

BIOLOGICAL INVESRIGATIONS IN THE REGUIATEU, UIRRESULATED

AND POLLUTED STREAMS OF THE DEE WATERSHED.

Thesis submitted in accordance with the requirements of the University of Liverpdol for the degree of Doctor of Philosophy by:

MOHA:MED ATAUR RAHIM

November 1974.

IMAGING SERVICES NORTH
Boston Spa, Wetherby
West Yorkshire, LS23 7BQ www.bl.uk

BEST COPY AVAILABLE.

VARIABLE PRINT QUALITY

IMAGING SERVICES NORTH
Boston Spa, Wetherby
West Yorkshire, LS23 7BQ
www.bl.uk

IMAGING SERVICES NORTH

Boston Spa, Wetherby
West Yorkshire, LS23 7BQ
www.bl.uk

PAGE NUMBERS ARE CUT

 OFF IN THE ORIGINALI am grateful to Frofessor A.J. Cain, in whese Departaent this work was carried out, and especially to Dr. J.W. Junes, O.B.E. who sugsested the rroblem and supervised the research.

I thank Mr. Williams, Mr. Lloyde, Mr. Baretie, Mr. Alken, Mr. Davis and Mr. Franks for permission to take fish from their waters. I an also grateful to Captain G.M.A. Boyle, Mr. Georee Willians, Kiss Cickson Darr and Miss J. Evans for their continated help in the field and at other times.

My epecial thanks go to the following for help of various kinds: Dr. J.O. Young for confirming the identifications of Turbellaria; Dr. E.G. Easton for Ol:gochaeta; Dr. A. Thomas and Dr. S. Frudoe for helminth parasites; D_{2}. Lewis Davis for Simuildae; Hr. Allan Drindle, for Trichoptera, Coleoptera, Tipulidae and Dixidae; Dr. P.M. Nerney for Lamellibranciiata; Miss N.F. McMillan for Gastropoia, Hr. T. Gleinil: Por Hydracarina. My thanks also to Kr. R. Wagstaffe for suggeeting useful laboratory techniques; I=. J.C. Chubb for criticising the chapter relating to paresites; Dr. J.V. Wooiland zor providing trout stesuchis Irom the feeder strams : Dr. Jack Green and Mr. Yousuf for otitistical advice; Dr. M. Abdullan for chemiad enalysis of veter of the :eeder streams and the Dee: Mr. J.J.Roberts for providily the data relatine to rain fall and Mr. I. Bumlant for chemical analysis of water of the River Alyn.

I am very grateful to Dr. R. M. Pearson, Dr.A.E.j. Fírt, Dr. J.in. Earins and DR.F. ©. Jinith who inve correctedtio drafts anl eiven holpifi critioism.

Hy aincere thanks to Dr. D. F. Rothwell whose inspirational euidence his bcen 9 constant scurcs of encouragenent and support at all stares of the wark.

Finally I mast record ey gratitude to the iiater Resources Eonrd for the aword of a lisscarch Studentship for two years.

SUMMARY

The studies presented in this thesis are divided into three sections, which are a part of a long-term investigation sponsored by the W.R.B.

Section I: The ecology of bottom fauna with reference to food and feeding habits of trout and salmon parr in five unregulated Llyn Tegid feeder streams.

Section II: The ecology of bottom invertebrates of regulated river Dee (upper Dee) and its comparison with unregulated Llyn Tegid feeder streams.

Section III: The ecology of the bottom fauna and biology of trout in polluted river Alyn.

The research undertaiken in the five unregulated Llyn Tegid feeder streams was principally concerned with the ecology of benthic comanities with particular reference to their seasonal variations and distribution according to different types of substrata. It was found that there is a gradual increase in number of Hirudinea, Lammellibranchiata, Amphipoda, Plecoptera, Ephemeroptera, Megaloptera, Trichoptera and Coleoptera from muddy and sandy bottom to the gravel and finally to the stony substrata with scattered vegetation. On the other hand the Oligochaeta, Gastropoda, Isopoda, Hydracarina, Hemiptera and Diptera were recorded more in the muddy and sandy bottom and less in gravel and stony bottom with scattered vegetation. Food and feeding habits which include composition of the diet, seasonal variation in food intake, seasonal changes in the food, food in relation to age, food availability, interspecific competition and utilization of the fauna were assessed in trout and salmon parr separately in each of the unregulated Liyn Tegid feeder streams. Very few trout and salmon parr were found to be infected by the tape worm (Cyathocerhalus truncatus) in the anterior of intestine.

The bottom fauna of the regulated river Dee was examined and a comparison made between the benthic fauna of upper Dee and unregulated Bala feeder streams. It was noticed that Turbellaria, Hirudinea, Olizochaeta, Lamellibranchiata, Amphipoda, Isopoda, Hydracarina, Megaloptera and Coleoptera were apparently favoured by the regulation of the river Dee; whereas Gastropoda, Plecoptera, Hemiptera and Diptera were found relatively more in unregulated Bala feeder streame. There seems to be no effect of regulated or unregulated conditions of the river on Ephemeroptera.

Observations were urde on the ecology of bottom invertebrates with narticular reference to their distribution according to organic and industrial pollution in the river Alyn. I found the zumbers of Oligochaeta, Hydracarina, Plecoptera, Ephemeroptera and Diptera (Dixidae, Ceratipogonidae, Tipulidae, Chironomidae and Simulidae) to be drastically raduced and the organisms belonged to Gastropoda, Lamellibranchiata, Amphipoda, Isopoda and Coleoptera showine dramatic increases immediately below the sources of pollution.

Amongst the othir forms like Turbellaria, Hirudinea, Megaloptera, Hemiptera, and Trichoptera were relatively unaffected.

The age, growth, food and feeding habits, sexual maturation and movement of trout were studied. The changes in the fauna are reflected in the diet oi the trout. There was a greater tendency to move upstream rather than down. Growth conditions for trout in the upper Alyn may be poorer than Llyn Tegid Soeder streams and the upper Dee. The trout had consumed more food during summer and less in winter. The seaconal condition cycle increases to a maximum in July and declines thereafter. Gammarus seem to have become more popular items of the trout diet.

The endoparantes, Cystidicola ferionis from air bladder,
Echinorhynchus truttae from intestine, Cyathocenhalus truncatus from the region of blind caecae and Cucullanus truttae from stomach were recorded. 22.6% of the total trout were infected by Echinoi hynchus
truttae, 7.4% by C. farionis, 7.4% by C. trucatus, 5.3% by P. neglectus, 0.5% by Cucullanus truttae and 0.3% by M. truttae. The incidence and intensity of infestation gradually rises from $0+$ to $4+$ age groups in both sexes.

One species of helminth parasite C. truncatus was recorded from the trout and salmon parr of Afon Dyfrdwy and Afon Glyn, the unregulated Ilyn Tegid feeder streams. Their frequency, number per host, percentage of trout infection, monthly and seasonal variation in the degiee of infection and possible co-relation between percentage infection and age of the host and between parasite number and sex and state of maturity were also assessed.
CHAPTHR PAGE
PART I
UNREGULATLED S'TREAMS
I INIRODUCTION 1
II SAMPLING NETHODS 4
III AFON LLAAFAR 10
IV AFON LLIW 58
V AFON DYFKDWY 83
VI AFON TWRCH 118
VII AFON GILYN 149
VIII DISCUSSION 191
PART II
REGULATMD STREAM
IX RIVER DEY 223
PART III
POLLUTED STREAM
X RIVER ALYN 264
XI FISH PARASITES 334

PART 1

CHAPTER I

INTRODCCTICN

Since 1939 several investigators have vorked on the biology of the fishes of Llyn Tegid (Lake Bala); notable among these are hilliams (1939), Jones (1951, 1953, 1956), Dunn (1952), Ball (1957, 1961), Graham (1960), Hynes (1961), Ckubb (1961), Pugh-Thomas (1959), Haran (1968), Siddiqui (1209) and Hunt (1970). Morris (1967) described the biology of Minnow, Loach and Bullhead in the Afon Llafar, a tributary to the lake; there is no well-documented information concerning the dymaics of bottom fauna and food habits of salmonids in any of the unregulated tributarles namely Afonydd: Llafar, Lilw, Dyfrdwy, Twreh, and Glyn of Llyn Tegid.

The effect of regulation on all aspects of the biology of water is the main purpose of the Dee Project and my work is a part of the work of a team of scientists. The Piver Dee, one of the finest salmon rivers in England and Wales was first regulated in 1956.

Before 1956, when the River Dee was not regulated, work was published by Carpenter (1940) about the feeding of salmon parr in the Cheshire Dee, and Badcock (1949) on the stream life of the Welsh Dee. There is no published work since regulation and my work is an attempt to find out some of the biology of regulated parts of the Dee catchment.

A knowledge of the major factors affecting the bottom fauna and fish is essential if we are to protect and enhance, if possible, the fishing resources of the river. The investigation described in part II of the present work arose out of the practical need for finding the possible effects of regulation on bottom invertebrates and food habits of salmonids and other fish.

The pollution of rivers and streams both by industrial effluents and by dorestic and farm sewage is the greatest fector inimical to fish and other aquatic life. The first scientific examination of a river polluted by metallic salts and the effects of the pollution on invertebrates and fish was carried out by Carpenter (1924) in Aberystwyth district. Jones (1937, 1938) described the effects of zinc salts and other toxic substances on different aquatic invertebrates and fishes. Hynes (1965) showed the effects on biological communities of conditions in polluted streams.

I have looked at the possible effects of pollution on the biology of the brown trout (Salmo trutta), and on the distribution of bottom invertebrates, in the River $\Lambda l y n$, a polluted lowland main tributary of the Dee.

The purpose of this biological investigation of three different environments is to add to our understanding of
the factors affecting the gross changes in the ecology of bottom invertebrates and fcod habits of salmonids in unregulated, regulated and polluted streams of the Dee Watershed which provide some notably good salmon, brown trout and coarse fishing.

4

CHAPTER II

SAMPLING METHODS

Several methods have been developed for taking quantitative samples of the bottom fauna of streams; for example the petersen grap, the bEckman grab, Allan grab and Suber square-foot sampler. The effectiveness of the sampler varies especially with the nature of the bottom, the velocity of the water current and the depth of the water. Sampling is difficult especially In those streams where rocks can prevent the closing of the jaws of most grabs especially those used by Macon (1949), Surber (1937), Allan (195~), Kellen (1954), Mann (1965), and Larimore (1970).

In the present study Petersen and Allan grabs have been used to sample the benthic fauna quantitatively. None of these devices gave realistic estimates of benthic fauna in the substrate encountered. The need arose for a simple and light device to minimize the erros, so I designed a sampler which was found to be successful. This device is best suited to areas where the bottom is primarily stony and the water depth ranges up to 1 meter.

A. The sampler

The sampler consists of six aluminium frames, four of Which have a phosphor-bronze mesh of 30 meshes per inch

PLATE 2.1 (a) SQUARE FOOT BOY SAMPIER.
(b) STIRPER
(c) FBA POND NET.

> PLATE 2.3 FIXING THE SAMPLER ON THE STONY BED OF THE STREAM.

$\begin{array}{ll}\text { PLATE 2.5 } & \text { 'WASHING LIFTING' PROCESS USED IN } \\ & \text { GETTING ALL THE MATERIAL FROM THE } \\ & \text { NET INTO THE BOTTLE. }\end{array}$
screwed on securely. Three of these frames are hinged and a tapering net of 30 meshes to an inch bolting silk, is attached to the fourth frame. At the narrow end of the net is a 70 mm screw to which is screwed a plastic bottle. The fifth side hinges over the top to act as a 1id. Around the bottom of the box are a series of teeth 70 mm wide and about 85 mm deep. These are pushed into the river bed and anchor the sampler. No drifting organisms can enter the sampler. (Plate 2.1 and 2.2).
(a) Technicue

A plastic jar was screwed to the net. The apparatus was lowered gently on to the river botton without disturbing the silt and pushed into the river bed so that the net opens against the flow of the stream. The lid was opened and each large stone washed so that the fauna drifted into the net and then the stream bottom was gently stirred by hand so that the remaining fauna were dislodged and carried by the water current into the net. The finger raking tas repeated twice more. (See Plate 2.3, 2.4 and 2.5).

B. Sortine and preserving

Various methods have been tried to remove the benthic fauna completely from the debris by different vorkers, notably among them are Danials (1933), Moon (1935), Ledell (1936), Beak (1938) and B1rkett (1957). Dunn (1961) modified Beak's (op cit) method by applying saturated

Magnesium sulphate solution repeatedy.

During this investigation I used Dunn's (op cit) technique for sorting the bottom fauna. The debris was emptied into a white enamel tray. Conspicuous forms were picked out and the mixture was stirred up end saturated solution was run in. The small forms floated at the surface together with a good deal of plant debris. The floating organisms could quickly and accurately be sorted out into main groups. The debris was repeatedy stirred and retreated with the solution until no more animals were obtained. Close inspection of the residue shows that this technique when carefully used leads to the collection of almost all the animals.

All organisms thus sorted out were preseved in 58 formalin with a small quantity of Borax to neutralize the formic acid which decolorizes the organisms (Wagstaffe, personal communication).

AFON LLAFAR

Page

1. INTRODUCTION 12
2. THE ENVIRONMENT 12
(a) General topography 12
(b) Description of the sampling sites 20
(c) Physical and Chemical conditions 20
3. COMPOSITION OF THE FAUNA 26
4. THE FEEDING OF SALMONIDS 33
(a) Introduction 33
(b) Material and Methods 36
(c) Results 42
(a) Brown trout 42
(i) Composition of the diet 42
(ii) Seasonal variation in food intake 46
(iii) Seasonal changes in the food . 46
(iv) Food in relation to age. 48
(b) Salmon Parr 50
(i) Composition of the diet $\quad \therefore 50$
(ii) Seasonal variation in food intake 50
(iii) Seasonal changes in the food 54
(iv) Food in relation tu age. $\quad 54$
(c) Utilisation of the fauna : : $\because=5$
5. SUMMARY.

Felsite. Iime bostonite.Andesite.
Hornblend ant Glaucoshee(Pre-Caubrian.)
Dala(Ashcill and Ceradoc)
Iudlow bed,(Silurian.)
Basalt; Dolerite and Diabase (Ieneous rocks)
iienlock limestone (Silurian)
Llandovery and Tarannon bets.
Alluviam. River terraces and Peat (Recent)

CHAPTER III

1. INTRODUCTICN

A number of investigators have been working on the invertebrate life of the stream in different parts of the Dee watershed, for example Edmonds (1939), Carpenter (1940), Badcock (1949), Dunn (1952), Hynes (1961) and Hunt (1970). None of these had studied unregulated Llyn Tegid feeder streams, so part of my work was undertaken in the lower and middle reaches of these streams, a zone which extends roughly two miles from the lake.

2. THE ENVIROMMITT

(a) General tonography

Afon Llafar rises from the eastern slopes of Arenig Fawr 933 m high and is fed by few tributary streams. It is one of the main tributaries of the lake. It enters the lake at its south eastern border after flowing through sandstones, mudstones with calcareous ashes and thin limestones which constitute collectively what used to be called 'Bala limestones' (Fig. 3.1). In parts the river drops steeply and fast; near the lake it flows more slowly. On either side of the river are famiands devoted to the rearing of sheep and cattle.

DAIIE $3 . ?$ SAMDIIMG STATION L1

PLAPR 3.2 SAMPIING STATION I2

PLATE 3.3 SAMPLING STATION L3

Fig. 3.3
Total rainfall around Lake Bala each month for the total period of observation at U,L2,L3,Lw,LD1,LD2 , T,G1,G2,G3, D1, D2, D3 and D4 stations.
Data was obtained from the Dee and Clwyd River Authority.
table 3.1 nean monthly estimates of physical factors at ly sampling station in afon llafar.

Months	M	A	M	J	J	A	s	0	N	D	J	F	M	A
Water Temp. ${ }^{\circ}$	4.8	7.2	7.5	14.4	14.6	15.5	8.4	7.5	5.4	4.2	4.4	4.5	7.2	7.8
pH	7.5	7.2	6.8	6.9	7.0	7.2	7.4	7.2	7.8	7.8	7.6	7.5	7.5	7.2
Specific conductance (micromhos / cm ${ }^{3}$ at $25 \stackrel{0}{\mathrm{C}}$)	183	216	210	198	119	288	309	285	460	415	440	310 '	212	201
Dissolved 02, \% Sat.	98	101	112	118	105	98	102	95	93	98	97	110	107	101
Velocity of water current ($\mathrm{m} / \mathrm{sec}$)	0.26	0.19	0.23	0.13	0.11	0.14	0.23	0.29	0.75	0.71 .	0.66	0.60	0.53	0.41
Turbidity (as Fuller's Earth)	21.	20	24.	19	18.	28.	30.	27.	53.	97.	92.	80.	71.	41.

$(1969-70)$														
Monthe	M	A	M	J	J	A	S	0	N	D	J	F	M	A
Water Temp. ${ }_{\text {c }}^{\text {¢ }}$	4.8	7.2	7.5	14.4	14.6	15.5	8.4	7.5	5.4	4.2	4.4	4.5	7.2	7.8
pH	7.4	7.2	6.9	6.9	7.0	7.2	7.2	7.2	7.4	7.8	7.6	7.1	7.4	7.1
Specific conductance (micromhos / cm^{3} at 25.0°)	62	101	88	73	75	83	112	120	285	301	298	321	120	82
Dissolved 02, \% Sat.	111	103	98	95	94	103	97	98	105	102	105	101	97	98
Velocity of water current ($\mathrm{m} / \mathrm{sec}$)	0.21	0.16	0.13	0.17	0.13	0.26	0.35	0.57	0.64	0.81	0.76	0.46	0.23	0.19
Turbidity (as Fuller's Earth.)	21.	20.	23.:	18 :	18.	$2 €$.	30	25.	61.	87..	82.	90.	43.	20.

table 3.3 mean monthly estimates of pliysical factors at i3 sampling station in afon llafar. $(1969-70)$

Months	M	A	M	J	J	A	s	0	N	D	J	F	M	A
Water Temp. ${ }^{\circ}$	4.5	- 5.0	6.5	11.5	13.0	14.2	8.8	7.8	5.0	3.8 .	4.0	3.8	6.7	7.8
Specific conductance (micromhos $/ \mathrm{cm}^{3}$ at 25 c)	65	68	72	77	81	87	101	121	240	308	278	301	$!132$	87
Dissolved 02, \% Sat.	95	101	94	98	97	103	96	93	101	111	104	106	84	99
Velocity of water current ($\mathrm{m} /$ sec.)	0.29	0.24	0.21	0.20	0.13	0.12	0.14	0,21	0.27	0.89	0.85	0.68	0.35	0.23
pH	7.1	7.0	6.8	6.9	7.0	7.2	7.4	6.8	7.2	7.4	7.4	7.3	7.2	7.1
Turbidity (as Fuller's Earth)	20	19. :	22	17. ${ }^{\text {\% }}$	17.	18.:	28.	22.	53.	84.:	78.	80.:	40.	18.
			.											

(b) Descrintion of the sampling sites

Site L_{1} (Plate 3.1, Flg .3 .2) is located 16 metres before the stream joins the lake, at an altitude of 75 metres above mean sea level. Here the stream is 10 metres wide and 0.7 to Im in depth when the river is not in flood. The stream bed is sand and gravel, and the water is normally clear. Aquatic plants, namely Collitriche aouatica and Ranunculus fluttans were found near the banks.

Site L_{2} (plate 3.2, Fig. 3.2) is 0.804 km upstream from the lake at an altitude of 177 m O.D. Here the stream is 8 m wide and 0.5 m to 1.0 m deep. The substratum is stony and there is no emergent vegetation near the banis.
site I_{3} (Fig. 3.2 and Plate 3.3) is 2.413 km upstream from the lake at an altitude of 200 m O.D. Here the stream is 12 m wide and 0.3 to 0.5 m deep. The bottom is stony and covered with moss Fontinalis antipyretics.

(c) Physical and Chemical conditions

The mountains of Merionethshire recelve well over 2070 m of rain annually. The lake and its surroundings recelved a total of 1659 m of rain with an average of 110.6mm per month during the period of study (F1g.3.3). Mean monthly estimates of physical factors at L_{1}, L_{2} and L_{3} are shown in Tables 3.1, 3.2, 3.3. The wher temperature showed a steady rise during the summer and a fall in winter.

TABLE 3.4 CHEMLCAL ANALYSIS OF WATER.
Samples were taken at the depth of one meter in June 1969.

Results, except where stated otherwisw, as mg. per litre.

Table 3.5 The density of the bottom fauna at three sanyling sites, based on 14 monthly samples $(+=<0.1 \%)$

Sampling sites \longrightarrow	L_{1}		L_{2}			Total
Bottom fauna \downarrow	\%	$\text { Av.Ng } / \mathrm{m}^{2}$	\%	$\underset{\substack{\text { Av.No } \\ / \mathrm{m}^{2}}}{\%}$	$\begin{array}{r} \text { Av.No } \\ / \mathrm{m}^{2} \end{array}$	$\%$
Turbellaria	(-)	(-)	(0.3)	(5.3) (-)	(-)	0.1
Polycelis nigra	-	-	0.3	5.3	-	
Hirudinea	(0.3)	(10.7)	(0.6)	(10.7) (0.6)	(13.8)	0.5
Erpobdella octoculata	0.3	8.5	0.5	9.60 .6	12.8	
Glossiphonia complanata	+	2.1	+	0.7	-	
Helobdella stagnalis	-	-	-	$-1+$	1.0	
Oligochaeta	(14.0)	(435.8)	(8.7)	(156.2) (1.6)	(37.4)	8.2
Eiseniella tetrahedra	+	- 1.0	0.6	11.70 .2	5.3	
Haplotaxis gordioides	-	-	+	0.7 -	-	
Limnodrilus hoffmeisteri	0.2	5.3	+	0.7 - -	-	
Lumbriculus variegatus	1.4	44.9	0.6	10.7 0.2	5.3	
Peloscolex ferox	0.2	7.4	-	- -	-	
Stylodrilus heringianus	12.2	376.6	7.3	130.5 נ.1	18.1	
Gastropoda	(0.2)	(6.4)	(0.2)	(2.1) (0.3)	(6.4)	0.2
Ancylastrum fluviatile	+	1.0	0.2	$2.1: 0.2$	5.3	
Potamopyrgus jenkinsi	+	4.2	-	- -	-	
Limnaea pereger	0.1	0.7	-	- +	0.7	
Lamellibranchiata	(+)	(1.0)	(0.7)	(12.8) (2.5)!	(58.8)	1.1
Pisidium lilljeborgii	-	-	0.3	5.3	-	
Pisidium milium	+	1.0	0.4	7.40 .2	4.2	
Pisidium subtruncatum	-	-	-	2.3	53.5	
Amphipoda	(-)	(-)	(0.4)	(7.4) (0.1)	(2.1)	0.2
Gammarus pulex		-	0.4	7.40 .1	2.1	
Isopoda	(2.1)	(62.2)	(1.2)	(21.4) (-)	(-)	1.1
Asellus meridianus	2.1	62.2	1.2	21.4	-	
Hydracarina	(3.2)	(98.4)	(-)	(-) (0.3)	(7.4)	1.1
Hygrobates nigromaculatus	3.0	94.1	-	0.2	4.2	
Lebertia porosa	0.1	4.2	-	0.1	2.1	
Plecoptera	(0.3)	(9.6)	(20.8)	372.3) (8.2)	(182.9)	9.8
Amphinemura standfussi	-	-	0.1	1.01 .7	39.5	
Amphinemura sulcicollis	0.1	3.2	4.0	71.62 .7	62.0	
Brachyptera risi	-	-	0.1	1.0	-	
Chloroperla torrentium	-	-	1.0	$18.1: 0.6$	12.8	
Chloroperla tripunctata	+	0.7	0.1	1.0 '1.4	33.1	

Table 3.5 (contd)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Samplinc sites \longrightarrow \& \multicolumn{2}{|r|}{L_{1}} \& \multicolumn{2}{|r|}{I_{2}} \& \multicolumn{2}{|r|}{I_{3}} \& Total

\hline Bottom fauna \downarrow \& \% \& $$
\stackrel{\mathrm{Av} \cdot \mathrm{~N} \mathrm{~N}}{\mathrm{~m}}
$$ \& \% \& Av.No
/ra

2 \& \% \& Av.
/mo
2 \& \%

\hline Isoperla grammatica. \& - \& - \& 0.4 \& 7.4 \& 1.0 \& 21.4 \&

\hline Leuctra fusca \& - \& - \& 0.1 \& 1.0 \& + \& 0.7 \&

\hline Leuctra hippopus \& 0.1 \& 2.1 \& 14.2 \& 252.5 \& 0.2 \& 5.3 \&

\hline Leuctra inermis \& - \& - \& 0.1 \& 1.0 \& + \& 0.7 \&

\hline Leuctra moselyi \& - \& - \& 0.1 \& 2.1 \& - \& - \&

\hline Leuctra nigra \& + \& 1.0 \& 0.1 \& 2.1 \& + \& 1.0 \&

\hline Nemoura erratica \& + \& 0.7 \& - \& - \& - \& - \&

\hline Nemurella picteti \& - \& - \& - \& - \& + \& 0.7 \&

\hline Protonemura meyeri \& - \& -. \& 0.5 \& 8.5 \& 0.5 \& 11.7 \&

\hline Ephemerontera \& (0.1) \& (3.2) \& (11.2) \& (202.2) \& (8.1) \& (189.3) \& 6.5

\hline Baëtis pumilus \& - \& - \& 1.5 \& 25.7 \& 2.0 \& 42.8 \&

\hline Baëtis rhodani \& - \& - \& 2.3 \& 40.6 \& 1.6 \& 37.4 \&

\hline Baïtis scambus \& - \& - \& 0.3 \& 5.3 \& 1.0 \& 21.4 \&

\hline Caenis horaria \& + \& 1.0 \& - \& - \& - \& - \&

\hline Caenis moesta \& + \& 0.7 \& - \& - \& + \& 1.0 \&

\hline Centroptilum luteolum \& + \& $0 . ?$ \& 3.3 \& 59.9 \& 0.1 \& 3.2 \&

\hline Ecdyonurus venosus \& - \& - \& 0.1 \& 2.1 \& - \& - \&

\hline Ephemerella ignita \& - \& - \& 1.8 \& 32.1 \& 2.7 \& 64.2 \&

\hline Heptagenia lateralis \& - \& - \& 0.1 \& 2.1 \& 0.1 \& 3.2 \&

\hline Heptagenia sulphurea \& - \& - \& 0.2 \& 3.2 \& + \& 1.0 \&

\hline Leptophlebia marginata \& - \& - \& 0.5 \& 8.5 \& 0.3 \& 7.4 \&

\hline Leptophlebia vespertina \& - \& - \& 0.4 \& 7.4 \& - \& - \&

\hline Paraleptophlebia submarginata \& + \& 0.7 \& + \& 0.7 \& - \& - \&

\hline Paraleptophlebia tumida \& - \& - \& + \& 0.7 \& - \& - \&

\hline Rhithrogena semicolorata \& - \& - \& 0.5 \& 7.4 \& 0.1 \& 2.1 \&

\hline Hemiptera \& (32.0) \& (988.6) \& (8.1) \& (144.5) \& (0.1) \& (2.1) \& 13.4

\hline Corixa panzeri \& - \& - \& - \& - \& 0.1 \& 2.1 \&

\hline Micronecta poweri \& 31.4 \& 969.2 \& 8.0 \& 142.3 \& - \& - \&

\hline Sigara distincta \& + \& 0.7 \& - \& - \& - \& - \&

\hline Sicara dorsalis \& + \& 2.1 \& - \& - \& - \& - \&

\hline Sigara falleni \& 0.2 \& 8.5 \& - \& - \& - \& - \&

\hline Sigara venusta \& + \& 0.7 \& - \& - \& - \& - \&

\hline Sigara rymphs \& 0.2 \& 5.3 \& 0.1 \& 2.1 \& - \& - \&

\hline Valia spp. \& + \& 2.1 \& - \& - - \& - \& - \& -

\hline Megaloptera \& (+) \& (9.6) \& (0.2) \& (3.2) \& (0.5) \& (12.8) \& 0.2

\hline Sialis Iutaria \& ${ }^{+}$ \& 9.6 \& 0.2 \& 3.2 \& 0.5 \& 12.8 \&

\hline
\end{tabular}

Table 3.5 (contd)

Sampling sites \longrightarrow	L_{1}		L_{2}		L_{3}		Total
Bottom fauna \downarrow	$\%$	$\begin{gathered} \mathrm{Av} \cdot \mathrm{NO} \\ / \mathrm{m}^{2} \end{gathered}$	\%	$\begin{gathered} \mathrm{Av} \cdot \mathrm{NO}^{\mathrm{o}} \end{gathered}$	$\%$	$\begin{gathered} \mathrm{Av}^{2} \mathrm{No} \\ / \mathrm{m}^{2} \end{gathered}$	\%
Trichoptera	(3.5)	(115.5)	(10.3)	186.1)	(3.1)	(72.7)	5.8
Agapetus fuscipus	-	-	0.3	5.3	+	1.0	
Anabolia nervosa	0.1	3.2	-	-	0.2	4.2	
Glossoma boltoni	-	-	-	-	0.2	4.2	
Glyphotaelius pellucidus	2.5	79.1	5.6	95.9	1.0	21.4	
Halesus digitalus	-	-	1.2	21.4	-	-	
Hydropsych:e: fulvipes	-	-	-	-	+	0.7	
Hydropsychee instabilis	-	-	1.6	28.8	1.0	21.4	
Hydroptila tineoides	+	. 0.7	+	0.7	0.2	4.2	
Limnephilus rhombicus	-	-	-	-	0.1	2.1	
Mystacides nigra	0.4	11.7	0.4	7.4	-	-	
Plectrocnemia conspersa	0.4	26.0	0.5	9.6	-	-	
Polycentropus Slavomaculatus	+	0.7	-	-	+	1.0	
Potamophylax latipennis	-	-	0.3	5.3	0.1	3.2	
Rhyacophila dorsalis	-	-	0.2	2.1	-	-	
Sericostoma personatum	+	0.7	0.1	2.0	0.1	2.1	
Silo pallipes	-	-	-	-	0.1	3.2	
Tinodes waeneri	+	1.0	-	-	,	-	
Coleoptera	(1.6)	(55.6)	(6.7)	121.9)	(10.7)	(251.4)	6.5
Deronectes depressus	2.0	29.9	+	0.7		-	
Gyrinus aeratus	+	0.7	-	-		-	
Haliplus lineatocollis	0.3	10.7	-	-		-	
Helmis maugei	+	1.0	1.2	21.4	3.5	81.3	
Helodes marginata	-	-	-	-	0.1	2.1	
Helophorus flavipes	\cdots	-	+	0.7		-	
Hydroporus pubescens	0.1	3.2	-	-	0.1	2.1	
Hyriraena riparia	-	-	-	-		0.7	
Laccobius cisuttatus	-	-	0.2	2.1	-	-	
Latelmis volknari	0.2	7.4	5.1	85.6	6.7	156.2	
Platambus maculatus	-	-	-	-	0.2	5.3	
Oreodytes rivalis	-	-	0.1	2.1	0.1	2.1	
Tipulidae	(0.1)	(2.1)	(0.3)	(5.3)	(0.4)	(9.6)	0.3
Tipula lateralis	0.1	2.1	0.2	3.2	$+$	1.0	
Tipula montium	-	-	0.1	2.1	0.3	7.4.	

Table 3.5 (contd)

Sampling sites \longrightarrow	L_{1}		L_{2}		L_{3}		Total
Bottom fauna \downarrow	\%	Av. ma^{2}	\%	$\stackrel{\mathrm{Av} \cdot \mathrm{No}}{/ \mathrm{m}^{2}}$		$\stackrel{\text { Av.No }}{\mathrm{dm}}$	\%
Ceratopozonidae	(1.3)	(40.6)	(1.4)	(26.7)	(0.4)	(9.6)	1.0
Bezzia spp	1.3	40.6	1.4	26.7		9.6	
Chironomidae	(39.0)	(1166.8)	(23.6)	(424.7) ((32.4)	309.6)	40.2
Brillia modesta	-	-	0.2	4.2	+	0.7	
Criptochironomus spp.	-	-	2.4	43.8	1.7	39.5	
Dicrotendipes pulsus	-	-	-	-	0.5	10.7	
Endochironomus spp.	-	-	-	-	2.6	60.9	
Microtendipes chlories	-	-	0.2	4.2	-	-	
Metriocnemus atratulus	16.8	522.1	-	-	-	-	
Pentaneura monilis	1.0	25.6	3.3	59.9	6.8	157.2	
Procladius choreus	0.4	14.9	0.7	12.8	1.0	19.2	
Prodiamesa olivacea	0.4	16.0	11.6	205.4	6.0	136.9	
Polypedilum nubeculosus	17.5	540.3	4.0	71.6	6.6	154.0	
Sergentia coracinus	0.1	4.2	-	-		-	
Stictochironomus spp.	+	1.0	-	-	-	-	
Tanytarsus signatus	0.1	5.3	1.0	19.2	26.7	616.3	
Trichocladius rufivent	1.2	37.4	-	-		109.1	
Simulidae	(+)	(1.0)	(1.2)	(21.4)	(1.8)	(42.8)	1.0
Simuliuri aureum	-	-	-	-	$+$	0.7	
Simulium brevicaule	-	-	0.2	3.2	0.2	5.3	
Simulium monticola	+	1.0	0.8	16.0	1.5	34.2	
Simulium morrsitans	-	-	+	0.7		-	
Simulium naturale	-	-	+	0.7	-	-	
Simulium ornatum	-	-	+	0.7	+	0.7	
Prosimulium arvernense		-	-	-	+	1.0	
Other dipteran larvae	(+	(2.1)	(1.8)	(34.2)	(1.6)	(37.4)	1.1
Dicranota robusta	+	2.1	1.0	19.2		21.4	
Hermerodromia unilineata	-	-	0.4	6.4	0.4	9.6	
Limnophora spp.	-	-	-	-		2.1	
Limnophila verralli	-	-	+	0.7		-	
Pericoma pseudoexquisita		-	0.4	6.4		-	
Taphrophila vitripennis	-	-	-	-	0.1	3.2	
Dipteran pupae	1.4	44.9	1.7	29.9	1.7	39.5	1.6
Total no. of animals in sample		24		327		019	
Av. no. animals/month	28	87.4		66.2		15.6	
Av. no. animals $/ m^{2}$	307	5.1	17	778.3		306.9	

pH values, taken by means of a portable pH meter, varied from 6.8 at low water to 7.8 at high. Dissolved oxyeen taken by a D.O. Neter at the depth of 0.4-0.7m ranged from 94.0 to 118 , saturation. A flow meter was used to record the velocity of the water ($m / s e c$) at each site. A conductivity meter was used to obtain the specific conductance (micromhos $/ \mathrm{cm}^{3}$ at $25^{\circ} \mathrm{C}$) of water each month at each sampling station. Turbidity was measured by comparing the sample with standard solutions of various graded velues of silica (Fuller's Earth) in distilled water.

A water sample taken from station L_{2} in June 1969 was stored in a polythene bottle and analysed within a short time after being taken. The results are summarized in Table 3.4.

As the rocks in the valley are hard and non-calcareous it is not surprising that the water is exceedingly poor in dissolved salts.

3. COMFOSITION OF THE FADNA

Table 3.5 shows the constituents of the fauna in each of the three sampling sites examined. It is apparent from this, that at the taxonomic level at which it was identified, the small invertebrate fauna was similar at every station, and characteristic of small fast flowing stony hill stream of North kales. A fall in the total number of animals

Fig. 3.4 Seasonal variations in the numbers of different groups of bottom fauna

Fig. 3.5 Seasonal variations in the numbers of different groups of bottom fauna
during winter months and rise during spring and summer was found at each of the three stations (Fig. 3.4, 3.5). Humphries and Frost (1937), Frost (1942) showed a steady downard trend during late winter and early spring. Badcock (1949) and Hynes (1961) sald that the minimum numbers during winter and autum were due to the emergence of most of the mayflies and stoneflies and their young were too small to be retained by the net.

The stream harbours a rich and varied fauna. The total number of species recorded at L_{1} where the bottom is sandy, was 137,163 at L_{2} where the substrate is of stones and finally 159 at L_{3} where the substrate is stony and covered with moss. There was a significant difference In the density of ollgochaetes at L_{1}, L_{2} and $L_{3}(P<0.05)$. The common animals were chironomid larvae, nymphs of stoneflies and mayflies, caddis larvae, oligochaetes, Coleoptera and Hemiptera. The following groups of the benthic animals were collected during the study (Table 3.5).

A. Platyhelminthes

(1) Turbellaria

This group constituted 0.1% of the total fauna and was represented by one species polycelis nigrs.
B. Annelida

(1) Eirudines

This group formed 0.5% of the total benthic fauna and was represented by three species, Erpobdelia octoculats
was found in all the sampling sites and Helobdella stamelis at L_{2} and $L_{3}{ }^{\circ}$

(2) 0lipochaeta

Species of this group formed 8. 2 , of the total fauna, and were very common at all the sampling sites. Haplotaxis gordioides and Peloscolex ferox were rare.
C. Mollusea
(1) Gastronoda

Cnly four species were recorded of which fncylastrum fluviatile was common and Limnaea nereger and potamonysus jenkinsi were rare.
(2) Lamellibranchiata

This group formed 1.1% of the total animals.
Pisidium subtruncatum and Fisidium milium were common in the upper reaches and Pisidium 11111eborgit was rare.
D. Arthropoda
(1) Crustacea
(a) Amohipods

Gammarus pulex was rare and formed 0.0 of the total benthos.
(b) Isonoda

Asellus meridianus constituted 1.1% of the total fauna. They were common at L_{1} and L_{2} and rare at L_{3} sites. They did not seem to occur on or under the stones covered with
moss. Their absence according to Hynes (1961) may be related to the scarcity of their food.
(2) Arachnida
(a) Hydracarina

These formed 1. 1% of the total fauna. Hyrrobates nigromaculatus and Lebertio norosa were rare at L_{1} and L_{2} stations.
(3) Insects
(a) Pleconters

The species listed in the Table 3.5 were widely distributed in the stream and formed 9.8% of the total benthic fauna. Amphinemura sulcicollis, Chloronerls torrentium and Leuctra hipropus were common at I_{2} and Amphinemura standfussi, mohinemura sulcicoli1s;
Chloroperla tripunctata and Isocerla grammatica were common at L_{3}.
(b) Enhemeropters

The ecological factors affecting the nymphal environment have the greates effect on the distribution of mayfiles. The early instars in the stream were found in vegetation or detritus. As the nymphs grew they moved from the vegetation to the stones to avoid entanglement. The species 11 sted in the Table 3.5 formed 6.5% of the total benthic fauna.

Baetis spp. Centroptilum Iuteolum and Ehemerella ienita
were common at L_{2} and Baetis spp. Ehemerella ienta were common at L_{3}.
(c) Hemiptera

These formed 13.4% of the total bottom fama in which kicronecta poweri was common at L_{1} and L_{2} and the rest of the species mentioned in Table 3.5 vere rare. (d) Megalontera

This group was represented by Gialis Iutaria and formed 0.2% of the total bottom fauna.
(e) Trichontera

This group constituted 5.8% of the total organisms. Glophotgelius pellucidus was common at L_{1}, L_{2} and I_{3} and and Rydroosyche instabilis was comrion at L_{2} and $L_{3^{*}}$ I found predatory species like Polycentropus flavomaculatus in the stony beds as did Slack (1936).

(f) Coleoptera

Laccobius biguttatus is a lake dwelling species but it was found at L_{2}, probably as a result of the water level fluctuation of the lake; 6.5% of the bentric fauna was composed of coleopterans. Helmis maugei and Latclmis volkmari were common at all the stations (Table 3.5).

(g) pinters

Chironomid larvae formed 40.2% of the total fauna and were identifled as far as possible (Table 3.5).

Other dipteralarvae that belonged to family Tipulidae,

Dixidae, Psychodidae, Limnobildae, Ptychopteridae, Stratiomydae, Dolichopodidae and ampididae were identified to species; this has not been done by previous workers and $m y$ identifications were confirmed by Mr. Allan Brindle of the Vanchester Museum.

Similarly the simuliid larvae were not identified to species by others working in the Dee watershed. I have done this in the present study and the identipleations were conflrmed by Dr. Lewis Davies of Durham University (see Table 3.5).

4. THE FEEDING OF SALMONIDS

(a) Introduction

Food of the trout and salmon parr have been studied by a number of previous investigators notably Frost (1939, 1945, 1950); Neil (1938); Allen (1938, 1941); Frost and Went (1940); Ball (1961); Graham and Jones (1962); Thomas (1962) and Wooland (1972). The food consists chiefly of aquatic insect larvae, Crustacea, Mollusca and Annellda. Until recently no study has been made of the food and feeding behaviour of selmonids in Llyn Tegid feeder streams, although general biology other than feeding has been investigated by Wooland (1972). The results presented in the present work are intended to give additional information

Table 3.6 Number of brown trout examined for food in all Llyn Tegia
feeder streams.
SWF = Stomach with Food; \quad ES $=$ Empty Stomach

Total No. of trout in all Llyn Tegid feeder streams $=465$
Total with empty stomachs
$=29$
Total examined for food

$$
=436
$$

$L=$ Llafar, $\quad L w=$ Lliw, $L D=$ Dyfrdwy $, T=T w r c h, \quad G=G 1 y n$.

35 *

\because

Table 3.7 Number of salmon parr examined for food in all Llyn
Tegid feeder streams.
SWF = Stomach with food : ES = Empty stomach

	Streams $\quad \longrightarrow$	L		Lw		LD		T		G	
	Total No. Fish \rightarrow	136		93		122		77		123	
Total No.	Months \downarrow	No. SWF	$\begin{aligned} & \text { No. } \\ & \text { ES } \\ & \hline \end{aligned}$	No. SWF	No. ES	No. SWF	$\begin{aligned} & \text { No. } \\ & \text { ES } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \text { No } \\ \text { SWF } \\ \hline \end{array}$	No. ES	No. SWF	No. ES
12	November 1968	-	-	1	-	11	-	-	-	-	-
24	December	-	-	21	3	-	-	-	-	-	-
13	January 1969	-	-	-	-	-	-	-	-	8	5
38	February	19	2	-	-	4	4	9	-	-	-
31	March	-	-	10	-	10	-	-	-	11	-
14	April	8	-	-	-	-	-	-	-	6	-
50	May	3	-	10	-	26	-	7	-	3	1
22	June	10	-	-	-	-	-	-	-	12	-
65	July	10	-	12	-	16	-	16	-	10	1
19	August	9	-	-	-	-	-	-	-	10	-
64.	September	9	-	9	3	27	-	10	-	6	-
16	October	11	-	-	-	1	-	-	-	4	\sim
59	November	14	1	9	2	5	4	12	3	9	-
25	December	11	2	-	-	-	-	-	-	10	2
. 51	January 1970	13	1	7	-	8	1	11	1	8	1
15	February	9	-	-	-	-	-	-	-	6	-
39	March	10	-	3	3	5	-	7	1	6	4
	Total	130	6	82	11	113	9	72	5	109	14

Total No. of salmon parr in all Llyn Tegid feeder streams $=537$
Total with empty stomachs $=45$
Totsl examined for food
$=492$
on the feeding habits of salmonids.

The feeding of salmonids from Afon Llafar was studied at monthly intervals for a period of 14 months beginning in February 1969 and ending in March 1970. A total of 81 trout and 136 salmon parr stomachs were collected for food enalysis; of these 2 trout and 6 salmon parr stomachs were found to be empty (Table 3.6,3.7).

(b) Material and Vethods

The pharynx leads by a short gullet into a '0'-shaped stomach consisting of a wide cardiac and a narrow pyloric division. A sphincter seperates the pyloric division from the pyloric caecae. The contents of the stomach up to the sphincter were examined.

The wall of each stomach was slit open and the amount of food, or "the degree of fullness" was recorded in the following terms : "distended", "full", " full", "tity full",㖵 full", "T (traces)", and "E (erpty)", then the points were allotted in the following manner.
Visual estimation of fuliness

Foints
Distended : The stomach extended with 5

Full : Food filling the stomach 4
3 full \quad Food filling three quarters
of the stomach
full : Food filling about half of the total volume of the stomach

```
N-***
*
```

Table 3.8 The fullness index and the percentage of stomach of trout and salmon parr containing food as shown by

- two-monthly samples.

Period			Salmon parr	
	Percentage of stomach containing food	Fullness index	Percentage of stomach containing food	Fullness index
Feb/Mar	66.6	0.4	89.4	1.0
Apl/May	93.3	3.5	100	3.2
June/July	100	3.8	100	3.5
Aug/Sept	100	3.4	100	3.0
Oct/Nov	100	2.5	96.0	1.6
Dec/Jan	100	100	87.5	1.0
Feb/Mar	100	100	2.4	

| \$ full | Food occupying about one
 quarter of the total volume | 1 |
| :--- | :--- | :--- | :--- |
| \mathbf{T} | Traces of food items in the
 stomach | 0.5 |
| E | stomach collapsed, no
 food present | 0 |

The visual estimation of fuliness was made in accordance with the widely used classification established by Ball (1961).
'Foints' werc allocated to each sample and the mean number of points per stomach per sample was calculated. The resulting figure was termed the "ruilness Index" (Table 3.8). The dogree of fullness of the stomach was estimated by a points system similar to that used by Graham ond Jones (196\%), Morris (1966), Sinha (1965), S1ddiqui (1969), Funt (1970) and Voolland (1972).

Each stomach was ilist studied as a unit. The contents were removed and sorted under a low power binocular micriscope into various taxonomic categories (Tables 3.9, 3.12). In addition to the fullness method, three standard methods of food analysis, namely occurrence, volume and number; as reviewed by Hynes (1950) were used.

The food items were recorded in the following manner.

The total number of stomachs in which each food item occurred was 11 sted as a percentage of the number of

Fig.3.6 The volume scale used to estimate the volume of food items in each stomach
occurrences of all items to show the percentage composition of the diet (occurrence method).

The total numbers of individuals of each food item were counted individuelly and expressed as percentages of the total number of organisms found in all stomachs examined (number method).

The volume in cubic millimetres was then found using a method devised by Chubb (1961). Each particular group of organisms was separately piled into a grid marked off In sçuare millimetres and pushed against a step witch was one millimetre in height. The food was then levelled by means of a glass slide and the volume in cubic millimetres was then recorded (Fig. 3.6). For bigger food items like tipulid larvae, caddis cases or larvae and fish volume was determined by water displacement.

The percentage representation by occurrence, number and volume of all the food items was calculated. The occurrence method shows the percentage of occurrence of each food category in all the stomachs examined. The number and volume methods express the percentage composition of each food by number/volume in the total number/volume of food eaten.

For convenience, various stomach contents were divided into four categories terrestrial and aerial food, midwater food, benthic food and miscellaneous food. Terrestrial and

Table 3.9 The total annual composition of the diet of 81 trout assessed by Occurrence, Volume and Number methods. $(+=\div 0.1 \%)$.

aerial food included any food item originating outside the river. Midwater Sood, aless well-defined category, included the adult forws of water bugs, bectles and mites and Esh. The benthic component included those orgenisms thet spend the najority of their tine on the bottom of the stream. This included the permenent bottom dwallers (snails, clans and oligochaetes) and the transient population of Juvenile aquatic insects. Finally tre miscellaneous food included the stones of the caddis cases and plant materials.
(c) Resuits
(a) Brown trout
(i) Composition of the diet

Teble 3.9 shows the composition of the diet of trout from February 1969-March 1970. The most important dietary Itcms from the benthic food were Ephemeroptera nymphs, Trichoptera and chironomid larvae. The olicochactes, gastropods, Plecoptera nymphs, Femiptera, Coleoptera adults and larvac and dipteran Iarvae are not major food items. Terrestrial and aerial insects, which included Aphididae, Chloropidae, Nabidae, Mridae, Fmpidae and their larvae, were important food items subject to availability. Midwater food itams like Hydracarins, Hemiptera, Coleoptera and fish are less important and occurred in $0.1 \%, 0.5 \%, 1.8 \%$ and $c .0 \%$ of the total stomachs respectively. The miscellaneous food, which includes stones of the caddis cases and plant

Fig 3.7 seasomal varimiton in yood intake of the trout and salmon parr.
trout =
SADLON PARR =
MatER temperature $=0-0-\infty$

Table 3.10 rine Food of Trout in Afon Llafar

Food crganisms	Feo/ $/ \mathrm{Mar}$			ApI/May				June/Juily				Aumjsent				Oct/ $/ \mathrm{lov}$.				Dec/Jan				Feb/har			
	Crganism in tine ootal sample	Not Figh each item \qquad B				B		A		B				3				B		A		B		A		B	
	Fo.					No.		No.	\%	\%o.	c			Mo.				Ho.	.	No.	\%	\%-	${ }_{5}$	i.o.	\%		- 6
O1igochaetz												5	0.5	1	2.7												
Wisstronocia												3	0.3	1	2.7	2	1.8	1	2.5								
Plecoptera Njmphs				5	1.6	3	8.3																	99	17.2	4	no. 8
Zyhmeroptera archs				23	7.6	9	25	10^{2}	42.6	9	29.4	18	1.9	9	24.3	37	33.3	12	30	11	55	2	25		7.?	8	P1.ć
Gemirtera								2	0.8	1	2.3					24	21.6	8	20								
Priciontera Larvae				22	7.2	9	25	50	20.4	12	23.5	5	0.5	4	10.8					5	25	2	25	15	13.6	6	6.2
Cclecptera. haults and lanvee				6	1.9	2	5. 4	10	4	4	9.5	9	0.9	2	5.4	5	4.5	2.	10					:1	10	3	5.1
Fiptera. Larvae and Furze	133.3	1	33.3	2	0.6	1	2.7	11	4.5	3	7.1	12	1.3	5	13.5	5	4.5	3	7.5					13	11.8	2	5.4
fierisl and Terrectrial it: : insects	$1: 33.3$	1	33.3	240	79.4	8	22.1	59	24.1	8	19.0	357	93.7	10	27	27	24.3	8	20					14	12.7	ϵ	16.8
Eisi	1 1															6	5.4	i	2.5	2	10	2	25	1	0.3	1	2.7
Stine	133.31	1	33.3	4	1.2	4	11.1	6	2.4	3	7.7	3	0.3	3	8.1	2	1.8	2	10	2	10	2	25	5	4	5	13.5
Flame material								2	0.8	2	4.6	2	$0 . \%$	2	5.4	3	2.7	3	7.5					2	1.3	2	5.4

Trout Illl Salmon parr

Fig. 3.8
Fercenrage of stomachs of trout and salmon parr contaning each type of foud organisin in different months
materials, was found in 10.2% of the total stomachs examined. In plant material is included moss, algae, leaves and, rarely, fruit and seed. The stones present probably included the remains of the cases of stony-cased caddis larvae together with stones ingested aecidentally with the food.

(1i) Seasonal variation in food intake

Fig. 3.7 shows the sessonal variation in the food intake of trout in Afon Llafar. The curves are based on the mean fullness index of the stomachs. It seems that maximum food intake was from April/May to sugust/September and it gradually decreased to a minimum in the winter months. Fach of the various seasons, winter, spring, sumer and autum, designated in the following discussion of seasonal variation in salmonid food and feeding encompasses three months. Winter includes December, January and Februsry; spring includes March, April and May; summer includes June, July and August and finally the sutum Includes September, October and November.
(111) Seasonal changes in the food of trout

Table 3.10 and Fig. 3.8 show the seasonal food of trout In Afon Llafar. Ephemeroptera, Trichoptera, Diptera, Coleoptera and aerial and terrestrial food were eaten throughout the year but their frequency of occurrence varied. During Autust to November gastropods were common in the diet. Plecoptera nymphs occurred in the food during

Table 3.11 The average percentage composition of the food assessed by Occurrence, Volume and Number methods of brown trout of each age group for the total period of observation ($+=<0.1 \%$)

lato winter and spring. Hemiptera were found during summer and autumn. Fish formed a small percentage of the food during october/November to February/March. Thouch aerial and terrestrial food occurred thoughout the year, most of this was eaten in April/May to October/ November. Plant material was eaten very frecuently during June/July to cctober/Noverber. The stones were found in the stomochs round the year in varied numbers. Oligochactes did not seem to be preferred.

I tried to determine whether piants were ingested purposely and not accidentally. As some stomachs contained only plant material, I deduced that the reeding on plents was intentional. It is interesting to note that all the leaves eaten were approsimately the same length, and they thus appear to have been cropped. (Plate 3.4).
(iv) Focd in relation to ere

Table 3.11 shows the percentage composition of the food of trout of each age group. There is no significent change in the diet in relation to age for food items like Plecoptera, Trichoptera, Coleoptera, aerial and trrestrial insects, plant materials, and chironomid larvae. I found a significent difference in the occurrence of ephereropteran food items in the different age groups of trout $\left(x_{3}^{2}=9.05 ; p<0.05\right)$.

49

Table 3.12 The total annual composition of the diet of 136 salmon parr assessed by Occurrence Volume and Number methods. $(+=\% 0.2 \%)$

Food organisms	Average percentage represented in total sample		
	Occurrence	Volume	Number
Benthic food			
Lumbriculus spp	0.9	1.2	0.5
Ancylastrum fluviatile	2.1	0.5	0.7
Limnaea pereger	0.2	1.0	0.2
Amphinemura spp:	1.1	0.3	0.9
Leuctra spp.	1.1	0.1	0.7
Nemoura spp.	0.3	0.6	1.0
Pratonemura meyeri	1.2	0.7	0.9
Baetis rhodani	12.4	4.2	9.7
Caenis spp.	3.7	1.1	2.8
Ecdyonurus spp.	0.9	0.6	0.5
Ephemerella spp.	2.6	1.3	3.2
Other Ephemeroptera nymphs	6.9	9.4	10.4
Anabolia spp.	4.1	3.3	3.7
Plectrocnemia conspersa	9.8	9.2	5.6
Rhyacophila dorsalis	1.2	3.6	1.0
Hydroptila spp.	3.0	2.3	1.6
Other trichopteran larvae	13.3	20.5	16.7
Helmis maugei larvae	0.6	0.3	0.2
Latelmis vokmari	0.3	+	0.1
Chironomid larvae	13.4	10.6	18.3
Chironomid pupae	$+$	+	+
Simulid larvae	4.8	3.0	8.1
Tipulid larvae	1.5	3.8	1.0
Other dipteran larvae	0.6	0.5	0.6
Other dipteran pupae	0.3	0.6	0.1
Midwater food			
Helmis maugei adults	2.2	2.2	1.0
Micronecta spp.	2.2	2.0	1.6
Aerial and Terrestial food			
Aerial and Terrestial arthropods2.1		8.1	1.9
Miscellaneous food			
Plant materials	6.0	7.8	6.7
Stones	0.7	0.4	0.2
Total	100.0	99.2	99.5

(b) Salmon parr
(i) Composition of the diet

Trichoptera larvae were the predominant item in the diet of salmon parr (Table 3.12). Among them larvae of Anabolia spy, Plectrocnemia consperse, Phyaconhile dorsalis, Hydrontila spn. and other trichopteran larvae were wellrepresented. The ephemeropistan nymphs occurred in c6. 5 of the total stomachs, were the next important dietary Item and represented by Baetis spo, Ceenis spp, acdronurus spp, Lphemerella spp, and other epheneropteran nymphs. The dipteran larvaa which included chironomids, simuliids, tipulids and others occurred in $13.4 \hat{\beta}, 4.8 \%, 1.5 \%$ and 0.6% of the total stomachs respectively. Aerial and terrestrial organisms were consumed by 2.1% of the total fish. Ampinemura spy, Leuctra spn, and protonemura meyeri were the important plecoptera in the diet. Oligochaetes, gastropods and Coleoptera were of insignificant importance as compared with other food organisms. 6.7% of the total stomachs contained the miscellaneous food 1.e. plant materials and stones; of these 6.0% had plant materiol and 0.7% had stones.
(ii) Seasonal variation in food intake

Fig. 3.7 shows the seasonal variation in the food intake of salmon parr. It is apparent that most food was taken from April/May to August/September and it decreased to a minimum in winter.

Table 3.13 The food of salnon farr in Afon Llafar. ($+==<.1 \%$)

Table 3.14 The average percentage composition of the food assessed by occurrence, volume and number methods of salmon parr of each age group. $\therefore \therefore \quad . \quad$.

The percentage composition (by numbers) of the bottom fauna and benthic food items of trout and salmon parr
(1i1) Sensonal changes in the food of salmon rarr
Table 3.13 and Fig. 3.8 show the seasonal food of salmon parr in Afon Llafar. Trichoptera and Diptera (Chironomidae and Simulildze) larvae, Behemeroptera and Flecoptera nymphs were found in the stomachs throughout the year. Trichoptera larvae were more frequent in the diet in cctober/November to February/March then in April May to August/September as most of them emerge during summer. Chironomid and simulild larvae were very conmon food items in AprilMay to August/September, because of their attaining a maximum size and consequently becoming more prominent at this tine. Oligochaetes, gastropods, Coleoptera were insignificant food items in any season. Aerial and terrestrial insects were found from early spring to late autumn.
(iv) Food in relation to age

Table 3.14 shows the food of salmon parr assessed by three different methods in each age group. x^{2} test showed a hishly significant difference in the occurrenco of chironomid larvae ($x^{2} z_{3}=1<.41, F<0.05,<0.02<0.01$) in the food of different age groups of salmon parr.

(c) Dtilisstion of fauna

Fig. 3.9 shows the percentage composition by number of the fauna and food items of trout and salmon parr. Oligochastes were common (8.6%) in the river, but

Lumbriculns snn. comprised only 0.5% and 1.4% of the total food of salmon parr and trout respectively. This could be due to sulft digestion by the fish. Gastropods and Hydracarina were rare in the fauna and food. 7.1F of plecoptera were recorded in the bottom fauna survey; but only 2.5 of the trout and 3.5 , of the salmon parr food belonged to this group. Ephemeroptera were found in 9.7\% of the total benthic faung. The members of this group formed a significant part of the benthic food of salmonids 1.e. 27.3% for trout and 26.6% for salmon parr. The aquatic Hemptera formed a small proportion (0.1) of the selmonid food, although this group made up a substantial (9.2.) part of the total fauna. 27.0 of the diet of salmon parr and 19.0f of the diet of trout were trichopteran larvae, wereas oniy 5.0% of the bottom invertebrates belonged to this group. Coleoptera larvae and adults were recordea in 1.20 of salmon parr and 2.0 of the trout food, though the number (6.7%) in the botton fauna was high. Chironomid larvac were abundant in the river and formed 42.5% of the total benthic fauna. 30.0% and 7.5% of the chirononid larvae were recorded in the total diet of salnon parr and trout respectively. There is a sigificant difference between trout and salmon parr as far as the consumption of chironomid Larvae is concemed ($F=14.4 ; \mathrm{df}=1 / 11 ; \mathrm{F}<0.05$). Simulium larvae constituted 8.0% of the salmon parr and 1.9% of the trout diet, though only 1.0\% was found in the bottom.

Overall, 70% of the trout diet comprised bottom invertebrates whereas the salmon parr diet comprised 91. 8 . The rest, 1.e. 30.0% and 8.2×0 of the diet is made up of aerial and terrestrial insects, plant naterials and stones.

5. STMMARY

(1) Uth the exception of oligochactes there are no significant differences in the botom fauna at L_{1}, L_{2} and $I_{3}\left(\begin{array}{ll}\mathrm{P} & 0.05) .\end{array}\right.$
(2) There is a steady downard trend in the number of animals from summer to winter. During summer, populations fluctuate owing to insect emerence (chironomid, mayfiles and cadds flies) and hatching of eggs and development of larvae of succeeding insect generation. In winter many forms are more or less dormant and inactive and not oasily available to fish.
(3) Ephemeroptera nymphs, Trichoptera and Diptera larvae are the main benthic focd of salmonids in the strean. (4) Aerial and terrestrial insects occur in 19.1\% and 1.4\% of the total trout and salmon parr stomechs respectively. (5) Plent material appear to have been eaten deliberately end not accidentally. Algae, moss and leaves of other aquatic plants were found in 0.0% of salmon pars and 4.1% of the trout stomachs.
(6) There is no seasonal relationship between the consumption of invertebrate food of aquatic origin and aerial and terrestrial forms.

57
(7) 70% of the food of trout and 91.8 : of the food of salmon parr is derived from the benthic fauna.

Page

1. THE ENVIROMMENT 60
(a) General topography 60
(b) Description of the sampling site 60
(c) Physical and Chemical conditions 64
2. COMPOSITION OF THE FAUNA 64
3. THE FEEDING OF SALMONIDS 70
(i) Brown trout 70
(a) Composition of the diet 70
(b) Seasonal variation in food intake 74
(c) Seasonal changes in the food 74
(d) Food in relation to age 76
(ii) Salmon parr 76
(a) Composition of the diet 76
(b) Seasonal variation in food intake 77
(c) Seasonal changes in the food 77
(d) Food in relation to age 80
(iii) Jtilisation of the faura : : $\because \% 80$
4. SIMMARY 81

PLATE 4.1 SANPITING STMPION IW

CHAPTER IV

1. THE ENVIRONMENT

(a) General topography

Aron Lliw is situated on the south western part of the Limn Tegid, Merionethshire, North Wales. It flows from the southern slopes of Noel Llymant, 745 m high. The source of the stream is 484 m above mean sea level. It is the main tributary stream of Afon Dyfrdwy (Little Dee), and joins the latter about 300 m from the lake after flowing through the so-called "Bala Bods" (Ashgill and Caradoc). The streara descends through the mountains into the hilly farm lands. Before joining the Little Dee it is joined by many tributary streams. Upon its approach to the junction the river gradually widens into a broad waterway. The united waters of the Aron Lliw and Afon Dyfrdwy find their way towards the southern end of the lake.

(b) Description of the sampling site

One sampling station (IW) was selected on this stream (Plate 4.1). The station is located 3.2 km away from the lake at an altitude of 200 m . D. Here the stream is about 6 m wide and 0.3 m deep. The substratum is composed of loose rocks of varying sizes as well as solid rock. There is scattered vegetation (patches of Fontinalis ontipyretica and cinlitrichequatica) on the bottom and a few beech trees on the banks (FIgs. 3.2 and Plate 4.1).

Table 4.2 The density (Av. No. $/ \mathrm{m}^{2}$) of the fauna at one sampling site, based on 14 monthly samples. $(+=\langle 0.1 \%)$.

	Sampler		
Name of Species	No. spp.	\%	${\mathrm{Av} \cdot \mathrm{No}_{2}}^{2}$
Hirudinea (TOTfL)	(11)	(0.3)	(7.4)
Helcbdella stagnalis	7	0.2	5.3
Ernobdella octoculata	4	0.1	2.1
Dlimocherta	(437)	(15.3)	(333.8)
Homochae ta naidina	5	0.1	3.2
Eiseniella tetraedra	5	0.1	3.2
Lumbriculus varicgatus	61	2.1	46.0
Stylodrilus herinfianus	356	12.5	271.7
Peloscolex ferox	6	0.2	4.2
Anlodrilus oluriseta	4	0.1	2.1
Gastronoda	(5)	(0.1)	(2.2)
Ancylustrum fluviatile	5	0.1	3.2
Lamellibranchiata	(6)	(0.2)	(4.2)
Pisidium cinerium	1	$+$	0.7
Pisidium suletruncatum	5	0.1	3.2
Amminora	(3)	$(+)$	(2.1)
Ganmarus pulex	3	+	2.1
Hydracarina	(2)	(+)	(1.0)
Sperchon aenticulatus	1	\pm	0.7
Hyerobates fluviatilis	1	\pm	0.7
Plecortera	(80)	(2.8)	(60.9)
Vemoura avicularis	1	+	0.7
Leuctra hippopus	5	0.1	3.2
Protonemura meyeri	15	0.5	10.7
Chloroperla trinunctata	2	$+$	1.0
Amphinermura sulcicollis	20	0.7	14.9
Isonerla rrammetica	8	0.2	5.3
Amphinemura standfussi	11	0.3	7.4
Leuctra nimra	2	$+$	1.0
Chloronerla torrentium	11	0.3	7.4
Leuctra fusca	5	0.1	3.2
Ephemerontera	(700)	(24.6)	(535.0)
Baëtis pumijus	12	0.4	8.5
Lentorhlebia vesnertina	20	0.7	14.9
Baetis rhodani	$?$	0.1	5.3
Ecdyonurus venosus	10	0.2	7.4
Centrcatilum lutenlum	629	22.1	480.4
Paralentopilebia sulemarginata	2	$+$	1.0
Rhithrocena semicolorata	3	0.1	2.1
Caeris moesta	1	+	C. 2
tphemerella icnita	3	0.1	2.1
Leptorincobia marginata	10	0.3	7.4
Ecdyonurus dispar	2	+	1.0
nientecenia latoralis	1	$+$	0.7
ifemintern	(266)	(9.8)	(202.5)
Cicronectia moveri	264	9.8	201.1
Corixa manzeri	1	$+$	0.7
Sigura nymph	1	+	0.7

Table 4.2 (conta.)

	Sampler		
Name of Species	No. spp.	\%	$\mathrm{Av}_{\mathrm{m}}^{2}$
Megrlontera	(6)	(0.2)	(4.2)
jialis lutaria	3	0.1	2.1
Sialis fuliginosa	3	0.1	2.1
Trichonters	(166)	(5.8)	(126.2)
Sericostoma personatum	5	0.1	3.2
plectrocnemia conspersa	93	3.2	70.6
Potamonhylax lati ennis	1	+	0.7
Potamonhylax cinculatus	1	$+$	0.7
nnabolia nervosa	21	0.7	16.0
Glymotaelius pellucidus	34	1.1	25.6
Hydronsyche instabilis	6	0.2	4.2
hydrontila tineoides	2	$+$	1.0
Folycentropus flavomaculatus	1	+	0.7
Dinlectrona felix	2	$+$	1.0
Coleontera	(51)	(1.7)	(,8.5)
Halinlus Iineatocollis	2	+	1.0
Platambus maculatus	12	0.4	8.5
Helmis magei	16	0.5	11.7
Helophorus flavines	1	+	0.7
Latelmis volkmari	14	0.5	10.7
Helodes marrinata	6	0.2	4.2
Dintera			
(1) Ceratororonidae	(12)	(0.4)	(8.5)
Dezzia sop.	12	0.4	8.5
(2) Simuliidae	(4)	(0.1)	(2.1)
Simuljum monticols	3	0.1	2.1
Simulium brevicaule	1	$+$	0.7
(3) Tirulicae	(6)	(0.1)	(4.2)
Tinula montjum	5	0.1	- 3.2
Einula cauckei	1	$+$	0.7
(4) Chironcmidae	(1007)	(35.4)	(769.3)
polynedi?	592	20.8	451.5
Panytarcus simatus	160	5.9	128.4
Prodiomess olivacea	110	3.8	83.4
Pentaneura monilis	98	3.4	74.9
Froclacius choreus	30	1.3	28.8
Prichocladius rufiventris			
(6) Other dipteran larvae	(19)	(0.6)	(13.9)
Licranota robusta	13	0.4	9.6
Limnoshora spo.	1	$+$	0.2
Lianealus virens	-	0.1	2.1
Tarhrorhila vitripennis	2	$+$	1.0
Dipteran pupae	5%	2.0	42.8
Total number of animals	2842		
Av. no. animals/month	202.9		
Av. no. animals/m ${ }^{2}$	2171.0		

(c) Ehysical and Chemical conditions

Table 4.1 indicates the mean monthly estimates of physical factors at LW. Water temperature, recorded at monthly intervals, varied between 4 and $16.1^{\circ} \mathrm{C}$. The pH was generally constant ($6.7-7.5$), reflecting the chemical stability of the stream. The velocity of water current ranged from $0.11-0.75 \mathrm{~m} / \mathrm{sec}$. The lowest values of conductivity and turbidity of water were recorded during sumer, and highest values inkinter. An increase in oxygen saturation during summer and a decrease in winter was observed.

Water samples for chemical analysis were taken as before and the results are given in Table 3.4. There was ilttle difference between Llafar and Lliw water.

2. COMPOSITION OF THE FAUMA

Table 4.2 lists the animal fauna found in the strean durine routine sampling, and also the total number of specimens of each category taken by the sampler. As far as possible the material was identifled to species. The almost complete absence of Gemmarus pulex and Limeses pereger (0.1% and 0.1% by number of the total fauna) was similar to the findings of Janes ($1948 a$) who noted their absence from several soft water streams in south wales, although they were present in large numbers in a nearby hard water stream.

Fig4.i Seasonal variations in the numbers of different groups of bottom fauna

I found a steady increase in the total number of individuals from winter to summer as did Frost (1942), Badcock (1949) and Hynes (1961).

Seasons	Spring	Summer	Auturn	Vinter
Totsi Ho. animals	1229	3118	989	915

Altogether 85 species were recorded from this stretch. The species beionged mainly to groups Oligochaeta, Plecoptera, Ephemeroptera, Trichoptera, Colcoptera end Chironomidae, Fig. 4.1 illustrates the seasonal fluctuations in numerical abundance of six groups, as a percentage of the yearly catch for each group. These six groups together account for over 85° of the total catch. The fall in numbers in winter for these six groups parallels the fall in overall numbers.

(A) Annelida

(1) Himadinea
0.2 of the benthic fauna was composed of Helobielia stamalis and Errobdelia octoculata

(2) 011 eochaeta

This group formed 14.2 of the total fauna in which Lumbriculus varieratus and stylodrilus heringionus were very common. I collected more ollgochaetes during sumner (FIg. 4.1).
(B) Mollusen
(1) Gestronods

Limnaea refeger was very rare compared to
Ancrlestrum fluviatile.
(2) Lemellibrenchists
C. 2 of the fauna was composed of Pisidium hibarnicum and Pisidium subtruncatum.
(c) Arthronoda
(1) Crustacea
(a) Amphipods

This group was represented by Gamparus pulex winch formed 0.18 of the total fauna.
(2) Arachnids
(a) Hydracaring

The members of this group were almost absent being 0.1% of the total aquatic invertebrates.

(3) Insects

(a) Plecontera

11 species of stoneflies were represented in this group which formed 2.6_{r} of the total macrobenthos. Protoncmura meyeri, Amphinemura sulcicolilis, Isoperla mromatica and Chloroperla torrentium were common and the rest occasional. I found that the number increased during sumer (Fig.4.1).
(b) Enhemeronters

14 species occurred in this group and constituted
18.4\% of the total animals. Centrontilum Iuteolum vas common. An increase in number of mayfly nymphs during sumer was nticed which may be due to their spring emergence (FIg.4.1); though according to Macan (1957) the timings of their life historles vary, and are affected by high summer temperatures and oxygen deficiency.
(c) Hemintera
11.6f of the fauna was represented by three species of this group khich were not the usual inhabitants of the stream. They were usually found when the current was slow and there was more vegetation near the bank during sumer and autumn. Maybe they have been washed away from back waters by the flood and colonized again in sheltered places; but according to Popham (1943) they are stimulated to migrate by high temperature, over-crowding and unsuitable background.
(d) Megolooters
0.2 of the fauna was composed of sialis lutoma and stalis fulloinoss.
(e) Trichootera

14 species were identified and listed in Table 4.2 which constituted 5.9% of the total benthos. plectrocneris consperss was very common. I noticed more trichopteran larvae during summer (Flg. 4.1).
(f) Coleonters

Five species ilsted in Table 4.2 were rare and make

Table 4.3 The total annual composition of the diet of 113 trout and 93 salmon parr assessed by Cccurrence, Volume and Number method. $\quad\left(+=\left\langle 0.1 \%_{\circ}^{\circ}\right)\right.$

Food organisms	Trout			Salmon parr		
Benthic food	$\begin{gathered} 0 \\ (\%) \end{gathered}$	$\begin{gathered} V \\ (\%) \end{gathered}$	$\begin{gathered} \mathrm{N} \\ (\%) \end{gathered}$	$\begin{gathered} 0 \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{V} \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} N \\ (\%) \\ \hline \end{gathered}$
Lumbriculus spp	1.0	0.2	0.8	-	-	-
Ancylastrum fluviatile	0.6	+	+	0.2	0.1	+
Leuctra spp	0.1	+	0.1	. 6	0.1	0.4
Amphinemura spp	0.6	0.1	0.4	1.8	0.4	0.9
Protonemura spp	0.4	0.1	0.6	1.6	0.2	0.6
Caenis spp	2.3	1.0	4.8	4.2	2.1	9.1
Baetis spp	4.8	2.2	3.1	9.4	3.6	5.2
Other Ephemeroptera nymphs	7.3	5.0	7.4	19.3	22.4	14.8
Plectrocnemia conspersa	7.8	12.9	10.9	14.3	7.9	11.5
Other Trichoptera larvae	12.0	7.0	8.2	19.3	30.1	17.1
Helmis maugei larvae	2.8	0.J	1.7	0.2	0.1	0.3
Latelmis volkmari iarvae	2.0	0.8	1.6	0.2	+	+
Chironomid larvae	2.7	1.0	3.1	4.7	5.5	8.9
Chironomid pupae	-	-	-	0.6	0.1	0.4
Simuliid larvae	0.7	0.3	2.0	5.5	2.9	8.3
Tipulid larvae	0.2	0.1	+	-	-	-
Other dipteran larvae	4.8	3.4	9.0	6.6	1.6	4.3
Midwater food						
Helmis adults	0.8	0.3	1.1	-	-	-
Other coleoptera adults	1.1	0.4	1.0	-	-	-
Fish	24.9	33.7	22.2	-	-	-
Aerial and terrestrial food						
Aerial and terrestrial insects Miscellaneous food	22.4	19.4	13.6	9.7	16.0	13.7
Plant material	8.3	10.0	6.4	8.5	3.6	2.9
Fish eggs	0.4	3.3	1.2	2.5	2.6	2.6
Stones	1.0	0.5	0.5	-	-	-
Total	99.0	99.5	99.7	99.4	99.3	100.0

1.4\% of the total organisms. Latelmis volkmari was present in every season.
(g) Dinters
(i) Chironomidae

A large component (39.6%) of the benthic fauna was formed by this family in which sevenspecies were 1dentifiable. I observed that their numbers were much greater in summer than in any other season (Fig.4.1).
other dipteran laryae
Dicranota robustas Limnonhora sno, Tephronhila Hitripennis and Lianealus virens constituted 0.8% of the total bottom invertebrates.

3. FERDING HABITS OF SALMONIDS

A total of 113 trout and 93 salmon parr were taken approximately at 2 monthly intervals, November 1968 March 1970, for food studies. of these 104 trout and 82 salmon parr contained food in varying amounts and the rest of the stomachs were empty (Tables 3.6, 3.7).

Detailed examination of stomachs was carried out by applying the four different standard methods mentioned in Chapter 3.4b.
(1) Brown trout
(a) Composition of the diet

Table 4.3 shows the composition of the diet of trout in Afon Lliw, from November 1968 to March 1970.

Fig 4.2 Seasonal variation in food intake of trout and salmon parr based on alternate months (Jan 1969 Jan 1970)

Fig4-3 Percentage of stomachs of trout and salmon parr containing each type of food item in differen: months

Fig44 Percentage of stomachs of trout and salmon Parr containing each type of organism in different months in Afon Lliw

Trichoptera larvae, Ephemeroptera nymphs and dipteran larvae, vinich formed $19.9 \%, 8.2 \%$ and 4.8% of the total volume respectively, were important benthic food items. 33.7% (by volume) of the food was composed of the fish and 19.4% of aerial and terrestrial insects. The miscellaneous food which includes plant materials, occurred in 10.0\% of the total volume of food. 011 gochaetes, gastropods, Plecoptera nymphs and Coleoptera adults and larvae were not major food items.
(b) Seasonal variation in food intake

Flg. 4.2 shows the seasonal variation of food intake of trout in Afon Lilw. The curve clearly indicates that the feeding activities are at their peak from March to September and they gradually decrease to a minimum in winter months.

(c) Seasonal changes in the rood of trout

Figs. 4.3, 4.4 show the seasonal variation of the more common food items in the stomachs of trout. Oligochactes, rainly Lumbriculus sp. were found during Noverber and December. Gastropods were represented by Ancylastrum spp. in the month of August. More Plecoptera nymphs were eaten during autumn and spring than in summer. Ephemeroptera nymphs and Trichoptera lervae were consumed throughout the period. Coleoptera adults and larvae, particularly of Helmis spp. and Latelmis spp. were eaten

Table 4.4 The persentage composition of the food assessed by occurrence, volume and number methods of trout of each age group.

Name of Species	Salmo trutta														
Total No. of Stomachs	113														
Age	O+			1+			$2+$			3+			$5+$		
No. sp. in each age group	2			61			24			25			1		
No. empty stomachs	-			4			$0 \quad 4$			1			-		
Methods of assessment	0	V	N	0	V	N	0	V	N	0	V	N	0	V	N
Lumbriculus spp.				2.8	1.3	2.7				2.2	0.1	1.5			
Ancylastrum spp.				3.3	0.1	0.2									
Plecoptera				2.1	0.4	1.8	2.0	0.3	1.6	1.5	0.7	1.4			
Ephemeroptera				35.4	23.3	37.2	20.2	10.3	13.1	16.7	7.7	11.2			
Trichoptera				24.1	38.5	21.3	45.5	50.8	44.9	29.6	10.4	28.7			
Coleoptera adults							9.7	3.7	10.1	4.4	+	0.9			
Coleoptera larvae	20.0	6.2	12.5	4.1	0.6	4.2									
Chironomid larvae				6.1	3.0	5.6	4.7	1.7	5.4	2.8	0.7	4.9			
Sinuliid larvae				0.7	0.1	0.7				2.8	1.7	9.5			
Tipulid larvae							1.4	0.8	0.4			1			
Other diptera.llarvae Aerial and terrestrial	20.0	15.5	37.5	1.3	0.6	1.6	1.5	0.4	0.9	1.5	0.7	5.2			
insects	20.0	30.0	12.5	17.9	27.7	21.8	13.1	31.7	22.6	11.1	8.0	11.1			
Fish										18.0	68.5	13.6	100	100	100
Fish eggs										2.2	1.7	6.3			
Stones				0.8	1.6	0.4				4.4	1.1	2.4			
Plants	40.0	48.3	37.5	1.7	2.3	1.4									

more during summer than in spring and autumn. The trout had fed more on chironomid larvae during summer than in winter. Other dipteran larvae were present in the food during sumer only. Aerial and terrestrial insects were present ingreater abundance during spring, summer and early autumn than in winter. Fish were found in the stomachs during December to March. Miscellaneous food, which includes fish eggs, stones, and plant materials, were found mostly during winter.

(d) Food in relation to age

Table 4.4 shows the food of trout assessed by three different methods in each age group. 43.3% and 2.3% of the t total volume of food were composed of plant materials in $0+$ and $1+$ age groups of trout; whereas those were absent in the food of older f1sh. Similarly, fish made up 68.5% and 100.0% of the food (by volume) in the $3+$ and $5+$ age groups, but mone in the fish that belonged to $0+$ to $2+$. I found a significant difference in the occurrence of ephemeropteran ($x_{3}^{2}=12.1, p<0.05<0.02<0.01$) and aerial and terrestrial $\left(\mathrm{A}_{3}^{2}=7.83, \mathrm{P}<0.05\right)$ food items in the different age groups of trout.
(ii) Salmon varr
(a) Comnosition of the diet

Table 4.3 shows the total composition of the diet assessed by three different methods. Food items of many
kinds were found in the stomachs of salmon parr and there were considerable difficulties in the exact identification of fragments of food. $77.8 \%, 26.0 \%$ and 6.3% of the total volume of food items were composed of benthic, aerial and terrestrial, and miscellaneous food. 38.0 by volume of the diet was plectrocnemia conspersa, and other unidentifiable trichopteran larvae; 28.8% by volume was Dphemeroptera nymphs among which Baetis spp. and Centrontilum spp. were identifiable. 5.5% b: volume of the diet was chironomid larvae. Leuctrs spp, Amphinemura spp, and protonemura spp, of the group Rlecooters; Ancylastrum spp. of Gastropoda; Latelmis volkmari of Coleoptera and finally the other dipteran larvae were occasionally present.
(b) Seasonal variation in food intake

Fig. 4.2 shows that the maximum food intake occurred In the month of July and it gradually decreased to a minimum in January.
(c) Seasonal changes in the food

Figs. 4.3 and 4.4 show the seasonal changes in the food of salmon parr. Plecoptera nymphs were eaten more during spring, sumer and early autum than in winter. Ephemeroptera nymphs and Trichoptera larvae, being major food items, were consumed throughout the period. More chironomid and simulild larvae were found in the stomachs during sumer than in any other season. Other dipteran larvae occurred in the food only in winter. Not surprisingly,

Table 4.5 The percentage composition of the food assessed by occurrence, volume and number methods of salmon parr $0 \approx$ each age group.
$\because \quad-\quad \because \because$

Fig4.5 The percentage composition (by number) of the bottom feuma and benthic rood items of trout and salmon parr
salmon parr had fed more on aerial and terrestrial insects during summer than in winter. Aquatic plants occurred in stomachs during late autum and winter.
(d) Food in relation to age.
x^{2} test showed a significant difference in the occurrence of ephemeropteran $\left(x^{2} 3=10.07, P<0.05<0.02\right)$ ond aerial and terrestrial $\left(x^{2} 3=9.28, P<0.05\right)$ food items in the different age groups. As far as other food iters were concemed, there were no significent chenges in the diet in different age groups (Table 4.5).

(ii1) Utilisation of the fauns

Fig. 4.5 shows the percentage composition by numbers of the fauna and food items of trout and salmon parr. 011 gochaetes formed 14.0 of the fauna but they did not seem to be eaten. by salmon parr; only 2.2% were recorded from the trout. Gastropods were found in a very small quantity in the fauna and food. 2.2% of the benthic fauna was composed of stonefly nymphs, though they too were not often taken by the trout. I found a significently high positive correlation ($r=0.72, P:<0.01$) between benthic plecopteran numbers and the numbers of plecopteren food found in the stomachs of salmon parr from month to month. Mayfly nymphs constituted 18.4\% of the total bottom fauna; 29.1% of the food of salmon parr and 18.5% of the trout food belonged to this group. The correlation between the
numbers of Ephemeropters, Trichoptera and chironomid larvae present in the food of salmonids, and the numbers in the benthic fauna was insignificant. This could be caused by patchy disiribution of the above groups in the fauna; or the flsh might have been feeding at a place rich in mayfly nymphs, trichopterans and chironomid larvae. Trichoptera larvae as a food item were found more in the stomachs of trout (18.9%) and salmon parr (28.5%) than the fauna itself (5.5%) 0.7% and 6.9% of Coleoptera were eaten by salmon parr and trout, whereas in the fauna only 1.4% were recorded. There was a significant correlation ($r=0.7 ; P<0.01$) between coleopterans present in the food of trout and in the benthic fauna. Chironomid larvae were the largest group of the benthic fauna (35.0\%), although in the trout stomachs they were only 3.1\% of the total, and 8.9% in salmon parr. Simulid larvae together with other dipteran larvae comprised a small percentage of the bottom invertebrates, although they had a high percentage representation in the food of salmonids (FIg. 4.5).

5. SUMVARY

(1) Oligochaeta, Ephemeroptera, Hemiptera, Trichoptera and Chironomidae form more than 90% of the bottom fauna. (2) the number of Chironomidae, Coleoptera, Trichoptera Ephemeroptera, Plecoptera and Oligocheeta increases during summer end gradually decreases in winter.
(3) The members of the Trichoptera, Ephemeroptera, Diptera
and plecoptera are the main aquatic food of trout and salmon parr.
(4) 53.3% and 81.6% of the bottom faun (by number) were consumed as a food by trout and salmon parr and the romining 46.7% and 18.6% were 91 sh , aerial and terrestrial and miscellaneous food items.

CHAPMER V

AFON DYFRDWY

Page

1. THE ENVIKONMENT 85
(a) General topography 85
(b) Description of the sampling sites 85
(c) Physical and Chemical conditions 88
2. COMPOSITION OF THE FAUNA 94
3. THE FEEDING OF SALMONIDS 103
(i) Brown trout 103
(a) Composition of the diet 103
(b) Seasonal variation in food intake 108
(c) Seasonal changes in the food 108
(d) Food in relation to age 108
(ii) Salmon parr 109
(a) Composition of the diet 109
(b) Seasonal variation in food intake 113
(c) Seasonal changes in the food 113
(d) Food in relation to age 113
(iii) Utilisation of the fauna 105
4. SUMMARY 117

PLATE 5.1 SAMPLING STATION LD1

CHAPTER V

1. THE ENVIRONMINT

(a) Seneral tonography

Afon Dyfrdwy rises as a small stream in the Dduallt at an elevation of 660 m 0 D ; and flows through the Pre-Cembrian beds, contemporaneous igneous rocks and Ashgill and Caradoc beds of Bala Series. The Dyfrdwy as the Dce is called in Welsh, before entering the lake recelves on the right the Twrch from Foel Rhudd, and on the left the Lliw from Noel Llyfnant. The three streams meet at the little village of Ilanuwchilyn, and the united waters enter Llyn Tegid, the largest natural lake in wales.

(b) Descriotion of the sampling sites

Two sampling stations, namely LD_{1} and LD_{2} were selected and monthly samples taken over fourteen consecutive months at both sites. The first station, which is referred as $L D_{1}$ (Plate 5.1) in the text, was located near the lake about 40 m upstream from the shore, at an altitude of 175 m C. D. River width here ranged from 10 m at low to 20 m at hich water. Depths in summer water ranged from 0.15 m to 1 m . The substratum was s and and gravel. There was no aguatic vegotation near the banks.

Site two which is referred as $L D_{2}$ in the text (F1g.3.2) was located on Afon Dyfrdwy near its junction with Afron Twrch at

TABLE 5.2 MEAN MONTELY ESTIMATES OF PHYSICAL FACTORS AT LDR IN AFON DYFRDWY.

Months	M	A	M	J	J	A	S	0	N	D	J	F	M	A
Water Temp. C°	5.0	5.8	8.6	12.6	16.2	15.0	8.2	7.4	5.6	3.4	3.6	4.1	4.6	7.8
Specific conductance (micromhos / cm^{3} at $25 \stackrel{\circ}{\mathrm{C}}$)	68	62	73	79	80	72	75	131	251	326	268	309	146	89
Dissolved 02, \% Sat.	96	103	95	99	98	104	96	93	102	112	108	104	101	98
$\begin{aligned} & \text { Velocity of water current } \\ & (\mathrm{m} / \mathrm{sec} .) \end{aligned}$	0.21	0.23	0.18	0.12	0.09	0.13	0.18	0.15	0.29	0.58	0.64	0.70	0.60	0.21
pH	7.2	7.1	6.9	6.8	6.7	7.1	7.2	7.0	7.1	7.2	7.4	7.6	7.1	7.0
Turbidity (as Fuller 's Earth.)	21.1	19.2	18.4	19.3	18.2	17.5	26.4	21.8	56.4	88.8	79.5	86.5	41.1	23.7

an elevation of about $183 \mathrm{~m} 0 . \mathrm{D}$ and 1.6 km upstream from site L_{1}. The width varied from about $5 m$ at low water to 10m at high water. The river had deep channels in some places. The substratum was of stones. There were trees all along the banks (Plate 5.2).

(c) Ehysical and Chemical conditions

Mean monthly temperatures of the water were recorded and estimates vere made of dissolved oxygen, pH, current velocity, conductivity and turbidity of water each month at $L D_{1}$ (Table 5.1) and $L D_{2}$ (Table 5.2).

There was no significant differences between the mean monthiy estimates of pH , water temperature, velocity of water current, and percentage saturation of oxygen (Tables $5.1,5.2$) recorded each month at the two stations.

The water was soft and clear except during the flood season. Turbidity, which is largely due to silt and detritus, occurred during high water.

Hater samples for chemical analysis were taken as described in Chapter $3.2 c$ and the results are given in Tablo 3. 4.

No significant differences between the chemical constituents of this stream and Afon Lliw, were found other than a slight elevation in the amount of Ca and Mg ions wifh could be due to its geological environment (Fig. 3.1).

Fig. 5.1 Monthly fluctuations of the total fauna at the station $L D_{1}$ and $L D_{2}$ from March 1969 to February 1970

Fig.5.2 Seasonal variations in the numbers of different groups of bottom fauna in Aion Dyfrdwy

Table 5.3 The percentage composition (by number) of the fauna at two sampling sites, based on 14 monthly samples $(+=\langle 0.1 \%)$

Sampling stations	LD_{1}	$I L D_{2}$	$\begin{gathered} \% \\ \text { total } \\ \hline \end{gathered}$
Bottom fauna	Av. No. $/ m^{2}$	$\begin{aligned} & \text { Av. }{ }^{\text {No. }} \\ & \hline \end{aligned}$	
Turbellaria	(0.7)	-	+
Polycelis nigra	0.7	-	+
Hirudinea	(2.1)	(14.9)	(0.3)
Helobdella stagnalis	-	0.7	+
Erpobdella octoculata	2.1	13.9	0.3
Oligochaeta	(272.8)	(147.6)	(7.5)
Stylodrilus heringianus	238.6	121.9	6.1
Lumbriculus variegatus	43.8	18.1	1.0
Limnodrilus hoffmeisteri	3.2	-	+
Peloscolex ferox	2.1	-	+
Aulodrilus pluriseta	1.0	-	$+$
Eiseniella tetraedra	0.7	5.3	0.1
Homochaeta naidina	2.1	1.0	0.1
Gastropoda	(6.4)	(23.5)	(0.5)
Limnaea pereger	6.4	1.0	0.1
Ancylastrum fluviatile	-	21.4	0.4
Lamellibranchiata	(3.2)	(4.2)	(V .1)
Pisidium milium	2.1	0.7	+
Pisidium hibernicum	0.7	-	+
Pisidium cosertanum	0.7	\cdots	$+$
Pisidium subtruncatum	-	3.2	+
Amphiroda	(3.2)	(1.0)	(0.1)
Ganmarus pulex	3.2	1.0	0.1
Isopoda	(107.0)	-	(1.8)
Asellus meridianus	107	-	1.8
Hydracarina	(1.0)	(2.1)	(+)
Lebertia porosa	-	2.1	+
Hygrobates nigromaculatus	1.0	-	+
Plecoptera	(17.1)	(315.6)	(6.8)
Amphinemura sulcicollis	7.4	96.3	2.2
Amphinemura standfussi	2.1	103.7	2.1
Chloroperla torrentium	-	16.0	0.3
Diemoura cinerea	-	0.7	+
Protonemi.a meyeri	0.7	23.5	0.5
Isoperla granmatica	1.0	23.8	0.6
Chloroperla tripunctata	0.7	7.4	0.2
Leuctra hippopus	1.0	12.8	0.3
Leuctra fusca	-	16.0	0.3
Leuctra inermis	-	3.2	+
Txeniopteryx nebulosa	-	0.7	+
Nemoura avicularis	1.0	0.7	+
Leuctra nigra	0.7		+

Table 5.3(contd.)

Sampling stations	L_{1}	LD_{2}	$\begin{gathered} \% \\ \text { total } \end{gathered}$
Eottom fauna	Av. No. $/ m^{2}$	Av. No. $/ m^{2}$	
Ephemeroptera	(149.8)	(184.0)	(6.1)
Siphlonurus lacustris	3.2		$+$
Centroptilum luteolum	93.0	53.5	2.5
Ephemerella notata	2.1	-	$+$
Ephemerella ignita	2.1	7.4	0.1
Baetis pumilus	2.1	18.1	0.3
Leptophlebia marginata	2.1	1.0	$+$
Baetis rhodani	19.2	46	1.3
Caenis moesta	2.1	2.1	0.1
Paraleptophlebia tumida	0.7	2.1	0.1
Heptagenia sulphurea	0.7	5.3	0.1
Baetis scamius	-	16.0	0.3
Ecdyonurus venosus	0.7	10.7	0.3
Leptophlebia vespertina	12.8	0.7	0.3
Paraleptophlebia sulemarginata	1.0	2.1	0.1
Heptagenia lateralis	-	8.5	0.1
Caenis horraria	1.0	1.0	0.1
Rhithrogena semicolorata	-	2.1	0.1
Hemiptera	(422.6)	(401.2)	(14.7)
Micronecta poweri	390.5	388.4	14.2
Sigara spp. (Nymphs)	3.2	-	0.1
Sigara distincta	1.0	-	$+$
Sigara falleni	12.8	-	0.2
Corixa panzeri	3.2	12.8	0.3
Sigara dorsalis	8.5	-	$+$
Megalontera	(1.0)	(7.4)	0.6
Sialis fuliginosa	-	1.0	0.6
Trichoptera	(39.5)	(263.7)	(4.1)
Glyphotaelius pellucidus	2.1	65.2	1.4
Plectrocnemia conspersa	3.2	36.3	1.1
Mystacides nigra	0.7	1.0	0.1
Rhyacophila dorsalis	-	2.1	+
Agapetus fusipus	-	1.0	+
Hydropsyche instabilis	1.0	18.1	0.3
Sericostoma personatum	-	5.3	0.1
Polycentropus flavomaculatus	0.7	2.1	0.1
Silo pallipe:3	-	2.1	+
Hydropsyche fulvipes	-	2.1	+
Dipiectrona felix	-	0.7	+
Hycroptila tineoides	-	22.4	0.5
Agraylea multipunctata	-	0.7	$+$
Potamophylax latipennis	2.1	-	+
Anabolia nervosa	26.7	-	0.4
Coleoptera	(28.8)	(90.9)	(2.3)
Haliplus lineatocollis	7.4	-	0.1
Deronectes depressus	5.3	-	0.1
Latelmis volknari	3.2	48.1	1.2
Helmis maugei	0.7	32.1	0.7

Table
$5.3^{\text {(contd.) }}$

Sampling stations	LD_{1}	LD_{2}	$\begin{gathered} \% \\ \text { total } \end{gathered}$
Bottom fauna	Av_{r} No. $/ \mathrm{m}$	$\begin{gathered} \text { Av. No. } \\ / \mathrm{m}^{2} \end{gathered}$	
Platambus maculatus	0.7	5.3	0.1
Oreodytes rivalis	2.1	0.7	$+$
Hydroporus pubescens	2.1	2.1	+
Helophorus flavipes	1.0	1.0	+
Hyphydrus ovatus	2.1	0.7	+
Diptera			
Ceratopogonidae	(5.3)	(6.4)	(0.1)
Bezzia spp.	5.3	6.4	0.1
Tipulidae	(6.4)	(7.4)	(0.3)
Tipula montium	-	2.1	+
Tipula couckei	0.7	-	+
Tipula lateralis	3.2	3.2	0.1
Tipula palludosa	0.7	2.1	0.1
Tipula maxima	1.0	-	$+$
Simuliinae	-	(9.6)	(0.2)
Simulium naturale	-	3.2	0.1
Simulium monticols*	-	4.2	0.1
Simulium brevicaule	-	1.0	
Chironomidae	(2153.9)	(863.4)	(50.1)
Pentaneura monilis	17.1	58.8	1.6
Prodiamesa olivacea	10.7	7.4	0.3
Cryptochirciomus camptolakis	-	3.2	0.1
Procladius choreus	3.2	9.6	0.7
Tanytarsus signatus	0.7	48.1	1.0
Polypedilum nebeculosus	2120.7	732.9	47.4
Endochironomus spp.	0.7	-	+
Other dintergn larvae	(2.1)	(22.4)	(0.4)
Dicranota robusta	2.1	9.6	0.2
Atherix marginata	-	1.0	+
Taphrophila vitripennis	-	5.3	0.1
Hermerodrcmia unilineata	-	5.3	(3.3)
Dipteran punae	42.8	127.3	3.3
Total no. animals	4313	3144	
Av. no. enimals/month	308.0	224.5	
Av. no. animals/m ${ }^{2}$	3295.6	2!02.1	

2. COMPOSITION OF THE FAUNA

Table 5.3 shows the animals recorded in Afon Dyfrduy. These have been identified as far as possible. The total fauna fluctuated greatly with a period of maximum density in sumer and a smaller peak in winter (Fig. 5.1; These findings are similar to those of Frost (1942) and Humphries and Frost (1937). Seasonal variations in the individual groups are recroded in Fig. 5.2;.

A totel of 103 species were rearded from this stretch, belonging to the 0ileochaeta, Plecoptera, Ephemeroptera, Hemiptera, Trichoptera, Coleoptera and Diptera. The total number of organisms taken at $L D_{1}$ vere 4,313 and at $L D_{2}$ 3,144. Thedecrease in number at $2 D_{2}$ may be attributed to the shading effect of dense stands of trees on the banks. The significant observations on individual species are notel below.
(A) Rlatyhelminthes
(1) Turbellaria

Folycells nigra was scarce in the strean (Table 5.3).
(B) Annellda
(1) Mrudines
0. 3 d of the total fanna was formed by this group. Helobdella stamalis was scarce at both the sites and this may be due to the lack of abundent marginal vegetation (Mann, 1955). I found Erpobdella octoculate common at $L D_{2}$ and scarce at $L D_{1}$.

Table 5.4 Statistical significance of the benthic fauna . at LD_{1} and LD_{2} at 5% level. $t=$ ' t ' test $\quad P=$ Probability

Benthic fauna	\mathbf{t}	\mathbf{P}
Oligochaeta	1.4	>0.05
Flecoptera	3.0	<0.05
Ephemeroptera	0.6	>0.05
Hemiptera	0.1	>0.05
Trichoptera	1.6	>0.05
Coleoptera	1.8	>0.05
Ceratopogonidae	0.4	>0.05
Chironomidae	7.0	<0.05
Other Dipt. larvae	3.4	<0.05
Dipteran pupae	1.0	>0.05

(2) 0lisocheets

The nembers of this group composed 7.5: of the total benthic fauna. Gylodrilus heringionus, Lumbriculus variegatus were common. Limnodrilus hoffmel steri was common at $L D_{1}$ which may be due to fine sandy bottom, and scarce at $L D_{2}$ where the substrate was of coarse sand. There was no significant difference in the number of oligochactes at $L D_{1}$ and $L D_{2}$ (Table 5.4).
(C) Mollusce
(1) Gastropods

Only two species were found of which Limngea nereger was common at $L D_{1}$ end scarce at $L D_{2} .0 .6 \%$ of the fama belonged to this group. They were found to be/numerous during summer than in eny other season.

(2) Lemellibranchiata

0.1 \% of the fauna was represented by four species of this grou. listed in Table 5.3. All were scarce end obtained when the current was low.
(D) Arthronoda

(1) Cnustaces

(a) Amphinoda

Gammarus nulex was scarce and constituted 0.1% of the total macrobenthic animals.
(b) Isopods

Asellus meridianus was scarce and formed 1.8% of the total catch.
(2) Arachnida
(a) Hydracarina

The members of this group were very scarce in the stream.
(3) Insects
(a) Plecoptera

16 species of this eroup comprised 6.8% of the total bottom fauna. Of these Eaphinemurg sulcicolils, Amphincmura standfus3i, Chloroverla torrentium and Erotonemura meveri were common. I found Amphinemura sno. and Isoperla grummatica in summer and Chloronerla torrentium in winter as did Hynes (1961). The above species were frequent in all seasons except autum (FIg. 5.2). There was a significant difference $(t=3.0 ; P(0.05)$ in the number of plecopterans collected in the benthic sauna from month to month at $L D_{1}$ and $L D_{2}$ (Table 5.4).
(b) Ephemeropters
6.1\% of the bottom fauna was represented by 17 species of this group of which Centrontilum Iuteolum, a characteristic species of the stony stream (Macan 1957), was very comen at both the stations particularly in winter, spring and summer (F1g. 5.2). Baetis_pumilus, Baetis rhodent, Heptazenia sulphurea and Ecdyonurus venosus were also in the stream. There was no significent difference in ephereropterans at $L D_{1}$ and $L D_{2}$ (Table 5.4).
(c) Hemipters

The species of this group had a widespread occurrence

Fig.5.3 seasonal variations in the numbers of different groups of the bottom fauna in Little Dee (Aion Dyfrdwy)
and made up 14.7% of the total bottom invertebrates. Micronecta poweri was common in all seasons (Fig. 5.3). ac cording to Nacen (1962) ithis species is widespread in the slow stretches of stony streams. No significant difference wes observed in the number of hemfeterens at $I D_{1}$ and $L D_{2}$ (Table 5.4).
(d) Megoloptera

Stolis fillotinosa and siolis lutaria made up 0.6% of the total organisms and were scarce.
(e) Trichoptera

The species listed in Table 5.3 amounted to 4.1% of the total bottom invertebrates. Glyphotaelius pellucidus, plectrocnemia conspersa, Hydropsyche instabilis and potamonfylex latipennis were present in considerable numbers at station $L D_{2}$. Ihere was no significant difference in the numbers of Trichoptera larvae at $L D_{1}$ and $L D_{2}$ (Table 5.4).
(f) Cozeonters

The adults ond larvae of this group mado up 2.3\% of the total benthic fama. Latelmis volkmari, Helmis mauge 1 and Platambus maculatus were common. There was no significant difference in the numbers of coleopterans at $L D_{1}$ and $L D_{2}$ (Table 5.4).
(g) Diptera

The members of the families (given below) of this group constituted 54.0% of the benthic fauna and were common in all seasons.

(1) Ceratonogonidae

Ihis family was represented by Bezzia spo. which was common et both the stations and made up 0.2% of the total fama. No significant difference was observed in the number of ceratopogonid larvae at $L D_{1}$ and $L D_{2}$ (Table 5.4).
(2) T1pulidae

Six species of this group were found in 0.3 ; of the bottom organisms of which Tipule montium was common in LD. $_{2}$ (3) Simulidae
only 0.2% of the bottom invertebrates were represented by this group.
(4) Chironomidae

The species identifled were ilsted in Table 5.3, which made 50.1% of the total bottom fauna. There was a significant difference ($t=7.0 ; P(0.05)$ in the numbers of chironomid larvae collected in the benthic fauna from month to monch at $L D_{1}$ and $L D_{2}$. other dideren larvae
0.4% of the animals were represented by this group which included the families Empididae and Phagionidae. A significent difference ($t=3.4 ; P<0.05$) was observed In the numbers of other dipteran larvae collected in various months at $L D_{1}$ and $L D_{2}$. Moteran_punae

They were common in the stream and constituted 3.3% of the total organisms.

Fig. 5.4 The distribution of trout and salmon parr in each age group from Novernber 1968 to March 1970 (The number of fish in each age group is shown in brackets

Table 5.5 The total annual composition of the diet of trout and ealinon parr assessed by Occurrence, "olume, and Number mettiod. $\quad(+=\langle 0.2 \%)$

Food organiems	Trout			Salmon parr		
Benthic food	$\begin{gathered} 0 \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} V \\ \left(\%_{0}^{\prime}\right) \end{gathered}$	$\begin{gathered} N \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} V \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N} \\ (\%) \end{gathered}$
Lumbriculus spp.	4.5	4.5	4.1	0.8	0.6	0.7
Limnaea pereger	0.8	0.8	0.5	4.1	1.6	0.9
Gammarus pulex	0.6	1.1	0.3	-	-	-
Amphinemura standfussi	1.2	0.4	1.1	2.5	1.0	1.6
Protonemura spp.	1.8	0.7	1.3	2.0	1.8	1.5
Chloroperla torrentium	1.5	0.3	1.2	2.6	2.4	2.1
Leuctra spp.	1.0	0.2	1.1	0.7	0.1	0.5
Other Plecoptera	2.1	0.6	1.2	1.5	1.0	1.1 :
Baetis epp.	7.0	5.1	10.2	10.8	7.5	6.4
Caenis syp.	3.4	2.1	2.2	5.2	2.1	3.1
Ecdyonurus venosus	4.4	3.2	3.3	3.5	2.3	4.2
Other Ephemeroptera	10.1	7.3	11.4	9.5	6.1	6.3
Hydropsyche instabilis	4.1	3.2	2.2	3.5	5.2	4.1
Plectrocnemia conspersa	7.1	8.0	7.2	7.1	10.4	6.1
Potamophylax spp.	2.1	2.2	1.2	3.6	5.3	5.0
Other Trichoptera	8.2	7.2	6.2	14.3	20.2	13.5
Latelmis volkmari	0.5	0.2	0.3	2.0	2.1	0.4
Helmis maugei	0.8	0.4	0.9	0.6	0.5	0.3
Chironomid larvae	3.1	3.2	7.7	13.4	22.0	36.1
Simulium monticola	-	-	-	1.4	0.9	0.8
Tipula montium	-	-	-	0.4	0.4	0.1
Other dipteran larvae	0.2	+	+	0.5	0.6	0.2
Dipteran pupae	2.4	1.7	2.7	5.2	2.7	2.3
Midwater food						
Latelmis volkmari adults	2.3	2.1	1.2	. 2	0.1	0.1
Helmis maugei adults	2.4	2.2	1.4	. 1	0.1	+
Fish	3.2	21.3	1.6	-	-	-
Aerial \& terrestrial food						
Insects	18.7	29.2	25.3	2.4	3.1	0.9
Miscellaneous food						
Plant materials	6.8	2.8	3.8	3.4	0.9	1.3
Total \%		100.0	99.6		99.0	99.6

3. THE FFEDING OF SALMONIDS

(i) Brown trout

$$
\text { A total of } 1<0 \text { trout ranging in age from } 0+\text { to } 3+
$$ from Afron Dyfirdy were received approximately at two monthly intervals from November 1968 to Harch 1970. Seven of the stomachs of these fish were empty (Tables $3.6,3.7$) and the rest were exmined quantitatively and qualitatively by applying four different methods (Chapter 3.4b). The trout of each age group were very unequally distributed throughout the period (Fig. 5.4). (a) Composition of the diet

Table 5.5 contains details of the total annual composition of the diet of trout from November 1968 to Narch 1970. 56.7\% (by volume) of the total diet belonged to benthic food, Oligochaeta, Gastropoda, Plecoptera, Ephereroptera, Trichoptera, Coleoptera and Diptera constituted $4.5 \%, 1.9 \%, 2.2 \%, 17.7 \%, 20.6,4.9 \%$ and 4.9% (by volume) respectively. Oligochaeta was represented by Lumbriculus spp., Ephemeroptera by Centrontilum Iuteolum, Bactis snn. and Ecdyonurus venosus; Trichoptera by Hydronsyche instabilis, Plectrocnemia conspersa: Coleoptera by Helmis spn. and Latelmis son, and Inptera by the mambers of the family Chironomidae, Tipulidae, and simulildae. 11. 3? of the total volume was composed of fish, a midwater food iten. 29.2 of the food (by volume) was made up of terrestrial insects, and 2.8 ; of plant materials, a miscellaneous food item.

Fig. 5.5 Seasonal variation in food intake of the trout and salmon parr
Gastropoda
(0.5%)

Amphipoda (0.3\%)

Other dipteran larvae
$(>0 \cdot 10 \%$)
0
Caleoptera larvac (1.0\%)

Oligcchaeta ($4 \cdot 1 \%$)

Dipteran pupae 103%)
${ }_{0}^{10} 5$

Chironomidae (7.7\%)

Flecoptera (5.9\%)

Trichoptera (16.8\%)

Ephemeroptera (25.0%)

Fig. 5.6 : seasonal variations of the food itmes of trout AND STO:ACHS COMRINING EACH FCOD ITEM IN DIFFERENT MONTHS

Fig.5.7 SEASONAL VARIATIONS OF THE FOOD ITEMS OF TROUT END STOMACHS COMAIVINU EACH FOOD ITEM IN DIFFERENT. MONTHS.

Table 5.6 The percentage composition of the food assessed by occurrence, volume, and number methods of trout of each age group. $\quad(+\quad=\langle 0.1 \%)$

Nane of epecies	Salmo trutta											
Total No. Stomachs	120											
ige	$\mathrm{O}+$			$1+$			$2+$			$3+$		
No. sp - in each age groud	9			48			40			23		
No. Empty stomachs	-			-			6			1		
Methods of essessment	0	V	N	0	V	N	0	V	N	0	V	N
Benthic food												
Oligochaeta	12.5	12.5	12.5	-	\cdots	-	1.8	2.7	1.8	3.7	3.1	2.4
Gastrocoda	-			1.5	1.2	1.2	1.8	2.1	0.9	-	-	-
Anphipoda	-	-	-	0.5	1.7	0.2	2.0	2.8	1.0	-	\cdots	-
Flecoptera nymphs	-	-	-	14.4	5.8	12.0	11.0	4.0	8.3	3.1	2.1	3.6
Ephemeroptera nymphs	27.0	19.5	24.5	28.2	11.1	22.9	23.9	21.9	31.8	20.9	15.3	20.9
Trichoptera larvae	25.0	22.5	16.2	10.9	10.8	5.9	25.2	30.0	20.6	33.0	20.2	24.5
Coleoptera larvae	.		-	-	-	5	2.9	1.0	2.8	2.3	1.5	1.3
Chironomicae	-	-	-	6.4	5.4	18.0	3.8	3.9	8.8	2.2	3.5	4.3
Cther dipteran larvae Dipteran pupae				0.9 2.6	0.2 2.1	$\begin{aligned} & 0.1 \\ & 1.1 \end{aligned}$	2.7	1.9	3.7	4.4	3.1	6.5
Midwater food												
Coleoptera adults	8.3	2.1	1.8	1.0	0.5	0.1	5.4	12.1	7.7	4.2	2.7	4.9
Fish	-		-	5.1	20.7	2.2	-	-	-	7.8	25.7	4.5
$\frac{\text { Aerial \& terrestrial food }}{\text { Insects }}$	20.8	40.0	40.5	24.8	38.4	31.4	21.5	25.2	19.9	11.3	17.5	11.0
$\frac{\text { Niscellaneous food }}{\text { Flant material }}$	6.2	2.3	4.1	3.1	1.8	1.0	4.4	2.2	3.1	13.6	4.9	7.9

[^0]
(b) Seasonal variation in food intake

Flg. 5.5 shows the seasonal variction in feeding activity of trout in Afon Dyfrdwy. The curve shows that the maximal quantities of food were taken in the months of May and June and that food intake was minimal in November and December. This curve shows a similar pattern to the fluctuations in total fauna (Flg. 5.1).

(c) Seasonal changes in the food

FIgs. 5.6 and 5.7 show the seasonal changes in the food of trout in Afon Dyfrdw. Ephemeroptera and plecoptera nymphs, and Trichopera larvae were found in the stomachs throughout the period.

The Ephemeroptera, Plecoptera and Trichoptera were eaten more frequently during winter and spring than in summer and autumn. Large numbers of chironomid larvae and other diperan pupae were consumed during summer and autum. 011gochaetes, Coleptera, other dipteran larvae, Amphipoda and Gastropoda vere insignificant food items. derial insects which include Aphididae, Cercopidae, Enpidae, Bibionidae and Chrysomelicae, formed a substantial amount of food during summer and autumn. Plant material, fish and Coleoptera adults were present in small quantities in eny season.
(d) Food in relation to age

Table 5.6 shows the percentege composition of the food assessed by occurrence, volume and number methods in
each ase group of trout. I found e highly significent difference in the occurrence of aerial and terrestrial food iters $\left(x_{3}^{2}=16.01, P<0.05<0.02<0.01\right)$ in the different age groups of trout. There was no significent difference in the other food items consumed by the different age groups (Table 5.6).

(ii) Salmon nary

A total of 122 salmon parr ranging in age from $0+$ to $3+$ vere captured from this stream at approximately t wo monthly intervals; of these 113 contained food and the rest had empty stonachs (Table 3.7).
(a) Composition of the diet

Table 5.5 shows the total annual composition of the diet of salmon parr in Afon Dyfrduy. Trichoptera larvae (41.1\% of the total volume) were the predominant dietary item. Arong them larvae of Hydropsyche instabilis, plectrocnsefa conspersa, Potamophylex spp. and other trichopteran larvae were well represented. 24.0% of the total volume was formed by chironomid larvae. Plecoptera reflected by Amphinemura stendfussic Euptonemura snn. Chloroncrla torrentium Leuctra spo. and other plectoperan nymphs were common, forming 6.3? (by volume) of the diet. Centrontilum Iuteolun, Beetis Spn., ECdvonumus venosus and other ephemeropteran nymphs comprised 18.0\% of the total volume. Aerial insects amounted to 3.1\% (by volume). 011 gochaeta represented by Lumbriculus spp., Gastropoda by
() \% of each item in the total sample
1 1\% of salmon parr containing each itemu ii) the total sample

Fig. 5. 8 Seasonal variations of tha benthic food items of salmon parr and percentage of stomachs coniaining each food item in different month.

Table 5.7 The percentage composition of the food assessed by occurrence, volume and number methods of salmon parr of each age group. $\quad(+=<0.1 \%)$

Name of species	Salmo salar											
Total No. stomachs	122											
Age	O+			$1+$			$2+$			$3+$		
No. Sp: - in each age group	14			32			22			4		
No. Empty stomachs	3			3			2			1		
Methods of assessment	0	V	N	0	V	N	0	V	N	0	V	N
Benthic food												
Oligocheeta	1.6	1.1	0.5	-	-	-	1.7	1.5	2.4	-	-	-
Gaistropoda	2.5	2.3	0.6	$\because .7$	1.6	1.6	-	-	-	12.5	2.8	1.4
Plecoptera nymphs	1.6	1.0	0.5	8.2	5.3	7.4	23.4	19.0	19.5	-	-	-
Ephemeroptera nymphs	14.3	6.4	5.6	27.4	21.5	18.5	36.8	22.6	26.5	37.5	22.2	31.5
Trichoptera larvae	44.3	60.0	39.6	21.6	29.5	26.2	10.9	22.6	17.8	37.5	52.0	31.5
Coleoptera Larvae	5.1	5.1	2.3	1.4	1.5	0.5	-	-	-	-	-	-
Chironomidae larvae	18.5	17.4	44.1	12.4	26.7	31.3	10.2	29.2	30.3	12.5	23.0	30.8
Simuliid larvae	1.6	2.1	1.5	1.7	1.1	1.2	2.6	0.5	0.8	-	-	-
Tipulidae larvae	-	-	-	1.0	1.6	+	0.9	0.3	+	-	-	-
Other dipteran larvae	1.6	1.8	0.5	0.6	0.7	0.3	-	-	-	-	-	-
Dipteran pupae	1.6	3.2	1.0	12.4	3.2	6.4	5.5	0.4	0.9	-	-	-

$0=$ Occurrence $\quad V=V$ olume $\quad N=$ Number

Table 5.7 (contd.)

Limnaen nereger and Coleoptera by Felmis sng. and Latelmis spp. were less importent dietary items. Simuliid and tipulid larvas occurred in a small percentage (0.9: and 0.4%) of the total volume. (b) Seasonal variation in food intake

Flg. 5.j shows the period of maximum feeding activity was May and June. The food intake decreased gradually to its minimm in Novarber and December. The pattern is again similar to the fluctuations in total fauna (Fig. 5.1). (c) Seasonal chences in the food

Fig. 5.8 shows the amounts and kinds of food eaten by salmon parr in this stream during the period of observation. Ephemeropera nymphs, Trichoptera and chironomid larvae formed the major food items. Ephemeroptera and Trichoptera were found in larger numbers during winter than in any other season. More of the chronomid larvae were consumed in summer and autumn than in winter and spring. In all months of the year Plecoptera nymphs, plant materials and simuliid larvae were present in the stomachs although they never formed a large part of the food. onall numbers of dipteren pupae, Coleoptera lervae, aerisl insects and Gastropoda were eaten during summer and autumn.

(d) Food in relation to gre

Table 5.7 shows the percentage composition of the food assessed by occurrence, volume and number methods of salmon parr of each age group. Coleoptera adults and plant material were not eaten by the $0+f 1 s h . x^{2}$ test showed a significant

Fig. 5.9 Percentage comnosition by number of the benthic fauna and food of trout and salmon pair
difference in the occurrence of plecoptera $\left(x_{3}^{2}=9.22\right.$, $P<0.05$) and trichoptera ($x^{2} 3=8.4, P<0.05$) food items in different age groups of saimon parr. As far as other food itcme are concerned there were no changes worth noting.

(1i1) Ctinisation of the fauns

Fig. 5.9 shows the relative abundance of the bottom fauna groups (No/smin.) together with the percentage composition of the diet of the trout and salmon parr by number. 9.3 . of tha bottom fauna were found to be 0ligochacta whils 4.7% of the trout food and 0.7 . of the food of salmon parr belonged to this group. Gastropods and anphipods were scarce and rarely eaten. Flecoptera constituted 4.7% of the total benthic fauna. This as a food iten was present in 6.8% and 5.9% of the total food of salmon parr and trout respectively. Ephomeroptera comprised oniy 7.1\% of the recrobenthos though represented 25.0% end 20.5% of the total food of trout and salmon parr. Large percenteges (that is 16.8% and 28.7%) of Trichopera were consumed bytrout and salmon parr, but only 3.7 , were found in the bottom fauna. A significant difference was observed between the numbers of trichopteran larvae present In the bottom fauna and in the trout food $(t=3.2 ;$ $P(0.05)$, but no significent difference was found for salmon parr. Coleoptera made up 4.6 of trout and 0.8% (by number) of salmon parr food; whereas in the fauna there were only 2.3%. The chironomid larvae were the

Table 5.8: Statistical significance of changes of benthic food of the fish with benthic fauna at 5% level.

$$
\begin{aligned}
& t=\text { 't' test } \\
& p=\text { probability }
\end{aligned}
$$

Fish \rightarrow	Trout		Salmon parr	
Food itens \downarrow	't'	p	't'	p
Plecoptera	1.3	>0.05	0.6	>0.05
Ephemeroptera	1.6	>0.05	1.3	>0.05
Trichoptera	3.2	<0.05	1.2	>0.05
Coleoptera	0.6	>0.05	0.4	>0.05
Chironomidae	0.4	>0.05	4.0	<0.05
Simuliidae	-	-	1.1	>0.05
Other dipteran larvae	-	-	-	-
Dipteran pupae	1.0	>0.05	0.6	>0.05

highest in the bottom invertebrates (53.1\%) by number, but as a food item they wers present in 34.1% and 7.7% of the totel food of selmon parr and trout. There was a signtificant difference in the numbers of chironomid larvae found in the benthic fauna and in the food of selmon parr ($t=4.0$; $P<0 . C 5$), but no significent difference was found in trout (Table 5.8). Other dipteran larvae like Tipulidae and Simulifdae occurred in amall amounts in the food and fauna.

4. STMMARY

(1) The invertebrates of a soft water trout strean were investigated.
(2) The general physiograjhy of the stream is described.
(3) The bottom fauna at the stations $L D_{1}$ and $L D_{2}$ are similar.
(4) Seasonal changes in the food of salmonids are related to seasonal changes in the fauna.
(5) inmmer is the period of maximum feeding activity end feeding decreases to a minimum in winter.
(6) 95.8% (by volume) of the food of saimon is benthic in origin compared with 56.7% in the trout.
(7) 30.2 and 3.1% of the total volume of food is composed of aerial insects int rout and in salmon parr respectively.

- ! !

CHAPTER VI

AFON TWRCH

1. THE ENVIROIMENT120
(a) General topography 120
(b) Description of the sampling site 120
(c) Physical and chemical conditions 122
2. COMPOSITION OF THE FAUNA 122
3. THE FEEDING OF SALMONIDS 133
(i) Brown trout 133
(a) Composition of the diet 133
(b) Seasonal variation of food intake 137
(c) Seasonal changes in the food 137
(d) Food in relation to age 139
(ii) Salmon parr 139
(a) Composition of the diet 139
(b) Seasonal variation of food intake 142
(c) Seasonal changes in the food 142
(d) Food in relation to age 145
(iii) 1454. SUMMARY147
Page

PIATE 6.1 SAMPLING STATICN T

CEAPTER VI

1. THE ENVIRCMMENT

(a) Geners tonogrephy

Afon Twrch comes from the southern declivities of Foel Fhudd 70 cm O.D. It flows through the Bala or Caradoc beds (Ordovician) which consist of sandstones, flags; shales, and limestones with interbedded volcanic rocks. Upon its approach towards Afon Dyfrdwy it gradually widens and joins the latter near the village of Llanuwchilyn. The united waters find their way towards Ilyn Tegid. the countryside is hilly with pasture land and woods.
(b) Descrintion of sampling site
one sampling station referred to as "I" in the text was selected near the Llanuwchllyn disused railway station. Regular collecting started in May 1969 and ended in June 1970. The widh of the river at the sampling place was about 3 m and the greatest depth at low water was about 20 cm . The site T was situated at about 2640 m upstream from the junction (Flg.3.2) at an elevation of 216 m 0.0 . The river bed was of large stones and gravel. Submerged and semi-submerged boulders were also present (Flate 6.1). Almost all the stones, large or small had a heavy growth of moss, mostly Fontinalis scuamoss and rarely Fontinalis ontipyretice. On one side of the stream

TABLE 6.1 NEAN MONTHLY ESTIMATES OF PHYSICAL FACTORS AT " T " SAMPLING STATION IN AFON TWRCH.

Months	M	J	J	A	S	0	N	D	J	F	M	A	n	J
Water Temp. ${ }^{\circ}{ }^{\circ}$	8.0	10.4	14.0	15.4	8.6	7.4	4.5	3.5	4.8	4.3	$5 \cdot 7$	5.2	8.6	12.3
Specific conductance (micromhos $/ \mathrm{cm}^{3}$ at 25 C)	74	77	85	¢ 80	101	120	231	301	268	201	140	3 C	70	64
Dissolved 02, \% Sat.	96	98	97	101	102	96	111	118	115	106	84	91	92	97
Velocity of water current ($\mathrm{m} / \mathrm{sec}$),	0.33	0.25	0.27	0.23	0.29	0.35	0.60	0.74	0.80	0.60	0.52	0.47	0.40	0.29
pH	6.5	7.0	6.8	7.1	7.1	7.2	7.4	7.4	7.6	7.5	7.1	7.0	6.8	7.1
							\pm							
Turbidity (as Fuller's Earth)	18.2	17.1	19.6	18.6	21.2	26.1	43.1	63.6	71.6	61.2	20.1	18.8	20.1	19.4

there vere trees and on the other was a pasture land (Plate 6.1).

(c) Rhysical and Chemical conditions

Table 6.1 shows the extrene temperatures of water recorded were $3.5^{\circ} \mathrm{C}$ in December and $15.4^{\circ} \mathrm{C}$ in August. The velocity of water current was measured throughout the sampling period. Table 6.1 shows the minimum velocity recorded in August and the maximum in January. Oxygen determinations were made every month; during winter the water was relatively more saturated with oxygen than in summer. The pH of water at site' T 'varied between 6.5-7.5. Other climatic conditions like rainfall and atmospheric temperature were the same as described in Chapter 3.1.

Water semples for analysis of major ions were taken from the stream in the month of June 1969. The broad chemical characteristics of the water are given in Table 3.4.

The water was soft and clean except during high flood, The chemical condition indicates no pollution. There were relatively higher concentrations of Ca and CO_{3} ions. This may be due to the stream's geological environment.

2. COMPOSITION OF THE FAUNA

The importance of aquatic vegetation as a place of abode for aquatic animals has long been recognised.

Fig 6.1 Seasonal variation of the monthly benthic faund in Afon Twreh

CHIRONOMIDAE

Fig 6.2 Seasonal variation in the numbers of different groups of bottom fauna in Afon Twreh

Table 6.2 The percentage composition (by number) of the fauna at one sampling site of Afon Twrch based on 14 monthly
samples. $\quad(+=\langle 0.1 \%)$

Benthic fa:una	```T'otal```	\%	$\begin{gathered} \text { Av. No. } \\ /_{m}^{2} \end{gathered}$
Hirudinea	(1)	(+)	(0.7)
Helobdella stagnalis	1	+	0.7
Oligochaeta	(36)	(1.9)	(26.7)
Lumbriculus variegatus	8	0.4	5.3
Homochaeta naidina	2	0.1	1.0
Stylodrilus heringianus	19	1.0	13.9
Eiseniella tetraedra	7	0.3	5.3
Gastropoda	(8)	(0.4)	(5.3)
Ancylastrum fluviatile	8	0.4	5.3
Lamellibranchiata	(24)	(1.2)	(18.1)
Pisidiun subtruncatum	24	1.2	18.1
Amphipoda	(14)	(0.7)	(10.7)
Gammarus pulex	14	0.7	10.7
Hydracarina	(3)	(0.1)	(2.1)
Hygrobates nigromaculatus	1	$+$	0.7
Sperchon denticulatus	1	+	0.7
Sperchon seliger	1	$\stackrel{+}{+}$	- 0.7
Plecontera	(594)	(31.6)	(253.6)
Protonemura meyeri	67	3.5	50.2
Leuctra hirpopus	40	2.1	29.9
Chloroperla torrentium	32	1.7	23.5
Chloroperla tripunctata	2	0.1	1.2
Amphinemura sulcicollis	142	7.5	108.0
Isoperla grammatica	188	10.0	143.3
Perla bipunctata	${ }^{2}$	0.1	1.2
Leuctra moselyi	- 4	0.2	2.1
Leuctra fusca	11	0.5	7.4
Frotonemura praecox	15	0.8	10.7
Leuctra inermis	20	1.0	14.9
Leuctra geniculata	2	0.1	1.2
Amphinemura standfussi	65	3.4	49.2
Leuctra nigra	3	0.1	2.1
Nemoura avicularis	1	+	0.7
Ephemoroptera	(354)	(18.8)	(269.6)
Badtis pumilus	41	2.1	29.9
Heptarenia lateralis	4	0.2	2.1
Siphlonurus lacustris	2	0.1	1.0
Babtis atrebatinus	2	0.1	1.0
Bagtis rhodani	28	1.4	21.4
Ephemerella ignita	242	12.9	184.0
Baltis scambus	4	0.2	2.1
Ecdyonurus, venosus	9	0.4	6.4
Centroptilum luteolum	12	0.6	8.5
Heptagenia sulphura	2	0.1	1.0
Rhithrocena semicolorata	2	0.1	1.0
Esdyonurus dispar	1	+	0.7
Leptophelebia marginata		0.2	3.2
Hemintera	(1)	(+)	(0.7)
Corixa panzeri	1	+	0.7

Table 6.2 (contd.)

Benthic fauna	$\begin{aligned} & \text { Total } \\ & \text { no. spp. } \end{aligned}$	\%	$\begin{gathered} \text { Av. No. } \\ / \mathrm{m}^{2} \\ \hline \end{gathered}$
Megalontera	(3)	(0.1)	(2.1)
Sialis fuliginosa	3	0.1	2.1
Trichoptera	(199)	(10.6)	(151.9)
Plectrocnemia consperia	63	3.3	48.1
Rhyacophila dorsalis	27	1.4	20.3
Hydropsyche instabilis	64	3.4	48.1
Halesus digitalus	2	0.1	1.0
Glyphotaelius pellucidus	15	0.8	10.7
Agraylea multipunctata	2	0.1	1.0
Potamophylax latipennis	12	0.6	8.5
Limnephilus rhombicus	12	0.6	8.5
Sericostoma personatum	1	+	0.7
Lepidostoma hirtum	1	${ }^{+}$	0.7
Coleoptera	(80)	(4.2)	(60.9)
Helmis maugei	45	2.4	34.2
Helophorus flavipes	3	0.1	2.1
Oreodytes rivalis	4	0.2	2.1
Laccobius biguttatus	2	0.1	1.0
Hydratna riparia	4	0.2	2.1
Helodes marginata	1	+	0.7
Latelmis volkmari	16	0.8	11.7
Hydroporus pubescens	3	0.1	2.1
Gyrinus spp.	1	+	0.7
Hyphydrus ovatus	1	+	0.7
Dintera			
Diridae	(7)	(0.3)	(5.3)
Dixa puberula	(7	0.3	5.3
Similidae	(5)	(0.2)	(3.2)
Simulium monticola	4	0.2	2.1
Simulium brevicaule	1	${ }^{+}$	0.7
Tinulidae	(2)	(0.1)	0.7
Tipula lateralis	1	+	0.7
Tipula montium	1	${ }^{+}$	0.7
Chironomidae	(451)	(24.0)	(344.5)
Cryptochironomus spp.	176	9.3	133.7
Pentaneura monilis	62	3.3	47.0
Tanytarsus signatus	193	10.2	146.5
Brillia modesta	6	0.3	4.2
Procladius choreus	14	0.7	10.7
Other dipteran larvae	(34)	(1.8)	(25.6)
Dicranota robusta	24	1.2	18.1
Hermerodromia unilineata	3	0.1	2.1
Pericoma pseudo-exquisita	4	0.2	2.1
Limnophora spp.	3 58	0.1	2.1 43.8
Dipteran pupae	58	3.0	43.8
Total no. animals	1874		
Av. no. animals/month	133.8		
Av. no. animals/m ${ }^{2}$	1431.6		

Furthermore it is quite generally a ccepted that the submerged leafy types of vegetation are more densely populated than any other type.

Among the studies made on the fauna of submerged mosses" are those of Carpenter (19:7), Percival and Whitehead (1929, 1930), Moon (1939), Frost (194\%), Hynes (1961) and EgEllshaw (1968, 1969).

As far as I am aware, except on Afon Hirnant (Hynes op.cit), no information on the fauna of submerged "mosses" is avallable in the Dee watershed.

During the course of the present investigation a total of 1874 aquatic macro invertebrates belonging to 75 different species were collected. Seasonal variation of the benthic fauna (Figs. 6.1, 6.2) shows that there was a gradual increase in the total number of animals from autum to sumer, rather similar to that observed by Hynes (1961) and Frost (1942); both the workers belleve that the total fauna fluctuates greatly, with a period of maximum density in summer and early winter.

The aquatic fauna of Afon Twrch consisted chiefly of Plecoptera and Ephemeroptera nymphs and Trichoptera and chironomid larvae, which together formed 84.4% of the total bottom fama (Table 6.2). Other groups were represented by occasional irmigrants or by scanty populations.

The species listed in Table 6.2 are those khich were collected from this habitat during 14 monthly samples, and although no claim is made that the list is a complete record of everything that was present, it is extensive enough to indicate common and rare species.
(A) Annelida
(1) Hirudinea

One Helobdella stagnelis was recorded during this period.
(2) olisochaeta
1.9\% of the total bottom fauna belonged to this group. Lumbriculus veriegatus and Stylodrilus heringionus were comon and Homochaeta naidina and pleniella tetraedra were rare.
(B) Mollusce
(1) Gestronoda

Ancylestrum fluviatile were scarce and formed 0.4% of the total fauna.
(2) Lamellibrenchiata

Pisidium subtruncatum a rare species constituted 1.2 of the total benthos.
(C) Arthronoda
(1) Arachnida
(a) Hydracerina

Three species listed in Table 6.2 were scarce and formed 0.1% of the total organisms.

(2) Insecta

(a) Plecontera

This group formed 31.6\% of the total bottom Invertebrates, of these Protonemura meyeri, Leuctra hinnonus, Chloronerla torrentium, Amphinemura sulycol11s and Isonerla grammatica were common $\therefore \therefore$ and the rest were scarce (Table 6.2).
(b) Ehemerontera

This group formed 18.8% of the total faunal samples. Baetis pumilus and Baetis rhodoni were common. I found the above species more common in summer and less in winter (Fig. 6.2).
(c) Heminters

One Corixa nanzeri was recorded during this investigation. They were not the usual inhabitants of the strean. Probably this individual had been washed away by the flood from the beckwaters or adjacent pools.
(d) Megoloptero

Slalis fuliginosa were scarce and constituted 0.1% of the total macro invertebrates.
(e) Trichontera

Ten species were identified from this group which formed 10.6\% of the bottom fauna. Plectrocnemis conspersa, Bhyaconhile dorsalis, Hydronsyche instabilis, Glyohotzelius Dellucidus, and Potamonhylax latinennis were common. They were caught more during spring and summer than in winter and autum (FIg. 6.2).
(i) Coleontera
4.2 of the total fama consisted of this group. Helmis mouged was comon. Adults of this species were found more during summer than in ony other season.
(g) Diptera
(1) Dixidee

This family was represented by pixa puberula wich was scarce in the fauna.
(2) Simulifde

Slmulium monticolg and stmulium brevicaule constituted 0.2 of the total catch and were scarce.
(3) Tipulidae

These were rare, forming only 0.1% of the benthos by Ifoule lateralis and Tipulamonticols.
(4) Chironomidae

These were common, forming 24.0% of the fauna. The most conmon forms were Cryptochironomus spg., Pentancura monilis, Tenstarsus simatus and procladius choreus, whereas Prillia modesta was scarce. other dipteren laryae
1.8\% of the bottom fauna was comprised of pleranota robusta, Hermerodromis unilineats, Pericoma oseucio-excuisita and Limnophora spp. which were scarce.

Dipteran pupae

All the pupae of aquatic Diptera were grouped together and formed 3.0% of the total benthic fauna.

Fig 6.3 The numiver of salmon parr and trout in each age group from February 1069 to March 1970

Number of fish in each age group is shown in brackets

Table 6.3. The average percentage composition of the total annual diet of trout and salmon parr assessed by occurrence, volume and number methods. $(+=\langle 0.1 \%)$

	Tront			Salmon parr		
Food Organisms	0	\checkmark	N	0	V	N
Benthic food						
Ancylastrum fluviatile	2.8	2.4	3.1	1.9	0.7	0.3
Liimnaea spp.	1.3	0.8	1.0	-	-	-
Protonemura meyeri	1.4	2.3	1.9	2.2	1.9	1.3
Leuctra spp.	1.2	1.6	1.0	2.1	1.1	2.6
Chloroperla torrentium	1.1	1.7	1.4	1.3	1.0	1.1
Amphinemura sulcicollis	1.3	1.5	1.2	1.1	1.0	1.0
Isoperla grammatica	1.2	2.2	2.2	2.3	1.4	1.1
Other Plecoptera	3.2	2.0	4.2	3.2	2.5	2.2
Baetis spp.	5.6	3.1	7.4	6.6	7.3	4.3
Ecayonurus venosus	5.5	4.3	2.4	8.4	5.3	7.5
Ephemerella spp.	6.8	4.5	4.2	6.3	4.4	11.3
Other Ephemeroptera	7.4	6.2	9.4	10.3	6.3	6.2
Plectrocnemia conspersa	2.8	1.2	1.1	5.2	6.7	3.4
Rhycophila dorsalis	1.5	0.8	1.2	4.4	5.4	3.2
Hydropsyche instabilis	3.3	2.3	2.1	3.2	4.3	5.2
Other I'richoptera	5.2	7.5	4.2	8.4	10.3	7.2
Iflmis maugei (larvae)	1.4	0.6	0.6	0.7	0.5	1.1
Latelmis volkmari (larvae)	1.2	0.3	0.5	0.5	0.3	0.6
Chirononid larvae	7.5	3.1	13.1	16.6	25.5	30.0
Simulium monticola				3.2	2.6	7.0
Simulium brevicaule				4.2	3.1	3.2
Other Lipt. larvae	3.9	0.6	2.4	0.4	+	+
Dipt. nupae *	0.3	0.3	0.5	0.6	+	0.1
Midwater food						
Helmis spp. adults	4.6	1.0	1.4	0.3	0.5	0.1
Latelmis spp. adults Fish	2.0 6.2	1.0 17.2	1.0 6.2			
Aerial \& terrestrial food						
Insects	14.6	27.2	23.0	0.9	0.8	0.1
Miscellaneous food						
Plant material	5.7	4.9	2.7	4.5	4.4	2.1

3. THE FEEDING OF SALMONIDS

(i) Broun trout

Trout were collected bimonthly and a total of 63 trout of $0+$ to $3+$ age groups were taken during February 1969 to March 1970 (Table 3.6). Six had empty stomachs and the rest had a wide range of items in them. Total number of trout in each age group each month during sampling period is shown in Fig. 6.3.

(a) Composition of the diet by volume

The important benthic food items were Plecoptera, Ephemeroptera, Trichoptera and Chironomidae which together constituted 44.3% of the total volume. other dietary items of infrequent occurrence were Gastropoda, Coleoptera, simullidae, other dipteran larvae and pupae (Table 6.3).

Plecoptera represented by Protonemura meyerd, Leuctra spp. Chloronerle torrentium, Amphinemura sulcicolis, Isonerle gremmatica and other plecopteran nymphs formed 11.3% of the total volume. 18.1\% of the diet consisted of ephemeropteran nymphs, represented by Baetis spp. : Bedyonurus venosus, Ephemerella spp. and other unidentifiable ephemeropteran nymphs. Trichoptera larvae belonged to the species Plectrocnemia conspersa, Fhyacophila dorsalis, Eydronsyche Instabilis and other species of the same group, had a high percentage representation in the stomachs and amounted to 11. 8% of the total volume. Chironomid larvae were also

Fig.6.4 Seasonal variation in food intake of trout and salmon parr
\square Fond item ElFish
() \% of each item in the total sample
[] \% of trout containing each item

Other dipteran larvae (3 .lr)

Chironomidae (16-2)

Coleoptera $(4 \cdot!)$

Trichoptera (9.5)

Ephemeroptera (13.4)

Plecoptera (2.7)

Fig. 6.5 seasonal variations of the food items of trout and percentage or stonichs containing each food Item in different MONTHS.
() \% of each :tem in the total sample
[] \% of trout containing each item in the total sample
Q Food items
\square Fish

Fig. 6.6 seasoma variations of the food items of thout and preceritage of stomachs containing dacil food item in different months.
present in the food and totalled 3.1\%. Among the less important food items 3.2\% Gastropoda (Ancylastrum fluviatilis), 0.9\% Coleoptera larvae (Helm1s meugei and Latelmis volkmari), 0.6% other dipteran larvae (picranota spe., Hemerodromia spp.) and 0.3 dipteran pupae were accounted in the total volume.
18.6\%: (by volume) of the midwater food items were composed of bullhead: (17.2) and Coleoptera adults (1.4\%).

Finally 27.2% of the total volume were aerial and terrestrial insects and 4.9\% plant materials.
(b) Deasonal variation in food intake

Fig. 6.4 indicates that the period of maximum feeding activity was from April/May to August/September and it gradually decilned in December/January and February/iarch.

(c) Seasonal chanees in the food

FIgs. 6.5, 6.6 show the seasonal variations of the different food items. Ephemeroptera nymphs, Trichoptera larvae and Coleoptera adults and larvae were significant benthic food items present throughout the season. The ephemeropteran nymphs were present more in the winter than in summer. Coleoptera and plecoptera nymphs were eaten more during spring and summer than in autum and winter. Most chironomid larvae were eaten in sumer whereas more picranota sng, and Hermerodromis sop. were eaten in winter

Table 6.4 The average percentage composition of the food assessed by occurrence, volume and number methods of trout of each age group.

and spring. Aerial and terrestrial insects occurred most frequently in the food in summer and autum. Plant materials predominated during winter and spring. Fish were eaten occasionally during winter.

(d) Food in relation to age

Table 6.4 shows the average percentage composition of the food assessed by occurrence, volume and number methods of each age group. I found a highly significont difference in the occurrence of aerial and terrestrial food items ($x^{2} 3=18.30, P<0.05<0.02<0.01$) inthe different age groups of trout.

(ii) Selmon narr

Seventy seven salmon parr ranging from $0+$ to $3+$ age groups were taken (Table 3.7). Five stomachs were cmpty. and the rest were examined for food by the methods mentioned in Chapter 3.4b. The total numbers of salmon pary in each age group each month throughout the sampling period are given in Fig. 6.3.

(a) Comnosition of the diet

There was a variety of different food in the diet of salmon parr (Table 6.3). Plecoptera and Ephemeroptera nymphs, Trichoptera, chironomid and simulild larvae were more pronounced among the benthic food items. 8.9% by volume of the food consisted of Plecoptera mymph which included protonemura meyeri, Leuctra spp., Chloroperla spp.

140

Fid. 6. 7 gésonal vartations of the food items of salmon parr and percentage of stomachs contammag each food item in difyerent rionthi.

略

Food iterns
\square Fish
() $\%$ of each item in the total sample
[] \% of salmon parr containing each item in the total sample

Fig. 6.8: seascmal varlations or the food trems of salion para and percentage or stomachs containing each food item IN DIFFERENT HONTHS.

Amphinemura sulcicollis, Isonerla grametica and other plecopteran nymphs. 25.3 思 by volume of the food was made up of Baetis spp., Ecdyonumis spp., Ephemerella spp. and other unidentifiable nymphs of the group Ephemeropters. Trichopera larvae ranked first in the list of dietary items and formed 26.7% of the total volume. prominent amongst those were Rlectrocnemia conspersa, Phyaconhila dorsalis, Hydronsyche instabilis and other unidentifiable species of the same group. Chironomid larvae ranked second in the list of food eaten by forming 25.5% of the total volume. Simuliid larvae represented by Simulium monticole and simulium brevicaule formed 5.7% by volume.

Of the midwater food Coleoptera adults, chiefly Helmis mangei, formed 0.5 of the total volume. Aerial and terrestrial insects and plant materials formed $0.8{ }_{f}^{\circ}$ and 4.4% of the total volume respectively.
(b) Seasonal variation in the food intale

As seen from Fig, 6.4 much more food was taken during April/May to August/September than at other times. Minimum feeding activity occurred during winter months.
(c) Seasonal changes in the food

Figs. 6.7, 6.8 illustrate the seasonal variations of the different food items of salmon parr. Plecoptera and Ephemeroptera nymghs and Trichoptera and chironomid larvae were most significant throughout. Large numbers of

143

Table 6.5 The average percentage composition of the food assessed by occurrence, volume and number methods of salmon parr of each age group.
$+=<0.1 \%$

Fig. 6.9 Percentage composition by number of the benthic fauna utilised by trout and salmon parr (Values $>0.5 \%$ is not shown)

Plecoptera and Ephemeroptera nymphs occurred in winter and spring. A similar seasonal pattern was observed in Trichoptera larvae. Chironomid larvae were found in abundance during summer and autumn. Simulild larvae were recorded only during summer and autum. The food items of insignificant occurrence were Gastropoda, Coleoptera, other dipteran larvae, dipteran pupae and aerial insects; these were confined mainly to the summer and autumn. Most of the plant material vas utilised during autumn and winter.
(d) Food incelation to age

Table 6.5 shws the average percentage composition of the food assessed by occurrence, volume and number methods of salmon parr in each age group. There was no appreciable change in the diet observed from $0+$ to $3+$ age groups except that the oldar salmon parr (3+ age group) confined their diet to Ephemeroptera, Plecoptera, Trichoptera and Chirondmidae. x^{2} test showed a significant difference in the occurrence of plecopteron ($x^{2} 3=9.77, p<0.05$) and trichopteran ($x_{3}^{2}=17.50, \mathrm{P}<0.05<0.02<0.01$) food itens in different age groups of salmon parr.

(iii) Itilisetion of the fauna

FHg. 6.9 shows the percentage composition of benthic fauna by number utilised by trout and salmon parr and Table 6.6 shows the statistical significance of benthic food with the benthic fama in trout and salmon parr.

Table 6.6 Statistical significance of changes of benthic food of the fish with benthic fauna at 5% level.
$t=$ Robust ' t ' test
$\mathrm{P}=$ Probability
a

Fish	Trout		Salmon parr	
Food items	t	P	t	P
Gastropoda	-	-	1.8	>0.05
Plecoptera	3.7	<0.05	1.3	>0.05
Ephemeroptera	0.8	>0.05	0.3	>0.05
Trichoptera	0.2	>0.05	1.0	>0.05
Coleoptera	0.9	>0.05	2.3	>0.05
Chironomidae	0.6	>0.05	1.7	>0.05
Simuliidae	-	-	6.6	<0.05
Other Dipt. larvae	1.0	>0.05	-	-

Plecoptera nymphs were present in 31.6% of the total bottom fauna but only 2.7% were used by trout and 2.8% by salmon parr. The number of plecopterans were significentiy different in the feuna and in the food of trout ($t=3.7 ; P$ 0.05), whereas no such significance was observed in salmon parr (Table 6.6). Trichoptera larvae formed 10.6% of the total benthos whereas $9.5 ;$ were taran by trout and 1.5% by salmon parr. Coleoptera were not popular, for they occured in only 4.4\% of trout and 0.1% of salmon parr food. Chironomid larvae ranked second, by forming 24.0% of the total macrofaunal communty, while 16.2% of the trout and 69.5; of salmon parr food fell into this category. Very few simulidd larvae (0.2) were present in the fauna, but 18.6 (by number) were eaten by salmon parr and none by trout. I found a significant difference ($t=6.6$; $\mathrm{P}<0.05$) in the number of simulild larvae in the bottom and in the food of salmon parr. 1.8% of the other dipteran larvae were present in the stream whereas trout used 3.4 . and salmon farr C. 1%. Dipteran pupee formed 3.0% of the totel bottom invertebrates wile 1.3% and $1 . x_{\%}$ were utilised by trout and salmon parr respectively.
4. SUMMARY
(1) A detailed investigation of the fauna and the food and feeding habits of salmonids in the submerged mosses of Afon Twreh was carried out.

149

CHAPTER VII

AFON GLYN

Page

1. THE ENVIRONMENT 150
(a) General topography 150
(b) Description of the sampling sites 150
(c) Physical and chemical conditiens. 156
2. COMPOSITION OF THE FAUNA 166
3. THE FEEDING OF SALMONIDS 175
(i) Brown trout 175
(a) Composition of the diet 175
(b) Seasonal variation in food intake 180
(c) Seasonal changes in the food 180
(d) Food in relation to age. 182
(ii) Salmon parr 182
(a) Composition of the diet 182
(b) Seasonal variation in food intake 185
(c) Seasonal changes in the food 185
(d) Food in relation to age. 188
(iii) Utilisation of the fauna. $\because: .$. 188
4. SUMMARY. 189

CISPTER VII

1. TTY ENVIROMMENT

(a) Coneral tocogrephy

Afon Glyn rises in Foel-y-Geifr at 500m O.D. of all the tributaries of Llyn Tegid (Fig. 3.2) this stream has the steepest descent from its source to low flood plain. All along its upper course it runs along cracks in rocks. In sone places the flow helped in cutting the land and dropping downwards to the deep valley. The steps formed by the cracks take the form of a series of falls at the upper reaches, on aither side of the stream there were more trees in the lower reaches than the upper. The strean flows through the upper Bala beds of shales, flazs and limestones of Caradoc series of Ordovician (FIg. 3.1).

(b) Descrintion of the empling sites

Three sampling sites G_{1}, G_{2} and G_{3} were selected on this stream (Fig. 3.2) and regular monthly collections were taken from March 1969 to June 1970.

Site G_{1} was located about 16 m upstream from Liyn Tegid at an altitude of 176 m OD. Here the stream was about lim wide and its depth averaged 0.4 m to 0.1 m . Some aquatic vegetation was present in the form of clumps of Fontinalis antipyretica near the banks. The shores were

PLATE 7.1 SAMPLTHG STATION G1

PIATE 7.3 SAMPJING STATION G3

TABLE 7.1 MEAN MONTHLY ESTIMATES OF PHYSICAL FACTORS AT G1 SAMPLING STATION IN AFON GLYN.

Months	M	A	M	J	J	A	S	0	N	D	J	F	M	A
Water Temp. ${ }_{\text {c }}^{\text {¢ }}$	3.0	4.5	5.0	10.0	14.5	13.4	8.0	7.0	5.5	4.0	3.5	3.2	5.1	5.1
Specific conductance o (micromhos / cm^{3} at 25 C)	166	216	226	109	121	104	157	166	320	387	403	397	203	112
Dissolved 02, \% Sat.	96	95	103	112	98	104	94	101	111	117	107	108	101	98
Velocity of water current ($\mathrm{m} / \mathrm{sec}$)	0.22	0.23	0.16	0.14	0.11	0.12	0.17	0.24	0.29	0.41	0.70	0.64	0.60	0.29
pH	7.1	7.4	6.7	6.9	6.8	7.2	7.2	7.0	7.2	7.6	7.8	7.4	7.1	7.1
Turbidity (as Fuller's earth)	21.2	24.1	23.3	19.4	18.1	28.2	31.2	28.2	53.2	75.2	87.3	88.2	77.1	35.1

TABLE 7.2 HEAN MONTHLY ESTIMATES OF PHYSICAL FACTORS AT G2 SAMPLING STATICN in afon gLyn.

Months	M	A	M	J	J	A	S	0	N	D	J	F	H	A
Water Temp. ${ }^{\text {C }}$	3.2	4.5	5.0	10.2	14.6	13.5	8.1	7.2	5.5	4.0	3.5	3.2	5.1	5.1
Specific conductance (micromhos $/ \mathrm{cm}^{3}$ at $25 \stackrel{0}{\mathrm{C}}$)	161	215	216	101	115	101	141	151	301	385	398	402	201	102
Discolved 02, \% sat.	96	96	108	111	98	103	98	96	101	118	113	101	98	97
```Velocity of water current (m/sec )```	0.19	0.20	0.18	0.14	0.11	0.13	0.17	0.25	0.29	0.52	0.73	0.68	0.57	! 0.26
pH	7.2	7.4	6.8	6.9	7.1	6.8	7.1	7.1	7.4	7.3	7.6	7.4	7.1	7.2
Turbidity   ( as Fuller's Earth.)	20.1	19.6	21.4	18.1	19.2	16.3	26.4	28.8	63.8	71.8	81.4	84.1	72.4	31.2

TABLE 7.3 MEAN MONTHLY ESTIMATES OF PHYSICAL FACTORS AT G3 SAMPIING STATION IN AFON GLYN.

Months	M	A	M	J	J	A	s	0	N	D	J	F	M	A
Water Temp. ${ }^{\text {c }}$	3.1	4.2	5.4	10.8	15.1	14.2	8.8	8.1	5.1	3.8	3.6	3.2	4.1	5.6
Specific conductance   Specific conductance micromhos $/ \mathrm{cm}^{3}$ at $25{ }^{\circ}$ )	124	180	173	83	93	98	123	135	268	301	308	366	123	118
Dissolved 02, \% Sat.	98	96	95	102	111	98	108	101	115	118	121	113	101	96
Velocity of water current (misec)	0.29	0.25	0.24	0.20	0.18	0.21	0.26	0.28	0.46	0.78	0.75	0.78	0.64	0.27
pH	7.1	7.2	6.8	6.9	6.6	6.8	7.1	7.1	7.4	7.6	7.8	7.4	7.1	7.1
Turbidity   (as Fuller's Earth)	17.1	$18.2^{\circ}$	18.2	20.3	21.4	15.3	24.8	23.1	46.3	63.2	79.2	84.8	60.2	28.9

sheltered and the bottom was composed of silty sand with scattered grevel anc stones (Flate 7.1).

S1te $G_{2}$ was near the road bridge at about 100 m upstream from the lake at an altitude of about 183 m OD. Here the stream was 8 m wide and 0.3 to 0.6 m deep except during flood. The shores and substratum were similar to $G_{1}$ and there was some vegetation near the banks (Plate 7.2).

Site $G_{3}$ was located at about 4400 m upstream from Lign fegid at an altitude of 467 m OD. Fere the stream was 2.3 m wide and its depth averaged 0.6 m . This site had some deep pools and falls. The shores were exposed and composed of rocks with overyling gravel and some silt with little vegetation apart from algae on the stones and clumps of Fontinalis squamosse The substratum consisted of solld rocks and huge boulders (Plate 7.3).

## (c) Phusical and chemical composition

Tables $7.1,7.2,7.3$ show the mean monthly estimates of physical factors at $G_{1}, G_{2}$ and $G_{3}$ sites. The range of water temperatures was $3.0^{\circ} \mathrm{C}$ and $15.1^{\circ} \mathrm{C}$ during this period. The dissolved oxygen (percentage saturation) was relatively more concentrated during winter than in sumer. pH values varied between 6.6 and 7.8. The velocity of the water current ( $\mathrm{m} / \mathrm{sec}$ ) was higher during winter months than summer. Conductivity and turbidity were higher during winter than in summer at each sampling site.

Table 7.4 The percentage composition (by number) of the fauna at $G 1, C 2$ and $G 3$ sites of Afon Glyn based on 14 monthly samples. $(+=\langle 0.1 \%)$

Sampling Stations $\rightarrow$	G1		G2		G3		Total \%
Bottom fauna $\downarrow$	$\begin{gathered} \text { Av. Ho. } \\ / \mathrm{m} \\ \hline \end{gathered}$	$\%$	Av, No. $1 \mathrm{~m}$	\%	Av. No. $/ m^{2}$	\%	
Turbelleria	(1.0)	(+)	(-)	(-)	(0.7)	(+)	(+)
Folycelis nigra	1.0	+	-	-	-	-	+
Phagocata vitta	-	-	-	-	0.7	$+$	$+$
Hirudinea	(0.7)	(+)	(4.2)	(0.2)	(1.0)	(t)	(0.1)
Erpobdella octoculata	0.7	+	3.2	0.2	-	-	+
Helobdella stagnalis	-	-	0.7	+	1.0	+	+
Olienchaeta	(157.2)	(11.3)	(48.1)	(3.2)	(49.2)	(3.1)	(5.1)
Stylodrilus heringianus	107	7.8	25.6	1.7	40.6	2.6	3.5
Homochaeta naidina	4.2	0.3	-		-	-	. 1
Lunbriculus variegatus	41.7	3.0	7.4	0.5	4.2	0.3	1.0
Aulodrilus pluriseta	3.2	0.2	2.1	0.2	-	-	0.2
Eiseniella tetraedra	0.7	+	8.5	0.6	3.2	0.2	0.2
Haplotaxis gordioides	-	-	1.0	0.1	-	-	+
Limnodrilus hoffmeisteri	-	-	-	-	0.7	+	+
Gastroroda	(1.0)	(+)	(24.6)	(1.7)	(14.9)	(0.8)	(1.1)
Ancylastrum fluviatile	1.0	$+$	24.6	1.7	11.7	0.7	1.1
Limnaea pereger	-	-		-	2.1	0.1	$+$
potamopyrgus jenkinsi	-	-	-	-	0.7	$+$	+
Lemellibranchiata	(0.7)	(+)	(71.6)	(4.7)	(2.1)	(+)	(1.1)
Fisidium nitidum	0.7	+	0.7	+	-	-	0.1
Fisidium milium	-	-	8.5	0.6	1.0	+	0.1
Fisidiun hibernicum	-	-	0.7	+	-	-	+
Fisidium subtruncatum	$\stackrel{-}{-}$	(	60.9	4.1	0.7	+	0.8
Amphipoda	(5.3)	(0.3)	(10.7)	(0.6)	(13.9)	(0.9)	(0.6)
Gammarus pulex	5.3	0.3	10.7	0.6	13.9	0.9	0.6

Table 7.4 (contd.)

Sampling Stations $\rightarrow$	G1		G2		G3		Total \%
Bottom fauna $\downarrow$	$\text { Av } / \mathrm{m}^{2}$	\%	Av. NO.	$\%$	Av. NO.	$\%$	
Isomoda	$(1.0)$	( + )	(2.1)	(0.1)	(-)	(-)	(0.1)
Asellus meridiancs	1.0	+	2.1	0.1	- -		0.1
Hydracarina	(-)	(-)	(-)	(-)	(2.1)	(+)	(+)
Hygrobates fluviatilis	-	-	-	-	1.0	+	$\dagger$
Sperchon setiger	(162	(11-5)	(303	1	0.7	$\stackrel{+}{+}$	+ ${ }^{+}$
Flecontera	(162.6)	(11.5)	(303.8)	(19.9)	(411.9)	( 25.9 )	(16.5)
Criorocerla tripunctatú	36.3	2.6	16	1.1	12.8	0.8	1.3
Amphinemura sulcicollis	16	1.1	20.3	1.3	77.0	4.9	2.0
Chloroperla torrentium	95.2	7.0	34.2	2.3	67.4	4.4	3.8
Iscperla grammatica	6.4	0.5	10.7	0.6	73.8	4.7	1.7
Leuctra hippopus	2.1	0.2	72.7	4.9	16.0	1.0	1.8
Leuctra nigra	2.1	0.1	5.3	0.3	25.6	1.6	0.6
Leuctra moselyi	0.7	+	34.2	2.3	4.2	0.3	0.8
Leuctra inermis	1.0	+	33.1	2.2	26.7	1.7	1.4
Amphinemura standfussi	0.7	+	-	-	25.6	1.7	. 6
Nemoura cinerea	-	-	0.7	$+$	-	-	+
Protonemura meyeri	-	-	5.3	0.4	52.4	3.3	1.0
Isoperla obscura	-	-	2.1	0.1	-	-	+
Perlodes microcephala	-	-	1.0	0.1	-	-	+
Perla bipunctata	-	-	0.7	$+$	12.8	0.8	. 2
Leuctra fusca	-	-	62.0	4.3	2.1	0.1	1.1
Protonemura praecox	-	-	-	-	10.7	0.6	. 1
Brachyptera risi	-	-	-	- ${ }^{-}$	0.7	+	+
Erhemeroptera	(124.1)	(8.5)	(258.9)	(17.1)	(419.4)	(26.1)	(17.8)
Centropiilum Iuteolum	48.1	3.5	73.8	5.0	16.0	1.0	4.8
Ephemerella ignita	0.7	+	87.7	5.9	99.5	6.3	3.2
Ecdyonurus venosus	33.1	2.5	9.6	0.6	+8. 1	3.0	1.7
Paraleptophlebia submarginata	5.3	0.4	4.2	0.3	2.1	0.2	. 3

Table 7.4 (contd.)

Sampling Stations	G1		G2		G3		Total \%
	Av. $/ \mathrm{m}{ }^{\text {No. }}$	\%	Av. No	$\%$	$\text { Av. } \mathrm{NO}$	\%	
Baltis rhodani	5.3	0.3	16.0	1.1	139.1	8.8	2.7
Heptagenia lateralis	18.1	1.3	11.7	0.8	34.2	2.1	2.0
Heptagenia sulphurea	4.2	0.3	26.7	1.8	42.8	2.7	1.6
Ecdyonurus dispar	2.1	0.1	-		9.6	2.6	. 2
Caenis moesta	2.1	0.1	-		-	-	. 1
Paraleptophlebia cinta	0.7	+	-		-	-	+
Leftophlebia marginata	1.0	+	-		0.7	$+$	$+$
Eattis pumilus.	-	-	19.2	1.2	1.0	+	. 4
Ecdyonurus torrentis	-	-	0.7	+	-	-	+
Para? eptophlebia tumida	-	-	0.7	+	-	-	+
Ealtis atredetinus	-	-	2.1	0.2	-	-	+
Ephemera danica	-	-	0.7	$+$	0.7	+	$+$
Rhithrogena semicolorata	-	-	-	-	3.2	0.2	. 4
$\mathrm{E}_{2}{ }^{\text {U }}$ tis scambus	-	-	(1)	-	78.1	1.2	. 3
Hemiotera	(105.1)	(7.7)	(118.4)	(7.8)	(-)	(-)	(7.3)
Nicronecta poweri	103.7	7.6	117.7	7.8	-	-	7.2
Valía 5 pp .	0.7	+		-	-	-	7
Corixa panzeri	0.7	+	-	-	-	_	+
Sigara distincta	-	-	0.7	+	-	-	+
Meraloptera	(1.0)	(+)	(5.3)	(0.4)	(8.5)	(.5)	(0.2)
Sialis fuliginosa	0.7	+	0.7	+	0.7	$+$	+
Sialis Iutaria	0.7	$+$	4.2	0.3	7.4	0.5	. 2
Trichoptera	(65.2)	(4.4)	(208.6)	(13.4)	(204.3)	(12.6)	(9.8)
Rhyacophila dorsalis	0.7	$+$	-	(13.4)	16.0	1.0	. 2
Oiontocerum albicorne	0.7	$+$	-	-	-	-	$+$
Ilectronemia conspersa	13.9	1.0	51.3	3.4	32.1	2.0	2.4
Hydropsyche instabilis	0.7	+	22.4	1.5	121.9	7.7	2.3
Anabolia nervosa	0.7	+	84.5	5.6	12.	7.7	1.1
Sericostoma personatum	2.1	0.2	5.3	0.3	-	-	. 2
Fotamophylax latifenis	0.7	$\pm$	28.8	1.9	12.8	0.8	1.9

Table 7.4 (contd.)

Sampling Stations $\rightarrow$	G1		G2		G3		Total \%
Bottom fauna $\downarrow$	Av. No.	\%	Av. No.	\%	Av. NO.	$\%$	
Glyphotaelius pellucidus	33.1	2.4	7.4	0.5	5.3	0.3	1.1
Mystacides nigra	3.2	0.2	-	-	5.3	0.3	0.1
Halesus digitatus	6.4	0.5	-	-	12.8	0.8	0.4
Agapetus fuscipus	-	-	0.7	+	1.0	+	$+$
Silo pallipes	-	-	0.7	+	-	-	+
Hycropsychae fulvipes	-	-	3.2	0.2	-	-	+
Diplectrona felix			-		0.7	$+$	$+$
Colesptera	$(16.0)$	(1.0)	(35.3)	(2.3)	(28.8)	(1.6)	(1.5)
Platambus meculatus	2.1	0.2	2.1	0.2	-	-	c. 1
Latelmis volkmari	10.7	0.7	16	1.0	3.2	0.2	0.6
Deronectus depressus	0.7	$+$	-	-	0.7	$+$	$+$
Helmis maugei	1.0	+	10.7	0.7	17.1	1.1	0.6
Haliplus lineatocollis	-	-	1.0	0.1	-	-	$+$
Helophorus flavipes	-	-	1.0	0.1	5.3	0.3	0.1
Oreodytes rivalis	-	-	1.0	0.1	0.7	+	$+$
Hyphydrus ovatus	-	-	0.7	+	-	-	+
Dintera							
(1) Ceratopoconidze	(7.4)	(0.5)	$(7.4)$	(0.5)	(2.1)	(0.2)	(0.3)
Eezzia spp.	7.4	0.5	7.4	0.5	2.1	0.2	0.3
(2) Dixidse	(-)	(-)	(0.7)	(+)	(55.3)	(3.5)	(0.7)
Dixa puberula	- ${ }^{-1}$	-	0.7	$+$	55.3	3.5	0.7
(3) Tinulidae	(7.4)	(0.5)	(4.2)	(0.3)	(0.7)	(+)	(0.2)
Tipula couckei	0.7	+	-	-	-	-	+
Tipula lateralis	0.7	$+$	1.0	0.1	0.7	+	0.1
Tipula maxima	5.3	0.4	3.2	0.2	-	-	0.1
Tipula rufira	0.7	+			-		
Simuliidae	(-)	(-)	(1.0)	(0.1)	(1.0)	(+)	(+)
Simuliun monticola	-	-	-0	-	0.7	$+$	+
Simulium brevicaule	-	-	1.0	0.1	0.7	$+$	+

Table 7.t (contd.)

Sampling Stations	G1		G2		G3		Total \%
Bottom fauna	Av. ${ }_{\text {/m }}$	\%	${ }^{\text {Av. }}$ / ${ }^{\text {No. }}$	\%	Av. No.	\%	
(5) Chironomidse	(647.3)	(47.3)	(269.6)	(17.8)	(64.4)	(16.8)	(29.4)
Fentaneura monilis	24.6	1.8	71.6	4.8	26.7	1.7	2.9
Microtendipes chloris	7.4	0.6	-		-	-	0.1
Strictochironomus spp.	5.3	0.3	-		-	-	+
Folypedilum nubeculosus	563.8	41.3	33.1	2.2	-	-	16.2
Procladius choreus	16	1.1	11.7	0.8	,	-	. 8
Tanytarsus signatus	3.2	0.2	25.6	1.7	37.4	2.3	1.4
Cryptochironomus spp.	2.1	0.1	-		-	-	+
Prodiamesa olivacea	16	1.1	7.9	5.0	-	-	4.5
Erillia modesta	6.4	0.5			-	-	+
Trichocladius rufiventris			50.2	3.3	201.1	12.7	3.5
Other dioteran larvae	(21.4)	(1.5)	(87.7)	(5.7)	(73.5)	(5.5)	(3.0)
İermerodromia unilineata	-	-	2.1	0.1	3.2	0.2	0.1
Dicranota robusta	18.1	1.4	81.3	5.4	63.1	4.0	2.8
Taphrophila vitripennis	2.1	0.1	1.0	0.1	6.4	0.4	0.1
Pedicia rivosa	-	-	0.7	+	0.7	+	+
Pericoma pseudoexquisita	-	-	1.0	0.1	-	-	$+$
Dipteran rupae	29.9	2.2	21.4	1.4	13.9	0.9	1.7
Total no. animals				51			
Av. no. animals per month		27.5		39.3		4.7	
Av. no. animals / m ${ }^{2}$		4.2		90.5		60.3	

162


Fig 7.1 Percentage composition of the bottom fauna at each month at each station.


Fig. 7.2 Seasonal variations in the number of different groups of bottom tauna in Afon Glyn

Table 7.5 Percentage composition of the different groups in the total fauna sampled :.. at $G_{1}, G_{2} \& G_{3}$ $(+=\langle 0.1 \%)$

Sampling sites $\longrightarrow$	$\begin{array}{r} \mathrm{G}_{1} \\ (\%) \\ \hline \% \end{array}$	$\begin{array}{r} \mathrm{G}_{2} \\ (\%) \end{array}$	$\begin{array}{r} G_{3} \\ (\%) \end{array}$
Elevation OD $\longrightarrow$	176 m	183 m	500 m
Turbellaria	0.1	-	+
Hirudinea	-	+	+
Oligochaeta	5.5	3.1	3.1
Gastropoda	0.2	2.4	0.8
Lamellibranchiata	-	0.7	+
Amphipoda	0.5	0.7	0.9
Isopoda	0.2	-	-
Ilydracarina	0.4	-	+
Plecoptera	10,7	14.9	25.9
Ephemeroptera	11.1	24.3	26.1
Hemiptera	6.8	14.3	-
Megaloptera	-	0.3	0.5
Trichoptera	6.5	10.0	11.3
Coleoptera	1.6	1.2	1.6
Diptera			
Ceratopogomidae	+	0.3	0.2
Tipulidae	0.8	0.2	+
Simuliidae	-	+	+
Chironomidae	50.2	21.0	16.7
Dixidae	-	-	3.5
Other dipteran larvae	0.7	2.2	4.6
Dipteran pupae	1.5	2.4	0.9

Table 7.6 Statistical significance in the number of bentric. faune between $G_{1} / G_{3}$ and $G_{2} / G_{3}$ sampling sites at $5 \%$ level.

2

Sampling sites $\longrightarrow$	$G_{1} / G_{3}$		$G_{2} / G_{3}$	
Benthic fauna $\downarrow$	t	p	t	p
Oligochaeta	1.3	$>0.05$	0.6	$>0.05$
Gastropoda	-	-	1.6	$>0.05$
Plecoptera	2.7	$<0.05$	0.7	$>0.05$
Ephemeroptera	1.7	$>0.05$	0.8	$>0.05$
Trichoptera	1.5	$>0.05$	0.1	$>0.05$
Coleoptera	0.8	$>0.05$	0.5	$>0.05$
Chironomidae	3.9	$<0.05$	1.0	$>0.05$
Other dipteran larvae	0.4	$>0.05$	0.6	$>0.05$

Water samples for chemical analysis were talen in the month of June 1969. The analytical results are sumarised in Table 3.4.

I found more calcium ions in this stream, as did Dunn (1961) and Woolland (1972). This is probably due to its flow oever the Hirnant limestone of the Bala beds.

## 2. COMPOSTTION OF THE FANA

The species of this stream as established by systematic collecting at three stations over a period of 14 months are 11 sted in Table 7.4. A total of 7772 organisms, belonging to 117 different species were ilentified.

The seasoral variation of the bottom fauna is show in Figs. 7.1 and 7.2. A gradual increase in the total number of orcanisns from winter to sumer was observed.

The samples taken yield a fairly accurate picture of the bottom fauna of the area studied. The regular invertebrate population vould appear to comprise oligochaeta, Ephemeroptera, Trichopera, Diptera, Coleoptera, Plecoptera and Crustacea, which account for $97.7 \%$ of the total Hirudinea, Hydracarina, Mollusca and Turbellaria were also represented. As is to be expected the fauna changed with altitude (Tables 7.5 and 7.6). In the following account short descriptions are given to supplement the list in Table 7.4.


Fig. 7. 3 Seasonal variations of the common species of botiom fauna. The total number is shown in brackets
A. Annolida
(1) oligechatta
4.0f of the total bottom fauna was formed by this group. Stylodrilus heringionus and Lumbriculus varietatus were comion and the rest (Table 7.4) were scarce. These were distributed at all the stations and there was no strong pattern in the seasonal variation (pig. 7.3).
(B) Kollusca
(I) Gastropoda
$1.1 \%$ of the total benthic fauna belonged to this group. Ancylastrum fluviatilis was cormon and Limnaea pereaer and Hydrobia jenkensi were scarce. Ancviastrum flurlatilis occurred on exposed rocks and bare stones and was found more during spring and sumxer (Fig. 7.3) (see also Eerg et, al. 1958).
(2) Lamellibranchiata
0.2 of the total macrometazoans were formed by this group. Four species listed (Table 7.4) were scarce, and no chenge was noted in the total number at any sampling sites.
(C) Arthronoda
(1) Cyustacea
(a) Amphinoda

Gamarus nulex formed $0.6 \%$ of the total fama. These were recorded more during winter (Fig. 7.2) and collected
less at $C_{1}$ and $G_{2}$ thon at $G_{3}$ sampling sitc.
(b) Isonodis

Aselius mericianus was scarce and constituted $0.1 \%$ of the totel catch. This was not recorded from $G_{3}$. (2) Arechntas
(a) Mydracarina

Hygrobates nigromaculatus, Hygrobates fiuviatilis and Soerchon set1ger were collected from $G_{3}$ and formed $1.0 \%$ of the total.
(3) Insecta
(a) Plecontera

This group formed $16.4 \%$ of the total organisms and was represented by seventeen species, of khich Chioroneria trinunctate, Ampinemura sulcicolils, Chloronerla torrentium Isoperia frammatica and Leuctra hoponus were common, and recorded in large numbers in every season (Fig. 7.2). I found the above species numerous during winter and spring and Lexctra spo. in spring and summer (Fig. 7.3). These were collected in large numbers at hicher elevation (Table 7.5) which according to Macan (1962) is probably a function of temperature. A significant difference was observed between the numbers of plecopterans present in the bottom fauna at $G_{1}$ and $G_{3}(t=2.7 ; F<0.05)$ (Table 7.6).
(b) Enhemerontera
17.7\% of the total faune belonged to this group. Centrontilum Iuteolum, Ecdyonurus venosus, Boetis rhodeni


Fig. 7.4 Seasonal variations of the common species of bottom fauna. The total number is shown in brackets
and fientomenie laterglis were present in large numbers at every station and the rest (Table 7.4) scarce. Centrantilum Iutcolum and Hertesenis sex. were recorded in every season, but Ecdycnupus venosus was present more during winter and spring, and Baetis spp. in spring and summer (Fig. 7.4). I found Themerella imitg during summer (Fig. 7.4) as did those of Macan (1957t.
(c) Henders
7.2. of the bottom fauna was composed of this group. Micronectanoweri was common end Corixa nenzery, Sicara distincta ond Volia snp. were scarce at $G_{1}$ and $G_{2}$. Not a single species was recorded from $G_{3}$; this may be due to higher elevation rnd reletively fast currents. The above hempterans were present at $G_{1}$ and $G_{2}$ probabiy due to the proximity of the lake and low velocity. They occurred mostly where the rooted aquatics were confined to the margins of the stream.
(d) Yegalontera

This group was represented by sialis rulipinose and stejis_uteria. Both vere scarce, fomed C. 2 of the total and collected nore from $G_{3}$.

## (e) Trichoptera

This group constituted $9.4 \%$ of the total benthic fauna. Electrocnemia conscersa and clyhotaclius polyucidus were comon and the rest (Table 7.4) scarce. Quontitatively, this group kas recorded more during spring and sumer (Fig. 7.2). I found Glvpheteclius vellucicius abundent in
the vicinity of the lake. Very few caddis larvae were collected from $G_{3}$.
(i) Colmonterg

1. 4 , of the total catcin was formed by aquatic beetles. Latelmis volknari and Helmis meurei vere common. The adults were found among weeds and the larvae on stones. Vnlike Naitland (1972) I found the above species more common in the lower reaches than the upper. Hatland sada that they were uncomen in the lower reaches of a Scottish river, and said that the population is controlled by the f1sh predation or removal by spates.
(g) Mintera

This group formed 35.8 , of the total organisms and was represented by the families Ceratopogonidae, Dixidae, Tipulidac, simulildae, Chironomidae, other aquatic dipteran larvae and pupae. These were collected more during sumer and autum (Fig. 7.2).
(1) Ceratonozoni dae
0.3 of the fauna was composed of Bezzin spre
(2) pixidae
$0.7{ }^{\circ}$ of the benthic fauna were constituted by Dixa nuberula; almost all were collected from $G_{3}$ (Table 7.4).
(3) Tipulidae

Tive species listed in Table 7.2 formed 0.2 of the total. These were collected more from $G_{1}$ and $G_{2}$ than $G_{3}$. (4) Stmulifdae
clmulium monticola and simulium brevicaule were scarce.

Table 7.7 The average percentage composition of the total annual diet of trout and salmon parr assessed by occurrence, volume and number methode. $\quad(+=\langle 0.1 \%)$


Table 7.7 (contd.)

Food organisms $\downarrow$	Trout			Salmon parr		
Metiods of assessment $\longrightarrow$	0	V	N	0	V	N
Diptera	(6.1)	(4.2)	(7.4)	(24.6)	(19.5)	(24.4)
Chironomidae	5.0	3.3	6.3	21.2	27.4	22.0
Simulifae	0.7	0.4	0.8	2.4	1.6	1.9
Other aipteran larvae	-	-	-	1.0	0.5	0.6
Dipteran pupae	0.4	0.5	0.3	-	-	-
Micwater food						
Coleoptera adults	(4.3)	(5.0)	(4.3)	(0.4)	(0.6)	(0.1)
Latermis volknari	3.1	4.2	2.3	0.3	0.4	+
Platambus maculatus	1.2	0.8	2.0	0.1	0.2	+
Phoxinus phoxinus	(1.1)	(1.1)	(0.5)	(0.2)	(2.1)	(0.1)
$\frac{\text { Aerial \& terrestrial food }}{\text { Insects (Hemiptera, Diptera, Hymenoptera) }}$	20.0	31.8	26.6	6.4	8.4	3.5
Miscellaneous food						
Flant material	8.7	6.5	4.3	2.8	1.7	1.9
Fish eggs	2.8	3.7	2.8	0.2	1.0	0.1

Av. No. Org. per stomach in trout $=10.4$
Av. No. Org. per stomach in Salmon parr $=20.8$

No effect of elevation was noticed in the distribution of this sroup.
(5) Chirononidae

This group formed $29.4 \%$ of the total fauna. pentaneura monilis, colynedilum nubeculosus and prodiamesa olivacea were cormon, (Table 7.4). These were abundant during summer and found more at low altitude than at high (Table 7.5).

A significant difference ( $t=3.9 ; \mathrm{P}<0.05$ ) was observed between the numbers of chironomid larvae present in the bottom fama at $G_{1}$ and $G_{3}$ (Table 7.6). (6) Other Dinterin larvae
3.0,6 of the total organisms belonged to this category in which picranota robusta was common.
(7) Dinteran nupas
1.7\% of the limnetic invertebrates were constituted by the dipteran pupae.

## 3. THE FESDTMG OF SALNONDS

## (1) Broun trout

A total of 101 trout belonging to $0+$ to $4+$ age groups were collected at monthly intervals during January 1969 to March 1970; of these five stomachs were empty and the rest had food in varying cuantities (Table 3.6).
(a) Comnosition of the diet (by volume)

Toble 7.7 shows a wide spectrum of differont orgenisms eaten. The most important dietary items wilichbelonged
to the benthic food, were Plecoptera end Ephemeroptera nymphs, end Trichoptera and chironomid larvae which together formed 43. 2 ? of the total volume. Oligochatea, Gastropoda, Coleoptera and other dipteran larvae were among the less 1 mportant benthic food whici constituted $2.7 \%$ by volume of the total.
plecoptera represented by Chloronerla tripunctata, Amphinemurs sulcicolils, Chioronerla torrentium, Leuctre spp. and other unidentifiable plecopteran nymphs formed 6.5, of the total. Eaetig shodani, Eedyonums Venosus and Eeptagenialateralis represented the Ephemeroptera which formed z 9.0 苂, of the total volume. Trichoptera larvae mostly belonged to plectrocnemia consnersa, Hydroesyche instabilis, Fotemophylex letinomis and Somecstoma nersonatum and amounted to 9.1\%. Chis ronomd larvas formed 3.3 of the total volume.

Among the less important food items, Lumbriculus Verierctus occurred in $0.3 \%$, Simulinm brevicaule in $0.4 \%$ Ancylastmm fluviatile 1.1\%, Asellus merfitanus in 0.4 . and finelly dipteran pupee in $0.5 \%$ of the total volume.

Midwater Dod was composed of adult Coleoptera wifich formed 5.0; of the tctal volume and belonged to species Latelmis volkmari, Helmis maugei end Platambus raculetus. A fish, Lhoxinus rhoxinus amounted to 1.1 of the total volune.

Aerial and terrestrial food, which included fuphididae,

# - - - Trout 

——Salmon parr
.-...........Water temperature.


Fig.7.5 Seasonal variationsin food intake of trout and salmon parr


Fig. 7.6 Seasonal variations of the food items of trout and percentace of stomachs containing each food item in different montris.

## —Food item $\quad(1) \%$ of each item in the total sample $\triangle$ Fish <br> [ ] ic of trout containing each item [ in the total sample



Fig. 7.7 Seasonal variations of the food tiems of irout and percentage of stomachs containing each food item: in different months.

Nabidac, Fomicidae, Impldae, and Elbicmidae, formed 31. 8 of the total volume.

Finally, $6.5 \%$ of the food was plant material and $3.7 \%$ was fish egga.
(b) Ecasonal mriation in food intake

FIg. 7.5 shows that the maximum feeding activity occurred during sumer and it graduelly decreased in vinter. (c) Seasonal changes in the food

Figs. 7. $6,7.7$ show the seasonal changes in the food. Ephemorontera and Plecoptera nymphs and Irichoptera larvae occurred in the stomachs throughout. lost of the Plecoptera nymphs for cxample Levetra sno., Isonerf sno. and Ampinemura spp. were eaten during epring and autumn. Eheneroptera rymphs,mostly Enctis sme. Ephemerella smo. and Fontarcnia son. were present in substantial quentities throughout. Larger numbers of Trichopera larvae particularly plectrcnenta spp. and Gyphotgelius snc. were eoten during winter then in any other season. Chironomid larvae occurred In a smaller percentage of stomachs during sumer and autum. Trout ate asrial and terrestrial insects belonging to Emphidse, Blbionidae nnd Formicidae most frecuently during summer and autumn. The food items of infreguent accurrence were Cojeoptera adults and Iervae, Ollgochaeta, Castropoda, fish eges and plent meterial. These itens were found

Table 7.8 The average percentage composition of the food assessed by occurrence, volume and number methods of trout of each age group.

Name of Soecies	Salmo trutta														
Total No. Stomachs	101														
Age	$0+$			$1+$			$2+$			$3+$			$4+$		
No. sp i. in each age group	8			46			29			16			2		
No. Empty stomachs	-			2			-			3			-		
Methods of assessment	0	V	N	0	V	N	0	V	N	0	V	N	0	V	N
Benthic food															
Oligochaeta				. 8	. 1	. 2				2.3	1.5	. 3			
							1.7	2.3	. 6	2.3	3.1	1.2			
Isopoda				1.8	2.1	1.2				2,					
Plecoptera nymphs	23.6	4.5	6.5	12.4	6.8	9.9	19.0	14.0	11.2	14.2	7.2	14.2			
Ephemeroptera nymphs	28.1	25.0	31.4	32.9	17.6	21.4	29.4	25.5	29.5	20.4	8.9	17.0	65.6	71.7	83.4
Trichoptera larvae Coleoptera larvae				3.7	1.5	2.1	14.5	20.3	12.4	16.5	23.8	14.7			
Coleoptera larvae Chironomid larvae				10.4	8.1	14.9	8.5	6.4	10.2	6.4	2.1	6.7			-
Simuliid larvae				10.4	8.1	14.9	8.5	6.4	10.2	3.4	2.1	6.7 4.0			
Other dipteren larvae   Dipteran pupae							2.0	2.7	1.7						
Midwater food															
Coleoptera adults	18.1	20.5	19.5	1.2	1.6	. 5	2.2	3.2	1.9						
Fish							5.5	5.5	2.7						
Aerial \& terrestrial food	40.0	50.0	42.5	36.4	62.2	49.2	14.4	18.6	19.2	9.5	28.5	22.1			
Insects															
$\begin{aligned} & \frac{\text { Miscellaneous food }}{\text { Flant material }} \\ & \text { Fish eggs } \end{aligned}$							. 5	1.1	+	7.0 14.2	3.5 18.8	4.9 14.2	33.3	28.3	16.6

during late autum end winter. The minnow (Phorinus phoxinus) wes eaten during autumn.
(d) Focd in relation to res
$x^{2}$ test showed a significent difference in the occurrence of plecopteren $\left(x^{2} 3=10.93, P<0.05<0.02\right)$, coleoptaran $\left(x_{3}^{2}=19.93, P<0.05<0.0 \ll 0.01\right)$, and aerial and terrestrial $\left(x_{3}^{2}=10.04, P<0.05<0.02\right)$ food iters in different age groups of trout. as far es the other food iters were concerned there were no significent changes in the diet of fish belonging to $0+$ to $4+$ age groups (Table 7.8).

## (ii) Eslmon Derr

A total of 123 salmon parr were collected from January to March 1970. Of these, 14 stomachs were empty (Table 3.7).
(a) Composition of the diet (by volume)

Table 7.7 shows the composition of the total diet of salmon tarr. The most simificant items of bentric food were Gastropoda, Plecoptera and Ephemeroptera nymrhs; Trichoptora, chironomid and simuliid larvae. Oligochacte, Colcoptera and other aquatic dipteren larvee kere insignificant in the dict.

Ancylastrum fluviatile formed $2.6 \%$ of the diet.
Plecoptcra were represented by Chloronerla trinunctota, Amphinemurg sulcicollis, Chioronerla torrentium, Leuctra scp.
$\square]$ Food item (1) \% of each item in the total sample
㽪 Fish
[-] \% of saimion parr containing each item



Fig. 7.8'Seasona! variations of the food items of salmon parr and percentage of stomachs containing each food item in different months.1

$\square$Food item ( $) \%$ of each item in the total sample fll Fish
[] \% of salmon parr containing each item [] in the total sample


Fig. 7.9 Seasonal variations of the food items of salmon parr. and percentage of stomachs containing each food item in different months.
and other unidentifiable flecoptera nymphs in $5.8 \%$ of the Alet; Ephemeroptera represented by Paralentonhlebia submerdnata, Pastis rhodant, Scivonurus venosus, Heptormiz Jnteralis and other unidentifiable mhemerontera nymphs, formed 19.8\%; and Trichopters, represented by plectrocnomin conspers, Hyarqsyche instabilis, potgmonhylex 1atioennis, Eericostomamersonatum and other unidentifiable Trichoptera larvae constituted 19.8F of the total diet. Chironomid larvee were found in 17.4 4.

Among the insignificant benthic food were Latelmis volkmari and Eelmis maugei which together formed 0.3 of the total. Finaliy simulifd larvae were present in 1.6 , of the total diet.

The miduater food was composed of adult Plotembug maculatus ( $0.6 \%$ ) and the bullheed (Cottus gobbio) ( $\mathrm{c} .1 \%$ ).

Aerial and terrestrial insects belons to [xpleae, Elbionidee and Formicidae, and fomed $8.4 \%$ of the total diet.

Miscelleneous food formed $2.7 \%$ of the diet in which $1.7 \%$ was plant material and $1.0 \%$ fish eges. (b) Geasongl variation in food intake

The naximu: feeding activity was observod during April to June and it gradually decreased in winter (Flg.7.5). (c) Seasensl chenace in the food

Figs. $7.8,7.9$ show the presence of plecoptera,

Table 7.9 The average percentage composition of the food assessed by occurrence, volume, and numiver methods of salmon parr of each age group.


PERCENTAGE


Ephemeroptera, Trichoptera and Chironomidae throughout the poricd. Nost of the plecoptera were eaten during winter and spring. Ephemeroptera nymphs were most frequent in the diet during winter and spring. Trichontera lervac were the dominant food item during nutum and unter. Considerable numbers of chironomid larvae vere eaten during slimmer and autumn. Gastropods, eerial end terrestrial insects, were confined mainly to summer and auturn.

Arong the food items of infrequent occurrence were simulid larvae and Coleoptera adults and larvae which occurred in winter and spring. other dipteran larvas were consumed in spring and fish, Cottus gebio, in kinter. Lov values were reported for plant materisl except during auturn.
(d) Fuod in relation to see

The fish of all age groups hed a similar diet (Table 7.9).

I found a significent difference in the occurrence of Gastropods ( $x_{3}^{2}=10.47, P<0.05<c .02$ ), and Trichoptera $\left(x_{3}^{2}=9.81 \mathrm{P}<0.05\right)$ in the fcod of trout of different age groups.

## (1i1) Ntilisption of the frums

Fis. 7.10 snows the percentage comosition by number of the bottom fauna and benthic food items utilised by trout and salmon parr. Very few ollgochaetes were caten
by trout end salmon perr, despite their abundance in the fauna. The absence of olleochaetes from the diet was probably related to their burrowing habits. Ancylastrum fluviatile was the cnly molluse eaten by trout and saimon perr. It was consumed more by salmen parr then trout. Ascilus meridinus was the only crustacean eaton by trout. Kaitland (1905) also found crustacea to be core available to trout than to salmon parr, and Frost and went (1940) found very few crustacea in inver liffey salmon parr and trout, despite their abundance in the fauna. Elecoptera nymphs, iostly Chioroperla, Isoperla and Amphinemurn were comon and freauently consumed more by trout than by salmon parr. I found Trichopera larvae eaten more often by salmon parr then by trout, as did Frost and went (1940). Colcoptora larvas and adults belonging to the species Latelais volkmari and Helmis mauge1 were esten more by trout than by saimon parr. A significant difference ( $t=8.3$, $F<0.05$ ) vas observed between the numbers of Coleoptera prescnt in the bottom fauna and in the trout food. $2=-+\cdots$, Salmon parr utilised more chironomid and simulifd larvae than trout; this suggests that salmen farr feeds more on bottom fana than trout.

## 4. STMMARY

(1) The bottom feuna of this stream at low and high altitule was 1427.3 and $15 t 0.3$ animal $s / \mathrm{m}^{2}$ respectively. (2) The percentage of Ampipoia, Flecoptern, Ehemeroptera,

Megalopera and inxidae increased gradually from low altitude to high.
(3) Isopoda, Ceratopogonidac, Tipulidae, Elmulidae, Chircnomidac and their pupae occurred nore at low altitude than at high.
(4) There was no change in the number of Turbellaria, Eirudinea, Oligochaeta, Gastropoda, Trichoptera and Coleoptera with elevation.
(5) cc.9 and $90.7 \%$ by volume of the total food of trout and salmon par: respectively was bantric fauna. (6) Aphidae, mpididae, Bibionidae and Formicidae were consumed more ( $31.8 \%$ ) by trout then by salmon parr ( $8.4 \%$ by volume).

## CHAPTER VIII

DISCUSSION (PART I)
(1) BOTTOM FAUNA 192
(2) FOOD ÁND FEEDING RELATIONSHIP BETWEEN TROUT AND SALMON PARR.

## CHAFTER VIII

## DISCUSSION

Having considered the observations stream by strean (Chapters 3 to 7 inclusive), they will now be discussed under two headings : (1) Bottom fauna, (2) Food and feeding relationship between trout and salmon parr.

## (1) Bottom Feuna

Huct (1959) characterised the biotopes mainly by means of the slopes and widh of the streans. Illies (1952) and Dittmar (1955) characterised the different stream-zones by means of the annual temperature amplitude. Schmitz (1955) preferred to characterise then by the difference between water temperature and air temperature. Macan (10,61) objected to classifying stream-zones by means of temperature mainly because there are no direct relationships between temperature, stream and bottom conditions. Berg (1943, 1943) made a classification of the stream on two ecological factors which he thought were of major importance for the fauma, namely the velocity of current and the type of substratum. The importance of the substratum has been stressed by percival and Whitehead (19:9, 1930), Whitehead (1935), Butcher, Longwell and Pentelow (1937), Moon (1939), Jones 1949a, 1949b), Macan (1957), Hynes (1961), Thorup (1966) and EgEllshaw (1969) who said that the type of substratum
(2) The number of benthic animals increases during summer and decreases during winter.
(3) $68.0 \%$ and $97.8 \%$ benthic fauna were utilised as food by trout and salmon parr respectively.
(4) $27.2 \%$ aerial and terrestrial insects were eaten by trout and $0.1 \%$ by salmon parr.

Table 8.1 Density (Av. no. $/ \mathrm{m}^{2}$ ) of the bottom fauna in all Llyn Tegid feeder streams.
Nature of bottom:-
$A=M u d$, sand and pebble. $B=$ Gravel. $C=$ Stones with scattered vegetations. $D=S t o n e s$ covered with moss.

Streams	Llafar			Lliw	Dyfrdwy		Turch	G1yn		
Nature of bottom	A	B	C	C	A	C	D	A	B	c
Height (m O.D.)	175	177	200	200	175	183	216	176	183	500
Sampling sites	L1	12	13	Iw	LD1	LD2	T	G1	62	G3
Turbellaria	0	5.3	0	0	0.7	0	0	1.0	0	0.7
Hirudinea	10.7	10.7	13.8	7.4	2.1	14.9	0.7	0.7	4.2	1.0
Oligochaeta	435.8	156.2	37.4	333.8	272.8	147.6	26.7	157.2	48.1	49.2
Gastropoda	6.4	2.1	6.4	3.2	6.4	23.5	5.3	1.0	24.6	14.9
Lamellibranchiata	1.0	12.8	58.8	4.2	3.2	4.2	18.1	0.7	71.6	2.1
Amphipoda	0	7.4	2.1	2.1	3.2	1.0	10.7	5.3	10.7	13.9
Isopoda	62.2	21.4	0	0	107.0	0	0	1.0	2.1	0
Hydracarina	98.4	0	7.4	1.0	1.0	2.1	2.1	0	0	2.1
Plecoptera	9.6	372.3	132.9	60.9	17.1	315.6	253.6	162.6	303.8	411.9
Ephemeroptera	3.2	202.2	189.3	535.0	149.8	184.0	269.6	124.1	258.9	419.4
Hemiptera	988.6	144.5	2.1	202.5	422.6	401.?	0.7	105.1	118.4	0
Megaloptera	9.6	3.2	12.8	4.2	1.0	7.4	2.1	1.0	5.3	8.5
Trichoptera	115.5	186.1	72.7	126.2	39.5	263.7	151.9	65.2	208.6	204.3
Coleoptera	55.6	121.9	251.4	38.5	28.8	90.9	60.9	16.0	35.3	28.8
Diptera:	40.6	26.7	9.6	8.5	5.3	6.4	0	7.4	7.4	2.1
Dixidae	0	0	0	0	0.	0	5.3	0	0.7	55.3
Tipulidae	2.1	5.3	9.6	4.2	6.4	7.4	1.0	7.4	4.2	0.7
Similiidee	1.0	21.4	42.8	2.1	0	9.6	3.2	0	1.0	1.0
Chironomidae	1166.8	424.7	1309.6	769.3	2153.9	863.4	314.5	647.3	269.6	64.4
Other dipteran larvae	2.1	34.2	37.4	13.9	2.1	22.4	25.6	21.4	87.7	73.5
Total no. animals	40214	2327	3019	2842	4313	3144	1874	1785	1951	2068
Av.no.animals/month	287.4	166.2	215.6	202.9	308.0	244.5	1333.8	127.5	139.3	147.7
Av.no.animals/m ${ }^{2}$	3075.1	1778.3	2306.9	2171.0	3295.6	2402.1	1431.6	1364.2	1490.5	1580.3

is one of the importent factors in the distribution of aquatic fauna.

In the present study, four different types of bottoms, namely (A) Mud, sand and pebbles, (B) Gravel, (C) Stones with scattered vegetation and (D) Stones covered with moss, and their characterlstic species are discussed. The densities of species found in all the Llyn Tegid feeder streams are tabulated in Tables 3.5, 4.2, 5.3, 6.2 end 7.4. A comparison of the benthic fauna in terms of groups of five unregulated Llyn Tegid feeder streams shows the similarity of the animal inhabitants though their numbers differ on different types of substratum (Table 8.1). The feeder streams have a dense population (mean number of organisms $2382.8 / \mathrm{m}^{2}$ ) composed of many species. Ephemeroptera, Hemiptera, Trichoptera, Plecoptera, Chironomidae and Oligochaeta together formed $81.4 \%, 89.2 \%, 87.4 \pi, 85.4 \%$ and $88.5 \%$ of the benthic standing crop in Afon Llafar, Lliw, Dyfrdwy, Twreh and Myn respectively.

Pharocate vitta was scarce and collected relatively more at $G_{1}$ than $G_{3}$ (Table 8.1). Extensive sampling nay reveal their presence at $L_{1}$ and $L D_{1}$ as they have on ' $A$ ' type bottom, though Reynoldson (1967) showed a high density of Re pitto in peaty ground. Erpobdella octoculata and Helobdella stagnalis were commonly collected. These appear to prefer stony substrata with scattered vegetation

Table 8.2 The distribution of benthic fauna (expressed in averago percentages) according to the type of substratum in Llyn Tegid feeder streams. $\quad+=\ll 0.1 \%$

	A	B	c	D
Types of substratum	Mud and small pebbles	Gravel	Stones with scattered vegetation	Stones covered with moss
Sampling stations	L1, LD1, G1	12, G2	L3, Lw, G3	T
Turbellaria	+	-	+	-
Hirudinea	+	+	0.1	+
Oligochaeta	6.5	5.1	6.2	1.9
Gastropoda	0.2	1.2	1.0	0.4
Lamellibranchiata	+	0.8	0.4	1.2
Amphi poda	0.2	0.4	1.0	0.7
Isopoda	2.1	-	-	-
Hydracarina	0.4	+	+	0.1
Plecoptera	3.8	8.0	16.3	31.6
Ephemeroptera	6.3	19.4	20.3	18.8
Hemi ${ }^{\text {ptera }}$	9.5	7.2	4.7	+
Megaloptera	0.1	0.3	. 5	0.1
Trichoptera	3.6	7.1	9.3	10.6
Coleoptera	1.3	3.3	4.1	4.2
Ceratopogomidae	0.3	0.4	0.3	-
Dixidae	-	-	1.7	0.3
Tipulidae	0.4	0.4	0.1	0.1
Simulidae	-	1.1	0.2	0.2
Chironomidae	57.8	37.8	25.9	24.0
Other dipteran larvae	0.4	1.5	2.8	1.8
Dipteran pupae	1.6	2.2	4.1	3.0

(Tables 8.1, 8.2, 9.3). Similar observations were made by Mann (1955). Stylodrilus heringianus and Lumbriculus variegatus were most significent among the oligochacte fauna in all the streams except Afon Twrch (Tables 8.1, 9.3). The obvious reason is the lack of a muddy bottom in the stretch sampled. The molluscan fauna in the feeder streams is varied. Limngea pereger, Ancylastrum fluvintile in the Gastropoda and fisidium subtruncatum in Lamellibranchiata are among the prominent species collected. These were found relatively more comonly in Afon Twrch and Clyn and less frequently in Afon Llafar, Lliw, and the Dyfrdwy. This may be due to higher concentrations of calcium ions in the Twrch and Clynwaters (Table 3.4). $\because=$ The amphipod fauna though scarce in the feeder streams is represented by Gamarus_nulex wich seems to favour thick vegetation and a higher calcium concentration. These were recorded less frequently in Llafar, Lliw and Dyfrdwy and more commonly in the Twreh and Glyn (Table 8.1). Asellus meridisnus were collected from $L_{1}, L D_{1}$ and $G_{1}$ stations, the bottoms of which are of sand, mud and pebbles. The commonest of the Hydracarina was Hysrobates nigroraculatus and Sperchon setiger. These were well represented at the stations near the lake and their presence may be due to the slow current and more abundant marginal vegetation. Amphinemura sulicollis, Amohinemurg stondfussi, Leuctra hiopopus, Protonemura meveri, Chloroperla torrentium and Isoperla grammatica are the chief
representatives of the Plecoptera. These occur in considerable numbers in Afon Twrch which has a thick carpet of moss on the botton, at $G_{3}$ where altitude may be one of the factors; and are relatively less in number in other feeder streams, for which shelter afforded by the stones and availability of food like moss, algae, detritus and vegetable matter (Hynes 1941, Jones 1950, Badeock 1949) may not be adequate. There is an increase in plecopteran nymphs from $I_{1}$, having a muddy bottom, to $L_{C}$ and $L_{3}$ where the bottom is gravel and stones with scattered vegetation as in the Afon Dyfrdwy and Clyn (Table 8.1). Nymphs of the mayflies Fhemerella ienita, Baetis spo, Centrontilum Iuteolum, Heptagenia spe, Ecdyonurus venosus, and Leptonhlebia marginata are predominant in the feeder streams (Tables 8.1, 9.3). These appear to favour B, C and D types of bottom (Tables 81, 8.2, 9.3). Ephemerella 1mita occurs most frequently in stoney bottoms covered with moss. Paraleptophlebia spo, and Heptagenia spp. were common in the upper reaches of Afon Llafar, Dyfrdwy and Glyn (Table 3.5, 5.3 and 7.4) as was also found by Macan (1957). Baetis spp. and Centroptilum spp. were comon in slower waters. It is not usual to find Centroptilum in rapid areas where Baetis is Irequently abundant. Baetis spp. appears in all stetions. Phithrogena semicolorats and Ecdyonurus venosus frequently occur together. There is a gradual increasa in the number of mayfly nymphs from the muddy bottoms of $I_{1}, L D_{1}$ and $G_{1}$ to $L_{2}, L D_{2}$ and $G_{2}$ where the
bottom is of gravel and finally to $L_{3}$ and $G_{3}$ where the bottom is stony with scattered vegetations, (Tables 3.1, 8.2, 9.3). Small round flattened Micronecta poweri are an important constituent of the benthic community in all feeder streams except Afon Twreh. Probably their carnivorous habits and the subsequent difficulty in finding the food in the thick carpet of moss may have an important effect in regulating their numbers in this stream. Micronecta poweri is common in the sower waters particularly $L_{1} L D_{1}$ and $G_{1}$ where there is a slow current and more marginal vegetation, both submerged and floating. sialis spp. are scarce in the feeder streams (Tables 8.1 , 8.2, 9.3). Larvae of the caddis flies plectrocnemia conspersa, Hydronsyche instabilis, Fotamonhylax latinennis, gimhotaelius nellucidug, Helesus aigltatus and Sericostome versonatum are plentiful in all the feeder streams (Table 8.1.). SH10 spp. and Arapetus spp. are small and infrequently found. The caddis larvae increase in number from A type bottoms to $B$ and $C$ types in Afon Llafar, Dyfrdwy and Glyn (Tables 8.1, 8.2, 9.3). Helmis meugei and Latelmis volkmari are abundent and widely distributed in the feeder streams (Table 8.1) though the larvae of these forms are more frequent then adults. There is an increase in the number of aquatic beetles from A type bottoms to $B$ and $C$ types in Afon Llafar, Dyfrdwy and Glyn (Tables 8.1, B.2). Bezzia spp. are scarce in the feeder streams except Llafar and seem to prefer gravel and stony substrata (Tables 8.1, 8.2, 9.3). Dixa ouberula was the only species recorded from

シ8.
Table 8.3 The average percentage composition of the total annual
diet of salmon parr assessed ty volume method in all
Llyn Tegid feeder streams.
$+=\langle 0.1 \%$; - . No record

Streams	1	Lw	ID	T	G
Total No. Fish	136	93	122	77	109
Total No. Empty stomachs	6	11	9	5	14
Lumbriculus spp.	1.2	-	0.6	-	0.1
Ancylastrum fluviatile	0.5	0.1	-	0.7	2.6
Limnaea pereger	1.0	-	1.6	-	-
Amphinemura spp.	0.3	0.4	1.0	1.0	1.2
Leuctra spp.	0.1	0.1	0.1	1.1	0.4
Nemoura spp.	0.6		-	-	-
Protonemura meyeri	0.7	0.2	1.8	1.9	-
Chloroperla spp.	-	-	2.4	1.0	1.9
Isoperla grammatica	-	-	-	1.4	0.7
Other Plecoptera	-		1.0	2.5	1.6
Baetis rhodani	4.2	3.6	7.5	7.3	3.4
Caënis spp.	1.1	2.1	2.1	-	-
Ecdyonurus spp.	0.6	-	2.3	5.3	11.6
Ephemerella spp.	1.3	-	-	4.4	5.4
Heptagenia lateralis	-	-	-	-	5.6
Other Ephemeroptera	9.4	22.4	6.1	8.3	11.5
Anabolia spp.	3.3	$\cdots$	-	$\bigcirc$	-
Plectrocnemia conspersa	9.2	7.9	10.4	6.7	2.1
Rhyacophila dorsalis	3.6	-	-	5.4	2.5
Hydroptila spp.	2.3	-		-	-
Hydropsyche: spp.	-		5.2	4.3	3.9
Potamophylax spp.	-	-	5.3	-	2.8
Sericostoma personatum	-		-	-	3.2
Other Trichoptera	20.5	30.1	20.2	10.3	5.3
Helmis maugei larvae	0.3	0.1	0.5	0.5	+
Latelmis volknari larvae	+	+	1.1	0.3	0.3
Chironomid larvas	10.6	5.5	22.0	25.5	17.4
Chironomid pupae	+	0.1	-	-	-
Simuliidlarvae	3.0	2.9	0.9	5.7	1.6
Tipulid larvae	3.8	-	0.4	-	-
Other dipteran larvae	0.5	1.6	0.6	+	0.5
Dipteran pupae	0.6	-	1.7	+	-
Midwater food					
Helmis maugei adults	2.2	-	0.1	0.5	-
Micronecta spp.	2.0	-	-	-	
Latelmis volkmari adults	-	-	0.1	-	0.4
Platambus maculatus adults	-	-	-	-	0.2
Cottus gobio'	-	-	-	-	2.1
Aerial and terrestrial food	8.1	16.0	3.1	0.8	8.4
Miscellaneous food					
Plant materials	7.8	3.6	0.9	4.4	1.7
Stones (caddis cases)	0.4	2.6	-	-	0
Fish eggs	-	2.6	-	-	1.0

Table 8.4 The average percentage composition of the total diet
of salmon parr assessed by number method in all Llyn
Tegid feeder streams.
$+=\langle 0.1 \% ;-$ No record;

Streams	$\underline{L}$	Lw	ID	T	G
Total No. Fish	136	23	122	72	109
Total No. Empty Stomachs	6	11	9	5	14
Lumbriculus spp.	0.5	-	0.7	-	0.1
Ancylastrum fluviatile	0.7	$+$		0.3	3.2
Limnaea pereger	0.2	-	0.9	-	-
Amphinemura spp.	0.9	0.9	1.6	1.0	1.4
Leuctra spp.	0.7	0.4	0.5	2.6	0.6
Protonemura meyeri	0.9	0.6	1.5	1.3	-
Chloroperla spp.	-	-	2.1	1.1	2.0
Isoperla grammatica		-		1.1	0.9
Other Plecoptera			1.1	2.2	2.1
Baëtis rhodani	9.7	5.2	6.4	4.3	6.8
Caenis spp.	2.8	9.1	3.1	-	
Ecdyonurus spp.	0.5	-	4.2	7.5	8.6
Ephemerella spp.	3.2	-	-	11.3	6.1
Heptagenia lateralis				-	5.4
Other Ephemeroptera	10.4	14.8	6.3	6.2	14.2
Anabolia spp.	3.7	- ${ }^{-5}$	$\bigcirc$	-	-
Plectrocnemia conspersa	5.6	11.5	6.1	3.4	1.1
Rhyacophila dorsalis	1.0	-	-	3.2	1.2
Hydroptila spp.	1.6				
Hydropsyche: spp.	-	-	4.1	5.2	2.9
Potamophylax spp.	-	-	5.0	-	2.0
Sericostoma personatum	96	17.1	-	-	3.8
Other Trichoptera	16.7	17.1	13.5	7.2	6.2
Helmis maugei larvae	0.2	0.3	0.3	1.1	0.1
Latelmis volkmari larvae	0.1	+	0.4	0.6	c. 3
Chironomid larvae	18.3	8.9	36.1	30.0	22.0
Chironomid pupae	$+$	0.4		-	-
Slmulidd larvae	8.1	8.3	0.8	7.2	1.9
Tipulid larvae	1.0	,	0.1	-	
Other dipteran larvae	0.6	4.3	0.2	${ }^{+}$	0.6
Dipteran pupae	0.1	-	2.3	0.1	-
Midwater food					
Helmis maugei adults	1.0	-	+	0.1	-
Micronecta spp.	1.6	-	-	-	-
Latelmis volkmari adults	-	-	0.1	-	+
Platambus maculatus adults	-	-	-	-	+
Cottus gobio ${ }^{\text {a }}$	-	-	-	-	0.1
Aerial and Terrestrial insec	1.9	13.7	0.9	0.1	3.5
Miscellaneous food					
Plant material	6.7	2.9	1.3	2.1	1.9
Stones (caddis cases) Fish eggs	0.2	1.6		-	0.1
Fish eggs	$\underline{-}$	$\frac{1.6}{100.0}$	-	99.2	0.7
Total \%					99.1

Table 8.5 The avarage percentage composition of the total annual diet of trout assessed by volume method in all Ilyn Tegid feeder streams. $\quad+=<0.1 \%$

Streams	L	Lw	ID	$T$	G
Total No. Fish	81	113	113	57	101
Total No. Empty Stomachs	2	9	7	6	5
Benthic food					
Lumbriculus spp.	0.6	0.2	4.5		0.3
Ancylastrum fluviatile	0.8	+		2.4	1.1
Limnaea pereger	0.2		0.8	0.8	
Gammarus pulex			1.1		
Asellus meridianus				0.4	
Amphinemura spp.	0.5	0.1	0.4	1.5	0.6
Leuctra spp.	+	$+$	0.2	1.6	1.1
Protonemura meyeri		0.1	0.7	2.3	
Isoperla grammatica				2.2	0.7
Chloroperla'spp.	0.1	-	0.3	1.7	1.7
Other Plecoptera		-	0.6	2.0	2.4
Baëtis rhodani	6.2	2.2	5.1	3.1	3.7
Caënis spp.	0.3	1.0	2.1	-	-
Ecdyonurus spp.	-	-	3.2	4.3	4.5
Ephemerella spp.	6.1	-	-	4.5	5.1
Heptagenia lateralis					6.7
Leptophlebia warginata	2.1				
Other Ephemeroptera nymphs	1.9	5.0	7.3	6.2	9.8
Plectrocnemia conspersa	8.5	12.9	8.0	1.2	0.8
Rhyacophila dorsalis				0.8	1.0
Hydroptila spp.	-	-	-	-	-
Sericostoma personatum			-	-	0.3
Potamophylax spp.	-	-	2.2	-	1.8
Hydropsyche: spp.	4.1	-	3.2	2.3	1.1
Glyphotaelius spp.	11.1				
Other Trichoptera	- 2.0	7.0	7.2	7.5	4.1
Helmis maugei	0.4	0.5	0.4	0.6	-
İtelmis volkmari	0.8	-	0.2	0.3	
Chironomid larvae	2.1	1.0	3.2	3.1	3.3
Simuliid larvae	0.7	0.3	-	-	0.4
Simuliid pupae	0.7	-	-	-	-
Tipulid larvae	-	0.1	-	0.	-
Other dipteran larvae	0.3	3.4	${ }^{+}$	0.6	-
Dipteran pupae	-	-	1.7	0.3	0.5
Midwater food					
Hygrobates spp.	+	-	-	-	-
Helmis maugei adults	0.5	0.3	2.2	1.0	
Micronecta spp.	+	-	-	-	-
Latelmis volkmari adult	0.4	${ }^{-}$	2.1	0.4	4.2
Cottus 180bio	15.8	34.7	11.3	17.2	1.1
Other Coleopteran adults Platambus maculatus		0.4			0.8
Aerial and Terrestrial insect	s31.8	19.4	29.2	27.2	31.8
Miscellaneous food					
Plant material	2.2	10.0	2.8	4.9	6.5
Stones(caddis cases)	3.0	0.5	-	-	-
Fish eggs	-	0.3	-	-	3.7

Table 8.6 The average percentage composition of the total annual diet of trout assessed by number method in Lily Tegid feeder streams.

$$
t=<0.1 \%
$$



Afon Lilw, Twrch and Glyn though scarce except in Glyn ( $G_{3}$ ). The scarcity may be related to the high altitude and fewer predators. Chironomid larvae, represented by seventeen species (Tables $8.1,9.3$ ) are abundant in the feeder streans and found in a variety of habitats. I found then entangled in roots, and moss, hanging on by their stumpy hooked appendages, sheltering in crevices, and they frequentiy inhabit discarded caddis cases. These are found frequently in A type bottoms and less in $B$ and $C$ type bottoms, (Tables 8.1, 8.c, 9.3). Slmuliddae which were represented by seven species in the feeder streams were not recorded from the a type of bottom. These prefer shallow swlft flowing water and stable habitats. Other dipteran larvae which includes Tipula spg. Atherix marginata, Dicronata robusta, Hermerodromia unilineate, Pericoma nseudo-exauisita, Limnophora snp. and Limonia sop. appeared insignificantly in all types of bottoms discussed above (Table 8.1).

## (2) Food and Feeding Relationshin between Trout and Selmon Parr

My results (Chapter 3.4, 4.3, 5.3, 6.3, 7.3) show a number of similar features in the food and feeding habits of trout and salmon parr in the Liyn Tegid feeder streams (Tables $8.3,8.4,8.5$ and 8.6 ). The most obvious of these is the greater amount of benthic food eaten by salmon parr compared to trout, which eat more midwater and aerial and terrestrial food. Both consume similar amounts of


NUMBER


Fig. 8.1 Percentage composition of the total food of trout and salmon parr according to age groups assessed: by occurrence, volume and number methods in all Llyn Tegid feeder streams

Aerial and terrestrial food
Midwater food
Benthic food

T-Trout
O-Occurrence
V - Volume
N - Number


Fig.8.2 Percentage composition of the total food of trout and salmon pari assessed by occurrence volume and number methods in all Llyn Tegid feeder streams


Fig.8.3 Average percentage of stomachs of trout and salmon parr containing each food organism in all Llyn Tegid feeder strearns in different months

Trout ----Salmon parr


Fig. 8.4 Average percentage of stomachs of trout and salmon parr containing each type of food organism in all Llyn Tegid feeder streams in different months

Table 8.7 Comparison of the total annual diet (expressed in percentages)
of trout and salmon parr assessed by volume and number methods in all
Llyn Tegid feeder streams. $\quad+=\langle 0.1 \% \quad-=$ No record

Methods of Assessment	Volume		Number	
Name of fish	Trout	Salmon Parr	Trout	Salmon Parr
Total No. fish	465	537	465	537
Total No. empty stomachs	29	45	29	45
Benthic food	(46.6)	(86.0)	(60.7)	(90.8)
Oligochaeta	(1.1)	(0.4)	(1.3)	(0.2)
Lumbriculus spp.	1.1	0.4	1.3	0.2
Gastropoda	(1.1)	(1.3)	(1.4)	(1.0)
Ancylastrum fluviatile	0.8	0.8	0.9	0.8
Limnaea pareger	0.3	0.5	0.5	0.2
Amphipoda	(0.2)	( - )	( + )	(-)
Gammarus pulex	0.2	-		-
Isopoda	(0.1)	-	$(+)$	-
Asellins meridianus	0.1		${ }^{+}+$	(5.4)
Plecontera	(4.3)	(4.6)	(5.8)	(5.4)
Amphinemura spp.	0.6	0.8	1.0	1.1
Leuctra	0.6	0.4	0.9	0.9
Protonemura meyeri	0.6	0.9	0.7	0.8
Isoperla grammatica	0.6	0.4	0.7	0.4
Chloroperla spp.	0.9	1.0	1.0	1.1
Other Plecoptera	1.0	1.1	1.5 $(25.3)$	1.1
Ephemerontera	(18.0)	(25.0)	(25.3)	(29.2)
Baëtis rhodani	4.1	5.2	7.2	6.5
Caenis spp.	0.7	1.0	1.4	3.0
Ecdyonurus spp.	2.4	4.0	2.2	4.2
Ephemerella spp.	3.1	2.2	3.8	4.1
Heptagenia lateralis	1.3	1.1	1.7	1.1
Leptophlebia marginata	0.4	$11^{-1}$	0.9	-
Other Ephemeroptera Trichoptera	$\begin{gathered} 6.0 \\ (17.2) \end{gathered}$	$\begin{gathered} 11.5 \\ (32.9) \end{gathered}$	3.9 $(13.7)$	$\begin{gathered} 10.3 \\ (24.2) \end{gathered}$
Anabolia spp.	-	0.6	-	0.7
Plectrocnemia conspersa	6.3	7.2	5.4	5.5
Rhyacophila dorsalis	0.3	2.3	0.4	1.1
Hydroptila spp.	-	0.4	$\bigcirc$	0.3
Sericostoma personatum	+	0.6	0.1	0.7
Potamophylax spp.	0.8	1.8	0.4	1.4
Hydropsycher spp.	2.1	2.7	1.6	2.4
Glyphotaelius spp.	2.2	-	1.4	-
Other Trichoptera			4.4 $(1.4)$	
Coleoptera larvae	(0.6)	(0.6)	(1.4)	(0.7)
Helmis maugei	0.4	0.3	0.9	0.4
Latelmis volkmari	0.2	0.3	(11.8)	0.3
Diptera	(4.2)	(21.2)	(11.8)	(30.1)
Chironomid larvae	2.5	16.6	7.5	23.0
Chironomid plipae	0.3	${ }^{+} 8$	0.9	0.1
Simulidd larvae ...-	0.3	2.8	0.9	5.2
imuliid pupae	0.1	-	0.3	-
Tipulid larvae	${ }_{0}^{+}$	0.8	$+$	0.2
Other dipteran larvae	0.8	0.6	2.4	1.1
Dipteran pupae	0.5	0.4	0.7	0.5

$$
209
$$

Table 8.7 (contd)

Methods of Assessment	Volume		Number	
Name of fish	Trout	Salmon Parr	Trout	Salmon Parr
Total No. fish	465	537	465	537
Total No. empty stomachs	29	45	29	45
Midwater food Hydracarina	(18.4)	(1.4)	(9.3)	(0.5)
Hygrobates spp.	$(2-4)$	(0.6)	$(2,5)$	
Coleoptera adults	(2.4)	(0.6)	(2.5)	(0.2)
Hielmis maugei	0.8	0.5	0.9	0.2
Latelmis volkmari	1.4	0.1	1.0	+
Platambus maculatus	0.1	+	0.4	+
Other Coleoptera	0.1	(0.4)	0.2	(0,3)
Hemiptera	( + )	(0.4)	$(+)$	(0.3)
Micronecta spp. Fish	+	0.4	$+$	0.3
Cottus gobio	(16.0)	(0.4)	(6.8)	$(+)$
Aerial \& terrestrial insects	(27.9)	(7.3)	(22.7)	$(4.0)$
Miscellaneous food	(6.8)	(4.5)	(5.5)	(3.3)
Flant materials	5.3	3.7	4.2	3.0
Stones (caddis cases) Fish eggs	0.7 0.3	0.1 0.7	0.5 0.8	+ 0.3

miscellaneous food (F1gs. 8.1, 8.2). Similar features have been demonstrated by many workers including Southern (1935), Frost (1939, 1950), Frost \& Went (1940), Maitland (1965), Thomas (1962), Sinha\& Jones (1967), Woolland (197i). The percentage of trout and salmon parr of all age groups (here $0+$ to $3+$ ) feeding on the principal food types in each month and year in wifich sufficiently representative samples were procured are given in Figs. 8.1, 8.2. These tend to conflym the variations already noted in $\mathrm{Flgs}$. 8.3, 8.4. It is now evident that salmon parr have a greater preference for benthic forms than do trout.

In Figs. 8.3, 8.4 the data have been grouped on a monthly or seasonal basis in order to demonstrate any possible seasonal variation in the nature of food. Ephemeroptera represented by Baetis Thodani, Caenis spp., Ecdyonurus spp., Enhemerella spp., Heptegenis lateralis and Lentorhlebia marginats and other insignificant mayfly nymphs (Table 8.7) appear to be taken less frequently by salmon parr than by trout during late spring and summer but the opposite is true in winter (Fig. 8.3). Caenis spp. in spite of their mud dwelling habit (Maitland 1965) were consumed by trout ( $0.7 \%$ by volume) and salmon parr ( $1.0 \%$ by volume). Trichoptera larvae which include plectrocnemia consperss, Ehreconhila dorsalis, Sericostoma Dersonatum, Potamophylax spp. Hydronsyche spn. and othercaddis larvae were commonly eaten by both the species of fish. Anabolis hervosa, Eydrontila spp.
were taken by salmon parr and Glyphotaelius spp. by trout. Frost (1939, 1950), Frost and Went (1940), Horton (1961), Thomas (1962) and Mann and Orr (1969) also recorded trichopteran larvae as a major food of salmon parr and trout throughout the year, but more so during winter than summer. I found that the caddis larvae were eaten more by trout during the months from February to July but from August to January the percentage of these larvae were much higher in the food of salmon parr (Fig.8.3). Plecopteran nymphs were of great dietary importance during spring, summer and winter particularly to salmon parr rather than to the trout in the feeder streams. Similar observations were made by Frost (1939), Maitland (1965), Egglishaw (1967), Elliott (1967) and Woolland (1972). Plecopteran nymphs ( $4.3 \%$ by volume) in trout and ( $4.6 \%$ by volume) in salmon parr were recorded and represented by Amphinemura spp., Leuctra spe., protonemura meyeri, Isoperla grammatica and Chloroperla sop. in both the species of fish in the feeder streams. Fig. 8.3 shows that these were taken more from February to July and In December and January by salmon parr. In autumn the percentage of these was greater in trout than in salmon parr stomachs. Asellus meridianus ( 0.2 by volume) and Gammarus pulex ( $0.1 \%$ by volume) were recorded only in the diet of trout, though Woolland (1972) observed them from November to May in the stomachs of trout in the upper Dee and found them particularly abundant in November. Chironomid larvae were the most important dietary constituent
to salmon parr of the feeder streams in all seasons (Fig. 8.3). This may be because of their abundance, availability and small size. Simulid larvae were consumed by salmon parr in all seasons (Fig. 8.3) though these were not common in the diet of trout. Woolland (1972) found simulid larvae common in July and August in the diet of salmon parr whereas Carpenter (1940) found them most commonly eaten in July. I found these larvae more in spring (Fig. 8.3). Tipula larvae ( $0.8 \%$ by volume) were recorded only in the diet of salmon parr of the feeder streams (Teble 8.7) though the trout of the upper Dee had been feeding on these larvae extensively during autumn and winter (Woolland 1972). Gastropoda, particularly ancylastrum fluviatile, were eaten by trout in very insignificant numbers ( $0.8 \%$ by volume), whereas the trout of the upper Dee ate more of them in July and salmon parr in August (Wolland 1972). Terrestrial and aerial insects were a more significant food item for trout than salmon parr. This food was dominant in trout of all age groups in all seasons (Figs. 8.1, 8.4). Carpenter (1940), Thomas (1962), Egglishaw (1967) and Woolland (197 ) found these organisms were eaten during spring, summer and autumn. The Coleoptera, mostiy the larval forms of Helmis maugei and Latelmis volkmari, were eaten by salmon parr and adults were consumed by trout. This again reflects the bottom feeding behaviour of the former and midwater feeding of the latter ( $\mathrm{FIg5}$. 8.1, 8.2).

Table 8.8 Comparison of the total annual diet (expressed in percentages) of trout and salmon parr of O+ age group assessed by occurrence, volume and number methods in all Ilyn Tegid feeder streams.

Total No. Trout $=29$
No. Empty Stomachs = Nil

Total No. Salmon parr $=62$
No, Empty Stomachs $=11$

Methods of assessment	Occurrence		Volume		Number	
Name of fish	Trout	Salmon parr	Trout	Salmon parr	Trout	Salmon parr
Benthic food	(63.1)	(90.1)	(53.5)	(93.4)	(64.3)	(95.5)
Oligochaeta	2.5	0.3	2.3	0.2	2.4	0.1
Gastropoda	4.7	2.0	3.2	1.2	3.9	0.5
Plecoptera	5.5	1.0	4.9	0.6	4.5	0.5
Ephemeroptera	25.7	26.7	23.5	17.9	28.3	20.0
Trichoptera	7.8	41.2	12.7	54.7	5.3	48.2
Coleoptera	4.0	2.9	1.2	2.0	2.5	2.2
Chironomid	6.1	11.8	1.6	13.2	7.3	20.5
Simulild	1.4	3.6	0.5	2.7	1.3	3.2
Other Dipt. larvae	5.4	0.3	3.6	0.3	8.8	0.1
Dipt. pupas	-	0.3	-	0.6	-	0.2
Midwater food	(6.7)	(-)	(4.9)	(-)	(4.7)	(-)
Coleoptera adult	6.7	-	4.9	-	4.7	-
Aerial \& terrestrial in	S20.4)	(4.1)	(31.0)	(5.7)	(21.9)	(2.1)
Miscellaneous food	(9.2)	(4.9)	(10.1)	(2.5)	(8.1)	(2.8)
Plant material	9.2	4.9	10.1	2.5	8.1	1.8

- Table 8.9 Comparison of the total annual diet (expressed in percentages) of trout and salmon parr of 1+ age group assessed by occurrence, volume and number methods in all Llyn Tegid feeder

$$
\text { streams. } \quad+=\langle 0.1 \notin \quad-=\text { No record }
$$

Total No. of trout $=204 \quad$ Total No. Salmon Parr $=302$

Methods of Assessment	Oc	rrence		lume		
Name of Fish	Trout	Salmon Yarr	Trout	Salmon Parr	Trout	Salmon Parr
Benthic food	(69.6)	(87.1)	(50.6)	(85.4)	(65.2)	(91.3)
Oligochaeta	0.7	+	0.3	0.1	0.6	+
Gastropoda	0.9	4.0	0.2	2.7	0.3	3.0
Amphipoda	0.1	-	0.3	-	+	-
Isopoda	0.3	-	0.4	-	0.2	-
Hydracarina	0.1	-	+	-	+	-
Plecoptera nymphs	10.9	10.8	8.0	7.6	11.6	9.1
Ephemeroptera nymphs	29.4	32.3	16.4	24.4	24.1	26.7
Micronecta spp.	0.4	1.7	+	1.6	0.1	1.3
Trichoptera larvae	13.0	14.3	18.1	20.5	9.8	14.8
Coleoptera larvae	3.5	0.7	1.0	0.4	2.3	0.2
Chironorid larvae	6.8	15.9	4.6	23.2	14.1	30.0
Simuliid larvae	0.3	3.0	0.1	2.8	0.3	4.1
Tipulid larvae	-	0.2	-	0.3	-	$+$
Other Dipteran larvae	2.4	0.9	0.5	0.4	1.2	0.4
Dipteran pupae	0.8	3.3	0.7	1.4	0.6	1.7
Midwater food	(3.0)	(1.5)	(7.1)	(1.7)	(1.1)	(0.6)
Coleoptera adults	1.8	1.5	0.8	1.7	0.7	0.6
Cottus eobio	1.2	-	6.3	-	0.4	-
Aerial and terrestrial insucts(23.1)		(4.0)	(37.5)	(9.0)	(30.6)	(4.3)
Miscellaneous food	(3.5)	(5.5)	$(4,3)$	(3.2)	(1.4)	(2.5)
Plant material	2.6	4.7	3.5	2.4	1.2	2.0
Stones (caddis cases)	0.9	0.8	0.8	0.8	0.2	0.5

Table 8.10 Comparison of the total annual diet (expressed in percentages) of trout and salmon parr of $2+$ age groups assessed by occurrence, volume and number methods in all Llyn Tegid feeder streams.

Total No. Trout $=139$	$+=\langle 0.1 \%$
No. Empty Stomachs $=11$	Total No. Salmon parr $=163$
No. Empty Stomacis $=17$	


Methods of Assessment	Occurrence		Volume		Number	
Name of Fish	Trout	Salmon Parr	Trout	Salmon Parr	Trout	Salmon Parr
Benthic food	(62.6)	(86.9)	(55.3)	(83.2)	(59.7)	(92.8)
Oligochaeta	0.3	0.7	0.5	0.9	0.3	0.7
Gastropoda	0.7	1.3	0.9	0.8	0.3	0.4
Amphipoda	0.4	-	0.6	-	0.2	-
Plecoptera	6.8	12.6	3.7	8.7	4.6	9.9
Ephemeroptera	21.4	32.0	14.8	24.2	21.2	31.8
Trichoptera	23.8	15.6	29.5	24.2	23.2	14.1
Coleoptera	0.6	+	0.2	+	0.5	+
Chironomidae	5.5	11.8	3.6	15.3	7.5	22.3
Simaliidae	-	8.3	-	5.3	-	11.6
Tipulidae	0.3	1.4	0.1	3.1	0.1	0.8
Other Dipt. larvae	1.9	1.6	0.5	0.6	0.9	0.9
Dipteran pupae	0.9	1.6	0.9	0.1	0.9	0.3
Midwater food	(7.1)	(0.1)	(6.1)	(1.7)	(5.5)	$(+)$
Coleoptera adults	6.0	-	4.9	-	5.0	-
Cottus gobiu)	1.1	0.1	1.2	1.7	0.5	+
Aerial \& terrestrial food	(24.0)	(4.9)	(37.6)	(8.3)	(30.7)	(4.6)
Miscellaneous food	(6.2)	(6.9)	(3.2)	(5.1)	(3.3)	(3.2)
Plant material	4.4	6.7	2.5	4.3	2.5	3.1
Stones (caddis cases)	1.8	-	0.7	-	0.8	-
Fish eggs	-	0.2	-	0.8	-	0.1

```
;
こ:
```

Table 8.11 Comparison of the total annual diet (expressed in percentages) of
trout and salmon parr of $3+$ age group assessed by occurrence, volume and
number methods in all Llyn Tegid feeder streams.
$\begin{array}{ll}\text { Total No. trout }=103 & \text { Total No. Salmon Parr }=24 \\ \text { Total No. Empty Stomachs }=9 & \text { Total No. Empty Stomachs }=4\end{array}$

Method of assessment	Occurrence		Volume		Number	
Name of fish	Trout	Salmon Parr	Trout	Salmon Parr	Trout	Salmon Parr
Benthic food	(60.9)	(89.2)	(33.2)	(84.9)	(60.4)	(88.1)
Oligochaeta	2.2	0.4	1.4	0.3	2.0	0.3
Gastropoda	1.0	2.5	0.8	0.6	0.9	0.3
Plecoptera nymphs	4.9	3.8	2.3	1.8	4.9	2.1
Ephemeroptera nymphs	20.1	34.8	9.9	33.3	19.2	38.1
Trichoptera larvae	25.7	23.2	15.5	32.1	22.6	21.3
Coleoptera larvae	1.0	1.1	0.4	0.2	0.8	0.2
Chironomid larvae	2.6	16.2	1.3	14.7	3.5	20.2
Simuliid larvae	1.2	2.6	0.8	0.6	2.7	2.4
Other Dipt. larvae	1.3	4.6	0.2	1.3	2.5	3.2
Dipt. pupae	0.9	-	0.6	-	1.3	-
Midwater food	(14.8)	(1.1)	(43.7)	(0.9)	(12.9)	(0.4)
Coleoptera adults	3.2	1.1	0.6	0.9	1.8	0.4
Cottus gobio'	11.6	-	43.1	-	11.1	-
Aerial \& teriestrial food	(10.7)	(4.2)	(15.6)	(6.1)	(16.3)	(5.6)
Aerial \& terrestrial insec	10.7	4.2	15.6	6.1	16.3	5.6
Miscellaneous food	(13.9)	(5.1)	(8.0)	(7.3)	(9.8)	(6.1)
Plant materials	7.5	3.5	2.8	5.6	4.1	5.1
Stones (caddis cases)	3.1	-	1.1	-	1.6	-
Fish eggs	3.3	1.6	4.1	1.7	4.1	1.0

Allan (1941a) and Maitland (1965) have recorded a decreasing consumption of dipteran larvae in trout and salmon parr with increasing age and greater consumption of trichopteran larvae and ae:ial insects by older fish. Similar observations were made by Thomas (1962), McCormack (1962) and koolland (1972). It has been shown Tables $8.8,8.9,8.10$ end 8.11 ) that the food of saimon parr and trout in the feeder streams consists predominantly of ephemeropteran nymphs, Trichoptera larvae, chironomid larvae and aerial and terrestrial insects. The proportions vary according to the age groups of the individual species and the ecology of the respective stream bottom. 1+ age group of trout, $2+$ age group of salmon parr and trout and $3+$ age group of trout predate on Cottus gobio.

Jones and king (1949) found salmon parr feeding at a water temperature of $2^{\circ} \mathrm{C}$. HeCormack (1962) reported extensive feeding in trout even when the water temperature was below $6^{\circ}$ C. Elliot (1967) found no correlation between water temperature and the amount of food in trout stomachs. Thomas (196\%) found that salmon parr and trout fed ectivcly at all seasons regardless of temperature. Carpenter (1940) and Thomas (1962) found that an August decrease in food consumption was due to low avallability of food organisms at this time. Ball (1961) considered spring rise in food intake was due to day length, temperature, appetite and availability of food supply. Egglishaw (1967) considered the low winter feeding actioity
was due to physicel loss in the capability of the alimentary canal system of salmonids to digest food. The seascnal variations in food intake of salmon parr and trout in the feeder streams are shown in Figs. 3.7, $4.2,5.5,6.4,7.5$ in terms of fullnes index in relation to water temperatures. These figures show that the feeding activity is at a minimum during winter end increases during spring and rises to a maximum in summer. Feeding intensity drops rapidly after August/September in Afon Twreh; in November in Afon Glyn; August/September in Afon Llafar; September in Afon LLiw and September/ october in Afon Dyfrdwy. There appears to be a definite correlation between food intake and water temperatures (Figs. 3.7, 4.2, 5.5, 6.4 and 7.5). Salmon parr and trout fed more during sumer and less intensively in winter. The period of maximum food intase coincided with the maximum avallability of benthic feuna.

Any investigation of the food of fishes particularly of the same genus inevitably leads to a consideration, however brief, of the competition they encounter in their quest for their favoured food types. Interspecific competition, its importance and existence in nature have been debated vigorously (Nicholson 1933, Andrewartha end Birch, 1954, Birch 1957 and Milne 1961). Conclusions reached on the basis of laboratory experiments are difficult to apply to field conditions (Hairston 1951), and difficult
to demonstrate adequately under natural conditions because of the complexity of most ecosystens (Larkin 1956). Weatherby (1963) defined competition as the demand typically at the same time, of more than one organism for the same resource of the environment in excess of immediate supply. Maitland (1965) assumed that when two species ate the same food then that consumed by one species could be used to an advantage by the other. Andrewartha (1901) has pointed out that no two species are ever lisely to have identical requirements. This may appear true of the two species Salmo trutta and Salmo solar in feeder strears as far as food is concerned. Several other workers (Frost 1950, Thomas 196\%, Maitland 1965 and Woolland (1972) have found similar relationships between these two species. It is certain that salmon and trout have similar food requirements, and it is probable that under certein conditions at least there is competition for food among them though the signiflcance of this competition cannot yet be fully assessed due to complex ecosysten and features of behaviour. Some individuals may be more available to one species than to another.

The main difference between the diets of salmen parr and trout in the present study is the greater amount of surface food consumed by the latter species. This is in agreement With Frost and Went (1040), Frost (1950), Thomas (196\%), Mills (1963), Maitland (1965) ond Menn and orr (1969).


Fig. 8.5 Average percentage composition of the total annual diet expressed in groups of trout and salmon parr in all Llyn Tegid feeder streams

There are few comparative studies of the behaviour of young salmon and trout. Stuart (1953) found salmon to be initially gregarious and spend most of the timo resting on the substrate whereas trout are not gregarious as fry and tend to keep up a constant position in midwater. Stuart further states that trout are more spasmodic in their feeding habits than salmon, tending to gorge themselves and then fast for a period instead of eating regularly as do salmon. Kalleberg (1958) considers that trout are definitely the more aggressive and dominant of the two species.

Despite the differences in the diet and behaviour as mentioned above, both have e common interest in certain species of benthic food items (Table 8.7). The total food essessed by volume and number methods of both the species (Ts.ble 8.7, Fig. 8.5), seasonal variations of significent food items (Figs. 8.3, 8.4), and the total food in each species according to their age groups (Tahles 8.8 , 8.7, 8.10, 8.11) suggests that the food and feeding areas of both the species overlap as far as the aquatic invertebrates are concerned. Both feed on the same kinds of organisms (Table 8.7) and these organisms follow similar seasonal patterns of occurrence in the stomachs of the two species of fish (Fig. E.5). This suggests similarities in feeding habits of the two species and hence there may be a competition between the two for the same items on the same ground.

The percentage saturation of oxysen and pH did not account for any significant variation in the feeding intensity. Conductivity and turbidity both exhibited a negative correlation with food intake of trout and salmon parr. The influence of turbidity on feeding intensity could be related to visibility.

The observed influence of physical factors on the feeding periodicities indicates a need for more information. A more intensive study is desirable to find out the effect of the physicel factors and also solar radiation, hydrostatic pressure and light penetration on the seascnal variation of the bottom fauma and the feeding periodicities of the trout ond saimon parr.

PART 11

## CHAPTER IX

## THE RIVER DEE

Page

1. INTRODUCTION ..... 224
2. THE ENVIRUNMENT ..... 224
(a) General topography ..... 224
(b) Description of the samplirg sites ..... 228
(c) Physical and chemical data ..... 236
3. COMPOSITION OF THE FAUNA ..... 236
4. COMPARISON OF THE FAUNA BETWEEN REGULATED RIVER DEE and unregulated llyn theid feeder streams ..... 251
5. DISCUSSION ..... 259
6. SUMMARİ ..... 263

## CHAPTER IX

## 1. INTRODTCTICN

The recent history of regulation of the river Dee begen in the nineteen thirties, when the River Dee Catchment Board prepared a scheme to provide detention storage in Llyn Tegid for reducing the extent of flooding in the Dee valley. Detailed descriptions of the River Dee regulating schemes were given by Wright (1955), Bodaington et el. (1962) and Blezard et al. (1970). The effects of regulation on the Dee fisheries were discussed by Iremonger (1971) who mentioned loss of spawning grounds and obstruction to salmon migration as the main factors involved after regulation. Similar observations were made by Lees (personal communication) and woollend (1972).

So far as I am aware, no work has been done on the benthic fauna of a regulated stream in this country. Very few papers have appeared from the U.S.A. and Canada in which the bottom fauna of regulated streams has been investigated. In 1969, I had an opportunity to study the influence of regulation on the macroinvertebrates of the upper Dee. The results of this study are given herein.

## 2. THE RNVIRONMENT

## (a) Tonosraphy

The river emerges from the north-east end of Lign Tegid and flows as a wide swift stream in an east and


PLATE 9.1
baLa sluices.

Table 9.1 Monthly measured flow (cumecs) in the River Dee at Bala.

Month	Total   monthly   flow	Mean   daily   flow	Max.   d.F.	Min.   d.F.	Highest   flow	Lowest   flow
Oct. 1969	185.7	5.9	9.1	4.2	9.2	4.0
Nov.	561.0	13.7	45.3	5.0	46.0	4.9
Dec.	506.5	16.3	39.7	7.0	41.5	5.9
Jan.	425.4	13.7	28.1	6.0	29.6	5.5
Feb.	653.5	23.3	62.3	8.2	65.5	7.7
March	379.4	12.3	20.4	6.3	24.0	5.9
April	787.5	26.2	62.8	8.3	67.4	8.1
May	141.5	4.5	18.9	2.5	20.3	2.4
June	171.5	5.7	14.8	3.8	18.1	1.8
July	234.8	7.5	23.5	4.7	25.6	4.6
August	213.1	6.8	24.6	2.6	30.2	0.5
Sept.	355.0	11.8	54.2	4.5	55.3	4.5
Oct. 1970	397.0	12.8	48.1	5.0	51.0	4.9

From the office of the Dee end Clwyd River Authority.

north-east direction. The geological formation of the watershed shows that it is composed of shales, limestones, mudstoncs, ignecus rocks, such as felsite, porphyrite and andesites, voleanic ashes and carboniferous areas with shales and sandstcnes. on erosion these formations would contribute mainly lime, silicates, potash and some iron to vater.

Afon Dyfrdwy, a swall stream running into the lake is regarded as the source of the Dee (Fig. 3.2). At the eastern and of the lake stands the town of Bala, and here the Dee leaves the lake and receives the Tryweryn, wich passes through Liyn Celyn and is regulated. The waters of Tryweryn and Dee unite in the flat meadows below the lake. For about 19.3km (Bala to Corwen) the river passes through an alluvial tract formed of detritus brought from the hills by several tributaries, notably among these are Tryweryn, Llanfor, H1mant, Ceidiog and Alwen. Sluices were constructed at the outlet of Llyn Tegid in 1956 by the River Board to provide in winter short-term flood detention and in summer water storage for release to the river to maintain the flow. Woter flow measurements for the River Dee taken by the Dee and Clwyd River Authority at a gauging station below the Eala sluices (Plate 9.1) are given in Table 9.1:

## (b) Description of the sempling sites

Four stations were selected in the upper Dee from Bala to Corwen. As seen in Fig. 9.1 the first sampling site $D_{1}$


PIATE 9.2 SAMPJING STATION D1.



PLATE 9.4 SAMPLIGG STATION D3.


PLAEE 9.5 SAMPDTHG STATIOA D 4 .
was near the Bala sluices (Nat. Grid Ref. 933356), the $D_{2}$ near Llandderfel (Nat. Grid Ref. 983372), the $D_{3}$ at Llandrillo (Nat. Grid Ref. 034371), and the $D_{4}$ near Corwen bridge (Nat. Grid Ref. 069434).
$D_{1}$ was located at about 17 m downstrean from the sluices near the back waters. The stream here was 00 m wide and l-zm deep near the bank. There was some vegetation near the bank but the whole area of backwater was covered with aquatic vegetation, ( Llodea canadensis, Cerstophyllum submersum, Callitriche stagnalis and Renunculus ecuatilis). There were sheep farms on either side. The water flows swiftly (except during sumer) over a bed of gravel, silt and coarse sand. Some large rounded stones and tufts of filamentous algae were also present (plate 9.2).
$\mathrm{D}_{2}$ was situated 4.8 km dowstream from the lake. Here the stream was about 25 m wide and $0.5-1.5 \mathrm{~m}$ deep. The bottom vas of gravel and there were some patches of vegetation on the bed. There were trees on either side (Plate 9.3).
$D_{3}$ was located 16.0 km downstream from the lake. Here the substratum of stones and scattered patches of Ranunculus fluitens and Ceretophyllum demersum were presant. At this station the river was 27 m wide and $1-2 \mathrm{~m}$ deep near the bank. There were trees on either side (Plate 9.4).
$D_{4}$ was situated near the bridge where the river was

Table 9.2 MEAN MONTHLY ESTIMATES OF PHYSICAL FACTOKS AT D1 SAMPLING STATION IN THE RIVER DEE.

MONTHS A	M	J	J	$\ddot{\text { in }}$	S	0	N	D	J	F	M	A	M
Water Temp. ${ }^{\text {c }}$ ( 6.5	6.8	10.5	12.2	14.6	12.5	9.1	4.8	3.6	3.7	4.2	5.2	5.8	5.1
Specific conduct- 3 ance (micrombs. $/ \mathrm{cm}^{3} \quad 170$ at 25 c )	232	228	129	121	143	95	346	446	406	376	201	119	146
Dissolved 02,\% Sat. 96	98	95	95	97	37	101	98	119	115	117	98	101	95
Velocity of water 0.26 current ( $\mathrm{m} / \mathrm{sec}$ )	0.28	0.24	0.24	0.22	0.29	0.36	0.50	0.72	0.81	0.71	0.59	0.53	0.35
$\mathrm{pH} \quad 7.2$	7.1	6.9	6.8	7.0	7.2	7.1	7.4	7.8	7.6	7.8	7.2	7.1	7.2
Turbidity (a3 Fuller's Earth) 26.2	24.1	28.2	19.8	18.2	28.2	26.1	63.2	85.1	79.3	91.1	78.2	43.2	28.2

table 9.3 mean monthily estimates of physical factors at d2 in the river dee.,

Months	$A$	M ,	J	J	A	$s$	0	, N	D	J	$1{ }^{F}$	M	A	M
Water Terp. ${ }^{\text {c }}$	4.5	5.0	9.6	13.8	13.0	8.4	6.5	4.5	3.5	3.8	4.1	4.5	5.8	5.9
Specific conductance o   (micromhos $/ \mathrm{cm}^{3}$ at 25 C )	140	216	236	119	128	167	186	342	432	404	382	201	116	196
Dissoived C2, \% Sat.	96	95	103	105	97	96	95	109	111	119	115	102	98	97
Velocity of water current ( $\mathrm{m} / \mathrm{sec}$ )	0.23	0.20	0.13	0.03	0.11	0.27	0.34	0.47	0.60	0.71	0.74	0.57	0.46	0.36
pH	7.1	7.0	6.8	6.6	6.9	7.1	7.2	7.2	7.6	7.8	7.8	7.1	7.1	7.2
$\begin{aligned} & \text { Turbidity } \\ & \text { (as Fuller's Earth.) } \end{aligned}$	20.1	21.2	19.6	18.2	17.8	23.3	21.6	65.2	86.2	79.6	81.1	78.2	53.2	24.6

233

TADIE 9.4 nean monthly estimates of physical factors at d3 in the river dee.

Nonths	A	M	J	J	A	S	0	N	D	J	F	M	A	M
Water Temp. $\mathrm{C}^{\circ}$	4.5	5.2	9.4	13.8	13.2	8.8	6.5	4.6	3.6	3.8	4.1	4.6	5.8	6.1
Specific conductance   (micromios / $/ \mathrm{cm}^{3}$ at $25^{\circ} \mathrm{c}$;	128	116	136	119	132	193	186	332	441	413	281	242	106	115
Dissolved 02, \% Sat.	95	96	98	95	96	97	101	112	111	119	120	101	97 :	98
Velocity of water currert ( $\mathrm{m} / \mathrm{sec}$.)	0.19	0.16	0.10	0.19	0.10	0.21	0.28	0.50	0.56	0.64	0.67	0.51	0.60	0.29
$\mathrm{pH}^{\mathrm{H}}$	7.2	6.8	6.6	6.8	6.9	7.1	7.2	7.1	7.6	7.8	7.9	7.3	7.4	7.1
Turbidity   (as Fuller's Earth)	19.6	20.2	21.4	18.6	17.2	19.1	21.8	55.2	75.2	88.9	73.6	85.2	42.8	21.8

TABLE $9.5^{-1}$ MEAN MONTHLY ESTIMATES OF PHYSICAL FACTORS AT D4 IN THE RIVER DEE.

Months	A	M	J	J	A	S	0	$N$	D	J	F	M	A	M
Water Temp. $\mathrm{c}^{\text {o }}$	4.4	5.1	9.4	13.7	13.0	8.6	6.4	4.6	3.6	3.8	3.8	4.2	4.7	5.9
Specific conductance   (micromtos $/ \mathrm{cm}^{3}$ at $25 \stackrel{\circ}{\mathrm{c}}$ )	120	126	135	123	135	161	176	362	465	443	321	202	116.	123
Dissolved 02, \% Sat.	95	97	97	98	97	95	95	102	108	120	115	103	97	96
Velocity of water current ( $\mathrm{m} / \mathrm{sec}$ )	0.20	0.16	0.10	0.09	0.11	0.17	0.28	0.38	0.81	0.68	0.60	0.47	0.34	0.25
pH	7.1	6.6	6.8	6.9	6.7	7.1	7.3	7.2	7.6	7.9	7.8	7.6	7.3	7.1
$\begin{aligned} & \text { Turbidity } \\ & \text { (as Fuller's Darth) } \end{aligned}$	18.4	19.6	18.2	20.2	17.8	19.8	20.8	65.8	85.8	96.1	83.2	76.1	52.2	29.1

about 50 m wide and $0.5-1 \mathrm{~m}$ deep during low water. The bottom was of gravel and scattered patches of Ranunculus fluitans, Sagittaria sagittifolio and Soprganiun simniex were comion. There were few trees on either side of the river (Plate 9.5).

## (c) Ehysical and Chemical Conditions

The mean monthly estimates of physical factors at each sampling site are shown in Tables 9.2, 9.3, 9.4 and 9.5.

The highest temperature measured in August vas $14.4^{\circ} \mathrm{C}$ and the lowest in December of $3.6^{\circ} \mathrm{C}$. The concentration of $\mathrm{O}_{2}$ was relatively higher during winter than in summer. Maximum velocity of water current was observed during winter and minimum in summer at $D_{1}, D_{2}, D_{3}$ and $D_{4}$. The pH range was between 6.6-7.9 throughout the sampling period. Lower values for conductivity and turbidity were obtained in summer and higher in winter at all the sampling sites.

Water samples were taken from the river for chemical analysis in the month of June 1969 and the results are given in Table 3.4.

## 3. COMPOSITICN OF THE FAOMAA

Collections were made from the four stations over a period of fourtoen months, from March 1969 to April 1970. Each month the material was taken from the various accessible parts of the bed by using the sampler (for details of sampling methods, see Chapter II). at $D_{2}, D_{3}$

Table 9.6 The density (Av. No. $/ \mathrm{m}^{2}$ ) of the species identified in four sampling sites of the upper reaches of the River Dee. Total is shown in bracket. $\quad=$ No. record $+=\langle 0.1 \%$.

Sampling sites $\longrightarrow$	$\mathrm{D}_{1}$		$\mathrm{D}_{2}$		${ }_{3}$		$\mathrm{D}_{4}$		Total	
Density $\longrightarrow$	Total No.	$\begin{gathered} \text { Av.N. } \\ -m^{2} \\ \hline \end{gathered}$	Total No.	Av. NgS	Total No.	$\frac{\mathrm{Av}_{\mathrm{m}}^{\mathrm{N}} \mathrm{~S}}{2}$	$\begin{aligned} & \text { Total } \\ & \text { No. } \end{aligned}$	$\frac{A_{0} \cdot \mathrm{NO}_{\mathrm{m}}^{2}}{\mathrm{~m}^{2}}$	Fotal No.	\%
Turbellaria	(ir)	(10.7)	(18)	(12.8)	(1)	(0.7)	(2)	(1.0)	(36)	(0.4)
Folycelis nigra	15	10.7	18	12.8	1	0.7	2	1.0	36	0.4
Hirudines	(32)	(23.3)	(16)	(11.6)	(8)	(5.3)	(16)	(10.6)	(72)	(0.7)
Helobdella stagnalis	7	5.3	6	4.2	5	3.2	5	3.2	23	0.2
Erpobdella octoculata	17	12.8	10	7.4	3	2.1	8	5.3	38	0.4
Glossiphonia complanata	6	4.2	-	-	-	-	3	2.1	9	+
Piscicola geometra	2	1.0	(482)	(366.8)	(5	-	-	-	2	+
Oligochaeta	(344)	(258.7)	(482)	(366.8)	(549)	(416.0)	(113)	(82.1)	(1488)	(15.5)
Lumbriculus variegatus	223	170.1	66	50.2	113	85.6	36	26.7	438	4.6
Stylodrilus heringianus	29	21.4	345	263.2	391	298.5	22	16.0	787	8.3
Limnodrilus offmeisteri	17	12.8	42	32.1	13	9.6	33	24.5	105	1.1
Eiseniella tetrahedra	5	3.2	3	2.1	19	13.9	9	6.4	36	0.4
Homochaeta neidina	25	18.1	-	-	-	-	2	1.0	27	0.3
Aulodrilus pluriseta	40	29.9	3	2.1	$\overline{-}$	-	-	-	43	0.4
Stylaria lacustris	5	3.2	-	-	11	7.4	-	-	16	0.1
Rhyacodrilus corcineus	-	-	23	17.1	-	-	9	6.4	32	0.3
Fsamsonyctes bariatus	-	-	-	-	2	1.0	2	1.0	4	+
Gastronoda	(15)	(11.4)	(1)	(0.7)	(3)	(2.1)	(2)	(1.0)	(21)	(0.2)
Limnaea pereger	9	10.7	-	-	-	-	2	1.0	16	0.1
Ancylastrum fluviatile	1	0.7	-	-	3	2.1	-	-	4	+
Potamopyreus jenkinsi	-	-	1	0.7	-	-	(-	-	1	+
Lamellibrenchiata	(115)	(86.6)	(32)	(23.4)	(18)	(12.4)	(100)	(75.9)	(265)	(2.7)
Fisidiun milium	55	41.7	5	3.2	1	0.7	3	2.1	64	0.6
Pisidium hibernicum	60	44.9	20	14.9	12	8.5	-	-	92	1.0
Pisidium subtruncatum	(8)	(5.3)	7	5.3	5	3.2	97	73.8	109	1.1
Amphipoda	(8)	(5.3)	(27)	(20.3)	(8)	(5.3)	(21)	(16.0)	(64)	(0.6)
Gammarus pulex	8	5.3	27	20.3	8	5.3	21	16.0	64	0.6

Table 9.6 (contc.)

Sampling sites $\longrightarrow$	$\mathrm{D}_{1}$		$\mathrm{D}_{2}$		$\mathrm{D}_{3}$		$\mathrm{D}_{4}$		Total	
Density $\longrightarrow$	Total No.	$\begin{array}{\|c\|} \hline A V, N O \\ -T^{2} \\ \hline \end{array}$	Total No.	$\begin{array}{\|c} \mathrm{Av}^{2 \mathrm{NO}_{2}} \\ \hline \end{array}$	$\begin{aligned} & \text { Total } \\ & \text { No. } \\ & \hline \end{aligned}$	$\begin{gathered} \frac{\mathrm{Av} \cdot \mathrm{NO}_{2}}{\mathrm{~m}^{2}} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { No. } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Av} \cdot \mathrm{NO}_{2} \\ -\mathrm{m}^{2} \\ \hline \end{array}$	Total No.	\%
Isonoda	(269)	(205.4)	(111)	(84.5)	(10j)	(80.2)	(80)	(60.9)	(565)	(5.9)
Asellus meridianus	269	205.4	111	84.5	105	80.2	80	60.9	565	5.9
Hydracarina	(4)	(2.1)	(16)	(11.2)	(1)	(0.7)	(1)	(0.7)	(22)	(0.2)
Eygrobates nigromaculatus	4	2.1	10	7.4	1	0.7	-	-	15	0.1
Lebertia porosa	-	-	3	2.1	-	-	-	-	3	+
Hygrobates fluviatilis	-	-	2	1.0	-	-	-	-	2	+
Sperchon setiger	-	-	1	0.7	-	-	-	-	1	+
Lebertia insignis	(122)	(88-1)	(166)	(123.0)	(24)	(182)	1	0.7	(607)	${ }^{+}$
Plecontera	(122)	(88.1)	(166)	(123.0)	(244)	(182.0)	(165)	(120.0)	(697)	(7.3)
Frotonemura meyeri	7	5.3	2	1.0	6	4.2 58	5	3.2	20	0.2
Amphinemura sulcicollis	71	53.5	51	38.5	77	58.8	65	49.2	264	2.8
Isoperla grammatica	11	7.4	15	10.7	44	33.1	13	9.6	83	0.9
Lelictra hippopus	4	2.1	12	8.5	17	12.8	8	5.3	41	0.4
Chloroperla torrentium	19	13.9	34	25.6	50	37.4	38	28.8	141	1.4
Leuctra inermis	4	2.1	-	-	8	5.3	-	-	12	0.1
Chloroperla tripunctata	3	2.1	6	7.2	10	7.4	9	6.4	28	0.3
Isoperla cbscura	2	1.0	$\cdots$	-	-	-	2	1.0	4	+
Nemurella picteti	1	0.7		0.7	-	-	-	-	2	+
Leuctra fusca	-	-	2	1.0	13	9.6	5	3.2	20	0.2
Leuctra geniculata	-	-	1	0.7	1	0.7	-	-	2	+
Amphinemura standfussi	-	-	42	32.1	12	8.5	5	3.2	59	0.6
Ne:moura cinerea	-	-	-	-	1	0.7	2	1.0	3	+
Leuctra nigra	-	-	-	-	3	2.1	10	7.4	13	0.1
Nenoura avicularis	-	-	-	-	1	0.7	-	-	1	+
Protonerara praecox	-	-	-	-	1	0.7	-	-	1	+
Perlodes microcephala	-	-	-	-	-	-	2	1.0	2	+
Brachyptrra nisi	-	-	-	-	-	-	1	0.7	1	+

Table 9.6(contd....)

Sampling sites $\longrightarrow$	$\mathrm{D}_{1}$		$\mathrm{D}_{2}$		$\mathrm{D}_{3}$		$\mathrm{D}_{4}$		Total	
Density $\longrightarrow$	Total No.	$\frac{\text { Av.NO }}{\mathrm{N}}$	Total No.	$\mathrm{Av}_{\mathrm{m}}^{\mathrm{A}}$	Total No.	$\frac{\mathrm{Av.No}}{\mathrm{~m}}$	Total No.	$\frac{\text { Av.No }}{\text { a }}$	Total No.	$\%$
Erhemercotera	(157)	(115.7)	(279)	(208.5)	( $1+39$ )	(33.1)	(481)	(362.0)	(1356)	(14.2)
Leptophiebia vespertina	10	7.4	1	0.7	7	5.3	5	3.2	23	0.2
2aetis rhodani	40	29.9	60	44.9	118	89.8	51	38.5	269	2.9
Heptagenia sulphurea	20	14.9	5	3.2	-	-	-	-	25	0.2
Ecdyonurus venosus	3	2.1	1	0.7	10	7.4	14	10.7	28	0.3
Paraleptophlebia tumida	1	0.7		-	-	-	-	-	1	+
Centroptilum luteolum	17	12.8	109	82.3	37	27.8	99	74.9	262	2.8
Leptophlebia mareinata	9	6.4	7	5.3	5	3.2	11	7.4	32	0.3
Caënis moesta	14	10.7	2	1.0	27	20.3	12	8.5	55	0.5
Ephemerella ignita	34	25.6	79	59.9	178	135.8	219	166.9	510	5.3
Paraleptophlebia submarginata	1	0.7	3	2.1	6	4.2	-	-	10	+
Baëtis scambus	4	2.1	-	-	13	9.6	51	38.5	68	0.7
Siphionurus lacustris	2	1.0	3	2.1	3	2.1	-	-	8	+
Neptagenia lateralis	1	0.7	-	-	4	2.1	-	-	5	+
Baëtis pumilus	1	0.7	2	1.0	31	23.5	2	1.0	36	0.4
Caënis horaria		-	7	5.3	-	-	-	-	7	+
Ephemerella notata	-	-	-	-	-	-	13	9.6	13	0.1
Cloeon dipterum	-	-	-	-	-	-	3	2.1	3	+
Rithrogena semicolorata	(418)	(317-5)	-	(20-5)	(2)	(10)	(198)	0.7	(617)	${ }^{+}+$
Hemintera	(418)	(317.5)	(29)	(20.5)	(2)	(1.0)	(1ES)	(126.4)	(617)	(6.4)
Notonecta maculata	13	9.6	$\square$	-	-	-	-	-	13	0.1
Corixa panzeri	206	157.2	4	2.1	-	-	-	-	210	2.2
Notanecta glauca	1	0.7	-	-	-	-	-	-	1	+
Sigara falleni	35	26.7	-	-	-	-	-	-	35	0.4
Sigara dorsalis	47	35.3	1	0.7	-	-	2	1.0	50	0.5
Sigara distincta	114	86.6	20	14.9	-	-	3	2.1	137	1.5
Hicronecta joweri	1	0.7	3	2.1	-	-	157	119.8	161	1.6
Velia nymph	1	0.7	-	-	-	-	4	2.1	5	$+$
Sigara nigrulinaeta	-	-	1	0.7	2	1.0	- 7	0.7	1	$+$

Table 9.6 (contd...)

Sampling sites $\longrightarrow$	$\mathrm{D}_{1}$		$\mathrm{D}_{2}$		$\mathrm{D}_{3}$		$\mathrm{D}_{4}$		Total	
Density	Total No.	$\frac{A v-N O}{m^{2}}$	Total No.	$\frac{A v_{m}^{2}}{}$	Total No.	Av $\frac{\mathrm{Na}}{\mathrm{m}} \mathrm{m}^{2}$	Total No.	$\frac{\mathrm{Av} \cdot \mathrm{NO}_{\mathrm{m}}}{}$	Total No.	$\%$
Callicorixa praeusta Mepalontora	(11)	(7.4)	(11)	(7.4)	(12)	(8.4)	(17)	0.7 $(11.7)$	1 $(51)$	$(0.5)$
Sialis fuliginosa	5	3.2	4	2.1	2	1.0	2	1.0	13	0.1
Sialis lutaria	6	4.2	7	5.3	10	7.4	15	10.7	33	0.4
Trichootera	(326)	(245.9)	(562)	(424.3)	(513)	(389.4)	(335)	(248.8)	(1736)	18.1)
Plectrocnemia conspersa	5	3.2	11	7.4	10	10.7	7	5.3	33	0.3
Sericostoma personatum	5	3.2	6	4.2	6	4.2	4	2.1	21	0.2
Potamophlax latipennis	9	6.4	5	3.2	38	28.8	44	33.1	95	1.0
Eycropsyche? instabilis	31	23.5	33	24.6	155	117.7	41	29.9	260	2.7
Glyphotaelius pellucitat	272	207.5	191	145.5	55	41.7	23	17.1	541	5.7
Agapetus fuscipus	4	2.1	6	4.2	186	141.2	89	67.4	285	3.1
Anabolia nervosa	-	-	273	208.6	53	39.5	85	64.2	411	4.3
\|Halesus aigitatus	-	-	13	9.6	4	2.1	2	1.0	19	0.2
Limnephilus lunatus	-	-	8	5.3	-	-	-	-	8	+
Mystacides nigra	-	-	16	11.7	4	2.1	18	12.8	38	0.4
Silo pallipes	-	-	-	-	1	0.7	-	-	1	+
Diplectrona felix	-	-	-	-	1	0.7	-	-	1	+
Ehycophila dorsalis	-	-	-	-	-	-	6	4.2	6	+
Stenophylax permistus	-	-	-	- ${ }^{-}$	- ${ }^{-}$	(107.8)	16	11.7	16	0.1
Coleontera	(71)	(51.1)	(82)	(58.2)	(143)	(107.8)	(112)	(83.6)	(403)	(4.2)
Nelophorus flavipes	9	6.4	3	2.1	3	2.1	-		15	
Eelmis maugei	13	9.6	8	5.3	8	5.3	16	11.7	45	0.4
Ealiplus lineatocollis	74	10.7	18	12.8	5	3.2	1	0.7	38	0.4
Hydroporus pubescens	2	1.0	-	-	3	2.1	-	-	5	+
Gyirinus aeratus	1	0.7	-	-	-	-	-	-	1	+
Laccobius bigattatus	1	0.7	1	0.7	-	-	-	-	2	+
Deronectus depressus	5	3.2	4	$2 . .1$	-	-	1	0.7	10	+
Oreodytes rivalis	2	1.0	-	-	1	0.7	4	2.1	7	+

Table 9.6 (contd.)

Sempling sites $\qquad$ Fopulation density $\longrightarrow$	$\mathrm{D}_{1}$		$\mathrm{D}_{2}$		$\mathrm{D}_{3}$		$\mathrm{D}_{4}$		Total	
	Total No.	$\frac{h v \cdot \frac{N O}{m}}{}$	Total No.	$\frac{\mathrm{AV}_{\mathrm{N}}^{\mathrm{NO}} \mathrm{~m}^{2}}{}$	Total No.	$\frac{A v \cdot N g 2}{m^{2}}$	Total No.	$\frac{\mathrm{Av} \cdot \mathrm{No}_{\mathrm{m}}^{2}}{\mathrm{~m}}$	Total No.	\%
Latelmis volkmari	23	17.1	46	34.2	121	93.0	90	68.4	280	3.0
Platambus maculatous	1	C. 7	2	1.0	1	0.7	-	-	4	+
Hydraena riparia	-	-	-	-	1	0.7	-	-	1	+
Diptera										
Ceratonoginidae	(27)	(20.3)	(10)	(7.4)	(1)	(0.7)	(16)	(11.7)	(54)	(0.5)
Eezzia spp.	27	20.3	10	7.4	1	0.7	16	11.7	54	0.5
Tipulidae	(4)	(3.9)	(12)	(9.5)	(15)	(9.8)	(15)	(10.2)	(46)	(0.5)
Tipula lateralis	3	3.2	1	0.7	3	2.1	1	0.7	8	+
Tipula palucosa	-	-	1	0.7	1	0.7	-	-	2	+
Tipula vittala	-	-	4	4.2	-	-	-	-	4	+
Tipula couckei	-	-	1	0.7	2	1.0	-	-	3	+
Tipula montium	-	-	-	-	1	0.7	-	-	1	+
Tipuia maxima	-	-	-	-		-	2	1.0	2	+
Dieranota robusta	1	0.7	5	3.2	8	5.3	12	8.5	26	0.2
Simulicrae	!-)	(-)	(4)	(2.4)	(6)	(3.9)	(10)	(6.0)	(20)	(0.2)
Simulium naturale	-	-	1	0.7	-	-	1	0.7	2	$+$
Simulium ornatum	-	-	1	0.7	-	-	4	2.1	5	+
Simulium angustitarse	-	-	2	1.0	$\overline{7}$	- 7	-	-	2	+
Simulium brevicaule	-	-	-	-	5	0.7	$\overline{5}$	-	1	+
Simulium monticola	(-)	(-)	(-)	(-)	5	3.2	5	3.2	10	$\stackrel{+}{+}$
$\frac{\text { Dixidze }}{\text { Dixa puberula }}$	(-)	(-)	(-)	(-)	(3)	$(1.7)$ 0.7	(1)	$(0.7)$ 0.7	(4) 2	$\stackrel{+}{+}$
Faradixa amphibia	-	-	-	-	2	1.0	-	0.7	2	$+$
Chironomidae	(309)	(233.3)	(489)	(371.0)	(512)	(388.1)	(571)	(430.9)	(1881)	(19.7)
Cryptochironomus spp.	70	53.5	-	-	140	107.0	4	2.1	214	2.2
Polypedilum nuberiulosus	10	7.4	-	-	52	39.5	185	141.2	247	2.6
Tanytarsus signatus	109	82.3	60	44.9	114	86.6	93	70.6	376	3.9
Pentaneura monilis	6	4.2	43	32.1	36	26.7	8	5.3	43	1.0

Table 9.6 (contd...)

Sampling sites $\longrightarrow$	$\mathrm{D}_{1}$		$\mathrm{D}_{2}$		$\mathrm{D}_{3}$		$\mathrm{D}_{4}$		Total	
Density $\longrightarrow$	motal No.	$\frac{\mathrm{Av}_{\mathrm{o}} \mathrm{NO}_{\mathrm{m}}^{2}}{2}$	$\begin{aligned} & \text { Fotal } \\ & \text { No. } \end{aligned}$	$\frac{\mathrm{Av} \cdot \mathrm{No}_{\mathrm{m}}^{2}}{}$	Total No.	$\frac{\mathrm{Av}_{\mathrm{N}}^{\mathrm{No}}}{\mathrm{~m}}$	$\begin{array}{\|c} \text { Total } \\ \text { No. } \end{array}$	$\frac{\mathrm{Av} \cdot \mathrm{No}}{\mathrm{~m}^{2}}$	Total No.	$\%$
Trichocladius rufiventris Procladius choreus Chironomus anthracinus Dicrotendipes pulsus Brillia modesta Metriocnemus spp. Prodianesa olivacea liticrotendipes chloris Other dipteran larvae Taphrophila vitripennis Limnophora spp. Hermerodromia milineata Pericoma pseudoexquisita Atherix marginata   Dipteran pupae	$\begin{array}{r} 1 \\ 93 \\ 1 \\ 19 \\ - \\ - \\ - \\ \hline(7) \\ 2 \\ 5 \\ - \\ - \\ \hline \end{array}$	$\begin{gathered} 0.7 \\ 70.6 \\ 0.7 \\ 13.9 \\ - \\ - \\ - \\ (4.2) \\ 1.0 \\ 3.2 \\ - \\ - \\ - \\ (29.9) \end{gathered}$	136 - - 3 213 34 - $(12)$ $\overline{8}$ 3 - 1 $(34)$	103.7   2.1   162.6 25.6   (8.1)   5.3   2.1   0.7   (25.6)	$\begin{array}{r} 69 \\ 42 \\ - \\ \overline{4} \\ - \\ 55 \\ \overline{5}) \\ - \\ \overline{4} \\ 7 \\ (2 \overline{6}) \end{array}$	$\begin{gathered} 52.4 \\ 32.1 \\ - \\ - \\ 2.1 \\ - \\ 41.7 \\ - \\ (2.8) \\ - \\ - \\ 2.1 \\ 0.7 \\ - \\ (19.2) \end{gathered}$	22 106 - 9 - - 113 31 $(3)$ - 1 - - 2 $(8)$	16.0 80.2 - 6.4 - - 85.6 23.5 $(1.7)$ - 0.7 - - 1.0 $(5.3)$	$\begin{array}{r} 92 \\ 377 \\ 1 \\ 28 \\ 7 \\ 213 \\ 202 \\ 31 \\ (27) \\ 2 \\ 14 \\ 7 \\ 1 \\ 3 \\ (109) \end{array}$	$\begin{gathered} 1.0 \\ 3.9 \\ + \\ 0.3 \\ + \\ 2.2 \\ 2.1 \\ 0.3 \\ (0.2) \\ + \\ 0.1 \\ + \\ + \\ + \\ (1.1) \end{gathered}$
Total No. of animals	2295		2395		2614		2237			
Ar. No. animals per month	164		171		185		159			
Av. No. animals/m ${ }^{2}$	1754.8		1829.7		1988.2		1701.3			

and $D_{4}$ the bed was easy of access, but at $D_{1}$ collecting was limited owing to the nature of the bank and the depth of water.

The species (Table 9.6) gathered at various stations show a great similarity at $D_{2}, D_{3}$ and $D_{4}$ whila the $D_{1}$ fauna differs slightly because of its close vicinity to bacirvater which was full of weeds. A total of 9531 organisms of 83 spocies was collected. The average number of animals per station/month was $170 \pm 10.1\left( \pm \mathrm{S}_{\mathrm{o}} \mathrm{D}\right)$.

The animals found are listed in Table 9.6 which gives a fairly complete picture of invertebrate life in the upper Dee.
(A) Platyheimintres
(1) Turbellaria

Polucelis nigra which was common at $D_{1}$ and scarce at the rest of the stations formed $0.3 \%$ of the total benthic fauna. The relative abundance of this species at $D_{1}$ may be due to availability of food in the nearby backwater.
(B) Annelids
(1) Mirudinea
0.78 of the limnetic invertebrates belonged to this group in which Erpobdella octoculata was common. (2) 011gochaeta
15. 5\% of the bottom fauna was formed by Lumbriculus Yariegatus, Stylodrilus heringienus and Iimnodrilus

1) Total number [ ]Average < $0.5 \%$ is not shown


Fig 9.2 Seasonal variations of some of the common species of bottom fauna of the upper Dee (other groups in Figs 9.3.9.4, and 9.5)
hoffmelsterd as common species and the rest (Table 9.6) were scarce. The above species showed minima in autum and winter and maxima in spring and summer (Fig. 9.2).
(c) Molluses
(1) Gostronods

This group was represented by Limapen nerezer, Ancylastmm fluviatile and potamophyreus ienkinsi nifich formed $0.2 ;$ of the total macroinvertebrates and all the above species were scarce. Ancylestrum fluviatile can tolerate a low calcium content (Boycott 1936), but it was not common even on clean stones, and all the above species were absent from the stones having muddly and algal crusts 012.

## (2) Lomellibranchiata

2.7\% of the bottom invartebrates were formed by this group of wich pisidium hibomicum and pisidium subtruncatum were common in the stony and gravelly substratum of $D_{2}$ and $D_{4}$ respectively.
(D) Arthronods
(1) Cmistaces

## (a) mphipods

Carmarus fulex, formed $0.6 \%$ of the total fauna. These were found in all seasons, but I found relatively more in summer as did Eadcock (1949) and Hynes (1955), because of the appearance of young stages between April to June.
(b) Isonods
dsellus meridienus though commonly present at all the


Fig. -9.3 Seasonal variations of the common species of
Ephemeroptera and Flecoptera of the upper Dee.
sampling sites, formed $5.9 \%$ of the total benthic fauna. These were collected in abundance in every season but more so in late auturn and winter (Fig. 9.5).
(2) Arachnida
(a) Hydracarins

This group was scarce, forming 0.2\%. They seemed to favour stony bot toms with vegetation.
(3) Insects
(a) Bleconters
7.3 of the bottom fauna belonged to this group in which amehinemura sulicollis, Chioroperls torrentium and Chloroperla tripunctata were common and the rest scarce (Table 9.6). Leuctra spp. were found in all seasons (Fig. 9.3) because of a steady succession of species and long katching perids (Hynes 1961). I did not find Amohinemura sulcicollis in summer, but Isonerla erammatica and Chloronerls torfentivm were numerous in late spring as found by Eynes (1961).
(b) Ehemeronters

This group formed 14.2 of the total bottom organisms; of these Controntilum luteolum, Leptophlebia maroinota, Eaetis rhodant, Enhemerella ignita, Baetis scambus and Ecdyonumus venosus were common. Fig. 9.3 shows the presence of Baetis sip. In every season and Bhemerella ignita was recorded in large numbers during summer as found by hacen (1957b) and Pleskot (1958).
(c) Hemintere
6. 4 \% of the bottom invertebrates were formed by this


group. Corixe nonzeri, a very common species at $D_{1}$ mainly due to the vicinity of backwater vegetation, was scarce at other stations. This and other species (Table 9.6) were observed throughout the period.
(d) Lenlopters
$0.5 \%$ of the benthic fauna were formed by Sialis full.sinosi and Sialis lutaria. Both were scarce and were collected from the stones with or without any vegetation
(e) Trichopterg
18.1\% of the bottom fauna was formed by clmhotectius peliucides, Anabolia nervosa, plectrocneria consnersa, Retamonylex latinennis and Hydronsyche instabilis, which were common. Glyohotselius dellucides was found relatively more in spring and winter; Anabolia nervosa in spring and autuman and potamonhylax latinennis in spring and autum (Fig. 9.4).
(f) Coleonters
4. 2 of the benthic fauna belonged to this group in which Latelmis volkmari and Helmis maugei were common and recorded in large numbers in every season except autumn (Fig. 9.5).
(B) Mrters
(1) Ceratorogonidae

This femily was represented by Bezzia sno. which formed $0.5 \%$ of the total fauna in 6.11 stations.
(2) Ifrulidee

Seven species of this group formed $0.5 ;$ of the total
macro-benthos, of these Dicranota robusta was common and the rest (Table 9.6) were scarce. These were found in all four stations.
(3) Gimul1dae
C.cic of the bottom fauna belonged to five species of this family and are listed in the Table 9.6. All of them were scarce and absent from the bottom of $D_{1}$. (4) Lixidge

Dixa nuberula and paradixa amphibia were collected from the stony bottom of $D_{3}$ and $A_{4}$.
(5) Chironomidae

This group formed $19.8 \%$ of the benthic fauna and was represented by Cryotochironomus spl., Procladius choreus, pentencura monilis, Tanytarsus simetus, Letriocncmus son. prodiemesn cllvacea, mrichocladius rupiventris and polvoedilum gubeculosus. The above species were cominon and found to be less abundant in the muddy bottom with thick vegatation.
(6) Other diptersn larrae

The species belonged to the family mpididae, Fhagionidae, Limonilnae and Anthomyildae, presented a small portion ( $0.2,2$ ) of the total bottom fauna and few were recorded from the muddy stretches.
(7) 1npteren nunae

These formed $1.1 \%$ of the total catch.
4. CCMPABISON GF THE BCTTOM FATNA OF REGTLATED DEE LITY TNEEGUATED LITN TEGD FEFDER STREMSS.

In order to study the resulting status of the benthic fauna of regulated Dee (upper Dee), it is necessary to

Table 9．7 Distribution of the catch between samples taken from the Unregulated
Llyn Tegid feeder streams and the Regulated Dee．

Groups and species	Catches		Total	$\begin{gathered} \text { Chi } \\ \text { squared } \end{gathered}$	$P$
	Feeder Etreams Urregulated	Dee Regulated			
Torbellaria（Total）	（7）	（36）	（43）	（19．4）	（ $<0.001$ ）
Folycelis nigra	7	36	43	19.4	＜0．001
Girudinea	（51）	（72）	（123）	（3．4）	（＞0．05）
Erpobdeila octoculata	41	38	79	0.1	$>0.05$
Glossiphonia complanata	1	9	10	6.4	＜0．05
Helotdella stagnalis	9	23	32	6.1	＜0．05
Oligochaeta ．	（899）	（1488）	（2387）	（145．2）	（ $<0.001$ ）
Stylocrilus heringianus	722	78 ？	1508	2.6	70.05
Lumbriculus variegatus	110	438	548	$196 .{ }^{\text { }}$	$<0.001$
Eiseniella tetrahedra	41	36	77	0.2	$>0.05$
Aulodrilus pluriseta	8	43	51	24	$<0.001$
Homochaeta nailina	7	27	34	11.6	＜0．001
Gastroroda	（73）	（21）	（94）	（28．6）	（＜0．001）
İmnaea pereger	2	16	18	10.8	$<0.001$
Ancylastrun fluviatile	71	4	75	59.8	
Iamellibrenchiata	（125）	（265）	（390）	（50．2）	（＜0．001）
Pisiaium subtruncatum	9 ？	109	200	1.6	70.05
Pisidium milium	30	64	94	12.2	＜0．001
Pisidium hibernicum	8	92	100	92.0	＜0．001
Amphiroda	（30）	（64）	（94）	（12．2）	（＜0．001）
Gammarus pulex	（30）	${ }^{64}$	94	12.2	（0．001
Isonoda	（31）	（565）	（596）	（478．4）	（ 0.001 ）
Asellus meridianus	31	565	596	478.4	＜0．001
Hydracarina	（6）	（22）	（28）	（9．0）	$(\leqslant 0.01)$
Lebertia porosa	4	3	7	0.14	$>0.05$
HyErobates fluviatiles	1	2	3	0.2	70.05

Table 9.7 (conta.)

Groups and species	Catches		Total	Chisquared	P
	Feeder streams Unregul?	Dee Regulated			
Plecoptera	(1380)	(697)	(2077)	(190.4)	( $<0.001$ )
Amphinemura sulcicollis	269	264	533	0.004	70.05
Nemoura cinerea	2	3	5	0.2	$>0.05$
Amphinemura standfussi.	150	59	209	39.6	$<0.001$
Leuctra hippopus	450	41	491	340.6	$<0.001$
Nemoura avicularis	2	1	3	0.2	30.05
Protonemura meyeri	67	20	87	25.0	<1.001
Chloroperla torrentium	101	141	242	6.6	$<0.05$
Isoperla grammatica	71	83	154	0.8	$>0.05$
Leuctra fusca	110	20	130	62.2	$<0.001$
Leuctra inermis	51	12	63	24.0	$<0.001$
Chloroperla tripunctata	37	28	65	1.2	$>0.05$
Isoperla obscura	3	4	7	0.14	$>0.05$
Ephemerortera	(1545)	(1356)	(2901)	(12.2)	( 0.001 )
Ephemerella ignita	171	510	681	168.6	<0.001
Baëtis rhodani	144	269	413	37.8	$<0.001$
Cä̈nis horeria	2	7	9	2.6	20.05
Cadnis mosta	5	55	60	41.6	$<0.001$
Centroptilium luteolum	875	262	1137	330.4	$<0.001$
Leptochlebia vespertila	32	23	55	1.4	$>0.05$
Paraleptophlebia tumida	5	1	6	2.6	$>0.05$
Heptagenia lateralis	32	5	37	19.6	$<0.001$
Heptagenia eulphurea	49	25	74	7.6	$<0.01$
Ba勆tis pumilus	99	36	135	29.2	$<0.001$
Baëtis scambus	29	68	97	15.6	<0.001
Paraleptophlobia submarginata	13	10	23	0.2	70.05
Ecdyonurus venosus	41	28	69	2.4	$>0.15$
Leptophlebia marginata	24	32	56	1.1	70.05

Table 9.7 (conte.)

Groups ard species	Catcher		Total	Chi squared	P
	Feeder streams Unregilated	$\begin{gathered} \text { Dee } \\ \text { Regulated } \end{gathered}$			
Knithrogena semicoiorata	17	7	18	14.2	$<0.001$
Hemirtorit	(1137)	(617)	(1754)	(154)	(<0.001)
Sicara nymph		3	7	0.14	$>0.05$
Micronecta poweri	114	161	1275	712.2	$<0.001$
Sigara distincta	1	137	138	13'4.0	$<0.001$
Corixa panzeri	18	210	228	161.6	$<0.001$
Fepralortera	(29)	(51)	(8C)	(6.0)	(<0.05
Sialis lutaria	29	51	80	6.0	<0.05
Trichoptera	(898)	(1736)	(2634)	(266.6)	(<0.001)
Systacices nigra	12	38	50	13.4	<0.001
Flectrocnemia conspersa	222	33	255	140	<0.001
Hydropsyche instabilis	100	260	360	71.0	$<0.001$
Potamophylax latipennis	48	96	144	16	$<0.001$
Silo rallipes	4	1	5	1.6	70.05
Anabolia nervosa	132	411	543	143.2	$<0.001$
Glyphotaelius pellucidus	262	451	713	50.0	$<0.001$
Agapetus fuscipus	10	285	295	246.4	<0.001
Helesus digitalus	29	19	48	2.0	30.05
Diplectrona felix	3	1	4	1.0	$>0.05$
Rhyacophila dorsalis	7	6	13	. .03	70.05
Colesotera	(378)	(408)	(786)	(1.1)	()0.05)
Elatambus maculatus	23	4	27	13.2	$<0.001$
Decronectus depressus	1	10	11	7.2	<1).01
Maliplus lineatocollis	4	38	42	27.4	< 0.001
HeImis maugei	102	45	147	22.0	$<0.001$
Letelmis volkmari	220	280	500	7.2	$<0.01$
Hyorroporus pubescens	3 6	15	8 21	0.4 3.8	70.05   0.05
Eeiophorus flavipes	6	15	21	3.8	$<0.05$

Table 9.7 (contd.)

Groups and species	Catches		Total	Chi squared	P
	Feeder streams Unregulated	Dee   Regulated			
Ceretonoronidee	(67)	(54)	(121)	(1.3)	(70.05)
Eezzia srp.	67	54	121	1.3	70.05
Tirulidae	(30)	(46)	(76)	(3.3)	(>0.05)
Sipula maxima	5	2	7	1.2	$>0.05$
Tipula montium	11	1	12	8.2	$<0.01$
Tipula paludosa	3	2	5	0.2	$>0.05$
Tipula couckei	1	3	4	1.0	$>0.05$
Tipula lateralis	10	8	18	0.2	$>0.05$
Simlifise	(48)	(20)	(68)	11.4	( $<0.001$ )
Sinulium monticola	30	10	40	10.0	$<0.01$
Simulium ornatum	1	5	6	2.6	$>0.05$
Simulium brevicaule	10	1	11	7.2	$<0.01$
Siaulium naturale	6	2	8	1.0	$>0.05$
Dixidae	(1)	(4)	(5)	(1.7)	$(>0.05)$
Dixa puberula	1	4	5	1.7	$>0.05$
Chironomidae	(3048)	(1881)	(4929)	(276.2)	(<0.001)
Folypedilum nubeculosus	1690	247	1937	1074.8	$<0.001$
Pentaneura monilis	330	93	443	149	$<0.001$
Prodiamesa olivacea	490	202	692	119.8	$<0.001$
Manytareus signatus	293	376	669	10.2	$<0.01$
Procladius choreus	84	377	461	$186 . ?$	$<0.001$
Hicrotendipes epp.	6	31	37	16.8	$<0.001$
Trichocladius rufiventris	66	92	158	4.2	$<0.05$
Ciyotochironomas spp.	58	214	272	89.4	$<\mathrm{C} .001$
\|Brillia modesta	6	7	13	0.06	$>0.05$

Table 9.7 (contd.)

Groups and species	Catches		Total	Chi squared	P
	Feeder streams Unregulated	Dee   Regulated			
Other dirteran Larvae	(209)	(27)	(236)	(140.2)	( $<0.001$ )
Dicranota robusta	159	26	185	95.6	<0.001
Hermerodromia unilineata	20	7	27	6.2	$<0.05$
Limnophora spp.	2	14	16	9.0	$<0.01$
Taphrophila vitripennis	11	2	13	6.2	$<0.05$
Atherix mareinata	2	3	5	0.2	70.05
Dipteran pupae	294	109	403	84.8	<0.001

Table 9.8 Averace percentage composition of the total benthic fauna (exnessed in groups) in unregulated Llyn Tegid feeder streams and regulated upper Dee. $\quad+=<.0 .1 \%$

Conditior	Unregulated	Regulated
Turbellaria	+	0.3
Hirudinea	0.1	0.7
Oligochaeta	7.9	15.6
Gastropoda	0.4	0.2
Lamellibranchiata	0.5	2.7
Amphipoda	0.3	0.6
Isopoda	0.5	5.9
Hydracarina	0.1	0.2
Plecoptera	11.9	7.3
Ephemeroptera	14.6	14.2
Hemiptera	7.5	6.4
Megaloptera	0.2	0.5
Trichoptera	6.9	18.2
Coleoptera	3.1	4.2
Ceratopogonidae	0.2	0.5
Dixidae	0.3	+
Tipulidae	0.2	0.2
Simulifdae	0.1	0.2
Chironomidae	39.0	19.7
Other Dint. Iarvae	1.2	0.5
Dipt. pupae	3.3	1.1

compare results obtained during the same period and from similar substrata in both the regulated Dee and in the unregulated feeder streams of Llm Tegid. Investigations were therefore made in the same period by applying the same method of collecting.

Table 9.8 shows a quantitative comparison of the benthic fauna of the unregulated feeder streams and regulated Dee. Flotting the mean number of each group as a percentage of the total, reveals an increase in Hirudinea, Oligochaeta, Lamellibranchiata, Isopoda, Amphipoda, Negaloptera, Trichopera and Coleoptera in the regulated Dee; whereas Hemiptera and Diptera particularly chironomid larvae, are favoured tremendously by the unregulated conditions of the feeder stream.

Tables 9.7, 9.8 show that Turbellaria, Hirudinea, Oligochaets, Lamellibranchiata, Amphipoda, Isopoda, Trichoptera, Hemiptera and Coleoptera were poorly represented in the unregulated feeder streams. Aquatic diptera, which includes Chironomidae, Dixidae, Tlpulidae, Simulildae, Ceratopogonidae, Psychodidae, Limnobildae, Ptychopteridae, Stratiomyidae, Dolichopodidae and Empididae; Plecoptera and Castropoda were quite distinct and abundant in number of individuals and species in unregulated feeder streams. The regulated or unregulated condition of the river appears to have no effect on Hydracirina, Ephemeroptera and Megaloptcra (Table 9.8).

## 5. DISCUSSION

Butcher (1933) wile working on the Fiver Lark, Suffolk, found that a river bed of send and gravel was veshed away by a suddan flood along kith the plants rooted in it. He further reported that the macrophytic vegetation, in itself not a source of food for the great majority of animals inhabiting a river, has a great influence on their quantity anl distritution by acticn (1) as an area for the grouth of epiphytic algae which are the chief source of food of smaller forms, (2) as a source of oxygen, (3) as a shelter and habitation, and (4) as an agent for cementing together stones and gravel where much of the fauna is found. percival and hitehead (1930) showed that the substratum controls the density of invertebrates. The more fized the substratum and the greater amount of shelter available, the denser is the rauna. Kavera (1951) pointed out that the density fluctuations of benthic orgenisms were directly or indirectly conditioned by the current velocity. Thorup (1970) described the similar situation in the Danish spring Rold Kilda. Bishop and Hynes (1969) found a loss of organisms from the area after flood had scoured the bottom in tho Speed River, ontario. Ertlova (1968) while vorking on the River Danube in Czechoslovalia, found ollgochactos only where the current velocity reached 10cn/sec. Chutter ( $1: 69$ ) shored that the increased amount of silt and sand in river beds adversely affected the fauna of Vaal Ifver, Couth Africa. Radford and Sowe (1972) have
show, in a preliminary investigation of bottom fauna and invertebrate drift in an unregulated and a regulated stream in Alberta, that increased velocities of current during high vater not only dislodge the animals but also settling becomes more difficult.

In the present study a comparison of the benthic fauna of the regulated river Dee (upper Dee) and Liyn Tegid feeder strema shows a distinct variation in the number of animals (Tables 9.7, 9.8).

The fauna of oligochaeta in the regulated Dee can be considered abundant because the number of ollcochaetes probably depends to a large extent on contributions from tho soil washed down. This soil has been mixed up uith docaying plent substances and has thereby formed a blotope which is favourable just for the ollgochaetes. The relative increase in Hirudinea in the regulated Dee could be due to slow current and abundant marginal vegetation. Gamarus nulex was recorded more in the regulated Dee than In the feeder streams, perhaps due to the avallability of more hiding places and the relatively slow water current in the fomer. The ebundance of trichoperan larvae in the regulated Dee was renarkable, and may be due to their feeble abillty of locomotion, the slow water currents and the greater avallability of the case builaing material. There is an increase in Turbellaria, Lamellibranchiata and Isopoda in the regulated Dee as compared with the unregulated
feeder streams. Ihis may be attributed to 'permanent' substratum and sheltered zones, either because of the need of these groups for cover or because they are normally associated with vegetation.

There were relatively more Plecoptera recorded in unregulated feeder streams than in the regulated Dee (Tables $9.7,9.8$ ), due presumably to the aveilability of stony substrata with scattered vegetation, particularly macrophytes wihich the plecopteran nymphs feed on (Hynes, 1941). In the Dee, the lack of suitable food and proper substrata would probebly have beeu a limiting factor. Hore hemipterans were recorded in unregulated leeder streams then in the regulated Dee. This may be due to slower currents, mors marginal vegetetion, and the vicinity of the lake in the lower reaches of the feeder streams. Greater numbers of Gastropoda in the feeder streans may be due to less silt deposition and relativoly more calcium ions in the water. Among the Diptera, Chironomidae scemed to have endured the unregulated condition of the feeder streams very well (Tables 9.7, 9.3). Probably this is due to the presence of a thin mud and silt layer on the bottom.

There appears to be no difference in the relative abundance of Ephemeroptera in the regulated Dee and unregulated feeder streams (Table 9.8), though Harker (1953) in a Lencashire stream found that flooding affected Ecdyonurus spp. and Hentsgenis spp. considerably, but Baetis spp. were not affected.

The presence of lower numbers of certain groups in the unregulated feeder streams may be due to the fact that the substratum, even when of stones and boulders, is moved due to high velocities of water currents in flooding, and much of the plant and animal ilfe is insecurely anchored in gravel and emong stones, and is torn away by the swirling waters. The greater the volume of water, the greater the damage done.

The regulation of the river Dee has favoured certain groups (Tables 9.7, 9.8). This may be due to considerable alteration in the banks and bottom of the river. The stony substratum seems to be covered by silt and algae, and consequently the sheltered banks have become soft and colonised by vegetation. It appears that the controlled flow has to a creat extent minimised the physical disturbances of the bottom by flood end consequent bottom scouring. For the successful establishment and maintenance of animal or plant colonies in the river constant conditions must cobtain for a considerable period, wheress large fluctuations may result in washing away of the entire fauna and flora. Jones (1951b) reported that severe summer floods in the River Towy, West Wales, reduced the invertebrate population from 1000 to $300 / \mathrm{sg}$.m.

The results discussed here agree to some extent with those obtained by Rawson (1949) who observed that the standing crop of the benthic fauna was uniformly low before the development of the Pacaterra Dam on the Kananaskis River

## 263

In Saskatchewan, Cenada; Cronemiller (1955) showed that the production of food of trout had increased by constructing cmall dams to regilate the sumer flow in a swall trout stream in the U.S.A. $;$ and Radford and Rowe (1972) made similar observations on the fauna and invertebrate drift in an unregulated and a regulated stream in Alberta, Canada.

## 6. STMMARY

(1) A preliminary investigation of invertebrates was made of the upper regulated Dee.
(2) The species composition and the seasonal trends of the common species of the standing crops of the bottom Pauna are discussed.
(3) A comparison of the benthic fauna of the regulated Dee and unregulated Llyn Tegid feoder streams was made. (4) Low standing crops in the unregulated feeder streams could be due to flood and instability of substratum; whereas the relatively high number of benthic organisms in the regulated Dee on be attributed to a "fixed" substratum and less physical disturbance.

PART 111
CHAPTER X

1. INTRCDUCTION.

River Alyn Page
2. MATERIALS AND NETHODS. 266
(a) Bottom fauna. . 266
(b) Fish. 266
3. THE ENVIRONHENT. 271
(a) General topography. 271
(b) Description of the sampling sites. 273
(c) Physical and chemical conditions. 280
4. COMPOSITION ON TIE FAUNA.
$285^{\circ}$
5. BIOIOCY OF TROUT. 293
(a) Age and growth. 298
(b) Leagth-weight relationship. 303
(c) Condition. 304
(d) Seasonal Erowth. $\quad 309$
(e) Movement. 310
(f) Sex rativ. 316
(g) Fecundity. $\quad 316$
(h) Mortality. $\quad 316$
(1) Composition of the diet. $\quad 318$
(j) Seasonal variations in food intake. 320
(k) Seasonal changes in the food. $\quad 324$
(1) Food according to age. 326
6. DISCUSSION 326
7. SURMARY. 332
Farnles s.0.

## CHAPTER X

## INTRODUCTION

Although there is now a considerable body of information available on the biology of various polluted waters (Carpenter 1924, 1925, 1926; Jones 1940a, 1940b, 1941a, 1949b, 1958; Pentelow and Butcher 1938; Hynes 1960, 1961, 1962; Mann 1965; and Brinkhurst 1966, 1965) etc., there is no published information concerning the ecology of bottom invertebrates and biology of trout in a polluted stream of the Dee watershed. The following study describes the ecology of a macrofaunal community and the blology of trout in the River Alyn, a polluted tributary of the Dee.

## MATERIAL AND METHODS

## (a) Rottom fauns

The sampler described in Chapter II was used for collecting the bottom invertebrates from July 1969 to July 1970.

## (b) Fish

Fish samples were taken monthly from the upper Aly between $A_{1}$ and $A_{2}$ (Fig.10.1) from July 1969 to July 1970. All samples were collected by electrofishing between 10.00 and 15.00 hours. A Honda A.C. generator of 440 V was employed. Stunned fishes were recovered by means of lending nets. The catches were preserved in the deepfreeze and
examined the next day.

First the frozen fish were thawed in warm water and then each specimen was dried. Surplus water was removed from the body surface by filter paper and the weight was determined to the nearest 0.1g. Length, from the tip of the snout to the fork was measured to the nearest millimeter. Sex determination of larger fishes was made macroscopicilly and the gonads were weighed to the nearest 0.1g. Sex determinations of immature fishes were made by microscopic examination of squashed gonad tissue. The conditions of the gonads were noted according to orton, Jones and King (1938) and Jones and Orton (1940).

The method adopted for food analysis is mentioned in Chapter III.

The scales of brown trout from particular British habitats have been described extensively in the literature (Southern 1935; Allen 1938; Went and Frost 1942; Frost 1950; Jones 1953 and Ball and Jones 1960) etc. The procedures adopted in scale preparation and reading was adopted from the works of Jones (1949) and Ball (1957, 1961). Scales were taken from an area above the lateral line and just below the dorsal fin. This was to offset, as much as possible, inaccuracies likely to arise from the variation in the number of rings on the scales from different regions of the body (Ehatia 1931). Each scale was cleaned by

rubbing batween thumb and finer. About 10 scales were then picked up with a blunt scalpel and mounted in Euparal. Reading for age was done under the low power microscope. The scales $I$ examined showed wide rings on their edge in early summer, with narrowing of these rings in late summer. In autumn end winter narrow rings were formed on the scales of most fish (Plates 10.5-10.9).

In order to investigate the movement of fish at $A_{4}$ (Fig. 10.2), 150 trout were tagged and released. Tagging was carried out at Chirk hatchery on the day before they were released. Fish were taken at random from each size group (here $16-18,18-20,20-22 \mathrm{cms}$ ) and were tranquilised by placing them in a weak solution of MS222 Sandoz. A hypodermic needle was inserted into the base of the dorsal fin at its anterior end. one arm of the silver wire attached to the tag was threaded into the needle which was then withdrawn from the fish. The other arm of the silver wire was brought over the back of the fish and the two arms of silver wire were twisted together. The excess silver wire was cut off. The wire and the tag were pressed close to the sides of the fish. The trout were then placed in a plastic bucket half full of a solution of mercuric chbride to prevent any infection, before putting them in the delivery tank. 50 trout of the length group $16-18 \mathrm{~cm}$ were tagged and released at station $\mathrm{A}, 50$ of $18-: 0 \mathrm{~cm}$ at $B$ and 50 of $=0-2<\mathrm{cm}$ at $C$ (Fig. 10.2). In the upper Alyn, between $A_{1}$ and $A_{2}(F i g .10 .1)$ Pan-jet innoculation techniques


PIG. 10.3 THE GEOLOGY OF THE RIVER ALYN. (LOWER DEE CATCHMENT AREA.)
(Hart and fitcher 1969) using indian ink were carried out for the movement determinations.

Gonads were removed as soon as possible, weighed and preserved in modified Cilson's Fluid (Simpson, sited by Bagenal 1966), consisting of 100 ml 60\% alcohol, 15 ml 80\%. nitric acid, 18 ml glacial acetic acid, 800 ml water and 20 g mercuric chloride. The fluid preserved and hardened the eggs and helped to liberote them by breaking down the ovarian tissuc. Before the esgs were counted the ovarian tissue was removed and clumps of adhering eggs were carefully separated.

## 3. THE ENVIRONMENT

## (a) General tonography

The fiver Alyn, a tributary of the Dee, rising around Cym-y-Brain 615.7 m O.D. in Denbighshire, follows approximately the outcrop of the basal carboniferous 11mestone for about 16km northward (FIg.10.3), but then suddeniy turns to cut through the imestone belt in a deep gorge of sand and shales. After this it flows southeastward through the coal measures and finally it enters into alluvium and peat to join the Dee at the Cheshire border. Two major contributing streams, Afon Terrig and Afon Cegrdog, enter the river near Long (Nat. Grid Ref. 2616:4) and Cefn-y-bedd (Nat. Grid Ref. 310562) respectively. The river follows a winding course of more than 45 km . At Logserhecds (Nat, Grid Ref. 6;7195) some of the water


PLATE 10.1 ShMPLING STATION A1.

flows inte the underground fissures and this also occurs at Nold (Nat. Grid Fef. 240639 ) which resuits in low summer level and sometimes drying out altogether.

## (b) Dascription of the samnling sites

Four collection sites, namely $A_{1}, A_{2}, A_{3}$ and $A_{4}$, were established from the top to the bottom end of the stream (FIg. 10.1). These stations were selected not on the basis of different types of substrata but on the basis of pollution by domestic sewage and industrial wastes (Fig.10.1).
$A_{1}$ (Plate 10.1) was selected near the village of Llandegla (Nat. Grid Ref. 195525) at en altitude of $\mathrm{c} 65 . \mathrm{mm}$ O.D. Here the stream is $0.3-\mathrm{cm}_{\mathrm{m}} \mathrm{wide}$ and $0.5-1 \mathrm{~m}$ in depth, with a hard bottom of gravel and mud at places, There were no trees and bushes of eny kind on either side of the river. It receives a small emount of domestic untreated sewage, the source of which was shown to me by Mr. Williams, a local farmer.
$A_{2}$ (Flate 10.2) was situated at an altitude of 115.3 m O.D. near Yold (Nat. Grid Ref. 240639) above the Synthite and Sewage disposal works (Fig.10.1). Here thestream is from $0.5-1 \mathrm{ln}$ in depth and the widh varies from $3-5 \mathrm{~m}$. There were Scots fine trees on one side and pasture on the other. The bottom was covered with pebbles and sand. Sandy shoals were found over wide areas which may be due to two sand and gravel works nearby (F1g.10.1). There were a few scattered patches of Eontinalis antipyretica and Ranunculus aquatilis.


PLADE 10.3 SAMPLTNG SNATTCN A3.



PLATE 10.5 SCALE OF BROWN TROUT FROM RIVER ALYN AT A1. LENGTH $8.1 \mathrm{~cm} . ~ A G E$ Ot. CAUGHT AUGUST 1969.


PLATE 10.6 SCALE OF BROWN TROUT FROM RIVER
ALYN. CAUGHT IN NOVEMBER 1969
BETWEEN A1 AND A2. LENGTH 12.8 CM .
AGE 1+.


PLATE 10.7 SCALE OF BROWN TROUT FROM RIVER ALYN. CAUGHT IN NOVEMBER 1969
BETWEEN A1 AND A2. LENGTH 15.6 CM . AGE 2+.


PLATE 10.8 SCALE OF BROWN TROUT FROM RIVER ALYN. CAUGHT IN OCTOBER 1969 BETWEEN A1 AND A2. LENGTH 18.6 CM. AGE $3+$.


[^1]Table 10.1 Water samples were taken on 25.6 .9970 and analysed by the pollution laborstories of the Dee and Cluyd River Authority


Results, except where stated otherwise, as mg. per litre.
Key:- $0 / S=$ Upstream, $D / S=$ Downstream, O.S = Organic solvent
For qualitative descriptions of odours and appearances see code
A.W.A. 12th edition.

For qualitative descriptions of odours and appearances see code A.W.A. 12th edition.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
i
\] \&  \&  \&  \&  \&  \&  \&  \&  \&  \& \[
\] \& ¢
¢
+
\(\sim\) \& \[
\begin{aligned}
\& 0 \\
\& 5 \\
\& 5 \\
\& 5 \\
\& \stackrel{5}{3} \\
\& 7
\end{aligned}
\] \&  \\
\hline \begin{tabular}{l}
Time \\
Appearance \\
Odour \\
Specific Conductance (micromhos \(/ 3 \mathrm{~cm}\). at \(25^{\circ} \mathrm{C}\) ) \\
F. \\
Temperature \({ }^{\circ} \mathrm{C}\) \\
Dissolved 02 \\
Dissolred 02, \% saturation \\
B.O.D. ( 5 days at \(20^{\circ} \mathrm{S}\) ) \\
Permanganate value ( 4 hours at \(27^{\circ} \mathrm{C}\) ) \\
C.O.D. (Dichromate value) \\
Nitrogen. os N ammoniacal. free + saline \\
" " nitrate \\
" " total oxidised \\
Chloride, as Cl \\
Solids, dissolved \\
" suspended \\
Hardness, as CaCo3, total \\
\("\) " " magneaium \\
Alkalinity, as \(\mathrm{CaCo3}\) \\
Sulphates, as So4 \\
Phenols, as C6Hi50H \\
Detergents, Anionic \\
Silicates, Reactive, as SiO2 \\
Phosphates, total as PO4 \\
Iron, total, as Fe \\
" solutle, as Fe \\
Manganese, total ss Mn \\
" soluble as Mn \\
Formaldehyde
\end{tabular} \& 9.55
T 2
NG 2
E 2
7.8
16.3
9.6
97
2.0
3.2
9.8
0.66
0.02
53
14
320
\(74 n\)
80

$\vdots$ \&  \& | 9.10 |
| :--- |
| T3 |
| NG2 |
| E? |
| 7.9 |
| 12.7 |
| 9.2 |
| 86 |
| 2.3 |
| 3.2 |
| 0.19 |
| 0.04 |
| 56 |
| 300 |
| 2.65 |
| 35 | \& | $9.10$ |
| :--- |
| T3 |
| G2 |
| E2 $\begin{array}{r} 7.6 \\ 12.0 \\ 9.4 \\ 90 \\ 2.3 \\ 3.6 \end{array}$ |
| 61 |
| 330 250 80 | \& 9.5

$T 3$
$N Y 3$
$E / \mathrm{m} 2$
7.8
6.0
11.4
95
2.4
98
0.2
0.03
45
140
130
10

$\vdots$
$\vdots$ \& 8.10
$T 3$
$G 2$
$E / \mathrm{m} 2$
540
8.2
4.0
13.0
102
1.6
2.9
10.5
0.1
0.04
7.2
35
355
17
220
200
20
145
38
-
0.06
2.8
0.5
0.6
0.1
0.1
0.06

1. \& 11.45
T 4
NY 3
$\mathrm{E} / \mathrm{m} 3$
7.4
7.0
42.6
99
4.7
138
13.7
0.8
0.04

- 

70
160.
1.35

25 \& | 11.55 |
| :---: |
| T 3 |
| NY 3 |
| m 3 |
| 8.1 |
| 4.0 |
| 12.7 |
| 98 |
| 1.8 |
3.3
-
36
160
80
80

$$
\begin{gathered}
13.15 \\
T 3 \\
N Y 3 \\
E / 2 \\
8.3 \\
3.7 \\
13.0 \\
102 \\
3.1 \\
2.6 \\
0.5 \\
0.03 \\
- \\
85 \\
\\
135 \\
125 \\
10
\end{gathered}
$$
\] \& 11.50

$T 3$
$N 3$
$E / \mathrm{ch} 2$
571
8.4
5.7
12.4
102
3.3
6.5
-
-
-
30
175
145
30
16.2
24
-
0.05
5.2
1.6
0.4
0.16
-
-

- \& 11.45
$T 2$
$Y G 1$
$E 1$
710
8.2
14.0
12.1

120. 

1.6
2.3
0.1
0.1
4.2
45
511
5
340
270
70
216
-
-
0.6
0.5
0.1
0.06
-

- \& 11.50
$T 2$
$\mathrm{YG2}$
$\mathrm{ma} / \mathrm{ms}$
8.3
15.4
11.0
113
3.1
5.4
- 
- 
- 

53
310
250
60 \& 11.30
21
$Y N 2$
$E .2$
8.5
13.5
13.6
135
1.5
1.4
0.1
0.03
-
52
270
220
50 <br>
\hline
\end{tabular}

$A_{3}$ (plate 10.3) was situated at an altitude of 109.3m O.D. near Mold below the Synthite and Sewage disposel vorks. The width of the river bed was between 2-4m and was covered with pebbles and gravel. The trees, mostly Scots Pine and silver birch, covered the stream and throughout the sampling period, except during flood, decaying plants and debris were noticed everywhere on the bottom. Here a putrid smell was noticed each time the site was visited.
$A_{4}$ (plate 10.4) Iles in the lower reaches of the stream near Rossett (Nat. Grid Ref. 366573). This station was situated at an altitude of 15 m O.D. Here the stream was about l-im in depth and $5-7 \mathrm{~m}$ in width. The bottom was muddy but at places covered with stones. The vegetation was poor on either side but there were thick patches of algae on the stones.

## (c) Ehysicel and Chemicel conditions

Tables 10.1 and 10.2 show the physical and chemical conditions during July 1909 to July 1970. The water temperature ranged from $3.7-4^{\circ} \mathrm{C}$ in winter and from 14 $16.3^{\circ} \mathrm{C}$ in summer. Maximum percentage saturation of oxygen was recorded during summer and minimum in autumn. pH ranged between 7.4 and 8.5. The dissolved chemicals indicated stream conditions only at the time of sampling and occasional spills of wastes were not detected. Chemical testing may not reveal evident pollution qualities when wastes are highly

Table 10.3 The density (Av. no. $/ \mathrm{m}^{2}$ ) of the bottom fauna at
four sampling sites, based on i4 monthly samples.

$$
+=\langle 0.1 \% \quad-=\text { No record }
$$

Bottom fauna	Above Synthite works		Below Eyathite works		
	A1	A2	A3	A4	Total   (\%)
Turbellaria (Total)	(-)	(6.4)	(5.3)	(-)	(+)
Polycelis nigra	-	0.7	4.2	-	$+$
Polycelis felina	(6,4)	5.3	1.0	(8)	+
Hirudinea	(6.4)	(10.3)	(9.6)	(8.5)	(0.2)
Glossiphonia complanata	6.4	9.6	5.3	2.1	0.1
Erpobdella octoculata	-	0.7	3.2	6.4	$+$
Helobdella stagnalis	(37 4)	$(823)$	0.7	$(26.7)$	${ }^{+}+$
Oligochaeta	(37.4)	(82.3)	(19.2)	(26.7)	(1.4)
Stylodrilus heringianus	28.8	34.2	5.3	10.7	0.7
Lumbriculus variegatus	2.1	28.8	2.1	9.6	0.3
Rhyacodrilus coccineus	0.7	0.7	-	-	+
Aulodrilus pluriseta	0.7	16.0	-	0.7	0.1
Homochaeta naidina	2.1	0.7	-	-	+
Eiseniella tetrahedra	1.0	0.7	2.1	1.0	0.1
Limnodrilus hoffmeisteri	-	-	7.4	0.7	+
Peloscolex ferox	-		-	2.1	+
Gastronoda	(24.8)	(96.1)	(2347.5)	(81.0)	(10.8)
Limnaea pereger	8.5	21.4	75.9	11.7	0.6
Ancylastrum Pluviatile	14.9	51.3	18.1	19.2	0.8
Limnaea glabra	0.7	3.2	1.0	-	+
Succinea pfeifferi	0.7	-	3.2	2.1	+
Limnaea truncatula	-	$7 \cdot 4$	1235.8	23.5	5.0
Potamopyrgus jenkinsi	-	12.8	1009.0	23.5	4.2
Limnaea palustris	-	-	2.1	-	+
Ancylus lacustris	(30)	(37.4)	(156.1)	1.0	+
Lamellibranchiata	(3.9)	(37.4)	(156.1)	(27.7)	(1.2)
Pisidium cinerium	3.2	35.3	32.1	2.1	0.5
Pisidium lilljeborgii	0.7	2.1	-	25.6	+
Pisidium subtruncatum	-	-	119.8	-	0.5
Pisidium milium	(324-2)	(1058 2)	4.2	(1748-3)	${ }_{(37}^{+}$
Amphipoda	(324.2)	(1058.2)	(2974.6)	(1748.3)	(37.4)
Gammarus pulex	324.2	1058.2	2974.6	1748.3 $(6.4)$	37.4
Isopoda	-	-	(10.7)	(6.4)	(0.1)
Asellus meridianus	(113.3)	- ${ }^{-}$	10.7	6.4	0.1
Hydracarina	(113.3)	(39.5)	(1.0)	(2.8)	(1.5)
Sperchan denticulatus	-	- ${ }^{-}$	-	0.7	$+$
Hygrobates nigromaculatus	111.2	37.4	-	2.1	1.4
Lebertia porosa	(193.1	2.1	1.0	,	+
Plecopteri	(193.6)	(148.7)	(23.1)	(9.4)	(3.5)
Leuctra hippopus	21.4	2.1	1.0	3.2	0.3
Leuctra geniculata	87.7	16.0	21.4	-	1.1
Amphinemura sulcicollis	27.8	39.5	-	1.0	0.7
Nemoura avicularis	10.7	60.9	-	1.0	0.7
Leuctra fusca	1.0	7.4	0.7	-	0.1
Isoperla grammatica	8.5	0.7	-	-	0.1
Chloroperla tripunctata	0.7	-	-	-	$+$
Chloroperla torrentium	5.3	$0 \cdot 7$	$\cdots$	-	+
Brachyptera risi	3.2	0.7	-	-	+
Nemoura cambrica	2.1	-	-	-	+
Nemoura cinerea	2.1	-	-	-	+

Table 10.3 (contd.)

Bottom fauna	A1	A2	A3	A4	Total   (\%)
Amphinemura standfussi	13.9	16.0	-	4.2	0.3
Leuctra inermis	1.0	-	-	-	+
Leuctra nigra	1.0	1.0	-	-	+
Nemurella picteti	-	0.7			+
Ephemerontera	(370.0)	(489.2)	(299.9)	(866.9)	(15.9)
Baetis rhodani	100.5	95.2	60.9	178.6	3.4
Heptagenia lateralis	64.2	-	-	2.1	0.6
Ecdyonurus venosus	14.9	5.3	20.3	6.4	0.3
Ecdyonurus dispar	0.7	13.9	71.6	23.5	0.8
Habrophlebia fusca	56.7	12.8	2.1	11.7	0.7
Centroptilum Iuteolum	36.3	96.3	0.7	42.8	1.6
Ephemerella ignita	37.4	187.2	44.9	551.0	6.3
Rhithrogena semicolorata	44.9	17.1	6.4	7.4	0.7
Paraleptophlebia submarginaca	1.0	-	-	-	+
Baëtis. pumilus	6.4	42.8	82.3	28.8	0.9
Baëtis scambus	5.3	8.5	10.7	10.7	0.2
Caenis morsta	0.7	-	-	-	+
Ephemera danica	1.0	1.0	-	C. 7	0.2
Bä̈tis atribatinus	-	2.1	-	-	+
Fphemerella notata	-	0.7	-	-	+
Ecdyonurus torrentis	-	2.1	-	3.2	+
Heptagenia sulphurea	(2, 1)	4.2	(53)	(2.1)	$\pm{ }^{+}$
Megaloptera	(2.1)	(7.4)	(5.3)	(2.1)	(0.1)
Sialis Iutaria	2.1	7.4	(5.3	2.1	0.1
Hemiptera	(-)	(1.4)	(0.7)	-	(0.1)
Sigara distincta	-	0.7	-	-	+
Valia nymph	-	0.7	$\cdots$	-	$+$
Corixa panzeri	(58.9)	(95.9)	(100.7	6)	$+$
Trichoptera	(58.9)	(95.9)	(100.3)	(17.6)	(2.0)
Hydropsyche: instabilis	2.1	-	-	2.1	+
Potamophlax latipennis	32.1	39.5	79.1	7.4	1.0
Sericostoma personatum	6.4	-	-	2.1	0.1
Rhyacophila dorsalis	0.7	0.7	0.7	-	+
Agapetus fuscipus	1.0	2.1	0.7	$\bigcirc$	0.4
Halesus digitatus	3.2	17.1	7.4	0.7	0.2
Mystacides nigra	0.7	1.0	- ${ }^{\circ}$	2.1	+
Glyphotaelius pellucidus	9.6	26.7	10.7	3.2	0.4
Anabolia nervosa	2.1	0.7	-	-	+
Plectrocnemia conspersa	1.0	-	1.0	-	$+$
Diplectrona felix	-	0.7	-	-	+
Limnophylax centralis	-	7.4	-	-	0.1
Limnephilus rhombicus	- ${ }^{-}$	-	0.7	-	+
Coleoptera	(237.6)	(79.7)	(385.9)	(142.7)	(5.7)
Oreodytes rivalis	85.6	0.7	8.5	69.5	1.5
Haliplus lineatocollis	6.4	-	18.1	2.1	0.1
Helophorus flavipes	8.5	- ${ }^{-1}$	-	4.2	0.1
Helmis maugei	29.9	25.6	317.7	21.4	2.0
Latelmis volkmari	35.3	44.9	40.6	23.5	1.3
Lacobius biguttatus	1.0	-	-	-	$+$
Platambus maculatus	5.3	2.1	1.0	0.7	0.1
Hydraena riparia	0.7	$\bigcirc$	-	5.3	$+$
Hyphydrus ovatus	64.2	6.4	-	16.0	0.8
Helodes marginata	0.7	-	(	-	+
Dixidae	(0.7)	(-)	(-)	(-)	(+)
Dixa puberula	0.7	-	-	-	-
Ceratonoronidae	(34.2)	(16.0)	(2.1)	(3.2)	(0.5)
Bezzia spp.	34.2	16.0	2.1	3.2	0.5

Table 10.3 (contd.)

Bottom fauna	A1	A2	A3	A4	Total $(\%)$
Tipulidae	(5.3)	(0.7)	(-)	(0.7)	( +
Tipula lateralis	3.2	0.7	-	0.7	$+$
Tipula paludosa	2.1				
Simulifdae	(37.1)	(3.8)	(0.7)	(8.8)	(1.1)
Simulium brevicaule	10.7	1.0		0.7	0.1
Simulium monticola	25.6	2.1	0.7	5.3	1.0
Simulium ornatum	0.1	-	-	0.7	+
Simulium angustitarse	0.7			2.1	+
Simulium armoricanum		0.7	--	-	${ }^{+}$
Chironomidae	(926.3)	(312.4)	(87.4)	(350.7)	(15.0)
Polypedilum nubeculosus	6.4	35.3	14.9	78.1	1.0
Pentaneura monilis	38.5	53.5	6.4	28.8	1.1
Trichocladius rufiventris	64.2	23.5	17.1	78.1	1.5
Tanytarsus signatus	214.4	162.6	5.3	28.8	3.9
Prodiamesa olivacea	392.6	7.4	32.1	88.8	4.6
Procladius cioreus	171.2	23.5	5.3	48.1	2.2
Orthocladius spp.	34.2	0.7	2.1	-	0.4
Strictochironomus spp.	2.1	-	2.1	-	$+$
Brillia modesta	1.0	4.2	2.1	-	+
Chironomus anthracinus	1.0	1.0		-	+
Cryptochironomus spp.	0.7	0.7	-	- ${ }^{-}$	${ }^{+}$
Other dioteran larvae	(95.0)	(72.6)	(32.0)	(37.3)	(1.9)
Dicranota robusta	71.6	36.3	21.4	7.4	1.1
Hermerodromia unilineata	22.4	36.3	9.6	29.9	0.8
Pericoma pseudo exquisita Dipteran pupae	1.0 $(63.1)$	(64.2)	1.0 $(5.3)$	(43.8)	${ }_{(1.3)}^{+}$
Total no. animals	3361	3461	8489		
Av. no. animals/mgnth	240.0	247.2	606.3	318.2	
AV. no. animals/m $\mathrm{m}^{2}$	2568.0	2745.0	6407.4	3404.7	

5
284

Table 10.4 Distribution of the catches sampled abuve
(A2) and below (A3) the Synthite works.

Groups	Catches		Total	$\begin{gathered} \text { Chi } \\ \text { oquared } \\ x^{2}(1) \end{gathered}$	P
	$\begin{gathered} \text { Above } \\ \text { Synthite } \\ \text { works (A2) } \end{gathered}$	Below Synthite works (A3)			
Turbellaria	9	8	17	. 04	$>0.05$
Hirudinea	14	13	27	. 02	$>0.05$
Oligochaeta	108	26	134	25.0	$<0.001$
Gastropoda	131	3072	3203	2700.0	$\bigcirc 0.001$
Lamellibranchiata	50	206	256	95	<0.001
Amphipoda	1385	3893	5278	1191.6	$<0.001$
Isopoda .	-	-	-	-	
Hydracarina	52	2	54	46.2	$<0.001$
Plecoptera	195	32	227	117	$<0.001$
Ephemeroptera	647	397	1044	59.8	<0.001
Megaloptera	10	7	17	0.5	$>0.05$
Hemiptera	2	1.	3	0.3	$>0.05$
Trichoptera	129	133	262	. 06	$>0.05$
Coleoptera	107	509	616	262.2	$<0.001$
Diptera:					
Ceratopogonidae	21	. 4	25	11.4	$<0.001$
Slmuliidae	6	1	7	21.8	$<0.001$
Tipulidae	-	-	-	-	
Chironomidae	413	120	533	161.0	$<0.001$
Dipteran larvae	96	44	140	19.2	< 0.001
Dipteran pupae	85	7	92	66.0	$<0.001$

treated even though the recelving stream may be adversely affected by such effluents because the effects may be additive. The detailed chemical analysis (Tables 10.1 , 10.2) showing seasonal variations in the chemical constituents of the river water was provided by the pollution laboratories of the Dee and Clwy River Authority.

## 4. COMPOSITION CF THE BOTTOM FAUNA

Collections from $A_{1}, A_{2}, A_{3}$ and $A_{4}$ stations ylelded a total of $84,80,62$ and 65 species respectively (Table 10.3). The number of species found at $A_{1}$ and $A_{2}$ were typical of an unpolluted stream fauna (see Chapters III,IV;V,VI and VII) but at $A_{3}$ end $A_{4}$ the number decreased. Table 10.4 sumarizes the relative abundance of different species collected during this period end is expressed in Av. No/m2. The bottom fauna at stations $A_{3}$ and $A_{4}$ was reduced and had a smaller number of species as compared to $A_{1}$ and $A_{2}$. $A$ decrease in the density of aquatic beetles, stoneflies, caddisflies, Dixidae, Ceratopogonidae, Tlpulidae, Simulildae, and Chironomidse was noticed from $A_{2}$ to $A_{3}$ (Trble 10.4). These may be called 'pollution intolerant' organisms. stations $A_{3}$ and $A_{4}$ located below the site of the spill (Fig.10.1) had a typical 'pollution tolerant' comunity. pollution tolerant gastropods, 1 sopods and amphipods made up the major part of the community, probably indicating the additive effect of sedimentation and toxicity from the spill. The common species collected are mentioned below (Table 10.3).
(A) Platyhelminthes
(1) Turbellaria
polycelis nigra and polycells feling were scarce at $A_{2}$ and $A_{3}$
(B) Annel1da
(1) Hirudinea
0.2 of the total fauna belonged to this group in which Glossinhonia comnlanata and Ernobdelle octoculata were collected from all the sites.
(i) 011 pochnets
1.4, of the benthic fauna was formed by this group, of these stylodrilus heringlenus were common at $A_{1}, A_{2}$ and $A_{4}$, and Lumbriculus variegatus at $A_{2}$ and $A_{4}$. The number of oligochaetes below the spill at $A_{3}$ was greatly reduced (Table 10.3) and may be due to the lack of a muddy bottom. Specimens of IImodrilus hoffmeisteri were frequent at $A_{3}$ and according to Hyes (19t0) are found in large numbers in grossly polluted water.
(C) Vollusc:
(1) Gastronoda
10. $8 \%$ of the macroinvertebrates were represented by this group in which Limnaea nereger and Ancylastrum fluyietile were common in all stations. Limnaea truncatula were comeon at $A_{3}$ and $A_{4}$, and Potamonyrgus ienkinsi at $A_{3}$ (Table 10.3). The high number of Rotemonywas lenkinsi may be due not only to on ability to survive the effluent from Synthite works


Fig. 10.4 Seasonal percentage composition of the common species of bottom fauna of the R. Alyn
at $A_{3}$ but also to the absence of predotors. Limnesa nereger were recorded more during spring and sumner whereas few Ancylestrum fluviatile were collected during sumer (Fig.10.4).
(2) Lomellibranchiata

This group made up 1.4 , of the total fauna. Pisidium cinerium was common at $A_{2}$, Pisidium 1illicborgif at $A_{4}$ and pisidium subtruncatum at $A_{3}$.
(D) Arthronoda
(1) Crustacea
(a) Amnhinods

Gommarus rulex common in all stations formed 37.5:
of the total benthic fauna and were collected in large numbers during every season (Fig.10.4), particularly at $A_{3}$ and $A_{4}$ - Similar observations were made by Jones (1940a) in the hard water stream, the Clydach, in west wales.
(b) Isonods

Aselilus meridienus were common in $A_{3}$ and $A_{4}$. This may be due to the presence of dead leaves.
(2) Arachnida
(a) Hydracarina
1.5f of the benthic fauna belonged to this group in which Eydrobates nigrompculatus was common ot $A_{1}$ and the rest were scarce (Table 10.3).
(3) Insscte
(a) Pleconters

This group formed $3.4 \%$ of the total benthic fauna in


Fig.10.5 Seasonal percentage composition of the common species of bettom fauna
which Leuctra hipnopus, Leuctra geniculatan Amphinemura sulcicolisg, Nemoura avicularis, Isoperla grammatica and Amphinemura stondfussi were common at $A_{1}$ and Hemoure aviculeris of $A_{2}$ (Table 10.3). Leuctra spp. were collected more during spring and summer and Amohenemura spo. during winter and spring (Figs. 10.4, 10.5). I found Leuctra more than Amphincmura at $A_{1}$ near the source of organic pollution, though Amphinemura seems to be the less affected by organic pollution than are most other Plecoptera (Hynes 1941).
(b) Enhemeroptera

These amounted to $15.8 \%$ of the total macrobenthic community. Eaetis rhodani were at $A_{1}, A_{2}$ and $A_{4}$, Hertacenialateralis at $A_{1}$, Ecdyonurus venosus in $A_{1}, A_{2}$ and $A_{3}$, Habrophlebis fusca in $A_{1}$, Centrontilum luteolum at $A_{1}$ and $A_{2}$, Eohemerella ignita at $A_{1}$ and $A_{4}$, Rhithrogena semicolorata at $A_{1}$ and Baetis pumilus at $A_{3}$ and $A_{4}$ (Table 10.3). Bactis spp. were recorded more during spring and summer (Fig.10.5). I recorded a decrease in Phithrogena (Table 10.3) as ald Eutcher (1937) in the Fiver Tees, a sewage-polluted river.
(c) Megelontera

Slalis luteria were scarce in all the stations.

## (d) Hemintera

Though scarce, they were recorded from $A_{2}$ and $A_{3}$ sites.
(e) Irichonters

These formed c.c\% of the benthic fauna. Rotamonhylex

1atipennis were common in all the stations, Sericostome personctum at $A_{1}$, Helesus digitstus at $A_{3}$ and Givmhotaelius pellucidus at $A_{2}$ (Table 10.3). I found Sericostoma nersonetum affected by pollution at $A_{3}$ ond $A_{4}$. Similar observations were made by Hynes (19(0) while working on the Dee polluted by effluents.
(f) Coleonters

Coleoptera were represented by 5.7 , of the total bottom fauna. Lelmis maugei and Latelmis volkmari were common in all the stations and were collected in every season (F1g.10.5). oreodytes rivilis occurred at $A_{1}$ and $A_{4}$, Halinius ilnentocolisis at $A_{3}$, Velorhorus flavines at $A_{1}$ and Rlatambus maculatus were common at $A_{1}$.
( E ) Dinters
(1) Cerstonosonidae

Bezale snn. though common at $A_{1}$ and $A_{2}$, formed only $0.5 \%$ of the total benthic fauna.
(2) Simulifdae

Stmulium brevicaule and simulium monticola formed $0.5 \%$ of the total benthic fauna and were common at $A_{1}$.
(3) Ch1ronomidae

This group formed 15.2 of the benthic community; of these polpoedilum nubeculosus and Rentaneura monilis were common in $A_{2}$, Trichocladius rufiventris in $A_{2}$ and $A_{3}$, Tonytarsus simatus in $A_{1}$ and $A_{2}$, prodiomesa ollvacea in $A_{1}$, $A_{3}$ and $A_{4}$ and Procledius choreus in $A_{1}$. Chironomid laryae wore more often recorded during spring and summer (F1g.10.5).

Table 10.5 Average density (Av.No. $/ \mathrm{m}^{2}$ ) of the botiom fauna of the River Alyn and
above and below the spill (Synthite works).


I found chironomids were reduced at $A_{3}$ but reappeared in greater numbers at $A_{4}$ ( $T$-ble 10.5 ). This may be due to the greater dilution of the effluents. Hynes (1961) while vorking on the fiver Lee polluted by sewage and copper salts, found Orthocladinae, Tanypodinae and Tanytarsus spe. were quite unaffected.

## other dinteran larvae

These formed i.ld of the total catch and were represented by picranota robusta conmon in all stations, and Hermerodromia unilineata common at $A_{2}$ and $A_{4}$.

## 5. BIOLOGY OF TROET

Fish samples were taken from June 1969 to July 1970. Altogether 1078 trout were caught during this period between $A_{1}$ end $A_{2}$. I did not catch any trout between $A_{3}$ and $A_{4}$.

There seemed to be no physical barrier to prevent trout from migrating between upper and lower reaches. Frank (personal communication), secretary of the Urexham and District Angling Association (AA), reported that all the fish died due to a sudden spill of formaldehyde in the river below fontblyddn (Nat. Grid Ref. 615c72) in 1967. A similar incident was reported to me by Mr. Davis, secretary of the Rossett and Gresford Angling Association. Lees (Pers.comm.) also told me that the spill of formaldehyde was so strong that all the bottom fauna disappeared.


Fig. 10.6 Calculated growth of trout


Fig.10.7 Annual growth in weight of trout

296


Fig. 10.8 Length in each quarter and mean weight of 1,075 trout
a June-Aug. b Sep.-Nov. c Dec-Feb d Mar-May

- Length -.- Weight () Number of fish (trout)


Fig.10.9. Body scale relationship of trout in the River Alyn.
(a) Ace ond groyth

March list was chosen as a convenient birth date in view of Stuart's (1953) conclusions on the reproduction of loch brown trout. The open (or 'summer') rings were present on the edge of the scales during summer period AprilMay to September/Cctober and the narrow 'winter' rings during the period September/October to April/May. This phenomenon has been described fully in Bail sones (1960).

Fics. 10.6 and 10.7 show the length and weight attained by each age group in the Alyn. In Fig. 10.8 the data have been arranged in quarterly groups so as to show seasonal as well as annual chenges in growth rate. In age groups $0+$ and $1+$ a large increase in length and weight may be seen between June and November, but a small one between December and May. Visual examination of the slope of the curve suggests that in age group $2+$ there was more increase in length and weight between June ond November, and less between December and May. In age groups $3+$ and $4+$ the growth rates in length and weight decreased.

The relationship between body length and the anterior scale radil was calculated to determine whether growth of trout scales was proportional to growth of the body (F1g.10.9). A close correlation was found ( $r=0.9: 05$ ). These data demonstrated a linear relationship, indicating that they were subject to analysis by the linear regression formula


Fig.10.10 Length-weight
relationship of trout


Fig. 10.11 Length frequency of 532 male trout showing overlap of age groups into differerii length groups


Fig. 10.12 Length-frequency of 542 female trout showing overlap of age groups into different length groups

Table 10.6 Length of trout in cm . as back-calculated from scales.

Year Class	No. Fish	Age at Capture	Sex	Mean calcuiated length at each year			
				I	II	III	IIII
1968	362	$1+$	$\hat{\gamma}$	5.6			
			¢	5.6			
			f\%	5.6			
1967	350	$2+$	$\hat{\delta}$	5.0	10.7		
			+	4.8	10.5		
			숭	4.9	10.6		
19661965	149	$3+$	$\hat{\downarrow}$	4.9	10.8	14.5	
			아	5.1	11.2	14.9	
			6우	5.0	11.0	14.7	
	42	$4+$	$\hat{\delta}$	5.2	10.5	15.1	17.8
			+	4.9	10.8	14.8	18.1
			\%9	5.1	10.6	14.9	17.9
Total fish 903							
Total mean calculated length			\}	5.2	10.6	14.8	17.8
			아	5.1	10.8	14.8	18.1
Average increment			apitit	5.1	10.7	14.8	17.9
			5.2	4.4	4.2	3.0	
			+	5.1	5.7	4.0	3.3
			个우	5.1	5.6	4.1	3.1

$X=a+b Y$. The calculated body scale regression is represented by : $L=-0.5+2.12 S(S e e f 1 g .10 .9)$, where I is the length of the fish ( cm ) and s the scale radius (arbitrary units). These data reveal a straight-line relationship and demonstrate that scale length increases proportionally with body length. This relationship allows use of the Lee ( 1920 ) Method to calculate mean total lengths of f1sh at annulus formation (Teble 10.6).

## (b) Length-weight relotionshins

The length-weight relationship of the trout has been studied by plotting the logarithm of the meen annual length of each age group against the logarithm of the corresponding mean annual weight (Fig.10.10). The results lie in a straight line, indicating no fundemental change in the length-welght relationshp with age or locallty.

The Le Cren method (1951) was employed to calculate the empirical mean length-weight relationship of the trout. The sample of 1078 flsh was grouped into 10 mm intervals of length ranging from 5 cm to 25 cm for which mean lengths and weights were determined (FIgs. 10.11,10.12). The mean lengths and weights for each length group were plotted, and each sample exhibited a power-law relationship. This relationship is expressed by the formula :

$$
W=\mathrm{aL}^{\mathrm{n}} \text { when }
$$

$W=$ mean weight in grams of each length group at capture, $L=m e a n$ total length of a group, in millimetres,
$a=$ empiricol constant, $n=$ empirical exponent.

Empirical constants, log a and $n$ were determined as follows:

$\mathrm{N}=$ number of length groups.
Log a end $N$ were substituted in the logarithmic form of the quation:
$\log W=\log a+n \log L$
Log $W=1.8279+2.8708$ 10g L
When plotted, the smooth curve is used to express
length-wefght relationship (F1g.10.10).

## (c) Condition

To quote IIlle (1936) "weight in fishes may be considered a function of their length". Weight is proportional to the cube of the length in the ideal fish that does not change in shape with growth (Le Cren 1951). The Cube Law provides a method of indicating end comparing the condition or well-bcing of fish between length groups, age groups, sexes and populations. The formula used here for determination of the coefficient of condition is :


## $\ldots \quad$ …



Fig.10.13 Seascnal variations in mean condition factor $K$


Fig. 10.14 Seasonal variations in mean condition factor $K$ in each age group


Fig. 10.15 Seasonal growth in weight of trout in the river Alyn.


Fig. 10.16 Seasonal growth in length of trout in the river Alyn
$C=$ donotes the condition of the fish; $W=$ weight of fish (gms);
$L=$ total length of f1sh (mn); end $n$. is the slope or regression line of eplog length $\times$ log weight graph, 1.e. length weight relationshp (Fig.10.10). The value of $n$ determined from Fig.10.1C, is close to 3 indicating that if the fish's specific gravity remains constant, the fish grows isometrically (Tesch 1968). The figures obtained justify the use of $n=3$ in the usual equation

$$
K=\frac{W \times 10^{4}}{I^{3}}
$$

Values of K so obtained will fluctuate about 100 then using the metric system.

K was calculated for all the trout sampled excluding maturing and spent fish. FIg. 10.13 shows the seasonal variation in mean condition for 1969-70. Thus condition was at its highes in summer and low in winter.

The difference in values for the two curves (Figs.10.13, 10.14) is probably accounted for by the fact that $n$ was taken as 3 in the equation used to calculate the mean $K$ for each month in place of 2.87. Females tend to have slightly higher values of K than males of the same age.

## (d) Seasonal srokth

Seasonal growth curves for each of the year classes are given in Fig. 10.15 and 10.16 respectively. The curves give the mean length of each year class in each monthly sample.

The growth curves show that the growth rate varied seascnally, with rapid growth from May/June until August/ September. The period of faster growth was between May and fugust in the 1966, 1967 and 1968 year classes; whereas ifttie growth occurred in 1965 year class.

Grouth ceases from August to November in 1963 Y.C. (Year Class), from October-December in 1967 Y.C. and September-November in 1966 Y.C. fish. The growth curves show pronounced irregularities in the winter months, probably partly due to the small numerical size of the winter scmple (Fig.10.15) and the preponderance of females. As females have a lower mean length than males, the total mean length of the sample will be reduced the larger the number of females in the sample.

Fig. 10.16 shows the mean weight for each year class each month from July 1969 to July 1970. Increase in weight closely parallels the increase in length as shom in Figs. 10.15 and 10.16. It can be seen that the loss in whght in 1966 and 1967 year classes between October-Novamber, presumably ias a result of spaming. There was little loss in weight at this time in the 1968 group as only a small percentage of this year group were ripe (Table 10.8).

## (e) Movement

Le Cren (1958) found thet most trout remained in 30 m section in the small stream he studied. Schuck (1945)

Table 10.: 7 !'a Movemènts rof marked troutiaitnS1, S2, and S3 stations.
Total marked $=29$, Total unmarked $=22 \quad$ Station $1:-$

Age of fish	$1+$		$2+$	$3+$		Total	
No. Fish released in July	15		20	21	56		
No. Fish recaptured in August	No.	\%	No.	$\%$	No.	$\%$	No.
Upstream of the place of release	5	33.3	8	40.0	4	19.0	17
Downstream of the place of release	2	13.3	7	35.0	3	14.2	12
Total	7	46.6	15	75.0	7	33.2	29

Station 2 :-
Total marked $=26$ Total unmarked $=27$

Age of fish	$1+$		$2+$		$3+$		Total	
No. Fish released in September	10		27		14		51	
No. Fish recaptured in October	No.	\%	No.	\%	No.	\%	No.	$\%$
Upstream of the place of release   Downstream of the place of reiease	$4$	$\left(\left.\begin{array}{l} 40.0 \\ 20.0 \end{array} \right\rvert\,\right.$	3	29.6 14.8	6	42.8 14.2	18 8	35.2 15.6
Total	6	60.0	12	44.4	8	57.0	26	50.8

Station 3:-
Total marked $=18$ Total unmarked $=20$

Age of fish	$1+$		$2+$		$3+$		Total	
No. Fish released in November	7		23				8	38
No. Fish recaptured in December	No.	$\%$	No.	$\%$	No.	$\%$	No.	$\%$
Upstream of the place of release	3	42.8	7	30.4	2	25.0	12	31.5
Downatream of the place of release	1	14.2	4	17.3	1	12.5	6	15.7
Total	4	57.0	11	47.7	3	37.5	18	47.2



Total area fished at each station.
recaptured 42 of the 46 trout he tagged in Crystal Creek, U.S.A. in their original sections which were 65 m long. Shetter (1937) working on brown trout in the Au Sable River system, U.S.A., found that $56-85 \%$ remained within one mile of the release point. Stefanich (1952) recorded little movement of trout in $91 m$ sections of Prickly Pear Creek, Montana, but those that did move generolly did so In a downstream direction.

In the present study a total of 56 young trout belonging to $1+, \mathrm{c}+$ and $3+$ age groups were collected from station 1 between $A_{1}$ and $A_{2}(F i g .10 .1)$ in July 1970 over the substratum of stones and gravel with marginal vegetation and few trees (Acer nsevodplatonus) on either side. These were marked black (Indian ink) by panjet on the ventral surface near the anus and released. In iugust 1970 51.4 of the total marked fish were recaptured; of these $30 ;$ from upstream and $21.4 \%$ from dounstream. At this station I did not find any significant difference ( $p>0.05$ ) in the number of trout moving upstrean and downstream from the place of release (Table.10.7).

At station 2, which was 40 m downstream from station 1 , a total of 51 trout were collected, marked on the ventral surface between the anal and pectoral fins and released in September 1970. Here the bottom was of sand and pebbles with littie marginal vegetation. In october I recovered 50.8 , of the marked $51 \mathrm{sh}, 35.2$ from upstream and $15.6 \%$
from downstream from the point of release. No marked fish from station 1 were captured at station c. There was no significant difference ( $p>0.05$ ) in the number of trout moving upstream and downstream from the place of release (Table 10.7).

At station 3 (Fig.10.1), which was 31 m downstrean from the station $c$, a total of 38 trout were collected, marked on the ventral surface between the pectoral fins and released in November 1970. Here the bottom was of mud, send and gravel with thick patches of Renunculus acuatilis. There was no marginal vegetation and no trees. In December $197047.2^{2}$ of the totel-marked fish were recaptured, 31.5. from upstream and 15.7 from downstream. I did not find any marked fish from stations 1 and 2 in this catch, No significent difference ( $p>0.05$ ) was observed in trout moving upstream and downstream from the place of release (Table 1c.7).

In the ebove experiments 100 m of the river were fished at each station having different types of substrata, to study the locallsed movement. The present study showed a tendency to form home areas. Within the limitations imposed by low numbers, it is suggested from the returns that trout may remain in or return to the same locality. There is no significant ( $p>0.05$ ) difference in the number of trout moving up and downstream, the trout can be considered fairly faithrul to a restricted location.


Table 10.8 Fecundity of 27 trout from the River Alyn.

Age and Month	Year   Class	Mean   weight of ovary (g)	Estimated mean eggs per figh (No)	No. fish	Lencth range (cm)	Mean Length (cm)	Weight range (g)	Mean weight (g)	Rance of ova per female (No)	Eeg per gram of ovary (No)
Age group $1+$	1968	1.8	88	1	13	13-	28-	28	88	49
$\text { Age group } 2+\begin{aligned} & 2+ \\ & \text { Sept. } \\ & \text { Oct. } \end{aligned}$	1967	3.6 8.6	$\begin{aligned} & 123 \\ & 233 \end{aligned}$	3 4	$15.6-17.5$ $15.5-17.8$	$\begin{gathered} 16.2 \\ 16.7 \end{gathered}$	$48-72$ $42-72$	$\begin{aligned} & 56.6 \\ & 60.2 \end{aligned}$	$\begin{aligned} & 214-286 \\ & 150-370 \end{aligned}$	$\begin{aligned} & 34 \\ & 27 \end{aligned}$
$\text { Age group } \begin{aligned} & 3+ \\ & \text { Sept. } \\ & \text { Oct. } \\ & \text { Nov. } \\ & \text { Dec. } \end{aligned}$	1966	6.3 10.5 10.5 7.4	297 227 245 200	3 6 6 1	$17-17.5$ $16.5-19.2$ $16.5-18.7$ $19.8-$	17.3 17.4 17.9 19.8	$55-68$ $58-87$ $54-87$ 82	61.6 68.5 71.3 82	$260-320$ $124-370$ $186-354$ 200	$\begin{aligned} & 47 \\ & 22 \\ & 23 \\ & 27 \end{aligned}$
$\begin{aligned} \text { Age group } & 4 t \\ & \text { Sept. } \\ & \text { Nov. } \end{aligned}$	1965	6.0 18.2	$\begin{aligned} & 166 \\ & 328 \end{aligned}$	$2$	$\begin{aligned} & 15.4-17.2 \\ & 20.7- \end{aligned}$	$\begin{aligned} & 16.3 \\ & 20.7 \end{aligned}$	$\begin{gathered} 41-62 \\ 111 \end{gathered}$	51.5 111	$\begin{gathered} 145-188 \\ 328 \end{gathered}$	27 18

## (f) Sex retio

The variation of the sex ratio with age was 1rregular (Fig.10.17). It is apparent, however, that femeles were predominant at the higher ages. The percentage of males varied more among the $0+$ and $1+$ age groups in the combined sample for all months, but males became less numerous at the higher ages (Fig.10.17).

## (g) Eecundity

The number of eggs per individual varied considerably (Table 10.8). The averages for the age eroups show low egg production among the $1+$ age group and maximum production by $2+$ and $3+$ age groups, and slowly decifning numbers among older age groups. In older fish I observed on increasing amount of connective tissue, hence they may produce fewer eggs per gram of ovary with increase in age. Yleld of eggs per gram of ovary was nighly varlable even among the fish of the same age group (Table 10.8). This may be due to varying stages of dovelopment at the time the fish were captured.

## (h) Mortality

The mortality coefficient kere estimated from the formulae describing the general relationships between survival and mortality (Rousefell and Everhart 1953).

Table 10.9 The total annual composition of the diet of 1076 trout assessed by occurrence volume and number methods.

$$
(+=<0.1 \%)
$$

	Percentage represented in the total sample		
Food organisms	0	V	N
Benthic food			
Oligochaeta	1.0	0.8	0.5
Limnaea pereger	1.9	1.2	2.2
Potamopyrgus jenkinsi	2.0	1.4	1.5
Pisidium spp.	+	+	+
Gammarus pulex	9.4	10.3	9.2
Sperchon spp.	+	+	+
Leuctra spp.	1.3	0.6	2.1
Amphinemura standfussi	2.5	1.1	0.6
Chloroperla opp.	1.1	0.9	0.4
Other Plecoptera	2.6	1.9	3.1
Baêtis rhodani	2.2	6.5	2.5
Ecdyonurus spp.	3.7	1.7	2.4
Paraleptophlebia spp.	4.4	1.2	4.2
Other Ephemeroptera	5.6	7.8	10.1
Sialis lutaria	+	+	+
Rhyacophila spp.	0.8	1.8	0.3
Hydropsyches spp.	1.9	0.3	2.3
Potamophylax spp.	1.1	2.5	1.1
Other Trichoptera	4.2	2.0	2.1
Iatelmis volkmari larvae	4.9	1.6	4.7
Chironomid larvae	10.6	8.7	19.0
Simuliid larvae	1.4	0.3	0.8
T'ipulid larvae	2.3	1.1	0.9
Other dipteran larvae	3.3	1.2	2.4
Dipteran pupae	3.2	3.3	5.5
Midwater food			
Helmis maugei adults	7.0	3.7	4.4
Hemiptera adults	0.5	0.2	0.3
Fish	1.4	21.9	0.8
Aerial and Terrestrial foods	12.0	11.7	10.7
Miscellaneous food			
Plants	7.0	2.6	4.8
Stone (caddis cases)	0.4	0.6	0.2
Eggs	+	+	+

$$
r=(1-s) \text { or }\left(1-e^{-\lambda}\right)
$$

$\Delta=\left[\log 10(1 / s) \quad\left(1 / \log 10^{\theta}\right)\right]=\operatorname{Loge}(1 / 1-r)$
$\log S=\left(\sum_{y=x 5}^{n-10} \log f(y)\right)-\left(\sum_{y=x+1}^{n} \quad \log f(y)\right)$
n
$f(y)=$ age frequency at any age $(y)$
$\mathrm{yx}=$ age at which all of population becomes "catchable"
$r \quad=$ annual mortality rate
$S \quad=$ rate of survival
$\Delta \quad=$ instantaneous mortallty rate

$$
1 / \log _{e}=2.303
$$

The computations gielded an annual mortality coefficient ( $r$ ) of 0.4812 , rate of survival ( $s$ ) of 0.5188 and an instanteneous mortailty rate of 0.7015 .

	Celculated		Weighted
$\Delta=0.7015$	$70.15 \%$	0.6269	
$S$	$=0.5188$	$51.88 \%$	0.5563
$r=$	0.4812	48.12	0.4437

## (i) Comnosition of the diet

The detailed fercentage composition of the diet by occurrence, volume and number methods is shown in Table 10.9. $59.4 \%$ by volume and $79.3 \%$ by number of the total food consumed were invertebrate bottom fauna, Plecoptera and Ephemeroptera nymphs, Trichoptera and chironomid larvae


Fig. 10-18 Seasonal variation in the fond intake of trout in the river Alyn
and Gommarus nulex were the major food items. Plecoptera formed 4.5 , by volume and 6.2, by numer, and were composed of Leuctra snp, Amphenemure standfusst, Chioronerla spp. and other unidentiflable stone fly nymphs. Ephemeroptera represented by Baetis rhodent, Ecyonurus spr. Reralentonhlebla snn, and other mayfly nymphs formed $17.2 \%$ by volume and 18. cin: $_{\text {in }}$ by number of the total food. Trichoptera represented by Ehyaconhila snp, Xydronsyche son, Fotamonhylex snn. and other caddis larvae were noted in $7.3, \mathrm{ky}$ volume and $5.8 \%$ by number of the total food. Chironomid larvae kere eaten by 10.6 and Gammams nulex by 9.4, of the total fish. Food items of rare occurrence belonged to the 011 gochaeta, Gastropoda, Simuliddae, Tipulldse and other dipteran larvae und pupae.

Aerial and terrestrial food formed 11.7 by volume and 10.7 ; by number of the total food.

The midwater food items, which included Coleoptera adults, IIemiptera and fish, formed $25.8 \%$ by volume and 5.5. by number of the total food.

Plant debris, filementous algae and pebbles, grouped as miscellaneous foods occurred in $3.0 \%$ by volume and $5.0 \%$ by number of the total food.
(1) Seasonal Pariations in food intake

F1g. 10.18 shows a progressive change in the intensity of food consumption. The amount of food in trout stomachs

321
$\therefore$ :
() \% of each item in the total sample
[] \% of trout containing each item in the total sample


Fig 10.19 Seasonal variations of the benthic food items of trout and percentage of stomachs containing each food item in different months.
() \% of each item in the total sample
[] \% of trout containing each itern in the
total sample Fou

Fish $+=\langle 1.0 \%$
[3.0]


Fig 10. 20 Seasonal variations of the benthic food items of trout and percentage of stomachs containing each food item in different months.

$$
323
$$

() \% of each item in the total sample
[] \% of trout containing each item in the total sample Food item Fish $+=$ Less than $1 \%$


Fig 10.21. Seasonal variations of the benthic food items of trout and percentage of stomachs containing each food item in different months.
decreased from August to October and then suddenly increased in November; again gradually decreased from December to Narch and increased from April to July.

## (k) Seasonal changes in the food

Seasonal changes in the quantity of food eaten by the fish are shown in Flgs. 10.19, 10.20, 10. 21 , where date for each item are given separately. Chironomid. larvae, Ephemeroptera and Plecoptera nymphs were eaten in all months (Fig.10.19). Txichoptera larvae were found in food during winter and spring. Gastropods were recorded more during spring and summer. Oligochaetes were found in November and December oniy. Gemmarus nulexwere consumed in laree quantities during winter and spring (F1g.10. 20 ). Coleoptera larvae were eaten in all months. Amonget dipteras pupae chironomid pupae were eaten in greater quantity during spring and summer. other dipteran larvae, represented by Tipulidae and Simuliidae, were rafe in the diet except in winter.

Aerial and terrestrial insects were most numerous in the food during summer and autumn (Fig.10.2). Among the less common items of food, Coleoptera adults of aquatic origin were mostly eaten during spring and summer, Hemiptera in small quantities during sumer, fish rarely in winter and summer, and finally filamentous algae taken accidentally all the year.

Table -10.10 The average percentage composition of the food assessed by occurrence, volume, and number

$$
\text { methods of trout of each age group. } \quad(+=<0.1 \%)
$$



## (1) Food sccording to age

Table 10.10 shows that similar types of food orgenisms were eaten by the trout belonging to all age groups (here 0+ to 4+ age groups).

## 6. DISCHSSION

In this section the results obtained during the investigations of this work will be discussed in two sub-sections.: (1) Bottom fauna, (2) Blology of trout.

## (1) Bottom fauns

Carpenter's early studies (1924) on the rivers Rheidol, Ystwyth and Clarch showed the disappearance of crustaceans, worms, leeches, molluscs and flatworms from the affected streams with lead salts.

Jones (1938) recorded stoneflies, mayflies and some chironomid larvae 11 ving in water containing nearly 60 ppm of zinc. Norms, leeches, crustaceans and molluscs were very susceptible.

Pcntelow and Butcher (1938), while working on the River Churnet polluted by organic matter, found Tubificidee, Chironomus, Asellus, leeches and molluscs disappeared below the copper works effluent. Eutcher et al. (1937) found the Invertebrate fauna of the RIver Tees above and below the outfall from Barnard Castle sewage works differed sllghtly.

Hynes (1960) showed the fauna of the unpolluted waters of Ditton Erook consisted largoly of Gamarus, mayflies, caddiscrorms, flatworms, leeches and snails. He observed (1960) in the River Lee, polluted by sewage and copper salts, that the caddisworms, Haliolus spo. , orthocladiinge, Tenypodinae kere apparently unaffected but Asellus, Ganmaris, Boetis. Tanytarsus and Limnaea were eliminated for long distances.

Learner et al. (1971) surveyed the nacroinvertebrates and fish in the River Cynon in south $h_{h}^{h}$ east wales receiving industrial sid domestic wastes. He found a very varied fauna upstream and one dominated by chironomids end ollgochaetes downstream of the pollution.

The present studies of the stream have shown the number (Av. $\mathrm{No} / \mathrm{m}^{2}$ ) of Oligochaeta, Hydracarina, Plecopters, Ephemeroptera and Diptera•(Dixidae, Ceratopogonidae, Tipulidae, Chironomdse and stmulidae) to be drastically reduced and the Gastropoda, Lamellibronchiata, Amphipoda, Isopoda and Coleoptera showing increases immediately below the sources of pollution (Tables 10.3, 10.5). Low dissolved oxygen concentrations, increased alkalinity, suspended solids, high temperature and chloride ions at Synthite Ltd., Nold (Table 10.1), may be the factors responsible for comminity changes below the sources of pollution.

The aquatic communty seemed to show partial recovery
at $A_{4}$ about 21.6 km below the source of pollution. The number of organisms in each group, like oligochaeta, Hydracarina, plecopters, Ephemeroptera and aquatic piptera, were greater than those at $A_{3}$ (Table 10.5). These increases at $A_{4}$ may probably show what Brinley (1943) referred to as the 'fertilising effect' of domestic sewage or may well be the complexity of the possible interactions between factors of the environment (Jones 1958). I found improved environmental conditions at $A_{4}$ which may be due to greater dilution of the effluents and natural recovery. Turbellaria, Hirudinea, Megaloptera, Hemiptera and Trichoptera were relatively unaffected (Table 10.5). There was an indication of an increased population of Turbellaria, Hirudinea, 011 gochaeta, Gastropoda, Lamellibranch1ata, Amphipoda, Epheneroptera, Megaloptera and Trichoptera at $A_{2}$ as compared to $A_{1}$. This may be due to mild pollution by the untreated domestic sewage.

## (2) Plsh

Little can be said about the biology of trout in a polluted water. The growth of brown trout depends on meny environmental factors such as available food fauna, and population size (Frost 1945), population size, avallable food and temperature (Jones, 1956, wingfield 1940, Brown 1946 and Fyefinch 1955) and egg size to a certain extent (Dahl 1918, 1919, and Fhudd 1946).

The accelerated growth period of trout started during

April and coincided with the first appearance of wide sumer scale rings and the increase in feeding intensity. These findines closely agreed with these of Jones (1049), Ball and Jones (1960) and Koolland (1972) in the Dee watershed and those of other korkers in different waters (Frost and vont 1940, Thomas 1964 and Egelishaw 1963). The growth rate was used to show whether there had been a chenge in the decilno of the rate of growth with age or size. The reduction in the growth rate of trout of all ages as compared to that of unregulated inm Tegid feedar streams and the regulated River Dee (Figs. $10.6,10.7$ ) is paralleled with the work of Learner et al. (197a) wo surveyed tho Fiver Cynon, a trout stream in south-oast Wales polluted by industrial westes and coal washing, and found the growth rate in the catchment was low. The relatively poor growth conditions of irout in the Fiver Alyn as compared with the LIyn Tegid feeder streams and the Dee (Flgs.10.6.10.7), could be due to its physical and chemical conditions (Tables 3.4,1c.1,10.2); or may be affected by the parasites as is shown in chapter XI that 43.7\% and 3.6\% of the total trout were infected fron the River flyn and the feeder streams respectively.

I did not find trout below the spill of industrial wastes between $A_{3}$ and $A_{4}$; this may be caused by the effluents. similar observations were made by Avery (1970) on the east callatin river in U. S.A. polluted by demestic sewage; Jones (1940) on the fiver Fheldol polluted by
dissolvod lead salts; and Leamer et al. (1972) on the fiver Cynon polluted by coal washeries and industrial wastes.

The seasonal condition cycle of brom trout in this investigation (Figs.10.13, 10.14) was similar to those found by Ball \& Jones (1950) and Woolland (1972), with a spring increase to the maximum in July, followed by a decine thereafter. This decline in subsequent years was also found by Allen (1951) and Thomas (1964).

Thile studying the movement and territorial behaviour of trout, I found that $30.3 \%$ of the total move upstream and 21.4? counstream at $S_{1}\left(F_{1}\right.$ g.10.1); 35.2 upstream and 15.6\% dounstrem at $S$ and finally $h^{31 .} 5 \%$ upstream and $15.7 \%$ downstream of the place of release. The recaptures of fish marked in three experimental stretches showed an indication that there was a greater tendency to move upstrean than down, though there was no significant difference ( $P>0.05$ ) in the number of trout moving upstream and downstream from the place of release (Table 10.7). Franks (unpublished 1063), while investigating the novement of stocked trout in the River Alyn at Pontblyddyn (Nat. Grid Ref. 615c72) between $A_{3}$ and $A_{4}$, found that $<5 \%$ of the total fish move domstream and ľoz upstream.

The trout of both sexes were found to be mature at age 2+. I found one mature female of $1+$ age group as did Ball (1957).


Fig.10.22 The percentage composition (by number) of the bottom fauna and benthic food of trout

In the mild organically polluted environment, I found $59.4 \%$ by volume and $79.3 \%$ by number of the total food consumed were bottom invertebrates. Plecoptera, Ephemeroptera nynhs, Trichoptera and chironomid larvae and Gammarus nulex were the main portions of the identifiable food. Aerial and terrestrial food formed $11.7 \%$ by volume and 10.7 , by number of the total food.

The changes in the bottom fauna were reflected in the diet of trout (Fig.10.22). Gamarus spo. seem to have become more common items of the trout diet (Fig.11.12). It was shonn (FIg.10.18) that trout had consumed less food during winter.

In conclusion it is evident from the above discusion that there has been a chinge in the growth and growth rate of trout. Ihese changes seem mainly to be related to the changes in the fauna and polluted environment of the stream. But the data available to date do not allow the making of categoric statements as to the causes of these changes. Nevertheless the changes may be of a temporary nature end may have been caused by the increased untreated spills of industrial wastes in previous years.
2. STMMARI
(1) Pollution has affected the bottom fauna below the sp111 at $A_{3}$ near Nold. These changes in the fauna consist of differences in the number of animals rather than in the species present.
(2) The chironomids were reduced at $A_{3}$ but reappeared in greater number at $A_{4}$.
(3) The changes in the fauna are reflected in the diet of the trout.
(4) There was a greater tendency in trout to move upstrean than downstream.
(5) Growth conditions of trout in the upper Alyn were relatively poorer than Lly Tegid feeder streams and the upper Dee.
(6) The trout had consumed more food during sumer than in winter.
(7) The seasonal conditional cycle increases to a maximum in July and decines thereafter.

## CHAPTER XI

## PARASITES OF TROUT <br> Page

1. INTRODUCTION

335
2. MATERIALS AND METHODS 335
3. RESULTS

344
4. DISCUSSION

359
5. SUMMARY

367

## CHAPTER XI

## INTRODUCTION

The earlier investigations of the parasites of trout (Chaloner 1912, Brown 1927, Friend 1939, Duguid \& Sheppard 1944 and Unsworth 1944) and of freshwater fish in general (Nicoll 1924, Baylis 1928, 1939) were concerned mostly with taxonomy, geographical distribution and host specificity.

Relatively little is known about the ecology of helminth parasites of brown trout of any stream. The only relevant works available when the present study was commenced were those of Thomas 1954, 1958, 1964 and Awach1 1965; as these were concerned with unpolluted streams, it, was of obvious interest to investigate the ecology of helminth parasites of trout in a stream polluted by domestic sewage.

Studies of the parasites of the swimbladder, stomach and intestine of brown trout were undertaken on fish from the polluted River Alyn, a lowland (main) tributary of the Dee.

## MATERIALS AND METHODS

The fish were carefully examined as soon as possible after capture for their helminth parasites. When time did not allow they were left overnight in a refrigerator, a treatment which did not appear to be harmful to the parasites.

Table 11.1 The total percentage incidence and intensity of infection in brown trout with
Cystidicola farionis (C.F.), Echinorhynchus truttae (E.T.), Cyathocephalus truncatus (C.T.), Protocephalus neglectus (P.N.), Cucullanus truttae (Cuc. T.) and Metabronema truttae (M.T.).

Monthe	NUMBER AND PERCENTAGE OF FISH INFECTED												
	Parasites $\rightarrow$	C.F		E.T		C.T.		P.N.		Cuc. T.		M.T.	
	$\begin{aligned} & \text { Total No- } \\ & \text { Fish } \\ & \text { examined } \\ & \hline \end{aligned}$	No.	\%	No.	\%	No.	\%	No.	\%	No.	\%	No.	\%
June 1969	2	1	50	0		0	0	0	0	0	0	, 0	0
July	70	0	0	30	42.8	0	0	0	0	0	0	0	0
Aug.	50	3	6	7	14	0	0	0	0	0	0	0	0
Sept.	41	0	0	0	0	0	0	0	0	0	0	0	0
Oct.	85	1	1.1	10	11.7	0	0	0	0	0	0	0	0
Nov.	44	2	4.5	0	0	0	0	0	0	0	0	0	0
Dec.	23	3	13	0	0	0	0	0	0	0	0	2	8.6
Jan. 1970	22	4	18.1	7	31.8	9	40.9	-	-	1	4.5	2	9.0
Feb.	40	5	12.5	0	0	- 0	0	0	0	0	0	0	0
Mar.	29	7	24.1	19	65.5	12	41.3	0	0	1	3.4	0	-
April	32	7	21.8	0	0	2	6.2	0	0	0	0	0	0
ikay	86	16	18.6	36	41.8	23	26.7	0	0	1	1.1	0	0
June	296	18	6	104	35.1	24	8.1	46	15.5	2	0.6	0	0
July	263	14	5.3	32	12.5	10	3.8	12	4.5	1	0.3	0	0
Total	1083	81	7.4	245	22.6	80	7.4	58	5.3	6	. 5	4	. 3

Total No. fish infected $=474$
Total percentage infection $=43.7$

Table 11.2 The average number of parasite, 3 per infected ish on monthly basis.
C.F. = Cystidicola farionis; E.T. = Echinorhynchus truttae; C.T. = Cythocephalus truncatus;
P.N. $=$ Proteocephalus neglectus; Cuc.T. $=$ Cucullanus truttae; M.T. = Metabronema truttae.

Parasites	C.F.		E.T		C.T.		P.N.		Cuc. ${ }^{\text {T }}$		M.T.	
Monthe $\downarrow$	Total No.	Av. No. per infected fish	Total No.	Av. No. per infected fish	Total No.	$\begin{aligned} & \text { Av. No. per } \\ & \text { infected } \\ & \text { fish } \end{aligned}$	Total No.	Av. No. per infected fish	Total No.	Av. No. per infected fish	Total No.	Av. No. per infected fish
June 1969	1	1	0	0	0	0	0	0	0	0	0	0
July	0	0	364	12.1	0	0	0	0	0	0	0	0
Aug.	10	3.3	67	9.5	0	0	0	0	0	0	0	0
Sept.	0	0	0	0	0	0	0	0	0	0	0	0
Oct.	2	2	60	6	0	0	0	0	0	0	0	0
Nov.	10	5	0	0	0	0	0	0	0	0	0	0
Dec.	24	8	0	0	0	0	0	0	0	0	4	! 2
Jan. 1970	29	7.2	57	8.1	47	5.2	0	0	1	1	6	3
Feb.	21	4.2	0	0	0	0	0	0	0	0	0	0
Mar.	79	11.2	88	4.6	55	4.5	0	0	0	0	0	0
April	22	3.1	0	0	18	9	0	0	0	0	0	0
May	201	12.5	550	15.2	250	10.8	0	0	1	2	0	0
June	277	15.3	941	9.1	159	6.6	403	9.3	0	0	0	0
July	419	29.9	172	5.2	57	5.7	64	5.3	0	0	0	0
Total	1095	13.5	2299	9.3	586	7.3	467	8.0	2	3	10	2.5

Each fish was examined for external parasites, wounds or an abnormality which might be revealed under macroscopic observation. The complete digestive tract and swimbladder were then removed for examination. In addition to these, liver, heart and gills were also inspected.

Iiving worms on removal from the host were placed in 5\% solution of Chloral hydrate to facilitate narcotizing (Wagstaff, pers.comm.). When the worms ceased to move or respond to stimuli they were first fixed in Bouin's fluid and stored in $70 \%$ alcohol after for further examination. All the nematodes and Acanthocephala were first mounted in Polyvinyl lactophenol and then examined. The cestodes were first flattened and then stained in Meyer's paracarmine for 5 to 15 minutes. The worms were then returned to $70 \%$ alcohol for removal of excess paracarmine. Dehydration was completed via $90 \%$ and absolute alcohol. Finally the worms were cleared and mounted in Euparal.

The number of Cythocephalus truncatus, Proteocephalus neglectus, Cystidicola farionis, Cucullanus truttae, Metabronema truttae and Echinorhynchus truttae encountered in individual trout was recorded and the ages of the trout determined by scale examination. Consequently it became possible to draw up tables 11.1 , 11.2 which show the percentage of trout infected and the average number' of parasites fer infected fish on a monthly basis. The latter was used to express the intensity of infestation.

Table 11.3 Cestodes, nematodes and acanthocephala found in 1083 trout.

Parasites	Region infected	Nos. Fish   infected	\% of   infection	Av. No.   i.ost/month
Cythocephalus truncatus	Pyloric caeca	80	7.4	5.7
Proteocephalus neglectus	Pyloric caeca	58	5.3	4.1
Cystidicola farionis	Swim bladder	81	7.4	5.7
Cucullanus truttae	Stomach	6	0.5	0.4
Metabronema truttae	Stomach	4	0.3	0.2
Echinorhynchus truttae	Intestine	245	22.6	17.5
Total		474	43.7	5.6

Table 11.4 The relationship between the length and the incidence and intensity
of infection with Proteocephalus neglectur in male and femsle trout.


Table 11.5 The relationship between the length and the incidence and intensity of infection with Cythocephalus truncatus in male and female trout.


Table 11.6 The relationship between the length and the incidence and intensity of
infection with Echinorhynchus truttae in male and female trout.

	88					90				
Length (cm)	$\begin{aligned} & \text { Total No. } \\ & \text { Trout } \end{aligned}$	No. Trout Infected	\% Infected trout	Total No. Parasites	Av. No. Parasites per infected fish	Total No. Trout	No. Trout Infected	\% Infected trout	Total No. Parasites	Av. No. Parasites per infected fish
5-9.9	60	10	16.6	40	4.0	$\therefore 35$	4	11.4	15	3.7
10-14.9	236	35	14.8	215	6.1	208	33	15.8	173	5.2
15-19.9	194	51	26.2	552	10.8	261	92	35.2	955	10.3
20-24.9	39	12	30.7	203	16.9	37	9	24.3	142	15.7
Total	529	108	20.4	1010	9.3	541	138	25.5	1285	9.3
个个										

Source of variation
Tretal
Size groups in trout
Individuals in size groups of trout (error)


Table 11.7 The relationship between the length of trout and the incidence and intensity of infection with Cystidicola farionis.

Length (cm)	む才					00+++				
	Total No. Trout	Total No. Infected	\% infected trout	Total No. Parasites	Av.No. para. per infected fish	Total No. Trout	Total No. Infected	\% infected trout	Total No. Parasites	Av.No.para. /infected fish
5-9.9	60	2	3.3	9	4.5	35	3	8.5	15	5.0
10-14.9	236	11	4.6	75	6.8	208	14	6.7	75	5.3
15-19.9	194	20	10.3	210	10.5	261	21	8.0	469	22.3
20-24.9	39	6	15.3	248	27.0	37	4	10.8	94	23.5
Total	529	39	7.3	442	11.3	541	42	7.7	653	15.5
					$0 \downarrow$					$!$
Sources of variation		Degree of freedom		Sum of Squares		Mean Square		$\begin{gathered} \text { Variance } \\ \text { ratio } \end{gathered}$		P
Total		38		3750.1		-		-		- -
Individuals in		3		1307.0		435.5		6.2	$<0.01$	
	size groups	35	.	2.443 .1		69.8				
					00					
Total		41		13060.5		-		-		-
Size groups of	trout	3		3023.6		1007.8		3.8		
Individuals in	size groups	38		10036.9		264.1				$<0.05$

This account of seasonal cycles of the helminth parasites mentioned above are based on the examination of 1083 trout of which 81 were invaded by Cystidicola farionis, 245 by Echinorhynchus truttae, 80 by Cythocephalus truncatus, 58 by proteocephalus neglectus, 6 by Cucullanus truttae and finally 4 by Metabronema truttae (Table 1l.3). The fish were collected by electric fishing apparatus from the River Alyn during the period June 1969 to July 1970.

## RESUITS

The parasites taken from the fish may be listed as follows :

> Group Name of the species

1. Cestoda:	(a) Cythocephalus truncatus (Pallas 1781)
2. Nematoda:	(b) Proteocephalus neglectus La Rue 1911
	(a) Cystidicola farionis Waldheim 1798
(b) Cucullanus truttae (Fabricicus 1794)	
3. Acanthocephala:	(c) Metabronema truttae Baylis 1935
(a) Echinorhynchus truttae Schrank 1788	

Mrs. Anita Thomas of Zoology Department and Mr. Stephen Prudhoe of the British Museum (N.H.) have kindly confirmed $\dot{m} y$ identifications.

Six species of helminth parasites were recorded throughout the period. All the fish examined were in the size range of $5-25 \mathrm{cms}$ (Tables 11.4 , 11.5, 11.6, 11.7)。 474 of the fish ( $43.7 \%$ ) harboured parasites of at least one





(C.T)



(C.T)





$48 \quad 12019914322$
$\begin{array}{llllll}22 & 143 & 199 & 120 & 48\end{array}$ TOTAL NUMEER OF FISH EXAMMED IN EACH AEE GROUP
Fig 11.1 The occurrence of Cystidicola farionis (CF), Echinorhynchus trutae (ET), Cyathocephalus truncatus (C.T), Protbcephaius neglectus (P.N), Cucullanus truttor (Cuc.i. ), and Metabronema trutiae(MT), in male trout of various ages



$\begin{array}{lllllllllllllllll}10 & 89 & 224 & 164 & 56 & 10 & 89 & 224 & 164 & 56\end{array}$
TOTAI NuHEER OF FISH EXAMINED IN EACH AGE GROUP
Fig 11.2 The occurrence of Cystidicola farionis (CF.), Protocephalus neglectus (PN), Cucullanus truttae (Cuc. T), Erhinorhynchus truttae (E.T.), Cyathocephafus truncatus (ST) and Motabronema truttae (mil.) in female trout of various ages

$$
\square=\hat{f} \quad \square=9 \quad 1+\text { to } 4+\text { Age groups }
$$






Fig. 11.3 The percentage incidence and seasonal intensity of infection in trout of various ages with Cyathocephalus truncates
species. The greatest number of species in any one host was four (Tables ll.1, 1l.2). All of the above mentioned species have been observed by earlier workers in the British Isles (Shipley 1908; Leipter 1908; Bayl1s 1928, 1939; Southwell and Krishner 1937; and Rawson 1952) from the standpoint of taxonomy and life history.

The species are dealt with in turn below. This includes an account of the occurrence, seasonal variations and the intensity of infection in various ages (Figs. 11.1, 11.2) and lengths (Tables $11.4,11.5,11.6,11.7$ ) of the male and female trout.

## 1. Cestoda

(a) Cythocephalus truncatus (Pallas, 1781)
$7.4 \%$ of the total trout of upper Alyn were infected with this worm inhabiting the pyloric caeca (Table ll.1). The incidence of this parasite in its hosts is summarised in Fig.11.3. It may be seen from this figure that the pattern of the rate of infection in trout is indicative of seasonal periodicity. The rate was high from January to June (Fig.11.3). It may also be observed from Figs.11.1, 11.2 and Table 11.5 that the dynamics of the total number of parasites recovered as well as the mean per infected fish varied in accordance with the age and length groups. Large numbers of worms were taken mainly in January to March when the water temperature was between $4-6^{\circ} \mathrm{C}$. The rapid rise of $t$ emperature from April to July corresponded


Fig. 11.4 Seasonal variations in the Cyathocephalus truncatus infected in pyioric caecae of trout ( no parasites were found eetween july and december.)

Table 11.8 The percentage incidence and intensity of infection in trout and salmon parr of the unregulated Llyn Tegid feeder streams.

Name of the stream	Afon Dyfrdwy				
Name of Parasite	Cyathocephalus truncatus				
Months	Name of fish	Age   of fish	No. fish infected	Total   No. fish	$\%$ of infection
3-69	S. trutta	$3+$	2	13	15.3
7-69	1	1+	1	12	8.3
9-69	1	2+	2	18	11.1
9-69	S. salar	1+	1	27	3.7



Name of the stream	Afon Glyn				
Name of Parasite	Cyathocephalus truncatus				
Months	Name of fish	Age of fish	No. fish infected	Total No. fish	$\%$ of infection
$\begin{aligned} & 6-69 \\ & 7-69 \end{aligned}$	S. trutta   "	$\begin{aligned} & l_{+} \\ & l_{+} \end{aligned}$	$\begin{aligned} & 7 \\ & 4 \end{aligned}$	$\begin{aligned} & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & 58.3 \\ & 36.3 \end{aligned}$

Total No. Pish examined=123; No. Fish infected=11; K. 8.9


PLATE
11.1 PROTEOCEPHALUS NEGLECTUS IN THE INTESTIME OF TROU'.


PIATE
11.3. ECIINORHYNCHUS TRUTTAE

IN THE REGICN OF PYIORIC CAECA.
with the decrease in the occurrence of worms in fish (Fig.11.4). Figures 11.1 and 11.2 show that $3+$ and $4+$ age groups of the females were more infected than the males of the same age. The reverse was true for the trout belonging to $0+$ to $2+$ age groups. It was also noticed in Figures ll.1, 11.2 that percentage of infection and mean number of parasites per infected fish increased gradually in both the sexes from $0+$ to $4+$ age groups of the fish.

In Afon Dyfrdwy $15.3 \%$ trout belonging to $3+$ age group, $8.3 \%$ to $1+$ and $11.1 \%$ to $2+$ age group, were found to be infected by this parasite in the months of March, July and September respectively. In September $3.7 \%$ of the total salmon parr of l+ age group were also infected by the same parasite (Table 11.8).

Cythocephalus truncatus were collected from the pyloric caeca of trout belonging to l+ age group in Afon Glyn. The infection was observed in $58.3 \%$ and $36.3 \%$ of the total trout in the month of June and July respectively (Table 1l.8).
(b) Protocephalus neglectus La Rue, 1911

This parasite was found in the anterior end of the intestine in a large sample of trout collected during June and July and formed 5.4\% of the total infection (Table 11.1). The trout belonged to $3+$ and $4+$ age groups, and were infected by this parasite (Figs. ll.l, ll.2). In few older trout these were packed in the anterior end of the intestine (Plate ll.l).
$\square=\hat{0} \quad \square=? \quad 1+$ to $4+=$ Age groups


Fig. 11.5 The percentage incidence and seasonal intensity of infection in trout of various ages with Cystidicola farionis

# .......PPercentage infection <br> --- Maximum number in one fish <br> ——Mean number per fish <br> ——Water temperature 



Fig. 11.8 Seasonal variations in the Cystidicola farionis infection in swim bladder of trout

There was a tendency for longer male trout to be more infected (Table 11.4). This was not pronounced in larger females belonging to $20-24.9 \mathrm{~cm}$ length group, and may be due to less number of fish caught in that group.

## 2. Nematoda

(a) Cystidicola farionis Waldheim, 1798

Roundworm infestation of the swimbladder of trout was found to be at a comparatively low rate (Tables ll.1, 11.2). $7.4 \%$ of the total fish were infected with this parasite inhabiting the swimbladder (Plate 11.2). The seasonal fluctuations in the rate of infection by this worm are shown in Figs. 11.5 , 11.6. These graphs show that the intensity of infection was higher during December-March and then it gradually decreases in summer months. The seasonal occurrence of the parasite was rather similar in male and female trout of various age groups (here $1+$ to $4+$ ) (Fig.ll.5). Mean number of parasites per infected fish and percentage of the total fish infected increase from $1+$ to $4+$ age groups in both the sexes (Figs.11.1, 1l.2). It was found that the rate of infection was generally higher when the water temperature was low, and the reverse was true when the temperature was high (Fig.11.6). The percentage of infected fish and mean number of parasites per infected fish gradually increased from lower length group to higher in male and female trout (Table ll.7).
(b) Cucullanus truttae (Fabricius, 1794)

This parasite was recorded attached in the stomachs


Fig 11.7 The percentage incidence and seasonal intensity of infection in trout of different age groups with Echinorhynchus truttae
of male and female trout belonging to $3+$ and $4+$ age groups (Figs. 11.1, 11.2). $0.5 \%$ of the total fish were infected by this parasite between January to July (Table 11.2). (c) Metabronema truttae Baylis 1935

During the current study, records were also kept of the occurrence of this parasite. Tables ll.1, ll. 2 show that $0.3 \%$ of the total fish were infected by this worm which was observed during December and January. These were very scarce in the stomachs of older trout (here $3+$ and $4+$ age groups) of both sexes (Figs. 11.1, 11.2).

## 3. Acanthocephala

(a) Echinorhynchus truttae Schrank, 1788

This parasite inhabits the intestine. It is a fairly common parasite of brown trout and occurs in many parts of the continent. These were comparatively abundent in the sample (Tables 11.1, 11.2). The immature adults were found attached to the inside of the intestinal wall, and frequently established all over the entire length of the intestinal tract including pyloric caeca (Plate ll.3). No worms were found in the stomachs. The mean number of parasites per infected fish and the percentage of infected fish were higher in $4+$ age group in both sexes of trout (Figs. ll.1, ll.2). A gradual increase in infection from $0+$ to $4+$ age groups was also noticed. The seasonal incidence and intensity of infection in each age group has rather similar patterns in both sexes (Figs.11. Z More infected fish with this parasite were observed from


Fig 11.8 Scasonal variations in the Echynorhynchus truttae in the intestine of trout

October to March than in any other months (Fig.ll.8). Chubb (1964) postulated that temperature may play a major part in determining the presence or absence of a welldefined seasonal periodicity of development of some of the ACanthocephala.

It was also observed that the average number of parasites per infected fish and the percentage of infected fish varied directly with the length groups in both sexes (Table ll.6). This may be readily explained on the premise that the larger fish require more food organisms to satisfy their needs than do the younger fish, and consequently are more liable to consume a greater number of infested intermediate hosts.

## DI SCUSSION

Baylis (1928) reported Cyathocephalus truncatus in the pyloric caeca of trout in November and December. Awach1 (1963) observed that $C_{\text {. truncatus }}$ was the only one species of cestode occurring in the brown trout of afon Terrig. He further reported Gammarus pulex as an intermediate host of this parasite。

In the current survey of the River Aly 7. $4 \%$ of the total fish were found to be infected with C. truncatus (Tables ll.1, 11.2). This parasite was recorded from January to July in which the mean number of parasites per infected fish attained a peak in May (Figoll.3), and were slightly greater in males than in females (Table ll. 5) .
---- Number of stomachs examined \% stomachs containing Gammarus


Fig 11.9 Percentage of stomachs of trout containing Gammarus pulex

Mean number of parasite per infected fish and the percentage of fish infected gradually increased from $1+$ to $4+$ age groups in both sexes (Flgs.ll.1, 11.2). This may be due to feeding activity of the trout and their choice of food (here Gemmarus pulex) which may affect the degree to which they become infected. No clear picture of seasonal variation emerges from the data (Fig.11.4). Fig.ll. 3 does, to some extent, show an increased intensity of infection in winter and spring (January-May) fin all age groups ( $1+$ to $4+$ ). His may be due to feeding on benthic invertebrates including Gammarus pulex (Fig.1l.9) which is an intermediate host (Awachi 1963). Ihis parasite inhabits principally the pyloric caeca and is only occasionally taken in the upper intestine. An examination of the worms taken shows that the specimens taken in January were rather young and recently established. These young ones were recognised by their relatively small size and lack of mature proglottids. Worms taken from March to May were predominantly adult and functionally mature. This reflects that $C$. truncatus establishes in the fish in late autumn, depending on the time of infection. Awachi (1963) pointed out that they mature in late winter and spring and disappear in late summer.

The ecology of the bottom fauna with reference to the food and feeding habits of salminids, in the Llyn Tegid feeder streams are reported in the present work (Chapters III-VII). . Uring the course of this investigation any
parasite encountered in the stomach and anterior region of the intestine were recorded from the trout and salmon parr of the unregulated Llyn Tegid feeder streams. The only parasite present, and that only occasionally, in the pyloric caeca of trout and salmon parr of Afon Dyfrdwy and Afon Glyn was C. truncatus. These incidences may be because Gammarus pulex was one of the benthic food items.

Proteocephalus neglectus was recorded by Aderounmu (1966) while examining the trout from Chirk hatchery. $5.3 \%$ of the total fish (sample of June and July) were infected by this parasite (Tables 11.1, 11.2). These were distributed in the trout belonging to $2+$ to $4+$ age groups in both sexes (Figs.ll.1, ll.2), A very high significant difference was found in the mean numbers of parasites per infected male trout $(F=18.7, \mathrm{df}=2 / 18, \mathrm{P}<0.001$ ) between the different length groups (Table 11.4).

While studying the nematode parasite fauna of brown trout Shipley (1908) appears to have been the first British worker to record Cystidicola farionis in the lumen of the swimbladder of trout sent to him from Royston in Herts. He further states that the parasites were more numerous in winter and they make their way to swimbladder through the oesophagus. Detailed anatomical study of the same parasite was made by Leiper (1908). C. farionis has recently been reported in the swimbladder of trout of Chirk hatchery (Aderounmu 1966), Hampshire and Hertfordshire (Baylis 1928),

Llyn Tegid (Chubb 1963) and Afon Terrig (Awachi 1963).

In the present investigations it was found that the intensity of infection gradually increased with the increase in age (Figs.ll.1, ll.2) and length (Table ll.7) groups. A significant difference was found in the intensity of infection per infected fish between different length groups (Table ll.7) in male trout ( $F=6.2, \mathrm{df}=3 / 35$, $P<0.01$ ) and female ( $F=3.8, d f=3 / 38, P<0.05$ ) trout. It was noticed that female fish were more heavily infected than the male (Table ll.7). The large increases in the incidence and intensity of Cystidicola farionis infection in the older fish may have occurred because the parasites accumulated as the older fish ate infected Gammarus pulex. The trout may have been feeding selectively on the intermediate hosts, which are Gammarus pulex. I examined the food contents of stomachs of $t$ rout and showed that distinct food preferences were established by individuals of different age groups (Table 10.10才。 Baylis (1931) reported the larvae of $C$. farionis in the body cavity of Gammarus spp. Bauer and Nikolskaya (1952) have also reported another amphipod Pontoporeia affinis as the intermediate host of this worm in Lake Ladoga in U.S.S.R. Table 10.10 showed that $8.9 \%$ (by number) of the total food were Gammarus pulex eaten by the fish belonging to $0+$ age group, $10.3 \%$ by $1+$, $6.6 \%$ by $2+, 10.5 \%$ by $3+$ and finally $9.7 \%$ by $4+$ age group. The infection thus increased progressively with the age and length of the fish as more parasites were acquired.

The rise in the degree of infestation during winter and spring, following the decline in summer months shown by all age groups, suggests that the trout had not acquired an immunity as a result of previous infestation, although the problem of immunity to $C_{\text {e farionis }}$ remains doubtful. I think that a more intensive and critical investigation in this problem would be profitable. A similar seasonal cycle (as mentioned above) was observed by Shipley (1908) while working on the stream trout at Herts. Awachi (1963) did not find any apparent seasonal fluctuations in the trout of Afon Terrig infected by $C_{0}$ farionis. The increase in the degree of infection during winter and spring and gradual decrease in summer may presumably be related with the water temperature (Fig.11.6) or may be due to the fact that the trout have been feeding relatively more on Gammarus pulex along with other benthic invertebrates (Figoll.9). Awachi (1963) pointed out that the parasite establishes in late fall and winter in the intermediate host (Gammarus pulex).

Cucullanus truttae was recovered by Baylis (1928) during September and by Stranack (1966) in the trout of River Avon (Hampshire). Thomas (1964) noted that common occurrence of this parasite in the gut of trout from the River Teify, west Wales. Chubb (1964) showed the occurrence of $C_{\text {e truttae }}$ in the gut of trout in Llyn Padarn.

I found $0.5 \%$ of the total fish were infected by Cetruttae. These occurred in the stomachs from January
to July (Tables $11.1,11.2$ ) in $3+$ and $4+$ age groups in both sexes of the fish (Figs. 1l.1, 1l.2).

Baylis (1939) reported the occurrence of Metabronema truttae in the intestine of trout in April. Rawson (1952) recorded the same parasite from Lake Windermere in August and October. Awachi (1963) showed the occurrence of Mo truttae in the intestine of trout throughout the year.

Metabronema truttae were found in the stomachs of trout only occasionally. $0.3 \%$ of the total fish were infected by this parasite. These were recorded during December and January in both the sexes (Figs. 11.1, 11.2) though Awachi (1963) showed the rate of infection with Mo truttae was more or less even throughout the year in the intestine of trout of Afon Terrig.

I did not find nematode parasites from the trout and salmon parr in any of the Llyn Tegid feeder streams.

Echinorhynchus truttae has been reported to occur in a number of fish. Baylis (1939) found trout Salmo trutta, grayling Thymallus thymallus, eel Anguilla anguilla, roach roach Rutilus rutilus and dace Leuciscus leuciscus as recorded hosts of this parasite in Britain. The commonest final host from the point of view of incidence and intensity of infection is the trout. More recent contributions to the knowledge of life cycle of this parasite were made by Petrochenko (1956); Hynes and Nicholas (1957), Nicholas and Hynes (1958), Kovalenko (1960) and Awachi (1963, 1965). These and various other reports (Meyer 1933, Bauer 1953,

Hoffman 1954 and Fetrochenko 1956) show that the G. pulex, is the usual intermediate host. A detailed study was made by Awachi (1963) who, while working on the trout of Afon Terrig, showed the developmental history of E. truttae in both its hosts. Aderounmu (1966) reported E. truttae in the intestine of Chirk hatchery/during summer. Awachi (1963) found the same parasite throughout the year. Baylis (1939) noted them during November and December. Rawson (1952) pointed out their presence in August and Thomas (1964) showed the occurrence of E. truttae throughout the year in the intestine of trout of the River Teify.

In my study $22.6 \%$ of the total trout were found to be infected by E. truttae that established in all parts of the intestine (Table 11.1). Similar findings were made by Awachi (1963). The seasonal cycle of the intensity of infection does not rise with the rise in water temperature (Fig.11.8). Chubb (1964) and Awachie (1963) also found no cyclic fluctuation in the incidence of Acanthocephala E. clavula and E. truttae in Llyn Tegid and Afon Terrig respectively. It may be pointed out that there was a drop in the degree of parasitisation of trout in July (Fig.11.8), which may be due to the lack of Gammarus pulex in the food during summer (Fig.11.9). The mean number of parasites per infected fish was slightly higher in males (9.2) than in females (8.2) (Figs. 11.2, 11.3). A significant difference was observed in the mean numbers of parasites per infected
male ( $F=3.4, \mathrm{df}=3105, \mathrm{P}<0.05$ ) and female $(\mathrm{f}=2.5$, $d f=3 / 135, P<0.05)$ trout in different length groups (Table 11.6). Seasonal intensity of infection in various age groups (here $0+$ to $4+$ ) in both the sexes show a similar pattern (Fig.11.7). The percentage of fish infected and the nem number of parasites per fish progressively increases from $0+$ to $4+$ age and $5-9.9 \mathrm{~cm}$ to $20-24.9 \mathrm{~cm}$ length groups in both the sexes (Figs. ll.2, 11.3, Table 1l.6), though Robertson (1953) found that only trout greater than 14.5 cm in length were infected by E. truttae. I found young trout as small as 7.4 cm to be infected by this parasite in the River Alyn.

In all fishes observed from the Llyn Tegid feeder streams, I did not record E. truttae, probably due to the scarcity (Table 8.4, Chapter VIII) of the intermediate host (G. pulex).

## SUMMARY

(1) Six species of helminth parasites were found in the alimentary tract and swimbladder of the trout of the River Alyn。
(2) The incidence and intensity of infestation gradually rise from $0+$ to $4+$ agfe groups in both sexes.
(3) $22.6 \%$ of the total trout were infected by Echinorhynchus truttae, $7.4 \%$ by C. farionis, $7.4 \%$ by Cyathocephalus truncatus, $5.3 \%$ by P. neglectus, $0.5 \%$ by Cucullanus truttae and $0.3 \%$ by Metabronema truttae.
(4) The cyclic fluctuations in the intensity of infections were discussed.
(5) One species of helminth parasite C. truncatus was recorded from the trout and salmon parr of Afon Dyfrdwy and Afon Glyn, the unregulated Llyn Tegid feeder streams. (6). It seems likely that the intensity of infestation of trout by most of these parasites is determined by consumption of Gammarus pulex as intermediate host.

REYMELCES
Aderounmu, E. A. (1966) A comparative account of the parasite fauna of brown trout from a lake and a hatchery. Parasitology, 56(4); 10p.

Allen, K.R. (1938) Some observations on the biology of the trout (S. trutta) in Windermere. J. Anim. Bicol. 72 333-349.

Allen, K. R. (1941a) Studies on the biology of the early stages of the Salmon (Salmo salar). 2. Feeding habits. : J. Anim. Ecol. 10: 47-76.

Allen, K. R. (1942) Comparison of botton fauna as sources of available fish food. Trans. Amer. Fish Soc. 71: 275-283.

Allen, K. R. (1951) The Horokimi strean. A study of a trout popuiation. Fish. Bull. N.Z. 10, 231pp.

Allen. I. K. H. (1952) A hand-operated quantitative grab for عampling river beds. J. Anim. Ecol. 21(1): 159-160.

Andrewartha, H. G. \& L. C. Birch (1954) The distribution and abundance of animals. Chicago: University of Chicago Press XV + 782pp.

Andrewartha, H. G. (1961) Introduction to the study of animal populations. XVII +281 p. University of Chicago Press. Chicago 27.

Avery, E. L. (1970) Effects of domestic sewage on aquatic insects and salmonids of the east Gallatin River, Montang. Water Research. Pergamon Press 1970. Vo1. 4. pp. 165-177.

Awachie, J. B. E. (1963) The ecology of the heiminths of the Trout of the Afon Terrig, North Wales. Ph.D. thesis. Liverpool Univeraity.

Awachie, J. B. E. (1965) The ecology of Echinorhynchus truttae. Acanthocephala in a trout atrean in North Wales. Parasitology 55(4), 747-762.

Badcock, R. M. (1949) Studies in stream life in tributaries of the Welsh Dee. J. Anim. Ecol. 18: 193-207.

Bagenal, T. B. (1966) The ecological and geographical aspects of the fecundity of the plaice. J. mar. biol. Ass. U.K. 46, 1, 161-186.

Ball, R. C. (1948) Relationship between available fish food, feeding habits $0{ }^{\circ}$ fish and total fish production ir. a Michigan Lake. Tech. Bull. Mich. Agric. Exp. Sta. no. 206: 1-59.

Ball, R. C. et al.(1969) Red Ceder River Report II. Bioecology. Publ. Mus. Nich. State Univ. Bicl. Ser. 4: 105-160.

Ball, J. N. (1957) The biology of the brown trout of Llyr Tegid. Ph.D. Thesis, University of Liverpool.

Ball: J. N. and Jones, i. W. (1960) On the growth of the brown t=out of Llyn Tegid. Proc. Zool. Soc. Lond. 1348 1-41.

Ball, J. N. (1901) On the feeding habits of the brown trout of IIyn Tegid. Proc. Zool. Soc. Lond. 137: 599-622.

Ball, J. N. and Jones, J. W. (1962) On the movement of the brown trout of Ilyn Tegid. Proc. Zool. Soc. Lond. 1388 205-224.

Bauer, O. N. and Nikolskaya, N. P. (1952) Novye dannye o promezhutochnylth khozyaevakh parazitov siga (New data on the Intermediate Hosts of White fieh pacasites). Dan SSSR. 84, 5.

Bauer, O. N. (1953) Skrebni rhyb ledovitomorskoi provintsil, 1kh rasprostranonie; rybokhozyaistvennoe znachenie (Acanthocephala parasitising fish of the Arctic
province, their distribution and importance for fisheries). Trudy Bavabriskogo Otdel. Vniorkh. 6(2), 31-35.

Baylis, H. A. (1928) Records of some parasitic worms from British vertebrates. Ann. Mag. nat. Hist. (10) 18 329-343.

Baylis, H. A. (1931) Ganmarus pulex as on intermediate host of trout parasites. Ann. Mag. nat. Hist. (10) 7. 431-435.

Baylis, H. A. (1939) Further records of parasitic worns from British vertobrates. Ann. Mas. nat. Hift. (11) 4: 473-498.

Bhatia, D. (1931) Production of annual zones in scales of rainbow trout. J. expt. Zool. 59: 45-59.

Beak, T. W. (1938) Methods of marking and sorting collections ior an ecolcaical study of a stream. Ann. Rep. Avon. Biol. Res. No.5. 42-46.

Berg, K. (1948; Biolegical studies on the River Susaa.
Fol. Limnol. sicandinay. 4: 1-318.
Berg, K. (1943) Physiographical studies on the River Susaa. Fol. Iimnol. Scandinav. 18 1-174.

Berg, K. et al. (1958) Seasonal and erperimental variations of the oxygen consumption of the limpet Ancylus fluviatilis. J. exp. Biol. 35. 43-73.

Birch, L. C. (1957) The meanings of competition. Am. Nat. 91: 5-18.

Birket, L. (1957) Flotation technique for sorting grab aamples. J. Cons. Int. Explor. Mer. 22(3): 289-292.



Cionemiller, F. P. (1955) "Making new trout stream in the Sierra Nevada, California", in the Year book of Agriculture 1955. p.583-586.

Cumins, K. W. and Lauff, G. H. (1969) The influence of Substrate Farticle Size on the Microdistribution of strean Macrobenthos. Hydrobiologia 34: 145-181.

Nahl, K. (1918) Studies of trout \& trout waters in Norway. Salm. Trout Mas. 17: 58-79.

Dahl, K. (1919) Studies of trout \& trout waters in Norway. Saln. 'd'rout Mag. 18: 16-33.

Danials, L. B. (1933) A flotation method for dotermining
abundance of potato beetle larvae. J. Econ. Entomology 26: 1175-1177.

Iittmar, H. (1955) Ein Squerlandbach. Arch. Hydrobiol. 50: 305-552.

Duguid, j. B. . and Sheppard, E. M. (1944) A Diphyllobothriun epidemic in trout. J. Path. Bact. 56(1): 73-80.

Durn, D. R. (1952) An investigation of the bottom farna of Lake Bala (Merionethshirg). Ph.D. Thesis, University of Liverpool.

Dunn, D. R. (1961) The bottal fauna of Llyn Tegid (Bala Lake) Merionethshire. J. Anim. Ecol. 30: 267-281.

Edmonds, F. B. J. (1939) Biological observations in the River Dec, Weles. Thesis, Liverpool University.

Eeglishaw, H. J. (1907) The fcod, Erowth and population structure of Salmon \& Trout in two streams in Scottish Highlands. Freshwat. Salm. Fish. Res. 38: 1-32.

Esglishaw, H. J. (1968) The quantitative relationship betwoen botton fauna and plant detritus in atreame of different $\mathrm{Ca}_{2}$ concentrations. J. Appl. Eccl. 5: 731-740.


Frost, W. E. (1945) River Liffey Survey. Food \& growth of Brown Trout. Proc. R. Ir. Acad. B. 50: 321-42.

Frost, W. E. (1950) The growth \& food of young Saimon \& Trout in the River Fross, Caithness. J. Anim. Ecol. 19: 147-59.

Garner, J. H. et al (1936) Chemical \& biological survey of tio siver Holme. W. Fiding of Yorkshire Riv. Bd. H'akefield.

Grahan, T. R. (1960) The biology of Liyn Tegid trout. MoSc. Thesis. University of Liverpcol.

Graham. T. R. and Jones, J. W. (1962) The biology of LIyn Tegid trout. Froc. 2001. Soc. Lond. 139(4): 657-683.

Hairston, N. G. (1951) Interspecies competition and ite probable influence upon the vertical distribution of appalachian salamander of the genus Plethodon. Eicology 32: 266-274.

Harker, J. E. (1953) An investigation of the distribution of the mayfly fauna of a Lancashire stream. J. Anim. Eicol. 221 1-13.

Haram, 0. J. (1968) A preliminary investigation of the biology of the Gwyniad of LIyn Thegid. Ph.D. Thesis, University of Liverpool.

Hant, P. J. B. and Pitcher, T. J. (1969) Field trials of fish marking using a jet inoculator. J. Fish. Biol. f(4): 383-385.

Hile, R. O. (1936) Age and growth of the Cisco (Leucicithys arteii (Le Sueur), in the lakes of the northern highlands Wisconsin. Bull. U.S. Bur. Fish. 48; 209-317.

Ioffuann, J. (1954) L'acanthocephalose des truites de la Syre (quelques contributions a l'étude das specificétés de I'Echinorhyachus truttae Schrank). arch. Inet. Grand-Ducal de Luxambourg. Sect. des Sci. Nat. Plys. et Math. 21, 81-98.

Horton, P. A. (1961) The bionomics of brow trout in a Dartmoor stream. J. Anim. Eicol. 30: 311-38.

Huet, M. (1959) Frofiles and biology of vestern European streams as related to fish management. Trans. Amer. Fish. Soc. 88: 155-163.

Humphries, C. F. \& Frost, W. E. (1937) River Liffey Survey. The Chironomid launa of the submerged mosses. Proc. R. Ir. Acad (B) 43: 161-168.

Hunt, P. C. (1970) Biological investigations in regulated reservoirs. Eh.D. Thesis. University of Liverpool.

Hynes, H. B. N. (1941) The taxonomy and ecology of the nymphs of British Plecoptera, with notes on the ajults and egss. Trans. H. ent. Soc. Lond. 91: 459-557.

Hynes, H. B. N. (1950) The food of freshwater Sticklebacks (Gasterosteus aculeatus and lygosteus pungitius), with a review of meinods used in fitudies of the food of fishes. J. Anim. Ecol. 19: 36-53.

Hynes, H. B. N. (1955) Distribution of some freshwater Amphipoda in Britain. Verh. int. ver. Limnol. 12: 620-28.

Hynes, H. B. N. (1960) The biolosy of polluted waters. Liverpool University Press.

Hynes, H. B. N. (1961) The effect of water level fluctuation on littoral fauna. Verh. Int, ver. L'mnol. 142 652-656.

Hyne3, H. B. N. (1961) The invertebrate fauna of a Welsh mountain stream. Arch. Hydrobiol. 57: 344-88.

Hynce, H. L. N. (1962) The hatching and erowth of the nymphs of everal species of Plecoptera. Int. Congr. Ent. II, 3. 271~73.

Hynes, H. B. N. (1963) Imported organic matter and secondary productivity in streans. Int. Congr. Eiool. 16, 4, $324-29$.

Hynes, H. B. N. (1965) The significance of macroinvertebratea in the study of mild river pollution. \&ubl. U.S. Put. HIth Serv. 999-wP-25, 335-40.

Illies, J. (1952) Die N"̈lle. Faunistisch-ókolorische Untersuchungen an einem Forellerbach im Lipper-Bergland. Arch. Hydrobiol. 46: 424-612.

Irtmonger, I. J. (1971) River regulation and fisheries. Salm. Trout Mas. Lond. 191: 64-79.

Jones, J. R. E. (1937) The toxicity of dissolved metallic salts to Polycelis nigra and Gammarus pulex. J. exp. Blol., 14, 351-63.

Jones, J. R. E. (1938a) The relative toxicity of salts of lead, sinc and copper to the stickleback, and the effect of calcium on the rexicity of lead and zinc salts. J. exp. Biol., 15; 934-407.

Jones, J. R. E. (1940a) The fauna of the river Melindin: a lead-polluted tributary of sine river Rheidol in north Cardiganshire, Wales. J. Aniu. Ecul. 9: 188-201.

Jones, J. R. E. (1940b) A study of the zinc-polluted river Yetwyth in north Cardiganshire, Wales. inn. appl. Biol. 278 368=78.

Jones, J. K. E. (:941a) The fauna of the river Dovey, West Wales. J. Anime Ecol. 10: 12-24.

Jones, J. R. E. (1948a) The fauna of four etreams in the 'Black Meuntain' district of Soutis Nalos. J. Anim. Ecol. 17. 51-65.

Jones, J. R. A. (1949b) A further study of calcareous etremme in the 'Black Mountcin' district of South Wales. J. Anim. Ecol. 18; 142-159.

Jones, J. K. E. (1949a) An ecological study of the River Rheidol, North Cardiganshire, Wales. J. Anim. Lcol. 18: 67-88.

Jones, J. ik. E. (1950). A further ecological study of the River Rheidol: the food of the common insects of the mainstrean. J. Anim. Ecol. 19: 159-174.

Jones, J. R. E. (1951a) The reactions of the minnow to solutions of Phenol. J. exp. Biol., 28, 261-70.

Jones, J. R. i. (1951b) An ecological study of the river Tory. J. Anim. Ecol. 20: 68-86.

Jones, J. R. E. (1958) A further study of the zinc poliuted river Ystwyth. J. Anim. Ecol. 27: 1-14.

Jones, J. W. and Orton, J. H. (1940) The paedogenetic male cycle in selmo znlar i.: Proc. Roy. Soc. B, 128: 485-i99.
Jones, J. W. (1949) Studies of the scales of young salmon (Salmo palar L. (Juv.)) in relation to growth, migration and spawning. Fish. Invezi. 5: 1-23.

Jones, J. W. (1951) A bathymetric aurvey of Llyn Tegid.

Jo'2es, J. W. (1953) 1. The Scales of Roach. II. Age and Erowth of the Trout, Grayling, Perch and Roosh of Llyn Tegid (Bale) and the Roach of the River Birket. Fish. Invest. (1)5: 7-18.

Joner, J. W. (1956) The biology of brown trout. Z. aste of growth. Salm. Trout Mag. 2: 12-13.

Jones, N. S. (1952) The bottom fauna and food of flatfish off the Curberland coast. J. Andm. Ecol. 21: 182-205.

Kalleberg, H. (1958) Observations in the stream tank of territoriality and compotition in juvenile salmon and trout. Rep. Inst. Freshuat. Res. Drottningholm 39: 55-98.

Kellen, W. R. (1954) A new bottom sampler. Amer. Soc. Limnol. Oceanogr. sp. publ. No.22. 84.
iignnedy, C. R. (1969) Tubificid oligochactes as iood of coarse fish. Proc. 4th Brit. Coarse Fish Cont. 21-24.

380

Kovalenko, I. I. (1960) Studies of the life cyclos of some helminths of domestic ducks from farms on the Azov Coast (In Ruesian) Dokladi Akademi1 Nauk SSR 133. 1259-1261.

Ladell, W. F. S. (1936) A new apparatus for separating insects and other arthropods from the soil. Ann. Appl. Biol. 23: 862-879.

Larkin, P. A. (1956) Interspecific competition and population control in freshwnter fish. J. Fish. Res. Bd. Can. 13: 327-342.

Lexinove, R. W. (1970) Two shallow water bcttom samplerse Prog. Fish Cult. 3i2(2): 116-119.

Lawson, G. W. et al. (1969) Hydrobiological work of the Voltz Brain Reazarch Project 1963-1963. Ex. du Bull de I'Inst. Fondamental d'Afrique Noire. Tome 31. Ser. A. No. 3: 965-1CO3.
I. Cren, E. D. (1951) The length-weight relationship and seasonal cycle in gonal weignt and condition in the perch. J. Ausin. Ecol. 20: 201-219.
L. Cren, E. D. (1958) Ireliminary observations on populations of Salmo trutta in becks in Northers Eneland. Verh. int. Verein. Theor. angew. Iimnol. 13: 754-57.

Le Crens E. D. (1969) Estimates of fish populations and production In emall streams in Angland. In Symposium on trout and salmon in streams (Ld. by T. Northeote). pp. 269-280. Macmillan Lecture, Univ, of E. C., Vancouver.

Loarner, K. A. et al. (1971) A survey of the macro-fauna of the River Cynon, a polluted tributary of the River Taff (South liales). Frechwat. Biol. 1: 333-367.

Lee, R. M. (1920) A review of the methods of age and growth determination in fishes by means of scales. Fish. Invest. Lond. Ser. 2, 4, 2, 32p.

Leiper, T. R. (1908) lotes on the anatomy oi Cysticicola
farionis. Yarasitology 1: 193-194.
HcCormack, J. C. (1962) The food of young trout (Salmo trutta I.a) In two differsnt becks. J. Anim. Ecol. 31: 305-317.

Macan, T. T. (19'4) Survey of a moorland fishpond. J. Anfm. Ecol. 18(2): 160-186.

Meran, T. T. (1957b) The ilfe histories and migrations of the Ephemeroptera in 5 stony strean. Trans. Soc. Brit. Ent. 12(5): 17.9-156.

Hacan. T. T. (1957) The Ephemeroptera of a stony strean. J. Arin. Ecol., 26: 317-342.

Macan, T. T. (1961) A review of running water studies. Verh. Internai. Ver. Limnol. 14: 587-602.

Masan. T. T. (1962) Why do some pieces of water have more species of Corixidae than othera? Arch. Hydrobiol. 58(2): 224-232.

Mann, K. H. (1953) A revision of the British leeches of the family Glosoiphonildae with a description of Batracobdella paludosa a ned leech to the British fauna. froc. zool. Soc. Lond. 123: 377-91.

Mann, K. H. (1955) dihe ecology of the British freshwater leeches. J. Anit. Ecol. 24: 98-119.

Mann, K. H. (1965) Heated effluents and their effects on the Invertebrate fauna of rivers. Froc. Soc. Wat. Treat. \& Exam. 14: 45-53.


## 383



## 384

Petrochenko, V. I. (1956) A.canthocephala of domestic and
wild animals, rol. 1. (In Kussian).
Izdectelatro Akad. Naik SSR.
Pleskot, G. (1953) Die Feriodizitat einiger Ephemeropteran der Schwechat. Wasser und Abwasser, 1958, 1-32.

Popham, E. J. (1943) Ecological studies of the commoner species of British Corixidae. J. Anim. Ecol. 12(1): 124-136.

Pugh-Thomas, M. (1959) A study of the freshwater zooplankton of Llyn Tegid. Phoi. Thesis. University of Liverpool. Pyefinch. K. A. (1955) A review of the literature on the biology of the Ailantic salmon Salmo salar L. Freshwat. Salm. Fish. Res. 9, 24pF.

Radford, D. S. and Hartland-Rowe, R. (1971) A preliminary investigation of botton fauna end invertebratc drift in an unregulated and a regulated strean in Alberta. J. appl. Ecol. 8: 883-903.

Ramasy, A. C. (1876) On the physical history of the Dee, Wales. Q. J. G. S. Vol. 321 219-229.

Ravera, 0. (191) Velocita di correnti e insedianenti tsntonici Etיrifo su una lanca del fiume Tocs. Mem. Inst. Ita.. Idiobiol. 6: 221-267.

Rawson, D. (1952) The occurrence of farasitic woms in British freshwatsr fishes. Ann. Has. nat. Hist. (12)5: 877-827.

Rawson, D. S. (1948) Biological Investigations on the Bow and Kananaskis Rivers. Unpublished thesis. University of Saskatchewan.

Reynoldson, T. E. (1967) A Key to the British spacies of Ireshwater triclads. Freshwater. Biol. Asso. Sci. Publ. 23: 1-28.

## .385

Hoberteon, F. J. (1953) The jxiracitee of browa trout (Evino trutta L.) and ocher froobwater flah. Unjutilnied report of the Rrown Trout reoparch laboralory, Scotesch hone Lept.

Rousefell and kvorhart (1953) Flehery Science, ite wethode and apyilcatlons. John blley tionn H.Y. 1953.

Rudd. J. A. (1946) Bls irout fros blf ecco. selmon it Trout Mafe. Lond. :io. 1161 32-36.

Schaitz, U. (1955) ibyelogrephioche aspocte der ilasciociectez Mleasgevancertypen. Arch. Hydrobiol. Eurri. 221 $516-233$.
 movesent of the wild brown trout in Cryotial Crook. Trens. du. Fhah. Loc. 73, 202-23.
 parazetere from catche larre relalive to tre prolutsone J. Ands. icol. 3ís 631-643.

Shutier, D. S. (1957) Mifrasion, Erowth rate, and potinindion density o: brick brout in the north brasch of ive hu Sable River, Michlfane Trana. Aa. Tish. Eoc. CCi 2cy-iv.
 vore garasitle in the avia biadder of trout. Faracitology is $190-122$.

Siddiqui, M. S. $(1 \times 3)$ studica on the brama troul, the prajilte and the mod of natural and rerulated reeervolre in north walen. In.D. Ahoald. Univeraity of ifrerinol.

31ahe, Y. K. He (19C5) Studtec on the tiolocy of the freatuoter eel. In.D. Tieale, Univerndty of Liverrool.



```
Writehead, H. (1935) An ecological etuay of the Invertebrate
 fauma of the chalk strean near Great Drifield, Yorkshire.
 J. Anim. Ecol. 4.
Williams, E. G. (1939) Micro-oreaniams of Baja lake Merioneth,
 North Western Naturalist.
Wingfield, C. A. (1940) The effect of certain environmental factors
 on the growth of brown trout (Salme trutta \(\mathrm{L}_{\mathrm{o}}\))
 J. exp. Biol. 17: 435-48.
Wuolland, J. V. (1972) Stuaies on salmonid fishes in Llyn Tegid
 and Welsk Dee. Ph.D. Thesis, University of Iiverpool.
W 2 ight, G. A. (1955) Comprehensive scheme t.e utilise the resources
 of the river Dee. J. Instn. wat. ingrs. I: 229-24.
```

Acton, A.B. (1956) The identification and distri ation of the Larvae of sone species of Chironomus. Proc. R. Ent. Soc. Land. (A) 31; 161-164.

Bauchhenss, J. (1971) A contribution to the knowledge of systematics and Ecology of Turbellaria excl. Tricladida in Southern Germany. Int. Revue ges. Hydrobiol. 56 (4): 609-666.

Eaylis, H.A. (1939) Further recolds of parasitic woras from Britisi Vortebrates. ann. Nag. Nat. Hist. (11) 4: 473-498.

Birkett, N.L. (1960) Some records of chironomidae (Dip.) taken in Scotland. Entomologist. 93: 182-183.

Bryce, D. (1960) Studies on the Larvae of the British Chironomidae (Dipt.) with keys to the Chironominae and Tanypodinae. Trans. Soc. Brit. Ent. 14 (2): 19-62.

Brown, E.S. (1954) Notes on the rarer British enecies of aquatic and semi-aquatis Hemiptera. II veliizae. Entomologist 37: 45-53.

Brown, E.S. and Scudder; G.G.E. (19;3) Notes on the British species of aquatic and semi-aquatic Hemiptera. III Micronecta minftissima. E:tomologist 91: 15-19.

Boycott, A.E. (1936) The habitats of freshwater Mollusca in Britain. J. Anim. Icol. 5: 116-186.

Brinkhurst, R.O. (1963) A guide for the Identification of British Aquatic oligochaeta. F.B.A., Sci. Fubli. No. 22.

Beck, E.C. and Beck, W.M. (1969) Chironomidre (Dipt.) of flortda. III. The Harnischia complex (chironominae). Bull. Florida. state. Kus., Diol. ふci. Vol. 13, No. 5.

Brindle, A. (1960) Lhe Larvae and pupae of the British Tipuinne (Diptera Tipulidze). Trans. Soc. Brit, Ent. 14 (111): 63-114

Brindie, A. (1958-61) Notes on the lasvae of ile ritish Tipulinse (Dip. Tipulidae). Entomologists. mon. .ag. 94-97. 9 pts.

Brindle, A. (1961) Taxonomic notes on the Larvae of British Diptera Khagionidae. The genus Atherix. Entomolocist. Spt. 218-220.

Brindle, A. (1962) Taxonomic notes on the Larvar of Eritich Diptera. 8 - Sule family Chaoborinae (Culiciliae) The entomologist, July. 178-181.

Brindle, A. (1962) Taxonomic notis on the larvae of British Diptera The family ptychopterise. Entomologist. "ug. 212-216. Brindle, i. (1963) Taxonomic notes on the Larvae of British Diptera No. 15 - The Dixiuae (Culicidae). The Entomolouist, October, 237-24.3.

Brindle, A. (1964) Taxonomic notes on the Larvae of British Diptera. The family Hezmerodrominae. The entomologist. July, 162-165.

Brindle, A. (1966) Taxonomic notes on the larvae of British Diptera. Entomologist. Sept. 225-22?.

Brindle, A. (1967) The larvae and pupae of the British Cylindrotominae and Limoniinae (Dipt. Tipulidaed Trais. Soc. Brit. Ent. vol. 17; part 7: 151-216.

Brindle, A. (1969) Taxonomic notes on the larvae of Eritish Diptera. Sule family Hermerodromina (Epididae). The Entomologist. February 1969. 35-39.

Erinkhurst, R.C. and Jamieson, Aquatic Oligochaete of the world. Oliver and Boyd, Edinburgh 1971.

Brown, E.S. (1948) The aquatic coleoptera of North Waled. Trans. Soc. Brit. Ent. 9 (2): 135-149.

Balfour-Browne, F. British water Beeilea. vol. I, II. Ray Society 1950.

Chiswell. J.F. (1956) A tatononic account of the last instar larvae of some Sritish Tipulinae. Trans. R. ent. Soc. Lond. 108: 409-84.


Glodrill, 2. (1971) The genera Azugofeltria, Vietsaxona, Neoacrarus
and Hungarohydracarus (Hydrachnellae: Acari) from the interstitial habitat in Britain. Freshwat. Biol. 18 61-82.

Hopkins, C.L. (1961) A key of the water-mites (Hydracarina) of the Flatford area. Fld. Studies, 1 (3); 1-20.

Hamilton, N. (1967) Water-mites (Arachnida: Acaris Eydracarina) of iuntingdonshire. Rep. Huntingdon. Fauns Flora Soc. 208 19-20.

Haibert, J.N. (1945) List of Irish freshwater mites (Hyäracarinä). Iroc. R. Irish, Acad. B, 50 (4), 39-104.

Hickin, NeE. (1967) Caddin Larvae. Hutchinson of Lond.
Hynes, H.B.N. (1958) A key to the adults and Nymphs of Eritish stoneflies (Flecontera). F.B.A. Sci. Publi. Ilo. 17. Hynes, H.B.N., Macan, T.T and Williams, W.D. (1960) A kez to the British species of Crustacea: Malacostraca, F.B.A. Sci. Publi. No. 19.

Hofmann, w. (1971) Zur Taxonoute und Palokologie subfossiler Chironomiden ( $D: \dot{p} t_{\text {. }}$ ) in Seesedimenterr. Arcis. Hydrobiol. Eaih. Ergebn. Limnol. 6: 1-50.

Johannsen, O.A. (1970) reprintei. squatic Diptera. Reprinted by Arrangement. Fintomological Reprint ipecialista, P.O. Box 77971, Dockweirier Station, Los Angeles, Califormia 90007. U.S.A.

Kane, M.B. (1966) Parasites of Irish Fishes. Sci. Froc. Dublin Soc. Ser. By 205-220.

Kimmins, D.E. (1966) A revised check-list of the British Prichoptera. Entomologists Gaz. 17: 111-120.

Kerrich, G.J., Meikle, R.D. and Tebble, N. (1967) A Bibliozraphy of key works for the Identification of the Dritish Fauna and Flora. Systematic. Asso. Lond. (B.M.N.I.).

Kimmins, D.E. (1962) Kay to the Britich arecies of ariuntic Megaloptera and Neuroptera. F.i.A. Sci. Publi. No. 8.

Kettle, D.S. and Lawson, J. W.H. (1952) The carly atages of Britioh biting midges Culicoides Iatreilie (Diptera ceratopogonidae) and allied genera. Buil. Ent. Res. 43: 421-467.

Lowe, H.J. У. (1967) Observations on Lphemeroptera in the east Midiands. Fintomalogists mon. Jrg. 103, 40-44.

Ladie, M. and Baron, F. (196) Situdies on three ep. of Pisidium (Mollucca: bivaivia) from a clialk stream. I. Anim. Ecol. 39: 407-413.

Hargolis, L. (1970) A bibliography of Jarasites and disoases of Fishes of Curiadas 1879-196\%. F.K.B. Conacia. Tech. Rep. Nn. 185.

Hackereth, J.C. (1954) Taxonomy of the Larvae of the British species of the aenus Rhyacophisa (Tuichoptera) Proc. R. Fint. Soc. Lond. (A). 29. Pts. 10-12: 147-152.

Mackereth, J.C. (1950) Notes on the Mricioptera of a stony atrcam. Froc. R. Ent, Eoc. Lond. (A). 35. Pta. 1-3: 17-23.

Maitland, P.尺. (19́,7) The larvae and pupae of Demeijerea rufifes
(1) (Dipt. Chironomidae). Ento. mon. Haz. 103: 53-57.

Hacan, T.1. (1967) The Corixidae (Hemipt.) of tho Shropshire merem. Fld. Stud. 2 (4): 533-535.

Mann, K.H. (1964) A key to the Hritish froshwater lecches with noter on their ecolory. sci. Iubid. freshiat. biol. Assoc. 14: 1-50.

Macan, T.T. (1970) Repr. A Euida to the Frechwater Invertebrate Anibals. Lomeman. Iond.

Yacan, T.T. (1965) A revised key to tho Britich fiater Bugs (Remiptera - עeteroptera). F.J.A. ©ici. Iubll. No. 16.

Macan, T.T., and Cooper, K.D. (1950) A key to the british Vrash and Brackish waterGastropods.F.B.K. Sci. Jubll. No. 13.

## 394

Mann, K.H. and Hialson, E.V. (1964) A key to the Eritish F/W Leeches. F.B.A. Sci. Publi. No.: 14.

Needham, J.G. and lleedham, P.R. (1962) A guide to the atudy of freshwater Biology. Holden-Day, Inc., San Francisco, U.S.A. Constable and Co. Ltd. Lond.

Fichter, R. (1951) The aquatic Coleoptera of ine county of Elgin. Esot. Nat. 63: 101-121.

Reynolison, T.E. (1967) A hay to the British syecies of Freshwater Triclads. F.B.A.Sci. Publi. No. 23.

Saether, 0.A. (1972) Chironomids and other invertebrates from North Boulder Creek, Colorado. Univ. Colorado Studies Bio. Ser. 31.

Skewis, M.IA. (1961) Studies on tha aquatic stages of the genus, Simulium in the River Endrick. B.Sc. Thesis, Univ. Glasg.

Smart, J. (1944) The British Simuliidae with key3 to the Species in the idult, Pupal, and Larval stages. F.B.A. Sci. Fubli. No. 9.

Stuart, T.A. (1941) Chironomid larvae of the Millport, Shore Pools. Truns. Roy. Noc. Edin. Vol LX; part II, 475-502.

Sublette, J.E. (1963-64) Chironomidac (Dipt.) ef Louisiana 1. Systematics and immature strages of sone Lentic Chironomids of West Central Louisinna. Tulane Studies in 2oology Vol. 11. lio. 4: 109-150.

Southwood, T.R.E. and Leston. D. Lend and water Bugs of thrs British'Isies. Frederick Varne and Co. Ltd. 1959.

Soar, C.D. and Killiamson, W. The British Hydracarina, Vol. I. II, and III. Roy, Society 1925.


[^0]:    $C=$ Occurrence $\quad V=$ Volume $\quad N=$ Number

[^1]:    PLATE 10.9 SCALE OF BROWN TROUT FROM RIVER
    ALIN. CAUGHP IN OCTOBER 1969
    BETWEEN A1 AND A2. IENGTH 22.6 CM .
    AGE $4+$

