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Abstract: People tend to spend the majority of their time indoors. Indoor air properties can signif-
icantly affect humans’ comfort, health, and productivity. This study utilizes measurement data of
indoor conditions in a kindergarten in Sofia, Bulgaria. Autoregressive integrated moving average
(ARIMA) and long short-term memory (LSTM) recurrent neural network (RNN) models were de-
veloped to predict CO2 levels in the educational facility over the next hour based on 2.5 h of past
data and allow for near real-time decision-making. The better-performing model, LSTM, is also
used for temperature and relative humidity forecasting. Global comfort is then estimated based on
threshold values for temperature, humidity, and CO2. The predicted R2 values ranged between 0.938
and 0.981 for the three parameters, while the prediction of global comfort conditions achieved a
91/100 accuracy.

Keywords: predictive modeling; machine learning; indoor environment; comfort conditions; air quality

1. Introduction

Most people nowadays tend to spend 90% of their time indoors—at home, at work,
in school, or other enclosed environments [1,2]. Numerous studies have linked poor indoor
conditions with symptoms such as eye, nose, and throat irritation; headaches; fatigue; skin
dryness; and asthma-like symptoms [3–6]. These symptoms are most commonly observed
in indoor spaces with a high number of occupants [7] and are connected to a condition
named “sick building syndrome” (SDS) [8]. Even short-term exposure to inadequate indoor
conditions could cause harm to more sensitive groups such as children or the elderly or
people with other health conditions such as cardiovascular or respiratory diseases [9,10].
In fact, young children are at even higher risk due to their 2–3 times higher volume of
inhaled air with respect to their body weight compared to adults [11].

The quality of the indoor environment in educational facilities is often determined
by different factors such as air pollution, temperature, relative humidity, ventilation rate,
concentration of volatile organic compounds, etc. Particulate matter (PM10 and PM2.5),
for instance, has generally been associated in several studies with increased mortality rate, and
respiratory and cardiovascular conditions, especially among children [12,13]. The Indoor Air
Hygiene Institute states that PM2.5 levels above 35 µg/m3 during a 24 h period are considered
unhealthy [14]. Carbon dioxide (CO2) concentrations above 1000 ppm have been proven
to contribute to headaches, decreased cognitive performance, dry cough, and respiratory
problems in young children [15–17]. Low ventilation rates, high temperatures, and low relative
humidity also have a negative influence on the children’s overall learning performance [18,19].
Therefore, the environmental conditions in kindergartens and schools play a vital role in the
children’s learning efficiency, short- and long-term health, and well-being.
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Monitoring different indoor parameters in real time is essential to ensuring a healthy
environment. The availability and affordability of computational resources over the past
few decades have enabled the utilization of various models, including artificial intelligence
(AI) and machine learning (ML) models, for the prediction of future environmental con-
ditions [20]. The most commonly used models in such forecasting studies are regression
models, support vector machines, artificial neural networks (ANN), decision trees, random
forests, and generalized boosting models [21].

The aim of this study is to comprehensively assess the indoor environmental condi-
tions and present a short-term prediction of the comfort conditions inside a kindergarten
room in Sofia, Bulgaria using a recurrent neural network (RNN). While certain parameters
such as particulate matter, temperature, and relative humidity have received considerable
attention in previous research [20], the inclusion of CO2 as a critical parameter is of signifi-
cant importance. Monitoring, control, and prediction of CO2 alongside other parameters
provides a holistic understanding of the indoor environment. The rest of this article is
structured as follows: Section 2 describes the materials and methods of this study. Section 3
then demonstrates the results and discussions. Finally, Section 4 presents the conclusion
and future works.

2. Materials and Methods
2.1. Site Description

The current study employs data from a kindergarten room located in a residential area
in Sofia, Bulgaria. The selected indoor space is located on the ground level and is naturally
ventilated. The room is occupied from Monday to Friday between 7:00 a.m. and 5:30 p.m.
except holiday periods.

2.2. Data Collection and Instrumentation

The measuring equipment is placed on a wall opposite the windows. It consists of
temperature and relative humidity sensor (https://www.bosch-sensortec.com/media/
boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf (accessed on 12 July 2023)
), a fine particulate matter sensor (https://eu.mouser.com/datasheet/2/187/HWSC_
S_A0012942921_1-3073234.pdf (accessed on 12 July 2023)), and a CO2 sensor (https://f.
hubspotusercontent40.net/hubfs/9035299/Documents/AAS-920-634G-Telaire-T6713-Series-
011321-web.pdf (accessed on 12 July 2023)). The measurement ranges are, respectively, [−40,
85] ◦C, [0, 100]%, [0, 1000] µg/m3, and [0, 5000] ppm. The measurement ranges adequately
cover the air property values expected to be observed in the current study. The fine particu-
late matter sensor measures PM2.5 and provides estimates for PM1.0, PM4, and PM10 based
on the PM2.5 values. A sound alarm signals the teachers that the CO2 levels have crossed
the acceptable threshold of 1000 ppm and urges them to open the windows.

The sampling campaign took place between August 2021 and October 2022 with
measurements recorded at irregular intervals.

2.3. Data Preparation and Analysis

The whole data set consists of 97,637 records, which are resampled into 15 min interval
measurements using weighted mean. The resulting data set consists of 43,872 observations.
Around a quarter of those observations, however, have missing values. Forward filling
is used in cases of up to two consecutive missing values while longer periods of missing
data are removed. The more significant such intervals are (1) 14 September–6 October
2021, (2) 29 April–9 June 2022, (3) 16 June–27 July 2022, (4) 5 August–11 August 2022, and
(5) 5 October–13 October 2022. Finally, this results in a data set with 31,524 observations
whose descriptive statistics are presented in Table 1.

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://eu.mouser.com/datasheet/2/187/HWSC_S_A0012942921_1-3073234.pdf 
https://eu.mouser.com/datasheet/2/187/HWSC_S_A0012942921_1-3073234.pdf 
https://f.hubspotusercontent40.net/hubfs/9035299/Documents/AAS-920-634G-Telaire-T6713-Series-011321-web.pdf
https://f.hubspotusercontent40.net/hubfs/9035299/Documents/AAS-920-634G-Telaire-T6713-Series-011321-web.pdf
https://f.hubspotusercontent40.net/hubfs/9035299/Documents/AAS-920-634G-Telaire-T6713-Series-011321-web.pdf
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Table 1. Descriptive statistics of the cleaned data set.

T (◦C) RH (%) CO2 (ppm) PM2.5 (µg/m3)

mean 21.14 41.96 753.8 7.96
std 3.14 7.25 436.4 4.59
min 12.93 19.47 374.0 0.00
25% 18.48 36.87 439.0 4.00
50% 20.55 41.73 568.3 7.00
75% 23.60 46.70 904.8 10.67
max 31.04 66.70 3247.0 38.00

It can be seen that the maximum values of both the CO2 and PM2.5 levels exceed the
recommended thresholds. Further investigation reveals that PM2.5 exceeds the limit of
35 µg/m3 only five times during the recorded period of over a year, as observed in Figure 1.

Figure 1. PM2.5 measurements over the whole recorded period. The horizontal line represents the
threshold level of 35 µg/m3.

Potential reasons for this could be low levels of PM2.5 in the outdoor air in the vicinity
of the kindergarten and regular cleaning routines in the facility. On the other hand, dur-
ing the days when the kindergarten room is occupied (between 7:00 a.m. and 5:30 p.m.),
the mean concentration of CO2 is greater than the allowed concentration of 1000 ppm.
Thus, this study will focus on predicting CO2 levels and comfort conditions, which pose a
much greater threat to the children in this kindergarten room. Figure 2 shows an excerpt
of the data representing the CO2, temperature, and relative humidity measurements over
a period of around 40 days. It is observed that the CO2 levels exceed the threshold level
of 1000 ppm on a daily basis. In fact, further analysis shows that unhealthy levels of CO2
are present more than 15% of the time and more than 23% of the time during the days
between 7:00 a.m. and 5:30 p.m. As seen in Figure 2, a cyclical pattern is observed where the
measured parameters exhibit peaks during the days and significantly lower values over the
nights. In addition, the CO2 plot (Figure 2a) reveals a notable drop in concentrations during
the weekends. Thus, the time of the day and the type of day (weekdays or weekends) are
considered as additional features in the presented study.

In order to ensure that the models are trained on data from all the year round, the data
set is randomly split into training, validation, and testing in an 80:10:10 ratio, which is a
commonly reported split in literature [22–24]. Because the various features display different
ranges and orders of magnitude, all data are re-scaled into the range between 0 and 1 using
min–max normalization so that they can be easily interpreted on the same scale. Additional
data from 16 May to 15 June 2023 were acquired at a later stage and are used only as a testing
data set.
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(a)

(b)

(c)
Figure 2. Example (a) CO2, (b) temperature, and (c) relative humidity data. The vertical lines present
the end of a week and the beginning of a new one.
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2.4. ARIMA

The autoregressive integrated moving average (ARIMA) model combines the dif-
ferenced autoregressive model with the moving average model to perform time series
forecasting [25]. The autoregressive (AR) model expresses the observation at the current
time, γt, as a linear combination of observations at p previous times. Thus, the model has
the form:

γt = α0 + α1γt−1 + α2γt−2 + ... + αpγt−p + e (1)

where γ are the observations, α0 is a constant, αi are the regression coefficients, and e is an
error term, usually a zero-mean Gaussian noise. The number p is selected with the help of
a partial autocorrelation function (PACF) [26].

The differenced model (I) represents the change between consecutive data points in a
series and is used to convert a non-stationary time series into a stationary one. The pres-
ence of non-stationarity in the time series, and thereby the need for differencing, can be
determined through the augmented Dickey–Fuller (ADF) test [27]. First-order differencing
can be expressed as:

γ
′
t = γt − γt−1. (2)

In a moving average (MA) model the forecast error is linearly dependent on past
respective errors. It can be expressed as:

γt = I + et + θ1et−1 + θ2et−2 + ... + θqet−q (3)

where ei is the forecast error of data point i, θ are the regression coefficients, q is the
order of the moving average, and I is a constant. The order of q is obtained based on the
autocorrelation function (ACF) [26]. Combining all three components, the ARIMA model
can be expressed as:

γ
′
t = I + α1γ

′
t−1 + α2γ

′
t−2 + ... + αpγ

′
t−p + et + θ1et−1 + θ2et−2 + θqet−q. (4)

2.5. Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN)

A long short-term memory (LSTM) network is a variation of a recurrent neural network
(RNN) that handles the problem of storing long-term information [28]. In the conventional
RNN, the backpropagated errors tend to either vanish or increase exponentially. An LSTM
architecture consists of three gates—input gate, forget gate, and output gate—which control
the flow of information. The input gate controls the input data that flows into the cell state,
which stores the long-term memory of past events. The forget gate determines whether
information from the previous time step is kept or forgotten. Finally, the output gate is
used to decide the value of the next hidden state. The gates’ outputs can be described as
follows [29]:

it = σ(W(i)xt + U(i)ht−1 + b(i)) (5)

ft = σ(W( f )xt + U( f )ht−1 + b( f )) (6)

ot = σ(W(o)xt + U(o)ht−1 + b(o)) (7)

gt = C̃t = tanh(W(g)xt + U(g)ht−1 + b(g)) (8)

where it, ft, and ot are, respectively, input, forget, and output gates; σ is the gate activation
function; C̃t is a candidate to a cell memory; W(·) and U(·) are weight matrices; xt is the
input data; ht−1 is the output of previous cells; and b(·) are bias terms.

Then, a new memory state value, Ct, and a cell output, ht, are calculated using the
following equations:

Ct = gtit + ftCt−1 (9)
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ht = ot tanh(Ct). (10)

2.6. Comfort Conditions

The comfort conditions refer to the measurements of temperature, relative humidity, and
CO2. The threshold levels, L, for each parameter are defined in accordance with national and
international regulations, as summarized in Table 2. The optimal conditions for temperature
and relative humidity are set to adhere to the guidelines provided by the Bulgarian regula-
tion for kindergartens [30], where it is recommended to maintain the temperature between
L1 = 18 ◦C and L2 = 21 ◦C and the relative humidity between L1 = 30% and L2 = 60%.
As previously stated, CO2 levels above 1000 ppm are considered unhealthy. Levels between
L1 = 600 ppm and L2 = 1000 ppm are characterized as acceptable, while CO2 concentra-
tion below 600 ppm is most desirable and constitutes a healthy environment [31]. Using
these threshold levels for the three parameters, 27 different indoor comfort conditions can
be defined, as described in Table 3, with 1 signifying the greatest comfort and 27–the least
comfort. It is important to note that unlike the other parameters under investigation, which
exhibit well-defined threshold ranges, PM2.5 only has a single critical value. This led us to
focus our detailed analysis on temperature, relative humidity, and CO2 levels. Moreover,
the infrequent occurrence of elevated PM2.5 levels indicates a limited impact on the overall
indoor environmental quality and occupant comfort conditions.

Table 2. Threshold values for indoor comfort conditions.

Parameter L1 L2

Temperature (◦C) 18 21
Relative Humidity (%) 30 60
Carbon Dioxide (ppm) 600 1000

Table 3. Indoor comfort conditions categorization

N. Temperature, T (◦C) Relative Humidity, RH (%) Carbon Dioxide, CO2 (ppm)

27 T above L2 RH above L2 CO2 above L2
26 T above L2 RH below L1 CO2 above L2
25 T below L1 RH above L2 CO2 above L2
24 T above L2 RH between L1 and L2 CO2 above L2
23 T below L1 RH below L1 CO2 above L2
22 T below L1 RH between L1 and L2 CO2 above L2
21 T between L1 and L2 RH above L2 CO2 above L2
20 T between L1 and L2 RH below L1 CO2 above L2
19 T between L1 and L2 RH between L1 and L2 CO2 above L2
18 T above L2 RH above L2 CO2 between L1 and L2
17 T above L2 RH below L1 CO2 between L1 and L2
16 T above L2 RH between L1 and L2 CO2 between L1 and L2
15 T below L1 RH above L2 CO2 between L1 and L2
14 T between L1 and L2 RH above L2 CO2 between L1 and L2
13 T above L2 RH above L2 CO2 below L1
12 T above L2 RH below L1 CO2 below L1
11 T above L2 RH between L1 and L2 CO2 below L1
10 T below L1 RH above L2 CO2 below L1
9 T below L1 RH below L1 CO2 between L1 and L2
8 T between L1 and L2 RH above L2 CO2 below L1
7 T below L1 RH between L1 and L2 CO2CO2 between L1 and L2
6 T between L1 and L2 RH between L1 and L2 CO2 between L1 and L2
5 T below L1 RH below L1 CO2 below L1
4 T between L1 and L2 RH below L1 CO2 between L1 and L2
3 T below L1 RH between L1 and L2 CO2 below L1
2 T between L1 and L2 RH below L1 CO2 below L1
1 T between L1 and L2 RH between L1 and L2 CO2 below L1
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3. Results and Discussion
3.1. CO2 Concentrations Prediction—ARIMA vs. LSTM

For the prediction of CO2 concentrations in the kindergarten room, ARIMA and LSTM
models are used. The parameters for AR (p), the lag difference (d), and MA (q) are chosen
based on ACF and PACF plots, shown in Figure 3, and the ADF test. The ADF test suggests
that the time series is already stationary, which means that no differencing is needed.
Despite the fact that all investigated lags up to p = 30 are indicated as significant in the ACF
plot in Figure 3a, the value of p is selected to be 10, which represents a trade-off between
choosing a sufficient number of past measurements and computational cost. In addition,
the behavior of the PACF (Figure 3b) indicates that the degree to which the current time
point is directly influenced by events more than 10 lags apart is insignificant. Finally, based
on the slow change of the ACF and the long autoregressive behavior, the value of q is
chosen as zero. Thus the final predictor reduces to a pure AR model.

(a) (b)
Figure 3. (a) ACF and (b) PACF plots of the whole data set. Blue shading in (a) depicts the signifi-
cance region.

The architecture of the RNN used throughout this study is the same for all three
predicted variables. It consists of four layers, two LSTM and two fully connected hidden
layers with respective outputs and parameters shown in Table 4. The RNN utilizes the
Adam optimizer with β1 = 0.9, β2 = 0.999, and ε = 10−8, as recommended in [32].
In addition, a learning rate schedule is defined using exponential decay with an initial
learning rate of 0.05, 400 decay steps, and a decay rate of 0.95.

Table 4. RNN architecture. Shape format reads (number of samples propagated through network,
number of neurons in layer) or (number of samples propagated through network, number
of time steps, number of neurons in layer). None denotes determination at runtime.

Layer Type Shape Parameters

1 LSTM (None, 10, 64) 17,408
2 LSTM (None, 64) 33,024
3 Dense (None, 32) 2080
4 Dense (None, 4) 132

Both models use information about the 10 previous measurements to predict 4 steps
(1 h) ahead utilizing the sliding window algorithm (see, e.g., [33]). This short-term predic-
tion offers a balance between prediction accuracy and computational efficiency and allows
for near real-time decision-making. Unlike ARIMA, which only allows the use of a single
feature, the LSTM includes two additional features—the time and the type of day (weekday
or weekend).

Both models were run on a Dell Latitude 7400 with 4-core Intel(R) Core(TM) i7-8665U
CPU and 16 GB of RAM, and their computational time was 45 min and 8 h in favor of
the LSTM model. The results of the training process for the two models are shown in
Figure 4. It can be seen that the coefficient of determination, R2, in all cases is higher when
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LSTM is used. The results for temperature and relative humidity exhibit a qualitatively
similar behavior to that of CO2, and are thus omitted here for brevity. As a result, LSTM is
used in the further prediction of temperature, relative humidity, and overall comfort of the
indoor conditions.

(a) (b)

(c) (d)

(e) (f)
Figure 4. CO2 predictions vs. measurements plots (a) using ARIMA on the training set; (b) using
LSTM on the training set; (c) using ARIMA on the validation set; (d) using LSTM on the validation
set; (e) using ARIMA on the testing set; (f) using LSTM on the testing set.
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3.2. Comfort Conditions Prediction

Initially, the comfort conditions in the kindergarten room are determined based on the
measurements and Table 3 so that every recording is assigned a category between 1 and 27.
CO2 concentrations, temperature, and relative humidity are then all predicted 1 hour ahead
using three separate LSTM models utilizing the architecture described in Section 3.1 and the
loss functions of the training processes can be seen in Figure 5. This approach allows for a
detailed understanding of the predicted values for each parameter and the factors influencing
the comfort conditions. The results are presented in Figure 6. The coefficients of determination
for temperature and relative humidity show a very high prediction accuracy. In addition,
Figure 7 presents residual plots for all three predicted variables. The distribution of residuals
suggests that the models are performing well, and the cluster around zero implies that the
predicted values are close to the actual values. However, in all cases outliers can also be
observed, which signals that the models could still be improved, and further investigation to
identify the factors that contribute to those deviations may be needed in future work. Based
on the predictions for these three variables, a forecast for the comfort conditions is also formed.
A report for a post-analysis classification is presented in Table 5, which demonstrates the
high precision in discovering the correct comfort categories. It can be seen that the comfort
conditions are forecast correctly with an average accuracy of 91%, which indicates a good
ability of the model to correctly identify instances across all categories. The zero precision
of the obvious outliers in Categories 14 and 15 can potentially be attributed to the lack of
sufficient data (a single point for each) in those categories, despite the apparent lack of
correlation between the size of the support and precision counts.

To put those figures in a more applied perspective, a time domain comparison is
presented in Figure 8 showing the results on the additional data set covering a period of
30 days in 2023. Despite the good accuracy, a decrease in the coefficient of determination
is notable for all three variables. The forecast of CO2 concentrations exhibits the largest
deterioration, which can most clearly be seen in the prediction of the baseline and some of
the peaks. This indicates the need for periodic retraining to ensure sustained accuracy in
real-time predictions.

(a) (b)

(c)
Figure 5. Loss function plots for (a) CO2, (b) temperature, and (c) relative humidity.
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(a) (b)

(c) (d)

(e) (f)
Figure 6. LSTM predictions vs. measurements plots (a) of temperature on the training set; (b) of
relative humidity on the training set; (c) of temperature on the validation set; (d) of relative humidity
on the validation set; (e) of temperature on the testing set; (f) of relative humidity on the validation set.
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(a) (b)

(c)
Figure 7. Residuals plots for the prediction of (a) CO2, (b) temperature, and (c) relative humidity.

Table 5. Comfort conditions classification report. ‘Precision’ is the ratio of correct positive predictions
to all positive predictions; ‘recall’ is the ratio of correct positive predictions to all positive instances;
‘f1-score’ is the weighted harmonic mean between precision and recall; ‘support’ indicates the number
of occurrences of each class in the data set.

N. Precision Recall f1-Score Support

1 0.92 0.94 0.93 5098
2 0.75 0.79 0.77 317
3 0.92 0.93 0.93 2406
4 0.63 0.64 0.63 233
5 0.89 0.54 0.67 78
6 0.90 0.87 0.89 3571
7 0.91 0.93 0.92 1896
8 0.67 0.50 0.57 4
9 0.31 0.19 0.24 21
11 0.98 0.96 0.97 8524
12 0.88 0.73 0.80 173
13 0.96 0.90 0.93 219
14 0.00 0.00 0.00 1
15 0.00 0.00 0.00 1
16 0.81 0.84 0.82 2090
17 0.70 0.74 0.72 245
18 0.61 0.45 0.52 31
19 0.91 0.89 0.90 2861
20 0.58 0.53 0.55 62
21 0.94 0.94 0.94 17
22 0.89 0.91 0.90 570
24 0.87 0.92 0.90 2865
26 0.75 0.82 0.78 211
27 0.96 0.80 0.87 30

accuracy 0.91 31,524
average 0.74 0.70 0.71 31,524
weighted avg 0.91 0.91 0.91 31,524
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(a)

(b)

(c)
Figure 8. (a) CO2, (b) temperature, and (c) relative humidity predictions vs. measurements plots
obtained using LSTM on the 30-day testing data set in 2023.

4. Conclusions

This study highlights the importance of monitoring and ensuring healthy indoor
environments, particularly in educational facilities such as kindergartens. Poor indoor
conditions can have significant implications for the well-being and learning efficiency
of children. The research employed real-time monitoring and ML techniques to predict
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environmental conditions. The results demonstrate that the LSTM model outperforms
a classical AR model in predicting CO2 concentrations, providing higher accuracy and
shorter computational time. Furthermore, the study addresses the prediction of comfort
conditions based on temperature, relative humidity, and CO2 levels. The forecast comfort
conditions align closely with the actual conditions, achieving an average accuracy of 91%,
when using the LSTM model.

These findings emphasize the significance of proactive measures to mitigate indoor
air quality issues in educational settings. Implementing effective ventilation strategies,
maintaining optimal temperature and humidity levels, and addressing CO2 buildup are
essential for creating a healthy and conducive learning environment for children. The in-
tegration of ML techniques, as demonstrated in this study, can serve as valuable tools for
continuous monitoring and prediction of indoor conditions, facilitating timely interventions
and promoting the well-being of occupants.

Further research will focus on refining and expanding the predictive models to include
additional factors that influence indoor air quality, examine different sliding window hori-
zons, and study the effect of dependence between temperature, humidity, and CO2, which
were considered independent in this study. Moreover, investigation into PM2.5 variations,
especially with additional threshold levels, could also be a subject of future research in
contexts where its levels are more consistently elevated. Additionally, the results obtained
in this study can be used as the foundation of a computational fluid dynamics (CFD) simu-
lation, which would offer a better understanding of the airflow patterns. This would enable
the evaluation of different ventilation strategies, such as natural ventilation, mechanical
ventilation, or a combination of both, to determine their effectiveness in maintaining a
healthy indoor environment.
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