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Abstract 

The gut microbiome is an important aspect of mammalian biology, contributing to host 

phenotype and fitness. To date, much of our understanding has focussed on the bacterial taxa 

found within the mammalian gut (the bacteriome). However, there is now emerging evidence 

that the microbial eukaryotes in the gut (the eukaryome) also have an important effect on the 

biology of the host. The taxonomic composition of the mammalian gut eukaryome is highly 

varied among hosts, but few studies have explored the drivers behind such variation in wild 

mammals. In this thesis, I study wild rodents, focussing particularly on house mice (Mus 

musculus domesticus), to extend our knowledge of what factors contribute to variation in gut 

eukaryome composition. I first use a methodical literature review to describe the gut protozoa 

of wild rodents and test the hypothesis that host sociality and behaviour affects the prevalence 

of gut protozoa. I found that rodent species differed in the number of protozoa genera they 

were host to, and that protozoa prevalence varied among host species. However, contrary to 

the hypothesis, variation in prevalence was not explained by host sociality and behaviour 

traits. Next, I investigate the use of flow cytometry to better characterise the gut eukaryome, 

by quantifying eukaryotic taxa identified by a eukaryotic-specific stain. I tested the accuracy of 

the proposed quantification method by sequencing the putative eukaryotic cells to assign 

taxonomy. The findings of this study showed that the method could not accurately identify 

eukaryotic cells. Finally, I characterise the gut eukaryome of wild house mice from three 

locations using 18S rRNA amplicon sequencing to determine the host factors associated with 

eukaryome composition. I observed that the presence of parasitic nematodes and Eimeria 

was associated with eukaryome diversity and composition, as was the host’s immune and 

disease state, specifically gut inflammation and faecal IgA concentration. In sum, my thesis 

has highlighted some of the potential factors driving the gut eukaryome composition of wild 

rodents. In doing so, these findings provide a better understanding of the mammalian gut 

eukaryome, which can be incorporated in future studies of host-gut microbiome interactions. 
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Chapter 1: General introduction 
1.1 The gut microbiome 

1.1.1 The microbiome concept 

Most organisms play host to a large community of microbes that use their host as their primary 

niche (Turner et al., 2013; Douglas, 2014; Hammer et al., 2019). These microbial communities 

are described as the host’s microbiota, a term used interchangeably with “microbiome”, which 

represents the microbiota, and their collective genomes and environment (Marchesi and 

Ravel, 2015).  Within a host, multiple sites are colonised by microbes, thus leading to distinct 

communities at each site (Costello et al., 2009; Turner et al., 2013; Reynoso-García et al., 

2022). For example, Staphylococcus and Streptococcus are the dominant genera in the 

human skin microbiome, whereas Clostridium, Bacteroides, and Lactobacillus are dominant 

in the gastrointestinal tract (Reynoso-García et al., 2022).  

In mammals, the majority of microbes are found within the gastrointestinal tract (gut) 

(Turnbaugh et al., 2007; Sender et al., 2016). Studies on gut microbiome research were 

previously limited to microbes that could be cultured in vitro from faecal samples (Moore et al., 

1969; Wilson and Blitchington, 1996). However, this method could not identify unculturable 

species, such that the diversity of the gut microbiome composition was previously unknown 

(Suau et al., 1999; Gupta et al., 2019). However, the development of DNA sequencing 

technologies revolutionised gut microbiome studies: 16S rRNA gene sequencing of DNA 

extracted from faecal samples identified novel bacterial species that had not yet been 

described from culture-based methods (Suau et al., 1999). The development of high-

throughput sequencing methods led to a plethora of studies characterising the gut microbiome 

of humans and other mammals (Eckburg et al., 2005; Qin et al., 2010; Kieser et al., 2022). 

These studies have established two key concepts in the field of gut microbiomes: i) the 

interaction between the microbiome and its host is a key component of the host’s development 

and physiology and ii) there is a large amount of intra- and inter-individual heterogeneity in gut 

microbiome community composition (Lozupone et al., 2013; Sommer and Bäckhed, 2013; 

Falony et al., 2016). 

1.1.2 Importance of the gut microbiome 

First, to address the importance of the host-gut microbiome interaction. Often described as 

the “forgotten organ”, the gut microbiome represents a key aspect of a host’s biology (O’Hara 

and Shanahan, 2006; Baquero and Nombela, 2012; Sommer and Bäckhed, 2013). Many host 

traits are affected by the gut microbiome, and these traits can be grouped into three main 

categories: metabolism, immunity and disease, and behaviour (Sommer and Bäckhed, 2013). 

To this end, the following section will review how the microbiome impacts the host for each of 
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these three groups in turn, drawing examples primarily from studies in humans and laboratory 

animals, where there has been the most research effort.   

The metabolic capabilities of the gut microbiome can provide nutrients to the host, which would 

otherwise be inaccessible (Rowland et al., 2018). For example, the gut microbiome 

catabolises plant material into short-chain fatty acids (SCFAs), which are a key energy source 

to the host (LeBlanc et al., 2017). Microbial-SCFA production is particularly important in 

ruminants, as a high proportion of energy is derived from microbial fermentation of food (Flint 

et al., 2008; Williams et al., 2020). Differences in digestive efficiency of mammals can be 

attributed to differences in the SCFAs produced by the gut microbiome: cows with a lower 

diversity of bacterial species in the rumen can extract more energy from their feed, compared 

to cows with a higher bacterial diversity (Shabat et al., 2016). These findings were largely 

attributed to production of a greater ratio of more nutritionally valuable SCFAs by the lower 

diversity microbiome, compared to the higher diversity microbiome (Shabat et al., 2016).  The 

production of metabolites by the gut microbiome has also been suggested to promote the 

development of obesity (Turnbaugh et al., 2006). For example, obesity was associated with a 

decrease in bacterial diversity in humans, and obesity-enriched genes were from 

Actinobacteria (Turnbaugh et al., 2009).  

The gut microbiome can also be an important source of amino acids and vitamins for the host 

(Smith et al., 2007; Bergen, 2015). For example, enzymes used in amino acid synthesis were 

enriched in herbivore microbiomes compared to carnivore microbiomes, suggesting a reliance 

on the gut microbiome for amino acids (Muegge et al., 2011). Conversely, amino acid 

degradation pathways were increased in carnivore microbiomes compared to herbivore 

microbiomes, suggesting their gut microbiome have specialised to degrade proteins as an 

energy source (Muegge et al., 2011). However, more studies are needed to confirm the gut 

microbiome is allowing the host to access different diets, rather than the gut microbiome 

adapting to changes in the host’s diet (Dearing and Kohl, 2017). For example, desert woodrats 

were no longer able to consume the toxic creosote bush, and had a lower body mass, after 

being treated with antibiotics compared to the controls (Kohl et al., 2014).  This suggests that 

the woodrat’s gut microbiome allows it to feed on the creosote toxins (Kohl et al., 2014). 

The gut microbiome is also important for the development of the immune system in mammals 

(Belkaid and Hand, 2014; Gensollen et al., 2016). Gut microbial colonisation during early life 

develops the immune system, promotes immune homeostasis and is linked to higher disease 

resistance compared to individuals colonised later in life (Geuking et al., 2011; Mulder et al., 

2011; El Aidy et al., 2013). Furthermore, the maturation of the immune system is dependent 

on host-specific microbes: mice inoculated with microbes from the rat and human gut 
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microbiome had lower T-cell activation and proliferation compared to mice inoculated with 

microbes from other mice (Chung et al., 2012).  Properties of the immune system modulated 

by the gut microbiome include the gut mucus layer, the lymphoid structure, immune cell 

differentiation, and the production of immune mediators (reviewed by Sommer and Bäckhed, 

2013).  

Further to immune development and modulation, many diseases are now linked to the 

changes in the gut microbiome composition. For example, humans with chronic diseases such 

as coeliac disease, inflammatory bowel disease (IBD) and atopic eczema have a different gut 

microbiome diversity when compared with healthy individuals (Wang et al., 2008; Schippa et 

al., 2010; De Palma et al., 2017). Transplantation of the faecal microbiome from humans with 

IBD into mice caused faster gastrointestinal transit time and the development of intestinal 

barrier dysfunction in the recipient mice (De Palma et al., 2017).  The gut microbiome can also 

contribute to pathogen resistance (Brown and Clarke, 2017; Leung et al., 2018b). This can be 

indirectly via the host immune system or directly via resource competition and predation 

(Stevens et al., 2021).  For example, the mouse protozoa Tritrichomonas musculus indirectly 

protects the host against Salmoenlla infection by inducing inflammasome-driven IL-18 release, 

which protects against mucosal infection (Chudnovskiy et al., 2016). In contrast, the gut 

bacteria Escherichia coli and Bacteroides thetaiotaomicron can directly protect against gut 

colonisation of Citrobacter rodentium, a pathogenic bacterium in mice, by competing for 

dietary carbohydrates (Kamada et al., 2012).  

The gut microbiome can also impact host behaviour and neurocognition (Bercik et al., 2011; 

Heijtz et al., 2011; Vuong et al., 2017). Research has shown that the gut microbiome can alter 

the development of stress responses in mice, with a greater stress response seen in mice 

raised without a gut microbiome compared to mice with a gut microbiome (Sudo et al., 2004). 

Other work has shown that mice treated with antimicrobial drugs, altering their gut microbiome 

composition, had increased exploratory behaviour and hippocampal protein expression, 

compared to untreated mice (Bercik et al., 2011). Furthermore, sociality is linked to the gut 

microbiome: offspring of mice fed high-fat diets were less social, displaying fewer reciprocal 

social interactions compared to offspring of mice fed normal diets (Buffington et al., 2016). 

This finding was attributed to a lower gut microbiome diversity in the offspring of mice fed high-

fat diets (Buffington et al., 2016). Similarly, submissive mice are shown to have a less diverse 

gut microbiome compared to dominant mice (Agranyoni et al., 2021).  
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1.1.3 Differences in gut microbiome composition among hosts 

Second, to address the question of heterogeneity in gut microbiome community composition. 

Different host species have different gut microbiomes i.e. conspecifics will have a microbiome 

more similar to each other than to that of other host species (Ley et al., 2008). For mammals, 

differences in the gut microbiome composition among host species are often associated with 

the phylogeny of the host (Youngblut et al., 2019; Mallott and Amato, 2021). This is likely 

because of the continual co-evolution of the gut microbiome and host (Moeller et al., 2016a, 

but see Groussin et al., 2020). The effect of phylogeny is often attributed to closely-related 

host species sharing similar ecological niches and diets, but the relative contribution of diet 

and phylogeny is debated (Youngblut et al., 2019; Mallott and Amato, 2021). In primates for 

example, the influence of host phylogeny on gut microbiome composition was shown to be 

more important than diets (Ochman et al., 2010; Amato et al., 2019), and the giant panda’s 

gut microbiome is more similar to that of other (non-herbivorous) bears than it is to other 

herbivores (Xue et al., 2015). In contrast, distantly related myrmecophagous (ant-feeding) 

mammals have similar gut microbiome compositions (Delsuc et al., 2014), suggesting that 

dietary effects on gut microbiome composition are greater than phylogeny. 

However, even among individuals within a host species there are differences in the gut 

microbiome community composition (Linnenbrink et al., 2013; Tung et al., 2015; Weldon et 

al., 2015; Moeller et al., 2016b; Goertz et al., 2019; Suzuki et al., 2019a). In particular, this is 

seen when comparing among populations (Linnenbrink et al., 2013; Weldon et al., 2015; 

Suzuki et al., 2019a) or among laboratory vs. captive vs. wild animals (Gibson et al., 2019; 

Rosshart et al., 2019; Bornbusch et al., 2022). Even within populations, there are differences 

among individuals (Tung et al., 2015; Moeller et al., 2016b; Goertz et al., 2019). Furthermore, 

the gut microbiome composition can vary over an individual’s lifetime. In humans, there are 

up to 10-fold differences in the abundance of microbial genera between daily faecal samples 

(Vandeputte et al., 2021), and in meerkats, bacteria were more abundant in the morning, but 

more diverse in the afternoons (Risely et al., 2021a). Seasonal shifts are also seen in gut 

microbiome composition in baboons and mice (Björk et al., 2022; Marsh et al., 2022) and the 

diversity of gut microbial taxa fluctuates throughout the year in lemurs  (Murillo et al., 2022). 

Additionally, changes in the microbiome composition are seen as mammals age. For example, 

the meerkat microbiome becomes more individualised as the host ages (Risely et al., 2022). 

In humans, the abundance of bacteria gradually increased following initial gut colonisation at 

birth, with shifts seen in the dominant microbial taxa as infants aged (Rao et al., 2021).   
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1.1.4 Drivers of gut microbiome composition 

Given that the gut microbiome is an integral part of an animal’s biology, knowledge on why 

the gut microbiome composition differs among and within individual hosts is key for 

understanding variation in the behaviour and physiology of those hosts (Suzuki, 2017; Henry 

et al., 2021). Application of metacommunity theory to the gut microbiome indicates that gut 

community composition is driven by i) the transmission of microbes between hosts, ii) host 

selection of microbes, and iii) community interactions within the gut (Costello et al., 2012; 

Scheuring and Yu, 2012; Foster et al., 2017). To this end, the following section will review how 

the gut microbiome assembly process contributes to heterogeneity in community composition 

for each of these three processes, with examples from humans, laboratory studies, and wild 

mammals.  

Transmission of microbes is the first process required for the assembly of the gut microbiome 

(Costello et al., 2012). The initial colonisation of the gut microbiome occurs at birth via vertical 

transmission: mammals are presumed to be sterile in utero, but receive a rich community of 

microbes from their mother during birth (Mueller et al., 2015; Perez-Muñoz et al., 2017). 

Indeed, the gut microbiome of humans is reflective of their delivery mode: vaginally-born 

neonates gut microbiomes are more similar to their mother’s compared to caesarean-born 

neonates’ (Dominguez-Bello et al., 2010; Wampach et al., 2018). Furthermore, comparison of 

different bacterial strains in the human infant microbiome has shown that the maternal 

microbiome is an important source of gut microbes (Korpela et al., 2018; Wampach et al., 

2018). In wild gelada baboons, the juvenile gut microbiome composition was more similar to 

their mothers’ microbiome composition than to other adult females, likely mediated through 

microbial transmission through milk and/or body contact (Baniel et al., 2022). Mother to 

offspring vertical transmission was shown to be the dominant transmission mode of gut 

bacteria in mice, with laboratory mice maintaining individual signatures of gut community 

composition over 10 generations (Moeller et al., 2018).  

Horizonal transmission is a further mode of microbial transmission between hosts, through 

social interactions and shared environments (Moeller et al., 2018; Sarkar et al., 2020). The 

opportunity for social horizontal transmission increases as hosts become more social, due to 

increased contact between individuals. Thus, differences in sociality can drive differences in 

gut microbiome community composition (Sarkar et al., 2020). For example, the gut microbiome 

of chimpanzees was dictated by their social interactions, with more social individuals having 

a greater diversity of gut bacteria, and more homogeneity seen within social groups that 

interact more (Moeller et al., 2016b). Similarly, closely interacting wild horses had more similar 

gut microbiomes, compared to horses than did not interact as much (Antwis et al., 2018). 

Social interactions and close associations can be more important than genetic relatedness 
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and kinship for microbiome community assembly (Tung et al., 2015; Rothschild et al., 2018; 

Raulo et al., 2021). In humans, there were similarities in the gut microbiome composition of 

co-habiting, though non-related, individuals (Rothschild et al., 2018). In contrast, similarity in 

the microbiome community composition of related individuals that did not cohabit was no 

greater than the similarity of un-related individuals that did not cohabit (Rothschild et al., 2018). 

However, the importance of sociality can vary among species. For example, repeated 

interactions over two months between two previously unfamiliar pairs of naked mole rats did 

not cause their gut microbiome to become more similar (Fitzpatrick et al., 2022).  

It is important to note that the mechanisms underlying similarities in the gut microbiome among 

closely interacting hosts are unclear (Sarkar et al., 2020). It is indeed possible that direct 

interactions between hosts, e.g. physical contact such as grooming, facilitates the transfer of 

microbes from host to another. However, it is also likely that indirect interactions, such as 

shared environments and diets, are driving similarities in the microbiome among closely 

interacting hosts. Non-group-living species can be used to disentangle these effects, as there 

is less indirect interaction compared to group-living species (Raulo et al., 2021). For example, 

social interactions in wood mice have been shown to be more important than both kinship and 

environmentally-acquired microbes in shaping the gut microbiome community (Raulo et al., 

2021). 

The contribution of horizontal transmission to the microbiome community composition is 

limited by the chance of transmission occurring between hosts. This is demonstrated by 

spatially-separated populations: as physical distance increases between hosts, their 

microbiomes become more dissimilar (Moeller et al., 2017). However, the opportunity for 

horizontal transmission can also be dependent on the lifestyle and behaviour of the host. For 

example, there is less opportunity for horizontal transmission in arboreal species compared to 

terrestrial species, as there is less incidental contact with faeces (Sarkar et al., 2020). This 

was suggested as a potential mechanism for the greater dissimilarity in gut microbiome 

composition among arboreal mammals compared to the gut microbiome similarity of terrestrial 

mammals (Perofsky et al., 2019; Barelli et al., 2020b). However, this could also be driven by 

differences in substrate use: soil properties were the dominant driver of gut microbiome 

composition in baboons, potentially from different soils transmitting a different suite of 

microbes to the host (Grieneisen et al., 2019). Predation can also increase the potential for 

transmission of gut microbes: predator-prey host-species pairs had more similar gut 

microbiomes than non-predator-prey host-species pairs (Moeller et al., 2017). Another 

behaviour important for microbiome transmission is coprophagy. Specifically, coprophagy of 

the mother’s faeces is commonly seen in young herbivores, presumably to encourage 

beneficial microbial species to colonise the gut microbiome (Soave and Brand, 1991). 
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Coprophagic behaviour has been shown to maintain diversity in the gut microbiome, 

potentially allowing re-infection of the host with beneficial microbes (Bo et al., 2020).  

Following microbial transmission, the host then plays a role in “selecting” which taxa can 

survive in the gut microbiome (Foster et al., 2017). In mammals, host-mediated microbiome 

composition is largely dictated by the immune response of the host (Tanoue et al., 2010; 

Belkaid and Hand, 2014). In particular, the immune system allows the continual presence of 

commensal microbes, whilst targeting those microbes that are detrimental to the host 

(Brugman and Nieuwenhuis, 2010; Tanoue et al., 2010). One theory suggests that the immune 

system of neonates is primed to recognise commensal bacteria via the translocation of 

bacterial components from the maternal gut to breast milk (Perez et al., 2007). Variation in 

how the host’s immune system responds to microbes, impacted by both ecological and genetic 

factors, can drive variation in community composition (Costello et al., 2012). Ecological factors 

that are known to be important for regulating a host’s immune state include early life 

development, body condition, age, sex, and being in a physiologically-demanding state e.g. 

malnutrition, as well as prior exposure to infections (Viney et al., 2005; MacGillivray and 

Kollmann, 2014; Abolins et al., 2018; Kelly et al., 2018; Clerc et al., 2019a). Alternatively to 

ecological factors, the host genotype is also associated with how the immune system selects 

for specific microbial taxa (Benson et al., 2010; McKnite et al., 2012; Blekhman et al., 2015; 

Suzuki et al., 2019b). For example, the variation in the presence and abundance of 

Prevotellaceae bacteria was associated with the differential expression of different alleles of 

the Tgfb3 gene (McKnite et al., 2012). The Tgfb3 gene is linked to intestinal barrier function 

barrier and tolerance to commensal bacteria (McKnite et al., 2012). In wild animals, how the 

immune state of the host contributes to the gut microbiome composition has largely been 

overlooked (Viney and Riley, 2017; Kwon and Seong, 2021; Thomson et al., 2022). However, 

the use of semi-wild enclosures has shown gut microbiome composition changes are 

associated with both immune state and parasite infection (Leung et al., 2018a; Graham, 2021).  

Gut microbiome community composition is not only dependent on the host’s immune system, 

but also on the microbial interactions within the microbiome (Costello et al., 2012; Foster et 

al., 2017). Early colonisers of the gut microbiome can act as ecosystem engineers and 

modulate which microbes can subsequently establish there (Bokulich et al., 2016; Coyte et 

al., 2021). For example, bacteria colonisation at birth contributes to the development of the 

rumen and shapes the gut to the specific abiotic conditions required for survival of some 

ciliated protozoa (Michaiowski, 2005; Gilbert, 2020). There are also a number of studies 

showing how the gut microbiome composition is linked to parasite infection in wild animals, 

particularly in mice and primates, albeit with the underlying mechanism harder to interpret 
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(Kreisinger et al., 2015; Weldon et al., 2015; Leung et al., 2018a; Mann et al., 2020; Montero 

et al., 2021; Kim et al., 2022). This is reviewed in more detail in Chapter 4 (section 4.1.2).  

Antagonistic microbial interactions in the gut can also contribute to community composition 

(Coyte and Rakoff-Nahoum, 2019). In particular, competition over fluctuating resources is 

theorised to be the dominant driver of an individual’s microbiome community composition 

(Pereira and Berry, 2017; Ho et al., 2022). For example, the closely related 

Enterobacteriaceae C. rodentium and E. coli, compete for carbohydrates which can limit C. 

rodentium colonisation, as mentioned above (section 1.1.2, Kamada et al., 2012). Similarly, 

the protozoa Tritrichomonas musculus competes with bacteria for dietary fibre, a resource 

essential for T. musculus colonisation (Wei et al., 2020). To this end, T musculus colonisation 

can be limited by the presence of certain Bifidobacterium spp. (Wei et al., 2020). However, 

the development of vacant niches in the gut can change the dynamics of microbial interactions, 

leading to fluctuations in community composition (Pereira and Berry, 2017). Changes in diet 

are largely responsible for these shifting dynamics, by changing the resources available to 

microbes, thus generating new niches, which lead to rapid changes in microbial community 

composition (Muegge et al., 2011; David et al., 2014). Indeed, dietary differences in humans, 

livestock, and wild mammals have been shown to drive gut microbiome community 

composition (David et al., 2014; Wang et al., 2014; Henderson et al., 2015). Furthermore, 

seasonal fluctuations in the gut microbiome community of wild mammals, including wood mice 

and baboons, have been attributed to changes in diet (Amato et al., 2015; Maurice et al., 2015; 

Baniel et al., 2021; Björk et al., 2022; Marsh et al., 2022).  

1.2. The gut eukaryome 

1.2.1 Eukaryotic taxa are comparatively less well researched than bacterial taxa 

Many of the examples outlined in the preceding sections are drawn from the literature 

describing the bacteria found in the gut microbiome (i.e. the bacteriome). Indeed, the diversity 

of the bacteriome is now well-characterised for many host species. For example, Firmicutes 

and Bacteroidetes are the most common bacterial phyla detected in the mammalian gut 

microbiome (Ley et al., 2008), with many species within these phyla, and other less common 

phyla, confirmed to be true residents of the gut microbiome (Rajilić-Stojanović and de Vos, 

2014). However, whilst other taxa, specifically fungi, protozoa, helminths, viruses, and 

archaea, are known to be present in the mammalian microbiome, their diversity, residency, 

and relative importance to the host is comparatively less understood than their bacterial 

counterparts (Nkamga et al., 2017; Desselberger, 2018; Fiers et al., 2019; del Campo et al., 

2020). Indeed, comparison of search results in the Web of Science database indicate the 

disparity in research effort between the bacteriome and other gut microbes (Table 1.1). These 

differences have been shown previously (Hooks and O’Malley, 2020; Weiner et al., 2023). The 
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following section will focus on the eukaryotic gut taxa (fungi, protozoa, and helminths, 

collectively termed the eukaryome), first addressing the disparity in research effort between 

the eukaryome and the bacteriome, and then summarising the current knowledge of the gut 

eukaryome in humans and wild mammals.  

Table 1.1. The number of publications returned from the Web of Science database for 

different microbes found within the gut microbiome. The search term used was “x gut 

microbiome” where x is each microbe type. The search date was: 19/03/23.  

Microbe 
Number of 
publications 

Bacteria 12,715 

Archaea 386 

Parasite 466 

Virus 1,568 

Eukaryota 167 

  Fungi 930 

  Protozoa/Protist 170/92 

  Helminth 171 

 

Previous views on gut eukaryotes were that they were either strictly parasitic/pathogenic or 

strictly mutualistic (Parfrey et al., 2011; Huffnagle and Noverr, 2013; del Campo et al., 2020). 

To this end, studies in mammals are often split into those researching mutualistic eukaryotes 

e.g. protozoa and fungi in ruminated animals (Orpin, 1984) and those investigating gut 

parasites via traditional diagnostic methods (Hamad et al., 2016). Thus, few studies consider 

the wider eukaryome as a whole, in contrast to bacteriome studies that describe the collective 

bacteriome, typically irrespective of the potential pathogenicity of taxa. This is analogous of a 

time when bacteria were also considered to be primarily pathogenic, with little focus on 

commensal species (del Campo et al., 2020). However, there is now a consensus emerging 

that the pathogenicity of eukaryotes in the gut microbiome is context-dependent, leading to 

increased interest in the eukaryome (Andersen et al., 2013; Lukeš et al., 2015; Chabé et al., 

2017; Dubik et al., 2022).  

Furthermore, methodologies are not yet standardized in gut eukaryome research, which can 

make the eukaryome more technically difficult to study, compared to the bacteriome (Amaral-

Zettler et al., 2009; Hamad et al., 2016; Popovic et al., 2018; Lind and Pollard, 2021; 

Thielemann et al., 2022; Vaulot et al., 2022). Firstly, the 16S rRNA gene is routinely accepted 

as the most appropriate target gene for bacteriome studies (Janda and Abbott, 2007; Louca 

et al., 2018; Johnson et al., 2019). For the eukaryome however, there is no general consensus 

on which gene – ITS1, ITS2, 18S, and 28S rRNA are commonly used – nor which primer pair 
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is the most appropriate to capture eukaryome taxa diversity (Popovic et al., 2018; Frau et al., 

2019; Vaulot et al., 2022). Secondly, detection of gut eukaryotic taxa via sequencing can be 

affected by a dominance of DNA from sloughed host cells, which is a lesser issue for 

bacteriome research (del Campo et al., 2019b; Pereira-Marques et al., 2019; Lind and Pollard, 

2021). Thirdly, the quantification of absolute cell number in the gut bacteriome has been 

shown to improve the interpretation of amplicon sequencing data, with many methods being 

used to do so (Vandeputte et al., 2017; Wang et al., 2021; Yang and Chen, 2022). However, 

these methods have been little applied and rarely optimised for eukaryotic taxa (Haak et al., 

2021; Rao et al., 2021). This is reviewed in more detail in Chapter 3. 

1.2.2 Eukaryome composition and impacts on the host 

Gut eukaryome studies are becoming increasingly common in humans and laboratory 

animals. A pioneer study in 2008, using sequencing methods to identify unculturable taxa, 

found that there were unexpected taxa in the gut, and their role was unknown (Scanlan and 

Marchesi, 2008). Since then, many studies have explored the human gut eukaryome 

composition (Rajilić-Stojanović and de Vos, 2014; Hamad et al., 2016; Desselberger, 2018; 

Hooks and O’Malley, 2020). The human gut eukaryome is vastly smaller than the gut 

bacteriome: it has a lower diversity, fewer species, and lower abundances of taxa (Nam et al., 

2008; Rajilić-Stojanović and de Vos, 2014; Rao et al., 2021). Additionally, less than 0.1% of 

the microbial genes found in the human gut microbiome originate from the eukaryome (Qin et 

al., 2010).  

To this end, there is a misconception that gut eukaryotes are less important than gut bacteria 

due to their reduced abundance (Laforest-Lapointe and Arrieta, 2018). However, the relative 

abundance of taxa is not necessarily proportional to their importance (Laforest-Lapointe and 

Arrieta, 2018). Indeed, research into how the eukaryome impacts the host has shown that 

there a wide range of effects on the host development, immunity, and disease state (Lukeš et 

al., 2015; Laforest-Lapointe and Arrieta, 2018; Weiner et al., 2023). For example, eukaryotes 

have been shown to beneficially modulate the host’s immune state (Broadhurst et al., 2012; 

Deng et al., 2022, but see Escalante et al., 2016). Specifically, the presence of the protozoa 

Blastocystis activates Th2 immune responses which can improve the host’s response to 

intestinal injury (Deng et al., 2022). Similarly, infection with the nematode whipworm Trichuris 

trichiura was shown to improve clinical symptoms of colitis in monkeys (Broadhurst et al., 

2012).  

In the examples above, the beneficial effects of colonisation of Blastocystis and T. trichiura 

were linked to interactions with the pre-established gut bacteriome. Interactions between the 

gut eukaryome and bacteriome can also contribute to disease resistance: for example, 
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Blastocystis can reduce the growth of the Bacteroides vulgatus, a pathogenic bacterium, by 

inducing oxidative stress (Deng and Tan, 2022). Additionally, the protozoa T. musculus 

protects against Salmonella infections, as mentioned previously (section 1.1.2, Chudnovskiy 

et al., 2016). In contrast to their beneficial role, inter-kingdom interactions in the gut 

microbiome can also negatively affect the host. For example, interactions between the bacteria 

Serratia marcescence and E. coli, and the fungus Candia topicalis, are hypothesised to 

contribute to Crohn’s disease, potentially through the formation of immunostimulatory biofilms 

in the gut (Hoarau et al., 2016).  

The amount of variation in gut eukaryome community composition among humans, and within 

individuals over time, is substantially different to the gut bacteriome (Parfrey et al., 2014; 

Hallen-Adams et al., 2015; Nash et al., 2017). Of the few studies characterising the eukaryome 

of other mammals, comparison among host species has shown that different host species 

have vastly different gut eukaryome compositions (Parfrey et al., 2014; Mann et al., 2020). 

Thus, given the impact of the gut eukaryome on the host’s biology, there is need to understand 

what drives variation in gut eukaryome community composition among hosts (as discussed 

above, section 1.1.3). However, there is less research into the assembly process of the gut 

eukaryome compared to the bacteriome, particularly which host-mediated factors contribute 

to eukaryome composition. Surveys in non-human primates indicated that the impact of host 

phylogeny on gut eukaryome composition is weaker than its impact on gut bacteriome 

composition (Mann et al., 2020). Instead, Mann et al. (2020) suggested that gut eukaryome 

composition is driven by individual host behaviour and local ecology, but could not verify the 

particular mechanisms. In contrast, a study comparing the gut mycobiome of 49 host species 

found that host phylogeny was correlated with mycobiome composition, albeit less strongly 

than correlation with the gut bacteriome (Harrison et al., 2021). In support of Mann et al. 

(2020), diet was significantly correlated with gut mycobiome diversity in mammals (Harrison 

et al., 2021). Factors affecting gut eukaryome composition are reviewed in more detail in 

Chapter 4 (section 4.1.2). 

1.3 Wild rodents as a study system 

Whilst much of what we know about what drives gut microbiome composition comes from 

studying laboratory animals, it is now commonly recognised that laboratory animals do not 

display the same amount of inter-individual differences that wild animals do (Amato, 2013; 

Viney, 2019; Kuziel and Rakoff-Nahoum, 2022). Further to this, the laboratory animals’ gut 

microbiome has been shown to be distinct to that of their wild counterparts (Rosshart et al., 

2019; Bowerman et al., 2021). An alternative to using laboratory born and bred animals is to 

use wild-caught animals that are then maintained in captivity. However, this also presents 

problems because captivity changes the gut microbiome of wild animals, and the amount of 
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change differs among species (Kohl and Dearing, 2014; Rosshart et al., 2017; Rosshart et al., 

2019; Schmidt et al., 2019). Thus, there is a need to study the gut microbiome in a more 

natural setting to understand the main drivers of microbiome composition. To this end, studies 

in wild animals have become more common in recent years, with longitudinal sampling over 

an individual’s lifetime to monitor which factors are driving the gut microbiome composition 

(Björk et al., 2019; Grieneisen et al., 2023). 

Rodents (order Rodentia) are a highly speciose order of mammals with species representing 

a wide diversity of different life-histories and behaviours (Fabre et al., 2012). This makes the 

Rodentia ideal for investigating how behavioural differences among wild species and 

individuals contribute to eukaryome composition. Further to this, the house mouse, Mus 

musculus domesticus, offers a unique perspective for wild eukaryome studies: M. m. 

domesticus is a key laboratory animal used in many gut microbiome studies, allowing 

eukaryome studies of wild house mice to be directly comparable to laboratory studies 

(Rosshart et al., 2019; Viney, 2019). To date, there has been very limited study of the wild 

house mouse eukaryome, and none of what drives its composition, with focus generally 

considering fungi, protozoa, and helminths separately (Viney and Riley, 2017; Rosshart et al., 

2019; Bendová et al., 2020). This contrasts to the wild bacteriome, which has become more 

characterised in recent years (Linnenbrink et al., 2013; Weldon et al., 2015; Goertz et al., 

2019; Suzuki et al., 2019b). Additionally, the immune response of wild house mice is 

significantly different to their laboratory counterparts (Viney and Riley, 2017). Thus, 

consideration of the immune phenotype in wild mice will bring a new perspective to how the 

immune system is linked to eukaryome composition (Pedersen and Babayan, 2011; Viney and 

Riley, 2017). 

Although ideal for comparison to laboratory studies, it should be noted that there are certain 

limitations when using house mice as a wild study system. House mice are reported to be 

much less common than other wild rodent species, and this can lead to a low trapping rate, 

and thus low sample sizes (Brown, 1953; Flowerdew et al., 2003). This is further exacerbated 

by heterogeneity in how house mice respond to trapping, which can lead to individuals with 

certain behaviours and traits being more likely to be trapped, thus biasing sample sizes 

towards a particular host trait (Crowcroft and Jeffers, 1961; Hurst and Berreen, 1985). The 

extent to which population structures change over time is also varied among populations. For 

example, some house mice populations show little variation, whereas others undergo extreme 

boom or bust dynamics (Pocock et al., 2004; Andreassen et al.,2020). This can make it hard 

to generalise across the species and limits comparability among populations, as well as 

limiting tractability within a population. Furthermore, the house mouse is considered an 

invasive species, originally from India and now found with a global distribution (Boursot et al., 
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1993; Phifer-Rixey and Nachman, 2015). Their invasiveness is reliant on their ability to quickly 

adapt to novel and diverse environments (Pocock et al., 2004; Phifer-Rixey and Nachman, 

2015). Thus, comparability among wild house mice and other wild rodent species in how the 

gut microbiome responds to environmental and host traits is limited. A final limitation is the low 

diversity of gut parasites observed in wild house mice compared to other wild mice species 

(Ehret et al., 2017). If this extends to other taxa in the gut eukaryome, the factors controlling 

eukaryome composition in wild house mice may not be representative of such factors in other 

wild rodent species, and indeed other wild mammals. 

1.4 Thesis objectives and outline 

1.4.1 Addressing the eukaryome knowledge gap 

The literature reviewed above has demonstrated that there is i) large contrast between our 

understanding of the gut bacteriome and the gut eukaryome and ii) the majority of research in 

wild mammals has focussed on the gut bacteriome, with few studies addressing the eukaryotic 

taxa also found within the gut. Additionally, the optimisation of amplicon sequencing methods 

for bacteriome research have not been translated or applied to eukaryome research. From the 

literature, there is evidence that environmental and host factors contribute to the eukaryome 

community composition in wild mammals, but further work is needed to clarify these 

processes. Thus, this thesis primarily aims to determine if the host factors known to impact 

the bacteriome also extend to the gut eukaryome of wild mammals, using wild rodents as a 

study system. 

1.4.2 Thesis objectives 

This thesis had three objectives to further our understanding of the rodent gut eukaryome: 

1. Describe the protozoa found in the gut eukaryome of wild rodents and what host traits 

contribute to their prevalence. This first objective is addressed in the work presented 

in Chapter 2: The presence and prevalence of gut protozoa of wild rodents: a 

meta-analysis. Here, I conduct a methodical literature search to identify the protozoa 

commonly described in the wild rodent gut eukaryome. I then use meta-analyses to 

identify which host traits explain variation in the prevalence of gut protozoa among host 

species, focussing particularly on host behaviour and sociality.  

 

2. Design and test a novel method for quantifying the abundance of eukaryotic microbes 

in the gut eukaryome. This method is addressed in Chapter 3: Using flow cytometry 

to quantify and describe the gut eukaryome of house mice. The chapter describes 

why quantification of microbial cells in the gut microbiome is important, before testing 
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a novel use of flow cytometry to identify and quantify eukaryotic taxa in the mammalian 

gut. 

 

3. Characterise the gut eukaryome of wild mice and identify which host traits are 

associated with gut eukaryome diversity and composition. In Chapter 4: The 

eukaryome of wild house mice and their disease state, I use amplicon sequencing 

to describe the eukaryotic gut taxa of wild mice from three locations in England. Then, 

I investigate how the immune and disease state of the mice is associated with 

eukaryome composition, before comparing these results to their bacteriome.     
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Chapter 2: The presence and prevalence of gut 

protozoa of wild rodents: a meta-analysis 

Abstract 

Gut protozoa can have both negative and positive impacts on their host. Thus, it is important 

to understand what drives the variation in protozoan diversity seen among host species, and 

among con-specific individuals. The gut protozoa of rodents are not well-described as 

research typically focus on parasitic protozoa, overlooking commensal species. Here, I use a 

methodical literature search to first describe the gut protozoa found in wild rodents before 

using meta-analyses to identify drivers of variation in protozoa prevalence. In particular, I 

investigated how host sociality and behaviour might be contributing to the transmission of 

protozoa, thus driving variation in prevalence. I found that some rodents species were capable 

of hosting many different protozoa genera, whereas other were host to only a few. I estimated 

the prevalence of protozoa in wild rodents to be 24%, and found that prevalence was 

heterogenous among host species. However, I found no evidence that host sociality and 

behaviour traits were underlying the heterogeneity of prevalence seen among host species. 

This synthesis of the previous descriptions of gut protozoa found in wild rodents has provided 

a better understanding of the host-specificity of gut protozoa.   
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2.1 Introduction 

2.1.1 Gut protozoa impact host biology 

Eukaryotic taxa are an integral part of the mammalian gut microbiome (Filyk and Osborne, 

2016; del Campo et al., 2020), but are often overlooked in host-microbiome studies in favour 

of prokaryotic taxa (Laforest-Lapointe and Arrieta, 2018). In particular, the colonisation 

mechanisms of gut protozoa are only just being clarified, and their role in host health and 

disease is still debated (Chabé et al., 2017; Dubik et al., 2022). Gut protozoa exist across the 

entire parasitism-mutualism continuum, and so can range from: disease-causing parasitic 

species to long-term residents of the gut, providing benefits to their host (Lukeš et al., 2015; 

Dubik et al., 2022).  

Gut protozoa that provide nutritional benefits to the host are typically described as mutualistic, 

and their role is well-documented in ruminants (Williams et al., 2020; Solomon and Jami, 

2021). For example, the protozoa species Eudiplodinium maggii and Polyplastron 

multivesiculatum contribute to enzymatic degradation of plant polysaccharides in sheep (Béra-

Maillet et al., 2005). Gut protozoa can also positively contribute to host disease resistance 

(Lukeš et al., 2015; Leung et al., 2018a; Dubik et al., 2022). For example, the mouse protozoa 

Tritrichomonas musculus indirectly protects the host against Salmoenlla infection via inducing 

inflammasome-driven IL-18 release which protects against mucosal infection (Chudnovskiy et 

al., 2016). Furthermore, Blastocystis ST4 can directly induce oxidative stress in, and thus 

decrease the growth of, the pathogenic prokaryote Bacteroides vulgatus (Deng and Tan, 

2022).  

Negative interactions between gut protozoa and the host will typically result in the 

manifestation of gastrointestinal disease e.g. gastroenteritis (Huh et al., 2009). Some gut 

protozoa, e.g. Giardia and Cryptosporidium, can directly cause disease in the host, by 

damaging the gut epithelium and mucosa, and causing inflammation (Savioli et al., 2006). Gut 

protozoa can also indirectly contribute to the host’s poor health and disease state, by changing 

the wider species composition of the gut microbiome (Burgess et al., 2017). For example, the 

presence of Blastocystis is associated with a decrease in abundance of beneficial bacteria, 

such as the bacterium Bifidobacterium which can limit and prevent infections of pathogens 

(Russell et al., 2011; Yason et al., 2019; Caudet et al., 2022).  

It can be difficult to categorise protozoa species as either beneficial or harmful, as the impact 

of gut protozoa on the host is context-dependent (Parfrey et al., 2011; Lukeš et al., 2015; 

Sardinha-Silva et al., 2022). For example, the host diet, age, immune status, microbiome, and 

genotype, as well as the protozoa genotype, can all influence the strength of the interaction 

between a protozoan species and its host (Thompson and Monis, 2012; Ryan et al., 2014; 
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Lepczyńska et al., 2017; Dubik et al., 2022). To this end, there is variation within and among 

protozoa species in how they impact the host. For example, Blastocystis individuals can shift 

from being mutualistic and/or commensal, to becoming pathogenic when the host immune 

system is compromised (Scanlan et al., 2014).  

2.1.2 Common mammalian gut protozoa 

The diversity of protozoa found in the gut eukaryome, and their interactions with the host, can 

vary substantially among and within mammalian species (Parfrey et al., 2011; Langda et al., 

2020; Guzzo et al., 2022). A brief summary of the commonly described protozoa found in the 

mammalian gut is in Table 2.1. The five meta-groups of protozoa described in the following 

section are supported by two reviews of eukaryotic taxonomy (Ruggiero et al., 2015; Adl et 

al., 2019). The term “meta-group” is used here to account for differences in the taxonomic rank 

of these groups. 



18 
 

Table 2.1. Protozoa commonly described from the mammalian gut. The lists of hosts provided are not exhaustive, and aim only to show 

the diversity of mammalian hosts for each protozoan meta-group in the literature.  

 Meta-Group Amoebozoa Apicomplexa Ciliophora Metamonada Stramenopiles 

Examples 
Entamoeba 
Endolimax 
Iodamoeba 

Eimeria 
Sarcosystis 
Toxoplasma 

Cryptosporidium 

Balantidium 
Entodinium 

Giardia 
Spironucleus muris 
Chilomastix mesnilii 

Retortomonas 
intestinalis 

Dientamoeba fragilis 
Tritrichomonas muris 

Blastocystis 

Disease 
potential 

Parasitic and 
commensal species 

Mostly parasitic 
species 

Mostly mutualistic 
species but can be 

parasitic 

Mostly parasitic 
species but can be 

commensal 

Considered to be 
an opportunistic 

pathogen 

Hosts 

Domestic livestock 
Fore-gut fermenting 

herbivores 
Rodents 
Primates 

Carnivora 
Insectivora 

Lagomorpha 
Livestock 
Primates 
Rodentia 

Artiodactyla 
Perissodactyla 

Primates 
Proboscida 
Rodentia 

Canids 
Felids 

Livestock 
Primates 
Rodentia 

Artiodactyla 
Carnivora 
Marsupials 

Perissodactyla 
Primates 
Rodentia 

References 

(Lau et al., 2014; Parfrey et 
al., 2014; Poulsen and 

Stensvold, 2016; Ragazzo et 
al., 2018; Cui et al., 2019; 
Mann et al., 2020; Ai et al., 
2021; Dubik et al., 2022) 

(Appelbee et al., 2005; 
Heitlinger et al., 2017; 

Dubey and Almeria, 2019; 
Duszynski, 2021; Solarczyk, 
2021; Bangoura et al., 2022; 

Guardone et al., 2022)  

(Dehority, 1986; Schuster 
and Ramirez-Avila, 2008; 
Henderson et al., 2015; 

Ahmed et al., 2020; Murillo 
et al., 2022)  

(Dobell, 1935; Imai and 
Ogimoto, 1988; Silberman et 

al., 2002; Appelbee et al., 
2005; Keeling and Brugerolle, 

2006; Kolisko et al., 2008; 
Parfrey et al., 2011; Jackson 
et al., 2013; Escalante et al., 
2016; Hamad et al., 2016; 
Collántes-Fernández et al., 

2018; Cacciò, 2018; Zhang et 
al., 2019; Li et al., 2020; Füssy 
et al., 2021; Dubik et al., 2022; 
Yildiz and Erdem Aynur, 2022) 

(Boreham and Stenzel, 
1993; Alfellani et al., 2013; 

Parfrey et al., 2014) 
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2.1.2.1 Amoebozoa 

Amoebae protozoa are diverse, but only a few genera have been described in the gut 

eukaryome of mammals (Cavalier-Smith et al., 2015). Entamoeba is the most commonly 

described genus of gut amoebae, with many species identified from humans (Cui et al., 2019; 

Dubik et al., 2022). The host-specificity of amoebae is highly varied with differences seen at 

the protozoa species level. For example, Ent. bovis is found in artiodactyls, whereas Ent. coli 

and Ent. hertmanii are found in primates (Parfrey et al., 2014). Genetic data also indicates the 

host-specificity of Entamoeba spp. is dependent on the particular species/strain in question 

(Stensvold et al., 2011). The genetic data for other gut amoeba protozoa is limited e.g. 

Endolimax spp. and Iodaoemba spp., and so host-specificity is often unknown and/or disputed 

(Stensvold et al., 2012; Poulsen and Stensvold, 2016). 

2.1.2.2 Apicomplexa 

Apicomplexan protozoa are a diverse group that are largely parasitic (Morrison, 2009; Mathur 

et al., 2021). The apicomplexan protozoa in the mammalian gut eukaryome are generally 

limited to coccidia and Cryptosporidium (del Campo et al., 2019a). The coccidian protozoa 

known to infect mammals were recently reviewed, but the distinction between those found in 

the gut protozoa compared to other tissues is unclear (Duszynski, 2021).  Genera in the family 

Eimeriidae known to reside within the mammalian gut include Cyclospora, Cystoisospora, 

Eimeria and Isospora (Heitlinger et al., 2017; Dubey and Almeria, 2019; Solarczyk, 2021; 

Bangoura et al., 2022). Sarcocystis and Toxoplasma are also known from the gut eukaryome 

of mammals, although many hosts are often considered to be intermediate or dead-end hosts 

(Guardone et al., 2022). Cryptosporidium is the sole genus within the Cryptogregarinorida (Adl 

et al., 2019) but has a wide range of mammalian hosts, including human and non-human 

primates, rodents, carnivores and ruminants (Appelbee et al., 2005).  

2.1.2.3 Ciliophora 

The ciliated protozoa are a diverse, widely-distributed phylum of protozoa, but only the class 

Litostomatea are found in the gut eukaryome (Foissner et al., 2008; Parfrey et al., 2011). 

Known for their nutritional role in degrading plant material, Litostomatea protozoa can 

represent up to 50% of the biomass of the rumen eukaryome (Newbold et al., 2015). Ciliate 

species found within herbivorous mammals are often host-specific, with entire families of 

protozoa being found only in one host species e.g. Troglodytellidae in gorillas (Dehority, 1986). 

The most commonly described ciliate protozoa genus is Balantidium, found in humans, pigs, 

rodents and non-human primates (Schuster and Ramirez-Avila, 2008; Ahmed et al., 2020).  
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2.1.2.4 Metamonada 

Several orders of metamonad protozoa can be found in the mammalian gut eukaryome (Table 

2.1, Parfrey et al., 2011; Hamad et al., 2016). Firstly, the diplomonads (Order: Diplomonadida) 

are a speciose group of protozoa, and are often associated with hosts, either as parasites or 

commensals (Jørgensen and Sterud, 2007; Xu et al., 2016). Perhaps the most commonly 

studied mammalian-associated diplomonad genus is Giardia (Appelbee et al., 2005). Other 

diplomonad species known to inhabit the mammalian gut eukaryome include Octomitus spp. 

(sister genus to Giardia), Spironucleus muris and Enteromonas spp. (Dobell, 1935; Keeling 

and Brugerolle, 2006; Kolisko et al., 2008; Jackson et al., 2013). Secondly, the retortamonads 

(Order Retortamonadida) are represented by two genera, Chilomastix and Retortomonas, and 

all but one species are obligate residents of animal guts (Silberman et al., 2002). The most 

commonly described species are Chilomastix mesnilii and Retortomonas intestinalis, owing to 

their presence in humans (Dubik et al., 2022). Tritrichomonadida is a third order of gut 

protozoa isolated from mammalian hosts (Rajilić-Stojanović and de Vos, 2014; Dubik et al., 

2022). Commonly described species include Dientamoeba fragilis and Tritrichomonas spp. 

(Escalante et al., 2016; Collántes-Fernández et al., 2018; Cacciò, 2018; Yildiz and Erdem 

Aynur, 2022). Other metamonad protozoa identified in the mammalian gut eukaryome include 

Pentatrichomonas spp. and Tetratrichomonas (Imai and Ogimoto, 1988; Zhang et al., 2019; 

Li et al., 2020; Dubik et al., 2022).  

2.1.2.5 Stramenopiles 

Despite being a highly diverse group, the only stramenopiles found within the mammalian gut 

eukaryome are Blastocystis spp. (Parfrey et al., 2014; Derelle et al., 2016). Multiple, 

genetically diverse Blastocystis subtypes have been described with prevalence and host-

specificity varying greatly between the subtypes (Stensvold and Clark, 2020; Deng et al., 

2021). Blastocystis is found in a wide range of mammalian hosts (Table 2.1, Boreham and 

Stenzel, 1993; Alfellani et al., 2013) and is considered a normal and important component of 

the human gut eukaryome (Parfrey et al., 2014; Deng et al., 2021). 

2.1.3 Mechanisms driving gut protozoa composition 

Protozoa predominately rely on faecal-oral routes of transmission among hosts, typically 

through coprophagy or faecal contamination of food and/or water (Dehority, 1986; Burgess et 

al., 2017). Some gut protozoa, e.g. ciliates, are dependent on the rapid faecal-oral 

transmission of infective stages (Michaiowski, 2005). In contrast, some species e.g. Giardia 

and Cryptosporidium, can form environmentally-resistant cysts or oocysts, which can persist 

in the environment for long periods of time, thus reducing the dependency on rapid 

transmission (Dumètre et al., 2012).  
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At the individual level, various host behaviours contribute to the chance of a host encountering 

and acquiring the infective stage of a protozoa (Kołodziej-Sobocińska, 2019). Foremost, a 

more social individual with comparatively greater social interactions will have a greater chance 

of being exposed to the transmission of protozoa (Ezenwa et al., 2016). For example, a meta-

analysis showed that male vertebrates with a higher social status have an overall higher 

parasite infection risk, compared to those with a lower social status, which can be attributed 

to increased mating effort (Habig et al., 2018). Similarly, increased parent-offspring 

interactions will increase the offspring’s exposure to the parent’s existing protozoan 

community, and this is observed with ciliated protozoan infections in ruminants (Michaiowski, 

2005). 

Host population structure can also affect protozoa transmission, because as host density 

increases, the opportunity for transmission of gut protozoa is increased (Ostfeld and Mills, 

2008; Ebert, 2013). Host density can also alter individuals’ exposure to protozoa, by driving 

changes in the social organisation of the population and individuals’ normal home range 

(Bertolino et al., 2003; Brei and Fish, 2003; Sanchez and Hudgens, 2019). Host foraging 

behaviours also affect exposure; for example, foraging on the ground, compared to arboreal 

and aerial foraging, can increase exposure to environmentally-transmitted protozoa, as is 

seen with Entamoeba in baboons and Isospora in birds (Dolnik et al., 2010; Barelli et al., 

2020a). Similarly, coprophagy can drive exposure to protozoan infective stages present in 

faeces and predation can cause exposure via ingestion of infected prey (Ezenwa et al., 2016; 

Malmberg et al., 2021).  

An individual’s diet, immune state, and pre-existing microbiome can also influence the chance 

of a protozoan successfully establishing in the gut (Thursby and Juge, 2017; Kołodziej-

Sobocińska, 2019; Coyte et al., 2021). Firstly, variation in the host diet can alter nutrient 

availability, allowing the establishment of different protozoan communities in the gut (Zhang 

et al., 2022). For example, the relative abundance of the protozoa Entodinium in sheep rumen 

fluid changed in response to different diets (Henderson et al., 2015; Zhang et al., 2022). 

Secondly, the immune state of the host is also important for affecting the initial establishment 

and subsequent persistence of protozoa in the gut (Evering and Weiss, 2006; Sardinha-Silva 

et al., 2022). Long-term co-evolution of protozoa with host species has allowed many protozoa 

to develop complex mechanisms to either i) be tolerated by and/or ii) evade the host immune 

response (Zambrano-Villa et al., 2002; Macpherson et al., 2005; Schmid-Hempel, 2009; 

Tanoue et al., 2010; Sardinha-Silva et al., 2022). Thus, the immune state of the host at the 

time of transmission is important in affecting the chance of successful establishment of 

protozoa. Many factors contribute to an individual’s immune state, including early life 

development, body condition, age, sex, and being in a physiologically-demanding state e.g. 
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malnutrition, as well as prior exposure to infections (Viney et al., 2005; MacGillivray and 

Kollmann, 2014; Abolins et al., 2018; Kelly et al., 2018).  

Thirdly, protozoan establishment within the gut can also depend on the microbial species 

already present in the gut (Coyte et al., 2021). For example, some ciliated protozoa in the 

rumen microbiome require a pre-established bacteriome to shape the gut to the specific abiotic 

conditions required for survival (Michaiowski, 2005). Ciliates can also need other microbial 

species as a source of nutrition; for example, Entodinium caudatum engulfs other microbial 

cells, which is necessary for its survival and growth (Wang et al., 2019). Furthermore, there is 

often an obligate succession pattern of ciliate protozoa establishment: Entodinia spp. establish 

first, followed by other ciliates, showing that Entodinia is a primary coloniser species 

(Michaiowski, 2005). A species’ reliance on another species to be present reduces the chance 

of successful establishment compared to those species that are not reliant (Coyte et al., 2021). 

Negative microbial interactions can also affect protozoa establishment (Leung et al., 2018a). 

Competition for nutrients and other resources results in the generation of niches within the 

gut, limiting the diversity of protozoa that can establish (Pereira and Berry, 2017). For example, 

Tritrichomonas musculus competes with the bacteriome for dietary fibre, a resource essential 

for T. musculus colonisation (Wei et al., 2020). Additionally, the gut bacteriome can produce 

molecules that limit the establishment of protozoa. For example, the bacteria Lactobacillus 

reuteri and L. acidophilus produce factors that are capable of inactivating Cryptosporidium 

oocysts (Foster et al., 2003).  

2.1.4 The gut protozoa of wild rodents 

The majority of the examples described above come from studies in humans, domesticated 

livestock, and laboratory animals. There are limited studies describing the diversity of gut 

protozoa in wild mammals, and the drivers of variation in protozoa composition. The gut 

microbiomes of laboratory and domesticated animals are likely to be quite distinct to that of 

their wild counterparts (Viney, 2019; Prabhu et al., 2020; Bowerman et al., 2021), so there is 

a need to study wild animals in greater detail. The Rodentia are a highly speciose order of 

mammals (Fabre et al., 2012), but their gut protozoa are not well described. As with most 

mammals, the majority of described gut protozoa in wild rodents are parasitic, rather than 

commensal/mutualist species (Parfrey et al., 2014). In rodents, this disparity is exacerbated 

by wild populations being an important group of reservoirs for zoonotic transmission, and so 

are frequently surveyed for potentially zoonotic parasites (Meerburg et al., 2009; Han et al., 

2015). There has been little effort to describe the mutualistic/commensal gut protozoa of wild 

rodents, except in those species with high digestive efficiency e.g. the capybara, 

Hydrochoerus hydrochaeris (Borges et al., 1996).  
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In order to further our understanding of protozoa in the mammalian gut eukaryome, this work 

aimed to collate information on which protozoa are found within the gut eukaryome of wild 

rodent species. This has not, as far as I am aware, been done before. To do this, a methodical 

literature search was conducted to identify protozoa previously reported in the gut eukaryome 

of wild rodents, with a description of the host ranges of different protozoa. Here, I hypothesise 

that the number of protozoa genera found within the gut eukaryome of wild rodents is 

dependent on surveying effort. Then, I hypothesise that there are differences in how common 

protozoa are in the rodent gut eukaryome, and aim to address this using a meta-analysis to 

compare protozoa prevalence among host species. Next, I predict that hosts that have 

increased opportunities for protozoal transmission between hosts will have a greater 

prevalence of protozoa in their gut eukaryome. I test this hypothesis using host social and 

behavioural traits identified from the literature that offer potential variation in the amount of 

direct and indirect interactions, and thus transmission, among hosts. Finally, I hypothesise that 

the different methodologies used for identifying protozoa in the gut eukaryome may bias our 

predictions in how prevalent protozoa are in the wild rodent gut eukaryome.   
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2.2 Methods 

2.2.1 Literature search 

The literature search was conducted following PRISMA guidelines (Moher et al., 2009; Page 

et al., 2021), to identify articles describing gut protozoa in wild rodents in the Web of Science 

database. All databases within the Web of Science were used. Two independent literature 

searches were performed. The first was conducted in March 2020, using the following four 

search terms: infection rodent protozoa gut; gut protozoa rodent; parasite rodent gut; 

eukaryotic microbiome rodent. Each term was searched for simultaneously using the multi-

row option in the Basic Search interface using the “OR” Boolean command and searched 

within ‘Topic’ (Supplementary Figure 1A); no publication date was specified. The second 

search was completed in April 2020, performed as above but using the search term: protozoa 

wild rodent, with an additional seven search terms using the “NOT” Boolean command: wild-

type; "wild type"; model; and the four search terms used in the previous search 

(Supplementary Figure 1B). These additional seven search terms reduced the chance of 

returning studies using laboratory rodents and excluded any potential duplicate articles from 

the first search.  

2.2.2 Article selection 

The titles and abstracts of 6,852 articles were screened to ensure suitability, and 2,018 articles 

were carried forward for full-text screening, as shown in Figure 2.1 (Identification and 

Screening). The suitability of articles was based on the report or survey of a naturally occurring 

protozoa in the digestive system (oesophagus-faecal) of a wild rodent. Articles reporting blood, 

brain and other tissue parasites were excluded, as were those only focussing on non-protozoa 

parasites e.g. nematodes. Additionally, articles that did not give the location of the wild rodent 

were excluded, as were those that did not identify the rodent host and gut protozoa to the 

genus level. Once data were extracted (section 2.2.3) from the selected articles, their 

reference lists were searched to identify potential articles not identified in the literature search. 

A further 112 articles were identified and had data extracted in this manner.  

2.2.3 Data extraction 

Articles were categorised as either i) a report describing the presence of a protozoa or ii) a 

survey to determine protozoa prevalence. These two article types are henceforth termed 

presence and prevalence articles respectively. To create data records (Figure 2.1), the 

following data were extracted from all articles: host species, protozoa species, geographical 

location sampled, diagnostic technique (DNT), and year sampled. The location of the record 

was recorded in three ways: continent; country; and latitude and longitude (if provided). Any 

other location information was also recorded. One article could produce multiple records. For 

prevalence articles, protozoa prevalence was also recorded, and where necessary, this was 
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Figure 2.1. PRISMA diagram showing the source of articles and the subsequent 

screening stages used to generate the data records used in the meta-analysis. 
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calculated from data presented in the article. Prevalence is defined here as the proportion of 

hosts that have that particular protozoan in their gut microbiome. If a prevalence range was 

reported, the median prevalence was used. For articles listing host subspecies and species 

complexes with different prevalences, the average prevalence was calculated. Additionally, if 

an article reported multiple prevalences for different con-generic protozoa species, an average 

protozoa genus prevalence was calculated. Weighted averages were calculated based on the 

sample size of the individual reports. Articles that used multiple DNTs for the same rodents 

recorded either i) the combined prevalence stated in the article or ii) the calculated average 

prevalence, if the overall prevalence was not reported. The DNT for these records were 

recorded as “Mixed”.  

2.2.4 Describing protozoa in the rodent gut eukaryome  

Both presence and prevalence articles identified from the literature search were used to 

generate a meta-table recording the presence of different protozoa in the wild rodent gut 

eukaryome. Data were recorded at the genus level for protozoa, and species level for host. 

Rodent host taxonomy was after the Handbook of the Mammals of the World (Wilson et al., 

2017). Protozoa genera were assigned to one of five meta-groups: Amoebozoa; Apicomplexa; 

Ciliophora; Metamonada; and Other (Adl et al., 2019). A generalised linear model (GLM) with 

a Poisson error distribution (Zuur and Ieno, 2016) was used to determine if the number of 

protozoa genera identified in a rodent species was dependent on the surveying effort (i.e. the 

number of records) for that rodent species.  

2.2.5 Meta-analyses of protozoa prevalence 

2.2.5.1 General strategy   

Data records from prevalence articles were used to identify if and why there is variation in 

protozoa prevalence in the gut eukaryome. The records for which an average prevalence was 

calculated were removed, but the average prevalence record was kept (Figure 2.1). This was 

to ensure that there was no pseudo-replication of the data. Each data record was assigned an 

article ID and a unique record number (URN). Within RStudio, the metafor package was used 

to conduct all meta-analyses (v2.4.0, Viechtbauer, 2010). The general strategy was as follows: 

i) create a base restricted maximum likelihood estimator (REML) model with only random 

effects that would be used throughout the following data analyses, ii) assess if there was 

variation in the prevalence of protozoa in the eukaryome across different rodent host species, 

iii) identify what variables are contributing to variation in protozoa prevalence and iv) assess 

potential publication and methodological biases in the dataset. 



27 
 

2.2.5.2 The base model   

The base REML model used throughout the meta-analysis listed article ID, URN, DNT, and 

host phylogeny as random factors. Host phylogeny accounted for potential variation in 

prevalence due to shared evolutionary history (Koricheva et al., 2013). The phylogeny was 

created using the Open Tree of Life (OTL) database (Hinchliff et al., 2015) and the rotl R 

package (v3.0.14, Michonneau et al., 2016) to extract phylogenetic relationships for the rodent 

taxonomy identified in section 2.2.4. Some species were not identified in the OTL as they had 

been renamed or reclassified, and so these were manually added to the tree. Grafen’s method 

(Grafen, 1989) was used to compute branch lengths using the ape R package (v5.6.2, Paradis 

et al., 2004). The final phylogenetic tree is available in Supplementary Figure 2. DNT was 

listed as a random factor to account for potential variation in prevalence due to the DNT used. 

In all models, double-arcsine transformed prevalence was the dependent variable (Wang, 

2018). Prevalence was transformed in this way to fit the assumptions of normality required for 

meta-analyses (Barendregt et al., 2013). Given that recent literature has recommended 

against the use of double-arcsine transformation in meta-analyses (Röver and Friede, 2022; 

Lin and Xu, 2020), justification for its continued use here is given in Appendix 1.1. The addition 

of a variable as a fixed effect (henceforth called a moderator) to the base model was used to 

test if that moderator significantly influenced the overall mean protozoa prevalence in wild 

rodents.  

The overall double-arcsine transformed prevalence of protozoa in the rodent gut eukaryome 

was calculated from the base model, using the rma.mv function. The result was back-

transformed to obtain the summary percentage prevalence and 95% confidence intervals (CI) 

(Wang, 2018). The number of records included in the model (k) was also recorded. 

Heterogeneity of prevalences was examined using the I2 statistic, which is the proportion of 

variance in effect sizes that is not attributable to sampling (error) variance (Higgins et al., 

2003). The proportion of I2 attributable to differences in article ID, URN, DNT, and host 

phylogeny was calculated using the i2_ml function in the orchaRrd R package (Nakagawa et 

al., 2021). 

2.2.5.3 Variation in protozoa prevalence   

Two meta-regressions were performed to identify any variation in how prevalent gut protozoa 

were among rodent hosts, with either host family or host species incorporated as the 

moderator. The variable “protozoa genus” and the subsequent interaction terms with the host 

family/species were also included in the models. Only the rodent families/species and 

protozoa genera with ≥ 10 records were included in the model, to account for bias caused by 

small sample sizes (Lin, 2018). Significant moderators indicated variation in the mean 

protozoa prevalence. Significance was defined by examining the QM statistic. Additionally, 
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marginal R2 values were calculated to establish how much heterogeneity in prevalence is 

described by the moderators, using the r2_ml function in the orchaRd R package (Nakagawa 

and Schielzeth, 2013; Nakagawa et al., 2021).  

Significant protozoa-host interactions were further examined via subsetting the host 

family/species into subgroups and running a separate meta-regression for each subgroup, 

with protozoa genus as the moderator. Only the host subgroups that had ≥ 2 protozoa genera, 

with ≥ 10 records per protozoa genera, were tested. Tukey post hoc comparisons were used 

to conduct pairwise comparisons between protozoa genera if there was a significant effect of 

protozoa genus identified. This was done by re-running the meta-regression and excluding 

the intercept, and using the multcomp R package to compare combinations of protozoa genera 

(v1.4.17, Hothorn et al., 2008). The holm method was used to correct for multiple testing 

(Holm, 1979). Finally, the average double-arcsine transformed prevalence for each subgroup 

within each moderator was obtained by using the subset function within the rma.mv model. 

The result was then back-transformed to obtain the percentage prevalence and 95% CIs. 

Orchard plots are used to show differences in prevalence among subgroups (Nakagawa et 

al., 2021). The orchard plots also include 95% CIs and 95% prediction intervals. Prediction 

intervals here represent the range of prevalence in which the prevalence of a new observation 

would fall (IntHout et al., 2016). Precision, as the inverse of the standard error for each record, 

was used in these plots, where a larger precision equates to a larger sample size. 

2.2.5.4 Variables contributing to variation prevalence  

To ensure geographical differences were not contributing to variation in protozoa prevalence, 

three geographical moderators were included in a meta-regression: longitude, latitude and 

continent. Latitude and longitude were converted from degrees, minutes, seconds format to 

the decimal degrees format using OSMscale (v0.5.1, Boessenkool, 2017) to generate a 

continuous variable. In this model, the interactions of latitude and longitude with continent 

were also included as moderators. Additionally, protozoa genus and its interactions with each 

of the three geographical moderators was also included, to account for variation stemming 

from different protozoa genera. An orchard plot was used to show differences in protozoa 

prevalence among continents. 

To test if host behaviour was contributing to variation in the prevalence of protozoa in the gut 

eukaryome, host behaviour moderators were created for each host species. A single resource 

was used to extract behavioural information (Wilson et al., 2017). From this information, eight 

moderators were created that were hypothesised to drive differences in the amount of 

interactions between rodent hosts, and thus differences in protozoa transmission (Ostfeld and 

Mills, 2008; Sarkar et al., 2020). Average values of density, home range, and dispersal 
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distance were extracted as quantitative values. Information on the typical social grouping, 

typical mating system, and development type was recorded as categorical data. Social 

grouping was split into two variables: binary social groups (solitary vs. group-living) and social 

system (eleven sub-groups). Mating system was defined at the binary level: monogamous or 

polygamous, and development type was classed as either altricial or precocial (Derrickson, 

1992; Wilson et al., 2017). The typical lifestyle of the species was also defined and recorded, 

according their general behaviour, locomotion and morphology (Wilson et al., 2017). If 

behavioural information was not available for a species, family characteristics were used but 

only if this characteristic applied to all species in that family. From these data, eight moderators 

were tested separately in a meta-regression, each with protozoa genus also included and the 

relevant interaction term. The eight moderators tested were: dispersal distance, density, home 

range size, mating system, social system, binary social grouping, development type, and 

lifestyle. Significant protozoa-host behaviour interactions were further examined as described 

in 2.2.5.3. 

2.2.5.5 Assessing bias  

DNT was added as a moderator in a meta-regression to test if different diagnostic methods 

identified different prevalences of protozoa in the gut eukaryome. This model removed DNT 

from the random effects. Post hoc tests were completed as described in 2.2.5.3. A second 

meta-regression was conducted, with precision as a moderator, to determine if sample size 

affected protozoa prevalence. A funnel plot was used to visualise publication bias: an 

asymmetrical plot indicates missing effect sizes, potentially from publication bias (Koricheva 

et al., 2013; Shi and Lin, 2019). Publication bias is defined here as studies being published 

selectively based on their results (Shi and Lin, 2019). A trim-and-fill test (Duval and Tweedie, 

2000) was used to detect missing effect sizes, and predict the average effect size if these 

were to be included in the analysis.  
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2.3 Results 

2.3.1 Protozoa presence in wild rodents 

A total of 344 suitable articles were identified by the literature search, published between 1915-

2020 (Supplementary Table 1). From this literature, 2,245 data records of protozoa in the gut 

eukaryome of rodents were identified, across 69 countries (Figure 2.2). 44 protozoa genera 

were identified encompassing all five protozoa meta-groups (Table 2.2). The Apicomplexa and 

Ciliophora meta-groups had the highest number of protozoa genera recorded (13 and 14 

respectively) followed by Metamonada protozoa (11 genera). Only four Amoebozoa protozoa 

were recorded. Blastocystis and Pharyngomonas were the only genera assigned to the Other 

meta-group. Apicomplexa and Metamonada protozoa had the most data records, and the most 

common data records per protozoa genus were from Eimeria, Cryptosporidium and Giardia 

(Figure 2.3A). 275 rodent species were identified in the literature search, from 110 genera and 

21 families, with large variation in the number of data records generated for each host species. 

The most common data records per rodent genus were from Apodemus, Rattus and Microtus 

(Figure 2.3B).  

Figure 2.2. The number of records per country that identified or surveyed a gut 

protozoan in a wild rodent. 2,245 records of protozoa were created from 344 articles. 

Table 2.2. The number of records per protozoa meta-group, and the number of protozoa 

genera assigned to that group.  

Protozoa meta-group Number of records Number of genera 

Amoebozoa 95 4 

Apicomplexa 1,725 13 

Ciliophora 38 14 

Metamonada 368 11 

Other 19 2 

Total 2,245 44 

1-10 

11-50 

51-100 

100+ 
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Figure 2.3. The number of data records identified in the literature search. Records are grouped at the A) protozoa genus level and B) 

host genus level. Only genera with a count of ≥ 10 records are shown, with the Other category combining those with a count of < 10.   

A B 
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From 2,245 total data records, 1,886 records recorded the presence of gut protozoa in wild 

rodent hosts. Of the 275 host species identified, 228 had a confirmed protozoan in the gut 

eukaryome, from both presence and prevalence articles. The protozoa genera found within 

the gut eukaryome of each rodent host species is summarised in Table 2.3. Protozoa genera 

are highly varied in the number of host species from which they have been reported. Only 

seven protozoa genera (from Apicomplexa, Metamonada and Amoebozoa) are found in the 

gut eukaryome of more than 10 host species. Eimeria is the most widely distributed protozoa 

genus, identified in 194 (of 228) host species. In comparison, 27 protozoa have been reported 

in the gut eukaryome of only one host species, including 13 (of 14) Ciliophoran genera. 

The number of protozoa genera identified in the gut eukaryome of each wild rodent host 

species is highly variable. 19 (of 228) species had five or more protozoa identified in the 

literature search, with the majority of the species belonging to the Muridae and Cricetidae 

families. The greater capybara (H. hydrochaeris) had the highest number (17) followed by the 

brown rat (13, Rattus norvegicus) and the black rat (11, R. rattus). The majority of rodent 

species (145 of 228) had just a single protozoan recorded in their gut eukaryome, and these 

species were from 14 rodent families. The number of different protozoa identified in rodent 

species is linked to how frequently that host is surveyed: there is a significant, positive 

relationship between the number of data records for a rodent host and the number of different 

protozoa identified (Figure 2.4, GLM: F1,226 = 145.5, p < 0.001).  
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Table 2.3. Protozoa found in the gut eukaryome of wild rodents. Rodent species are grouped by family and then ordered alphabetically and 

the number in brackets indicates the number of protozoa genera found in that host species. The described protozoa are grouped by meta-group, 

and then alphabetically. The number in brackets indicates the number of host species from which that protozoa has been identified. ‘Cilio’ are 

ciliated protozoa. Data were extracted from 344 articles (Supplementary Table 1). 
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*The following 13 ciliated protozoa are only found in H. hydrochaeris: Cycloposthium; Monoposthium; Anacharon; Cunhamunizia; Enterophrya; Eriocharon; 

Hydrochoerella; Muniziella; Ogimotoa; Ogimotopsis; Paracunhamunizia; Protohallia; Uropogon.   
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Aplodontiidae Aplodontia rufa (1)

Bathyergidae Heliophobius argenteocinereus (1)

Calomyscidae Calomyscus spp. (2)

Castor canadensis (3)

Castor fiber (3)

Caviidae Hydrochoerus hydrochaeris (17) *

Chinchillidae Lagostomus maximus (1)

Akodon montensis (2)

Alexandromys montebelli (4)

Alexandromys oeconomus (1)

Arvicola amphibius (4)

Baiomys taylori (1)

Craesomys rufocanus (2)

Cricetulus migratorius (5)

Lemmus lemmus (1)

Lemmus trimucronatus (1)

Melanomys caliginosus (1)

Microtus agrestis (8)

Microtus arvalis (4)

Microtus californicus (1)

Microtus longicaudus (2)

Microtus mexicanus (1)

Microtus miurus (1)

Microtus montanus (4)

Microtus mystacinus (2)

Microtus ochrogaster (2)

Microtus oregoni (1)

Microtus pennsylvanicus (5)

Microtus pinetorum (1)

Microtus richardsoni (1)

Microtus spp. (1)

Microtus subterraneus (1)

Microtus xanthognathus (1)

Myodes gapperi (4)

Myodes glareolus (8)

Myodes macrotis (1)

Myodes rutilus (2)

Necromys lasiurus (1)

Nectomys squamipes (1)

Neodon fuscus (1)

Neotoma albigula (1)

Neotoma cinerea (2)

Neotoma floridanus (1)

Neotoma fuscipes (2)

Neotoma lepida (2)

Neotoma macrotis (2)

Neotoma micropus (1)

Neotoma stephensi (1)

Oecomys mamorae (1)

Ondatra zibethicus (7)

Onychomys arenicola (1)

Onychomys leucogaster (1)

Onychomys torridus (1)

Oryzomys palustris (2)

Oxymycterus quaestor (1)

Peromyscus attwateri (1)

Peromyscus boylii (2)

Peromyscus californicus (3)

Peromyscus crinitus (1)

Peromyscus difficilis (1)

Peromyscus eremicus (1)

Peromyscus eva (1)

Peromyscus leucopus (4)

Peromyscus maniculatus (6)

Peromyscus pectoralis (1)

Peromyscus spp. (2)

Peromyscus truei (2)

Phenacomys intermedius (1)

Reithrodontomys fulvescens (1)

Reithrodontomys megalotis (1)

Reithrodontomys montanus (1)

Sigmodon arizonae (1)

Sigmodon hispidus (5)

Sigmodon ochrognathus (1)

Synaptomys borealis (1)

Thaptomys nigrita (1)

Zygodontomys brevicauda (1)

Ctenomys boliviensis (1)

Ctenomys conoveri (1)

Ctenomys frater (1)

Ctenomys lewisi (1)

Ctenomys opimus (1)

Ctenomys talarum (1)

Dasyproctidae Dasyprocta leporina (1)

Echimyidae Myocastor coypus (4)

Coendou spinosus (2)

Erethizon dorsatum (1)

Orthogeomys grandis (1)

Thomomys bottae (1)

Thomomys talpoides (3)

Gliridae Eliomys quercinus (2)

Heterocephalidae Heterocephalus glaber (6)

Chaetodipus baileyi (1)

Chaetodipus californicus (1)

Chaetodipus fallax (1)

Chaetodipus formosus (1)

Chaetodipus hispidus (2)

Chaetodipus intermedius (1)

Chaetodipus penicillatus (1)

Chaetodipus spinatus (1)

Dipodomys agilis (2)

Dipodomys californicus (1)

Dipodomys elator (1)

Dipodomys gravipes (1)

Dipodomys heermanni (3)

Dipodomys merriami (1)

Dipodomys microps (1)

Dipodomys ordii (1)

Dipodomys ornatus (1)

Dipodomys panamintinus (1)

Dipodomys spectabilis (1)

Dipodomys venustus (1)

Heteromys irroratus (1)

Heteromys pictus (1)

Heteromys spp. (1)

Perognathus flavescens (1)

Perognathus flavus (1)

Acomys cahirinus (3)

Acomys dimidiatus (1)

Apodemus agrarius (3)

Apodemus argenteus (3)

Apodemus flavicollis (3)

Apodemus mystacinus (1)

Apodemus speciosus (4)

Apodemus spp. (8)

Apodemus sylvaticus (7)

Apodemus uralensis (1)

Arvicanthis niloticus (1)

Bandicota savilei (1)

Berylmys bowersi (1)

Chiropodomys gliroides (1)

Chrotomys whiteheadi (1)

Conilurus penicillatus (1)

Dasymys incomtus (1)

Dephomys defua (1)

Gerbilliscus guineae (1)

Lemniscomys striatus (3)

Leopoldamys edwardsi (2)

Leopoldamys sabanus (1)

Leporillus conditor (1)

Lophuromys flavopunctatus (1)

Lophuromys sikapusi (1)

Mastomys natalensis (1)

Maxomys surifer (1)

Maxomys whiteheadi (1)

Meriones hurrianae (2)

Meriones meridianus (2)

Meriones persicus (7)

Meriones shawii (2)

Meriones spp. (6)

Meriones unguiculatus (2)

Mus musculoides (1)

Mus musculus (8)

Mus spretus (1)

Niviventer fulvescens (2)

Otomys denti (1)

Otomys irroratus (1)

Praomys tullbergi (1)

Rattus andamanensis (2)

Rattus argentiventer (1)

Rattus exulans (2)

Rattus lutreola (1)

Rattus norvegicus (13)

Rattus rattus (11)

Rattus spp. (7)

Rattus tanezumi (2)

Rattus tiomanicus (2)

Rhabdomys pumilio (1)

Sundamys muelleri (1)

Tatera indica (1)

Cricetomys ansorgei (1)

Cricetomys gambianus (1)

Atlantoxerus getulus (1)

Callosciurus caniceps (1)

Callosciurus erythraeus (2)

Callosciurus nigrovittatus (1)

Callospermophilus lateralis (5)

Cynomys gunnisoni (1)

Cynomys leucurus (1)

Cynomys ludovicianus (2)

Euxerus erythropus (1)

Funambulus palmarum (1)

Glaucomys sabrinus (1)

Glaucomys volans (1)

Ictidomys mexicanus (1)

Ictidomys tridecemlineatus (3)

Marmota flaviventer (3)

Marmota monax (2)

Otospermophilus beecheyi (3)

Otospermophilus variegatus (1)

Poliocitellus franklinii (1)

Sciurus aberti (1)

Sciurus aestuans (1)

Sciurus anomalus (1)

Sciurus aureogaster (1)

Sciurus carolinensis (3)

Sciurus griseus (1)

Sciurus niger (2)

Sciurus spadiceus (2)

Sciurus vulgaris (3)

Spermophilus citellus (3)

Spermophilus suslicus (2)

Spermophilus xanthoprymnus (1)

Tamias canipes (1)

Tamias dorsalis (1)

Tamias merriami (1)

Tamias obscurus (1)

Tamias striatus (2)

Tamias townsendii (1)

Tamiasciurus douglasii (1)

Tamiasciurus hudsonicus (2)

Urocitellus armatus (1)

Urocitellus beldingi (5)

Urocitellus columbianus (1)

Urocitellus elegans (1)

Urocitellus parryii (1)

Urocitellus richardsonii (1)

Urocitellus townsendii (1)

Xerospermophilus spilosoma (1)

Xerospermophilus tereticaudus (1)

Eospalax baileyi (1)

Nannospalax ehrenbergi (2)

Nannospalax leucodon (2)

Tachyoryctes splendens (1)

Thryonomyidae Thryonomys swinderianus (4)

Zapus hudsonius (1)

Zapus princeps (1)

Zapus trinotatus (1)

Other

Nesomyidae

Sciuridae

Spalacidae

Zapodidae

Cricetidae

Ctenomyidae

Erethizontidae

Geomyidae

Heteromyidae

Muridae

Castoridae

MetamonadaAmoebozoa Apicomplexa Cilio
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Figure 2.4. The relationship between the number of data records for a host species and number of protozoa genera identified in that 

host. Only the data records describing the presence of protozoa are included. Each point is a different rodent species. The predicted relationship 

is represented by the blue line, with the grey shading representing 95% confidence intervals.
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2.3.2 Protozoa prevalence 

2.3.2.1 Predicted protozoa prevalence 

A total of 1,237 (of 2,245) data records (after the removal of pseduoreplicated data records 

and presence records, section 2.2.5.1) were used to look for variation in the prevalence of 

protozoa in the rodent gut eukaryome. 255 wild rodent species were surveyed across 289 

articles, from 102 genera and 21 families. 36 protozoa genera were used in the meta-analysis.  

Across all wild rodents, the average prevalence of any protozoa in the wild rodent gut 

eukaryome is predicted to be 23.7% (95% CI 4.78-48.5, k = 1,237). There is a high amount of 

heterogeneity of prevalence in the dataset (I2 = 97.8%), with the majority of this variation 

stemming from differences among the individual data records (32.3%) and differences 

attributed to the article ID of a data record (32.0%). Diagnostic techniques accounted for 6.5% 

of variation. The shared evolutionary history of the rodent hosts explained 26.9% of the 

variation in protozoa prevalence.  

2.3.2.2 Variation among rodent hosts 

The estimated protozoa prevalence of each rodent family is shown in Table 2.4. Only the 7 (of 

21) host families with ≥ 10 data records were used in the analysis. There were no significant 

differences in protozoan prevalence among different rodent families, but there was a 

significant interaction between protozoa genus and host family (Table 2.5). Thus, the variation 

among host families in the prevalence of the protozoa found in the gut eukaryome is 

dependent on the protozoa genus examined. To investigate this interaction further, individual 

rodent families were analysed separately. The three host families that had ≥ 2 protozoa 

genera, with ≥ 10 records per protozoa genera were: Cricetidae, Muridae and Sciuridae. 

Protozoa genus was a significant moderator in all three families tested, showing that for these 

three families, different protozoa have different prevalences (Table 2.6, Figure 2.5). 

Table 2.4. The predicted gut protozoa prevalence for each rodent family. k is the number 

of data records contributing to the prediction.  

Family Prevalence (%) k 
95% CIs 

Lower Upper 

Castoridae 3.6 34 0.0 100.0 

Cricetidae 25.4 368 1.1 60.7 

Heteromyidae 13.2 93 4.9 23.6 

Muridae 12.3 448 0.0 70.3 

Sciuridae 36.0 146 0.0 100.0 

Spalacidae 42.1 11 0.2 93.3 

Zapodidae 1.5 11 0.0 100.0 
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Table 2.5. Meta-regression statistics for two models testing for differences in protozoa 

prevalence among rodent hosts. REML models were run separately for host family and host 

species, and each included protozoa genus as an interaction term. k is the number of data 

records included in the model and marginal R2 indicates how much variance in prevalence is 

explained by the model. QM is the test statistic for each moderator in the model.  

Moderator k Marginal R2 
Host moderator Interaction term 

QM p value QM p value 

Host family 1,111 0.146 1.50 0.959 107.6 < 0.001 

Host species 538 0.396 41.7 < 0.001 122.4 < 0.001 

 

Table 2.6. Meta-regression statistics testing for the effect of protozoa genus on 

protozoa prevalence in three different host families. Each host family was tested in a 

separate model. Only protozoa genera with ≥10 records were included. k is the number of 

data records included in the model and marginal R2 indicates how much variance in 

prevalence is explained by the model. QM is the test statistic for the effect of the protozoa 

genus moderator in the model. p values are shown for post hoc comparisons between those 

protozoa genera with significant differences.  

Family 
Meta regression statistics Post hoc comparisons 

Marginal R2 QM p value Comparison p value 

Cricetidae 
(k = 448) 

0.027 33.2 < 0.001 

Cryptosporidium: Giardia <0.001 

Eimeria: Giardia 0.006 

Eimeria: Isospora 0.007 

Entamoeba: Giardia <0.001 

Giardia: Isospora <0.001 

Isospora: Trichomonas 0.012 

Muridae 
(k = 360) 

0.106 46.2 < 0.001 

Blastocystis: Trichomonas 0.012 

Chilomastix: Trichomonas 0.010 

Cryptosporidium: Trichomonas <0.001 

Entamoeba: Trichomonas 0.004 

Giardia: Trichomonas 0.001 

Isospora: Trichomonas <0.001 

Sciuridae 
(k = 142) 

0.188 42.0 < 0.001 

Cryptosporidium: Eimeria <0.001 

Cryptosporidium: Giardia 0.050 

Eimeria: Giardia <0.001 
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Figure 2.5. The average prevalence of the protozoa 

identified in the Cricetidae, Muridae and Sciuridae 

families. Prevalence is double- arcsine transformed and the x-

axis scale is family-specific. The black point indicates the 

estimated average prevalence. Bold lines indicate 95% CIs for 

the average prevalence and thin lines indicate the prediction 

intervals. The size of the points are scaled to precision and k 

indicates the number of records for that protozoa. The back-

transformed predicted prevalence percentage is provided next 

to the protozoa genus label.  
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There was a significant difference in the prevalence of protozoa found in the gut eukaryome 

among rodent host species, which contrasts against the finding of no differences among 

rodent families (Table 2.5). The overall protozoa prevalence in each host species is shown in 

Table 2.7. Only 19 (of 255) rodent species were present in this analysis. There was a 

significant interaction between protozoa genus and host species (Table 2.5). The variation 

among host species in the prevalence of the protozoa found in the gut eukaryome is 

dependent on the protozoa genus examined. Seven rodent species were further analysed 

separately: Apodemus agrarius, Ap. flavicollis, Ap. sylvaticus, Mus musculus, Myodes 

glareolus, Ondatra zibethicus and R. rattus. Protozoa genus was not a significant moderator 

for six of the seven species tested (Figure 2.6, Table 2.8). The muskrat (O. zibethicus) is the 

exception, with Giardia prevalence in the gut eukaryome (64.2%) being significantly higher 

compared to Cryptosporidium prevalence (29.2%). Furthermore, testing for differences in 

Giardia prevalence among host species shows that Giardia prevalence is significantly higher 

in the gut eukaryome of O. zibethicus, compared to Giardia prevalence in Castor canadensis, 

M. musculus and R. rattus (QM = 18.8, p < 0.001, k = 65, Figure 2.7).  

Table 2.7. The average gut protozoa prevalence for each rodent species. Protozoa 

richness is the number of protozoa genera found within the gut eukaryome of that host 

species.  

Species 
Protozoa 
richness 

Prevalence 
(%) 

Sample 
size (k) 

95% CI 

Lower Upper 

Apodemus agrarius 

 

3 25.8 29 11.8 42.0 

Apodemus flavicollis 3 23.3 54 14.9 32.6 

Apodemus speciosus 4 33.1 12 3.1 71.8 

Apodemus sylvaticus 7 23.2 43 13.5 34.2 

Castor canadensis 3 6.3 27 2.1 11.8 

Dipodomys merriami 1 14.1 11 1.4 33.0 

Dipodomys ordii 1 5.2 10 0.0 26.7 

Microtus agrestis 8 43.4 23 21.0 67.0 

Microtus arvalis 4 42.5 22 10.3 77.9 

Microtus pennsylvanicus 5 36.2 10 14.3 60.8 

Mus musculus 8 7.1 68 3.0 12.4 

Myodes glareolus 8 32.5 51 22.1 43.6 

Ondatra zibethicus 7 47.8 26 31.5 64.3 

Peromyscus 
maniculatus 

6 5.9 19 0.0 19.2 

Rattus norvegicus 13 9.1 55 3.3 16.7 

Rattus rattus 11 23.6 41 14.0 34.4 

Sciurus carolinensis 3 70.4 15 26.6 99.9 

Sciurus vulgaris 3 53.8 10 25.6 81.0 

Sigmodon hispidus 5 13.0 12 5.6 22.1 
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Figure 2.6. The average prevalence of the protozoa identified in seven host 

species. Prevalence is double-arcsine transformed and the x-axis scale is species-

specific. The black point indicates the estimated average prevalence. Bold lines 

indicate 95% CIs for the average prevalence and thin lines indicate the 95% prediction 

intervals. The size of the points are scaled to precision and k indicates the number of 

records for that protozoa. The back-transformed predicted prevalence percentage is 

provided next to the protozoa genus label. 
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Table 2.8. Meta-regression statistics testing for the effect of protozoa genus on 

protozoa prevalence for seven rodent species. Each host species was tested in a separate 

model. Only protozoa genera with ≥ 10 records were included. k is the number of data records 

included in the model and marginal R2 indicates how much variance in prevalence is explained 

by the model. QM is the test statistic for the effect of the protozoa genus moderator in the 

model. The host species for which protozoa genus had a significant effect of protozoa 

prevalence are highlighted in bold.  

Species k Marginal R2 QM p value 

Apodemus agrarius 27 0.053 0.17 0.678 

Apodemus flavicollis 48 0.042 0.21 0.648 

Apodemus sylvaticus 34 0.124 1.63 0.202 

Mus musculus 52 0.068 3.03 0.220 

Myodes glareolus 38 0.005 0.18 0.674 

Ondatra zibethicus 26 0.200 5.40 0.020 

Rattus rattus 25 0.021 0.41 0.522 

 

 

 

Figure 2.7. The prevalence of Giardia in four rodent host species. Prevalence is double-

arcsine transformed. The black point indicates the estimated average prevalence. Bold lines 

indicate 95% CIs for the average prevalence and thin lines indicate the 95% prediction 

intervals. The size of the points are scaled to precision and k indicates the number of records 

for that species. The back-transformed predicted prevalence percentage is provided next to 

the host species label.   
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2.3.3 Factors contributing to differences in prevalence 

There was no evidence that geographical variation is contributing to differences among rodent 

species in the prevalence of protozoa in the gut eukaryome (Table 2.9, Figure 2.8). 

Furthermore, rodent host sociality does not affect protozoa prevalence, as measured by seven 

variables: home range size; dispersal distance; density; social system; binary social system; 

development type; and mating system (Figures 2.9 and 2.10, Table 2.10). 

Table 2.9. Meta-regression statistics testing for the effects of geographical moderators 

on protozoa prevalence. All three geographical moderators were tested in the same model. 

Interactions terms with continent were included for latitude and longitude. Protozoa genus was 

included as an interaction term for all three geographical moderators. Only protozoa genera 

with ≥ 10 records were included. 225 data records were included in the model. QM is the test 

statistic for the effect of each moderator in the model.  

Moderator 

Geographical 
moderator 

Continent 
interaction term 

Protozoa interaction 
term 

QM p value QM p value QM p value 

Continent 4.08 0.537   17.9 0.653 

Latitude 1.08 0.299 6.88 0.230 3.38 0.760 

Longitude 0.39 0.533 6.78 0.238 3.26 0.353 

 

 

Figure 2.8. The prevalence of protozoa according to continent. Prevalence is double-

arcsine transformed. The black point indicates the estimated average prevalence. Bold lines 

indicate 95% CIs for the average prevalence and thin lines indicate the 95% prediction 

intervals. The size of the points are scaled to precision and k indicates the number of records 

for that continent. The back-transformed predicted prevalence percentage is provided next to 

the continent label.  
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Figure 2.9. Protozoa prevalence according to A) host home range size and B) host 

density. Points are weighted according to precision. The solid line indicates the predicted 

prevalence from the meta-regression model, and the shading is 95% CIs.   

A 

B 
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Figure 2.10. The prevalence of protozoa according to four host sociality variables. A) average dispersal distance, B) development type, C) 

social system (binary), and D) mating system (binary). Prevalence is double-arcsine transformed. The black point indicates the estimated average 

prevalence. Bold lines indicate 95% CIs for the average prevalence and thin lines indicate the 95% prediction intervals. The size of the points are 

scaled to precision and k indicates the number of records for that subgroup. The back-transformed predicted prevalence percentages are provided 

next to the subgroup labels. 

C 

B A 

D 
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Table 2.10. Meta-regression statistics testing for the effects of host sociality on 

protozoa prevalence. Each moderator was tested in a separate model. Protozoa genus was 

included as an interaction term in all models. Only protozoa genera with ≥ 10 records were 

included. k is the number of data records included in the model and marginal R2 indicates how 

much variance in prevalence is explained by the model. QM is the test statistic for the effect of 

each sociality moderator in the model. Moderators with a significant interaction effect are 

highlighted in bold.  

Moderator k Marginal R2 
Life style trait Interaction term 

QM p value QM p value 

Home range 510 0.103 1.06 0.303 10.9 0.093 

Density 259 0.152 1.70 0.192 3.58 0.733 

Dispersal 

distance 

88 0.102 1.65 0.198 4.89 0.087 

Development 

type 

607 0.084 0.02 0.880 7.09 0.312 

Social system 551 0.140 10.7 0.152 33.4 0.220 

Social groupinga 576 0.100 0.09 0.765 6.83 0.447 

Mating system 451 0.091 < 0.001 0.992 0.68 0.878 

Lifestyle 988 0.116 1.06 0.983 57.3 0.003 

 a Binary social system: solitary vs. group living 

Variation in host lifestyle did not significantly affect protozoa prevalence. However, there was 

a significant interaction between the host lifestyle and protozoa genera (Table 2.10), thus how 

the prevalence of the protozoa found in the gut eukaryome differs among host lifestyles is 

dependent on the protozoa genus examined. Five host lifestyles were individually analysed 

further. In three of five lifestyles, protozoa genus had a significant effect on prevalence (Table 

2.11). Eimeria had a significantly higher prevalence in the gut eukaryomes of arboreal and 

fossorial rodents (82.9% and 40.8%) compared to the other protozoa genera present in these 

rodents (Figure 2.11). Eimeria was also significantly more prevalent in the gut eukaryome of 

terrestrial rodents compared to Cryptosporidium (26.8% and 15.0%, respectively). 

Additionally, Trichomonas was significantly more prevalent in the gut eukaryome of terrestrial 

rodents (28.5%), compared to Entamoeba (8.9%) and Cryptosporidium. Different protozoa 

genera did not have a significantly different prevalence in both semi-aquatic and semi-fossorial 

rodents.
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Table 2.11. Meta-regression statistics testing for the effect of protozoa genus on protozoa prevalence for five different host lifestyles. 

Each lifestyle was tested in a separate model. Only protozoa genera with ≥ 10 records were included. k is the number of data records included 

in the model and marginal R2 indicates how much variance in prevalence is explained by the model. QM is the test statistic for the effect of the 

protozoa genus moderator in the model. Lifestyles for which protozoa genus had a significant effect of protozoa prevalence are highlighted in 

bold. p values are shown for post hoc comparisons between those protozoa genera with significant differences.  

Lifestyle 
Meta regression statistics Post hoc comparisons 

Marginal R2 QM p value Comparison p value 

Arboreal (k = 62) 0.507 33.8 < 0.001 Cryptosporidium: Eimeria <0.001 

Fossorial (k = 76) 0.254 15.9 0.001 

Cryptosporidium: Eimeria 0.019 

Eimeria: Entamoeba 0.023 

Eimeria: Giardia 0.001 

Semi-aquatic (k = 86) 0.039 3.45 0.178 NA NA 

Semi-fossorial (k = 84) 0.025 1.37 0.242 NA NA 

Terrestrial (k = 547) 0.070 26.3 < 0.001 

Cryptosporidium: Eimeria 0.007 

Cryptosporidium: Trichomonas 0.017 

Entamoeba: Trichomonas 0.045 
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Figure 2.11. The average prevalence of the protozoa identified in five 

host lifestyles. Prevalence is double-arcsine transformed. The black point 

indicates the estimated average prevalence. Bold lines indicate 95% CIs for 

the average prevalence and thin lines indicate the 95% prediction intervals. 

The size of the points are scaled to precision and k indicates the number of 

records for that protozoa. The back-transformed predicted prevalence 

percentage is provided next to the protozoa genus label. 
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2.3.4 Assessing bias in the dataset 

2.3.4.1 Methodological bias 

Eight different DNTs were identified in the literature search. The most common were flotation 

(550 records), staining (185) and PCR (120). 163 records were produced using mixed DNTs. 

The least common DNTs used were ELISA (5) and sedimentation (7), which were not included 

in the meta-regression testing for an effect of DNT. There is significant variation in the 

prevalence of protozoa found in the gut eukaryome of wild rodents according to the diagnostic 

method used to identify protozoa infections (QM = 23.62, p < 0.001, k = 1,225, Figure 2.12). 

Post hoc comparisons indicated that PCR-based DNTs identified a significantly lower 

prevalence of protozoa in the gut eukaryome (13.2%) compared to microscopy, flotation, and 

staining DNTs (38.3%, 37.5% and 32.4% respectively). Using multiple DNTs to identify 

protozoa in the same hosts did not increase the calculated prevalence in comparison to using 

just one DNT (except PCR-based DNTs).  

A meta-regression did not detect a significant relationship between study precision and 

protozoa prevalence (QM = 0.920, p = 0.338, k = 1,237), indicating that across the whole 

dataset, larger sample sizes do not reveal a higher prevalence of protozoa.  

2.3.4.2 Testing for publication bias 

The trim-and-fill test detected asymmetry in the funnel plot, with 187 missing effect sizes being 

added above the mean (Figure 2.13). Adding these 187 effect sizes adjusted the overall 

protozoa prevalence from 23.7% (95% CI 4.78-48.5, k= 1,237) to 32.9% (CI 30.6-35.1, k = 

1,424). There was no change in prevalence over time (QM = 0.023, p = 0.880, k = 1,015).  
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Post hoc comparisons p value 

PCR: Flotation <0.001 

PCR: Microscopy 0.017 

PCR: Mixed 0.038 

PCR: Staining 0.024 

 

Figure 2.12. The average prevalence of the protozoa according to the diagnostic 

technique. Prevalence is double-arcsine transformed. The black point indicates the estimated 

average prevalence. Bold lines indicate 95% confidence intervals for the average prevalence 

and thin lines indicate the 95% prediction intervals. The size of the points are scaled to 

precision and k indicates the number of records for that protozoa. The back-transformed 

predicted prevalence percentage is provided next to the diagnostic technique label. p values 

are shown for post hoc comparisons between those diagnostic techniques with significant 

differences.   
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Figure 2.13. Funnel plot indicating the trim-and-fill results. The X-axis is the double-

arcsine transformed protozoa prevalence. The inverse of the standard error on the Y-axis 

represents sample size, where a larger inverse standard error equates to a larger sample size. 

Filled circles indicate the prevalences extracted from the data whereas open circles indicate 

missing prevalences. The vertical dotted line indicates the predicted average prevalence when 

including the missing effect size, and the curved dashed lines are 95% CIs.   
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2.4 Discussion 

2.4.1 The host range of protozoa 

44 protozoa genera were identified in the systematic literature search. All five groups of 

protozoa known to reside within the mammalian gut eukaryome were identified (Parfrey et al., 

2011; Parfrey et al., 2014; Hamad et al., 2016). Some genera, e.g. Cryptosporidium, Eimeria, 

Entamoeba, and Giardia, occurred in 30 or more host species, indicating it is a common 

member of the rodent gut eukaryome. This finding is consistent with their wide host range 

across other vertebrate taxa (Appelbee, Thompson and Olson, 2005; Ryan, Fayer and Xiao, 

2014; Duszynski, 2021; Zanetti et al., 2021). Blastocystis was found in only eight rodent 

species in the present study, which contrasts to reports of a wide host range (Alfellani et al., 

2013). Isospora had a wide host range (22 host species), contrasting to previous suggestions 

that rodents are not natural hosts of Isospora (Trefancová et al., 2019). For protozoa taxa 

found in the eukaryome of many host species, there has likely been adaptation and 

diversification to achieve the broad host range identified (Stensvold and Clark, 2016; Seabolt 

et al., 2021). However, it is also important to note that the protozoa found in the gut eukaryome 

of multiple host species in the present study are typically considered to be parasitic. Thus, this 

result may instead reflect a sampling bias towards parasitic protozoa, leading to an 

underrepresentation of commensal/mutualistic protozoa in the gut eukaryome.  

In comparison, some protozoa genera were found in the gut eukaryome of only one or two 

host species, thus likely having a narrower host range. The ciliate Balantidium was found in 

only two host species, R. norvegicus and Heterocephalus glaber. This is consistent with 

reviews suggesting that the mammalian host range of Balantidium is generally limited to pigs 

and primates, with rats acting as potential carriers (Schuster and Ramirez-Avila, 2008). 

Thirteen Ciliophoran protozoa genera (Class: Litostomatea) identified in the present study 

were described from a single host species, the capybara. This is consistent with previous 

reports of the high host specificity of Litostomatea protozoa (Dehority, 1986). The protozoa 

Caryospora, Toxoplasma and Sarcosystis were each found to be reported from only one host 

species. Rodents can act as intermediate hosts of these taxa, with the protozoa persisting in 

muscle tissues, rather than in the gut lumen (Kim et al., 2011; Stacy et al., 2019; Guardone et 

al., 2022). Their limited host range in the present study suggests that whilst rodents may be 

considered intermediate hosts, these protozoa are not capable of prolonged colonisation of 

the gut. 

Defining the host range of protozoan taxa needs to consider the matter of accurate protozoa 

identification. Incorrect identification of protozoa is common, particularly when only using 

phenotypic traits (Long and Joyner, 1984; Tenter et al., 2002). Furthermore, the idea of a 

protozoan species only being able to infect one host species can led to the proposal of a new 
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protozoa species when a protozoan is identified from a previously unknown host species 

(Wilber et al., 1998; Poulsen and Stensvold, 2016). In turn, this could underestimate the host 

range of protozoan species. To avoid this complication in the present analysis, protozoa data 

were collected at the genus level, rather than species. However, even at the protozoa genus 

level, definitions of host range can be affected by changing protozoa taxonomy. In the present 

review, Trichomonas was reported from 21 rodent species, despite being more commonly 

associated with the digestive tract of birds or the human vaginal microbiome (Malik et al., 

2011). This would suggest that Trichomonas has a wide host range among vertebrates. 

However, some Trichomonas spp. are synonymous with Tritrichomonas spp. (Burr et al., 

2012). Tritrichomonas is described in the laboratory rodent gut microbiome (Escalante et al., 

2016), but was only reported in one wild rodent species in the present study. Combining the 

presence records of the synonymous Trichomonas and Tritrichomonas spp. would provide a 

more accurate assessment of the rodent host range. Doing this leads to the conclusion that 

Tritrichomonas has a wide rodent host range. Similarly, Spironucleus muris is known to 

colonise the gut of many laboratory rodent species (Jackson et al., 2013) but Spironucleus 

was only reported from three wild rodent species in the current literature survey. However, 

Spironucleus spp. are often misidentified as Hexamita spp. and reclassifications are common 

(Jørgensen and Sterud, 2007; Jackson et al., 2013). Hexamita, whilst being better known for 

infecting fish and birds (Uldal and Buchmann, 1996; Cooper et al., 2004), has records in four 

rodent species. Combining Spironueclus and Hexamita presence records leads to the 

conclusion that it has a wide rodent host range. Clarifying protozoa taxonomy would help 

improve understanding of the host range of these gut protozoa in wild rodents.   

Three of the protozoa genera identified in wild rodents in the present study – Adelina, Klossia, 

and Monocystis – are also known to infect arthropods and earthworms (Field and Michiels, 

2005; Bekircan and Tosun, 2021; Zeldenrust and Barta, 2021).  While these rodent records 

could be true infections of rodents, it is also possible that their presence reflects the rodent 

ingestion of arthropods and/or earthworms infected with these protozoa. Furthermore, the 

amoebae Acanathomoeba spp. and Amoeba spp. are typically considered to be free-living 

(Rodríguez-Zaragoza, 1994) but were each identified from one rodent species. These putative 

rodent infections are more likely transient infections, rather than true members of the rodent 

gut eukaryome. Similarly, the genus Pharyngomonas, originally Trichomastix (Park and 

Simpson, 2015), was described from the naked mole rat, Heterocephalus glaber, though it is 

a halophilic protozoan (Park and Simpson, 2015) and so it unlikely a natural resident of naked 

mole rat gut.  
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2.4.2 Protozoa prevalence is heterogenous among host species 

This analysis has found that the global protozoan prevalence in wild rodents is 23.7%. This 

estimate is slightly higher than previous prevalence estimates for individual protozoa genera 

in wild rodents e.g. 18%, 19.8% and 20.1% in Blastocystis, Cryptosporidium and Giardia, 

respectively (Li et al., 2017; Zhang et al., 2021; Barati et al., 2022). It is important to note that 

this global estimate may be an underestimation if considering prevalence irrespective of 

protozoa genus, as many articles surveyed for a particular genus/species of protozoa, rather 

than generic protozoa infection. 

Whilst there was a significant difference in the protozoa prevalence among rodent host 

species, there was no difference in the prevalence of different protozoa genera within a host 

species. This finding, combined with no evidence of geographical effects on protozoan 

prevalence, suggests that the rodent species-level effect applies to a wide range of different 

protozoa, perhaps underlined by host species-specific traits or wider demographic effects. The 

exception to this finding was the muskrat, Ondatra zibethicus, which had a significantly higher 

prevalence of Giardia compared to Cryptosporidium. Giardia cysts are detected in water more 

frequently than Cryptosporidium, which may explain the comparatively higher prevalence of 

Giardia in the semi-aquatic muskrat (Cacciò et al., 2005; Ganoe et al., 2020). There were no 

differences in prevalence among different rodent families. For some rodent families – 

Cricetidae, Muridae and Sciuridae – there were protozoa-level effects, which warrants further 

investigation into the underlying cause and mechanism. 

2.4.3 Host behaviours alone do not explain prevalence variation 

The meta-analysis found no effect of host sociality on protozoan prevalence. This is perhaps 

surprising given that there are rodent species-level effects (above, 2.4.2) and an increasing 

awareness of the importance of social interactions affecting transmission of gut microbes 

(Grieneisen et al., 2017; Raulo et al., 2021). In particular, no effect of host population density 

or home range size was identified, despite prior evidence that both are associated with the 

chance of incidental transmission of gut microbes in wild mammals (Li et al., 2016; Sarkar et 

al..2020; Wikberg et al.,2020). Thus, the findings presented here suggest that other rodent 

species-level traits are potentially more important than sociality in driving protozoa prevalence 

variation. Conversely, the majority of data records included in these meta-analyses were from 

protozoa typically considered to be parasitic. Therefore, it is important to consider that these 

findings may not be representative of all protozoa in the gut eukaryome, but only those that 

cause disease. Indeed, when considering parasitic taxa only, other work has shown there is 

no relationship between rodent sociality and endoparasite load (e.g. Bordes et al., 2007; 

Hillegass et al., 2008), supporting the findings of the present study. Including data on 

commensal/mutualistic protozoa may highlight how protozoa pathogenicity is an important 
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consideration as to how host behaviours may be associated with protozoa transmission and 

thus prevalence in the gut eukaryome.  

Other caveats to the results of the meta-analysis presented here are two-fold. Firstly, host 

sociality was defined at species-level, but intraspecies variation in sociality might be important 

in parasite transmission variance (e.g. Friant et al., 2016) with individual social behaviours 

varying temporally and spatially (Apfelbach et al., 2005; Previtali et al., 2009; Rémy et al., 

2013; Wilson et al., 2017; Hawley et al., 2021). Secondly, this meta-analysis did not account 

for other aspects of sociality (e.g. grooming behaviour, parent-infant feeding) that may impact 

protozoa transmission and prevalence (Sarkar et al., 2020). Thus, additional data are needed 

to tease apart which social behaviours, if any, are affecting protozoan transmission and so 

protozoan prevalence. 

There was no effect of host lifestyle on protozoa prevalence. Theory suggests that arboreal 

and semi-arboreal rodents would have a lower protozoan prevalence (compared to hosts with 

other lifestyles) because arboreal lifestyles disfavour faecal-oral protozoan transmission 

(Gilbert, 1997; Barelli et al., 2020a). However, this idea is not supported by the findings 

reported here. Furthermore, this meta-analysis found no differences in protozoan prevalence 

between semi-aquatic rodents and those with other lifestyles. This suggests that protozoan 

transmission is not higher in semi-aquatic species compared with non-semi-aquatic rodents. 

This contrasts to theory suggesting that parasite and pathogen longevity, and thus 

opportunities for transmission, in water is increased compared to terrestrial environments 

(Behringer et al., 2018; Ganoe et al., 2020). These findings may be due to covariation between 

host lifestyle and other factors that may affect protozoa transmission and thus prevalence. For 

example, arboreality and group size are negatively correlated, and if each has different effects 

on protozoan transmission, these host effects would be masked by each other (Sarkar et al., 

2020).  

For certain lifestyles – arboreal, fossorial, and terrestrial – there were protozoa-level effects. 

Eimeria prevalence, compared to other protozoa genera, was higher in arboreal and fossorial 

rodents and Trichomonas and Eimeria, compared to other protozoa, were more prevalent in 

terrestrial rodents. However, it is important to note that these findings may be driven by 

protozoa-level effects within the Sciuridae, Muridae, and Cricetidae (above, 2.4.2). 

Specifically, i) Eimeria was more prevalent in the Sciuridae, compared to other protozoa 

genera, and many Sciuridae species were classed as either arboreal or fossorial and ii) 

Trichomonas and Eimeria were more prevalent in the Muridae and Cricetidae, compared to 

other protozoa genera, and many Muridae and Cricetidae species were classed as terrestrial 
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rodents. Thus, it is likely that the protozoa-levels effects seen within the arboreal, fossorial, 

and terrestrial rodents are confounded by rodent family-level taxonomic effects. 

The finding of protozoa-level effects throughout these analyses are likely driven by the 

diversity of traits displayed by the different protozoa genera (Chabé et al., 2017). Thus, 

protozoa are perhaps too diverse to be generalised into one group for eukaryome research. 

A better approach may be to consider protozoan species separately to identify what 

contributes to their presence in the eukaryome. Alternatively, a guild-based approach could 

be used to group protozoa according to their similarities in how they interact with the host and 

with other protozoa, as seen with bacteria (Wu et al., 2021). 

2.4.4 Considerations of diagnostic method and publication bias  

This analysis found that PCR diagnoses resulted in reports of lower protozoa prevalence, 

compared with other diagnostic methods. This was unexpected because PCR is typically 

highly sensitive (McHardy et al., 2014; Compton, 2020). However, the lower PCR-reported 

prevalence may be due to difficulties extracting DNA from protozoan (oo)cycts, whereas 

(oo)cysts are often readily detected (and diagnosed) by microscopic examination (Hawash, 

2014). Furthermore, it is important to note PCR diagnosis (and ELISA) are often very specific, 

only targeting one protozoan species or genus whereas other diagnostic methods can detect 

a broader range of taxa (den Hartog et al., 2013; Compton, 2020). To get a better view of the 

entire protozoa community in the gut eukaryome, metagenomic sequencing (with more 

rigorous DNA extraction) or multiple diagnostic methods may be more appropriate (Lokmer et 

al., 2019). This would also help to reduce the potential sampling bias towards parasitic taxa 

that is discussed above (section 2.4.1). For example, the literature search presented here 

identified only three protozoa in the gut eukaryome of the striped field mouse (Apodemus 

agrarius), which were identified by targeted surveys for parasitic taxa. In comparison, an 18S 

amplicon sequencing survey, published after this literature search took place, identified at 

least 15 protozoa genera in the caecal eukaryome of A. agrarius, some of which are 

considered commensal taxa (Kim et al., 2022). 

Publication bias was detected in the dataset, driven by a lack of studies reporting high 

prevalences. However, publication bias (defined in 2.2.5.4) normally arises from a tendency 

to not publish studies with less significant results and/or smaller sample sizes (Shi and Lin, 

2019). Conversely, one might expect a publication bias in favour of reporting high prevalence 

of protozoa, and given the comparative rarity of such reports, this suggests that high protozoan 

prevalence is actually rare. The current study also identified a significant, positive relationship 

between the surveying effort of a rodent species, and the number of protozoa genera reported 

from that host species. This emphasises the need to continue to undertake wider surveys of 
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rodents and other animals, particularly those less frequently studied, to find the full biodiversity 

of gut protozoa.  

2.4.5 Conclusion  

This analysis is the first, of which I am aware, synthesis of the description of the gut protozoa 

of wild rodents, providing an unbiased summary of host records for protozoa genera. The 

analysis also provides the first estimate of protozoa global prevalence in wild rodents, and 

points to host species-level effects affecting protozoan prevalence, although the exact cause 

could not be identified. To further the understanding of the context-specific role of host 

behavioural traits, better data on a host’s individual- and population-level traits will be required. 

Furthermore, considering the transmission mechanism of gut protozoa would complement 

studies aiming to investigate host drivers of protozoa prevalence in the eukaryome.  

This meta-analysis has identified some key limits within the literature that limit our ability to 

identify factors affecting protozoa presence in the gut eukaryome. Firstly, the extensive 

protozoa taxonomic reclassifications and revisions make it hard to define, even at the genus 

level, which protozoa can colonise the gut of which rodent hosts. To this end, there is a need 

for a consensus on the taxonomy and identification of different gut protozoa. Secondly, there 

is a current bias in the literature towards reports of disease-causing protozoa, whilst the 

commensal taxa are less frequently surveyed. Future studies would benefit from a broader 

approach that allows the identification of all potential gut protozoa, rather than focusing on 

those that are already well known. Finally, I make the case that studies need to consider the 

context of the host and its biology to fully understand how different host traits and behaviours 

interact to impact the composition of the eukaryome.  
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Chapter 3: Using flow cytometry to quantify and 

describe the gut eukaryome of house mice 

Abstract 

Accurate characterisation of the diversity and composition of the mammalian gut microbiome 

is critical for understanding host-microbiome interactions. As such, quantifying the absolute 

abundance of microbial cells in the gut is advantageous compared with the more commonly 

used measurement of relative abundance. However, absolute quantification methods of gut 

microbes have rarely been optimised for eukaryotic taxa. In this chapter, I explore the use of 

flow cytometry to identify and quantify microbial eukaryotes from faecal samples. Specifically, 

I aimed to identify and quantify eukaryotic cells by fluorescently staining their endoplasmic 

reticulum, a eukaryotic-specific organelle. Subsequent separation of the putative eukaryotic 

cells from prokaryotic cells by fluorescent-activated cell sorting (FACS) allows the use of 18S 

rRNA sequencing to identify, and thus quantify, the taxa in the gut eukaryome. I tested the 

accuracy of the proposed method by sequencing putative eukaryotic and prokaryotic cells 

from FACS-processed faecal samples from captive house mice (Mus musculus domesticus). 

I found that the eukaryotic-specific stain was not accurately identifying solely eukaryotic taxa. 

Additionally, I compared FACS-processed faecal samples to non-FACS-processed faecal 

samples which showed that FACS-processing was artificially altering the gut eukaryome 

composition of the house mice. These data show that the proposed method is unsuitable for 

quantification of taxa in the gut eukaryome without further optimisation. In summary, this study 

highlights the complexity of quantifying gut eukaryotes and provides the groundwork of a 

method of quantification that future studies can build on.  
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3.1 Introduction  

3.1.1 Diversity metrics used to understand the gut microbiome 

The gut microbiome is a large community of many, diverse microbes, thus an ecological 

approach is required to understand interactions among these microbes (McDonald et al., 

2020; Coyte et al., 2021). Diversity is a widely used quantitative measurement in ecology that 

has been applied to gut microbiome studies (Johnson and Burnet, 2016; Roswell et al., 2021). 

In particular, diversity metrics are important for measuring how taxa in the gut microbiome 

respond to a changing environment, whether this stems from interactions between and among 

species, or from interactions with the host (Lozupone et al., 2012). Despite the continual use 

of diversity measures to understand the ecology of the gut microbiome, the methodologies 

and approaches used in microbiome studies are not standardised (Willis, 2019; Risely et al., 

2021b). Here I briefly outline the use of common diversity metrics in gut microbiome studies 

(see Wagner et al. (2018) for an in depth review).  

Alpha and beta diversity are two fundamental, commonly used, measures of microbiome 

diversity (Jost, 2007; Chao and Chiu, 2016; Roswell et al., 2021). Alpha diversity summarises 

the gut microbiome community, and is calculated using species richness (number of species) 

and/or species evenness (distribution of the abundance of different taxa) (Willis, 2019). As 

species richness and species evenness increase, so does alpha diversity. The two most 

common measures of alpha diversity are the Shannon and Simpson indices. Simpson’s index 

represents the probability that two random microbes within a community belong to different 

species, whereas Shannon’s index is the probability of correctly predicting the identity of a 

random microbe in the community (Nagendra, 2002; Morris et al., 2014; Roswell et al., 2021). 

Both Shannon’s and Simpson’s indices are used in gut microbiome studies: some studies use 

both to measure alpha diversity (Goertz et al., 2019; Strickland et al., 2021), whereas others 

use only one (Linnenbrink et al., 2013; Jenkins et al., 2018). Furthermore, some studies use 

neither, opting for a different measure of alpha diversity e.g. Chao 1 richness (Weldon et al., 

2015).  

Beta diversity, in contrast to alpha diversity, measures the difference in species composition 

between two gut microbiomes (Koleff et al., 2003; Chao and Chiu, 2016). As two gut 

microbiomes differ more from one another, because they share less species, beta diversity 

increases. Beta diversity can be used to measure which factors correlate with changes in the 

gut microbiome community composition between hosts or within the same host at different 

time points (Anderson et al., 2011; Lozupone et al., 2012). In gut microbiome studies, common 

beta diversity measures include Bray-Curtis dissimilarity and UniFrac distance (Linnenbrink et 

al., 2013; Goertz et al., 2019; Suzuki et al., 2019a; Strickland et al., 2021).  
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3.1.2 Calculating taxa abundance in gut microbiome studies 

Measuring diversity in the gut microbiome requires data on the abundance of the microbial 

taxa present. Commonly, these abundance data are derived from amplicon sequencing 

methods. Briefly, amplicon sequencing amplifies and then sequences specific target gene 

fragments from DNA extracted from microbial cells. Genes commonly amplified and 

sequenced are those that are conserved among species (e.g. the 16S rRNA gene of bacteria), 

but which still contain sufficient sequence diversity among taxa to identify species (Větrovský 

and Baldrian, 2013). After sequencing, gene sequences are compared and each unique 

sequence identified is defined as an amplicon sequence variant (ASV). The number of reads 

(sequences) per ASV is used as a measure of ASV abundance, thus allowing diversity metrics 

to be calculated using this ASV abundance data. Consequently, by assigning taxonomy to an 

ASV, one can then estimate the abundance of that taxon in the sample. For example, if there 

are two ASVs in a sample, each with an read abundance of 100, the taxon assigned to each 

of the ASVs are equally abundant in that gut microbiome sample.  

Despite its common use in gut microbiome studies, there are issues with using ASV read 

abundance to calculate diversity metrics (Gloor et al., 2017; Morton et al., 2019). In particular, 

the total number of reads in a sample (read depth) can vary among samples. Variation in read 

depth can result from random technical variation in the sequencing of different samples or 

from differences in the initial quantity of DNA to be sequenced (Gloor et al., 2017). Thus, some 

ASVs may appear to be more abundant in some samples for non-biological reasons. To 

account for this, many studies compare the relative abundances of ASVs rather than absolute 

abundances (Gloor et al., 2017; Zaheer et al., 2018). For example, if a sample has 10 ASVs, 

each with an absolute abundance of 10, the total read depth is 100 and the relative abundance 

of each ASV is 10%. If a second sample had the same ASVs, but each with an absolute 

abundance of 100, the total read depth is increased to 1,000. However, the relative abundance 

of each ASV would still be 10%, thus accounting for non-biological variance in read depth. 

Rarefaction is another approach used to account for differences in read depth among samples 

(Weiss et al., 2017). Rarefaction is done by randomly discarding reads from those samples 

with a comparatively greater read depth until all samples have the same total read depth. 

However, the problem with rarefaction is that it can result in the loss of large quantities of data 

(McMurdie and Holmes, 2014) and so can result in the loss of low abundance ASVs, with 

consequent effects on estimates of diversity. Studies can also compare the ratios of taxa 

abundance among gut microbiomes, to determine which taxa have changed the most relative 

to other taxa (Morton et al., 2019; Barlow et al., 2020). Examples of methods developed using 

this approach include analysis of composition of microbiomes (ANCOM) and Gneiss (Mandal 

et al., 2015; Morton et al., 2017).  
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Further to the absolute abundance of ASVs being dependent on the read depth of a sample, 

sequencing depth can also impact the number of ASVs identified. Specifically, with deeper 

sequencing, more ASVs are identified, and these ASVs are usually from low-abundance taxa 

(Zaheer et al., 2018). Thus, if a lower sequencing depth is used (often because of budgetary 

limits), low-abundance taxa are less likely to be sequenced which therefore under-represents 

diversity (Sims et al., 2014; Zaheer et al., 2018). Furthermore, even when very low-abundance 

ASVs are captured in microbiome studies, they are often excluded from microbiome analyses 

because they can be considered to be sequencing errors or contamination of the sample (Cao 

et al., 2021).  

The gene copy number (GCN) of the targeted gene when amplicon sequencing can also 

contribute to issues with using ASV abundance data for calculating diversity metrics. Often, 

the GCN of commonly targeted genes is not equal across microbial taxa (Stoddard et al., 

2015; Lofgren et al., 2019; Salmaso et al., 2020). Taxa with a high GCN will have more 

amplicons generated per genome during PCR amplification, compared to taxa with a low GCN. 

Thus, for high GCN taxa, more sequences will be generated per individual cell causing these 

taxa to appear more abundant than they actually are (Silverman et al., 2021), skewing diversity 

measures and subsequent analyses. Variation in GCN among taxa can be addressed by 

incorporating the GCN into calculations of relative abundance. As such, publicly available 

databases can be used to access GCN information (Stoddard et al., 2015). If GCN is known, 

correcting for variance can be done by dividing the absolute abundance of taxa, estimated 

from ASV abundance, by the GCN in their genome (Vandeputte et al., 2017; Jian et al., 2020). 

However, accounting for GCN does not always improve estimates of taxa abundance, 

especially if the GCN of many taxa is unknown (Louca et al., 2018; Starke et al., 2021).  

3.1.3 Microbial load quantification 

Microbial load is defined as the absolute number of microbial cells in a sample, which can vary 

ten-fold among individuals (Vandeputte et al., 2017). However, ASV abundance data does not 

provide accurate, quantitative information about microbial load, nor does it identify differences 

in microbial load among samples. For example, if two samples have the same species 

evenness, but one has a much higher microbial load, the relative abundances of the taxa will 

appear similar, despite one sample having many more individual cells of each taxon (Stämmler 

et al., 2016). Knowing the microbial load of samples allows a more accurate view on microbial 

interactions within the gut microbiome, because it can better identify the co-variation in taxa 

abundance that is used to infer interactions among taxa (Vandeputte et al., 2017).  

The number of studies now incorporating the quantification of microbial load into their analyses 

of the gut bacterial microbiome (bacteriome) is increasing, with three common approaches 
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being used: spiking, quantitative PCR (qPCR) and flow cytometry (FC) (Galazzo et al., 2020; 

Wang et al., 2021). Firstly, spiking involves adding known quantities of unique bacteria (or 

DNA) into samples prior to DNA extraction (Stämmler et al., 2016; Tourlousse et al., 2017). 

The relative abundances of endogenous microbiome taxa can then be compared to the known 

abundance of the spiked-in bacteria/DNA, so allowing accurate absolute quantification of 

microbial taxa. Secondly, qPCR has been used post-DNA extraction to calculate absolute 

abundance of microbial taxa (Jian et al., 2020; Callegari et al., 2021). In gut microbiome 

studies using the 16S rRNA gene, qPCR quantifies the number of 16S rRNA gene amplicons 

in the starting faecal DNA template, to estimate the number of bacterial genomes per gram of 

faeces (Smith and Osborn, 2009; Jian et al., 2020). The estimated number of bacterial 

genomes per gram of faeces is then used in conjunction with relative abundance data from 

amplicon sequencing to calculate absolute abundance of each microbial taxon (Jian et al., 

2020). 

Flow cytometry (FC) has been used widely to quantify microbial taxa obtained from soil, water, 

and physical substrates (Whiteley et al., 2003; Prest et al., 2013; Heinrichs et al., 2021; Xu et 

al., 2021). In these studies, microbial cells were stained using fluorescent dyes and FC used 

to measure the fluorescence of individual particles, thus allowing the fluorescently-stained 

microbes to be distinguished from background debris, and then quantified. For gut microbiome 

studies, FC has been used to quantify bacterial cells in faecal samples (Vandeputte et al., 

2017). In doing so, microbial load data combined with amplicon sequencing data can both 

quantify and identify the taxa in the gut microbiome. Stained cells can also be separated from 

background debris in a process called fluorescence-activated cell sorting (FACS) for further 

work. There are many criteria by which cells can be FACS-sorted, allowing the quantification 

and identification of different cell types, depending on the biological question. For example, 

staining microbial cells for IgA – a host immunoglobulin – allowed the isolation and 

characterisation of gut microbial cells that elicited a host immune response (Palm et al., 2014). 

In addition, by staining for the presence of RNA, FACS has also been used to identify 

metabolically-active cells from the faecal microbiome (Peris-Bondia et al., 2011). Other 

examples of microbial load quantification using FACS and sequencing include: staining for 

membrane integrity, allowing the quantification of intact, damaged and dead faecal bacterial 

cells (Ben-Amor et al., 2005) and staining for nucleic acid content and cell membrane changes 

to identify the response of faecal microbial cells to xenobiotics (Maurice et al., 2013).  

3.1.4 Calculating eukaryome diversity and microbial load 

Studies of the eukaryotic taxa in the gut microbiome (eukaryome) commonly sequence 

amplicons of the 18S rRNA gene to generate taxonomy and abundance data (Scanlan and 

Marchesi, 2008; Amaral-Zettler et al., 2009; Stoeck et al., 2010; Hadziavdic et al., 2014; 
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Parfrey et al., 2014; Popovic et al., 2018). However, the 18S rRNA gene is also shared with 

the mammalian host, and mammalian DNA from host cells can dominate eukaryome DNA. In 

such cases, the dominating host DNA can block eukaryome template DNA from being 

amplified at all, severely limiting the ability to detect low abundance taxa, thus compromising 

measures of eukaryome diversity (Polz and Cavanaugh, 1998; Green and Minz, 2005; 

Pereira-Marques et al., 2019). To overcome this problem, blocking primers can be used to 

prevent host DNA from being amplified (Vestheim and Jarman, 2008) but these methods are 

not fully effective (Thompson et al., 2017; del Campo et al., 2020). Additionally, the GCN of 

the 18S rRNA gene is much more variable among eukaryotic species compared to its 16S 

counterpart (Lofgren et al., 2019; Salmaso et al., 2020; Lavrinienko et al., 2021b). Thus, for 

the eukaryome, there is an even greater challenge in using ASV abundance data to calculate 

diversity metrics, compared to the bacteriome (Gong and Marchetti, 2019). 

To this end, there is a need for an accurate method to quantify the microbial load of eukaryotic 

cells in the mammalian gut. To date, eukaryome quantification has primarily focussed on gut 

fungi (mycobiome), using spike-in or qPCR methods (Dollive et al., 2013; Haak et al., 2021; 

Rao et al., 2021). These studies have found that the mycobiome is highly variable within 

individuals, and inter-kingdom interactions contribute to the microbial load of fungal taxa 

(Dollive et al., 2013; Haak et al., 2021; Rao et al., 2021).  

The work presented here investigates the use of FC to identify and quantify all microbial 

eukaryotes in the gut microbiome, using a eukaryotic-specific stain. I hypothesise that there 

are differences in the microbial load of the gut eukaryome and bacteriome, and test this using 

the proposed quantification method. Then, I predict that there is variation among individual 

hosts in their microbial load, and test the hypotheses that differences in faecal microbial load 

may also arise from host sex and the month of sampling. Sorting of the putative eukaryotic or 

prokaryotic cells by FACS allows the use of amplicon sequencing to generate diversity metrics 

and to identify the taxa in the gut eukaryome. I use such amplicon sequencing data to confirm 

the accuracy of the eukaryotic-specific stain. Then, I aim to check that the proposed method 

does not artificially alter the gut eukaryome in comparison to traditional methods. To do this, I 

test the prediction that there are no differences in measures of eukaryome diversity and 

composition when comparing between samples processed using the proposed method and 

samples processed using a traditional methodology. If these predictions are met, the proposed 

method offers an alternative to qPCR and spike-ins for generating eukaryome microbial load 

data. In doing so, the method could then be used to improve how we calculate diversity in the 

gut eukaryome and improve understanding of the wider mammalian gut eukaryome. The work 

focussed on the faecal microbiome of captive house mice, Mus musculus domesticus.  
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3.2 Methods  

To test if FACS was achieving the aim of separating eukaryotic and prokaryotic cells from a 

faecal sample to allow the quantification of eukaryotic cells, a large-scale experiment was 

conducted (Figure 3.1). The cells at each stage of the FACS process were sequenced and 

the resulting ASVs compared to see if the aims had been achieved. The development of the 

methods used here can be found in Appendix 1.2. 

Figure 3.1. The process used to test whether FACS can separate eukaryotic cells from 

prokaryotic cells. Four stages of the process had their DNA extracted (*), which allowed 

comparisons between traditional sequencing methods and the proposed method. 
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3.2.1 Sample preparation and cell counting 

3.2.1.1 Sample preparation 

The study used three female and three male house mice from a captive colony, which was 

derived from wild mice ancestors caught from across northwest England. Three females and 

three males were used to account for potential differences in microbial load between the 

sexes. For each mouse, faecal samples were collected three times across a three-month 

period, giving a total of 18 samples. Samples were stored at -80 °C before processing. For 

each faecal sample, four different fractions were prepared (Figure 3.1): i) Direct Faecal, ii) 

Pre-Sort, iii) Eukaryotic and iv) Prokaryotic. To prepare the Direct Faecal fraction, 200 mg of 

faeces was used for DNA extraction using the QIAamp PowerFecal Pro DNA Kit (Qiagen). 

The DNA was stored at -80 °C until sequencing. This method is the standard microbiome 

preperation method and so acts as a control for the novel method tested here. To prepare the 

next three fractions, a cellular suspension was first prepared (Figure 3.1). To do this, 100 mg 

of faeces was added to 1 mL phosphate-buffered saline (PBS, Sigma-Aldrich) and incubated 

for 1 hour on ice in a 2 mL microcentrifuge tube with regular vortexing. The mixture was then 

homogenised using a pellet pestle motor (Kontes) and blue polypropylene pellet pestles 

(Sigma-Aldrich), for approximately two minutes. A new pestle was used for each sample. This 

homogenate was then centrifuged at 50 x g for 15 minutes at 4 °C to pellet faecal debris, 

leaving a supernatant of microbial cells. 100 µL of this supernatant was then transferred into 

1 mL of staining buffer (1% w/v bovine serum albumin (BSA, Sigma-Aldrich) in PBS). The 

sample was then centrifuged at 8,000 x g for 5 minutes at 4 °C to pellet the microbial cells. 

The supernatant was then discarded and the pellet resuspended in 1 mL fresh staining buffer. 

The Pre-Sort fraction (Figure 3.1) consisted of 20 µL of this suspension to which 180 µL of 

fresh staining buffer added, and this was then stored at -80 °C until DNA extraction. DNA was 

extracted from the Pre-Sort fraction using the method described in Palm et al. (2014).   

Prior to preparing the samples for FACS, a negative control was prepared, which consisted of 

40 µL of the suspended cellular suspension (above), added to 500 µL fresh staining buffer. 

The remainder of the cellular suspension was then stained for FACS. Two stains were used: 

SYBR green (SG) and ER-Tracker Red (ERT). SG stains DNA, thereby putatively staining 

living cells. The ERT specifically stains the sulphonylurea receptors of ATP-sensitive 

potassium channels, which are found predominantly on the endoplasmic reticulum, a 

eukaryotic-specific organelle, and so ERT staining should be specific for eukaryotic cells 

(Appendix 1.2).  

Staining was done by adding 1 µL of SG working solution to the remaining cellular suspension, 

followed by incubation at 37 °C for 20 minutes in the dark. The SG working solution was made 

by diluting 10 µL of SYBR green I (10,000X concentrate, S7563, InvitrogenTM) in 990 µL 
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dimethyl sulfoxide (DMSO, Sigma-Aldrich). The solution was then filtered through a DMSO-

resistant, 0.22 µm pore syringe filter using a 2.5 mL syringe, into a new microcentrifuge tube. 

This step removed contaminating bacteria from the staining solution. After staining with SG, 

the samples were washed once with 1 mL staining buffer. Then, samples were stained with 

ERT. To do this, the samples were centrifuged at 8,000 x g for 5 minutes at 4 °C to pellet the 

cells, the supernatant removed and the pellet resuspended in 1 mL of Hanks’ Balanced Salt 

Solution (HBSS, Gibco). 1 µL of ERT working solution was added to the sample and then 

incubated at 37 °C for 30 minutes in the dark. The ERT working solution consisted of 1 µL of 

ER-Tracker Red (InvitrogenTM) diluted in 999 µL of DMSO, filter sterilised as above. Once 

stained with ERT, the samples were washed once with 1 mL HBSS and then resuspended in 

1 mL staining buffer. All staining work was carried out in the dark with solutions covered. 

Samples were kept on ice, in the dark, until used in FACS.  

3.2.1.2 Flow cytometry and gating 

Flow cytometry was performed using a BD FACSAriaTM III flow cytometer. Fluorescence 

intensity was collected at 530 nm ± 30 for SG and 610 nm ± 60 for ERT. Additionally, sideward 

(SSC) and forward (FSC) scatter light data were collected. Data were processed using FACS 

Diva software and electronic gating was used to identify events that gave positive signals for 

each stain type (Figure 3.2). Measurements were performed at a pre-set flowrate of 5,000-

10,000 cells/second, using a 100 µm nozzle. A threshold value of 600 was used.  

Density plots of side scatter and green fluorescence generated from the SG stain allowed for 

the identification of events that were likely cells (Figure 3.2A) and electronic gating selected 

for these cells. These selected cells were then secondarily gated using density plots showing 

side scatter and red fluorescence generated from the ERT stain (Figure 3.2B), separating 

putative prokaryotic (ERT-) and putative eukaryotic cells (ERT+), thereby generating the 

Prokaryotic and Eukaryotic fractions, respectively (Figure 3.1).   
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Figure 3.2. Gating strategy used to separate cells according to their staining properties.  

A) Putative cells are selected based on their ability to be stained with SG (FITC-A x-axis) and 

their sideward scatter (SSC-A y-axis). Events that fall within the ‘SY+’ (green) gate are defined 

as cells. B) Putative cells are separated based on their ERT staining (PE-TxRed Yell-Grn-A x-

axis) and SSC-A. The ‘SY+ERT-’ (pink) gate selects those cells that do not stain with ERT, 

thus identifying putative prokaryotic cells. Cells in the ‘SY+ERT+’ (red) gate are classed as 

putative eukaryotic cells. FACS-sorting of the putative prokaryotic and eukaryotic cells forms 

the Prokaryotic and Eukaryotic fractions, respectively. Data are from one representative 

sample.   

A B 
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3.2.1.3 PCR confirmation of prokaryotic vs. eukaryotic gating accuracy  

PCR was used to determine if the gating strategy accurately separated prokaryotic and 

eukaryotic cell types. To do this, each fraction was PCR amplified twice, using 16S and 18S 

rRNA primers separately (Table 3.1), with the expectation that the Eukaryotic fraction would 

only result in 18S amplicons and the Prokaryotic fraction in 16S amplicons. DNA was extracted 

from the Eukaryotic and Prokaryotic fractions using the method described in Palm et al. (2014). 

1.5 µL of DNA template was used in the 15 µL PCR reaction. The cycling conditions were 2 

mins at 94 °C followed by 35 cycles of: 45 secs at 94 °C; 45 secs at 54 °C; 1 min at 72 °C, 

followed by 5 mins at 72 °C for extension. Successful amplification was defined as the 

presence of a band following gel electrophoresis on a 1% w/v Tris-acetate-EDTA (TAE) 

agarose gel run at 150 V for 30 mins.  

Table 3.1. Primers used to amplify the Eukaryotic and Prokaryotic fractions for 

confirming Prokaryotic vs. Eukaryotic gating accuracy. 

 

3.2.2 DNA sequencing and bioinformatics  

3.2.2.1 Amplicon sequencing  

To identify the eukaryotic taxa at each stage of the FACS process, 18S rRNA amplicon 

sequencing was carried out for each of the four fractions (Figure 3.1). The V4 region of the 

18S rRNA gene was sequenced using the 528F-706R primer pair (Novogene, 2023) via 250 

bp pair-end Illumina sequencing on a NovaSeq 6000 platform. Library preparation and 

sequencing was performed by Novogene Co., Ltd. Prior to sequencing, the sorted Eukaryotic 

and Prokaryotic fractions were PCR amplified as described in 3.2.1.3 to generate sufficient 

DNA for sequencing. For each sorted fraction, 1.5 µL of template DNA was amplified in five 

replicates. The amplicons from the five replicates were then pooled, purified using the 

QIAquick PCR Purification kit (Qiagen), and the DNA quantified via Qubit (Thermofisher). This 

method was repeated for those samples where more DNA was required. A blank extraction 

was used as a negative control and a mock community as a positive control (ZymoBIOMICSTM 

D3605). The Eukaryotic and Prokaryotic fractions were also sequenced by targeting the V4-

V5 region of the 16S rRNA gene, using the 341F and 806R primer pair (Novogene, 2023), 

following the same amplification and sequencing protocol as above.  

Primer 
Name 

Sequence Region Reference Target 

N341 (F) CCTAYGGGRBGCASCAG V3-V4 16S 
rRNA gene 

Novogene, 2023 Prokaryote 
N806 (R) GGACTACNNGGGTATCTAAT 

N528 (F) GCGGTAATTCCAGCTCCAA V4 18S 
rRNA gene 

Novogene, 2023 Eukaryote 
N706 (R) AATCCRAGAATTTCACCTCT 
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3.2.2.2 Bioinformatics 

Sequence data were analysed using QIIME 2 2021.2 (Bolyen et al., 2019). The paired-end 

reads were merged and the data were quality filtered and denoised using DADA2 (Callahan 

et al., 2016). Both forward and reverse reads were truncated at 200bp to account for a 

decrease in sequencing quality. The ASVs produced were then aligned using the mafft 

programme (Katoh et al., 2002) and a phylogeny based on ASV sequence similarity created 

using fasttree (Price et al., 2010). The ASVs were then assigned to taxa using a naïve Bayes 

taxonomy classifier trained against the SILVA 138 99% OTUs reference sequences (Quast et 

al., 2013; Bokulich et al., 2018). The data were then transferred into R Studio using the 

qiime2R package (v0.99.6, Bisanz, 2018) for subsequent analysis. All statistical analyses 

were carried out in RStudio. 

3.2.3 Identifying the success of the method  

3.2.3.1 Microbial load quantification  

Quantification was based on the number of FACS events gated into either the Eukaryotic or 

Prokaryotic fraction. Events in the Eukaryotic fraction represented the eukaryotic cell count 

and events in the Prokaryotic fractions represented the prokaryotic cell count. Cell counts are 

reported as microbial load (cells/g of faeces) to compare to other studies. A Pearson’s test of 

correlation was performed between Eukaryotic and Prokaryotic microbial loads. The microbial 

load of the two sorted fractions were compared using a t-test. A two-way analysis of variance 

(ANOVA) was used to assess if the sample collection month or mouse ID affected the 

microbial load. Differences in microbial load between sexes were compared using a t-test. In 

all these analyses, the microbial load abundance data were square-root transformed cell 

counts. To calculate the absolute abundance of individual microbial taxa, the proportionate 

abundance of each ASV was multiplied by the eukaryotic/prokaryotic microbial load as 

previously reported (Vandeputte et al., 2017; Jian et al., 2020). In instances where both 16S 

and 18S amplification occurred for a FACS-sorted fraction, the starting ratio of eukaryotic to 

prokaryotic cells is not known, and so this method cannot be used to calculate absolute 

abundance of these taxa.  

3.2.3.2 Confirmation of the separation of prokaryotic and eukaryotic cells 

The R phyloseq package (v1.38.0, McMurdie and Holmes, 2013) was used to filter out 

unclassified reads and singletons from the data. The number of uniquely observed 18S and 

16S ASVs was calculated for each fraction of each sample, and these were compared to 

determine how ASV representation changed during FACS processing. An ANOVA was used 

to compare how the fraction type impacted the number of unique 18S ASVs observed, whilst 

a t-test was used to compare the number of unique 16S ASVs in the Prokaryotic and 

Eukaryotic fractions.  To compare alpha diversity, Shannon’s index was calculated using the 
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phyloseq package with the number of reads for each 18S ASV used as the measure of 

abundance. Differences were tested using an ANOVA. 

3.2.3.3 Measuring changes in the eukaryome composition 

Three measures of change in inter-sample variation were calculated: i) the number of shared 

ASVs, ii) the variation within fractions, and iii) beta diversity. Firstly, to simplify analyses on 

the number of shared ASVs between samples, a maximum of 10 18S ASVs per fraction were 

examined. The limit of 10 was established because for the majority of fractions and samples, 

the 10 most abundant ASVs accounted for ≥ 70% of reads. The 10 most abundant 18S ASVs 

among samples were compared to assess which 18S ASVs were shared among samples. 

This was done for each fraction type. Secondly, the amount of variation within the fraction 

types was calculated using the betadisper function, with adjustment for sample size bias 

(vegan package, v2.5.7, Oksanen et al., 2020). The betadisper function generates the median 

distance of the samples within each fraction to the fraction centroid in multivariate space. The 

permutest function (vegan package) was used to compare the amount of variation among the 

different fractions. Thirdly, Bray-Curtis dissimilarity (BC) was used as the measure of beta 

diversity. BC was calculated using the relative abundance of ASVs, for those with a minimum 

read abundance of 5 in ≥ 5% of samples (Cao et al., 2021), and a principal coordinate analysis 

(PCoA) was used to visualise the data. A permutational multivariate analysis of variance 

(PERMANOVA) was used to test for differences in ASV composition among the fractions, via 

the adonis function (vegan package). Pairwise comparisons were conducted among the four 

fractions, using the Benjamini-Hochberg (BH) correction for multiple testing (Benjamini and 

Hochberg, 1995).   

The change in proportional abundance of the top 10 most abundant 18S was compared 

among fractions. Then, each 18S ASV was categorised as likely belonging to one of four 

groups, based on their taxonomic assignment (described in 3.2.2.2): Food which was identified 

as belonging to the Phragmoplastophyta, with the majority of 18S ASVs consisting of wheat 

(Triticum aestivum) or corn (Zea mays); Fungi, identified via phyla name; Host which was 

classified as belonging to Vertebrata; Other which consisted of all other 18S ASVs. 18S ASVs 

grouped on their phyla name were confirmed to be Fungi or Other using the NCBI Taxonomy 

Browser (Schoch et al., 2020). The representation of 18S ASVs in these four categories 

through the FACS process was then compared.   



74 
 

3.3 Results 

3.3.1 Microbial load 

The microbial load of the Prokaryotic and Eukaryotic fractions was determined; it was 

predicted that the Prokaryotic fraction would have a higher load than Eukaryotic fraction. This 

prediction was supported: Eukaryotic and Prokaryotic mean microbial load = 3.2 x 105 (SE = 

5.4 x104) and 1.0 x108 (SE 1.0 x107) cells/g of faeces, respectively (Table 3.2). These loads 

were significantly different (t17.35 = -18.8, p < 0.001). Total microbial load ranged from 4.8 x107 

to 1.9 x108 (average: 1.0 x108, SE: 1.0 x107). There is a slight negative correlation between 

the Prokaryotic and Eukaryotic microbial loads – as Prokaryotic microbial load increases, 

Eukaryotic microbial load decreases. However, this correlation was not significant (r = -0.304, 

df = 16, p = 0.220, Figure 3.3). There was no significant difference in the Prokaryotic microbial 

load between males and females (t15.99 = -0.62, p = 0.542). Whilst females tended to have a 

higher Eukaryotic microbial load compared to males, the difference was not significant (t15.95 

= 2.01, p = 0.062). Furthermore, the variation in the microbial loads within the sexes was as 

large as the variation between the sexes. Neither mouse ID nor month of sample collection 

had a significant effect on the Eukaryotic or Prokaryotic fractions’ microbial load (Table 3.3). 

The presence of visible bands on gel electrophoresis for both 16S and 18S PCR products 

indicated that both fractions contained both prokaryotic and eukaryotic cell types. This result 

was confirmed by amplicon sequencing (section 3.3.2). Because of this, the absolute 

abundance of taxa cannot be calculated using relative abundance data obtained from 

amplicon sequencing, as proposed in 3.2.3.1. 

Table 3.2. The microbial load (cell counts) for the Prokaryotic and Eukaryotic fractions. 

Microbial load is expressed as cell counts/g of faeces. 

  

 Month 1 Month 2 Month 3 

Mouse Prok Euk Prok Euk Prok Euk 

Male 1 1.62 x108 1.81 x105 1.62 x108 1.92 x105 4.72 x106 5.47 x105 

Male 2 9.18 x106 2.85 x105 1.07 x108 4.28 x104 1.17 x108 2.04 x105 

Male 3 4.94 x106 7.19 x103 1.36 x108 2.73 x105 9.09 x106 2.42 x105 

Female 1 5.58 x106 3.98 x105 1.11 x108 9.42 x105 1.30 x108 1.77 x105 

Female 2 7.38 x106 3.45 x105 5.18 x106 6.08 x105 8.27 x106 3.51 x105 

Female 3 1.93 x108 8.31 x104 7.65 x106 5.66 x105 7.63 x106 2.92 x105 
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Figure 3.3. The correlation between Eukaryotic and Prokaryotic microbial load, counted 

using FACS. Six mice were sampled monthly. Data are square-root transformed. 

Table 3.3. Two-way ANOVAs testing the effect of mouse ID and month of sample 

collection on microbial load.  A two-way ANOVA was conducted using either Eukaryotic or 

Prokaryotic microbial load as the dependent variable and mouse ID and month collected as 

the independent variable. DF is the degrees of freedom. 

 Mouse ID Month 

F Statistic DF p value F Statistic DF p value 

Eukaryotic 1.14 5 0.399 1.26 2 0.324 

Prokaryotic 0.40 5 0.841 0.16 2 0.858 
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3.3.2 Separation of eukaryotic and prokaryotic cells 

Whilst all four fractions types were prepared from each of the 18 faecal samples, some 

Eukaryotic and Prokaryotic fractions could not be sequenced due to insufficient DNA yield 

(Table 3.4). Only 7 samples were 18S sequenced for both Eukaryotic and Prokaryotic fractions 

whereas 11 samples were 16S sequenced for both Eukaryotic and Prokaryotic fractions.  

Table 3.4. The number of faecal samples that were amplicon sequenced per fraction. 

Both the 16S and 18S rRNA genes were targeted for the FACS-sorted fractions but 16S rRNA 

gene sequencing was not attempted for Direct Faecal and Pre-Sort fractions.  

Fraction Type 18S 16S 

Direct Faecal 18 NA 

Pre-Sort 18 NA 

Eukaryotic 14 15 

Prokaryotic 9 13 

 

Figure 3.4 shows the number of 18S ASVs found in each of the four fractions. If the FACS-

sorting of eukaryotic cells worked, it would be expected that i) the same number of 18S ASVs 

would be present in the Direct Faecal, Pre-Sort and Eukaryotic fractions and ii) the Prokaryotic 

fraction would have fewer 18S ASVs compared with the Eukaryotic fraction. An ANOVA 

identified a significant difference in the number of 18S ASVs among the four fractions (F3,55 = 

3.42, p = 0.023). Post hoc analysis showed a significant difference in the number of unique 

18S ASVs observed between the Eukaryotic and Pre-Sort fractions (Table 3.5). Thus, there 

appears to have been a loss of 18S ASVs from the Pre-Sort fractions (average number of 

ASVs: 191 SE = 25) when generating the Eukaryotic fractions (103 SE = 6), contrary to the 

first expectation. However, there was no significant difference in the average number of ASVs 

between the Direct Faecal (155 SE = 20) and Eukaryotic fractions (Table 3.5). Post hoc 

comparison of the number of 18S ASVs observed between the Eukaryotic (103 SE = 6) and 

Prokaryotic (100 SE = 6) fractions identified no significant difference, contrary to the second 

expectation (Table 3.5). This result indicates that some eukaryotic cells were not stained by 

ERT and were thus separated into the Prokaryotic fraction.  

Table 3.5. Tukey post hoc analysis of an ANOVA of the number of 18S ASVs in different 

FACS fractions. Significant p values are highlighted in bold.  

Fraction Comparison p value 

Direct Faecal – Pre-Sort  0.707 

Eukaryotic – Direct Faecal 0.320 

Eukaryotic – Pre-Sort 0.041 

Prokaryotic – Direct Faecal 0.400 

Prokaryotic – Pre-Sort 0.079 

Eukaryotic – Prokaryotic > 0.999 
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Figure 3.4. The number of unique 18S ASVs in each of the four fractions. The sources of the 18S ASVs are: Direct Faecal, from DNA 

extracted directly from faecal material; Pre-Sort, from DNA extracted from an aqueous suspension of the faecal cells prior to FACS; Eukaryotic 

and Prokaryotic, from DNA extracted from FACS-sorted fractions. Samples not sequenced due to insufficient DNA are represented by 0.  
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Figure 3.5 shows the number of 16S ASVs identified in the Eukaryotic and Prokaryotic 

fractions. It is expected that the Prokaryotic fraction will have more 16S ASVs compared to 

the Eukaryotic fraction. Overall, this expectation is supported: The Eukaryotic fractions had a 

mean number of 444 (SE = 17.5) 16S ASVs whereas the Prokaryotic fractions had a mean 

number of 510 (SE 12.7) 16S ASVs, and this difference was significant (t31.7 = -3.07, p = 

0.005). This result suggests that the Prokaryotic fraction is selecting for more prokaryotic 

species compared to the Eukaryotic fraction. 

The Shannon’s index measure of alpha diversity was calculated for the seven samples that 

had all four fractions sequenced (Figure 3.6). It was expected that across the Direct Faecal, 

Pre-Sort and Eukaryotic fractions, the alpha diversity would not change because the same 

18S ASVs should be present and sequenced in each fraction. Additionally, the Prokaryotic 

fraction was expected to have lower 18S alpha diversity than the Eukaryotic fraction. However, 

an ANOVA showed that the two expectations were not supported. There was a significant 

difference in alpha diversity among the fraction types (F3,24 = 10.3, p < 0.001) and post hoc 

analysis showed that the alpha diversity of the Direct Faecal fractions (mean Shannon index: 

1.09 SE = 0.18) was significantly lower compared to the Pre-Sort (2.46 SE = 0.38) and 

Eukaryotic fractions (2.67 SE = 0.06) (Table 3.6). Furthermore, there was no significant 

difference between the alpha diversity of the Eukaryotic and Prokaryotic fractions (2.95 SE = 

0.07), contrary to the expectation (Table 3.6).  

Table 3.6. Tukey post hoc analysis of an ANOVA of alpha diversity of different FACS 

fractions. Significant p values in bold.  

Fraction Comparison p value 

Direct Faecal – Pre-Sort  0.003 

Eukaryotic – Direct Faecal 0.002 

Eukaryotic – Pre-Sort > 0.999 

Prokaryotic – Direct Faecal < 0.001 

Prokaryotic – Pre-Sort 0.685 

Eukaryotic – Prokaryotic 0.715 
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Figure 3.5. The number of unique 16S ASVs in the Eukaryotic and Prokaryotic fractions. The source of the 16S ASVs is from DNA extracted 

from FACS-sorted fractions. Samples not sequenced due to insufficient DNA are represented by 0. 
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Figure 3.6. Shannon’s index measure of alpha diversity for seven samples at each fraction of the FACS process. The sorted Eukaryotic 

(A) and Prokaryotic (B) fractions are depicted in separate panels because they were both generated from the Pre-Sort; note that the Direct 

Faecal and Pre-Sort are the same in both panels. 

A B 
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3.3.3 Eukaryome composition changes  

The amount of inter-sample variation was expected to remain constant across all fractions 

because each faecal sample has been processed in the same way. To understand inter-

sample variation, the number of 18S ASVs shared among the samples was examined. Across 

the majority of all fractions and samples, the 10 most abundant ASVs accounted for ≥ 70% of 

reads, and so only the 10 most abundant 18S ASVs were considered further. First, considering 

the Direct Faecal fraction: 7 (SE = 0.18) of the 10 18S ASVs present in any one sample only 

ever occur in at most two other samples. Only 2 (SE = 0) of the 10 18S ASVs can be found 

across all seven samples. This shows that inter-sample variation is high in the Direct Faecal 

fraction. Second, considering the Pre-Sort fraction: 5 (SE = 0.75) of the 10 18S ASVs only 

ever occur in at most two other samples. 2 (SE = 0) of the 10 18S ASVs can be found across 

all seven samples. This indicates the Pre-Sort samples have a slightly lower inter-sample 

variation than in the Direct Faecal fraction. Three, considering the Eukaryotic fraction: 2 (SE 

= 0.49) 18S ASVs only ever occur in at most two other samples and 4 (SE = 0) 18S ASVs are 

found across all samples. Similarly, the Prokaryotic fraction shows 3 (SE = 0.26) of the 10 18S 

ASVs only ever occur in at most two other samples. 4 (SE = 0) of the 10 18S ASVs can be 

found across all seven samples. Therefore, inter-sample variation is low in the Eukaryotic and 

Prokaryotic fractions. The comparatively low inter-sample variation in the Eukaryotic and 

Prokaryotic fractions, compared with the Direct Faecal and Pre-Sort, was contrary to the 

expectation. This shows that FACS causes the samples’ Eukaryotic and Prokaryotic fractions 

to become more similar to each other.  

In contrast to considering the number of shared ASVs, betadisper identified that the samples 

at the Pre-Sort stage had the most inter-sample variation (0.46). Inter-sample variation for the 

Direct Faecal, Eukaryotic and Prokaryotic fractions was 0.28, 0.26, and 0.28, respectively. A 

permutest found that this difference in inter-sample variation among the fractions was 

significant (F3 = 3.26, p = 0.023). However, pairwise comparisons showed that the only 

significant difference in inter-sample variation was between samples at the Pre-Sort stage and 

the Eukaryotic fractions (Table 3.7). 

Bray-Curtis dissimilarity was used to visualise beta diversity among the fractions based on 

their 18S ASVs (Figure 3.7). It was expected that the Direct Faecal and Pre-Sort fractions 

would cluster together as these samples should contain the same taxa with the same relative 

abundances. However, these two fraction types cluster separately meaning that their 

preparation is changing their composition. Additionally, it was expected that the Eukaryotic 

and Prokaryotic fractions should cluster separately as the Prokaryotic fraction should contain 

fewer 18S ASVs. However, these two fractions are indistinguishable from each other, again 

suggesting that the FACS-sorting is not providing the separation that was expected. A 
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PERMANOVA showed that the clustering of fractions according to Bray-Curtis dissimilarity 

was significant: there was significant variation in the ASV composition among the different 

fractions (F3 = 26.4, p < 0.001). Pairwise comparisons identified that all fractions were 

significantly different to each other, with the exception of Eukaryotic vs. Prokaryotic (Table 

3.7), contrary to the prediction.  

Table 3.7. p values from pairwise comparisons among fraction types for inter-sample 

variation via a permutest and for ASV composition via a PERMANOVA. Significant p 

values are in bold.  

Pairwise comparisons permutest PERMANOVA 

Direct Faecal – Pre-Sort  0.050 0.001 

Eukaryotic – Direct Faecal 0.724 0.001 

Eukaryotic – Pre-Sort 0.012 0.001 

Prokaryotic – Direct Faecal 0.963 0.001 

Prokaryotic – Pre-Sort 0.084 0.001 

Eukaryotic – Prokaryotic 0.494 0.300 
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Figure 3.7. Bray-Curtis dissimilarity PCoA plot of the FACS-processed samples. The four fractions are differentiated by colour, with ellipses 

representing 95% confidence intervals. Mice are differentiated by symbols. 18 samples are shown for the Direct Faecal and Pre-Sort fractions, 

14 for the Eukaryotic and 9 for the Prokaryotic fractions. PCoA axes 1 and 2 represent a total of 58.6% of the variation in the samples. 
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3.3.4 Changes in proportional abundance of 18S ASVs 

Because the relative abundance of 18S ASVs can change during FACS, the proportionate 

change of 18S ASVs was examined for each fraction for the seven samples. As above, only 

the 10 most abundant 18S ASVs were used for this analysis. All Direct Faecal samples contain 

one high proportionate abundance 18S ASV that is then reduced to a very low proportionate 

abundance in the FACS-sorted Eukaryotic and Prokaryotic fractions or lost completely). On 

average, seven 18S ASVs present in the Direct Faecal fractions are entirely lost in both 

Eukaryotic (SE = 0.2) and Prokaryotic (SE = 0.4) fractions. Additionally, few low proportionate 

abundance Direct Faecal 18S ASVs become enriched in the sorted fractions.  

All seven samples show evidence of low proportionate abundance Pre-Sort 18S ASVs being 

enriched in the Eukaryotic (4 SE = 0.7) and Prokaryotic fractions (4 SE = 0.7). Furthermore, 

in comparison to the Direct Faecal analysis, fewer 18S ASVs are lost between the Pre-Sort 

fraction and the Eukaryotic (5 SE = 0.8) and Prokaryotic (4 SE = 0.8) fractions. The high 

proportionally abundant 18S ASVs in the Pre-Sort fractions are not as substantially reduced 

in the Eukaryotic and Prokaryotic, compared to the Direct Faecal to Eukaryotic and Prokaryotic 

transition, due to the lower initial proportionate abundance. Additionally, more 18S ASVs are 

enriched when generating the sorted fractions from the Pre-Sort, and fewer 18S ASVs are 

eliminated, compared to the Direct Faecal to Eukaryotic and Prokaryotic transition.  

Comparison of the Eukaryotic and Prokaryotic fractions show that they are similar. Across the 

seven samples, the difference in the proportionate abundance of the ten 18S ASVs is small 

and few 18S ASVs are not in both fractions (1 SE = 0.3 and 0.8). Enrichment (or lack of) of 

18S ASVs cannot be compared between Eukaryotic and Prokaryotic fractions as one fraction 

is not produced from the other. The most abundant 18S ASVs in the Eukaryotic and 

Prokaryotic fractions have a lower proportionate abundance than the most abundant 18S 

ASVs in the Pre-Sort and Direct Faecal stages 

3.3.5 Taxonomic comparison 

The 18S ASVs sequenced at each stage in the FACS process were classified into four distinct 

groups as described in section 3.2.3.3: Food, Fungi, Host, and Other. Each categories’ 

proportionate abundance in each fraction was examined to see if a particular category was 

enriched during the FACS process (Figure 3.8). All seven samples analysed follow a similar 

trend. In the Direct Faecal fraction, the majority of 18S ASVs are classified as Host (84.7% SE 

= 3.75). This category is much smaller in the subsequent Pre-Sort (3.7% SE = 1.07) and 

FACS-sorted fractions (10.4% SE = 2.02 and 8.8% SE = 1.01, respectively). In the Pre-Sort, 

the loss of Host 18S ASVs is replaced by an increase of 18S ASVs classified as Other (69.1% 

SE = 11.5). From the Pre-Sort to the FACS-sorted fraction, there is a loss of the Other 
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category. In the Eukaryotic fraction, 10.4% (SE = 2.02) of reads were classified into the Other 

category, closer to that seen in the Direct Faecal (2.0% SE = 0.72). In comparison, the 

Prokaryotic fraction has less Other 18S ASVs (8.3% SE = 1.44), compared to the Eukaryotic 

fraction. Food 18S ASVs are consistently low across all fractions. Fungi assigned 18S ASVs 

occur at low levels in the Direct Faecal fraction (3.8% SE = 1.13), but are proportionally more 

abundant in the Eukaryotic and Prokaryotic fractions where they are the largest single group 

of 18S ASV types (79.3% SE 2.59 and 74.0% SE 3.57, respectively). The increase in Fungi 

replaces the high levels of Host and Other 18S ASVs seen in the Direct Faecal and the Pre-

Sort, respectively. 
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Figure 3.8. The change in the relative abundance of 18S ASVs based on their assignment to one of four categories – Host, Food, Fungi, 

Other – at each stage of the FACS process. Data are averaged across the seven samples with all four fractions sequenced. Comparisons are 

between the Direct Faecal fraction and each of the three subsequent fractions. Error bars show the standard error of the mean.  
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3.4. Discussion 

3.4.1 Separation of eukaryotic and prokaryotic taxa  

The FACS-based sorting methodology tested here aimed to i) separate putative eukaryotic 

and prokaryotic taxa of the faecal microbiome by the staining of a eukaryotic-specific 

organelle, and ii) quantify the microbial load of these taxa. Amplicon sequencing of these 

FACS-separated fractions showed – based on the similar number of 18S ASVs sequenced, 

similar alpha diversities, and close Bray-Curtis dissimilarity clustering of the fractions – that 

there was no clear separation of eukaryotic and prokaryotic taxa. Whilst other studies have 

successfully used FC to isolate specific eukaryotic taxa from mixtures containing bacteria 

(Porter et al., 1997; Lepere et al., 2011; Escalante et al., 2016), this is the first attempt, of 

which I am aware of, to identify and separate all eukaryotic members of a microbial community. 

Targeting the entire eukaryome presents a greater challenge compared to focussing on a 

specific taxon. In particular, differences in cell permeability and transport mechanisms among 

diverse eukaryotic taxa might have led to variation in the success of i) nucleic acid staining by 

SG and ii) endoplasmic reticulum staining by ERT (Jackson et al., 2021). The ability of SG to 

stain phylogenetically distant bacterial and archaeal taxa has been confirmed (Martens-

Habbena and Sass, 2006), but comparative studies of SG staining ability for eukaryotic taxa 

have not been done, of which I am aware. However, SG can successfully specifically identify 

yeast, protists, and plants, suggesting that a wide range of eukaryotic taxa can be successfully 

selected by SG-staining (Fortuna et al., 2000; Christaki et al., 2011; Clarindo and Carvalho, 

2011). The ability of the ERT stain to identify phylogenetically distant eukaryotic taxa is not 

known, but endoplasmic reticulum staining has been successfully demonstrated in both 

protozoa and fungal pathogens of humans (Teixeira and Huston, 2008; Benhamou et al., 

2018). The aforementioned two studies, and the presence of 18S ASVs in the FACS-sorted 

fractions in the study presented here, suggest that eukaryotic gut taxa can be stained by both 

SG and ERT. Collectively, the results presented here indicate that the staining combination 

and flow cytometry gating parameters used in this study could not accurately select solely 

eukaryotic taxa.  

3.4.2 Microbial load of eukaryotic taxa  

The total microbial load of the faecal microbiome was determined by counting SG-stained 

cells, as used previously (Vandeputte et al., 2017; Jackson et al., 2021). A tenfold variation of 

the total microbial load was identified among samples from different mice, which is consistent 

with previous reports from the human faecal microbiome (Vandeputte et al., 2017; Galazzo et 

al., 2020). The analysis presented here showed that the number of putative eukaryotic cells 

was significantly lower than number of putative prokaryotic cells. This result is also consistent 

with other studies showing bacterial cells in the faecal microbiome are more abundant than 
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eukaryotic cells (Parfrey et al., 2014; Underhill and Iliev, 2014; Hooks and O’Malley, 2020). 

No significant correlation was observed between the putative eukaryotic and prokaryotic 

microbial loads in the study presented here, in contrast to the literature which identifies inter-

kingdom interactions between prokaryotic and eukaryotic taxa (Rao et al., 2021; Harrison et 

al., 2021). However, caution must be used when interpreting these microbial load data: the 

inaccurate separation of eukaryotic and prokaryotic taxa consequently means the 

quantification of the eukaryome and bacteriome is also not accurate.  

3.4.3 Community composition analyses of FACS-processed samples 

Analysis of the 18S sequence-based taxon identification at different stages of the FACS 

process showed that i) the community composition of the two final FACS-sorted fractions was 

different to both the Direct-Faecal and Pre-Sort fractions, and ii) the community composition 

of the two FACS-sorted fractions was similar. These observations mean that FACS 

consistently selected the same subset of taxa into these two supposedly different fractions, 

with the two FACS-sorted fractions being more similar to each other, while more dissimilar to 

the Direct Faecal and Pre-Sort samples. This means FACS was artificially altering the faecal 

microbiome community composition, in contrast to findings in other faecal microbiome FACS 

studies (Ben-Amor et al., 2005; Peris-Bondia et al., 2011; Maurice et al., 2013; Palm et al., 

2014). For example, Palm et al. (2014) found the Pre-Sort fraction had a similar community 

composition to the FACS-sorted IgA- fraction, whereas the community composition of the 

FACS-sorted IgA+ fraction was a distinct subcommunity of the Pre-Sort fraction. Thus, the 

analyses in this present study indicate FACS-sorted fractions may not be representative of the 

true faecal eukaryome and bacteriome. 

Analysis of the taxonomy of the 18S ASVs indicated that the majority of highly abundant ASVs 

lost during the FACS process belonged to vertebrate taxa, likely from host DNA. The change 

in relative abundance of these host ASVs may potentially be driven by host extracellular DNA 

present in the Direct Faecal fraction, which would not be present in the FACS-sorted fractions 

(Galazzo et al., 2020). The decreased proportion of host DNA in the FACS-sorted fractions, 

compared to the Direct Faecal fraction, would allow less abundant eukaryotic taxa be detected 

(Pereira-Marques et al., 2019). This could explain the proportionally greater abundance of 

fungi and other non-host ASVs in the FACS-sorted fractions, compared to the Direct Faecal, 

but further work would be needed to confirm this. These results show that FACS is a potential 

method to remove host-derived 18S ASVs and so increase the ability to detect less abundant 

eukaryotes. This would provide an alternative, albeit more expensive, method to host-blocking 

primers, which have their own limitations (see section 31.4, Thompson et al., 2017; del Campo 

et al., 2020).  
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3.4.4 Considerations and future perspectives 

The method described and tested here is the first attempt, of which I am aware, to use FC to 

separate, quantify, and sequence the eukaryotic taxa of the faecal microbiome. However, it is 

evident that the method needs further optimisation by i) determining the optimal FACS gating 

parameters for sorting diverse eukaryote cells and ii) determining the specificity of the ERT 

stain (Jackson et al., 2021). The method tested here utilised a broad approach to capture as 

much heterogeneity in gut eukaryotic taxa as possible, as done with bacterial taxa (Jackson 

et al., 2021). However, a more fine-scale, multi-step FACS approach may be more suitable. 

Specifically, each sorting step would target and isolate one eukaryotic taxon group, and the 

remainder of cells would then be sorted again to target a different taxon group. This approach 

would alleviate the need to find a stain suitable that works for all gut eukaryotic taxa (see 

section 3.4.1 above) but would potentially be costly and low-throughput. Further to this, it is 

important to note that FACS can only process single cells, and so metazoan parasites in the 

eukaryome, such as helminths, would not be identified (Müller and Nebe-von-Caron, 2010).  

The methodology presented here may provide a potential new method of sample preparation, 

which could be utilised to remove host extracellular DNA from faecal samples. In doing so, 

less abundant taxa may be more easily sequenced and identified when characterising the gut 

eukaryome. Thus, future work would benefit from exploring the use of flow cytometry to 

remove host DNA from faecal samples. Finally, whilst the study shows the proposed method 

was not successful at separating and quantifying the eukaryome, it has established the 

groundwork for future studies to build on when attempting to quantify the microbial load of 

eukaryotic gut taxa.   
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Chapter 4: The eukaryome of wild house mice and 

their disease state 

Abstract 

The gut microbiome can profoundly affect an animal’s biology. However, we still don’t fully 

understand the contribution of eukaryotic taxa – the eukaryome – to the wider microbiome, 

nor what affects the composition of the eukaryome. This contrasts to our extensive knowledge 

of the bacterial microbiome (bacteriome), particularly in wild animals. Here, I aimed to 

characterise the eukaryome of wild house mice (Mus musculus domesticus) using 18S rRNA 

sequencing. I combine this with parasitological and histopathological analyses, to determine 

if disease or immune state contributes to eukaryome composition. Additionally, I used 16S 

rRNA sequencing data from the same mice to identify if variation in the eukaryome was 

correlated with variation in the bacteriome. I found that mice from different locations differ in 

their eukaryome composition, and that these differences are potentially driven by the presence 

of parasitic nematodes and coccidia (Eimeria spp). I also found that both gut inflammation and 

faecal IgA concentration were associated with variation in gut eukaryome composition. 

Furthermore, I found that the diversity metrics of the gut eukaryome and bacteriome were not 

correlated, suggesting different factors drive variation in the two microbiome types, and that 

inter-kingdom interactions are likely contributing to gut microbiome composition.  These data 

are the first to characterise the gut eukaryome of wild house mice and provide a better 

understanding of how the eukaryome may be modulated by the host immune and disease 

state. Additionally, these results have highlighted the importance of considering both 

eukaryotic and bacterial taxa when researching drivers of gut microbiome composition.  
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4.1 Introduction 

4.1.1 The mammalian eukaryome 

The gut microbiome is the diverse community of microbial taxa found within the digestive tract 

of an individual, and includes bacteria, archaea, and eukaryotes (Eckburg et al., 2005; Parfrey 

et al., 2014; Wampach et al., 2017). The interaction of these microbes with their host can affect 

the host’s development and physiology (Sommer and Bäckhed, 2013). For example, microbial 

colonisation of the gut is key for: immune system and behavioural development (Heijtz et al., 

2011; Gensollen et al., 2016), nutrition and metabolism (Rowland et al., 2018; Williams et al., 

2020), and pathogen resistance (Chudnovskiy et al., 2016; Brown and Clarke, 2017). Thus, to 

understand variation in the behaviour and physiology of hosts, it is important to understand 

how and why the gut microbiome composition differs among hosts (Suzuki, 2017; Henry et al., 

2021).  

To date, the majority of gut microbiome research has focused on the bacterial taxa 

(bacteriome) and there has been comparatively less study of the eukaryome (fungi, protozoa, 

and helminths) in its entirety (del Campo et al., 2020). The difference in research effort is 

largely due to i) eukaryotic gut taxa traditionally being considered parasitic, rather than 

commensal (Parfrey et al., 2014; del Campo et al., 2020) and ii) eukaryotic gut taxa being less 

abundant than bacterial taxa (Laforest-Lapointe and Arrieta, 2018). Further to this, 

characterising the gut eukaryome was largely limited by a lack of accurate methods capable 

of detecting all three groups of eukaryotes: fungi, protozoa, and helminths (Popovic et al., 

2018). Thus, studies often investigated, and still do, each of these three groups independently 

using different methods. For example, amplicon sequencing of the internal transcribed spacer 

(ITS) region of DNA is used to identify fungi (Sun et al., 2018; Barelli et al., 2020a; Rao et al., 

2021), whereas targeted PCRs and ELISAs are commonly used for protozoa (Blessmann et 

al., 2002; den Hartog et al., 2013). Traditional parasitological techniques, e.g. flotation and 

sedimentation, are also used for protozoa and helminths (Barelli et al., 2020b). More recently, 

sequencing amplicons of the 18S rRNA gene to identify taxa within all three eukaryotic groups 

simultaneously (Amaral-Zettler et al., 2009; Stoeck et al., 2010; Hadziavdic et al., 2014; 

Popovic et al., 2018) has become more common in gut eukaryome studies (Parfrey et al., 

2014; Heitlinger et al., 2017; Li et al., 2018; Mann et al., 2020; Kim et al., 2022).  

18S rRNA amplicon sequencing has been used to describe the gut eukaryome for some 

mammals, including bats, ungulates, hyenas, non-human primates, and rodents, and these 

studies are summarised in Table 4.1. All of the summarised studies identified all three 

eukaryotic groups in their study system(s) but focus was often towards just one or two of the 

three groups. For example, fungi were the main taxa of interest in bats (Li et al., 2018), but 

were only briefly mentioned for non-human primates (Mann et al., 2020). Whilst summarised
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Table 4.1. A summary of gut eukaryome studies in mammals. The eukaryotic taxa identified from these studies are divided into three groups 

(fungi, helminths and protozoa), with P, C, O, and F representing eukaryotic phyla, classes, orders, and families respectively. Genera are shown 

in italics. Protozoa are grouped as seen in Chapter 2 (section 2.1.2). A summary of the gut eukaryome diversity and composition is also given. 

The table is likely not a complete list of studies describing the mammalian eukaryome, and aims only to show the common eukaryotic taxa 

identified.  

Animal Fungi Helminths Protozoa Diversity and Composition 

B
a

ts
 

L
i 
e

t 
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l.
, 
2

0
1
8

 

Ascomycota (P) 

• Candida 

• Hanseniaspora 

• Geotrichium 

• Cladosporidium 

• Blasobotrys 

• Kodamea 

• Clavispora 

• Debaryomcyes 
Basidiomycota (P) 

• Malassezia 
Glomeromycota (P) 
Entomophthoromycota (P)b 

Nematoda (P) 
Platyhelminthes (P) 

Apicomplexa 

• Mycobiome compositional differences were 
greater between dietary groups compared to 
differences within dietary groups. 

• The most dominant fungal taxa were yeasts 
from Ascomycota and Basidiomycota. 
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a
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, 
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Ascomycota (P) 
Basidiomycota (P) 
Zygomycota (P)c 

Microsporidiad 

Nematoda (P) 

• Ancylostoma 

• Ostertagia 

• Haemonchus 

• Trichuris 
Platyhelminthes (P) 

• Diphyllobothrium 

• Spirometra  

• Dipylidium 

• Taeniidae (F) 

Apicomplexa 

• Eimeria 

• Toxoplasma 

• Besnoitia 

• Isospora 
Cercozoa 
Ciliophora 
Metamonada 
Euglenozoa 

• A greater diversity in the gut eukaryome was 
associated with higher ranking individuals. 

• Ascomycota and Basidiomycota were the most 
diverse and abundant fungal taxa. 
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a Only the taxa identified as “eukaryome” by the authors are shown 
b Since been reclassified into Zoopagomycota 
c Since been divided into two phyla, Mucoromycota and Zoopagomycota 
d Taxonomy is disputed 
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M
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2
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2
0
  
  

  
  
  

  
  
  

  
  

Ascomycota (P) 

Nematoda (P) 

• Trypanoxyuris 

• Trichuris 

• Rhabditida (O) 

• Spirurida (O) 

Amoebozoa 

• Entamoeba 

• Iodamoeba 

• Endolimax 
Apicomplexa 
Stramenopiles 

• Blastocystis 
Cercozoa 

• Cercomonas 

• The eukaryome community composition was 
different among different primate species, with 
high variability within species.  

• There was no dominant fungal species. 

• The gut eukaryome tended to be dominated 
with either Ascomycota or Amoebozoa. 

R
o

d
e

n
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, 
2
0
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Ascomycota (P) 

• Kazachstania 

• Candida 

• Periconia 

• Cladosporium 
Mucoromycota (P) 

• Mucor 

• Rhizopus 

Nematoda (P) 

• Heligmosomoides 

• Syphacia 

• Strongyloides 

• Oscheius 
Platyhelminth (P) 

• Hymenolepis 

• Raillietina 

• Plagiorchis 

• Panagrolaimus 

Metamonada 

• Tritrichomonas 

• Monocercomonas 

• Giardia 

• Spironucleus 

• Retortomonas 
Apicomplexa 

• Isospora 

• Cryptosporidium 
Stramenopiles 

• Blastocystis 
Amoebozoa 

• Entamoeba 

• Protozoa relative abundance was greater than 
fungal relative abundance. 

• Kazachstania was the most prevalent fungal 
species. 
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Neocallimastigomycota (P) 

• Neocallimastix 
Nematoda (P) 

Stramenopiles 

• Blastocystis 
Amoebozoa 
Metamonada 
Ciliophora 

• Entamoeba 

• There was a low diversity of species within 
eukaryotic phyla. 

• The presence of taxa was highly varied across 
host species. 

• Differences in gut eukaryome composition were 
most notable between hindgut and foregut 
fermenters. 
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in Table 4.1, the protozoa identified from these studies will not be reviewed in detail here (but 

see Chapter 2, section 2.1.2). Additionally, the presence of helminths in the mammalian gut 

has been extensively reviewed, given their typically parasitic lifestyle and ubiquity, and so will 

not be discussed here (Chowdhury and Aguirre, 2001; Brooker, 2010). The fungal taxa in the 

mammalian eukaryome (mycobiome) are most commonly represented by yeasts from the 

phyla Ascomycota and Basidiomycota (Table 4.1). In particular, Ascomycota is often reported 

as the most abundant and diverse fungal phylum in the gut (Li et al., 2018; Barelli et al., 2020a; 

Mann et al., 2020). Ascomycota genera identified from the gut eukaryome include Candida, 

Cladosporium, Geotrichium, and Debaryomyces (Table 4.1). These taxa are also found in 

studies describing gut fungi without consideration of protozoa or helminths (Scupham et al., 

2006; Sun et al., 2018; Barelli et al., 2020a; Rao et al., 2021). Other fungal phyla in the 

mammalian gut eukaryome include Neocallimastigomycota, found in the rumen of hind-gut 

fermenting herbivores (Parfrey et al., 2014), Mucoromycota, and Zoopagomycota (Table 4.1).  

Many of the fungal taxa summarised in Table 4.1 may not be true residents or colonisers of 

the gut, but rather are environmental contamination of faecal samples and/or fungi in the host’s 

diet (Hallen-Adams and Suhr, 2017; Lavrinienko et al., 2021a). Only a few fungal genera are 

considered to be true residents of the mammalian gut, of which the most commonly accepted 

is Candida (Underhill and Iliev, 2014; Hallen-Adams and Suhr, 2017). Candida spp. have been 

described from humans, bats, and mice (Dollive et al., 2013; Li et al., 2018; Rao et al., 2021; 

Kim et al., 2022). However, the presence of Candida spp. in non-human primates was 

attributed to dietary sources rather than being a gut resident (Mann et al., 2020). Other fungal 

genera considered capable of colonising the mammalian gut include Malassezia, 

Cladosporidium, Galactomyces, and Saccharomyces (Hallen-Adams and Suhr, 2017).  

Whilst the gut eukaryome species diversity is lower than that the gut bacteriome (Parfrey et 

al., 2014; Nash et al., 2017), the studies summarised in Table 4.1 have shown that the diversity 

and composition of the eukaryome can differ substantially among different host species 

(Parfrey et al., 2014; Mann et al., 2020). For example, cercopithecine monkeys have a greater 

eukaryome diversity compared to non-cercopithecine monkeys (Mann et al., 2020) and highly 

abundant eukaryotic taxa found in one host species can be absent from other host species 

(Parfrey et al., 2014). Studies that compare only the gut mycobiome have shown that primate 

species have different mycobiome compositions, and that mice have a higher diversity of 

fungal taxa compared to humans (Marchesi, 2010; Barelli et al., 2020a). Furthermore, species 

richness in the gut mycobiome is driven by host phylogeny (Harrison et al., 2021). 



95 
 

4.1.2 Factors affecting to eukaryome composition 

Variation in gut microbiome composition among species, and among con-specific individuals, 

has led to investigation into which factors affect the composition of the microbiome. Factors 

affecting the bacteriome are well-characterised and can be split into three groups: host-

mediated, environmental, or microbiome-mediated (Schmidt et al., 2018). The following 

section will review how the factors within these groups may also affect mammalian gut 

eukaryome composition.  

Host-mediated factors known to drive variation in gut bacteriome diversity and composition 

include: demographic traits (such as sex, age, sociality), immunity, and genetics. However, 

the contribution of these factors to eukaryome diversity and composition is undetermined. 

Studies investigating the effect of sex on the gut eukaryome are sparse, and show 

contradictory results: studies have shown the mycobiome community composition is 

significantly different between males and females in both humans and macaques (Strati et al., 

2016; Sun et al., 2018), whereas a third study found no difference in mycobiome composition 

between male and female humans (Rao et al., 2021). Similarly, comparison of the eukaryome 

among hosts of different ages have also found contrasting results. Studies in humans and 

hyenas have shown no clear pattern between an individual’s age and the diversity and 

composition of their eukaryome (Heitlinger et al., 2017; Wampach et al., 2017; Rao et al., 

2021), whereas another study showed that the gut mycobiome of 18-month old infants is more 

diverse, with greater variation in community composition among individuals, compared to 6-

month old infants (Turunen et al., 2023). The social behaviour of a host can also contribute to 

eukaryome community composition (Sarkar et al., 2020). In social species, it has been shown 

that more con-specific interactions can lead to a greater gut microbiome species richness, and 

decreased variance in gut community composition among individuals within a population 

(Moeller et al., 2016b). This mechanism was suggested to potentially explain the higher 

diversity of gut eukaryotes seen in cercopithecine monkeys, compared to non-cercopithecine 

monkeys (Mann et al., 2020). Furthermore, the social status of an animal in a population 

influences eukaryome diversity: higher ranking hyenas have a greater gut eukaryome species 

richness compared to lower ranking individuals (Heitlinger et al., 2017). Thus, differences in 

these demographic traits, like population size and structure, drive differences in gut 

eukaryome diversity and composition between and within different host populations.  

The host immune state is important for regulating the eukaryotic taxa in the gut (Clerc et al., 

2018; Sardinha-Silva et al., 2022; Swidergall and LeibundGut-Landmann, 2022). For example, 

immune regulation of the host’s intestinal mucus production can directly limit the colonisation 

of potentially pathogenic eukaryotic taxa (Hasnain et al., 2013). Additionally, intestinal 

immunoglobulin production can also regulate which eukaryotic taxa can successfully colonise 
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the gut (Ost et al., 2021). For instance, the colonisation of Candida albicans is regulated by 

the host’s intestinal immunoglobulin A (IgA) responses, which suppresses pathogenic 

morphotypes of C. albicans, selecting for the growth of commensal morphotypes (Ost et al., 

2021). In wild animals, studies investigating how the immune state of mammals regulates gut 

eukaryotes have focused on parasitic and pathogenic taxa, rather than the general eukaryome 

(Clerc et al., 2018; Ferreira et al., 2021). For example, immunoglobulins are important for 

explaining parasitic community composition in wood mice: infection with Heligmosomoides 

polygyrus and Eimeria was affected by the titre of H.polygyrus-specific IgG and faecal IgA 

respectively (Clerc et al., 2018). Additionally, variation in the parasite community of hyenas 

was explained by faecal IgA concentration (Ferreira et al., 2021). To this end, differences in 

the immune state of hosts, and thus their regulation of eukaryotic taxa, can also contribute to 

variation in eukaryome composition.  

Differences in the host genotype among individuals, including the major histocompatibility 

complex (MHC), can contribute to variation in the immune-regulation of eukaryotic gut taxa in 

wild animals (Radwan et al., 2020; Worsley et al., 2022). Specifically, there is an association 

between MHC-I diversity and mycobiome composition in the Seychelles warbler (Worsley et 

al., 2022). This was driven by a greater abundance of Lasiodiplodia spp. in individuals with 

lower MHC-I diversity, and a greater abundance of Sympodiomyces spp. in individuals with 

higher MHC-I diversity (Worsley et al., 2022). Whilst, no study, of which I am aware, has 

investigated the impact of MHC diversity on the gut eukaryome composition of mammals, it 

has been shown that host genotype is responsible for variation in the gut mycobiome 

community composition of laboratory mice (Gupta et al., 2023). Other factors regulating a 

host’s immune state include early life development, body condition, age, sex, and being in a 

physiologically-demanding state e.g. malnutrition (Viney et al., 2005; MacGillivray and 

Kollmann, 2014; Abolins et al., 2018; Kelly et al., 2018; Clerc et al., 2019a). Additionally, 

exposure to microbes early in the host’s development is important for priming the immune 

system in order to recognise and regulate future commensal and pathogenic taxa (Gensollen 

et al., 2016). The presence of parasites and pathogens can also alter the host’s innate and 

adaptive immunity pathways, such as the up-regulation of pro-inflammatory pathways (Leung 

et al., 2018a). Such inflammation can alter the host’s ability to immunomodulate the 

colonization of other eukaryotes, as seen with chemically-induced inflammation (Jawhara et 

al., 2008; Leung et al., 2018a). To date, there has been little research in wild mammals linking 

such host factors to the immune phenotype of the host and the subsequent variation in gut 

eukaryome composition seen among hosts.  

Environmental factors, e.g. seasonal variation and the biogeography of the host, are important 

variables that can contribute to mammalian gut bacteriome composition (Linnenbrink et al., 
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2013; Goertz et al., 2019; Marsh et al., 2022). The few studies that have investigated the effect 

of environment on the eukaryome also support these findings. The sampling site of bank voles 

had a detectable effect of fungal community composition (Antwis et al., 2021), and host habitat 

differences were associated with different fungal eukaryomes in monkeys (Barelli et al., 

2020a). Similarly, humans in either urban or rural locations had different gut mycobiomes 

(Kabwe et al., 2020). However, environmentally-driven differences in gut microbiome 

composition can often be attributed to variation in the host diet, which is a major source of 

variation in gut bacteriome composition (Wang et al., 2014). For the eukaryome, diet was 

hypothesised to be the major source of differences in gut eukaryome composition between 

herbivorous and insectivorous bats (Li et al., 2018). This contrasts to non-human primates: 

differences in eukaryome community composition were greater among different host species 

compared to differences among different diets (Mann et al., 2020). In the laboratory setting, 

evidence suggests the gut mycobiome is shaped by diet: the mycobiome composition of 

laboratory mice was different between mice fed high-fat or low-fat diets (Heisel et al., 2017; 

Gupta et al., 2023). Whilst there was no difference in the diversity of fungal taxa, mice fed 

high-fat diets had a greater relative abundance of Basidiomycota species, and lower relative 

abundance of Ascomycota species, compared to mice with low-fat diets (Heisel et al., 2017; 

Gupta et al., 2023).  

The composition of the eukaryome can also be mediated by direct interactions with the pre-

existing gut microbial community (Coyte et al., 2021). For protozoa, colonisation success is 

often dependent on the presence of other protozoa and bacterial species (see Chapter 2, 

section 2.1.3). Likewise, there is emerging evidence that the colonisation success of fungi is 

also dependent on pre-established gut taxa. For example, antibiotic treatment increases 

colonisation of the gut by Candida spp., compared to non-antibiotic treatment, in mice and 

humans, which suggests the pre-existing gut microbiome normally inhibits Candida 

colonisation (Sam et al., 2017). Further research has shown that the growth of Candida spp. 

in the gut is inhibited by the presence of the bacteria Staphylococcus (Rao et al., 2021). In 

contrast, Candida spp. can increase their colonisation success by exploiting pre-established 

Enterobacteriaceae spp. (Rao et al., 2021). Several studies have also identified co-occurrence 

between bacterial and fungal taxa in the mammalian gut (Heisel et al., 2017; Barelli et al., 

2020a; Mann et al., 2020 but see Harrison et al., 2021). This may be indicative of a co-

dependence among the taxa, or the simultaneous response to an independent mechanism 

(Mann et al., 2020).  

There are also associations between the bacteriome community composition and helminth 

colonisation in wild mammals (Kreisinger et al., 2015; Montero et al., 2021; Kim et al., 2022). 

For example, the presence of three common helminths – Hymenolepis spp., Syphacia spp., 
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and H. polygyrus – is associated with changes in the gut bacteriome composition of yellow-

necked mice (Kreisinger et al., 2015). Similarly, Heligmosomoides colonisation is associated 

with differences in gut bacteriome composition in striped field mice, with Lactobacillus bacteria 

being more abundant in Heligmosomoides-infected mice compared to Heligmosomoides-

uninfected mice (Kim et al., 2022). Furthermore, a study in wild lemurs found MHC-I diversity 

was associated with gut bacteriome composition, which in turn was associated with helminth 

colonisation (Montero et al., 2021). In laboratory settings, there is evidence that helminth 

colonisation success is dependent on the pre-existing gut microbiome. For example, Trichuris 

muris, the mouse whipworm, has a decreased hatching success when gut bacterial load is 

lower (Hayes et al., 2010) and T. muris-induced changes in gut microbiome composition limit 

further T. muris colonisation (White et al., 2018). A further study has shown that the hatching 

success of T. muris is dependent on the bacterial species/strain present (Vejzagić et al., 2015). 

Specifically, the hatching success of T. muris was dependent on the incubation of eggs with 

particular strains of Escherichia coli, and incubation with Lactobacillus reuteri induced T. muris 

hatching whereas L. amylvorus and L. murinus did not (Vejzagić et al., 2015). Colonisation 

success of the rodent intestinal roundworm H. polygyrus can also been affected by the 

composition in the gut bacteriome: mice with Lactobacillus bacteria in their gut are more 

susceptible to H. polygyrus colonisation, compared to mice without Lactobacillus (Reynolds et 

al., 2014). However, the driving mechanisms behind these associations are hard to infer in 

wild study systems, and may be the result of indirect interactions via the host immunity as 

described above, rather than direct microbial interactions. 

4.1.3 The wild house mouse eukaryome composition 

Laboratory mice are commonly used in gut microbiome studies, despite evidence that their 

bacteriomes differ from their wild counterparts (Mus musculus domesticus) (Rosshart et al., 

2019; Viney, 2019; Bowerman et al., 2021). The gut mycobiome also differs between wild 

house mice and laboratory mice (Rosshart et al., 2019), and the diversity of protozoa and 

helminths found in laboratory mice, whilst well-characterised, is not representative of the 

diversity found in wild house mice (Pritchett, 2007; Ehret et al., 2017). Despite attention shifting 

to wild house mice for bacteriome studies (Linnenbrink et al., 2013; Kreisinger et al., 2014; 

Weldon et al., 2015; Goertz et al., 2019; Suzuki et al., 2019a), there has been, at best, very 

limited study of their eukaryome, and none of what drives its composition. Currently, to my 

knowledge, there are only two studies describing the mycobiome of wild house mice, neither 

of which characterised the protozoa and helminths found in the gut eukaryome (Rosshart et 

al., 2019; Bendová et al., 2020). 

In this respect, the study presented here is unique, given its three main aims to further our 

understanding of the gut eukaryome: i) to characterise the eukaryome composition of wild 
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house mice from three sampling sites in the UK, ii) identify which host factors may be 

associated with eukaryome composition in wild mice, and iii) investigate potential correlation 

between gut eukaryome and bacteriome diversity metrics, as well as identifying co-occurrence 

between gut eukaryotic and bacterial taxa. To achieve the first aim, I used 18S rRNA amplicon 

sequencing to identify the eukaryotic taxa in both the caecum and faeces of wild house mice, 

and compared the composition among three sampling sites. Here, I hypothesise that there are 

differences in the gut eukaryome diversity and composition among the sites. Then, I measured 

the host’s disease and immune state to identify how this was associated with eukaryome 

diversity and composition. Specifically, I predict that changes to the host’s mucosal immunity 

following parasitic infection, as measured by gut inflammation and the production of IgA and 

mucin, are associated with changes in the gut eukaryome composition. Finally, I used 16S 

rRNA amplicon sequencing data to characterise the bacteriome of the mice, before looking for 

correlation between the eukaryome and bacteriome and any co-occurring taxa. Here, I 

hypothesise that the gut eukaryome and bacteriome are impacted by the same host factors.  
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4.2 Methods 

4.2.1 Overview of the study 

This study aimed to characterise the eukaryome composition of wild house mice and identify 

any host factors that may be associated with their eukaryome composition. To do so, mice 

were live-trapped from three sampling sites in England and their disease and immune state 

measured, as well as other general host characteristics. Then, 18S rRNA amplicon 

sequencing was used to describe and compare the gut eukaryome composition among the 

sampling sites. Then, the effect of the host factors on eukaryome diversity and composition 

was measured. Finally, the gut bacteriome of the mice was described, and potential 

correlations between the diversity of the gut eukaryome and bacteriome were investigated.  

4.2.2 Sample collection and processing 

Wild house mice were live-trapped from three sampling sites in England between July and 

December 2021 (Figure 4.1). Mice were trapped with Longworth traps, which were baited with 

a mixture of oats, apple, peanut butter, Haribo sweets, and mixed seeds. Traps were set in 

the late afternoon and checked the following morning. A total of 58 mice were trapped across 

the three sites.  

 

Figure 4.1. The location of the three sampling sites from which wild house mice were 

caught for characterising their gut eukaryome. The months of sampling, the farm type, and 

the longitude and latitude are given for each of the three sites.  

Nottingham: 
July-Sep 2021 

Pig 
52° 54' 38" N 

1° 05' 21" W 

Southport: 
July-Dec 2021 

Horse 
53° 40' 22" N 

2° 54' 24" W 

Wirral: 
Oct-Dec 2021 

Dairy 
53° 17' 27" N 

3° 02' 00" W 
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Mice were culled by cervical dislocation. After culling, the sex, reproductive status, mass (g), 

and body length (cm) were recorded. Reproductive status was classed as either active or 

inactive. For males, those with scrotal (descended) testes were classed as active. Pregnant 

females, or those with enlarged nipples, were classed as active (Goertz et al., 2019). Body 

length was measured from the tip of the snout to the base of the tail. Body condition was then 

calculated as log body mass / log body length, which can accurately predict fat mass of both 

sexes of mice (Labocha et al., 2014). The eyes were dissected out and stored in 2 mL of 10% 

formal saline (10% w/v paraformaldehyde (Sigma-Aldrich) in phosphate-buffered saline (PBS, 

Sigma-Aldrich)) and later processed to calculate age as previously described (Rowe et al., 

1985). Briefly, lenses were removed from the eyes, oven dried until a constant weight, and the 

total weight of both lenses used to predict age (weeks) according to the equation provided by 

Rowe et al. (1985). The guts (stomach to distal large intestine) of the mice were exteriorised 

from the cadaver. The caecum was separated from the small and large intestine, cut open 

along the greater curvature (Williams et al., 2016) and the contents washed into 2 mL of PBS. 

The caecal content was stored at -80°C immediately after collection. A pair of wet curved 

forceps were used to gently massage any pellets out of the distal end of the large intestine 

(Williams et al., 2016). The pellets were stored at -80°C immediately after collection, along 

with any faecal pellets found in the trap. The stomach and small intestine, caecum, and large 

intestine were fixed in 25 mL bijou tubes filled with 10% formal saline. 

4.2.3 Host disease and immune state  

4.2.3.1 Gut antibody response 

The gut intestinal antibody response was measured by assaying the faecal concentration of 

immunoglobulin A (IgA), the most common antibody in mucosal secretions (Gutzeit et al., 

2014). Faecal IgA data were kindly generated by Dr. Louise Cheynel. Briefly, faeces were 

weighed and dissolved in 50 μl PBS supplemented with a protease inhibitor cocktail at a final 

concentration of 20% v/v (SIGMAFASTTM Protease Inhibitor cocktail Tablets, EDTA-free, 

Sigma-Aldrich) to form a slurry that was left at room temperature for 1 h. The samples were 

then centrifuged at 13,000 x g for 10 min at 4°C, and the supernatant removed. Supernatant 

samples were serially diluted (in PBS with 1% v/v Tween and 10% w/v bovine serum albumin 

(BSA, Sigma-Aldrich)), starting from a 1:50 dilution in a doubling series to a 1:1600 dilution. 

The IgA concentration of the supernatants was then measured using a mouse IgA ELISA kit 

following the manufacturer’s instructions (IgA Mouse Uncoated ELISA Kit with Plates, 

Invitrogen). Standard curves, made using the mouse IgA supplied with the kit, were used to 

calculate faecal IgA concentrations, expressed as mg IgA/g of faeces. 
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4.2.3.2 Faecal mucin  

Mucin proteins are an important aspect of mucosal immunity in mammals (McGuckin et al., 

2011) that can be quantified by determining the faecal concentration of N-Acetylgalactosamine 

(GalNAc). GalNAc is a central region within the mucin monomer and so it’s concentration can 

be a proxy for mucin concentration (Ansia and Drackley, 2020). GalNAc concentration was 

measured using a commercial fluorometric assay kit (Crowther and Wetmore, 1987; COSMO 

BIO CO, CSR-FFA-MU-K01E). Faecal samples were processed following the manufacturer’s 

instructions and sample fluorescence was measured using a FlexStation 3 microplate reader, 

set to ex: 336 nm, em: 383 nm. Two adjustments were made to the manufacturer’s 

instructions. Firstly, rather than a single measurement of fluorescence, a double measurement 

was taken, with the readings averaged, to account for random, technical variation. Secondly, 

the GalNAc concentration calculated from the standard curve (µg/mL) was converted to mg/g 

of faeces using the formula: 100/(faecal powder mass*50). This corrected for variation in the 

starting mass of faecal powder. Faecal mucin concentration is expressed as mg GalNAc/g of 

faeces. For two mice, there was insufficient volume of faeces to carry out the fluorometric 

assay. Three laboratory mouse controls were used: i) a male specific-pathogen free (SPF) 

C57BL/6 (henceforth called “SPF”), ii) a female non-SPF C57BL/6 (henceforth called 

“standard”) and iii) a female from a captive colony derived from wild house mice (henceforth 

called “wildling”). The controls allowed comparison of the faecal mucin concentration of wild 

mice to laboratory mice.  

4.2.3.3 Gut histology and assessment of gut inflammation 

The fixed gut tissue was histologically processed and analysed for evidence of inflammation. 

To do this, five sections of gut tissue were cut for each mouse: 1 cm length cut of the small 

intestine (one replicate); 0.5 cm length cut of the large intestine (two replicates); 0.2 cm length 

cut of the caecum (two replicates). The tissue sections were placed into tissue cassettes and 

orientated to allow cutting of longitudinal sections of the large and small intestines and 

transverse sections of the caecum. Sections were then processed for staining by the 

Veterinary Pathology Diagnostic Service, University of Liverpool. The staining process was: 

embedding the tissue sections in paraffin wax, cutting at 3-5 µm thickness, and staining using 

haematoxylin and eosin (H&E).  

The H&E-stained slides were used to score inflammation in the small intestine, caecum and 

large intestine. Two types of inflammation were scored: inflammation mediated by luminal 

antigens (for all five sections) and chemically-induced inflammation (for the large intestine and 

caecum). The scoring used methods described in Erben et al., (2014), where a greater score 

was indicative of greater inflammation. Briefly, chemically-induced colonic inflammation was 

scored by categorising the i) severity and extent of immune cell infiltrate in the lamina propria 
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and ii) the amount of erosion and ulceration. Luminal antigen-mediated inflammation was 

scored by the i) severity and extent of immune cell infiltrate in the lamina propria, ii) the amount 

of hyperplasia and goblet cell loss, and iii) the presence of ulcerations and crypt loss. For the 

small intestine, scoring of luminal antigen-mediated inflammation also included the presence 

of villous blunting and/or atrophy. For all combinations of tissues and inflammation scoring, 

the entirety of the sectioned tissue was scored. The scores of a subset of samples were 

independently checked to ensure accuracy. Due to errors in the dissection and cutting 

process, some tissues sections were not scored. The final sample sizes were 57, 55, and 53 

for the small intestine, caecum, and large intestine, respectively. The gut tissue from the 

control laboratory mice in 4.2.3.2 was also processed and scored in the same way to compare 

to the gut inflammation of wild mice. 

4.2.3.4 Eimeria infection 

Eimeria is a common parasite of wild rodents (Duszynski, 2021), and so Eimeria infection was 

recorded to determine if this common parasite was associated with changes in the gut 

eukaryome. To identify Eimeria infection, DNA from faeces and caecal content was extracted 

using the QIAamp PowerFecal Pro DNA Kit (Qiagen). For caecal content, the protocol was 

adjusted to account for their storage in PBS: prior to use in the kit, caecal samples were 

centrifuged at 20,000 x g and the supernatant discarded. The contents of the PowerBead Pro 

Tubes and 800 μL of solution CD1 (from the extraction kit) were then added to the pellet of 

caecal contents. The manufacturer’s instructions were then followed as normal. The DNA for 

both faeces and caecal content was stored at -80 °C. These DNA samples were then used in 

a PCR to identify the presence of Eimeria. The primers used in the PCR, Ap5_Fwd 

(YAAAGGAATTTGAATCCTCGTTT) and Ap5_Rev (YAGAATTGATGCCTGAGYGGTC), 

were targeted to a region of the apicoplast genome, the plastid found in Apicomplexan 

protozoa (Jarquín-Díaz et al., 2019). 1.5 µL of DNA template was used in the 15 µL PCR. The 

PCR thermocycling protocol was as previously described (Jarquín-Díaz et al., 2019). DNA 

from oocysts of E. falciformis and E. ferrisi (kindly provided by Professor Emanuel Heitlinger) 

were used as positive controls. Successful amplification was defined as the presence of a 

band of the expected size (~448 bp) on a 1% w/v Tris-acetate-EDTA (TAE) agarose gel, run 

at 150 V for 30 mins. Amplification of samples was triplicated and mice were categorised as 

Eimeria-positive if all three triplicates showed evidence of successful amplification. 

4.2.3.5 Statistical analyses 

To compare the host factors of mice among the different sampling sites, analyses were carried 

out in RStudio. The age, body condition, and faecal IgA concentration of mice were compared 

among sites using an analysis of variance (ANOVA). Tukey’s post hoc tests were used to 

conduct pairwise comparisons. Faecal IgA concentration and age were log transformed to fit 
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the assumptions of the ANOVA. For mucin concentration, a generalised linear mixed-effects 

model (GLMM, Bates et al., 2015) was used to compare faecal GalNAc concentration among 

the sites. The GLMM incorporated the assay plate number, faecal starting weight and faecal 

source (trap or intestine) as random effect terms, and used a Gamma error distribution. A 

Wilcoxon one-sample test was used to compare the faecal mucin concentration of wild mice 

to the control, laboratory mice. For the inflammation scores of the large intestine and caecum, 

chemically-induced inflammation and antigen-mediated inflammation were correlated, and so 

only the antigen-mediated inflammation was analysed further (Supplementary Figure 4). The 

possible range of scores for antigen-mediated inflammation were: 0-8 (small intestine) and 0-

4 (large intestine/caecum). However, the highest scores were 5 and 3 respectively, and so 

these will be considered as the maximum score for further analyses. For tissues where there 

were two replicates (large intestine and caecum), the higher (more inflamed) score was used, 

given the interest in how inflammation is associated with the gut eukaryome. Discordance in 

the scores of the replicates is suggestive of localised inflammation – mice that had a difference 

of >1 between tissue replicates were classified as having localised inflammation. To compare 

the inflammation scores among sites, Fisher’s exact test was used – a significant p value was 

indicative of differences in the distribution of inflammation scores among mice from different 

sampling sites. Chi-squared tests were used to determine if the observed distribution of 

inflammation scores was different to the expected (equal) distribution, for each tissue type. 

The inflammation scores of wild mice were compared to the control, laboratory mice using a 

Wilcoxon one-sample test.  

To compare the number of Eimeria-infected mice among sites, Fisher’s exact test, and the 

subsequent pairwise tests, were used. The Holm method was used to account for multiple 

testing (Holm, 1979). Here, a significant p value indicated a difference in the proportion of 

Eimeria-infected mice among the sampling sites. Chi-squared tests were used to determine if 

the proportion of mice infected with Eimeria was different to the null (50%), for each sampling 

site. To compare the infection status of faecal and caecal samples, two tests were used. 

Firstly, the association between the infection status of faecal and caecal samples was tested 

using a chi-squared test. Secondly, a McNemar’s chi-squared test was used to identify if either 

the faecal or caecal samples were more likely to be identified as positive for Eimeria. To 

compare the faecal IgA concentration, faecal mucin concentration, and intestinal inflammation 

between Eimeria-positive and Eimeria-negative mice, a Wilcoxon two-sample test, GLMM (as 

above), and Fisher’s exact test were used, respectively. 
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4.2.4 Eukaryome analysis  

4.2.4.1 DNA sequencing  

To characterise the gut eukaryotic taxa of mice from the three sampling sites, the DNA 

extracted from faeces and caecal content (see above, 4.2.3.4) was amplicon sequenced. To 

do this, first-round PCR amplification was completed by targeting the V4 region of the 18S 

rRNA gene, using the primers 528F (GCGGTAATTCCAGCTCCAA) and 707R 

(AATCCRAGAATTTCACCTCT) (Novogene, 2023). The thermocycling conditions were 2 

mins at 94 °C followed by 25 cycles of: 45 secs at 94 °C; 45 secs at 54 °C; 1 min at 72 °C, 

followed by 5 mins at 72 °C for extension. 2.5 µL of DNA template was used in the 25 µL PCR. 

Second-round amplification, library preparation, and sequencing were completed by the 

Centre for Genomic Research (CGR), University of Liverpool. Sequencing used a single 

Illumina MiSeq v3 run (2x300bp), generating 10,477,596 reads for the total of 116 samples. A 

negative and positive control were also sequenced. The negative control was a blank 

extraction i.e.  the DNA extraction protocol was completed without any starting material (Kim 

et al., 2017). The positive control was a microbial community DNA standard, obtained from 

ZymoBIOMICSTM (D3605). The community contained two species that would be expected to 

amplify when using 18S amplicon sequencing: Saccharomyces cerevisiae and Cryptococcus 

neoformans.  

4.2.4.2 Bioinformatics 

To generate taxonomy data, the raw sequences provided by the CGR were analysed using 

QIIME 2 2021.2 (Bolyen et al., 2019). The sequences were trimmed of primers and CGR 

adapters using cutadapt (Martin, 2011). The paired-end reads were then merged and the data 

were quality filtered and denoised using DADA2 to produce amplicon sequence variants 

(ASVs) (Callahan et al., 2016). The reverse reads were truncated at 220 bp to account for a 

decrease in sequencing quality after this point. The ASVs were then aligned using the mafft 

programme (Katoh et al., 2002) and a phylogeny based on ASV sequence similarity created 

using fasttree (Price et al., 2010). Sequences matching the 528F and 707R primers, and their 

taxonomic classification, were extracted from the SILVA 138 database (Quast et al., 2013) to 

train a Naïve Bayes classifier using the feature-classifier tool (Bokulich et al., 2018). Taxonomy 

was then assigned to each ASV using the trained Naïve Bayes classifier. The sequence data 

and host variable metadata were then transferred into R Studio using the qiime2R package 

(v0.99.6, Bisanz, 2018) for subsequent analysis. ASVs that failed to match the SILVA 

database at the phylum level were checked against the NCBI nt database using BLAST 

(Altschul et al., 1990; Sayers et al., 2021) and taxonomy assigned manually using the R 

phyloseq package (v1.38.0, McMurdie and Holmes, 2013). 
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4.2.4.3 Data processing 

All eukaryome data processing and analyses were carried out in RStudio. ASVs were 

agglomerated at the species level to simplify analyses, retaining any unassigned taxa 

(phyloseq package). ASVs that occurred fewer than ten times across the entire dataset were 

removed from all samples, following Mann et al. (2020). ASVs assigned to five phyla were 

removed from all samples: Phragmoplastophyta, Chlorophyta, Klebsormidiophyceae (plants); 

Arthropoda (insects); and Vertebrata (host). The SILVA-defined ASV classification was 

checked against two recent reviews of eukaryotic taxonomy to ensure accurate comparison 

to other studies (Ruggiero et al., 2015; Adl et al., 2019). Henceforth, the SILVA-defined phyla 

Nematozoa and SAR are referred to as Nematoda and Bigyra, respectively. ASVs were then 

classified as coming from either a gut resident (GR) or a non-gut resident (NGR) as 

recommended by Lavrinienko et al. (2021a). To do this, fungal ASVs were first divided into: 

microfungi, macrofungi, and lichens (Microfungi Collections Consortium, 2022). All macrofungi 

and lichens were classed as NGRs (Lavrinienko et al., 2021a), whereas microfungi were 

further categorised as either GRs or NGRs, according to two sources (Hallen-Adams and 

Suhr, 2017; Mann et al., 2020). Protozoa taxa were also predicted to be GRs or NGRs using 

two sources (Mann et al., 2020; Mathison and Sapp, 2021). Multicellular parasites of mammals 

were classed as GRs, whereas non-parasitic multicellular species were classed as NGRs 

(predicted using Mathison and Sapp (2021)). Notably, ASVs identified as coming from 

parasitic nematodes (orders Oxyurida and Trichocephalida) were identified in the dataset, and 

these were used to identify mice with nematode infections.   

4.2.4.4 Comparative analyses 

The overall aim was to describe and compare the eukaryome of mice from different sampling 

sites. To do this, the presence and relative abundance of ASVs, and their taxonomy, were 

described among the sampling sites for both the caecal and faecal samples, before focussing 

only on GR taxa. Then, to identify how the eukaryome composition varied between the sample 

types (faeces vs. caecal contents), the alpha and beta diversity of the two sample types were 

compared. Shannon’s index was used as the measure of alpha diversity, calculated from ASV 

abundance using the microbiome package (v1.19.1, Lahti and Shetty, 2017). A generalised 

linear model (GLM) with a Gamma error distribution was used to test for differences in 

Shannon’s index between the sample types – an interaction term between sample type and 

sampling site was also included. To fit the assumptions of the GLM, Shannon’s index was first 

reflected to achieve positively-skewed data, and log10 transformed (Osborne, 2010). The 

model revealed an interaction between sample type and sample site, and so paired Wilcoxon 

signed-rank tests were used to compare the Shannon’s index of the faecal and caecal 

eukaryome for each sampling site separately. In these models, Shannon’s index was 
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untransformed. Bray-Curtis dissimilarity (BC) was used as the measure of beta diversity. BC 

was calculated using the relative abundance of ASVs, for those with a minimum read 

abundance of 5 in ≥ 5% of samples (Cao et al., 2021), and a principal coordinate analysis 

(PCoA) was used to visualise the data. A permutational multivariate analysis of variance 

(PERMANOVA) was used to identity if the sample type explained variation in BC, via the 

adonis function (vegan package, v2.5.7, Oksanen et al., 2020). The interaction term between 

sample type and sampling site was also included in the model. The interaction was significant 

so PERMANOVAs were used to compare BC between sample types for each sampling site 

separately.  

To compare the eukaryome among sampling sites, the caecal and faecal samples were 

analysed separately. Analyses were done at four taxonomic levels: ASV, genus, family, and 

phylum, with four comparative metrics: alpha diversity, beta diversity, variation within sampling 

sites, and differential abundance of taxa. Firstly, to compare the alpha diversity of the faecal 

eukaryome of mice from different sampling sites: Kruskal-Wallis tests compared Shannon’s 

index at the ASV, genus, and family level and an ANOVA compared Shannon’s index at the 

phylum level. In these models, Shannon’s index was untransformed. Tukey’s post hoc test 

was used to conduct pairwise comparisons among sites for phylum-level Shannon’s index. 

Secondly, to compare the beta diversity of the faecal eukaryome among the three sampling 

sites, a PERMANOVA was used to test if the sampling site explained variation in BC. 

PERMANOVA pairwise comparisons were conducted for the three sites, using the Benjamini-

Hochberg (BH) correction for multiple testing (Benjamini and Hochberg, 1995).  Thirdly, to 

identify if the amount of variation in the faecal eukaryome community composition within 

sampling sites differed among the sites, the betadisper function was used, with adjustment for 

sample size bias (vegan package). The betadisper function generates the median distance of 

mice within a sampling site to the centroid in multivariate space, for each site. The permutest 

function (vegan package) was then used to compare the amount of variation in BC among 

sampling sites. Finally, the differential abundance of taxa in the faecal eukaryome was 

compared between sampling sites, at the ASV and phylum level only. To do this, an analysis 

of composition of microbiomes with bias correction (ANCOM-BC) was used (Lin and Peddada, 

2020). ANCOM-BC tests used the in-built conservative approach to account for small sample 

sizes and used the Holm method to account for multiple testing. The centred-log ratio (CLR) 

transformation was used to visualise the differences in abundance. To compare the 

eukaryome of the caecum among sampling sites, the above analyses were repeated for the 

caecal samples with two differences: i) all alpha diversity comparisons used ANOVAs to 

compare untransformed Shannon’s index and ii) differential abundance of taxa was compared 

at the phylum level only.  
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4.2.4.5 Host factors 

To investigate how host factors affect eukaryome diversity and composition, faecal and caecal 

samples were analysed separately. The host factors of interest were: age, body condition, 

sex, reproductive state (from section 4.2.2), faecal IgA concentration, faecal mucin 

concentration, gut inflammation, Eimeria infection (from section 4.2.3) and helminth infection 

(from section 4.2.4.3). Three of the host factors were covariates, identified from correlation 

tests on Pearson’s product moment correlation coefficient: log transformed age, log 

transformed faecal IgA concentration, and body condition (Supplementary Figures 5A-C). To 

account for this, a principal component analysis (PCA) was carried out. The PCA used the 

untransformed variables, which were scaled to have unit variance. The first principal 

component (henceforth called PC1) explained 59% of the variance in these three host factors, 

and so was used to represent this variation in models (Supplementary Figure 5D). All three 

variables were negatively correlated with PC1 (Supplementary Figure 5E).  

For alpha diversity, linear models (LM) were used to determine which host variables explained 

variation in Shannon’s index. For the faecal eukaryome, Shannon’s index was recalculated 

prior to running the model after removing ASVs assigned to Eimeria, Oxyurida and 

Trichocephalida. The explanatory variables in the initial LM were: PC1, sex, reproductive 

status, faecal mucin concentration and gut inflammation. Eimeria infection status and 

nematode infection status, and their interactions with the other host factors were also included. 

Interaction terms were excluded from the final reported model if not significant. For the caecal 

eukaryome, two LMs were used. In the first LM, the explanatory variables were PC1, sex, 

reproductive status, faecal mucin concentration and gut inflammation. In the second LM, the 

explanatory variables were Eimeria infection status, Oxyurida infection status and Trichuris 

muris infection status. For this second caecal LM, Shannon’s index was recalculated after 

removing ASVs assigned to Eimeria, Oxyurida and Trichocephalida, as done with the faecal 

eukaryome. 

For beta diversity, PERMANOVAs were used to test if a host variable significantly explained 

variation in BC. Host variables were tested separately, with BH correction to account for 

multiple testing. BC between samples was recalculated for PERMANOVAs testing for an effect 

of parasitic status, after removing ASVs assigned to that focal parasite. For differential 

abundance of taxa, ANCOM-BC was used to identify taxa that had a significantly different 

abundance between parasitized (Eimeria, Oxyurida, and/or Trichuris) and unparasitized mice. 

For alpha and beta diversity, Shannon’s index and BC were calculated at the ASV level, 

whereas differential abundance of taxa was compared at the phylum level. 
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4.2.5 Eukaryome and bacteriome comparisons 

4.2.5.1 Bacteriome analysis  

The overall aim was to determine if any patterns identified in the gut eukaryome of mice were 

also seen in the bacteriome, and then to consider if there was a causal relationship. To do 

this, the bacteriome was characterised for all 58 mice from 16S rRNA amplicon sequencing 

data kindly provided by Dr. Louise Cheynel. The sequences were generated from faecal DNA 

that was amplified and sequenced using primers targeting the 16S rRNA gene V4 region: 515F 

(GTGCCAGCMGCCGCGGTAA) and 806R (GGACTACHVGGGTWTCTAAT) (Caporaso et 

al., 2011). DNA extraction was completed by Dr Louise Cheynel and PCR amplification, library 

preparation, and sequencing were completed by the Centre for Genomic Research (CGR), 

University of Liverpool. The positive control was a mixture of DNA from eight bacterial species, 

from a microbial community DNA standard (ZymoBIOMICSTM, D3605). A total of 7,382,623 

reads were generated from the 58 faecal samples. The 16S amplicon sequences were then 

processed to generate taxonomy data following the pipeline used for the 18S sequences 

(section 4.2.4.2) with the following changes: the reverse reads were truncated at 210 bp; 

sequences matching the 515F and 806R primers were extracted from the SILVA 138 

database; and ASVs unclassified at the phylum level were not checked against the NCBI 

database.  As with the 18S ASVs, 16S ASVs that occurred fewer than ten times across the 

entire dataset were removed from all samples. ASVs assigned to Archaea were also removed. 

The presence and relative abundance of 16S ASVs, and their taxonomy, were described 

among the sampling sites. Henceforth, to ensure clarity, gut microbial taxa identified from 18S 

and 16S ASVs are referred to as the eukaryome and bacteriome, respectively. The term 

‘microbiome’ is used to refer to both the eukaryome and bacteriome together.  

4.2.5.2 Comparisons between the gut eukaryome and bacteriome  

To compare the diversity and composition of the eukaryome and bacteriome, diversity metrics 

were first generated for the bacteriome. The same four metrics used for the eukaryome were 

generated and compared among sampling sites (section 4.2.4.4): alpha diversity, beta 

diversity, variation within sampling sites, and differential abundance of taxa. Comparisons 

were made at the ASV level only, in contrast to the eukaryome analysis. Then, comparisons 

of faecal eukaryome and faecal bacteriome alpha and beta diversity were made. To do this, 

differences in alpha diversity between the eukaryome and bacteriome were tested using a 

paired Wilcoxon signed-rank test, first for all mice, and then for each sampling site separately. 

Correlations between eukaryome and bacteriome alpha diversity was tested using 

Spearman’s correlation coefficient, for all mice, and for each sampling site separately. In both 

the Wilcoxon and Spearman’s correlation tests, untransformed Shannon’s index was the 

measure of alpha diversity. For beta diversity, Mantel tests (vegan package) were used to 
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identify correlation of eukaryome and bacteriome BC. Positive correlations identified from 

Mantel tests of BC would indicate that as mice became more dissimilar in their eukaryome 

community composition, they also become more dissimilar in the bacteriome community 

composition. As with alpha diversity, Mantel tests were carried out first for all mice, then for 

each sampling site separately.  

To investigate which host factors affect both eukaryome and bacteriome diversity and 

composition, the effect of host factors on the bacteriome were investigated (section 4.2.4.5). 

For alpha diversity, all host factors were tested in one model, including Eimeria infection status 

and nematode infection status. Only one model was used because Shannon’s index did not 

need to be recalculated following removal of reads assigned to Eimeria, Oxyurida and 

Trichocephalida, as seen for the eukaryome.  

4.2.5.3 Microbiome network analysis and co-occurrence 

To investigate ecological interactions in the gut microbiome, associations between microbial 

taxa were predicted using the R package SpiecEasi (v1.1.2, Kurtz et al., 2015). SpiecEasi 

predicts microbial associations using ASV abundance data. To do so, the SpiecEasi pipeline 

generates an inverse covariance matrix from the abundance data after i) accounting for 

compositional datasets commonly seen in amplicon sequencing datasets and ii) normalization 

to make ASVs independent of one another (Kurtz et al., 2015; Tipton et al., 2018). For these 

analyses, the SpiecEasi neighbourhood selection method (MB) was used, with the number of 

subsamples set to 50, and all other settings kept as the default. Predictions were first made 

for the eukaryome and bacteriome separately, before combining both datasets to infer 

associations within the microbiome. Analyses were completed for each sampling site 

separately. The input data for the analyses were untransformed ASV read abundances, 

following aggregation at the family taxonomic rank. Only the families present in ≥ 20% of mice 

were included in the analysis. For ASVs unclassified at the family level, the lowest known 

taxonomic rank was used. The output from SpiecEasi was then plotted as networks, using the 

R package igraph, to make biological inferences from the predicted associations (v1.2.6, 

Csardi and Nepusz, 2006). For clarity, the taxa in the network are nodes, and the predicted 

associations between taxa are edges connecting the representative nodes.  

Network connectivity was compared among sampling sites using three measures: i) node 

degree, ii) percentage of singletons, and iii) the number and size of components. Firstly, node 

degree is the number of edges connected to that node: a network with an average node 

degree of one indicates that on average, the nodes in that network are connected with only 

one other taxon. Secondly, the percentage of singletons is defined here as the percentage of 

nodes with no connected edges. Thus, a high percentage of singletons is indicative of lower 
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network connectivity. Thirdly, components are groups of nodes connected by edges, with 

component size being equal to the number of nodes in that component e.g. a component of 

size one is a singleton node. Networks with few, large components have greater connectivity 

than networks with many, small components. The biological inference from comparing network 

connectivity is that more taxa are interacting with each other in a network with greater 

connectivity, and that taxa with a high node degree are likely important in the microbiome 

ecological network, potentially keystone species (Kurtz et al., 2015; Tipton et al., 2018). To 

identify how the gut microbiome ecological networks differed among sampling sites, the taxa 

with a high node degree and the taxa found within large components were compared among 

sampling sites. Positive edges between nodes infer that these taxa are co-occurring, and so 

the proportion of positive and negative edges was also compared among sampling sites. 

Complementary to the network analyses, correlation tests were used to identify correlations 

in the abundance of taxa in the gut microbiome. Read depth was used as the measure of 

abundance, following aggregation of ASVs to the phylum level. Only the eukaryotic and 

bacterial phyla present in ≥ 20% of mice were included in the analysis. Spearman’s correlation 

coefficient was used to identify negative or positive correlations between phyla abundance, 

and significance was inferred using p values following correction for multiple testing via the 

BH method.   
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4.3. Results 

4.3.1 The host factors of the wild house mice 

4.3.1.1 General characteristics 

To survey the gut eukaryome of wild house mice and investigate what host factors affect 

eukaryome composition, 58 mice were sampled across from three sampling sites (Table 4.2). 

Males were caught more frequently than females. Nottingham-caught mice were significantly 

older than Southport mice (ANOVA: F2 = 8.13, p < 0.001, Figure 4.2A). Mice from Southport 

also had a lower body condition score compared to Nottingham and Wirral mice (ANOVA: F2 

= 7.93, p < 0.001, Figure 4.2B).  

Table 4.2. Descriptive characteristics of wild mice caught from the three sampling sites. 

Characteristic Nottingham Southport Wirral Combined 

Number Caught 31 15 12 58 

Sex (M/F) 20/11 9/6 10/2 39/19 

Age (weeks) 
Mean (±SE) 10.0 (± 1.3) 4.6 (± 0.6) 7.3 (± 1.0) 8.0 (± 0.8) 

Range 2-41 2-9 4-16 2-41 

Reproductively Active (%) 16 (52%) 3 (20%) 9 (75%) 28 (48%) 

Body 
Condition 

Mean (±SE) 1.3 (± 0.0) 1.2 (±0.0) 1.3 (±0.0) 1.2 (± 0.0) 

Range 1.1-1.5 1.0-1.3 1.2-1.4 1.0-1.5 

 

 

Figure 4.2. The A) age and B) body condition of wild mice from three sampling sites. 

Age (weeks) is log transformed. Body condition is calculated as log body mass (g) / log body 

length (cm). Boxplots indicate the median value, the first and third quartiles and whiskers 

extend to 1.5 times the inter-quartile range. *** p < 0.001, * p < 0.05, ns p > 0.05 from Tukey’s 

post hoc tests.  
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4.3.1.2 Immunological factors 

The immune state of mice was measured in three ways: faecal IgA concentration, faecal mucin 

concentration and intestinal inflammation. The faecal IgA concentration of mice was 

significantly different among the different sampling sites (ANOVA: F2 = 14.8, p < 0.001, Figure 

4.3A). The faecal IgA concentration (mean ± SE) was significantly lower in Southport mice 

(129 mg/g ± 19) compared to Nottingham (851 mg/g ± 142) and Wirral (442 mg/g ± 147) mice 

(TukeyHSD: p < 0.001 and p = 0.035, respectively). There was no difference in the faecal 

GalNAc concentration among sites (GLMM: Wald’s X2 = 0.093, p = 0.955, Figure 4.3B). 

However, wild mice had a significantly higher faecal GalNAc concentration on average, 

compared to all three laboratory mice (Table 4.3). Specifically, the concentration (mean ± SE) 

was approximately three times greater in wild mice (9.52 ± 1.4) compared to three laboratory 

mice (3.01 ± 0.32). 

 

Figure 4.3. The faecal A) IgA and B) GalNAc concentrations of wild mice from three 

sampling sites. Both concentrations (mg /g of faeces) are log transformed. Boxplots indicate 

the median value, the first and third quartiles and whiskers extend to 1.5 times the inter-quartile 

range. **** p < 0.0001, ** p < 0.01, ns p > 0.05 from A) Tukey’s post hoc tests and B) a GLMM.  

Table 4.3. The faecal mucin concentration of three laboratory mice, compared to wild 

mice. GalNAc concentration is measured as a proxy for mucin concentration. The average 

concentration ± SE is given for wild mice (n = 56). Comparisons were made via a Wilcox one-

sample test. V is the test statistic.  

Mouse 
Faecal GalNAc concentration 

(mg/g of faeces) 
V p value 

SPF 3.63 1,583 < 0.001 

Standard 2.83 1,596 < 0.001 
Wilding 2.57 1,596 < 0.001 

Wild 9.52 (± 1.4)   
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There was no difference in the distribution of inflammation scores for the small intestine 

(Fisher’s exact test, p = 0.448) nor the large intestine (Fisher’s exact test, p = 0.071) among 

mice from different sampling sites (Figure 4.4). However, there was a significant difference in 

the distribution of inflammation scores for the caecum among mice from the different sampling 

sites (Fisher’s exact test, p = 0.007), with a higher proportion of Nottingham-caught mice 

having greater inflammation (Figure 4.4B). Chi-squared tests indicated that inflammation 

scores were significantly higher than expected for the large intestine and caecum for all 

sampling sites (Supplementary Table 3). In contrast, inflammation scores in the small intestine 

were equally distributed in mice from Nottingham and Wirral, and significantly lower than 

expected in mice from Southport (Supplementary Table 3). Localised inflammation in the large 

intestine was identified in eight mice, whereas only one mouse had localised inflammation in 

the caecum. There was no common pattern among these mice that may explain the localised 

inflammation seen (Supplementary Table 4). Wild mice had greater levels of inflammation in 

the small and large intestine compared to laboratory mice (Table 4.4). In the caecum, wild 

mice had more inflammation compared to the two C57BL/6 laboratory mice, but lower 

inflammation compared to the wildling mouse.   
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Figure 4.4. Luminal antigen-mediated inflammation in the gut of wild mice caught from 

three sampling sites. A) Small intestine, n = 57, B) Caecum, n = 55, C) Large intestine, n = 

53. The y axes are the percentage of mice for each possible score. A higher score, shown by 

the darker colour, is indicative of greater inflammation. Counts for each score are shown on 

top of the columns. The range of scores possible were 0-8 (small intestine) and 0-4 (caecum 

and large intestine). ** p < 0.01, * p < 0.05, ns p > 0.05 from pairwise Fisher’s tests.  
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Table 4.4. The inflammation scores of three laboratory mice, compared to wild mice. 

The average inflammation scores ± SE are given for wild mice (n = 55, 55, 53 for the small 

intestine, caecum, and large intestine, respectively). Comparisons were made using a Wilcox 

one-sample test. V is the test statistic.  

 Small Intestine Caecum Large Intestine 

Mouse Score V p value Score V p value Score V p value 
SPF 2 623 0.010 2 881.5 < 0.001 2 760 < 0.001 

Standard 2 623 0.010 2 881.5 < 0.001 2 760 < 0.001 
Wilding 2 623 0.010 3 0 < 0.001 2 760 < 0.001 

Wild 
2.5 

(0.2) 
  

2.7 
(0.1) 

  
2.7 

(0.1) 
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4.3.1.3 Eimeria prevalence and impact 

PCR diagnostics identified there was a strong, significant association of Eimeria infection 

status between caecal and faecal samples (Pearson’s Chi-squared test: X2
1 = 33.55, p < 

0.001). However, there was a significant difference in the probability of a positive infection 

status when comparing the two sample types (McNemar’s Chi-squared test: X2
1 = 4.14, p = 

0.041), indicating that mice were more likely to show a positive infection when testing faecal 

samples compared to caecal samples. Comparison among sampling sites identified significant 

differences in the proportion of mice infected with Eimeria, for both caecal and faecal samples 

(Fisher’s exact test: p < 0.001 and p < 0.001, Figure 4.5). Pairwise fisher tests indicated that 

this was driven by Nottingham (proportion infected: caecal: 90%, faecal: 97%), which was 

significantly different to both Southport (caecal: 13%, p < 0.001, faecal: 20%, p < 0.001) and 

Wirral (caecal: 33%, p < 0.001, faecal: 58%, p = 0.008) (Figure 4.5). There was no difference 

between the proportion of mice infected with Eimeria when comparing mice caught from Wirral 

and Southport (caecal: p = 0.357, faecal: p = 0.057). Chi-squared tests for each sampling site 

separately supported these findings: Nottingham had a significantly greater proportion of 

Eimeria-positive mice than the null (50%), Southport mice had a significantly smaller 

proportion of Eimeria-positive mice than the null, whereas there was no difference to the null 

in the proportion of Eimeria-positive in Wirral mice (Supplementary Table 5). 

 

Figure 4.5. The percentage of mice infected with Eimeria from three sampling sites. A) 

Caecum, B) Faeces. Infection status was determined by PCR. Sample size for each site is 

shown on the x axes. Error bars are 95% binomial confidence intervals. **** p < 0.0001, *** p 

< 0.001, ** p < 0.01, ns p > 0.05 from pairwise Fisher’s tests.  
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Following the identification of Eimeria in mice from all three sampling sites, the potential impact 

of Eimeria on the host immune state was investigated. Firstly, comparison of Eimeria-positive 

and Eimeria-negative mice identified a significant difference in faecal IgA concentration 

(Wilcox two-sample test: W = 170, p = 0.001) and faecal GalNAc concentration (GLMM: 

Wald’s X2 = 6.40, p = 0.011). Eimeria-positive mice had a greater faecal IgA concentration 

(mean ± SE: 705 mg/g ± 118) compared to Eimeria-negative mice (302 mg/g ± 106, Figure 

4.6A). Faecal GalNAc concentrations were also higher in Eimeria-positive mice (mean ± SE: 

9.6 mg/g ± 1.6) compared to Eimeria-negative mice (9.3 mg/g ± 2.7, Figure 4.6B). Finally, 

there was no difference in the distribution of gut inflammation scores when comparing Eimeria-

positive and Eimeria-negative mice for the small intestine (Fisher’s exact test:  p = 0.603) or 

large intestine (p = 0.341). In the caecum, there was a mild difference in the distribution of 

inflammation scores, but this difference was not significant (p = 0.073) (Figure 4.7). These 

relationships are suggestive that Eimeria presence is associated with changes in the gut 

immune state of mice, particularly a higher faecal IgA and mucin concentration. However, the 

directionality of this relationship is unknown. 

 

Figure 4.6. The faecal A) IgA and B) mucin concentrations of wild mice by Eimeria 

infection status. Both concentrations (mg/g of faeces) are log transformed. Boxplots indicate 

the median value, the first and third quartiles and whiskers extend to 1.5 times the inter-quartile 

range. ** p < 0.01, *p < 0.05 from A) a Wilcox two-sample test and B) a GLMM.   
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Figure 4.7. Luminal antigen-mediated inflammation in the gut of wild mice by Eimeria 

infection status. A) Small intestine, n = 57, B) Caecum, n = 55, C) Large intestine, n = 53. 

The y axes are the percentage of mice for each possible score. A higher score, shown by the 

darker colour, is indicative of greater inflammation. Counts for each score are shown on top 

of the columns. The range of scores possible were 0-8 (small intestine) and 0-4 (caecum and 

large intestine). ns p > 0.05 from pairwise Fisher’s tests.   
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4.3.2 The eukaryome composition of wild house mice 

4.3.2.1 Sequencing summary 

18S rRNA amplicon sequencing was used to identify taxa in the gut eukaryome. Prior to 

analysis, ASVs in the negative control were examined to ensure there was no contamination 

of samples. Only one ASV was identified in the negative control, which was classified as the 

fungus Rhodotorula, and this ASV was present in 17/116 of the wild mouse samples, with a 

total abundance of 3,660. This ASV was removed from all samples before further analysis. 

The five ASVs identified in the positive control represented the two fungal species – 

Saccharomyces cerevisiae and Cryptococcus neoformans – present in the mock microbial 

community, confirming successful amplification of these two taxa.  Following the removal of 

the control samples, a total of 2,666 ASVs were identified in the wild mice. Across both faecal 

and caecal samples (n = 116), the total read depth was 10,477,695, with an average (± 

standard error) reads per sample of 90,324 (± 4,193). After agglomeration of ASVs at the 

species level, removal of low abundance taxa, and removal of taxa classified as vertebrates, 

arthropods, and plants, the total read depth was 2,458,285 and 2,543,954 in caecal and faecal 

samples, respectively (Table 4.5). 

Table 4.5. Summary of the read depths in caecal and faecal samples before and after 

filtering. ASVs were agglomerated at the species level before filtering.  

 
Caecal Faecal 

Pre-filter Post-filter Pre-filter Post-filter 

Total read depth 5,602,209 2,458,285 4,875,387 2,543,954 

Average reads per 
sample (± SE) 

96,589 
(± 6,064) 

42,384 
(± 4,752) 

84,058 
(± 5,727) 

43,861 
(± 3,814) 

Number of ASVs 1,381 379 2,417 535 

 

4.3.2.2 Eukaryome diversity and composition 

The presence of a eukaryotic taxon was indicated by the presence of ASV(s) assigned to that 

taxon. 32 eukaryotic phyla were identified across all 58 wild mice, with six phyla identified as 

potential gut residents (Table 4.6, Supplementary Table 6). In the faecal eukaryome, 

prevalence of these six phyla ranged from 100% (Ascomycota and Basidiomycota) to 14% 

(Bigyra), and relative abundance ranged from 42.5% (Ascomycota) to 0.3% (Ciliophora). 

ASVs coming from multicellular parasites (Nematoda) were present in 94% of Nottingham 

mice, but were absent from Southport mice. In comparison to the faecal eukaryome, fewer 

phyla (25) were present in the caecal eukaryome across all 58 mice (Table 4.6, Supplementary 

Table 7). The majority of phyla were more prevalent in the faecal eukaryome compared to the 

caecal eukaryome (Figure 4.8). Only the phylum Nematoda was more prevalent in the caecum 

(72%) compared to faeces (60%).  
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Table 4.6. Phyla identified from the faecal and caecal eukaryome of wild mice. Phyla are 

ordered by their relative abundance across all 58 wild mice. Only the phyla with a relative 

abundance of > 0.1% and > 0.05% are shown for the faecal and caecal eukaryome, 

respectively. The complete list of phyla can be found in Supplementary Tables 6 and 7. 

Abundance is the number of reads classified for each phylum. Prevalence is the percentage 

of mice from which that phylum was identified. Phyla in bold are known gut residents. N’ham 

= Nottingham, S’port = Southport.  

a ASVs not classified at the phylum level  

 Phylum 
Abundance Prevalence (%) 

Relative 
(%) 

Total 
Combined 

(58) 
N’ham 

(31) 
S’port 

(15) 
Wirral 
(12) 

F
a
e
c
a
l 

Ascomycota 42.5 1,080,915 100 100 100 100 

Basidiomycota 32.0 815,080 100 100 100 100 

Mucoromycota 13.4 341,999 100 100 100 100 

Apicomplexa 9.2 233,732 88 100 80 67 

Nematoda 0.7 18,520 60 94 0 50 

Cercozoa 0.6 15,977 88 94 87 75 

Bigyra 0.5 13,671 14 19 0 17 

Ciliophora 0.3 6,749 78 84 67 75 

Rotifera 0.1 3,613 17 26 13 0 

Ochrophyta 0.1 3,585 67 68 67 67 

Unclassifiedc 0.1 3,426 81 87 67 83 

 

C
a

e
c

a
l 

Nematoda 41.1 1,011,293 72 100 27 58 

Basidiomycota 24.5 603,440 100 100 100 100 

Ascomycota 24.2 595,891 100 100 100 100 

Apicomplexa 6.0 147,763 88 100 73 75 

Mucoromycota 3.5 86,044 98 100 93 100 

Bigyra 0.14 3,461 7 13 0 0 

Cercozoa 0.14 3,355 57 52 80 42 

Ciliophora 0.07 1,811 52 52 33 75 

Unclassifieda 0.07 1,680 48 32 67 67 

Ochrophyta 0.06 1,358 40 35 33 58 
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Figure 4.8. The prevalence of eukaryotic phyla identified in the caecal and faecal 

eukaryome of wild mice. Prevalence is calculated from all 58 wild mice. Only the phyla with 

a relative abundance of > 0.1% in the faecal eukaryome which also appear in the caecal 

eukaryome are shown. Phyla are ordered in the legend by prevalence in the faecal 

eukaryome.  

There was variation in the relative abundance of phyla-assigned ASVs among and within 

sampling sites (Figure 4.9, Table 4.7). In the faecal eukaryome (Figure 4.9A), Ascomycota 

ASVs had the highest relative abundance in Nottingham mice, whereas Basidiomycota was 

highest in Southport and Wirral mice. Apicomplexa ASVs had a relative abundance of 17.3% 

in Nottingham mice, which was higher compared to Southport and Wirral mice. In the caecal 

eukaryome (Figure 4.9B), Basidiomycota ASVs had the highest relative abundance in 

Southport and Wirral mice, consistent with the faecal eukaryome. However, Nematoda had 

the highest relative abundance in Nottingham mice, which contrasts to the finding of 

Ascomycota in faecal samples.   
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Figure 4.9. Relative abundances of eukaryotic phyla identified in the A) faecal and B) 

caecal eukaryome of wild mice. Relative abundance is the proportion of reads classified for 

each phylum. Only the phyla with a minimal read abundance of 200, in ≥ 5% of all mice, are 

shown. Less abundant phyla are grouped into Other. Phyla are ordered by their relative 

abundance across all mice.   
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Table 4.7. Relative abundances of eukaryotic phyla identified from the faecal and caecal 

eukaryome of wild mice. Relative abundance is the percentage of reads classified for each 

phylum. Only the phyla with a minimal read abundance of 200, in ≥ 5% of all mice, are shown. 

Phyla are ordered by their relative abundance across all mice.  

 
Phylum 

Relative Abundance (%) 

Nottingham  Southport  Wirral 

F
a
e
c
a
l 

Ascomycota 46.9 42.1 34.2 

Basidiomycota 17.3 43.7 47.6 

Mucoromycota 12.0 15.0 17.0 

Apicomplexa 19.2 0.1 0.1 

Nematoda 1.5 NA 0.1 

Cercozoa 0.9 0.5 0.1 

Bigyra 1.1 NA < 0.1 

Ciliophora 0.2 0.3 0.3 

Ochrophyta 0.1 0.1 0.3 
 

C
a

e
c

a
l 

Nematoda 64.9 <0.1 7.4 

Ascomycota 16.3 38.4 35.0 

Basidiomycota 6.1 60.3 45.8 

Apicomplexa 9.7 0.1 0.2 

Mucoromycota 2.3 1.0 10.9 

Ciliophora 0.1 <0.1 0.2 

 

To investigate which taxa were contributing to the phyla identified above, comparisons were 

made at the genus level (Figure 4.10). Of the 348 eukaryotic genera present in the faecal 

eukaryome, only eight were detected with more than 500 reads in least 20% of all mice (Figure 

4.10A). Wallemia and Eimeria were the dominant genera contributing to the high relative 

abundance of Basidiomycota and Apicomplexa, respectively. Several genera of Ascomycota 

contributed to its high relative abundance. In the caecal eukaryome, eight (of 254) genera 

were present with more than 500 reads in least 20% of all mice (Figure 4.10B). Consistent 

with the faecal eukaryome, Wallemia and Eimeria were present in the caecal eukaryome, as 

well as several Ascomycota genera. The high relative abundance of Nematoda in the caecum 

was driven by the presence of the nematode order Oxyurida (undefined at the genus level) 

and the nematode genus Trichuris. Despite the high prevalence of Ciliophora and Cercozoa, 

no genera of these phyla were present in over 20% of mice. 
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Figure 4.10. Relative abundances of eukaryotic genera identified in the A) faecal and B) 

caecal eukaryome of wild mice. Relative abundance is the proportion of reads classified for 

each genus. Only the genera with a minimal read abundance of 500, in ≥ 20% of mice, are 

shown. Less abundant genera are grouped into Other. Genera are ordered by their relative 

abundance across all mice. Some abundant ASVs were not classified at the genus level – the 

given taxonomic rank is a Family, b Class and c Order. 
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The eukaryotic taxa identified via ASV presence were then classified as either gut residents 

(GR) or non-gut residents (NGR). There were 14 genera, and two orders, of GR taxa in the 

wild mouse gut eukaryome (Table 4.8). In the faecal eukaryome, Trichuris was present only 

in Nottingham mice, but was present in the caecal eukaryome of mice from all three sampling 

sites. The nematode order Oxyurida was present in both faecal and caecal samples of 

Nottingham and Wirral mice, but was absent from Southport mice. The order Ascaridida 

(Nematoda) was the only taxonomic group present in the caecal eukaryome, but not the faecal 

eukaryome. Strongyloides was identified in one mouse from Nottingham. The fungal GR taxa 

included Aspergillus, Penicillium, Candida, and Saccharomyces. For protozoa, 

Cryptosporidium was present in mice from all three sampling sites, whereas Blastocystis was 

present in Nottingham and Wirral mice, but absent in Southport mice. Neobalantidium (= 

Balantidium) was identified in only one faecal sample from Nottingham. Eimeria was found in 

both the faecal (Nottingham mice) and caecal eukaryome (Nottingham and Wirral mice). 

However, the number of mice with Eimeria contrasted to the number identified using PCR 

diagnostics (4.3.1.3). PCR diagnostics identified a greater proportion of mice infected with 

Eimeria in all combinations of sample type (faecal vs. caecal) and sampling site 

(Supplementary Table 8). 

The differences in presence and prevalence of eukaryotic taxa among the faecal and caecal 

eukaryome was investigated further. The alpha diversity (mean Shannon’s index ± SE) of the 

faecal and caecal eukaryome was 2.2 (± 0.1) and 1.6 (± 0.1) respectively, and this difference 

was significant (GLM: Wald’s X2 = 15.4, p < 0.001, Figure 4.11A). There was a significant 

interaction between the sample type and sampling site (GLM: Wald’s X2 = 6.9, p = 0.032). 

Comparison of alpha diversity at each sampling site identified that alpha diversity was higher 

in the faecal eukaryome compared to the caecal eukaryome for Nottingham and Southport 

mice (Wilcox signed-rank test: V = 65, p < 0.001; V = 25, p < 0.048, respectively). For beta 

diversity, the faecal and caecal eukaryome compositions were significantly different, as 

measured by BC (PERMANOVA: F1 = 9.26, R2 = 0.060, p < 0.001, Figure 4.11B). However, 

there was a significant interaction between the sample type and sampling site (PERMANOVA: 

F2 = 2.83, R2 = 0.037, p < 0.001) and only Nottingham mice had significantly different caecal 

and faecal eukaryomes (PERMANOVA: F1 =10.49, R2 = 0.149, p < 0.001). These results 

suggest that are differences in eukaryome diversity and composition between caecal contents 

and faeces, but the amount of differentiation is specific to sampling site.  
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Table 4.8. The gut resident taxa identified in the dataset and their prevalence in the gut 

eukaryome of wild mice. Prevalence is the percentage of mice from which ASVs classified 

as that gut resident were identified. The number in brackets is the total sample size and sample 

size for each site. N’ham = Nottingham, S’port = Southport.  

 Type Genus 
Prevalence (%) 

Combined (58) N’ham (31) S’port (15) Wirral (12) 

F
a
e
c
a
l 

Nematode 

Oxyuridaa 53 90 0 25 

Trichuris 5 10 0 0 

Strongyloides 2 3 0 0 

Protozoa 

Eimeria 41 77 0 0 

Cryptosporidium 31 42 13 25 

Blastocystis 14 19 0 17 

Neobalantidium 2 3 0 0 

Fungi 

Aspergillus 98 97 100 100 

Penicillium 66 84 27 67 

Saccharomyces 29 16 40 50 

Glaebosab 16 23 13 0 

Geotrichum 3 6 0 0 

Lodderomycesb 3 3 7 0 

Nakaseomycesb 3 0 0 17 

Malassezia 2 3 0 0 

 

C
a

e
c

a
l 

Nematode 

Oxyuridaa 64 100 0 50 

Trichuris 43 65 27 8 

Ascarididaa 3 6 0 0 

Protozoa 

Eimeria 47 77 0 8 

Cryptosporidium 29 32 13 42 

Blastocystis 5 10 0 0 

Fungi 

Aspergillus 95 90 100 100 

Penicillium 81 84 80 75 

Malassezia 59 52 73 58 

Lodderomycesb 10 0 20 25 

Saccharomyces 9 3 13 17 

Glaebosab 5 10 0 0 

Nakaseomycesb 3 0 7 8 

a Identified to the order level, not genus 
b Candida-associated clade  
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Figure 4.11. Comparison of the eukaryome diversity of wild mice between sample types. 

A) Comparison of Shannon’s index split by sampling site. Boxplots indicate the median value, 

the first and third quartiles and whiskers extend to 1.5 times the inter-quartile range. B-C) 

PCoA of Bray-Curtis dissimilarity between sample types, with the proportion of variance 

explained by each axis shown. B) Nottingham, C) Southport, D) Wirral. Ellipses are 95% 

confidence intervals. *** p < 0.001, * p < 0.05, ns p > 0.05 from Wilcox signed-rank tests.  
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4.3.2.3 Comparison of the gut eukaryome among sampling sites. 

Following the identification of different prevalences and relative abundances of taxa among 

different sampling sites, the eukaryome diversity and composition was compared among the 

sampling sites. For the faecal eukaryome, there was no difference in ASV-level alpha diversity 

(mean Shannon’s index ± SE) among mice from the three sampling sites (Kruskal-Wallis: X2
2 

= 3.47, p = 0.176): Nottingham (2.4 ± 0.1), Southport (1.9 ± 0.2), and Wirral (2.0 ± 0.3) (Figure 

4.12A). This result was consistent at the genus and family level, but phylum-level Shannon’s 

index was significantly higher for Nottingham mice (1.0 ± 0.0) compared to Southport mice 

(0.8 ± 0.1) (ANOVA: F2 = 3.33, p = 0.042, Figure 4.12B, Supplementary Table 9). This 

contrasts to the caecal eukaryome, whose alpha diversity differed significantly among the mice 

from different sampling sites at the genus (ANOVA: F2 = 3.40, p = 0.041), and family taxonomic 

ranks (ANOVA: F2 = 3.68, p = 0.032, Supplementary Table 9). Post hoc comparisons showed 

that Wirral mice had a higher caecal alpha diversity, compared to Nottingham mice, for these 

taxonomic ranks (p = 0.031 and p = 0.024, Figures 4.12C and 4.12D).  

For beta diversity, the sampling site of mice accounted for 21.1% of the variation in ASV-level 

BC of the faecal eukaryome (PERMANOVA: F2 = 7.37, R2 = 0.211, p < 0.001, Figure 4.13A). 

BC pairwise comparisons showed that Nottingham mice had a significantly different 

eukaryome composition compared to both Southport (p = 0.002) and Wirral mice (p = 0.002, 

Table 4.9). Comparison of beta diversity in the faecal eukaryome at different taxonomic ranks 

gave consistent results (Supplementary Table 10). Consistent with the faecal eukaryome, the 

sampling site accounted for 26.2% of variation in ASV-level BC of the caecal eukaryome 

(PERMANOVA: F2 = 9.79, R2 = 0.262, p < 0.001, Figure 4.13B). However, BC pairwise 

comparisons showed that caecal community composition was also significantly different 

between Southport and Wirral mice, in contrast to the faecal eukaryome (Table 4.9). 

Comparison of beta diversity in the caecal eukaryome at the genus and family taxonomic ranks 

gave consistent results (Supplementary Table 10). However, at the phylum level, there was 

no difference in eukaryome composition between Southport and Wirral mice (PERMANOVA: 

F1 = 1.47, R2 = 0.055, p < 0.207, Supplementary Table 10). The faecal eukaryome composition 

of mice was more varied in Nottingham compared to Southport and Wirral (Supplementary 

Table 11). This difference was significant at the ASV, genus, and family taxonomic ranks, but 

not at the phylum level (Supplementary Table 11). In contrast, the variation in the caecal 

eukaryome composition of mice at each sampling site was not significantly different, except 

between Nottingham and Southport at the ASV level (Supplementary Table 11).   
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Figure 4.12. Shannon’s index of the wild mouse caecal and faecal eukaryome at 

different taxonomic ranks. A) Faecal, ASV. B) Faecal, phylum. C) Caecal, genus. D) Caecal, 

family. Boxplots indicate the median v alue, the first and third quartiles and whiskers extend 

to 1.5 times the inter-quartile range. The y-axis scale is unique to each figure. * p < 0.05, ns p 

> 0.05 from A) a Kruskal-Wallis test and B-D) Tukey’s post hoc tests.  

Table 4.9. Pairwise comparisons of gut eukaryome Bray-Curtis dissimilarity of wild 

mice from three sampling sites. Sampling sites were compared using a PERMANOVA, with 

BH correction for multiple testing. Significant p values are highlighted in bold.  

 Comparisons p value 

Faecal 

Nottingham: Southport 0.002 

Nottingham: Wirral 0.002 

Wirral: Southport 0.065 

 

Caecal 

Nottingham: Southport 0.002 

Nottingham: Wirral 0.002 

Wirral: Southport 0.032 
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Figure 4.13. Wild mouse eukaryome Bray-Curtis dissimilarity PCoA plots by sampling 

site. A) Faecal eukaryome and B) caecal eukaryome. Ordination was generated using the 

ASV-level taxonomic rank. The proportion of variance explained by each axis is shown. 

Ellipses are 95% confidence intervals.  
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To account for there being no difference in the faecal community composition between 

Southport and Wirral mice, these mice were grouped together to compare the differential 

abundance of taxa against Nottingham mice. There were 14 species in faecal samples with a 

significantly different abundance when comparing Nottingham mice to Southport and Wirral 

mice (Figure 4.14). Seven taxa were more abundant in Nottingham, three of which are 

parasitic species: Eimeria falciformis, E. telekii and Ozolaimus linstowi (Supplementary Table 

12). The species that were more abundant in Southport and Wirral were fungi, including two 

species of Wallemia. At the phylum level, Apicomplexa and Nematoda ASVs were more 

abundant in faecal samples of Nottingham mice, compared to Southport and Wirral mice 

(Figure 4.15A, Supplementary Table 13). Basidiomycota species were more abundant in 

Southport and Wirral mice compared to Nottingham mice. This pattern was also seen in caecal 

samples, with the addition of Ascomycota ASVs also being more abundant in Southport and 

Wirral mice (Figure 4.15B, Supplementary Table 13).  
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Figure 4.14: Species that were differentially abundant between the faecal samples of Nottingham mice and mice from the two other 

sampling sites (‘Combined’). Abundance is based on the CLR transformation of read abundance. ANCOM-BC analyses were used to identify 

the species with a significantly different abundance. Abundance values can be seen in Supplementary Table 12. Boxplots indicate the median 

value, the first and third quartiles and whiskers extend to 1.5 times the inter-quartile range. 
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Figure 4.15. Phyla that were differentially abundant between the A) faecal and B) caecal 

samples of Nottingham mice and mice from other sampling sites (‘Combined’). 

Abundance is based on the CLR transformation of read abundance. ANCOM-BC analyses 

were used to identify the phyla with a significantly different abundance. Abundance values can 

be seen in Supplementary Table 13. Boxplots indicate the median value, the first and third 

quartiles and whiskers extend to 1.5 times the inter-quartile range.  
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4.3.3 Drivers of eukaryome composition 

Having identified significant differences in eukaryome composition among and within sampling 

sites, the host factors described above (4.3.1) were investigated to determine their contribution 

to variation in eukaryome diversity and composition. For alpha diversity, linear models were 

used to identify factors that significantly affected the Shannon’s index of the faecal and caecal 

eukaryome (Table 4.10). Oxyurida infection was the only explanatory factor that was 

significant in both the faecal and caecal models (LM: F1 = 10.7, p = 0.002 and F1 = 9.2, p = 

0.004, respectively). Oxyurida-negative mice had a significantly lower Shannon’s index 

compared to Oxyurida-positive mice, in both the faecal eukaryome (Welch two-sample t-test: 

t45.8 = -3.3, p = 0.002, Figure 4.16A) and caecal eukaryome (Welch two-sample t-test: t36.5 = -

3.3, p = 0.002, Figure 4.16B). Inflammation of the small intestine was a significant factor in the 

caecal model (LM: F5 = 3.4, p = 0.012). To investigate this further, an ANOVA was used to 

compare caecal eukaryome Shannon’s index among mice with different small intestine 

inflammation scores, with Tukey’s post hoc tests to conduct pairwise comparisons. The 

ANOVA identified a significant difference among the inflammation scores, consistent with that 

of the linear model (ANOVA: F5 = 3.05, p = 0.018). The general trend observed was higher 

inflammation scores of the small intestine were associated with a lower caecal eukaryome 

Shannon’s index (Figure 4.17). However, post hoc comparisons showed that the only 

significant difference in Shannon’s index was between mice with small intestine inflammation 

scores of 1 and 3 (TukeyHSD: p = 0.047).   
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Table 4.10. Statistics for the two models testing for the effects of host factors on gut 

eukaryome alpha diversity in wild mice. Shannon’s index was used as the measure of alpha 

diversity. Significant host factors are highlighted in bold. For the parasite model, Shannon’s 

index was recalculated after removing ASVs assigned to Eimeria, Oxyurida and T. muris. T. 

muris infection was not included in the faecal parasite model as all mice infected with T. muris 

were also infected with Oxyurida.  

 Model Host factor F value p value 

F
a
e
c
a
l 

F15,34 = 1.99 
p = 0.048 

 

PC1 3.10 0.087 

Sex 0.03 0.866 

Reproductive status 1.21 0.279 

Faecal mucin concentration 0.57 0.457 

Small intestine inflammation 1.63 0.180 

Caecum inflammation 2.04 0.146 

Large intestine inflammation 0.62 0.545 

Eimeria 1.95 0.172 

Oxyurida 10.71 0.002 

 

C
a

e
c

a
l 

Non-parasite: 
F13:38 = 2.00 
p = 0.049 

PC1 0.42 0.519 

Sex 0.50 0.483 

Reproductive status 1.70 0.200 

Faecal mucin concentration 0.00 0.950 

Small intestine inflammation 3.40 0.012 

Caecum inflammation 3.23 0.051 

Large intestine inflammation 1.75 0.188 

Parasite: 
F3:54 = 4.31, 
p = 0.008 

Eimeria 0.09 0.771 

Oxyurida 9.24 0.004 

Trichuris muris 1.04 0.312 
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Figure 4.16. Shannon’s index of the A) faecal and B) caecal eukaryome by Oxyurida 

infection status. Oxyurida-positive mice were defined by the presence of ASVs assigned to 

the order Oxyurida.  Shannon’s index was recalculated after removing ASVs assigned to 

Eimeria, Oxyurida and T. muris. Boxplots indicate the median value, the first and third quartiles 

and whiskers extend to 1.5 times the inter-quartile range. ** p < 0.01 from Welch two-sample 

t-tests.  

Figure 4.17. Shannon’s index of the caecal eukaryome of wild mice by inflammation of 

the small intestine. A higher score, shown by the darker colour, is indicative of greater 

inflammation. The number of mice for each score is shown in the boxplots. Boxplots indicate 

the median value, the first and third quartiles and whiskers extend to 1.5 times the inter-quartile 

range. Only scores 1 and 3 were significantly different. * p < 0.05 from Tukey’s post hoc test.  
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In the faecal eukaryome, parasitism (infection with any of Eimeria, Oxyurida, and Trichuris) 

was a significant explanatory factor of community composition, accounting for 10.8% of the 

variation in BC (PERMANOVA: F1 = 6.78, R2 = 0.108, p = 0.003). When tested independently, 

Eimeria and Oxyurida were significant, accounting for 9.8% and 14.0% of the variation in BC 

in faecal samples, respectively (Table 4.11, Figure 4.18). These factors were also significant 

explanatory factors of caecal eukaryome composition (Table 4.11). T. muris infection 

accounted for 5.1% of the variation in BC in the caecal eukaryome, and was a significant 

explanatory factor, which contrasts to the findings in the faecal eukaryome (Table 4.11). 

Differential abundance analysis indicated that Basidiomycota ASVs were significantly more 

abundant in parasitized mice compared to unparasitized mice (Figure 4.19). Variation in PC1 

significantly accounted for 5.5% and 6.8% of the variation in BC in the faecal and caecal 

eukaryome, respectively (Table 4.11). However, the covariation in the factors contributing to 

PC1 – age, body condition, and faecal IgA concentration – means it is difficult to determine 

how they are associated with differences in eukaryome composition. There was a mild 

association between caecal inflammation and gut eukaryome composition, with p values 

approaching the significance threshold (Table 4.11).  



139 
 

Table 4.11. PERMANOVA test statistics for identifying which host factors contribute to 

variation in gut eukaryome community composition in wild mice. Variation in eukaryome 

composition was measured by Bray-Curtis dissimilarity. Significant host factors are highlighted 

in bold. Parasite infection is defined as infection with Eimeria, Oxyurida and/or Trichuris muris. 

Distances between samples were recalculated for each parasite model after removing ASVs 

assigned to that parasite.  

 
Host factor 

F 
statistic 

R2 
p 

value 
Adjusted 
p value 

F
a
e
c
a
l 

PC1 3.27 0.055 < 0.001 0.003 

Sex 0.61 0.011 0.851 0.851 

Reproductive status 1.07 0.019 0.310 0.487 

Faecal mucin concentration 0.67 0.012 0.805 0.851 

Small intestinal inflammation 1.01 0.090 0.438 0.602 

Caecal inflammation 1.60 0.058 0.036 0.066 

Large intestinal inflammation 0.92 0.035 0.570 0.697 

Parasite infection 6.78 0.108 < 0.001 0.003 

Eimeria 6.05 0.098 < 0.001 0.003 

Oxyurida 9.09 0.140 < 0.001 0.003 

Trichuris muris 1.98 0.034 0.032 0.066 

  

C
a

e
c

a
l 

PC1 4.11 0.068 < 0.001 0.003 

Sex 0.39 0.007 0.954 0.954 

Reproductive status 1.00 0.017 0.363 0.499 

Faecal mucin concentration 0.80 0.015 0.575 0.703 

Small intestine inflammation 0.76 0.069 0.834 0.917 

Caecum inflammation 1.60 0.058 0.048 0.088 

Large intestine inflammation 1.32 0.050 0.149 0.234 

Parasite infection 3.52 0.059 < 0.001 0.003 

Eimeria 6.65 0.106 < 0.001 0.003 

Oxyurida 7.88 0.123 < 0.001 0.003 

Trichuris muris 3.03 0.051 0.016 0.035 
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Figure 4.18. Bray-Curtis dissimilarity PCoA plots of the wild mouse faecal eukaryome 

by A) Eimeria and B) Oxyurida infection status. Ordination was generated using ASVs 

agglomerated at the species level, after removing ASVs assigned to Eimeria and Oxyurida, 

respectively. The proportion of variance explained by each axis is shown. Ellipses are 95% 

confidence intervals.  
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Figure 4.19. Basidiomycota ASV abundance in the A) faecal and B) caecal eukaryome 

of wild mice by parasite infection status. Parasite infection is defined as infection with any 

of Eimeria, Oxyurida, and T. muris. Abundance is based on the CLR transformation of read 

abundance. ANCOM-BC analyses were used to identify the phyla with a significantly different 

abundance. Boxplots indicate the median value, the first and third quartiles and whiskers 

extend to 1.5 times the inter-quartile range.   
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4.3.4 Comparison of the faecal eukaryome and bacteriome  

4.3.4.1 The bacteriome composition  

Having characterised the faecal eukaryome of wild mice, the faecal bacteriome was also 

characterised to identify similarities and differences between the two. For the 16S rRNA 

amplicon sequencing, the 31 ASVs identified in the positive control were correctly assigned to 

the eight bacterial species present in the positive control mock microbial community.  A total 

of 3,064 ASVs were identified in the wild mice faecal samples (n = 58). The total read depth 

was 7,382,623, with an average read depth (± standard error) per sample of 127,287 (± 

22,224). Following agglomeration to species level, removal of low abundance taxa, and 

removal of Archaea-classified ASVs, there were 714 bacterial ASVs, with a total read depth 

of 7,381,509. There was no correlation between the filtered read depths generated from 16S 

and 18S amplicon sequencing (Spearman’s correlation: r = 0.081, p = 0.548).  

18 bacterial phyla were identified across all 58 wild mice (Table 4.12). Firmicutes, 

Bacteroidota, Actinobacteriota, Campilobacterota, and Proteobacteria were found in 100% of 

mice, and Desulfobacterota in 98% of mice. Firmicutes and Bacteroidota had the highest 

relative abundance, accounting for 61.8% and 29.9% of sequences, respectively (Table 4.12, 

Figure 4.20A). To investigate which taxa were contributing to the phyla identified, comparisons 

were made at the family level (Figure 4.20B). Of the 150 families present in the faecal 

bacteriome, 20 were detected with more than 500 reads in least 20% of all mice. 

Lachonospiraceae and Lactobacillaceae were the dominant families contributing to the high 

relative abundance of Firmicutes, whereas Muribaculaceae and Bacteroidaceae had the 

largest contribution to the high relative abundance of Bacteroidota. The four other highly 

prevalent phyla were each represented by just one family (Figure 4.20).  
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Table 4.12. Phyla identified from the faecal bacteriome of wild mice. Phyla are ordered 

by their relative abundance across all 58 wild mice. Only the phyla with a relative abundance 

of >0.05% are shown. The complete list of phyla can be found in Supplementary Table 14. 

Abundance is the number of reads classified for each phylum. Prevalence is the percentage 

of mice from which that phylum was identified. N’ham = Nottingham, S’port = Southport.  

  

Phylum 

Abundance Prevalence (%) 

Relative 
(%) 

Total 
Combined 

(58) 
N’ham 

(31) 
S’port 

(15) 
Wirral 
(12) 

Firmicutes 61.8 4,561,505 100 100 100 100 

Bacteroidota 29.9 2,205,342 100 100 100 100 

Actinobacteriota 2.2 166,016 100 100 100 100 

Campilobacterota 2.0 145,104 100 100 100 100 

Desulfobacterota 1.9 138,905 98 100 100 92 

Proteobacteria 1.5 112,720 100 100 100 100 

Verrucomicrobiota 0.2 17,883 14 16 13 8 

Deferribacterota 0.2 17,445 72 94 40 58 

Cyanobacteria 0.1 4,898 55 74 40 25 

Patescibacteria 0.1 4,043 55 77 20 42 

Fusobacteriota 0.1 3,854 3 3 0 8 
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Figure 4.20. Relative abundances of bacterial A) phyla and B) families identified in the 

faecal bacteriome of wild mice. Relative abundance is the proportion of reads classified for 

each taxonomic rank. Only the taxa with a minimal read abundance of 200 in ≥ 5% of all mice 

(phyla) and 500 in ≥ 20% of mice (families) are shown. Less abundant taxa are grouped into 

Other. Taxa are ordered by their relative abundance across all mice.  
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4.3.4.2 Comparison of the faecal eukaryome and bacteriome diversity metrics  

In contrast to the faecal eukaryome, there was a significant difference in faecal bacteriome 

ASV-level alpha diversity (mean Shannon’s index ± SE) among mice from the three sampling 

sites (Kruskal-Wallis: X2
2 = 6.91, p = 0.032): Nottingham (3.4 ± 0.1), Southport (3.1 ± 0.1), and 

Wirral (3.0 ± 0.1). Whilst post hoc comparisons showed no significance differences when 

correcting for multiple testing, p values were approaching the significance threshold when 

comparing Nottingham mice to Southport and Wirral mice (Table 4.13). Across all mice, the 

average faecal bacteriome alpha diversity (3.2 ± 0.1) was significantly higher than the average 

faecal eukaryome alpha diversity (2.2 ± 0.1) (Wilcox signed-rank test: V = 1642, p < 0.001). 

This difference was also seen when comparing the alpha diversities for each sampling site 

separately (Figure 4.21A). There was no correlation between the ASV-level alpha diversities 

of the eukaryome and bacteriome when considering all mice (Spearman’s rank: r = -0.02, p = 

0.894) and each sampling site separately (Figure 4.21B). These results indicate that the faecal 

bacteriome is more diverse, with greater variation among sampling sites, compared to the 

faecal eukaryome. 

Table 4.13. Test statistics for comparing the Shannon’s index of the wild mouse faecal 

bacteriome among sampling sites. Comparison among sampling sites used a Kruskal-

Wallis test (test statistic: X2). Post hoc comparisons between sampling sites used a Dunn’s 

test with correction for multiple testing. N’ham = Nottingham, S’port = Southport.  

 Shannon’s Index (± SE) Test Post hoc comparisons 

Rank N’ham S’port Wirral X2 p value Comparisons p value 

ASV 3.5 (0.1) 3.1 (0.1) 3.0 (0.1) 6.91 0.032 

N’ham: S’port 0.067 

N’ham: S’port 0.067 

S’port: Wirral 0.756 
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Figure 4.21. Comparison of alpha diversity in the faecal bacteriome and eukaryome of 

wild mice. A) Shannon’s index of the bacteriome and eukaryome for each sampling site. 

Boxplots indicate the median value, the first and third quartiles and whiskers extend to 1.5 

times the inter-quartile range. B) Correlation between the Shannon’s index of the faecal 

eukaryome and bacteriome. Spearman’s rank correlation coefficient (R), and the 

corresponding p value, are shown. Each point is an individual mouse, coloured by sampling 

site. **** p < 0.0001, *** p < 0.001, ** p < 0.01, from Wilcox signed-rank tests. 
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For beta diversity, sampling site accounted for 8.8% of the variation in ASV-level BC of the 

faecal bacteriome (PERMANOVA: F2 = 2.66, R2 = 0.088, p < 0.001, Figure 4.22A). This effect 

was smaller for the bacteriome compared to the eukaryome, for which sampling site explained 

21.1% of the variation (see section 4.3.2.3 above). In support of the findings in the faecal 

eukaryome, pairwise comparisons of bacteriome BC showed that Nottingham mice had a 

significantly different bacteriome composition compared to both Southport (p = 0.003) and 

Wirral mice (p = 0.009), with no difference between mice from Southport and Wirral (p = 0.333). 

There was no difference in how varied the bacteriome community was within sampling sites. 

This contrasts to the findings for the eukaryome (see section 4.3.2.3 above). There was a 

significant correlation between BC in the eukaryome and bacteriome of mice (Mantel test: r = 

0.130, p = 0.024). This indicates that as the eukaryome community composition becomes 

more dissimilar between two mice, so does their bacteriome community composition. 

However, considering each sampling site separately, only Wirral mice had a significant 

correlation between eukaryome and bacteriome BC (Mantel test: r = 0.296, p = 0.013, Figure 

4.22B).  

To account for there being no difference in the bacteriome community composition between 

Southport and Wirral mice, these mice were grouped together to compare the differential 

abundance of taxa against Nottingham mice. There were 4 bacterial species in faecal 

samples, compared to the 14 eukaryotic species, with a significantly different abundance when 

comparing Nottingham mice to Southport and Wirral mice (Figure 4.23, Supplementary Table 

15). Lactobacillus reuteri and Bacteroides vulgatus were more abundant in Nottingham mice. 

Two Helicobacter spp. were differentially abundant: H. apodemus was more abundant in 

Nottingham mice whereas H. mastomyrinus was more abundant in Southport and Wirral mice.   
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Figure 4.22. Comparison of faecal bacteriome and eukaryome Bray-Curtis dissimilarity 

among wild mice from three sampling sites. Dissimilarity matrices were generated using 

the ASV-level taxonomic rank. A) PCoA of faecal bacteriome Bray-Curtis dissimilarity by 

sampling site. The proportion of variance explained by each axis is shown. Ellipses are 95% 

confidence intervals. B) Correlation between bacteriome (x-axis) and eukaryome (y-axis) 

Bray-Curtis dissimilarity. Each point represents a pairwise comparison between two mice for 

the two microbiomes, where 0 indicates mice share all the same ASVs, and 1 is where no 

ASVs are shared.
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Figure 4.23. Bacterial species that were differentially abundant between the faecal 

samples of Nottingham mice and mice from the two other sampling sites (‘Combined’). 

Abundance is based on the CLR transformation of read abundance. ANCOM-BC analyses 

were used to identify the ASVs with a significantly different abundance. Abundance values 

can be seen in Supplementary Table 15. Boxplots indicate the median value, the first and third 

quartiles and whiskers extend to 1.5 times the inter-quartile range.   
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4.3.4.3 Drivers of bacteriome variation 

To investigate if faecal bacteriome diversity and composition were affected by the same host 

factors as the eukaryome, the analysis reported in section 4.3.3 was repeated for the faecal 

bacteriome. For alpha diversity, all host factors were included in a single model to identify 

which factors significantly affected Shannon’s index (Table 4.14). In contrast to the 

eukaryome, PC1 was the only significant explanatory factor of bacteriome alpha diversity (LM: 

F1 = 5.41, p = 0.026, Figure 4.24). The Shannon’s index of mice decreased as PC1 increased. 

All three host factors used in the PCA were negatively correlated with PC1 (Supplementary 

Figure 5E). Thus, as mice get older, have a better condition, and have a greater faecal IgA 

concentration, alpha diversity in the faecal bacteriome increases. 

Table 4.14. Statistics for the model testing for the effects of host factors on faecal 

bacteriome alpha diversity in wild mice. Shannon’s index was used as the measure of 

alpha diversity. Significant host factors are highlighted in bold. The full model statistics were: 

F15:34 = 1.06, p = 0.422. 

Host factor F value p value 

PC1 5.40 0.026 

Sex 0.02 0.878 

Reproductive status 4.06 0.052 

Faecal mucin concentration 1.19 0.284 

Small intestine inflammation 0.81 0.548 

Caecum inflammation 0.77 0.470 

Large intestine inflammation 0.15 0.858 

Eimeria 0.83 0.369 

Oxyurida 0.14 0.706 

 

For beta diversity, infection with Eimeria, Oxyurida, and/or Trichuris was a significant 

explanatory factor of bacteriome community composition, accounting for 4.8% of the variation 

in BC (PERMANOVA: F1 = 2.84, R2 = 0.048, p = 0.026, Figure 4.25A). This effect was smaller 

for the bacteriome compared to the eukaryome, for which parasitism explained 10.8% of the 

variation (see section 4.3.3 above). Both Eimeria and Oxyurida were significant explanatory 

factors of bacteriome community composition when tested independently, accounting for 4.4% 

and 5.1% of the variation in BC in faecal samples, respectively (Table 4.15). Differential 

abundance analysis indicated that two bacterial species – L. reuteri and H. apodemus – were 

significantly more abundant in parasitized mice compared to unparasitized mice (Figure 

4.25B). In contrast to the faecal eukaryome, PC1 was not a significant explanatory factor of 

bacteriome community composition (Table 4.15).   
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Figure 4.24. The association between the faecal bacteriome alpha diversity and PC1 in 

wild mice. Shannon’s index is the measure of alpha diversity. PC1 was generated from a 

principal component analysis of three correlated host factors: faecal IgA concentration, age, 

and body condition. All three factors were negatively correlated with PC1.  The blue line is the 

predicted relationship between PC1 and Shannon’s index, with grey shading representing the 

95% confidence intervals. The F statistic and p value shown are extracted from a linear model 

which incorporated all host factors.  

Table 4.15. PERMANOVA test statistics for identifying which host factors contribute to 

variation in faecal bacteriome community composition in wild mice. Variation in 

bacteriome composition was measured by Bray-Curtis dissimilarity. Significant host factors 

are highlighted in bold. Parasite infection is defined as infection with Eimeria, Oxyurida and/or 

Trichuris muris.  

Host factor 
F 

statistic 
R2 

p 
value 

Adjusted 
p value 

PC1 1.50 0.026 0.124 0.195 

Sex 0.78 0.014 0.665 0.665 

Reproductive status 1.54 0.027 0.113 0.195 

Faecal mucin concentration 1.22 0.022 0.218 0.288 

Small intestinal inflammation 1.23 0.108 0.118 0.195 

Caecal inflammation 1.16 0.043 0.236 0.288 

Large intestinal inflammation 1.14 0.044 0.263 0.289 

Parasite infection 2.84 0.048 0.005 0.026 

Eimeria 2.55 0.044 0.007 0.026 

Oxyurida 3.00 0.051 0.002 0.022 

Trichuris muris 1.80 0.031 0.047 0.129 



152 
 

 

Figure 4.25. Wild mouse faecal bacteriome community composition differences by 

parasite infection status. Parasite infection is defined as infection with any of Eimeria, 

Oxyurida, and T. muris. A) Bray-Curtis dissimilarity PCoA plot. Ordination was generated using 

ASVs agglomerated at the species level. The proportion of variance explained by each axis is 

shown. Ellipses are 95% confidence intervals. B) Differential abundance of two bacterial 

species. Abundance is based on the CLR transformation of read abundance. ANCOM-BC 

analyses were used to identify species with a significantly different abundance. Boxplots 

indicate the median value, the first and third quartiles and whiskers extend to 1.5 times the 

inter-quartile range.   
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4.3.4.4 Co-occurrence of taxa in the faecal microbiome 

Having characterised both the faecal eukaryome and bacteriome, associations among 

microbial taxa were predicted using network analysis (Figure 4.26). Three measures of 

network connectivity were compared among the sampling sites: node degree, percentage of 

singletons, and component size. Comparison of the eukaryome network among sampling sites 

identified differences in the node degree (average number of connected edges per node ± SE) 

(Table 4.16). For Nottingham and Southport mice, average node degree was low (0.21 ± 0.05 

and 0.68 ± 0.08, respectively). For Wirral mice, the average node degree was 1.09 (± 0.09), 

indicating than on average, nodes were connected to one other node. This pattern is 

supported when looking at the percentage of singleton nodes (nodes without connected 

edges): only 27.8% of nodes were not connected in Wirral mice, compared to 82.8% and 

50.5% in Nottingham and Southport mice, respectively. These differences are driven by the 

presence of a large component (a group of connected nodes) in Wirral mice (15 nodes), 

whereas the largest component in Nottingham and Southport mice was comprised of four and 

eight nodes, respectively. These results contrasted to that of the bacteriome, where Southport 

mice had a greater node degree and lower proportion of singleton nodes compared to 

Nottingham and Wirral mice (Table 4.16). Bacteriome network connectivity was greater than 

eukaryome network connectivity in Nottingham and Southport mice, as measured by node 

degree and percentage of singletons. In contrast, eukaryome connectivity was higher than 

bacteriome connectivity in Wirral mice.  

After considering the eukaryome and bacteriome separately, the two taxa groups were 

combined together for microbiome analysis. Nottingham and Southport mice had a higher 

node degree (1.74 ± 0.13 and 2.49 ± 0.11, respectively) compared to their respective 

eukaryome and bacteriome networks (Table 4.16). Additionally, the percentage of singleton 

nodes was low for both Nottingham and Southport mice (28.2% and 3.1%), driven by the 

presence of many interacting nodes in the largest components (94 and 140 nodes). This 

contrasts to Wirral mice, which had a low percentage of singleton nodes (26.7%), but with 

multiple, smaller components.  
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Table 4.16. Network connectivity in the faecal microbiome of wild mice from the three 

sampling sites. The number of nodes is the number of taxa used to generate the network. 

Node degree is the average number of edges connected to that node ± standard error. The 

number of singleton nodes (no connected edges) is expressed as a percentage to account for 

differences in the number of nodes. The number of components (groups of connected nodes) 

is shown, as well as the number of nodes in the largest component. Taxa were analysed 

separately for the eukaryome and bacteriome and then combined for the microbiome. Taxa 

were aggregated at the family taxonomic rank for analyses and networks were predicted using 

the SpiecEasi pipeline. Only families presented in ≥ 20% of mice for a given sampling site 

were included in the analysis. N’ham = Nottingham, S’port = Southport.  

Sampling 
site 

Type 
Number 
of nodes 

Node degree 
(± SE) 

Singletons 
(%) 

Components 

Total Largest 

N’ham 

Eukaryome 87 0.21 (± 0.05) 82.8  78 4 

Bacteriome 62 0.54 (± 0.11) 66.1 47 6 

Microbiome 149 1.74 (± 0.13) 28.2 49 94 

S’port 

Eukaryome 109 0.68 (± 0.08) 50.5 74 8 

Bacteriome 51 0.78 (± 0.12) 45.1 31 11 

Microbiome 160 2.49 (± 0.11) 3.1 12 140 

Wirral 

Eukaryome 97 1.09 (± 0.09) 27.8 45 15 

Bacteriome 53 0.23 (± 0.07) 81.1 47 4 

Microbiome 150 1.05 (± 0.07) 26.7 71 9 
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Figure 4.26. Microbial networks of the faecal microbiome of wild mice from three 

sampling sites. Each node represents a eukaryotic (square) or bacterial (circle) taxon, and 

are coloured by phylum. Edges represents 

associations between taxa, coloured by positive 

(green) and negative (red) associations. 

Networks were predicted using the SpiecEasi 

pipeline. Only families present in ≥ 20% of mice 

for a given sampling site were included in the 

analysis. Networks were generated for the 

eukaryome and bacteriome separately, and 

then together (microbiome), for each of the 

three sampling sites.
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To explore the eukaryome and bacteriome networks further, the taxonomic assignment of 

nodes, and the number of predicted associations per taxa, was identified (Figure 4.26). In the 

eukaryome of Nottingham mice, all edges were between fungi (Ascomycota or 

Basidiomycota), and only two nodes were connected with more than one other node. The 

family Extremaceae (Ascomycota) had positive edges with Herpotrichiellaceae, Capnodiales 

(Ascomycota), and Cystobasidiomycetes (Basidiomycota). The family Mrakiaceae 

(Basidiomycota) had a positive edge with another basidiomycete family (Sporidiobolaceae) 

but a negative edge with Chaetomiaceae (Ascomycota). In the eukaryome of Southport and 

Wirral mice, all connected nodes belonged to ten and twelve phyla respectively, of which 

Ascomycota and Basidiomycota nodes were the most common. The most connected node in 

Southport mice was Cephalothecaceae (Ascomycota), which had four edges with other 

Ascomycota and Basidiomycota fungi. The most connected node in Wirral mice was 

Wallemiaceae (Basidiomycota), connected to four other nodes: two other Basidiomycota, one 

Mucuromycota, and one Protosteliida. Two Apicomplexan taxa, Cryptosporida and 

Eugregarinorida, were connected to other nodes in the eukaryome networks of Southport and 

Wirral mice. Eugregarinorida had a positive edge with Cunninghamellaceae (Mucuromycota) 

in Wirral mice and two positive edges with fungi in Southport mice. Cryptosporida had a 

positive edge with Chromulinales (Ochrophyta) in Wirral mice. Oxyurida nematodes had a 

positive edge with Pucciniaceae (Basidiomycota) in Wirral mice.  

For the bacteriome, Nottingham and Southport mice had connected nodes from seven phyla, 

compared with only four phyla in Wirral mice. In Nottingham mice, five of six multi-node 

components had nodes from multiple phyla. In the largest component, the families 

Corynebacteriaceae and Dermabacteraceae (Actinobacteriota) each had positive edges with 

three other bacterial families. In Southport mice, seven of eight multi-node components had 

nodes from multiple phyla. The largest component contained 11 nodes, with Oscillospiraceae 

and Ruminococcaceae (Firmicutes) having the highest node degree. In the bacteriome of 

Wirral mice, the largest component was comprised of four nodes, of which Eggerthellaceae 

(Actinobacteriota) was central to the three other families.  

In Nottingham and Southport mice, the microbiome network identified more connected phyla 

compared to the eukaryome and bacteriome networks. In particular, ten more eukaryotic phyla 

were identified in Nottingham mice as connecting to other phyla, including Apicomplexa and 

Nematoda. Apicomplexa had positive edges with other eukaryotes (Dothideomycetes 

(Ascomycota) and Glissomonadida (Cercozoa) and a negative edge with the bacterial family 

Aerococcaceae (Firmicutes). In contrast to the findings in the Wirral eukaryome, Oxyurida in 

the Nottingham microbiome had positive edges with the fungi Cladosporiaceae (Ascomycota) 

and Ustilaginaceae (Basidiomycota). The large component identified in the microbiome of 



157 
 

Nottingham mice comprised both bacterial and eukaryotic taxa: the most connected taxa were 

bacterial (Aerococcaceae, Corynebacteriaceae, and Moraxellaceae). In Southport mice, the 

microbiome network additionally identified the phylum Amoebozoa, which had a positive edge 

with Cryptomycota fungi. The most connected taxa in the microbiome network of Southport 

mice were fungi (Cordycipitaceae and Sporidiobolaceae) and bacteria (Corynebacteriaceae), 

which contrasted to Nottingham mice. In Wirral mice, the largest microbiome component 

consisted of only nine nodes, and the most connected taxon did not change from that seen in 

the bacteriome network (Eggerthellaceae), which contrasts to Nottingham and Southport 

mice.  

There were fewer inter-kingdom edges (19%, 24% and 25%) than intra-kingdom edges in the 

microbiome networks (Table 4.17). It is notable that there were more negative than positive 

inter-kingdom edges, which contrasts to the findings for intra-kingdom edges, as seen by both 

the separate and combined network analyses (Table 4.17). In sum, the above comparisons 

indicate that incorporating both eukaryotic and bacterial taxa into network analyses can 

change network connectivity and predict more microbial associations.    
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Table 4.17. The proportion of positive and negative edges in microbial networks of the 

faecal microbiome of wild mice from the three sampling sites. Edges are representative 

of predictive associations between taxa. For the single-kingdom networks (eukaryome and 

bacteriome), only intra-kingdom edges can be predicted. For the multi-kingdom network 

(microbiome), both inter- and intra-kingdom edge can be predicted. The percentage of positive 

and negative edges, and the total number of edges identified, is given for the three possible 

kingdom interactions: eukaryote-eukaryote, bacteria-bacteria, and eukaryote-bacteria. Taxa 

were aggregated at the family taxonomic rank for analyses and networks were predicted using 

the SpiecEasi pipeline. Only families presented in ≥ 20% of mice for a given sampling site 

were included in the analysis. N’ham = Nottingham, S’port = Southport. 

Sampling 
site 

Kingdom 
interactions 

Single-kingdom networks Multi-kingdom networks 

Positive Negative Total Positive Negative Total 

N’ham 

Eukaryote-
eukaryote 

89% 
(8) 

11% 
(1) 

9 
35% 
(46) 

4% 
(5) 

51 
(39%) 

Bacteria-
bacteria 

100% 
(17) 

0% 
(0) 

17 
37% 
(48) 

5% 
(6) 

54 
(42%) 

Eukaryote-
bacteria 

   
0% 
(0) 

19% 
(25) 

25 
(19%) 

S’port 

Eukaryote-
eukaryote 

78% 
(29) 

22% 
(8) 

37 
49% 
(97) 

9% 
(18) 

115 
(58%) 

Bacteria-
bacteria 

65% 
(13) 

35% 
(7) 

20 
18% 
(35) 

1% 
(1) 

36 
 (18%) 

Eukaryote-
bacteria 

   
2% 
(4) 

22% 
(44) 

48 
(24%) 

Wirral 

Eukaryote-
eukaryote 

58% 
(31) 

42% 
(22) 

53 
43% 
(34) 

11% 
(9) 

43 
(54%) 

Bacteria-
bacteria 

100% 
(6) 

0% 
(0) 

6 
19% 
(15) 

1% 
(1) 

16 
(20%) 

Eukaryote-
bacteria 

   
6% 
(5) 

19% 
(15) 

20 
(25%) 

 

Correlation analyses of ASV abundance, grouped at the phylum level, indicated that 36 phyla 

were significantly correlated in the faecal microbiome (Figure 4.27). Only three significant 

negative correlations were identified: Firmicutes and Bacteroidota; Basidiomycota and 

Apicomplexa; and Basidiomycota and Nematoda. The majority of inter-kingdom correlations 

identified were negative, but not significant (Figure 4.27). However, two significant positive 

inter-kingdom correlations were identified: Apicomplexa and Cyanobacteria and Nematoda 

and Cyanobacteria. Together, network analyses and correlations of abundance suggest that 

inter-kingdom associations may be typically more antagonistic than positive.  
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Figure 4.27. Correlations of phyla abundance in the faecal microbiome. Abundance is 

defined as the number of ASVs assigned to that phylum. Spearman’s correlation coefficient 

was used to identify correlation and significant correlations are indicated by *. Bacterial phyla 

are shown in orange, and eukaryotic phyla in green. Only phyla present in ≥ 20% of mice are 

shown.   
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4.4 Discussion 

4.4.1 Characterisation of the gut eukaryome of wild house mice 

The study presented here aimed to characterise the gut eukaryome of wild house mice and 

identify which host factors are associated with eukaryome diversity and composition. 18S 

rRNA amplicon sequencing identified fungi, protozoa, and helminths in the gut eukaryome, as 

seen with other wild mammals (Heitlinger et al., 2017; Li et al., 2018; Mann et al., 2020; Kim 

et al., 2022; Murillo et al., 2022). First, to address the relative abundances of these three taxa 

groups. In the study presented here, the relative abundance of fungi was greater than 

helminths and protozoa. This is consistent with findings for bats and hyenas (Heitlinger et al., 

2017; Li et al., 2018) but contrasts to findings in another wild rodent species, the striped field 

mouse, Apodemus agrarius (Kim et al., 2022). The comparative difference between the higher 

relative abundance of fungal taxa in the study presented here, and the higher relative 

abundance of protozoa in A. agrarius is consistent with previous findings that gut eukaryome 

composition is species-specific (Parfrey et al., 2014; Mann et al., 2020). For the study 

presented here, I used relative abundance to compare the taxa in the wild house mouse 

eukaryome, but there are caveats to using relative abundance (reviewed in detail in Chapter 

3, section 3.1.2). Specifically, relative abundance estimations of taxa from 18S rRNA amplicon 

sequencing are biased by both gene copy number variation and taxa-specific amplification 

biases (Gogarten et al., 2020; Lavrinienko et al., 2021b). For this study, I used 18S primers 

which were designed against the fungal 18S V4 region, potentially explaining the higher 

relative abundance of fungal taxa, despite protozoa and helminth sequences also being 

identified.  

Ascomycete fungi with a high relative abundance included Debaryomcyes, Aspergillus, 

Cladosporidium, Chaetomium, and Microascus (Ascomycota). These genera were not found 

in one of the earliest mycobiome studies in laboratory mice (Scupham et al., 2006) but have 

since been identified in other studies (Dollive et al., 2013; Heisel et al., 2017). The identification 

of these fungal genera in both laboratory and wild house mice suggests that they are common 

in the gut eukaryome. In other wild mice, specifically A. agrarius and M. musculus, the genus 

Kazachstania was highly prevalent and abundant, in contrast to my study (Bendová et al., 

2020; Kim et al., 2022). This suggests that fungal taxa of the gut eukaryome can be variable 

among and within rodent species. Of particular note, the prevalence of Malassezia was 

considerably higher in the caecum than in faeces, suggesting this genus may be true resident 

of the house mouse gut eukaryome.  

The prevalence and relative abundance of Candida spp. was low, consistent with findings in 

other studies of wild mice (Bendová et al., 2020; Kim et al., 2022), but contrasting to findings 

in laboratory mice where Candida spp. are abundant and prevalent (Iliev et al., 2012; Dollive 
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et al., 2013; Heisel et al., 2017). Thus, Candida spp. being dominant in laboratory mice, but 

not in wild mice, may explain the increased fungal diversity and abundance seen in free-living 

mice compared to laboratory mice (Rosshart et al., 2019; Yeung et al., 2020). However, it 

should be noted that many Candida spp. have recently been re-classified into other genera 

(Kidd et al., 2023). Thus, the comparatively low prevalence and abundance of Candida spp. 

in the present study may be confounded by fewer ASVs being classified as Candida, following 

changes to taxonomy in the SILVA database (del Campo et al., 2018). The frequent 

reclassification of fungi, and other microbial eukaryotes, is recognised as a limiting factor in 

our understanding of the mammalian gut eukaryome (del Campo et al., 2018).  

The high prevalence and relative abundance of Wallemia spp. (Basidiomycota) identified here 

was unexpected as this taxon is hypothesised to be incapable of colonising the mammalian 

gut (Hallen-Adams and Suhr, 2017). However, Wallemia has also been reported from 

laboratory mice, with colonisation potentially dependent on dietary exposure (Paterson et al., 

2017; Mims et al., 2021). Furthermore, it’s abundance in the gut can increase following 

antibiotic and antifungal treatment, with expansion in the gut exacerbating host disease 

(Wheeler et al., 2016; Skalski et al., 2018). Thus, the high prevalence and abundance of 

Wallemia in wild house mice suggests it has potential to have important interactions with other 

taxa in the gut microbiome, even if it is not a true gut resident (Hallen-Adams and Suhr, 2017; 

Jackson et al., 2022). The fungal genus Mucor (Mucuromycota) was also highly prevalent in 

the gut eukaryome in the present study. This is consistent with reports from humans and wild 

woodrats where Mucor was highly prevalent (Mar Rodríguez et al., 2015; Weinstein et al., 

2022), but contrasts to studies in wild A. agrarius, where Mucor was found at a very low 

prevalence (Kim et al., 2022). Given than colonisation of Mucor spp. in the gut can alter the 

gut bacteriome, and the ubiquity of Mucor spp. in the environment, its high prevalence in wild 

house mice warrants further investigation (Mueller et al., 2019; Weinstein et al., 2022). 

The helminth taxa identified in the mice included Strongyloides, Trichuris, Oxyurida, and 

Ascaridida. For Trichuris, Oxyurida, and Ascaridida, prevalence was greater in the caecal 

eukaryome compared to the faecal eukaryome. This is likely to due to faecal detection being 

dependent on egg production rates, which can vary according to the host’s immune state as 

well as the time of collection (Davey et al., 2021). Both pinworm (Oxyurida) and whipworm 

(Trichuris) are commonly found in the mammalian gut, and have been identified previously in 

the mammalian gut eukaryome using 18S rRNA sequencing, and so their finding here is not 

unexpected (Heitlinger et al., 2017; Mann et al., 2020; Kim et al., 2022). Whilst Strongyloides 

spp. are common nematode parasites of vertebrates, infection in wild mice was previously 

unreported (Viney and Kikuchi, 2017), and so finding evidence of Strongyloides DNA in these 

mice was surprising. However, two Strongyloides spp. are known parasites of brown rats 
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(Rattus norvegicus) (Viney and Kikuchi, 2017) and so it is possible that this was a transient 

infection, transmitted from rats observed at the sampling site. Indeed, Strongyloides was only 

identified in one of 58 mice. Alternatively, this finding could be from incorrect taxonomic 

assignment of the ASVs (Tanaka et al., 2014) or from laboratory contamination of the samples  

18S rRNA sequencing identified protozoa taxa known to colonise the mammalian gut, 

including Blastocystis, Balantidium, Eimeria, and Cryptosporidium (Parfrey et al., 2014; 

Heitlinger et al., 2017; Mann et al., 2020; Kim et al., 2022; Murillo et al., 2022). In wild A. 

agrarius, the protozoa genera Tritrichomonas, Monocercomonas, and Giardia (Metamonada) 

were the most prevalent, but these were not observed in the present study (Kim et al., 2022). 

Furthermore, the prevalent gut protozoa identified in wild primates were also not identified in 

this present study (Mann et al., 2020; Murillo et al., 2022). These protozoa taxa included 

Entamoeba, Endolimax, and Iodamoeba (Amoebozoa), Litostomatea (Ciliophora), and 

Trichomonadida (Metamonada). The differences between wild house mice, A. agrarius, and 

other wild mammals in which are the prevalent protozoa is consistent with previous reports 

that the protozoa found in the mammalian gut eukaryome are highly host-species-specific 

(Parfrey et al., 2014; Mann et al., 2020). A caveat to this finding in the present study is the 

18S primers used here may be a poor match for some protozoa taxa. This is evidenced by 

Eimeria in the present study: there was a lower prevalence of Eimeria spp. when using 18S 

rRNA sequencing, compared to PCR assays which used primers designed against the Eimeria 

apicoplast (Jarquín-Díaz et al., 2019). This suggests that using primers that may be a poor 

match for protozoa, and other eukaryotes, can lead to false negatives, lower prevalences of 

protozoa, and lower estimates of eukaryome diversity (Parfrey et al., 2014; Kounosu et al., 

2019; Vaulot et al., 2022). Future studies would benefit from identifying primers that maximise 

matches for eukaryotic taxa, or using multiple primer pairs and diagnostic techniques, to avoid 

this issue (Carta and Li, 2018; Kounosu et al., 2019; Lokmer et al., 2019; del Campo et al., 

2020; Jarquín-Díaz et al., 2022; Vaulot et al., 2022).  

The eukaryome diversity and composition differed between caecal and faecal samples, 

consistent with a previous study comparing the caecal and faecal mycobiome composition of 

wild voles (Antwis et al., 2021). This contrasts to the bacteriome, where other studies have 

shown diversity and community composition was consistent between faecal and caecal 

samples (Weldon et al., 2015; Suzuki and Nachman, 2016). The difference in eukaryome 

composition between the two sample types in the present study suggests that the caecum and 

colon may be colonised by different eukaryotic taxa. Differences in the gut environment, such 

as pH, oxygen concentration, mucus production, and gut transit time, may be selecting for the 

survival and colonisation of different eukaryotic taxa (Donaldson et al., 2016). However, a 

comparison of the ileum, caecum, and colon of wild house found the mycobiome community 
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composition was homogenous along the digestive tract (Bendová et al., 2020). To investigate 

why the eukaryome composition was comparatively different between sample types in the 

present study, the survival of gut eukaryotes could be tested under the different conditions 

seen in the different regions on the gut. Differences in eukaryome composition between faecal 

and caecal samples could also result from post-depositional changes to the faecal eukaryome, 

such as the growth of fast-growing moulds, which would not be seen for the caecal eukaryome 

(Tedersoo et al., 2022).  

4.4.2 Drivers of gut eukaryome composition in wild house mice 

The study presented here found an effect of sampling site on gut eukaryome composition in 

wild house mice. This is consistent with findings in another rodent species, which found the 

sampling site of wild bank voles had a significant effect on gut mycobiome composition (Antwis 

et al., 2021). Studies in humans and wild primates have also shown that differences in the 

host’s environment is associated with mycobiome composition (Barelli et al., 2020b; Kabwe et 

al., 2020). For the present study, mice from Nottingham had a lower relative abundance of 

Basidiomycota ASVs, and a greater relative abundance of Apicomplexa and Nematoda ASVs, 

compared to Southport and Wirral mice. The differences among sampling sites are likely 

shaped by either sampling-site-specific factors or factors that may differentiate between mice 

from Nottingham and mice from Southport and Wirral (Weldon et al., 2015). 

First, to address the sampling-site-specific factors. Different animal feeds available to the 

house mice at each of three sampling sites could be a driving factor behind differences in the 

eukaryome composition, given that dietary differences have been shown to drive differences 

in eukaryome composition in laboratory mice (Heisel et al., 2017; Gupta et al., 2023). 

Alternatively, seasonal effects may be contributing to the differences seen in eukaryome 

composition among the sampling sites. Nottingham mice were trapped earlier in the year than 

Southport and Wirral mice, and so may have had access to different diets. This was 

hypothesised to be the driver behind seasonal effects on the gut bacteriome in wild mice 

(Maurice et al., 2015; Marsh et al., 2022). Other sampling-site-specific factors could include 

population density and soil microbiome composition, as seen for the bacteriome (Grieneisen 

et al., 2019; Sarkar et al., 2020).     

Second, to address the host factors that may differentiate between mice from Nottingham and 

mice from Southport and Wirral. Nottingham mice were found to have a higher prevalence of 

Eimeria spp. compared to Southport and Wirral mice, suggesting Eimeria infection may be 

driving the differences in eukaryome composition seen among sampling sites. Comparison 

between Eimeria-positive and Eimeria-negative mice confirmed that mice parasitized with 

Eimeria had a different eukaryome composition. This is consistent with Eimeria infection in 
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chickens, where the gut mycobiome community was comparably different between pre- and 

post-infection of Eimeria (Hume et al., 2012). Additionally, Eimeria infection has been shown 

to change the gut bacteriome composition in mice, further supporting the evidence presented 

in this current study that Eimeria changes the eukaryome composition (Huang et al., 2018). In 

the present study, the causes of differences in gut eukaryome composition between Eimeria-

positive and Eimeria-negative mice is unknown. However, one hypothesis is that Eimeria 

infection alters the gut eukaryome composition by changing the host’s immune state, which 

was also associated with gut eukaryome composition, specifically IgA production and 

intestinal inflammation.  

In the present study, Eimeria-positive mice had a greater faecal IgA concentration compared 

to Eimeria-negative mice. This suggests that Eimeria infection increases the host’s intestinal 

IgA production, consistent with findings in laboratory rats (Smith et al., 1995). Host IgA 

responses allow the colonisation of commensal fungi whilst limiting colonisation of pathogenic 

fungi (Ost et al., 2021). Thus, if Eimeria infection increases the host’s IgA production, the 

host’s modulation of other gut eukaryotes by IgA may be altered, changing the eukaryome 

composition. In the present study, I also found a near-significant effect of Eimeria infection on 

caecal inflammation. This is consistent with a previous study in laboratory mice, which found 

mice had elevated inflammatory pathways in the gut following Eimeria infection (Schmid et al., 

2014). Caecal inflammation had a near-significant effect on the caecal eukaryome 

composition, which suggests Eimeria-induced inflammation of the caecum is disrupting the 

immune regulation of caecal eukaryotic taxa. Furthermore, it is conceivable that the decreased 

caecal eukaryome diversity seen in mice with greater inflammation in the small intestine is 

caused by Eimeria infection.  Eimeria develops in the villi of the small intestine of laboratory 

mice (Nowell and Higgs, 1989; Schmid et al., 2014), and so it’s presence may cause physical 

changes to the small intestine which may promote or impede the growth of other intestinal 

eukaryotes (Lu et al., 2021).     

The hypothesis outlined above focuses on how Eimeria infection may change the gut 

eukaryome composition by changing the host’s immune state and subsequent modulation of 

gut eukaryotes. However, the direction of causality is unknown and the differences in the host 

immune state seen among sampling sites are likely driven by other taxa in the gut microbiome, 

as well as Eimeria (Iliev et al., 2012; Chudnovskiy et al., 2016; Yang et al., 2020; Ost et al., 

2021). Of particular note are the parasitic nematodes identified by 18S rRNA sequencing. In 

the present study, Oxyurida-positive mice had a significantly greater gut eukaryome alpha 

diversity compared to Oxyurida-negative mice. Thus, it is likely that the presence of Oxyurida 

nematodes is more important than Eimeria for driving eukaryome diversity composition. 

Indeed, parasitic nematodes play a large role in the rate of host IgA production, although this 
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was not formally tested in the present study (Ramos et al., 2022). Furthermore, the dynamic 

interactions seen between Eimeria and parasitic nematode infections are likely to further drive 

variation in host IgA production and how this subsequently modulates gut eukaryome 

composition (Rausch et al., 2010; Knowles et al., 2013; Clerc et al., 2019b).    

To further investigate and test the hypothesised association between eukaryome composition, 

host immune state, and Eimeria and/or nematode parasitism, more studies are needed. 

Longitudinal sampling of the gut eukaryome would provide more insight into how parasitism 

impacts gut eukaryome composition (Telfer et al., 2008; Murillo et al., 2022). Specifically, 

monitoring the changes in abundance of eukaryotic taxa over time, and how changes were 

associated with the intensity of Eimeria and nematode infection, would allow better predictions 

of which gut taxa are affected by the presence of these parasites. Furthermore, perturbation 

experiments could be used to determine which parasites were the driving factors behind 

differences in eukaryome composition seen among sampling sites. For example, a laboratory 

system could be used to monitor how the eukaryome composition changed following infection 

with Eimeria (Huang et al., 2018). Additionally, anti-helminthic treatment could be used in a 

wild system to investigate how parasitic nematodes, and their interaction with Eimeria, 

contributes to both the host immune state and gut eukaryome composition (Knowles et al., 

2013). Finally, to determine how the host’s immune response mediates interactions between 

taxa in the eukaryome, quantifying species-specific IgA would provide context as to which taxa 

are inducing host IgA (Ost et al., 2021). Alternatively, studies using IgA knockout mouse 

strains would determine the relative contribution of IgA production to eukaryome composition 

(Jackson et al., 2021).  

In addition to parasitism and immune state, other host factors tested for an effect on 

eukaryome diversity and composition were age, body condition, sex, and reproductive status. 

In the present study, an effect of age and body condition differentiated Nottingham mice from 

Wirral and Southport mice and these factors had an effect on eukaryome composition. 

However, the correlation between age, body condition, and faecal IgA concentration makes it 

hard to unpick the relative contribution of each covariate to eukaryome composition. Studies 

have shown mixed age-related effects on eukaryome composition (Heitlinger et al., 2017; 

Wampach et al., 2017; Rao et al., 2021; Turunen et al., 2023) but the effect of faecal IgA 

concentration on eukaryome composition has not been researched in wild mammals. To this 

end, future studies should aim to clarify age-related changes to eukaryome composition, and 

how this may interact with IgA-related intestinal immunity. There was no effect of sex on the 

eukaryome composition, consistent with findings in another wild rodent species (Antwis et al., 

2021). Other studies have shown there are mixed effects of host sex on the gut eukaryome in 
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both humans and wild mammals including baboons, macaques, and hyenas (Strati et al., 

2016; Heitlinger et al., 2017; Sun et al., 2018; Rao et al., 2021; Murillo et al., 2022).   

4.4.3 Comparisons and interactions between eukaryotic and bacterial taxa 

This study aimed to compare the diversity of eukaryotic and bacterial taxa in the gut 

microbiome of wild house mice and identify co-occurrence between the two taxa types. In 

contrast to the eukaryome, the taxa in the bacteriome were similar to that seen in other wild 

mice and in laboratory mice. Specifically, Firmicutes and Bacteroidota were the predominant 

phyla in the faecal bacteriome, as shown previously (Linnenbrink et al., 2013; Weldon et al., 

2015; Goertz et al., 2019; Rosshart et al., 2019). In the present study, despite fewer bacterial 

ASVs and phyla being identified compared to eukaryotic ASVs, bacteriome diversity was 

always higher than eukaryome diversity. This is consistent with previous studies in humans 

and other mammals (Parfrey et al., 2014; Nash et al., 2017). This finding is likely due to few 

highly abundant taxa in the eukaryome – e.g. Wallemia, Eimeria, and Oxyurida – and many 

low abundance taxa resulting in low measures of diversity.  

There was no association between eukaryome and bacteriome alpha diversity. This contrasts 

to a previous study in primates, which found that the alpha diversity of the two taxa types were 

significantly correlated (Mann et al., 2020). This suggests that different processes drive the 

diversity of these two groups of taxa in wild house mice. Indeed, the study presented here 

identified differences in bacteriome alpha diversity among the three sampling sites, and a 

correlation between alpha diversity and age, body condition, and IgA concentration, none of 

which were seen for the faecal eukaryome. Additionally, in contrast to faecal eukaryome 

diversity, Oxyurida infection status was not a significant explanatory factor of faecal 

bacteriome alpha diversity. Previous studies have also shown the rodent gut bacteriome alpha 

diversity is not impacted by helminth and Eimeria presence (Kreisinger et al., 2015; Maurice 

et al., 2015; Kim et al., 2022, but see Weldon et al., 2015; Bouilloud et al., 2023). Thus, further 

work is needed to understand why eukaryome alpha diversity, but not bacteriome alpha 

diversity, changes in response to Oxyurida infection.  

Having identified that parasitism changes the faecal eukaryome composition (above, section 

4.4.2), there was also evidence that parasitism changed the faecal bacteriome composition, 

in support of other studies in wild mammals (Kreisinger et al., 2015; Mann et al., 2020; Montero 

et al., 2021; Kim et al., 2022). In particular, parasitized mice had a higher relative abundance 

of Lactobacillus reuteri and Helicobacter apodemus compared to unparasitized mice. Previous 

studies in laboratory and wild mice have identified a higher abundance of both Lactobacillus 

spp. and Helicobacter spp. when co-infecting with helminths (Fox et al., 2000; Reynolds et al., 

2014; Kreisinger et al., 2015; Kim et al., 2022). In contrast, Eimeria infection in laboratory mice 



167 
 

has been shown to increase Helicobacter spp. abundance, but decrease Lactobacillus spp. 

abundance (Huang et al., 2018). This suggests that the greater abundance of L. reuteri and 

H. apodemus in the faecal bacteriome of parasitized mice compared to unparasitized mice in 

the present study is driven by the presence of nematodes rather than Eimeria. 

Differential abundance and network analyses gave different answers when identifying 

microbial interactions in the gut. As discussed above, differential abundance analysis 

identified that parasitic nematodes, and potentially Eimeria, are associated with L. reuteri and 

H. apodemus. However, network analyses did not predict these inter-kingdom interactions. 

Furthermore, network analyses did not predict that Eimeria and parasitic nematodes were 

negatively interacting with Basidiomycota fungi, despite differential abundance analysis 

identifying that parasitized mice had lower Basidiomycota ASVs compared to unparasitized 

mice. Why different methods of data analysis have revealed different associations is unclear 

and warrants further investigation. Possibilities include i) network analyses considering 

correlations of abundance among all ASVs, whereas differential abundance analyses 

compared abundance of ASVs based on the presence or absence of parasites and ii) 

considering each sampling site separately for network analyses, whereas differential 

abundance considered all mice simultaneously.  

Analysis of the different faecal microbiome networks in the present study identified the degree 

of connectivity, and the taxa predicted to be interacting, differed among mice from different 

sampling sites. Given that Wirral mice were dissimilar to Southport and Nottingham mice in 

network connectivity, whereas Nottingham mice were dissimilar to Southport and Wirral mice 

in faecal microbiome community composition, it is likely that variation in faecal microbiome 

networks is driven by sampling-site-specific or host-specific factors, as well as faecal 

microbiome community composition. Incorporating sampling-site-specific or host-specific 

factors, such as diet and immune state, into microbial network analyses would help identify 

which factors are important for influencing microbial interactions (Matchado et al., 2021).  

Further to comparisons among sampling sites, I also identified that networks had greater 

connectivity when both eukaryotic and bacterial taxa were in the network together. This is 

consistent with a previous study in the lung and skin microbiome of humans, which found 

incorporating fungi into bacterial networks increased connectivity among the taxa in the 

microbiomes (Tipton et al., 2018). In the present study, most interactions in the multi-kingdom 

networks were intra-kingdom, rather than inter-kingdom, and some of these intra-kingdom 

associations were not previously seen when considering the eukaryome and bacteriome 

separately. Thus, these findings show that considering multi-kingdom taxa may improve 

predictions of which taxa are interacting, compared to considering bacteria or eukaryotes 
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separately (Tipton et al., 2018). Network analyses, along with correlations of ASV abundance, 

also found the proportion of negative inter-kingdom associations was greater than the 

proportion of negative intra-kingdom interactions. This is again consistent with the findings in 

the human lung and skin microbiome, where including fungal taxa into bacterial networks 

increased the percentage of negative associations (Tipton et al., 2018). Negative interactions 

in the gut microbiome are theorised to be more common than positive (Coyte and Rakoff-

Nahoum, 2019), but the network analyses in both the present study and Tipton et al. (2018) 

show that this applies only to inter-kingdom interactions.   

It is important to note that the associations among microbial taxa identified from microbial 

networks and differential abundance analyses are predictions, rather than evidence of 

interactions (Matchado et al., 2021). In order to test and validate these predicted microbial 

associations, co-culture in vitro and in vivo methods could be used (Tipton et al., 2018; Rao 

et al., 2021). Further to validating predicted associations, co-culturing could be used to identify 

why associations are sampling-site and/or host-specific and why inter-kingdom associations 

are more likely to be negative, by manipulation of factors known to modulate gut microbial 

interactions e.g. diet and host immunity (Hoffmann et al., 2013; Paterson et al., 2017).  

4.4.4 The immune state of wild house mice  

This study collected data on faecal IgA concentration, faecal mucin concentration, and 

intestinal inflammation to determine how the host immune state was linked to the eukaryome 

composition of wild house mice. In doing so, this work contributes to currently limited 

characterisation of the immune state of wild house mice (Abolins et al., 2018). The faecal IgA 

concentrations of wild house mice varied among the different sampling sites, consistent with 

previous comparisons among populations of wild house mice (Abolins et al., 2018). Whilst 

Abolins et al. (2018) did not find a correlation between IgA concentration, age, and body 

condition as seen in the study presented here, age and faecal IgA have been shown to 

correlate in wild wood mice and hyenas (Abolins et al., 2018; Clerc et al., 2019a; Ferreira et 

al., 2021).  

To my knowledge, this is the first study to measure mucin concentration in wild house mice 

(Abolins et al., 2018; Ferreira et al., 2021). In the present study, faecal mucin concentration 

was higher in Eimeria-positive mice than Eimeria-negative mice. This suggests a mucogenic 

response to Eimeria infection in wild mice that is not seen in laboratory mice, but has been 

shown in chickens (Collier et al., 2008; Linh et al., 2009). However, the directionality of this 

association is unknown, and other taxa in the gut, such as parasitic nematodes or bacteria, 

may be driving this difference in faecal mucin concentration (Leung et al., 2018a; Leung et al., 

2018b; Ferreira et al., 2021). Also of note, the average faecal mucin concentration of wild mice 
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was higher than each of the three laboratory controls. Given that i) wild mice are likely exposed 

to greater antigenic challenge than laboratory mice (Abolins et al., 2017) and ii) mucin 

production contributes to mucosa formation, an important barrier that protects against 

pathogen and parasite invasion (McGuckin et al., 2011), the comparative difference in faecal 

mucin concentration between wild and laboratory mice suggests that mucin production is an 

important and continuous aspect of pathogen defence of wild house mice. This supports 

previous research comparing mucus composition between laboratory and wild mice, which 

found that microbial penetration of the mucus layer was lower in wild mice (Jakobsson et al., 

2015).  

The study presented here is also the first, of which I am aware, to histologically assess gut 

inflammation in wild house mice (Rosshart et al., 2017; Abolins et al., 2018; Rynkiewicz et al., 

2019). Comparison of the distribution of inflammation scores for each tissue type showed that 

gut inflammation was varied along the digestive tract. In particular, the large intestine and 

caecum were typically more inflamed than expected, whereas the small intestine showed 

equal distribution of inflammation scores, if not lower than expected. These results suggest 

that the drivers of gut inflammation in wild house mice are different for the small and large 

intestine. This is consistent with a review in laboratory mice that stated that the small and large 

intestine of mice should be considered as two separate immunological sites (Bowcutt et al., 

2014). The differences in inflammation seen along the digestive tract in the level of 

inflammation are potentially driven by the differences in microbial load and microbiome 

community composition seen between the small and large intestine (Suzuki and Nachman, 

2016; Barlow et al., 2020).  

Further to variation of inflammation along the digestive tract, the present study also found 

variation among sampling sites in caecal inflammation. This is consistent with comparisons of 

other measures of immune state among populations of wild house mice, such as the number 

and proportion of different splenocytes (Abolins et al., 2018). A caveat to the description of gut 

inflammation in wild house mice in the present study is that inflammation scores were based 

on methods developed for laboratory mice (Erben et al., 2014). It is unknown how well these 

methods translate to wild mice, as the baseline inflammation levels of wild house mice are 

likely very different to laboratory mice (Abolins et al., 2017). Thus, high inflammation in 

laboratory mice may not be equivalent to high inflammation in wild mice. Additionally, it is 

important to note that cutting open the caecum to extract its contents likely disrupted mucosal 

integrity, which may have biased measures of inflammation.  
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4.4.5 Conclusion 

The study presented here is the first, of which I am aware, to simultaneously characterise the 

fungi, helminths, and protozoa found in the gut eukaryome of wild house mice. In doing so, 

the study has shown that the house mouse eukaryome is distinct to that of both its laboratory 

counterparts and to that of other rodents. However, it should be noted that comparability 

among studies is limited by the use of different methodologies, such as the 18S primers used. 

Thus, finding a methodology that is capable of consistently capturing the diversity of taxa in 

the eukaryome should be a primary focus for future studies. In this study, I have also 

demonstrated that the faecal eukaryome and caecal eukaryome differ, and considered why 

this might be. This means that faecal samples may not be sufficient to fully characterise wild 

animals’ gut eukaryome, Additionally, the high relative abundance and prevalence of Wallemia 

identified in this study highlights that taxa considered incapable of colonisation are, as a 

minimum, likely to be interacting with other taxa in the eukaryome, if not capable of colonising 

the gut. Thus, taxa considered dietary and transient should be investigated further rather than 

disregarded from analyses.   

In addition to characterising the eukaryome of wild house mice, this study has identified that 

parasitism is likely a key driver of eukaryome composition, with this effect potentially 

modulated by host immune state, specifically IgA and intestinal inflammation. Whilst this is an 

observational study, and the directionality of the association is unknown, it generates a 

hypothesis that future studies can investigate, either by using longitudinal studies or 

perturbation experiments. I have also shown that the diversity and composition of the gut 

eukaryome and bacteriome of wild mice can respond to different host factors and that these 

effects are sampling-site-specific. Thus, future studies should not assume that factors 

modulating the gut bacteriome also apply to the gut eukaryome. Finally, I have identified that 

inter-kingdom interactions may be more antagonistic than positive, which requires further work 

to identify why this may be.   
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Chapter 5: General discussion 

5.1 Summary of findings 

The gut microbiome is now widely recognised as a key aspect of mammalian biology, owing 

to its role in developing the host’s immune system, the provision of key metabolites needed 

for host nutrition, and its contribution to host health (O’Hara and Shanahan, 2006; Sommer 

and Bäckhed, 2013). To this end, there has been extensive research into characterising how 

changes in the gut microbiome can contribute to host fitness, and the wider impacts this has 

on the host’s ecology and evolution (Suzuki, 2017; Henry et al., 2021). However, lagging 

behind is our understanding of what factors drive changes in the gut microbiome composition 

and how this could change host fitness (Costello et al., 2012; Foster et al., 2017; Coyte et al., 

2021). The variation in eukaryome composition over an individual’s lifetime, and among 

individual hosts, is substantially different to the bacteriome but the causes of this difference 

are relatively unexplored (Parfrey et al., 2014; Nash et al., 2017). To this end, the work of my 

thesis aimed to address this knowledge gap by focussing on which host factors contribute to 

gut eukaryome composition in wild rodents. In doing so, this research would provide 

knowledge that could be applied to future studies to determine how the gut eukaryome 

contributes to the host’s biology. In the following section, I briefly summarise the reasoning 

behind each of my objectives and the main findings. 

The first results presented in my thesis (Chapter 2) focused on the protozoal component of 

the gut eukaryome. To date, mammalian gut protozoa research has tended to focus on 

parasitic species and there is less focus on the general diversity of protozoa found in mammals 

(Parfrey et al., 2014; del Campo et al., 2020). To this end, I conducted a methodical literature 

search to compile a comprehensive list of the protozoa found with the eukaryome of wild 

rodents. From this review, I presented evidence that some protozoa had an extremely wide 

host range, whereas others were only identified in a few host species. Similarly, I found 

evidence that some rodent species were host to many protozoa genera, whereas other rodent 

species host to only a few. I also highlighted that environmentally-transmitted protozoa, and 

the ingestion of protozoa from dietary sources, must be considered when describing the 

diversity of gut protozoa in rodents. Finally, I discussed that taxonomic confusion from 

reclassifications of protozoa could underestimate the diversity of protozoa capable of 

colonising wild rodents. It is well-established that host sociality is a key driver in the 

transmission and maintenance of gut microbial taxa, with more opportunities for horizontal 

transmission of gut microbes as hosts become more social (Moeller et al., 2016b; Sarkar et 

al., 2020). Thus, I conducted a meta-analysis to test the hypothesis that host sociality and 

behaviour affected the prevalence of protozoa in wild rodents. The results showed that the 
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prevalence of protozoa was heterogenous among rodent species. However, I found no 

evidence that sociality and behaviour was driving the heterogeneity of prevalence among host 

species, contrary to the hypothesis. 

For my second objective (Chapter 3), I focussed on improving methods of quantifying 

eukaryotic gut taxa. Currently, amplicon sequencing methods are the standard approach to 

characterise the gut microbiome composition (Franzosa et al., 2015; Gupta et al., 2019). 

Obtaining quantitative data on microbial load in the gut can improve analyses of amplicon 

sequencing data (Vandeputte et al., 2017; Rao et al., 2021). However, optimisation of 

quantification methods has largely focussed on the bacteriome, and have yet to be translated 

to eukaryome research. Thus, I designed and tested a novel method for quantifying eukaryotic 

taxa in the gut, based on previously published methods for bacteriome quantification 

(Vandeputte et al., 2017). The method used flow cytometry to separate eukaryotic cells from 

prokaryotic cells by using a eukaryotic-specific stain. In doing so, eukaryotic cells could be 

quantified before sequencing to better determine eukaryome community composition. The 

results from the pilot study conducted showed that the method was inaccurate in identifying 

eukaryotic cells in faecal samples. I concluded that the inaccuracy may be due to unexpected 

low-specificity of the eukaryotic-specific stain or an incorrect gating strategy.  

The results presented in Chapter 4 focussed on the biggest objective of my thesis: 

characterising the gut eukaryome of wild house mice, and identifying factors associated with 

eukaryome composition. The laboratory mouse is the primary model organism used for gut 

microbiome research (Rosshart et al., 2019; Viney, 2019). However, research has shown that 

it’s gut bacteriome is different to that of its wild counterparts (Viney, 2019; Bowerman et al., 

2021). Furthermore, there has been limited study of the eukaryome, nor what drives its 

composition, in wild house mice. To address this, I used 18S rRNA amplicon sequencing to 

identify the common taxa in the gut eukaryome, alongside measuring host factors 

hypothesised to drive eukaryome composition. From this observational study, I found that the 

eukaryome of wild house mice was primarily composed of fungal taxa, and that the diversity 

of protozoa was low. Comparison of the eukaryome composition of wild mice to studies in 

laboratory mice and other wild rodents showed that different taxa dominated the gut 

eukaryome in different studies. I also discovered that when present, Eimeria and nematode 

parasites had a high relative abundance that was negatively correlated with Basidiomycota 

relative abundances, suggesting that parasitic infection changes the gut eukaryome 

composition. I presented data that allowed me to hypothesise that this change in eukaryome 

composition may be driven by host immune responses that are induced following parasitic 

infection, and discussed how future studies could test this hypothesis. Finally, it was concluded 

that the gut eukaryome and gut bacteriome can change in response to different host factors, 
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and that considering both taxa types together could improve our understanding of microbial 

interactions in the gut.  

5.2 Synthesis of findings 

Having previously discussed the findings of my objectives in their respective chapters, I will 

now synthesise the results of my thesis. In doing so, I aim to highlight some common themes 

and contrasting results in my research. In Chapter 2, I presented a comprehensive list of the 

gut protozoa found in wild rodents. From this table, eight protozoa genera were described from 

wild house mice. Five of these genera (Chilomastix, Entamoeba, Giardia, Isospora, and 

Trichomonas) were not subsequently identified in the wild mice in my own eukaryome 

sequencing study (Chapter 4). This suggests that previous reports of these protozoa are not 

showing members of the common core house mice eukaryome but rather represent incidental 

transmission from other host species (Risely, 2020). Alternatively, it is possible that these 

genera are common members of the wild house mice eukaryome, but were not detected in 

my eukaryome sequencing study due to spatial gradients in the distributions of these protozoa 

or false negatives (Parfrey et al., 2014; Risely, 2020). False negatives could have arisen from 

the 18S primers used in my eukaryome sequencing study being a poor match to these 

protozoa or from inefficient DNA extraction (Parfrey et al., 2014; Vaulot et al., 2022).  

The three other protozoa genera described from wild house mice in Chapter 2 were 

Cryptosporidium, Eimeria, and Blastocystis, and these were subsequently identified in 

Chapter 4. This provides good evidence that these three protozoa should be considered 

members of the common core gut eukaryome, although it should be noted that their 

prevalence was varied among sampling sites. My eukaryome sequencing study also 

described the presence of Balantidium in one mouse from Nottingham (Chapter 4), a protozoa 

genus that had not previously been described from wild house mice (Chapter 2). It is likely 

that the presence of Balantidium was from horizontal transmission from pigs found on the 

farm, which are the natural host of Balantidium (Schuster and Ramirez-Avila, 2008). However, 

it is unknown if its presence in the mouse was a transient infection following spill-over from 

the pigs, or if Balantidium is capable of colonising the gut given sufficient opportunities of 

infection. 

An emergent theme from my research is the presence of transient eukaryotes in the gut of 

wild rodents. Transient eukaryotes, rather than gut residents, are those taxa that are 

considered incapable of surviving in the mammalian gut, such as macrofungi and free-living 

protozoa (Hallen-Adams and Suhr, 2017; Heitlinger et al., 2017; Mann et al., 2020; Lavrinienko 

et al., 2021a; Murillo et al., 2022). Transient taxa are often removed from characterisations 

and analyses of the gut eukaryome in order to focus on taxa that are considered true gut 
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residents (Mann et al., 2020; Lavrinienko et al., 2021a; Murillo et al., 2022). However, transient 

taxa may still have functional roles in the gut microbiome and so should not be overlooked in 

gut eukaryome research (Zhang et al., 2016; Hallen-Adams and Suhr, 2017; Lavrinienko et 

al., 2021a; Jackson et al., 2022). This is demonstrated by the findings of Acanathomoeba and 

Wallemia in wild rodents in Chapters 2 and 4 respectively. In Chapter 2, I concluded that the 

protozoan genera Acanathomoeba was likely to be a transient infection due to its free-living 

lifestyle (Rodríguez-Zaragoza, 1994). However, Acanathomoeba spp. can act as carriers of 

both pathogenic bacteria and parasitic protozoa, thus their ingestion could have a large impact 

on the host health (Vaerewijck et al., 2014). The fungal genus Wallemia was found to be highly 

prevalent in the gut eukaryome of wild house mice in Chapter 4. Wallemia spp. are considered 

to be incapable of long-term colonisation and residency of the gut due to requiring low water 

content for growth, although its presence in the gut can exacerbate host disease (Zalar et al., 

2005; Wheeler et al., 2016; Hallen-Adams and Suhr, 2017; Skalski et al., 2018). The findings 

of both Acanathomoeba and Wallemia in wild rodents highlights the need to consider how 

transient infections may impact the host and the wider gut microbiome. Further to their impact 

on the host, it is important to note that overlooking supposedly transient taxa may limit the 

identification of novel resident taxa in the gut (Lavrinienko et al., 2021a).  

Another common theme identified in my research is that frequent reclassifications of microbial 

eukaryotes, as well as taxonomic confusion, can limit our understanding of gut eukaryome 

composition. For example, I discussed in Chapter 2 that the host range of Tritrichomonas is 

likely underestimated due to some species being synonymous with Trichomonas (Burr et al., 

2012). This is exacerbated by the frequent and contradictory reclassifications of eukaryotic 

taxa following the advance of high throughput sequencing (Tenter et al., 2002; Ruggiero et al., 

2015; Adl et al., 2019; Stensvold and Clark, 2020). Rapidly changing eukaryotic taxonomy can 

lead to databases not reflecting the latest taxonomic changes, as reviewed in del Campo et 

al. (2018). This presents a challenge to characterising the taxa found in the gut eukaryome, 

as taxonomic assignment of amplicon sequencing data from different databases gives 

different taxonomic information (del Campo et al., 2018; Kataoka and Kondo, 2019; Gogarten 

et al., 2020). This problem is highlighted by my own eukaryome sequencing study, where I 

found that taxonomic assignment of ASVs from Candida spp. was complicated by the 

reclassification of many Candida spp. into other genera (Kidd et al., 2023). For example, ASVs 

from Nakaseomyces glabrata, formerly Candida glabrata, were assigned as Nakaseomyces-

Candida-clade at the genus rank but Candida glabrata at the species rank (Kidd et al., 2023). 

Thus, there is a requirement for the thorough and systematic checking of eukaryote taxonomy 

before aggregating ASVs at different taxonomic ranks for eukaryome characterisation and 

analysis. 
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5.3 Future directions 

The three objectives of my thesis have given a much better understanding of the eukaryome 

composition of wild rodents, as well as the methodologies needed to optimise eukaryome 

research. In the following section, I will first address how further work could build on the 

findings in my thesis. Then, I will discuss how my research has highlighted key areas and 

considerations that should be applied to other future studies.  

5.3.1 Opportunities to build on the findings of this thesis  

First, to address my research on the gut protozoa of wild rodents. My meta-analyses focussed 

particularly on how host sociality and lifestyle could impact the prevalence of gut protozoa in 

wild rodents, as different host behaviours can impact transmission rates of gut microbes 

(Ezenwa, 2004; Moeller et al., 2016b; Barelli et al., 2020b; Sarkar et al., 2020). However, 

transmission is also dependent on survivability of the protozoa outside of the host (King and 

Monis, 2007; Costello et al., 2012; Dumètre et al., 2012). Incorporating this factor of protozoa 

transmission and infection into analyses would determine the relative contribution of host and 

protozoa traits in driving the variation in rodent gut protozoa composition. For example, a study 

of the different transmission mechanisms of parasites in wild primates found that host-

specificity of protozoa was largely dictated by transmission strategy (Pedersen et al., 2005). It 

would also be interesting to test if protozoa transmission strategy is associated with 

pathogenicity in rodents, as seen in bacterial taxa in mice (Moeller et al., 2018). In addition to 

considering protozoan traits, it would beneficial to consider host behaviour at the individual 

level, rather than species-level (Hawley et al., 2021). An approach to do this is to conduct 

meta-analyses on a smaller subset of studies that measure the sociality of individual hosts as 

well as describing their gut protozoa. Alternatively, semi-wild enclosures could be used to 

monitor the transmission of laboratory-infected protozoa, or indeed other microbial taxa, whilst 

measuring social associations of individual mice (Raulo et al., 2021).   

Second, to address the quantification of gut eukaryotes. The identification and quantification 

of eukaryotic cells using the method developed in this thesis was shown to be inaccurate, thus 

there is opportunity to refine and develop these methods for potential future use. In particular, 

spike-in experiments of specific eukaryotic taxa, and the use of germ-free mice, could be used 

to better identify the most suitable FACS gating parameters and the specificity of the stains 

used (Jackson et al., 2021). Further to refining the proposed method, it would be interesting 

to apply other flow cytometry methods to the eukaryome. For example, IgA-staining alongside 

eukaryotic-specific stains could be used to identify which taxa in the eukaryome are modulated 

by the host immune system, rather than focussing on a specific eukaryotic taxon (Palm et al., 

2014; Jackson et al., 2021; Ost et al., 2021). Finally, the FACS work presented in my thesis 

identified a potential method for removing host DNA from faecal samples. DNA extracted from 
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FACS-processed fractions had proportionally fewer ASVs belonging to Vertebrate taxa, 

compared to DNA extracted directly from faecal samples. Thus, FACS processing could be 

used in gut eukaryome studies to allow less abundant taxa to be detected, improving diversity 

estimates (Pereira-Marques et al., 2019). To develop and optimise this further, future studies 

could identify at what stage of the FACS process the host DNA was removed.   

Thirdly, to address the eukaryome composition of wild house mice. A major finding from this 

work was that mice parasitized with Eimeria and nematodes had a different eukaryome 

composition compared to unparasitized mice. Determining that this is causal and the direction 

of that causality would be the first step to build on these results. For example, using 

anthelminthic or anticoccidial drugs to remove Eimeria and nematodes from wild mice with 

longitudinal sampling would determine how the eukaryome composition changed in response 

to these parasites (Knowles et al., 2013). Alternatively, infecting laboratory mice with Eimeria 

and nematodes would provide a more controlled environment to test, and so infer causality of, 

the effect of these parasites on the gut eukaryome composition of mice (Huang et al., 2018). 

It would be interesting to compare the results from these proposed laboratory and wild 

experiments to identify how the natural variation in the eukaryome composition seen in wild 

mice, and indeed other environmental and host factors, might change the dynamics of 

parasite-eukaryome interactions (Viney and Riley, 2017; Leung et al., 2018b; Viney, 2019). 

A further development of my work could focus on defining which of the eukaryotes identified 

in my eukaryome sequencing survey are true gut residents and which are transient infections. 

For example, infecting laboratory mice with taxa of interest, e.g. Wallemia, and monitoring it’s 

abundance over time would provide a better understanding of how persistent these taxa are 

in the gut (Skalski et al., 2018). Additionally, immune-deficient mice could be used to 

determine if transient taxa are unable to persist in the gut due to immunomodulation by the 

host or by other factors. Furthermore, using RNA transcriptomics alongside amplicon 

sequencing could be used to identify taxa that are actively transcribing genes, suggesting 

survivability in the gut, compared to those that are not actively transcribing genes (Suhr and 

Hallen-Adams, 2015; Lind and Pollard, 2021).  

5.3.2 Key considerations for future research 

The primary aim of my thesis was to determine which host factors contribute to the gut 

eukaryome composition in wild rodents. In doing so, I have identified some key considerations 

for future eukaryome studies. Firstly, my research has contributed to our understanding that 

the gut eukaryome of wild house mice is distinct to that of laboratory mice (Ehret et al., 2017; 

Rosshart et al., 2019; Viney, 2019; Bendová et al., 2020). To this end, it is important for future 

eukaryome studies to consider using a wild system when investigating interactions between 
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the host and the gut eukaryome, as seen with the bacteriome (Amato, 2013; Viney, 2019). 

Secondly, my meta-analysis demonstrated the importance of considering host’s individual- 

and population-level traits, rather than species-specific traits, to understand the context-

dependent role of host behaviour on microbial transmission. Thirdly, I have also shown that 

gut eukaryome diversity does not always respond to the same host factors as the bacteriome, 

and so this should be not be assumed in future studies. Fourthly, I have demonstrated that 

the diversity and composition of the gut eukaryome of wild house mice were associated with 

the host immune state. Thus, it is recommended that future studies incorporate some measure 

of host immune state when investigating host-eukaryome interactions in wild mammals 

(Rynkiewicz et al., 2019; Ferreira et al., 2021). Finally, I have demonstrated that the relative 

abundances of fungal taxa in the gut are different when hosts are infected with both Eimeria 

and parasitic nematodes. Therefore, future studies considering only the mycobiome need to 

consider that the presence of protozoa and/or helminths may be driving changes in eukaryome 

composition.  

My research also found evidence for inter-kingdom interactions in the gut microbiome of wild 

house mice. This highlights that future studies using wild mammalian systems for gut 

microbiome research need to consider inter-kingdom interactions, as such interactions can 

have a large impact on both the gut microbiome composition and the host (Hoffmann et al., 

2013; Burgess et al., 2017; Paterson et al., 2017; Haak et al., 2021; Rao et al., 2021). In my 

work, inter-kingdom interactions were identified between microbial eukaryotes and bacteria. 

However, it is likely that inter-kingdom interactions also extend to archaea and viruses (Minot 

et al., 2011; Hoffmann et al., 2013; Nkamga et al., 2017; Vemuri et al., 2020). Thus, the 

presence of these taxa, and their interactions with the host and other microbes, should also 

be considered when researching the gut microbiome in wild animals.  

Finally, the work presented in this thesis has provided two valuable resources for further 

studies: i) a comprehensive review of the gut protozoa identified in wild rodents and ii) the 

groundwork of a method for quantifying eukaryotic gut taxa using flow cytometry. 

5.4 Final conclusion 

My work has used a multi-disciplinary approach to expand our knowledge of the gut 

eukaryome of wild mammals including: meta-analyses, cell biology, genomics, immunology, 

and histology. In doing so, I have demonstrated that the prevalence of gut protozoa is species-

specific in wild rodents, and this is not driven solely by host behaviour. Furthermore, I have 

characterised the eukaryotic gut taxa of wild mice, as well as presented evidence that the 

disease and immune state of the host may underlie how the gut eukaryome is assembled in 

wild animals. Finally, I have addressed the importance of considering multi-kingdom 
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interactions in gut microbiome research. Taken together, these findings offer novel insights 

into the mammalian gut eukaryome which could be applied to future studies investigating host-

microbiome interactions.  
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Appendix 
Appendix 1.1: Chapter 2 supplementary material 

Justification of the continued use of the double-arcsine transformation 

The Freeman-Tukey double-arcsine transformation has become increasingly popular in meta-

analyses of prevalence in order to avoid the constraints associated with using proportion data 

that is bound between 0 and 1 (Barendregt et al., 2013; Lin and Xu, 2020). However, recent 

literature has shown that the double-arcsine transformation may be inappropriate for meta-

analyses given some of its limitations (Schwarzer et al., 2019; Lin and Xu, 2020; Röver and 

Friede, 2022). In particular, the transformation: i) is not intuitive to the reader, ii) can violate 

the assumptions of the meta-analyses models, and iii) can have multiple methods for back-

transforming the data to predict prevalence which give different values (Lin and Xu, 2020). To 

this end, it has been suggested that the single-arcsine transformation may be more 

appropriate for meta-analyses of proportions, despite the double-arcsine stabilizing variances 

better in general (Röver and Friede, 2022; Lin and Xu, 2020).  

In order to decide which transformation was appropriate for my meta-analyses, I conducted 

analyses using both the double-arcsine and single-arcsine transformations. For all models, 

the results and conclusions drawn were identical. I also assessed if the data from each 

transformation fit the assumptions of the meta-analyses: the data were more normally 

distributed when using the double-arcsine transformation. Furthermore, whilst the main goal 

of the analyses is to identify factors that may affect prevalence, estimates of prevalence have 

been calculated. Thus, I also compared prevalence estimates from the two transformations. 

As above, predicted prevalences were similar. Most prevalences varied by 1-2% and the 

greatest differences was 4.01%. To this end, there is justification for using the double-arcsine 

transformation for this analysis as it i) better fits the model assumptions and ii) gives the same 

results and conclusions as single-arcsine transformation (Doi and Xu, 2021).  
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Supplementary Figure 1. The search terms used within Web of Science to identify 

protozoa in wild rodents. A) Search 1 used four different search terms simultaneously and 

searched within all Web of Science databases. B) Search 2 used one search term but 

specified not to search for the four terms included in A) and also included three search terms 

to eliminate laboratory infections.   

A 
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Supplementary Figure 2. The rodent phylogeny used as a random factor in all REML 

models. The phylogeny was generated using the Open Tree of Life (OTL) database. 

Reclassified or renamed taxa not in OTL were added manually. The ott number found after 

species is the node ID from the OTL reference taxonomy, version 3.3.    
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Supplementary Table 1. The digital object identifiers (DOIs) of the 344 articles identified 

in the methodical literature search. Articles are listed by publication year. If the DOI was 

not available for an article, the PubMed unique identifier (PMID) or JSTOR accession number 

is provided instead. If all three are not available, the article reference is given.  
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Appendix 1.2: Chapter 3 supplementary material 

Methods development for sorting eukaryotic and prokaryotic cells by FACS 

The specificity of the eukaryotic-specific stain (ERT, ER-Tracker Red (InvitrogenTM)) was first 

confirmed by an in-silico study. The ERT stain targets the sulphonylurea receptors (SURs) of 

ATP-sensitive potassium channels, which are common on the endoplasmic reticulum, a 

eukaryotic-specific organelle (Invitrogen, 2020). SUR proteins are also unique to eukaryotes, 

and so should not be found in prokaryotic taxa (Burke et al., 2008). Thus, a BLASTP search 

was conducted to confirm the absence of SUR protein sequences in prokaryotes (Altschul et 

al., 1990). The query sequences were for the proteins SUR1 and SUR2 (Burke et al., 2008; 

UniProt Consortium, 2021). Searches for the query sequences were restricted to Bacteria. 

The BLASTP search found that the highest percent identity score for SUR1 and SUR2 was 

33.9% and 33.8% respectively, indicating no similar protein is found in bacteria. Thus, ERT 

was considered capable of staining eukaryotic cells, but not prokaryotic cells. 

Next, the specificity of the ERT stain was tested using Tetrahymena pyriformis and 

Escherichia coli as positive and negative controls, respectively. T. pyriformis is a single-celled 

eukaryotic species and E. coli is single-celled prokaryotic species. Cultures of each control 

were stained and processed using flow cytometry, as described in Chapter 3 (section 3.2.1). 

As the eukaryotic, positive control, T. pyriformis should be identified as ERT-positive, whereas 

the prokaryotic E. coli cells should be identified as ERT-negative. 92% of 5,025 cells in the E. 

coli culture were stained with SYBR-green (SG) but not ERT (Supplementary Table 2). This 

suggested that the ERT could not generally stain E. coli. However, 7.3% of cells in the E. coli 

culture were ERT-positive, suggesting either contamination with eukaryotic cells, or ERT-

staining of a small group of potentially contaminating prokaryotic taxa. For T. pyriformis, 566 

cells were counted. The lower cell count was expected in comparison to E. coli culutres, as 

the cultures of T. pyriformis were less dense. 99.1% of cells were stained with ERT, suggesting 

the ERT could stain these eukaryotic cells, suggesting a high staining-specificity of the 

eukaryotic, positive control.   
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Supplementary Table 2. The cell counts for E. coli and T. pyriformis using FACS, when 

stained using SG and ERT.  Any event in FACS that stained with SG is classed as a cell. E. 

coli and T. pyriformis cultures were processed and counted separately.  

 Escherichia 
coli 

Tetrahymena 
pyriformis 

Number of SG-positive cells 5025 566 

Number of SG-positive, ERT-negative cells 4624 4 

Number of SG-positive, ERT-positive cells 366 561 

SG-positive, ERT-positive % 7.28% 99.12% 

 

Supplementary Figure 3. The total read depth for each sample, per fraction type.  
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Appendix 1.3: Chapter 4 supplementary material 

 

 

Supplementary Figure 4. Correlation between chemically-induced inflammation and 

luminal antigen-mediated inflammation in the A) large intestine and B) caecum was 

identified. Both correlation tests used Spearman’s rho statistic, shown as R on each plot.  
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E Variable PC1 PC2 PC3 

 Faecal IgA concentration -0.467012 0.881863 -0.06494 

 Age -0.63185 -0.28143 0.722191 

 Body condition -0.6186 -0.3783 -0.68864 

 

Supplementary Figure 5. The correlation for three host factors (A-C) and the results of 

the subsequent principal component analysis (D-E). A) Faecal IgA concentration and age, 

B) Faecal IgA concentration and body condition, C) age and body condition. All three 

correlation tests used Pearson’s product moment correlation coefficient. Body condition is 

log(body mass)/log(body length), faecal IgA concentration is log(mg/g) and age is log(weeks). 

D) The amount of variance in the three host factors explained by each principal component. 

E) The loadings of each host factors onto the principal components. A positive (negative) 

loading indicates a positive (negative) correlation between a variable and a principal 

component. 
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Supplementary Table 3. Chi-squared comparisons of gut inflammation scores for each 

tissue type for the three sampling sites. N is the sample size for each combination of 

sampling site and tissue type. 

 

Supplementary Table 4. Host factors for mice identified as having localised intestinal 

inflammation in the large intestine and caecum. Localised inflammation was defined as a 

difference of >1 between tissue replicates. Eight mice had localised inflammation in the large 

intestine and one mouse had localised inflammation in the caecum.  

Sampling site Sex 
Reproductive 

status 
Eimeria 
infection 

Nematode 
infection 

Nottingham Male Inactive Positive Negative 

Nottingham Male Active Positive Positive 

Southport Male Inactive Negative Negative 

Southport Male Active Negative Negative 

Wirral Female Inactive Positive Negative 

Wirral Male Active Positive Negative 

Wirral Female Inactive Negative Negative 

Wirral Male Inactive Positive Negative 

Southporta Male Inactive Negative Negative 

  a Localised inflammation in the caecum 

Supplementary Table 5. Chi-squared comparisons of Eimeria infection status for the 

three sampling sites. The number in brackets is the sample size for each site. 

 

 

  

 
Nottingham  Southport  Wirral  

N X2 p value N X2 p value N X2 p value 

Small 
Intestine 

30 7.2 0.206 15 15.8 0.007 12 8.0 0.156 

Caecum 30 43.4 < 0.001 13 7.5 0.023 12 6.0 0.050 

Large 
Intestine 

29 33.2 < 0.001 12 6.5 0.039 12 6.0 0.050 

 Nottingham (31) Southport (15) Wirral (12) 

X2 p value X2 p value X2 p value 

Faecal 27.1 < 0.001 5.4 0.020 0.3 0.564 

Caecal 20.1 < 0.001 8.1 0.005 1.3 0.248 
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Supplementary Table 6. Phyla identified from the faecal eukaryome of wild mice. Phyla 

are ordered by their relative abundance across the entire dataset. Total abundance is the 

number of sequences classified for each phylum. Prevalence is the percentage of mice the 

phyla were identified from. Bold phyla are those with species known to inhabit the mammalian 

gut microbiome. N’ham = Nottingham, S’port = Southport. 

a Nematozoa (SILVA-defined) 
b SAR (SILVA-defined) 
c ASVs not classified at the phylum level 
d Nucleariidae and Fonticula group 

  

Phylum 

Abundance Prevalence (%) 

Relative 
(%) 

Total 
Combined 

(58) 
N’ham 

(31) 
S’port 
(15) 

Wirral 
(12) 

Ascomycota 42.5 1080915 100 100 100 100 

Basidiomycota 32.0 815080 100 100 100 100 

Mucoromycota 13.4 341999 100 100 100 100 

Apicomplexa 9.2 233732 88 100 80 67 

Nematodaa 0.7 18520 60 94 0 50 

Cercozoa 0.6 15977 88 94 87 75 

Bigyrab 0.5 13671 14 19 0 17 

Ciliophora 0.3 6749 78 84 67 75 

Rotifera 0.1 3613 17 26 13 0 

Ochrophyta 0.1 3585 67 68 67 67 

Unclassifiedc 0.1 3426 81 87 67 83 

Amoebozoa 0.1 2342 31 32 40 17 

Chytridiomycota 0.1 1354 62 58 60 75 

Peronosporomycetes <0.05 874 41 35 60 33 

Cryptomycota <0.05 784 33 35 27 33 

Holozoa <0.05 266 19 10 13 50 

Protosteliida <0.05 191 28 39 7 25 

Zoopagomycota <0.05 142 19 6 47 17 

LKM15 <0.05 102 16 16 20 8 

Blastocladiomycota <0.05 99 3 0 7 8 

Aphelidea <0.05 94 9 10 7 8 

Centrohelida <0.05 76 17 26 7 8 

Schizoplasmodiida <0.05 72 9 13 0 8 

Dinoflagellata <0.05 70 5 3 0 17 

Protalveolata <0.05 53 9 0 13 25 

Gracilipodida <0.05 43 9 10 7 8 

NucFontd <0.05 36 12 13 13 8 

Dictyostelia <0.05 30 2 0 0 8 

Protosporangiida <0.05 26 5 10 0 0 

IC_Nephridiophaga <0.05 13 2 3 0 0 

Labyrinthulomycetes <0.05 10 5 3 13 0 

Bicosoecida <0.05 10 3 0 0 17 
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Supplementary Table 7. Phyla identified from the caecal eukaryome of wild mice. Phyla 

are ordered by their relative abundance across the entire dataset. Total abundance is the 

number of sequences classified for each phylum. Prevalence is the percentage of mice the 

phyla were identified from. Bold phyla are those with species known to inhabit the mammalian 

gut microbiome. N’ham = Nottingham, S’port = Southport 

Phylum 

Abundance Prevalence (%) 

Relative 
(%) 

Total 
Combined 

(58) 
N’ham 

(31) 
S’port 

(15) 
Wirral 
(12) 

Nematodaa 41.1 1011293 72 100 27 58 

Basidiomycota 24.5 603440 100 100 100 100 

Ascomycota 24.2 595891 100 100 100 100 

Apicomplexa 6.0 147763 88 100 73 75 

Mucoromycota 3.5 86044 98 100 93 100 

Bigyrab 0.14 3461 7 13 0 0 

Cercozoa 0.14 3355 57 52 80 42 

Ciliophora 0.07 1811 52 52 33 75 

Unclassifiedc 0.07 1680 48 32 67 67 

Ochrophyta 0.06 1358 40 35 33 58 

Chytridiomycota <0.05 867 31 32 27 33 

Peronosporomycetes <0.05 216 14 16 7 17 

Cryptomycota <0.05 199 12 16 0 17 

Aphelidea <0.05 162 7 13 0 0 

Holozoa <0.05 145 9 3 0 33 

Dinoflagellata <0.05 132 3 6 0 0 

Protosteliida <0.05 129 9 16 0 0 

Amoebozoa <0.05 103 5 10 0 0 

Zoopagomycota <0.05 75 3 3 7 0 

Protalveolata <0.05 65 3 0 0 17 

Bicosoecida <0.05 29 2 0 0 8 

Schizoplasmodiida <0.05 23 2 3 0 0 

Centrohelida <0.05 22 3 6 0 0 

NucFontc <0.05 12 2 3 0 0 

Labyrinthulomycetes <0.05 10 2 3 0 0 

a Nematozoa (SILVA-defined) 
b SAR (SILVA-defined) 
c ASVs not classified at the phylum level 
d Nucleariidae and Fonticula group 
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Supplementary Table 8. The percentage of Eimeria-positive mice when comparing 

between PCR diagnostics and 18S sequencing. The percentage of mice positive for 

Eimeria is shown for both faecal and caecal samples. The number in brackets is the sample 

size for each site. 

 Combined (58) Nottingham (31) Southport (15) Wirral (12) 

Sample Type PCR 18S PCR 18S PCR 18S PCR 18S 

Faecal 69 41 97 77 20 0 58 0 

Caecal 59 43 90 77 13 0 33 8 

 

 

Supplementary Table 9. Test statistics for comparing eukaryome Shannon’s index 

among sampling sites at different taxonomic ranks. Comparison among faecal samples 

at the ASV, genus and family level used a Kruskal-Wallis test (test statistic: X2) whereas all 

other comparison used an ANOVA (test statistic: F). Significant p values are highlighted in 

bold. Post hoc comparisons are shown for those taxonomic levels with a significant difference 

in alpha diversity between sampling sites. N’ham = Nottingham, S’port = Southport. 

  Shannon’s Index (± SE) Test Post hoc  

 Rank N’ham S’port Wirral 
Test 

Statistic 
p 

value 
Comparisons 

p 
value 

F
a
e
c
a
l 

ASV 2.4 (0.1) 
1.91 
(0.2) 

2.0 
(0.3) 

3.47 0.176   

Genus 2.2 (0.1) 1.8 (0.2) 
1.9 

(0.3) 
3.24 0.200   

Family 2.1 (0.1) 1.8 (0.2) 
1.9 

(0.3) 
2.10 0.350   

Phylum 1.0 (0.0) 0.8 (0.1) 
0.9 

(0.1) 
3.34 0.042 N’ham: S’port 0.044 

C
a

e
c

a
l 

ASV 1.4 (0.2) 1.6 (0.2) 
2.0 

(0.2) 
2.62 0.082   

Genus 1.3 (0.2) 1.5 (0.2) 
2.0 

(0.2) 
3.40 0.041 N’ham: Wirral 0.031 

Family 1.2 (0.1) 1.4 (0.1) 
1.9 

(0.1) 
3.68 0.032 N’ham: Wirral 0.024 

Phylum 0.7 (0.1) 0.7 (0.1) 
0.9 

(0.1) 
2.22 0.119   
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Supplementary Table 10. Test statistics for comparing eukaryome composition among 

sampling sites at different taxonomic ranks. A PERMANOVA was used to compare among 

the sampling sites for each taxonomic rank before conducting pairwise comparisons between 

the sampling sites. Significant pairwise comparisons are highlighted in bold.  

 Rank 
F 

value 
R2 p value Pairwise comparison p value 

F
a
e
c
a
l 

ASV 7.37 0.211 < 0.001 

Nottingham: Southport 0.002 

Nottingham: Wirral 0.002 

Wirral: Southport 0.065 

Genus 8.05 0.226 < 0.001 

Nottingham: Southport 0.002 

Nottingham: Wirral 0.002 

Wirral: Southport 0.084 

Family 8.42 0.235 < 0.001 

Nottingham: Southport 0.002 

Nottingham: Wirral 0.002 

Wirral: Southport 0.077 

Phylum 12.14 0.306 < 0.001 

Nottingham: Southport 0.002 

Nottingham: Wirral 0.002 

Wirral: Southport 0.483 

C
a

e
c

a
l 

ASV 9.79 0.262 < 0.001 

Nottingham: Southport 0.002 

Nottingham: Wirral 0.002 

Wirral: Southport 0.032 

Genus 10.99 0.286 < 0.001 

Nottingham: Southport 0.002 

Nottingham: Wirral 0.002 

Wirral: Southport 0.036 

Family 11.80 0.3000 < 0.001 

Nottingham: Southport 0.001 

Nottingham: Wirral 0.001 

Wirral: Southport 0.030 

Phylum 21.04 0.433 < 0.001 

Nottingham: Southport 0.001 

Nottingham: Wirral 0.001 

Wirral: Southport 0.207 

 

  



227 
 

Supplementary Table 11. Test statistics for comparing the amount of variation of 

eukaryome composition within sampling sites at different taxonomic ranks. A permutest 

was used to compare among the sampling sites for each taxonomic rank before conducting 

pairwise comparisons between the sampling sites. Significant pairwise comparisons are 

highlighted in bold. 

 

  

 Rank F value p value Pairwise comparisons p value 

F
a
e
c
a
l 

ASV 15.52 < 0.001 

Nottingham: Southport 0.001 

Nottingham Wirral 0.001 

Wirral: Southport 0.676 

Genus 11.61 < 0.001 

Nottingham: Southport 0.002 

Nottingham Wirral 0.001 

Wirral: Southport 0.665 

Family 8.90 < 0.001 

Nottingham: Southport 0.001 

Nottingham Wirral 0.002 

Wirral: Southport 0.544 

Phylum 3.08 0.052 

Nottingham: Southport 0.050 

Nottingham Wirral 0.081 

Wirral: Southport 0.867 

C
a

e
c

a
l 

ASV 2.84 0.062 

Nottingham: Southport 0.025 

Nottingham Wirral 0.257 

Wirral: Southport 0.326 

Genus 1.21 0.292 

Nottingham: Southport 0.133 

Nottingham Wirral 0.464 

Wirral: Southport 0.500 

Family 2.28 0.110 

Nottingham: Southport 0.053 

Nottingham Wirral 0.303 

Wirral: Southport 0.392 

Phylum 0.989 0.370 

Nottingham: Southport 0.222 

Nottingham Wirral 0.534 

Wirral: Southport 0.458 
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Supplementary Table 12. Species that were differentially abundant between the faecal 

samples of Nottingham mice and mice from the two other sampling sites (‘Combined’). 

Abundance is based on the CLR transformation of read abundance, with the difference in 

abundance between Nottingham mice and Combined mice (Wirral and Southport) provided. 

Species highlighted in bold had a greater abundance in Nottingham mice compared to 

Southport and Wirral mice. The p values used to identify significantly different species were 

generated using an ANCOM-BC analysis. 

Phylum Species 
Abundance 

p value 
Nottingham Combined Difference 

Nematoda 
Ozolaimus 

linstowi 
3.16 

(± 0.5) 
-0.69 

(± 0.1) 
3.85 <0.001 

Apicomplexa 

Eimeria 
falciformis 

2.46 
(± 0.8) 

-0.69 
(± 0.1) 

3.15 0.02 

Eimeria telekii 
4.29 

(± 0.8) 
-0.69 

(± 0.1) 
4.99 <0.001 

Gregarina 
polymorpha 

3.2 
(± 0.4) 

0.56 
(± 0.4) 

2.64 0.003 

Ascoymocta 

Wickerhamomyces 
anomalus 

0.01 
(± 0.3) 

2.74 
(± 0.6) 

2.72 0.002 

Ascosphaera apis 
-0.52 

(± 0.2) 
1.61 

(± 0.4) 
2.13 0.004 

Onygena corvina 
-0.73 
(± 0) 

1.32 
(± 0.4) 

2.05 0.007 

Thermomyces 
lanuginosus 

3.51 
(± 0.4) 

0.6 
(± 0.3) 

2.90 <0.001 

Basidiomycota 

Wallemia sebi 
6.9 

(± 0.3) 
9.91 

(± 0.2) 
3.00 <0.001 

Wallemia 
ichthyophaga 

-0.5 
(± 0.1) 

2.94 
(± 0.4) 

3.44 <0.001 

Stropharia 
ambigua 

-0.56 
(± 0.1) 

1.51 
(± 0.4) 

2.07 0.006 

Sterigmatomyces 
halophilus 

1.48 
(± 0.4) 

5.73 
(± 0.3) 

4.25 <0.001 

Cystobasidium 
lysinophilum 

4.51 
(± 0.5) 

1.25 
(± 0.5) 

3.27 <0.001 

Mucoromycota 
Circinella 
umbellata 

4.53 
(± 0.6) 

0.71 
(± 0.4) 

3.82 0.001 
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Supplementary Table 13. Phyla that were differentially abundant between the faecal and 

caecal samples of Nottingham mice and mice from the two other sampling sites 

(‘Combined’). Abundance is based on the CLR transformation of read abundance, with the 

difference in abundance between Nottingham mice and Combined mice (Wirral and 

Southport) provided. Phyla highlighted in bold had a greater abundance in Nottingham mice 

compared to Southport and Wirral mice. The p values used to identify significantly different 

phyla were generated using an ANCOM-BC analysis. 

 Phylum 
Abundance 

p value 
Nottingham  Combined  Difference 

Faecal 

Apicomplexa 
0.7 

(± 0.3) 
-1.98 

(± 0.3) 
2.7 <0.001 

Basidiomycota 
1.19 

(± 0.3) 
5.47 

(± 0.2) 
4.3 <0.001 

Nematoda 
-1.89 

(± 0.3) 
-3.49 

(± 0.3) 
1.6 <0.001 

Caecal 

Apicomplexa 
5.26 

(± 0.4) 
1.67 

(± 0.4) 
3.6 <0.001 

Ascomycota 
6.75 

(± 0.2) 
8.58 

(± 0.2) 
1.8 0.03 

Basidiomycota 
5.17 

(± 0.3) 
8.4 

(± 0.2) 
3.2 <0.001 

Nematoda 
8.17 

(± 0.4) 
0.78 

(± 0.7) 
7.4 <0.001 
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Supplementary Table 14. Phyla identified from the faecal bacteriome of wild mice. Phyla 

are ordered by their relative abundance across the entire dataset. Total abundance is the 

number of sequences classified for each phylum. Prevalence is the percentage of mice the 

phyla were identified from. N’ham = Nottingham, S’port = Southport. 

 

Supplementary Table 15. Bacterial species that were differentially abundant between 

the faecal samples of Nottingham mice and mice from the two other sampling sites 

(‘Combined’). Abundance is based on the CLR transformation of read abundance, with the 

difference in abundance between Nottingham mice and Combined mice (Wirral and 

Southport) provided. Species highlighted in bold had a greater abundance in Nottingham mice 

compared to Southport and Wirral mice. The p values used to identify significantly different 

species were generated using an ANCOM-BC analysis. 

Phylum Species 
Abundance 

p value 
Nottingham Combined Difference 

Firmicutes 
Lactobacillus 

reuteri 
5.25 

(± 0.7) 
-0.43 

(± 0.4) 
5.69 <0.001 

Bacteroidota 
Bacteroides 

vulgatus 
5.63 

(± 0.7) 
0.86 

(± 0.6) 
4.76 0.004 

Campilobacterota 

Helicobacter 
apodemus 

5.33 
(± 0.7) 

0.39 
(± 0.6) 

4.95 <0.001 

Helicobacter 
mastomyrinus 

1.31 
(± 0.1) 

1.36 
(± 0.5) 

2.67 <0.001 

 

Phylum 

Abundance Prevalence (%) 

Relative 
(%) 

Total 
Combined 

(58) 
N’ham 

(31) 
S’port 
(15) 

Wirral 
(12) 

Firmicutes 61.8 4561505 100 100 100 100 

Bacteroidota 29.9 2205342 100 100 100 100 

Actinobacteriota 2.2 166016 100 100 100 100 

Campilobacterota 2.0 145104 100 100 100 100 

Desulfobacterota 1.9 138905 98 100 100 92 

Proteobacteria 1.5 112720 100 100 100 100 

Verrucomicrobiota 0.2 17883 14 16 13 8 

Deferribacterota 0.2 17445 72 94 40 58 

Cyanobacteria 0.1 4898 55 74 40 25 

Patescibacteria 0.1 4043 55 77 20 42 

Fusobacteriota 0.1 3854 3 3 0 8 

Spirochaetota < 0.05 1904 5 10 0 0 

Chloroflexi < 0.05 1307 31 45 13 17 

Deinococcota < 0.05 414 10 13 0 17 

Acidobacteriota < 0.05 91 2 0 7 0 

Planctomycetota < 0.05 53 2 3 0 0 

Bdellovibrionota < 0.05 14 2 3 0 0 

Myxococcota < 0.05 11 2 0 7 0 


