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A unified approach to the esnalysis of a wide range of electrical
machines is investigated. The method makes use of the transformation
laws and properties of invariance of tensor equations. The equations
of a primitive machine are set up, and these are transformed to give
those of the required machine. The machine power input and torque are
invariant under the transformation; ensuring that the identity of the
machine being considered is not losgst in the new equations. This
method of analysis was first suggested by Kron, and has been fairly
extensively applied by machine engineers. The papers now presented
investigate the tensor character of various groups of machine parameters.

It is found that when the equations are set up in tensor form,
the groups forming tensors have all got some physical significance.
The equations in this form are independent of the reference axes
chosen. In hunting analysis the tensor groups lead to equivalent
circuits which give a somewhat clearer picture than previous circuits
of the machines represented.

The idea of analysing a complex power system in the same way,
namely by considering it as a transformed primitive system, was
applied by Kron in the U.S.A., in his papers on Power System Loss
Analysis. The Monograph 294S presented here gives an epplication of
this work to a section of the British Network with a study of the

effects of simplifying assumptions.



-2-
An indication is given of the way in which dynamical tensor
equations (in Lagrangian form) cen be associated with the electro-
magnetic field equations applied to machines. This approach appears
to converge with recent work on the stebility of high temperature

arcs in thermonuclear reactors and with investigations of magneto-

hydrodynamic phenomena.



Tensor Analysis of Rlectrical Machines and Power Systems

1. Polyphase Systems and Transformations

Blectrical power is generated on a large scale and transmitted
by means of three-phase alternating current systems. This has meant
that on a fairly extensive network it has been difficult to predict
how the system would behave under conditions of faults or unbalanced
loads, or following transient disturbances. The performance of the
system generating machinery and industrial motor drives under such
conditions has always received a great deal of attention.

In the solution of such problems it has been amply demonstrated
that calculations are often greatly simplified by the use of substitute
veriables in place of the actual coil currents and voltages. Stationary
networks are often analysed by means of three-phase symmetrical components.
Rotating machinery is studied by using reference axes selected to
reduce the number of veriables in the machine equations. Electrical
power engineers more than others have thus been accustomed to this
principle of transforming actual quantities into more convenient
components and to the idea of "transformation" of variasbles and

‘reference systems. Concordié'has given a summary of the transforma-
tions commonly used in this field.

The advantages of a change of reference axes were clearly
demonstrated by Blondef'in resolving three-phase alternator quantities

along the direct and quadrature axes of the field structure. The
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extension of Blondel's ideas by Park?'Doherty and Nickle:‘and the
development of the concepts of operational machine-impedances which
followed gave an intellectual impetus to the whole study of electrical
machinery. An electrical machine became a complex arrangement of
inductively coupled coils in relative motion, and the mathematically-
minded power engineer had much scope for systematic application of
the classical laws of Newton, Faraday and Maxwell.

While the three-phase synchronous machine was being elegantly
and thoroughly investigated by the change from phase quantities to
d- and g-axis quantities, other types of machines had still individual
theories and each had its own physical description. One did not, for
example, speak in terms of armasture reaction or generated voltages in
an induction motor or too often of flux linkages in a d.c. machine.

In 1934 Krorf "showed how the two-axis theory of Park could be used to
give a unified theory embracing a wide range of machines. He described
a primitive two-phase machine, wrote down its equations of performance
and developed the transformations necessary to derive from these the
equations of a given machine.

Several other writers have since given analyses of electrical
machines in a generalised form. In 1939 Stanleypstudied the polyphase
induction motor by resolving the stator and rotor voltages, currents
and flux linkages into axes in quadrature, similar to those used by
Park. The resulting equations of fhe induction motor are found to be

almost identical in form with the two-sxis equations of the alternator.

R
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In both cases the transformation leads to a set of linear differential
equations with constent coefficients and solutions can be obtained by
operational methods. The eanalysis is applicable to problems of
variable speed and hunting.

In 1951 Sabbagﬁtapplied the two-reaction theory to the analysis
of several types of a.c. induction and commutator machines and showed
how the vector diagrams for each machine could be drawn from the
derived equations.

In 1952 Vowelsg'investigated the transient equations of synchronous
machines, and showed that the two-axis equations of the alternator are
identical in form with those of the cross-field metadyne.

Ky has given a comprehensive survey of the unified theory of
machines. He uses the relatively stationary axes of Park and Kron
and also gives a detailed description of the use of axes rotating
unifornly, independently of the rotating field structure. (Kron's
analysis also embraces general rotating axeé?)

-In 1957 Ku and Sheﬂhdeveloped a two-reaction theory of induction.
motors having saliency and unsymmetrical windings on the rotor.
Equivalent circuits are also given.

2, Network Trensformations

Kron's method of machine analysis is based on the idea of trans-
formation from a simple primitive system to a more complex derived

system.,



-4~
An early application of the ideas of groups of network trans-
formations was that of Nathan Howitgf' He shows that static electrical
networks can form groups with given functions invariant. For exsample,
a linear transformation of currents can be used to derive a family of
networks having the same operational driving-point impedance function.
If the elements of the network of Fig. la are written in the

form of a matrix

' o
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8 linear transformaetion of currents
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The operation Ct.Z.C = 2Z' gives

al \lep+1o | qpagq

N

b| 9p+9 | 9p+q

The driving-point impedance function of each network is

- Determinant of the network parameters
p DMinor of the first row and colum

and

2
7 - P 4+ 2p +1 /
N2 P+t ZU’)

This general principle is similar to that used by Kron&to simplify
network analysis. The operation Ct.Z.C can be carried out on the
elements of any network or group of networks to give the impedance
matrix of any complex interconnection of the coils. Kron has used
this systematic epproach in his analysis of interconnected power
systeméf’ The application to a section of the British Grid System is
given in I.E.E. Monograph 294S (attached). The implications of the
intercomnection of network elements by matrix operations (for example,
the invariance of the network power) have been discussed by Gibbs' and

Hof fmann’™’

The above operation is in fact a tensor transformation. Kron

extended this method to deal with coils in relative motion (machines).
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The tensor operations can be applied to moving and rotating systems,
but only by the introduction of the concepts of absolute or "covariant"
differentiation, of the tensor calculus. These applications are
investigated in Monographs 117S and 2958 (attached).

%, Tensor Analysis of lMachines

How physical phenomensa appear +to observers having different
types of motion permeates the study of electrodynamics. It is important
to separate those manifestations that are due to the point of view of
the observer from those that are inherent in nature and not introduced
by the interpretation of the observer.

Tensor analysis deals with transformations of sets of differential
eQuations. The laws of transformation asre such thét a set of quantities
or components cannot become zero if it transforms as a tensor and has
non-zero values in any reference system. This means that tensors
cannot arise simply because of the choice of reference axes. A single
tensor may be made up of several component terms, some of which may
individually become zero in a given reference system, the other terms
changing accordingly. Tensor analysis became important in Relativity
Theory because it enabled investigators to describe physical phenomens
by equations which contained terms that were independent of the
reference axes.chosen. These terms, of course, would have different
components in each system. Associated with the transformation laws

and en inherent property of tensors is the fact that in any physical
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system the tensor equations will preserve the identity of quantities
(such as energy or torque) that are unchanged in magnitude when
different reference systems are useds That is, the tensor equations
will give a property of invariance identifying the physical system in
different co-ordinate axes. For example, the voltage equation of a
single s.tationary coil may be written - = RU + L f’L
Yhen several coils are concerned this can be written as a matrix
equation
i e.= RalM+ L pi’ | (a).
A different interconnection of the coils would have the equation

. A
2, = R '+ L pPl

where <
€. C. e, ¢ .
R ale .
R, = Ra.CeCy (e CeR Q)
If the coils have relative angular velocity the equation becomes
" a . . &
€. s Rt o L—‘“PLQ-\- 3_1—5« po L
or -XC
L, = Reat* + L‘_QPL"' + G P8 ¢ ).
If the reference axes also rotate the equation becomes
. °L -~ of ' d <
L, = R, .L ~ L et~ G, poil LV, Q)

The machine torque
f - Kedt
is an absolute invariant.

The tensor form of all the above equations is

e, R_ U+ L Si° (.

mh Sb
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where the covariant derivative
. R -R R oo
L. 4T L T L

——

9t dt uv

k
.« o U
The term ov L L expands to give the equations (b) and (C)

from equation (d) . 1In th;a machine there are three voltages, which
are all tensors,

() impressed voltage e
(b) resistance drop Ri .
(e) "Flux voltage" {Fareday" voltage) wa. %—L{
The third voltage is made up of voltages due to rate of change of
linkages and rate of flux cutting. These components can change from
one to the other as the reference system changes (as in equation (b)
and (c) )s but it is the total "Faraday" voltage, which is a tensor
and it cannot be trensformed to zero. It exists. Xron investigated
electrical machines from this point of view. His analysis brings out
the fact that there is thev same magnetic structure for all machines
and that the same physical phenomens occur. This method reduces the
analysis to that of one representative member of a group. The others
are found by routine transformastions. Maxwell's equations in
Lagrangian form can be applied directly to synchronous and induction
machines in which the reference axes are fixed to the coils. However,
when the reference axes are fixed to brushes then a modified form of

Maxwell's equations must be used. Because of this complication

grephical and vector techniques have been used in machine theory.
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Ythen the tensor form of the dynamical equatiorsis used, groups of
machine currents, voltages and flux linkages in any machine can be
identified with the terms of electromsgnetic field equations. The
coexistence of electromagnetic and mechanical energy in the machine
gives the equations a form similar to those of the Unified Field
Theory where gravitational and electromagnetic fields are considered.
Tensor analysis unifies the study of the whole group of electrical
machines by investigating properties that are invariant and therefore

independent of the type of machine or of the reference axes used.
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Field Concepts in Electrical Machine Theory

Several publications appearing recently have covered the applicsa-
17,18
tion of electromagnetic field theory to electrical machines. In 1938

Krori?'gave a comprehensive summary of the field concepts‘ associated
with the generalised, or primitive, machine and the corresponding
quantities used in the coupled circuit approach. This paper has not
received the attention it should, mainly because the equations are in
tensor form with which engineers are not so familiar. Nevertheless,
it would appear that when the tensor form is used, the field and
rotating circuit relations can be more easily correlated. (The tensor
analysis used in Kron's field theory is investigated in Monography 117S.)
' This method of analysing electrical machines is very important.
It appears to converge with recent work on the analysis of magneto-
hydrodynamic systems and the stability of high-temperature arc plasma
used in experiments on thermonuclear fusiona.oj In both systems mechenical
end electrical energies are interacting and the equations of both
systems have to be formulated in several degrees of freedom. For this
reason the salient points of Kron's paper are now summaerised.

The symbols have the mesning used in the literature.

Electromssnetic Field Eqpationsz“

2D
T xH =7 + 3t amperes | q. m.

x E . 3_% volts | sam.

v:D = (3 coulombs le. m.
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Pour dimensional form of field equations
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Mechanical forces in the field are expressed by the stress tensor,
derived from the field curl equations.

Force transmitted scross a unit volume is

3
KTT\&Q = Eln.d— Y F_M&‘\ -+ Ec S—F‘[(EKBSGL\!

= Electrostatic force + Magnetic force + rate of change of

electromagnetic momentum.

Te-sta.tic + Te-mag.

AT «Ep +TxB + e 2 (ExB)

AWt
E:"' ‘\-i_ E E.,‘E.ss E*E“a
. & *
Tosat * £, Ex E:— L E BBy

E, . E E,-LtE
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Rainickiazs;hows vhy the stress tensor can be expressed in the form
used in relativity theory, in terms of the field tensor Fij, namely
T = R Ry — & 8ufrb
Eh F\:s = E‘_E_. -+ F\.“a F&\ * EQFL.\*' F R W Yoo -
= (-0-M- N XN T

FoFu = E_;E.\ + 5 Fs\ + FeF, = — N M= XY

Tn = Fnk Flu - '\Q Ekas he

In this notation Maxwell's curl equations have the form

- AN Y M _ 3N

——-——-—‘_

4P

23 2™y D 2y 2
}X - 32 = oM Qﬂ —-?-L.:- = “B\(
3% 3= 3¢ 2y 3t

n

L Y RIS 1 W Y4
E-X I t ErNE St
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where X, Y, 2, and L, M, N are the components of the electric aend
magnetic fields respectively.

Rotating Machine Equations

Commutator machine with axes stationary

e - Rt ~ LLpL ~ Bpe

B: Gt
G éontains flux density terms.
When the current and flux waves are sinusoidal round the armasture the
terms of G can be obtained by transformation of the machine inductance
matrix and

G: vL 4 4

Whars =

The machine equation can be written

. . )
e, = R, "+ L pPltta B L

S . da
U)M L 3"\7 I\"

Vhen the reference axes rotate independently of the rotor, then
4 /.t ’r ! U (.1 /
e R ALlrl +GLpPE VPO

where PB' is the angular velocity of the axes. These two equations



come from a general tensor equation

i . - w ‘P-T .P.TF'
r',_:YLﬁL - Z‘D‘vp,v" t -2 ST)”L L

X = 8 -

- (AT - 2 ST ) L s
The link between circuit and field concepts is the vector potential.
The machine has been idealised. The assumptions relevant to the '
vector potential are that the m.m.f. and flux density waves are
sinusoidal round the armature ard that the cﬁrrent density in the
conductors is uniform. In this case the expressions23

|« JATar (duscancr )
:[1

a -
- f_'..fA'd£=L‘Eﬂ'
at g

give flux linkage L.i = A.

In this form the vector potential is given by the resultant flux

linkage in each circuit.
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In a 2-axis machine with an operational inductance matrix (field

eliminated) d ‘L
L_ ~ d Lg
e q L.,
d q <L q

L | Lyt

Chr = 4’:[ 4’«\,

The field equations in covariant form become

B = Absolute Curl A

. P _ %4%
FEQP é:;ﬁ 9 x*

s _ 34’/’—254’-’-2 :/,547\'

Ixf dx

In terms of time variations the index (3 takes the time value t, ( an

index s denotes a mechanical angle of rotation 8)

F =—E\“_= Bcbﬂ' aS PGLO--\P- a- Q“- PG’L

ot 5,0
corresponding to the equation

E = —.%{_—T_‘ ¥ 6‘7‘\5 *p')'l."\rz.

where v, is the angular velocity of the rotor.

1

v2 is the angular velocity of the axes.
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The absolute form of the symmetry equation can be written

Wi R

- This leads to

. . _ 9B«
ox’ S

= ?LE;’ - ‘jél - 2 E; Ei. + 2 —(jL Ei
dx 3

dx™

and is equivalent to

Ao, < 0 E - ~48 _ at, ane (B=xv)

t
Also
S_E”.‘.s “ S.F_Lm = O
x-vv- x-n

corresponding to
Abs. DiV. A = 0




The stress tensor can be obtained from

& pr 2 ¥$
_E = EFH ~ %3, E’%H
A q S
4 Lt
pr —
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) "l‘.q’ -Lcl
Then & Q s l‘
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The instantaneous stored magnetic energy is

5ot (BB iy -~ BoHT oW

Maxwell stresses

T B H7- ’18:66 he
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Poynting Vector
d o

s & - E_H
T(.“- eJL ‘Q"L'f v
representing the power flowing into the machine.
The investigation of the above and other electromagnetic relationships

is continuing.
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Derivetion of equation 57 in Monogreph 2958

(a) The first method uses equation 22. The synchronous machine

impedence transformation is given by

ds d Q S
ds \
dr God |~Shd
C-=
qr 5% | Cond
S |

@C)zo P(AC>=0 PiL' <o

and therefore

Z C(.ZCCAL +A8> + C, 2 S%; L AS

+ '§4%t ,(Q.CL.i_’.+ TQS;t, G ,C:.lf.fae]

(b) 1In terms of trensformed paremeters equation 55 can be used.
(See now equations 52 and 53.)
Y
Ct.Z.C y.]

(The transformation matrix is shown on the following page.)
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Summation of the appropriate terms gives equation 57,

derived via equations 22 and 55 respectively.

Monograph 29583,
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The Practical Application of Matrix Methods
| of Electrical Machine Analysis

BY J. W. LYNN, M.SC., A.M.LLE.E.,* AND A. S. ALDRED, M.SC.*

THE application of matrix algebra and
tensor analysis to electrical circuits and
machinery has to a large extent unified the
theories of individual machine systems.
Kron's methods of analysis have been

- clearly and snmply presented by Dr. W. J.

Gibbs both in his recent book™ and in a
series of articles.® In the latter, Gibbs has
shown that for the analysis of most
machines only the elementary parts of
matrix theory are required. This form

_appears to be very suitable for presenting

to engineering students a consistent general
theory of electrical machines. As a step
in this direction, the matrix equatlons of
some well-known machines have been given
by the authors to various groups of final-
year students and the machines then investi-

- gated in the laboratory. The results are

found to be impracticable to measure the
values of L and M directly, but using open
and short-circuit tests for each pair of
windings reasonable values of the para-
meters may be found by well-known
techniques and involving only familiar
assumptions. These are described in the
appropriate sections. Six types of machine
have been investigated. The equations for
all of these have been obtained by trans-
formation of the equations of the primitive
machine® shown in Fig. 1, using Kron’s
connexion matrix C. For the amplidyne
analysis the winding 5 in Fig. 1 is used, but
for all other machines analyzed here this is
not required and the appropriate row and
column are then dropped from the matrices
of Equations (1).
The primitive machine equations are,®

| 2 3 4 5
1| e 1| rntlip Myp Mp A
2| e 2 Mup re+Lyp Ly'pf M, po Mysp 2 i
3| e [=3|-Mup8| -Lsp0 | rs+Lip| Myp | -Mu'pole 31 i, ()
a4 e | 4 Mup | re+Lep 4| i
5| e 5 Mup M..p ry+Lsp 51 i

presented in this paper. The equations
obtained by matrix mecthods are seen to
agree in each case with those already very
well known. However, many of the im-
pedance matrices present the miachine
parameters in the form of open circuit self
and mutual inductances of the windings,
instead of the more familiar short-circuit
values. This leads to difficulties of meas-
urement since the latter are more or less
constant whereas the former vary widely.
For laboratory work it has often been

* Department of Electrical Engincering, the
University of Liverpool.

1

t .

r@; g

T s

Fig. 1. The primitive machine



Additional rows and columns are added
when required to allow for the self imped-
ances Z and Z; in Fig. 2. The torque
matrix G is®

2 Ly

“My'| =Ly =M’} (2)

The machine torque is given by f
=i*.wG.i synchronous watts, where w is
the synchronous frequency ; iis the current

vector having five axis components; i* is
the conjugate of the current vector.

CONTROL

FIELD

"

LoAD
IMPEDANC K
I

o

——

COMPENSATING
o WINDING

Fig. 2. The amplidyne generator

COMMUTATOR MACHINES

D.C. MACHINES
Amplidyne and Metadyne Generators

As examples of the more complex
forms of d.c. machines the amplidyne
and metadyne generators have been ana-
lyzed. The performance characteristics of
these machines are now well known. In
the following the equations of each
machine have been obtained by compari-
son with the primitive machine shown in
Fig. 1. By approaching the analysis in this
way a single matrix may be set up which
contains the equations of either machine.
This matrix illustrates the points of simi-
larity and also the differences between the
two machines.

The amplidyne circuit is shown in Fig. 2.
The compensating winding § is provided to
neutralize flux set up by armature reaction
due to current in winding 2. For full com-
pensation the flux set up by the load
current flowing in winding 5 must com-
pletely neutralize the armature flux set up
by the load current in winding 2. When
winding 5 over compensates, it is shown
in the equations that the machine may be

very nearly completely compensated by the

addition of the external shunt impedance Z |
Using this shunt the
current in winding 5 is reduced to the |

shown in Fig. 2.

value, k times the load current, required
for compensation. The required value of
k is obtained from the equations.

In the metadyne generator the circuit
connexions are identical with Fig. 2, but
the winding 5 and shunt impedance Z are
absent. This means that the metadyne
makes use of the feedback voltage between
windings 3 and 2. The effect is seen from
the final equations, which show how this
changes the characteristics of the machine
from a constant (internal) voltage gener-
ator to an almost constant current gener-
ator,

In the analysis the parameters have been
assumed constant over a given range of .

current values and iron loss is neglected.
Hysteresis effects were minimized during

testing by demagnetizing the machine .
before each test. In commutator machines !
of this type the flux distribution is obyj-

ously not sinusoidal.
such terms as M,,'pf in Equations (1), where

This gives rise to :



M,,’ differs from M,,. This arises because
of the difference between the average volt-
age generated by rotation in flux having

The Equations (1) are then transformed by
Ci.e and C.Z.C® to give the ampli-
dyne equations,

a b ¢ d
a |V a Z, 0 (M- My)p -Myp a |l
| , Z,+2 e , '
b |0 b - M,'p8 3 ‘:ZM‘JAP (jMzs +L,")p8 Mas'pd b |1,
_ I @)
e 10| o [ (My-Mop |-y smops) BHEEE | zamp | o |1
- 2P
dio0 d - Myp 0 -Zs+Myp Zy+2Z d | Ic

space harmonics and the voltage induced
by sinusoidal time rate of change of this
flux linking a coil. In the machines con-
sidered here the complete terms, such as
iyMy,'p0, etc., were measured during test.

Impedance Matrices

The matrix connecting the amplidyne
circuit of Fig. 2 with the primitive machine
of Fig. 1 is

The impedances Z, etc. are in operational-
form (r, + L, p), etc.

The value of k can be found from the
fourth of these equations

_ZIL+Myply - My;pl
k==Gszor, > O

and since M ;I is small compared with
Z+Myp

k is approximately Rz
5

Now if the current in coil 5 be written
kI, the following connexion may be used:

a b ¢ d
1 -1 a b ¢
2 i a 1
b 1
’ ! c= ©
Cat -1 ¢ ¢ ! .
"5 -1 1 d 1-k
z 1 By carrying out the transformation
P ] C/.Z'.C the following impedance matrix
L is obtained for the amplidyne :
a b B [4
a ri+Lp 0 kMyp=M,p
- ‘ ra+ry+ o .
b My pq Y Lot Lo+2Ma)p Ly'pb- kM y'po )
. ro+kry+r,
c| kMyp-Mypp = (Ly + My )b +(LL+Ly+kLg
~ kM~ My)p

3



In the case of the metadyne with zero compensation the terms containing k and
the terms M, are zero since the compensating winding is absent.  The impedance

matrix of the metadyne is then

’

a b ' c
a rn+Lp - 0 -Mp
b — Mi'p8 T orgtre+ ,
ap ) (L'+L‘+2M3‘)p Ll po . . (8)
- M, (LS ’ r2+rL‘
C 12P ( 3 +M3‘ )p8 +(L?+LL)p

The matrix equation e=Z.i for both machines may be written in general terms
using time constants 7 and amplification factors p as follows : ®

a b c
‘, al V al|ll+Typ 0 ~Tp a I,
by 0 |=b - uy 1+Typ py o b | I(rs+rd . . . (9)
c 0 c -Tp - iy 1+Tp ¢ ILR

where, for example

n
Ly +Ly+2M;,

L= ry+re!

and
R=(rs+ry +kr).

By eliminating the rows and columns of axes a and b, a transfer function for each -

machine may be obtained, thus:

Metadyne
I _ l sz(l + TaP) + g 10)
V"R (1+Tp)1 +TapXl + TsP) TuTcP‘(l +T3p) = paisy. l‘lf"szp +i‘zl"3(l + Tll)) )

where ,
Ry=(ra+rg)

and the terms T and u have values appropriate to terms of matrix 8.

Amplidyne :
In the fully compensated amplidyne the terms T, T‘, and p, from impedance

Matrix 9 are zero and the equation becomes

[ _Hipg ] . . . 1)
V Rz (l +T1P)(] +Ta[’)(| +Tnp)

where
Rg=rg+k"5+rL

and the terms T and p have values appropriate to terms of Matrix 7. The steady-
4



state equations follow by putting p=0in

Equations (10) and (11).

Amplidyne
{&Lﬂ(‘;—sﬂL?:p,yE:constant. . (12)

This shows the constant internal generated
voltage characteristic, - "

Metadyne
'_Mﬂ’pg .

I _ mpa o My'pl .
V" (ra+rp)(1 + papg)” riLy phconstant.

a3

This heglects some small products of
resistance terms and shows the approxi-

mately constant current nature of the .

metadyne.

For a machine with 80 to 90 per cent
compensation; having a fairly constant
current characteristic and the added ad-
vantage of greater power amplification, the
analysis is similar. :

- Testing

(i) The resistances of the control field,
the compensating and quadrature windings
were measured using direct current.
effective armature resistance was deter-
mined by calculating it by adjusting the
time constant of the load until the machine
became unstable. All other circuit para-
meters were known at the point of oscilla-
tion. Routh’s criterion was used. The
method is suggested by Kron® The
effective resistance includes a back e.m.f.
in the armature circuit due to slight dis-
placement of flux during commutation. It
is found to vary with the speed and
operating conditions of the maching. The
value of effective resistance is seen to be
about six times the stationary d.c. value of
resistance (see Table I).

(i) The inductances of the compen-
sating winding, quadrature winding, and
armature were measured by impedance
drop measurements at fifty cycles, but the:
inductance of the control field winding was
too high for such tests. This field induct-
ance was determined by measurement of
the transient time constant using a unit
function applied voltage.

In all cases it was found possible to
choose a straight line magnetizing curve

5

The

which was reasonably close over the,
proposed current range.

(iii) The ‘generation’ terms M,,'pf,
etc., were obtained by energizing one field
winding and measuring the voltage gener-
ated in the appropriate armature axis, with
the machine driven at rated speed.

Table I gives the measured values of the
parameters.

TABLE 1
: Rotation
Resistance Inductance Voltage Coeff.
Axis | Ohms | Axis | Henrys | Axis Coeff,
rno| 1010 | L, | 122 L/po 42
rs 842 L, | 01355 | Lypd 42
ra | 842 | Ly | 01355 | My'p6 | 1440
re | 245 Ly | 01177 | My/'p8 | 415
re |1 Ls | 0143 | My po | 42
rz | 18 Lz | 0169
r*| 13 My 382
st 13 My | 376
M, | 0126 |
My, | 0-1145 !

Stationary d.c. value.

Results

The equations of the machine, when
connected first as an amplidyne and then
as a metadyne, were obtained by substitu-
tion of the time constants obtained from
Table I into Equations (10) to (13) as
ollows :

Amplidyne
Steady-state equation
Ir_ 1102 '
V=936+r, (14

With 10 V applied to the control winding
the load current was varied from 0 to
4-5 amps. The result is shown in Fig.
3 (a).
Transient equation
1.=99(0277 - 0:439 %%t + 0-163 e-3*%). (15)

A step function of 99 V was applied and
the result is shown in Fig. 4.

Metadyne
Steady-state equation

I 120

V=3622+ 10877, e
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3 (b). ‘ This is the solution of Equation (10) with
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load resistance 5176 ohms in series with
an inductance of 0-658 henry and a step-
function voltage of 41 V applied to the
control field. The result is shown in
Fig. 5.

Metadyne Excitation of a Synchronous
: Machine

The advantage of setting up machine
equations in matrix form is demonstrated
by the following analysis. Operational

Where

E,;=excitation voltage.
¥, =resultant main field flux linkages.
yiy=direct axis resultant flux linkages.
¥, =quadrature axis resultant flux linkages.
r,=field resistance.
r=armature resistance.
pb#’=is the machine rotor angular velocity.

In terms of inductances and currents the
flux linkage equations may be written in
matrix form.

f d q
E/{ flr+Lip} Map S| i
dl-es|=d| Mip {r+Lip| -Lp8|ed] iy (19)
q |[-e, g Mupl' | Lop® | r+L,pi q| i,
equations of a synchronous machine are where
given below as used by Park, Crary, $a=— Maiy - Lai,
Concordia, and others, . ® bo=-Liy
It is seen that if the machine be excited Yr=Lis + Maia.
from, say, a metadyne and the system Elimination of the ficld axes gives
d q
d | es~ G(p)PE, d{~-r-L{p)p | LApp¥ d|ia
= . . . Qo)
g (e~ G(POE,] q| ~Ldplpt |-r-L{Dp| q| i
analyzed in matrix form the operational where
form of the final equations is identical with (p)=-Ms__
those for direct excitation and that the re+L;p -
various terms aré obtained automatically. Ld(p):ga_rdL«L/p;_Mu’p
The analysis is given to show the method. rr+lop
The final equations are complicated but L(p)=L,.

may be simplified by considering the
Constant Flux Linkage Theorem.

Synchronous machine equations are ex-
pressed in terms of direct and quadrature
axis quantities as follows ®):

Ficld : E,:p¢, + "/1, 1
Armature D. Axis: eg=ps ~ i pb - ris

(18)
w Q. Axis: e,=pdq +papt’ "iaj

Now if the generator be excited from a
metadyne the circuit is as shown in Fig. 6.

The metadyne matrix may be added to
the alternator matrix thus

Met.

@n

Alt.




If the quadrature axis in Matrix 8 be
eliminated, Matrix 21 has the axes shown
in Matrix 22.

1 2 f d q

—

’

L]

]

)
‘e

2
f
d

..........

S S,

q

The connexion matrix combining the
machines is
1 2 d q

—

23

0
&';N

q 1

The transformation C,.Z. C using this
connexion and Matrix 22 gives a matrix
of the form

1 2 d q

1

- pd=Electrical angular velocity of metadyne
armature, radians/second

p0’ =Electrical angular velocity of alternator
rotor, radians/second.

The Equations (25) would be simplified
and used to analyse the transient behaviour
of a synchronous machine in terms of the
input voltage ¥ to the metadyne control
field. S

A.C. MACHINES
The Single-Phase Series Motor

The circuit of the machine is shown in
Figs. 7 (a) and 7 (b). The connexion
matrix may be set up for (i) a motor with
the compensating winding neutralizing
armature reaction by being connected in
series with the main field and in opposing
serics with the armature; (ii) compensa-
tion by short-circuited compensating wind-
ing, the transformer action between arma-
ture and quadrature stator winding setting
up compensating flux., In each case the
main field is in series with the armature
quadrature axis brushes.

Series Compensation

a
2 1 1
. (249)
Connexion matrix C= (26)

q 3 1 :

Finally the axes 1 and 2 are eliminated, 4 |-1

giving again the operational equations
. - d q
d]| ea-G(p)pV | d|-r-Li(pp| LS(p)p® | d}| ia 5)
gle,~G(pptV | q | -Li(ppd [-r-L(plp| q | o
where Operation on the primitive machine -
o MLy t"f’u')f,’ff) impedance matrix as before, ie. Ci.Z.C, .
G'(p)= M.,(M,,p +oey gives ‘ |
2 ’ a !
L= {L,- MO L) - |
L.,'(P)-=L¢ Z'=a ry +L1.D +M1-:’;f :ZI‘; 3D = aup (27) ;
A=(ry+Lip)(ra+rs+ Lyp +Lip + A[C) !
= Mup(Mp + B[C) If compensated then |
A=Ly(Ly + My )p0* (Ly+Ly-2M,)=0.

B=M,'(Ly' + My )p8? Thus ) !
C=ry+ry+(L, +L‘+2A134)P ‘ V=(R +le+me)l J (28) I




Fig. 7 (a). Single-phase motor
with series compensation

Fig. 7(b). Single-phase motor

with short-circuit compensation

@ j b
where a s
‘ V=applied r.m.s. voltage :
P athal a|n+Lp+Mupb+ry+Lyp | - Mup
VX =M, p0. Z'= (33)
Where s - Myup re+Lep
Pi=vw.
' . . ] L Eliminating axis s,
In the a.c. machine sinusoidal distribu-
tion ‘of flux is assumed and the terms M,3pr\.
. My,'pd arising in the d.c. machine may Vz(""LL‘pJ'M””“’”L"’"ﬁL.p)’“ G4

here be assumed equal to M,,pf. Satura-
tion is not considered. .
The torque matrix is, by C,. G . C,

a
G'=a | My, 29)
and :
f=i*.wG".iSynchronous watts,
thus \
Vim
= (RFVE 7 X (G0)
If
(Ls+L-2M3)#0
then
’ 2
ViXn an

= RV ET O Xat Ko A0t

Short-Circuit Compensation

The current in the compensating coil is
i, and the motor current is i,. The con-
nexion matrix is

'

s

. 32

.

C,.Z.C gives

-If fully compensated L,L,=M,?2 an
ideal case which neglects leakage. In this
case, neglecting r, the equation is again

V=(R+jX, +vXpn)i,. 3%)

Torque is again i;* . wG’ .1,

Consideration of the Coils undergoing Com-
mutation ‘

The commutation e.m.f, of self-induction
is not included, but the short-circuit cur-
rents in the commutating coils, set up by
transformer action and rotation can be
simply considered. The coil is considered
to be one or two turns of winding 2 of
Fig. 1, short-circuited by the quadrature
axis brushes. Thus the coil has voltages
(a) induced by transformer action with the
main field, and (b) rotation in quadrature
axis flux.

The short-circuit current is i; and for
series compensation the connexion matrix is

d

\

a

1

(36)




C:.Z. C gives

a d
[ »
a| (Ly+Ls+L-2M)p | - M,,"p-Ly"pb
+ Mlﬁ p0
37
d| - My"p+(Ls~ My)po r"+L,"p

where r," and L,” are the parameters of
the short-circuited coil and M," is the
mutual inductance of the coil and main
field winding. The equations are

V=I[R+jX +vXnlia= [jiXn" +vXs"lia } (38
0=[-jXn" + WXy~ Xolis +[ry" +jXe"2is| ©®

The equations show that even with quad-
rature flux, i; cannot be reduced to zero
because of the quadrature time-phase differ-
ence between X,,” and w(X,-X,). The
e.m.f. of self-induction due to reversal of
current may act with these two to give a
smaller resultant and thus partial com-
pensation of the instantaneous short-
circuit current in the coils under the
brushes.

The following equations show that the
currents induced in the short-circuited coil
give a positive additional torque by
induction motor action.

a d
a Mlg - Lg'
Ci.G.C= 39)
d|Ly- My,
[=I*, oG’ .1
a is
I=
d ia
S= 0% X g + Lid Xs = Xag) — LidaXy” (40

The term i,i (X5~ Xs,) is negligible since
(X3-X3) represents only leakage flux
which is, comparatively, very small.

From Equation (38),

X
le= TG0
10

Thus the torque is the real part of

Circle diagrams for the machine may be
obtained by writing the equation for input
current in the form i =Y.V where V is the
constant applied terminal voltage. This
equation can be written in the general form

(4 +jB)+WC+jD)

ip=Jig=ETiFyTwe+iH)' ¥

42

the vector i=(ip - jig) in this case isa circle
with coordinates

V (FD+CE- GA- BH)

=" FG- EH

__V (HA+ED- CF- BG)

y=-3 FGTEH
and radius

b
r-| oA~ BC)+x,+y:|

FG-EH

TESTING

The machine tested was rated at 7:5 h.p.,
200 V, 25 ¢/s wound for six po]es with
normal speed 960 r.p.m.

The resistances and reactances were

measured by impedance-drop tests at rated

frequency. Open and short-circuit tests
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800
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Fig. 8. Single-phase scries motor
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It has been shown ® that the locus of |
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Fig. 9. Dynamic impedance of single-phase
series motor
were carried out in each case and the
resistances and reactances were referred
to their respective windings. The internal
connexions were brought to three sets of
terminal pairs, namely, armature, main
field, and quadrature windings. Since the

4

equations were derived relative to such
terminals on the primitive machine, the
motor parameters were measured from
these external terminal pairs. The para-
meters of simultaneously short-circuited
coils were related to two fictitious direct
axis terminals.

The measured parameters are shown in
Table II:

TABLE II

! Resist- | React- | Mutual

' Winding ance ance react-

j ohms ohms ance

| ohms
Main field 0119 3-04 —_
Compensating | 0-279 3-49 —_
Armature 0-277 3-97 —_
Main field/arm. — — 304

| Comp./arm. — — 349

Calculated and test results are shown in
Figs. 8 and 9. These curves show that
quite large no-load loss due to iron loss,
friction, and windage must be included at
some point in the analysis. Friction,
especially in commutator machines with
several sets of brushes, may absorb such
a proportion of the input power that it
cannot be neglected.

INDUCTION MACHINES

THREE-PHASE INDUCTION MOTOR

In order that the Equations (1) for the
primitive machine may be used for a three-
phase induction motor, the three-phase
quantities must be resolved along stator
and rotor axes stationary with respect to
each other and each having direct axis and
quadrature axis directions. This resolu-
tion has been used by Stanley.® The
three-phase quantitics are:

Stator voltages :
Rotor voltages :
Stator currents ;
Rotor currents :

€y €1y Cco
En E!n Et'
Ly Bby Loe

lm lln Ic-

The stator currents are resolved into com-
ponents similar to Clarke components
%, B, 0.09 In the following analysis of a
balanced machine the ‘0’ or zero-sequence
components do not arise. The relation
between « and B components in this case
is also simplified.

The two-axis components of stator axis
currents are defined as follows:

iy=3is- i(ib+ic)]]

=gy o1 “)

The two-axis components of rotor currents
are defined

iy~ 41, cos 8 +1,cos (8 +2r/3)
+1.cos (8~ 2n/3)]1

Iy= 3[1, sin 8+ I, sin (8 +2r/3) (“4)
+I,sin (8 - 2n/3)] |
For the balanced case
€, =€, h=1la
e,=FL, iy=1I,cos @
€= ~jEa==jey  iy=1I,sin 8= —ji[
ey= = je, i =iy

The relationship between the three-phase
machine parameters and their two-axes
11
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components is explained below under
*Application of the induction motor
equations’.

The ‘connexion’ relating the induction
motor axis currents and the primitive
machine is the unit matrix. The three-
phase motor is thus analyzed as a two-
phase machine whose currents, voltages,
and parameters may be transformed by
simple equations to give the three-phase
quantities, and vice versa.

The Equations (1), therefore, are those of
the two-axis form of the three-phase induc-
tion motor and also of the two-phase
induction motor. Since no voltages are
‘impressed’ in the rotor axes of an

This operation gives for steady-state
conditions, putting p =jw and pf =vw and
s=1-yv,

1 2
1| V] 1] rn+iX, JXm A
= . "
210 2| jsXm |ratisXa} 2] 4

Using the torque Matrix 2, the transforma *
tion C,.Z. C gives

ordinary induction motor, the voltages i
e; and e, ‘are normally zero. These
equations are seen to be identical with those 2 L | M,
derived by Stanley, G'= 49
When the system is balanced the axes 3 3 |-My,l -L,
and 4 may be eliminated® by the (non- 4 ‘
invariant) transformation 1.Z. P where
1 2 3 | 2
1 { 1] 1
2 1 2 1 !
1= P= (46
3 0 3 -j
4 0 4|-;
12




N 250 and the torque is i*.wG” . where i is

MOTOR WITH ADVANEER /-:.
AT 1000 %.P04.1 » \

1| 4

200

Iy

. . (49)

150

, Lb-Fe.

2
3% i
4

i

TORQUE

e - 00
o A2 MOTOR ""‘\
) dé omuy For a balanced machine
'% 50

iaLaiaziaLsia
and

torque = —{* X iy +i;* X pi, . (50 .

” ” where
siip Am=wMy=wM;;=uM.

_ In Equations (47), V is the stator r.m.s.

applied voltage per phase and i, and i, are
\ the stator and rotor currents respectively.
The equations are those of an equivalent
two-phase motor. The total torque of the
three-phase machine is then

= = Y3 Xmby + Yo Xmie. . . (51

\‘-Ul‘\l‘ﬁﬂo

A sooe

SYNCHEDONOUS WATTS

This equation may be verified by deriving
the torque in terms of the three-phase
current values.® For balanced conditions

4000

TEST ~ri

. iaXmi1= - ingl"

ToRQUE N

from physical considerations and
total torque three-phase= ~ 3i, X,.i; :
o =3i* jXmly . (52

ots ot o o 005 e total torque two-phase= — 2i,X i,
suip =2ig* . jXmiy . (53)

4000 Substituting the values of i, and i;
obtained from Equations (47), the torque
— per phase of a three-phase or two-phase
motor is given by
VisX,2r
=gyt L

WATTS

Y000

(54)
where
D=(r, +jX)(ry +j5sX;) + sX "

\ 2000

\\ 1000
.. TEST

€ .CALCULATED|LESS NO) Fig. 11 (top). Torque speed curves for three-
Loao | Loss ° " phase induction motor with phase-advancer

os o3 o o4 ° Fig. 12 (centre). Three-phase induction motor
sLw Fig. 13 (bottom). * Two-phase induction motor
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From Equations (47) the stator current is

IN SYNCHRONOUS

1l=’—*i1f{!- 2 (1)

This may be written in the form of
Equation (42) to give the circle diagram.

TORQUE
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Rotating Axes

The induction motor may also be ana-
lyzed from fixed stator axes together with
axes rotating with the rotor. The trans-
formation or ‘connexion’ matrix is, then,
relative to the primitive machine of Fig. 1,

1 2r 3r 4
1 1
2 cos® | ~sind ~
C= (56)
3 sin 8 cos 8
4 1

where 2r and 3r are rotor rotating axes.
The transformation of impedance to the
required axes is given by @)

Z'ZC;.Z.C+C¢.L.2g.p0. (X))

Where L is the primitive machine induct-
ance matrix. For a balanced symmetrical
machine the impedance matrix Z’ may be
simplified by elimination of the quadrature
axes using the transformation 1.2’ . P=2"
as before.

The equations then become
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Fig. 14. Sing‘l';‘-;hase induction motor
and
0 = iy Mpe¥wt=0) o jy. ey 1 [, L pelv | (64)
o 0.-=i jsoMel¥ + (iyry + i jswLy)el (65
of O=i,js X +iry +jsX) . (66)

These "are seen to be identical with the
equations obtained using stationary axes.

1 2r
1 |Veitt+®| 1 | p4Lip | Mpe® | 1 iedut
U . - . (58
2r 0 2r | Mpe-jé | ry+L,p | 2r ie?
where Simple Phase-advancer
y=wt~-0. (59)

and ¢ is the input power-factor angle.
Physically, this set of equations repre-
sents the machine currents and voltages in
the form of vectors of constant magnitude
rotating with angular velocities w and dy/dt
relative to their respective windings.
From Equation (59)

pr=w- pb. (60)
For steady state
sw=‘-tll;/=w— Vo, (61)

Thus
Vel(wtt ) =i 7 eiwt + M . jei®+Y), ;‘1!’(0 +y)  (62)

or

V=17, + 1, X (63)

The simplest type of phase-advancer
consists of a wound rotor with a commu-
tator, driven to rotate in an unwound
stator, the stator merely completing the
magnetic circuit. A two-pole armature
will have three brushes set at 120° round
the commutator, As with the induction
motor, the three-phase currents in the rotor
may be resolved into direct and quadrature
axes relatively stationary.

The two-axis impedance matrix of the
advancer may be written

d q
dirg+L,p| Lpt
Z¢= " . (67) '
q=L.p0 |ra+L.p

where pf’ is the electrical angular velocity
of the armature.
14




‘For balanced conditions
d

ra+js'X,

Z,=d

(68)

where s’ is the slip of the armature current
vector angular velocity relative to the rotat-
ing armature. .

When used with an induction motor, the
motor slip-rings on the rotor are connected
to the advancer armature brushes.

In this case

s=1-v
where

,__Motor slip frequency angular velocity w,

V' = ~advancer armature angular velocity we

When Matrix 68 is combined with
impedance matrix in Equation (47) for the
induction motor, the overall motor imped-
ance matrix becomes

1 2
1| r+iXy JXm
- - (69)
2| jsXn |ratra+isXe+js'X,

It should be noted that when considering
the interconnexion of the two machines, the
reference axes must be the same in each
case, if a simple connexion is to be used.
In the above case stationary axes on each
machine were used.

The effect of a phase-advancer on the
motor performance is shown in Figs. 10
and 11.

SINGLE-PHASE INDUCTION MOTCR

The single-phase induction motor may
be considered to be the same as the two-
phase machine with zero quadrature stator
current. The other three components are
present since the single-phase motor has
invariably a three-phase or two-phase rotor
winding. Thesingle-phaseinduction motor

. equations are thus

Steady-state motor torque is again given by

—i* X iy

Thus

2
S= P Xiatrlrad = X1 -)] . (7))
where D is the determinant of the imped-
ance matrix of Equation (70) and D* is its
conjugate.

Equation (71) is seen to give zero torque
at standstill when v=0 and a small
negative torque at synchronous speed. It
is seen to check identically with the
equation given by Sabbagh.®

APPLICATION OF THE INDUCTION MOTOR
EQUATIONS

The machine equations are relatively
simple. For balanced operation it has
been shown by Stanley and by Edith
Clarke ® 19 that the two axis parameters
of a three-phase machine are identical with
phase-to-neutral values measured with
balanced three-phase applied voltages.
For the three-phase machine, therefore, the
parameters may be obtained from straight-
forward no-load and locked rotor tests.
The machine resistances and inductances
are referred to their respective windings.
The two-phase and single-phase motors
have usually a three-phase rotor winding,
If, however, for a two-phase machine the
stator parameters and the overall input
leakage reactance be measured by balanced
two-phase tests, it is possible to consider
the rotor as an equivalent two-phase rotor
carrying the same current and having
fictitious values of parameters. The calcu-
lated values of reactance are referred to
their respective windings, using the actual
machine turns ratio phase to phase. If the
rotor resistance be measured from the rotor
terminals then this phase value is multiplied
by 3/2 in order to keep the same value of
rotor copper loss with the equivalent two-
phase winding carrying the same current,

1 2 3
11 Vi ] n+Lip| Mpp 1} i
21 0 |=2| Mup | ry+Lep| Lapf  [2] i . . . (70)
31 0 3| -Mupb| -Lpd| ra+Lsp| 3| s
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TABLE 11I ¢
; 3-phase | 2-phase
D_ata R Advancer Motor | Motor
H.p. C— 15 5
Speed, r.p.m. 1500 945 1400
Yoltage 15 440 200
Frequency c/s 50 50 50
Stator resistance
(ohms) — 0-562 098
Rotor resistance
(ohms) 0-045 0975 0-384*
Stator reactance
(ohms) — 32-8 48-2
Rotor reactance !
(ohms) 1-11 355 13-68* !
Mutual reactance !
(ohms) — 322 | 3468 |

* Equivalent two-phase values.

- The single-phase machine parameters may
be determined in a similar manner,

If required, the derived equations may
be used for more exact analysis by allowing
for variations in the parameters due to
carbon brushes, saturation, and skin effects.
Table ITI gives the parameters of machines
tested. Figs. 10 to 14 show the calculated
and test results.

The two-phase machine was used for
both two-phase and single-phase motor
tests, in the latter case with one of the stator
phases open-circuited.,

CONCLUSION

The use of a primitive machine together
- with the application of matrix algebra is
found to be a most powerful tool in the
general analysis of electrical machinery.
The fundamental concepts of inductively
coupled windings remain unchanged
throughout the analysis and the same
unified approach and notation may be

Reprinted from the BEAMA JOURNAL, April and May 1954

used. The only assumptions made are |
those already long established in the |
attempt to treat electrical machinery by}
linear analysis. ,
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SUMMARY

In the analysis of modern electrical machine systems there has been
a trend towards the use of various components of the variables and
parameters of the system, examples being the use of symmetrical com-
ponents and direct- and quadrature-axis quantities. Such quantities
may be considered to be different “reference frames” to which the
various currents, fluxes, etc., are referred. Kron has shown that such
transformations may be expressed in a general way when the equations
of a network or machine are written in tensor form,

Transformations may then be carried out to any one of a number
of reference axes, which may be stationary or rotating with respect to
the windings of the machine or network. In particular it has been
found that in certain cases there are advantages in analysing machines
with respect to axes rotating with the flux.

The purpose of the present paper is to investigate the tensor form
of the equations of electrical machines, to demonstrate the differences
between tensor and non-tensor terms and to show how these terms are
interpreted in application to simple cases. The equations of a
primitive machine are examined in both stationary and rotating axes
and the equations of a 3-phase series impedance and a 3-phase induction-
motor are derived in both systems of reference.

LIST OF PRINCIPAL SYMBOLS
Tensor Notation

Indices:
a, b, ¢ = Quantities in axes fixed to the machine stator and
rotor windings.
k, n, m = Quantities in axes all relatively stationary.
a, B, ¥ = Quantities in axes fixed or free on the stator and
rotating freely on the rotor.

s, t = Quantities associated with the mechanical rota-
tional effects in the machine (e.g. generated
voltages and torque).

u, v, w = Quantitics in a general equation.

Electrical parts of the equations:

S Js €1C. = Electrical voltage vectors in axes denoted by
indices.

xk, x*, etc. = Electric variables. The electrical charges in
machine windings, referred to axes denoted by
indices.

x* (equivalent to %) = Electric current vector, in axes denoted
by indices.

R,s = Resistance matrix, in axes denoted by indices.

L., = Inductance matrix, in axes denoted by indices.

G., = Generated voltage coefficients, in axes denoted by
indices.

Mechanical part of the equations:
f Mechanical force,
= Mechanical variable 8, the angular position of the
machine rotor during rotation.
¥ (equivalent to i) = Angular velocity of machine rotor.
R,, = Mechanical friction coefficients,
L,, = Moment of inertia of machine rotor.
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General symbols:
e = Generalized force vector (voltage or mechanical
force).
R = Generalized dissipation matrix (resistance or
friction).
L = Generalized inductance matrix (inductance or
inertia).

i = Generalized current vector (electric current or
angular velocity).
Ck = Connection matrix between quantities in axes
denoted by indices.
C = Direct notation for C%, etc.
C, = Transpose of matrix C.
Q“ = “Non-holonomic object” containing functions of C,
in axes denoted by indices.
[«B, ¥] = A “connection™ term containing functions of L.,
in axes denoted by indices.
I'ys., = A “connection” term containing both [«f, y] and
2,5 in axes denoted by indices.
= Rotational or torsion tensor containing the anti-
symmetrical part of I';,, in axes denoted by
indices.
Sinm = Tensor components of Ty, giving the terms G,,,;.
B = Flux-density matrix, a tensor.
¢ = Flux-density matrix, a non-tensor,

Tknm

Synchronous Machine Notation

¢, = Field voltage.

e, = Direct-axis terminal voltage.

e, = Quadrature-axis terminal voltage.

i4 = Direct-axis current.

i1 = Quadrature-axis current.

R, = Field resistance.
R, = Armature resistance in direct axis.
R, = Armature resistance in quadrature axis.

L, = Self-inductance of field winding.

L, = Armature self-inductance in direct axis.
L Armature self-inductance in quadraturc axis.
M Mutual inductance in direct axis (field-armature).

(1) INTRODUCTION

The recent increase in complexity of electrical power networks
such as control systems and interconnected power-transmission
systems has led to the introduction of systematic methods of
analysing the behaviour of networks and machines. The
powerful methods of symmetrical components brought about
rapid methods of solution of problems associated with unbalanced
polyphase circuits; the introduction of the two-reaction theory
into synchronous-machine studies has simplified many aspects of
the analysis of power-transmission systems. In’dealing with
complicated problems the trend has been towards the use of
components of the quantities involved which, while they are
entirely fictitious, lead to elegant solutions.!”!® In such cases
the actual variables and parameters of the system (currents,
impedances, etc.) are transformed into the required components.

In 1934 Kron, in America, developed a technique! for dealing

(1)
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systematically with such transformations. In his analysis Kron
ensures that the electrical power in a network is invariant under
a given transformation to new components. He does this by
introducing the methods of the tensor calculus. Tensors are sets
of quantities which are functions of a set of variables and are
subject to certain laws of transformation when the variables are
changed (see Appendix 10.1). The subject was developed in the
field of the geometry of generalized spaces and consequently the
terminology in the literature is largely geometrical; for example,
the variables are referred to as co-ordinates: The following two
properties of tensors are invaluable in application to any group
of transformations:

(a) A set of functions usually written in the form gg is associated
with tensor transformations, where @ and b range over the n variables.
This set of functions determines an invariant, Wthh has the same
magnitude in all reference frames.

The element of the invariant is usually written in the literature

as dl and then
(dl)? = g pdxadxb

where dxa and dxb are differentials of the variables.
this tensor is demonstrated in Appendix 10.1.

(h) If an entity is a tensor and exists with a non-zero value in one
reference frame (or system of variables) then it has non-zero values,
usually with different components, in all reference frames. Quan-
tities which are not tensors may arise in one system of reference and
become zero in another; in other words, they may arise because of
the particular reference frame chosen. This effect occurs especially
when there is relative motion between the reference axes.

The use of

Kron takes a primitive or elementary representative network
which has comparatively simple equations; these are written in
tensor form and transformed to give the equations of the required
system.

A wide range of machines can be considered as a group of
interconnections of the windings of the primitive machine shown
in Fig. 2, and the equations of any of these may be obtained by
transformation of the primitive-machine equations.

The expression “reference frame™ denotes the system of
measurement from which the variables and parameters are deter-
mined. In a static electrical network a change of components
from branch to mesh currents is a change of reference frame.2
In the case of a slip-ring induction motor, stator currents will be
measured from stationary terminals and rotor currents from axes
rotating with the rotor, In commutator machines the reference
axes are relatively stationary, Park's application of Blondel's
two-reaction theory simplified synchronous-machine theory by
converting the stator and rotor quantities to relatively stationary
axes, Kron's analysis deals systematically with equations of
machine systems having either stationary or relatively moving
reference axes, the transformations in all cases following the
routine laws of matrix algebra and tensor calculus. His work
has introduced to engineers wider concepts of transformation,
invariance and theory of groups, all of which have been invaluable
in analysis of complex systems in various branches of physics.
The purpose of the present paper is twofold, namely to bring
together some of the scattered works dealing with Kron's methods
and present a continuous account of the development of the
subject, and to analyse in detail the distinction between tensor
and non-tensor terms in machine equations,

The analysis starts from the dynamical equation of Lagrange.®
As is shown in Appendix 10.2, Lagrange’s equation gives the
relation between the potential and kinetic energies in a system
and the applied forces, in terms of generalized co-ordinates. In
electrical form the corresponding relations are those between the
magnetic energy and the applied voltages, in terms of generalized
variables which are the electrical charges in the network, This
equation is very suitable for certain classes of transformations
of co-ordinates, but it has been found that under the conditions
of transformation obtaining in electrical machines a modified

form of Lagrange's equation must be used. The modified
equation was developed by Boltzmann and Hamel!? to cover
certain conditions of constraint in dynamical systems and, as
Kron has shown,® the Boltzmann-Hamel equation can be used
to form a basis for tensor analysis of electncal machines from
the dynamical viewpoint.

(2) MACHINE EQUATIONS

The first type of primitive electrical machine to be considered
is shown in Fig. 1. The rotor is assumed to be smooth and to

Fig. 1.—Primitive machine with axes fixed to windings.

have on it a symmetrical 2-phase winding sinusoidally dis-
tributed. The field is fixed in space and consists of windings ds
and ¢s in the stator—direct and quadrature axes respectively.
Iron loss and saturation are neglected. The armature axes
a’ and b’ are fixed to the armature and rotate with it. Three-
phase machines may be analysed by resolving the resultant
armature current and flux vectors along two similar axes.”

The inductance of phase a’ of this machine may be written:4

Phase a’ self-inductance = L, + Lgcos20 . (1)

where L, = (L, + L,)]2
Ly = (L, — L,)J2

L, and L, are the self-inductances of rotor phase a’ when
in the dnrect- and quadrature-axis positions respectively. The
corresponding values of mutual inductance, rotor to stator,
are M and M,

The equatlons of this machine may be derived from the
dynamical equation of Lagrange:*

d DT) DT

di\dxe Dxc
In electrical machines the generalized variables x¢ are the
electrical charges in the circuits and the rotor angle 6. The

quantities x¢ therefore represent the currents i¢ and the rotor
angular velocity df/dt. T, the stored magnetic energy, is given by

dxe dxb

—-f....(Z)

Ta 'iLab“T; -‘7[ . . . (3)
F, the dissipative force, is given by
dxa dxb .
F= *Rab'?; 7 . . . (4)

For the above machine4
T = (L, + Lgcos 20)(i#)? + ¥(L, — Ly cos 2)(#¥)?
+ 3L, (i%)2 — Lgsin 200’ + M, cos Bitsia’
— Mysin Qidsi¥” + M, sin iati®’ + M, cos i’
+3L G . . . o oo s o s 0 )
F =3[R, (%) + Ry (i¥) + R, (i%)? + R, (i4)’] (6)
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Substituting egns. (5) and (6) in eqn. (2), the complete set of equations for the machine may be written

e = Ri + pLi )
“where { p = a
where (p =7)
In matrix form these are?
ds a b’ qs
ds | eg ds| Ry + pLy pMcos 8 —pM;sin 0 ds| i
a | e, a’{ pMycos8 | R, + p(Ly cos?0 + L, sin?6) p(L, — L,)sinfcos 8 pM,sind | o' | i@
b | e | —pMysind p(L,, — L) sin 6 cos 6 R, +p(Lgsin?8 + L, cos?6) | pM,cosf | b i*
as | e, gs pM, sin 0 pM, cos 0 Ro+pL, | gs| ie
®

Nore.—The index associated with each current value is written as a superscript since this is required by the index notation used in tensor calculus.

From eqn. (8) the inductance matrix may be written as below. An additional mechanical row and column s may be added to

include the mechanical inertia.
The general inductance matrix is therefore:

ds a b qs s
ds L, —Mcos 8 —M,sin 6
a| Mjcos Ly cost8 + L, sin?6 (L, — Lg)sinfcos b M,sin 8
b | —Mysinf | (L, — L,)sinfcosb L, sin28 + L, cos? 8 M, cos 0 )
qs M, sin 6 M, cos 8 L,
N L::
where L,, is the moment of inertia of the rotor.
It is shown in Appendix 10.3 that in tensor form the equations ) ]
of Lagrange are written Thus Lagrange's equations give
d2xb dxa dxb dib  dL,. b
(bdﬂ-l-[b]d, dt+R‘bdt =f . . (10 e_R‘,,;+er + Qi )
— bL(b Lca bLab or e, = R, ib + ( i ) e s e e (17)
where [ab,c] = 3 Sxa + - It T ke (11 cb cb

The voltage equation is obtained by allowing the free index ¢
to cover the electrical range of variables, the other indices ranging
over the electrical and mechanical parts:!

dixb dxa d dx dib dxb
ec = Loy + s, ]i_xﬂbld: @ tReg o
or ”ba' + [as,cliais + [sh,clitib + R,ib . 3)
From eqn. ( 11),
1 “-' DL — bLas
fasel =5 bx“ oS T o

Since there is no mutual coupling between an electrlcal row and
a mechanical column

L oxe 0
wis _ Vg dx®  1dL,,
[as,c]lal" = 2 w’"'{}? - '2 d’ (14)
[sb,clicib = 5 d—d[;‘i”ib R ( £))

This is, of course, Maxwell’s equatlon as shown in eqn. (7).
The equation of torque is obtained by allowing the free index
to cover only the mechanical part of the range of variables,! thus

[y = Rt +L"d2 + [ab,s)ivib (18)
1dL
where [abs] = — 33 0‘”’
b d0 13y,
Therefore  f, = Ry— 7 + L,— Y ) iajb 19

R,%—f = frictional torque
2
Lstﬁ

1 bLa,,
and — 5

= inertia torque

iaib = electrical torque

The second form of the primitive machine considered here is
shown in Fig. 2. The rotating axes @’ and b’ of Fig. 1 are here



Fig. 2.—Primitive machine with stationary axes.

resolved along the direct and quadrature axes. All axes are now
relatively stationary. This primitive machine has been used by
Sabbagh, Stanley, Kron and others’™!! as the basis of the
analysis of many derived machines. The equations may be
written down by inspection when the resistance voltage-drops
and induced and generated voltages are considered. In matrix
form these are written

LYNN: THE TENSOR EQUATIONS OF ELECTRICAL MACHINES

Fig. 3.—Primitive machine with axes rotating frecly.

ds dr ar g
ds| ey ds| Ry + Lyp Myp ul
dr| e, _ dr M, Ry + L,p L,p8 M;p0 . aj, jdr -
qr| e, gr| —M;pb —L,pf R, +L,p M,p ol i . .
as| e, qs M,p R+ L,p gs| i

The voltage vector contains impressed voltages in all axes.
The generated voltage coefficients are written, for example,
M, pB as compared with M p for the induced voltages since the
flux waveform may not be sinusoidal. When the flux waveform
is sinusoidal the maximum voltage generated by rotation of a
coil in this flux at synchronous speed will be equal to the maxi-
mum voltage induced by this flux linking the coil and Mpfi
is equal to M, pi and M; = M,. Eqns. (20) are scen to include
those for a synchronous machine according to Park’s two-
reaction theory.'® These as used by Concordia!? are written:

Impressed field voltage, e, = i/R, + prif + M pidr
Generated voltage,

ey = — Mypif — Ri* — LdPl‘” + L,plier @n
Generated voltage,
e = - Mdpol'f - Ldpgid’ ol quq’ - Lqpiq’

In synchronous-machine studies the quadrature-axis stator
(field) coils are omitted unless amortisseur windings are being
considered. Here sinusoidal flux distribution is considered and
M, = M, etc.

Egns. (20) may be obtained from those of the previous form
of primitive machine using the relationship

= jdr cos B + ie sin 0}

= jar cos § — idr sin 0 @2

i’

In index notation the stationary-axis equations may be written?

Voltage, e,, = R,,,i" +L,,,,, = i G,i"pl . (23
LY G s 24
Torque, f, = R,i' + L, an G ™ 24

Using the concepts of the tensor calculus these two equations
are written by Kron? as one electro-mechanical equation,

. div
e, = R,Ji*+ L W + Pw wh 25)
, din i .
voltage e,, = R,,,i" + L,,,,,——t + Dygmi*is + Ty, isin . (26)
) dit
torque f, = R,i' + L,— o + D, ikin 2N

The equation of Maxwell, egn. (17), does not give these equa-
tions directly since it does not include generated voltages. The
following Sections show that the connection I',, ., arises
naturally because of the dynamical relationship between the two
types of primitive machine, this being quasi-holonomic and
non-integrable. Fig. 4 shows the form of the connection l"m,
when written as a matrix in the form of a cube, together with the
arrangement of matrix multiplication leading from eqns. (26)
and (27) to eqns. (23) and (24).

(3) NON-HOLONOMIC TRANSFORMATIONS
The currents in the armature axes a’ and b’ in Fig. 1 may
be resolved along ““d” and “‘q” axes shown in Fig. 2, the relation-

ship being

Since the variables in Lagrange’s equations are the charges, x4,
eqns. (28) represent a transformation of differentials of the
variables, where dx?/dt = ia, etc, These are equations of con-

jdr = ja’ cos B — i sin 6

2
jar = ja’ sin 0 + % cos 6 (28)
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Fig. 4.—Machine tensor equation written in matrix form.

straint among the differentials of the variables x*, and the
transformation must therefore be written

dxdr = dx%’ cos § — dxb’sin 8 29

dx? = dx* sin 8 + dxb’ cos 8 coe e
They obtain at a given instant and cannot be integrated to give
a relationship among the charges. There is no corresponding
relationship ‘ .

xdr = f(xa’, x¥’, 6)

If such a function existed the following results would be
obtained:?

dfr dfdr
dr — - ’ e ’
dx Dx“’dxa 537 xb,dxb
i bfdr — (dr
Thus l'f W, = Ca’
oy . o dCwr
Then 39=—s'“9“a’é—aw=mo‘a_x-7_°

Such non-integrable relationship between sets of variables is
fully treated in Reference 13.
In matrix form the transformation is written

dxk = Ckdxa. . (30)
AN KNa 4 b a\
d | dxdr d| cosx* —sin x* a | dx
or = (30a)
q| dx¥ gl sinx* | cosx? b | dxt’

where x* is the geometrical variable 8.

The dot in front of the index a indicates that g is a column
index. The inverse transformation may be expressed

“dxa = Cadxk
a\_ aNk d g 1N
al dxv a’ | cosx* sin x* dl dxdr
or = (&)))
b dx? b’ | —sinx® | cosx* q | dxe .

Since the relationship is non-integrable and only the differentials
of the charges x* arise in the equations,

dxk

k —
C_,;ébxa P 7))
also, as shown in Appendix 10.3,
' dCe e
Y hab v A X))

Such a relationship is non-holonomic.!*> The non-holonomic
form of Lagrange’s equations was developed by Boltzmann
and Hamel.!3 This is written

4 H) T +£C"Cg % _
de\dxe dxc - dxd €N dxn

This is seen to consist of Lagrange's eqn. (2) with the addition
of terms containing the non-holonomic t}’ansformation and its
inverse. If the relation between variables is holonomic,

2 _ ¢ _ o

o ok

.. | F
m)"“’*ﬁ“ . (39

(3%
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Eqn. (34) may be written in tensor form in a manner similar to
eqn. (10), and as shown by Kron% and Gibbs? it contains terms

which retain the non-integrable relations of eqn. (33). The
tensor form of the equation is
d2xs dxa dx dxs
fc Lcadz [ b ]dl dt caE’ (36)
where now
VL
— b — ab
fabie] = '(axca + axba axc) H o0+ ey = - OT)
where Qo =Q4L, (38)
¢ (e '
k(n k - n
and =135 - 5o . (39)

(4) QUASI-HOLONOMIC SYSTEMSS

The machine axes transformations in Section 3 are not entirely
non-holonomic because the angle 8, the mechanical part of the
generalized variable x*, arises in the analysis and transforms
holonomically; i.e. the mechanical part of the transformation is
one of variables and not of differentials. This simplifies the
analysis considerably.

In transforming from the rotating-axis machine to that with
stationary axes the transformation may be expressed

dxds = dxds
dx® = cos x* dxr + sin x* dxa"

Zi:’ : ;;qs’m x*dxd" + cos x*dxar .. @0
dxs = dx*
or dxd = C%dxk

a\, a\kds dr ar gs s AN
ds|dvar| ds| 1 | ds | dxés
alde| a cos x! |sin x* dr | dxdr
b |dxt | =b — sin x*| cos x* gr | dxe | (41)
gs | dx] gs 1 qs | dx3s
s | dx* s | s| dxs

There are two distinct parts of the range of the old variables,
namely xP, the electrical variables, and x@, the geometrical
variable 8. The L’s and R’s, whether electrical or mechanical,
depend only on x€ and do not contain the electrical co-ordi-
nates xP. Such an absence of specific co-ordinates in the
components of geometric objects is called in geometry a *“‘cylinder
condition,”!6

In a holonomic reference frame the geometric ochcts are
expressed as functions of the co-ordinates x*, and in a new
holonomic system they become functions of new co-ordinates.
In a non-holonomic system, however, there exists instead of a
set of new co-ordinates, a set of new differentials. Relative to
a non-holonomic reference frame the geometric objects are
expressed as functions of new differentials, and coefficients,
which are functions of the old co-ordinates. In general, there-
fore, the new equations carry forward the original holonomic
co-ordinates in these coefficients, along with the new differentials.
In this analysis of machines, however, the geometric objects of

the new frame may be expressed without carrying forward the
old co-ordinates, because the coefficients are functions only
of 6, which transforms holonomically to the same value in the
new reference frame.

Thus, even though the new equations have been derived by
non-holonomic transformation, there is nothing in their final
form to characterize them as being in a non-holonomic reference
frame. Therefore, as shown in Section 35, the final equations of
the stationary-axis machine may be considered to be holonomic,
with a connection I', ,, which differs in form from that of the
first holonomic machine. It is for this reason that a further
non-holonomic object may be set up between the machine in
reference frame (iii) in Section 5 and that in frame (ii) (considered
as holonomic).

The equations of the second primitive machine (with stationary
axes) are now written

R NECaE )
+ Qe + Qpsn — Qk,,_m]fg; ég; + R,,,k%;,c—: . (42)
where L,=L,CCs. (43)
dxs = C% dxm 44
and Qi = 1C3C gc %%')L,,k . (45)
From eqns. (41) and (43)
m\k ds dr qr qs s
ds | L, M,
dr M, L,
L= (46)
qr Lq, M,
qs M, L,
s L,

Thus the terms dL,,[dx,, etc., in eqn. (42) are zero since the
inductances are not functions of either charges or angles.

It is obvious that the term C* may be differentiated only with
respect to the mechanical part of the range of variables, x¢, and
the expansion of the non-holonomic object is therefore simplified.
For example, in eqn. (45), either a or b must be x* (or 0). Let the
values of a, b, m, and n range from 1 to 5 to cover the five rows
and columns of C™. The only values of C* and C} inside the
bracket of eqn. (45) which can be dlﬂerentnated to give non-zero
values are

a=5 b=2o0r3

b=5 a=2o0r3

Since either @ or b must be 5, the following possible values of

Ca.Ch may be written down
ci3 aa
C§C§ C;C}

ac
aq

i3
19
It is further seen by inspection that when a and b are both 5,

Q# _ is zero, and when a and b are unequal, one being 5, one
term of the bracketed quantity is zero.




LYNN: THE TENSOR EQUATIONS OF ELECTRICAL MACHINES 7

The general equations are therefore

dCh

20 = ChCis - @7
dCh
20h = — Cgcgmb . (48)

The possible non-zero values of % may be written down by
inspection and are shown in the following array:

m\n 1 2 3 4 5
1
2 Q3 :
n = 49
3 Q3
4
5 €% | @&
A similar array may be written for Q3 . Also
,0C2
Wy = GO =23
= sin? x% + cos? x* = 1 (50)
Similarly 262, =—1
25 =1 (5D
203, = —1

All the other values of QF, are zero.

The resulting object is Qf , or Q#  according to whether m

or n takes the geometrical angle co-ordinate value, x*:

N\n ds dr gr as s
ds

dr 1

204, = . (520)

qr —1

qs

s

I m ds dr qr gs s
ds

dr —1

20k o = . (52b)

qr 1

gs

The object Q/ is seen to be skew-symmetric in the indices m
and n.

In the equation of Lagrange the “Christoffel symbol” is
written [ab,c]. In the non-holonomic form of the equation the
corresponding connection is

[uv,w] + Qwv,u + Qwu,v - qu,w (CK)

This is made up of the symmetrical part [uv,w] and the skew-
symmetric part (Q,, , + Q,, , — £,..), these together making
an asymmetrical connection? written I, ,,.

The non-holonomic equation of motion of the machine is
therefore written as in eqn. (25):

v 240
e=Rdx dx

dx¥ dxv
w wv’zt" + va_dt‘z‘

m),w';r,‘ E (54)

+T

The electrical and mechanical parts of the equation are shown
in Section 2, eqns. (26) and (27). ,

The symmetrical part is zero since L, is independent of
x5 (which is equivalent to ). The connection has then the
following components:

r un il = Lo mi®i® + Lo mi®i + Lyen,kir. (55)
where, for example,
I’s,,,,,,i-'i" = (Qpns + Q,on — Q" (56)
" do
where = )
The term €Q,,,, _ is seen from eqns. (45) and (48) to be zero, and
since L2, . is skew symmetric in the indices s and n, the term
Q,, %" is also zero.
Therefore Ly pdsi® = Qg %00 C1))
Dpgmi®i = Qi (58)
Fk”,siki” = 2an,kiki" . (59)
Thus the electrical equation becomes
) din Q -‘-k
€, = Rmn'" + Lmnﬁ' + 2 m.\',k"l . (60)
and the mechanical equation is
it dit | o0y gk
f; = R_"l + le"{" +2 skt ¢ (61)

The last terms in eqns. (60) and (61) are found on expansion,
using eqgns. (46) and (52), to be

m\k ds dr qr gs s
ds

dar Lqr M, q

= —2Q (62)

ZQm.\'.k =

sn,k

qr —Md _Ldr

qs

s

Eqn. (60) is now seen to be identical with the matrix eqn. (20)
written down by inspection in Section 2. The equations for the
commutator or stationary-axis machine have been derived by
transformation of the dynamical equati'on of motion of the
holonomic rotating-axis or slip-ring machine,
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If now a further transformation be carried out to axes rotating
at any arbitrary angular velocity p8, it is found that some of the
terms of the equation transform tensorially while additional
voltage terms arise which are due only to the measurements from

Eqn. (65) is shown in Section 2, eqn. (7). The inductance tensor
is shown in matrix 9. From the inductance matrix and eqn. (11),

[ab,clici® = [sb,cli*ib + [as,clidi* = 2[as,clidis

the new reference frame. Tensor analysis separates the tensor and 2[as,clisi® = &' ‘ﬁia
quantities which arise in all reference frames, from those quan- : 5 o0 dr
tities which may arise in one reference frame and disappear in F tri '9 g
others. The nature of the connection I',,, is examined by rom matix % 3¢
a\a ds a b qs
ds  —M,siné —Mjcos b
a ~Msin 0 2L, — L) sinfcos @ (L, — Lyg)cos? 8 — sin? 6) M, cos 8§
. (67)
v —M,cos 8 (L, — Ly)cos? 0 —sin26) | —2(L,, — L,)cosfsinb —M, sin
qs M, cos 8 —M,sin 0
Lo , . dL,df.
The equation is therefore e, = R s+ L pi¢ + S5 @ N (319
This may be written e. = R + L_pid + V_,ipb + G_ipl (68b)
where
(AN ds a Y gs
ds —Msin 0 —Mcos 8
al (L, — Lg)sin 8 cos 8 ~L,sin20 — L, cos?6
Via = (68¢)
b’ L, cos?f + L, sin28 —(L,, — Ly)sinfcos §
qs M, cos 6 —M,sin 0
c\a ds a b qs
ds
a ~M,sin 0 (L, —L,)sinfcos b Ly sin20 + L, cos? 0 M,cos 8
G, = . ' (68d)
b'| ~—Mycosb —Ly cos20 — L, sin?8 —(L,, — Ly)sinf cos 0 —M,sin6
qs

considering the transformation to general rotating axes. The

objects I, , and Q¥ have the following laws of transformation :2:3

¢,
F”Ivl. W' = F‘",’ WCZ'CS’C::I + LW“C::W),' (63)
RV Yo i Yol
and Q= QnCuCHCy +5(5% ~ _b;c";)c;,cy,. . (64)

The quantities I, , and Q,, , are therefore not tensors.
The equations of the electrical machine with general rotating
axes are derived in Section §.

(5) THREE REFERENCE FRAMES
(5.1) Electrical Equations
(5.1.1) The Holonomic Frame. (i)
e, = R j% +pL_jis .
e. = R i+ L pit + [ab,clivib

(65)
(66)

(5.1.2) The Stationary Axis Frame. (ii)

From Fig. 2 it is seen that the transformation from frame (i)
to frame (ii) is given by

dx¢ = C¢, dxm
where
e\m ds dr qr qs
ds 1
a cos 0 sin 6
Cop = (69)
b —sinf| cos@
qs 1
The equations for frame (ii) are
O = Ryi® + Loy pik + Ty ikin . . . (70)
where Dipmi®in == Ty p0in 4 Ty pikis o0 0 (71)




LYNN: THE TENSOR EQUATIONS OF ELECTRICAL MACHINES 9

Also Ty, kit = [knmli%in + Q. & + Qi — Qo )ik and Ly = L C5C8 (79)
= ZQm'ki’i" (72) This becomes
ds Sy S3 as
ds L, M, cos 0, —Msin 6,
S M, cos 0, Ly cos?8; + L, sin0, (L, — Ly)sin 0 cos 6, M, sin 8, &0
S, —M,sin 6, (L,, — Ly)sin 8, cos 6, L, sin?0, + L, cos? 0, M, cos 6,
qs M, sin 6, M, cos b, L,

The terms L, and 20, , are shown in Section 4, matrices 46
and 62. The equations may therefore be written

The geometrical variable x® transforming holonomically
remains 6, from matrix eqn. (40).

e, == R, i* + L., pi* + G, ,.i*pl . 73)
o e Now  [afyl=a(me 42w 3
(5.1.3) The Frame having Rotor Axes Rotating Freely. (iii)
The transformation matrix from frame (i) to frame (iii) is and [sB,y)isi® + [as,yli%® = 2[as,y]i°‘i’ ... (8Y)
a\a ds Sl Sz qs DLYG
— ve Ly .
s : and 2[as,ylivis = ( S5 + =X be i%pf
a cosf, | sinf, = DL“”‘i“p()
C% = (74)
b’ —sinf,| cosé, _ AL, df, d0
4 0 30, B a
AL, b,
= Y T ... (83
where, from Fig. 3, 8,= 60 —0,. Therefore 2as,yli% T i (83)
P\ ds Sy Sz qs
ds —M,sin 6, —Mjcos 0,
-S| —Mysin§, 2L, — L) sin 8, cos 6, L, cos?f; — L, sin?8, M, cos 8,
AL, —Ld, cos 9, "+ L, sin?6, .
'301 S| —Mycosb, | L,cos?b, — Lq sin2 6, —2(L,, — L) cos 8, sin 6, —M, sin 8,
: —L, cos 260, + L, sm2 8,
qs M, cos 6, —M,sin 6,
The equations in frame (iii) are From eqns. (38) and (47) 0
! y d
e, = Ryit + Lygpit + Dyq vt (5) 20, = 5 T
where  Dugyivit = g itif + Dogyiois + Top gt (76) = °§'; C Lm‘ji (85)
o i%if = {[aBy] + Qpg + Qas — Qupdidi® . (77 N o d0
and af,y {{ B,y YR va,3 a,v} ) Therefore 2Q, 4i%i* = D() C,LM dt . (86)
trical f th i f .
The electrical part of the equation therefore becomes where C, is the transpose of matrix Ct, (matrix 74). 2.
ey = Ryi® + Lygpit + {2[as,ylitit + 2Qy;4%¢} . (78) s then
N\ & ds Sy S, qs
ds
S —M,sin 6, (L, — L) sin 8, cos b, L, sin28, + L, cos? 0, M, cos 8, &0
Sy| —Mgycos®, | —L,cos?b; — L, sin26, —(L,, — L) sin 6, cos b, —M,sin 6,
qs
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The equations may therefore be written
ey = Ryi® + Lyopi* + Vioi®p0, + Goi®pl; + G oi%pb, . (88)
or . ey = Ry,i*+ L,pi* + Vyi®pb) + G ,i%p0 . (89)

The equations of the machine in reference frame (iii) may also
be obtained by transformation of the reference frame (ii).
. From Fig. 3 the transformation matrix is

m\y ds S AV qs
ds 1
dr ' cos B, | —sin#b,
cm = (90)
qr sinf, | cos¥b,
qs 1
Ly = L, C7Ck = matrix 80 @
The equations may be written
ey = Ryi* + Lypit + Ty (i%id . 92)
where Pag# = [fl/g,‘y] + QYB.G + an,ﬁ - Qaa’Y (92(1)

The terms )5, are non-holonomic objects of the frame (iii)
with respect to the holonomic frame (i), and

Quy = Oy, CECICT + (bCa )ckan ©3)
1B,Y kn,m>- a3y 2 dxn dxk Sy ¢
Now Fagyii® = {2[as,y] + 20, ,)i*pf 94)
Al 20, =20 cresck + S 95
SO vs,& ms kY S s a xS ab-sbdy o o ( )
and 20, , = matrix 87
where Qa=Q,, kC"'CgC& %96)
ACE 2
And S ekcm,Y pd = A CkLy, pB,
3
bb—gkcﬁl-zw = minus matrix 87 (¢l
1
2[as,y] = matrix 84 . (98)
The equations therefore may be written
e, = Ryi* 4+ L,pi* + Vitph, + G,i*%p8,
+ Gyoi*pB — G ,i%ph, (99)
or €, = Ryi* + Lyypi* + Viuipb) + G 4i%p0 (100)
(5.2) Equations of Torque
(5.2.1) Frame (i).
d d0
fi= J,dt + L”d 5> + lab,s)ieib (1o1)
’ do a0 1dL,,
or S = R”dt + L”dﬂ - T{; jajb (102)

An asymmetrical matrix A may be written as the sum of sym-
metrical and skew-symmetrical parts, thus?

A+d,  A—4,

A=— p)

Using this relationship it may be shown that

1 bLab jajh — ja;b
3730 —ifi G pidib | (103)
thus f.= S,Zf + Ls,‘;f — G it (104)
(5.2.2) Frame (ii).
do d0
fu= Ruge + Lugz — Gud"i* . (105)
(5.2.3) Frame (iii).
do d29
f,= R, — 7 + L,— T + [of,s1i%iB + 2Qq,i%8 . (106)
do a0 1dLy ,
fi= Ry + Ly — > w” i%8 — Goi*iB . (1064)
1 3Ly 1dL,,5d0
N = 8= - T
ow 3 0 % 3 391 d0 i 107)
df
and Gy = 00 ’d(;L“‘ . (107a)
d0 do,  do,
This  f,= Ry + LT — Gu(S + D)o . cr0g)
dB d20 .
or S =Ry~ 7 1 L, i Givi® (109)
(5.3) The Torque Tensor
It is seen from eqns. (62) and (87) that
Gya = G, CrCk (110)

It is also found on examination of the matrices in the previous
Sections that

Gmk = GcaCmC . " L (111)
and Gyu = G,,C5Ce (112)

The torque matrix therefore transforms as a tensor and is
associated with the holonomic variable f. The equations of
frame (ii) may therefore be written®

ey = R,i% + L, pik + T, isik (113)
where T, is a tensor; or
m = mkik + Lmkpik + ("' S, nk = Smkn + Sknm)iki" (“4)

where S, is defined as a tensor having components equal to,
but the negative of, {2, .. The negative value is chosen in order
that the tensor here defined will be that given by

I — Toe) - (115)

the skew-symmetric part of I';, .. That this is a tensor may be
proved by the equatlons of tensor calculus.!* This is a well-
known tensor quantity in geometry of n-dimensional spaces and
is there termed the “torsion” tensor. In terms of the torsion
tensor the equations of frame (iii), derived from frame (ii),
may be written

ey = Ryi* + Lyapi* + {[aB,y] — Sypa — Syap
+ Sapy + QYB at Qw g~ QaB,Y}iaiB (116)
0 ¥ ,
where Qupe = (555 = 554) CiCiLay - 17
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The terms (— Syp.Sy — o + Sapy) and (4 + Qyap — Qag )
may be compared with eqn. (93) where on the right-hand side
there are a tensor term and a non-holonomic object.

It is thus shown that in any of these three frames the following
terms transform as tensors, e, i, L and G; also, G is associated
with pf the rotor speed. The generated voltage term due to V'
arises because of the choice of reference frame and is a function
of the angular velocity of the frame with respect to the direct
axis. If the angular velocity pfl; becomes zero, 8, becomes 6
_ and the equations of frame (iii) give those of frame (ii). If pf,
becomes pb, 8, becomes zero and the frame (jii) equations give
those of frame (i).

These relationships may also be derived by transforming I as
a whole? using eqn. (63), instead of transforming the components
of T" as has been done here. This method, however, does not
show so clearly the mechanism of the transformations.

(6) APPLICATION

The tensor equations of electrical machines may be used in two
ways.! In the first, a comparison is made between the primi-
tive machine and another type of machine whose equations
are required; for example, a metadyne, Schrage motor, etc.
This aspect of Kron’s work has been extensively treated.2.5,10.11
In such analysis the connection matrix C is set up between the
currents in the primitive machine coils and those in the inter-
connected coils of the derived machine, and the equations of the
primitive machine are then transformed as shown by Kron,
Gibbs and others, to give the required equations. The second
application has been used more recently.2® This consists of
transformations among the reference frames of a given machine.!$
A familiar example is that of the synchronous alternator which
may be analysed by setting up the equations with respect to
quantities appearing at stationary 3-phase armature terminals,
or alternatively by using Park’s equations which contain quan-
tities arising with respect to rotating direct- and quadrature-ficld
axes. The d- and g-axes quantities are, of course, fictitious, but
this reference frame leads to linear differential equations, often
with constant coefficients, and is therefore widely used. It has
been found,2%:2! however, that Park’s form of the equations
becomes very complicated when rotor oscillations occur in the
machine. In hunting studies a more suitable frame is one which
rotates freely at synchronous angular velocity and is independent
of the rotor oscillations. The equations in this form, of course,
become identical with Park’s equations when the rotor has a
uniform angular velocity with no oscillations or acceleration.
It is not proposed to discuss the oscillations of machines here,
nor indeed to deal in detail with the use of the synchronous-
machine equations, but simply to present the concepts of changes
of reference frames using the tensor technique developed by Kron,

The reason for changes of reference frame is apparent from
examination of Park’s equations. In a rotating-field alternator
the d- and g-axes of reference rotate synchronously with the
ficld structure relative to the armature. Under balanced steady-
state conditions the fluxes and current and voltage vectors along
these axes will be constant in magnitude and rotating in space.
Thus the steady-state equations of the alternator are obtained
from eqns. (21) by putting terms such as Lp equal to zero, where
p operates on a current component, retaining. the p terms
where p operates only on 8 to give the angular velocity. The
steady-state equations are then

ey = — Ryidr + Lqp(?i‘l' . . (118)
6, = — R — M pbif — L pbi#

It is obvious that if differential equations are to be set up for

any machine or network to which the alternator is connected,
these must be expressed along the same reference frame, the
operator p must have the same significance and the steady-state
equations must therefore be obtained as before when terms such
as Lp become zero. In most equations of a.c. machines and
networks, with sinusoidal voltage and currents, the steady-state
equations are obtained when Lp becomes jwL. In this case a
transformation of reference frame is required if these machines
and networks are to be analysed in conjunction with inter-
connected synchronous machines, Two very simple cases will
illustrate the required transformations, namely the equations of
a simple series impedance having resistance and inductive
reactance, and those of a 3-phase induction motor. Both of these
have been analysed by Kron, but the analysis as set out below
demonstrates details of the general method of using tensor
equations for this purpose. The transient equation of a simple
RL series impedance may be written '

e= Ri + Lpi

Under steady-state conditions, with sinusoidal voltage applied,
the equation becomes

e = Ri + jwLi

which may be obtained from the transient equation by putting
p equal to jw. When a 3-phase system is being considered the
instantaneous line currents and phase voltages and impedances
may be resolved into Clarke components.22 In order to conform
to the phase positions and direction of rotation shown in Fig. 1,
the current components may be defined as follows:

b =324 — i —i¢) , . . 119)
9 = &—}—j(iﬂ -9 . . . . . (120
PO=34+#E+ic . . . . (12D

where i4, iB, iC are the instantaneous line currents (Miss Clarke
uses indices « and B instead of 4" and @’ as written here). Zero-
sequence currents i® are those residual currents in the neutral
connection to an unbalanced load or point of fault. To simplify
the analysis a balanced system will be considered with no zero-
sequence currents. In a machine wound for three phases these
instantaneous components ¢’ and i¢’ lie respectively along the axis
of phase A and along the common axis of phases B and C in
quadrature with phase A. These are the same as the axes b’
and a’ used in the holonomic primitive machine, Fig. 1, and are
stationary with respect to the armature phase windings. The @’
and &’ components of an external 3-phase network would be
connected to the machine axes as shown in Fig. 5(a). It is there-
fore possible to define for either a machine or stationary network
a set of currents iS! and iS2 expressed along axes rotating with
uniform angular velocity with respect to the axes of the Clarke
components. From Fig. 3 the relationships among such
currents may be written

ie" = iSt cos O + iS2sin 6, }

b = — iS1sin 0/+i32 cos 6[ . (121

For a stationary network the holonomic (Lagrangian) equations
in terms of @’ and b’ components are

AN LAY a’ b
al| e, ad|R+Lp al iv
= (122)
bl e b R+ Lp b i
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®

i%=—ji®

iC

Fig. 8.—(a) Synchronous machine with external network. (b) Clarke
components of a balanced 3-phase system.

or in index notation
e, = R,i"+ L piv

where
w\Y o b’ wm\py a b
al|l R al|l L
R,, = and L, =
b R b L

In the free frame the equations become [see eqn. (78)]

ey = Ry,i* + Ly pi* + 2[as,ylitis + 2Q, %% . (123)
where [from eqn. (121)]
NS, S,
a’' | cosf, | sinb,
Cly = . . (124)
b | —sinf| cosf,
and it = Cr iz
e, = CJe, (G, is the transpose of C7y)
Ry = R,,CC;
L,=L,CCy
It is found that in this case
Rya = R,,
L.=L,
Thus Ays,a) = bbf; + b:;* - Bbl;) =0
and therefore e, = Ry,i* + Ly,pi* + 2, ,i%i (125)

8
where 20, .isi* = 2Q8 Ly,ivpl = %C'YWLaaiapﬂf . (126)
. . Yol
In direct notation  C?, = C and 2Q§, = C'W . 127
: /
ALY S;
S, +1
Thus 208, = R (1)}
s, -1 .
AR Sz
S5 +L
and  2Q,,= =V . . (129
' S| -L
Thus ey = Ryi* + Lyopi* + Vyivpl, . . (130)
A rotation matrix may be defined by
Vi=pilss - « « . . (131)
Sy +1
where  p} =2Q8 = 132)
S -1

This is the rotation matrix used by Kron,24

In eqgns. (132) above it is not a tensor, being part of the non-
holonomic object ).5,. A similar matrix arises in connection
with the formation of the torsion tensor defined in Section §, and
this is then referred to as the *‘rotation tensor” (there is an
algebraic connection between this tensor and the coefficient of
rotation defined by Ricci!4).

The equations of the 3-phase network in terms of axes analogous
to the rotating d and g axes of Park thus become

N\ N\e__S S2 AN
Sl es| Sl R + Lp Lpef Sl isl
= (133)
where €5 = €, cos 0, — e, sin b, 134
esy = e, sin b, + e, cos b, (13)

By trigonometrical substitution it may be shown that in the
steady state, when e,, = E, cos wf and e, = je,,,

egp = EA(:/((-)I—O/) €5y :._—jeSI
iS1 = JAghwt—0p) iS2 = jisi
When the rotating reference frame has synchronous angular

velocity, pf, = w,
es) = E4
ISt = A e

The balanced steady-state equation may be written down by
putting p = 0 in eqns. (133) and using eqns. (136). Thus

ig, = RiS! + jowLiSt . . .

(135) (136)

(137

(138)
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And at synchronous angular velocity v = 1, and
eg, = RiS1 4 jXis1 (139)

The operator p has therefore the same significance in the transient
eqns. (133) as in Park’s eqns. (21).

13

stator appears to rotate synchronously backwards and the rotor
to rotate backwards at the angular velocity of slip.

The relationship among the currents in the stationary axes
and those in the free frame may be written

i% = iS3cos 0, — iS4sin 6,
idr = {S1cos §; — iS2sin 6,

= (143)
i = iStsin 0, + i52 cos 0,
s _ 153 ot <.
(6.1) The 3-Phase Induction Motor i#s = iS3sin 6, + iS4 cos 6,
) ) or im = Cmiv . (144)
A 3-phase induction motor has been analysed by Stanley® by s s s s
expressing the equations in terms of an equivalent 2-phase m\y Ss 1 2 4
machine. The 3-phase rotor and stator currents, voltages and ds | cos @ —sin 8,
flux linkages are resolved along two axes, namely the axis of the !
stator phase A and the common axis of the stator phases B and C dr cosf, | —sin 6,
in quadrature with phase A. Since both rotor and stator where Cm — (145)
quantities are resolved along the same two axes these are relatively i qr sinf, | cos#,
stationary and fixed on the stator as in Fig. 2.
The equations for a balanced symmetrical motor with voltages gs| sinf cos 8,
applied to the stator may therefore be written !
ds dr qr qs

ds €45 ds Rl + Llp Mp ds jas
dr 0 dr Mp Ry + Lyp L,p8 Mpb dr| ¥

= (140)
gr| © ar —Mpl ~L,p8 Ry + Lyp Mp gr| i
qs| g gs Mp R, +Lp gs| i

or e, = mkik + Lmkpi" + Fk,,'miki".

where R, = Stator resistance per phase.
R, = Total rotor resistance per phase.
L, = Stator phase inductance,
L, = Rotor phase inductance.
M = Maximum value of mutual inductance stator/rotor
phase.
In balanced steady state i4* = jiss, jdr = ji¥ and p becomes jw,
and L,(p — jpf) becomes Ly(jw — jpf) = jswLy, wheres =1 —v
angular velocity of rotor
synchronous angular velocity

and v =

Eqns. (140) therefore become, in balanced steady state,

g = (R + jXDi# + jX i . .
0 = jsX, i 4+ (Ry + jsXpi?r .

when an induction motor is associated with a synchronous
machine the motor equations may be written in terms of axes
rotating with the flux as in Park’s equations. In the balanced
steady state, in this case, the vectors representing voltages,
currents and flux linkages, are constant in magnitude and rotate
synchronously in space around the stator of the machine. As
shown in Fig. 3 there are two axes, S; and Sy, in quadrature on
the stator, and two, S; and S3, in quadrature on the rotor. The
stator and rotor axes are both rotating synchronously and are
again relatively stationary. One would therefore expect to find
that the equations in this frame have a form similar to those of
stanley and Park. This is, in fact, the case. Both induced and
generated voltages appear in the equations, but as in the
synchronous-machine equations the steady-state equations of the
motor are now obtained by putting such terms as Lp equal to
zero, and only gencrated-voltage terms remain. It will be seen
from the free-frame equations that, relative to these axes, the

(141)
(142)

The equations in the free frame are, as before,

e, = Ri* + Lypi* + 2[as,ylitpd + 2Q. 4i%p8 . (146)

where e, = Ce,
Rya = Ry CTCE
L= L,,CyCk
L, is shown in matrix 46.

It is found on carrying out the transformation that

Lya = Lmk
Rya = Ly
therefore again 2[as,y] =0
c . 0C5
Now 2QY,_, =20, CrCiCs + >0 CrLls, . . (147) -
and [eqn. (62)]
m\k ds dr qr qs
ds
dr Lz M
ZQ,,,,.,‘ = (148)
qgr| —M ~L,
qs

This term of the right-hand side of eqn. (!47) is seen to transform
tensorially (in this case to the same matrix)
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ZQ,,“_ kC;"C" Eqn. (154) may also be derived by starting from the holonomic
machine in frame (i), Section 5, the relationship among the
YNe_S; St Sz Ss currents is then (Fig. 3)
S; i4s = §S3cos 0, — iS4sin 6,
ja’ — jS1 iS2 si
s, L Y ’.:, i .c;os Qf +i :n b, (155)
— 2 (149) b’ = — Stsin 6, 4 i52 cos Of
S;| —M —L, e i9 = $3sin 0, + iS4 cos 6,
ori* = (9%,
S4 a\a SJ Sl SZ S4
d. ] —sin 6
This is the term referred to (by Kron) as the “torsion tensor,” T %% Y
the name being taken from geometry. a cos 9/ sin 0/
Ca, = (156)
Now 39 C"'Lsa 6 = 30 C"’L&ng (150) b —sin 0| cos 6,
and in )
y\s 33 Sl Sz S4 qs sin 1 cos 1
S5 -1 The equations in the free frame, when transformed directly
from the holonomic equations are [sce Section §, eqn. (78)]
3o —1 (st ey = Rygi® + Lygpi® + 2[as,ylinit + 2, oisi»
0, Y S, 1 where in this case
DC
s, 20, = Cs 30 (157)
This is the single non-holonomic object arising between the
Therefore holonomic frame and the non-holonomic free frame.
YNx Sy S, S, S, Again L= L, CCs
Sy -M | -L T = RO .
For a symmetrical induction motor represented by Fig. 3, the
S —L -M inductance matrix 9 in Section 2 becomes
DC'B"C'"L l : (152) d b
—_— Sa = . ’ ’ )
2, Yo : M L (AN s a q.
ds L, Mcosf | —Msin8
Sy L M
a’l Mcosh L, Msin 6
L,= , (158)
Thus (297: 0+ memL&xpg ) = b | —Msinf L, Mcos 6
,y\a 53 Sl SZ S4 qs M ssin 0 M cos 0 L|
Sy —Mpb, | —L,pb, Using the relation 6 = 6, + 6, from Fig, 3, then
S, —Lyp@ | —Mpl YN*_ S5, S o) S4
(153)
SZ 1"[[)0’ szg’ SJ Ll M
S, M L,
Sq| Lipd, | Mpl, L= (159)
where pf' is the angular velocity of slip, namely pf#, —pf
(which is equal to —p0,) In the free frame the equations of the S, M L,
machine therefore become
S3 Sl SZ S4
SJ "SJ S3 Rl + Llp Mp -—M[)9| —-Llpgl SJ "SJ
S| o S| Mp R+ Lp | —Lypt —Mp¥’ Sl 1 s
== (
S 0 S; Mpt’ L,pt Ry + Lyp Mp S, | %2
S4 €cy S4 Llpol A/ngl Mp RI -+ L]p S4 iS4
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From matrix 156

S3 —db,[db
. S do | do
C',cw‘8= i (160)
0 s, —df/do
Sy | df,/df

d2C3 4O
€ Ls,— gives matrix 153,
And G5 Loz &
It is seen that the induction-motor equations in a free frame
rotating at uniform velocity, when derived from the stationary
reference-frame equations, assume the form

ey = Ryi® + Lyopi® + p1Ly,i%p8 + pyL.,icp0, (161)
S5 Sy Sz Sy
S3
S -1
where p| = (162)
A 1
Sy
S, S S, S,
53 "'1
S -1
and p; = (163)
2 1
Sy 1
p1Lya is matrix 149 and pL., is matrix 152.
Eqn. (161) may be written
€y = Ryaia + Lyapia + Gyai”pe + V-mi“pel (164)
or in terms of flux vectors
e=Ri+pyp+Bpl+e@pf . . . (165)

Synchronous-machine equations in this form are discussed by
Kron!'5 and used in his hunting analysis.2®
In balanced steady state

i54 = jis3 i82 = jiSt | (166)

The operator p is zero when this operates on the steady-state
currents (but pf, = vw).
Thus, eqns. (154) become

egy = (R + jowL))iS3 + jrwMiSt °
0 = jswMiS3 + (R, + jswLy)iS!

When the reference frame rotates at synchronous speed with
respect to the stator winding, then pf;, = @ and

eg3 = (Ry + jXis3 + jX,is!
0 = jsX, i3 + (Ry + jsXp)is!

167)

(168)

In this reference frame the operator p has the same significance
as in the two-reaction theory of Park, and the free frame equa-
tions for a motor or network may be combined with those of
synchronous machines when an interconnected network is being
considered.

(6.2) Induction-Motor Torque Equations
The motor torque is given by eqn. (106).
Since [xf,s] = 0, the equation (neglecting the mechanical
friction term R,;) becomes:

2
Impressed torque f; = Lsf:j,_za + 2Qp 4i%i* (169)
and at constant angular velocity
Generated torque = — 2()p ,ifi*
where, as in eqns. (62), (03 4 is the negative of Qm,
ACE
Thus Qg o = — Cg“ayL“f‘ =
a\ﬁ S3 Sl Sz S4
S 46, i
’ M | L
df d
S LS| ML
! Lz | ~Ma
. (170)
S2 M—‘—Iy Lz'ap-
Sy LI“]@‘ "Mdfg‘
B\
53 is3
S, iS1
8= a7
S| %2
Se| ise
Qp iti% = iSUSIM — iS%SIM | (172
or; Qg ,ifi* = it — e . (173)

where i, and ¢, are the flux linkages in axes §; and S,

respectively. )
The gencrated torque given by Q:g,aiai“ is seen to be that

given by

f=Givit. (174)
where G = pilya
or8 f=i*B . (175)

where i* is the conjugate of i7.

(7) CONCLUSION

The analysis of electrical machines may often be simplified by
transforming the variables and parameters from the real phase

"reference frame to real or fictitious stationary or rotating reference

axes. Changes of reference frames similar to those demon-
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strated in the paper have been used by Kron and Ku in the
derivation of equivalent circuits for electrical machinery.3.23
Tensor analysis is a most useful mathematical tool for handling
such transformations. Tensor equations look complicated when
first used because the notation is comparatively new to engineers.
In practical application, however, when the equations of a
machine are written in tensor form they are fairly simple and the
technique of transformation and calculation of phenomena
become a matter of routine procedure.

This method of handling machine problems ensures that the
analysis is systematic and the equations are of a form that often
leads to clearer concepts of the interactions of the various
currents and fluxes in the system. It is possible to distinguish in
the equations between terms that have existence in all reference
frames and those which arise because of the reference frame
chosen [compare for example the terms G.,i%p8 and V.,i%p8,
in eqn. (164)].

It is intended that the foregoing presentation of Kron’s work on
the tensor equations of electrical machines should provide a
groundwork on which may be built a more complete ‘mathe-
matical and physical analysis of machine stability problems by
investigating the phenomena in various reference frames.
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(10) APPENDIX
(10.1) Tensor Transformations!®

Tensor analysis of electrical machines is largely concerned with
transformations of machine equations.

Tensors are sets of quantities, often represented by matrices,
which are (a) functions of a set of co-ordinates (variables) and
(b) subject to certain conditions of transformation when the
co-ordinates are changed. The basic laws of transformation are
set out below.

Let P be a particular value given by n co-ordinates x/
(G =1,2,...ninonereference systemand by £/(j = 1,2,...m)
in another system. Let Q be a value close to P, given by
x! + dx! and #/ +dg/. The two sets of differentials in the two
co-ordinate systems are connected by the equations

J
d,\"f=%j—ldx‘ B § ¥ 9]

The infinitesimal displacement PQ gives an example of a *“contra-
variant™ transformation. The indices are written by convention,
as superscripts.

Another form of transformation is given as follows. Con-
sider a scalar 4 which is invariant in all co-ordinate systems.
The partial derivatives of A with respect to the co-ordinates x/
in one reference frame are given by A, = dA4/dx!. In another
system with co-ordinates x/ the partial derivatives will be given by

43t W

==, . . . . (77
YT 7Y T am
!
Consequently A= A,g—; . (178)

The vector whose components in the x's are partial derivatives
A, is the gradient of the scalar A4 (grad 4). This is an cxamplg
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of a “covariant” vector, or tensor of the first order: it has one
index written as a subscript. In general terms the two different
forms of transformation may be written!®

First-order tensors (vectors):

dx/

Contravarxant a) = u—. (179)
dx!
. dxT
t 5, =v —— 180
Covariant 4, v"bi 5 (180)
Second- and higher-order tensors:
.54 dxb
b —-
Contravariant g2 u“ﬁbxa S50 (181)
bx“ dxb dxe
be — By
4 X% 338 3 (182)
IxT JxP
Covariant o = UneS 2T Sk (183)
- OX™ dxx dxu
Ukm = Ve 7 3 5 (184
x2 /yz
/ ax
/ (. L dx

/ do’ y!
N - -

0 x!

Fig. 6.—Cartesian, rectilinear and polar co-ordinates.

(10.1.1) Example of Simple Linear Transformation.

Let P be a point located by Cartesian co-ordinates x! and x2
as in Fig. 6. A linear transformation to new rectilinear co-
ordinates is given by the relation

x! = aly! + aly?
2 lz 1 zﬁ 2 (185)
x%=ajy! + a3y
or x* = C* y¥ (186)
a\
1 x!
where Xx® = e (187)
2 X2 .
EANUAED 2
1 al al
= (188)
2 a? a3

uN
1 »!
= (189)
2 y2

(The column index of matrices such as C% is preceded by a dot).
In Cartesian co-ordinates the length of the vector OP is given by

(A2 = (x")? + (x2)2 (190)

This length is invariant with respect to any change of co-
ordinate system. In the new co-ordinate system, by substitution,

(A)? = ylyl(ala] + alad) + 2y'y*(ala? + ala))

+ y¥y¥ala} + a}ad)
or (A =g + ey + 820V + ey’
& = (ala} + alad), g2 = (ala} + aja))

£12 = &2 = (aja} + aja})

(191)
(191a)

where -

and

In matrix notation (A)? = g,axax? { g1, 2} . (192

In Cartesian co-ordinates

NB 1 2
1R
8ap = (193)
2 I 1 '
and g, px*x? is
N\ | 2 aN\B 1 2 B\
x1 x2 |1 1 1 oa
. (194)
2 1 21 x?

The quantity g,p is a covariant double tensor and transforms
according to eqn. (183); thus from egns. (183) and (188)

S = gaﬁcu C.Bv (19%)
e 1 . 2
1 a) a

Cot = : (196)
2 a} a3

(the transpose of matrix 188)

and g,
\e 1 a\jB ! 2 A1 2
1 al az 1 1 1 a‘ a‘
L I L= Lasm
2| a a% 2 1 2| a a3
u\Y 1 2
1 | ala) + a?a} | a3a} + ala}
or By = . (198)
2 [afe} + aget | g} + et
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which gives eqns. (191) when «# and v each take the values
1 and 2,

The tensor g, or g,5 is called the “fundamental tensor” or
“metric tensor” of the system. The metric tensor is necessary
in order to calculate invariant properties of vectors or tensors,
for example, the length of vectors, the angle between vectors and
parallel displacements.

(10.1.2) Non-Linear Transformation.

An example of a non-linear transformation of variables is
given by the change from Cartesian to polar co-ordinates. In
this case the transformation must be one between differentials
of the respective co-ordinate systems. From Fig. 6 it is seen that

x!'= Acos8” %
x2= Asin 8"’ (19)
dx! = — Asin0'd8"” + cos §’dA
e L e e (200)
dx? = A cos 8"d8" + sin8""dA
Now dxr = C%dxk (201)
AN (AN
1] dx! 1| dA
where dx* = dxk =
2| dx? 2| 49"
aN\ k 1 2
1 cos 0" —Asin8”
and  C%= Co.L (02
2 sin 8" A cos 8”

Calling the invariant line element of length of any vector, in
Cartesian co-ordinates, dI,

(d)? = (dx")? + (dx})? = g pdxrdx® (203)
where g, is given in matrix 193.
In polar co-ordinates
(dl)? = gy dxkdxn . (204)
where in = 8asC2CB, . (205)
AN | 2
1 1
thus Exn = (206)
2 (A)?
and gk,,dx"dx" =& ]dl&dx\. -+ g22d9"d0" (207)
£2=8=0
therefore
dD? = (dA)? + (A)(d0")? = (dx")? + (dx?)? . (208)

(10.2) Lagrange’s Equation8.13

In dynamics the behaviour of a system may be calculated
provided that the parameters of the system are known, i.e. the
masses, inertias, etc., together with the forces and constraints
acting on the system.

Certain properties of the system will be invariant under a

transformation of co-ordinates, one of these invariants is the
kinetic energy in the system.
Kinetic energy T = {mw2.

Now - (dD)? = g pdxdx?
a xb
therefore ( d) = a,,ddxt ‘ilxt = g pXaxb (209)
Thus T=4mgyxaxb . . . . (10)

Lagrange’s dynamical equation in generalized co-ordinates
x< for a free system acted upon by forces £, is written (neglecting
potential energy in this case) thus:

d s dT oT
aGr) ~ 5 =r
T Mg p%9xb)
3
3 b

— }mgabx b — + }mga,,x"b —

=imgpi® +dmg,xe . . . . . Q1))
where 82=l, a=c Sb=1, b=c
d T dga,, b dg,,(
§(00) = sl S 1)
— bgt'b dx" Dgac dxb b .
- im(ﬁ Tt 5 dr ) +Ame X + dmg g
= m (Dg"’ + bg“)mb + mg b 212)
dxa - dxb b
D Wb,
I imb—xc(é’abx"x ) = *mTX;""x X Qn)
Thus
d T )T 0 , 9 O 5 »
dt 3;5) 5}—5_& (Dx" T b T o )xax + g
= mab,c)xxb + mg %P
= m{lab,cliakb + g %%} . (214)

The expression in compound brackets in eqn. (214) is that for
the acceleration of a particle in terms of generalized variables or
co-ordinates. The quantities mg,, define the metric tensor L,
in dynamics. This term comprises the moments of inertia of
the system,

Lagrange's equation may therefore be written as in Section 2,
eqn. (10):

f. = L + [abcliaxt . . . (215)

While neither of the terms on the right-hand side is a tensor
by itself, the expression on the right-hand side as a whole is a
tensor. This is illustrated by a transformation to new co-
ordinates,

fi=C, . + « . .

Sy = L% + [afylizk® .
where [L..%* + (af,y)x2x#] = [L %2 + (ab,c)%?xb]CS .

216)
217
(218)

and
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In an electrical network the equation corresponding to eqn.

(215) becomes
. dygr . g dgr
e, = L“’”_a't—z + [m,,w]w v 219)
dir y -
or e, = L‘”"_t + [uv,wliniv | (220)

where the metric tensor L,, comprises the self- and mutual
inductances of the network elements. The voltage drop due to
resistance may be added as an extra term R,,i".
(10.3) Conditions necessary for an Equation to be Integrable?s
If Adx + Bdy + Cdz =0 . (221)
has an integral f(xyz) = K

which on integration gives

fd fdy + fd =0
3 of _ f
then Se = aA, i aB, and = = aC
d Y 2 b
Hence 'b—y(ac) = m = m = '5-2(03)
B C va da
i.e. 0(5; - —b_y) 37 Cb— =
oa OB
and (aC) C +a Bb—z as;

Therefore bB ) + B— — C%-; =0. . [222(a)]
Similarly a gc ) + Ca _ Ai—: =0 [2226)]
dA B da da
and AN 4¥ B0 . . 12
n a(by bx) A~ B3 =0 [222(c)}

Multiplying eqns. [222(a)], [222(b)] and [222(c)] by 4, B and C,
respectively, and then adding,
A B
(55 ~5%) =0

0B dC WC 4

Al Z - 2= gk
(bz by) B ox bz)

If eqn. (221) is integrable this condition must be satisfied.

Eqn. (221) may be written

Adx! + Aydx? 4+ Aydx? =0

and the condition for integrability becomes

. (223)

(M2 _ 24 4, 4, 24, _ aAz) B
50~ 30) T A5~ 38) * A(Ga ~5a) =0
(224)
orin general  a,,,4, +a, A, +a,,4,=0 . (225)
VA 0A
where A = m"—' — —37: ... (20)

If, therefore, a set of equations, such as
dxa = C4, dxm

DC” dCh

is not integrable, then = F 5 Yxa
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SUMMARY

: The paper gives first a brief résumé of previous work on tensor
analysis of electrical machines. The steady-state equations of the
synchronous machine are written in Park’s reference axes, and from
these the hunting equations are derived. It is then shown that these
equations are part of a general group of transformations of reference
axes of the synchronous machines, all of which are embraced by the
general tensor equations. The hunting equations are then derived in
a freely-rotating reference system. These equations are rewritten in
tensor form and the significance of the grouping of terms into tensors
is discussed. The latter equations are shown to give a more realistic
interpretation of the hunting equations and the equivalent circuit.

; LIST OF PRINCIPAL SYMBOLS
Indices.
a, b, ¢ = Quantities in axes fixed to the machine stator
and rotor windings.
k, n, m = Quantities in axes all relatively stationary.
, B, v = Quantities in axes fixed or free on the stator
and rotating freely on the rotor,
s, t = Quantities associated with the mechanical
rotational effects in the machine (e.g.
generated voltages and torque).
_u, v, w = Quantities in a general equation.

Electrical parts of the equations.
V. Vas etc. = Electrical voltage vectors in axes denoted by
indices.
x*, x%, etc. = Electric variables., The elcctrical charges in
" machine windings, referred to axes denoted
by indices.
X% (=i*) = Electric current vector, in axes denoted by
indices.
R, = Resistance matrix, in axes denoted by indices.
L., = Inductance matrix, in axes denoted by indices.
G, = Generated voltage coefficients, in axes denoted
by indices.
Mechanical part of the equations. :
. = Mechanical force.
x* = Mechanical variable 8, the angular position of
the machine rotor during rotation.
X (= i*= pf) = Angular velocity of machine rotor.
R,, = Mechanical friction coefficients.
L,, (=J) = Moment of inertia of machine rotor.

General symbols. ,
. v = Generalized force vector (voltage or mech-
anical force).
R = Generalized dissipation matrix (resistance or
friction). : ’ o
L = Generalized inductance matrix (inductance or
inertia).
i = Generalized current vector (electric current or
angular velocity).

Correspondence on Monographs is invited for consideration with & view to

publication,
Mr Lynn is in the Department of Electrical Engineering, University of Liverpool.

Ck = Connection matrix between quantities in axes
denoted by indices.
C = Direct notation for C¥, etc.
C(,y = Transpose of matrix C.
223 = ‘Non-holonomic object’ containing functions
of C, in axes denoted by indices.
[«8, ¥] = A ‘connection’ term containing functions of
L4 in axes denoted by indices.
I’asy = A ‘connection’ term containing both [, y]
and {23, in axes denoted by indices.
S,ay = Tensor giving the terms Gq.

(1) INTRODUCTION

With rapid expansion in the ficld of control systems a fuller
understanding of the dynamical behaviour of rotating clectrical
machines has become of increasing importance. For this reason,
and also because of general developments in clectrotechnics, the
teaching of electrical machine theory from a gencralized
dynamical viewpoint is now being considered in uvniversities
and colleges. Brown, Kusko and White! give details of a
laboratory machine for teaching purposes, the windings of
which can be interconnected in a variety of ways to give the
characteristics of a range of d.c. and a.c. machines.

One of the pioneers of this approach to electrical machine
analysis was Gabriel Kron.23:4 The matrix and tensor
methods which he has developed since 1934 have led to a better

" understanding of the fundamental concepts underlying all

machine systems. A survey of these methods is given in
Reference S. The above References show that the analysis of
most types of electrical machines can be expressed by a single
set of dynamical equations. -

Recently the behaviour of oscillating-machine systems has
been receiving a great deal of attention.7-3 Transient and
hunting conditions have been the subject of investigation
throughout the history of machine analysis. The development
of hunting analysis of synchronous machines can be indicated
bricfly by selection of one or two representative publications, as
follows. -

In 1929 Wennerberg® extended the early work of Kapp and
Rosenberg. Starting with the design details of a 3-phase salient-
pole machine he resolved the armature magnetomotive-force
and flux waves into two axes in quadrature on the armature
(stator). During hunting the field rotates and oscillates with
respect to these axes. Wennerberg then derived equations for
voltages, currents and torque during small oscillations of the
rotor. The expressions are complicated because of the fixed
armature axes chosen. All steady-state currents and voltages
are functions of sin wf and cos w? (where w is the synchronous
angular velocity of the rotor), and the hunting equations are, of
course, obtained by making small changes in steady-state values.
In his expressions for hunting torque the trigonometrical terms
of synchronous frequency ultimately disappear and the torque is
expressed as ‘ ' ‘

AT = A'X sin (hw)t + A" (hw)X cos (hw)t

where hw is the angular velocity of hunting. Inspection of this

(11
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expression yields the synchronizing and damping torque coeffi-
cients, A" and 4",

Prescott and Richardson, ! using implicitly the same reference
system as Wennerberg, derived a comprehensive set of equations
giving the damping and synchronizing torque coefficients of a
salient-pole alternator. They examined, in particular, the effects
of armature resistance and armortisseur parameters on hunting.
Curves are then given showing calculated and experimental
results for a laboratory machine.

About this time the two-reaction theory of the salient-pole
synchronous machine was developed. In 1926 Doherty and
Nickle,!! following Blondel, resolved the armature resultant
m.m.f. and flux-linkage waves into axes along the field pole and
in quadrature with it. These axes were considered to rotate
synchronously along with the field structure. Both the armature
and field quantities are therefore constant along these axes in the
steady state, trigonometrical terms at synchronous frequency
having been eliminated by transformation of the phase quantities
into these axes. During hunting the reference axes rotate and
oscillate with the field structure. In 1929 Park!? expressed this
theory in terms of transient or ‘operational’ impedances in
these axes, which could be measured directly by tests on the
machine, Park then extended his theory to include hunting
conditions. His equations of hunting are physically the same
as those of earlier investigators, but in terms of machine para-
meters they are more explicit. They are also more comprehen-
sive in that the operational impedances incorporate the effects of
the rotor (field) circuit parameters as well as those of armortis-
seurs. Park’s equations have now become generally accepted
in synchronous-machine theory.

Liwschitz,!? using the latter reference axes, has analysed the
hunting of a synchronous machine as a special case of the
general problem of a doubly-fed machine. Concordia'® has
given a very comprehensive set of results of the application of
Park’s analysis to a particular machine.

In 1942 a.c. machines, including the salient-pole synchronous
machine were described by a general theory of equivalent circuits,
by Kron,!’ for both steady-state and hunting conditions. These
circuits were subsequently used by Concordia, Kron and
Crary.!6.17

The above work is confined to analysis of behaviour of a
single machine synchronized with a large system. Kron!$

The physical concepts arising in the new reference frame have
been examined in detail.!® In order to generalize his work on
machines, Kron uses the methods of tensor calculus, Heffron,
Rosenberry and Rothe® 7 have given an alternative, more con-
ventional, analysis in which they compare hunting equations of
an interconnected system in the reference frames of both Park
and Kron, and point out the advantages of the uniformly
rotating axes.

In the theory of relativity, Einstein’s quest was for laws of
nature that would hold irrespective of the reference frame chosen.
Kron’s approach to machine analysis has been from the same
viewpoint. He looked for basic concepts which exist in all
machines regardless of the reference axes and for equations
expressing these concepts. He formulated these for his primitive
machine and used already existing tensor analysis to deal with
the transformation of these equations, to give those of any
required machine with any chosen reference axes. As in
relativity, it was found that the fundamental machine concepts
having physical significance in steady-state, transient or hunting
operation were all tensors.!® Equivalent-circuit meshes were
seen to yield groups of terms which constitute tensors. Con-
versely, if equivalent circuits were to be set up, the terms of the
equations should be grouped into tensor quantities. Apart from
equivalent circuits, this tensor grouping of the equations appears
to give a better physical picture of the correlation of different
forms of energy in any physical system. Prof. Kondo?? has used
tensor equations, identical in form with the machine equations,
for the analysis of aircraft oscillations in which aerodynamic and
other forces are considered.

The present paper shows how these tensor terms arise in
hunting analysis of a synchronous machine and how the tensor
grouping of terms is associated with the equivalent hunting
circuit. The equations are particular cases of the general
machine equations, and the same analysis is therefore directly
applicable to many other types of d.c. and a.c. machines.

(2) TENSOR EQUATIONS OF ELECTRICAL MACHINES
(2.1) Matrix Equations
The voltage equations of the stationary-axis primitive machine

shown in Fig. 1, with axes ds, dr, qr and g¢s, can be written down
by inspection. Written in matrix form thesc are as follows:

ds dr qr qs
ds| vy ds{ rg+ Lyp Myp ds| i
dr| v, dr Myp rgy + Lgp L,pf M, p0 dr| i |
qr| Ve - gri —Mypl —L,p0 ter + Lo M,p ar| o @
qs| g qs M,p rys + Loyp qs i

indicated that the analysis and equivalent circuits in Park’s
reference frame become complicated when external circuits are
connected to the machine terminals. The synchronous-machine
axes rotate and oscillate with the field structure, and the external
network must also be analysed along oscillating’axes. He then
selected axes which are identical with those of Park in the steady
state but which rotate uniformly and do not oscillate.!® Equiva-
lent hunting circuits were derived along these uniformly rotating
axes, which could be interconnected to build up complete
systems,” 19 These circuits are such that the resistance power
loss in each mesh gives the damping torque. Synchronizing
torque can also be read from the circuit.

These are seen to include those derived by Park!2 in 1926 for
the synchronous machine along direct and quadrature axes,
usually written?! as follows

Impressed field voltage.
Vg = Ryif + Lypif + Mypier . . . (2
Generated voltage.
Vgp = — Mypil? — Ryi?" — Lypi® + lvriq’pa B &)

Vyp = — MyifipB — L4,i*ph — R % — L,pi* . (4)

qr
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\,
ds

DIRECT AXIS ’

QUADRATURE
e
AXIS

(a) {b)

Fig. 1.—The primitive machine,.

(a) 2-phase synchronous-machine field structure rotating.
(b) Primitive machine with armature rotating.

Generated electrical torque.

F=igiv — i . . . . . (5
where '7bd = Mdifd - Ldrid' e e e e (6)
and b= —Lyi™ . . . . . . (D

In eqgns. (3) and (4) the quadrature field axis has been omitted
for simplicity.

Equivalent circuits for the synchronous machine have been
developed by Kron!3 and studied by Ku22 by resolving the set
of eqns. (1) into forward- and backward-rotating instantaneous
symmetrical components.

Eqns. (1) are of the form

can t?e transformed to give that for any other commutator
machine, by the simple transformation

Z,=C(').Z.C . . (13)

where C is the matrix connecting mesh currents in the derived
machine windings with the branch currents of the primitive
machine coils. If the transformation is to be carried out to
any reference axes which are rotating relative to the direct and
quadrature axes, then, as shown in Reference 3, the transforma-
tion law is
’ d C ’

Z=C(,).Z.C+C(').L.a“97p6 . (14)
where pf’ is the angular velocity of the reference frame with
respect to the direct and quadrature axes system. This leads to
an equation of the form

v = Rt + L'pi’ + Gipd + V'ipd (15)
or v=2.i . . . . (16)
where Z =R +Lp+Gpoa+Vpd). . . (1D

If the direct- and quadrature-axis quantities are transformed to
uniformly rotating axes S; and S,, the connection matrix C is
given by the relation between the currents in the two systems as
shown in Fig. 1.

ids = js

¥ = iS!'cos 8 — iS?sin &

v = RJ + Lpi + Glpﬁ . . . . (8) jr = isl sin 0, + "S2 cos 0,
or v=Z.d . . . ... O % = jos B ¢ £
here Z=(R+Lp+G 10
w . . ( P po) ( ) and dl‘ Sl S2 qs
The torque is given by
f=i*.G.i. a1 dsf 1
(the asterisk denoting conjugate values), the ‘torque matrix’ G dr cos® | —sinf
being ‘ C= . (19
qr sin ¢ cos &’
ds dr qr qs
qs 1
ds
dr L M The terms of expression (17) are given in full in Reference 5.
ar 7 12) If the angle 6’ is, in fact, the load angle A, the axes S, and S
-M -L coincide with the voltage axes of the machine. The angle A is
qr d dr . . "
constant in the steady state and the last term in eqn. (15) is zero.
gs The impedance matrix is then given by the transformation (13),
which gives (neglecting axis gs)
It is shown in Reference 3 that the impedance matrix of eqn. (1) Z=Cy.Z.C (20)
ds Sl Sz
ds ras + Lyp M cos Ap —Mysin Ap
rar + Lg cos? Ap (L, — L) sin Acos Ap
Sy _A;{/‘; c;z ))‘{’ ) + Lq: sin2 Ap + Ly, sin? Apf
Z = aSinap +(L,, — Lg) sin X cos Apf + L,y cos? Apf @n
—Mysin Ap (Lyy — Lg)sin Acos Ap rar + Lgy 08 Ap
S, —M cos Apf — Ly, cos? Apb + Lg sin? Ap
— L,, sin? Apf ~(Lg — Lg) cos Asin Apf
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The matrix multiplication shown above, to give a change of
reference frame, is extremely simple, and the obvious question
that arises is whether any knowledge of tensors is required and
whether there is any advantage in learning a new mathematical
technique involving, among other things, a complicated index
notation. The answer begins to appear when one looks at the
general law of transformation of impedance during small
disturbances of the machine voltages, currents and speed.? If
the hunting impedance in Park’s reference system is #, the
hunting impedance matrix in a free frame is given by

JaC

£ = [C(') B.C+ C(,) L. d—e,pﬂ'](Ai’ + AO’)

aC,, dC? acC .,

+ [C(') B ’d—e-,i + C(,) L. (’gﬁz(pe’) 4 C(,) L. a—e—,pl

aC, av’

t o 3

The purpose of tensor analysis is to present all the trans-

formations of machine reference frames in a consistent dynamical

theory for steady-state and hunting analysis of all types of

machines. The fundamental ideas underlying the tensor

approach as developed by Kron have been examined in
Reference 5. The salient points are now summarized.

Z.C.I"— :IAO’ . (22

(2.2) General Tensor Equations of Electrical Machines

In Reference 24 the different concepts of flux linkage and
generated voltages arising under different transformations of
machine reference axes have been classified. These components
change with the angular velocity of the reference frames and
some arise in one system of measurement and disappear in
others. When machine equations are expressed in tensor form
these various voltage components are part of a total ‘tensor’
voltage which includes both flux linkage and flux density. A
tensor voltage cannot disappear under any transformation, and
it is this, whatever its components, that is associated with the
invariant power and stored electromagnetic energy in the
machine. Resistance drop is also a tensor voltage.

Another advantage of using tensor equations is that there are
available general routine laws covering all possible transforma-
tions of reference axes, the machine power remaining invariant
with each change of reference system.

The tensor equation of the rotating electrical machine is an
equation which has the same basic terms for all machines, these
having different components for each machine or with each
reference system chosen. The motion of the rotor is included
in the form of rate of change of self and mutual coupling of the
rotor and stator coils with changing rotor angle.

The voltage equation of a single coil having resistance and
inductance is written

di

v=Ri+L‘-1-’. e e e

The equation for a set of coils, some of which rotate with respect
to the others, becomes

(23

8i

v,,=Rm,l“+L,,.,Jt-. N ¢2)]

where 3—:" is the ‘absolute’ derivative of the current with respect

to time. Every term is then a tensor. As shown in Reference 5,
S

dr | o,
?T“Z'*F""W' P ¢2)

where ', contains functions of the matrix C which relates the
currents in two different systems,

P=Cur . .. .. . (26
Siv &,
and E = FI—C“ . . . (27)

The indices range over the different machine variables, namely
the electrical charges in each coil and the angle of rotation of
the rotor. The coil currents and angular velocity of the rotor
are then written, for example,

1"‘=‘2—g-" S 1))

and F=—0=p ., . . . . . (29

The index s is used to denote the mechanical variable, the angle 0.

' U
Also Lw,‘% = LW‘% + Lowi®. . . . (30)

The machine equation in its general form therefore becomes

v, = R i* + Lypi* + Puv.wiuiv ... @D

The whole of tensor analysis of rotating electrical machinery
is based on a knowledge of the components of the term [, %"
in eqn. (31). When these arc understood and facility in mani-
pulating the index notation has been attained, the group proper-
ties of electrical machines become clear and analysis of a wide
range of machines under many different operating conditions
becomes a matter of routine procedure. The study of the I'
terms and their expansion have been carried out in detail in
Reference §.

(2.3) Synchronous-Machine Systems

The analysis of synchronous machines can be carried out
using any one of three reference systems shown in Fig. 1,
namely

(a) Actual phase quantities, or 2-phase co-ordinates of these,

(b) The reference frame of Park. This is much more suitable for
most cases, and is in general use for synchronous-machine studies
at constant speed,

(¢) The free frame. In this system the field quantities are referred
to axes fixed on the field as in reference systems (a) and (). Arma-
ture quantities are referred to axes which rotate uniformly with
respect to the armature as in reference frame 2, but these can be
chosen to have any uniform velocity, they can have any fixed
position relative to the field structure, and the angular velocity of
the reference frame is independent of any oscillations of the field
structure, The simplest case is that in which the free frame coincides
with that of Park under steady-state constant-speed conditions.

The machine equations in each frame have the same form and
are identified by different systems of indices as follows:

Frame (a) v, = Ri® + Legpi® + Uy d®® . . . (32)
Frame (b) Uy = Ropsd* + Lygpi* + Tin i . . . (33)
Frame (c) vy = Ryai® + Lyapi® + Tap *® . . 34
where Uy =C5Uc « « o« « « « « « « (39

Lo=LyCCk . . . .« . . . . ()

etc.

The most general form of the term [, . in eqn. (31) is, as
shown in Reference §,

e L(2 4 2 _ 2L
w9 2N dx, dx,  Ox,

- Swru = Swuy + Suvw + Qwv,u + Qwu,v - .qu.w

37
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In the voltage equation

x*=20 and i* =pb . (38)
In the steady state
, d
Ty " = ( a’;‘;" — 25y + 2Qw,,,,,) M., (39)
wu=C4.G.C=G’ (40)
and the torque matrix in the new frame is
JdCt
wo,u 60 C(')L = pL (41)
where L’ is the inductance matrix in the new frame
AN}
—1
and p= 42)
1
Thus Iy, 4" becomes, in the steady-state equations,
oL’
a—o-,.pe’.i’+G’.i’.90+pL’.i’.p6’ . 43)

where p8 is the angular velocity of the rotor and p8’ is the angular
velocity of the reference frame with respect to the rotor.

In reference frame (@) the second and third terms of expres-
sion (43) do not arise. They appear only in transformations
from reference frame (a) to any other reference frame.

In reference frame (b) the first and third terms are zero.

In reference frame (c) all three terms arise, An important
point is that, while inductances along reference frame (c) can be
constant in the steady state (if the axes rotate at synchronous
speed or coincide with Park’s axes), they are subject to incre-
mental changes when the field structure oscillates. This mcans
that a term such as (dL’J30")pf, which aris¢s in the general
equations, may be zero in the steady state, but under hunting
conditions it becomes (QL’[dA)p(AA) and must be retained.
The use of the general form of the term F,,,,',, in hunting equa-
tions ensures that all possible interactions of currents, fluxes and
speed, together with their increments, are included in the final
equations.

The d:sadvantage of Park’s equations [frame (b)} for hunting
analysis is that the armature reference frame is fixed along the
field structure and oscillates with it, This means that circuits
connected to the armature must also be analysed along the same
oscillating reference system.!? It is simpler and more realistic
to analyse the machine in the first place along reference frame (¢).
External networks can then be more easily included. It is

(3) SYNCHRONOUS-MACHINE HUNTING EQUATIONS.
PARK’S REFERENCE FRAME

The machine is that shown in Fig. 1, with armature axes dr
and gr, stationary with respect to the ficld. The quadrature field
circuit has been omitted in the following equations. The
resistance, inductance, torque and impedance matrices are as
follows:

v = Ri + Lpi + Gip0

or v=2.1
where ds ) dr qr
ds| rg + Lyp Myp
Z= dr Myp vy + Lgp L,pb . (49
gr| —Mypl —L,pb Tor + Lowp
ds dr gqr. ds dr gqr
ds | rg ds|Ly | My
R = dr T L = dr{My|L,
qr reel . (45) qr L,|.46
ds dr qr
‘ ds
G = dr L, .« 4D
gr| —M,; | —Lg

The hunting equation may be found as in dynamics by con-
sidering small increments of the quantities in the stcady-state
equations (8) and (11).

Thus (w+Av)y=(Z+AZ)¢i+AD) . . . (48)
or (v + Av) =(R + ARYi + AD + (L + AL)p( + AD)
+ (G + AG)( + Ad)(pd + Apb) 49)

Multiplying out and subtracting the original equation the
hunting equation of voltage is found:

Av = (R + Lp + Gp®Ai + Gi(Ap6) . . (50
The torque equation becomes
CAf=i*.G.Ai+ A*.G.T . . . ()

The matrix form of eqns. (50) and (51) can now be written,
including a mechanical row and column involving the mechanical

variables,
The equation has the form

reference frame (¢) that leads to the new equivalent circuit in
which the system damping torque is gnven by the network mesh- Av=2.41. . . . . . (5
resistance power loss. which, when written in full, expands to
ds dr qr s
ds| Avy ds| rg+ Lgp Myp ds| A
dr| Av, dr Myp ‘ ry + Lyp L,pb iL,p dr| Aidr
gr| Av, | = gr — M p0 —L,p8 Tor + LoP —i=Myp gr| Awr N X))
—id'Ldrp
s| Af s My 2Ly 2i*L, Jp? s| Af
' + id’Md
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where Lp=(Ly — L,)2

and J is the rotor inertia constant.

These equations have been studied in detail both analytically
and by means of equivalent circuits,® 22 and they will now be
used only as a starting-point for the study of the hunting equa-
tions expressed in the free reference frame.

(4) HUNTING EQUATIONS IN THE FREE FRAME

In the free frame the reference axes do not oscillate with the
rotor. The equations are first expressed along the axes 4’ and
q' of Fig. 2, rotating synchronously with the terminal voltage
vector position.

Fig. 2,—Free reference axes.

Axes d’ and ¢’ along terminal voltage axes.
Axes d and g coinciding with Park’s axes.

This may be done in either of two ways:

(i) The hunting equations (53) can be transformed directly to
those in the free frame using the law of transformation given by
eqn. (22). In this equation the p-operator in # refers only to
Ai’Aor A6’ and not to C,and in Z; p refers only to C and I’ and not
to A9’.

(i) The more elegant method is to set up the steady-state equations
in the new frame and from these to derive the hunting equation.

The steady-state equation is eqn. (34). Taking small incre-
ments of this as before, the hunting equations, as shown in
detail in Appendix 11.1, are as follows:

Voltage equation,
hDA
Al’¢ + 'DTSAXB =

(RogAi® + LypAif + g, apbAif + Ty ,pOAI)

* [I‘ﬁx, AP l‘n. a'p + Brb‘f\l'm"ﬁpo

Wy Wap, .
-+ b:\h pl + bAa(pzﬁ)]Az\ . (59 A

which becomes, for the synchronous machine,

Av' = (R' + L'p + GpOAI + (g—li'w + ‘gi'pe)m\ . (59)
The torque equation is
Af=A'*.G'.I' +1"* .G . A" + (—Zg{l" AN + JpAN

. . (56)

In matrix form these expand to

e
a)
s 3 ¥ ~<
4 < 4 <
S S > “
g <% £ o8 38,
&3 B2 |87 %3 ==3
<% TE_|SE S: |z 5%
R-Td - = =] g
SE|ZIRZTE |2 IR TR 281
28T §8~< | 8588~5 | 825 ¢
E£8 (8% %882 | 8% 38qd Sy na
@0 | 20 J~A89 | ~o3~8% % Q873
S [RSTJLC | I3 | 558
S | QRENIS | NRENIS TSR
[ 'G"l'%: |'€"'|'§: -+ § %
I G R A L
S 3 g1 F S g
SRIE R LA RO IR 4
+ F + | s
3
. 1| 5
~ .-8
8 . & “ 3
8 <& I~
= «33’ ”8:'2 '§<g
s | £33 3% ¢ gy 2
~3 -~ J'ﬁ% <
34 SN
= I35 +3N 431
I %
I ++ * ~
s & 5 |j
3 3 N
!
2
<y
2 S &
a8 & § @ .9
~ o ],<
~ & R
S <~ ~ 5% < =<
- §~ 5 ga < g5 8
8 392 28 383
~ [ _a v Vﬂ
= +fj ~3F $3
3 } 7] TS
= 3 &
F | 3 3
|
>
2 53 %3 3R
J 5 g8 ER:
S - S -
N = I 23
< % & -
) i)
3 3 3 I
g ] L ”
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These equations are very much simplified when the free axes
are considered to coincide with Park’s reference axes in the
steady state. The angle A then becomes zero. This does not
imply that the machine load angle is zero, but only that the
reference frame has been rotated. The load angle A is still
inherent in the equations in the computation of the steady-state
currents involved in the hunting equations.

In the free frame along the field axes the machine-impedance
matrix becomes

Riemannian geometry. It arises from the fact that, as shown

in Appendix 11.2,
o
8(:;7) — [%(81'«) = K3y RiPiddxY
where the term on the right-hand side is the new tensor.
Eqn. (63) now becomes
Bty = Rl 4 Lo (819 -+ Ko™

(64)

(65)

ds d q 5
ds ras -+ Ld:p Mdp —Mdiqp
(Lqr - Ldr)iqp
d Mdp r+ Ldrp Lqrp0 +(Lqr - Ldr)idpe
_Mdidspg
(Lqr - Ldr)idp (58)
q —Mdpe _Lqrpg r+ Lqrp -(Lqr - Ldr)iqpe
__Mdidsp
-ds Jpz + Mdidsl.d
s Mit —(Lyy — La)if Mai® Ly — Ly)itid
~(Lyr — Lgy)i (L, — L)

(5) THE TENSOR EQUATIONS OF HUNTING

The time rate of change of a vector with respect to axes
fixed on the vector is written di*/df, where the components of
the vector in the given refcrence frame are i*.  With respect to
another co-ordinate system, e.g. one that rotates with respect
to the original vector position, the time rate of change becomes
the absolute derivative 8//dt, where, in general terms,

Siv  di* dxY

e x B

dr — dt + L dr (60)
The absolute diflerential is written

8i* = di* + T, Pdxv 61)

In setting up the conventional equations of hunting, small
changes Ai®, etc., were considered in each of the terms of the
steady-state equations. No consideration was given as to
whether the resulting equations were tensor equations. In fact,
as stated in Section 2.2, in general the ordinary differential of a
tensor is not a tensor. The absolute differential shown in
eqn. (61) is a tensor. The tensor equation of hunting has been
developed by Kron in Refcrence 2, by taking absolute increments
$i, etc., in each of the terms of the tensor steady-state equation.

Taking absolute increments of the steady-state eqn. (34) gives

. . i Sia
0y + Av) = (Ryg + SR* + 8% + (BLy)~- + Lwa( —)
dt dt
(62)
and the tensor equation of small oscillation becomes

80, = Ryadi* + L{aa(ad—i:) o (63)

It is now necessary to express this equation in terms of &%
This change introduces a new tensor which in geometry is called
the Riemannian-Christoffel curvature tensor, because it gives a
measure of the intrinsic curvature of any given space in

Appendix 11.2 shows how this equation is expanded to give the
machine voltage and torque equations of hunting in tensor form,
These are written by Kron in Reference 19 as follows:

Voltage equation.
Svy = { R0 + Lw‘%(&'“)} + Koad™pOAX . (66)

or

Av = {[R’ +L'p+GpOIAI + g’irp(/.m +G . pi".p0. Al}

9G, . .,
+[H;—G.p.]pe.m . (67)

Torque equation (neglecting the friction tensor R.48i%).

& = {J ,?, (Si’)} + Ksasi®iAX (68)

or Af= {J _d‘!t(Aw)
—[AI*.G T+ it .G LA+ .G'.pi'.Axl}

+[i".%§’.i’—i".6’.pi'ilA). . (69)

The first set of terms in square brackets in eqn. (69) is part of
the second term on the right-hand side of eqn. (65). It gives a
complex quantity. The real part is in phase with the increment
of angular velocity Aw, and is therefore in time quadrature with
the displacement angle AA and gives the damping torque. The
imaginary part is in anti-phase with the displacement angle,
and is counted a negative synchronizing torque. The second
square-bracketed set of terms in eqn. (69), which is given by the
new tensor term, is secen on inspection of its components to
have only a positive real value, in phase with the displacement
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angle. It gives the machine positive synchronizing torque. L, + L _La—1L
The matrix components of these equations are examined in the where = 2 * and Lp == 2 i 74
following Section. Eqgns. (67) and (69) are seen to consist of . . ,
the non-tensor equations (55) and (56) with a term added and In this matrix, = (ba + jb)IV'2 as)
subtracted. Thus the tensor equations of hunting give the by = (by — jb,,)/\/Z
conventional equations, with an important difference, namely a . .
regrouping of terms which leads to a change in interpretation.”- 19 where by and b, are defined from matm.( 8):
The mathematical implication of the regrouping, from non- by= — By — Lyi? 16
tensor to tensor form, has been explained by Hoffmann.2s - b =—B —L.id (76)
q q qr )
By = — L,
-d -d, (77)
(6) EQUIVALENT CIRCUIT FOR HUNTING EQUATIONS IN = Lgi? + M i*
THE FREE REFERENCE FRAME 1
Equivalent circuits for a.c. electrical machines can be obtained =(B;+JjB)IV2=] (\’/—2Md’d" +ifLg + 'bLD)
by operating upon the impedance matrices in such a way as to 1 . (78)
make them symmetrical.#?2 The primitive machine is an = (B — e il =M+ S b
equivalent 2-phase machine, and resolution of the direct and B, = (B, qu)/\/ 2 J (\/2 4™ +¥Lp +1 s)
quadrature quantities into 2-phase symmetrical co-ordinates (R _ ifi y
leads to the required symmetry of the impedance matrix. and by = — (B — #jLs + FiLp)
In the free frame the transformation is _ (\/2 —M it - 2b LD) (19)
jds = . . f.
by = — (B, + i"Lg — ifjLp)
i = (if + ")[\/2 (70) b | b s b
i@ = — (i — M2 =J(aMai® + 2/Lp) . 80)
and e = s The additional term in eqn. (67) which is added and subtracted is
if = (i + jinfy/2 an G'.pi".r0. AN @
= (i1 — ji[\/2 This set of terms arises only in the last column of the voltage
part of matrix (74). Thus the last column of this part of the
and 7' =Cr.2'.C matrix can be written
v =Gy v coe e D "" 1A + {[G” oil1+ %% — 6.t }pOAx (82)
=C.1" dA
where G is now the ‘symmetrical component’ form of the
the asterisk denoting conjugate valucs. matrix G. The terms of expression (82) in square brackets
expand in matrix form to
ds f b s ds S/ b
ds 2
v ds
d | 1
C = s (73) 17 .
\/ - 96" _ M —2L 3
g i = ! 7 Up | . @Y
’ vz p| ~Ma| _ar
V2 ?
The impedance matrix (59) now becomes
ds [ b s
ds|  ra+ Lap M Y, A — )
’ V2 V2 \/2
S \/2M4(p /)] r, + Lg(p — jpb) Lp(p — jp®) by(p — jpf)
4
b sz,(p + ip) Lo(p + jp) r, + Ls(p + ip0) by(p + ip)
1 Jpz + jbfib
—_ {f — b — -
s V'szd(l i ) I bb bf —jbblf
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ds ! b
ds
Gpo= f Ls | =Lp | . 9
b ~Lp, | Lg
ds S/ b
ds
dG" ’ _A_ld _ _
K“(dx -G p) £l =7 Lg Lp | . 85
M,
b ~\T; —Lp | —Lg

Matrix (85) given by the tensor K is seen to comprise the
quantities By and B,, and expression (82) therefore divides the
quantities by and b, into two significant parts:
bf = — Br + (ifjiLsg — tjLp) . (86)
by = — B, — (bjLg — ifjiLp) . @7

The equivalent circuit can now be drawn for stcady hunting
conditions at the hunting frequency Aw. This is shown in Fig. 3.

1BL8A "ds

Fig. 3.—Equivalent circuit for salient-pole synchronous-machine
hunting,

The addition of injected voltages and currents is indicated a priori
by the grouping of terms shown in egns. (86) and (87).

When the circuit is drawn in this manner the effects of incre-
ments of current A/ and the absolute changes 8/ become
apparent.!® In the symmetrical component form,

it = A + T'gifiv . (88)
becomes 3if = Aif — jifAX (89)
and dib = A + jitAX (90)

(These are the *absolute changes’ used by Ku?2)
The significance of active and reactive power in the equivalent
circuit is discussed in the following Section.

(7) THE TORQUE EQUATION AND THE EQUIVALENT
CIRCUIT
Th.e machine torque equation can be written down from
matrix (74), using the grouping of terms indicated by the tensor
equation of torque [eqn. (69)],

Af= {l:-ji‘%(if- i”)Aid"‘K - bfAl.f‘ - bbAib*:l

+ [i"*.G". i”AR]}

. [,.,,. i e, .'"]Ax . O

Examination of the equivalent circuit meshes shows that the
active and reactive power measured at the points indicated,
namely AiV, give real and imaginary parts of the first set of
terms in square brackets in eqn. (91), with a time-quadrature
difference. Under steady hunting conditions the total torque
expression can be written, as in Park’s reference frame, by

Af = (Tsym'h +j Tdamp)AA .

and the real component of power as measured from the equiva-
lent circuit of Fig, 3, namely the resistance loss in each mesh,
corresponds to the damping torque given by eqn. (92). The
imaginary part gives the corresponding component of (negative)
synchronizing torque.

The additional components of negative and positive synchro-
nizing torque are given by the remaining two sets of terms in
square brackets in eqn. (91). Components of these terms arc
included in the equivalent circuit, but they cannot be read off
the circuit directly since the injected voltages and currents are
already associated with the displacement angle AX. Fig. 4 shows

f.__.._

92)

f .
0 vy
J J

|
(Y -4} —

Fig. 4.—Contribution of forward armature mesh to synchronizing
torque,

i1V}’ gives posilive (impressed) synchronizing torque.
i/V;" gives negative synchronizing torque,

how the circuit can be interpreted to indicate the contribution of

each mesh to synchronizing torque.
Positive synchronizing torque given by the tensor K expands to

(— Bjif -+ B,iHAX 93)

This can be compared with the machine power output equation??
—Byi® + Byif (94)

and it is seen that the positive synchronizing torque at any load
angle is, in fact, given by the reactive component of the machine

power output. The simple equation for synchronizing power of
a round-rotor machine given in textbooks® is usually written

(-E;cos)«)A)\. C e e . (95)

and the expression in brackets is again the reactive component
of the steady-state vector power output.
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(8) CONCLUSION

The equations of performance of any conventional electrical
machine can be derived by an automatic tensor transformation of
those of the primitive machine. A similar type of transforma-
tion can be used to express the equations of a given machine in
any one of several sets of reference axes. The transformation of
Park’s equations for the synchronous machine to those in Kron’s
freely rotating axes leads to simple overall equations for an inter-
connected system.

The complex interaction of currents and fluxes in a machine
during hunting can be more easily followed in different reference
systems when the corresponding transformation of equations is
carried out using matrices and the routine methods of tensor
analysis. The tensor form of the equations of hunting of a
machine in the free frame has two advantages:

(a) Synchronizing torque terms are inherently grouped together
in terms of the angle of oscillation AA. Positive and negative
damping terms are inherently grouped in terms of the increment
of angular velocity Aw and give this component of torque as the
real part of a complex expression. Damping torque is thus directly
associated with the resistances in the electrical system.

(b) The terms of the tensor equations in symmetrical component
form give, directly, the meshes in an equivalent circuit. This form
of equivalent circuit can be interconnected with corresponding
circuits for an external network and additional machines. The
resistance power loss in each mesh gives the damping torque con-
tributed by that part of the system.

The significance of tensor groups of terms in the stcady-state
equations of electrical machines has already been noted.> The
tensor form of the hunting equations gives a physical picture of
the hunting phenomena as represented by the equivalent circuit.
It would appear that this method of formulating dynamical
equations could be used to advantage in the analogue study of
complex .devices in which interchange of different forms of
energy takes place, for example, aircraft, missiles and nuclear
reactors.
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(11) APPENDIX
(11.1) Small Oscillation Equation

The free-frame steady-state equation is
Vg = Rct[ﬁifs + La."lpia + ng'aiﬁﬁ .. . (96)

This is divided into voltage and torque equations.
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Voltage equation.

The index « is electrical. The indices 8 and y are electrical,
indicating currents i or ¥, or mechanical values s, indicating
angular velocity i = p6.

Vo = Ragi® + Lappi® + Ty ai"p0 + Dg,oifp0 . (97)
Torque equation.
The index o takes the mechanical part of the range. The
indices B and y have electrical values.
v vy = Ryi* + L pis + Ty ¥ (98)
or vy = Ryp0 + Jp20 + g, (iPiv (99)

The small-oscillation equation is obtained by taking small incre-
ments of values in eqn. (96). This gives

2
Avg + b—;’;i‘Axﬂ = RypAi® + Lygp(Ai®) + ALggppit

+ Doy, oA + DUgy o AR + Algy ofBiY (100)

The corresponding voltage and torque equations are as follows:
Volrage equation.

Av, + %Ax’ = RugAi® + Logp(Aif) + Ty aA(pO)iY

+ DpsaBifpl + Loy oA pf + [y, oiPA(pb)

T

L [
+ S PA! + ST pOMAX + BB phAX . (101)

The index ¢ denotes excursions of the rotor over the increment

of speed,
A(pb) = p(AB) = p(AN)

The terms of the voltage equation are expanded in a manner
indicated by the following example:? .

I,y a"Alf =
{[")’, o] = Savy — Sury + Spva + Quv,p + Ly
= {[ry.2] = Sury + Quy 1 At

Other terms are zero as shown in Sections 4 and 5 of Reference S,

- Q,Y,a}iYAi'
(102)

Now - 251'.7 =G = C(,) .G, C . (103)

where G’ is the free-frame torque matrix and G is the torque
matrix in Park’s equations.

acy;! ,
2Qq, 4 = d(): Cly- L = pL" = 284 . (104)
bLa., bLa, _ bL,Y 1dL,,
| Also ] vel=s5a T 37 ~ 3) =3 of (105)
The index s denotes the mechanical variable 6, and
-] i T d 71 Ly -
—S;;—’:}l‘ IYAX"r = b—x;’;r i ‘b-x‘; —_ Smﬁ + Qm'a)l’tf”Ax" . (]06)
OLap., _ OLgp
bx,l’— 30 pd =0 . . (107
Qa, i = _ C(') L. pa =0 « e (108)
Sep® =41Gp0 . . . . . (109)

bFB:a

Thus 2L 4 2 beon s — _/\, P8, AN . (110)
Therefore eqn. (101) becomes
A’ + d" =R + L'p + G'pBIAI
oL’ JG”,
+[ﬂi P+ gl pO:lAl (111)
Torque equation.
AF = JpA(A)) + Ty, A + Ty, ABiY + b—%—‘j\*”iﬁﬂAR
. 112
Loy sPAY = {(By,s] — Sevs — Sipr + Savs
+ Q5 + Qg y — Qay, JiPAK 113)
[By,sliPAY = ,1; %Ié VAP . e . (119
o dC(T)l ’ ’ ’
(QSY.B -+ QSB,Y - QQY’S)ISAI.Y = 69 . C(') N A N =0
. e e« (115)
(— Seys — Sspy + Spy)iPAiY becomes® . . (116)
(= Siys — Syp)PAIY = 1@ .G’ . AV + AP .G'. 1) . (11D
Thus '
oy AR + Doy AR = A" .G’ .¥" + .G’ A" . (118)
Werpmar =99 .1 AL, . . 19

. . do
Therefore eqn. (98) becomes (neg]cctmg the friction term Rd—t)

Af=AI'* .G .1 +1%.G AV +1. ‘3‘; V. A + JpX AN
< . (120
(11.2) The Tensor Kj,uy
The absolute differential of a contravariant vector is
8! = dpt + T'lbkdx! a2
& sm — ih bk g,
Therefore Wt(& ) = E'(dz + Tlikdx/) (122)
- i(d,-h + Thikdel) + Th,(dim + I rl’dx")
_._(d iy + -F—t"dxf + I —dxf + Iy :" (dxf)
+ T f,,ndl'"l" + [h,Cmirindxa . (123)
8i dxé‘
Similarly 8( d’ 8( i g (124)
=d (él—) +dT’ %,'Yi& + Fsesdiyis + I‘%i‘fdxs
dr
+ I8, dx° + I8 I'Tarifdxe (125)
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Sify - 8 o,
Therefore 8( —’-) - 2}(815)

AT

Are
=g oritdxt — — e + T8 Tgpinibdx

— T8gimicdx® + I‘,,a[ ( ) ] . (126)
The bracketed dlﬁ'erence in expression (126) is not zero because
the electrical variables are non-holonomic, i.e. they are related
only through non-integrable differentials,’ and

28 2x3 '
. wxYOxP T dxPoxY ” (127)
t ’ .
This is shown in Reference 27, as follows:
2P WP AP, C} dP
A T dxhw Sy dxn dxr T dxu P
; ( cr Ci,bC, C,,DC
,/0Ch _ dACh,
[Cf %5~ 5b)
Y P
dCh
where Q= iyl (b bt x{,) (129)
and in expression (126) “

With appropriate rearrangement of indices

? K2, oiti%dx = 8( 0) - _(a . a3
where

. % g
Kive = 52 — 57 + T, Th - T,0}, + 2050 (132)

The tensor equation of small oscillations now becomes, as
given by Kron,!8

o Avy + dvy = S(Rapiﬁ) + nggs-t(&'a) + KaypaiPitdx .’ (133)

which expands, as shown in References 2 and 18, giving

dv, Y
+ poeARS = — I‘“thxﬁ+R¢aA19+ Iy

Av¢ Bad

—Ax8

L -2t ap

be d’ ¥ + PB‘Y,IA‘.e‘Y + I‘BY'a"aAﬁ

+ (M‘”' + Das,alyy = T )w.ur s — 20, o2} )l"i’Ax"

TENSOR ANALYSIS OF ELECTRICAL -MACHINE HUNTING

d Fﬁv.a
ox3

+ (T -
( sor ~ 3a" + Dol — Dhaaly + 20 QA"
(134)

This is seen to be the same as the conventional equation with the

following terms added and subtracted: »

My a
dxB

In the synchronous-machme equations in the free frame the
steady-state current is constant and

. (135

F A v + (I‘M T + 20Oy +

I's (—ﬁ—anY =0 (136)
Y dr ’
The reniaining terms expand in the voltage equation to
(Pooalh + 2T, + 25E0) i
4+ (Pm 2 420, QF + EFM)[s[GAxY a3
, %" St sh,an &5y bx;;

The index 7 takes the value ¢ indicating the mechanical variable
which undergoes incremental changes, namely the load angle A.
The index s as usual denotes the holonomic variable, the angular
position 8, of the rotor. Only the first and fifth terms have
non-zero values. The additional terms in the voltage equation
are therefore -

(TrsaTh, + 21, 2Q%)PFAN . (138)
= (Tase + T Dpli*p0AN (139)
=G’, pi'pBAX . (140)
The corresponding term in the torque equation is
(Dys,e + Do DM AN . (141)
=—¥.G.pt' .OAN . . . . (142

The small oscillation equations are therefore as given by Kron
in Reference 19, namely

Voltage equation,
= [R’ +L'p + G'pOIAI +

[

%’{rp(m) +G’.pi’.pB. AL

o a'.pr]po.m . @)

Torque equation.
Af= J%(Aw) —[AI* . G .U +1*. G A+ .G pi'AdA]

496G’
I il ’
+ I:i T d -
where AX is the displacement angle and Aw
angular velocity of displacement.

r-.a'.pr]m . (69
= pAN) is the
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SUMMARY

In several publications Kron, Kirchmayer and others have out-
lined methods for transforming power-system operating data in terms
of complex voltages and currents into information concerning real
generator powers and transmission losses. These losses are related to
the individual generator loadings by a set of constants which are
dependent only upon operating conditions at normal load.

In the present paper Kron’s methods for establishing a transmission
loss equation for a hypothetical 3-generator, 2-load system are described
and the analysis is extended for application to an actual section of the
British network. '

The coefficients of the loss equation are obtained from the basic
impedance matrix of the system and various transformation matrices,
which transform the basic matrix to the final loss matrix, based on
certain operating assumptions.

A method is developed for combining the loss formula with station
fuel costs for economic system operation. The resulting loading
equations are illustrated in nomograph form as an aid to system load
dispatching. :

In the paper, owing to certain limitations of the required information
regarding system loads, certain of the load-flow conditions have becn
estimated by calculation, and the accuracy of the loss analysis is
correspondingly limited. However, the purpose of the paper is to
illustrate available methods and not to formulate an accurate set of
loading equations.

LIST OF PRINCIPAL SYMBOLS

1M 112, etc, = Load currents.
IE = Total system (or hypothetical) load current.
Iy, b, ete. = Ratios of individual to hypothetical load
currents.
Zy1» Z3y, etc. = Impedance matrices for reference frames 1,
2, etc.
C}, C}, etc. = Transformation matrices between quantities in
reference frames 1 and 2, 2 and 3, etc.
Vi, Vi, etc, = Terminal voltages of generators 1, 2, etc.
Vi1s Via, etc. = Voltages at loads L,, L,, etc.

Z, x = Measured leakage impedance of system net-
work between generator or load n and
generator or load K, ‘

Z;.g = A matrix of measured network self impedances
seen from generating points of entry.

Z 1. = A matrix of measured network self impedances
seen from load points of entry.

Z1.¢ = Measured mutual impedances with generator
points energized.

Z 1 = Measured mutual impedances with load points
energized. .

I', I?, etc. = Generator currents.
Z,_x = Complex impedance components for impedance
matrix Z. 33
0,, 8,, etc. = Angles by which generator terminal voltages
V1 V3, etc., are referred to a common axis.
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Vaw Vg, = Direct and quadrature components respectively
of voltage vector V.
" K, 'K = Direct and quadrature components respectively
of current vector I*.
19K — Components of current vector I°.
A, = Ratio of reactive to active power for generator
n at normal load.
| V|o = Terminal voltage of generator » at normal load.
M,x = General term of loss matrix Zg.
B,x = General term of loss matrix using simplified
analysis.
R,_x = Real components of impedance matrix Z3, used
in final loss matrix.
L, = Incremental transmission loss at generator n.
Py, Qg = Active and reactive power supplied by gene-
rator K.
P; = Total system transmission losses

=ZZP,,.B,.K.PK.
n K

Sy == Cost of fuel input to station n, £/hour.
A = Incremental cost of received power, £/MWh.

(1) INTRODUCTION

For optimum operating efficiency of large power systems it is
necessary to co-ordinate generation on an equal incremental fuel-
cost basis with the incremental cost of the transmission line
losses. Extensive research has taken place in America into
methods of combining these costs by the application of transmis-
sion-loss formulae. These express the transmission-line losses
as functions of the generator and interconnector power and a
set of constants, The loss equations, once obtained, are
applicable for any condition of generation and load, if the
simplifying assumptions made in deriving the equations are valid
for all system conditions.

Following the Steinberg and Smith! publication in 1943 on
the economic loading of power plants, a method for expressing
total transmission losses in terms of generator power was
pioneered by George? in the same year. Ward, Eaton and
Hale* extended George's original methods, and provided a more
generalized and analytical approach to the derivation of a loss
formula, by use of the a.c. network analyser. George, Page
and Ward3 co-ordinated transmission losses and fuel costs by
the application of a loss equation containing constants derived
from a network analyser study.

Kron,’ in 1951, derived a loss-equation using tensorial
methods, requiring considerably fewer measurements and cal-
culations. Kirchmayer and Stagg$ using Kron’s methods,
obtained a transmission-loss formula for the American Gas and
Electric system and investigated the effects of Kron’s simplifying
assumptions on the accuracy of the loss formula. Kron,? in a
second paper, considered the existence of off-nominal turn
ratios and their representation on an a.c. network analyser with
auto-transformers. He followed this by two further publica-
tions,!% 13 in which he considered the study and co-ordination
of several interconnected transmission systems, by combining the
solutions of small components by a series of transformations,

(1]
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Imburgia, Kirchmayer, and Stagg'6 have described a computer
for use in system load dispatching. The computer calculates,
from the loss constants of a system, transmission loss penalty
factors which are used in conjunction with an incremental fuel
cost slide-rule for obtaining economic balance between generating
stations. Operation of the slide-rule and the computer provides
a method of combining transmission losses and generation costs,
and of applying them to the loading of a system under rapidly
changing conditions.

In Part 1 of Kron’s work, six basic reference frames are
established for solving steady-state power-system problems, and,
in particular, for determining total and incremental transmission
losses. . .

The transmission-loss formula to be derived, as in other
methods, involves the generated power of all sources and a set
of constants, These constants (self- and mutual-impedances)
once established are suitable for use under any operating condi-
- tions, within the limits of the operating assumptions, unless a
physical change in the system takes place. The constants are
obtained from a.c. network-analyser data or by analytical
methods. The use of tensor, algebra provides a method of
transforming operating data (complex voltages and currents) into
information concerning real powers, losses and a set of constants
by means of a series of operations called ‘transformations of
reference frames’.

The object of the present paper is to relate the performance of
power systems to a sct of linear equations, containing real
generator powers P and incremental losses L incurred in the
transmission system, These equations are of the form L= M., P,
where M in matrix form represents a set of real constants which
are dependent only upon operating conditions at normal load.

(2) STUDY OF KRON'S ANALYSIS

(2.1) System Operating Assumptions
The methods outlined by Kron for determining a transmission-
loss formula involve certain fundamental concepts of tensor

analysis, and a number of assumptions concerning the operation
of a power system. These assumptions are as follows:

(a) The ratio of each load current to the total load current
of a system, at normal load, remains constant as the loads vary.

(b) The generator currents remain fixed in phase angle relative
to each other as the generator loads vary.

(c) The generator voltage magnitudes remain constant.

(d) The ratio of reactive power to active power of each source
remains constant.

(2.2) Reference Frames

This present power system study will involve the introduction
of the following reference frames:

1. Measurement of leakage impedances Z;;.
2. Introduction of one hypothetical load /- which replaces all

n
system load currents, where IL = Y] Iin,
1

3. Elimination of /L, leaving generator currents only.

4. Generator currents and voltages are transformed into axes,
in phase and in quadrature with the respective generator voltages.
Matrices of complex quantities are changed into larger matrices
containing only real quantities.

3. Using the assumption of constant ratio of generator
activefreactive power, each generator current is replaced by its
projection upon the terminal voltage existing at normal load.

6. Active components of generator currents are transformed
into generator powers. Since voltage differences have been used
in the previous reference frames, the transformation matrix in
frame 6 yields generator power loss.

(2.2.1) Reference Frame 1.

Consider a hypothetical power system consisting of generators
Gy, Gj, Gj supplying loads L,, L, via a transmission network
as in Fig. 1.

GENERATORS

Fig. 1.—Hypothetical 3-generator 2-load power system.

The self and mutual leakage impedances of the system network
are measured, usually from a network-analyser study, by:

(i) Disconnecting the generating plant and loads from the
network.

(ii) Injecting unit current between each generator and a
reference point in the system.

(iii) Measuring voltage differences between all generating and
load points and the reference point.

This is repeated for measurement of load self-impedances by
injecting unit current into the network at L; and L,.

The impedances of the network from a generator point of
entry are called gencrator self-impedances, and transfer or
mutual impedances to other points. Impedances measured from
load points are termed load self- and mutual impedances. The
actual self-impedances of the generators and loads do not enter
explicitly into the analysis. '

&ﬁ-l Pu,

AEFERENCE
POINT

Fig. 2.—Reference frame 1: basic measurements.

Thus in Fig. 2, with unit current injected at G,
the generator self impedance, Z,, | = V;

and the mutual impedances, Z; 1 = V) M
Zy =V Lo
Zi1=Vp

The impedance matrix for the system is therefore
G G L L

G| Z11| 22| Z13| 214 G L
G;| 234|222 223|224 Gl|Z66 | Zor

Z, - - @
Ly |Z3.1|23.2]| £33 | 234 L|Zie| ZLL
L1241 | Za2| Zu3|Zun
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Since the network mutual impedances form a symmetrical and the currents and voltages in reference frame 2 are given by

system, n=cr N )
Zgr = (ZLG) v 5. v (10)
where (Z ), is the transpose of matrix (Z ). =@ . ...
That is, the mutual impedances with load points energized are  where (CJ)? is the conjugate of the matrix (CJ) transposed.
equal to those with respect to the generator sources. The system impedances in frame 2 are given by
The equations for the system now take the form -
Zy = (CY?Z,,C}
Vi—Ve=2Z4I' + Z) 512 + Z, 311 + Z J2 1 2 L
Vo= Vo= 2Zo0' + Z 112 + Z, 311 + Z, J2 o) '
Vin — Ve=Z31I' + Z3 )2 + Z; 310 + Z, g2 | Zy 3l
Via = Vo= Zy\I' + Z; )12 + Z, 4 J1! + Z, J22 1 Zia Zy., +Z.4
. . . =(ay)
If these system equations are solved by inverting the impedance
matrix, the equivalent circuit will then be as shown in Fig. 3. _ Zy 44
: 2 Z2. 2y, +Z3.4h2
o = =(a,) . an
Zy It Z3 50} Za.a’x’i
/ +Z, .\ +2Z 513 +Z3 4b!}
S SELF AND MUTUAL ‘ L =(by) =(by) +Z,33
' Jr %" IMPEDANCES Iy +Z, 013
=(w)
Tle -1 — o ves The system performance is now represented by the equation
REFERENCE LR
GENERATOR ‘ V, = anz
Fig. 3.—~Equivalent circuit for measurement reference frame 1. ie. Vi — Vg= 2, ' + Z, ,]* + a|IL
(2.2.2) Reference Frame 2. Vz —_— VR = Zz.lll + 22_212 + azlz‘ . . (12)
Let the total system load current, during a normal load period, Vp—Veg=bI' + b2 + wiL

be given by where in this example ¥;, the hypothetical load voltage, is the

IL = JL! 4 [L2 (= hypothetical load) . . . (4) weighted average of the 2-load voltages;

Then, from assumption (a), ie. V=BV +18Ve -« . o .« (13

L 1% 4 2 4 2

== L — =S . . R . R = = Z I
Z=hE=h ® ad @ =3 3 Ziha=Z T 2l '
where 1, I; are constant complex ratios. by = S ﬁ Zy,lnby = é }.2: Zeadt [ (14)
Thus L = L K=3n=1 K<3a=1
IR = LI e - ® w=3, Y, Y Z,as given above
L The system may now be represented as in Fig. 4.
1|

or ILs == CIvJL where Ci» = N () v .
t 2 1, @*'l— /’

HYPOTHETICAL

The system with individual load currents may therefore be ;- Loso
transformed into one which contains only the hypothetical total >
current IX by the transformation matrix {
1 2 L
111 : nesen?r:c':l'
GENERATOR
2 1 — Equivalent circuit for reference frame 2 with one
Cl= N ) Fig. 4—FEqui hypothetical
Ly L
The system losses are now given by I24Z,]% = [**V;. How-
L, h ever, this method of determining losses is not desirable since it

: involves the difference between large quantities, namely between
(Note that the generator currents remain constant.) generator and load powers.
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(2.2.3) Reference Frame 3.

In this reference frame, the hypothetical load current is
eliminated by introducing a transformation tensor C from a
known equation of constraint. Now

D+P+DB4+E=0
L= ' -2 _3(= —XIF) . (15)

Since the generator currents I! and I2 remain unchanged in
this reference frame, the required transformation matrix to
replace the equation of constraint is

1 2 3

Therefore

1} 1

1 C e .. (16)

2
L|-1( -1} -1

The currents and voltages in this reference frame are now
given by

r=CiB . . . a7
V= (CHV, (18)

and the system impedances by
Zypy=(CHIZpCE . . . . . (19

The impedance matrix Z,; is asymmetrical and complex.
The performance equations obtained from V3 = Z3;13 are

V -_ VL""(ZI 1 -—bl - a +W)ll

+ (Zl.z et bz —da, + W)Iz + (W fond al)IJ
Vz - VL= (22_| —'bl — a + W)Il

-+ (Zz.z - bz — ay + W)I2 + (W -_ a2)13
Vy—Ve=(w—b)I' + (w — b)I* + wI?

The voltages V; represent the potential differences between
generators and hypothetical load with currents I3 entering and
Jeaving at these points.

The compaonents of the system equations are represented in

Fig. 5. It is evident from this Figure that the load voltages and
currents do not now exist in this reference frame 3.

. (20)

2%

HYPOTHETICAL
LOAD

Fig. S.—Equivalent circuit for reference frame 3.

The equation I3* . V; represents the various losses in the
system with reference to the generator currents and the voltage
drops between the generators and hypothetical load. It does
not involve the difference of large quantities.

(2.2.4) Reference Frame 4—Change of Axes,

For the hypothetical system under consideration, the generator
and load terminal voltages and currents for a normal load period
are illustrated in Fig. 6(a) and 6(b).

HYPOTHETICAL
LOAD

)

Fig. 6.—Vector diagrams for the hypothetical system at normal load.

(@) Normal load generator voltages and currents.
(b) Load voltages and currents at normal load.

The generator terminal voltages Vj, V; and V; are referred to
a direct axis along the direction of the total load current, by
angles 0,, 8, and 8,, respectively. The generator currents lag
behind the terminal voltages by the respective angles ¢, ¢, and
¢3. The load voltage and current conditions at normal load
are illustrated in Fig. 6(b).

A set of axes d’ and ¢’ is now introduced, along and at right
angles to the generator terminal voltages. The generator currents
projected upon the respective normal load terminal voltages will
then represent the generator powers.

In this new reference frame, the active and reactive power
components of each generator current I, will be given by,

I's®+¢ ., . . . . . QD

The effect of rotating the axes d and g to new axes d’and ¢’ is
obtained by rotating the current vectors in the opposite direction,
through an angle —#, so that

I=¢eor . . . . . . (22

Thus, for all generator currents, the transformation matrix
required for quantities in reference frame 4 is

1 2 3

1 6—]01

Ci= 2 eIn N X)
3

e-jel

The new impedance matrix is now given by
Zy = (CP? 2353
and the system equations take the form
V= Zyl*

(24)
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3
or IVnI —Vigln =Y Z,_ ng(en—ek)(ll(e_jel) 25
K=1

(n=1,2,3)
where Z,_ is the general term of Zj;;

or
3
I an han VLEjB" == Kz-l{[R,,_K cos (0,, —_ ox) - XH—K sin (0,, - OK)]

+ Xk CC;S O — 0K) + Ry_gsin (6, — Ox)]J(IRe~0x)
(26)

where (R,_g + jX,_x) represents the components of Z,_,.
The voltage vector V, represents the voltage drop from generators
to hypothetical load.

Any complex impedance, say Z = R + jX, may be replaced by
a matrix containing only real numbers of the form

. . .

d q
di R -X

Z = N 1))
q|l X R

This introduces direct and quadrature axes d and ¢, in which
the voltage and current vectors are represented by in-phase and
quadrature components,

Thus if I = I 4 jland V = V; + jV,, then, in matrix form,

d| 1 d| v,
and V= . . .
q| I 9|V,

(28)

Thus the complex equation V, = Z,,]4 may be expressed in
terms of real quantities by replacing the respective matrices by
others containing twice as many equations and variables, but
containing all real components,

For the 3-generator system, with the impedance Z,4 expressed
in real numbers, the general equations for system performance
will take the form

-

Vg, = él [Ry_xcos (8, — Ok) — Xn_k sin (8, — 00} 1%
(n=1,23)

~ 3 [axcos (B — 60+ Ra_xsin (6, — 618
; . (29)
Vo= 2, [Xa_x cos (B, — 0) + Ry_xsin (8, = 8))14*
(n=1,2,3

+Ké-= | [Rs—x cos (8, — Ox) — X,_ g sin (8, — O] Jox

J

(2.2.5) Reference Frame §, .

In this frame the reactive components of the generator currents
are expressed in terms of the active components in phase with the
normal load terminal voltages,

Using assumption (d) of Section 2.1, the components of the
various generator currents may be expressed in the form

P=H
1¢=A14}‘ C e 60

where the constant A is given by the ratio of the normal load
measurements, I9'[/4' = tan ¢, (in Fig. 6a) = Q/P, Q and P
being the reactive and active power components respectively, of
each generator at normal load.

Such a set of equations for the components of all generator
currents in the 3-generator system will produce the transforma-
tion matrix

d dy ds

dif 1

PA 1

dy 1

Cl=

a | A

p) A,

93 A,

ie. r=cr . . . . . . (D

The new impedance matrix, containing only real number;, is
now given by (C%),Z,,C#% and the system equations are given
by the general term

(Vdn + A’l,/qn) =
(n=123)

é {[Rn-x Cos (611 - 01() - Xn—K sin (0n - 01()](1 + AnAK)
K=1

+ [Xu_x c08 (85 — 8) + Ra_gsin (0, — 6)[(An — Ap)}
X (1% + Agl®) . (32)

(2.2.6) Reference Frame 6—Transformation of Generator Current into
Power,
By assuming that the generator terminal voltages remain
practically constant in the region of the normal load values, the
active power of each generator will be given by

P|=Id1I|V1|o Idl”= lllVllo Pl
Pz = Idz’ le'o or Id2' = 1/] Vzlo Pz . (33)
Py=1%¥ |yl 147 = 1[Vslo Ps

Thus the required transformation matrix for quantities in this
reference frame is

1 2 3
1
| =
[¥1lo
1
G= 2 o (4
’ [Valo
1
3 [Vilo
The final impedance matrix is given by
Zes=(CDZssCE . . . . . (9
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and the system equations are given by

Vi + AV, 2 1 '
= = n—- 0,, -6
e = 2 [P valo R c0s G = )
— Xp_xsin (6, — 0)](1 + AsAx)

+ [Xu—x €08 (B = O) + Ra_g sin (6, — 6,0)(As — AR} P
(36)

3
or = 3, MxPr.
K=

where Px = (IdK + Axqu)l VKIO

is the real power supplied by generator K and M, x represents a
set of real constants,

HYPOTHETICAL
LOAD

Fig. 7.—Equivalent circuit for the final reference frame 6 with active
generator powers.

Fig. 7 illustrates the equivalent circuit with real impressed
generator powers,
The final loss equation is now of the form

Ve=Zxls . . 1)

The dimension of I% is that of power, and it represents the
active power P supplied by each generator.

The term V5= (C),Vs is dimensionless owing to the
inverse voltage form of C}. Its components are fractions, say
L, and represent the incremental J2R transmission losses of the
system, d loss/dP.

Z, represents the final ‘loss’ matrix containing real components
M,y of inverse power form Z/V2,

Thus, in terms of generator powers and incremental I2R losses,
the system equations take the form

L..=-}E,M,.1Px Y 1))
which is equal to the incremental transmission loss at generator »,
d losses[d P,y ‘

The total I2R losses in the system are thus given by

Piosea =3 % P,M Py . 39
n
(2.3) Simplification of the Analysis for Total and Incremental
Loss Studies

For incremental loss calculations only thé real parts of the
differences of potential existing in the basic measurement
reference frame 1 need to be measured. It is also sufficient to
use only the real components of the matrix Cy for transforma-
tion from reference frame 1 to 2. This latter simplification
will produce a symmetrical impedance matrix Z,, containing
only real components, and the former a and b components
change to d = (a + b)/2.

The total I?R losses in the system may be found by using only
the symmetrical part of Z containing coefficients Rqg, say B.
In this case, the total transmission losses are given by

le = ? § P,,B,,KP‘ and BRK = Bx,. . (40)

Thus, for the 3-generator system,

Piosses = Byy P} + ByyP3 + By3P}

The same result is also obtained if only the symmetrical part
of Ry; and the skew-symmetric part of X;3 are used when trans-
forming Z3; to Ze, assuming Z;; has the form Ry; + jX;;.

Using the above simplifications, the general loss coefficient
takes the form :

B, [COS (Bn - oK)(l + AnAK)

- Rn—K
K [Valol Valo )
+sin (6, — O)(A, — Ax)] . (42
(3) STUDY OF THE LOADING CONDITIONS ON A SECTION

OF THE BRITISH NETWORK

The Grid system for which a transmission-loss formula is to
be determined consists of the 132kV Warrington section of the
North West, Merseyside and North Wales Divisional Network.
This section comprises steam generating stations at Warrington,
Percival Lane and Ince, and 33kV Area Board load points at
Warrington, Percival Lane, Ince, Crewe and Knutsford. Fig. 8

WARRINGTON CARRINGTON

(8sMwW) @

0:2 MILES
(0 012 +,0032)

!‘- I
10-0 MILES |
017 +jO-046) |

PERCIVAL LANE
(110 Mw)

(0014 +jO-038)
11-9 MILES

KNUTSFORD

A
Lk

273 MILES
(0-039 +;0105)

- &
(]
3 ol 81
L2 Zo = -
37 3| «
oz o %
INCE "~ g el CREWE
(308 mw) (G ) -2 (29 Mw)

266 MILES
(0-038 +;0:102)

r
!

B P ———

=

L3

" Fig. 8.—System diagram-—Warrington Section,

Base uprurent fower-—loo MVA.,
Base voltage—132kV.

-
>

illustrates a simplified diagram of this system with the main
generating, load and interconnection points. The available
active-power generation exported at each busbar is given in this
diagram, which also shows the contribution from Marchwiel
and part of Maentwrog at the Crewe station. The diagram
also illustrates the route length of each overhead line forming the
network, and the per-unit impedances for a 100 MVA base at
132kV.
(3.1) Load Flow Study

The study was carried out analytically in the absence of net-
work-analyser facilities. The first part consisted in determining
the approximate system load flows from the known generator
loadings and the active-power demands at the load points. Tt
was assumed that there was a normal 129 outage of the available
generation at all stations, and the load demands used were those
that existed in January, 1955, during the normal peak periods
of 0700-1300 hours (see Fig. 10).

The power cquations for a short line were then used for
calculating the various terminal voltages and angles in the given
system, Reactive line flows were also determined from these

TN b e e
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Fig. 9.—Load-flow data for a weekday peak period, including line
flows, generator loadings, load demands and bus voltages.

RN 2
TOTAL AREA LOAD -P, ! / \ ﬁ il
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400 ; L
]
- 22 - -
1
£ s00bmt—1- o i ~ .
3 r‘&- ;/ WIRRAL AND N WALES LOAD DEMAND \
AT INCE = P, H
PY-Y-) S G e 4 1 1
[]
100 LOAD DEMAND AT CREWE =P, 4
ot 1
[ - =3y
-
o

[o] 02 04 26 O8 [} 12 14 1] 8 20 22 24
TIME , HOURS

Fig. 10—System load demands—17th January, 1955,

(a) Total area load, Py.
(b) Wirral and North iVllel load demand at Ince, Pr;.
(¢) Load demand at Crewe, Prs.

equations, and balance of busbar conditions in the system loop
was obtained by a series of successive approximations,

The results of the final approximation to system load flows to
give the desired system balance and realistic generator and load
reactive demands are illustrated in the load-flow diagram of
Fig. 9.

(4) STUDY OF THE APPLICATION OF KRON'S METHODS
TO A SECTION OF THE BRITISH NETWORK

(4.1) Reference Frame 1
For the measurement of the basic impedance matrix pf the
Warrington section network, illustrated in Fig. 8, thg Carrington
tie-line connection Gy was chosen as reference point and was
carthed,

7

With unit current impressed at the generator G, the various
leakage impedances are given by

V
Zyg=-2 . . . ... @
IGx
and in this case reference generator current Igg = impressed

current Ig,.
Thus for generator points of entry,
2, = Y81 = 0-0105 +j0-0280
el

Zy, = :/—Gz = 0-0087 +,0-0231
Gt
Vo3
i1
Zoy = lKGA — 00025 +0-0067 | | . )
G1

= 0-0073 +,0-0195

and for load points of entry,
Z,. = Z;., = 0-0105 +j0-0280
Zg, = Z,=00087 +,00231
Z,, = 23, = 0-0073 +,0-0195
Zg.y = Z4. = 0:0025 +j0-0067
Zo, = LB = 0-0011 +j0-0029
el J
With unit current impressed at generator G,
Z,.,=0-0087 +0-0231 = Zs 5 ]
Zy5 = 0-0188 +j0-0507 = Zg 5
Z3.4 == 0-0160 +j0-0428 = 2Z;, ¢ . . (49)
Z, 5 =0-0055 + /00146 = Z; 5
Z,., = 0-0023 +j0-0063
With unit current impressed at generator Gy
Z,3=0-0073 +,0-0195 = Zs 3]
Zy3=0-0160 + 00428 = Z 5
Z; 4 =0:0226 + 00600 = Z; 5+ . . (46)
Z,3 = 00078 +j0-0206 = Z3 5
Zy.3 = 0-0033 + j0-0089 J

With unit current impressed at generator Gy,
Zl-‘ = 00025 +100067 = 25'4‘
Z3.4 = 0-0078 +j0-0206 = Z; 4 S CY4
Z,4=00158 +,/0:0419 = Z3 4
Zy.4=0-0067 +j0-0182
With unit current impressed at the load L, the leakage impe-
dances are equal to those obtained with unit current impressed
at the generator G,. Similarly, with impressed currents at L,,
L, and L, the leakage impedances are equal to those obtained
with impressed currents at G,, G3 and Gy, respectively.
With unit current impressed at the load point Lg,
Zy.9 =0-0011 + j0-0029 = Zs 4
Zy9=0-0023 +70:0063 = Z 4
Z39=0:0033 +/0-0089 = Z7, . . (48)
Z4g = 00067 +j0-0182 = Zy 4
fo9 = 0-0125 +,0-0339
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The above impedances now form the components of the basic
symmetrical leakage-impedance matrix Z;.

(4.2) Reference Frame 2

In this analysis the hypothetical load for a normal load period
will be given by

= L0 2 B3 AR S (49)

and the components of the C; matrix by
I L2 L3 L4 JLS
I|='TE, 12275, I3=I—L, ’4=I—L—, 15=-iz . (50)

However, since available information for the given load points
consists of the half-hourly active-power loading only, it is not
possible to obtain the constant complex ratios, Iy, /5, etc., in
the above form. An assumption is thus made that the ratio of
the active-power loading at the load points to the total active-
power load remains constant, and approximates to the corre-
sponding current ratios, as given above. Such an approximation
assumes that all load voltages and power factors are equal, and
that all load currents are displaced equally from the total load
current. These assumptions are valid for the system under
consideration owing to the small phase displacements between
the terminal voltages, the previously assumed constant load

power factors and the approximate nominal system voltages at

the load points.

A similar assumption is made by George,? in which the average
line voltage and average power factor for the heavily loaded
portions of the systems are used in the analysis.

Fig. 10 illustrates the half-hourly integrated loadings on
17th January, 1955, for two of the five load points, and the total
area load for the Warrington section network. To compare the
general trend of each load to that of the total system load, the
ratio of each half-hourly load to that of the total was calculated.

It was apparent from these ratios that the trend of the total
load was reflected at all load points; that is, the pattern of demand
was the same at all load points, as stated in assumption (a).

The loading ratios to be used in this analysis have been obtained
by averaging the individual half hourly ratios, and are

In this analysis (C)* = (C)) and only the real components of
Z, are considered.
The components of Z,, are given and calculated as follows:

ZIJ=0‘0105,Zi.2=0‘0087,Z1_3=0'0073, )
Zl.4= 0'0025
Z,., = 0-0087, Z, , = 0-0188, Z, 3 — 0-0160,
Zy., = 0-0055
Zy. = 0-0073, Z; 5 = 0-0160, Z; ; = 0-0226,
Z, .= 0-0078
Z,,=0-0025,Z,,=0-0055,2,;=0-0078, )
Zi.=0-0158
dy=2Z, 4\ + Zy.¢ly + Zy5l3 + Zy 5ls + Z; gls
= 0-00703
dy = Z sl + Z5 6y + Z,9l3 + 25 5l4 + Zy 4l
=0-01381
dy=Z3 s + Zy 6ly + Z3,9l3 + Z5 gl4 + Z; ols
=0-01783
dy=Zy sl + Zyghh + Zagly + Zy g1y + Z4 s L. (52)
=0-00781 | *
and w is given by,
Zs.shit + Zs ghlt + Zs 7041}
F Zy gl 1T + Z, olsIt = 0-000774

Zg sl 12 + Zg. 1)1 + Zg L%

+ Z6 81412 + ZG 91512 = 0 001 492
Zy shi3 + Z7.6h13 + Z7.4513 :

+ 27.8[413‘ + 27_91513‘ - 0’01 l 285
Zg It + Zg hal} + Zg,15513

+ 28.8,41: + 28.9151: = 0'000 867
Zy I3 + Zy 6lal5 + Zg 41313

+ 29.3141; + 29.9’51; = 0'000140

0014558 =w

(4.3) Reference Frame 3

In frame 3 the hypothetical load current IL is replaced by the
reference generator current I® = [3, using the equation of con-
straint given by

ly=0110, /, =0-108, I =0-633, I, =0-111, I = 0-038
A 1)) L= -2 ~P—-1~-Die=-2ZI¢, (53)
The absence of reactive metering data at the load points The impedance matrix is given by
prevented the use of complex ratios in this analysis. The e 2
leakage-impedance matrix for reference frame 2 is now given by Zy3 = (G371 Z(C3)
Zyy = (CPFZ(Ch and its components (R,_x) are
Z,,l—2d|+w Z,,z—-d,-—d2+w Z_,——dl—-d3+w Z|_4—dl—d4+w W—d
= 4+ 0-011 = 4+ 0-00242 = —0-003 = + 0-00222 = +0- 00753
ZHn—dy—di+w | Zyy—2d+w Zyy—dy—dy+w | Zyq—dy—dyt+w w—d,
= + 000242 = 4+ 000574 = — 0-001 08 = —0-001 56 = <+ 0-00075
Zyy—dy—dy+w | Zyy—ds—dy+w| Zys—2y+w | Zy4—dy—dit+w w—dy '
M _ 0003 *L_0-00108 =4 0-00150 = —0-00328 = —000327 | -9
Z4.l—d‘—d|+w Z4.z—d4'—d2+w Z4.3‘—d4'-d3+w 24.4—2d4+w W'—'d‘
= 4 0-00222 = — 0-001 56 = — 0-00328 = +0-01474 = + 000675
w—d, w—~dy w—d, w—d, w
= +0: 00753 +000075 = -0 00327 = +0-00675 = + 0-01456

et e o

e
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It will be noted that the components of Z,; are symmetric,
and contain only real quantities similar to the real symmetrical
components R;3 of Kron’s analysis,® and the Kmn coefficients
of Ward, Eaton and Hale [Reference 4 eqn. (6)].

(4.4) Calculation of Loss Constants
The general term of the loss matrix is given by
= Rn-K
Iano VK|0
[cos (0 — O)(1 + AyAg) + sin (6, — Ox)(A, — Ag)]
(55)

The generator terminal voltage angles, 8, may be referred to
any reference axis, and in the present study this has been taken
along the terminal voltage of generator G;.

The constant ratio (A = Q/P) for each generator, and the
generator terminal voltages are those obtained from the normal
load-flow study, and are illustrated in Table 1.

Table 1
GENERATOR DATA FROM Loap-FLow STUDY

BnK

Generator output Generator
Gene;alor ‘;’m;::l Q/{’ ratio blﬁe;.oullt‘;'ge
P Q angle w.r.t, " Va

MW) (MVAD Gt

Gy 74-66 44-28 0 0-5931 1-0

G; 97-25 56-59 +11’ 0-5819 1-0

G;3 340-51 204-6 —-20’ 0-6009 1-0015

Gy 255 18:42 —1°36’ 0-7224 1-0

Gs 36-41 12-88 -7 0-3537 1-0

From the foregoing general term,
1
By = le-l(l + Ad
= 0-011(1 + 0-59312) = 0:01487 . (56)

Ry_ . ,
Blz = W:—'-Vizro[cos(el - 02)“ +A|A2) + Sm(0| - 92)(A| —AZ)]

= 0-00242 [cos (—11)(1 + 0-5931 x 0-5819)
+ sin (—11')(0-5931 — 0-5819)] = 0-003255 . (57)
All the B,y cocfficients obtained from the foregoing general
term are given in Table 2.
Thus, for the S5-generator system, the total system per-unit
loss is given by °
Pp = 0-0149P% + 0-0077P3 + 0-002P% + 0-0224P%
+ 0-0164P% + 0-006 5P, P, — 0-008 1P, P,
+ 0%63[’1"’4 + 0‘0182P1P5 - 000291’21’3

For the station loadings obtained from the load-flow study,
i.e. for

Py = 74-66 MW, P, = 97-25 MW, P; = 340-51 MW,
P, = 25-5MW, and Ps; = 36-41 MW

the total system loss is, P, = 0:006227 per unit or 0:623 MW,

These losses do not compare favourably with those obtained
from the load-flow study, the results of which are illustrated in
Fig. 9. However, the main purpose of the flow study was for
the determination of voltages, angles and Q/P ratios. Excessive
errors in the losses estimated from Fig. 9 are the results of finding
differences of large quantities.

(5) CO-ORDINATION OF INCREMENTAL FUEL COSTS
AND TRANSMISSION LOSSES

In this Section the previously determined transmission losses
of the system are combined with the incremental fuel costs of the
generating stations, and a loading schedule is obtained which
will give minimum operating costs for given total generation.

In the case of a number of generating stations supplying a
power system and loaded on an equal incremental fuel cost basis,
power will be transmitted from low- to high-cost regions due to
the variation of fuel costs at different stations. For economic
division of load between the stations it is thus necessary to con-
sider the resulting transmission losses, and to amend the station
operating costs accordingly.

(5.1) Methods of Co-ordination

The mathematical analysis for co-ordinating incremental fuel
costs and transmission losses is based on the methods for deter-
mining the maxima and minima of a function of two variables,
the latter also being related by an equation of constraint.

Using the methods of Lagrange’s undetermined multipliers
(Courant,32 Kirchmayer and Stagg®), the condition for minimum
fuel input is given by

dS, | P _
E’P-"'*‘Ab——P;—'A . . . .

where dS,/dP, = incremental fuel cost (£/MWh) of station n.

(59

and JP.JdP, = incremental transmission loss (MW) for a
megawatt change in generation (MW/MW) at
station n,

Solution of the non-linear simultaneous equations obtained from
eqn. (59) for each station, by variation of A, will yield the plant
schedules for different total system loadings.

If, in the general case, the fuel cost input curve for station »
is assumed to be of the form

—0'W4P2P4 + 0-001 8P2P5 -'0'0094P3P4 Sn= m,,P;‘: + C,,P,,(£lhr.) s e e (60)
n__ = m’ .
where Py, P,, etc., are the per-unit station loadings. then dap, @ma)Pa+ Cu= 1Pyt Co ©h
Table 2
CoMPONENTS OF FINAL Loss MATRIX
nk 11 22 33 44 55
By +0-01487 +0-00768 +0-00204 +0-02243 +0-01638
nK 12 13 14 15 23
Byx +0-00326 —0-00406 +0-00316 +0:00912 -0-00146
nK 24 25 34 35 45
Bk —0-00221 +0-00091 —0-004 69 —~0-00396 +0-00842
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where m, = slope of incremental cost curve (E/MWh/MW).
and C, = intercept on incremental cost scale (£/MWh).
22

Also 3Pn = ? ZB’lkPK
" Thus eqn. (59) becomes
(m::Pn+Cn)+/\§ZBnKPK=’\ P (73]

For the five generator system under consideration, the co-ordi-
nation equations are
m{Py + X2By Py + 2B,P; + 2B,3P;3 + 2B,,P,
+ 2BysP)= A — C;
mz'Pz + A(2B|2P| + 2322}'2 - 23231’3 + 2824P4
+ 2825}’5) = A - Cz

. (63)

etc.

Available information, however, concerning station fuel costs
will take the form
Sp=mPr+Cy . . . . . (64

where m, and C, now relate to the slope and intercept of the
input/output curves.

dS,
dpP,
In this case it is now possible to charge the system losses at

the incremental rate of received power A, and to obtain a loading
schedule from the solution of linear equations.

Thus = m,

(5.1.1) Co-ordination Equations for a Five-Generator System.

In terms of the actual B, constants and linear input-output
curves, the co-ordination equations simplify to

0-0298P, + 0-006 5P, — 0-008 1P; + 0-0063P,
. 1 _ my
+0-0182P, m(l “

0-006 5P, + 0-0154P, — 0-0029P; — 0-0044P,
. 1 ny
+0-0018P, 1—0-0(1 -

~ 0:008 1P; — 0-0029P; + 0-004P; — 0-0094P,
>
. 1y my .69
0-0079P; = m(l =2

0-0063P; — 0:0044P, — 0-0094P; + 0-0448P,
. . _ l my
+0-0168P; = 17.6(1 -5

0-0182P; + 0-001 8P, — 0-0079P; + 0-016 8P,
| , =L _ms
+0-0328P = 100(1 :

(Py, P;, etc., are per-unit station loadings.)

or, in matrix form, BP = (l -
A
The solution for the station loadings will now be obtained by
inversion of the 5 x 5B matrix. This is calculated using the
methods of Kron,25, p. 258, for the inverse of a two-row com-
pound matrix,

Such an inversion yields the matrix equation
' m
P= B”(l -7
A

This gives the respective per-unit loadings for minimum total
fuel cost as follows:

-«

P, = 46:922 — ;\(5-699m, + 8-730m, + 29-965m;

+ 5-600m, + 0-928my)
Py = 45635 — %(4'730m| + 5-486m, + 28-758m;

: + 5-452m, + 1:209mg)

Py=273-446 — )1‘(29-965,"l +28-758m, + 174-902m,

+ 32-583m, + 7+238ms |
) . (66)
Py = S1°181 — 5(5°600m, + $-452m; -+ 32:583m;

+' 6‘362”14 + 1'184”!5)
Py =11-420 — %(0-928,", +1:209m, + 7-238m,

+ 1-184m, + 0-861ms)
TP = 428-604 — %(46'922m, + 45-635m,

+ 273:446m; + 51-181m, + 11:420m,) |

Loading Schedule.

From the weekly return of fuel costs at steam stations con-
tained in Form CEA/G.S.-15 of the Central Electricity Authority,
the following incremental costs were estimated, and they are used
for illustrating the application of the above loading equations,
These are assumed figures only, based on average fuel costs and
existing orders of merit.

my mz M3 my ”15
05 06 04 08 0-35pence/kWh
2-08 250 1-67 3-33 1:46 £/MWh
Under these conditions the loading equations reduce to the
following form:

. h
Py = 46:922 — 9_3_xl?_3.
Py= 45635 — ?1—;;5——00
Py = 273:446 — 545}‘377

PR SN (1))
Py= 51.181—‘93)7636

pym i 20

855-446
A

The respective station loadings are now obtained by deter-
mining the value of A for a summated generation (XP), and
applying this same value of A to each remaining equation.

For per-unit values of X P in excess of 4316, corresponding to
a value of A equal to 2-:0162£/MWh, it becomes necessary to
base-load the available generation at G, say equal to the maxi-
mum per-unit value of 0-29,

ZP = 423-604 —

o
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Fig. 11.—Generator loading schedule for optimum system economy.
G4 base-loaded at £ P = 4-316.

(5.1.2) Co-ordination Equations with Generating Station G4 (Crewe)
g:sﬁ-vlvoaded at its Maximum Available Generation of

With G, base-loaded at 29 MW, the co-ordination equations
(65) can be reduced. Inversion of the B matrix will again give
the solutions for generator loadings in the form

r-r(e-3)

or 01t 0 30
J
5T 28 T23
”’ - I-“
’4'\’\
” -
o S
201 §°¢; +20
\\
\"'\
L‘i S~
I8+ B3 +1-8
1
+ 20
'°<r , '.QT B +-0
™~ L] LA rs L
(REF LINE)

Loading Schedule.

Using the previously assumed incremental fuel costs, and for
values of X P in excess of 4-316, the loading equations now take
the form

-

3-3918
Py= 21181 — —
py= 2oims - Y398
-8330
P, = 127805 — 2 §33 L. (68)
P, = 1.9493 — 21459
)
29-9302
ZP (including Py = 0-29) = 19-1557 — =

A complete loading schedule obtained from these equations
for system loads, ranging between 250 and 550 MW, is illustrated
in Fig. 11,

Thi accuracy of the generator loading equations has been
studied by checking the inversion of the B matrix, eqn. (65), from
the product BB-!. This was found to be of approximate unit
matrix form, thus indicating that the inversion of B is correct.

An investigation has also been carried out to check the scaling
of this matrix. From the study, which consisted of checking
cach step in the inversion of B, it is apparent that the expr.essio.n
(BuBss — B,s?) which appears throughout the inversion is
having a powerful effect on the expressions for generator loadings,
and in particular on the term 174-902m; in eqn. (66).

Now By = D=4 4 A
Rs_s
and By = =51 + A
R IAF *
Also, from the Z;, matrix, eqn. (54),
Rea=2Z44—2+w .0
and R5_5 = W )

30+ 504

284
40T

204

07T

-~

st

104
L]

s
Fig. 12,—Nomogram for total generation ?P.

Examples.
Left-hand

Nomaogram,
my a= 2-08 £/MWh to ms = 250 £/MWh gives .

q to my = 1-67 £/MWh gives r.
710 ms = |-46 £/MWh gives .
Right-hand

N ram.
- ”‘ltlmsvgh to required total gencration of S00 MW gives A,
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Fig. 13.—Nomogram for generator G; of loading P;.

Example.

As in Fig. 12 to give new value of s.
s = 3-36£/MWh to A = 2-113 £{/MWh (from Fig. 12) gives Py = $2 MW,

Now Z4_4 jad 2d4 . . . . . . (71)

Therefore the value of w appears to be influencing the com-
ponents of B~1,

From a study of the components of w (=0-014558), it is
found that the term Z; il3/F = Z5 3531} (=0-009056) is exces-
sive in relation to all other quantities.

It can thus be concluded that the generator self-impedance Z;, 5
(with unit current injected at generator Gy), the loading ratio /;
(i.e. load at Ince as a proportion of total load) and the ratio
A, of reactive to active power for generator G, (Crewe), at normal
load, are having powerful effects on individual generator loadings.

This investigation illustrates the fact that, in practice, con-
siderable accuracy in computation will be required when the
magnitudes of the system parameters and load ratios have wide
differences.

(5.2) Loading Schedule Nomograms

The form of the final co-ordination equations enables a set of
nomograms to be constructed to represent the various generator
loadings for optimum operating efficiency.

The methods given in Reference 34 have been used for the
five loading equations, including the one for total generation,
and give rise to five nomograms, two of which are illustrated in
Figs. 12 and 13.

Each diagram represents the respective loading equation and
each variable is represented by a graduated line. Index lines
drawn across the diagrams according to the values of the
variables, in this case the station costs, will give a direct solution
of the equations they represent. The various generator loadings
are obtained by the use of the respective nomograms, using the
known m values and the values of A found from the total genera-
tion nomogram of Fig. 12.

The example given on the nomograms illustrates a loading
schedule for a total system generation of 500 MW, and the various
generator loadings compare with those obtained by calculation
from the loading equations.

(6) CONCLUSION

In this present analysis, fuel costs and losses have been
¢o-ordinated using the exact equations in conjunction with linear

input-output characteristics for each station. With this assump-
tion, the solutions obtained from one matrix inversion are valid
for all variations in fuel costs, and the linear loading equations
may be adapted for nomographic representation as illustrated in
the paper. These charts will provide a method of developing
rapidly the economic loading schedules as functions of total
generation,

If the incremental fuel costs are assumed as functlons of the
station loadings, then each variation in station costs will neces-
sitate a matrix inversion, In this case the rapid calculation of
incremental transmission losses combined with generating costs,
and the immediate application of these results to the system, will
require the use of simplified network analysers or digital com-
puters for the solution of the linear equations.

Comparing the economic loading schedule of Fig. 11 with the
loadings obtained from the load flow study, it is apparent that
for greater operating economy the generation at Percival Lane,
G,, and to a lesser extent that at Warrington, Gy, must be
reduced and transferred to the more economic sources at Ince,
G;, and the Carrington interconnection, Gs—provided that
adequate tie-line capacity is available.

A schedule for minimum Jloss can be obtained from the fore-
going analysis, and if compared with that obtained by considering
the effects of fuel costs, it becomes apparent that the value of the
low-cost import at G is much reduced due to the greater effects
of line losses. Station loadings at G, and G, under these con-
ditions are greater than the corresponding loadings obtained
when considering fuel costs. Plant availability, provision for
security of supplies and relative generation costs usually prevent
the loading of stations on a minimum-transmission-loss basis.
Such a condition, however, is of value in the planning of trans-
mission systems and in comparing delivered costs from stations
having equal incremental generation costs.

This analysis has been restricted to the determination of loading
schedules for a small section of the North West, Merseyside and
North Wales divisional network. The effects of incremental
transmission losses on the selective loading of generating plant
will become more apparent when the analysis is applied under
light load conditions on this particular network, such as those
obtaining at night and during the summer months, and when
applied under more general conditions to larger sections of the
Grid system,
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