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Uncertainty is present throughout the aircraft design process, and is of key importance
during the preliminary design stage. At the same time there is often insufficient understanding
of the governing process to warrant a detailed description of an uncertainty model, which often
leads to neglecting the issue altogether. In this paper we present the foundation of a framework
for propagating uncertainty through black-box computer models organically integrated into
highly flexible parametric geometry models. We form this foundation by focusing on the interval
as a building block of uncertain numbers. We compare the reliability and efficiency of the
uncertainty representation provided by various interval propagation methods by applying them
to an early-stage geometric model of an electric motor mount.

Nomenclature

𝑑 = number of input dimensions
𝐷 = number of Michell lattice beams
𝑒𝑥 = error defining an interval in central form
𝐸 = material Young’s modulus
𝐹 = load applied on a single Michell lattice
𝑓 = function representing a computer model
𝐿 = overall length of Michell lattice
𝑀 = mass of a single Michell lattice
𝑚 = number of divisions or samples for interval propagation
𝑛 = number of code evaluations
𝑅𝑖𝑛 = inner to outer beam ratio
𝑅𝑖𝑛2 = second inner to outer beam ratio
𝑅𝑜𝑢𝑡 = outer beam width to lattice length ratio
𝑥𝐼 = an interval-valued variable 𝑥
𝑥 = lower bound of an interval-valued variable 𝑥
𝑥 = upper bound of an interval-valued variable 𝑥
a = material Poisson’s ratio
𝜌 = material density
𝜎𝑦 = material yield stress
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I. Introduction

A. Background and motivation
Uncertainty is present in all engineering design processes and is often an implicit driver behind a number of decisions

concerning engineered systems. Uncertainty is abundant in aircraft design, during the early stages of subsystem
development, but also where resilience must be built into the system [1]. It has been demonstrated that the careful and
methodical quantification of uncertainty can lead to a more complete exploration of the design space, and therefore can
result in aircraft with superior performance and higher reliability [2]. Diligent uncertainty quantification at every stage
of the design process can reduce the occurrence of surprising events and the need for potentially costly redesigns at later
stages of the aircraft life cycle [3]. Moreover, the use on non-deterministic design strategies allows designers to better
understand the behaviour of the system they are dealing with and provide actionable solutions to potential problems. It
seems, therefore, imperative that prudent uncertainty quantification (UQ) accompanies the design effort from early on.

Despite its significance, uncertainty is often treated in one of two inadequate ways. One way is to simply ignore
it. The most common reasons for ignoring uncertainty include the inability to model it precisely, the perception that
including uncertainty will take up too much by way of valuable computational resources, or that fully accounting
for uncertainty will dilute results and render them useless to the decision-making process. Alternatively, uncertainty
is incorporated in the form of rigid safety factors and margins, often leading to over-engineered systems. Aircraft
are particularly sensitive to this problem, due to the delicate balance between performance and safety that must be
maintained throughout their design and operation. Finding this balance using a deterministic set of rules is particularly
difficult in the preliminary design stage, and becomes next to impossible as the number of parameters to consider grows.

The aversion to UQ is exacerbated by the ongoing debate in the UQ community about the best way to deal with
different kinds of uncertainty. There is a general consensus among researchers and engineers that the two major types of
uncertainty are epistemic and aleatory uncertainty. Sources of epistemic uncertainty in design include doubt about the
value of fixed, but unknown parameters, ignorance about the details of the mechanisms and processes involved, and
other imperfections in scientific understanding. Once the design begins to converge, the uncertainty starts to develop an
aleatory, or stochastic, component as well. This is usually in the form of manufacturing and assembly tolerances, but
could also enter the design through naturally varying environmental conditions. Even though it may sometimes be
difficult to distinguish the two types of uncertainty, the fact that they seek to express fundamentally different aspects
of design has been agreed upon [4]. However, there is no consensus on whether epistemic and aleatory uncertainty
should be treated differently to one another, with some researchers maintaining that probability theory can be applied to
both types (e.g., [5]), while others holding the view that alternative approaches are needed to deal with different kinds
of uncertainty(e.g., [6, 7]). Likewise, in aeronautical design, the separation is acknowledged, but seldom effected in
practice; see e.g., [8–11], cf. [12].

In the framework whose foundations are presented in this paper, we advocate a clear separation between the kinds
of uncertainty, not only at the theoretical level, but also during practical engineering work. Our view is that the
correct characterisation of uncertainty will not require the designer to make untenable assumptions about evidence or
precision, thereby allowing them to only use information they are comfortable with. Moreover, instead of lumping
all uncertainty together, this distinction allows the designer to develop a clearer appreciation of the uncertainty they
can reduce (epistemic) and that which is outside of their control and needs to be mitigated instead (aleatory). Finally,
maintaining the uncertainty distinction throughout the design life cycle, allows the designer to use the appropriate
methods to propagate each type, optimising their computational budget.

In this study, we focus on the preliminary aircraft design stage, which is strongly affected by uncertainty in the
geometry of components and subsystems. Geometric features determine, to a large degree, the performance, handling
and reliability of aircraft. They are strongly coupled among each other, and with non-geometric attributes, often in
complex ways, such that changing one feature may result in changes to a potentially large number of seemingly unrelated
characteristics. The importance of dealing with geometric uncertainty is evidenced by the number of studies conducted
in the field. These include the effect of uncertain geometry on the aerodynamic properties of airfoils [13–16] and wing
flow modifiers [17, 18]; on the aeroelastic response of wing structures [19, 20]; on the propulsive efficiency of power
plants [21, 22] and in full aircraft configurations [23].

B. A procedural approach to geometry-centric design
Nature’s way of building (and optimizing) complicated geometry is by encoding it in the structure of a DNA

molecule. This then serves as a recipe for the step-by-step construction of each copy of the organism. The clichéd
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metaphor of DNA being the “blueprint of life” is thus, incidentally, nonsense – a DNA molecule is not, in any way, a
representation of the geometry itself, rather of the steps required to construct it [24].

Procedural geometry generation (geometry defined as code) – the CAD modelling technique we adopt here – is an
artificial analogue of nature’s recipe-based approach and it has a number of advantages compared to the more traditional
‘CAD as a digital version of a drawing board’, blueprint-like approach. In [24] we provided a detailed run-down of
these; here we shall merely highlight those most relevant to the work we are reporting on:

• it facilitates “don’t repeat yourself”, “single source of truth”, “separation of concerns”, and other software
engineering principles that are far harder to incorporate in more traditional “point and click” CAD environments,

• it facilitates version control and automated continuous integration (that is, unit testing and integration testing
integrated directly into the version control system),

• it allows a much more favourable balancing of the fundamental trade-off at the heart of every parametric geometry,
that between model flexibility (the size of the design space), conciseness (the dimensionality of the design space),
and robustness (the proportion of the design space within which the geometry makes physical sense),

• it allows the direct weaving of surrogate models and other forms of machine learning into the fabric of the
geometry model itself, giving intelligent “self design” capabilities,

• and finally, most pertinently to the subject of this study, it facilitates uncertainty propagation in a much more
direct, organic, and computationally efficient way than conventional geometry modelling approaches.

The particular flavour of procedural geometry modelling we are adopting here hybridises a code-based approach (at
the level of geometric primitives) and a visual programming paradigm for incorporating “engineering level” rationale
into the parametric model. The visual (or graphical) programming approach, where the designer lays out abstractions
of geometric objects on a “canvas”, connecting them together with data pipelines in a manner akin to an electronic
circuit, is particularly conducive to a UQ view of the world, allowing for intuitive sensitivity analysis “on the fly”. This
is as simple as inserting potentiometer-style components into the ‘circuit’ of the geometry, associated with input values.
Turning or sliding these then allows immediate “one-factor-at-a-time” sensitivity studies of the sort one might engage in
naturally when faced with the dashboard of an unknown machine. The unknown machine here is the (often) black box
type model of the performance of the engineering artefact being designed, which offers a “first pass‘’ assessment of
sensitivities even when the underlying mathematics is sufficiently complex to defy analytical understanding. In Section
III.A we shall present our design case study based on these principles.

C. Challenges in uncertainty propagation
A key challenge faced at each stage of the design process is how best to express the uncertainty in the input variables.

It is difficult and often questionable to assign precise models of uncertainty at early stages of the design process. This is
because precise descriptions of uncertainty rely on a set of parameters, which is usually larger than the one used to
describe the design itself and may, in turn, be affected by a considerable amount of uncertainty. Moreover, the typically
accepted probabilistic description of uncertainty requires the specification of a shape of a probability distribution about
the design parameters. Subsequent determination of parameters and potential inferences are conditional on this shape.
It is common, at early stages to assign a uniform probability distribution to parameters, for whose shape we want to
express ignorance. Even though the uniform distribution is the maximum entropy distribution over a given interval [25],
it hardly expresses ignorance. On the contrary, it states that every outcome on that interval is equally likely, a statement
for which there may be no evidence in early-stage design.

In an attempt to avoid an overly ambitious specification of input uncertainty, many engineers turn to worst-case
analysis [26], which seeks to determine the values of system parameters that would result in the worst possible
outcome. This risk-based strategy has been a pillar of engineering for decades, because it seeks to identify and minimise
high-consequence events. In fact, worst-case analysis forms the foundation and justification for the use of safety factors
and safety margins. However, worst-case analysis implicitly assumes that the engineer knows which combination of
inputs results in the true worst case performance or safety. With many black-box models the engineer may not have a
sufficient understanding of the physics, or implementation, or it may simply be that the performance function of the
model is too complex to reliably identify input combinations that yield the global worst case. In essence, worst-case
analysis is a deterministic solution to deal with design uncertainty, and as such it is sensitive to the specification of input
values. In addition, when choosing a worst case, the engineer may be excessively conservative, choosing a particular
scenario that is possible, but extremely unlikely, or even beyond the capacity of the design and not worth considering.

Unlike worst-case analysis, interval analysis [27, 28] is a formal, non-deterministic method, which uses the principles
of interval arithmetic to propagate uncertainty through computational models. Intervals express uncertainty about the
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parameter 𝑥 as either closed ranges of real values, 𝑥 ∈ [𝑥, 𝑥], or as a nominal value plus or minus some error, 𝑥 ± 𝑒𝑥 .
The method is rigorous, because it guarantees that if input intervals enclose the true value of the associated parameter,
than the true value of the output will be contained in its corresponding interval. In the absence of repeated uncertain
variables in the mathematical expressions contained in the model, the resulting interval provides the tightest possible
bounds around the answer, given the input uncertainty∗. Because interval ranges enclose the parameter, interval analysis
is equivalent to performing worst-case and best-case scenario analysis simultaneously. Interval analysis can be used
to propagate any type of uncertainty, but it is typically applied in problems dealing with epistemic uncertainty. The
relatively small amount of information required and the guarantees provided by interval analysis, make it well-suited to
propagating uncertainty and conducting sensitivity studies during preliminary aircraft design. Moreover, intervals are
fundamental in the construction and analysis of more general uncertain numbers, such as fuzzy sets [29] and probability
boxes [30], which in turn provide the means to correctly propagate probability distribution through models, using
samples of finite size.

In its original form, interval analysis requires access to the source code of the computational model, making it an
intrusive uncertainty propagation method [31]. This fact presents a problem for the application of interval analysis
because the mathematical expressions of the majority of industrially applicable models are inaccessible to the user. That
is to say, the code is a black box. In this study, we focus on the propagation of interval uncertainty through just such
black-box models. We make use of the algorithmic nature of procedural geometry generation to explore several different
strategies for the propagation of interval uncertainty from geometric parameters to the mass of a motor mount for an
electric aircraft. We discuss the advantages and disadvantages of each method and outline a general guidance for the
selection of techniques for the propagation of interval uncertainty through black-box models.

The remainder of the study is organised as follows. Section II introduces the applied interval propagation methods
in more detail and discusses their implementation. Section III.A describes the theory and parameterisation of Michell
lattices, used as a case study for interval uncertainty propagation. Section III.B presents results from using each of
the methods to propagate uncertainty in the geometric properties of the Michell lattice motor mount to its mass. This
section also provides a discussion on the applicability of each method, in both the selected case and in general. The
study finishes with concluding remarks in Section IV.

II. Non-intrusive propagation methods
Interval arithmetic, which forms the basis for interval analysis, redefines the four main arithmetic operations

(addition, subtraction, multiplication and division), for two interval valued operands, 𝑥𝐼 and 𝑦𝐼 , as follows:

𝑥𝐼 + 𝑦𝐼 = [𝑥 + 𝑦, 𝑥 + 𝑦] (1)

𝑥𝐼 − 𝑦𝐼 = [𝑥 − 𝑦, 𝑥 − 𝑦]

𝑥𝐼 × 𝑦𝐼 = [min(𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦),max(𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦)]

𝑥𝐼/𝑦𝐼 = 𝑥 × [1/𝑦, 1/𝑦] as long as 0 ∉ 𝑦𝐼

Unary operations, such as exponentiation, logarithmic and trigonometric functions are also defined, but their result
depends on the interval argument and is not detailed here (for a complete exposition on interval arithmetic, see [27]).
Despite the fact that interval analysis is rigorous, to use it, each expression in the computer model must be decomposed
into elementary arithmetic operations and evaluated, something that is commonly not feasible. For these cases, there is a
plethora of non-intrusive approaches that can be adopted to propagate the uncertainty through a black-box model. In this
study we review and compare the most commonly used ones. A common feature among all of these approaches is that
they decompose intervals into a collection of real numbers that can readily be processed by any black-box model [32].
As such, these methods provide an approximation to the output interval, whose quality depends on the characteristics
and complexity of the model itself.

In this section, we present a brief description of the adopted approaches. We compare the methods based on features
important for reliable uncertainty propagation. The first two features we care about are how rigorous each method is
and the assumptions that must be made in order for this rigor to hold. We use a “traffic-light system” to provide the
reader with a feeling about the relative ranking of methods based on those characteristics. We remind the reader that for
true black-box models, one cannot provide mathematical guarantees as to the quality of the propagation result, but the

∗If the same uncertain variables occur multiple times in the expression of the model, the resulting interval may be wider than needed. This
problem is known as the ‘repeated variable problem’
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comparison serves as a useful guide in selecting a method. The third and final point we include in the methods’ analysis
is their computational cost, expressed as a function of the number of code evaluations. A summary of the results is
provided in Table 1

Table 1 Summary of key characteristics of the uncertainty propagation methods reviewed here. The cost for
each method is expressed in terms of the number of samples or partitions, 𝑚, chosen by the engineer and the
dimensionality of the problem, 𝑑. Rigor scores are based on the provision that the assumptions about the function
are met.

Method Underlying Assumptions Cost Rigor
Vertex propagation Monotonic over intervals 2𝑑 High
Subinterval reconstitution Monotonic over subintervals (𝑚 + 1)𝑑 High
Monte Carlo methods None 𝑚 Low
Cauchy deviates Linear over intervals 𝑚 Medium
Evolutionary optimisation Problem-dependent ≤ 𝑚 Medium

A. Vertex propagation
The vertex propagation method [33] is a straightforward way to project intervals through the code, by projecting a

number of input combinations given by the Cartesian product of the interval bounds. This results in a total of 𝑛 = 2𝑑
evaluations, where 𝑑 is the number of interval-valued input parameters. In the case of two intervals, 𝑥𝐼 and 𝑦𝐼 , the code,
𝑓 (·) must be evaluated four times at 𝑓 (𝑥, 𝑦), 𝑓 (𝑥, 𝑦), 𝑓 (𝑥, 𝑦), 𝑓 (𝑥, 𝑦).

Despite its simplicity, this method suffers from two major disadvantages. The first problem is the exponential growth
in computational complexity with respect to the number of parameters. For 𝑑 = 10, a modest dimensionality by today’s
standards, vertex propagation requires 𝑛 = 1024 evaluations and doubling the number of parameters to a somewhat more
realistic figure results in 𝑛 = 1 048 576, too many even for codes of moderate running times. The second problem with
the method is that it gives bounds containing the true answer, i.e. it is rigorous, only when the function is monotonic.
For many complex codes this is not the case, or at the very least cannot be readily established as a fact.

B. Subinterval reconstitution
To accommodate the common presence of non-monotonic trends, the input intervals can be partitioned into

smaller subintervals, which can then be propagated through the model using vertex propagation and the output interval
reassembled [34]. The logic behind this method is that even though the code may not be monotonic over the full
width of the interval, it will likely behave monotonically on a smaller interval, provided the underlying function is not
pathologically rough (i.e. it is not nowhere differentiable). Thus, output intervals for even highly non-linear functions
can be computed to arbitrary precision, provided there is a sufficient computational budget.

The major disadvantage of this method is the exponential growth of evaluations required to compute output intervals,
which is at least as high as that associated with the vertex propagation method. The reason is that for every interval there
will be at least two and realistically many more points to compute the Cartesian product over. For example, a problem
with four interval variables, partitioned into four subintervals each (that is, having five vertices per dimension) will
require 𝑛 = 625 evaluations. In general, the number of evaluations required is equal to 𝑛 = (𝑚 + 1)𝑑 , where 𝑚 is the
number of subintervals.

One redeeming feature for the method is that there is no requirement to select the same number of subintervals for
all parameters. This becomes very useful when the modeller has some knowledge about the behaviour of the function in
some dimensions. In this way it is possible to allocate computational budget where it matters.

C. Monte Carlo methods
The Monte Carlo method, named after the home city of chance, has been developed for cases in which input

uncertainty described by precise distributions needs to be propagated through a mathematical expression. The
distributions are sampled and the scalars are propagated through the model. In this way, Monte Carlo can compute
the empirical probability distribution for the model output, expressed either as a histogram (empirical PDF), or as an
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empirical CDF. In general, the cost of the method is not directly dependent on the number of dimensions, but instead
implicitly scales with the complexity of the function.

Overall, Monte Carlo methods are general methods for approximate uncertainty propagation. Due to their relative
simplicity, they remain popular for propagating uncertain numbers through black-box models. However, the engineer
must remember that all results are based on a finite sample and can thus provide no guarantee about their reliability,
unless repeated resampling is employed.

Even though Monte Carlo and other sampling methods are best suited to propagate the uncertainty of inputs only
affected by aleatory uncertainty, their logic can be used for approximate propagation of epistemic uncertainty, too.
We must emphasise here, that using Monte-Carlo-like approaches to propagate epistemic uncertainty will in fact have
the effect of turning the intervals into uniform distributions. However, in contrast to the usual treatment described in
Section I.C, here we are not concerned with the full distribution of the output, because it would be based on the untenable
assumption of equal likelihood of outcomes in the range. Instead the minimum and maximum value of the resulting
output values are computed and used as bounds on the output interval. Because the probability of sampling from the
precise locations of the true bounds of the functions, using random sampling is 0, Monte Carlo methods provide an inner
approximation to the true interval. For this reason, the associated solutions are generally considered to be of low rigor,
but for the benefit of relaxing all assumptions about the computer model. In general, these methods underestimate the
width of the output interval, and this underestimation error is found to increase with the dimensionality of the problem
[35]. Moreover, often times output bounds may correspond to the bounds of one or more of the inputs, as discussed in
Section II.A. However, these bounds will almost surely not be included in the Monte Carlo sample. A straightforward
way to remedy this is to explicitly include the endpoints of the input intervals in the sample as proposed in the vertex
propagation method (see Section III.B for the effect of this modification).

There has been a variety of sampling methods based on the logic of Monte Carlo. For the purposes of the current
paper we are going to mention the two most commonly used ones.

1. Classical Monte Carlo
Classical Monte Carlo simulation [36] relies on drawing independent, pseudo-random samples from a precise

probability distributions in 𝑚 locations (the so-called independent and identically distributed (i.i.d.) samples). The
popularity of classical Monte Carlo simulation can be attributed to the ease of its implementation and its natural
applicability to propagate uncertain input parameters characterised by precise probability distribution. Moreover, most
modern computational tools offer a built-in capability to generate pseudo-random numbers from the standard uniform
distribution, U(0, 1). This can be rescaled to any other uniform distribution with bounds 𝑎 and 𝑏, U(𝑎, 𝑏). To sample
distributions different from uniform, many tools offer an implementation of the probability integral transform, which
transforms uniform pseudo-random numbers through the inverse cumulative (quantile) distribution function of the
required distribution [see e.g., 37]. If the quantile function is not available in closed-form, samples can be generated
through more advanced techniques; see e.g., [38, 39].

One of the main disadvantages of classical Monte Carlo is due to its reliance on random sampling across the entire
support of the distribution. This results in some regions containing clusters of samples, while others, typically around
the distribution tails, remaining under-explored .

2. Latin hypercube sampling
Latin hypercube sampling (LHS) [40] attempts to address the main disadvantage of classical Monte Carlo by first

partitioning the range of the input probability distributions into 𝑚 intervals and then randomly selecting a single point
from within each interval. The samples are permuted, such that the set fills the space optimally, according to a prescribed
criterion (usually maximin or minimax [41]).

D. Cauchy-deviate method
If there is evidence to believe that the investigated function is reasonably linear (that is ignoring second- and

higher-order terms in a hypothetical Taylor expansion will not lead to significant errors), another way to propagate
epistemic uncertainty through black-box models is to use the method of Cauchy deviates [42].

This method works by generating 𝑚 random samples from 𝑑 Cauchy distributions, one for each uncertain number
and computing the width of the output interval through appropriate scaling of these samples [43]. Because the Cauchy
distribution is unbounded, after scaling them, all samples will lie on the 𝑑 − 1-dimensional hyperplane bounds of the
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input space. This allows the method to provide more accurate results than Monte Carlo, for cases where the linearity
assumption holds. This assumption, however, raises two questions:

• “If we can assume the model is linear, why can not we use the vertex propagation method, which is rigorous in
this case?”

• “Is not the model supposed to be black box? How can a linearity assumption be justified?”
The vertex method indeed provides rigorous interval propagation for linear or monotonic models. However, as stated in
Section II.A, its cost is exponential in the number of dimensions. This is not true for the Cauchy-deviate method, whose
computational cost is constant in 𝑑. It is thus up to the engineer to decide on the computational budget and design the
propagation work.

To answer the second question, the mathematical surface of the typical engineering model is not pathologically
rough. This means that, if the input interval is narrow enough, the model will behave approximately linearly. This makes
it possible to combine partitioning methods, such as those used in subinterval reconstitution, with Cauchy deviates to
control the computational expense of uncertainty propagation.

E. Optimisation methods
Interval input uncertainty can also be propagated through black-box models by solving two global constrained

optimisation problems for the bounds of the output interval, as:

𝑦𝐼 =

[
𝑦, 𝑦

]
(2)

=

[
min

𝑥𝐼1 ,...,𝑥
𝐼
𝑑

𝑓

(
𝑥𝐼1, . . . , 𝑥

𝐼
𝑑

)
, max
𝑥𝐼1 ,...,𝑥

𝐼
𝑑

𝑓

(
𝑥𝐼1, . . . , 𝑥

𝐼
𝑑

)]
Unlike random sampling methods, optimisation techniques query the model at points chosen from within the input

intervals based on some fitness function to inform where to sample next. A detailed taxonomy of optimisation methods
can be consulted, for example in [44, 45]. In this study, only evolutionary algorithms for global optimisation are
considered, due to their general suitability to black-box applications. This large family of algorithms is inspired by the
process of reproduction through natural selection. As such, evolutionary algorithm share common characteristics with
sampling methods, with the difference that they are concentrated on finding a global optimum instead of generating the
empirical distribution of the quantity of interest. Their key differences when compared to other optimisation methods is
that for each iteration they initialise, vary and select a population of candidate solutions. Moreover, the selection of the
population for each iteration is based on random processes. Evolutionary algorithms are generic methods and can be
used for a variety of demanding complex models, including those with high-dimensional input spaces, highly nonlinear
interaction between model parameters, non-continuous parameter space (e.g., an integer or logical discrete parameter),
and multi-modal objective function with many local maxima or minima. Examples of evolutionary algorithms are the
genetic algorithm, particle swarm optimisation, and ant colony optimisation, among others.

Although these methods reliably produce better bounds than other sample-based methods, such as those based on
Monte Carlo simulation, the resulting intervals are not guaranteed to be correct. Moreover, evolutionary optimisation
methods sample a large number of candidate solutions for each iteration. This means that depending on the computational
cost of the model, they can be prohibitively expensive.

III. A case study in propulsion system engineering
In this section, we demonstrate the non-intrusive uncertainty propagation methods in the context of the preliminary

structural design of an aircraft propulsion system. The centrepiece of the design problem we tackle is the requirement
for a lightweight mounting structure designed to support an electric motor to the main spar of a wing. Despite the best
intentions of the design team to achieve minimum weight for the structure, considerable uncertainty surrounds its main
sizing parameters, giving rise to the risk of producing an lightweight structure which may require substantial changes
later on in the design process. A description of the model is presented first, followed by the discussion of the results.

A. The model
In line with the procedural geometry modelling approach, described in Section I.B, we construct the model of

the motor mount through a hybrid of visual and code-based programming. The computational infrastructure at
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Fig. 1 Design canvas showing the components of the visual program that defines the parametric geometry at the
heart of the case study described here.

(a) (b)

Fig. 2 The Michell lattice used to construct the motor mount. (a) An example Michell lattice. (b) Geometric
parameterisation of a lattice with 4 divisions.

the foundation of the demonstrator is the openNURBS® library, run through Rhino® 7 via its Grasshopper® visual
programming interface [46], illustrated in Fig. 1.

The motor mount is a “cage”, each of whose four sides is a Michell lattice, such as the one shown in Fig. 2(a). The
complex geometry of each lattice can be created with relative ease through the principles of programmatic geometry
generation, where topological features can be implemented as variables just as easily as physical dimensions. In
particular, the geometry of each lattice is created by the algorithm proposed by Chan [47], which implements the
mechanical principles developed by Michell [48].

In this case study, the mount is made out of stainless steel, with nominal values for density, 𝜌 = 7853 kg/m3,
Poisson’s ratio, a = 0.29, Young’s modulus, 𝐸 = 205 GPa and yield stress, 𝜎𝑦 = 1 GPa. The overall length of the motor
mount is 𝐿 = 1.9 m. We assume these values are not subject to uncertainty. The four sides of the motor mount are
identical. The topology of each Michell lattice is described by four geometric parameters. With respect to Fig. 2(b),
these are the number of divisions, 𝐷, making up each beam (continuous line) of the lattice; the ratio, 𝑅𝑜𝑢𝑡 , between the
width of the outer beams (black) and the overall length of the lattice, 𝐿; the ratio between the width of the inner beams
of the lattice (white), excluding the second beams, and the width of the outer beams, 𝑅𝑖𝑛; and the ratio between the
width of the second inner beams (green) and the width of the outer beams, 𝑅𝑖𝑛2 . The width of the second inner beams is
defined separately because they experience the highest axial stresses for many of the topologies considered. The lattice
is subject to a downward force 𝐹, which is also uncertain due to uncertainty in the mass of the power plant and aircraft
loading factor. The depth of the lattice is set by a maximum stress and deflection constraints under the influence of
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Fig. 3 Two instances of the parametric motor mount at the centre of the design case study presented in this
study.

𝐹. The beam depth calculation is based on structural analysis performed with the depth initially set equal to the outer
beams width, i.e. the outer beams having a square cross section. Based on structural simulation results the minimum
required depth is calculated for compliance with the maximum allowed beam deflection of 50 mm and the material
yield strength. Figure 3 shows two instances of the complete parametric model, illustrating the impact of some of the
geometric input parameters on the resulting topology of the lattices. The panel on the left shows a high-density lattice
with 24 divisions and thin beams, whilst the panel on the right depicts a lattice with 7 divisions and thicker beams.

To reduce the computational cost of the model, linear static beam analysis is performed on a single vertical lattice,
using the parametric structural tool Karamba3D [49]. Isolating a single lattice allows for the engine system forces
and torques to be translated into a resultant in-plane loading. This, in turn, makes possible the use of beam analysis
tools, such as Karamba3D. Karamba3D is fully embedded in the parametric design environment of Grasshopper. The
reliability of its calculations was verified by comparing the predicted deflection and maximum stress, for a range of
parameters, to those produced by the high fidelity finite element structural software ABAQUS [50]. As shown in
Fig. 4, the one-dimensional beam simulations performed with Karamba3D, which run in milliseconds, produce results
matching those from ABAQUS, for both displacement and stress, to within levels acceptable for this case study. Because
of this, no multi-fidelity model management strategy is required [51].

B. Analyses and Results
Having created a simple and reliable Michell lattice model, the next step is to quantify the uncertainty around

its structural mass, given the uncertainty in the geometric density of the lattice, the cross sectional geometries and
the applied load. To identify suitable methods to propagate the uncertainty in the input to the structural mass, the
characterisation of the uncertainty in the input parameters is required. The uncertain input parameters in this case
study will eventually have constant scalar values, but at the preliminary stage of the design process, these values are
not known. This can be either because we would like to keep the design open for as long as feasibly possible (known
as volitional uncertainty), or because we do not have sufficient evidence to determine these values . Both situations
lead to the presence of epistemic uncertainty which is likely to be reduced at later stages of the design process as more
information becomes available. The best and, often, most intuitive way for engineers to express this type of uncertainty
is to use their judgement and provide intervals which are likely to include the exact value of each input parameter. To
construct an interval, all engineers need to do, is provide a minimum and maximum value for each input parameter
without making any assumption regarding the frequency of the values in these bounds.

In the light of the above, the geometric density of the lattice is determined by the number of beams which for this
study is assumed to be in the range 𝐷 = [4, 24]. The cross-sectional geometry is determined by the width of each beam
and its depth. The width of the outer beams is estimated as the fraction of the motor mount’s length, and is assumed to
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Fig. 4 Results from the Karamba3D structural beam analysis, compared to high-fidelity ABAQUS simulations,
assuming identical square cross-sections for all beams with 𝑅𝑜𝑢𝑡 = 0.0020 and load 𝐹 = 10 kN. Results from the
fast, inexpensive model provide sufficiently accurate results for this study.

range between 𝑅𝑜𝑢𝑡 = [0.002, 0.008]. The width of each beam is assumed constant throughout its length but is allowed
to vary between the beams, highlighted in Fig. 2(b), as follows. The width of the inner beams over the width of the main
outer beams is allowed to vary in the range 𝑅𝑖𝑛 = [0.25, 1.00]. The width of the second inner beams over the width of
the main outer beam is also allowed to range in 𝑅𝑖𝑛2 = [0.25, 1.00]. Finally, maximum load applied to the structure is
assumed to vary between 𝐹 = [15, 25]kN.

The uncertainty in the five input parameters is propagated through the Michell lattice model to estimate the
uncertainty around the mass (in kg) of the lattice. All six propagation methods, presented in Section II, are applied
here to demonstrate their performance. The evolutionary optimisation is performed using the Galapagos plug-in [52].
With regard to the remaining propagation methods, the sample of input parameters is first generated by code written
in Python and the iterations are carried out using the Anemone plug-in [53]. The results for the studied methods are
compared in Table 2 along with their associated computational cost. It should be reiterated here that all results can be
considered approximate, as the methods are applied to a black-box model.

Overall, evolutionary optimisation yields the widest intervals of structural mass. This outcome, is not surprising,
since optimisation approaches to interval propagation actively search for the bounds of the output interval. The additional
width however, comes at a relatively high computational cost, when compared to other methods, as this method requires
two optimisation rounds with a total of over 7000 iterations. Fig. 5(a)-(b) depicts the realisations of the Michell truss
having the minimum and maximum structural mass, obtained via evolutionary optimisation.

By contrast, the Cauchy-deviate method, with 3000 samples yields the narrowest interval for structural mass.
Interestingly, the latter interval includes a negative lower bound, which, of course, does not make any physical sense.
This counter-intuitive outcome can be attributed to the violation of the Cauchy deviates’ key assumption that the model
is linear over the input intervals and for this reason the results from this method are unlikely to improve by increasing
the number or iterations. As seen in Table 2, this method is the only one whose results are not associated with particular
input combinations. This is an artifact of the numerical root-finding step of the algorithm [42] and serves as a reminder
for its purely mathematical nature. In this regard, the Cauchy-deviate method is a true epistemic uncertainty propagation
method, as it simply reports the width of the interval at the output of a function, when all we know are the bounds of the
multidimensional box containing its input.

All the remaining propagation methods produce intervals contained in the one computed via evolutionary optimisation.
In particular, vertex propagation is the fastest method requiring only 32 iterations for the studied problem with five
uncertain input parameters. Similar to Cauchy deviates, this method is also based on a bold assumption, specifically
that the studied model behaves monotonically. Table III.B shows that it performs much better than the Cauchy-deviate
method but produces a narrower interval than evolutionary optimisation. Compared to the latter, it can be noted
that vertex propagation notably overestimates the minimum structural mass by 11% and underestimates its maximum
value by 4%. A small increase in the width of the structural mass intervals can be achieved by further dividing the
intervals into four sub-intervals and perform sub-intervals reconstitution requiring 3125 iterations. For this method the
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overestimation of the minimum structural mass reduces to 5% compared to its counterpart obtained by evolutionary
optimisation. Fig. 5(c)-(d) depicts the realisations of the Michell truss corresponding to the minimum and maximum
mass for this method. The use of higher number of divisions could further improve the results, but will also increase the
computational cost. For example, the division in five sub-intervals instead of four will require 7776 iterations, a cost
comparable to that of evolutionary optimisation.

With regard to Monte Carlo methods, classical Monte Carlo with 5000 iterations appears to yield significantly
narrower intervals for the structural mass than evolutionary optimisation. Compared to the latter method, classical
Monte Carlo overestimates the minimum mass by 9% and underestimate the maximum mass by 25%. This is not
surprising, as classical Monte Carlo is known to perform poorly, underestimating the uncertainty, when propagating
intervals. A Latin hypercube sampling has also been applied with 5000 iterations and yielded a somewhat wider interval
than classical Monte Carlo. Compared to evolutionary optimisation, Latin hypercube overestimates the minimum mass
by 5% and underestimate the maximum by 21%. This minor improvement is expected given that Latin hypercube
sampling performs better than Monte Carlo in evenly distributing samples from the uniform distributions. Nonetheless,
both methods are associated with a high computational cost and substantially underestimate the maximum structural
mass.

To remedy this, the samples of each Monte Carlo method are combined with the endpoints used in vertex propagation,
and the minimum and maximum of the structural mass is reassessed. This way, a caveat of the Monte Carlo methods
(see section II.C), namely that the samples do not include the bounds of one or more of the inputs, is mitigated. The
combination of the two methods widens the intervals of structural mass. The combination of Latin hypercube sampling
with vertex propagation yields intervals marginally wider than the ones produced by sub-interval reconstitution. It is
interesting to note that the combination of classical Monte Carlo with vertex propagation produces intervals that are
only marginally wider than those obtained via vertex propagation.

Jointly these results allow us to infer two main characteristics about the behaviour of the mass of the Michell
lattice. The first one is that the function is non-monotonic, as evidenced by the narrower intervals produced by methods
that rely on the monotonicity assumption (vertex propagation, Cauchy-deviates), when compared to those that do not
(evolutionary optimisation). The second one is that the non-linear behaviour of significance to mass extrema occurs
close to the edges of the input hyper-box, as seen by the narrower intervals produced by methods which only sample the
interior of the input box (Monte Carlo, LHS), as compared to those that include its edges (e.g., vertex propagation,
vertex propagation and sampling). Naturally, during aircraft design work, the engineer will likely not be able to afford to
test out all possible methods and, so, engineering judgement must be used to reason about the best method to apply,
considering all the engineer knows about the model. The use of intervals as an uncertainty propagation primitive is
ultimately about practical conservatism and so is the selection of the most suitable propagation method.

This last point may raise the somewhat obvious question of using surrogate models to alleviate the computational
burden of interval propagation methods. Indeed such a case is considered in [32]. In this study we have deliberately
neglected the use of surrogate models in order to emphasise the original problem. We note that surrogate models are a
powerful method for increasing the efficiency of general UQ, but must be used with due caution and in a way which
does not compromise the effort put in characterising the uncertainty elsewhere in the design process. A subsequent
study will focus on the use of and uncertainty quantification for surrogate models for epistemic uncertainty propagation.

IV. Conclusions
In this study, we presented the foundations of a framework which can be used to propagate the epistemic uncertainty

prevalent in preliminary and early subsystems design, through black-box models. This type of uncertainty is best
expressed in terms of intervals and should, therefore, be propagated as intervals. Five different propagation methods
were applied to a procedurally-generated geometric model of an electric motor support structure.

The use of multiple uncertainty propagation methods allowed us to explore the theoretical assumptions upon which
each method is constructed. Evolutionary optimisation was found to be the method which provided the widest interval
around the mass of the support structure. This is good news as optimisation is a generic technique well-understood
and widely used by aircraft designers. However, the evolutionary optimisation is the most computationally expensive
technique and eve so, there is no guarantee as to the reliability of the computed mass intervals. Coming up with
guaranteed solutions for the propagation of uncertainty through black-box models is very much an open problem.

The simplified model adopted in this study meant that the computational cost was manageable. However, more
research is needed in order to reduce the computational cost through the use of surrogate models and make the method
applicable to a larger class of problems irrespective of their computational complexity.
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Table 2 Intervals of the Michell lattice structural mass produced by the adopted methods and the input values
(𝐷, 𝑅𝑜𝑢𝑡 , 𝑅𝑖𝑛, 𝑅𝑖𝑛2 , 𝐹) corresponding to the minimum and maximum mass. The intervals are ranked from the
highest to lower width. Note that the negative lower bound on mass, computed via the Cauchy-deviate method
reflects a potential failure of the linearity assumption of the algorithm.

Method 𝑛 𝑀 𝐼 (kg) Input (𝑀) Input (𝑀)
Evolutionary optimisation 7, 257 [1.7, 18.7] (24, 0.0072, 0.34, 0.47, 15.0) (7, 0.0020, 1.00, 0.25, 25.0)
Latin hypercube + vertex 5, 032 [1.8, 18.0] (24, 0.0073, 0.31, 0.42, 15.6) (4, 0.0020, 1.00, 0.25, 25.0)
Sub-intervals reconstitution 3, 125 [1.8, 18.0] (24, 0.0080, 0.44, 0.44, 15.0) (4, 0.0020, 1.00, 0.25, 25.0)
Monte Carlo + vertex 5, 032 [1.9, 18.0] (23, 0.0074, 0.45, 0.65, 15.4) (4, 0.0020, 1.00, 0.25, 25.0)
Vertex propagation 32 [1.9, 18.0] (24, 0.0080, 0.25, 0.25, 15.0) (4, 0.0020, 1.00, 0.25, 25.0)
Latin hypercube 5, 000 [1.8, 14.8] (24, 0.0073, 0.31, 0.42, 15.6) (7, 0.0021, 1.00, 0.33, 24.9)
Monte Carlo 5, 000 [1.9, 14.0] (23, 0.0074, 0.45, 0.65, 15.4) (7, 0.0029, 0.97, 0.31, 23.3)
Cauchy deviates 3, 000 [−0.3, 8.2] - -

(a) (b)

(c) (d)

Fig. 5 Michell lattices corresponding to the minimum (left column) and maximum (right column) mass obtained
by sub-intervals reconstitution (top row) and evolutionary optimisation (bottom row).
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