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Abstract
The robustness of deep neural networks in safety-
critical systems has received significant interest re-
cently, which measures how sensitive the model
output is under input perturbations. While most
previous works focused on the local robustness
property, the studies of the global robustness prop-
erty, i.e., the robustness in the entire input space,
are still lacking. In this work, we formulate the
global robustness certification problem for ReLU
neural networks and present an efficient approach
to address it. Our approach includes a novel
interleaving twin-network encoding scheme and
an over-approximation algorithm leveraging relax-
ation and refinement techniques. Its timing effi-
ciency and effectiveness are evaluated and com-
pared with other state-of-the-art global robustness
certification methods, and demonstrated via case
studies on practical applications.

1 Introduction
Deep neural networks (DNNs) could be vulnerable to small
adversarial perturbations on their inputs [Biggio et al., 2013].
The formally-defined robustness metric of a DNN tries to
bound such uncertain behavior, measuring how much the
network’s output may deviate when its input has a bounded
perturbation. The local robustness problem has been exten-
sively studied, with formal methods developed to bound the
output range for a bounded disturbance around a given in-
put [Katz et al., 2017; Singh et al., 2019; Huang et al., 2020b;
Zhang et al., 2018; Wang et al., 2021a]. However, it is
hard to apply these techniques in safety verification of a dy-
namic system (e.g., an autonomous vehicle) [Zhu et al., 2020;
Wang et al., 2021d; Liu et al., 2022] as we will need to con-
duct local robustness analysis during runtime for each input
sample that the system encounters or may encounter, and they
are typically too computationally expensive for that.

This challenge motivates us to address the safety of DNN-
enabled dynamic systems by considering the problem of
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global robustness, which measures the worst-case DNN out-
put deviation against bounded perturbation for all possible in-
put values. We can conduct such worst-case analysis offline,
decoupling it from the safety verification [Huang et al., 2019;
Fan et al., 2020; Huang et al., 2022] by applying the max-
imum deviation for all possible inputs. However, the previ-
ous MILP (mixed-integer linear programming) or SMT-based
techniques for global robustness analysis [Katz et al., 2017;
Chen et al., 2021] are still too complex for DNNs in prac-
tical systems, even in offline computation. Various ap-
proaches were proposed to tackle the complexity challenge,
but they are either still computationally expensive, e.g., with
region-based robustness analyses [Gopinath et al., 2018;
Mangal et al., 2019], or lack the deterministic guarantees,
e.g., with sampling-based techniques [Ruan et al., 2019;
Bastani et al., 2016; Mangal et al., 2019].

In this work, we propose an efficient certification approach
to over-approximate the global robustness. Our approach in-
troduces a novel network encoding structure, namely inter-
leaving twin-network encoding, to compare two copies of the
neural network side-by-side under different inputs, with extra
interleaving dependencies added between them to improve
efficiency. Our approach also includes over-approximation
techniques based on network decomposition and LP (linear
programming) relaxation, to further reduce the computation
complexity. To the best of our knowledge, our approach is
the first global robustness over-approximation method that
certifies the robustness among the entire input domain with
sound and deterministic guarantee. Experiments show that
our approach is much more efficient and scalable than the ex-
act global robustness methods such as Reluplex [Katz et al.,
2017], with tight over-approximation. A case study of close-
loop control system safety verification with perception DNN
component further demonstrates the potential of our approach
in practical systems.

2 Global Robustness Certification
2.1 Problem Formulation
An n-layer neural network F : Rm0 → Rmn maps input
x(0) ∈ Rm0 into output x(n) ∈ Rmn . The output of layer i
is denoted as x(i) ∈ Rmi . The mapping between two con-
secutive layers x(i−1) and xi is composed with a linear trans-
formation y(i) = W (i)x(i−1) + b(i) and (optionally) a ReLU
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Figure 1: An example neural network.

activation function, where the linear transformation result is
denoted as variable y(i) ∈ Rmi . An illustrating example of a
2-layer neural network is shown in Fig. 1. For simplicity, all
bias terms b(i) are 0.

As defined in [Katz et al., 2017; Wang et al., 2021d], the
neural network global robustness measures the worst-case
output variation when there is a small input perturbation for
any possible input sample in the entire input domain X .
Definition 1 (Global Robustness). The j-th output of a neural
network F is (δ, ε)-globally robust in the input domain X iff

∀x(0), x̂(0) ∈ X, ∥x̂(0)−x(0)∥∞ ≤ δ =⇒ |x̂(n)
j −x

(n)
j | ≤ ε,

where x(n) = F (x(0)) and x̂(n) = F (x̂(0)).
In this work, we tackle the problem of measuring how ro-

bust a neural network is, as formally defined in Problem 1:
Problem 1. For a neural network F , given an input perturba-
tion bound δ, determine the minimal output variation bound
ε such that F is guaranteed to be (δ, ε)-globally robust.

[Katz et al., 2017] proposes to solve this problem by en-
coding two copies of the neural network side by side, as il-
lustrated in the left part of Fig. 2. x̂(0) represents a perturbed
input of x(0), by the bounded perturbation ∆x(0). And ε will
be the bound of output distance ∆x(n). Under this encoding,
Problem 1 can be formulated as an optimization problem:

ε := max |x̂(n) − x(n)|,
s.t. x̂(n) = F (x̂(0)), x(n) = F (x(0)),

x̂(0), x(0) ∈ X, ∥x̂(0) − x(0)∥∞ < δ.

(1)

Note that Eq. (1) can be solved with MILP by introduc-
ing a binary variable for each ReLU activation [Cheng et al.,
2017], but the complexity is too high to be scalable. To over-
come this, we present a new interleaving twin-network en-
coding (ITNE) scheme with two approximation techniques to
efficiently find an over-approximated solution ε̄ ≥ ε.

2.2 Interleaving Twin-Network Encoding
In this work, we design the interleaving twin-network encod-
ing (ITNE) as shown in the right side of Fig. 2. Compared
with the basic twin-network encoding (BTNE) [Katz et al.,
2017] (the left side of Fig. 2), besides the connections be-
tween the input and output layers, interleaving connections
are added for all hidden neurons between the two network
copies. Specifically, for each neuron x = relu(y), two vari-
ables, ∆y = ŷ − y and ∆x = x̂ − x, are added to encode
the distance of y and x between the two copies. These dis-
tance variables reflect the hidden neuron variation caused by
the perturbation. These changes enable the usage of the over-
approximation techniques introduced below.
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Figure 2: Left: The basic twin-network encoding (BTNE) for global
robustness certification. Right: the neuron-level interleaving twin-
network encoding (ITNE) built upon the basic structure, where the
hidden layer neurons are connected between the two copies with
distance variables ∆y

(i)
j and ∆x

(i)
j .

2.3 Over-Approximation Techniques
Leveraging ITNE, we design two over-approximation tech-
niques, network decomposition (ND) and LP relaxation
(LPR), to improve the global robustness certification effi-
ciency. Inspired by the local robustness certification work
in [Huang et al., 2020b], our ND and LPR techniques are
specifically designed for global robustness.

ITNE-Based Network Decomposition (ND)
The main idea of ND is to divide a neural network into
sub-networks and decompose the entire optimization problem
into smaller problems to significantly reduce the optimization
complexity. In the ITNE schema, instead of finding the out-
put range of two copies of each sub-network, we look for the
range of the original sub-network and the range of the out-
put distance. For a decomposed network Fw(x

(i)
j ) with input

x(i−w) and output x(i)
j , given the input bounds x(i−w) and

∆x(i−w)1, optimization problem in Eq. (1) is formulated on
Fw(x

(i)
j ) to derive output ranges x(i)

j and ∆x
(i)
j .

ITNE-Based LP Relaxation (LPR)
The idea of LPR is to relax the ReLU relation x = max(0, y),
y ∈ [y, y] into linear constraints. When y ≤ 0 ≤ y, ReLU
relation can be relaxed by three linear inequations:

x ≥ 0, x ≥ y, (y − y)x ≤ y(y − y). (2)
In this work, we relax ReLUs in the original network

x(n) = F (x(0)) by Eq. (2), and relax the ReLU distance
∆x = relu(y + ∆y) − relu(y), as shown in Fig. 3. For
∀y ∈ R, the (∆x,∆y) mapping always falls in the shadowed
area. Given ∆y ∈ [∆y,∆y], the relation between ∆x and
∆y can be bounded by a linear lower and upper bound:

l(u−∆y)

u− l
≤ ∆x ≤ u(∆y − l)

u− l
, (3)

where l = min(0,∆y) and u = max(0,∆y).

1We denote v = [v, v] as the range of variable v.
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Figure 3: Left: ReLU distance relation when y ≥ 0; Middle: ReLU
distance relation when y < 0; Right: LP-relaxation of ReLU dis-
tance relation. The ReLU distance relation for ∀y ∈ R lays in the
shadowed area. Within the distance range ∆y ∈ [∆y,∆y], ∆x is
bounded by the lower and upper bounds.
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Figure 4: Illustrating example: Global robustness certification pro-
cesses of exact MILP, network decomposition (ND) and LP relax-
ation (LPR) for each network encoding schema (BTNE and ITNE).

2.4 Illustrating Example
We consider the example neural network in Fig. 1, and set the
input perturbation bound as δ = 0.1 and the input domain as
x(0) ∈ [−1, 1]2. The example neural network can be decom-
posed into three sub-networks:

x
(1)
1 = relu(y

(1)
1 ) = relu(x

(0)
1 + 0.5x

(0)
2 ),

x
(1)
2 = relu(y

(1)
2 ) = relu(−0.5x

(0)
1 + x

(0)
2 ),

x(2) = relu(y(2)) = relu(x
(1)
1 − x

(1)
2 ).

In Fig. 4, we demonstrate the global robustness certifica-
tion processes for different techniques. The exact MILP de-
rives the exact output variation range [−0.2, 0.2]. When ap-
plying ND or LPR under BTNE, they are applied to each
individual network copy. After ND, The distance informa-
tion between x(1) and x̂(1) is not encoded and is lost, re-
sulting in a 7.5x over-approximation of the range of ∆x(2).
The LPR is based on the bounds y(1), ŷ(1) ∈ [−1.5, 1.5]2,
and y(2), ŷ(2) ∈ [−1.5, 1.5], resulting in a 10.9x over-
approximation. On the other hand, under ITNE, the ITNE-
based ND derives the range of ∆x(2) based on the range of
x(1) and ∆x(1), which is only 1.5x of the exact one. Given
∆y(1) ∈ [−0.15, 0.15]2 and ∆y(2) ∈ [−0.3, 0.3], the ITNE-
based LPR derives a tight 1.38x over-approximation, signifi-
cantly improving over BTNE.

Table 1: Neural network setting and experimental results.

ID Neurons tR tM tour ε εour
1 8 2s 0.1s 0.3s 0.0583 0.0657
2 12 130s 0.2s 0.4s 0.0527 0.0722
3 16 8h 0.8s 1s 0.0496 0.0653
4 32 >24h 74s 5s 0.0481 0.0673

ID Neurons Layers tour ε εour
5 64 FC:3 50s 0.0452 0.0731

6 1416 Conv:1
FC:2 4.8h 0.347 0.578

0.300 0.572

7 3872 Conv:2
FC:2 3.3h 0.453 0.874

0.420 0.723

8 5824 Conv:3
FC:2 3.5h 0.519 1.521

0.407 1.175

2.5 Efficient Over-Approximation Algorithm
Finally, our global robustness certification algorithm is de-
signed by combining the ITNE-based ND and LPR tech-
niques with Selective Refinement (SR)2.

For layer i, ND constructs sub-networks Fw(x
(i)
j ),∀j.

MILP problems are built by LPR and SR to get the output
variation bounds of layer i. The over-approximated output
variation bound ε is derived by iteratively evaluating the out-
put bounds (both the ∆yi and ∆xi) of each hidden layer.

3 Evaluation and Applications
We first evaluate our algorithm on various DNNs and com-
pare its results with exact global robustness (when avail-
able) and an under-approximated global robustness. Then, we
demonstrate the application of our approach in a case study of
safety verification for a vision-based robotic control system,
and show the importance of efficient global robustness cer-
tification for safety-critical systems that involve neural nets.
Finally, we discuss its comparison with adversarial training.

3.1 Performance Evaluation
We compare our approach with other methods on a set of
DNNs, as shown in Table 1. DNNs 1 to 5 are 3-layer
fully-connected (FC) networks trained on the Auto MPG
dataset [Quinlan, 1993]. DNNs 6 to 8 are convolutional net-
works trained on the MNIST dataset [Lecun et al., 1998]3.
The input perturbation bound δ = 0.001 for DNNs 1 to 5 and
δ = 2/255 for DNNs 6 to 8.4

We compare our over-approximated output variation bound
εour with the exact bound ε solved by Reluplex [Katz et al.,
2017; Katz et al., 2019] and the MILP encoding in Eq. (1).

2While LPR can remove all integer variables in the MILP formu-
lation to reduce the complexity, such extreme over-approximation
may be too inaccurate. Thus, we try to selectively refine a limited
number of neurons, by not relaxing their ReLU relations. This is
similar to the layer-level refinement idea in [Huang et al., 2020b],
but with a focus on global robustness.

3Due to limited space, we only present 2 outputs of MNIST (out
of 10) in Table 1. The rest show similar trends.

4More detailed experiment settings can be found in the full pa-
per [Wang et al., 2022b].



The runtime of Reluplex tR and MILP tM quickly increases
with respect to neural network size. None of them can ad-
dress 64-neuron DNN-5 within 24 hours. From DNNs 1 to 4,
whose exact bounds ε are available, our algorithm can finish
in seconds with only about 13% to 40% over-approximation.
Starting from DNN 5, there is no other work in the literature
that can derive a sound and deterministic global robustness in
a reasonable time. To assess our over-approximated results
for larger networks, we leverage adversarial examples from
the Projected Gradient Descent (PGD) [Madry et al., 2018]
among the entire dataset to derive an under-approximated
output variation bound ε, inspired by [Ruan et al., 2019]. The
experiments of DNNs 6 to 8 demonstrate that our method
can provide meaningful over-approximation (less than 3x
of the under-approximation) for DNNs with more than
5000 hidden neurons within 5 hours.

In our recent work [Wang et al., 2022c], we further im-
proved the efficiency and tightness of our approach, where we
leverage novel symbolic propagation technique inspired by β-
CROWN [Wang et al., 2021a] to replace the MILP solver in
this work. The symbolic propagation technique takes advan-
tage of GPU acceleration and can certify DNNs 6 to 8 within
3 hours and reduce the (εour − ε) gap by 9%− 60%.

3.2 Case Study on Control Safety Verification
For control systems that use neural networks for perception,
a critical and yet challenging question is whether the sys-
tem can remain safe under perturbation of network inputs.
In [Wang et al., 2021d], we formulate this as a design-time
safety assurance problem based on global robustness. Here,
leveraging our global robustness certification technique, we
demonstrate a solution for this safety assurance problem.

In particular, we consider an advanced cruise control
(ACC) case study, where an ego vehicle, equipped with a
camera, is following a reference vehicle. The captured im-
ages may be slightly perturbed. The distance from the ref-
erence vehicle is inferred from the images by a DNN. A
feedback controller controls the ego vehicle based on the es-
timated distance. We model this example in the tool We-
bots [Michel, 2004] (Fig. 5). The ego vehicle is safe if dis-
tance d ∈ [0.5, 1.9] and speed ve ∈ [0.1, 0.7]. The refer-
ence vehicle speed vr is randomly adjusted within [0.2, 0.6].
The camera takes RGB images with resolution 24 × 48.
A 5-layer convolutional network is trained with 100k pre-
captured images. We model the entire dynamic system as
an LTI system with external disturbance terms5 [Wang et al.,
2022b], where the system states include distance and vehicle
speed. The control input follows the feedback control law
u = Kx̂, where x̂ is the estimated system state. According
to the invariant set based verification [Huang et al., 2020a;
Wang et al., 2020; Wang et al., 2021c], the vehicle control
safety can be verified if the distance estimation error ∆d is
within [−0.14, 0.14].

The distance estimation error ∆d = ∆d1 + ∆d2 contains
the DNN model inaccuracy ∆d1 and the output variation ∆d2
caused by input perturbation. While |∆d1| ≤ 0.0730 is the

5External disturbances are caused by the randomness of refer-
ence vehicle speed and the inaccuracy of the linear model.

(a) (b)

Figure 5: (a) Simulated ACC in Webots: The ego car (left) follows
the reference car (right); (b) An example camera image.

worst-case model inaccuracy among the dataset, ∆d2 is the
focus of this study and can be bounded by our global robust-
ness certification algorithm. Assuming the input perturbation
is bounded by δ = 2/255, the certified output variation bound
becomes |∆d2| ≤ ϵ = 0.0568. Combined with ∆d1, we have
|∆d| ≤ 0.1298. Therefore, under the assumed perturbation
bound, we can assert that the DNN in this ACC system is safe.

This is validated in Webots simulations, where adversarial
perturbations are added by the Fast Gradient Sign Method
(FGSM) [Goodfellow et al., 2015]. During simulations,
when the perturbation bound δ = 2/255, we always have
|∆d| ≤ 0.14 and a safe system. If we further increase input
perturbation, |∆d| > 0.14 is observed when δ = 5/255 and
unsafe states are observed when δ = 10/255. This shows the
impact of input perturbation on system safety and the impor-
tance of our global robustness analysis.

3.3 Comparison with Adversarial Training
Neural network adversarial attack techniques and adversarial
training algorithms are often jointly developed. Adversarial
training performance is usually measured under the existing
attack techniques, which may be less effective for more ad-
vanced attacks in the future. Instead, network robustness is a
metric independent of attack techniques and can provide a de-
terministic guarantee. Compare to local robustness, where the
guarantee is only on a finite set of data, global robustness can
provide a universal guarantee for all possible inputs. Besides
being a reliable metric, global robustness can also provide
guidance to improve network robustness [Wang et al., 2022c;
Fu et al., 2022] under arbitrary adversarial attacks.

4 Conclusion and Future Work
We present an efficient certification algorithm to provide
sound and deterministic global robustness analysis for ReLU
neural networks. Experiments demonstrate that our approach
is much more efficient and scalable than the exact certifi-
cation approaches while providing tight over-approximation,
and a case study further demonstrates its potential for prac-
tical systems. We believe that the approach has the po-
tential to be applied in a variety of domains such as au-
tonomous driving [Jiao et al., 2021; Zhu et al., 2021; Wang
et al., 2021e] and smart building control [Xu et al., 2021],
where disturbances and noises to sensor inputs are common.
We will explore these applications in future work. We also
plan to develop methods that can improve the global ro-
bustness of neural networks during their design and training,
and investigate methods for joint design and verification, in-
spired by our recent works in this area [Wang et al., 2021b;
Wang et al., 2022a; Wang et al., 2023a; Wang et al., 2023b].
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