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A unified approach to the analysis of a wide range of electrical 

machines is investigated. The method makes use of the transformation 

laws and properties of invariance of tensor equations. The equations 

of a primitive machine are set up, and these are transformed to give 

those of the required machine. The machine power input and torque are 

invariant under the transformation; ensuring that the identity of the 

machine being considered is not lost in the new equations. This 

method of analysis was first suggested by Kron, and has been fairly 

extensively applied by machine engineers. The papers now presented 

investigate the tensor character of various groups of machine parameters. 

It is found that when the equations are set up in tensor form, 

the groups forming tensors have all got some physical significance. 

The equations in this form are independent of the reference axes 

chosen. In hunting analysis the tensor groups lead to equivalent 

circuits which give a somewhat clearer picture than previous circuits 

of the machines represented. 

The idea of analysing a complex power system in the same way, 

namely by considering it as a transformed primitive system, was 

applied by Kron in the U.S.A., in his papers on Power System Loss 

Analysis. The Monograph 2945 presented here gives an application of 

this work to a section of the British Network with a study of the 

effects of simplifying assumptions. 
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An indication is given of the way in which dynamical tensor· 

equations (in Lagrangian form) can be associated with the electro­

magnetic field equations applied to machines. This approach appears 

to converge with recent work on the stability of high temperature 

arcs in thermonuclear reactors and with investigations of magneto­

hydrodynamic phenomena. 



Tensor Analysis of Electrical ~mchines and Power Systems 

1. Polyphase Systems and Transformations 

Electrical power is generated on a large scale and transmitted 

by means of three-phase alternating current systems. This has meant 

that on a fairly extensive network it has been difficult to predict 

how the system would behave under conditions of faults or unbalanced 

loads, or following transient disturbances. The performance of the 

system generating machinery and industrial motor drives under such 

conditions has always received a great deal of attention. 

In the solution of such problems it has been amply demonstrated 

that calculations are often greatly simplified by the use of substitute 

variables in place of the actual coil Currents and voltages. Stationary 

networks are often analysed by means of three-phase symmetrical components. 

Rotating machinery is studied by using reference axes selected to 

reduce the number of variables in the machine equations. Electrical 

power engineers more than others have thus been accustomed to this 

principle of transforming actual quantities into more convenient 

components and to the idea of "transformation" of variables and 

reference systems. 
I. 

Concordia has gi van a summary of the transforma-

tions commonly used in this field. 

The advantages of a change of reference axes were clearly 

d z. 
emonstrated by Blondel in resolving three-phase alternator quantities 

along the direct and quadrature axes of the field structure. The 
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extension of Blondel's ideas by Park, Doherty and Nickle, and the 

development of the concepts of operational machine-impedances which 

followed gave an intellectual impetus to the whole study of electrical 

machinerY. An electrical machine became a complex arrangement of 

inductively coupled coils in relative motion, and the mathematically-

minded power engineer had much scope for systematic application of 

the classical laws of Newton, Faraday and lIaxwell. 

While the three-phase synchronous machine was being elegantly 

and thoroughly investigated by the change from phase quantities to 

d- and q-axis quantities, other types of machines had still individual 

theories and each had its own physical description. One did not, for 

example, speak in terms of armature reaction or generated voltages in 

an induction motor or too often of flux linkages in a d.c. machine. 
liS. 

In 1934 Kron showed how the two-axis theory of Park could be used to 

give a unified theory embracing a wide range of machines. He described 

a primitive two-phase machine, wrote down its equations of performance 

and developed the transformations necessary to derive from these the 

equations of a given machine. 

Several other writers have since given analyses of electrical 
~. 

machines in a generalised form. In 1939 Stanley studied the polyphase 

induction motor by resolving the stator and rotor vo1tages, currents 

and flux linkages into axes in quadrature, similar to those used by 

Park. The resulting equations of the induction motor are found to be 

almost identical in form with the two-axis equations of the alternator. 
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In both cases the transformation leads to a set of linear differential 

equations with constant coefficients and solutions can be obtained by 

operational methods. The analysis is applicable to problems of 

variable speed and hunting. 
,. 

In 1951 Sabbagh applied the two-reaction theory to the analysis 

of several types of a.c. induction and commutator machines and showed 

how the vector diagrams for each machine could be drawn from the 

derived equations. 

f· 
In 1952 Vowels investigated the transient equations of synchronous 

machines, and showed that the two-axis equations of the alternator are 

identical in form with those of the cross-field metadyne. 

K "· u has given a comprehensive survey of the unified theory of 

machines. He uses the relatively stationary axes of Park and Kron 

and also gives a detailed description of the use of axes rotating 

uniformly, independently of the rotating field structure. (Kron's 

1 "') analysis also embraces genera rotating axes. 

" . . In 1957 Ku and Shen developed a two-reaction theory of induction 

motors having saliency and unsymmetrica1 windings on the rotor. 

Equivalent circuits are also given. 

2. Network Transformations 

Kron's method of machine analysis is based on the idea of trans-

formation from a simple primitive system to a more complex derived 

system. 
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An early application of the ideas of groups of network trans­
la. 

formations was that of Nathan Howitt. He shows that static electrical 

networks can form groups with given functions invariant. For example, 

a linear transformation of currents can be used to derive a family of 

networks having the same operational driving-point impedance function. 

If the elements of the network of Fig. I~ are written in the 

form of a matrix 

2 :: 

2 

a linear transformation of currents 
. . 
l , : L~ 

gives a connection matrix 

b 

\ Cl , 

C 0::.. 

b 
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The operation CtoZoC = Z' gives 

, 
Z= 

Q. \O~-t\O 

b 

The driving-point impedance function of each network is 

and 

Z _ Determinant of the network parameters 
p Minor of the first row and column 

P l..-t- ~p -+ I 

P+\ 
• 

I 

Ztr) 

1\ 
This general principle is similar to that used by Kron to simplify 

network analysis. The operation CtoZoC can be carried out on the 

elements of any network or group of networks to give the impedance 

matrix of any complex interconnection of the coils. Kron has used 

this systematic approach in his analysis of interconnected power 
, .... 

systems. The application to a section of the British Grid System is 

given in I.E.E. Monograph 2943 (attached). The imp1ica.tions of the 

interconnection of network elements by matrix operations (for example, 

) 

I~ 

the invariance of the network power have been discussed by Gibbs and 

16>. 
Hoffmann. 

The above operation is in fact a tensor transformation. Kron 

extended this method to deal with coils in relative motion (machines). 
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The tensor operations can be applied to moving and rotating systems, 

but only by the introduction of the concepts of absolute or "covariant" 

differentiation, of the tensor calculus. These applications are 

investigated in Monographs 117S and. 295S (attached). 

3. Tensor Analysis of Machines 

How physical phenomena appear to observers having different 

types of motion permeates the study of electrodynamics. It is important 

to separate those manifestations that are due to the point of view of 

the observer from those that are inherent in nature and not introduced 

by the interpretation of the observer. 

Tensor analysis deals with transformations of sets of differential 

equations. The laws of transformation are such that a set of quantities 

or components cannot become zero if it transforms as a tensor and has 

non-zero values in any reference system. This means that tensors 

cannot arise simply because of the choice of reference axes. A single 

tensor may be made up of several component terms, some of which may 

individually become zero in a given reference system, the other terms 

changing accordingly. Tensor analysis became important in Relativity 

Theory because it enabled investigators. to describe physical phenomena 

by equations which contained terms that were independent of the 

reference axes. chosen. These terms, of course, would have different 

components in each system. Associated with the transformation laws 

and an inherent property of tensors is the fact that in any physical 
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system the tensor equations will preserve the identity of quantities 

(such as energy or torque) that are unchanged in magnitude when 

different reference systems are used. That is, the tensor equations 

will give a property of invariance identifying the physical system in 

different co-ordinate axes. For example, the voltage equation of a 

single stationary coil may be written 

Vfuen several coils are concerned this can be written as a matrix 

equation 

A different interconnection of the coils would have the equation 

where 

If the coils have 

..e., :. 

or 

~~ ~ 

If the reference 

relative angular velocity the equation 

R.. \.. Q,. -+ L 0 lo... + ~ L ~Q,. Q e L Go 
,~ ~o...' ---- ~ 

~8 
("') . '" L . Cl • Q,. 

'''' ~c.. L + ,,0.. 'P L + C4C-A. 'P e (.. 
axes also rotate the equation becomes 

.QJ--c. . 

becomes 

.ey .. R ·et L'o( "ot" S'·oI. 
t y-t,l + y.L,fH -+- ~Y(l. pe l -\- v.., .. r l 

The machine torque 

."* . f -: L·~C.L 

is an absolute invariant. 

The tensor form of all the above equations is 

(JJ). 
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where the covariant derivative 
?> L k ~ d i..~ r \(.. u... v-_ _ -+- L L 
~l: dt uv 

h. 
The term 

r ...... V' 

u.\r L L expands to give the equations (b) and (c.) 

from equation (d). In the machine there are three voltages, which 

are all tensors, 

(a) impressed voltage ~ 

(b) resistance drop Ri 
.\t 

() .,. L ~_l' c "Flux voltage" \Faraday" voltage) 
-.h. ~t 

The third voltage is made up of voltages due to rate of change of 

linkages and rate of flux cutting. These components can change from 

one to the other as the reference system changes (as in equation (b) 

and (c) ); but it is the total "Faraday" voltage, which is a tensor 

and it cannot be transformed to zero. It exists. Kron investigated 

electrical machines from this pOint of view. His analysis brings out 

the fact that there is the same maenetic structure for all machines 

and that'the same physical phenomena occur. This method reduces the 

analysis to that of one representative member of a group. The others 

are found by routine transformations. J~well's equations in 

Lagrangian form can be applied directly to synchronous and induction 

machines in which the reference axes are fixed to the coils. However, 

when the reference axes are fixed to brushes then a modified form of 

1fuocwell's equations must be used. Because of this complication 

graphical and vector techniques have been used in machine theory. 
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When the tensor form of the dynamical e~uatiolBis used, groups of 

machine currents, voltages and flux linkages in any machine can be 

identified with the terms of electromagnetic field equations. The 

coexistence of electromagnetic and mechanical energy in the machine 

gives the equations a form similar to those of the Unified Field 

Theory where gravitational and electromagnetic fields are considered. 

Tensor analysis unifies the study of the whole group of electrical 

machines by investigating properties that are invariant and therefore 

independent of the type of machine or of the reference axes used. 
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Field Concepts in Electrical Machine Theory 

Several publications appearing recently have covered the app1ica-
11,'8. 

tion of electromagnetic field theory to electrical machines. In 1938 

'f. Kron gave a comprehensive summary of the field concepts associated 

with the generalised, or primitive, machine and the corresponding 

quantities used in the coupled circuit approach. This paper has not 

received the attention it should, mainly because the equations are in 

tensor form with which engineers are not so familiar. Nevertheless, 

it would appear that when the tensor form is used, the field and 

rotating circuit relations can be more easily correlated. (The tensor 

analysis used in Kron's field theory is investigated in Monography l17S.) 

This method of analysing electrical machines is very important. 

It appears to converge with recent work on the analysis of magneto-

hydrodynamic systems and the stability of high-temperature arc plasma 

~. 1 used in experiments on thermonuclear fusion. In both systems mechanica 

and electrical energies are interacting and the equations of both 

systems have to be formulated in several degrees of freedom. For this 

reason the salient points of Kron's paper are now summarised. 

The symbols have the meaning used in the literature. 

Electromaenetic Field Eguations ot" 

amperes l~·""' . 

.. 

V·D = f c..O '" l 0"",, b'\ \ c.. ",,",. 



H, 

9' B :: 0 

& ~ c-,J2, P\ "'"" ... Q •• "- , ~. ~ • 

A conducting loop moving in a time-varying field, 
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Four dimensional form of field equations 

~"'H - ~\) : T. 
~t 

~ G.ik 

0 \41. 

- \-\ '?> 0 

r\'1- - \-\ \ 

L c.1). .: c. Da-

0 
~ \-h _ ~H'Z.. - -~ )C.'- ~x, 

- ~HI\ 0 
~ H, 

- )~~ "(> )(.. 

~ \-\1- _ ~ \-t, 
0 - ~""-") ')<. , 
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-c:. c. ~ 'Q -~ ')C.~ --
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~~ 
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~Xk. 
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Mechanical forces in the field are expressed by the stress tensor, 

derived from the field curl equations. 

Force transmitted across a unit volume is 

- Electrostatic force + Magnetic force + rate of change of 

electromagnetic momentum. 

T • T + T e-static e-mag. 

~ 
~ 

E.~ - ~ E- E.,.. E..~ E.~E~ 

~ 

E..., E)\ E.~ - \:. £.. E.~ E~ 

'l. 1-

E.~E.)(.. E.?, E.~ E.~ - ~ E 



IS". 

"l.. ~ 

B,;- ~ \?) ~~~~ &~P.>~ 

&~ ~.,'- B~ -~ g~ &'3 ~\ 

\:'b&x \)~~~ 8~-t. e,"'-

2,4. 
Rainich shows why the stress tensor can be expressed in the form 

used in relativity theory, in terms of the field tensor Fij, namely 

-r::j = ~~ f=\l.l - f; ~ij t=;k F~-; 

r- ~ :. F ~ -+ ~'\ ~~\ + ~'-4 Ft. \ ~ F"" ~~ -t- F"\..,\ r,.,'1.. -\-r;1t k~ I~~' 

" 2. (- L~ - M~ - N ~ + Y. ... --- 'f+ 2') 
r r r- r- "'- "-J\. '1.. _ )( 1. 

t:;"" Ft-., c: F. .... ~, -\- f\, r~, -+ t"\'4- r ... , -:: - N - ,~" 

In this notation l~ell's curl equations have the form 

~'( ~Z ... ~ ~M ~ _ a~ 
- -- - -- - ot 1,~ ~~ o~ ~~ dt" 

))( 02 ~~M ~N _~L - -~ - - -- - -~~ 6 "X. "t ~')C.. 1>~ ~t-

oX 'a'l ~N "C)L e>M - - aZ -- = - -- - ... 
O~ ot '?>~ ~.,c. -o 'X- ot 
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where X, Y, Z, and L, M, N are the components of the electric and 

magnetic fields respectively. 

Rotating Machine Equations 

Commutator machine with axes stationary 

e ~ Ri. +- L pi.. 4- ~fe 

B ~ c.·l 
G contains flux density terms. 

When the current and flux waves are sinusoidal round t he armature the 

terms of G can be obtained by transformation of the machine inductance 

matrix and 

c. t ~L 
cl 

" 
d. 

, 
tJ~ '( ~ 

\' -\ 

The machine equation can be written 

n·ot. 'el F ·S 
€ov ~ "Yol L + Ly~Pl ~ y~l 

. ~ 
L : • 

t~en the reference axes rotate independently of the rotor, then 

, I' L' . I , • , , • , .e. ... R..( + . PL + G·t pe +V·t.· 1'6 
, 

where pe is the angular velocity of the axes. These two equations 
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come from a general tensor equation 
.d-. 

R ·.;. L ~L e. ¥" ~ ye/.. L + -Ye). ~t 

where 

and 

_. I l,.' 01. 
~.a. L d. 

LvJ. C[)~ '::: vol dt -+- C ·11, or 
'p,_ l l 
1- ", Y 

The link between circuit and field concepts is the vector potential. 

The machine has been idealised. The assumptions relevant to the 

vector potential are that the m.m.f. and flux density waves are 

sinusoidal round the armature ani that t he current density in the 

d t i 'f I th' th ,2.3. con uc ors s un1 orm. n 1S case e expresS10ns 

L ~ (~'!Ctp~a.. ) 

and 

give flux linkage 1.i • A. 

In this form the vector potential is given by the resultant flux 

linkage in each circuit. 



In a 2-axis machine with an operational inductance matrix (field 

eliminated) 

L = 
1\f"' 

d Lcl 

L" 
cl 

The field equations in covariant form become 

B - Absolute Curl A 

In terms of time variations the index l3 takes the time value t, ( an 

index s denotes a mechanical angle of rotation e) 

corresponding to the equation 

where vI 1s the angular velocity of the rotor. 

v
2 

is the angular velocity of the axes. 



cl 'l 'S ~ 

-B ~ -Ec( f'\.. .eel. 

-B 1. 
- E.,. +.4 e'\. .. 

s Bo1 , B~ s - 4>11 -crd 

EJ. E.1. -..eel. -e", 

The absolute form of the symmetry equation can be written 

::..0 

. This leads to 

'" -

and is equivalent to 

/.\.e-" ~ E- ~ -~ - ~. ~ (\3 """) 

Also 

=- 0 

corresponding to , 

Abs. Div. A • 0 
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The stress tensor can be obtained from 

.'\. 
l 

1.. 
.d. 
L 

.Gt, .d. 
-L -l 

Then s 

cl Bd HJ_ \J B_ H '\, 

& H~ 
"l 

e, \-('\'- \Ai 
Cl. 

W 

cl E.. Ht EdH -+- ,. -w 
The instantaneous stored magnetic energy is 

't-t ~ t ( 5.1 \-\ et + 5't H et) ':. - i B1f H -:;- ~ - W 
Maxwell stresses 
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Poynting Vector 

E iI lrH 

representing the power flowing into the machine. 

The investigation of the above and other electromagnetic relationships 

is continuing. 
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Derivation of equation 57 in Monograph 295S 

(a) The first method uses equation 22. The synchronous machine 

impedance transformation is given by 

et s cl C\ 

\ 

c- et,. ~~ - <:,~~ 

S.:....~ ~~ 

s 
, 

(ye) = 0 

• I 
P L ~ 0 

and therefore 

C '-= C l-' :2' C (A l ' -+ ~ ~ 

(b) In terms of transformed parameters equation 55 can be used. 

(See now equations 52 and 53.) 

Ct .Z.C • 3" 

(The transformation matrix is shown on the following page.) 



2.~ . 

cl 

'"('"-4 .... LGk P r-t\" c..~ p - f"I\cA ~ ~ P 

1'" J,.r ~ "- b -~ck~~~Cj, 

l"'Y eo., ~ p 
... Lc:L-.- C6-:, '\. {, r -L~~~~~ r (',iL.

ew 
••• (4., ~ p 

-LJA.~'i>~~pe + LcL,.,. ~~ pB 

-tJY~'b pe 
t-L ~b~~ re 

"'" +~ ~bpe 
-r~JV\i~~r 

'1" ...,.-or- ~"to ~ +Tey.-~~~~ -lcl~L~~ p 
a.c. 

L . '\..bp 4-L ~~~~p T ,. ... /')'V'W\, 
~ ... 

-'f'.Lr ~ ~ (..cv.) ~ ""f"cW ~'\..~ 

-t'\J~~p 
-L6.,o~~~~ P -to Ld.-,. ~l.~ P - LVL."r~"O f 

-L~~"'~ pS 1- L~~~~~p6 -'rs t'\t ""~ f 
-t'\lc~~PG -L ~"~ pe - Lyttn b~ \ PG 

- lcML<k-~ ~ f ..... 
... -r"V't" ~ ~ u-:, ~ +1"C\¥ ~'\.~ 

l' L~C6?f:, ~\ P + L '\t'I' (.0;,)'" ~ r 

i. ...... L' ~~ ·<tIf'L . ~ -L ~ 

s 
• '\1" tI\ +~L ~~ + LJ..c- L ~~ l • L r'" 

'"" rLs rv\:, ~ 'D ... i.~ f"'\~ ~ b 



~ ~ 

I 
j\) 

i'O 

~ ~ 

, 
1Q 

7J ,... ,... 
~ 

~ 

~ 
'-" 

L 

"" 

~~ 
Sl 0 

, 

~ 

~ 

(\ 

oIlcJ v/'n 
tf . 

Al 
() 

r- . ... 

loA 
~ p... 

+ + I + .. 1+ +-1+t-t ~ I' 

r-' -\i."" r 't-\ .r r f J; r ·f'l r r- or t-\ 
~ ~ ~ ~ ~ f. {t ~ 

3 r_ r. J :, 1- 1 r~ j. t· §' f t- f ~ 
~ f t ~.. f f ~ s f. ~ ~ f t· 

01' '" (Y\ 0/' Cl) <!: 01' er 
"'0 

\J Q) ~ -0 
Cl) 

f:I\ 

I 11 ~ t t:-\III T I I 

rei.. r-t' ,.... r -,-It r [" rr f :-i r r r- r- t-:1 
01\ ~ 1 1 -\ " Y, -{ of t t f ~ 
2 r - r- 1 f f. f,. t ~ ~. ~. t r f,. ~ 
~ ~ , G tf\ tI' ,.; "" (\ ~ ~ ~.. tI' C/' 01' 
~. l rr ~. Y. "\7 -0 ~ l or r:I' j. , -0 -

'" 01" ~ ~ CC 4b d\ 01' ~ 0/' of\ 
"'d \l '"0 ~ 

~ Q) 

I 

2 
3 
d' 
~ 

cl 

t/I 



27. 

~~JPe~ + ~-aC~.c..C.i.tfe 

s 

s 

c:L,..,. "J... Cl 

tJ1 • ~.el -Z(L.;. ~) c." ~~ ~ ~ d. i. c!s 1V1d c.-:, ~ 
... ~ ~ 

-(~L.t...XGt,~·S~~) l'\ 
-(L.;..lJrl)( Cc,,'" ~ - ~ '\) leA. 

+ Mol Cd-:) ~ 'Let 
·.ls f'I1 . +2.~..;;.L.k')~~~~ l'\ +l .. ~<b 



dS 

-L ~'L~ Ld.¥ c.,,~ ~ <a 

- tv\, (4., ~ 
Ck 

_~ ~~c:.ob - L ~\.) 
~ 

L~~~c-..~ -L.:t,. ~1.~ 
t'fld~<a -L~~~~~ ..:. L "w '-cM 'L~ . 

Cc:' Z· C. 4- tt. c.(.. + C .. ' ~.: ~. Lt 

V o-tJ.. ... ~ ~~ ,"'-C,.,t~, P ~ ~', 

CiJ 

t'" . cl.. t'1 . C\ - cl~bL r- clcr"bL P 

'J. (, Lor ~) Gt:, <b ~ ~ Ld. P - i.~~ trY ~ \ f' 

of (L~ LJ..,.)( ~'L$, _ ~1.~ ') l q,r 

- 'l.(L..;; Lh) Co-;,b ~ b i."'p - L.J..~ t'\J. ~ ~ r 
+ (L~ L..l-J( ~'1.~_ ~~) ,-.l P 

s 



~ ~ ~ 

-, ' 
I 

cls 

Lc4. MJ~b - l"1al ~ ~ 

. 
Lck~'\.~ ....Lck~~~ ... 

't'\.l ~ ~ 
-+ L ....... ~ta ~~ + L ~'-'& 

~ 

-~~~~b L-.L.,.~ "I.~ 

- t"\J~\ 
+ L~~~~'b + L"", ~~b 



5 

• . &. 
1"'\ ... o.-~l 

"" . ~. 0-" c:l~ l 

- .,.( L.,;;. ~) W, 1> ~ '- i.d 

-+ f'l\d c" ~ l '\ 
_ (L~ l..w I( c;.,., '\~ - ~~)l 'l 

- -i ";) L .... cJ.: C. I 

~~ 
I 

~c. ., . , 
- . l . L 
~~ 

_ (L..;;. '-.w)( ~ 'L~ _ ~ ~~) l cl. ~ GC. 

+ 4 ( L~ l.k) ~ ~ .-k-. Cb t J. i q. 

tf\", cq,~ "M 
~~l.wX~'\-5~~)i.d 

.. z.(L,;. Lc).,.-)c,..,\~\ lit 

Summation of the appropriate terms gives equation 57, Monograph 2955, 

derived via equations 22 and 55 respectively. 
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The Practical Application of Matrix Methods 

of Electrical Machine Analysis 
BY 1. W. LYNN, M.se., A.M.I.E.E.,· AND A. S. ALDRED, M.se.· 

THE application of matrix algebra and 
tensor analysis to electrical circuits and 
machinery has to a large extent unified the 
theories of individual machine systems. 
Kron's methods of analysis have been 

'clearly and simply presented by Dr. W. J. 
Gibbs both in his recent book (1) and in a 
series of articles.l2) In the latter, Gibbs has 
shown that for the analysis of most 
machines only the elementary parts of 
matrix theory are required. This form 
appears to be very suitable for presenting 

, to engineering students a consistent general 
theory of electrical machines. As a step 
in this direction, the matrix equations of 
some well-known machines have been given 
by the authors to various groups of final~ 
year students and the machines then investi­
gated in the laboratory. The results are 

2 

r. +L.p M 12P 

3 

found to be impracticable to measure the 
values of L and M directly, but using open 
and short-circuit tests for each pair of 
windings reasonable values of the para­
meters may be found by well-known 
techniques and involving only familiar 
assumptions. These are described in the 
appropriate sections. Six types of machine 
have been investigated. The equations for 
all of these have been obtained by trans­
formation of the equations of the primitive 
machine(3) shown in Fig. 1, using Kron's 
connexion matrix C. For the amplidyne 
analysis the winding 5 in Fig. 1 is used, but 
for all other machines analyzed here this is 
not required and the appropriate row and 
column are then dropped from the matrices 
of Equations (I). 

The primitive machine equations are,(3) 

4 5 

M .. p i. 

2 e. 2 

3 e, =3 

M,.p r, +L,p L.'pfJ M 3.pfJ M2~P 2 i. 

- Mu'pO - L.'pO r3 +L3P 

4 e. 4 

M •• p M",p 

presented in this paper. The equations 
obtained by matrix methods are seen to 
agree in each case with those already very 
well known. However, many of the im­
pedance matrices present the machine 
parameters in the form of open circuit self 
and mutual inductances of the windings, 
instead of the more familiar short-circuit 
values. This leads to difficulties of meas­
urement since the latter are more or less 
constant whereas the former vary widely. 
For laboratory work it has often been 

• Department of Electrical Engineering, the 
University of Liverpool. 

M~"p 

M3~P - M •• 'pfJ 3 i. (I) 

r. + L.p 4 i. 

r. +L.p 5 i. 

-~ 
+ 

Fig. 1. The primitive machine 



Additional rows and columns are added 
when required to &IIow for the self imped­
ances Z and ZL in Fig. 2. The torque 
matrix G is (3) 

2 

G=3 

4 

5 

-MtI 
, 

2 3 

La' 

- Lz' 

4 5 

Ma. 
, 

-M'5 
I (2) 

The machine torque is given by f 
=j*. wG. i synchronous watts, where w is 

the synchronous frequency; i is the current 

vector having five axis components; j* is 
the conjugate of the current vector. 

I~CO.TROL 
t FraLD 

, 

-I. 

-
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-1< 

Fig. 2. The amplidyne generator 

COMMUTATOR MACHINES 

D.C. MACHINES 

Amp/idyne and Metadyne Generators 

very nearly completely compensated by the 
addition of the external shunt impedance Z 
shown in Fig. 2. Using this shunt the 

As examples of the more complex current in winding 5 is reduced to the 
forms of d.c. machines the amplidyne value, k times the load current, required 
and metadyne generators have been ana- for compensation. The required value of 
Iyzed. The performance characteristics of k is obtained from the equations. 
these machines are now well known. In In the metadyne generator the circuit 
the following the equations of each connexions are identical with Fig. 2, but 
machine have been obtained by corn pari- the winding 5 and shunt impedance Z are 
son with the primitive machine shown in absent. This means that the metadyne 
Fig. I. By approaching the analysis in this makes use of the feedback voltage between 
way a single matrix may be set up which windings 3 and 2. The effect is seen from 
contains the equations of either machine. the final equations, which show how this 
This matrix illustrates the points of simi- changes the characteristics of the machine 
larity and also the differences between the from a constant (internal) voltage gener. 
two machines. ator to an almost constant current gener. 

The amplidyne circuit is shown in Fig. 2. ator. 
The compensating winding 5 is provided to In the analysis the parameters have been 
neutralize flux set up by armature reaction assumed constant over a given range of . 
due to current in winding 2. For full com- current values and iron loss is neglected. 
pensation the flux set up by the load Hysteresis effects were minimized during i 

current flowing in winding 5 must com- testing by demagnetizing the machine' 
pletcly neutralize the armature flux set up before each test. In commutator machines! 
by the load current in winding 2. When of this type the flux distribution is obvi· ; 
winding 5 over compensates, it is shown ously not sinusoidal. This gives rise to 
in the equations that the machine may be such terms as M21'P(J in Equations (I), where 

2 

, I 
I 

I 
'I 



M2I' differs from M91. This arises because The Equations (1) are then transformed by 
of the difference bet~een the average voIt- Ct • e and Ct • Z. C(3) to give the ampli­
age generated by rotation in flux having dyne equations, 

a h c cl 

a V a ZI 0 (M .. - M 12 )p - MI,p a I 

b 0 - M.I'pO z.+z. ( - M • .' + L;)pO M I5 'pO 
+2M34P 

b b I. 

c 0 c (MI5 - Mu)p - (L.' + M,4)pO 

d 0 cl - Mlsp 0 

space harmonics and the voltage induced 
by sinusoidal time rate of change of this 
flux linking a coil. In the machines con­
sidered here the complete terms, such as 
iI M 21 'p(), etc., were measured during test. 

Impedance Matrices 

The matrix connecting the ampJidyne 
circuit of Fig. 2 with the primitive machine 
of Fig. 1 is 

2 

3 

C=4 

5 

Z 

a 

- 1 

b 

-I 

-\ 

a 

c 

1 

. (~) 

-I 1 

1 

1 

a 

rl +LIP 

r. +r. + 

. (4) 
z. +Z. +ZL -Z5+ M .,;P - 2M •. ;p c h 

- Z. + M.5P Z.+Z cl le 

The impedances ZI etc. are in operational­
form (r1 +L)p), etc. 

The value of k can be found from the 
fourth of these equations 

and since MI6I is small compared with 
M26h 

Now if the current in coil 5 be written 
kh the following connexion may be used: 

a b c 

a 1 

b 1 
C'= (6) 

c 1 

d l-k 

By carrying out the transformation 
et' . z' . C' the following impedance matrix 
is obtained for the amplidyne : 

b c 

0 kMup-Mup 

b - M.I'pO 
(L. +L, +2M".)p 

L z'p8- kM •• 'pO • (7) 

r. +kra +rl. 
c kMI"p- Mup - (La' + M 34)pO +(LL +L. +kLa 

-kMu - M •• )p 

3 



, 
! 

In the case of the metadyne with zero compensation the terms containing k and ' 
the terms M2fJ are zero since the compensating winding is absent.· The impedance I 
matrix of the metadyne is then '. J 

a b c 

a rl+L1P 0 -MnP 

- Mu'pO r'3 +r, + La'pO 
(La + L. + 2 Ma.)p 

. (8) b 

c - Mup - (L.' + Mac')pO r2 +rL 
+(L~ + LL)P 

The matrix equation e =Z. i for both machines may be written in general terms 
using time constants T and amplification factors I-' as follows: (4) 

Q b c 

am a b 0 =b 

c 0 c 

I + TIP 0 - T,p 

- /-LI I + TaP /-L. 

- TaP - /-L, t +T.p 

• (9) 

c hR 

where, for example 

and 
R=(ra+rL +kr6). 

By eliminating the rows and columns of axes a and b, a transfer function for each 
machine may be obtained, thus: 

• (to) 

where 
R1=(r. +rJ 

and the terms T and I-' have values appropriate to terms of matrix 8. 

Amp/idyne 
In the fully compensated amplidyne the terms Tz, T" and 1-'3 from impedance 

Matrix 9 are zero and the equation becomes 

0= ~.[(1+T1P)(1 :1~!p)(i+t;p)J (It) 

where 
Rg=r.+kr& +rL 

and the terms T and I-' have values appropriate to terms of Matrix 7. The steady-
4 
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I 

t 



state equations follow by putting p = 0 in 
Equations (10) and (11). 

Amp/idyne 
h(ra +kr. +rL) 

V -=p.lp.,=constant.. (12) 

This shows the constant internal generated 
voltage characteristic. 

Metadyne 
h 1')1'2 • Mu'pO. 
V = (ra +rL)(1 + p.,p.a)Tr;-La'jjif',=constant. (13) 

This neglects some small products of 
resistance terms and shows the approxi­
mately constant current nature of the 
metadyne. 

For a machine with 80 to 90 per cent 
compensation; having a fairly constant 
current characteristic and the added ad­
vantage of greater power amplification, the 
analysis is similar. 

Testing 

(i) The resistances of the control field 
the compensating and quadrature winding~ 
were measured using direct current. The 
effective armature resistance was deter­
mined by calculating it by adjusting the 
time constant of the load until the machine 
became unstable. All other circuit para­
meters were known at the point of oscilla­
tion. Routh's criterion was used. The 
method is suggested by Kron.(4) The 
effective resistance includes a back e.m.f. 
in the armature circuit due to slight dis­
placement of flux during commutation. It 
is found to vary with the speed and 
operating conditions of the machin~. The 
value of effective resistance is seen to be 
about six times the stationary d.c. value of 
resistance (see Table J). 

(ii) The inductances of the compen­
sating winding, quadrature winding. and 

which was' reasonably close over the 
proposed current range. .' 

(iii) The 'generation' terms M2J 'pO, 
etc., were obtained by energizing one field 
winding and measuring the voltage gener­
ated in the appropriate armature axis, with 
the machine driven at rated speed. 

Table J gives the measured values of the 
parameters. 

TABLE I 
-

Resistance Inductance Rotation 
Voltage Coeff. 

Axis Ohms Axis Henrys Axis 

I 
Coeff. 

rl 1010 LI 122 La'pO 42 
ra 8'42 L2 0·1355 La'pO 42 
ra 8·42 La 0'1355 M21'pO 1440 
r, 2-45 L, 0·1177 M 2.'pO 41'5 
r. 1 L. 0,143 Ma,'pO 42 
rz 18 Lz 0·169 
ra· 1·3 Mu 3-82 
r * . a 1·3 Mu 3·76 

Ma. 0·126 
Ma, 0·1145 

.. ~~-- ---~"--. ------------
* Stationary d.e. value. 

Results 

The equations of the machine, when 
connected first as an amplidyne and then 
as a metadyne. were obtained by substitu­
tion of the time constants obtained from 
Table J into Equations (10) to (13) as 
follows: 

Amplidyne 
Steady-state equation 

h 11·02 
V=9':36+'L' • (14) 

With 10 V applied to the control winding 
the load current was varied from 0 to 
4·5 amps. The result is shown in Fig. 
3 (a). 

Transient equation 

armature were measured by impedance h = 9·9 (0'277 - 0·439 e- I
•
ae ,+ 0'163 e-12•1 t). (15) 

drop measurements at fifty cycles, but the I. • 

inductance of the control field winding was A step fu~ctlOn of ?·9 y was applIed and 
too high for such tests. This field induct- the result IS shown In FIg. 4. 
ance was determined by measurement of 
the transient time constant using a unit 
function applied voltage. 

In all cases it was found possible to 
choose a straight line magnetizing curve 

S 

Metadyne 
Steady-state equation 

h 120 
V = 3622+10:87 rL ' 

(16) 
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With 60 V applied to the control winding 
the load resistance was varied from 0 to 
50 ohms. The result is shown in Fig. 
3 (b). 
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Fig. 3 (b) (centre le/t). Steady-state 
response of metadyne 

Fig. 4 (bottom le/t). Transient 
response of amplidyne generator 

Fig. 5 (hottom right). Transient 
response of metadyne 

Fig. 6 (top right). Alternator with 
mctadyne excitation 
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Transient equation 
h~{I')74- O·0933e-lll '-)·223e-6•61 

sin (30'6 t + )·OB3)}. (17) 

This IS the solution of Equation (10) with 
6 



load resistance 51·76 ohms in series with 
an inductance of 0·658 henry and a step­
function voltage of 41 V applied to the 
control field. The result is shown in 
Fig. 5. 

Metadyne Excitation of a Synchronous 
Machine 

Where 

E,=excitation voltage. 

rp,= resultant main field flux linkages. 

rpd=direct axis resultant flux linkages. 

rp.= quadrature axis resultant flux linkages. 

r,=field resistance. 

r=armature resistance. 

pO'=is the machine rotor angular velocity. 

The advantage of setting up machine In terms of inductances and currents the 
equations in matrix form is demonstrated flux linkage equations may be written in 
by the following analysis. Operational matrix form. 

/ 

f~' / 
d - ed =d 

q - e. q 

r, +L,p 

MdP 

MdPO' 

equations of a synchronous machine are 
given below as used by Park, Crary, 
Concordia, and others. (5,8) 

It is seen that if the machine be excited 
from, say, a metadyne and the system 

d q 

MdP 

r+LdP - L.pO' 

L.pO' r+L.p 

where 

f~" 
• d ~d • 

q '. 

.pd= - Mdi,- Ldid 
t/J.= - Li. 
rp,=L,i, + Mdid' 

• (19) 

Elimination of the field axes gives (1) 

d q 

d ed- G(p)pE, d - r- Ld(P)P L.(p)p(J' · drn (20) 
q e.- G(p)p(J'E, q - L,,(p)p(J' - r- L.(p)p q '. 

analyzed in matrix form the operational 
form of the final equations is identical with 
those for direct excitation and that the 
various terms are obtained automatically. 
The analysis is given to show the method. 
The final equations are complicated but 
may be simplified by considering the 
Constant Flux Linkage Theorem. 

Synchronous machine equations are ex­
pressed in terms of direct and quadrature 
axis quantities as follows (5): 

Field: E,=prp,+r,i, I 
Armature D. Axis: ed=prpd -rpoPO: -r~dJl 

Q.Axis: e.=prp.+rpdPO -n. 

(18) 

7 

where 
G(p)=_¥d_ 

r,+L,p 

L.(p)=f<I!' +LdL,p~_M}p 
,,+L,p 

L.(p)=L •. 

Now if the generator be excited from a 
metadyne the circuit is as shown in Fig. 6. 

The metadyne matrix may be added to 
the alternator matrix thus 

~ 
r==8 

• (21) 



If the quadrature aXIs 10 Mat'rix 8 be 
eliminated, Matrix 21 has the axes shown 
in Matrix 22. 

1 2 f d q 

I 
I 

1---1------+ - - - - -!- ----~ ... ---
2 ': 

f 

d 

I 
I 
I 

I 

- - - - t - - ---1--4---+---1 
I 
I 
I 

- - - - ~ - - - - -1---.:.-+---1----1 
I q I 

L-_~I_-J ___ L__~_~ 

• (22) 

The connexion matrix combining the 
machines is 

2 

C·-1 

d 

q 

1 

2 

1 

- 1 

d q 

· (23) 

1 

1 

The transformation Ct • Z. C using this 
connexion and Matrix 22 gives a matrix 
of the form 

2 d q 

2 
1---I-----4--~--~ 

a 
q 

L.... __ L-_-'-__ .L.-

• (24) 

Finally the axes 1 and 2 are eliminated, 
giving again the operational equations 

a 

pO = Electrical angular velocity of metadyne 
armature, radians/second 

pO' = Electrical angular velocity of alternator 
rotor, radians/second. 

The Equations (25) would be simplified 
and used to analyse the transient behaviour 
of a synchronous machine in terms of the 
input voltage V to the metadyne control 
field. 

A.C. MACHINES 

The Single-Phase Series Motor 

The circuit of the machine is shown in 
Figs. 7 (a) and 7 (b). The connexion 
matrix may be set up for (i) a motor with 
the compensating winding neutralizing 
armature reaction by being connected in 
series with the main field and in opposing 
series with the armature; (ii) compensa­
tion by short-circuited compensating wind­
ing, the transformer action between arma­
ture and quadrature stator winding setting 
up compensating flux. In each case the 
main field is in series with the armature 
quadrature axis brushes. 

Series Compensation 
a 

2 0 
Connexion matrix C= 

3 

4 - I 

q 

• (26) I 

a er G'(p)pV 

q eq - G'(p)p8' V 

a - r- L/(p)p L:(p)pO' taG;] . • (25) 
q - L/(p)pO' - r - Lq'(p)p q~ 

where 

G'(p) = M.,( M
12

P +~21~(l:3~~_M"4')P.f!!.) 

Ld'(P) = f Lr Md·p(r~ !.L,P~} 
Lq'(p)-~Lq 

~ =(r1 +L,p)(r.+r,+L1P+L,p+AIc) 
- M 12P(M uP + BIC) 

A = L.'(L.' + M .. ')p82 

B=M2I'(La' + Ma,')p02 

C=r. +r, +(L, +L. + 2 Ma,)p 
8 

Operation on the primitive machine 
impedance matrix as before, i.e. Ct • Z . C, 
gives 

a 

If compensated then 
(La +L,- 2MaJ=O. 

Thus 
. (28) 



(a) (b) 
where 

Where 

V=applied r.m.s. voltage 
R=r, +r3 +r, 

X,=wL, 
vXm=M12PO. 

pO=vw. 

In the a.c. machine sinusoidal distribu­
tion of flux is assumed and the terms 
M I2'pO arising in the d.c. machine may 
here be assumed equal to M12 pO. Satura­
tion is not considered. 

The torque matrix is, by Ct • G. C, 

and 

a 

G'=aB • (29) 

f = j* • wG' • j Synchronolls watts, 

thus 
. (30) 

If 
(L. +L, - 2Ma.)*O 

Short-Circuit Compensation 

The current in the compensating coil is 
i, and the motor current is ill' The con­
nexion matrix is 

2 
c= 

3 

4 

Ct.Z. C gives 

a s 

1 

I 

- 1 

9 

-
Fig. 7 (a). Single-phase motor 

with series compensation 

Fig. 7 (b). Single-phase motor 
with short-circuit compensation 

U 

a s 

a r,+L,p+M12pO+ra+~P -M .. p 
Z'= 

s -M.,p 

Eliminating axis s, 

(33) 

(34) 

If fully compensated L3L, =M342, an 
ideal case which neglects leakage. In this 
case, neglecting r, the equation is again 

• (35) 

Torque is again ia• • wG' . ia• 

Consideration of the Coils undergoing Com­
mutation 

The commutation e.m.f. of self-induction 
is not included, but the short-circuit cur­
rents in the commutating coils, set up by 
transformer action and rotation can be 
simply considered. The coil is considered 
to be one or two turns of winding 2 of 
Fig. 1, short-circuited by the quadrature 
axis brushes. Thus the coil has voltages 
(a) induced by transformer action with the 
main field, and (b) rotation in quadrature 
axis flux. 

The short-circuit current is ill and for 
series compensation the connexion matrix is 

2 
c= 

3 

4 

a d 

1 

1 
• (36) 

1 

-1 



Ct.Z. C gives 

a 

rl +r3 +r, + 
a (Ll + La + L, - 2Ma.)p 

+ M 12 PO 

d - Mu" p + (L. - M •• )pO 

d 

- Mu"p - La" pO 

(37) 

r." +L."p 

Thus the torque is the real part of 

ia*( Xm +jX'Z}!'}.. . (41) 

Circle diagrams for the machine may be 
obtained by writing the equation for input i 
current in the form i = Y. V where V is the 
constant applied terminal voltage: This 
equation can be written in the general form I 

. .. _(A+jB)+v(C+jD) V (4') 
where '2- and L 2" are the parameters of Ip-1IQ--(E+jF)+v(O+jH)" ~ 
the short-circuited coil and M 12- is the 
mutual inductance of the coil and main It has been shown (8) that the locus of 
field winding. The equations are the vector is (ip - jiQ) in this case is a circle 

with coordinates 

The equations show that even with quad­
rature flux, id cannot be reduced to zero 
because of the quadrature time-phase differ­
ence between X m-and l'(X3 - X 34)' The 
e.m.f. of self-induction due to reversal of 
current may act with these two to give a 
smaller resultant and thus partial com­
pensation of the instantaneous short­
circuit current in the coils under the 
brushes. 

The following equations show that the 
currents induced in the short-circuited coil 
give a positive additional torque by 
induction motor action. 

a d. 

a Mn -La' 
~.G.C= . U~ 

d L.- M .. 

f~r. wO'.1 

a 88'. 1= 
d i. 

The term iuiiX3 - X 34) is negligible since 
(X3 - X34) represents only leakage flux 
which is, comparatively, very small. 

From Equation (38), 

IO 

V (FD+CE- GA- BH) 
x= - 2· • --FG--::-EH---

V (HA +ED- CF- BO) 
Y= -2 . ---FO::-EH- - -

and radius 

R_[~2(DA--: BC) + l+y2.J
l 

- FO- EH x . 

TESTING 

The machine tested was rated at 7·5 h.p .. 
200 V, 25 c/s wound for six poles, with 
normal speed 960 r.p.m. 

The resistances and reactances were 
measured by impedance-drop tests at rated 
frequency. Open and short-circuit tests 
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Fig. 8. Single-phase series motor 
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LO",D CURRENT AMPERES 

Dynamic impedance of single-phase 
series motor 

were carded out in each case and the 
resistances and reactances were referred 
to their respective windings. The internal 
connexions were brought to three sets of 
terminal pairs, namely, armature, main 
field, and quadrature windings. Since the 

equations were derived relative to such 
terminals on the primitive machine, the 
motor parameters were measured from 
these external terminal pairs. The para­
meters of simultaneously short-circuited 
coils were related to two fictitious direct 
axis terminals. 

The measured parameters are shown in 
Table II: 

Main field 
Compensating 
Armature 
Main field/arm. 

I Comp./arm. 

TABLE 11 

0·119 
0·279 
0·277 

3-04 
3-49 
3-97 

Mutual 
react­
ance 
ohms 

3·04 
3-49 

Calculated and test results are shown in 
Figs. 8 and 9. These curves show that 
quite large no-load loss due to iron loss, 
friction, and windage must be included at 
some point in the analysis. Friction, 
especially in commutator machines with 
several sets of brushes, may absorb such 
a proportion of the input power that it 
cannot be neglected. 

INDUCTION MACHINES 

THREE-PHASE INDUCTION MOTOR 

In order that the Equations (I) for the 
primitive machine may be used for a three­
phase induction motor, the three-phase 
quantities must be resolved along stator 
and rotor axes stationary with respect to 
each other and each having direct axis and 
quadrature axis directions. This resolu­
tion has been used by Stanley.(O) The 
three-phase quantities are: 

Stator voltages: e,,, eb. ec. 
Rotor voltagcs: E, .. E •• E,. 
Stator currents: i,,, ib. i,. 
Rotor currents: I,,, h. Ir • 

The stator currents are resolved into com­
ponents similar to Clarke components 
IX, (3, O.(JO) In the following analysis of a 
balanced machine the '0' or zero-sequence 
components do not arise. The relation 
between QC and· (3 components in this case 
is also simplified. 

The two-axis components of stator axis 
currents are defined as follows: 

il~W.- Wb+icll) 

i4=~3'(h-lr) r • (43) 

The two-axis components of rotor currents 
are defined 

i.~Hlacos8+lbcos(8+21':/3) l 
+ le cos (8 - 21':/3)] 

1.= 1[/. sin 8 +Ib sin (8 +21':/3) /" 
+ I. sin (8 - 2r./3)j 

For the balanced case 

e1 = e. 
e.=E. 
ea'= - jE.= - jet 
e4= -je. 

(44) 

The relationship between the three-phase 
machine parameters and their two-axes 

11 
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• Application 
equations'. 

is explained below under This operation gives for steady-state 
of the induction motor conditions, putting p = jw and pO = vw and 

s = 1 - v, 
The • connexion' relating the induction 

motor axis currents and the primitive 
machine is the unit matrix. The three­
phase motor is thus analyzed as a two­
phase machine whose currents, voltages, 
and parameters may be transformed by 
simple equations to give the three-phase 
quantities, and vice versa. 

The Equations (I), therefore, are those of 
the two-axis form of the three-phase induc­
tion motor and also of the two-phase 
induction motor. Since no voltages are 
• impressed' in the rotor axes of an 
ordinary induction motor, the voltages 
e2 and ea are normally zero. These 
equations are seen to be identical with those 
derived by Stanley. 

When the system is balanced the axes 3 
and 4 may be eliminated (3) by the (non­
invariant) transformation 1 . Z . P where 

2 
1= 

3 

4 

I 

2 3 

I 

0 

4 

0 

2 

I Ivl = I ~r_l_+_JX_I-+_J_'X_"---I" Gl 
2 0 2 JsX". '.+jsX. 2 ~ 

(47) 

Using the torque Matrix 2, the transforma· ! 
tion Ct • Z . C gives 

G'= 

2 
p= 

3 

4 

2 

3 

4 

-Mu 

2 

1 

I 

-J 

-j 

2 3 4 

L. Mat 

-La 
(48) , 

(
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For a balanced machine 

and 

where 
X", = wM21 = wM" = wM . 

In Equations (47), V is the stator r.m.s. 
applied voltage per phase and il and i2 are 
the stator and rotor currents respectively. 
The equations are diose of an equivalent 
two-phase motor. The total torque of the 
three-phase machine is then 

• (51) 

This equation may be verified by deriving 
the torque in terms of the three-phase 
current values. (9) For balanced conditions 

13 

from physical considerations and 

total torque three-phase= - 3i.Xmi, 
=3i.· .jXmil 

total torque two-phase= - 2iaX mi, 
=2ia• .jX",i1 

(52) 

(53) 

Substituting the values of il and i2 
obtained from Equations (47), the torque 
per phase of a three-phase or two-phase 
motor is given by 

_ (54) 

where 
D=(r, +jXl)(r. +jsX.) +sX ... •. 

From Equations (47) the stator current is 

• (55) 

This may be written in the form of 
Equation (42) to give the circle diagram. 

Fig. 11 (top). Torque speed curves for three­
phase induction motor with phase-advancer 

Fig. 12 (centre). Three-phase induction motor 
Fig. 13 (hot/om). Two-phase induction motor 



Rotating Axes 

The induction motor may also be ana­
lyzed from fixed stator axes together with 
axes rotating with the rotor. The trans­
formation or 'connexion' matrix is, then, 
relative to the primitive machine of Fig. I, 

2r 3r 4 

1 

2 cos 6 - sin 6 
c= (56) 

3 sin 6 cos 6 

4 1 

where 2r and 3r are rotor rotating axes. 
The transformation of impedance to the 

required axes is given by (3) 

, oC 
Z'=C,.Z. C+C,.L. 08 • pO. · (57) 

and 
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Fig. 14. Single-phase induction motor 
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Where L is the primitive machine induct­
ance matrix. For a balanced symmetrical or 
machine the impedance matrix Z' may be 
simplified by elimination of the quadrature or 
axes using the transformation 1. Z' . P =Zw 

(64) 

(65) 

. (66) 

as before. 
The equations then become 

2r o 2r Mpe-j9 

where 
,,=wl-O. · (59) 

and rp is the input power-factor angle. 
Physically, this set of equations repre­

sents the machine currents and voltages in 
the form of vectors of constant magnitude 
rotating with angular velocities wand dy/dt 
relative to their respective windings. 

From Equation (59) 

py=w-p8. 

For steady state 

d'l 
Sw= tJl =w- VW. 

Thus 

· (60) 

(61) 

Vei(wl f 8) =itZte;wl + iaM . jej(H 'I) • ~(IJ +y) (62) 

These' are seen to be identical with the 
equations obtained using stationary axes. 

2r 

• (58) 

Simple Phase-advancer 

The simplest type of phase-advancer 
consists of a wound rotor with a commu- ! 

tator, driven to rotate in an unwound 
stator, the stator merely completing the 
magnetic circuit. A two-pole armature 
will have three brushes set at 1200 round 
the commutator. As with the induction 
motor, the three-phase currents in the rotor 
may be resolved into direct and quadrature 
axes relatively stationary. 

The two-axis impedance matrix of the 
advancer may be written 

d q 

• (67) 

or where pO' is the electrical angular velocity 
(63) of the armature. 
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For balanced conditions 

d 

• (68) 

where s' is the slip of the armature current 
vector angular velocity relative to the rotat­
ing armature. 

When used with an induction motor, the 
motor slip-rings on the rotor are connected 
to the advancer armature brushes. 

In this case 

s'=l- v' 

where 
, Motor slip frequency angular velocity w. 

v =.ad-vancer armature angu\a-r velocity-Wo -. 

When Matrix 68 is combined with 
impedance matrix in Equation (47) for the 
induction motor, the overall motor imped­
ance matrix becomes 

2 

Steady-state motor torque is again given by 

Thus 

f=D~':"'D[VXI22r.{r2B- X22(1- v2)}] • (71) 

where D is the determinant of the imped­
ance matrix of Equation (70) and D* is its 
conjugate. 

Equation (71) is seen to give zero torque 
at standstill when v =0 and a small 
negative torque at synchronous speed. It 
is seen to check identically with the 
equation given by Sabbagh. (11) 

APPLICATION OF THE INDUCTION MOTOR 

EQUATIONS 

. (69) 

The machine equations are relatively 
simple. For balanced operation it has 
been shown by Stanley and by Edith 
Clarke (9,10) that the two axis parameters 
of a three-phase machine are identical with 
phase-to-neutral values measured with 
balanced three-phase applied voltages. 
For the three-phase machine, therefore, the 
parameters may be obtained from straight­
forward no-load and locked rotor tests. 
The machine resistances and inductances 
are referred to their respective windings. 
The two-phase and single-phase motors 
have usually a three-phase rotor winding. 
If, however, for a two-phase machine the 
stator parameters and the overall input 
leakage reactance be measured by balanced 
two-phase tests, it is possible to consider 
the rotor as an equivalent two-phase rotor 
carrying the same current and having 
fictitious values of parameters. The calcu­
lated values of reactance are referred to 
their respective windings, using the actual 
machine turns ratio phase to phase. If the 
rotor resistance be measured from the rotor 
terminals then this phase value is multiplied 
by 3/2 in order to keep the same value of 
rotor copper loss with the equivalent two­
phase winding carrying the same current. 

It should be noted that when considering 
the interconnexion of the two machines, the 
reference axes must be the same in each 
case, if a simple connexion is to be used. 
In the above case stationary axes on each 
machine were used. 

The effect of a phase-advancer on the 
motor performance is shown in Figs. 10 
and 1 I. 

SINGLE-PHASE INDUCTION MOTOR 

The single-phase induction motor may 
be considered to be the same as the two­
phase machine with zero quadrature stator 
current. The other three components are 
present since the single-phase motor has 
invariably a three-phase or two-phase rotor 
winding. The single-phase induction motor 
equations are thus 

2 3 

J~ J 2 0 =2 

3 0 3 

'1 +L1P Mup 

M 2I P 't +Ltp LapfJ 

- M2I P(J -L2P(J 'a +L.p 

15 

• (70) 



TABLE III 

-"-;:a---1Advancer 3M~t~~ 2M~t~S; I 
H.p. 
Speed, r.p.m. 1500 
Voltage 15 
Frequency c/s 50 
Stator resistance 

(ohms) 
Rotor resistance 

(ohms) 0·045 
Stator reactance 

(ohms) 
Rotor reactance 

(ohms) 1·11 
Mutual reactance 

(ohms) 

15 
945 
440 

50 

0·562 

0·975 

32-8 

35·5 

32·2 

* Equivalent two-phase values. 

5 
1400 
200 
50 

0·98 

0·384* 

48·2 

13·68* 

34·68 

. The single-phase machine parameters may 
be determined in a similar manner. 

If required, the derived equations may 
be used for more exact analysis by allowing 
for· variations in the parameters due to 
carbon brushes, saturation, and skin effects. 
Table nr gives the parameters of machines 
tested. Figs. ID to 14 show the calculated 
and test results. 

The two-phase machine was used for 
both two-phase and single-phase motor 
tests, in the latter case with one of the stator 
phases open-circuited. 

CONCLUSION 

The use of a primitive machine together 
with the application of matrix algebra is 
found to be a most powerful tool in the 
general analysis of electrical machinery. 
The fundamental concepts of inductively 
coupled windings remain unchanged 
throughout the analysis and the same 
unified approach and notation may be 

used. The only assumptions made are ! 
those already long established in the i 
attempt to treat electrical machinery by 
linear analysis. I 
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SUMMARY General symbols: 
In the analysis of modern electrical machine systems there has been 

a trend towards the use of various components of the variables and 
parameters of the system, examples being the use of symmetrical com­
ponents and direct- and quadrature-axis quantities. Such quantities 
may be considered to be different "reference frames" to which the 
various currents, f1uxes, etc., are referred. Kron has shown that such 
transformations may be expressed in a general way when the equations 
of a network or machine are written in tensor form. 

Transformations may then be carried out to anyone of a number 
of reference axes, which may be stationary or rotating with respect to 
the windings of the machine or network. In particular it has been 
found that in certain cases there are advantages in analysing machines 
with respect to axes rotating with the flux. 

The purpose of the present paper is to investigate the tensor form 
of the equations of electrical machines, to demonstrate the differences 
between tensor and non-tensor terms and to show how these terms are 
interpreted in application to simple cases. The equations of a 
primitive machine are examined in both stationary and rotating axes 
and the equations of a 3-phase series impedance and a 3-phase induction­
motor are derived in both systems of reference. 

Indices: 

LIST OF PRINCIPAL SYMBOLS 
Tensor Notation 

a, b, c = Quantities in axes fixed to the machine stator and 
rotor windings. 

k, n, m = Quantities in axes all relatively stationary. 
0(, {3, y = Quantities in axes fixed or free on the stator and 

rotating freely on the rotor. 
s, I = Quantities associated with the mechanical rota­

tional effects in the machine (e.g. generated 
voltages and torque). 

u, v, w = Quantities in a general equation. 

Electrical parts 0/ the equations: 
/, ,fa., etc. = Electrical voltage vectors in axes denoted by 

m indices. 
Xk, x"', etc. = Electric variables. The electrical charges in 

machine windings, referred to axes denoted by 
indices. 

xa. (equivalent to ja.) = Electric current vector, in axes denoted 
by indices. 

Rya. = Resistance matrix, in axes denoted by indices. 
Lya. = Inductance matrix. in axes denoted by indices. 
Gya. = Generated voltage coefficients, in axes denoted by 

indices. 

Mechanical part 0/ the equations: 
~ = Mechanical force. 
x, = Mechanical variable (), the angular position of the 

machine rotor during rotation. 
r (equivalent to i-') = Angular velocity of machine rotor. 

Rs' = Mechanical friction coefficients. 
L., = Moment of inertia of machine rotor. 

Correspondence on Monosraphl i. invited for consideration with a view to 
publication. 

Mr. Lynn it in the Electrical Enllineerinll Department, University of Liverpool. 

e = Generalized force vector (voltage or mechanical 
force). 

R = Generalized dissipation matrix (resistance or 
friction). 

L = Generalized inductance matrix (inductance or 
inertia). 

i = Generalized current vector (electric current or 
angular velocity). 

C~ = Connection matrix between quantities in axes 
denoted by indices. 

C = Direct notation for C!, etc. 
C, = Transpose of matrix C. 

n~r> = "Non-holonomic object" containing functions of C, 
in axes denoted by indices. 

[rxf3. y] = A "connection" term containing functions of Lya. 
in axes denoted by indices. 

r",r>.y = A "connection" term containing both [0({3. y] and 
n",r- y in axes denoted by indices. 

Tknm = Rotati'onal or torsion tensor containing the anti­
symmetrical part of r kn.m in axes denoted by 
indices. 

Sknm = Tensor components of Tknm giving the terms Gmk• 

B = Flux-density matrix, a tensor. 
cp = Flux-density matrix, a non-tensor. 

Synchronous Machine Notation 
el = Field voltage. 
(!d = Direct-axis terminal voltage. 
eq = Quadrature-axis terminal voltage. 
id = Direct-axis current. 
iq = Quadrature-axis current. 

Rf = Field resistance. 
Rd = Armature resistance in direct axis. 
Rq = Armature resistance in quadrature axis. 
Lf = Self-inductance of field winding. 
Ld = Armature self-inductance in direct axis. 
Lq = Armature self-inductance in quadrature axis. 
M = Mutual inductance in direct axis (field-armature). 

(I) INTRODUCTION 
The recent increase in complexity of electrical power networks 

such as control systems and interconnected power-transmission 
systems has led to the introduction of systematic methods of 
analysing the behaviour of networks and machines. The 
powerful methods of symmetrical components brought about 
rapid methods of solution of problems associated with unbalanced 
polyphase circuits; the introduction of the two-reaction theory 
into synchronous-machine studies has simplified many aspects of 
the analysis of power-transmission systems. In' dealing with 
complicated problems the trend has been towards the use of 
components of the quantities involved which. while they are 
entirely fictitious, lead to elegant solutions"', 18 In such cases 
the actual variables and parameters of the system (currents, 
impedances, etc.) are transformed into the required components. 

In 1934 Kron, in America, developed a technique l for dealing 
[ I ] 
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systematically with such transformations. In his analysis Kron 
ensures that the electrical power in a network is invariant under 
a given transformation to new components. He does this by 
introducing the methods of the tensor calculus. Tensors are sets 
of quantities which are functions of a set of variables and are 
subject to certain laws of transformation when the variables are 
changed (see Appendix 10.1). The subject was developed in the 
field of the geometry of generalized spaces and consequently the 
terminology in the literature is largely geometrical; for example, 
the variables are referred to as co-ordinates: The following two 
properties of tensors are invaluable in application to any group 
of transformations: 

(a) A set of functions usually written in the form ga" is associated 
with tensor transformations. where a and b range over the n variables. 
This set of functions determines an invariant. which has the same 
magnitude in all reference frames. 

The element of the invariant is usually written in the literature 
as dl and then 

where dxa and dxb are differentials of the variables. The use of 
this tensor is demonstrated in Appendix 10.1. 

(h) If an entity is a tensor and exists with a non-zero value in one 
reference frame (or system of variables) then it has non-zero values. 
usually with different components. in all reference frames. Quan­
tities which are not tensors may arise in one system of reference and 
become zero in another; in other words. they may arise because of 
the particular reference frame chosen. This effect occurs especially 
when there is relative motion between the reference axes. 

Kron takes a primitive or elementary representative network 
which has comparatively simple equations; these are written in 
tensor form and transformed to give the equations of the required 
system. 

A wide range of machines can be considered as a group of 
interconnections of the windings of the primitive machine shown 
in Fig. 2, and the equations of any of these may be obtained by 
transformation of the primitive-machine equations. 

The expres<;ion "reference frame" denotes the system of 
measurement from which the variables and parameters are deter­
mined. In a static electrical network a change of components 
from branch to mesh currents is a change of reference frame. 2 

In the case of a slip-ring induction motor, stator currents will be 
measured from stationary terminals and rotor currents from axes 
rotating with the rotor. In commutator machines the reference 
axes are relatively stationary. Park's application of Blonders 
two-reaction theory simplified synchronous-machine theory by 
converting the stator and rotor quantities to relatively stationary 
axes. Kron's analysis deals systematically with equations of 
machine systems having either stationary or relatively moving 
reference axes, the transformations in all cases following the 
routine laws of matrix algebra and tensor calculus. His work 
has introduced to engineers wider concepts of transformation, 
invariance and theory of groups, all of which have been invaluable 
in analysis of complex systems in various branches of physics. 
The purpose of the present paper is twofold, namely to bring 
together some of the scattered works dealing with Kron's methods 
and present a continuous account of the development of the 
subject, and to analyse in detail the distinction between tensor 
and non-tensor terms in machine equations. 

The analysis starts from the dynamical equation of Lagrange.~ 
As is shown in Appendix 10.2. Lagrange's equation gives the 
relation between the potential and kinetic energies in a system 
and the applied forces, in terms of generalized co-ordinates. In 
electrical form the corresponding relations are those between the 
magnetic energy and the applied voltages, in terms of generalized 
variables which are the electrical charges in the network. This 
equation is very suitable for certain classes of transformations 
of co-ordinates, but it has been found that under the conditions 
of transformation obtaining in electrical machines a modified 

form of Lagrange's equation must be used. The modified 
equation was developed by Boltzmann and Hamelll to cover 
certain conditions of constraint in dynamical systems and. as 
Kron has shown,6 the Boltzmann-Hamel equation can be used 
to form a basis for tensor analysis of electrical machines from 
the dynamical viewpoint. 

(2) MACHINE EQUATIONS 
The first type of primitive electrical machine to be considered 

is shown in Fig. 1. The rotor is assumed to be smooth and to 

Fig. I,-Primitive machine with axes fixed to windings. 

have on it a symmetrical 2-phase winding sinusoidally dis­
tributed. The field is fixed in space and consists of windings ds 
and qs in the stator-direct and quadrature axes respectively. 
Iron loss and saturation are neglected, The armature axes 
a' and b' are fixed to the armature and rotate with it. Three­
phase machines may be analysed by resolving the resultant 
armature current and flux vectors along two similar axes.' 

The inductance of phase a' of this machine may be written:4 

Phase a' self-inductance = LA + LB cos 2f) (I) 

where LA = (Ldr + Lq,)/2 
LB = (Ld, - Lq,)/2 

Ldr and Lq, are the self-inductances of rotor phase a' when 
in the direct- and quadrature-axis positions respectively. The 
corresponding values of mutual inductance, rotor to stator, 
are Md and M". 

The equations of this machine may be derived from the 
dynamical equation of Lagrange:4 

d(aT) aT aF 
dt axe - axe + axc = /.. (2) 

In electrical machines the generalized variables XC are the 
electrical charges in the circuits and the rotor angle e. The 
quantities XC therefore represent the currents iC and the rotor 
angular velocity dOldt, T, the stored magnetic energy, is given by 

F, the dissipative force, is given by 

dxa dx" 
F= ;Rab dl di .(4) 

For the above machine4 

T = ;(LA + LB cos 2{})(j",)2 + !(LA - La cos 2(J)(fb')2 

+ tLds(ids)2 - LB sin 2(Jja'jb' + Md cos (JiMia' 

- Md sin (Jidsjb' + Mq sin (JjqJib' + Mq cos (JjqJjb' 

+ !Lq.(iq,)2 (S) 

F = ![ Ra,(ia')2 + Rb,(jb')2 + R"Pds)2 + Rq.(iqs)2] (6) 
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Substituting eqns. (5) and (6) in eqn. (2), the complete set of equations for the machine may be written 

e = Ri + pLi • (7) 

where (p =~) 
In matrix form these are2 

ds a' b' qs 

ds eds ds Rd, + pLds pM" cos 8 -pM" sin 8 ds ids 

a' ea a' pMdcOS 8 R", + p(Ld, cos2 8 + Lq, sin2 8) p(Lq, - Ld,) sin 8 cos 0 pMq sin 0 a' ia' 

b' eb b' -pMdsin () p(Lq, - Ld,) sin () cos () Rq, + p(L", sin2 0 + Lq, cos2 0) pMq cos 0 b' ih' 

qs eqs qs pMqsin 8 
I 

pMqcos 8 RqS + pLqS qs iqs 

(8) 
NoI~o-The index associated with each current value is written as a superscript since this is required by the index notation used in tensor calculuso 

From eqn. (8) the inductance matrix may be written as below. An additional mechanical row and column s may be added to 
include the mechanical inertia. 

The general inductance matrix is therefore: 

ds a' 

ds Lds -Md cos () 

a' Md cos () Ld, cos2 8 + Lq, sin2 8 

b' -M"sin 0 (Lq, - Ld,) sin () cos 0 

qs Mq sin 8 

s 

where L,S is the moment of inertia of the rotor. 

It is shown in Appendix 10.3 that in tensor form the equations 
of Lagrange are written 

d 2xb dxa dxb dxb 
Llb dl2 + [ab,e] dt Tt + Reb dt = le (10) 

where [ b ] = ! (IlLcb + IlLca _ IlLab) 
a ,e - 2 IlXa IlXb ()x" • (11) 

The voltage equation is obtained by allowing the free index c 
to cover the electrical range of variables, the other indices ranging 
over the electrical and mechanical parts: 1 

d 2xb dxa dx' dx'dxb dxb 
ec = Leb dl2 + [as,e]ClI dt + [sb,e] dt dt + Rcb dt (12) 

dib 
or ec = Lebdt + [as,e]jUjS + [sh,c];'·jb + R,·bjb . (13) 

From eqn. (11), 

[as,e] = ! ()Les + IlLc~ _ ~ao.) 
2 IlXa ()x· ()x" 

Since there is no mutual coupling between an elcctrical row and 
a mechanical column 0 

()Lcs = ()La", = 0 
()xa ()XC 

[ ]

" 0 I ()Lcoo dx' I dLcao asc ,a,' = ___ ,u_ = _ __ ,0 
, 2 i)x' dt 2 dt 

[ b ] 0 ob I dLcbob se,', = - ----, , 2 dt 

(14) 

(15) 

b' qs s 

-Md sin 0 

(Lq, - L",) sin 8 cos () Mq sin8 

Ld, sin2 0 + Lq, cos2 () Mq cos () • (9) 

Mqcos 8 Lqs 

Lss 

rhus Lagrange's equations give 

_ ob dib dLcbo" 
ec - Rlobl + LC"dt + 71' 

- R ·b + d(L Ob) . ec - cb' dt cb' or 

(16) 

, (17) 

This is, of course, Maxwell's equation as shown in eqn. (7). 
The equation of torque is obtained by allowing the free index 
to cover only the mechanical part of the range of variables,1 thus 

!. - R 0, + L d
2
x

l + [ b ]OaOb • (18) 
I - sl' sI dt 2 a ,s I , 

1 ()Lab 
where [ab,s] = - 2 N) 

Therefore 

and 

_ dO d28 _ I ()Labouob 
I. - RSldt + LSI dt2 2 --s-(r' I 

dO f ° ° I R"dt = nchona torque 

d 28 ° ° 
L '-2 = mertla torque 

S dt 

_ ~ IlLabjajb = electrical torque 
2 ()() 

• (19) 

The second form of the primitive machine considered here is 
shown in Figo 2. The rotating axes a' and b' of Fig. 1 are here 
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Fig. 1.-Primitive machine with stationary axes. 

resolved along the direct and quadrature axes. All axes are now 
relatively stationary. This primitive machine has been used by 
Sabbagh, Stanley, Kron and others7- 11 as the basis of the 
analysis of many derived machines. The equations may be 
written down by inspection when the resistance voltage-drops 
and induced and generated voltages are considered. In matrix 
form these are written 

ds dr qr 

ds tth ds Rth + LdsP MdP 

dr td, dr MdP Rd, + Ld,p L~rP(} 

qr eq, qr -MdPO -L;'p(} Rq, + LqrP 
-

Fig. 3.-Primitive machine with axes rotating freely. 

qs 

ds ids 

M;p(} dr id' . (20) 
MqP qr iq, 

qs tqS qs MqP RqS + Lqsp qs jqs 

The voltage vector contains impressed voltages in all axes. 
The generated voltage coefficients are written, for example, 
MdPO as compared with MdP for the induced voltages since the 
flux waveform may not be sinusoidal. When the flux waveform 
is sinusoidal the maximum voltage generated by rotation of a 
coil in this flux at synchronous speed will be equal to the maxi­
mum voltage induced by this flux linking the coil and MdPOi 
is equal to MdPi and Md = Md' Eqns. (20) are seen to include 
those for a synchronous machine according to Park's two­
reaction theory.l8 These as used by Concordial2 are written: 

Impressed field voltage, tj = ilRj + LIPi! + MdPi'" 

Generated voltage, 
ed = - MdPil - Rdi'" - Ldpid, + LqpOW (21) 

Generated voltage, 
tq = - MdPOj! - LdPOi'" - Riq, - LqpW 

In synchronous-machine studies the quadrature-axis stator 
(field) coils are omitted unless amortisseur windings are being 
considered. Here sinusoidal flux distribution is considered and 
Md= Md' etc. 

Eqns. (20) may be obtained from those of the previous form 
of primitive machine using the relationship 

ia' = id' cos 0 + W sin (} } 
jb' = W cos 0 - id, sin B • (22) 

In index notation the stationary-axis equations may be written2 

di" 
Voltage, em = Rm"ilf + Lmlf dl + Gm"i"PO • (23) 

d Z8 
Torque,!, = R"i' + L" dll - Gm"imi" (24) 

Using the concepts of the tensor calculus these two equations 
are written by Kron2 as one electro-mechanical equation, 

- 'n di" r 'k's r 's'n voltage em - Rmn' + Lmn dl + ks,m' I + ,n,m' I • (26) 

_ " dj' 'k'" 
torque!, - R.,l + Ls' dl + r k",s' I • (27) 

The equation of Maxwell, eqn. (17), does not give these equa­
tions directly since it does not include generated voltages. The 
following Sections show that the connection r UV.IV arises 
naturally because of the dynamical relationship between the two 
types of primitive machine, this being quasi-holonomic and 
non-integrable. Fig. 4 shows the form of the connection ruv,IV 

when written as a matrix in the form of a cube, together with the 
arrangement of matrix multiplication leading from eqns. (26) 
and (27) to eqns. (23) and (24), 

(3) NON-HOLONOMIC TRANSFORMATIONS 
The currents in the armature axes a' and b' in Fig. 1 may 

be resolved along "d" and "q" axes shown in Fig, 2, the relation­
ship being 

id, = ia' cos 0 - jb' sin O} . 
W = ja' sin 0 + ib' cos 0 

• (28) 

Since the variables in Lagrange's equations are the charges, x<', 
eqns. (28) represent a transformation of differentials of the 
variables, where dxaldl = iQ, etc. These are equations of con-
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m 

s 

r i
l,n 

In.m I - '"" ·I·n 
~'ml.nl I 

~ __ ~_t~ t 

sG] = s!L-_...J...!R_sl-J!. {~J + S'-!_...L.!L_sIP---,I· to + s 

r ·k'n 
kn.sl I 

Fig. 4.-Machine tensor equation written in matrix form. 

straint among the differentials of the variables xk, and the 
transformation must therefore be written 

dxdr = dxa' cos (J - dxb' sin (J } 

dxqr = dxa' sin (J + dxb' cos (J • (29) 

They obtain at a given instant and cannot be integrated to give 
a relationship among the charges. There is no corresponding 
relationship 

Xdr = f(xa', xb', 8) 

If such a function existed the following results would be 
obtained:2 

Thus if 
~ 

Then 

~fdr ~fdr 
dxdr = -dxa' - -' - dxb' 

~xa' ox#>' 

~fdr = Cdr 
oxa' a' 

~C~~ . ~fdr ~fdr oCf,r 
- = - sm (J = -- = -- = -- = 0 ,,() o()"Dxa' oxa'o() oX'" 

Such non-integrable relationship between sets of variables is 
fully treated in Reference 13. 

In matrix form the transformation is written 

dxk = C~adxa • . (30) 

k""'- k""'-a a' b' a""'-d§ d cos x' -sin x' a'~ or 
q dxqr = 

(30a) 
q sin x! cosx' h' dxb' 

where x' is the geometrical variable O. 

The dot in front of the index a indicates that a is a column 
index. The inverse transformation may be expressed 

dxa = C~lflxk 

a""'- a""'-k d q k""'-
a'~ a' 

cos x' sin X' d~ or 
h' dxb' = h' 

(31) 
-sin xl cos XS q dxqr 

Since the relationship is non-integrable and only the differentials 
of the charges xk arise in the equations, 

oxk 

C~a =1= oxa 

also, as shown in Appendix 10.3, 

o~ =1= oe: . 
"x" "xm 

• (32) 

• (33) 

Such a relationship is non-holonomic,u The non-holonomic 
form of Lagrange's equations was developed by Boltzmann 
and Hamel. 13 This is written 

~(OT) _ ~T "T CkO!(Oq _ oC~)xa + of = J: • (34) 
dt oxe oxc +~,Xd C a ~x" ~ ~XC c 

This is seen to consist of Lagrange's eqn. (2) with the addition 
of terms containing the non-holonomic transformation and its 
inverse. If the relation between variables is holonomic, 

"q _ oe: = 0 
OX" oxk • (35) 
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Eqn. (34) may be written in tensor form in a manner similar to 
eqn. (10), and as shown by Kron6 and Gibbs5 it contains terms 
which retain the non-integrable relations of eqn. (33). The 
tensor form of the equation is 

d2 xa dxa dxb dxa 
le = Lea dt 2 + [ab,cl7t dt + Rca dt • (36) 

where now 

[ b) - l(,()Lcb ,()Lca ,()Lab) 0 0 0 ) 
a ,c - 2 ,()xa + '()xb - '()XC + .b,a + ea,b - ob,e' (37 

where (38) 

and (39) 

(4) QUASI-HOLONOMIC SYSTEMS6 
The machine axes transformations in Section 3 are not entirely 

non-holonomic because the angle e, the mechanical part of the 
generalized variable xk, arises in the analysis and transforms 
holonomically; i.e. the mechanical part of the transformation is 
one of variables and not of differentials. This simplifies the 
analysis considerably. 

In transforming from the rotating-axis machine to that with 
stationary axes the transformation may be expressed 

a' dxa' 

dxd· = dxth 
dxa' = cos ~ dxtJr + sin x' dxqr 

dxb' = - sin x"dxdr + cos x·d~r 
dXl' = dXl' 
d~= dx· 

dr qr qs s 

t 
--I-

a' cos x' sin x' 
----

b' dxb' =b' - sinx' cosx' 
--I-

t 
I-

t 

• (40) 

k", 

ds dxds 

dr dxdr 

qr dxqr (41) 

qs dXl· 

s dx' 

There are two distinct parts of the range of the old variables, 
namely xP, the electrical variables, and xO, the geometrical 
variable e. The L's and R's, whether electrical or mechanical, 
depend only on xQ and do not contain the electrical co-ordi­
nates x p• Such an absence of specific co-ordinates in the 
components of geometric objects is called in geometry a "cylinder 
condition."16 

In a holonomic reference frame the geometric objects are 
expressed as functions of the co-ordinates xk, and in a new 
holonomic system they become functions of new co-ordinates. 
In a non-holonomic system, however, there exists instead of a 
set of new co-ordinates, a set of new differentials. Relative to 
a non-holonomic reference frame the geometric objects are 
expressed as functions of new differentials, and coefficients, 
which are functions of the old co-ordinates. In general, there­
fore, the new equations carry forward the original holonomic 
co-ordinates in these coefficients, along with the new differentials. 
In this analysis of machines, however, the geometric objects of 

the new frame may be expressed without carrying forward the 
old co-ordinates, because the coefficients are functions only 
of e, which transforms holonomically to the same value in the 
new reference frame. 

Thus, even though the new equations have been derived by 
non-holonomic transformation, there is nothing in their final 
form to characterize them as being in a non-holonomic reference 
frame. Therefore, as shown in Section 5, the final equations of 
the stationary-axis machine may be considered to be holonomic, 
with a connection r kn.m which differs in form from that of the 
first holonomic machine. It is for this reason that a further 
non-holonomic object may be set up between the machine in 
reference frame (iii) in Section 5 and that in frame (ii) (considered 
as holonomic). 

The equations of the second primitive machine (with stationary 
axes) are now written 

where 

and 

Lmk = LacC:!,Ck . 

dxa = C~mdxm • 

O - a b('()C~ _ '()C~) 
mn,k - lCmCn '()xb i)xa Lhk 

From eqns. (41) and (43) 

rn"k ds dr qr qs 

ds Lds Md 

dr Md Ld, 

Lqr Mq 

qs Mq Lqa 

s 

s 

Lu 

(42) 

(43) 

(44) 

(45) 

(46) 

Thus the terms ,()Lkn/,()xm, etc., in eqn. (42) are zero since the 
inductances are not functions of either charges or angles. 

It is obvious that the term C: may be differentiated only with 
respect to the mechanical part of the range of variables, ~, and 
the expansion of the non-holonomic object is therefore simplified. 
For example, in eqn. (45), either a or b must be x" (or e). Let the 
values of a, b, rn, and n range from 1 to 5 to cover the five rows 
and columns of C:;'. The only values of C: and q inside the 
bracket of eqn. (45) which can be differentiated to give non-zero 
values are 

a = 5, b = 2 or 3 
b = 5, a = 2 or 3 

Since either a or b must be 5, the following possible values of 
C~.C* may be written down 

C5C~ C~C~ C~C~ C~C~ 
C5C~ cgCJ C~C~ CjCj 

It is further seen by inspection that when a and b are both 5, 
Oh is zero, and when a and b are unequal, one being 5, one 

mn . . 
term of the bracketed quantity IS zero. . 

I 
I 

( 
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The general equations are therefore In the equation of Lagrange the "Christoffel symbol" is 
written [ab,c]. In the non-holonomic form of the equation the 

. (47) corresponding connection is 

20h - CSCb~C: 
(S)n - - 5 n~XS • (48) 

The possible non-zero values of O~n may be written down by 
inspection and are shown in the following array: 

2 3 4 

2 
02 = mn f-' 

3 

4 

5 Og2 Oh 

A similar array may be written for .o~n' Also 

Similarly 

202 Cs6~Ct 
(5») = S )~xS (b = 2, 3) 

20}(S) = - 1 } 
2.oi(s) = 1 

2.o~(2) = - 1 

All the other values of O~n are zero. 

5 

O~S 
. (49) 

O~s 

(50) 

(51) 

The resulting object is n::,w or Oi)n according to whether m 
or n takes the geometrical angle co-ordinate value, xs : 

ds 

dr 
20~)n = 

qr 

qs 

S 

dr 
20::'(s) = 

qr 

qs 

s 

dr 

-
-1 

1-' 

dr 

1 

qr qs s 

1 
• (52a) 

--

qr qs s 

--
-I 

• (52b) 

The object 0::'" is seen to be skew-symmctric in the indices m 
and n. 

[uv,w] + OWV,Ii + O",u,v - Ouv,w • (53) 

This is made up of the symmetrical part [uv,w] and the skew­
symmetric part (Owv.u + O",u.v - 0U",.,), these together making 
an asymmetrical connection2 written r u".w' 

The non-holonomic equation of motion of the machine is 
therefore written as in eqn. (25): 

(54) 

The electrical and mechanical parts of the equation are shown 
in Section 2, eqns. (26) and (27). 

The symmetrical part is zero since Lwv is independent of 
x, (which is equivalent to 8). The connection has then the 
following components: 

r uv,w;UjV = rsn,misin + r ks,mikis + r kn)kin• (55) 

where, for example, 

rsn,m;Sjn = (.omn,. + Oms,n - .osn.m)i'in · (56) 

where 
. dB ,s = dt 

The term Omn,. is seen from eqns. (45) and (48) to be zero, and 
since nsn.m is skew symmetric in the indices sand n, the term 
O.n,misin is also zero. 

Therefore r iSi" = 0 iSi" sn,m ms,n 

r ks.mikjS = .oms,kikjS 

r k ;kin = 20 kikin n,s ,sn. 

Thus the electrical equation becomes 

d'" 
em = Rmnin + Lmnd~ + 20ms,kisik 

and the mechanical equation is 

_'1 di' r'\ 'n'k Is - Rsl' + LSI(fi + 2usn.k' , 

(57) 

(58) 

(59) 

• (60) 

• (61) 

The last terms in eqns. (60) and (61) are found on expansion, 
using eqns. (46) and (52), to be 

m"",k ds 

ds 

dr 

qr -Md 
f--

qs 

s 

dr 

-Ldr 
--

qr qs s 

----I-
Lqr Mq 
----I- = - 20sn.k (62) 

---- -

-----

Eqn. (60) is now seen to be identical with the matrix eqn. (20) 
written down by inspection in Section 2. The equations for the 
commutator or stationary-axis machine have been derived by 
transformation of the dynamical equation of motion of the 
holonomic rotating-axis or slip-ring machine. 
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If now a further transformation be carried out to axes rotating 
at any arbitrary angular velocity pO. it is found that some of the 
terms of the equation transform tensorially while additional 
voltage terms arise which are due only to the measurements from 
the new reference frame. Tensor analysis separates the tensor 
quantities which arise in all reference frames, from those quan­
tities which may arise in one fI!ference frame and disappear in 
others. The nature of the connection r /IV.W is examined by 

Eqn. (65) is shown in Section 2, eqn. (7). The inductance tensor 
is shown in matrix 9. From the inductance matrix and eqn. (11), 

c"a 

ds 

a' 

b' 

qs 

ds 

-Md sin 0 

-Md cos 8 

The equation is therefore 

This may be written 

where 

ds 

a' 

b' 

qs 

ds 

a' -Md sin 0 

h' -Md cos 0 

qs 

I 

[ab,e]iaib = [sb,e]i'jb + [as,c]iaj' = 2[as,eliaj. 

and 2[ ]
.. ()Lca dO. as c ,a,' = __ _,a 

, ()O dt 

. 9 ()Lca ' 
From matrIX 'M IS 

a' h' qs 

-Md sin 8 -Md cos 0 

2(Lqr - Ldr) sin 8 cos 8 (Lqr - Ldr)(coS2 8 - sin2 8) Mqcos 8 
. (67) 

(Lqr - Ldr)(cOS2 0 - sin2 8) - 2(Lqr - Ld,) cos 0 sin 0 -Mq sin 0 

Mqcos 8 -Mqsin 8 

R 'a + L 'a + ()Lca dO 'a 
ec = ca' caP' ()8 dt' (68a) 

ec = Rcja + Lcapja + VcjapO + Gca;apO (68b) 

a' b' qs 

-Md sin 8 -Md cos 8 

(Lqr - Ldr) sin 0 cos 0 -L sin2 8 - L· cos2 8 qr ar 
• (68c) 

Lqr cos2 (J + L dr sin2 (J -(Lqr - Ldr) sin 0 cos 0 

Mqcos 0 -Mqsin (J 

a' b' qs 

(Lq, - Ld,) sin 0 cos 0 Ldr sin2 0 + Lqr cos2 0 Mqcos O' 

-Ld cos2 (J - L sin2 (J -(Lqr - Ld,) sin 0 cos 0 -Mq sin 0 r qr 

(68d) 

(S.1.2) The Stationary Axis Frame. (11) considering the transformation to general rotating axes. The 
objects r /IV ..... and n:v have the following laws of transformation ;2.' From Fig. 2 it is seen that the transformation from frame (i) 

to frame (ii) is given by 

(63) 

and 1"\ .... ' _ I"\w cu c~ rw' + 1 (()c:' _ ()Ct)cu,.." (64) 
~':u'v' - ~':uv u' ~'\-;" 2 ()XV ()Xu u'\-j," 

The quantities r uI" w and Our ..... are therefore not tensors. 
The equations of the electrical machine with general rotating 

axes are derived in Section 5. 

where 

cc = .m 

a' 

b' 

qs 

dr qr qs 

1 

cos 8 sin 0 

- sin (J cos (J 

1 (S) THREE REFERENCE FRAMES 

(S.1) Electrical Equations 

(S.1.1) The Holonomlc Frame. (I) The equations for frame (ii) are 

ec = R,.ja + pL,a;a • 

ec = R,.ja + LcapjQ + [ab,c]jujh 

(65) 

(66) where 

em = Rmkik + LmkPik + rkn.miki" • 

rh.m/kin = rslI,mi"ill + rk.,mikj' • 

(69) 

(70) 

(71) 
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Also fkn,mjkjn = [kn,m]jkjn + (nmn,k + nmk,n - nkn,m)jkjn and 
= 2nms,kjSjk (72) This becomes 

ds 

ds Ld• Md cos 81 -Md sin 81 

Md cos 81 Ld, cos2 81 + Lq, sin2 {} I (Lq, - Ld,) sin {}I cos {}I 

-Mq sin {}. (Lq, - Ld,) sin {} I cos {} I Ld, sin1 {}I + Lq, cos1 {}I 

qs Mq sin {}. Mqcos {}. 

qs 

I 
Mq sin {}. 

Mq cos (}I 

Lq. 

9 

(79) 

(80) 

The terms Lmk and 2nms,k are shown in Section 4, matrices 46 
and 62. The equations may therefore be written 

The geometrical variable xs transforming holonomically 
remains {}, from matrix eqn. (40). 

• (73) 

(5.1.3) The Frame having Rotor Axes Rotating Freely. (iii) 

The transformation matrix from frame (i) to frame (iii) is 

a",,- IX ds SI S2 qs 

Ca = 'oe 

ds 

a' 

b' 

qs 

1 

cos {}f 

-sin {}f 

where, from Fig. 3, {}f = {} - {} I' 

,,",,-IX 

ds 

ds 

sin {}f 

cos {}f 

1 

• (74) 

-Md sin {}. 

Now 

and 

and 

Therefore 

[s{:J,y]jSjr> + [1XS,y]illi' = 2[IXS,y]joejl • 

2[1XS y]jlljS = (~Ly, + ~Ly", _ ~La.s)joep{) 
, ~x'" ~xs ~xY 

= ~Lyoej,,"p{} 
~8 

~Lya. d81 d8. = ___ ,Il 
'MI dO dl 

2[ ]
.. ~Lyoe d8 t . 

IXS" ,"",' = -- -Ioe , ~8. dt 

qs 

-Md cos {}. 

• (81) 

• (82) 

• (83) 

-Md sin 81 2(Lq, - Ld,) sin {}. cos {}I Lq, cos1 {}I - Lq, sinl {}I 
-Ld, cos1 {}. + Ld, sin1 {}. 

Mqcos (}I 

(84) 
-Mq sin {}. -Md cos {}. Lq, cos2 {}. - Lq, sin1 {}. 

-Ld, cos2 8. + Ld, sin2 8. 
-2(Lq, - Ld,) cos {}I sin {}I 

qs Mqcos {}. 

The equations in frame (iii) are 

(75) 

where roe(l,yjoejr> = rsrl,yi"jr> + r <Xs,yja.j~ + roerl,i"jrl (76) 

and roerl,yioej(l = ([IX,B,,,] + n y(3.aI + ny<X,f) - noe(l,y}illj~ (77) 

The electrical part of the equation therefore becomes 

ey = Ryoejal + Lyoepj"- + {2[IXS,y]i"-jl + 2ny.,llja.jS}, (78) 

ds 

-Mq sin {}I 

From eqns. (38) and (47) 

2n. ',,'oe _ (lC~8C'cL d{}·oe 
UyS,"-" - M y 8t>.dt' 

_ (le/- I
c L dB·oe (85) 

-~ /8t>.(f/ 

n. .. (le/-le L d8/.", 
Therefore 2UYS,,,,I"I'" = (l0f / soedi' • (86) 

where Ct is the transpose of matrix 0.y (matrix 74). 2nys,aI 

is then 

qs 

-Md sin 81 (Lq, - Ld,) sin 81 cos {}. Ld, sin2 BI + Lq, cos2 {}I Mq cos 01 
(87) 

-Md cos 81 -La, cos2 8. - Lq, sin1 81 -(Lq, - Ld,) sin 01 cos O. -Mq sin 01 

qs 
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The equations may therefore be written 

ey = Ryaia + L,apja + Vyaiap{}1 + GyaiaP{}1 + GyaiaP{}f • (88) 

or ey = Ryaia + Lyapia + VyaiaP{}1 + Gyaiap{} • (89) 

The equations of the machine in reference frame (iii) may also 
be obtained by transformation of the reference frame (ii). 

From Fig. 3 the transformation matrix is 

m"'-.y ds qs 

ds 1 

Using this relationship it may be shown that 

1 ~Laboaob _ G °aob 
2~" - ab" • 

thus f. = dO L d
2
0 _ G °a ob 

s RSldt + SldlZ ab' , 

(502.2) Frame (ii). 

(5.2.3) Frame (iii). 

(103) 

(104) 

• (105) 

dr 
cm = oy 

qr 

cos 01 - sinO l 

sin 01 cos 01 
, (90) Is = RSI~~ + Lst~~ + [1X,8,s]jCXj!) + 20sr>,cxj!Y.j!) (106) 

qs 

L,a = LmkCyC~ = matrix 80 

The equations may be written 

1 

ey = Ryaia + Lyapj!Y. + r ai!, yi!Y.j!) 

where 

• (91) 

(92) 

(920) 

The terms Oot!),y are non-holonomic objects of the frame (iii) 
with respect to the holonomic frame (i), and 

o - 0 CkC"Cm 1 ("3 Cf ~q) k " CL;3,y - kn,m a (; Y + 2 "3xn - "3xk C"Cf>Lay ' (93) 

Now 

Also 

r a13,yiClj!) = {2[lXs,y] + 20n ,a}ilXpO 

~CIl 
20y.,1X = 20m.,kCyqC~ + ~;qC:L8Y 

and 20~s,a = matrix 87 

where 

And 

O~S.IX == Oms,kCY'C:C! 

~q k 0 - ~q k 0 
"TO-CCXLBYP - "38

1 
Ca.LayP 1 

~"3~:C!L8Y = minus matrix 87 

2[IXS,y] = matrix 84 

The equations therefore may be written 

ey = Rya.iCX + LyaPjlX + Vyai"pOI + Gy"iCXpOI 

+ GyailXpO - Gyaicxp81 

or e., = Rycxi" + Ly"pia + Vy"i"pOl + Gyai"pO 

(5.2) Equations of Torque 

(94) 

• (95) 

• (96) 

(97) 

(98) 

(99) 

(lOO) 

An asymmetrical matrix A may be written as the sum of sym­
metrical and skew-symmetrical parts, thus2 

A _ A + AI + A - AI 
--2- -2-

f. R dO L d 20 1 n cxrl .. !) G" O!) 
.r = Sldt + stdt2 - 2 ~,cx, - a!>'cx, 

Now 

and 

Thus 

or 

(503) The Torque Tensor 

It is seen from eqns. (62) and (87) that 

(l06a) 

(107) 

(l07a) 

(108) 

(109) 

GylX = GmkC!;'C~ • (110) 

It is also found on examination of the matrices in the previous 
Sections that 

(11 I) 

and GylX = GmCYCfi (112) 

The torque matrix therefore transforms as a tensor and is 
associated with the holonomic variable O. The equations of 
frame (ii) may therefore be written6 

em = Rmkik + LmkPik + Tmski-'jk 

where Tmsk is a tensor; or 

• (113) 

em = Rmkik + LmkPik + (- Smnk - Smkn + Sknm)ikin • (114) 

where Sknm is defined as a tensor having components equal to, 
but the negative of, {lknom' The negative value is chosen in order 
that the tensor here defined will be that given by 

,(fkn,m - fnk,m) • • (115) 

the skew-symmetric part of fkn,m' That this is a tensor may be 
proved by the equations of tensor caIculus. 14 This is a well­
known tensor quantity in geometry of n-dimensional spaces and 
is there termed the "torsion" tensor. In terms of the torsion 
tensor the equations of frame (iii), derived from frame (ii), 
may be written 

ey = Ryai" + LycxpjlX + {[IX,8,y] - Syi>a - Sya[3 

+ Sa!)y + 0Y~.IX + Oya,~ - OCX~,y}j"'j() (116) 

where o (~q ~q)CkC L a;3,y = "3xn - "3xk a a /ly • (117) 
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The terms (- Sy[3(%Sy - (%[3 + S(%[3) and (Oy(l (% + Oy(% [3 - 0(%[3 y) 

may be compared with eqn. (93) where on' the right-hand side 
there are a tensor term and a non-holonomic object. 

It is thus shown that in any of these three frames the following 
terms transform as tensors, e, i, Land G; also, G is associated 
with pO the rotor speed. The generated voltage term due to V 
arises because of the choice of reference frame and is a function 
of the angular velocity of the frame with respect to the direct 
axis. If the angular velocity p(}, becomes zero, (}f becomes () 
and the equations of frame (iii) give those of frame (ii). If pe, 
becomes pe, ef becomes zero and the frame (iii) equations give 
those of frame (i). 

These relationships may also be derived by transforming r as 
a whole2 using eqn. (63), instead of transforming the components 
of r as has been done here. This method, however, does not 
show so clearly the mechanism of the transformations. 

(6) APPLICATION 
The tensor equations of electrical machines may be used in two 

ways. 1 In the first, a comparison is made between the primi­
tive machine and another type of machine whose equations 
are required; for example, a metadyne, Schrage motor, etc. 
This aspect of Kron's work has been extensively treated.2. S,lO,l1 

In such analysis the connection matrix C is set up between the 
currents in the primitive machine coils and those in the inter­
connected coils of the derived machine, and the equations of the 
primitive machine are then transformed as shown by Kron, 
Gibbs and others, to give the required equations. The second 
application has been used more recently.20 This consists of 
transformations among the reference frames of a given machine.'s 
A familiar example is that of the synchronous alternator which 
may be analysed by setting up the equations with respect to 
quantities appearing at stationary 3-phase armature terminals, 
or alternatively by using Park's equations which contain quan­
tities arising with respect to rotating direct- and quadrature-field 
axes. The d- and q-axes quantities are, of course, fictitious, but 
this reference frame leads to linear differential equations, often 
with constant coefficients, and is therefore widely used. It has 
been found,20,21 however, that Park's form of the equations 
becomes very complicated when rotor oscillations occur in the 
machine. In hunting studies a more suitable frame is one which 
rotates freely at synchronous angular velocity and is independent 
of the rotor oscillations. The equations in this form, of course, 
become identical with Park's equations when the rotor has a 
uniform angular velocity with no oscillations or acceleration. 
It is not proposed to discuss the oscillations of machines here, 
nor indeed to deal in detail with the use of the synchronous­
machine equations, but simply to present the concepts of changes 
of reference frames using the tensor technique developed by Kron. 

The reason for changes of reference frame is apparent from 
examination of Park's equations. In a rotating-field alternator 
the d- and q-axes of reference rotate synchronously with the 
field structure relative to the armature. Under balanced steady­
state conditions the fluxes and current and voltage vectors along 
these axes will be constant in magnitude and rotating in space. 
Thus the steady-state equations of the alternator are obtained 
from eqns. (21) by putting terms such as LdP equal to zero, where 
p operates on a current component, retaining. the p terms 
where p operates only on e to give the angular velocity. The 
steady-state equations are then 

ef= Rjif } 
ed = - Rdiclr + LqpejqT 
eq = - Riqr - MdP(}if - LdP(}idr 

(118) 

It is obvious that if differential equations are to be set up for 

any machine or network to which the alternator is connected, 
these must be expressed along the same reference frame, the 
operator p must have the same significance and the steady-state 
equations must therefore be obtained as before when terms such 
as Lp become zero. In most equations of a.c. machines and 
networks, with sinusoidal voltage and currents, the steady-state 
equations are obtained when Lp becomes jwL. In this case a 
transformation of reference frame is required if these machines 
and networks are to be analysed in conjunction with inter­
connected synchronous machines. Two very simple cases will 
illustrate the required transformations, namely the equations of 
a simple series impedance having resistance and inductive 
reactance, and those of a 3-phase induction motor. Both of these 
have been analysed by Kron, but the analysis as set out below 
demonstrates details of the general method of using tensor 
equations for this purpose. The transient equation of a simple 
RL series impedance may be written 

e = Ri + Lpi 

Under steady-state conditions, with sinusoidal voltage applied, 
the equation becomes 

e = Ri + jwLi 

which may be obtained from the transient equation by putting 
p equal to jw. When a 3-phase system is being considered the 
instantaneous line currents and phase voltages and impedances 
may be resolved into Clarke components.22 In order to conform 
to the phase positions and direction of rotation shown in Fig. I, 
the current components may be defined as follows: 

ib' = -!(2jA - jB - iC) 

ia' = ~(iB - iC) 
yl3 

i O = WA + iB + iC) 

(119) 

(120) 

(121) 

where iA, iB, iC are the instantaneous line currents (Miss Clarke 
uses indices IX and f3 instead of b' and 0' as written here). Zero­
sequence currents iO are those residual currents in the neutral 
connection to an unbalanced load or point of fault. To simplify 
the analysis a balanced system will be considered with no zero­
sequence currents. In a machine wound for three phases these 
instantaneous components ib' and ia' lie respectively along the axis 
of phase A and along the common axis of phases Band C in 
quadrature with phase A. These are the same as the axes b' 
and a' used in the holonomic primitive machine, Fig. 1, and are 
stationary with respect to the armature phase windings. The a' 
and b' components of an external 3-phase network would be 
connected to the machine axes as shown in Fig. 5(a). It is there­
fore possible to define for either a machine or stationary network 
a set of currents is! and iS2 expressed along axes rotating with 
uniform angular velocity with respect to the axes of the Clarke 
components. From Fig. 3 the relationships among such 
currents may be written 

ia' = iSI cos Of + iS2 sin Of } 
ib' = - i SI sin Of + jS2 cos Of 

(121) 

For a stationary network the holonomic (Lagrangian) equations 
in terms of a' and b' components are 

w"- w"-v a' h' 

a'G]=a'§C] 
b'l~ h'~ 

a' tB-a, 
(122) 

b' ib' 
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(a) 

.CI •• It (b) 
1 --J1 

where 

In direct notation C" - C d ",nil _ C()C,-I 
.IX = an ~.t.yS - t ()f}j 

,),,,",8 SI S2 

Thus 2n~3=SICG. 
S2~ 

and 

Thus ey = RyailX + L,IXPilX + Vy'XilXp(Jj • 

A rotation matrix may be defined by24 

VYIX = p~L&1. 

(126) 

(127) 

· (128) 

· (130) 

• (131) 

Fig. !!.-(a) Synchronous machine with external network. (b) Clarke where 
components of a balanced 3-phase system. 

· (132) 

or in index notation 

where 

In the free frame the equations become [see eqn. (78)] 

ey = Rya.ilX + Lya.PilX + 2[lXs,,),]f'ilX + 2.Oy •• a.is;a.. (123) 

where [from eqn. (121)] 

V,,",IX SI S2 

a' 

This is the rotation matrix used by Kron.2" 
1n eqns. (132) above it is not a tensor, being part of the non­

holonomic object Oy~. A similar matrix arises in connection 
with the formation of the torsion tensor defined in Section S, and 
this is then referred to as the "rotation tensor" (there is an 
algebraic connection between this tensor and the coefficient of 
rotation defined by Ricci l "). 

The equations of the 3-phase network in terms of axes analogous 
to the rotating d and q axes of Park thus become 

cos {}j sin {} f 
Cl' = ·IX • (124) where eSt = ea' cos {}j - eb' sin {}, } 

eS2 = ea' sin (}j + eb' cos f), 
· (134) b' -sin {}j cosBj 

and ;V = C!'IX;a. 

e lX = C~reD (C~" is the transpose of C!'IX) 

RylX = Rwvqq 

L,IX = Lwfqq 
It is found that in this case 

Thus 

RylX = Rwv 

L,IX = LWf1 

2[')'s IX] == ('lJLa. .• + "3L12y - ()Ly.) = 0 
• ()xy ()x' ()~ 

and therefore ey = Ry12;1X + L,l2pjlX + 20yS.af·jlX . (125) 

By trigonometrical substitution it may be shown that in the 
steady state, when eb' = EA cos wt and eh' = jea" 

When the rotating reference frame has synchronous angular 
velocity, pO, = w, 

eSI = EA} 
JSI = JA 

· (137) 

The balanced steady-state equation may be written down by 
putting p = 0 in eqns. (133) and lIsing eqns. (136). Thus 

ISI = RjSI + jvwLiSl • (J 38) 

'------------' c'~7""'¥=·'y_'" ___ .,iII_ 



LYNN: THE TENSOR EQUATIONS OF ELECfRICAL MACHINES 13 

And at synchronous angular velocity v = I, and 

. (139) 

The operator p has therefore the same significance in the transient 
eqns. (133) as in Park's eqns. (21). 

(6.1) The 3-Phase Induction Motor 

A 3-phase induction motor has been analysed by Stanley9 by 
expressing the equations in terms of an equivalent 2-phase 
machine. The 3-phase rotor and stator currents, voltages and 
flux linkages are resolved along two axes, namely the axis of the 
stator phase A and the common axis of the stator phases Band C 
in quadrature with phase A. Since both rotor and stator 
quantities are resolved along the same two axes these are relatively 
stationary and fixed on the stator as in Fig. 2. 

The equations for a balanced symmetrical motor with voltages 
applied to the stator may therefore be written 

ds dr 

ds ds RI +LIP Mp 

dr o dr Mp Rl + L1P 

qr o qr -Mp8 -L1P8 
-

qs qs 

R 'k + L 'k + r 'k'n or em = mk' mkPI kn.m' I • 

where RI = Stator resistance per phase. 
R2 = Total rotor resistance per phase. 
1.1 = Stator phase inductance. 
L2 = Rotor phase inductance. 

qr 

L2P8 

R2 + L 2P 

Mp 

M = Maximum value of mutual inductance stllior/rotor 
phase. 

In balanced steady state ids = j;qS, id' = jW and P bccomesjw, 
and Lz(p - jp8) becomes Lz(jw - jpO) = jswLz• where s = 1 - v 

angular velocity of rotor 
and v = synchronous angular velocity 

Eqns. (140) therefore become, in balanced steady state, 

stator appears to rotate synchronously backwards and the rotor 
to rotate backwards at the angular velocity of slip. 

The relationship among the currents in the stationary axes 
and those in the free frame may be written 

ids = i S3 cos 81 - iS4 sin 81 

id' = iSI cos 81 - i S2 sin 81 

W = iSI sin 81 + i S1 cos 81 

iqs = iS3 sin 81 + i S4 cos 81 

}. 
or 

dr 
where C; = 

qr 

qs 

qs 

Mp8 

Mp 

RI +LIP 

cos 81 

sin 81 

ds 

dr 

qr 

qs 

im = c;iY • 

SI Sl 

cos 81 -sin 81 

sin 81 cos 81 

ids 

id' 
(140) 

iq' 

iql 

The equations in the free frame are, as before, 

-sin 81 

cos 81 

. (143) 

• (144) 

(145) 

ey = Rya,ia, + Lya.pja, + 2[ocs,y]i<xp8 + 2o.ys,a,ia,p8. (146) 

where ey = c~mem 

Rya. = RmkC~C~ 

Lyll. = LmkC~C~ 

Lmk is shown in matrix 46. 
It is found on carrying out the transformation that 

eds = (RI + jXI)ids + jXmid, • 
o = jsXmids + (Rz + jsX2)id, • 

• (141) therefore again 

(142) 

2[ocs,y] = 0 

When an induction motor is associated with a synchronous 
machine the motor equations may be written in terms of axes 
rotating with the flux as in Park's equations. In the balanced 
steady state, in this case, the vectors representing voItages, 
currents and flux linkages, are constant in magnitude and rotate 
synchronously in space around the stator of the machine. As 
shown in Fig. 3 there are two axes, S3 and S4' in quadrature on 
the stator, and two, SI and S2, in quadrature on the rotor. The 
stator and rotor axes are both rotating synchronously and are 
again relatively stationary. One would therefore expect to find 
that the equations in this frame have a form similar to those of 
Stanley and Park. This is, in fact, the case. Both induced and 
generated voltages appear in the equations, but as in the 
synchronous-machine equations the steady-state equations of the 
motor are now obtained by putting such terms as Lp equal to 
zero, and only generated-voltage terms remain. It will be seen 
from the free-frame equations that, relative to these axes, the 

Now • (147) 

and [eqn. (62)] 

m"...,k ds dr qr qs 

ds 

dr L2 M 
(148) 

qr -M -L2 

qs 

This term of the right-hand side of eqn. (147) is seen to transform 
tensorially (in this case to the same matrix) 
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2nms.keye~ = 

')I'" ex S) S. 

S) 

L2 M 

-M -L2 
= 2n~s.~ • (149) 

This is the term referred to (by Kron) as the "torsion tensor," 
the name being taken from geometry. 

Now 

and 

"e~cm = 
oB. y 

Therefore 

SJ 

S, 

S2 

S4 

-1 

-1 

1 

1 

')I'" ex SJ 

SJ -M -L, 

(le" S. mcmL -'"SB y 6~-

• S2 

-L2 -M 

M L2 

L. M 

Thus (2n~ .. cxpB + ~~~eYL8a.pO.) = 

')I'" IX SJ SI S2 

SJ -MpO, -L.pO. 

-L2pB' -MpO' 

MpO' L2PO' 

L.pO. Mp(). 

• (150) 

(151) 

• (152) 

(153) 

where pO' is the angular velocity of slip, namely pO. - pO 
(which is equal to -P()f)' In the free frame the equations of the 
machine therefore become 

R, +LIP Mp -MpO, 

Mp R2 + L2P -L2PO' 

MpO' L2P()' R2 + L2P 

L,pO, MpO, Mp 

Eqn. (154) may also be derived by starting from the holonomic 
machine in frame (i), Section 5, the relationship among the 
currents is then (Fig. 3) 

jds = jS) cos O. - jS4 sin Bt } 
ja' = jS, cos Of + jS2 sin Bf 
jb' = - jS, sin Of + jS2 cos Of • 
iq· = is) sin O. + iS4 cos Ot 

or i~ = C<!cxi'%. 

Ca = 
.~ 

a'" IX S) 

ds cos 0, 

a' 

b' 

qs sin B, 

-sin 0, 

cos Of sin Of 

-sin Of cos Bf 

cos 0, 

• (155) 

(156) 

The equations in the free frame, when transformed directly 
from the holonomic equations are [see Section 5, eqn. (78)] 

ey = Ry,%j~ + Lya.pj~ + 2[exs,y]j!XiJ + 2nys.r;ifi~ 
where in this case 

• (157) 

This is the single non-holonomic object arising between the 
holonomic frame and the non-holonomic free frame. 

Again Lya. = Lcaqq 

Rya. = R('aqC~ 

For a symmetrical induction motor represented by Fig. 3, the 
inductance matrix 9 in Section 2 becomes 

a' b' qs 

L. M cos 0 -MsinO 

a' AI cos B L2 Msin 0 

-Msin 0 L2 McosO 
Lea = 

b' 
(158) 

qs Msin 0 McosO L. 

Using the relation 0 = O. + Of from Fig. 3, then 

')I'" ex SJ S. S2 S4 

S) LI M 

S. AI L2 
(159) 

L2 M 

M L, 

-LlpBI S) jS) 

-Mp()' SI jS, 

(154) 
Mp S2 jS2 

RI +LJp S4 jS4 
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From matrix 156 

-dBddB 

dBj/dB 
(160) 

-dBt/dB 

dB.tdB 

"()CB dB 
And C~c "()O L&t.dt gives matrix 153. 

It is seen that the induction-motor equations in a free frame 
rotating at uniform velocity, when derived from the stationary 
reference-frame equations, assume the form 

ey = Rya.ja. + Lya.pja. + PILya.ja.pB + P2Lya.j"'pOI • (161) 

-I 

1 

-I 

1 

1 

PILy", is matrix 149 and pLy", is matrix 152. 
£qn. (161) may be WrItten 

(162) 

-1 

(163) 

e y = Ry",ja. + Ly",pja. + Gy",j"pO + Vya.ja.pBI • (164) 

or in tcrms of flux vectors 

e = RI + p~ + DpO + «PpOI • • (165) 

Synchronous-machine equations in this form are discussed by 
Kron'$ and used in his hunting analysis.2o 

In balanced steady state 

iS4 = jjS3 ;52 = jjSI • • (166) 

The operator p is zero when this operates on the steady-state 
currents (but pO, = vw). 

Thus, eqns. (154) become 

In this reference frame the operator p has the same significance 
as in the two-reaction theory of Park, and the free frame equa­
tions for a motor or network may be combined with those of 
synchronous machines when an interconnected network is being 
considered. 

(6.2) Induction-Motor Torque Equations 

The motor torque is given by eqn. (106). 
Since [.x,8,s] = 0, the equation (neglecting the mechanical 

friction term R.t) becomes: 

Impressed torque I. = L.t ~t2: + 20s{3.",j~ia. • (169) 

and at constant angular velocity 

Generated torque = - 20.13,a.i{3ja. 

where, as in eqns. (62), 0s(l,a. is the negative of Oy.,,,, 

Thus 0s{3,a. = - c:()()~ L6{3 = 

S3 M dB , 
dO 

L dB, 
IdO 

SI _L/Oj 
dB 

_MdB, 
dB 

f-. 

S2 MdOf 
dO 

L dOf 
2dO 

S4 
_L,dOI 

dO 
_MdO} 

dO 

,8" 
S3 ;53 

S, ;51 

j{3 = 

S2 ;52 

S4 ;54 

no ;rlja. = ;SljS4M - ;S2jS3M 
SI"",rI 

or; o.s{3.~jflja. = if1diq - if1id • 

• (170) 

• (171) 

(172) 

(173) 

where if1d and if1q are the flux linkages in axes SI and S2 
respectively. 

The generated torque given by o..(l,a.jf>ja. is seen to be that 
given by 

where 

or8 

1= Gya,;Yja. • 

Gya. = p,Lya. 

/= j*B . 

• (174) 

• (175) 

eS3 = (RI + jvwLI)iS3 + jvwMi
SI 

} where j* is the conjugate of jY. 
o = jswMjSJ + (R2 + jswL2)jSI •• (167) 

When the reference frame rotates at synchronous speed with 
respect to the stator winding, then pOI = wand 

eS3 = (RI + jXI)jSJ + jXmjSI 

0= jsXmjS3 + (R2 + jsX~jS' } • (168) 

(7) CONCLUSION 
The analysis of electrical machines may often be simplified by 

transforming the variables and parameters from the real phase 
. reference frame to real or fictitious stationary or rotating reference 
axes. Changes of refcrence frames similar to those demon-
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strated in the paper have been used by Kron and Ku in the 
derivation of equivalent circuits for electrical machinery.3,23 
Tensor analysis is a most useful mathematical tool for handling 
such transformations. Tensor equations look complicated when 
first used because the notation is comparatively new to engineers. 
In practical application, however, when the equations of a 
machine are written in tensor form they are fairly simple and the 
technique of transformation and calculation of phenomena 
become a matter of routine procedure. 

This method of handling machine problems ensures that the 
analysis is systematic and the equations are of a form that often 
leads to clearer concepts of the interactions of the various 
currents and ftuxes in the system. It is possible to distinguish in 
the equations between terms that have existence in all reference 
frames and those which arise because of the reference frame 
chosen [compare for example the terms Gya.i'%pO and Vya.i"-pOI 
in eqn. (164)]. 

It is intended that the foregoing presentation of Kron's work on 
the tensor equations of electrical machines should provide a 
groundwork on which may be built a more completemathe­
matical and physical analysis of machine stability problems by 
investigating the phenomena in various reference frames. 
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(10) APPENDIX 
(10.1) Tensor Transformationst9 

Tensor analysis of electrical machines is largely concerned with 
transformations of machine equations. 

Tensors are sets of quantities, often represented by matrices, 
which are (a) functions of a set of co-ordinates (variables) and 
(b) subject to certain conditions of transformation when the 
co-ordinates are changed. The basic laws of transformation are 
set out below. 

Let P be a particular value given by n co-ordinates x' 
(i = 1,2, ... n) in one reference system and by xl(j = 1,2, •.• m) 
in another system. Let Q be a value close to P, given by 
x' + dx' and xi + dx}. The two sets of differentials in the two 
co-ordinate systems are connected by the equations 

. (176) 

The infinitesimal displacement PQ gives an example of a "contra­
variant" transformation. The indices are written by convention, 
as superscripts. 

Another form of transformation is given as follows. Con­
sider a scalar A which is invariant in al\ co-ordinate systems. 
The partial derivatives of A with respect to the co-ordinates x' 
in one reference frame are given by A, = ~A/~xl. In another 
system with co-ordinates xi the partial derivatives will be given by 

M ~x' ~A 
~= ~X/~xi"'" ~x} . (177) 

~x' 
Consequently ~ == A/~xi' (178) 

The vector whose components in the x's are partial derivatives 
A, is the gradient of the scalar A (grad A). This is an example 



LYNN: THE TENSOR EQUATIONS OF ELECTRICAL MACHINES 17 

of a "covariant" vector, or tensor of the first order: it has one 
index written as a subscript. In general terms the two different 
forms of transformation may be written 19 

First-order tensors (vectors): 

"iJx} 
Contravariant Ul = ul-

"Xl 

"iJxlt 

Covariant ti) = v""x) 

Second- and higher-order tensors: 

"xQ "xb 
Contravariant nab = ,p[3_ -"x"' i)x[3 

• (179) 

• (180) 

• (181) 

• (182) 

• (189) 

(The column index of matrices such as C'" is preceded by a dot). 
In Cartesian co-ordinates the length of the vector OP is given by 

(A)2 = (xl)2 + (x2)2 • (190) 

This length is invariant with respect to any change of co­
ordinate system. In the new co-ordinate system, by substitution, 

(A)2 = )'1)'1(0101 + aiap + 2y1)'2(a~ai + aial> 
+ )'2)'2(aiai + o~a~) (191) 

or (A)2 = 111)'1)'1 + 112>'1)'2 + 121)'2)'1 + 122>'2)'2 (1910) 

where 

• (183) and 

111 = (0101 + aiar), 122 = (alai + o~a~) 
112 = 121 = (a~ar + aial> 

_ "x'" "x~ "x'" 
v}km = v"''''''"x) "xk ~xm 

- --

• (184) 

x. 

Ag. 6.-Cartesian, rectilinear and polar co-ordinates. 

(10.1.1) Example of Simple Linear Transformation. 
Let P be a point located by Cartesian co-ordinates xl and x 2 

as in Fig. 6. A linear transformation to new rectilinear co­
ordinates is given by the relation 

or 

where 

Xl = 01),1 + a1)'2 } 
X2 = ar),1 + a~)'2 

2 

0 1 
1 0 1 

2 

(185) 

(186) 

• (187) 

In matrix notation (A)2 = g"r>x"'xr> { ; : ~: ~}. (192) 

In Cartesian co-ordinates 

I,,~ = (193) 

and 1",[3x"'x[l is 

"oc 1 2 

I xl I x
2 P~ffil 

(194) 
2 x2 

The quantity I,,[l is a covariant double tensor and transforms 
according to eqn. (183); thus from eqns. (183) and (188) 

0 1 
I 

2 a l 
2 

C' CC = 
" 

2 

0 2 
1 

0 2 
2 

CUI' = 1,,[lC~"'cr>v • (195) 

2 

al 
I 0 2 

1 
• (196) 

2 a1 0 2 
2 

(the transpose of matrix 188) 

~ffi~· 
2~2 

2 

al al 
1 :1 

a2 0 2 
1 2 

(197) 

2 

II+ti2 0 101 101 a~a2 + ala! _ 1 :1 

C?'" = . (188) or gut) ... 
alal + 0201 

• (198) 

2 0 2 
I 0 2 

2 
2 a~al + o~ar 2 2 2 
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which gives eqns. (191) when u and v each take the values 
I and 2. 

The tensor 8 uv or 80:B is called the "fundamental tensor" or 
"metric tensor" of the system. The metric tensor is necessary 
in order to calculate invariant properties of vectors or tensors, 
for example, the length of vectors, the angle between vectors and 
parallel displacements. 

(10.1.2) Non-Linear Transronnation. 

An example of a non-linear transformation of variables is 
given by the change from Cartesian to polar co-ordinates. In 
this case the transformation must be one between differentials 
of the respective co-ordinate systems. From Fig. 6 it is seen that 

Xl = A cos (J" } X2 = A sin 0" 
(199) 

dx l = - A sin (J" d(J" + cos (J" dA } 
dx2 = A cos (J"d(J" + sin (J"dA 

(200) 

Now dxa = C~kdxk (201) 

ex",", k",", 

I~ I~ where dxa = dxk =, 
2 dx2 2 dB" 

ex",",k 2 

cos (J" -A sin 0" 
and C~k= . (202) 

2 sin 0" A cos (J" 

Calling the invariant line element of length of any vector, in 
Cartesian co-ordinates, dJ, 

(d/)2 = (dxl)2 + (dx2)2 = 80:[:ldxadx(3 

where 80:(3 is given in matrix 193. 

In polar co-ordinates 

(203) 

transformation of co-ordinates, one of these invariants is the 
kinetic energy in the system. 

Kinetic energy T = !mv2• 

Now (d/)2 = 8abdxodxb 

therefore (
dl)2 2 dxa dxb . 'b 
dt = v = 8abTt dt = 8#x (209) 

Thus (210) 

Lagrange's dynamical equation in generalized co-ordinates 
XC for a free system acted upon by forces le is written (neglecting 
potential energy in this case) thus: 

'3T = 1.m7J(8abxaxb) 
~xc"l ~xC 

_ 1. 'b'3xa + 1. ' ~xb 
- "lm8a~ ~xc "lm8u0" ~xe 

= !m8ubxbS~ + !m8abXaS~ 
= !m8,bxb + !m8a~a 

where S~ = I, a = c S~ = I, b = c 
= 0, a ¥= c = 0, b =1= c 

d (7JT) _ 1 (d8ub ' b + dlfll!'a + "b + 8 "a) dl 7JXC -"Im d{x dl X 8ebX ca X 

(211) 

_ t (7J8cb dxa 'b + 7J8ac dx
b :..a) + 1 "b + 1 "a - m - -x - ~ -~- "Img bX "Img, x 7Jxo dt 7Jxb dl c (a 

= 1. (7J!!('b + 7J8ac) UJ'b + .."b 
"Im ~Xa ~Xb ",-X m8cb'" • (212) 

'3 T _.1 '3 ( UJ 'b) _ 1 7J8ab 'a"b - - "Im- 8 b"'-X - "Im-x '" '3XC '3xe U 7Jxc (213) 

Thus 

(d1)2 = 8k"dxkdx" • d(7JT) 7JT 1 (7J8"b + 7J8ca '38ab) 'a'b + "b 
(204) di '3xe - 7Jxc ="Im 7Jxa- ~xb - 7Jxc X X m8,bx 

where 

thus 

and 

therefore 

8""dxlcdx" = 8 J1dAdA + 822dO"dO" 

812 = 821 = ° 

(10,2) Lagrange's Equation8.1J 

(205) 

(206) 

• (207) 

In dynamics the behaviour of a system may be calculated 
provided that the parameters of the system are known, i.e. the 
masses, inertias, etc., together with the forces and constraints 
acting on the system. 

Certain properties of the system will be invariant under a 

= m[ab,c]xaxb + m8"bxb 

= m{[ab,c]xaxb + 8,bXb} (214) 

The expression in compound brackets in eqn. (214) is that for 
the acceleration of a particle in terms of generalized variables or 
co-ordinates. The quantities m!!ab define the metric tensor Lab 
in dynamics. This term comprises the moments of inertia of 
the system. 

Lagrange's equation may therefore be written as in Section 2. 
eqn. (10): 

• (215) 

While neither of the terms on the right-hand side is a tensor 
by itself, the expression on the right-hand side as a whole is a 
tensor. This is illustrated by a transformation to new co­
ordinates, 

/y= qlc . • (216) 

and Iy = Lyo:x~ + [cx,B,y]Xo:x:3 • (217) 
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In an electrical network the equation corresponding to eqn. 
(215) becomes 

(219) 

or 
di r 

- L + [ ]'u'!' e", - ",I'dt UV,W I I • (220) 

where the metric tensor LwI' comprises the self- and mutual 
inductances of the network elements. The voltage drop due to 
resistance may be added as an extra term Rw,r. 

(10.3) Conditions necessary for an Equation to be Integrable1S 

If 

has an integral 

Adx + Bdy + Cdz = 0 

f(xyz) = K 

which on integration gives 

then 

Hence 

i.e. 

and 

'3f j)f' '3f 
-dx + ~dy + -dz = 0 
'3x '3y '3z 

'3f j)f '3f 
- = aA, - = aB, and - = aC 
~x '3y '3z 

'3 '32j '32j ~ 
-(aC) = - = - = -(aB) 
'3y ()y'3z '3z'3y '3z 

a('3B _ '(jC) + B~ _ C~a = 0 
()z ~y ~z '3y 

~ ';)a ~C ~a '3B 
-(aC) = - C + a- = B- + a­
~y '3y (ly '3z (lz 

• (221) 

Therefore a('3B _ M) + B~a _ C~ = 0 
'3x '3y '3z ~y 

• [222(a)] 

Similarly a('3C _ '3A) + C'3a _ A'3a = 0 [222(b)] 
'3x '3z '3x (lz 

and o(M _ '3B) + A'3a _ B'3a = 0 [222(c)] 
()y ()x '3y '3x 

MUltiplying eqns. [222(a)], [222(b)] and [222(c)] by A, Band C, 
respectively, and then adding, 

A('3B _ '3C) + B('3C _ M) + C(M _ '3B) = 0 . (223) 
'3z '3y '3x '3z (ly '3x 

If eqn. (221) is integrable this condition must be satisfied. 
Eqn. (221) may be written 

A1dxt + A2dx2 + A Jdx3 = 0 

and the condition for integrability becomes 

A (M2 _ M3) + A (~A3 _ MI) + A (MI _ M2) = 0 
I '3x3 '3x2 2 '()xl '3x3 J (lx2 '3x t 

(224) 

or in general am.nA, + on.,.Am + a,.mAn = 0 (225) 

'3Am "An o =-.--m.n '3xn '3xm (226) where 

If, therefore, a set of equations, such as 

is not integrable, then 

Prinl.d In Grul Brllaln by 
1JNWIN •• OTHERS UMITBD, WOKING ANIl LONDON 
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SUMMARY 
The paper gives first a brief resume of previous work on tensor 

analysis of electrical machines. The steady-state equations of the 
synchronous machine are written in Park's reference axes, and from 
these the hunting equations are derived. It is then shown that these 
equations are part of a general group of transformations of reference 
axes of the synchronous machines, all of which are embraced by the 
general tensor equations. The hunting equations are then derived in 
a freely-rotating reference system, These equations are rewritten in 
tensor form and the significance of the grouping of terms into tensors 
is discussed. The latter equations are shown to give a more realistic 
interpretation of the hunting equations and the equivalent circuit. 

Indices. 
LIST OF PRINCIPAL SYMBOLS 

a, b, c = Quantities in axes fixed to the machine stator 
and rotor windings. 

k, n, m = Quantities in axes all relatively stationary, 
IX, p, Y = Quantities in axes fixed or free on the stator 

and rotating freely on the rotor. 
S, I = Quantities associated with the mechanical 

rotational effects in the machine (e.g. 
generated voltages and torque). 

. u, v, w = Quantities in a gcneral equation. 

Electrical parts of the eql/ations. 
Vm, Vat, etc. = Electrical voltage vectors in axes denoted by 

indices. 
xk, x"-, etc. = Electric variables. The elcctrical charges in 

. machine windings, referred to axes denoted 
by indices. 

X"- (=i'A) = Electric current vector, in axes denoted by 
indices. 

Ryat = Resistance matrix, in axes denoted by indices. 
L,a. = Inductance matrix, in axes denoted by indices. 
Gy« = Generated voltage coefficients, in axes denoted 

by indices. 

Mechanical pari of Ihe equations. 
/. = Mechanical force. 
x~ = Mechanical variable 8, the angular position of 

the machine rotor during rotation. 
*' (= ;~ = pe) = Angular velocity of machine rotor. 

Rs• = Mechanical friction coefficients. 
L •• (=J) = Moment of inertia of machine rotor. 

General symbols. 
v = Generalized force vector (voltage or mech­

anical force). 
R = Generalized dissipation matrix (resistance or 

friction). . 
L = Generalized inductance matrix (inductance ~r 

inertia). 
I = Generalized current vector (electric current or 

angular velocity). 

Correspondence on Monollrapha la invited for \:OnsidoratioD witb • view to 

c~ = Connection matrix between quantities in axes 
denoted by indices. 

C = Direct notation for C!, etc. 
C(r) = Transpose of matrix C. 
0;[3 = 'Non-holonomic object' containing functions 

of C, in axes denoted by indices. 
[IX,8, y] = A 'connection' term containing functions of 

L,a. in axes denoted by indices. 
r<x(l,y = A 'connection' term containing both [IX,8, y] 

and Ua.(3, y in axes denoted by indices. 
S:t(ly = Tensor giving the terms G,a.' 

(I) INTRODUCTION 

With rapid expansion in the field of control systems a fuller 
understanding of the dynamical behaviour of rotating electrical 
machines has become of increasing importance. For this reason. 
and also because of general developments in electrotechnics, the 
teaching of electrical machine theory from a generalized 
dynamical viewpoint is now being considered in universities 
and colleges. Brown, Kusko and White1 give details of a 
laboratory machine for teaching purposes, the windings of 
which can be interconnected in a variety of ways to give the 
characteristics of a range of d.c. and a.c. machines . 

One of the pioneers of this approach to electrical machine 
analysis was Gabriel Kron.2• 3• 4 The matrix and tensor 
methods which he has developed since 1934 have led to a better 

. understanding of the fundamental concepts underlying all 
machine systems. A survey of these methods is ~iven in 
Reference S. The above References show that the analysis of 
most types of electrical machines can be expressed by a single 
set of dynamical equations. 

Recently the behaviour of oscillating-machine systems has 
been receiving a great deal of attention.6• 7. 8 Transient and 
hunting conditions have been the subject of investigation 
throughout the history of machine analysis. The development 
of hunting analysis of synchronous machines can be indicated 
briefly by selection of one or two representative publications, as 
follows. 

. In 1929 Wennerberg9 extended the early work of Kapp and 
Rosenberg. Starting with the design details of a 3-phase salient­
pole machine he resolved the armature magnetomotive-force 
and flux waves into two axes in quadrature on the armature 
(stator). During hunting the field rotates and oscillates with 
respect to these axes. Wennerberg then derived equations for 
voltages, currents and torque during small oscillations of the 
rotor. The expressions are complicated because of the fixed 
armature axes chosen. AU steady-state currents and voItages 
are functions of sin rot and cos rol (where ro is the synchronous 
angular velocity of the rotor), and the hunting equations are, of 
course, obtained by making small changes in steady-state values. 
In his expressions for hunting torque the trigonometrical terms 
of synchronous frequency ultimately disappear and the torque is 
expressed as . 

AT = A'Xsin (hw}t + A"(hw}X cos (hw}t 

publication. I' f h' I . , f h' Mr Lynn la In the Department of Electrical EDIPDeerlna. Univerlity of Liverpool. where hw is the angular ve oclty 0 untmg. nspectlon 0 t IS 

[ 1 ) 
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expression yields the synchronizing and damping torque coeffi­
cients, A' and A". 

Prescott and Richardson,lo using implicitly the same reference 
system as Wennerberg, derived a comprehensive set of equations 
giving the damping and synchronizing torque coefficients of a 
salient-pole alternator. They examined, in particular, the effects 
of armature resistance and armortisseur parameters on hunting. 
Curves are then given showing calculated and experimental 
results for a laboratory machine. 

About this time the two-reaction theory of the salient-pole 
synchronous machine was developed. In 1926 Doherty and 
Nickle, 11 following Blondel, resolved the armature resultant 
m.m.f. and flux-linkage waves into axes along the field pole and 
in quadrature with it. These axes were considered to rotate 
synchronously along with the field structure. Both the armature 
and field quantities are therefore constant along these axes in the 
steady state, trigonometrical terms at synchronous frequency 
having been eliminated by transformation of the phase quantities 
into these axes. During hunting the reference axes rotate and 
oscillate with the field structure. In 1929 Parkl2 expressed this 
theory in terms of transient or 'operational' impedances in 
these axes, which could be measured directly by tests on the 
machine. Park then extended his theory to include hunting 
conditions. His equations of hunting are physically the same 
as those of earlier investigators, but in terms of machine para­
meters they are more explicit. They are also more comprehen­
sive in that the operational impedances incorporate the effects of 
the rotor (field) circuit parameters as well as those of armortis­
seurs. Park's equations have now become generally accepted 
in synchronous-machine theory. 

Liwschitz, \3 using the latter reference axes, has analysed the 
hunting of a synchronous machine as a special case of the 
general problem of a doubly-fed machine. Concordial4 has 
given a very comprehensive set of results of the application of 
Park's analysis to a particular machine. 

In 1942 a.c. machines, including the salient-pole synchronous 
machine were described by a general theory of equivalent circuits, 
by Kron, I' for both steady-state and hunting conditions. These 
circuits were subsequently used by Concordia, Kron and 
Crary.16.17 

The above work is confined to analysis of behaviour of a 
single machine synchronized with a large system. KronU 

ds dr 

ds ds rdJ + LdlP MdP 

clr dr MdP rd, + Ld,p 

qr qr -MdP8 -Ld,pO 

qs qs 

indicated that the analysis and equivalent circuits in Park's 
reference frame become complicated when external circuits are 
connected to the machine terminals. The synchronous-machine 
axes rotate and oscillate with the field structure, and the external 
network must also be analysed along oscillating'axes, He then 
selected axes which are identical with those of Park in the steady 
state but which rotate uniformly and do not oscillate.18 Equiva­
lent hunting circuits were derived along these uniformly rotating 
axes, which could be interconnected to build up complete 
systems.7. 19 These circuits are such that the resistance power 
loss in each mesh gives the damping torque. Synchronizing 
torque can also be read from the circuit. 

The physical concepts arising in the new reference frame have 
been examined in detail. 19 In order to generalize his work on 
machines, Kron uses the methods of tensor calculus. Heffron, 
Rosenberry and Rothe6,7 have given an alternative, more con­
ventional, analysis in which they compare hunting equations of 
an interconnected system in the reference frames of both Park 
and Kron, and point out the advantages of the uniformly 
rotating axes. 

In the theory of relativity, Einstein's quest was for laws of 
nature that would hold irrespective of the reference frame chosen. 
Kron's approach to machine analysis has been from the same 
viewpoint. He looked for basic concepts which exist in all 
machines regardless of the reference axes and for equations 
expressing these concepts. He formulated these for his primitive 
machine and used already existing tensor analysis to deal with 
the transformation of these equations, to give those of any 
required machine with any chosen reference axes. As in 
relativity, it was found that the fundamental machine concepts 
having physical significance in steady-state, transient or hunting 
operation were all tensors. IS Equivalent-circuit meshes were 
seen to yield groups of terms which constitute tensors. Con­
versely. if equivalent circuits were to be set up, the terms of the 
equations should be grouped into tensor quantities. Apart from 
equivalent circuits, this tensor grouping of the equations appears 
to give a better physical picture of the correlation of different 
forms of energy in any physical system. Prof. Kond02o has used 
tensor equations, identical in form with the machine equations, 
for the analysis of aircraft oscillations in which aerodynamic and 
other forces are considered. 

The present paper shows how these tensor terms arise in 
hunting analysis of a synchronous machine and how the tensor 
grouping of terms is associated with the equivalent hunting 
circuit. The equations are particular cases of the general 
machine equations, and the same analysis is therefore directly 
applicable to many other types of d.c. and a.c. machines. 

(2) TENSOR EQUATIONS OF ELECIRICAL MACHINES 
(2.1) Matrix Equations 

The voltage equations of the stationary-axis primitive machine 
shown in Fig. 1, with axes ds, dr, qr and qs, can be written down 
by inspection. Written in matrix form these are as follows: 

qr qs 

ds id" 

Lq,pO MqpO dr id, 

(I) 
rq, + Lq,p MqP qr iq' 

MqP rq,. + Lqsp qs iqs 

These are seen to include those derived by Parkl2 in 1926 for 
the synchronous machine along direct and quadrature axes, 
usually written21 as follows 

Impressed field voltage. 

v/d = Rld;/d + LfdPi/cI + Mdpid, . (2) 

Gellerated voltage. 

Vd, = - Mdpi/d - Rmitl, - Ld,pi" + Lq,WpO , (3) 

1'q, = - Mdifdp8 - Ld,jtlrpO - Rq,itl' - Lq,piq, • (4) 
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DIRECT AXIS 

t 

I--e" 
ds [ ,>1 

<]
r r-e' 5,/ /1' 

~. 

a",:;~®, 
(a) (b) 

Fig. 1.-The primitive machine. 

qr 

b' 52 

(a) 2-phase synchronous-machine field structure rotating. 
(b) Primitive machine with armature rotating. 

Generated electrical torque. 

F = ifid jqr - ifiqidr (5) 

where ifid = - Md ifd - Ldr;dr . (6) 

and .pq = - 4,rW . • (7) 

In eqns. (3) and (4) the quadrature field axis has been omitted 
for simplicity. 

Equivalent circuits for the synchronous machine have been 
developed by Kron" and studied by KU22 by resolving the set 
of eqns. (I) into forward- and backward-rotating instantaneous 
symmetrical components. 

Eqns. (I) are of the form 

v = Ri + Lpi + G/p6 (8) 

v ,= Z.I or 

where Z = (R + Lp + Gp6) 

The torque is given by 

/= i*. G.; . 

(9) 

(10) 

. (11) 

(the asterisk denoting conjugate values), the 'torque matrix' G 
being 

ds dr qr qs 

ds 

dr Lq, Mq 
(12) 

qr -Md -Ldr 

qs 

It is shown in Reference 3 that the impedance matrix of eqn. (I) 

ds 

can be transformed to give that for any other commutator 
machine, by the simple transformation 

Z' = C(t) . Z. C • (13) 

where C is the matrix connecting mesh currents in the derived 
machine windings with the branch currents of the primitive 
machine coils. If the transformation is to be carried out to 
any reference axes which are rotating relative to the direct and 
quadrature axes, then, as shown in Reference 3, the transforma­
tion law is 

Z' = C(t) • Z. C + C(t) • L • :~p6' . • (14) 

where p()' is the angular velocity of the reference frame with 
respect to the direct and quadrature axes system. This leads to 
an equation of the form 

or 

where 

v' = R'/' + L'pi' + G'/pO + V'i'p6' (15) 

v' =Z'.i' . 

Z' = (R' + L'p + G'p6 + V'p6') 

(16) 

(17) 

If the direct- and quadrature-axis quantities are transformed to 
uniformly rotating axes SI and Sl' the connection matrix C is 
given by the relation between the currents in the two systems as 
shown in Fig. ]. 

and dr 

ds 1 

dr 
c= 

qr 

qs 

jds = jds 

jdr = JSI cos (), - jS2 sin 0' 

jq' = JSI sin 0' + jS2 cos 0' 
iqs = iqs 

cos 0' - sin (), 

sin 0' cos 0' 

I 

• (18) 

qs 

• (19) 

1 

The terms of expression (17) are given in full in Reference 5. 
If the angle ()' is, in fact, the load angle "\, the axes SI and Sl 

coincide with the voltage axes of the machine. The angle 'A is 
constant in the steady state and the last term in eqn. (15) is zero. 
The impedance matrix is then given by the transformation (13), 
which gives (neglecting axis qs) 

(20) 

ds rds + LdJp Md cos 'Ap -Me, sin 'Ap 

Md cos Ap r dr + Ldr cos2 Ap (4r - Ldr) sin A cos 'Ap 
2A . + Ldr sin2 'ApO 

-Md sin AplJ + Lqrsin p 
+(Lqr - Ldr) sin A cos Ap(} + 4,r cos2 >..pO Z'= • (21) 

-Md sin Ap (4, - Ldr) sin A cos AP rqr + Lqr cos2 Ap 
-Md cos Ap() - Ldr cos2 Ap() + Ldr sin2 Ap 

- Lq, sin2 Ap(} -(Lq, - Ldr) cos A sin ApO 
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The matrix multiplication shown above, to give a change of 
reference frame, is extremely simple, and the obvious question 
that arises is whether any knowledge of tensors is required and 
whether there is any advantage in learning a new mathematical 
technique involving, among other things, a complicated index 
notation. The answer begins to appear when one looks at the 
general law of transformation of impedance during small 
disturbances of the machine voltages, currents and speed.3 If 
the hunting impedance in Park's reference system is r', the 
hunting impedance matrix in a free frame is given by 

~' = [CC,), i!. C + CC,), L. :~p8'}IJ..l' + as') 

+ [ CCt)·~· :.?' + CC,), L. (:~1(p6') + CC,), L. :~Pi' 
dC(t) z C /' d V'] 1\ 4' (22 + de" • • - d6' uv. ) 

The purpose of tensor analysis is to present all the trans­
formations of machine reference frames in a consistent dynamical 
theory for steady-state and hunting analysis of all types of 
machines. The fundamental ideas underlying the tensor 
approach as developed by Kron have been examined in 
Reference 5. The salient points are now summarized. 

(2.2) General Tensor Equations of Electrical Machines 

In Reference 24 the different concepts of flux linkage and 
generated voltages arising under different transformations of 
machine reference axes have been classified. These components 
change with the angular velocity of the reference frames and 
some arise in one system of measurement and disappear in 
others. When machine equations are expressed in tensor form 
these various voltage components are part of a total 'tensor' 
voltage which includes both flux linkage and flux density. A 
tensor voltage cannot disappear under any transformation, and 
it is this, whatever its components, that is associated with the 
invariant power and stored electromagnetic energy in the 
machine. Resistance drop is also a tensor voltage. 

Another advantage of using tensor equations is that there are 
available general routine laws covering all possible transforma­
tions of reference axes, the machine power remaining invariant 
with each change of reference system. 

The tensor equation of the rotating electrical machine is an 
equation which has the same basic terms for all machines, these 
having different components for each machine or with each 
reference system chosen. The motion of the rotor is included 
in the form of rate of change of self and mutual coupling of the 
rotor and stator coils with changing rotor angle. 

The voltage equation of a single coil having resistance and 
inductance is written 

di 
f) = Ri + lit . • (23) 

The equation for a set of coils, some of which rotate with respect 
to the others, becomes 

Siu 
f),.. == Rwulu + LwuiJt . (24) 

where 8/11 is the 'absolute' derivative of the current with respect 
dJ 

to time. Every term is then a tensor. As shown in Reference 5, 

Si
u 

= diU + ru.,.J"fW • • (25) 
dt dt l' 

where r:,., contains functions of the matrix C which relates the 
currents in two different systems, 

and 

;U = C:iCl 

Si" = SiCl
cu 

dt dt Cl 

(26) 

(27) 

The indices range over the different machine variables, namely 
the electrical charges in each coil and the angle of rotation of 
the rotor. The coil currents and angular velocity of the rotor 
are then written, for example, 

ru dq" , =-
dt 

(28) 

and 
. dB () ,f = _ =p • 

dt 
(29) 

The index s is used to denote the mechanical variable, the angle B. 

Also L Siu _ T diU + r 'u~ 
wu dl - ~u dt III!, w' I • • (30) 

The machine equation in its general form therefore becomes 

• (31) 

The whole of tensor analysis of rotating electrical machinery 
is based on a knowledge of the components of the term r "" . ..,iUi" 
in eqn. (31). When these are understood and facility in mani­
pulating the index notation has been attained, the group proper­
ties of electrical machines become clear and analysis of a wide 
range of machines under many different operating conditions 
becomes a matter of routine procedure. The study of the r 
terms and their expansion have been carried out in detail in 
Reference 5. 

(2.3) Synchronous-Machine Systems 

The analysis of synchronous machines can be carried out 
using anyone of three reference systems shown in Fig. I, 
namely 

(0) Actual phase quantities, or 2-phase co-ordinates of these. 
(b) The reference frame of Park. This is much more suitable for 

most cases, and is in general use for synchronous-machine studies 
at constant speed. 

(c) The free frame. In this system the field quantities are referred 
to axes fixed on the field as in reference systems (a) and (h). Arma­
ture quantities are referred to axes which rotate uniformly with 
respect to the armature as in reference frame 2, but these can be 
chosen to have any uniform velocity, they can have any fixed 
position relative to the field structure, and the angular velocity of 
the reference frame is independent of any oscillations of the field 
structure. The simplest case is that in which the free frame coincides 
with that of Park under steady-state constant-speed conditions. 

The machine equations in each frame have the same form and 
are identified by different systems of indices as follows: 

Frame (a) 

Frame (b) 

Frame (c) 

where 

Vc = Rca j " + LcaPi" + r ab.,,;ajb 

vm = Rmkjk + LmkPik + r k",miki" 
Vy = RyCl/'CI + Ly".pjCl + r Cl~, yl"Xi~ 
vm = C:;'vc 

Ly". = LmkC!;C: • 
etc. 

(32) 

(33) 

(34) 

(35) 

• (36) 

The most general form of the term r UI'. w in eqn. (31) is, as 
shown in Reference 5, 

r = ! ((JL .. ,. + (JL",,! _ (JLu") 

"".,.. - 2 (Jxu (Jx~ (Jxw 

- Swru - SWill! + Suv,., + U,.,,,." + nwu•II - nun.... . (37) 
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In the voltage equation 
xf! = 0 and jf! = pO • 

In the steady state 
(38) 

r 'urfJ - (Il£,.u 2S + 2"" ) 'UrfJ 
uf) .... 1 1 = ()xfJ - WI'U ;l."WfJ.U I 1 • (39) 

(40) - 2Swvu = C(t). G. C= G' 
and the torque matrix in the new frame is 

2Q dC,· L' , 
wv." = de' q,) = pL • 

where L' is the inductance matrix in the new frame 

w"-u 
'r---~--~---r--~ 

-I 
and p= 

Thus r Uf) .... iUjV becomes, in the steady-state equations, 

aL' ..Il' I' + G'" e + L' I' ..Il' d1f"PV' .f.p p .. pv 

• (41) 

· (42) 

· (43) 

wh~re pO is the angular velocity of the rotor and pO' is the angular 
velocity of the reference frame with respect to the rotor. 

In reference frame (a) the second and third terms of expres­
sion (43) do not arise. They appear only in transformations 
from reference frame (a) to any other reference frame. 

In reference frame (b) the first and third terms are zero. 
In reference frame (c) all thrce terms arise. An important 

point is that, while inductances along reference frame (c) can be 
constant in the steady state (if the axes rotate at synchronous 
speed or coincide with Park's axes), they are subject to incre­
mental changes when the field structure oscillates. This means 
that a term such as «()L'/()O')p(J', which arises in the general 
equations, may be zero in the steady state, but under hunting 
conditions it becomes «()L'/()>")p(6>") and must be retained. 
The use of the general form of the term rUf).w in hunting equa­
tions ensures that all possible interactions of currents, ftuxes and 
speed, together with their increments, are included in the final 
equations. 

The disadvantage of Park's equations [frame (b)] for hunting 
analysis is that the armature reference frame is fixed along the 
field structure and oscillates with it. This means that circuits 
connected to the armature must also be analysed along the same 
oscillating reference system. 19 It is simpler and more realistic 
to analyse the machine in the first place along reference frame (c). 
External networks can then be more easily included. It is 
reference frame (c) that leads to the new equivalent circuit in 
which the system damping torque is given by the network mesh­
resistance power loss. 

ds dr 

ds 'ds + Ldsi' MdP 

dr MdP 'tU + LdrP 

qr 6vqr .... qr -MdPO -LdrP° 

s 6f s WMd 2WLD 

(3) SYNCHRONOUS-MACHINE HUNTING EQUATIONS. 
PARK'S REFERENCE FRAME 

The machine is that shown in Fig. 1, with armature axes dr 
and qr, stationary with respect to the field. The quadrature field 
circuit has been omitted in the following equations. The 
resistance, inductance, torque and impedance matrices are as 
follows: 

v = Ri + Lp; + Gip6 
or 
where 

ds 

Z= dr 

qr 

ds 

ds 'as 

R= dr 

qr 

ds 

'ds + Ldsp 

MdP 

-MdPO 

dr qr . 

'd, 

rq, 

ds 

ds 

G= dr 

qr -Md 

v =Z.I 
dr qr 

MdfJ 

rd, + LdrP 4,.p{) 

-Ld,pO 'q, + 4,p 

ds dr 

ds Lds Md 

L= dr Md La, 

(45) qr 

dr q' 

4, 

-Ld, 

• (44) 

qr 

4, • (46) 

.(47) 

The hunting equation may be found as in dynamics by con­
sidering small increments of the quantities in the steady-state 
equations (8) and (11). 

Thus (v + Av) = (Z + AZ)(I + Ai). • (48) 

or (v + Av) = (R + AR)(I + Ai) + (L + AL)P(I + AI) 
+ (G + AG)(1 + AJ)(pO + Ap6) • (49) 

MUltiplying out and subtracting the original equation the 
hunting equation of voltage is found: 

Av = (R + Lp + GpO)AI + G;(Ap6) • • (SO) 

The torque equation becomes 

AI = i· . G. Ai + Ai· . G. I • (51) 

The matrix form of eqns. (50) and (SI) ean now be written, 
including a mechanical row and column involving the mechanieal 
variables. 

The equation has the form 
6v = ~ . AI • • (52) 

which, when written in full, expands to 
qr s 

4,p{} W4rP c1r 6idr 

rqr + 4,p -id'MdP 
-idtLd,p 

qr 6w • (53) 

2idrLD Jpl s 68 
+ id'Md 
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where LD = (Ldr - Lqr}/2 

and J is the rotor inertia constant. 
These equations have been studied in detail both analytically 

and by means of equivalent circuits,6.22 and they will now be 
used only as a starting-point for the study of the hunting equa­
tions expressed in the free reference frame. 

(4) HUNTING EQUATIONS IN THE FREE FRAME 
In the free frame the reference axes do not oscillate with the 

rotor. The equations are first expressed along the axes d' and .. 
q' of Fig. 2, rotating synchronously with the terminal voltage 
vector position. 

qr 
I\::--++--q 

, 
q 

Fig. l.-Free reference axes. 
Axes d' and q' alonll terminal voltallc axeo. 
Axe. d and q coincidinll with Park'. axes. 

This may be done in either of two ways: 

(i) The hunting equations (53) can be transformed directly to 
those in the free frame using the law of transformation given by 
eqn. (22). In this equation the p-operator in ~ refers only to 
Ai' or Aa' and not to C,and in Z; p refers only to C and I' and not 
to Aa'. 

(ii) The more elegant method is to set up the steady-state equations 
in the new frame and from these to derive the hunting equation. 

The steady-state equation is eqn. (34). Taking small incre­
ments of this as before, the hunting equations, as shown in 
detail in Appendix] I. J, are as follows: 

Voltage equation. 

~t' .. + .~v .. ax~ = 
~x() 

(R.,.~~ia + L.,.'.lp~ia + ra$.ilPO~ia + r ry,l%p06./'i') 

+ [ra,r'l%iilp + l'ry.iI/'i'P + ~~~""i[lptJ 

\:r. 

~ 

+ ~r ry,iI,'i'pO + ~L"~(Pia)J6.'\ 
~,\ ~,\ 

(54) ~ 

which becomes, for the synchronous machine, 

L\v' = (R' + L'p + G/16)1l1' + (~fl'p + ~~I'p6 )IlA (SS) 

The torque equation is 

L\/= L\1'*. G'.I' + 1'* • G' .111' + ~ll'* .1' .IlA + JplL\). 

(S6) 

In matrix form these expand to 

:i. 
<l 

{j 

~ 
.5 
'" 
~ 
I 

~ 

8 
~ 

j 
+ 
~ 

.:a 

-lI ;. 
c1 

~ 

~ ~ 
<l <l 

~ \:r. 

1:1, ~ 
-.: -.: 

]~~ 
c 

~I:I,';';; 
"'-.:-.: 
~ N ~ c: N N u .5 .- c: 8 III ._ 

'" y ...... ." j~"" -9 ~ .. ~j 
"'-l~.J' ++1 1++ ..I>. .. ..r .J' 

'-' '-' I 

~ ~ 
~ 8 8 
N ~-.: -.:~~ § ~.5 
j'- '" .~ ~ 7: 

." "" 
+J'j :lj1 ",+ 1 1 I 1 .. ..r j 

'-' + '-' 

'\:s \:r. 

~ ~tto 
-1 <l 

~ ~ 

--r--
an 
'-' 

-.: 
<l 

.. 

.. 

~ ] 
., 
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These equations are very much simplified when the free axes 
are considered to coincide with Park's reference axes in the 
steady state. The angle ,\ then becomes zero. This does not 
imply that the machine load angle is zero, but only that the 
reference frame has been rotated. The load angle ,\ is still 
inherent in the equations in the computation of the steady-state 
currents involved in the hunting equations. 

In the free frame along the field axes the machine-impedance 
matrix becomes 

ds d 

ds rcls + Lclsp 
I 

MdP 

d Mclp r, + LcI,p Lq,p(J 

q -Mclp8 -Lq,p(J " + LqrP 

Md ids 

Riemannian geometry. It arises from the fact that, as shown 
in Appendix 11.2, 

oia. 0 
S(df) - "dpj!1.) = K8:;~i[lil!dxY (64) 

where the term on the right-hand side is the new tensor. 
Eqn. (63) now becomes 

SVy = Rya.Sia. + Ly!1.~(Sj!1.) + KSr:a.yl'!1.i8dxr:. • (65) 

q s 

-Mcliqp 

(Lq, - LcI,)iqp 
+(4, - LcI,)iclp(J 

-Mclidsp(J 

(Lq, - Ld,)iclp 
-(Lq, - Lclr)i

qp8 
-Mclidsp 

• (58) 

Jp2 + Mdidsid 
Mcliq -(Lqr - Lclr)iq -(Lq, - Lclr)idid 

-(4, - Lclr)jd +(Lq, - Lt/r)iqjq 
s 

(5) THE TENSOR EQUATIONS OF HUNTING 
The time rate of change of a vector with respect to axes 

fixed on the vector is written di!1./df. where the components of 
the vector in the given reference frame are if>.. With respect to 
another co-ordinate system, e.g. one that rotates with respect 
to the original vector position, the time rate of change becomes 
the absolute derivative Si!1./clt, where, in general terms, 

Si!1. di!1. dxY 
Tt = at + r~yi(ldr 

The absolute differential is written 

Si!1. = clia. + rayi(ldxY 

(60) 

(61) 

In setting up the conventional equations of hunting, small 
changes !1ia., etc., were considered in each of the terms of the 
steady-state equations. No consideration was given as to 
whether the resulting equations were tensor equations. In fact, 
as stated in Section 2.2, in general the ordinary differential of a 
tensor is not a tensor. The absolute differential shown in 
eqn. (61) is a tensor. The tensor equation of hunting has been 
developed by Kron in Reference 2, by taking absolute increments 
Si", etc., in each of the terms of the tensor steady-state equation. 

Taking absolute increments of the steady-state eqn. (34) gives 

and the tensor equation of small oscillation becomes 

(63) 

It is now necessary to express this equation in terms of Sia.. 
This change introduces a new tensor which in geometry is called 
the Riemannian-Christoffel curvature tensor, because it gives a 
measure of the intrinsic curvature of any given space in 

Appendix 11.2 shows how this equation is expanded to give the 
machine voltage and torque equations of hunting in tensor form. 
These are written by Kron in Reference 19 as follows: 

Voltage equation. 

or 

Av' = {[R' + L'p + G'p6]!1/, + ~~'l'p(A)') + G' • pi' . p6 • A). } 

+ [~~'i' - G' . Pi'] p6 . A), . (67) 

Torque equution (neglecting the friction tensor Rya.Si<X). 

Sf = {J ~,<Oi/)} + KS'!1.Sil!j!1.!1)" (68) 

or Af= {J~(AW) 
- [Al'· . G' • l' + P . G' . Ai' + /' •. G' . pi' . A),]} 

+ [P. ~~'. /' - 1' •• G'. pi]A)' . (69) 

The first set of terms in square brackets in eqn. (69) is part of 
the second term on the right-hand side of eqn. (65). It gives a 
complex quantity. The real part is in phase with the increment 
of angular velocity l\w, and is therefore in time quadrature with 
the displacement angle !1).. and gives the damping torque. The 
imaginary part is in anti-phase with the displacement angle, 
and is counted a negative synchronizing torque. The second 
square-bracketed set of terms in eqn. (69), which is given by the 
new tensor term, is seen on inspection of its components to 
have only a positive real value, in phase with the displacement 
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angle. It gives the machine positive synchronizing torque. 
The matrix components of these equations are examined in the 
following Section. Eqns. (67) and (69) are seen to consist of 
the non-tensor equations (55) and (56) with a term added and 
subtracted. Thus the tensor equations of hunting give the 
conventional equations, with an important difference, namely a 
regrouping of terms which leads to a change in interpretation.7, 19 

The mathematical implication of the regrouping, from non­
tensor to tensor form, has been explained by Hoffmann.25 

(6) EQUIVALENT CIRCUIT FOR HUNTING EQUA TlONS IN 
THE FREE REFERENCE FRAME 

Equivalent circuits for a.c. electrical machines can be obtained 
by operating upon the impedance matrices in such a way as to 
make them symmetrica1.4,22 The primitive machine is an 
equivalent 2-phase machine, and resolution of the direct and 
quadrature quantities into 2-phase symmetrical co-ordinates 
leads to the required symmetry of the impedance matrix. 

In the free frame the transformation is 

• (70) 

and ill., = id., } 

il = (id + jill)/V2 

jb = (id - jiq)/V2 
• (71) 

and 

where 

In this matrix, bf = (bd + jbq)/V2 } 
bb = (bd - jbq)/"';2 

where bd and bq are defined from matrix (58): 

bd = - Bd - Ldrjq } 
b=-B-Lid 

q q qr 

(74) 

(75) 

(76) 

Bd = - Lq,i
q

} (77) 
Bq = Ldrid + Mdid• 

BI = (Bd + jBq)/"';2 = j(J2Mdido + ilLs + ibLD) } 

Bb = (Bd - jBq)/V2 = - j(J2Midr + ifLD + jbLs) • 

(78) 

and b, = - (BI - ifjLs + ibjLD) 

= - J(J2Mdidr + 2jbLD) 

hb = - (Bb + jhjLs - ifjLD) 

= j(JiMdidJ + 2jILD) . 

. (79) 

. (80) 

The additional term in eqn. (67) which is added and subtracted is 
G'. pl'.pe. a'A . (81) 

This set of terms arises only in the last column of the voltage 
part of matrix (74). Thus the last column of this part of the 
matrix can be written 

Z " - C'· Z' C' } - (1)' • 

v" = C(~) • v' 
I' = C' .1" 

· (72) dJil"P(a'A) + {[G" . pr] + [d~'1" - G" , PI"]} pea'A . (82) 

the asterisk denoting conjugate values. 

ds f b s 

ds "';2 
----

C' = _I_ 
d 

----"';2 q -j j 
----

s "';2 

The impedance matrix (59) now becomes 

ds f 

ds TdI + LdtP 
1 

"';2
MdP 

1 
T, + Ls<p - jp8) -Mip -jp8) 

"';2 f 

b 
1 

"';2Md(P T jp8) LD(p +jP8) 

-~ JMd(j1 - ;b) 
2 I 

-bb 

where G" is now the 'symmetrical component' form of the 
matrix G. The terms of expression (82) in square brackets 
expand in matrix form to 

ds f b 

ds 

• (73) Md 
-2LD - "';2 • (83) f 

Md -2LD - "';2 b 

b 

1 _1_ jMtlJ, - ib) 
"';2

MdP "';2 

LD(p - jp8) b/(p - Jp8) 

• (74) 

T, + Ls(p + jp8) bb(P + Jp8) 

-bf 
Jp2 + jblib 

-}bbll 

I 
I 

I 
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ds f h (7) THE TORQUE EQUATION AND THE EQUIVALENT 
CIRCUIT 

ds 

G"p = f 

h 

Ls -LD 

The machine torque equation can be written down from 
matrix (74), using the grouping of terms indicated by the tensor 

(84) equation of torque [eqn. (69)], 

-LD Ls 

ds f b 

ds 

Md 
-Ls -LD -vi dG" ) K=Cd): -G"p =- f . (85) 

Md 
-LD -Ls -V2 

b 

Matrix (85) given by the tensor K is seen t~ comprise the 
quantities BI and Bb' and expression (82) therefore divides the 
quantities hi and bb into two significant parts: 

hi = - BI + (ifjLs - ;b jLD) 

hb = - Bb - (ibjLs - ;J)LD) 

(86) 

(87) 

The equivalent circuit can now be drawn for steady hunting 
conditions at the hunting frequency hw. This is shown in Fig, 3. 

Fig. 3.-Equivalent circuit for salient-pole synchronous-machine 
hunting. 

The addition of injected voltages and currents is indicated a priori 
by the grouping of terms shown in eqns. (86) and (87). 

When the circuit is drawn in this manner the effects of incre­
ments of current !::..I and the absolute changes 8i become 
apparent, 19 In the symmetrical component form, 

becomes 

and 

8;1% = !::..ia. + r~y;fliY • 

8i! = t:..i! - jilt:..>. 

8ib = t:..ih + jibt:..>. 

(These are the 'absolute changes' used by Ku22,) 

(88) 

(89) 

(90) 

The significance of active and reactive power in the equivalent 
circuit is discussed in the following Section. 

11/ = {[ - j~;(if - i")l1iJs • - h,I1;'· - hbl1i"* ] 

+ [i"· . G" P . i" l1)'] } 

+ [ .". dG" .11 _ .". G" .,,] A "\ 
I • dA . I I • P . I 1.1,," • (91) 

Examination of the equivalent circuit meshes shows that the 
active and reactive power measured at the points indicated, 
namely t:..;V, give real and imaginary parts of the first set of 
terms in square brackets in eqn. (91), with a time-quadrature 
difference. Under steady hunting conditions the total torque 
expression can be written, as in Park's reference frame, by 

(92) 

and the real component of power as measured from the equiva­
lent circuit of Fig. 3, namely the resistance loss in each mesh, 
corresponds to the damping torque given by eqn. (92). The 
imaginary part gives the corresponding component of (negative) 
synchronizing torque. 

The additional components of negative and positive synchro­
nizing torque are given by the remaining two sets of terms in 
square brackets in eqn. (91). Components of these terms arc 
included in the equivalent circuit, but they cannot be read off 
the circuit directly since the injected volt ages and cul'tents are 
already associated with the displacement angle t:..~. Fig. 4 shows 

Fig. 4.-Contribulion of forward armature mesh to synchronizing 
torque. 

j/V/llives positive (impressed) synchronizinll torque. 
/IV!,' lIivC5 negative synchronizinll torque. 

how the circuit can be interpreted to indicate the contribution of 
each mesh to synchronizing torque. 

Positive synchronizing torque given by the tensor K expands to 

( - Blil + Bbih)A~ . . (93) 

This can be compared with the machine power output equation21 

-BJjb + Bbi' . (94) 

and it is seen that the positive synchronizing torque at any load 
angle is, in fact, given by the reactive component of the machine 
power output. The simple equation for synchronizing power of 
a round-rotor machine given in textbooks26 is usually written 

(~' cos ~ )t:..>.. • (95) 

and the expression in brackets is again the reactive component 
of the steady-state vector power output. 
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(8) CONCLUSION 
The equations of performance of any conventional electrical 

machine can be derived by an automatic tensor transformation of 
those of the primitive machine. A similar type of transforma­
tion can be used to express the equations of a given machine in 
anyone of several sets of reference axes. The transformation of 
Park's equations for the synchronous machine to those in Kron's 
freely rotating axes leads to simple overall equations for an inter­
connected system. 

The complex interaction of currents and fluxes in a machine 
during hunting can be more easily followed in different reference 
systems when the corresponding transformation of equations is 
carried out using matrices and the routine methods of tensor 
analysis. The tensor form of the equations of hunting of a 
machine in the free frame has two advantages: 

(a) Synchronizing torque terms are inherently grouped together 
in terms of the angle of oscillation AA. Positive and negative 
damping terms are inherently grouped in terms of the increment 
of angular velocity Am and give this component of torque as the 
real part of a complex expression. Damping torque is thus directly 
associated with the resistances in the electrical system. 

(b) The terms of the tensor equations in symmetrical component 
form give, directly, the meshes in an equivalent circuit. This form 
of equivalent circuit cat\ be interconnected with corresponding 
circuits for an external network and additional machines. The 
resistance power loss in each mesh gives the damping torque con­
tributed by that part of the system. 

The significance of tensor groups of terms in the steady-state 
equations of electrical machines has already been noted. ~ The 
tensor form of the hunting equations gives a physical picture of 
the hunting phenomena as represented by the equivalent circuit. 
It would appear that this method of formulating dynamical 
equations could be used to advantage in the analogue study of 
complex ,devices in which interchange of different forms of 
energy take~ place, for example, aircraft, missiles and nuclear 
reactors. 
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(11) APPENDIX 
( 11.1) Small Oscillation Equation 

The free-frame steady-state equation is 

v'" = R",r;ir~ + L'l.f,pi~ + r~y.",irjiY (96) 

This is divided into voltage and torque equations. 
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Voltage equation. 

The index a is electrical. The indices /3 and y are electrical, 
indicating currents i~ or 1'Y, or mechanical values s, indicating 
angular velocity is = p(). 

VIX = R(1.~i~ + L(J~pifj + r.y,lXl'YpO + r fls,«iflp() • (97) 

Torque equation. 

The index a takes the mechanical part of the range. The 
indices /3 and y have electrical values. 

or 

Vs = Rssi' + Lssp;s + rfly,.ifliY 

Vs = RsspO + Jp2() + rfly,.ifliY 

(98) 

(99) 

The small-oscillation equation is obtained by taking small incre­
ments of values in eqn. (96). This gives 

~v 
~VIX + ~x:~x'" = RIJ.f;~ifl + LlJ.flP(Aifl) + AL«~pirl 

+ r~y,lXirlt:.iY + rfly,lX~ifliY + ~r(3y,lXifliY • (lOO) 

The corresponding voltage and torque equations are as follows: 

Voltage equafion. 

~v 
~VIX + "i>;t:.xl = RlXfjtl.ifl + LlXrlP{t:.if'.) + r,y,IXt:.(pO)jY 

+ rf)s,IXAjClp {} + r sy.IXA,'Y p{} + rCl1,lXiflA(p{}) 

+ CJL(!'(pifl)t:.xt + CJr sy,lX(pO)/'Yt:.Xt + ~rf)s.lXi[l(pO)t:.x, • (101) 
CJX' i)x' "i>x' 

The index t denotes excursions of the rotor over the increment 
of speed, 

t:.(pO) = p(t:.O) = p(AA) 

The terms of the voltage equation are expanded in a manner 
indicated by the following example:' 

rlY,,,,ffAi' = 

{[ty,oc] - SIX",'I - SIXIY + S'~IX + nlXy•t + n",.y - O,y,lX}iYt:.i' 

= {[ty,oc] -- S(1.1Y + O:lt,y}/'Yt:.XI • (102) 

Other terms are zero as shown in Sections 4 and 5 of Reference 5. 

Now - 2S~I,Y = G' = CCI)' G. C • • (103) 

where G' is the free-frame torque matrix and G is the torque 
matrix in Park's equations. 

dC- 1 
20a"y = di- . C(I)' L' = pL' = 2S:z,y. (104) 

Also [t IX] = !(i)La.y + "i>L(1.! _ "i>LtY) = ! CJLlXy 
y, -- 2 ()x

' 
()xy ()xIX 2 h' 

The index s denotes the mechanical variable 0, and 

()r(3.t'· .• ·YA '" = ~ (! ()L.xrl _ s + r\ ) 's'rl A '" 
"i>x'" I I uX ()x'" 2 i)x" lX"fj UIX",~ I I . uX 

"i>Ltzfl'$ _ CJLa.(3 () _ 0 
()XS' = --'SO p - • 

(') '. - dC(;,1 C L' 0 - 0 
""«.r.fl' - dff' (t), .p-

S<ASfjj·I z= !G'pO 

(105) 

• (106) 

, (107) 

• (108) 

• (109) 

~r "i>r "i>U 
~isl'Yt:.r + ~isi~t:.x' = -i' pO t:.,\ 

~x, "i>x' () A' . Thus 

Therefore eqn. (101) becomes 

dv' 
Av' + dA AA = [R' + L'p + GjJ8]Ai' 

+ [:~'IP + :~ijJ8 JAA 

Torque equation. 

(1I0) 

· (111) 

t:.F = Jp2(t:.A) + r(3y,si~t:.l'Y + r~y,$6;~,'Y + ()~~'8i(31'Yt:.A 
• (112) 

r~y.';f3t:./'Y = {[.By,s] - S$y~ - Ss[ly + Sf)n 

+ Osy,f) + Osfl,'Y - n~y,$};~Al'Y (113) 

[/3y,s];f)A,'Y = ~ ~ii'Ai' = 0 • • (114) 

(Osy,[l + Osfl,y - Ofly.s)i~Al'Y = d;;l . C(1l • L' .1' • AI' = 0 
• (11S) 

( - Ssy~ - Ss(3y + Sflys)i~AiY becomess • (116) 

( - SSy[l - Ss~y)i~t:.iY = 'W' . G' . AI' + Ai' . G' .1') (117) 

Thus 

r[ly • .;I'lA,'Y + rfjy,st:.if3 j'Y = Ai' . G' . /' + i' . G' . AI' . (118) 

()rfj~'l'liYA , = I' dG' ., A" 
()x

' 
I I uX • dA .,. 1\. (119) 

Therefore eqn. (98) becomes (neglecting the friction term R~) 

AI = AI'· . G' .1' + I'· . G' • Ai' + I'· . ~~ .1' . AA + Jp2(AA) 

• (120) 

(11.2) The Tensor Kllyrla. 

The absolute differential of a contra variant vector is 

8~' = d~' + rt~kdxi • (121) 

Therefore ~(8ih) = ~ (dih + rt;kdxi ) 
,11 dt 

(122) 

(123) 

Similarly 8(8if\ = S(di~ + rf3a/'YdxS) 
dt-; dl 'Y dl 

(124) 

= d (~;) + dr~/lI'Yj3 + r~lldl'Yi8 + r~1l1'Ydx3 

r~ dl'TCdxO + rri r lt '~dx" + "''' dl no ",(li"'1 
(125) 
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Therefore 8(Si~) ~ ~(Si~) 
dt dt 

=~r~8,'Yil!d.rc _ ~r~,.",p,dx" + rB!tr"[lI'aJ~dx!t 
~x"' dxA " « 

- r~~r~l~i£dx6 + f~[d (~) - ~(dx8) }'Y .. (126) 

The bracketed differenCe in expression (126) is not zero because 
the electrical variables are non-holonomic, i.e. they are related 
only through non-integrable differentials,S and 

()2,x3 ~2x& 

()x1'~x~ 0;6 ~x~~xY • (127) 
I" , 

This is shown in Reference 27, as follows: 

()2p _ ()2p = Cj()q ~p _ cr?le} ?JP 
()~xJ ?lxr~x/ ()Xl£ ()x" ()Xl£ ~XA 

= ?JP(CjC,,()cr _ crc"()C}\ 
()x" A()XI£ A?JX~) 

(128) 

where (129) 

and in expression (126) 

, fBa[d (dx~) - ~(dx3)]{Y = - ras/'Y . 2~ f1'dx" . (130) 
I . l' dt dt 'r" 

With appropriate rearrangement of indices 

Kayai3j(ldxY .. 8(Sf') - ~(Si"') (131) 
dt dt 

where , . 

g'lI?Jf;" ()r;y f« r), f« r), 2f« {lA . (132) 
lIyfi = CJxY - (),x3- + ),1' BB - ),8 BY + BA IJY • 

The tensor equation of small oscillations now becomes, as 
given by Kron,I8 

S , . 
.• ~t111 + cWjJ = 8(RI&~;fl) + LofliJ8;fl) + Kayf\r&,"fli8dxY • (133) 

which expands, as shown in References 2 and 18, giving 

()v« d/Y . d,'Y 
~t1. + CJxB~B ... - r yll,. dt ~ + R..~ifl + f yll,. dt ~ 

d ()Loa diB . 
+ L.q.dl~ifl) - ()xy dt ~y + rB1',CI~ifljY + fB1',CljIi~jY 

i' . + (CJ~~,. + r).II,ClI1y - f)'y,Clrall - 2r~,..n~ )ifltll~y 

,r .. 

+ (~;;~:« - ~r;:'ex + f"y,:xqa - rAil,exq1' + 2fBA,«n~1')iflt8~1' 
, (134) 

This is seen to be the same as the conventional equation with the 
foHowing terms added and subtracted: 

f dJfI,L. (r r' r AA ?lr[lYex) 3 
[11',« dt L.,U1' + Ail,ex a·( + 2 ~,-,«ullY + ",,ri' ,(1 5) 

In the synchronous-machine equations in the free frame the 
steady-state current is constant and 

di[l 
r~y ex-I !1xY = 0 , , t t 

The remaining terms expand in the voltage equation to 

(rAS,«ra, + 2r[lA,«n~'t + CJ~!~'''')i[ljS~XY 

(136) 

+ (r r '- +·2r A) + CJf"",«)'S'8A Y . (137) M,« ., s'.,,,,U!i, ?l,ri' I uX 

The index y takes the value t indicating the mechanical variable 
which undergoes incremental changcs, namely the load angle ~. 
The index s as usual denotcs the holonomic variable. the angular 
position e, of the rotor. Only the first and fifth terms have 
non-zero values. The additiomll terms in the voltage equation 
are therefore, 

(rAs,o.I'~, + 2r.,.,,,,n~t)N'!1~ 

= WAs,ex + rSA,,,,)p~jllpO~~ 
= G' • pl'p6J1'J., . 

The corresponding term in the torque equation is 

<rA8,8 + rr;).,,)p~if3,'Y~,\ . 

= - i' . G' , pi' , ~>.. . 

(138) 

1(139) 

(140) 

, (141) 

, (142) 

The small oscillation equations are therefore as given by' Kron 
in Reference 19, namely 

Voltage equation, 

Av' = [R' + L'p + Gpe]AI' + :~'I'P(A>") + G'. pi' ,pO. A>.. 

+ [~~I' - G' . Pt] p6 , A>.. (67) 

Torque equation, 

A/=Jd (Aw) - [AP, G'.I' +P. G', AI' +1'*, G', ptA>..) 
dt 

+ [I' •. ~~ .1' - 1'. , G' ,pi']A>.. • (69) 

where !1'\ is the displacement angle and !1w = p(!1'\) is the 
angular velocity of displacement. 

P,/nud III G'~QI Br/IQ/II by 
VNWlN BROfKlal LDaBD. WOKINO AND LONDON ' 
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SUMMARY 
In several publications Kron, Kirchmayer and others have out­

lined methods for transforming power-system operating data in terms 
of complex voltages and currents into information concerning real 
generator powers and transmission losses. These losses are related to 
the individual generator loadings by a set of constants which are 
dependent only upon operating conditions at nonnalload. 

In the present paper Kron's methods for establishing a transmission 
loss equation for a hypothetical3-generator, 2-load system are described 
and the analysis is extended for application to an actual section of the 
British network. 

The coefficients of the loss equation are obtained from the basic 
impedance matrix of the system and various transfonnation matrices, 
which transform the basic matrix to the final loss matrix, based on 
certain operating assumptions. 

A method is developed for combining the loss formula with station 
fuel costs for economic system operation. The resulting loading 
equations are illustrated in nomograph form as an aid to system load 
dispatching. 

In the paper, owing to certain limitations of the required information 
regarding system loads, certain of the load-flow conditions have been 
estimated by calculation, and the accuracy of the loss analysis is 
correspondingly limited. However, the purpose of the paper is to 
illustrate available methods and not to formulate an accurate set of 
loading equations. 

LIST OF PRINCIPAL SYMBOLS 
ILl, ILl, etc. = Load currents. 

IL = Total system (or hypothetical) load current. 
I" 12, etc. = Ratios of individual to hypothetical load 

Vd", Vq .. = Direct and quadrature components respectively 
of voltage vector V". 

, IdK, IrK = Direct and quadrature components respectively 
of current vector [4. 

Id'K = Components of current vector IS. 
An = Ratio of reactive to active power for generator 

n at normal load. 
I Vnl o = Terminal voltage of generator n at normal load. 
M"K = General term of loss matrix Z66' 
BnK = General term of loss matrix using simplified 

analysis. 
R"_K = Real components of impedance matrix Z33 used 

in final loss matrix. 
Ln = Incremental transmission loss at generator n. 

PK, Qx = Active and reactive power supplied by gene­
rator K. 

PL = Total system transmission losses . 
= ~~P".B"K,PK' 

" K 
S" = Cost of fuel input to station n, £/hour. 
,\ = Incremental cost of received power, £/MWh. 

(1) INTRODUCTION 

For optimum operating efficiency of large power systems it is 
necessary to co-ordinate generation on an equal incremental fuel­
cost basis with the incremental cost of the transmission line 
losses. Extensive research has taken place in America into 
methods of combining these costs by the application of transmis­
sion-loss formulae. These express the transmission-line losses 
as functions of the generator and interconnector power and a 

currents. 
ZII' Zl2' etc. = Impedance 

2, etc. 

set of constants. The loss equations, once obtained, are 
matrices for reference frames 1, applicable for any condition of generation and load, if the 

simplifying assumptions made in deriving the equations are valid 
for all system conditions. 

Following the Steinberg and Smith l publication in 1943 on 
the economic loading of power plants, a method for expressing 
total transmission losses in terms of generator power was 

net- pioneered by George2 in the same year. Ward, Eaton and 
and Hale4 extended George's original methods, and provided a more 

generalized and analytical approach to the derivation of a loss 

q, q, etc. = Transformation matrices between quantities in 
reference frames 1 and 2, 2 and 3, etc. 

VI' V2, etc. = Terminal voltages of generators I, 2, etc. 
VLIt VL2, etc. = Voltages at loads L I , L2, etc. 

Zn,K = Measured leakage impedance of system 
work between generator or load n 
generator or load K. 

ZG,G = A matrix of measured network self impedances 
seen from generating points of entry. 

ZL,L = A matrix of measured network self impedances 
seen from load points of entry. 

ZL,G = Measured mutual impedances with generator 
points energized. 

ZG,L = Measured mutual impedances with load points 
energized. 

[I, [2, etc. = Generator currents. . 
Zn-K = Complex impedance components for impedance 

matrix Z33' 
Olt O2, etc, = Angles by which generator terminal volta~es 

VI' V2, etc., are referred to a common aXIs. 

formula, by use of the a.c. network analyser. George, Page 
and Ward3 co-ordinated transmission losses and fuel costs by 
the application of a loss equation containing constants derived 
from a network analyser study. 

Kron,s in 1951, derived a loss-equation using tensorial 
methods requiring considerably fewer measurements and cal­
culation;. Kirchmayer and Stagg,6 using Kron's methods, 
obtained a transmission-loss formula for the American Gas and 
Electric system and investigated the effects of Kron's simplifying 
assumptions on the accuracy of the loss formula. Kron,9 in a 
second paper, considered the existence of off-nominal turn 
ratios and their representation on an a.c. network analyser with 
auto-transformers. He followed this by two further publica­
tions 10,13 in which he considered the study and co-ordination 

pu~=g~.ndence on MonOllraphl il invited. for consideration with '. view to of se~eral interconnected transmission s~stems, by combin.ing the 
Mr. Nlcholaon is with Lever BrOl .• ,Port. Sunhf~t, Ltd'l and Mr. LYlln la In the solutions of small components by a senes of transformations. Elec:tricaI EnalneetiDa Department, Uruvenlly of lverpoo. 
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Imburgia, Kirchmayer, and Staggl6 have described a computer 
for use in system load dispatching. The computer calculates, 
from the loss constants of a system, transmission loss penalty 
factors which are used in conjunction with an incremental fuel 
cost slide-rule for obtaining economic balance between generating 
stations. Operation of the slide-rule and the computer provides 
a method of combining transmission losses and generation costs, 
and of applying them to the loading of a system under rapidly 
changing conditions. 

In Part 1 of Kron's work, six basic reference frames are 
established for solving steady-state power-system problems, and, 
in particular, for determining total and incremental transmission 
losses. 

The transmission-loss formula to be derived, as in other 
methods, involves the generated power of all sources and a set 
of constants. These constants (self- and mutual-impedances) 
once established are suitable for use under any operating condi-

. tions, within the limits of the operating assumptions, unless a 
physical change in the system takes place. The constants are 
obtained from a.C. network-analyser data or by analytical 
methods. The use of tensor. algebra provides a method of 
transforming operating data (complex voltages and currents) into 
information concerning real powers, losses and a set of constants 
by means of a series of operations called 'transformations of 
reference frames'. 

The object of the present paper is to relate the performance of 
power systems to a set of linear equations, containing real 
generator powers P and incremental losses L incurred in the 
transmission system. These equations are of the form L = M. P, 
where M in matrix form represents a set of real constants which 
ar~ dependent only upon operating conditions at normal load. 

(2) STUDY OF KRON'S ANALYSIS 

(2.1) System Operating Assumptiol18 

The methods outlined by Kron for determining a transmission­
loss formula involve certain fundamental concepts of tensor 
analysis, and a number of assumptions concerning the operation 
of a power system. These assumptions are as follows: 

(a) The ratio of each load current to the total load current 
of a system, at normal load, remains constant as the loads vary. 

(b) The generator currents remain fixed in phase angle relative 
to each other as the generator loads vary. 

(c) The generator voltage magnitudes remain constant. 
(d) The ratio of reactive power to active power of each source 

remains constant. 
(2.2) Reference Frames 

This present power system study will involve the introduction 
of the following reference frames: 

1. Measurement of leakage impedances ZlI' 
2. Introduction of one hypothetical load IL which replaces all 

n 
system load currents, where IL = LIt... 

I 
3. Elimination of lL, leaving generator currents only. 
4. Generator currents and voltages are transformed into axes, 

in phase and in quadrature with the respective generator voltages. 
Matrices of complex quantities are changed into larger matrices 
containing only real quantities. 

.5. Using the assumption of constant ratio of generator 
active/reactive power, each generator current is replaced by its 
projection upon the terminal voltage existing at normal load. 

6. Active components of generator currents are transformed 
into generator powers. Since voltage differences have been used 
in the previous reference frames, the transformation matrix in 
frame 6 yields generator power loss. 

(2.2.1) Reference Frame 1. 

Consider a hypothetical power system consisting of generators 
G., G2, G3 supplying loads L •• ~ via a transmission network 
as in Fig. 1. 

Fig. t.-Hypothetical 3-generator 2-load power system. 

The self and mutual leakage impedances of the system network 
are measured, usually from a network-analyser study, by: 

(i) Disconnecting the generating plant and loads from the 
network. 

(ii) Injecting unit current between each generator and a 
reference point in the system. 

(iii) Measuring voltage differences between all generating and 
load points and the reference point. 

This is repeated for measurement of load self-impedances by 
injecting unit current into the network at LI and ~. 

The impedances of the network from a generator point of 
entry are called generator self-impedances. and transfer or 
mutual impedances to other points. Impedances measured from 
load points are termed load self- and mutual impedances. The 
actual self-impedances of the generators and loads do not enter 
explicitly into the analysis. 

"I~I"[IIICI 
I'OINT 

Fig. 2.-Reference frame 1: basic measurements. 

Thus in Fig. 2, with unit current iJijected at G I. 

the generator self impedance, ZI .• = VI } 
and the mutual impedances, Zl .• = Vl 

Z3.1 = VLl 
Z ... l == Vu 

The impedance matrix for the system is therefore 

G1 Gl LI ~ 

ZI.1 Zl.l ZI.3 Z .... G 
1-

Zl.l Zl.l Zl.3 Zl ... G ZG.o - 1- "'" 
Z3.1 Z3.2 Z3.3 Z3 ... 

1-

Z ... I Z ... l Z ... 3 Z ..... 

L 

ZO.L 

• (I) 

(2) 
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Since the network mutual impedances form a symmetrical 
system. 

ZO.L = (ZLO)' 

where (ZLO), is the transpose of matrix (ZL.O)' 
That is, the mutual impedances with load points energized are 

equal to those with respect to the generator sources. 
The equations for the system now take the form . 

V. - VR = Z •• 111 + ZI.212 + ZI.3ILl + ZI •• IL2 } 

V2 - VR = Z2.111 + Z2.,P + Z2.31Ll + Z2 •• ]L2 

VLl - VR == Z3.111 + Z3.212 + Z3.31L1 + Z3 • .IL2 • (3) 

VL2 - VR == Z4.111 + Z •. 212 + Z •• 31Ll + Z ••• IL2 

If these system equations are solved by inverting the impedance 
matrix, the equivalent circuit will then be as shown in Fig. 3. 

Gl~::i===~,---l 
1:1· -I' 

REFERENCE 
GENERATOR 

Fig. 3.-Equivalent circuit for measurement reference frame 1. 

(2.2.2) Reference Frame 2. 
Let the total system load current. during a normal load period, 

be given by 

]L = ILl + IL2 (= hypothetical load) • (4) 

Then, from assumption (a), 

ILl ILl 
It: .... I., ]L .... 12 

where 1 •• /2 are constant complex ratios. 

Thus ILl == ItIL } 
ILl == 121L 

or 

• (S) 

• • • (6) 

L 

• • • (7) 

The system with individual load currents may therefore be 
transformed into one which contains only the hypothetical total 
current 1L by the transformation matrix 

1 

2 

1 2 L 

1 
- - r--

1 

11 

12 

(Note that the aenerator currents remain constant.) 

• (8) 

and the currents and voltages in reference frame 2 are given by 

(9) 

V2-(C1>~VI' ••••• (10) 

where (CD: is the conjugate of the matrix (CD transposed. 
The system impedances in frame 2 are given by 

Z22 = (CD~ZIICl 

1 2 L 

ZI.3/1 
1 ZI.1 ZI.2 +ZI •• 12 

-(al) 

Z2.3/1 

Z2.1 ZZ.2 +Z2 .• '2 
= (all • (11) 

2 
= 

Z3.l /r Z3.21T Z3.3/11r 
+Z •. 111 +Z4.21f +Z3,4/z/T 
-(hi) =(bll +Z •• 3/11! 

+Z ••• 121J 
L 

=(w) 

The system performance is now represented by the equation 

V2 - Z2212 

VI - VR == Zl.lll + ZI.212 + alIL} 
Vz - VR ... Zl.lll + Zl.112 + Q1IL •• (12) 

VL - VR =- bIll + bl l 2 + wlL 

i.e. 

where in this example VL, the hypothetical load voltage, is the 
weighted average of the 2-load voltages; 

i.e. VL -lrVLI + I!VL2 • • • • • (13) 

• 2 • 2 
01 ... ~ ~ Zl.xl,.ol == ~ ~ Zl.XI" 

K-h-I X-h-l 
and 

• 2 • 2 
bl = ~ ~ ZK.II:b1 == ~ ~ ZX.21: . 

K-3,,-1 X-3,,-1 

w == l: l: l: Z/I as given above 

The system may now be represented as in Fig. 4. 

11. -I' 
REFERENCE 
C.ENERAJOII 

l .. 

/ 

FIao 4 -Equivalent circuit for reference frame 2 with one 
• hypothetical load. 

,. 
(14) 

The system losses are now given by 12• ZllJl - 12• "2' How· 
ever this method of determining losses is not desirable since it 
invo'lves the difference between large quantities, namely between 
generator and load powers. 
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(2.2.3) Reference Frame 3. 

In this reference frame, the hypothetical load current is 
eliminated by introducing a transformation tensor C from a 
known equation of constraint. Now 

[I + ]2 + ]3 + ]L = 0 

Therefore • (15) 

Since the generator currents It and 12 remain unchanged in 
this reference frame, the required transformation matrix to 
replace the equation of constraint is 

1 2 3 

1 1 

ci= 2 1 (16) 
I-------

L -I -1 -1 

The currents and voltages in this reference frame are now 
given by 

]2 = Ci]3 • 

V) = (C~~V2 

and the system impedances by 

(17) 

(18) 

Z33 = tCNZ22Q • (19) 

The impedance matrix Z33 is asymmetrical and complex. 
The performance equations obtained from V3 = Z33[3 are 

VI - VL = (Zt.1 -hI -01 + w)/1 

+ (ZI.2 - h2 - 01 + w)/2 + (w - 01)13 

V2 - VL = (Z2.1 - hi - 02 + w)/l • (20) 
+ (Z2.2 - b2 - 02 + w)/2 + (w - 02)[3 

Vl - VL = (w - bl)/l + (w - bz)12 + wl3 

The voltages V3 represent the potential differences between 
generators and hypothetical load with currents 13 entering and 
leaving at these points. 

The components of the system equations are represented in 
Fig. 5. It is evident from this Figure that the load voltages and 
currents do not now exist in this reference frame 3. 

Hg. 5.-Equivalent circuit for reference frame 3. 

The equation p •. Vl represents the various losses in the 
system with reference to the generator currents and the voltage 
drops between the generators and hypothetical load. It does 
not involve the difference of large quantities. . 

(2.2.4) Reference Frame 4-Change of Axes. 

For the hypothetical system under consideration, the generator 
and load terminal voltages and currents for a normal load period 
are illustrated in Fig. 6(0) and 6(h). 

L2 HYPOTHETICA~ 

LOAD 

Fig. 6.-Vector diagrams for the hypothetical system at normal load. 
(a) Normal load generator voltage. and current •• 
(b) Load voltages and currents at normal load. 

The generator terminal voltages VI' V2 and V3 are referred to 
a direct axis along the direction of the total load current, by 
angles 81, 82 and 8l , respectively. The generator currents lag 
behind the terminal voltages by the respective angles cPl, cP2 and 
cP3' The load voltage and current conditions at normal load 
are illustrated in Fig. 6(b). 

A set of axes d' and q' is now introduced, along and at right 
angles to the generator terminal voltages. The generator currents 
projected upon the respective normal load terminal voltages will 
then represent the generator powers. 

In this new reference frame, the active and reactive power 
components of each generator current I, will be given by, 

I' = Id' + jlq' • • (21) 

The effect of rotating the axes d and q to new axes d' and q' is 
obtained by rotating the current vectors in the opposite direction, 
through an angle -8, so that 

1= e-jOI' • • (22) 

Thus, for all generator currents, the transformation matrix 
required for quantities in reference frame 4 is 

2 3 

e-JOr 

Cl= 2 e-jOz 

3 e.-ja ) 

The new impedance matrix is now given by 

Z ... = (Cl)r Z33 cl 
and the system equations take the form 

V4=Z~4 

(23) 

• (24) 

I 
I 

I 
I 
I 

I 

I 
{ , 
i , 

J 
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3 

or I Vnl - VLeJfl. = ~ Zn_KeJ(fJx-fJt)(I((e-jOZ) • (25) 
K=I 

(n - 1.2,3) 

where Zn_K is the general term of Z33; 

or 
3 

IVnl- VLeJO" = ~ {[Rn_Kcos(On-Ox)-Xn_xsin(On-OK)] 
K-I 

+ j[Xn- K cos (On - OK) + Rn_K sin (On - OK)]}(lKe-JOK) 

• (26) 

where (Rn_x + jXn- K) represents the components of Zn_X' 

The voltage vector V4 represents the voltage drop from generators 
to hypothetical load. 

Any complex impedance, say Z = R + jX, may be replaced by 
a matrix containing only real numbers of the form 

d q 

Z~ :1 : I ~xl' • (27) 

This introduces direct and quadrature axes d and q, in which 
the voltage and current vectors are represented by in-phase and 
quadrature components. 

Thus if I = Id + jlq and V = Vd + jVq, then, in matrix form. 

d~d d~d 1= and V= 
q Iq q Vq 

• (28) 

Thus the complex equation V4 = Z4414 may be expressed in 
terms of real quantities by replacing the respective matrices by 
others containing twice as many equations and variables, but 
containing all real components .. 

For the 3-generator system. with the impedance Z44 expressed 
in real numbers. the general equations for system performance 
will take the form 

3 

Vdn = ~ [Rn_Kcos(On - OK) - Xn_K sin (0" - OK)]IdK 
K-I 

(" - 1.2.3) 
3 

- ~ [X,,_K cos (0" - OK) + R,,_K sin (On - OK)]IqK 
K-I 

3 

Vq" = ~ [Xn_Kcos (0" - OK) + Rn_Ksin (0" "- OK)]!dK 
K-I 

(" - 1.2.3) 
3 

+ ~ [R,,_Kcos(8,,-OK)-X,,_Ksin(0,,-OK)]!qZ 
K-I 

(2.2.5) Reference Frame 5. 

• (29) 

In this frame the reactive components of the generator currents 
are expressed in terms of the active components in phase with the 
normal load terminal voltages. 

Using assumption (d) of Section 2.1, the components of the 
various generator currents may be expressed in the form 

Id=Id} 
!q=AId' 

, (30) 

where the constant A is given by the ratio of the normal load 
measurements, Iq'IId' = tan cP" (in Fig. 60) = QIP, Q and P 
being the reactive and active power components respectively, of 
each generator at normal load. 

Such a set of equations for the components of all generator 
currents in the 3-generator system will produce the transforma­
tion matrix 

d l 

dl 1 

d2 

d3 1 
q= 

ql AI 

q2 

q3 

i.e. • (31) 

The new impedance matrix, containing only real numbers, is 
now given by (C~),Z44q, and the system equations are given 
by the general term 

(Vdn + A"vq.) = 
(" - 1,2.3) 

± {[Rn_K cos (On - OK) - Xn- K sin (8" - OK)](l + A"Ax) 
K-I 

+ [X,,_KCOS (0" - OK) + R,,_Ksin (0" - 8K)](A" - AK)} 

x (ldl! + AKlql!) • (32) 

(2.2.6) Reference Frame 6-Transformation of Generator Current Into 
Power. 

By assuming that the generator terminal voltages remain 
practically constant in the region of the normal load values, the 
active power of each generator will be given by 

PI = Idl' IVllo Id., = I/lVtlo PI } 
Pl = Id2' I vllo or Id2' = 111 v210 P2 • (33) 
P3 = ]d3' I V310 ]d3' = 1/1 V310 P3 

Thus the required transformation matrix for quantities in this 
reference frame is 

1 2 3 

1 

IVdo 
1 

IV210 
(34) 

1 
3 I v310 

The final impedance matrix is given by 

. 5 Z CS 
Z66 = (C6), 55 6 • (35) 
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and the system equations are given by 

Y dto + A,. Yq.. ~ 1 {[ D D 

I v.1 = 4J I V.I I Vi I R,,_x cos (u" - ux) ,. 0 X-I nO X 0 

- X,,_xsin (0" - Ox)](l + A"AK) 

+ [X"_KCOS (8" -8K) +R,,_KSin (8" - OK)](A,.-Ax>}PK 

or 

where 

3 

= ~ M"KPX • 
X-I 

Px " (Id/( + AxIqK)1 Yxlo 

• (36) 

is the real power supplied by generator K and M"x represents a 
set of real constants. 

Fig. 7.-Equivalent circuit for the final reference frame 6 with active 
generator powers. 

Fig. 7 illustrates the equivalent circuit with real impressed 
generator powers. 

The final loss equation is now of the form 

V6 = Z66I6 • • (37) 

The dimension of 16 is that of power, and it represents the 
active power P supplied by each generator. 

The term V6 = (C~tV5 is dimensionless owing to the 
inverse voltage form of Cl. Its components are fractions, say 
L. and represent the incremental 12 R transmission losses of the 
system, ~ loss/~P. 

Z66 represents the final 'loss' matrix containing real components 
M"K of inverse power form Z/yl. 

Thus, in terms of generator powers and incremental 12 R losses, 
the system equations take the form 

1.,. =0 E M"xPx • (38) 
K 

which is equal to the incremental transmission loss at generator n, 
~ losses/3PII' 

The total/ l R losses in the system are thus given by 

. (39) 

(2.3) SlmpUfleation of the Analysis for Total and Incremental 
Loss Studies 

For incremental loss calculations only the real parts of the 
differences of potential existing in the basic measurement 
reference frame 1 need to be measured. It is also sufficient to 
use only the real components of the matrix CL for transforma­
tion from reference frame 1 to 2. This latter simplification 
will produce a symmetrical impedance matrix Z22 containing 
only real components, and the former a and b components 
chanae to d = (a + b)/2. 

The total 12 R losses in the system may be found by using only 
the symmetrical part of Z66 containing coefficients R66, say B. 
In this case, the total transmission losses are given by 

P1_ = ~ f P,.B..xPx and BilK .... Bx" • (40) 

Thus, for the 3-generator system, 

Plolses = BIIPi + B22Pl + B33Pj 
+ 2BI2P IP2 + 2B13P IP3 + 2B23P2P3 • (41) 

The same result is also obtained if only the symmetrical part 
of R33 and the skew-symmetric part of X33 are used when trans! 
forming Z33 to Z66' assuming Z33 has the form R33 + jX33• 

Using the above simplifications, the general loss coefficient 
takes the form 

BnK = I Y:;I-~lo[cOS (On - 0K)(1 + AnAK) 

+ sin (0" - Ox)(A" - Ax)] • (42) 

(3) STUDY OF THE LOADING CONDITIONS ON A SECfION 
OF THE BRITISH NETWORK 

The Grid system for which a transmission-loss formula is to 
be determined consists of the 132kV Warrington section of the 
North West, Merseyside and North Wales Divisional Network. 

This section comprises steam generating stations at Warrington, 
Pereival Lane and Inee, and 33 kV Area Board load points at 
Warrington, Percival Lane, Inee, Crewe and Knutsford. Fig. 8 

WARRINGTON 

(IS MW) 

INee: 

(316 MW) 

"2 MILU, 

266 MILES 

(0'038 + jO'102) 

CAAAINGTO", 

KNUTSFOAD 

C "lWE 
(l9 r.4W) 

, Fig. S.-System diagram-Warrington Section. 
Buo apparent powor-IOOMVA. 
Base voltaao-l32 kV. 

illustrates a simplified diagram of this system with the main 
generating, load and interconnection points. The available 
active-power generation exported at each busbar is given in this 
diagram, which also shows the contribution from Marchwiel 
and part of Maentwrog at the Crewe station. The diagram 
also illustrates the route length of each overhead line forming the 
network, and the per-unit impedances for a 100 MVA base at 
132kV. 

(3.1) Load Flow Study 

The study was carried out analytically in the absence of net­
work-analyser facilities. The first part consisted in determining 
the approximate system load flows from the known generator 
loadings and the active-power demands at the load points. It 
was assumed that there was a normal 12 % outage of the available 
generation at all stations, and the load demands used were those 
that existed in January, 1955, during the normal peak periods 
of 0700-1300 hours (see Fig. 10). 

The power equations for a short line were then used for 
calculating the various terminal voltages and angles in the given 
system. Reactive line flows were also determined from these 
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Fig. 9.-Load-flow data for a weekday peak period including line 
flows, generator loadings, load demands and bu~ voItages. 
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equation~, and balance of busbar conditions in the system loop 
was obtamed by a series of successive approximations. 

The results of the final approximation to system load flows to 
give the desired system balance and realistic generator and load 
reactive demands are illustrated in the load-flow diagram of 
Fig. 9. 

(4) STUDY OF THE APPLICATION OF KRON'S METHODS 
TO A SECTION OF THE BRITISH NETWORK 

(4.1) Reference Frame 1 

For the measurement of the basic impedance matrix of the 
Warrington section network, illustrated in Fig. 8, the Carrington 
tie-line connection O~ was chosen as reference point an~ wa~ 
cl\rthed, 

With unit current impressed at the generator G. the various 
leakage impedances are given by 

Z _ VG. 
n.g- . 

IGK 

• (43) 

and in this case reference generator current IGR = impressed 
current [GK' 

Thus for generator points of entry, 

ZLt = ~GI = 0·0105 + jO'0280 
IGI 

Z2.l = ~G2 = O'OOS 7 + jO'0231 
IGI 

Z3.1 = ~G3 = 0·0073 +jO'0195 
IGI 

Z4.1 = ~G4 = 0·0025 + jO'0067 
IGI 

and for load points of entry, 

Z.5.1 = ZI.t = 0·0105 + jO'02S0 

Z6.1 = Z2.1 = 0'0087 +jO'023 I 
Z7.1 = ZJ.I = 0·0073 + jO'0195 

ZS.I = Z4.t = 0·0025 + jO'0067 
VM Z9.1 = -. - = 0'00 11 + jO'0029 
IGl 

With unit current impressed at generator G2, 

ZL2 = 0·0087 + jO'023 I = ZS.2 

Z2.2 = 0·0188 + jO·0507 = Z6.2 

Z3." =-= 0·0160 + jO·0428 = Z7." 

Z4.2 = 0·0055 + jO'0146 = ZS.2 

Z9.2 = 0·0023 + jO'0063 

With unit current impressed at generator G J 

ZI.) = 0·0073 + jO'0195 = Z,.3 

Z2.J = 0·0160 + jO·0428 = Z6.3 

Z3.J = 0·0226 + jO'0600 = Z7.3 

Z4.3 = 0·0078 + jO'0206 = Zs.) 

Z9.3 == 0·0033 +jO·0089 

With unit current impressed at generator 0 4 • 

Zt.4 = 0·0025 + jO'0067 = ZS.4 

Z2.4 = 0·0055 + jO'0146 = Z6.4 

Z3.4 = 0·0078 + jO'0206 = Z7.4 

Zu = 0·0158 + jO·0419 = ZS.4 

Z9.4 = 0·0067 + jO'0182 

• (44) 

• (45) 

· (46) 

• (47) 

With unit current impressed at the load LI the leakage impe­
dances are equal to those obtained with unit current impressed 
at the generator GI• Similarly, with impressed currents at L2• 

L3 and L4 the leakage impedances are equal to those ohtained 
with impressed currents at G2, G 3 and G4, respectively. 

With unit current impressed at the load point L" 

Zt.9 = 0·0011 + jO'0029 = ZS.9 

Z".9 = 0·0023 + jO'0063 = Z6.9 
Z3.9 = 0·0033 + jO'0089 = Z7.9 • (4S) 

Z4,9 = 0·0067 + jO'0182 = Za.9 

19,9 = 0·0125 + /0·0339 
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The above impedances now form the components of the basic 
symmetrical leakage-impedance matrix Zll' 

In this analysis (Cl>· = (Cl> and only the real components of 
Z11 are considered. 

The components of Z12 are given and calculated as follows: 

(4.2) Reference Frame 1 

In this analysis the hypothetical load for a normal load period 
will be given by 

[L = [Ll + [Ll + [L3 + [lA + [LS 

and the components of the CL matrix by 

• (49) 

ILl [Ll [L3 [lA [LS 
1I = [L' 11 = [L' 13 = /L' 14 = [L' Is = /L • (SO) 

However, since available information for the given load points 
consists of the half-hourly active-power loading only, it is not 
possible to obtain the constant complex ratios, 11, 11, etc., in 
the above form. An assumption is thus made that the ratio of 
the active-power loading at the load points to the total active­
power load remains constant, and approximates to the corre­
sponding current ratios, as given above. Such an approximation 
assumes that all load voltages and power factors are equal, and 
that all load currents are displaced equally from the total load 
current. These assumptions are valid for the system under 
consideration owing to the small phase displacements between 
the terminal voltages, the previously assumed constant load 
power factors and the approximate nominal system voltages at 
the load points. 

A similar assumption is made by George,l in which the average 
line voltage and average power factor for the heavily loaded 
portions of the systems are used in the analysis. 

Fig. 10 illustrates the half-hourly integrated loadings on 
17th January, 1955, for two of the five load points, and the total 
area load for the Warrington section network. To compare the 
general trend of each load to that of the total system load, the 
ratio of each half-hourly load to that of the total was calculated. 

It was apparent from these ratios that the trend of the total 
load was reflected at all load points; that is, the pattern of demand 
was the same at all load points, as stated in assumption (a). 

ZI.t = 0·0IOS,ZI.2 = 0·0087,ZI.3 = 0'0073, 
ZI.4 = 0·0025 

Z2.1 = 0'0087, Z2.2 = 0'0188, Zl.3 = 0'0160, 
Zl.4 = 0 ·0055 

Z3.t = 0'0073, Z3.1 = 0'0160, Z3.3 = 0'0226, 
Z3.4 = 0·0078 

Z4.1 = 0·002S,Z4.1 = 0·0055,Z4.3 = 0'0078, 
Z4.4 = 0·0158 

dt = ZI.slt + ZJ.6ll + Zl.,13 + Z1.814 + Zt.91s 
= 0·00703 

d2 = Zl.s11 + Z2.612 + Z2.713 + Zl.sl4 + Zl.~S 
= 0·01381 

d3 = Z3.,/1 + Z3.611 + Z3.713 + Z3.814 + Z3.91s 
= 0·01783 

~=~~+~~+~~+~~+~~ 
= 0·00781 . (52) 

and w is given by, 

Zs.sl./T + Z,.6121T + Zs.71iT 
+ Zs.s141r + Zs.91,IT = 0'000774 

Z6.s/•1: + Z6.6/21: + Z6.7/i! 
+ Z6.s141: + Z6.9/sl! = 0'001492 

Z7.s1\1; + Z7.6'21; + Z7.7131; 
+ Z7.s/41; + Z7.Jsl; = 0·011285 

Zs.s'\l: + Z8,611': + ZS.7/31: 
+ Zs.sI4': + Zs.9I,l: = 0'000 867 

Z9,51\1; + Z9.6121t + Z9.7131; 
+ Z9.s141; + Z9.91s1; = 0'000 140 

0·014558 = w 

(4.3) Reference Frame 3 
The loading ratios to be used in this analysis have been obtained 

by averaging the individual half hourly ratios, and are 

/1 = 0·110, 11 = 0'108, 13 = 0'633, 14 = 0'111, Is = 0·038 

In frame 3 the hypothetical load current IL is replaced by the 
reference generator current [R = IS, using the equation of con­
straint given by 

. (51) IL = - 11 - 12 - 13 - 14 - IS, i.e. = - I[G • (53) 

The impedance matrix is given by The absence of reactive metering data at the load points 
prevented the use of complex ratios in this analysis. The 
leakage-impedance matrix for reference frame 2 is now given by 

Zll = (C!):Zl1(C!> 

Z33 = (Q>jZ 22<ej) 

and its components (Rn_x) are 

ZI.t - 2d\ + W Zl.1 - d1 - dl + W Z\.3 - dl - d3 + W ZI.4 - dl - d4 + w W -d\ 
= + 0'011 = + 0·00242 = - 0·003 = + 0'00222 = + 0·00753 

Zl.1 - d2 - d\ + W Zl.l - 2d2 + W Zl.3 - d2 - d3 + W Zl.4 - d2 - d4 + w w - d2 
= + 0'00242 = + 0'00574 = - 0·00108 = - 0'001 56 = + 0·00075 

Z3.I-d3 -d\ + W Z3.2 - d3 - d2 + W Z3.3 - 2d3 + W Z3.4 - d3 - d4 + w W -d3 
= - 0·003 = - 0·00108 = + 0·001 SO = - 0·00328 = - 0·00327 

Z4.1 - d4 - d\ + W Z4.l - d4 - d2 + W Z4.3 - d4 - d3 + W Z •. 4 - 2d4 + w W -d4 
= + 0'00222 = - 0·001 56 = - 0·00328 = + 0·01474 = + 0·00675 

w-dl w -d1 w -d) w -d. w 
= + 0'00753 = + 0'00075 = - 0·00327 = +0'00675 = + 0·01456 

• (54) 
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It will be noted that the components of Z33 are symmetric, 
and contain only real quantities similar to the real symmetrical 
components R33 of Kron's analysis,S and the Kmn coefficients 
of Ward, Eaton and Hale [Reference 4 eqn. (6)]. 

(4.4) Calcu1ation of Loss Constants 

The general term of the loss matrix is given by 

B - Rn_K 
nK - I Vnlol VKlo 

[cos (0" - 0K)(l + AnAK) + sin (0" - OK)(A" - A K)] 
. (55) 

The generator terminal voltage angles, 0, may be referred to 
any reference axis, and in the present study this has been taken 
along the terminal voltage of generator G t. 

The constant ratio (A = Q/ P) for each generator, and the 
generator terminal voltages are those obtained from the normal 
load-flow study, and are illustrated in Table 1. 

Table I 

GENERATOR DATA FROM LoAD-FLOW STUDY 

Generator output Generator 
Generator tenninal Per-unit QIP ratio Gn voltallc A. bus voltallc p Q anllle w.r.t. 

(MW) (MVAr) GJ6 

Gt 74,66 44,28 0 
G2 97·25 56'59 +11' 
G3 340'51 204'6 -20' 
04 25,5 18'42 _I" 36' 
a, 36·41 12·88 -17' 

From the foregoing general term, 
I 

Bu = IVd~ R I - t (1 + A~) 

y. 

0,5931 1,0 
0,5819 1,0 
0·6009 1,0015 
0·7224 1·0 
0·3537 1·0 

= 0,011(1 + 0'5931 2) = 0·01487 . (56) 
R I _ 2 . • 

BI2 = I Vtlol V2Io[cos(BI-B~(1 +AtA2) + sm(Ot - (2)(A t-A2)] 

= 0·00242 [cos (-11')(1 + 0·5931 x 0,5819) 

+sin(-II')(0'5931-0'5819)]=0'003255 • (57) 

All the BnK coefficients obtained from the foregoing general 
term are given in Table 2. 

Thus, for the 5-generator system, the total system per-unit 
loss is given by 

PL = 0'0149Pi + 0'0077P~ + 0'002Pj + 0'0224Pl 
+ 0'0164P3 + 0·OO6SPtP2 - 0'OOSIPtP3 

+ 0·0063Pt P. + 0'0182PtP, - 0'0029P2P3 

- 0·0044P2P. + 0'001SP2P, - 0·OO94P3P. 
- 0'0079P3P, + 0·0l6SP.P, • (SS) 

where Pt, P2, etc., are the per-unit station loadings. 

For the station loadings obtained from the load-flow study, 
i.e. for 

Pt = 74,66 MW, P2 = 97·25MW, P3 = 340'51 MW, 

p. = 25'SMW, and P, = 36·41 MW 

the total system loss is, h = 0·006227 per unit or 0·623 MW. 
These losses do not compare favourably with those obtained 

from the load-flow study, the results of which are illustrated in 
Fig. 9. However, the main purpose of the flow study was for 
the determination of voltages, angles and Q/P ratios. Excessive 
errors in the losses estimated from Fig. 9 are the results of finding 
differences of large quantities. 

(5) CO-ORDINATION OF INCREMENTAL FUEL COSTS 
AND TRANSMISSION LOSSES 

In this Section the previously determined transmission losses 
of the system are combined with the incremental fuel costs of the 
generating stations, and a loading schedule is obtained which 
will give minimum operating costs for given total generation. 

In the case of a number of generating stations supplying a 
power system and loaded on an equal incremental fuel cost basis, 
power will be transmitted from low- to high-cost regions due to 
the variation of fuel costs at different stations. For economic 
division of load between the stations it is thus necessary to con­
sider the resulting transmission losses, and to amend the station 
operating costs accordingly. 

(5.0 Methods of Co-ordination 
The mathematical analysis for co-ordinating incremental fuel 

costs and transmission losses is based on the methods for deter­
mining the maxima and minima of a function of two variables, 
the latter also being related by an equation of constraint. 

Using the methods of Lagrange's undetermined multipliers 
(Courant,32 Kirchmayer and Stagg8), the condition for minimum 
fuel input is given by 

dSn + ,\?lPL = ,\ 
dP" ?JP" 

. (59) 

where dSn/dP" = incremental fuel cost (£/MWh) of station n. 

and ?lPd?JP" = incremental transmission loss (MW) for a 
megawatt change in generation (MW/MW) at 
station n. 

Solution of the non-linear simultaneous equations obtained from 
eqn. (59) for each station, by variation of '\, will yield the plant 
schedules for different total system loadings. 

If. in the general case, the fuel cost input curve for station n 
is assumed to be of the form 

then 

S" = mnP~ + C"P,,(£/hr.) • 

dS" = (2m"}P,, + C" = m~P" + C" 
dPn 

• (60) 

• (61) 

Table 1 

COMPONENTS OF FINAL Loss MATRIX 

nK 11 22 33 44 55 
B"K +0'01487 +0·00768 +0'00204 +0'02243 +0·01638 
nK 12 13 14 15 23 
BnK +0·00326 -0,00406 +0·00316 +0·00912 -0·00146 
nK 24 25 34 35 45 
BnK -0'00221 +0·00091 -0,00469 -0·00396 +0·00842 
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where m~ = slope of incremental cost curve (£/MWh/MW). 

and C" = intercept on incremental cost scale (£/MWh). 

Also ~PL = ~ 2B""PK 
l)P" x 

Thus eqn. (59) becomes 

(m;,P" + C,J + ,,~ 2B"KPK =" . • (62) 
K 

For the five generator system under consideration, the co-ordi­
nation equations are 

m,P, + "(2Bl1P, + 2B'2P2 + 2B13P3 + 2B1'-p" 
+ 2B15P5)= " - Cl 

m1.P" + A(2BI2PI + 2B22P" + 2B23P3 + 2B2"P" • (63) 
+ 2B25P5) = A - C2 

etc. 

A vailable information, however, concerning station fuel costs 
will take the form 

S" = m"P" + C" • . (64) 

where m" and C" now relate to the slope and intercept of the 
input/output curves. 

Thus dS" 
dP" =m" 

In this case it is now possible to charge the system losses at 
the incremental rate of received power A, and to obtain a loading 
schedule from the solution of linear equations. 

(S.I.1) Co-ordination Equations ror • Five-Generator System. 

In terms of the actual BnK constants and linear input-output 
curves, the co-ordination equations simplify to 

0·0298PI + O·OO6SP" - 0'0081P3 + 0'0063P" 

+ 0.018 2P, = _I (I _ ml) 
100 " 

O·OO6SP, + 0'0154P" - 0'0029P3 - 0'0044P" 

+ 0'0018P, ... _I (I _ m2) 
lOO " 

- 0'008 lP, - 0'0029P" + 0'OO4P3 - 0'0094P" 

_ 0'0079P, = _1 (1 _ ml) 
lOO A 

• (6S) 

0·0063P. - O'0044P" - O'0094P3 + O'0448P" 

+ 0'0168P, = _1_(1 _ m,,) 
100 >.. 

0·0182P1 + O'0018P" - O'0079P, + O'OI68P" 

+ O'0328P, = _1 (I _ m5) 
lOO " 

(P., P2, etc., are per-unit station loadings.) 

or, in matrix form, BP = (1 -X) 
The solution for the station loadings will now be obtained by 

inversion of the S x 5B matrix. This is calculated using the 
methods of Kron, 25, p. 258, for the inverse of a two-row com­
pound matrix, 

Such an inversion yields the matrix equation 

This gives the respective per-unit loadings for minimum total 
fuel cost as follows: 

1 
P, = 46·922 - X(5'699ml + 4'730m2 + 29'965m3 

+ 5'600m4 + 0'928m,) 
1 

P2 = 45·635 - X(4·730m. + 5'486m2 + 28'758m3 

+ S·452m" + 1 '209m,) 
1 

P3 = 273'446 - X(29'965ml + 28·758m2 + 174·902m3 

+ 32· 583m" + 7· 238m, 
1 

P" = 51'181 - X(S'600m1 + 5'452m2 + 32'S83m3 

+ 6· 362m4 + l'184m5) 
1 

P5 = 11·420 - X(0·928m. + 1'209m2 + 7·238m3 

+ 1'184m4 + 0'86Im,) 

1 
'f,p = 428·604 - X(46'922ml + 4S'635m2 

+ 273'446m, + 51'181m" + 1l·420m,) 

Loading Schedule. 

• (66) 

From the weekly return of fuel costs at steam stations con­
tained in Form CEA/G.S.-lS of the Central Electricity Authority, 
the following incremental costs were estimated, and they are used 
for illustrating the application of the above loading equations. 
These are assumed figures only, based on average fuel costs and 
existing orders of merit. 

m5 
O' 35 pence/kWh 
1'46 £/MWh 

Under these conditions the loading equations reduce to the 
following form: 

P,= 

P,,= 

P,,= 

46·922 -
93·723 -,,-

45'63S -
91·SOO 
-~-

51.181 _1~ 
~ 

11.420 _ 22·240 
A 

l:P - 428.604 _ 8SS ·446 - A 

• • • (67) 

The respective station loadings are now obtained by deter­
mining the value of A for a summated generation (l:P), and 
applying this same value of A to each remaining equation. 

For per-unit values of l:P in excess of 4· 316, corresponding to 
a value of " equal to 2'OI62£/MWh, it becomes necessary to 
base-Ioad the available generation at 04' say equal to thQ mlllli· 
mum per-unit VIll~ 0(0'29, 
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Loading Schedule. 

Using the previously assumed incremental fuel costs. and for 
values of}:.P in excess of 4· 316. the loading equations now take 
the form 

P I = 2'1181-
3·3918 -,,-

P2 = 2·0178 -
3·5599 -,,-

P
3 

= 12·7805 - 19'8330 . (68) 
,\ 

P, = 1.9493 _ 3·1455 
,\ 

. . 29·9302 
r,p (mcludlOg p. = 0·29) = 19·1557 - ,\ 

A complete loading schedule obtained from these equations 
for system loads. ranging between 250 and 550 MW. is illustrated 
in Fig. 11. 

The accuracy of the generator loading equations has been 
studied by checking the inversion of the B matrix. eqn. (65). from 
the product BB-I. This was found to be of approximate unit 
matrix form. thus indicating that the inversion of B is correct. 

Fig. ll.-Generator loading schedule for optimum system economy. 

An investigation has also been carried out to check the scaling 
of this matrix. From the study. which consisted of checking 
each step in the inversion of B. it is apparent that the expression 
(B .. B" - BI,,2) which appears throughout the inversion is 
having a powerful effect on the expressions for generator loadings, 
and in particular on the term 174'902m3 in eqn. (66). 

O. bue-loaded at 1:: P - 4·316. 

(5.1.2) Co-ordination Equations with Generating Station G.. (Crewe) 
Base-Loaded at its Maximum Available Generation of 
29 MW. 

With G4 base-loaded at 29 MW. the co-ordination equations 
(65) can be reduced. Inversion of the B matrix will again give 
the solutions for generator loadings in the form 

Now B - R.-.(l + Ai) } .. -W.13 

and B" = f?,13(1 + A~ 
Also. from the Zn matrix, eqn. (54). 

R..-4 = Z4.4 - 2d. + w} . 
and RS- 5 = W 

30 
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Fig. U.-Nomogram for total generation '£P. 
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m, - 2·08t/MWh to m2 - 2· 50 t/MWh alveeq. 
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,10 m, - 1'046£/MWh alvea I. 

I 
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a·a 
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RI,ht-lKmd NOmD/frtJlfl. 
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(69) 
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Fig. 13.-Nomogram for generator Gl of loading Pl. 
Example. 

As in Fig. 12 10 aive ntw value of f • 
• - 3·36 £/MWh 10 A - 2·113 £/MWh (from Fill. 12) lIives PI - 52 MW. 

Now (71) 

Therefore the value of w appears to be influencing the com­
ponents oC B-1. 

From a study oC the components of w (=0 ·014 558), it is 
found that the term Z7.7/ij = Z3.3/3/j (=0·009056) is exces­
sive in relation to all other quantities. 

It can thus be concluded that the generator self-impedance Z3.3 
(with unit current injected at generator 0 3), the loading ratio 13 
(i.e. load at Ince as a proportion of total load) and the ratio 
A .. of reactive to active power for generator 0 .. (Crewe), at normal 
load, are having powerful effects on individual generator loadings. 

This investigation illustrates the fact that, in practice, con­
siderable accuracy in computation will be required when the 
magnitudes of the system parameters and load ratios have wide 
differences. 

(5.2) Loading Schedule Nomograms 

The form of the final co-ordination equations enables a set of 
nomograms to be constructed to represent the various generator 
loadings for optimum operating efficiency. 

The methods given in Reference 34 have been used for the 
five loading equations, including the one for total generation, 
and give rise to five nomograms, two of which are illustrated in 
Figs. 12 and 13. 

Each diagram represents the respective loading equation and 
each variable is represented by a graduated line. Index lines 
drawn across the diagrams according to the values of the 
variables, in this case the station costs, will give a direct solution 
of the equations they represent. The various generator loadings 
are obtained by the use of the respective nomograms, using the 
known m values and the values of ,\ found from the total genera­
tion nomogram of Fig. 12. 

The example given on the nomograms illustrates a loading 
schedule for a total system generation of 500 MW, and the various 
generator loadings compare with those obtained by calculation 
from the loading equations. 

(6) CONCLUSION 

In this present analysis, fuel costs and losses have been 
~o-ordinated usin~ the exact equations in conjunction with linear 

input-output characteristics for each station. With this assump­
tion, the solutions obtained from one matrix inversion are valid 
for all variations in fuel costs, and the linear loading equations 
may be adapted for nomographic representation as illustrated in 
the paper. These charts will provide a method of developing 
rapidly the economic loading schedules as functions of total 
generation. 

If the incremental fuel costs are assumed as functions of the 
station loadings, then each variation in station costs will neces­
sitate a matrix inversion. In this case the rapid calculation of 
incremental transmission losses combined with generating costs, 
and the immediate application of these results to the system, will 
require the usc of simplified network analysers or digital com­
puters for the solution of the linear equations. 

Comparing the economic loading schedule of Fig. 11 with the 
loadings obtained from the load flow study, it is apparent that 
for greater operating economy the generation at Percival Lane, 
G2, and to a lesser extent that at Warrington, 0 1, must be 
reduced and transferred to the more economic sources at Ince, 
0 3, and the Carrington interconnection, 05-provided that 
adequate tie-line capacity is available. 

A schedule for minimum loss can be obtained from the fore­
going analysis, and if compared with that obtained by considering 
the effects of fuel costs, it becomes apparent that the value of the 
low-cost import at 0 5 is much reduced due to the greater effects 
of line losses. Station loadings at 0 1 and O2 under these con­
ditions are greater than the corresponding loadings obtained 
when considering fuel costs. Plant availability, provision for 
security of supplies and relative generation costs usually prevent 
the loading of stations on a minimum-transmission-loss basis. 
Such a condition, however, is of value in the planning of trans­
mission systems and in comparing delivered costs from stations 
having equal incremental generation costs. 

This analysis has been restricted to the determination ofloading 
schedules for a small section of the North West, Merseyside and 
North Wales divisional network. The effects of incremental 
transmission losses on the selective loading of generating plant 
will become more apparent when the analysis is applied under 
light load conditions on this particular network, such as those 
obtaining at night and during the summer months, and when 
applied under more general conditions to larger sections of the 
Grid system. 
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