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A B S T R A C T

This work describes an Artificial Intelligence (AI)-based solution that predicts product quality when applied
to a continuous manufacturing process. The proposed solution uses process parameters and product quality
measurements that are obtained from a production line. The work detailed herein is problem-driven, showing
an application within one of the UK’s foundation industries and identifying five key criteria an AI solution
should ideally satisfy in continuous manufacturing applications; scalability, modularity, stable out-of-data
performance, uncertainty quantification and robustness to unrepresentative data. The shortcomings, relative
to these five criteria, of available AI approaches are discussed before a potential solution is presented. The
proposed approach involves the application of a generalised product-of-expert Gaussian process whose noise
model is constructed from a Dirichlet process. The ability of the model to fulfil the five key criteria and its
performance when applied to the foundation industry case study is demonstrated.
1. Introduction

In this paper we consider a foundation-industry application whereby
a product is developed from a continuous manufacturing process. Data
regarding process parameters is collected at various points during the
product line while product quality (specifically, the number of faults
per unit area a.k.a. ‘fault density’) is measured at the end of the
production line. The aim is to develop an ‘AI’ (a.k.a ‘machine-learnt’
or ‘data-based’) model that can be used to predict product quality as a
function of process parameters and, subsequently, be used to optimise
the manufacturing process. From previous research (Liu et al., 2018b;
Feng et al., 2009; Jin et al., 2020) and based on the authors’ experience
regarding the development of AI solutions and their deployment within
the continuous manufacturing application space, several key criteria
must be considered from the very start of the model development
process:

1. Scalability. A continuous manufacturing process will, by defini-
tion, generate a continuously growing set of data. The proposed
AI solution must therefore be scalable to large datasets.

2. Modularity. Data has a lifecycle; one can expect that, as a result
of changes in operation, product etc., old data will become
less representative of current operation as time passes. It must
therefore be possible to remove/augment the information in this
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data in a modular fashion i.e. without stopping the overall AI
model from functioning.

3. Stable out-of-data performance. When applied far from the re-
gion covered by the training data the model must ‘fail grace-
fully’, illustrating to the user that the production line is currently
in a state where the model should not be used to influence
decision making. Such scenarios can occur, for example, after
a sensor failure leads to erroneous measurements of manufac-
turing process parameters or if a new product, not previously
included in the training data, is being produced.

4. Uncertainty quantification. The model should reflect the con-
fidence that it has in its predictions; another key component
regarding its suitability as a decision-making aid.

5. Robustness to unrepresentative data. The data used to train an
AI model must, by definition, be representative of the process
of interest; unrepresentative data (data over periods where the
manufacturing process is affected by factors outside the scope of
the model e.g. site repairs, unmeasured changes in raw materi-
als) must be excluded during training. The identification of these
unrepresentative data can, however, be difficult; particularly
when the affects of un-modelled external factors are hidden
amongst the general variability of the manufacturing process.
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Having established these 5 key criteria it is possible to perform a
pre-implementation evaluation of existing approaches, based on their
suitability. Artificial Neural Networks (ANNs), for example, are known
to exhibit erratic behaviour when extrapolated beyond the training data
(see e.g. Alcorn et al. (2019) and discussion in Marcus (2020)) whilst
the computational cost of performing uncertainty quantification can
also be prohibitive, particularly for so-called ‘Deep’ ANNs that may
have many millions of uncertain parameters. Approaches introduced
in the context of Robust Parameter Design (Zhou et al., 2021; Feng
et al., 2021; Zhou et al., 2023) (a methodology used to improve the
quality of products and processes) can be analysed in a similar manner.
Ref. Zhou et al. (2021) uses a Sequential Support Vector Regression
approach that can incorporate additional data points without needing
to retrain over all previous data (satisfying criterion 2) but does not
scale well to large data sets, while its performance in the presence of
outlier data is not discussed. Ref. Feng et al. (2021) uses a Gaussian
Process (GP) with a student-t likelihood to address outliers, provide sta-
ble out-of-data performance and facilitate uncertainty quantification,
but a strategy for managing incoming data is not described and the
approach does not scale well to large datasets. Specifically, examples
described within Feng et al. (2021) use only 10s of training points and,
moreover, utilise Markov Chain Monte Carlo whose computational cost
can become prohibitive. Ref. Zhou et al. (2021) describes a Gaussian
Process approach that can process new data in an online fashion, but
does not scale to large datasets (the largest example problem detailed
in Zhou et al. (2021) extends to only 1000 training points) or have a
strategy for addressing outlier data.

Aside from the key 5 criteria described above, the authors’ note
that non-parametric solutions have proved to be favourable, if not
strictly necessary, for the current application. Whilst approaches such
as Partial Least Squares and variants thereof (e.g. Principal Component
Regression, Regularised Least Squares) are used in many industrial case
studies (e.g. Qin et al. (2022)), they are linear regression approaches
that require the specification of a parametric family of regressors
(i.e. basis functions) before the training set is observed. Obtaining a
suitable choice of basis function can be problematic and is known to
be a deficiency of such approaches (Bishop, 2006). As a result, and fol-
lowing other work on the application of AI in industrial processes (Zhou
et al., 2021; Feng et al., 2021; Zhou et al., 2023), we have elected
to only consider non-parametric regression approaches in the current
paper.

In the present work, we propose a robust Gaussian Process approach
that uses a Dirichlet Process (DP) mixture-of-Gaussian distributions for
the identification of different noise processes that corrupt fault density
data. The proposed GP employs local computations in the regression
step to overcome the standard GP memory issues that arise when
using large training datasets (Tresp, 2001; Titsias, 2009; Deisenroth
and Wei Ng, 2015; Liu et al., 2018a) and, as such, is scalable to
larger datasets (criterion 1). We modularise the proposed method using
an assembly of model experts, where each expert is a robust GP;
each expert can easily be removed/re-trained (criterion 2) while, by
inheriting properties associated with standard Gaussian Processes, also
satisfy the requirements for stable out-of-data performance (criterion
3) and uncertainty quantification (criterion 4). Finally we note that,
through the use of the mixture-of-Gaussian likelihood, the proposed
methodology can be used to automatically identify and exclude data
that is not representative of the process being modelled (criterion 5).

The paper is organised as follows. Gaussian Process are reviewed
in Section 2, while Section 3 describes the adoption of a non-Gaussian
noise model within a Gaussian Process framework. Section 4 describes
the general model implementation. Section 5 describes a numerical case
study involving synthetic data, while Section 6 details the application
of our approach to data from one of the UK’s foundation industries.
Finally, Section 7 describes future work before conclusions are drawn
2

in Section 8. o
2. Gaussian processes

2.1. Relevant literature

Gaussian Processes (GPs) are a widely used machine learning tech-
nique that can be applied to both classification and regression prob-
lems. In this paper, we focus on the use of GPs as a regression tool.

GP regression is a probabilistic approach that aims to infer a latent
function from observed data. An advantageous characteristic of GPs
lies in their ability to quantify the uncertainty associated with their
predictions. Furthermore, rather than inferring parameters of func-
tions, a GP samples directly from a distribution over functions — for
this reason, GPs are considered to be non-parametric models since
they are not restricted to a specific parametric family of regressors.
Successful applications of GPs can be found in multiple disciplines,
such as, traffic flow (Sun and Xu, 2011), engine modelling (Chati and
Balakrishnan, 2017), structural dynamics (Worden and Green, 2016),
robotics (Deisenroth et al., 2015) and more.

Standard GPs rely on the assumption that the training data has been
corrupted with noise drawn from a Gaussian distribution. Works such
as Stegle et al. (2008), Lázaro-Gredilla and Titsias (2011) and Zhu et al.
(2018), however, highlight real-world examples where the Gaussian
observation model does not accurately represent reality. Neal (1997)
illustrates how the accuracy of standard GP predictions can be affected
when the training data has been corrupted with noise drawn from a
non-Gaussian distribution. GP approaches with a likelihood derived
from a student-t observation model have been proposed to help ignore
the contribution of outliers (e.g. Feng et al. (2021)). In such cases, the
marginal likelihood is analytically intractable, and hence, approximate
methods such as, Markov chain Monte Carlo (MCMC) (Neal, 1997),
variational techniques (Kuss, 2006), Laplace approximations (Vanhat-
alo et al., 2009) and the Expectation-Propagation (EP) method (Jylänki
et al., 2011) have been applied to facilitate parameter estimation. GP
models that use a heavy-tailed observation model to eliminate the
contribution of outliers in the training data are sometimes referred to as
‘robust GPs’ (Vanhatalo et al., 2009) (terminology that is also adopted
for the current paper).

In 2001, Tresp (2001) proposed the so-called Mixture of Gaussian
Processes (MGP) model, which is a variant of the Mixture of Experts
model (Jacobs et al., 1991). The MGP model assumes that each ob-
servation has been corrupted independently by Gaussian noise, whose
variance is constant only across separate regions of the input space.
Accordingly, a single GP is assigned to each of these regions, and
a gating function activates the corresponding GP according to the
noise model that applies in that region. Aiming to infer latent heart
rate time series, Stegle et al. (2008) proposed a different approach
to that of the MGP model. Given that heart rate data collected dur-
ing non-laboratory conditions is known to contain outliers and ‘noise
bursts’ (Stegle et al., 2008), Stegle proposed a 2-step model based on
the iterative application of unsupervised clustering and GP regression.
The methodology was developed based on the assumption of a mixture
of Gaussian distribution observation model. In the clustering compo-
nent of the approach, the data association problem1 (Murphy, 2012;
Bar-Shalom et al., 1990; Cox, 1993) was addressed to estimate the
noise structure. The number of clusters associated with the noise levels
(i.e. the number of components in the mixture of Gaussian observation
model) was determined by evaluating the model evidence. The cluster
associated with the lowest noise level was later used to train a GP.
Finally, the Expectation-Propagation method was used to approximate
the predictive distribution. The main difference between Stegle’s model
and the MGP lies in the fact that Stegle’s approach does not use a gating
function, rather, a single GP is used.

1 The data association problem focuses on inferring groups of data that
riginated from the same source.
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In Lázaro-Gredilla et al. (2011) the Overlapping Mixture of Gaussian
Processes (OMGP) model was proposed to address the data association
problem in multi-object target tracking problems.2 The authors aimed
to cluster observations into trajectories, such that each trajectory could
then be associated with a separate GP. A variational Bayesian inference
approach was used for parameter estimation, based on the assumption
that the number of trajectories is known. Motivated by the need to
identify new patterns associated with lung diseases, Ross and Dy (2013)
extended Lazaro-Gredilla’s approach to a fully non-parametric Bayesian
model where, by using a Dirichlet Process (DP) mixture of GPs, the
number of trajectories associated with lung diseases was determined
directly from the training data.

The previously mentioned contributions (Stegle et al., 2008; Neal,
1997; Kuss, 2006; Vanhatalo et al., 2009; Jylänki et al., 2011; Lázaro-
Gredilla et al., 2011; Ross and Dy, 2013) address scenarios where
training data is corrupted with non-Gaussian noise, however, another
problem associated with standard GP regression is the poor scalability
with respect to the number of training points, 𝑁 . Specifically, the cubic
complexity training time, (𝑁3), of a standard GP often makes the
approach intractable for datasets with size 𝑁 > 104 (Deisenroth and
Wei Ng, 2015; Liu et al., 2019) (though recent developments have
pushed this envelope further Wang et al., 2019). To address this issue,
scalable GP models have been developed for applications involving
large datasets. Scalable GPs can be grouped into two categories; those
that realise global approximations and those that realise local approx-
imations. Global approximation approaches use relatively small sets
of ‘inducing points’ to summarise the information that is contained in
the full set of training data (variational sparse GPs Titsias, 2009, for
example, belong to this category). On the other hand, local approxima-
tions use GP experts that are trained on local subsets of the training
data (Tresp, 2001; Deisenroth and Wei Ng, 2015; Liu et al., 2018a).
In the present contribution, motivated by a manufacturing case study
where the assumption of a Gaussian noise model was found to be poorly
suited to measurements of product quality, we address GP regression
problems where the measurement noise is non-Gaussian. We assume
that the noise corrupting the observations has been generated from a
mixture of Gaussian distributions and propose a 2-step method based
on DP clustering and GP regression. Unlike Stegle’s approach (Stegle
et al., 2008), where the number of clusters is determined by evaluating
the model evidence with respect to different numbers of clusters, our
approach uses a DP mixture of Gaussian distributions for clustering,
which is non-parametric in the number of mixture components; this
differs from Feng et al. (2021), for example, where the parametric form
of the likelihood (student-t) is chosen a-priori. We use a variational
Bayesian inference approach (Blei and Jordan, 2006a) to determine the
hidden variables involved in the clustering step. Using the observations
associated with the lowest noise component (i.e. those identified as
being corrupted by noise that has been generated from the Gaussian
whose variance is the smallest amongst the mixture), we recover the
standard GP log-likelihood for model training. Subsequently, the in-
ferred model parameters, i.e. the GP hyperparameters and the noise
model parameters, are used together in the OMGP predictive distri-
bution (Lázaro-Gredilla et al., 2011). Finally, by distributing the GP
computations (Deisenroth and Wei Ng, 2015), we illustrate that the
proposed approach is scalable in the number of training points, a char-
acteristic that is usually compromised in robust GP models e.g. Stegle
et al. (2008), Jylänki et al. (2011) and Liu et al. (2019).

2 In multi-object tracking problems, a trajectory refers to the path or
aths described by the observations associated with the object(s) being
racked (Murphy, 2012).
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2.2. Standard Gaussian process

In the following, training data consists of a collection of input–
output pairs {𝐱𝑛 ∈ R𝐷, 𝑦𝑛 ∈ R}𝑁𝑛=1. Each 𝑦𝑛 is considered to be a noisy
bservation of a latent function, 𝑓 (𝐱𝑛) (in the context of the current
aper, for example, 𝑦𝑛 is the 𝑛th observation of fault density). With
standard GP approach, it is assumed that the noise corrupting each

bservation is sampled from a zero-mean Gaussian distribution with
ariance 𝜎2 such that

𝑛 = 𝑓 (𝐱𝑛) + 𝜖𝑛 𝜖𝑛 ∼ 
(

0, 𝜎2
)

(1)

The set of observations 𝒚 =
{

𝑦𝑛
}𝑁
𝑛=1 are a realisation of the stochas-

tic process defined by Eq. (1) at inputs 𝑿 =
{

𝐱𝑛
}𝑁
𝑛=1. With a GP we

define a prior over the function values 𝒇 =
{

𝑓𝑛
}𝑁
𝑛=1:

𝑝(𝒇 ) =  (𝒇 |𝟎,𝑲) (2)

where each element of 𝑲 is defined by a kernel function, which ensures
hat 𝑲 is symmetric and positive-semidefinite (Rasmussen, 2006). One
uch kernel function is the Squared Exponential (SE) kernel,

SE(𝐱𝑖, 𝐱𝑗 ) = 𝜎2𝑓 exp

{

−
(𝐱𝑖 − 𝐱𝑗 )𝑇 (𝐱𝑖 − 𝐱𝑗 )

2𝓁2

}

(3)

where parameters 𝜎𝑓 and 𝓁 are usually referred to as the vertical length
scale and the horizontal length scale, respectively. Another well-known
covariance function that recovers the SE kernel as a special case is the
Matérn kernel,

𝑘Mat(𝐱𝑖, 𝐱𝑗 ) = 𝜎2𝑓
21−𝜈
𝛤 (𝜈)

⎛

⎜

⎜

⎝

√

2𝜈(𝐱𝑖 − 𝐱𝑗 )𝑇 (𝐱𝑖 − 𝐱𝑗 )
𝓁

⎞

⎟

⎟

⎠

𝜈

× 𝐾𝜈
⎛

⎜

⎜

⎝

√

2𝜈(𝐱𝑖 − 𝐱𝑗 )𝑇 (𝐱𝑖 − 𝐱𝑗 )
𝓁

⎞

⎟

⎟

⎠

(4)

where, 𝛤 is the Gamma function, 𝐾𝜈 is the modified Bassel func-
tion of the second kind, 𝜎𝑓 ,𝓁 are the process standard deviation and
length scale, respectively, and 𝜈 controls the smoothness of the sample
functions. When assigning 𝜈 → ∞ the SE kernel is recovered.

Kernels can be extended to incorporate a length scale for each input.
or instance, the SE kernel can be expressed as follows,

SE(𝐱𝑖, 𝐱𝑗 ) = 𝜎2𝑓 exp
{

−1
2
(𝐱𝑖 − 𝐱𝑗 )𝑇𝑳(𝐱𝑖 − 𝐱𝑗 )

}

(5)

here 𝑳 = diag(𝑙−21 ,… , 𝑙−2𝐷 ).
Eq. (5) represents an implementation of Automatic Relevance De-

termination (ARD), as the inverse of the length scale indicates the
relevance of the corresponding input. Specifically, as the 𝑖th length
scale increases, the more insensitive the GP will become to changes
in the 𝑖th input. Eqs. (3) and (5) are just a few examples of the widely
variety of kernels or combination of kernel functions that can be used
for different applications (Duvenaud, 2014).

Having defined a kernel function then, from Bayes’ theorem, we
obtain

𝑝(𝒇 |𝒚) ∝ 𝑝(𝒇 )𝑝(𝒚|𝒇 ) (6)

where 𝑝(𝒇 ) is the GP prior specified in Eq. (2) and, from Eq. (1),
𝑝(𝒚|𝒇 ) = 

(

𝒚|𝒇 , 𝑰𝜎2
)

. The marginalised likelihood can be obtained
by integrating over 𝒇 , from which we find that 𝑝(𝒚) = ∫  (𝒇 |𝟎,𝑲)


(

𝒚|𝒇 , 𝑰𝜎2
)

𝑑𝒇 =  (𝒚|𝟎,𝑪), where 𝑪 = 𝑲 +𝑰𝜎2, such that 𝐶(𝐱𝑖, 𝐱𝑗 ) =
𝑘(𝐱𝑖, 𝐱𝑗 )+𝛿𝑖𝑗𝜎2 where 𝛿𝑖𝑗 is equal to 1 if 𝑖 = 𝑗 and 0 otherwise. Including

as a parameter to be estimated, we define 𝜽 =
{

𝜎𝑓 , 𝑙1,… , 𝑙𝐷, 𝜎
}

and
write the likelihood of 𝜽 as follows

𝑝(𝒚|𝜽) =  (𝒚|𝟎,𝑪) (7)

Taking the logarithm of Eq. (7) one obtains

ln 𝑝(𝒚|𝜽) = −1 ln |𝑪| − 1𝒚𝑇𝑪−1𝒚 − 𝑁 ln (2𝜋) (8)

2 2 2
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The process of finding the parameters, 𝜽, that maximises the log-
likelihood function is called Maximum Likelihood Estimation (MLE).
This can be achieved, for example, using Gradient Based Methods
(Arora, 2006) applied to Eq. (8).

3. Proposed noise model

From Section 2.2 it can be seen that the standard GP implementation
is based upon the assumption of a Gaussian noise model (i.e. Eq. (1)).
While this assumption can be justified to a certain extent for the generic
case (using, for example, the Central Limit Theorem or the Principle
of Maximum Entropy), the assumption of a Gaussian noise model was
found to be detrimentally inaccurate for the case study of interest,
where the goal is to predict the fault density of the final product from
a foundation industry application.

Aiming to still take advantage of the closed-form solutions associ-
ated with standard GP models we adopt a Gaussian mixture observation
model that is centred on the latent function. Specifically, we assume
that the noise corrupting each observation has been generated from one
of 𝐾 Gaussian distributions. By introducing 1-of-K allocation variables,
𝒛𝑛 ∈ R𝐾 , 𝑛 = 1,… , 𝑁 , with {𝑧𝑛𝑘 ∈ {0, 1} |

∑𝐾
𝑘=1 𝑧𝑛𝑘 = 1,∀𝑛}, we

associate each observation with a single Gaussian from the mixture
(e.g. 𝑧𝑛𝑘 = 1 indicates that the observation 𝑦𝑛 was corrupted by noise
drawn from the 𝑘th Gaussian3). Following a Bayesian framework, we
place priors on the allocation variables, 𝒛𝑛, as follows

𝑝(𝑧𝑛𝑘 = 1) = 𝜋𝑘 where
𝐾
∑

𝑘=1
𝜋𝑘 = 1 (9)

where 𝜋1,… , 𝜋𝐾 are known as the mixture proportionalities. Notice that
we have followed the notation described in Bishop (2006), where 𝑝 is
used to describe both discrete and continuous probability distributions.
Marginalising the joint distribution 𝑝(𝒛𝑛)𝑝(𝜖𝑛|𝒛𝑛) over the possible states
of 𝒛𝑛:

𝑝(𝜖𝑛) =
∑

𝒛𝑛

𝑝(𝒛𝑛)𝑝(𝜖𝑛|𝒛𝑛) (10)

the non-Gaussian observation model can be obtained by substituting
Eq. (9) into Eq. (10) and by defining 𝑝(𝜖𝑛|𝑧𝑛𝑘 = 1) as a Gaussian with
zero mean and variance 𝜎2𝑘, such that

𝑦𝑛 = 𝑓 (𝐱𝑛) + 𝜖𝑛, 𝜖𝑛 ∼
𝐾
∑

𝑘=1
𝜋𝑘 

(

0, 𝜎2𝑘
)

(11)

A wide variety of heavy tailed distributions, centred on the latent
function, can be described by varying the number of components 𝐾
and the parameters of Eq. (11).

We now aim to derive an expression that describes the probability
of witnessing the observed data as a function of the mixture parameters
described in the observation model, Eq. (11). Noting that

𝑝(𝑦𝑛|𝑓𝑛, 𝑧𝑛𝑘 = 1) = 
(

𝑦𝑛|𝑓𝑛, 𝜎
2
𝑘
)

(12)

and that 𝑝(𝑦𝑛|𝑓𝑛, 𝑧𝑛𝑘 = 1) = 𝑝(𝜖𝑛|𝑧𝑛𝑘 = 1) = 
(

𝜖𝑛|0, 𝜎2𝑘
)

allows us to
write

𝑝(𝑦𝑛|𝑓𝑛, 𝑧𝑛𝑘 = 1) = 
(

𝑟𝑛|0, 𝜎2𝑘
)

(13)

where 𝑟𝑛 = 𝑦𝑛−𝑓𝑛 is the 𝑛th residual. Assuming that the noise corrupting
each observation is independent and identically distributed (iid), the
likelihood of witnessing the measurements of product quality data is
given by

𝑝(𝒚|𝒇 ,𝒁,𝝈) =
𝑁
∏

𝑛=1

𝐾
∏

𝑘=1


(

𝑟𝑛|0, 𝜎2𝑘
)𝑧𝑛𝑘 (14)

where 𝒁 =
{

𝒛𝑛
}𝑁
𝑛=1 and 𝝈 =

{

𝜎𝑘
}𝐾
𝑘=1. An iterative approach for the

estimation of 𝑟𝑛, 𝜎2𝑘 and 𝑧𝑛𝑘 is described in the next section.

3 For more information the reader is referred to introductory material on
Gaussian mixture models (e.g. Bishop (2006)).
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Fig. 1. Proposed robust GP diagram.

4. Model implementation

We propose to estimate the residuals, 𝒓 = 𝒚 − 𝒇 , in Eq. (14) by
approximating 𝒇 through GP regression. We, therefore, estimate the
parameters in Eq. (14) by iteratively applying clustering and regression
as follows:

• Clustering: We infer the mixture parameters (𝒁,𝝈) of Eq. (14)
using a variational approximation (Blei and Jordan, 2006b) that
is based on a Dirichlet process.

• Regression: We perform GP regression using only the observa-
tions identified as being corrupted with the lowest noise com-
ponent. Once an estimate of the GP hyperparameters has been
obtained, we realise new approximations of 𝒇 using a predictive
distribution that incorporates the full training dataset {𝐱𝑛 ∈
R𝐷, 𝑦𝑛 ∈ R}𝑁𝑛=1 and the allocation variable posterior distribution
𝑝(𝒛𝑘|𝒚).

For large scale applications, a Product-of-Experts (PoE) GP is used
to realise relatively cheap approximations of 𝒇 . In the following, for
example, a PoE-GP is used whereby the aggregation of the experts’ pre-
dictions is performed using the generalised Product of Experts (gPoE)
approach (Deisenroth and Wei Ng, 2015).

Fig. 1 and Fig. 2 show, respectively, a summary diagram of the
proposed robust and scalable robust GPs, where the 2-main steps,
clustering and regression, and their corresponding dependencies are
illustrated.

4.1. The clustering step: Dirichlet process mixtures

In the current section, clustering of the residuals is performed
using a DP mixture of Gaussian distributions. A DP is a stochastic
process whose indexed random variables are a collection of probability
measures that sum up to one with probability one. This means that
a realisation from a DP is a random probability distribution, denoted
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Fig. 2. Proposed scalable robust GP diagram.

here as 𝐺. A DP is defined by a concentration parameter 𝛼 and a base
distribution 𝐻 :

𝐺| {𝐻, 𝛼} ∼ 𝐷𝑃 (𝐻, 𝛼)

As detailed in Blei and Jordan (2006b), we can characterise a DP as a
stick-breaking prior:

𝜈𝑘 ∼Beta(1, 𝛼), 𝜋𝑘 =𝜈𝑘
𝑘−1
∏

𝑗=1
(1 − 𝜈𝑗 )

𝜙𝑘 ∼𝐻, 𝐺 =
∞
∑

𝑘=1
𝜋𝑘𝛿𝜙𝑘

(15)

Notice from Eq. (15) that the collection of discrete distributions 𝐺(𝐴𝑘)
is defined over a measurable space 𝛷 and indexed by partitions, 𝐴𝑘,
such that, 𝐴𝑘 ⊂ 𝛷 and ∑∞

𝑘=1 𝐺(𝐴𝑘) = 𝐺(𝛷) = 1, describes a Dirichlet
Process. DPs have been used to develop mixture models that pro-
vide clustering solutions in a non-parametric Bayesian fashion (Teh,
2010; Dilan, 2010; Blei and Jordan, 2006b). In the case of a DP, the
infinite number of parameters that arises when 𝐾 → ∞ fulfils the
non-parametric condition.

When describing mixture models with a DP, a countably infi-
nite number of components are incorporated into the mixture. Using
Eq. (15) to incorporate a countably infinite number of Gaussian distri-
butions and writing Eq. (14) in terms of the precision 𝜏𝑘 = 1∕𝜎2𝑘, the
likelihood of 𝒁 and 𝝉 is,

𝑝(𝒚|𝒁, 𝝉) =
𝑁
∏

𝑛=1

∞
∏

𝑘=1


(

𝑟𝑛|0, 𝜏−1𝑘
)𝑧𝑛𝑘 (16)

The parameters 𝜏𝑘 and 𝑧𝑛𝑘 are specified using a Gamma and stick-
breaking prior (Eq. (15)), respectively, such that

𝜏𝑘 ∼ Gamma(𝑐0, 𝑑0), 𝑝(𝒛𝑛|𝝂) =
∞
∏

𝑘=1

[

𝜈𝑧𝑛𝑘𝑘 (1 − 𝜈𝑘)
𝑧𝑛𝑗>𝑘

]

,

𝑝(𝝂|𝛼) =
∞
∏

Beta(𝜈𝑘|1, 𝛼) (17)
5

𝑘=1
Defining 𝜳 = {𝒁, 𝝂, 𝝉}, the joint distribution of the observations and
unknowns 𝜳 is,

𝑝(𝒚,𝜳 ) =
∞
∏

𝑘=1
𝑝(𝜈𝑘)𝑝(𝜏𝑘)

𝑁
∏

𝑛=1
𝑝(𝒛𝑛|𝝂)𝑝(𝑦𝑛|𝒛𝑛, 𝝉) (18)

As the analytic solution of the posterior distribution 𝑝(𝜳 |𝒚) is in-
tractable, we use a variational inference approximation (Blei and Jor-
dan, 2006b). Let 𝑞𝜓 (𝜳 ) be a family of distributions (indexed by a
variational parameter 𝜓) that represent an approximation of the true
posterior 𝑝(𝜳 |𝒚). The logarithm of 𝑝(𝒚) can then be decomposed as
follows,

ln 𝑝(𝒚) = ∫𝜳
𝑞𝜓 (𝜳 ) ln

𝑝(𝒚,𝜳 )
𝑞𝜓 (𝜳 )

𝑑𝜳

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(𝑞)

−∫𝜳
𝑞𝜓 (𝜳 ) ln

𝑝(𝜳 |𝒚)
𝑞𝜓 (𝜳 )

𝑑𝜳

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
KL(𝑝∥𝑞)

(19)

An approximation of the posterior 𝑝(𝜳 |𝒚) can be obtained either by
minimising the KL divergence, KL(𝑝 ∥ 𝑞), or by maximising the lower
bound, (𝑞). As minimising KL(𝑝 ∥ 𝑞) involves the unknown posterior
𝑝(𝜳 |𝒚), we choose to maximise (𝑞).

Any inference solution applied to the DP mixture model has to
be computationally tractable, which implies that the infinite elements
that form the random measure, 𝐺 =

∑∞
𝑘=1 𝜋𝑘𝛿𝜙𝑘 , must be truncated

to a finite number. Consequently, for the variational approach, the
number of components is fixed to a value 𝑇 . To form the variational
approximation, we now choose to restrict our search to variational
distributions 𝑞(𝛹 ) that factorise as follows,

𝑞(𝛹 ) =
𝑇−1
∏

𝑘=1
𝑞𝛼𝑘 (𝜈𝑘)

𝑇
∏

𝑘=1
𝑞𝛾𝑘 (𝜏𝑘)

𝑁
∏

𝑛=1
𝑞𝜁𝑛 (𝒛𝑛) (20)

were 𝑞𝛼𝑘 (𝜈𝑘) are Beta distributions indexed by parameters 𝛼𝑘, 𝑞𝛾𝑘 (𝜏𝑘)
are exponential family distributions indexed by parameters 𝛾𝑘, and
𝑞𝜁𝑛 (𝒛𝑛) are multinomial distributions indexed by parameters 𝜁𝑛. Infer-
ence based on the factorised form shown in Eq. (20) is called mean
field variational inference (Bishop, 2006) and, in the present application,
instead of treating 𝑇 as a variational parameter, we assume 𝑇 is the
upper limit of the number of components (Blei and Jordan, 2006b).

Substituting Eq. (20) into the lower bound defined in Eq. (19), the
logarithm of the resulting optimal distributions can be shown to be

ln 𝑞∗(𝝎) = E𝜳⧵{𝝎} [ln 𝑝(𝒚,𝒁, 𝝂, 𝝉)] + const (21)

ln 𝑞∗(𝒁) =
𝑁
∑

𝑛=1

𝑇
∑

𝑘=1
𝑧𝑛𝑘 ln

(

𝜌𝑛𝑘
∑𝑇
𝑖=1 𝜌𝑛𝑖

)

(22)

ln 𝑞∗(𝝂) = ln
𝑇
∑

𝑘=1

(

𝛤 (𝑎𝑘 + 𝑏𝑘)
𝛤 (𝑎𝑘)𝛤 (𝑏𝑘)

𝜈𝑎𝑘−1𝑘 (1 − 𝜈𝑘)𝑏𝑘−1
)

(23)

ln 𝑞∗(𝝉) = ln

( 𝑇
∑

𝑘=1

1
𝛤 (𝑐𝑘)

𝑑𝑐𝑘𝑘 𝜏
𝑐𝑘−1
𝑘 exp

{

−𝑑𝑘𝜏𝑘
}

)

(24)

where E𝜳⧵{𝝎} stands for the expectation with respect to all the ele-
ments of 𝜳 except for 𝝎 and ln 𝜌𝑛𝑘 = E[ln 𝜈𝑘] +

∑𝑘−1
𝑗=1 E[ln(1 − 𝜈𝑗 )] +

1
2

(

E[ln 𝜏𝑘] − E[𝑟2𝑛𝜏𝑘] + 𝑑 ln 2𝜋
)

. In Eq. (23) the choice of 𝜈𝑘 is governed
by a Beta distribution with parameters, 𝑎𝑘 = 1 +

∑𝑁
𝑛=1 𝑞(𝑧𝑛𝑘|𝑟𝑛), and

𝑏𝑘 = 𝛼 +
∑𝑁
𝑛=1 𝑞(𝑧𝑛,𝑗>𝑘|𝑟𝑛), where 𝛼 is the parameter of the Beta prior

in Eq. (17). Furthermore, from Eq. (24) we see that the choice of
𝜏𝑘 is governed by a Gamma distribution with parameters, 𝑐𝑘 = 𝑐0 +
1
2
∑𝑁
𝑛=1 𝑞(𝑧𝑛𝑘|𝑟𝑛), and 𝑑𝑘 = 𝑑0 −

1
2
∑𝑁
𝑛=1 𝑞(𝑧𝑛𝑘|𝑟𝑛)𝑟

2
𝑛, where 𝑐0 and 𝑑0 are

the parameters of the Gamma prior in Eq. (17).

4.2. The regression step

In the regression step, we take advantage of the information pro-
vided by the clustering step and exploit the closed-form expressions
associated with standard GP regression. Using only the observations
corrupted with noise from the Gaussian whose standard deviation is
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u

𝜎0 = min

{

𝜎1,… , 𝜎𝐾
}

, we can return to a standard GP formulation and
se Eq. (8) to define the log-likelihood as

ln 𝑝(𝒚0|𝜽) = −1
2
ln |𝑪0| −

1
2
𝒚𝑇0 𝑪

−1
0 𝒚0 −

𝑁0
2

ln (2𝜋) (25)

where the training dataset, the number of observations, and the 𝑖𝑗th
element of 𝑪0 in Eq. (25) are, 0 =

{

𝑿0, 𝒚0
}

, 𝑁0, and 𝑘(𝐱𝑖,0, 𝐱𝑗,0)+𝛿𝑖𝑗𝜎20 ,
respectively. We can now apply a MLE procedure to Eq. (25) to estimate
the GP hyperparameters.

We now make use of the estimated allocation variables to give an
approximation of 𝒇 . The OMGP assumes that there exists 𝐽 different
latent functions

{

𝒇 𝑗
}𝐽
𝑗=1 (called trajectories) that are associated with

𝐽 sets of observations; these observations can, for example, represent
the trajectory of moving sources (missiles, aircraft, etc.) The OMGP
predictive distribution for the 𝑗th trajectory at a new input 𝐱∗ is
given by, 

(

𝑓𝑗∗|𝜇𝑗 (𝐱∗), 𝜎𝑗 (𝐱∗)2
)

, where 𝜇𝑗 (𝐱∗) = 𝒌𝑇∗ (𝑲 + 𝑹−1
𝑗 )−1𝒚 and

𝜎𝑗 (𝐱∗)2 = 𝜎2 + 𝑘∗∗ − 𝒌𝑇∗ (𝑲 +𝑹−1
𝑗 )−1𝒌∗; where,

𝑹𝑗 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑟𝑛=1,𝑗 0 ⋯ 0
0 𝑟𝑛=2,𝑗 0 ⋮
⋮ ⋮ ⋱ 0
0 ⋯ 0 𝑟𝑛=𝑁,𝑗

⎞

⎟

⎟

⎟

⎟

⎠

where

𝑟𝑛𝑘 =
𝜌𝑛𝑘

∑𝑇
𝑖=1 𝜌𝑛𝑖

(26)

is often defined as the responsibility of the Gaussian associated with
𝑧𝑛𝑘 = 1 for generating observation 𝑦𝑛 (Murphy, 2012; Bishop, 2006).

If we associate the 𝑗th trajectory with the noise source identified as
having variance 𝜎20 , we can use the OMGP predictive mean and variance
to realise estimates of 𝒇 and the associated uncertainty by calculating,

𝜇(𝐱∗) =𝒌𝑇∗ (𝑲 +𝑹−1
0 )−1𝒚 (27)

𝜎(𝐱∗)2 =𝜎2 + 𝑘∗∗ − 𝒌𝑇∗ (𝑲 +𝑹−1
0 )−1𝒌∗ (28)

where the vector 𝒌∗ has elements 𝑘(𝐱, 𝐱∗) and 𝑘∗∗ = 𝑘(𝐱∗, 𝐱∗). Notice
that the only difference between the standard GP distribution (Bishop,
2006) and Eqs. (27) and (28) is the addition of 𝑹0 to the kernel
matrix 𝑲 . Specifically, as the posterior probability that an observation
𝑦𝑛 belongs to the cluster 𝑘 = 0 (responsibility 𝑟𝑛0) decays, the amount
of noise associated with that observation increases proportionally, thus
reducing its effect on the predictive mean and variance.

Thus far we have described the implementation of a single Gaussian
Process that, though the application of a Dirichlet Process clustering
step, employs a mixture of Gaussian likelihood; we refer to this algo-
rithm as the ‘DPGP’. Regarding scalability to large datasets, we use a
product-of-expert approach to distribute the computations involved in
the regression step. By partitioning the training dataset into 𝑀 subsets
we can assign a GP expert to each of the 𝑀 partitions and use the gPoE
scheme to aggregate the experts predictions on the complete dataset
of size 𝑁 . The resulting approach - referred to here as the Distributed
DPGP (DDPGP) - provides a mechanism for the management of data
lifecycles (criterion 2 in Section 1; modularity), as individual DPGP
experts need only be omitted from the product-of-expert predictive
calculations if the relevance of the data used to train those experts is
judged to have reduced.

It is important to note that the proposed approach is different from
Gaussian Mixture Regression (and its variants e.g. Variational Bayesian
Gaussian Mixture Regression Zhu et al., 2016), though the terminology
is similar. With Gaussian Mixture Regression, both the model’s inputs
and outputs (𝒙 and 𝑦 in the current notation) are treated as random
variables before a Gaussian Mixture Model is used to model the joint
distribution 𝑝(𝒙, 𝑦); subsequent predictions are then computed from the
conditional distribution, 𝑝(𝑦|𝒙). The proposed approach, in contrast,
models the latent function (denoted 𝑓 in the current notation) as a
Gaussian Process, before then assuming that the observations of the
latent function have been corrupted by noise drawn from a Gaussian
6

Mixture Model. Our approach also differs from that presented in Yu
(2012) (again, despite similar terminology). In Yu (2012) (which uses
a ‘finite mixture model based Gaussian Process regression approach’),
input data is first clustered using a Gaussian Mixture Model before
separate Gaussian Processes are trained on data from each of the
identified clusters (the aim being that separate Gaussian Processes now
represent different operating modes of the process). Each GP, however,
utilises a standard Gaussian likelihood and, therefore, is not robust to
outliers relative to the approach proposed in the current paper.

4.3. Satisfaction of criteria

In Section 1, 5 key criteria that the proposed solution must satisfy,
established from work within the continuous manufacturing space,
were described. With the technical details of our approach established,
we now summarise how the proposed solution satisfy these 5 criteria:

1. Scalability. By using a product-of-experts approach, adding in-
formation from additional data simply involves training a new
GP expert model which can then be included in subsequent
predictions. The computational cost of adding additional data
is therefore independent of the size of previous training data,
allowing scalability to large datasets.

2. Modularity. If it is decided that previous data is no longer
relevant to current operation, the expert trained on that data can
simply be removed from subsequent predictions. This feature of
the approach facilitates management of the data lifecycle.

3. Stable out-of-data performance. Being a Gaussian Process ap-
proach, it is known that the model will converge to its prior
statistics when applied far from the training data.

4. Uncertainty quantification. Being a Gaussian Process approach,
closed-form expressions for the predictive standard deviation
can be used to facilitate uncertainty quantification.

5. Robustness to unrepresentative data. By using a Gaussian Mix-
ture likelihood, we are able to identify and subsequently ignore
outlier data.

5. Experiments using synthetic datasets

The current section details comparisons between the proposed ap-
proach, a standard GP and Stegle’s robust GP (RGP) (Stegle et al.,
2008). We compare with the RGP as it satisfies three out of the five
criteria (Stable out-of-data, Uncertainty quantification, and Robustness
to representative data). We note, however, that the RGP does not
scale well to large datasets and, as a result, the analysis described in
the current section uses a relatively small synthetic dataset to avoid
memory issues. Comparisons between the gPoE and proposed DDPGP
are shown in Section 6, where we use a number of data points that can
be problematic for the standard GP and RGP approaches.

We use a synthetic dataset to assess the suitability of a standard
GP, RGP and the proposed DPGP when using data corrupted with
noise sampled from a mixture of Gaussian distributions. Specifically,
𝑁 = 150 realisations of the function, 𝑓 (𝑥) = 150𝑥 sin(𝑥), were corrupted
following the noise model described in Eq. (11). Knowing the function
from which the observations are generated, the models’ predictive
accuracy is evaluated in terms of the Root Mean Squared Error (RMSE).

The mixture of Gaussian distributions was created using 𝐾 = 3
independent components with the following parameters:

• Proportionalities: 𝜋0 = 0.5, 𝜋1 = 0.4, 𝜋2 = 0.1
• Standard Deviations: 𝜎0 = 10, 𝜎1 = 90, 𝜎2 = 300

Using the Squared Exponential Kernel (Eq. (3)), the initial estimates
of the kernel parameters for the standard GP, RGP and DPGP models
were set to 𝜎𝑓 = 1,𝓁 = 1, and 𝜎 = 0.5. Notice that we cannot initialise
the same mixture parameters for the RGP and DPGP as the number of
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Table 1
RMSE of 300 predictions at inputs not used for training. Please, see the text for a
detailed explanation of Approach 1 and 2.

Root mean square error

Obtained with Approach 1 Obtained with Approach 2

GP 1647.42 GP 1647.42
RGP 69.96 RGP 26.80
DPGP 25.10 DPGP 21.58

Fig. 3. Top: A comparison of the standard GP, RGP and DPGP predictive mean after
the 3 models have been trained with the synthetic data. Bottom: The clustering outcome
of the DPGP where different colours have been used to identify each observation with
a Gaussian component from the mixture of Gaussian distributions.

mixture parameters for the DPGP depends on the upper bound, 𝑇 . To
initialise such models with the same mixture parameters and provide a
fair comparison of their calculated RMSE, we take two approaches.

Approach 1: it is assumed that the number of mixture components is
known and set 𝐾 = 3 and 𝑇 = 3 for the RGP and the DPGP, respectively.
The same initial mixture parameters can now be chosen (randomly) for
both models. After training, their predictive accuracy is measured in
terms of the RMSE at 300 test points, as shown in Table 1 (left).

Approach 2: the initial mixture parameters are chosen randomly
100 times for the RGP with 𝐾 = 3 and DPGP with 𝑇 ∈ {6, .., 10}.
Subsequently, the lowest RMSE values for the RGP and DPGP were
chosen for accuracy comparison, as shown in Table 1 (right).

A visual comparison of the models’ predictive mean is shown in
Fig. 3 (top), whereas the DPGP clustering outcome is shown in Fig. 3
(bottom). Plots in Fig. 3 were obtained using Approach 2. We note that
the DPGP correctly identified the number of mixture components to be
𝐾 = 3.

The visual comparison in Fig. 3 and the quantitative comparison
in Table 1 show that the RGP and DPGP successfully ignored the
observations corrupted with Gaussian distributions whose 𝜎2 > 𝜎2
7

0

when learning the latent function from the corrupted data. In addition,
Fig. 3 illustrates that the standard GP predictive mean deviates from the
sine function at outlier positions 𝑥 = 0, 𝑥 = 2 and 𝑥 = 8. Accordingly,
the standard GP RMSE is the highest. The quantitative comparisons
in Table 1 showed that the DPGP model was the most accurate in
estimating the sine function using the synthetic data.

6. Case study

The data used in the present case study was provided by a com-
pany from one of the UK’s foundation industries. The model’s inputs
correspond to readings from 27 sensors, each taking measurements
at different stages of the manufacturing process. Fault density, ob-
served at the end of the process, could be the result of changes in the
manufacturing process that occurred between several hours or several
days beforehand. In the current work the amount of time between the
observation of a phenomenon in the manufacturing process and its
subsequent effect on product quality is referred to as a ‘time lag’.

The authors note that, as a result of the commercial sensitivities,
specific values of fault density and some specifics regarding the model
development process are not reported in the following. We believe,
however, that the visual analysis afforded by the figures reported in
this paper sufficiently demonstrate the advantages of the proposed
approach and justify the conclusions described in Section 8.

6.1. Data exploration and pre-processing

Firstly, inputs were removed which, for instance, were found to
be very low-resolution or constant over the time duration of interest.
This left 22 inputs remaining. Missing values for each input were
then replaced using linear interpolation before each signal was passed
through a low-pass filter to remove high frequency noise. All signals
were standardised to be zero-mean and unit-variance before estimation
of the time lags associated with each input. Time lags were initially
identified using process knowledge provided by the project’s industrial
partner. These estimates were later refined using a random sampling
approach whereby multiple training runs were conducted using time
lag samples that were drawn from probability distributions centred on
the initial estimates.

6.2. Model training

The training data consisted of 𝑁 = 17,000 input–output pairs which
were split into 𝑀 = 17 adjacent regions, such that each expert was
assigned 1000 training points. We note that the size of the training
set was dictated by data-availability, rather than the scalability of the
proposed approach. The initial mixture parameters of each DPGP expert
were chosen randomly with the upper bound of the number of mixture
components fixed at 𝑇 = 7.

The hyperparameters inferred when training each DPGP expert
provides information regarding the relevance of the inputs over each
of the 𝑀 regions (recall from Eq. (5) that the model sensitivity is
high for the inputs whose length scale values are low). Accordingly,
once the DDPGP was trained, the inputs with lowest influence were
remvoed, reducing the number of inputs down to 10. Model training
was then repeated using these 10 inputs. We emphasise that, for this
case study, each DPGP expert was allowed to have different hyperpa-
rameters (though it is also possible to constrain the hyperparameters
of each expert to be the same); this allows us a degree of flexibility
over the approach described in Zhou et al. (2021), where a single set
of hyperparameters is used to describe the entire training set. We also
note that, while data was partitioned by time period in the current
case study, other data partition strategies could also be used; the data
assigned to each expert could be dictated by product type or using a
randomised sampling approach, for example.
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Fig. 4. Example DDPGP clustering results. The (normalised) number of observed data points have been assigned to one of the 𝐾 = 3 Gaussian clusters with different colours
representing the different values of noise variance.
Table 2
The colours in each row have been used to identified an observation with each Gaussian
cluster in the mixture. Columns two and three show the DPGP estimated mixture
parameters, 𝝅 and 𝝈, respectively.

Estimates of the mixture parameters

Colour 𝜋 𝜎 (Faults/10 m2)

Green 0.45 0.7
Yellow 0.36 0.25
Red 0.18 1.5

6.3. Results

In this section we analyse the model’s ability to identify and re-
move outliers in the product quality data as well as the model’s
ability to provide future predictions of fault density (and associated
uncertainties).

The DPGP experts identified a minimum of 𝐾 = 3 and a maximum
of 𝐾 = 5 clusters at the 𝑀 = 17 different regions of training data. In
the following, a period where a rise in the number of faults was known
to have occurred is used to analyse the model’s clustering performance.
The clustering outcome for the DPGP expert trained over such a period
is shown in Fig. 4 where it can be seen that the DPGP expert inferred
the presence of 𝐾 = 3 clusters; we have associated each Gaussian
cluster with a colour shown in the first column of Table 2. The mixture
parameters estimated by the DPGP expert are shown in Table 2.

The observations that were used to infer the model (the green
points) are, we hypothesise, generated by measured fluctuations in the
manufacturing process while the remaining observations are assumed
to have been generated by external processes. Two fault increases
associated with the manufacturing process were identified; the first one
is a slow increase whose peak is between Day 6 and Day 8, while the
second illustrates a relatively fast increase whose peak is between Day
10 and Day 11. Discussion with the project’s industrial revealed that
these rises were indeed due to fluctuations in the manufacturing process
that were measured and used as inputs to the model, while the data
associated with the red points were either erroneous sensor readings
or caused by production process that cannot be captured by the model
(e.g. repairs or maintenance).

Comparisons between the gPoE and DDPGP are shown in Fig. 5.
Specifically, for the same time period, a comparison of the predictive
mean results between a single GP expert (yellow line), corresponding
8

to the gPoE model, and a DPGP expert (red line), corresponding to
the DDPGP model, is shown in Fig. 5. Notice that the predictive mean
of the standard GP expert is affected by the spikes in fault density
that occur on Days 7, 12 and 14. It can also be seen that, the 3𝜎 GP
expert confidence bounds (Fig. 5 top) are more conservative than the
confidence bounds associated with the DPGP predictions (pink in Fig. 5
bottom).

We now focus on a second region, where the presence of outliers
is more obvious. Fig. 6 shows the predictive means of a single GP and
DPGP expert; this time the GP is overfitting, following almost exactly
all of the fault density observations (including those that are, by eye,
clearly outliers) while, by ignoring outliers, the DPGP has not overfit
the data to same extent. Both models were trained using the same initial
GP hyperparameters.

Given that we require the model to predict future increases in the
number of product faults, the predictive performance of the DDPGP was
then evaluated using data that was not used in training. Specifically,
after the model was trained, its performance was evaluated on 14-days
of test data. Fig. 7 shows the gPoE and DDPGP predictions at the last
1000 training points on the left-hand side of the vertical dashed line.
The gPoE and DDPGP predictions on 1000 test points corresponding
to 14-days of ‘unseen’ data are shown on the right hand-side of the
vertical dashed line. Notice that, even though the gPoE does not (at
least visually) look to have been overfit to the training data, it struggles
to follow the measured fault density over the testing period. Turning
our attention on the DDPGP predictions, the predictive mean more
closely follows the slow-varying trends in the measurements of fault
density, capturing an increase in the number of faults between Days 9
and 10. Post-analysis by the project’s industrial partner that, again, the
rises predicted by the model where due to measured fluctuations in the
industrial process.

7. Future work

Throughout this work, the hyperparameters of the regression model
are tuned using a maximum-likelihood approach. We note that a more
comprehensive approach would seek to quantify (and propagate) the
uncertainties associated with these hyperparameters. This is typically
achieved by sampling from the hyperparameter posterior distribution
using, for example, Markov Chain Monte Carlo or Sequential Monte
Carlo samplers (Del Moral et al., 2006) though the computational cost
of such an approach may be prohibitive for large sets of training data.
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Fig. 5. The predictive means of the standard GP (yellow line) and DPGP (red line). Top: The orange shaded area corresponds to ±3𝜎GP from the GP predictive mean. Bottom: The
pink shaded area corresponds to ±3𝜎0 from the DPGP predictive mean.
Regarding the use of a mixture of Gaussian noise model we note
that, while the non-parametric nature of the likelihood makes it very
flexible, it still assumes that the statistics of the underlying noise model
are stationary; though this has been found to be appropriate for the
industrial case study described in Section 6, it may not always be true.
Moreover, as is common with many machine learning approaches, the
final performance of the model will be dependent to some degree on
the initial conditions of the optimisation routine (though this can be
addressed to some extent using established approaches e.g. randomis-
ing initial conditions and selecting the optimal results using k-fold
validation).

In the industrial example described in Section 6, allowing each GP
expert to have different hyperparameters was found to be beneficial.
We note, however, that this approach can also lead to a form of
overfitting where each expert is overly ‘tuned’ to its own training data.
This effect may be mitigated by, for example, increasing the amount of
training data received by each expert or constraining experts to have
the same hyperparameters.

Our approach scales well to large data sets, as the incorporation
of additional data simply involves training an additional GP expert.
9

When predictions are required, the sequential loading of each expert
into memory also allows us to avoid memory overflow issues. We
note, however, that such an approach limits the real-time capability of
the predictive process, as the sequential loading of many GP models
can be time consuming. Improving real-time performance is a topic
of future work, though a possible strategy for addressing this could
involve utilising faster Sparse GPs (e.g. Titsias (2009)) in place of ‘full’
GPs for each expert.

The current paper describes the construction of a predictive model
that can then be used to optimise a continuous manufacturing process.
We do not, however, describe how this optimisation may be conducted;
for more information in this regard Refs. Tresp (2001), Titsias (2009),
Deisenroth and Wei Ng (2015) and Liu et al. (2018a) describe suitable
approaches from the context of ‘Robust Parameter Design’.

8. Conclusions

This paper describes the development of an ‘AI’ (i.e. data-based)
model which, when applied to an application in one of the UK’s foun-
dation industries, can be used to realise future predictions of product
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Fig. 6. The predictive means of the standard GP (yellow line) and DPGP (red line) 𝑚 = 11 experts. The pink shaded area corresponds to ±3𝜎0 from the DPGP predictive mean.
Fig. 7. The predictive means of the gPoE and DDPGP on training (left-hand side of the vertical dashed line) and testing (right-hand side of the vertical dashed line) data.
quality. Based on the author’s experience working within this industrial
setting, 5 key criteria are described which, we believe, must be consid-
ered from the very start of the model development process: scalability,
modularity, stable out-of-data performance, uncertainty quantification
and robustness to unrepresentative data. To that end, we propose
and demonstrate a Gaussian Process regressor whose noise model is
defined as a Dirichlet Process, before also adopting a product-of-experts
model to ensure scalability and modularity in our approach. As well as
demonstrating that the model satisfies the 5 key criteria, results from
the industrial case study provide evidence that the proposed model
provides better predictions of product quality than a standard Gaussian
Process with Gaussian noise model.
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