] M. Betancourt, “Identifying the optimal integration time in hamiltonian monte

carlo,” arXiv preprint arXiv:1601.00225, 2016.

[107] “Hmc algorithm parameters.” https://mc-stan.org/docs/2_19/reference-

manual/hmc-algorithm-parameters.html. Accessed: 2023-01-02.

[108] S. Ghosh, P. Birrell, and D. De Angelis, “Variational inference for nonlinear ordi-

nary differential equations,” in International Conference on Artificial Intelligence

and Statistics, pp. 2719–2727, PMLR, 2021.

[109] “Diagnosing biased inference with divergences.” https://mc-stan.org/users/

documentation/case-studies/divergences_and_bias.html. Accessed: 2022-09-

07.

[110] T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. Stumpf, “Approximate bayesian

computation scheme for parameter inference and model selection in dynamical sys-

tems,” Journal of the Royal Society Interface, vol. 6, no. 31, pp. 187–202, 2009.

[111] L. Devlin, P. Horridge, P. L. Green, and S. Maskell, “The no-u-turn sampler as

a proposal distribution in a sequential monte carlo sampler with a near-optimal l-

kernel,” arXiv preprint arXiv:2108.02498, 2021.

[112] W. C. Roda, M. B. Varughese, D. Han, and M. Y. Li, “Why is it difficult to accurately

predict the covid-19 epidemic?,” Infectious disease modelling, vol. 5, pp. 271–281,

2020.

https://github.com/soumith/convnet-benchmarks
https://docs.pymc.io/en/v3/pymc-examples/examples/case_studies/blackbox_external_likelihood.html
https://docs.pymc.io/en/v3/pymc-examples/examples/case_studies/blackbox_external_likelihood.html
https://mc-stan.org/docs/2_19/reference-manual/hmc-algorithm-parameters.html
https://mc-stan.org/docs/2_19/reference-manual/hmc-algorithm-parameters.html
https://mc-stan.org/users/documentation/case-studies/divergences_and_bias.html
https://mc-stan.org/users/documentation/case-studies/divergences_and_bias.html

136 Conor Rosato

[113] E. Y. Cramer, E. L. Ray, V. K. Lopez, J. Bracher, A. Brennen, A. J. Castro Ri-

vadeneira, A. Gerding, T. Gneiting, K. H. House, Y. Huang, et al., “Evalua-

tion of individual and ensemble probabilistic forecasts of covid-19 mortality in the

united states,” Proceedings of the National Academy of Sciences, vol. 119, no. 15,

p. e2113561119, 2022.

[114] L. Gardner, J. Ratcliff, E. Dong, and A. Katz, “A need for open public data standards

and sharing in light of covid-19,” The Lancet Infectious Diseases, vol. 21, no. 4, p. e80,

2021.

[115] L. P. James, J. A. Salomon, C. O. Buckee, and N. A. Menzies, “The use and misuse of

mathematical modeling for infectious disease policymaking: lessons for the covid-19

pandemic,” Medical Decision Making, vol. 41, no. 4, pp. 379–385, 2021.

[116] S. Purkayastha, R. Bhattacharyya, R. Bhaduri, R. Kundu, X. Gu, M. Salvatore,

D. Ray, S. Mishra, and B. Mukherjee, “A comparison of five epidemiological models

for transmission of sars-cov-2 in india,” BMC infectious diseases, vol. 21, no. 1,

pp. 1–23, 2021.

[117] T. Maishman, S. Schaap, D. S. Silk, S. J. Nevitt, D. C. Woods, and V. E. Bow-

man, “Statistical methods used to combine the effective reproduction number, r (t),

and other related measures of covid-19 in the uk,” Statistical Methods in Medical

Research, vol. 31, no. 9, pp. 1757–1777, 2022.

[118] M. J. Keeling, L. Dyson, G. Guyver-Fletcher, A. Holmes, M. G. Semple, I. Investiga-

tors, M. J. Tildesley, and E. M. Hill, “Fitting to the uk covid-19 outbreak, short-term

forecasts and estimating the reproductive number,” Statistical Methods in Medical

Research, p. 09622802211070257, 2022.

[119] S. Flaxman, S. Mishra, A. Gandy, H. J. T. Unwin, T. A. Mellan, H. Coupland,

C. Whittaker, H. Zhu, T. Berah, J. W. Eaton, et al., “Estimating the effects of

non-pharmaceutical interventions on covid-19 in europe,” Nature, vol. 584, no. 7820,

pp. 257–261, 2020.

[120] C. E. Overton, L. Pellis, H. B. Stage, F. Scarabel, J. Burton, C. Fraser, I. Hall,

T. A. House, C. Jewell, A. Nurtay, et al., “Epibeds: Data informed modelling of

the covid-19 hospital burden in england,” PLoS computational biology, vol. 18, no. 9,

p. e1010406, 2022.

Bibliography 137

[121] Q. J. Leclerc, E. S. Nightingale, S. Abbott, and T. Jombart, “Analysis of temporal

trends in potential covid-19 cases reported through nhs pathways england,” Scientific

reports, vol. 11, no. 1, pp. 1–8, 2021.

[122] Y. W. Teh, A. Bhoopchand, P. Diggle, B. Elesedy, B. He, M. Hutchinson, U. Paquet,

J. Read, N. Tomasev, and S. Zaidi, “Efficient bayesian inference of instantaneous

re-production numbers at fine spatial scales, with an application to mapping and

nowcasting the covid-19 epidemic in british local authorities,” URL https://rss. org.

uk/RSS/media/File-library/News/2021/WhyeBhoopchand. pdfhttps://localcovid. in-

fo/2, vol. 5, no. 6, 2021.

[123] L. Pellis, P. J. Birrell, J. Blake, C. E. Overton, F. Scarabel, H. B. Stage, E. Brooks-

Pollock, L. Danon, I. Hall, T. A. House, et al., “Estimation of reproduction numbers

in real time: conceptual and statistical challenges,” 2022.

[124] C. Czado, T. Gneiting, and L. Held, “Predictive model assessment for count data,”

Biometrics, vol. 65, no. 4, pp. 1254–1261, 2009.

[125] S. Funk, S. Abbott, B. D. Atkins, M. Baguelin, J. K. Baillie, P. Birrell, J. Blake, N. I.

Bosse, J. Burton, J. Carruthers, et al., “Short-term forecasts to inform the response

to the covid-19 epidemic in the uk,” MedRxiv, 2020.

[126] K. Sherratt, H. Gruson, R. Grah, H. Johnson, R. Niehus, B. Prasse, F. Sandman,

J. Deuschel, D. Wolffram, S. Abbott, et al., “Predictive performance of multi-model

ensemble forecasts of covid-19 across european nations,” medRxiv, pp. 2022–06, 2022.

[127] N. I. Bosse, S. Abbott, A. Cori, E. van Leeuwen, J. Bracher, and S. Funk, “Trans-

formation of forecasts for evaluating predictive performance in an epidemiological

context,” medRxiv, pp. 2023–01, 2023.

[128] A. Chatzilena, E. Van Leeuwen, O. Ratmann, M. Baguelin, and N. Demiris, “Con-

temporary statistical inference for infectious disease models using stan,” Epidemics,

vol. 29, p. 100367, 2019.

[129] D. Herrera-Esposito and G. de Los Campos, “Age-specific rate of severe and criti-

cal sars-cov-2 infections estimated with multi-country seroprevalence studies,” BMC

Infectious Diseases, vol. 22, no. 1, p. 311, 2022.

138 Conor Rosato

[130] S. Woody, M. Tec, M. Dahan, K. Gaither, M. Lachmann, S. J. Fox, L. A. Meyers,

J. Scott, and U. of Texas at Austin COVID-19 Modeling Consortium, “Projections

for first-wave covid-19 deaths across the us using social-distancing measures derived

from mobile phones,” Medrxiv, pp. 2020–04, 2020.

[131] Z. Chen, C. Heckman, S. Julier, and N. Ahmed, “Weak in the nees?: Auto-tuning

kalman filters with bayesian optimization,” in 2018 21st International Conference on

Information Fusion (FUSION), pp. 1072–1079, IEEE, 2018.

[132] M. Longbin, S. Xiaoquan, Z. Yiyu, S. Z. Kang, and Y. Bar-Shalom, “Unbiased con-

verted measurements for tracking,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 34, no. 3, pp. 1023–1027, 1998.

[133] “UK government. 2021 coronavirus (covid-19) in the uk..” https://coronavirus.

data.gov.uk/details/deaths. Accessed: 1 October 2021.

[134] “UK government. 2021 coronavirus (covid-19) in the uk..” https://coronavirus.

data.gov.uk/details/healthcare. Accessed: 1 October 2021.

[135] “Potential coronavirus (covid-19) symptoms reported through nhs pathways and

111 online.” https://digital.nhs.uk/data-and-information/publications/

statistical/mi-potential-covid-19-symptoms-reported-through-nhs-

pathways-and-111-online/latest. Accessed: 1 October 2021.

[136] T. Gneiting and A. E. Raftery, “Strictly proper scoring rules, prediction, and estima-

tion,” Journal of the American statistical Association, vol. 102, no. 477, pp. 359–378,

2007.

[137] I. J. Good, “Rational decisions,” in Breakthroughs in statistics, pp. 365–377, Springer,

1992.

[138] W. E. Wecker, “Comment: Assessing the accuracy of time series mode! forecasts

of count observations,” Journal of Business & Economic Statistics, vol. 7, no. 4,

pp. 418–419, 1989.

[139] E. S. Epstein, “A scoring system for probability forecasts of ranked categories,”

Journal of Applied Meteorology (1962-1982), vol. 8, no. 6, pp. 985–987, 1969.

https://coronavirus.data.gov.uk/details/deaths
https://coronavirus.data.gov.uk/details/deaths
https://coronavirus.data.gov.uk/details/healthcare
https://coronavirus.data.gov.uk/details/healthcare
https://digital.nhs.uk/data-and-information/publications/statistical/mi-potential-covid-19-symptoms-reported-through-nhs-pathways-and-111-online/latest
https://digital.nhs.uk/data-and-information/publications/statistical/mi-potential-covid-19-symptoms-reported-through-nhs-pathways-and-111-online/latest
https://digital.nhs.uk/data-and-information/publications/statistical/mi-potential-covid-19-symptoms-reported-through-nhs-pathways-and-111-online/latest

Bibliography 139

[140] F. Pagani, M. Wiegand, and S. Nadarajah, “An n-dimensional rosenbrock distri-

bution for markov chain monte carlo testing,” Scandinavian Journal of Statistics,

vol. 49, no. 2, pp. 657–680, 2022.

[141] S. Talts, M. Betancourt, D. Simpson, A. Vehtari, and A. Gelman, “Validating

bayesian inference algorithms with simulation-based calibration,” arXiv preprint

arXiv:1804.06788, 2018.

[142] P. Del Moral, A. Doucet, and A. Jasra, “Sequential monte carlo samplers,” Journal

of the Royal Statistical Society: Series B (Statistical Methodology), vol. 68, no. 3,

pp. 411–436, 2006.

[143] “Covid-19: background information.” https://www.gov.uk/government/

publications/wuhan-novel-coronavirus-background-information#:~:

text=On%2031%20December%202019%2C%20the,City%2C%20Hubei%20Province%

2C%20China. Accessed: 1 October 2021.

[144] “Coronavirus disease 2019.” https://www.worldometers.info/coronavirus/. Ac-

cessed: 3 March 2023.

[145] G. Eysenbach et al., “Infodemiology and infoveillance: framework for an emerging

set of public health informatics methods to analyze search, communication and pub-

lication behavior on the internet,” Journal of medical Internet research, vol. 11, no. 1,

p. e1157, 2009.

[146] H. Achrekar, A. Gandhe, R. Lazarus, S.-H. Yu, and B. Liu, “Predicting flu trends us-

ing twitter data,” in 2011 IEEE conference on computer communications workshops

(INFOCOM WKSHPS), pp. 702–707, IEEE, 2011.

[147] O. S, erban, N. Thapen, B. Maginnis, C. Hankin, and V. Foot, “Real-time processing

of social media with sentinel: A syndromic surveillance system incorporating deep

learning for health classification,” Information Processing & Management, vol. 56,

no. 3, pp. 1166–1184, 2019.

[148] L. Espinosa, A. Wijermans, F. Orchard, M. Höhle, T. Czernichow, P. Coletti, L. Her-

mans, C. Faes, E. Kissling, and T. Mollet, “Epitweetr: Early warning of public health

threats using twitter data,” Eurosurveillance, vol. 27, no. 39, p. 2200177, 2022.

https://www.gov.uk/government/publications/wuhan-novel-coronavirus-background-information#:~:text=On%2031%20December%202019%2C%20the,City%2C%20Hubei%20Province%2C%20China.
https://www.gov.uk/government/publications/wuhan-novel-coronavirus-background-information#:~:text=On%2031%20December%202019%2C%20the,City%2C%20Hubei%20Province%2C%20China.
https://www.gov.uk/government/publications/wuhan-novel-coronavirus-background-information#:~:text=On%2031%20December%202019%2C%20the,City%2C%20Hubei%20Province%2C%20China.
https://www.gov.uk/government/publications/wuhan-novel-coronavirus-background-information#:~:text=On%2031%20December%202019%2C%20the,City%2C%20Hubei%20Province%2C%20China.
https://www.worldometers.info/coronavirus/

140 Conor Rosato

[149] R. Lamsal, A. Harwood, and M. R. Read, “Twitter conversations predict the daily

confirmed covid-19 cases,” Applied Soft Computing, vol. 129, p. 109603, 2022.

[150] R. J. Medford, S. N. Saleh, A. Sumarsono, T. M. Perl, and C. U. Lehmann, “An

“infodemic”: leveraging high-volume twitter data to understand early public senti-

ment for the coronavirus disease 2019 outbreak,” in Open Forum Infectious Diseases,

vol. 7, p. ofaa258, Oxford University Press US, 2020.

[151] Y. Zhang, H. Lyu, Y. Liu, X. Zhang, Y. Wang, J. Luo, et al., “Monitoring depres-

sion trends on twitter during the covid-19 pandemic: observational study,” JMIR

infodemiology, vol. 1, no. 1, p. e26769, 2021.

[152] M. O. Lwin, J. Lu, A. Sheldenkar, P. J. Schulz, W. Shin, R. Gupta, and Y. Yang,

“Global sentiments surrounding the covid-19 pandemic on twitter: analysis of twitter

trends,” JMIR public health and surveillance, vol. 6, no. 2, p. e19447, 2020.

[153] K. Sharma, S. Seo, C. Meng, S. Rambhatla, and Y. Liu, “Covid-19 on so-

cial media: Analyzing misinformation in twitter conversations,” arXiv preprint

arXiv:2003.12309, 2020.

[154] M. A. Al-Garadi, Y.-C. Yang, S. Lakamana, and A. Sarker, “A text classification

approach for the automatic detection of twitter posts containing self-reported covid-

19 symptoms,” 2020.

[155] A. Sarker, S. Lakamana, W. Hogg-Bremer, A. Xie, M. A. Al-Garadi, and Y.-C. Yang,

“Self-reported covid-19 symptoms on twitter: an analysis and a research resource,”

Journal of the American Medical Informatics Association, vol. 27, no. 8, pp. 1310–

1315, 2020.

[156] K. Garcia and L. Berton, “Topic detection and sentiment analysis in twitter con-

tent related to covid-19 from brazil and the usa,” Applied soft computing, vol. 101,

p. 107057, 2021.

[157] D. Kar, M. Bhardwaj, S. Samanta, and A. P. Azad, “No rumours please! a multi-

indic-lingual approach for covid fake-tweet detection,” in 2021 Grace Hopper Cele-

bration India (GHCI), pp. 1–5, IEEE, 2021.

Bibliography 141

[158] H. S. Badr, H. Du, M. Marshall, E. Dong, M. M. Squire, and L. M. Gardner, “Associ-

ation between mobility patterns and covid-19 transmission in the usa: a mathemati-

cal modelling study,” The Lancet Infectious Diseases, vol. 20, no. 11, pp. 1247–1254,

2020.

[159] R. Goel and R. Sharma, “Mobility based sir model for pandemics-with case study

of covid-19,” in 2020 IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining (ASONAM), pp. 110–117, IEEE, 2020.

[160] J. Osorio-Arjona and J. C. Garćıa-Palomares, “Social media and urban mobility:

Using twitter to calculate home-work travel matrices,” Cities, vol. 89, pp. 268–280,

2019.

[161] X. Huang, Z. Li, Y. Jiang, X. Li, and D. Porter, “Twitter reveals human mobility

dynamics during the covid-19 pandemic,” PloS one, vol. 15, no. 11, p. e0241957,

2020.

[162] A. Lombardi, N. Amoroso, A. Monaco, S. Tangaro, and R. Bellotti, “Complex net-

work modelling of origin–destination commuting flows for the covid-19 epidemic

spread analysis in italian lombardy region,” Applied Sciences, vol. 11, no. 10, p. 4381,

2021.

[163] S. Gómez, A. Fernández, S. Meloni, and A. Arenas, “Impact of origin-destination

information in epidemic spreading,” Scientific reports, vol. 9, no. 1, pp. 1–9, 2019.

[164] K. Kondo, “Simulating the impacts of interregional mobility restriction on the spatial

spread of covid-19 in japan,” Scientific reports, vol. 11, no. 1, pp. 1–15, 2021.

[165] M. Vinceti, T. Filippini, K. J. Rothman, F. Ferrari, A. Goffi, G. Maffeis, and

N. Orsini, “Lockdown timing and efficacy in controlling covid-19 using mobile phone

tracking,” EClinicalMedicine, vol. 25, p. 100457, 2020.

[166] “Codatmo. 2021 welcome to the codatmo site..” https://codatmo.github.io. Ac-

cessed: 1 October 2021.

[167] “Zoe app: covid-public-data.” https://console.cloud.google.

com/storage/browser/covid-public-data;tab=objects?prefix=

&forceOnObjectsSortingFiltering=false. Accessed: 1 October 2021.

https://codatmo.github.io
https://console.cloud.google.com/storage/browser/covid-public-data;tab=objects?prefix=&forceOnObjectsSortingFiltering=false
https://console.cloud.google.com/storage/browser/covid-public-data;tab=objects?prefix=&forceOnObjectsSortingFiltering=false
https://console.cloud.google.com/storage/browser/covid-public-data;tab=objects?prefix=&forceOnObjectsSortingFiltering=false

142 Conor Rosato

[168] J. Roesslein, “tweepy documentation,” Online] http://tweepy. readthedocs. io/en/v3,

vol. 5, p. 724, 2009.

[169] “Covid-19 terms and meddra.” https://www.meddra.org/COVID-19-terms-and-

MedDRA. Accessed: 1 October 2021.

[170] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning

in python,” the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.

[171] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word repre-

sentations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[172] K. Leetaru, S. Wang, G. Cao, A. Padmanabhan, and E. Shook, “Mapping the global

twitter heartbeat: The geography of twitter,” First Monday, 2013.

[173] “Modelling the coronavirus epidemic in a city with python..” https://

towardsdatascience.com/modelling-the-coronavirus-epidemic-spreading-

in-a-city-with-python-babd14d82fa2. Accessed: 2 January 2023.

[174] A. Wesolowski, E. zu Erbach-Schoenberg, A. J. Tatem, C. Lourenço, C. Viboud,

V. Charu, N. Eagle, K. Engø-Monsen, T. Qureshi, C. O. Buckee, et al., “Multi-

national patterns of seasonal asymmetry in human movement influence infectious

disease dynamics,” Nature communications, vol. 8, no. 1, pp. 1–9, 2017.

[175] C.-Y. Huang, H. Tong, J. He, and R. Maciejewski, “Location prediction for tweets,”

Frontiers in big Data, vol. 2, p. 5, 2019.

[176] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

of deep bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

[177] G. Arya, M. Schauer, F. Schäfer, and C. Rackauckas, “Automatic differentiation

of programs with discrete randomness,” Advances in Neural Information Processing

Systems, vol. 35, pp. 10435–10447, 2022.

[178] A. Varsi, Streaming Multi-core Sample-based Bayesian Analysis. PhD thesis, Univer-

sity of Liverpool, 2021.

https://www.meddra.org/COVID-19-terms-and-MedDRA
https://www.meddra.org/COVID-19-terms-and-MedDRA
https://towardsdatascience.com/modelling-the-coronavirus-epidemic-spreading-in-a-city-with-python-babd14d82fa2
https://towardsdatascience.com/modelling-the-coronavirus-epidemic-spreading-in-a-city-with-python-babd14d82fa2
https://towardsdatascience.com/modelling-the-coronavirus-epidemic-spreading-in-a-city-with-python-babd14d82fa2

Bibliography 143

[179] P. L. Green, L. Devlin, R. E. Moore, R. J. Jackson, J. Li, and S. Maskell, “Increasing

the efficiency of sequential monte carlo samplers through the use of approximately

optimal l-kernels,” Mechanical Systems and Signal Processing, vol. 162, p. 108028,

2022.

[180] J. Thiyagalingam, L. Kekempanos, and S. Maskell, “Mapreduce particle filtering

with exact resampling and deterministic runtime,” EURASIP Journal on Advances

in Signal Processing, vol. 2017, pp. 1–23, 2017.

[181] A. Varsi, L. Kekempanos, J. Thiyagalingam, and S. Maskell, “Parallelising particle

filters with deterministic runtime on distributed memory systems,” in IET 3rd In-

ternational Conference on Intelligent Signal Processing (ISP 2017), pp. 1–10, IET,

2017.

[182] A. Varsi, J. Taylor, L. Kekempanos, E. P. Knapp, and S. Maskell, “A fast parallel

particle filter for shared memory systems,” IEEE Signal Processing Letters, vol. 27,

pp. 1570–1574, 2020.

[183] A. Varsi, S. Maskell, and P. G. Spirakis, “An o (log2n) fully-balanced resampling al-

gorithm for particle filters on distributed memory architectures,” Algorithms, vol. 14,

no. 12, p. 342, 2021.

[184] A. Nishimura, D. B. Dunson, and J. Lu, “Discontinuous hamiltonian monte carlo

for discrete parameters and discontinuous likelihoods,” Biometrika, vol. 107, no. 2,

pp. 365–380, 2020.

Appendices

A Information for Differentiating Kalman Filter

A.1 Partial versus total derivatives

To try to avoid confusion, we use the partial derivative ∂/∂θ to mean the derivative by

only changing that function argument, and the total derivative d/dθ to mean also changing

144 Conor Rosato

the other arguments depending on it, i.e. if θ is a scalar,

d

dθ
f(a(θ), θ) ≜ limh→0

f(a(θ + h), θ + h)− f(a(θ), θ)

h
(1)

∂

∂θ
f(a(θ), θ) ≜ limh→0

f(a(θ), θ + h)− f(a(θ), θ)

h
. (2)

A.2 Differentiating a Kalman Filter

We have a transition kernel and a measurement model as follows, where θ is a parameter

vector:

p(x′|x, θ) = N (x′; a(x, θ), Q(x, θ)) (3)

p(y|x′, θ) = N (y;h(x′, θ), R(x′, θ)). (4)

Applying an Extended Kalman Filter gives a proposal for x′ of the form

q(x′|x, θ, y) = N (x′;µ(x, θ, y), C(x, θ, y)). (5)

We wish to calculate the derivatives∂µ∂x ,
∂µ
∂θ ,

∂C
∂x ,

∂C
∂θ . The standard Kalman filter equations

are

S(x, θ) = H(a(x, θ), θ)Q(x, θ)H(a(x, θ), θ)T (6)

+R(a(x, θ), θ)

K(x, θ) = Q(x, θ)H(a(x, θ), θ)TS(x, θ)−1 (7)

µ(x, θ, y) = a(x, θ) +K(x, θ)(y − h(a(x, θ), θ)) (8)

C(x, θ) = Q(x, θ)−K(x, θ)H(a(x, θ), θ)Q(x, θ) (9)

where

H(a, θ) =

(
∂hi
∂aj

(a, θ)

)
ij

(10)

is the Jacobian of the measurement function evaluated at the prior mean. We would like to

differentiate these with respect to x and θ but the measurement model is defined in terms

Bibliography 145

of the prior mean a(x). Let

h̃(x, θ) = h(a(x, θ), θ) (11)

H̃(x, θ) = H(a(x, θ), θ) (12)

R̃(x, θ) = R(a(x, θ), θ). (13)

Then

S(x, θ) = H̃(x, θ)Q(x, θ)H̃(x, θ)T + R̃(x, θ) (14)

K(x, θ) = Q(x, θ)H̃(x, θ)TS(x, θ)−1 (15)

µ(x, θ, y) = a(x, θ) +K(x, θ)(y − h̃(x, θ))) (16)

C(x, θ) = Q(x, θ)−K(x, θ)H̃(x, θ)Q(x, θ). (17)

To compute the derivatives of these from the derivatives in a, applying the chain rule gives

∂h̃

∂x
(x, θ) = H(a(x, θ), θ)

∂a

∂x
(x, θ) (18)

∂h̃

∂θ
(x, θ) = H(a(x, θ), θ)

∂a

∂θ
(x, θ) +

∂h

∂θ
(a(x, θ), θ) (19)

∂R̃

∂x
(x, θ) =

∂R

∂a
(a(x, θ), θ)

∂a

∂x
(x, θ) (20)

∂R̃

∂θ
(x, θ) =

∂R

∂a
(a(x, θ), θ)

∂a

∂θ
(x, θ) +

∂R

∂θ
(a(x, θ), θ) (21)

∂H̃

∂x
(x, θ) =

∂2h

∂a2
(a(x, θ), θ)

∂a

∂x
(x, θ) (22)

∂H̃

∂θ
(x, θ) =

∂2h

∂a2
(a(x, θ), θ)

∂a

∂θ
(x, θ) +

∂2h

∂a∂θ
(a(x, θ), θ) (23)

Hence to evaluate the derivatives of (16) and (17), we need

a(x, θ),
∂a

∂x
,
∂a

∂θ
,Q(x, θ),

∂Q

∂x
,
∂Q

∂θ
(24)

from the transition model and

h(a, θ),
∂h

∂a
,
∂h

∂θ
,
∂2h

∂a2
,
∂2h

∂a∂θ
,R(a(x), θ),

∂R

∂a
,
∂R

∂θ
(25)

146 Conor Rosato

from the measurement model. From this we apply the product rule and the inverse deriva-

tive in Appendix B.1.

A.3 Derivatives of multivariate log normal

If

N (x;µ,C) =
exp

(
−1

2(x− µ)TC−1(x− µ)
)√

|2πC|
(26)

then

∂

∂x
logN = −C−1(x− µ) (27)

∂

∂µ
logN = C−1(x− µ) (28)

∂

∂C
logN = −1

2

(
C−1 − C−1(x− µ)(x− µ)TC−1

)
. (29)

B Matrix derivatives

B.1 Derivative of a matrix inverse

Suppose U is an N ×N invertible matrix with N ×N derivative with respect to θr given

by dU/dθr. Then

∂(U−1)

∂θr
= −U−1

(
∂U

∂θr

)
U−1. (30)

If θ is an R-dimensional vector, d(U−1)/dθ is an N ×N × R tensor with slice r given by

(30).

B.2 Derivative of a matrix square root

Suppose that A is the matrix square root of C, i.e.

C = AA. (31)

Bibliography 147

Applying the product rule gives

∂C

∂θ
= A

∂A

∂θ
+A

∂A

∂θ
(32)

hence

∂A

∂θ
=

1

2
A−1∂C

∂θ
. (33)

148 Conor Rosato

C Code for Particle-NUTS using PyTorch and PyMC3

C.1 Particle filter code

def particlefilter(mu , phi , sigmav , y):

torch.manual_seed(0)

T = len(y)

P = 150

xp, lw , xpNew = torch.zeros(P)

loglikelihood = torch.zeros(T)

xp[:] = torch.full((1,P), 0.001)[0]+torch.randn(P)

lw[:] = -torch.log(torch.ones(1,1)*P)

eps = Normal(0, 1).rsample(torch.tensor([T, P]))

for t in range(1,T):

xpNew = mu + phi * (xp - mu) + sigmav * eps[t]

newLW = lw + Normal(0, torch.exp(xpNew/2)).log_prob(y[t-1])

loglikelihood[t] = torch.logsumexp(newLW , dim=0)

wnorm = torch.exp(newLW-loglikelihood[t])

neff = 1./torch.sum(wnorm*wnorm)

if(neff<P/2):

idx = torch.multinomial(wnorm , P, replacement=True)

xpNew= xpNew[idx]

lw[:] = loglikelihood[t] - torch.log(torch.ones(1,1)*P)

xp = xpNew

return(loglikelihood[T-2])

Bibliography 149

C.2 Calculating gradients

def getLogLikelihoodAndGrad(thetas , y):

mu = thetas[0]

phi = thetas[1]

sigmav = thetas[2]

mu_ = Variable(torch.tensor(mu),requires_grad=True)

phi_ = Variable(torch.tensor(phi),requires_grad=True)

sigmav_ = Variable(torch.tensor(sigmav),requires_grad=True)

LogLikelihood = particlefilter(mu_ , phi_ , sigmav_ , y)

LogLikelihood.backward ()

gradLL_mu = mu_.grad.detach ().numpy()

gradLL_phi = phi_.grad.detach ().numpy()

gradLL_sigmav = sigmav_.grad.detach ().numpy()

LL_ = LogLikelihood.detach ().numpy()

return(np.array([LogLikelihood]),

np.array([gradLL_mu ,

gradLL_phi ,

gradLL_sigmav]))

150 Conor Rosato

C.3 Log-likelihood with gradient

class LogLikeWithGrad(tt.Op):

itypes = [tt.dvector]

otypes = [tt.dscalar]

def __init__(self , obs):

self.obs = obs

self.grad_calc = GradTheanoWrapper(self.obs)

def perform(self , node , inputs , outputs):

theta , = inputs

logl , grad = getLogLikelihoodAndGrad(theta , self.obs)

outputs[0][0] = np.array(logl)[0]

def grad(self , inputs , outputs):

theta , = inputs

grdss = self.grad_calc(theta)

grad = tt.as_tensor_variable(grdss)

return [grad]

C.4 Declaring PyMC3 Model

logl = LogLikeWithGrad(obs)

with pm.Model () as opmodel:

a = pm.Normal(’a’, mu=0.0, sigma=1.0)

b = pm.TruncatedNormal(’b’, mu=0.95 , sigma=0.05)

c = pm.Gamma(’c’, alpha=2, beta=10)

theta = tt.as_tensor_variable([a, b, c])

pm.Potential(’’lik’’, logl(theta))

trace = pm.sample(draws=1000 , tune=1000 , chains=4)

	Abstract
	Acknowledgements
	Contents
	Introduction
	Epidemiological Modelling
	Calibration
	Evaluating Forecasts

	Motivation, Contribution and Thesis Structure
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

	Technical Information
	State-Space Models
	Linear Gaussian State-Space Model
	Stochastic Volatility Model
	Earthquake Model
	SIR Epidemiological Model
	Continuous Model
	Discrete Model
	Observation Equation

	Particle Filter
	Choice of Proposal
	Estimation with Respect to the Posterior
	Resampling

	Markov Chain Monte Carlo
	Metropolis-Hastings Random Walk
	Hamiltonian Monte Carlo
	No-U-Turn Sampler
	Generating a Trajectory
	Testing for U-turns
	Drawing a Sample from the Trajectory
	Pertinent Elements of the Proof
	Further Details

	Particle - Markov Chain Monte Carlo
	Application to SIR Model

	Evaluating a Markov Chain
	Effective Sample Size
	IACT
	Gelman Rubin

	Summary

	Efficient Learning of the Parameters of Non-Linear Models using Differentiable Resampling in Particle Filters
	Introduction
	Particle Filter
	Calculating the Likelihood
	Calculating the Gradient of the Likelihood

	Calculating the Derivatives
	Derivative of the Particle States
	Derivative of the Proposal
	Derivative of the Prior
	Derivative of the Likelihood

	Resampling for a Differentiable Particle Filter
	Discontinuities after a Resampling Realisation

	Differentiable Particle Filters
	Soft Resampling
	Gumbel Softmax
	Optimal Transport
	Fisher’s Identity to Calculate Gradient of the Log-likelihood

	Estimation of Parameters
	Hamiltonian Monte Carlo and the No-U-Turn Sampler
	Metropolis-Adjusted Langevin Algorithm (MALA)

	Numerical Experiments
	Linear Gaussian State-Space Model
	Results

	Stochastic Volatility Model
	Results

	Epidemiological Models
	SEIR Model
	Observation Equation
	SIR Results
	SEIR Results

	Conclusions and Future Work

	Particle-NUTS using PyTorch and PyMC3
	Introduction
	Differentiation Methods
	Numerical Differentiation
	Symbolic Differentiation
	Automatic Differentiation

	Particle-MCMC and PyMC3
	Examples and Results
	Stochastic Volatility and Earthquake Count Models
	Results

	SIR Disease Model
	Results

	Conclusions and Future Work

	Refining Epidemiological Forecasts with Simple Scoring Rules
	Introduction
	Statistical Model
	Transmission Model
	Observation Model
	Death Data
	Hospital Admission Data
	111 Call Data

	Scoring Rules
	Normalised Estimation Error Squared

	Computational Experiments
	Results
	Conclusions and Future Work

	Using Twitter Data to Inform Disease Models
	Introduction
	Data Collection
	United Kingdom NHS Region-Specific Surveillance Data
	Deaths
	Hospital Admissions
	Zoe App
	111 Calls and 111 Online

	Symptomatic Tweets
	Pre-processing Tweets
	Symptom Classifier Breakdown
	Comparison of Tweets and Positive Test Results

	Twitter Mobility Origin Destination Matrices

	Models
	Model for Surveillance Data Comparison
	Computational Experiments

	Model for Utilising Origin Destination Matrices

	Results
	Surveillance Data Comparison
	Origin Destination Matrices Analysis

	Conclusions and Future Work

	Conclusions and Future Work
	References
	Appendices
	Information for Differentiating Kalman Filter
	Partial versus total derivatives
	Differentiating a Kalman Filter
	Derivatives of multivariate log normal

	Matrix derivatives
	Derivative of a matrix inverse
	Derivative of a matrix square root

	Code for Particle-NUTS using PyTorch and PyMC3
	Particle filter code
	Calculating gradients
	Log-likelihood with gradient
	Declaring PyMC3 Model

