
Stone Soup: No Longer Just an Appetiser
Steven Hiscocks, Jordi Barr, Nicola Perree,

James Wright, Henry Pritchett, Oliver Rosoman,
Michael Harris, Roisı́n Gorman, Sam Pike

Cyber and Information Systems
Defence Science and Technology Laboratory

Salisbury, UK
stonesoup@dstl.gov.uk

Peter Carniglia
Radar Sensing and Exploitation

Defence Research and Development Canada
Ottawa, Canada

peter.carniglia@drdc-rddc.gc.ca

Lyudmil Vladimirov, Benedict Oakes
{Electrical Engineering & Electronics, CDT in Distributed Algorithms}

University of Liverpool
Liverpool, UK

{l.vladimirov,sgboakes}@liverpool.ac.uk

Abstract—This paper announces version 1.0 of Stone Soup:
the open-source tracking and state estimation framework. We
highlight key elements of the framework and outline example
applications and community activities.

Stone Soup is engineered with modularity and encapsulation
at its heart. This means that its many components can be put
together in any number of ways to build, compare, and assure
almost any type of multi-target tracking and fusion algorithm.
Since its inception in 2017, it has aimed to provide the target
tracking and state estimation community with an open, easy-
to-deploy framework to develop and assess the performance of
different types of trackers. Now, through repeated application in
many use cases, implementation of a wide variety of algorithms,
multiple beta releases, and contributions from the community,
the framework has reached a stable point.

In announcing this release, we hope to encourage additional
adoption and further contributions to the toolkit. We also
acknowledge and express appreciation for the many contributions
of time and expertise donated by the tracking and fusion
community.

Index Terms—tracking, fusion, open source, framework

I. INTRODUCTION

Stone Soup [1] is a flexible, modular, open-source frame-
work for developing and proving a wide variety of tracking and
information-fusion-based solutions. Its modularity provides
components which can be put together in many ways, allowing
any number of fusion, tracking and sensor management algo-
rithms to be built. Individual components function analogously
to those in a machine, being designed to be interchangeable,
encapsulated and capable of deployment in a multitude of
configurations. Stone Soup has, to a degree, derived motivation
from the success of similar communities for computer vision,
machine learning, and data science.

In order to satisfy the diverse needs of the tracking and state
estimation community, Stone Soup has been designed with at
least three separate groups in mind. Firstly, algorithm devel-
opers must be able to create novel methods for target tracking
and state estimation; secondly, algorithm users should have
confidence that their methods are fit for purpose, metricated

and deliver the promised improvements; and finally, system
engineers require methods that deliver results appropriate for
their intended use which work within the requirements of new
or existing systems. In all cases the properties of encapsulation
and modularity promote efficiency and reuse.

Open source principles are key for Stone Soup. To maxi-
mize collaboration across academia, industry, and government,
permissive licensing is mandated for core components and
encouraged for all contributions. Notwithstanding the breadth
of contributors, software integration rigour is employed. Stone
Soup is open-source and version-controlled on GitHub.1 Con-
tributions are subject to testing and review prior to inclusion
on the main branch. Documentation is extensive and includes
tutorials, example applications, and demonstrations using data
sources.2

The Stone Soup concept dates from 2014 [2]. Development
started in earnest in 2017 [3], with the alpha release demon-
strated at a plenary session during the 2018 Fusion conference
in Cambridge, UK [4]. This alpha demonstration compared
an extended Kalman filter and particle filter in a multi-target
tracking simulation, utilising the modularity, encapsulation and
inheritance provided by Stone Soup’s object orientation. This
was followed, after much development work, by the full open
sourcing of the beta release in April 2019 [5] which expanded
the suite of components to include (joint) probabilistic data
association, an unscented Kalman filter, simulated sensors, and
metric capability. Stone Soup has been applied to a plethora
of application areas, including video tracking, drone tracking,
platform/sensor simulation, sensor management and more (see
e.g. [6]).

While it has grown to maturity, Stone Soup has benefited
from the support of a number of communities. In its early
phase, it was developed by The Technical Cooperation Pro-

1https://github.com/dstl/Stone-Soup
2https://stonesoup.rtfd.io

Fig. 1. Example multi target tracker overview, with ground truth and detection simulation, and metrics generation.

gram (TTCP).3 From 2017, it was the chosen means of collab-
oration for the incipient Open-Source Tracking and Estimation
Working Group (OSTEWG), a working group supporting the
International Society of Information Fusion (ISIF) mission
to enable collaboration among active information fusion re-
searchers.

Stone Soup is now released as version 1.0 which indicates
stability in the component interfaces and reliability for inclu-
sion as a dependency in other software development projects,
limiting breaking changes only to major version increments.
This represents the culmination of a number of years of
effort and provides the tracking community with a robust and
expanding series of tools to enhance and expand the reach of
their work.

This paper is structured as follows. Section II describes
the framework itself with design principles and details on
important components. Simulation and experimentation are
covered in §III and a selection of applications and general
community activities are detailed in §IV before we summarise
and look to the future.

II. FRAMEWORK & COMPONENTS

Python is the primary language of the framework, offering
as advantage its ubiquity within the data science community,
its openness, flexibility, and its popularity in a large number
of education environments. The framework uses the highly
optimised NumPy [7] and SciPy [8] libraries for linear algebra,
statistical functions and optimisation.

Exploiting the advantages of object-oriented programming,
a key aspect to adding algorithms to the framework is success-

3The Technical Cooperation Program (TTCP) is a long-standing interna-
tional organisation concerned with cooperation on defence science and tech-
nology matters. It’s membership comprises Australia, Canada, New Zealand,
the United Kingdom (UK) and the United States of America (USA).

fully breaking the algorithms down to the sub-components.
This helps users to reduce effort in adding new algorithms,
allows rapid prototyping of components and enables putting
together components in novel combinations.

Documentation has been a focus during development to
record the framework interfaces, components and features,
built utilising Sphinx [9] documentation library. In addition,
Sphinx-Gallery [10] has been used to build tutorial, examples
and demonstrations directly from code, to ensure these exam-
ples are always functional, and to provide a form of integration
testing.

All contributions to Stone Soup are publicly peer reviewed,
allowing anyone to comment. This ensures that contributions
to the framework are correctly implemented, as well as being
tested and documented appropriately.

In any software development project, tests are critical to
ensure individual units function as expected and integrate as
a whole. The Pytest [11] testing framework is used mainly
for unit tests, and integration testing includes documentation
generation via Sphinx-Gallery [10].

To enable ease of integration of additional components, a
plugin system has been added to the framework. This enables
bespoke, proprietary or niche components to be maintained
and version controlled separately, whether closed or open
source, to the main framework.

Figure 1 shows one example configuration of classes for
a multi target tracker, which includes simulated targets and
detections, utilising transition and measurement models. This
configuration can be used with different models, predictors,
updaters, etc. and compared using selected metrics of interest.

A. Models

The Stone Soup library contains standard models to describe
the evolution over time of a variety of targets (e.g. space,

air, ground, maritime) for use in filtering applications. In
Stone Soup these types of models are called transition models,
though more broadly in the literature are referred to as state,
state-transition, or state-space models. In addition to transition
models, measurement models have been implemented to rep-
resent the conversion from state space to the sensor-specific
measurement space. Measurement models may also be referred
to as observation models.

Most generally, the transition and measurement models are
represented mathematically as

xk|k−1 = f(xk−1,wk,uk) (1)
zk = h(xk,vk) (2)

where wk and vk are the transition and measurement noises,
respectively. uk represents a control input vector. Stone Soup
contains over twenty-five transition and measurement models
built-in, focused on both linear and non-linear kinematic state
estimation. The documentation also provides guidance for
users to allow them to implement their own models.

1) Transition Models: In the Stone Soup framework, tran-
sition models described by Equation 1 can be assembled in
parts, with each independent dimension being defined by a
separate model. The general operation of a transition model
in Stone Soup is demonstrated in Figure 2. Note that the
implementation of transition models is independent of usage
– while currently implemented models are focused primarily
on kinematic applications, the framework supports any model
described by Eq. 1 so long as it follows the template in
Figure 2

Fig. 2. The transition model structure which implements Equation 1

2) Measurement Models: Measurement models (i.e. Eq. 2)
within Stone Soup are used to represent the mapping from the
target’s state space to the sensor observation space. As such,
unique measurement models must be used for each combi-
nation of measurement coordinate system to state coordinate
system. While the measurements are sensor specific, they
are not necessarily sensor exclusive; more than one type of
sensor can return the same types of measurements (Ex. range,
azimuth, elevation). The general operation of a measurement
model in Stone Soup is presented in Figure 3.

Fig. 3. The composition of the measurement model used to implement
Equation 2

B. Filtering

Filtering of both single and multi target densities in Stone
Soup is broken into two steps: prediction and update. Each
step is performed by a dedicated component, namely the
Predictor and Updater classes, that form the base classes
for concrete algorithmic implementations of each step.

Fig. 4. Predictor implements Equation 3

1) Prediction: The Predictor class is responsible for
propagating a given state density through time, making use of
a specified TransitionModel. In mathematical terms, the
Predictor implements the Chapman-Kolmogorov equation:

p(xk|z1:k−1) =

∫ ∞

−∞
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (3)

where p(xk−1|z1:k−1) is the posterior state at time k − 1,
p(xk|xk−1) is the transition kernel (defined by the chosen
TransitionModel), and p(xk−1|z1:k−1) is the generated
predictive posterior. The implemented structure is shown in
Figure 4.

Stone Soup contains a large collection of predictors, includ-
ing (but not limited to):

• KalmanPredictor: Prediction step of the standard,
linear-Gaussian, Kalman filter [12];

• SqrtKalmanPredictor: Version of the Kalman pre-
diction that operates on the square root parameterisation
of the state [13];

• InformationKalmanPredictor: Predictions step
using the information form of the Kalman filter [14];

• Extended/UnscentedKalmanPredictor:
Extended [15] and Unscented [16] Kalman filter
prediction for non-linear, Gaussian models;

• ParticlePredictor: Prediction step of the (boot-
strap) Particle filter [17], [18] for non-linear, non-
Gaussian models;

• ParticleFlowKalmanPredictor: Prediction step
of the stochastic Particle flow filter that uses and underly-
ing Kalman predictor to maintain a state covariance [19];

Fig. 5. Updater components in the Stone Soup library. This implements
Equation 4

2) Update: The goal of the Updater class is to generate
the posterior state estimate, based on a predicted state (as
computed by a Predictor) and a (sequence of) mea-
surements. In doing so, the component makes use of a
MeasurementModel that is either provided at object in-
stantiation, or comes attached to each measurement.

Mathematically, the above is achieved by applying Bayes
rule4:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk)
(4)

where p(xk|z1:k−1) is the predictive posterior - computed
by the Predictor via (3), p(zk|xk) is the measurement
likelihood (as defined by the MeasurementModel), p(zk)
is the evidence, and p(xk|z1:k) is the computed posterior state.
Figure 5 shows how Stone Soup undertakes this computation.

Some examples of updater implementations included in
Stone Soup are:

• KalmanUpdater: Update step of the standard, linear-
Gaussian, Kalman filter;

• SqrtKalmanUpdater: Kalman update variant that op-
erates on the square root parameterisation of the state;

• InformationKalmanUpdater: Update step using
the information form of the Kalman filter;

• Extended/UnscentedKalmanUpdater:
Extended/Unscented Kalman filter update step for
non-linear, Gaussian models;

• ParticleUpdater: Update step of the (bootstrap)
Particle filter for non-linear, non-Gaussian models;

• GromovFlowParticleUpdater: Update step of
Gromov method for stochastic Particle flow filters [20];

4The formulation for multi-target/multi-measurement Updater implemen-
tations may differ (e.g. PHDUpdater), but is of similar form.

• PHDUpdater: Implementation of the Gaussian Mixture
Probability Hypothesis Density (GM-PHD) [21] update.

C. Data Association

The goal of the data association step is to find a mapping,

gk : Zk → Xk|k−1 (5)

between the set of (M) measurements at k, Zk =
{z1, ..., zM}k and the set of (N) predicted states, Xk|k−1 =
{x1, ...,xN}k|k−1. In Stone Soup the DataAssociator
type produces gk by generating association hypotheses {z}k ∈
Zk → {x}k|k−1 ∈ Xk|k−1 using a Hypothesiser type.
This is shown in Figure 6.

Fig. 6. Data Associator implementation (i.e. Equation 5) in the Stone Soup
library.

In order to calculate a posterior estimate via the updater
(e.g. Figure 5) an explicit association between prediction and
measurement must always be made. In single-target scenarios,
a single Hypothesis can be used. In situations with clutter
or multiple targets, a DataAssociator is employed in
conjunction with a Hypothesiser, which generates sets of
detection-to-track/prediction hypotheses. Hypothesisers vary
in their complexity and may propose associations based on
defined metrics (e.g. DistanceHypothesiser) or may
make probabilistic associations (PDAHypothesiser), or,
indeed, associations which include the empty set. Both classes
support locally and globally optimised hypothesis pairing (see
for example GlobalNearestNeighbour and JPDA).

The computational speed of data association with any of
these algorithms can also be enhanced with a time param-
eterised R-tree (TPR) [22] and k-d tree [23] mixins. These
methods are efficient in more complex tracking scenarios with
large numbers of targets, detections, and high clutter density.

D. Sensor Management

In addition to algorithms for tracking and state estimation,
Stone Soup also has components for building autonomous sen-
sor management algorithms. Sensor management problems can
be considered Partially Observed Markov Decision Processes
(POMDPs, e.g. [24], [25]). At k one can use a POMDP to
find an optimal set of actions, {a}∗k via a policy,

µ∗
k(Xk|k−1) = argmax

{a}k∈P(Ak)

Rk(Xk|k−1, {a}k) (6)

where Rk(·) is a (so-called reward) function of some allowable
subset of the power set of all sensors’ actions {a}k ∈ P(Ak)

and the predicted set of states Xk|k−1. These latter are them-
selves inferred from a sequence of observations Z1:k−1 (as e.g.
in previous sections). In Stone Soup a RewardFunction
supplies Rk(·) and the SensorManager provides an op-
timiser which undertakes argmaxRk(Xk|k−1, {a}k). Ak is
collected from sensors. This is shown in Figure 7.

Stone Soup contains a number of baseline approaches
to sensor management. The classes developed derive from
SensorManager and RewardFunction base classes, and
adaptations have been made to sensors which enable them to
report available actions and undertake actions tasked by the
manager. A sensor manager has knowledge of sensors under
its domain, contains a method for evaluating actions based
on a reward function, and knowledge of the tracks up to the
current time step.

Fig. 7. Sensor Management algorithm structure as implemented in Stone
Soup.

Additional methods available in the framework include
optimised approaches utilising the SciPy optimize library [8],
and example reward functions. These components can be used
in conjunction with Stone Soup’s tracking and simulation
capabilities to build a scenario where sensors are being tasked
autonomously, which maximises tracking performance over
time. The base structure provided also allows users to craft
their own sensor management components and integrate them
with existing algorithms and performance evaluation metrics.
Recent innovations look to employ reinforcement learning
methods to optimise sensor allocation.

III. SIMULATION AND EXPERIMENTATION

The components and the framework can be used to simulate
scenarios and provide a method of evaluating using a selection
of metrics.

A. Metrics

In order to assess the performance of tracking and filtering
algorithms, a variety of tracking metrics are included in the
Stone Soup library. Track-to-truth metrics provide insight into
how well a tracker was able to perform knowing the target
truth data. These are often ‘end-user-led’, less formal figures

of merit which enumerate information on the number of tracks
produced (on both real and false measurements), how complete
the overall track picture is, how many spurious or ambiguous
tracks are included, the kinematic accuracy, track continuity,
and so on. See for example [26],

For multi-target tracking scenarios, metrics which enumer-
ate the total track uncertainty (in the information-theoretic
sense) are provided. These are useful in sensor management
objective functions, though they pay no heed to cardinality
errors. Therefore, metrics which incorporate this considera-
tion, like OSPA [27] or GOSPA [28] can be used. A high-
performing multi-target tracker should not only aim to apply
the correct measurement to the corresponding target but also
reduce the errors that arise from missed or false targets. Once
a track has been assigned to a target object, it is desirable
to assess the quality of the filtered estimates. The Posterior
Cramèr-Rao Lower Bound metric (e.g. [29]) provides a lower
bound on the variance of the state estimate and can be used
as such a benchmark.

B. Simulation

A key feature of Stone Soup’s framework is the ability to
model simple scenarios for assessing algorithm performance
for a wide range of use cases. This has proven particularly
useful for sensor management aspects in Stone Soup, enabling
close interaction required algorithms and sensors, something
not possible with recorded data sets.

A Stone Soup simulation is groundtruth led. A user
has the choice to either read in groundtruth data using a
GroundTruthReader, if they have their own data set, or to
generate synthetic data using Stone Soup’s simulators. These
simulators can be used to rapidly create simple trajectories for
objects on a small-scale.

Even though one can create detailed scenarios with relative
ease using Stone Soup’s base components, often it’s desirable
to model niche complex behaviours for your particular use
case, something that the base components may not currently
provide. These behaviours usually require a lot of hours and
expertise to implement. Thankfully, there are solutions at hand,
one of them being to utilize open-source software.

Specialised third party software can be used to act
as a simulator. For example, SUMO (“Simulation of Ur-
ban Mobility”) [30] is a popular open source simula-
tion package that is tailored for simulating large traf-
fic systems. Once a SUMO simulation is created, one
can read in this data using a custom sub-class of a
GroundTruthReader, namely SUMOGroundTruthReader
into Stone Soup’s GroundTruthPath data type.

Once groundtruth is in place, sensors can be simulated
to produce sensor data. Stone Soup’s public code base has
a range of simple sensors. These sensors also serve as a
handy blueprint for the user to implement their own, possibly
more elaborate models. A simulated sensor in Stone Soup
requires a measurement model, carrying information on how
the sensor sees the world, and a measure method. This measure

Fig. 8. A frame of a simple traffic simulation created with SUMO.

method processes the groundtruth objects and returns a set of
detections.

It’s important to be able to model the possibility of a false
alarm when producing a simulation. Stone Soup’s sensors have
the ability to model false alarms and clutter, through the use of
a ClutterModel. These models generate Clutter accord-
ing to a user-specified distribution and clutter rate. Clutter
detections are added to the set of detections returned by a
sensor’s measure method.

Fig. 9. The structure of a simple sensor in Stone Soup.

C. Experimentation

Processing multiple trackers with numerous different pa-
rameters can now be performed with the RunManager. This
adds a command line interface (CLI) that allows multiple
trackers, parameters or scenarios to be run from a single
command. Stone Soup objects can be serialised into YAML.
The run manager uses a YAML configuration file (using the
YAMLConfigWriter) containing the following serialised
components; tracker, ground truth and metric manager. Each
scenario can be processed multiple times where the scenario
includes random elements utilising Monte Carlo runs allowing

the ability to execute a single tracker and producing average
performance metrics over the scenario. Multiple Configuration
runs can be run to execute a set of trackers, where one or more
parameters or components are varied. Parameters to change for
each tracker are defined in the JSON parameter file (created
using the JSONParameterWriter). This can be extended
to include Monte Carlo runs for each individual scenario.
Given the combinatorics of multiple parameter changes and
multiple Monte Carlo runs the ability to execute runs across
multiple cores/processors to speed up execution is available.

Future work aims to implement a HPC compatible version
of the run manager that can be run on AWS/Slurm HPCs.
Additionally, to produce a run manager to do an optimisation
run which is able to execute a single tracker, and vary one
(or more) parameters to find the optimal value against a given
metric.

D. Track Stitching

A new addition to the Stone Soup framework is the capabil-
ity to ‘stitch’ tracks together using the Stitcher class. Given
a set of disjoint tracks, Stitcher predicts the state forwards
and backwards. Comparing the predicted state to the states of
other track sections at the same point enables the association
of track sections, ultimately outputting a set of complete tracks
(where each track is made up of multiple sections). The
stitcher algorithm works in N-dimensional space with higher
dimensional track section data providing greater stitching
results. A stitching metric is available which measures how
well the stitcher algorithm is performing, by calculating the
proportion of track sections that are stitched together correctly
(providing this data is available).

E. Fusion Architectures

The capability to conduct simulations of different sensing
architectures allows for testing and demonstration of their
robustness, bandwidth requirements, effects of latency, and
potential for data incest. A distinction is made between net-
work architecture, which is how data is transmitted through the
network, and information architecture, how it is accessed and
processed. The information architecture is of course affected
by the performance of the network architecture, and so for
this reason the two counterparts for a given scenario can be
contained together in CombinedArchitecture, providing
this inter-dependence functionality. This section of Stone Soup
makes use of the NetworkX [31] and GraphViz [32] packages,
the latter of which is used in producing architectural plots.

IV. APPLICATIONS & COMMUNITIES

A. Applications

Stone Soup has been applied in many scenarios, from track-
ing vehicles in video, simulating radar coverage for air targets,
orbital state estimation [6]. Application to radar sensors and
tracking/classifying of multiple unmanned aircraft/drones has
been a particularly active use case [33] [34] [35]. MovingPan-
das [36] is an example where Stone Soup has been used as a

dependency for another projects to add trajectory smoothing,
applicable to multiple domains.

Being open source, there are also a multitude of other ap-
plications that Stone Soup is being applied to that the authors
are not exposed to, but via the various §IV-B communities,
have anecdotal evidence of application to: infra-red sensors,
active/passive sonar, AIS5 and radar fusion, satellite and in-
ertial navigation systems fusion, fluorescence microscopy cell
tracking.

Other applications include adding reinforcement learning
(RL) into Stone Soup as a sensor management algorithm. In
RL, an intelligent agent makes decisions from given obser-
vations, in an attempt to maximise a cumulative reward. In a
sensor management scenario, the agent will take actions with a
sensor, and receive rewards given by either a reward function
provided by Stone Soup, or a handcrafted one for a given
scenario. Work is being done on integrating RL into Stone
Soup in the form of a ReinforcementSensorManager,
which can be used to train an agent to interact with a user-
defined environment, and develop a policy for choosing sensor
actions from a given observation. The learning is accomplished
with the Tensorflow Agents package [37], a framework for
easily deploying and training RL algorithms.

B. Communities

There are a number of active communities advancing and
developing Stone Soup for different applications. These cover
academia, industry and government organisations engaging in
common use cases or areas of interest, using Stone Soup
as a framework to enable collaborative working. Public and
open user community engagement takes place on forum-like
platform GitHub discussions6 and chat platform Gitter7.

As part of the International Society of Information Fusion
(ISIF), the Open-Source Tracking and Estimation Working
Group (OSTEWG) aims to enable ISIF members to collab-
orate on the development of open source implementations
for tracking, state estimation and fusion with Stone Soup. A
NATO Research Task Group titled Evaluation Framework for
Multi-sensor Tracking and Fusion Algorithms has been set up
to build and evaluate tracking algorithms for defined military
scenarios, applications and data sets.

Another key output of Stone Soup has also been the
development of practical tutorials aimed at teaching the basic
concepts of tracking and state estimation, with a focus on
enabling easy application of algorithms to users who may
lack background in the area of signal processing. These have
been incorporated into training courses by various academic
and industry organisations, and delivered by the core Stone
Soup team at conferences such as ISIF Fusion conference [38],
Institute of Electrical and Electronics Engineers (IEEE) Inter-
national Instrumentation & Measurement Technology Confer-

5Automatic Identification System (AIS) is a transceiver system for sharing
identity, location, course, speed, etc between maritime platforms

6https://github.com/dstl/Stone-Soup/discussions
7https://gitter.im/dstl/Stone-Soup

ence (I2MTC) [39], University Defence Research Collabora-
tion (UDRC) Summer School [40].

V. SUMMARY

This paper gives an overview of version 1.0 of Stone Soup,
and has highlighted a subset of its important features. Stone
Soup is already proving invaluable to multiple communities as
a framework to apply and assess tracking and state estimation
approaches. With this release it is the authors’ hope that this
milestone encourages additional adoption and contributions,
especially within those communities looking for confidence in
framework stability.

Development continues, focused on adding new features,
algorithms, and maintaining backwards compatibility. Addi-
tional features of interest include, but are not limited to:
Multiple Hypothesis Tracking (MHT), track before detect,
extended object tracking, additional sensor modalities.

The authors wish to thank all those tracking users, pro-
fessionals, enthusiasts, other community members, who’ve
contributed to the project [1]. We welcome additional con-
tributions, whether in implementations of algorithms, models,
metrics, and documentation. As ever, additional peer review
is valuable and sought after.

The contents include material subject to ©Crown copyright
(2023), Dstl. This material is licensed under the
terms of the Open Government Licence except
where otherwise stated. To view this licence, visit
http://www.nationalarchives.gov.uk/doc/open-government-
licence/version/3 or write to the Information Policy
Team, The National Archives, Kew, London TW9 4DU,
or email: psi@nationalarchives.gov.uk

REFERENCES

[1] S. Hiscocks, O. Harrald, J. Barr, N. Perree, L. Vladimirov, R. Green,
E. Rogers, I. Dorrington, E. Hunter, J. Wright, O. Rosoman,
H. Pritchett, J. Osborne, P. Carniglia, C. England, L. Flaherty,
D. Kirkland, R. Davies, S. Naylor, and M. Campbell, “Stone Soup.”
[Online]. Available: https://doi.org/10.5281/zenodo.4663993

[2] P. Thomas, “Open letter on the ”Stone Soup” tracking framework,” in
Proceedings of the 10th Data Fusion and Target Tracking Conference,
University of Liverpool, United Kingdom, 30 Apr. 2014., 2014.

[3] P. A. Thomas, J. Barr, B. Balaji, and K. White, “An open source
framework for tracking and state estimation (‘Stone Soup’),” in
Signal Processing, Sensor/Information Fusion, and Target Recognition
XXVI, I. Kadar, Ed., vol. 10200, International Society for Optics
and Photonics. SPIE, 2017, p. 1020008. [Online]. Available:
https://doi.org/10.1117/12.2266249

[4] “Stone Soup alpha demonstration,” 2018.
[5] D. Last, P. Thomas, S. Hiscocks, J. Barr, D. Kirkland, M. Rashid, S. B.

Li, and L. Vladimirov, “Stone Soup: announcement of beta release of
an open-source framework for tracking and state estimation,” in Signal
Processing, Sensor/Information Fusion, and Target Recognition XXVIII,
I. Kadar, E. P. Blasch, and L. L. Grewe, Eds., vol. 11018, International
Society for Optics and Photonics. SPIE, 2019, p. 1101807. [Online].
Available: https://doi.org/10.1117/12.2518514

[6] J. Barr, O. Harrald, S. Hiscocks, N. Perree, H. Pritchett, S. Vidal,
J. Wright, P. Carniglia, E. Hunter, D. Kirkland, D. Raval,
S. Zheng, A. Young, B. Balaji, S. Maskell, M. Hernandez, and
L. Vladimirov, “Stone Soup open source framework for tracking and
state estimation: enhancements and applications,” in Signal Processing,
Sensor/Information Fusion, and Target Recognition XXXI, I. Kadar,
E. P. Blasch, and L. L. Grewe, Eds., vol. 12122, International Society

for Optics and Photonics. SPIE, 2022, p. 1212205. [Online]. Available:
https://doi.org/10.1117/12.2618495

[7] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[8] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henrik-
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

[9] G. Brandl, T. Shimizukawa, T. Komiya, T. Kampik, G. Varoquaux,
J. Grobler, E. S. de Andrade, C. Holdgraf, A. Gramfort, M. Jas,
J. Nothman, O. Grisel, N. Varoquaux, E. Gouillart, S. Hiscocks,
T. Hoffmann, A. Lee, M. Luessi, S. Rehberg, alexis, G. Uberti,
J. Vanderplas, T. A. Caswell, B. Sullivan, A. Y. Shih, A. Batula,
P. Kunzmann, D. Stansby, D. Stańczak-Marikin, and J. Schueller, “The
sphinx documentation builder.” [Online]. Available: https://www.sphinx-
doc.org/en/master/

[10] Ó. Nájera, E. Larson, L. Liu, L. Estève, G. Varoquaux, J. Grobler,
E. S. de Andrade, C. Holdgraf, A. Gramfort, M. Jas, J. Nothman,
O. Grisel, N. Varoquaux, E. Gouillart, S. Hiscocks, T. Hoffmann,
A. Lee, M. Luessi, S. Rehberg, alexis, G. Uberti, J. Vanderplas, T. A.
Caswell, B. Sullivan, A. Y. Shih, A. Batula, P. Kunzmann, D. Stansby,
D. Stańczak-Marikin, and J. Schueller, “sphinx-gallery/sphinx-gallery,”
2022. [Online]. Available: https://doi.org/10.5281/zenodo.3741780

[11] H. Krekel, B. Oliveira, R. Pfannschmidt, F. Bruynooghe, B. Laugher, and
F. Bruhin, “pytest,” 2004. [Online]. Available: https://github.com/pytest-
dev/pytest

[12] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Transactions of the ASME – Journal of Basic Engineering,
vol. 82, 1960.

[13] P. S. Maybeck, Stochastic Models, Estimation, and Control,
ser. ISSN. Elsevier Science, 1982. [Online]. Available:
https://books.google.co.uk/books?id=L YVMUJKNQUC

[14] Y.-S. Kim and K.-S. Hong, “Decentralized information filter in federated
form,” in SICE 2003 Annual Conference (IEEE Cat. No.03TH8734),
vol. 2, 2003, pp. 2176–2181 Vol.2.

[15] H. Tanizaki and R. S. Mariano, “Nonlinear filters based on taylor
series expansions,” Communications in Statistics - Theory and
Methods, vol. 25, no. 6, pp. 1261–1282, 1996. [Online]. Available:
http://dx.doi.org/10.1080/03610929608831763

[16] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, “A new method for
the nonlinear transformation of means and covariances in filters and
estimators,” IEEE Transactions on Automatic Control, vol. 45, no. 3,
pp. 477–482, 2000.

[17] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-gaussian bayesian state estimation,” IEE Proceedings F -
Radar and Signal Processing, vol. 140, no. 2, pp. 107–113, April 1993.

[18] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[19] F. Daum, J. Huang, and A. Noushin, “Exact particle flow for
nonlinear filters,” in Signal Processing, Sensor Fusion, and Target
Recognition XIX, I. Kadar, Ed., vol. 7697, International Society for
Optics and Photonics. SPIE, 2010, p. 769704. [Online]. Available:
https://doi.org/10.1117/12.839590

[20] ——, “Generalized Gromov method for stochastic particle flow
filters,” in Signal Processing, Sensor/Information Fusion, and Target
Recognition XXVI, I. Kadar, Ed., vol. 10200, International Society for
Optics and Photonics. SPIE, 2017, p. 102000I. [Online]. Available:
https://doi.org/10.1117/12.2248723

[21] D. E. Clark, K. Panta, and B.-N. Vo, “The GM-PHD filter multiple target
tracker,” in 2006 9th International Conference on Information Fusion,
2006, pp. 1–8.

[22] Y. Tao, D. Papadias, and J. Sun, “The TPR*-Tree: An optimized
spatio-temporal access method for predictive queries,” in Proceedings
of 29th International Conference on Very Large Data Bases, VLDB
2003, Berlin, Germany, September 9-12, 2003, J. C. Freytag, P. C.
Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, and A. Heuer,
Eds. Morgan Kaufmann, 2003, pp. 790–801. [Online]. Available:
http://www.vldb.org/conf/2003/papers/S24P01.pdf

[23] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, p. 509–517, sep 1975.
[Online]. Available: https://doi.org/10.1145/361002.361007

[24] A. Hero, D. Castañón, D. Cochran, and K. Kastella, Foundations
and Applications of Sensor Management, ser. Signals and
Communication Technology. Springer US, 2007. [Online]. Available:
https://books.google.co.uk/books?id=ffvPAAAACAAJ

[25] V. Krishnamurthy, Partially Observed Markov Decision Processes: From
Filtering to Controlled Sensing. Cambridge University Press, 2016.

[26] S. Karoly, J. Wilson, H. Dutchyshyn, and J. Maluda, “Single integrated
air picture (SIAP) attributes version 2.0,” Technical Report, p. 53, 08
2003. [Online]. Available: https://apps.dtic.mil/sti/citations/ADA420755

[27] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE Transactions on
Signal Processing, vol. 56, no. 8, pp. 3447–3457, 2008.

[28] A. S. Rahmathullah, A. F. Garcı́a-Fernández, and L. Svensson, “General-
ized optimal sub-pattern assignment metric,” in 2017 20th International
Conference on Information Fusion (Fusion), 2017, pp. 1–8.

[29] M. Hernandez, A. Farina, and B. Ristic, “PCRLB for tracking in
cluttered environments: measurement sequence conditioning approach,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 2,
pp. 680–704, 2006.

[30] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner,
“Microscopic traffic simulation using sumo,” in The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE,
2018. [Online]. Available: https://elib.dlr.de/124092/

[31] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of
the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[32] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz— open source graph drawing tools,” in Graph Drawing,
P. Mutzel, M. Jünger, and S. Leipert, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 483–484.

[33] P. Sévigny, D. Kirkland, X. Li, and B. Balaji, “Unmanned aircraft (UA)
telemetry data for track modelling and classification,” in STO Meeting
Proceedings, 2021.

[34] C. Coman, A. Ndoni, S. Hiscocks, A. Lalas, R. Saygili, and P. Medentzi-
dou, “ICMCIS’21 C-UAS data challenge,” in Proc. International Confer-
ence on Military Communications and Information Systems 2021, 2021.

[35] P. Carniglia, B. Balaji, and A. Damini, “Investigation of sensor bias and
signal quality on target tracking with multiple radars,” in 2022 IEEE
International Instrumentation and Measurement Technology Conference
(I2MTC), 2022, pp. 1–6.

[36] A. Graser, R. Bell, G. P. Boiko, A. Parnell, L. Vladimirov, G. S.
Theodoropoulos, G. Richter, J. B. Elcinto, J. L. C. Rodrı́guez,
R. Lovelace, A. Pulver, B. Larsen, Filipe, J. Gaboardi, L. Lengrand,
L. Delucchi, M. Fleischmann, M. Kuhn, R. Miguel, S. Jozefowicz,
S. Menegon, Susan, git it, radical squared, rlukevie, stevemarin,
and tsuga, “anitagraser/movingpandas: v0.15,” Jan. 2023. [Online].
Available: https://doi.org/10.5281/zenodo.7581454

[37] S. Guadarrama, A. Korattikara, O. Ramirez, P. Castro, E. Holly,
S. Fishman, K. Wang, E. Gonina, N. Wu, E. Kokiopoulou, L. Sbaiz,
J. Smith, G. Bartók, J. Berent, C. Harris, V. Vanhoucke, and E. Brevdo,
“TF-Agents: A library for reinforcement learning in tensorflow,”
https://github.com/tensorflow/agents, 2018, [Online; accessed 25-June-
2019]. [Online]. Available: https://github.com/tensorflow/agents

[38] “Tutorial - Stone Soup: an open-source tracking and state estimation
framework; principles, use and applications,” 2022. [Online]. Available:
https://doi.org/10.23919/fusion49751.2022

[39] “Tutorial - Stone Soup: an open-source tracking and state estimation
framework; principles, use and applications,” 2022. [Online]. Available:
https://doi.org/10.1109/i2mtc48687.2022

[40] “UDRC-EURASIP Summer School 2022.” [Online]. Available:
https://udrc.eng.ed.ac.uk/udrc-eurasip-summer-school-2022

