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Abstract. Advancements in Conversational Natural Language Pro-
cessing (NLP) have the potential to address critical social challenges,
particularly in achieving the United Nations’ Sustainable Develop-
ment Goal of quality education. However, the application of NLP
in the educational domain, especially language learning, has been
limited due to the inherent complexities of the field and the scarcity
of available datasets. In this paper, we introduce T-VAKS (Tutoring
Virtual Agent with Knowledge Selection), a novel language tutoring
multimodal Virtual Agent (VA) designed to assist students in learn-
ing a new language, thereby promoting AI for Social Good. T-VAKS
aims to bridge the gap between NLP and the educational domain,
enabling more effective language tutoring through intelligent virtual
agents. Our approach employs an information theory-based knowl-
edge selection module built on top of a multimodal seq2seq gener-
ative model, facilitating the generation of appropriate, informative,
and contextually relevant tutor responses. The knowledge selection
module in turn consists of two sub-modules: (i) knowledge relevance
estimation, and (ii) knowledge focusing framework. We evaluate the
performance of our proposed end-to-end dialog system against vari-
ous baseline models and the most recent state-of-the-art models, us-
ing multiple evaluation metrics. The results demonstrate that T-VAKS
outperforms competing models, highlighting the potential of our ap-
proach in enhancing language learning through the use of conversa-
tional NLP and virtual agents, ultimately contributing to addressing
social challenges and promoting well-being.

1 Introduction
Artificial intelligence (AI), particularly deep learning (DL), has pro-
foundly impacted the field of education, offering novel solutions
and tools to address critical social challenges. By employing AI and
DL techniques, educators can effectively analyze patterns in large
datasets, enabling them to better understand and track student per-
formance [10]. The emergence of personalized, data-driven instruc-
tion has led to the development of targeted educational material tai-
lored to individual learning styles and abilities 1. Moreover, AI has
improved assessment efficiency through automated feedback on as-
signments and homework [8]. One of the most promising applica-
tions of AI in education is the use of virtual tutors and educational
chatbots, which have the potential to enhance the quality of educa-
tion and make it accessible to a broader range of students [22]. These
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Figure 1: Existing models for Educational Tutoring Vs Our Proposed
Approach, T-VAKS (Tutoring Virtual Agent with Knowledge Selec-
tion)

technologies not only provide personalized, one-on-one tutoring but
can also bridge the instructional gaps resulting from a shortage of
qualified teachers in certain areas [7]. By offering equal access to ed-
ucational resources regardless of socio-economic status, virtual tu-
tors can help reduce educational disparities among different demo-
graphic groups 2. Additionally, they can prove particularly beneficial
for students with disabilities or those facing language barriers [6].
Virtual automated tutors also play a key role in enhancing student
engagement and motivation by delivering personalized and engaging
learning experiences [22].

Knowledge base (KB) serves as a vital resource for automated tu-
toring virtual agents (VAs) by enabling them to store and retrieve
information related to the topics they teach [4]. Knowledge selection
(KS) is a process that identifies one or more relevant pieces of in-
formation from a large pool of knowledge stored in a KB to be used
in the conversations. Efficient KS is crucial to numerous AI applica-
tions, including educational VAs, for several reasons:

• Selecting relevant knowledge for generating appropriate re-
sponses : Knowledge selection plays a critical role in enabling
virtual agents to generate contextually appropriate and meaningful

2 https://tech.ed.gov/files/2017/01/NETP17.pdf
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responses. By identifying the most relevant pieces of information
from the knowledge base, VAs can maintain the coherence and
relevance of the conversation [17], ensuring that the generated re-
sponses address the user’s queries and contribute to their learning
experience.

• Reducing processing time and resources through knowledge
selection : Efficient knowledge selection enables VAs to filter out
unnecessary or irrelevant information before it is processed, thus,
conserving computational resources. By focusing only on the most
relevant knowledge, VAs can reduce the processing time and com-
putational demands [14], resulting in more responsive and effi-
cient systems. This is particularly important in educational set-
tings, where prompt and accurate responses are essential to main-
taining user engagement and promoting effective learning.

• Addressing context length limitations in generative pre-
trained language models (PLMs) : Generative PLMs, such as
GPT-2 [20], have fixed input context sizes that limit the amount of
information they can process in a single pass [5]. This constraint
can lead to issues when dealing with long conversational contexts
or complex knowledge bases. Knowledge selection can help mit-
igate this issue by identifying the most relevant and contextually
appropriate information, reducing the input size to fit within the
language model’s constraints.

Furthermore, incorporating multimodal information, such as images
related to the topic being discussed, can enhance the performance of
educational VAs by providing additional contextual cues [30]. The
combination of different modalities enables VAs to achieve their ob-
jectives more accurately and efficiently. By addressing the context
length issue and integrating multimodal information, KS can help
overcome the inherent limitations of language models, resulting in
more effective and resource-efficient VAs for language tutoring and
other educational applications. Figure 1 depicts a high-level compar-
ison between the Knowledge Selection-based Dialogue System and
conventional dialogue systems.

This paper introduces T-VAKS (Tutoring Virtual Agent with
Knowledge Selection); a VA that offers personalized, one-on-one tu-
toring to learn Italian language based on the CIMA dataset [27]. The
primary objective of T-VAKS is to provide guidance and assistance to
students learning the language, helping them to develop their skills
and reach their academic goals. The VA’s goal is to create a com-
fortable and encouraging learning environment for the students by
offering them competent and expert tutoring. To ensure that the VA
is equipped to fulfill this purpose, the KB of the dataset must be uti-
lized to its fullest potential. In addition to this KB, we also use the
multimodal information (images) provided in the dataset about the
content being discussed. Our end-to-end system employs an infor-
mation theory inspired Knowledge Selection module (KSM) to se-
lect relevant information from the KB over the top of a multimodal
seq2seq generative model (MGen), which is designed to fuse textual
and multimodal information to generate an appropriate, informative,
and relevant tutor response.

The key contributions of this paper are as follows :

• We introduce T-VAKS, a Tutoring-based Multimodal Dialog Sys-
tem with Knowledge Selection, imitating the behavior of an ideal
tutor. It is capable of conversing with a learner/user on a given
subject, aiding them in their language learning experience.

• Our end-to-end system employs two sub-modules, viz., KSM
framework to select the relevant information from the KB corre-
sponding to the context, and MGen framework to generate tutor
response utilizing the current context, selected knowledge infor-

mation, and multimodal information (images).
• Additionally, the KSM sub-module encompasses two mechanisms,

viz., knowledge relevance estimation to evaluate the significance
of each knowledge sentence in the KB, and knowledge focusing
mechanism to select most contributing knowledge sentences.

• Empirical results indicate that our proposed system outperforms
several baseline and state of the art models.

Social Impact of Our Research. Our work on T-VAKS has far-
reaching implications in various aspects of society, including: (a)
Enhanced Language Learning Opportunities : T-VAKS, as a lan-
guage tutoring multimodal virtual agent, provides students with
improved language learning experiences; (b) Increased Access to
Quality Education : T-VAKS’s efficiency, utilizing only 40% of
the parameters compared to other models, enables deployment on
a wider range of devices, including those with limited computational
power; (c) Reduced Environmental Impact : The resource-efficient
nature of T-VAKS contributes to lowering the environmental footprint
of training and deploying AI models. By requiring fewer parameters,
the model promotes the development of more sustainable AI solu-
tions that align with the broader goal of sustainable development; (d)
Encouraging AI for Social Good : The success of T-VAKS high-
lights the potential of AI-driven educational solutions in addressing
societal challenges.

2 Related Works

In this section, we provide a concise summary of the latest develop-
ments in the domain of conversational agents, with a special empha-
sis on the progress made in educational virtual assistants specifically.

2.1 Natural Language Generation and Dialogue
Systems

The field of dialogue systems and chatbots has witnessed consider-
able progress in recent years, driven by advances in natural language
processing, machine learning, and artificial intelligence. These de-
velopments have led to the creation of more sophisticated and versa-
tile chatbots, which are now employed in various domains, including
customer service, e-commerce, and healthcare.

Rule-based and Retrieval-based Chatbots. Early dialogue sys-
tems primarily relied on rule-based [29] and retrieval-based [18] ap-
proaches. Rule-based chatbots, such as ELIZA [33], used pattern
matching and pre-defined rules to generate responses, while retrieval-
based systems selected responses from a predefined set based on
the similarity between user input and available responses. Although
these methods provided a foundation for chatbot development, they
were limited in their ability to handle complex and diverse user in-
puts.

Generative Chatbots. The advent of deep learning and neural net-
works paved the way for generative models, which allowed chatbots
to create responses based on learned patterns rather than relying on
predefined rules or templates. Sequence-to-sequence (seq2seq) mod-
els [28] and attention mechanisms [2] significantly improved the
quality of generated responses, enabling more flexible and coherent
dialogue generation. The introduction of pre-trained language mod-
els, such as GPT-2 [20], BART [13], and T5 [21], further enhanced



the capabilities of dialogue systems. These models, trained on large-
scale text corpora, facilitated the development of more contextually
aware and human-like chatbots [23, 31, 24].

2.2 Educational Dialogue Systems

The integration of natural language processing and artificial intelli-
gence in educational settings has given rise to the development of
automated tutoring systems and educational chatbots. These systems
aim to provide personalized and engaging learning experiences to
students, catering to their individual needs and learning styles.

Early Automated Tutoring Techniques. Prior to the advent of
virtual agents, automated tutoring predominantly employed tech-
niques like flashcard-based systems [12]. However, these methods
offered limited adaptability and interactivity, constraining their ef-
fectiveness in addressing diverse learning requirements. The devel-
opment of rule-based [1] and template-based educational dialogue
systems sought to address these limitations. While these systems pro-
vided more personalized learning experiences, their reliance on pre-
defined rules and templates restricted their ability to generate flexi-
ble, open-ended responses.

Educational Chatbots and Datasets. The advancements in natu-
ral language generation and the introduction of pre-trained language
models have spurred the development of more sophisticated virtual
tutors for various subjects. This has led to the creation of AI-related
datasets, such as CIMA [27] and the Teacher-Student Chatroom Cor-
pus [3]. Despite the surge of research on generative models for dia-
logue systems, the application of large pre-trained models in educa-
tional tutoring systems remains limited. Most existing solutions are
rule-based and do not generate open-ended responses. A recent study
[9] utilized the CIMA dataset to build a conversational agent based
on DialoGPT, although it did not take advantage of the image data
provided.

In summary, the field of educational dialogue systems has evolved
from early flashcard-based techniques to rule-based and template-
based systems, and more recently, to the adoption of pre-trained lan-
guage models. The advancements in natural language generation and
artificial intelligence have enabled the development of more sophis-
ticated and interactive virtual tutors, offering personalized learning
experiences that cater to diverse student needs.

3 Dataset
This study employs an extended version of the CIMA dataset [27],
which focuses on tutoring dialogue in one-to-one student-tutor con-
versations. An instance of this dataset is shown in Figure 2. The
dataset features conversations in which a tutor helps students learn
the Italian translation of an object and its features. The dataset in-
cludes object descriptions, grammar rules, intent tags, and action la-
bels. These object descriptions and grammar rules are referred to as
the knowledge base (KB) in the dataset. Student intent tags consist
of Guess, Question, Affirmation, and Other, while VA’s actions are
labeled as Question, Hint, Correction, Confirmation, and Other. In
the original CIMA dataset, intent-action labels are provided only for
the final student utterance, and the gold tutor response, in each data
instance, resulting in 2983 response-context pairs. However, this lim-
ited number of instances hampers the training of neural response
generation models, which typically require substantial amount of
data. To address this limitation, the authors of the EDICA framework

[9] adopt a semi-supervised approach for labeling every utterance in
the conversational history with the corresponding intent-action tags,
thus, increasing the dataset length suitable for training neural gen-
eration models. They train a student intent classifier (SIC) and a tu-
tor intent/action classifier (TIC) on the original gold-standard CIMA
dataset. These classifiers are then used to assign silver-standard
intent-action tags to the respective student-tutor utterances in the
conversational history of each data instance present in the original
CIMA dataset. The modified CIMA dataset with silver-standard la-
beling is referred to as the extended-CIMA dataset. The extended-
CIMA dataset now encompasses 4322 response-context pairs, offer-
ing a more comprehensive collection of student-tutor conversations
for training purposes.

Tutor: "\"Pink\" is \"rosa\". Please try to fill in the 
blank in Italian. ",  <HINT>
Student: "Okay.  What is tree again?", 
<QUESTION>
Tutor: "Hmm...  \"tree\" is  \"l'albero\"",  <HINT>
Student: "Thanks.  How do I say \"behind\" in 
Italian?", <QUESTION>
Tutor: "OK,  \"is behind the\" is \"e dietro\"", 
<HINT>
Student:  "il cane e dietro rosa 
l'albero?",<GUESS> 
Tutor: "l' (\"the\") is prepended to the following 
word when it begins with a vowel",  <HINT>
Student: "Is it correct to say \"il cane e dietro rosa 
l'albero\"?" <AFFIRMATION>
Tutor:  "l' (\"the\" is prepended to the following word 
when it begins with a vowel.",  <HINT>
Student: "So what's the correct answer?" 
<QUESTION>

Conversational Context

● "prep": "e dietro", "engPrep": "is behind the"
● obj": "l'albero", "engObj": "tree"
● "color": "rosa", "engColor": "pink"
● (\\\"the\\\") is prepended to the following word when 

it begins with a vowel\", 
● \"This applies to both feminine and masculine 

words. Words in Italian have a gender associated 
with them (either masculine or feminine), even 
when the word is an object, concepts, or abstract 
ideas. 

● \\\"the\\\" is prepended to the following word when it 
begins with a vowel.\",

●  \"This applies to both feminine and masculine 
words. Words in Italian have a gender associated 
with them (either masculine or feminine), even 
when the word is an object, concepts, or abstract 
ideas. 

● Prepositional phrases separate two noun phrases.
● \"Adjectives (such as color words) follow the noun 

they modify in Italian.\",

KB

Look at your order of words again. 
Adjectives (such as color words) 
follow the noun they modify in 
Italian.

Tutor Ground Truth 
ResponseImage Instance 

for Discussion

Figure 2: Illustration of a data sample from the CIMA dataset. Sen-
tences highlighted in blue within the Knowledge Base signify that
these sentences were utilized to produce the subsequent ground truth
instructor response. In the conversational context, intent tags and ac-
tion labels for utterances are displayed in red.

4 Proposed Methodology
This section discusses the problem statement, methodology and im-
plementation details.

4.1 Problem Formulation

This paper addresses the challenge of generating appropriate and
meaningful responses for a virtual agent (VA) in student-tutor con-
versations, considering various contextual factors. Given a student
utterance, Sn+1, the conversation history, H , a knowledge base, K,
the student intent In+1, the VA action an+1, and an image M , the
objective is to produce a suitable tutor reply, ˆTn+1. The primary goal
is to develop a generative language model, G capable of generating
such a response. Formally, the problem can be defined as follows:
given the inputs, Sn+1, H , K, In+1, an+1, and M , the model G
should produce a response ˆTn+1 that adequately addresses the stu-
dent’s query and adheres to the context of the conversation. In other
words, ˆTn+1 = G(Sn+1|H,K, In+1, an+1,M).

4.2 Methodology

This section discusses the proposed approach in details.



Figure 3: This figure presents the schematic design of the proposed T-VAKS framework. The top-left segment provides a comprehensive sum-
mary of the model, while the lower-left segment highlights the proposed knowledge selection module. On the right, the proposed multimodal
generative encoder is demonstrated.

4.2.1 Knowledge Selection Module (KSM)

In previous research on tutor-student conversations, the primary fo-
cus has been on utilizing the entire domain knowledge base (KB) as
an input to the system. As illustrated in Figure 2, it is evident that
merely 3 out of the 9 sentences in the knowledge base (accentuated
in blue) are employed to generate the ground truth response. How-
ever, this approach may not be optimal, as it can lead to processing
large amount of irrelevant information, increasing the computational
overhead and potentially diluting the context of the conversation. To
address this challenge, this paper proposes a knowledge selection
module (KSM) that is specifically designed to select pertinent and
significant knowledge sentences from the entire KB, depending on
the current context. The primary objective of KSM is to select rele-
vant knowledge sentences ki from the entire KB K, considering the
prior n turns, H = {S1, T1, ..., Sn, Tn}, and the student’s utterance,
Sn+1. By selectively choosing the most relevant pieces of knowl-
edge, KSM can enhance the efficiency and contextual relevance of
the virtual agent’s responses. KSM consists of the following two sub-
modules that work in tandem to achieve this goal :

Knowledge Relevance Estimation. During training, the aim is to
select the most relevant knowledge sentences based on the ground
truth tutor response, Tn+1. The quality of a knowledge sentence can
be evaluated by computing its information overlap with the tutor
response, Tn+1. A high overlap of information guarantees that the
knowledge sentence must be utilized or is pertinent in creating the
tutor response; thus, helping us to evaluate the significance of each
knowledge sentence in KB, K. To model this information overlap, a
Shannon score based mechanism is employed to estimate the impor-
tance and relevance of each knowledge sentence ki where ki ∈ K
which works as follow : Given a language model, P (ki|Tn+1) that
outputs the probability distribution of a knowledge sentence, ki as-
sociated with a given tutor response, Tn+1, we calculate the condi-
tional information content, InfoGain(ki|Tn+1) as the amount of
knowledge gained from ki through knowing the response Tn+1. The
amount of knowledge gained is quantified as the shannon informa-
tion content :

InfoGain(ki|Tn+1) = − logP (ki|Tn+1) (1)

To approximate P (ki|Tn+1) and InfoGain(ki|Tn+1), we com-
pute the conditional probability of ki being generated when Tn+1 is
provided as a prompt to a language model (GPT-2 in our case) [20].
We introduce a shannon score metric as :

SS = InfoGain(ki)− InfoGain(ki|Tn+1) (2)

If ki is of high importance and relevance, then the value of
InfoGain(ki|Tn+1) will be much smaller than InfoGain(ki),
which implies that a large value for the SS score shows that sentence
ki is relevant. The Shannon score SS can be used to rank all knowl-
edge sentences according to relevance, and then the Top-R most rel-
evant knowledge sentences can be used as input for the model.

Knowledge Relevance during Inference : During inference, the
ground-truth tutor response, Tn+1 is unavailable to estimate the
knowledge relevance. For this, we propose to use a Kullback-Leibler
divergence loss [15] which works as follows: two conditional proba-
bility distributions are defined; Prior Distribution P (k|Sn+1, H) and
Posterior Distribution P (k|Sn+1, H, Tn+1) for a knowledge sen-
tence kj are defined as follows :

P (kj |Sn+1, H) =
exp(kj · (Sn+1 ⊕H))∑
k∈K

exp(k · (Sn+1 ⊕H))
(3)

P (kj |Sn+1, H, Tn+1) =
exp(kj · (MLP [Sn+1 ⊕H;Tn+1]))∑
k∈K

exp(k · (MLP [Sn+1 ⊕H;Tn+1]))
(4)

where MLP is a fully-connected feed-forward network. The KL-
divergence loss, Lkl can be computed as follows :

Lkl =
∑
k∈K

P (kj |Sn+1, H, Tn+1) log
P (kj |Sn+1, H, Tn+1)

P (kj |Sn+1, H)
(5)

The KL-Divergence loss function assists the model in selecting rel-
evant knowledge sentences, even when the ground-truth tutor re-
sponse is unknown (during inference), by approximating the poste-
rior distribution using the prior distribution.



Knowledge Focusing Framework. Additionally, we propose a
knowledge focus loss to encourage the model to produce the same
output distribution for tutor response when the entire knowledge base
K is fed as input and when only top ranked knowledge sentences are
fed. Formally, knowledge focus loss can be defined as follows :

Lkf = (P logP
′{k} + (1− P ) log(1− P

′{k})) (6)

where P represents probability distribution of model
G(Sn+1|H,K, In+1, an+1,M) with complete KB, K. k rep-
resent the top ranked knowledge sentences from K, and P

′{k}

represents probability distribution of model G with only top ranked
sentences k in the input instead of K. Primarily, the knowledge focus
loss guarantees that P is nearly identical to P

′{k} so that excluding
non-important knowledge sentences will not effect the result of
our generative model. This penalization will take into account the
discrepancy in predicted probabilities when non-important sentences
are removed from the knowledge base.

4.2.2 Multimodal Generative Framework (MGen)

Firstly, the current student utterance Sn+1, history H , student’s in-
tent, In+1, and VA’s action, an+1, are concatenated to form an input
string Ci. Additionally, KB K is fed into the KSM module that out-
puts the top-ranked knowledge sentences {k}. Finally, Ci and {k}
are concatenated to form a final input string Xi. Next, both the in-
put string Xi and corresponding image M are correspondingly fed
into a pre-trained BART encoder and VGG-19 encoder [26] to obtain
encoded representations, Ux and Um, respectively. To fuse the infor-
mation between these two representations, we propose a Multimodal-
aware encoder (shown in Fig. 3), an extension of the original trans-
former encoder [32]. We create two triplets of query, key and value
matrices corresponding to Ux and Um, respectively: (Qx,Kx,Vx) and
(Qm,Km,Vm). Unlike the original transformer encoder where the
same input is projected as query, key, and value, in MGen, we pro-
pose a cross-attention layer with two sublayers of multi-head-cross
attention and normalization. This layer exchanges the key and value
by taking (Qx,Km,Vm) and (Qm,Kx,Vx) as inputs to compute a
cross infused vector representation defined as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (7)

where (Q,K,V) represents the set of query, key, and value and
dk represents the dimension of the query and key. This cross-
attention layer facilitates the exchange of information between Ux

and Um. Now, these multi-head cross attention outputs (Ux−>m

and Um−>x) contain information about each other. Following this,
Ux−>m and Um−>x are concatenated and the final concatenated
output Uz is passed through a self-attention layer, normalization lay-
ers, and fully connected layers with residual connections to obtain
final multimodal-aware input representation vector, Z. Finally, Z is
fed to an autoregressive decoder following the standard decoder com-
putations as defined in the original transformer network [32].

4.2.3 Loss Function

We initialize our model’s weights θ using the weights of the pre-
trained sequence-to-sequence generative model (BART-base). Our
framework, T-VAKS, is then fine-tuned by optimizing a combined
loss function defined in Equation 8, which is the average of the fol-
lowing three loss components:

• Maximum Likelihood Estimation (MLE) Objective Function:
This loss (Lmle) component operates in a supervised manner to
optimize the weights, θ, by minimizing the difference between
the predicted and ground truth responses, encouraging the model
to generate accurate and coherent responses during training.

• Kullback-Leibler (KL) Divergence Loss: As defined in Equa-
tion 5, the KL divergence loss (Lkl) helps to estimate the knowl-
edge relevance during inference. This loss component measures
the divergence between the predicted knowledge relevance dis-
tribution and the ground truth distribution, promoting the selec-
tion of relevant knowledge sentences from the knowledge base,
which contributes to generating more contextually appropriate re-
sponses.

• Knowledge Focusing Loss: As defined in Equation 6, the knowl-
edge focusing loss (Lkf ) penalizes the model for attending to ir-
relevant knowledge sentences. By applying this loss component,
the model is encouraged to focus on the most relevant parts of the
knowledge base, which leads to improved response generation and
a more effective language tutoring experience.

Lfinal =
Lmle + Lkl + Lkf

3
(8)

4.3 Experimental Setup

We trained our models on a Tyrone machine equipped with an In-
tel Xeon W-2155 processor and a 11 GB Nvidia 1080Ti GPU. The
training was conducted for 20 epochs with a learning rate of 5 x
10−5, a batch size of 16, using the Adam optimizer, and an Adam
epsilon value of 1 x 10−8. Our proposed model, as well as all the
ablated models, are built on top of the BART-Base architecture. Af-
ter thorough investigation, we set the Top-R parameter for Knowl-
edge Relevance Estimation to 3. All models were implemented us-
ing Scikit-Learn3 and PyTorch4. The performance of generative mod-
els was evaluated using several metrics, including BLEU score [19],
ROUGE-L score [16], BERT F1-score [35], and Embedding-based
Metric [25]. To assess the performance of these models in terms of
human evaluation, three independent human users from the authors’
affiliation were asked to rate 100 simulated dialogues on a scale
of 1 (worst), 3 (moderate), and 5 (best) based on two criteria: flu-
ency (grammatical correctness) and relevance (response condition-
ing based on the conversation’s trajectory). The final reported score
is the average of the human-rated scores.

5 Results and Discussion
This section discusses the results and the experimental findings in
detail.

Comparison with the Baselines. The automatic evaluation results
of different baselines and the proposed T-VAKS model are shown in
Table 1. A clear observation from the table is that GPT-based mod-
els significantly outperform text-based BART and T5 models. How-
ever, the absence of an encoder in GPT models limits their ability to
integrate multiple information sources. This limitation inspired the
development of a multimodal and knowledge selection framework
based on the BART-base model, which achieved results comparable
to GPT-2.
3 https://scikit-learn.org/
4 https://pytorch.org/

https://scikit-learn.org/
https://pytorch.org/


Table 1: Comparison of T-VAKS with other baselines on automated metrics; T:Text, I:Image, KRE: Knowledge Relevance Estimation, SS:
Shannon Score, KFF: Knowledge Focusing Framework. The maximum scores attained are represented by bold-faced values. The † denotes
statistically significant findings.

Model BLEU BERT F1 ROUGE-L Embedding Metric
Average Extrema Greedy

GPT-1T 0.33 0.49 0.53 0.67 0.41 0.60
GPT-2T (Base) 0.34 0.54 0.55 0.69 0.41 0.61
BARTT (Base) 0.33 0.52 0.55 0.67 0.40 0.60

T5T (Base) 0.32 0.52 0.54 0.67 0.39 0.60
BARTT +ROUGE (Base) 0.34 0.56 0.55 0.69 0.41 0.63
BARTT +WMD (Base) 0.34 0.57 0.54 0.69 0.42 0.63

BARTT+I (Base) 0.34 0.53 0.55 0.68 0.41 0.62
T5T+I (Base) 0.34 0.52 0.55 0.69 0.40 0.62

BARTT+I (Base)+KRE 0.36 0.57 0.56 0.70 0.43 0.65
BARTT+I (Base)+(KRE-SS) 0.35 0.57 0.54 0.70 0.42 0.64

BARTT+I (Base)+(KFF+KRE-SS) 0.36 0.58 0.57 0.70 0.43 0.66
PostKS [15] 0.34 0.50 0.53 0.70 0.41 0.65

T-VAKS 0.39† 0.60† 0.58† 0.72† 0.45† 0.67†

Incorporating images as multimodal information in the model
(BARTT+I ) enhances its performance compared to the vanilla BART
model, as demonstrated in Table 1. We created two vanilla knowl-
edge selection models (BARTT +ROUGE and BARTT +WMD) by
selecting the top-2 knowledge sentences based on ROUGE/WMD
[11] similarity of the context and the KB. The performance of both
models surpasses that of all text-based GPT models and other gener-
ative models (BART and T5), indicating the effectiveness of knowl-
edge selection in improving performance.

Table 1 reveals that the T-VAKS framework significantly outper-
forms its predecessor models across all evaluation metrics. This im-
provement can be attributed to two factors: (1) the addition of an im-
age as an extra information source broadens the conversational con-
text of the model, allowing for better predictions, and (2) selecting
only relevant knowledge instead of the complete KB enhances the
model’s generation capabilities by focusing on pertinent parts and
reducing the context length, thereby eliminating the need for trunca-
tion.

We also present a comparison of our model, T-VAKS, with the
widely recognized Knowledge Selection-based Dialogue generation
model, PostKS [15]. PostKS employs a prior distribution derived
solely from utterances to approximate the posterior distribution, fa-
cilitating the selection of relevant knowledge. Nevertheless, T-VAKS
surpasses PostKS by a considerable margin across all assessment
metrics, which can be ascribed to three main factors: (1) In addi-
tion to the KL-Divergence loss used by PostKS to approximate the
posterior distribution, our model incorporates Shannon score-based
estimation during training, further enhancing its performance; (2)
Unlike PostKS, our model takes advantage of additional modalities,
such as images; and (3) T-VAKS employs pre-trained language mod-
els in its architecture, whereas PostKS utilizes standard GRU layers
as encoder-decoder components.

We demonstrate the impact of each T-VAKS component by ob-
serving how adding each component over BARTT+I affects the
model’s performance. Integrating the KRE module into the multi-
modal BART results in improvements compared to using Multimodal
BART alone. The KRE module filters pertinent knowledge sentences
for processing by the model, effectively reducing irrelevant informa-
tion and making the input more efficient. The performance of the
KRE module declines when the Shannon Score (SS) component is
omitted, suggesting that SS assists the KRE module in identifying

accurate and relevant knowledge sentences, given its utilization of
the ground truth responses for knowledge relevance estimation. Lay-
ering the KFF on top of this model further bolsters its performance,
as the knowledge focus loss helps the model concentrate on the most
relevant knowledge areas, making the model more robust.

Comparison with the SOTA. In this section, we compare the per-
formance of our proposed model, T-VAKS, with state-of-the-art mod-
els from the literature, specifically [27] and [9]. The comparison,
as shown in Table 2a, is based on the same experimental settings.
Our model, T-VAKS, demonstrates superior performance compared
to the generation-based model [27], outperforming it by a significant
margin on both BLEU and BERT-F1 metrics. Specifically, T-VAKS
surpasses the generation-based model by 8% and 11% in terms of
BLEU and BERT-F1 scores, respectively. Furthermore, T-VAKS out-
performs all variants of EDICA [9] in terms of BERT F1 and BLEU
scores. In comparison to EDICAGPT−2BASE , T-VAKS outperforms
it by a margin of 3% and 5% in BLEU and BERT-F1 scores, respec-
tively. When compared to EDICADialoGPT , T-VAKS exhibits almost
similar performance in terms of BLEU score while showing a 2%
improvement in BERT-F1 measure. All of the results are statistically
significant5 [34].

Comparison of Parameters. The findings presented in Ta-
ble 2b highlight the remarkable efficiency of T-VAKS, as it
achieves comparable performance to both EDICAGPT−2Medium

and EDICADialoGPT while utilizing only 40% of the parameters.
This significant reduction in the number of parameters showcases
the ability of T-VAKS to deliver high-quality language tutoring with-
out the need for extensive computational resources, setting it apart
from other models in the field. The efficiency and effectiveness of T-
VAKS have substantial implications for the field of NLP, particularly
in addressing the growing demand for more efficient and accessible
language technologies. By requiring fewer parameters, T-VAKS can
be deployed on a wider range of devices, including those with limited
computational power, thereby increasing its potential reach and im-
pact on language learning across diverse communities. Furthermore,
the reduced parameter count contributes to lowering the environmen-
tal footprint of training and deploying AI models, aligning with the

5 We used the Student’s t-test (p-value < 0.04).



Table 2: (a) Comparison of T-VAKS with the State of the Art Models. The maximum scores attained are represented by bold-faced values. The
† denotes statistically significant findings., (b) The trainable parameters for the proposed model, baselines and SOTA models

(a)

Model BLEU BERT F1
Generation based [27] 0.30 0.49

EDICAGPT−1 [9] 0.34 0.57
EDICAGPT−2Base [9] 0.36 0.55

EDICAGPT−2Medium [9] 0.38 0.57
EDICADialoGPT [9] 0.38 0.58

T-VAKS 0.39† 0.60†

(b)

Model Total Parameters
EDICAGPT−1[9] 110000000
EDICAGPT−2Base [9] 117000000
EDICAGPT−2Medium [9] 345000000
EDICADialoGPT [9] 345000000
T5 222903552
BART 139001589
T-VAKS 139420416

(a) (b)

Figure 4: (a) Human evaluation scores of different models, (b) Sample response generated by the proposed model

broader goal of sustainable development.

Human Evaluation. We conducted a human evaluation to further
assess the performance of T-VAKS compared to the best-performing
baseline model (BARTT+I (Base)+(KFF+KRE-SS)). As depicted in
Figure 4a, T-VAKS demonstrates significant improvement over the
baseline model. On average, T-VAKS scored 4.8 in fluency and 3.6
in relevance, outperforming the baseline model, which received an
average score of 3.9 and 3.0 for fluency and relevance, respectively.
These results indicate that T-VAKS generates outputs that are not only
more contextually relevant but also exhibit superior syntactic accu-
racy. The human evaluation scores corroborate the quantitative find-
ings, providing strong evidence that T-VAKS is an effective language
tutoring tool.

We present sample-generated responses from T-VAKS in Figure 4b
to provide qualitative insight into the system’s performance. These
examples demonstrate the model’s ability to generate contextually
relevant, informative, and syntactically accurate responses that effec-
tively address students’ inquiries or concerns. By examining the sam-
ple outputs in Figure 4b, we can observe that both T-VAKS and base-
lines successfully adapt to various language learning scenarios, rang-
ing from vocabulary clarification to generating grammatical hints.
However, it can be observed that T-VAKS responses are more fluent
and complete as compared to the baseline. By generating more per-
tinent and syntactically accurate responses, T-VAKS has the potential
to significantly enhance language learning experiences for students.

6 Conclusion
In conclusion, we have introduced T-VAKS, a cutting-edge language
tutoring multimodal Virtual Agent (VA) designed to support students

in learning new languages, effectively addressing critical societal
challenges in education. This groundbreaking VA leverages an in-
formation theory-based knowledge selection approach to extract rel-
evant information from an educational knowledge base, seamlessly
integrated with a multimodal generative model. Our empirical results
demonstrate the superior performance of T-VAKS, outshining base-
line models and state-of-the-art alternatives across a diverse array
of evaluation metrics. By enhancing language learning experiences
through the utilization of conversational NLP and virtual agents, T-
VAKS significantly contributes to addressing social challenges in ed-
ucation and promoting well-being, in accordance with the United Na-
tions’ Sustainable Development Goal of quality education. The suc-
cess of T-VAKS in improving educational outcomes also encourages
further research and development of AI-driven solutions that target
social issues and contribute to a more equitable society.

Looking ahead, future work will explore extending educational
chatbots like T-VAKS to additional tasks, such as summarization and
personalized learning, further amplifying their impact on solving so-
cietal challenges in education and fostering more inclusive and ac-
cessible learning opportunities for all.
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