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(M.K.S. system of units is used throughout)
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CHAPTER 1

INTRODUCTION '

With the advent of fast digital computers, the
mathematical methods used for modelling, assessing and
controlling large complex engineering systems are béing
strained to the utmost. For example, space and aircraft
research, nuclear engineering énd power systems now use °
advanced computer techniques for their design, construction
and operation. Areas of analysis which were confined mainly
to the realm of pufe mathemeticians only two decades ago are
now being utilised by engineers. Probability spaces, eigenl
vectors and state-spaces are some of the many concepts
employed in éuch analyses. Multivariable engineering problems
are now often’ expressed, mathematically, in terms of abstract k
spaces and subspaces; In terms of these, many of the
physical vériables, which exist in associated pairs, form
orthogonai sub-spaces with p- ahd (n-p) dimenéions, where n
is the total number of variables. Examples of such qﬁantities

are voltage and current, electricity and magnetism, open-

paths and cldsed-paths and matter and energy.

‘



Much of the work done in this direction appears to be
converg.ing towards the matrix and tensor methods developéd by
Kron, during three decades, for large electric networks(l) and
electrodynamic systems(z). Kron used electric network models for
the study of a variety of systems of linear partial differential
equations. Realizable physical networks were set up for nuclear
reactor, turbine, elastic structure, transportétion and other
probl'erns. An exfension of this network to abstract spaces was
his next step. |

In this more generé.l model, the previous electric cufrents
and volt'agés were replaced by electromagnetic waves propaga‘;ing
across the structure. At this stage Kron found that magnetohydro-
dynamic waves could be theoretically pfopagated on two mutually
orthogonal networks. The resulting wave network was found to
have surprising adaptive characteristics with feedbacks and
thresholds. So much so that Kron calls it a dynamo-type automaton(s) 5
He has used this simulator to solve numerical probleins in curve-
fitting and is convinced that it has potentialities to recognise patterns,
perfo.rm adaptive filtering, and in general to undertake multi-
dindensional non-linear inform#tion processing. The number of

adaptive parameters can be increased along several directions



without any apparent limit., The prospects for such a device
(purely a theoretical automaton, programmed on a computer) as
seen by Kron are outlined in the following extracts from his own
publications. Reference 4 (1958): "Such introduction ( of Topology
in the Calculus of Finite Differences) is accomplished by |
constructing, in a symbolic manner, magnetic and dielecfric
networks that have a sequence of one-, two-, three-, to k-
dimensional network elements‘ (instead of linear elements only).

In this more general model the previous electrical currents
and voltages are replaced by electromagnetic waves propagating
across the structure. 'The waves are always accompanied by free
and bound electric charges as well as by magrvleticr poles. The
sequence of alternating magnetic and dielectric networks may be
called a "Wave-Model. " The underlying geometrical configuration
of 1-, to k-dimensional volume elements upon which the transﬁerse
and longitudinal electromagnetic waves are superimposed, is
called a "polyhedron. " A collecfi.on of two or more wave models
'(polyhedra) interconnected of inducfively coupled will be called a
Multi Dimensional Space Filter, In each 2-dimensional volume
elefnent not one.value of a function (a scalar) is defined, but an

entire field. For instance, with each scalar a probability -



distribution may be associated. The electric charges and
magnetic poles may be associated with mass-particles and the
latter endowed with elastic, hyd;:'odyiiamic etc. properties. The
author will not be surprised at all if eventually the eritire
paraphernalia of automic and nuclear physics will enter as
modelling material to aid the mathematical unfolding of complicated
problems.

As the electromagnetic waves propagate from a lower to a
higher dimensional space, at the boundaries the waves must
satisfy the generalised Stokes' theorems. An analogue of the
steps to be taken at the multidimensional boundaries is given by a
special linear electric circuit model, which the author developed
fifteen years ago for the propagation of electromagnetic waves .in
the three dimensidnal physical space. The model already implies,
in the linear network itself, the ;Sresence o'f two dimensional
planes also, as indicated by the appearance of ideal transformers‘.
The dielectric lines and magnetic planes of the Maxwéll circuit'
flo:;n the first complete sequence in the k-dimensional space filter
under study. "

Reference 5 (1958): "It should be noted that during the simple
wave propagation assumed for interpolation, numerical differentiation

and integration etc. purposes, no feed-back was assumed to exist
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amoné the waves. As soon as more involved statistical or
physical problems are investigated (such as curve-fﬁ.:ting, or
smoothing), the waves in the various spaces begin to react ﬁbon
each other. The author and his associates anticipate the |
appearahc‘e of linear and‘non-linear equations, boundary value and
eigen value problems, as well as optimizations of various types,
in which all spacés influence the answer to various degrees. In
the solution of such extensive problems the method of tearing
(Reference 3) promises to become a useful tool. "

Reference 6 (1959): " The most obvious and simplest
application of a polyhedran, or rather, a wave model, is to
generalise the various formulas of the calculus of finite differences
for non-uniform intervals assumed in a k-dimensional Euclidean
space. This paper restricts’itself to generalising the concept of

' diviaed differences of various orders. They are expe‘cted to be
used for interpolation, curve fitting, smoothing, nu'mericai
differentiation and iptegration, and for other problems with which
the calculus of finite differenées deals.‘

It is anticipated that advanced problems in numerical

- analysis (Fourier transform, power density specfra), in operations

research (quadratic and higher programming), in e conomics ete.,




will also offer opportunities for the use of space filters. The
study of diffraction and scattering of electromagnetic waves in
asymmetrical crystal and molecular structures would only be a
first step into an ever widening field of physical application for
multidimensional space filter concepts.

In order to use electric circuit theories for the analysis
and solution of non-electrical problerhs (or for more advanced
electrical problems) the author has developed, in references 1 and
2, a more general orthogonal theory that includes the mesh and
junction-pair theories as special cases.

The same orthogonal point of view will now be applied to
each multi-dimensional q-network sepérat,ely; with some |
modification. The main change is that the networks will c“onduct
not electric currents, but electromagnetic waves (and charges).

In particular: 1. all odd dimensional spaces (1, 3, 5...) conduct
two types of dielectric quantities: (a) solenoidal (ia, e, and

(b) lamellar I.).a, E and 2. all even dimensional spaces

(0, 2, 4...) conduct two types of magnetic quantities (a) solenoidal
ha, f)a and (b) lamellar Ha, V ]::30. " |

Reference 7 (1962)§ "The driving force behind the éearch

for a new type of network organisation,’ not found in the literature,
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was the conviction tha"t electricity demands its own highly
specialised underlying topological structure. The electrical
engineer must picic out from the available variety of topological
structures, only those particular ones that actually fit the
proper"cies of the superimposed electric currents, or electro-
magneti;: waves, and avoid all others..

With every n-dimensional polyhedren, there is associated
a dual polyhedran whose p-simplexes, in general, are at right
angles in space to the (n-p) simplexes of the primal polyhedran.
It so happens that both polyhedra must be present to propagate an
electromagnetic wave, as well as a magnetohydrodynamic wave.
Thus, the " complete" l-network, whose theory is reédy to be
generalised, does not consist of an isolated 1-network but of a |
l-netv;rork with an environment ...  The concept of environment
implies also the immersion of a l-network in a magnetic field,
or in a plasma, with moving electric and magnetié charges and
currents, etc.

In the 2-phase model of a polyhedron, the éight electro-
magnetic parameters appear, not in their vectorial form shown
above-, but in the tensorial form of four parameters FQB' HQB,

8, and 8% Thus the three notions of (1) networks, (2) electricity,




and (3) tensors are interwined into one structure, not only in

conventional electric 1-networks, but also in multidimensional

‘electromagnetic ones.

The electrical engineer will find an acquaintance with

some of the topics treated in recently developed differential

-topology quite helpful in his eventual attempt to enlarge the

practical use of solid-state network elements, or thei.r
theorgtical ‘use for model construction, from l-dimensional
electric to multidimensional electromagnetic networks. |
Mathematical texts with such titles as "Harmonic Integrals, " .
"Fiber Bundles", "Grassman Algebra", etc. muét be coﬂsulted
for further study‘. "

Reference 8 (1963): "Only a few years ago the author
accidentally discovered that during those same three decades,
while'he was struggling to "invent" and use tensors in-the-large
for the study of discrete global electrical 1-networks, a group of
theoretical mathematiciaﬁs did develop a systematic theory ;f
"tensors in-the-largef', in connection with the study of multiply
connected'multidimensiovnal space structures. These disciplines
are beginning to be grouped under the heading of "differential

topology". It is also known as "differential geometry and

13
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topology in-the-large. "
In addition to introducing tensors in-the-large, Cartan,
De Rham, Hodge, Whitney, Eilenberg, Steenrod, Chern, |
Lichnerowicz, Chevally, Kodeira, and a host of other theoretical
mathematigians have also superimposed upon the polyhedra -
aﬂd other more general complexes - sets of "exterior" differential
p-forms and their integrals. These integrals are expectéd to
satisfy Stokes' theorem between two different dimensional
p-natworks. .So are the electromagnetic and magnetohydrodynamic
waves used by the author. He also employs in his polyhedral
networks the incidence matrice; to éatisfy Stokes' theorem. (The
‘connection matrices C:,, serve to satisfy Kirchoff's. laws). |
The utilisation of "Atomic and Molecular Vibrations"
as Electrodynamic Engineering:- The irregularly placed atoms
in a polyatomic. molecule may be considered to form the vertices
of a polyhedron. When the atoms are excited by X-rays, the
resulting dipole waves form a self sustained dynamical system.
The self organising polyhedral waves used in multidimensional

curve fitting are surprisingly complete analogues of the self

sustaining, resonant crystal waves.




Thus the vibrating atoms in a p'olyatomic molecule and
the various valence bonds bet;aveen them may be looked upon as
extremely comylex two-phase, unbalanced magnetohydrodyné.mic
generators, all connected together with a seqﬁencé of multi-
dimensional transmission lines. Each p-simplex - defined by
ptl atoms - together with its dual n-p simplex, becomes an n-

dimensional two phase "generalised" rotating electrical machine

or transmission line. Both ray-optics and wave-optiés may thus

be generalised with their aid for the refraction and diffraction
studies of »polarized light waves propagating between distinct
atoms through nonhomogeneous nonisotropic media. The overall
molecular translational and rotational motions will also be
eventually included in the study, which can assume either
deterministic or probablistic interpretations.

It is within the bounds of possibility that the polyhedral
waves under discﬁssion will eventually be physically rea.h"sed by
means of érystals. The eight electrical parameters of each full
wave in the sequence of waves can be increased b'y additional
mechanical, fluid, thermodynamic, and other "adéptive "
parameters ;hét actually exist in a crystal, Sincev th.e concepts

of "open" and ''closed" (yes and no) permeates the organisation

15
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of the underlying and superimposed topological structures of

both straight ngi curved polyhedra and their waves, some multi
valued logic, to be yet developed, will eventually make it feasible -
to use crys tals as analogue and digital computérs. The
compufcations will be based on the utilisation of as many parameters
‘of the polyhedral waves existing in a crystal as possible.

It is well known that the neural net in the human body is
energised by electromagnetic and more advanced chemical (ionic
etc. ) waves, rather than by more simple electrical impulses.

As a result, a crystal "artificial brain" might simulate more
closely many cognitive processes and other neural phehomena,
than the l-dirr;ensional swit ching networks can ever hope to do-.ﬂ
A multidimensional statistical information theory built around
the polyhedral network will also have to be developed. "

Reference 3 (1960.): "The stage for all cognitive activities
is an unde-rlying n-dimensional field of magnetohydrodynamic
plasma., Two spatially orthogonal polyhedra are immersed in the
fluid, in order to crystallise the amorphous non linear field into
a 'host of interconnected n-dimensional magnetohydrodynamic
generators. The latier are straightforward generalisations of

conventional rotating electrical machinery, and form the
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elementary "neurons" of the projected "artificial brain". The
polyhedra also serve as a set of 2n non-hoionomic reference
frames (transmission networks) for the propagation of a'seduence
of magnetohydrodynamic waves across the automata, as well as
a locus of tearing the everall field apart into a hierarchy of
smaller component fields. The automata may be analysed and
solved piecewise either as a continuous field structure with

. distributed constants, of a discrete polyhedral structure with
lumped constants, or some combination of both.

The pur’pose of a projected series of papers will be to
recapitulate and throw new ligh‘g.'updh the tensorial and topological
-theories developed by the author for stationary and inoving linear
(1-dimensional) animated networks.' Such a reinterpretation
should ‘facilitate the understanding of the rather striking
"oscillatory" behaviour of stationary or moving multidimeﬁsional
network.s that form the backbones of the automata.

From an electrical engineering point of view, the overall
automatjfon consists of 2n distinct and different pfaimensional
transmission networks, (p varies from 1 to n), all properly -
staggered within an n-dimensional space. At various points along

two complementary (a p- and an n-p dimensional) transmission




networks, a large number of n-dimensional generalised rotating
electrical machines are connected, each excited with combined
dectrostatic and electromagnetic, as well as with other types of
energies. In each n-dimensional rotating machine the st.ationary
and mufually orthogonal p-simplexes and (n-p) simplexes take
over the role of the stationary and mutually orthogonal direct-
axis and quadrature-axis brushes or reference axes, that exist
in a conventional two-dimensional rotating electrical machine, "
Reference 9 (1965): "To represent an n-dimensional
region of space, usually n referenc;e axes are used, each axis
being a 1-dimensional line, Thesé are the conventional x,y,z ...
axes; However another way to represent a region of an n-
dimensional space is to assume two mutually orthogonal reference
axes instead of n. But these reference axes now are not 1-
dimensional lines, but multi-dimensional hyper planes or hyper
surfaces. For instance if one of the axes (hypersurface) has
p-dimensions, the other axis has n-p dimensions, so that the
sum of their dimensions is n. !
If several regions of n-space are to be so represented,

(each region possessing two hyperplanes) the several p-hyper

planes form a p-network and the same number of (n-p) hyperplanes

18
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form an (n-p) ﬁetwork. Thus an n-dimensional continuous
region of space in general may possess a "primal" p-network
plus a "dual" (n-p) ﬁetwork as its abstract reférence frame,
Such a representation may be looked upon as a straightforward
generalisation of the "two-phase" reference frame concept used
in rotating electrical machine studies, or in stationary power
network studies. -

During the last thirty Years a number of new mathematical
disciplines, known collectively today as the "topology of
differentiable manifolds", ‘has grown up, that deals with
differentiable functions and their integrals superimposed upon
multiply-connected networks of spaces, in which each of the .-
interconnected spaces possesses different dimensions._ The
simplest of such interconnected space-structure is called a -

"polyhedron. ™

Although these topological texts do not deal explicitly
with electromagnetic or any othér physical waves propagating
‘over polyhedral networks, nevértheless their concepts are much
closer to the needs of the electrical engines than the concepts
of old type algebraic topology are. In fact it was found that it is

absolutely necessary to express the tensorial field-equations of
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Maxwell in terms of "exterior differential" d and § formalism
used by the topology of differentiable manifolds, in order to-
set up a more complete topological structure for conventional

electric networks. "

This thesis is an attempt to establish the basic steps on
which Kron builds the multidimenéional adaptive wave automaton,
The present author has searched in vain, for some supporting
work along the lines of Kron's wave structure., One of the
difficulties encountered in such a study is the wide range of
disciplines involved. The subject matter used includes network
diakoptics, rotating electrical machine theory, tensor calculus,
‘exterior differential forms and topology. It was felt that the wide
field of application claimed by Kron warrants an examination of
the mathemaeatical and physical basis of his recent work. Many
details have not been disclosed by Kron himself, even where he
"has published numerical results. A generalised~ apbroach to
differential problems, particularly in field analysis, does not
appear to be common in engineering literature. For example,

the field tensors FG’B and HQB used in classical and relativistic




electromagnetism are not extensively used as such by engineers. )

The present thesis does not i:each as far as Kron's
automaton. However, it is felt t.h.at some of the initial steps
have been elucidated, some obstaclés refnoved, some pitfalls
have been uneo?ered and some interesting relationships found.
These relations point to the correct interpretation of Kron's
descrip‘cion in certain places.

After much thought, consultation and discussion, it was
decided that the project shoﬁld be based on the study of structure
relations in electromagnetic field analysis and circuit theory.
"Structure relations" are con’sidered here to mean that the
equations are expressed in an organised manner, related to the
structure of a qﬁasi-physical model. As a wide range of |
- disciplines and mutually interrelated concepts is involved in
Kron's work and few guide lines or boundaries in any direction
were apparent, it seemed that a detailed study in the greatest.
depth of each step in turn would lead to frustration. The best
course appeared to be (1) to examine the structure as a whole;
(2) to decide on certain underlying essentials; (3) ’to investigate

these and their mutual interrelations; (4) to carry the work to a

21
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stage at which future development could continue smopthly and'
continuously on a sound bésis.

The elements (‘)f the system are

(a) Orthogonal networks

(b) Exterior differential fofms

(c) Electromagnetic field networks

(d) Electrodynamis of machines

Essentially this pfoject iqvolﬁes the examination of
,differential vector-relations in general and as applied to electro-
magnetic fields and machines., Some of the differential relations
in fields can be interpreted as the algebraic relations oﬁ a network
which has infinitesimal meshes. The following chapters describe
a searcﬁ for the structure relations amongst the elemen';s described
above. In Chapter 2, the search begins with an investigation of
the algebraic quantities on networks as a preliminary to the study

of equivalent network modéls of continuous fields.




CHAPTER 2

ALGEBRAIC STRUCTURAL RELATIONS IN ELECTRIC
CIRCUIT THEORY

This chapter deals with algebraic relations in circuit
theory. The mesh and node-pair analysis of circuits are
shown to be special cases of the more general orthogonal
network analysis first developed by Kron(lo). A more general
form of connection matrix is obtained using closed and open
mesh concepts. The connection matrix, Cc’ used in mesh
analysis and Ao’ used in node~pair analysis for the same

network always satisfy the relation: (Ao)t . Cc = 0; hence

the name orthogonal. It is later shown that, in geometric

sense, the mesh currents, i, and node-pair voltages, V, form’

subspaces of a more general space representing the variables

(1) The algebraic relations can be

! in an orthdgonal network.
represented by a flow diagram called the algebraic diagram.
f(irchhoff's voltage and current laws can also be represented
on this. The connectibn'matrices between brancﬁes and -

meshes are shown to be different in nature to the incidence»

relations between lines and planes on the network. Connection

23




matrices show the relationships of the branches to the
paths of currents and voltages. Incidence mafrices on the

(12)

other hand show the structural construction of the branches .

2-1 Mesh Analysis -

In a mesh network, the impressed voltages are in

'geries with the impedance elements. The branches so formed
are arranged together to form closed mesl.1es. No currents
are impressed across node-pairs, In fig. la, "primitive"
branches are shown. In general these can be interconnecfed
to form a network such as that given in fig, 1b, This has

a more gerieral form than‘tlile "mesh"network defined above.
In the primitve branches (fig. la), two types of voltages',
vand V, as well as two types of currents; i and I, appear. '
The voltage, V, represent;s the impressed voltage from a
source (generator) connected in series with the impedance
element. The current, I, is 'an impressed cufrent injected
across the branches (such as by a constant current generator).
The response voltage, V, is the voltage drop across the

branch due to the two forms of excitation. The current, i,

i
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is similarly a responseAdue to the two forms of excitafion
ahd flows through the closéd meshes of the interconnected
network.»

No currents are impressed across the node-pairs in
a "mesh" network. All the currents, I and I', are zero.

The relation between branch and mesh currents in fig. 1.

is given by:
a! b!
]
11 1 1 i?
!
12 21 1 1b
i3 = 3 1
14 4| -1
{2 5| 1 1
i=c . i° ‘ (2-1)




The primed quantities refer to the given network and the
suffix ¢ denotes closed mesh quantities, The notation is the

(1)

one most recently employed by Kron'’. The connection
matrix, CC,' is singular and cannot be inverted.
The mesh voltages are given by considering power

‘invariance,

cl

P = (vé + V'C)t. im = (v+ V)t‘. i (2-2)

Substitution of equation 2-1 in 2-2 yields:

C'

(v'c+'v'c) = (v+V)t. cc . (2-3)

i©
't.
As this is true under all conditions and for all values of _

impedances,

(VL+ V), = v+ V). C

c
or.
vit Ve = (Coly. v+ V) (2-4)
In equation 2-4, Vé is given by
(c),.V

c't

For the network of fig. 1b,
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(=

VIo= V)Vt Vg

n
(=]

1 = -
Vb V3 V4 + V5

That is, Vé sums up the voltage drops of the branches
around closed meshes. It is zero by Kirchhoff's voltége

© law, Equation 2-4 now becomes:

vi = (C),. v (2-5)

.

In Kron's originai mesh analysis, the term, V,
was ignored. The voltage drops in series with the impedance
elerhents in the primitive network were shown as v. The
currents in the primitive br-énches were equated to those
in the corresponding elements in the given network. Hoffmann
defined additional voltages, u, added to the primitive network
voltages, v, to constrain the currents to values equal to
those in the. corresponding elemenfs of the given network. It
is demonstrated there that these additional voltages cancel
in the closed meshes of the given network - that is, (Cc)t.k u=0.
Using the voltage V, shown in f_ig. la, the'same result has
been achieved here.

In the primitive network of fig. la, there is no

constraint between the currents in the various elements.

(13
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With five primitive elements there are five degrees of | .
freedom, as far as the currents are concerned. Hoffmann(u)
has pointed out that the currents can be represented by the
motion of a point in a 5-dimensional configuration space S,
having the currents as coordinates. This path is known as _
the trajectory of the primitive network. For the given network
(fig. 1b), there afe three constraints as far as the currents, i, |
ax;e concerned, thus losing three degrees of \freedom. The
trajectory now belongs to a 2-dimensional configuration space.
Hoffmann calls this the subspace é of the given network.

The mesh currents ia' and ib' can be represented by the

motion of a point on this 2-dimensional surface. This path is

known as the trajectory of the given network.

2.2« Node-Pair Analysis

In this analysis, currents, I, are impressed across
the node-pairs. The impressed voltages, v, in series with
the impedance elements are all zero. In the single-node
concept of Maxwell, all injected currents entered (or

departed) at several nodes and finally departed (or entered)



at the ground node. But in the node-paif analysis, any

pair of nodes can be used to impress the current. Open meshes
© can exist between ‘any two nodes and currents can be

assumed to flow along these, The' suffix, o, will be used to
describe the node-pair or open-ﬁxesh quantities. The |

relation between branch voltages, V, and the arbitrarily

chosen (but independent) node-pair voltages, Vé, of the -
network is: |

V=aA .V | (2-6)

For the network of fig. 1b, the matrix relation 2-6 is:

d’ f! g'
v, 1 -1 v
v, 2 1 vy
v, = 3 -i 1 vy | e
v, 4 -1 1
A 5 1|
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The impressed currents, I:), for the network are

given by considering power invariance,

_ 40" o! - (s
P-(1 +1 )t.Vg-(1+I)t.V
= (¥+1)t'Ao'-v'o |
' U .. o
°F 17 +1° = (A),. GFD  (2-8)

) .
In equation 2-8, response mesh currents i® are given by

(Ao)t . 1. For the network of fig. 1b, they are:

LA L)

i35 =0

dlettei®eo

Since currents, i, only circiilate in the closed meshes, they
add up to zero at the nodes by Kirchhoff's current law.

1 : , :
Therefore, i° = (Ao)t . 1= 0, and equation 2-8 now becomes:

1°=(a),. 1 (2-9)

An interesting relation is" established by mutlipiying

the connection matrix, Cc, by the transpose of Ac;. For the

network of fig. 1b,



dr

gl

f?
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1 3 4 5 al_ b ._a' b
il 1 dfo |o
1 -1 1 2o |o
-1 1] 1 1 Cf' 0o {o
-1
1 1
(Adpen)t ' (Cclosed) =0 ' (2-10)

In section 2-1, it was mentioned that the givén
network (fig. 1b), has two degrees. of freedom as far as
closed-mesﬁ currents are concérned. This was used to
describe a 2-dimensional space S. Three independent node-
pair voltages can be taken for the same network and three
independent .open-path currents can be assumed. A 3-
dimensional configuration space S can be described using

‘ !

the three degrees of freedom of the open-path currents,

In general if there are n branches and m closed meshes,
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there will be (n-m) node-pairs. The configuration space §
will have m dimensions and § will have (n-m) dimensions.
The coordinates of the splace:s'are related to fhe primitive
network quantities by Cc and Ao' They satisfy equation 2-10

and for this reason Kron suggests the name orthogonal

subspace.

2-3 Algebraic Diagram

The algebraic structural relations expressed by
equations 2-1, 2-5, 2-6, 2-9 and 2-10 can be summarised
in the form of a flow diagram or algebraic diagram first

(14). The impressed quantities, I and v,

suggested by Roth
are shown by the short vertical arrows. The long vertical
lines give the impedances and admittances. An arrow
connecting two dots gives a métrix relation. Each dot
represents a row or a column matrix. Two or more arrows
shunted by another give a matrix product relation. For

'

example, in fig. 2, the arrow Zé connecting ic and v'c

bridges the three arrows Cc’ Z and (Cc) R giving:

Ze = (Che 2. C | (2-10)
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(The convention in taking products, is to go against
the arrow). | |

The algebraic diagram also gives Kirchhoff's current
and v‘oltagé laws as shown on fig. 2. The diagram, giving
the algebraic structural rela'gioné_ of a network, will be

developed further in a later section for field networks. |

2-4 Orthogonal Network Analysis

Orthogonal networks are excited by a combination of
mesh voltages and node-pair currents; and form the more

general type in network analysis. They are solved by

extending the concept of closed mesh to "open meshes"(lo’ 15).

The open-mesh currents enter a node and after passing
through one or more branches, depart at some other node.
d' .f

In the network of fig. 1b, a set of open-mesh currents I , I

t
- and Ig can be assumed as follows:
d!

I" : enters at B, flows through branches 3 and 2
and leaves at A
\ : :
If : enters at C, flows through 2 and leaves at A.

[} . X :
18 : enters at D, flows through 5 and 2, leaves at A



(The open-mesh currents need not all leave at a single
node).

The relatioq between the five ‘branch currents
"and the five mesh currents (two closed meshes, three open

‘meshes) is now given by:

a' b d fr g
11‘ + I1 1] 1 ia'
i2 412 2| 1 1 61 1 '
i34+ 18 = 3 1 | -1 . ol
et 4 -1 !
5419 5] 1 1 1 18’

(2-12)
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In terms of partitioned sub-matrices,

i+1 = |c c

The connection matrix, Cé, gives the relation
of th;e branches to the open meshes. Equation 2-12
contains the non-singular connection matrix C. This can
be inverted and then used to express the 'given network
currents in terms of the primitive network quantities. The

open- and closed-mesh voltages are given, satisfying

power invariance, by

(C,); (C v+ (C)LV
‘ v+ V = ,
(Co)t (Co)tv ¥ (Co)tv
v + V!
C C
= (2-14)
’ Vo + VL
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The term Vé = (Cc)t . V, sums up the voltage
drops around closed meshes. It is zero by Kirchhoff's
voitage law., Since the connection matrix, C, is non- iy,

singular, equation 2-14 can be rewritten as:

v+V ct : v+ V! (2-15)

For the network of fig. 1b,

'

1 1 -1 h
2 1
t)‘1 - 3 | a1 |1 (2-16)
4 a |a 1
5 -1 1
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Equation 2-15 is an extension of equation 2-6,
V= AOV:), used in nodal analysis of section 2-2, The
partitioned matrix in equation 2-16, corresponding to open
paths, can be recognised as matrix, Ao' in equation 2-17.

| Extending this concept to closed meshes as well,

A = (Ct)',l = A A (2-17)

The impedance of the orthogonal network is given by
the usud'CtZ C transformation (reference iO). The unknowns
in the orthogonal network analysis, usually; are V(') aﬁd ?c'-.
In the analysis of mesh_networks in sectiof; 2—1, Io' is zero.
It is normally nbt required to calculate V").’ In the analysis
of nodal networks iﬁ section 2-2, v:: is zero, It is not
required to calculéte i either, However,‘ both V and i°

are present in all the networks,
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2-5 Incidence Matrices

The incidence matrices connect points to lines, lines
to planes, planes to cubes and so forth. For a given
topological stfucture, there is only one set of incidence
matrices. In fig. 3a, the points A,. B, C and D are called
0-cells. They are said to be incident to the five l-cells 1, 2, 3,
4 and 5. These in turn are incident to the 0-cells as well as
the two triangular areas a and b (2- cells) they enclose. The
circular arrows in fig. 3a give the orientation of the 2-cells.
For 0-cells, an arrow entering a node has been taken as positive

orientation. The incidence matrix M1 relates the lines

2
to planes. For fig. 3a,
a b
111
2 11
1 3| ||
M, = (2-18)
2
-4 1
5 |1 |-1
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~ The incidence matrix Mf relates points to lines, For fig. 3a,

1 2 3 4 5
Al a1 1
B 1 |1
Mf = (2-19)
| c S IS 1
p| 1 S a1

The incidence matrix Mf can be established in another

~ way in two stages. First, from the nodes (0-cells) A, B, C and
D, three independent pairs are chosen, say A and B, A and C,
and A and D. The connection between the pairs and the 0-celis

will be denoted by the matrix Cz .

A& B A&C A&D

A 1 1 1
| B| -1 - |
c® = (2-20)
C ,
. C -1
D o -1

(this matrix is just an exten_sion of the connection matrix idea

used earlier in linking meshes and branches). The subscript, o,



in C: denotes connection between 0-cells,

Next, the connection matr;x A01 relating the node-pairs
to branches ’i's established. This has already been done in the
nodal analysis of section 2-2. Using the matrix given by

equation 2-7, the product:

A%B A&%C A%¥D 1 2 3 4 5
Al 1 1 1 |asB| -1
o B -1 Asc| |1 |1 -1
CC (AO].)t - - .
c -1 A&D | -1 | 1 |1
D | -1
1 2 3 4 5
Al -1 1
o R
B 1 1 = M (2-21)
. ,
c a | 1
p| 1 a |
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The result is shown on the algebréic diagram (fig. 3c).

Suffix 1 has been added to the matrix, Ao, relating branches

to the n'odé-pa'i'rs. It implies the fact that a connection is
made between 1-celis and their boundaries (bounding 0-circuit).
The ‘superscript 1 added to the matrix, Cc’ relating branches
to meshes imples that a connection is made between l-cells
and the l-circuits. Next the connection matrix, AoZ' will be
developed, and incidence matrix Ml2 established in two stages;

Meshes a' and b' (fig. 1b) bound the areas a énd b

(fig. 3a) respectively. However, the direction of mesh b’
-is in ;n opposite sense to the orientation of area b." The

connection between the meshes and the areas is:

A = ' (2-22)
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The product C](': (obtained from equation 2-1) and

can be seen to give incidence matrix M1 This product

oZ)t 2°

~ relation is also represented on the algebraic diagram.

(A

Another way of describing the electric network of

' "
fig. 1b is by using mesh currents i* and ib (fig. 3b). The
connection, C':lc , between the mesh currents and branch

currents of fig. 1b is:

a"  b"
it 1] 1 12" .
§2 2| 1 o
3| = 3]a 1 T (2-23)
it al 1 |4
1° 5 1




The connection between the meshes and the areas a.and b

is:
a" bll
a 1 1
02 )
b -1

can again be seen to result in M1 )

2

1
The product C_ (Aoz)t

the incidence matrix:

an b" a b a b
1 a"| 1 1| 1 )
1 bl 1 | -1 2| 1
a |1 =3 |-
1 | -1 4 1
1 5] 1 | -1

(2-24)
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The connection matrices used in electric circuit

analysis are seen to give the relation between branches (1-cells), .
the node-pairs (bounding 0-circuits) ahd meshes (l-circuits),

The closed- and open-mesh description can be varied. Two

such descriptions have been given. The pairs of 0-cells chosen
were A and B, A and C and A and D (fig. 3a). There are

fifteen other possible ways of choosing three independent pairs

of 0-cells. However, there is only one set of incidence matrices.
Connection matrices relate the paths of voltages and cufrents to
branches. Incidence matrices, on the other hand, show thé
structural construction of networks. Kirchhoff's voltage and
current laws have been interpreted using connection matrices.”
Incidence matrices will be used in a later section in the \:

application of Stokes' theorem.

In future sections, the field equations of Maxwell will
be dispiayed as network equatiqns rglating to infinitesimal |
meshes. The differential struci;ﬁre of Maxwell's equations is

"there translated into an algebraic structure for the network, |
the field equations being given by a more general form of
Kirchhoff's current and voltage laws. | However, to arrive at a

general network, the field equations must be expressed in a



manner independent of the coordinate system. Exterior
differential calculus has been found to be very cbnvenient

indeed in this respect.
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CHAPTER 3

EXTERIOR DIFFERENTIAL STRUCTURES

This chapter deals with vectors, dyads and higher order
forms in relation to exterior derivatives such as gradient,
curl and divergence. In the study of exterior forms,
differentials are so arranged as to generalise the concepts of
curl, divergence, Stokes' theorem and Poincare Lenima.
The relation between exterio? products, exterior derivatives,
star operatbr (dual) and the corresponding tensor operations are
brought ouf in the concluding section. For the stﬁdy of
derivatives, it jé supposed that the scalar, vector or tensor
is given at every point of a region of space. Such an Lo

aggregate is called a scalar-, vector- or tensor-field.

3-1 Exterior 1-Forms

The differential of a scalar, f, which is a function of

three Cartesian coordinates x, y and z is given by:

_ of of :
af = o dx + e §y + T dz :(3-1)

In equation 3-1, if dx, dy and dz are now replaced by base vectors
dx, »d-}" and dz along the coordinate axes, the gradient of £, %f

results.



- M M~ uU
vi bxdx+bydy+zdz

(the symbols -i.: -j.and k aré used to denote base vectors in many
books on vector algebra. In Cartesian coordinate system the);
are called unit vectors, since they‘are of unit length. In the
more general curvilinear coordinates, they are not
necessarily of unit length. When exterior differentials ai'e
studied, it is found to be convenient to use d¥X, dy and dZ).

In the language of exterior algebra, the gradient v
is still written as "df" but the "d" i‘s often written with a bold

' face(m) In this thesis, a stroke above the "d" will distinguish

it from ordinary differentials, With this notation, -

of - of -+ of »

daf = = dx + >y dy + e dz A - (3-2)

The vector df is an example of exterior 1-forms. In general,
a vector need not be the gradient of a scalar. The more general
expression for an exterior 1-form in an n- dimensional space is:

w = A &+ A, & + A, & +A_ & (3-3)

The exterior l1-form is an extension of the vector idea. The -

. 1 ‘
1-forms are added and subtracted by adding and subtracting the
corresponding coefficients of dax* (k=1,2,...,n). In subsequent

+

analysis, the arrows above dx* terms will be omitted.
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3-2 Exterior Products

Exterior product of two 1-forms is an extension of
the cross-product idea of vectors. If two l1-forms are given,

in Cartesian coordinates x, y and z, as:

w Aldx+A dy+A3dz - and

2

A= B

then the product

B, dx + B2 dy+B3 dz,

WA= (AB,-A,B)dxady +
'(Az B3 -A3B2) dy Adz  +

(A3 B1 -AlBa) dz A dx ' . (3-4)

The wedge ( A ) denotes the "exterior" product. Three rules
have been used to arrive at this result.

(i) The distributive law
| (Al dg+ A2 dy) a dz = ;:Al' dxadz + »A“zrdy‘/\ dz -
(i1) The alternation rule |

dxAdz = -dz adx

'(iii) dzAdz = 0, a consequence of the alternation rule

-

| (3-5)
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The exterior' pfodugts are not commutative. The
three rules also serve‘ to generalise exterior products of | ~
higher order differential forms in an n-bdimensio.nal space. an

An important deviation frorh the vector cross-product
idea is observed from equation 3-4. The cross-product of
two vectors is a third vector. However, the exterior product
of two 1-forms results in a 2-form. The 2-form zr A A
can be represented by an area (fig. 4a). The circular arrow
in fig. 4a gives the "orientation" of the area. The componeﬁts
(A,B,-A,B)), (A,By-A,B,) and (A4B,-A B, given in equation
3-4, represent the projections of the shaded area on the three
coordinate planes. If the order of exterior product is change'cli,
then A Ao 1is still given by the same area; but the
orientation (direction of the circular arrow) will be revérséd.
A vector I perpendicular to the shaded area (fig. 4a) corresponds

to the vector cross product of the two vectors ) and -/'\’

Ir.z vector notation, it is given by:
T &xA
The significanée of the star-operator in fig. 4a will be explainéd

in a later section. The 2-forms dx Ady, dy A dz and

dz A dx give unit areas on the three coordinate planes.



e

FIG &L EXTERIOR PRODUGTS, DUALS AND
INTEGRATION OF EXTERIOR FORMS
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In a 4-dimensional space, there are four base vectors dxl,

dxz, dx3 and dx4; but there are six unit areas dx1 A dxz,

dx1 A dx3, dx1 A dx4, dx2 A dx3, dx2A dx4 and dx3 A dx4.

- 3-3 Higher Order Differential Forms

These result from the exterior multiplication of 1-
forms. In equation 3-4, two important properties of the 2-
form emerge: (i) the coefficients of the dx A dx terms are
zero; (ii) the coefficients of the dy A dx terms w'ill be tﬁe

negative of the coefficients of the dx A dy terms. A matrix

representing the coefficients will, therefore, be skewsymmetric.

For example, if

—s b
a Az | Aa
Ap * A2 Aos
~Aq -Agg
S 1 S AL A | (3-6)
M 2 g.: ab | 7 _
- | 2 2 3 '
--A12 QxAdx +A23 dx” A dx

o+ A.‘,'1 dx3 A dxl,
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A p-form can be expressed in terms of the components of a

skewsymmetric tensor of rank p as:

u.=-517 > (AQB““"')dxaA axP A ... Adx" (3-7)

An alternative formulation of p-forms is in terms of

(18)

"ordered p tuples" In equation 3-6, the intg}s aandb

can be arranged in an ascending order as:

a b

1 2

1 3 (lsa<b 3
2 3 B |

In terms of these "ordered doubles",

. a b
= dx A dx
H ca,zw Aab

In this notatioﬁ aZb stands for sum over all p-tuples; but
. ]

when a and b are enclosed in brackets, (Z) now stands for

a,

gsum over all "ordered" p-tuples. A p-form in an n-dimensional
space, in terms of this arrangement, is:

h h
b b

.‘.h)dx dx Aooo Adxp (3‘8)

= (
g rzm Ahlhzh's

where hl’ h2’ e hp“ are all integers, no two of them being
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equal and arranged in an ascending order as:

1'<hl<h2 < hy

eee < hp £n
The letter H denotes the p-tuple of integers and (H) denotes
that they are "ordered". In a 4-dimensional space, the
ordered triples are dxlA dsz dxa, dxlA dxz/\ dx4, dxlAdX3/\ dx4
and dsz dst dx4.

Two p-forms expressed as equafcion 3-8 can be added
and subtracted by adding and subtracting the corresponding
coefficients, A p-form w and a q-form A, in an n-space,

can be multiplied satisfying the rules given by equation 3-5 as

well as the associative law. In particular,

WA A =(-1)pq Aaw ifptq < n
=0 ifp+q>n
wA(Aap) =(waA) A u - associative law (3-9)

The exterior product is seen to generalise the vectc;r
cross-product idea to more than 3-dimensionsl and to higher
+ order dyads, tensors etc. Whereas cross-product of twc;
vectors is a third vector, exterior products of differential
forms re.sult in higher order forms. Cross-products are not
associative, b;1t exterior products are. In Enclidean 3-

dimensional space, the exterior product in conjunction with a




star operator (to be explained later) gives the vector cross-

product (fig. 4a).

3-4 Inner Product

This operation is the extension of the vector dot-
product idea. For two l-forms zv and A, given in

Cartesian coordinate system, as:

w 3

1 2 ‘
Aldx +A2dx +A3dx

3

, 1 2 »
A Bldx +B2dx +.B3dx
the inner product (dot product) is:
((w, A)) =‘ A1B1+A2 B2-¢-A3 B3
(The double brackets (( ...)) will be used in this thesis to

denote inner products).
- For two p-forms given as:

af’-wl\w/\ ...... Awp

p: A A 221\......,\2

€ ¢ 8 4 & 9 e € 8+ S0 N Ve &t 4 9 ¢ b B 8t

((60,.3,,))-~--------((wp,}lp))

K\, p) =
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In other words, the inner product of two p-forms is
the determinant of a matrix V'vhose elements are the inner
products ((w , }\I. )). It follows that the inner product of a
p-form and a q-form (p # q) is non-existant, for the matrix in-
equation 3-10 would then be singular, and will not have a
determinant., The inner products are distributive and

commutative.
Cow, A+u) = Qw,AN + Cw,u)

Cw, A =CA,wW)

In a general curvilinear coordinate system the base
vectors dxl, dxz, vees dx" are not necessarily orthogonal. ..
Moreover, they may not be of unit length. In such cases the
inner products of the base vectors (i.e. the dot-products) are
expressed by a matrix g:

(ax, axd)) = g | (3-12)
The name orthonormr‘al syétem is given to coordinate systems
in which the elements of the matrix g are:

Z1Ui=g), 0 (i)
In the space-time coordinate system used ih relafivlity,

the proper distance between two neighbouring events is(ls): ‘




(ds)? = (dx)? + (dy)® + (dz)? - 2 (av?

where c is the velocity of light and t is time in seconds. The
term ct has the unit of length and is known as cotime. It will

be denoted by # in this thesis. In terms of cotime, the proper

4

distance:

(@s)? = (0% + (ay)? + (dz)? - (av)?

In térms of inner product then:
(gt , de) = -1

The number of negative signs associated with the inner

products of base vectors is known as signature.

3-5 Hodge (Star) Operator

In Euclidean space, the 2-form resulting from a product

of two 1-forms, @ and A , can be represented by the shaded

area in fig. 4a. The circular arrow gives the orientation of the

(19) on this 2-form results in

area. The Hodge (star) operator
a 1-form, u, perpendicular to the shaded area (fig. 4a).

The 1-form u is also known as the dual of the 2-form (& A),
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The direction of this vector is in a rigﬁt handed screw sense

to the c.ircular arrow,
(17)

Flanders

an n-space in terms of inner and exterior products:
wAA= (W, AD de (3-14)

Here, W is a p-form. The star operation on w gives the

dual (n-p) form *W , and

de = dxlAdsz... Adx",

. for orthonormal systems  (3-14a)
A = any (n-p).form

In equation 3-14, do° is the unit n-dimensional volurhe,

the inner product gives a'scalar and WAA results in an

n-form (or an n-volume),

Equation 3:14 is best illustrated by some examples.

3-5-1

In the Cartesian coordinate system, if
W = Adx+ Bdy+Cdz,

the dual of & will be a 2-form. Let

il
'

generalises the star operator for a p*fofm in



*W = DdxAady+Edxadz+Fdy Adz
As A can be any 2-form, let
A =Gdxady+H dxadz+Kdyadz

Equation 3-14 must be valid for all values of G, H and K. In

this equation,

WAA AGdxadxady+ AHdxadxadz
+ AKdxadyadz +.,. -

+ CKdzAadyadz

AKdxadyadz+ BHdyAdxAadz

+IC G dzadxady
(since dx A dx etc. t erms are all zero)
- (AK-BH+CG) dx ady Adz (3-15)
(since dy A dx = - dx A dy)
(*w,A))="DG ((dx ady, dxady)) +...
= DG |((dx, dx)) ((dy, dx))| +...

((dx, dy)) ((dy, dy))

DG |1 0ol +...

0 1

= DG+EH+FK | ' (3-16)




Substitution of equations 3-15 and 3-16 in 3-14 yields:
AK-BH+CG = DG+EH+FK’

As this equation is valid for all values of G, 'H and K,

F=A, E=-B, D=C

so that,

*W = Adyadz ; Bdxadz + C.dxady

=Adyadz+BdzAadx+ C dxady

In this case the 1-form & is a vector and the 2-form, * zv ,

represents an area. The coefficients A, B and C give the

o~

projections of the area on the three coordinate planes. The area

>~

itgelf is normal to the vector &U .

3-5-2-

An example in space-time coordinate system will be
considered next. The cotime, ct, w»ill be used in the analysis
(t is thé time in seconds, ‘¢ is the velocity of lighf and ct has
the dimensions of length'expressed by the symbol t); The

inner product has been seen in Section 3-4 to be:

((dt, a¢)) = -1- -
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A 2-form &J in a general case will have six terms.
Consider the special case when the coefficient of dy A dz |

term is unity and all others are zero.

ie. U = dy A dz

The dual of & will be a 2-form normal to thié. It can only

contain the term dx A dt, since *.ZJ is normal to both dy and

dz. Let
¥*W = K (dxa dt)

If the 2-form A in equation 3-14 be taken as (dx A dt), then

’wAA,= dy A dz A dx A dt
= -;dyA dx Adz A d¢ . .-
| = dxadyadzadt (‘;3-17)
(kwr, A ) = ((Kdxadt, dxadt))

= K [((dx,dx)) ((d¢, dx))

((dx, d¢)) ((d¢, d¢))

"

-K

(3-18)




ot b 2o st s 10

l1 = -K, or
¥(dy a dz) = -dxa dt ‘ (3-19)

A similar procedure for dx A d¢ results in;

k(dxAdt) = dyadz | (3-20)
That is:
*%(dy Adz) = -¥(dx Adt)
= -dy A dz

This can be compared‘ with the j-operator in a 2-dimensiona1
plane (j = | vV-1). The dual of a vector A is jA , and thg dual
of this is:

3. K = K

Flanders(17) has shown that, for the general case: _

np+p+s

**WJ = (-1) w (3-21)
Here, p = order of the differential form

n = number of dimensions of the space

s . = number of negative signs in the inner

product of the base vectors
The dual of a 1-form in a 3-space is an area normal to the

vector. The dual of a 2-form is a vector normal to the area
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represented by the 2-form. In a 4-space, the dual of an area
is yet another area. The six independent areas in a 4-space

can be grouped into three pairs of dual areas:

. dxlA dxz , and | dx3A dx4
dx3A dx1 and dx2 A dx4
3 : 1 4

dsz dx and : dx Adx

\_\

3.6 Exterior Derivatives

The gradient of a scalar is an example of an exterior

derivative, From section 3-1,

- of af of -
a = - dx+ oo dy - dz | (3-2)

The scalar f is a 0-form and the exterior derivative takes the

0-form into a 1-form. The exterior derivative can be exténded

to the general case by the following rules(”):

(1) d(W+A )= dw +dA

(11) c'l(wf\ K) dw A u+(-l)pw/\ du

(1) d(dx) = 0 , ©(3-22)
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\

Inthis & and A are p-forms and u is any

q-form.

The exterior derivative is best illustrated by some

exarﬁples.

3-6-1

In the Cartesian coordinate system, let:

\ W = H dx+H, dy + H, dz
using equation 3-22, rule (i),
dw =d(H dx)+d (H, dy) + d (H3 dz)
Using rule (i),
d (H) dx) = 3H A dx+(-1)° H Ad (dx)

The second term is zero by rule (iii)

v d(H dx)= 3H A dx

d ? . oH
[ R—— + -
= dx A dx %y dyadx + dz A dx

dz
Inthis, dxAdx=0

dyAdx¥ -dx A dy

(3-23)

(3-24)
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Substitution in equation 3-24 results in:

i | dH,, 2H,
d (H1 dx) = - 3y dxady + v dz A dx
Similar substitutions in equation 3-23 yield:
~ sz - le bHs sz
dw = ( ox " oy ) dxady + ( 5 - 3% ) dy A dz
: le oH
3 :
+ ( 52 " Tix ) dz Adx . (3-25)‘

The terms in the brackets of equaﬁon 3-25 are recognised as
those of the components of the curl of a vector -ﬁ The exterior
derivative is a generalisation of the concept of curl. The
exterio: derivative of a scalar (0-form) results in a vector
(1-form). The exterior derivative of a 1-form, such .as w,
results in a 2-form (e. g. equation 3-25), In g'en‘eral, the exférior
derivative takes the p-form into a (p+l) form.

The bracketted terfns of equation 3-25 give the projections

of the area d W on the three coordinate planes. Taking the dual

of W,
} aH3 sz‘ le 3H3
* = ——— - ——) -
e ( Yy V4 dx + dz x ) dy
H
+ s Ny » |
dx ~ Ty ) dz : (3-26)

s et syt s s et o sl



. . ’ -
The resulting 1-form is the conventional curl of a vector H.
Denoting the exterior derivative by the expression "generalised

curl", it is seen that, for Euclidean 3-space,

gradient of a scalar = generalised curl of an 0-form

conventional curl of a vector = dual of the generalised
curl of a 1-form

3-6-2-

' . ~
The example considered here is a 2-form, F, in a 4-

dimensional space,

~ 1 2 1 .3 1 .4
F=F12dxAdx +F13 dx A dx +F14dx.Adx )

+ F dxzi\dx3 + F

2 4 3. " 4
23 2‘;‘(ix/\dx -f-F dx A dx

34

’ In terms of the skewsymmetric matrix Fab’

'I.T" = > F dx® A dxb
‘Ca,b ab

The brackets enclosing a, b indicate summa;cion with

1< a <b g4
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Considering now the exterior derivative,

~
dFr = = —3ab dxc/\ dxa/\ dxb. - (3-27)
@b 3y L

there are three possible values for ¢:

c<a<b
a<c<b

a<b<c

When a, b and ¢ are so ordered

~ 3F, : 3F
= 2 ab dxc/\ dxa/\ dxb + 2_ a dxc,\ dx® ,\"'dxb
ce,ab) 5, C (.6 x°
oF
Z:Zbc) :b dx® A dx®a dx?
20y dx
: oF JF )F
be
< Z ( = - ;C + ab) dx® A dxb/\ dx®
a,b,9 dx ax o ax°®
)Fbc cha aFaE | a b
=Z,( — 5t c)dx A dx A dx®
€a,b,0 3x x X =

© (3-28)



3-7 Generalised Divergenc

The generalised divergence takes a p-form into a (p-1)
form. The conventional divergence of a vector gives a scalar.
The extension .of this concept toa p-form is done in three
stages: (i) the dualof W, =*Ww , gives a (n-p) form‘
(ii) the exterior derivative, d *W takes th‘e (n-p) form into

a (n-p+l) form (iii) a dual of this (n-p+l) form, *d * & ,

gives the required (p-1) form. Whee_ler(m) defines the divefgence

or "codifferential" operation as:

Fw = (_l)np+n+s+l

*d * W (3-29)

This will be illustrated by some examples,
: : \

3-7-1

In Cartesian coordinates, let a l1-form W be given as:

w = B dx+B_dy+ B, dz

1 2 3
*W = Bldy/\dz+B2 dz:\dx+B3dx1\’dy
i 3B, 3B, ¥B, ‘
d*xw = ( 3x‘+by + =57 ) dxadyadz
I 3B 2B |
*d W = ( +
il y" + 32 ) (3-30)

:

70



Equation 3-30 is recognised as the conventional divergence

of a vector in a 3-space.

3-7-2

In the space-time coordinate system, consider a 2-form

~
H given as:
H = H1 dy A dz +H2dzAdx + H:3 dx A dy

+H4 dxad¢ + H5 dy A d¢ + H6 dz A d¢

The equations,

*(dy A dz) - (dx A d¢) ' (3-19)

*(dx A dt) dy a dz ' (3-20)

derived in Section 3-5-2 will be used here to obtain the dual of I}‘

*H = -H, dxa dt - H, dya dt -H, dz A d¢

+H,dyadz + H.dzAadx + H, dxady

4 5 6

The next operation in the codifferential is the exterior derivative,

0H4 6H5 0,

1 = ( * + —5) dxadyad
d*H = (3% 3z ) dxadyadz

oy
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oH dH. . M S
4 ' 2 3
+( 3% A vl 5y ) dy A dza d¢

+‘0. )

To obtain the dual of this, the relations

-dt

MixAdyadD) =
Wy A dz Adt) = -dx v
are used (Appendix 1)
oH 2H_ . -~ oH
A 4 2 .- 3
¥d*H = - i v 32 " 3y )dx-..._-...
oH oH 0H
4 5 6
- % oy MY ) dt , -(3-31)

The codifferential is seen here to take the 2-form 'IV{ into

a 1-form.

-

3-7-3

The Laplacian of a vector, K, is written in vector,

notation, using the gradient, curl and divergence operators as:

grad (divK) - curl (curlK.).
or, 5(6.}{)7- 3"x (VxA)
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In the notation used in exterior differential forms, the

Laplacian of a p-form & in any n-dimensional space is:
-dsdw - Fdw . | -

The form & is called "harmonic" if the Laplacian of &U

is zero(17).

3.8 Poincare Lemma

If W 1is ap-form,

then:

d(d w )y=0"' (3-32)

This is known as Poincare Lemma and will be examined in

-

this section. Let W be a p-form expressed as; |

w = > A dx
. o H
where H = { By By .., b}

The brackets enclosing H denote the ordering:

 15H<h2<“.<%<n



QA
iw - ? dx! A dxh
' (H),i bx
BaA '
d (aw ) = —L— dxj/\dxi A dxH (3-33)
(H),i,i Bx‘] (axl
Now,
K} 2
R I
bxj bxi dxt ¥’
but,

ddadd = -ddadd

In equation 3-33, if the summation is written as:

2

OA . ‘
H i H ~
—  dx d dx
‘é) {%7 (be 2x hoax) } '

the bracketted term is seen to be zero, giving d (dw ) = 0.
In Euclidean 3-space, the appiication of Poincare Lemma
to a scalar, f, and a vector, K, gives:

*d(df)=0 R ' (3-34)

*dx(x34) = *xa @K =0 -  (3-35)
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This is just one way of expressing the well known relations

curl (gradient) = 0

div (curl) = 0

3-9 Generalised Stokes' Theorem

The theorem is stated as:

fw =/&'w | (3-36)
Y £ .

In this, &J is a p-form and d&, the exterior derivative "
of e , a (p+l) form., The latter is integrated over a (p+1)
di‘mensional region J . The boundary of 5 , denoted by 3%
has p-dimensions. The p”-form & is integrated over thid

re gion,

3-9-1

~ N .
Consider a l-form H in a 3-space. Let,

*dH = J | o (3-37)
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YH. dH..-

i'e'(—b-y_3- bzz) dx +(...)dy+(...) dz

J1 dx+J2 dy-i-J3 dz
In conventional vector analysis, equation 3-37 stands for:
. - -
curlH = J

In fig. 4b, 5 describes an area whose boundary is given by

the closed curve 9% . The integral, f H, is the line
‘ '3y

integral of H around the closed loop. In the conventional vector

analysis, it is written as:

- - - '
j( H. dl (dl is the elemental vector length along
the curve)

In equation 3-36, the integral -
f dw = / afl = [4§
¥ ' & £

in the conventional vector analysis, it is written as:
JT.¥ds (I anddS are as shown in fig. 4b)

Another application of Stokes' theorem is in the equation relating

electric flux and charge. In vector form:

# D.n d = {/fde‘

= -



7

"In this relation, 35 is a volume region bounded by a closed
: -
surface 33 . The vector D is the electric flux density and g

is charge density. In the notation of differential forms,

f*5= fa*ﬁ= f*f
g &

93
When a region is bouﬁded_ by subregions (e. g. a triangular
area bounded by three straight lines), the incidence matricés
described in Section 2-5 are >found to be useful. The integrations
can be carried out separately oirer the subregions and put

together with the aid of incidence matrices.

3-10 Relation to Tensor Analysis

The exterior product, exterior derivative and star
operator (dual) are examined in tensor notation in this section.
A 2-form was earlier expressed as a product:'of a skewsymmetric

matrix and base vectors:

. 3
wed 2 AL e aad ~ (3-6)
. ’ as! a : '
: bs! '
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In Einstein summation convention, repeated indices .
themselves imply summation and the sign 5, is omitted. In

this convention,

a b ' '
A, dx"A dx (3-38)

[

H =

If the coordinates X are transformed into a new system X, the

1-form u is given in terms of a new matrix A as:

If the unit vectors transform as:

ax® = ¢ ax 9
o

. AO’B {s seen to transform as:

. b | :
A = Ca Cg Aap _ ‘ (3-39)

A set of physical or geometrical entities, which is represented
by the aggregate of a set of components following transfofmation
laws, such as equation 3-39, is known as a tensor(zo’ 21).

A tensor transforming as Aab' involving the tranéformation
tensors, C, is called a covariant tensor. When the

transformation involves inverse of C, the tensor is a

contravariant tensor - e. g.

1
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Aa

a .a a _ a,-1
Yq A", where 7, T (Ca)

In equation 3-6, Aab is either zero (a = b), or (-A_ba),
a# b, and Aab is a skewsymmetric tensor. A differential

p-form, in terms of a skewsymmetric tensor of rank p is:

1 ..
p = Fi_- Aaﬁ I dxaA deA e N dx" (3-40)

3-10-1 Exterior Products of Tensors

The exterior product of two 1-forms,

W o= A did+A dxl+ AL dxS +... = A dx®
1 2 3 a .

and

A ="B1dx1+B2dx2-ijB3dx3+... - B, axP

4 _B ~
is: .
| | 1 2

CWAA = (A| B, - A, B)) dx a dx

+(A B, - A, B) dx'a dx° +

1 3 3 1 A * 0 0
£+(A B, -A B)dszdx3+‘
l 2 3 3 2 L 2 ]

=1 (A, BB - AB B) dx% A dxﬁ
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and the skewsymmetric tensor

F (A,By - Ay B) (3-41)

v 8 8

is thus seen to }give the exterior product, Now, if another

‘1-form p defined as:
= G dx'
H v X

is multiplied by the above 2-form wald ie.

= (1 a B Y
watrp = (3 F.z dx‘g\dx ) A (GY dx")
= —1- "H dxaA de A dx'y
. 31 Tafy
then, L,
= + F ' . . -
Han (FaB Gv By Go* F'Ya GB) (3-42)

-~

The exterior product may be extended to higher order forms by

the use of the generalised "Kronecker delta". The simplest

Kxfonecker delta is:

aia 0 (1sa)

= ] ‘(i.:a)

The more general form of delta is giveh by first forming a

N



matrix whose elements are the Kronecker deltas of the

g
type 6a and then taking the determinant of this matrix. For

example:
i i
6a 6b
1]
I3 = determinant of
ab
i J
é 6b
P R I i .
(6a 6b - 6b 5a)

It is seen that in equation 3-41
FaB B n -

Simﬂariy equation 3-42, in terms of a Kronecker delta, is:
1 nom

HaB-y Y] 60437 Foo Gu

rEM ' ' :
The Kronecker delta 6037 is giyen by the determinant of the

)

matrix:
x x no
5 é 6
a B Y
4 - &
é 6
Sa B Y
&M &M sH
a B Y




In general the exterior product of a p-form F and a

q-form G is given by:

1 1 mn...pq... 8
. o= emomame — 6
Habc...r (pgxqg abe. .. r mn...p Gq...s

3-10-2 Inner Product of Tensors ‘

The inner product of base vectors, when the coordinate
system is not orthonbrmél, wa giv’én as:

((dx', ad) = g7 (3-12)

ij

The tensor formed with the components g™’ plays a very

important role in tensor analysis. Its inverse, (gij)'1 = gij’
is known as the metric tensor. - The word "metric" means
"measu.re" and the metric tensor is used in geometry to é;cpress
length and angle between directions and enables the

formulation of invariants in general,

The inner product of two l1-forms

(w, A ) * (&, &’ By ad)
(*4

= ABgg B . A (B P

The latter braéketted term is written as B in tensor notation;
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it gives the "contravariant” components of the tensor B. The
shifting of the index is known as "raising" in tensor language.

The inner product in terms of B is:

- a
(e, 2 ) = AB

The repeated index a sums the product of the
correSponding'components of A and B. This process is known
as "contraction” in tensor language.

If two p-forms are expressed in terms of éoeffic;lents

and Gm , the inner product of these is:

F n...8

ab...p

1 ab...p
p! Fab...p G

(The skewsymmetric tensor, G, is expressed in terms of

contravariant components). This is a special of contraction in

which tﬁe contracted system is not merely reduced in rank but

in fact results in a scalar.

3-10-3 Dual Tensors

A special skewsymmetric matrix "e" is first introduced,

whose terms are: +1, -1 and 0. In 3-dimensions:
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In n-dimensions,

R or, 0

depending on whether

(i) an even permutation of @, B,... #  will ,restore'ﬁ'
the sequence 1,2, ..., n

(.or)

(ii) an odd permutation will restore it

(or)

(iii) any index is repeated
"The e just defined is useful in dealing with deteyrminants

(20) |

and dual tensors . In terms of e, the determinant of the

transgbrmation tensor CZ is:

4 x

Icl - eaB...ﬁ Cl C e Cn
The transformation law for "e" is:

... ch

LI jé“'B"' o8 b
a B n

|c|

. Because of the appearance of the determinant C in the above
equation, e is called a relative tensor of weight one. A tensor

of weight one is also called a tensor den?ity and is used in the



.formulation of a network model for Maxwell's electfomagnetic
field equations. The determinant of the metric tensor, g, is
a tensor of weight two. Using the square-root of g, another

skewsymmetric tensor is formed:

8éb...n‘ - 1‘ ab,..n
VE

which transforms &as an absolute tensor.

If a tensor "F" of rank p has "{" as its dual tensor,

then(zo):

f""“":'"c =_]'__F eaB'°'6"u~--€

(The author has modified slightly the definition given by Brand(20

In equation 3-43, the sequences of F and € are reversed as
compared to reference 20, page 370. This new definition
17
an,.,

agrees with the star operator, as defined by Flanders

The significance of equation 3-43 can be illustrated by

taking the example in fig. 4a. If W = Aa dx” and A = BB dxa,

then from equation 3-41,
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B

oAd = 1P _dx® A dx
. ) af

where, Fa[?l (AQBB - AB Ba)

In the expande'ﬂ form,

1

; - 1,2 2 3 ‘
AR —Flzdx Adx + F23 dx” A dx 4—F31 dx3A dx1
. ..3 1 L2
= X =
u (zuaA) F, dx” +F,, dx +Fq dx
= 1P eV axY = Y ax" (3-44)

of
If curvilinear coordinates are used, equation 3-44 assumes the

more general form:

~ aBy x ¥ x
= g dx =
u 2,8 E g’)’ﬂ g‘Y;\' dx

The appearance of the term \/E was not discussed in
Section 3-5, because orthonormal coordinates were assumed
there. Equation 3-14 can now be generalised by redefining the

unit n-dimensibnal volume:; -

1 2 n : .
d = d d "o
o Jg' X Adx A | A dx (3-14b)



If the metric tensor has a negative determinant, such as

in the space-time coordinate system, the modulus is taken to

obtain the square root of g (l.e. /|g]| ).

3.10-4 Exterior Derivatives - Tensor Form

i

The generalised Kronecker delta, used in Section 3-10-1
to formﬁlate exterior product, is employed here to generalise
exterior products (generalised curl of tensors), If T is

be...g
a skewsymmetric tensor of rank p, the generaiised curl 18(20):

AT

1  ,abc...g be...g
— & . -
For a gcalar, f,
ar = (51,- P S \
d &
= 6? (—-—Bél) dx? = 2 dx™
dx dx
For a vector, H, )
1 ab Hb m’ | n
TR
dH = 2(1! mn ) dx A dx
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d
- 1 a b - a b m n
z( 6 6n 6n 6m) S dx A dx
0x
an BHm
= 3 - ) dx A dx®
n
dx dx

This is seen to agree with equation 3-25,

For a skewsymmetric tensor F, of rank two,

~ dF
-~ 1 1 abc be m n k
dF 37 (2' émnk a,) dx  Adx Adx
] bx ,
_ 1 bFnk kam men m n k
= ( + + ) dx A dx A dx
3) m n k
¥x ox Ox

This is seen to agree with equation 3-28,

The divei'gence is obtained by taking the dual of the curl of

the dual of a tensor.. For a skewsymmetric tensor Tb/c' " m

divT - 1 ) (Tbc...m /E)?] (3-46)

N3 2™

- From section 3-10, it is seen that in tensor analysis the

maze of indices often makes it difficult to observe the
differences between various types' of quantities. It also appears
to lack the substantial body of results established once and for

all in exterior forms. The exterior calculus is found to be
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helpful in generalising the concepts of curl, di:vergence and
dual, particular]y with orthonormal frames. Exterior
derivatives are based on equé.lity of mixed partials. Tensbr
analysis may have to be used, wh;an second order partial
derivati_xie.s change their value when the sequef:ce of .
differentiation is changed.

The exterior calculus developed in the present chapter is
applied to electromagnetic field equations in Chapter 4. In terms
of these Maxwell's curl and divergence equations assume a more
general form. Line integrals of 1-forms, surface integrals of -
2-forms and volume integrals of 3-forms are used to construct
a network model for the electromagnetic field. Kircllxhoff"s vcl);.tage
and current laws for the network interpret Poincare Lemma for
the differential forms. Stqkes' theorem reduces some of fhe
surface and volume integrals to line and surface ‘integrals. In

this form they interpret Faraday's and Ampere's Laws. As the
study undertaken in this Chapter is valid for any general
curvilinear reference system, the network moﬁel derived for the

electromagnetic field has an invariant structure. The parameters

of the network, however, depend on the coordinate axes 'ch'o‘sen.
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In particulaf, a term, g, abpears in surface and volume
integrals of‘"tensor densities" (tensors multiplied by /E).
This term depends on the metrical properties of the coordinates,
The generalisation of exterior derivatives to space-
coordinate system gives two tensors - two groups of ir'xter'-'
acting fields - for the electromagnetic ﬁeld. As a consequence
of the two tensors a third ;censér, called "Stress-energy
Tensor", arises. Maxwell's electromagnetic stresses and
Poynting's energy-flow vector form the compo'nenté of this

tensor. These are examined in Chapfer 4,

a1




"CHAPTER 4

MAXWELL'S ELECTROMAGNETIC EQUATIONS

Maxwell's equations presented in a general manner in
this chapter will be used to construct a network modél.. The
region of electromagnetic field studied is first divided into
gseveral small subregions, integrations perforined in the
subregions being displayed as network quantities. When
Maxwell's equations are expressed in exterior differential form,
the integrations can be performed in a general coordinate
, systém. This leads to a network model, the structure of which
is independent of the choice of coordinates. The network |
parameters will, however, depend on the system used. In
tensor notation, the integration irivolves, in some cases, tensor
densitiés and spalar densities.

Maxwell's equations expressed in space-time coordinate
system uses two field tensors Fon and HTM, A stress
energy tensor is seen to result from the product terms of field
tensors F_~and H", and gives Maxwell's electromagneﬁg.

stresses and Poynting's energy flow vector. The forces 6n
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small regions can be vobtained by the integraﬁon of thé
appropriate stress-tensor densities. This will be illustrated
in a later section when evaluating the torque of an electric
machine.

Maxwell's equations summarise, mathematically, the
macroscopic field theory. The term "macroscopic" excludes
quantum electrodynamics and microscopic study of atoms. In
nfield" theory, force and matter are assumed to be distributed
continuously through space (as opposed to discrete points and

action-at-a-distance theory). o

t

In M.K.S. system of units, Maxwell's equations, in

vector notation, are: .
>B

() curlE = - S0 y
(b) curl.}; = :I.+-§-tl-)-

i

© (4-1)

a
Q.
sy
<
w)
1l
Y

The properties of a stationary media give further

equations:
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B = u7y H (7 =4n x10'7)
.0 o
D =k & E ( d,f:= 8.854x10'12)
J = o E (4-2)

For frames of reference in uniform relative motion, .
the Lorentz transformation leaves Maxwell's equations (4-1)
invariant. The macroScopic parameters M, /X and o

are also subject to transformation, and equations 4-2 are no

longer valid.

4.1 Exterior Differential Form of Maxwell's Equations

First a set of 1-forms is defined as follows:

= E1 dx + Ez dy + E3 dz
'=I~[1dx + H,dy +H3dz
=Bld5: + B,dy +B,dz
= D1 dx + D2 dy + D3 dz

BB B B < - R |

1 9 fiz . (4-3)

3
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Partial derivatives with respect to time will be denoted by a
dot over the letters. Maxwell's eqt;ations, in terms of exterior

forms, are:

(a) *3A(E) = -B
(b) *d(H) = 'J+l.).
(c) *d*(B) = 0
() xdx@) = L ; (-

Equations 4-4 are examined below,' ina Carteéian coordihate

system, using results from sections 3-6-1 and 3.7-1..

4-1-1

| Equation 4-4(a) gives, on expansion,

*d(B) = *d (E, dx + B, dy + E, dz)
= %3 (B dx) + 3 (E, dy) + *d (E, da)
d (E, dx) = aEl A dx
OE, OB, |
= (-a—);— dy A dx + 37 9z Adx)
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3B,  E JE,  E

W 1
LKA = K (e - ) dxady ¢ xS - hdyad

: aEl 3E3
3 -
+ ( 35 3% ) dZAdx

For the Cartesian coordinate system,

* (dx Ady) = dz and soon

‘ oE
) dx + (_{Z-— - % ) dy

]
—
[}

. X .d (E) 3y 5%

k 3B, aB2 / aB3
= (- )d+(- ) dy + (- =57—) dz

i, e. - *d(E) = -B

This i8 the rexterior" form of the vector equation curl

E = -( B/ ot ). The relation between thifs curl (to be

L}

called "conventional curl”) and the exterior derivative d (to be

called "generalised curl") may be stated: -

conventional curl = dual of generalised curl

Equation 4-4(b) can be expanded likewise.
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4-1-2

Equation 4-4(c) is now examined.
*(B) = Bl'dy/\ dz + B, dzadx + B3 dx A dy

OB B
dy ad
y Adz Adx + Y

i 2B;- .
d * (B) % dx Ady Adz +

dz Adxady

bBl sz ?:B3 4
= ( 3% + 3y +'bz) dx A dya dz
. B 3B dB
*d * (B).' = bxl * byz * bz3 ) = 0

Equation 4-4(d) is expanded similarly.

4-1-3

The divergence equations can be seen to follow fr(;)m
Poincare Lemma derived in Section 3-8, -
For the l-form E,
d(dE) = 0 + (Poincare Lemma)
This can be rearranged as:
xda+ [+xa@® ] = o

Substituting *d (E) = -B = -(. 3B/ 2t), it is seen that:’

3 () = 0




If the components of flux density, B, and its derivatives are
continuous, the commutation of operators (*d *) and ( 2/ 2t)

(22)

is permissibe , l.e.

2 [*a*m®1= o0
It‘follows that at every point in the field, the divergence of
, magnetic flux density, B, ié unchangirig with time, If ever in
its past histofy the field has vanished, this constant must bel
zero. Since one may reasonably suppose that the initial creation
of the field was at a finite time ago, we conclude that the

(22)

divergence of flux density, B, is zero "',

Likewise, dald (m] = o gives:

‘- - bD L. :
%d #.(J) + {*d*( 31 )}: =0 | (4-5)
The conservétion of chérge is exprersse‘c‘l és:
(33, 3x) +( 31,/ dy)+ ( 33,/ 3z) + (3F/ a1) = 0
or,
?f

*d * (J) + ST - 0 | v (4-6)

Substitution of equation 4-6 in 4-5 yields, on commuting the




operators (*d *) and ( 2/ dt),

_"-b@-t,—{-f+ *&*(D)}

If, again, we suppose that at some time in the past history the .

field has vanished, the divergence of electric flux density, D;

is seen to give the charge density,

4-2 Integral Form of Maxwell's Equations

In Section 3-9, Stokes' theorem was expressed, in

exterior form as:
f 9 = f d (CJ) : (3-‘36)
.24 = '

From equation 3-36 and 4-4(a), it is séen_that: )

jé‘E ‘=, fd(E) . /% (4-7)

In this integration, X is an area enclosed by a curve 9%

In vector notation, equation 4-7 is:

fﬁ;i - -ﬂg.’ﬁds |  (4-9)
s |

¢
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(él— is the vector elemental length along the closéd curve ¢
and n is the normal unit vector of an elémental area dS -
fig. 4b). Equation 4-8 is seen to give Faraday's law, on
commuting the integral and dot operators; the emf around a
closed path is the negative rate of change of flux enclosed by
the path.

For the divergence equation *d *D = f , Stokes'

theorem gives:

ajg*(m = {/fa*(n) = {[f*/’ 'f' §4-9)

In this integration S is a volume enclosed by a surface

o3 . In vector notation, equation 4-9 is:

ﬁﬁ . mds = /ﬂ dV  (Gauss' theorem)

The theorem states that the total electric flux integrated

over a surface enclosing a volume equals the charge inside it.

N

For equations 4-4(b) and (c):

/]*(JH')) .
< .

o o (4:10)

H
3

T

o¥
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In a later section, the integrals of the field quantities
over infinitesifnal regions will be represented by network
quantities in order to establish a network model for Maxwell's
equations,

The integration of a p-form & over a p-dimensioﬁal
region 24 is carried'out in three stages: (i) an elemental
subregion d;‘ in the region X is_ expressed as a p-form,
(ii) a scalar is formed by the inner products of the two p-forms
w and d& .- (iii) this scalaris ihtegrated using the usual
integral methods in calculus. The same result is achieved by
replacing the base vectors d;k iri the differential form by

. the ordinary differentials dx.k. For example, if:

'+ B, &Z+E, & °,

E E1 dx

then

/®

The integration is carried out in the usual way. It must

1 2 3
f(El dx +E2 dx +E3 dx ‘) y
be remembered that, in the preceding sections, the arrows
above the base vectors d-:: k have been omitted for convenience.
However, this need not give rise to any confusion provided it

i{s remembered that under the integration sign, dxk represehts



ordinary differentials; elsewhere it gives the base' vectors.

4-3 Maxwell's Equations in Space-Time Coordinates

In relativistic treatment, time is considered as the fourth

coordinate. In Section 3-4, the cotime, ¢, given by the product
ct was introduced. The cotime has the dimension of length

and its inner product is:

((d¢, d¢)) = -1 (Section 3-4)

In the space-time system, Maxwell's equations are
expressed in terms of two 2-forms, ﬁ and ﬁ The 2-form

~
F contains the space components of magnetic flux density, B,

and electric force, E. The 2-form H contains magnetic force, -

H and electric flux density D. In terms of these, the exterior

differential equations are:

A =0 I (4-11)
-S(ﬁ)=*a*(ﬁ)=s C (4-12)

where, 3 is a l-form containing current and charge densities,

The 2-form F is obtained from vector and scalar potentials as

follows.
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A 1l-form can be formed, consisting of the vector ‘
potential, A, of the magnetic field and the scalar potential, ¥

of the electric field:

A= Ajdx+A,dy+A dz+A, dt (4-13)

1 4

(A4=“V/0)

The exterior derivative of the 1-form A gives a 2-form ﬁ;

A [ 6A3 A

~ - 2
F = d(A) = ( Tl by)dx."dy+( >y " bzz) dy A dz
bAl bA3 aA4 bAl
+( 2z 0= ) dz adx + dx - ot )d).“‘d*
dA JA dA - 0A ‘
" 4
+ ( o5 - 6*2} dy A dt +( s Ms) dz A dt
(4-14)

The first three bracketed terms are recognised as the

magnetic flux densities Ba. B1 and B2 given by the vector

-

equation, B = curl A. The last three bracketed terms of

equat_ion 4.12 are El/ c, EZ/ ¢ and E3/ ¢ respectively, given

-

by the vector equation, E = - 2K/ »at + (grad vy ).
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In terms of flux density B and electric force E,
equation 4-14 is:
o _ .
F = d(A) =, B1 dyadz + B2 dz A dx + B3 dx A dy

+ (El/c) dx A d¢ + (Ez/c) dy A dt + (E3/c) dza dt

(4-15)
Poincare Lemma states that:
. ) Lo~
d(dA) = d(F) = 0 (4-16)
The exterior {ierivative of the 2-for;'m ’E is (fr‘om Section 3-v6-_2):

dF dF OF “

~

- b

iF) - X —S2 2 ax®hdxa ax® (3-28)
Ci,b,c) bx : bx bx ’

In this equation Fab gives the coefficient of the' 2-form 'I‘«:

corresponding to the term dx> A dxb.

The bracketed term above must be zero in 6rder to

satisfy equatidn 4-16.

aFl')c cha ~bFab : v :
(=gt —5 * s ) = 0 | (4-17)
dx ox - dx .

B T




Whena=1, b=2andc=3

2B, . sz-+ B, -
X dY Az
or,
divB = 0
->
OB _

b .
The equation, curl E + 3 - 0, results whenc = 4 and

(a, b) = (1, 2) (1,3) and (2,3). Thus half of Maxwell's equations -

appear in the space-time system as:

iE = o L (4-11)

The other half appears in terms of a second 2-form, 'IVI, as .

follows:

4-3-1

The second 2-form, H, contains the magnetic field vector,

i
H, and electric field vector, D. Using the relations,

B= 7 H,D= & E and 1//(.2’20 = .. ¢, in free space,

[+

~

the 2-form 7-21- F ( "z = 41 x 1‘0'7) is seen to expand to:
0 [«

H dyArdz +H, dzadx + H

1 2 3 dx A dy

+eD) dxAdt +c¢D,dyadt + CD, dz A dt

(4-18)
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~ ~
Denoting this 2-form by H, the divergence of H is (from

Appendix 2):

3(H) = *d* (H) = J dx+J, dy+J;dz-c S dt (4-19)

For free space, current and charge densities are zero,

and,
- - o~ .
5(H)=*%*d%(H) = 0 (for free space) (4-20)

For other media, equation 4-18 can still be used to define the
B .
second field form H. It is no longer related to the first field

form F by the constant 7] . The divergence of H is not zero
[-4

but gives a l-form

5 (ﬁ) = 8 (for other media) (4-12)
where,
$ = Jdx+J,dy+J dz-c S at (4-21)

W, L Sphe MBEE Y9s g ek ey
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4-4 Tensor Density (21, 23, 24)

In general, a quantity transforming as a tensor
multiplied by /g is called a tensor density (g is the
determinant of the metric tensor). 'This arises in field
analysis when the dual of field vectors are considered and the
integration of such quantities used to construct the field

network model. In general coordinates, the element of volume

is(21) :

AV = /g  dx dx? axS

This is invariant under coordinate transformations.

2

Writing d7 for the product (dxl dx dx3),

av = & d7 (4-22)

1f T is a scalar, i.e. an invariant function of pdsition, then
T/ d7 is an invariant (Eddingtoh(24)). The integral
fff Tjg" a7 is also invariant. Each unit cube (whose edges
are dxl, dxz and dx3) contributes the amount | fg—' to this
invariant. Accordingly T/g is called a scalar density. An

example of this type is the mass of a volume, given in polar

coordinates by /f/ .f?‘ (dr dedz) . In this integration
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j" is the specific gravity of the medium and r = /g
[+
B

If T is a vector or a higher order tensor, say Ta ,

then

[ = e ar

is generally not a tensor; although this is a sum of a number
of tensors, it implies a summation of tensors not located at
the same point, But as the region of integration is made

smaller and smalley, the transformation law approaches more

and more nearly that of a single tensor(24). Thus the tensor

= [}

density TaB /g’ can at least be integrated over infinitesimal

regions.

!

4-4-1 Tensor Density Form of Maxwell's Equations

-l -ty
The vector equation, curl A = B, is first examined

in terms of tensor densities. In exterior form the vector equation
is expressed as:

*d(A) = B P (4-23)
The exterior derivative of the vector, Ab‘ in tensor notation

is (from Section 3-10-4, equation 3-45):
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1 6ab b___(

i
1 mn 3 xa N xm bxn

(4-24)

The dual of the.tensor given in the bracketed term above is

(from Section 3-10-3, equation 3-43):

1 1 bAn bAm mnp -
21 (== - n ) e (4-25)
‘ /E dx dx
(emnp is the skewsymmefric unit matrix). Equation, curlX = -ﬁ,,
now becomes:
A oA :
1
o - ) e = B (4-26)
e ,/E x X
This can be reformulated as:
bAn bAm , b '
(—m - =) = (/& B) e (4-27)
ox Ox ' )

The tensor-density, /g“ BP , 1s usually written as Bp'.

Likewise using: tensor densities (denoted b}} primed quanties),

Maxwell's equations are:

bEn BEm >8P \
TE T e T T

2H - 2DP’

( n - m) - (Jp' +‘-———) o

ax? oxP ot pmn




pl
0B = 0
x>
p' ' T,
2D" _ - f (F = £/ ) (42
ox" . -
4-5 Four Dimensional Field Tensors

" The analysis of Maxwell's equations in space-time
coordinates given in Section 4-3 can now be brought into tensor
notation. The field equations are expressed in terms of two

3 mn .
field tensors an and H as:

bFnk kam men
+ a + " = 0 -
i Cdx dx
1 (Hmn ./é'-' ) _ vs'm
n

E 0 X ¢ a

The field tensor an is derived from a tensor;

A = | A | B2 | A3 | Ay (4-29)
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A, A, and A, are the components of vector potential in ‘

1 2 3

3-space used in Section 4-4-1 and A4 is given in terms of the

scalar electric potential, ¥ , as A, = \V/c ;s |

3 .
x1 x2 x are the generalised coordinates in 3-space;

coordinate X = ct, gives cotime,
The exterior derivative of the tensor Am is (from
Section 3-10-4, equation 3-45):

A A A
n

1 ab b m

—_ 6 = - ) = F (4-30)
|

1. mn b a ) b m b n - mn

whenm, n =1, 2,3, equation 4-30 gives the components of

magnetic flux density B (see equation 4-27). 'When n=4, F 4
N m

gives E_ [c.

In matrix form, the field tensor an is:




12

n
1 2 3 4
Im
1 B° /g -Bzf o
g g | =
E
2 | -B /& B! /g 2
C
E (4-31)
2 1 3
3 | B°fg |-B' g -2
B Ey Es
4 | -—= - -
(o] C (]

The exterior derivative of an is (from Section 3-10-4,

equation 3-45):

;_l_ éabc anc
2! "“mnk 3yt
F - dF OF
(. e
X dx" Ox

(4-32)
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This gives half of Maxwell's equations. In vector notation

they are:
curl B + bi’:/ d = 0
divB = 0
4-5-1

It wa;s pointed out in Section 4-3 that the other two
Maxwell's equations are given in terms of a second field tensor
in the space-time coordi‘nat-e system, |

Proceeding in a similar manner, a second field tensor
-given in free space by an/ T[o is examined. Its divergence
is found to be zero. The divergence of a tensor of rank two;-

in tensor notation is (from Section 3-10-4, equation 3-46);

1 aH™" /)
JE "

The second field tensor Hmn is brought into the contravariant

form by multiplying it with the inverse metric tensor and raising

the indices.

mn am bn
ab g

[}
o3

H




The divergence is zero.

i, e.

1

In matrix form,

n
1 2 3 4
‘H H
3 2 _ch
/g /e
H H
- ——§- .-—1- _cD2
g g
H H
i T M | e
/e /e
3
ch ch cD

Ve

'b(Hmn"\/é—; .

dx"

(for free space)

(4-33)

For other media, the second field tensor H'" can still be used,

It is no longer related to the first field tensor by the constant 7Z .

Its divergence is not zero,

b(Hmn ‘/é“)

1

NG

3x"

- m
=8

(for other mfedia)

[+

(4-34)
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where ;
? ,.”# X
- TN

g™ = el I O B S RS (4-35)

Equation 4-34 gives the Maxwell relations;:-

-

-—pp ) -
curl H - S = J
giv D = f

The determinant of the metric tensor in space-time

coordinate is negative. When the square root is taken, the

modulus is used, i.e.’ J/-g

4-5-2 Stress-Energy Tensor

| Maxwell uses products of the type B™ Hn and E_ DY
‘ p

to express his magnetic and electric stresses (the space in
which the fields are bresent being conceived to be in a state
of tension analogous to that of a.ﬁ'elastic medium). Poynting
"uses products of the type Er HS to arrive at his energy flow
vector. The forces dn small regions can be obtained by the
integrétion of the appropriate stress-tensor densities, This

will be 'illustr'ated in a later section for an electric machine. To .

1



116

arrive at a general form of the stress-energy tensor, the
field tensors an and HO 1 deyeloped earlier are mutliplied
and c'ontracted‘_‘to give Fon H'P (i, e. the matrices given by
equation 4-31 and 4-33 are inultiplied.) However, a slight
modification is necessary; aterm % F g H%" is subtracted
from the diagonal elements of the matrix product an H'P,
Rainich(2%) shows this firstly for Newtonian fields and then
extends the modification for electrbmagnetic fields.

Using the letter T for the stress-energy tensor,

& 7 u°t
mn m rs

]
B

In matrix form, 2 ; o

;
ol o i

5.3




P
m
! 2 3 2 3
. BH]1+ BH12+ BH13+ Cﬁ;(BzD
1 1 1
Bleu + Bsz + B3 H% : c/E(Ble
1 2 1.3
2|E, D E, D°-W |E, D - B' DY)
B1 Hy + B2H3- + B3H3 + c/é'(BlDz
= 3 1 2 3 2 1
E, D |Eg D E, D" -W |-B°D)
i
1 1 1
_(E2H3 ,_-_/: (E3Hl (E1H2
4 g g W
}
(4-36)
W = tota] stored energy = % B™ H_ +3E_ ph

M
o

In equation 4-36, whenm = p = 1,

- . 1 1 1 m 1 n . L
’Ill = B Hl + ElD - 3B Hm - 2EnD
=3 - - B' 1 . i}
2T(B H, -"B"H, - B'H,) + 2(E1D | E,D Eap )
gives the tensi}e stress. The terms Tg and 'I‘g give tensile '

!

stresses along the other coordinates. The tengential stresses
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are given by terms of the type le.

’ In the matrix given by equation 4-36 the last row
(Tz) gives the energy flow vector given by Poynting and the
total stored energy. The first three térms of the last column

(Tr‘;) represent a tensor known as electromagnetic momentum

tensor,

4-6 Physical Components

A vect;r can be resolved along the three directions
given by the baée vectors of a coordinate system. The
magnitudes of the three compongnts are kﬁowﬁ as physical
components. T’hey can be re.l.ated to covariant or contravariant
tensor components usi(r.xg the metric tensor. In Cartesian |
coordinatess there is no distinction between the various' components,
since the metric tensor is unity. The pefmeabﬂity, conductivity
and permittivit& of a media are given in terms of physical
components by certain constants (for iron, a B-H cuﬁe is
usually given instead of a constant). As integrals of 'fensor
components are used on the field network modél, the relation

between the tensor and tensor-density components and the

Rt
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properties of the media are examined here.

4-6-1

In 2-dimensional polar coordinates, for example,

the base vectors are rleated to the Cartesian unit vectors as:

- - -
dr = cos@ dx + sin0 dy
de = -(sind [r) dx + (cosd /1) ci;r

This is seen to follow from the transformation:

x = r cosO and y = r sin0

The vector dot product db. d8 = 1/rZ It follows that the
base vector d0 is not of unit length and varies from point to
point. If a tensor is given by a single component EG’ in vector
form it will beﬂE9 gf; ‘The magnitude of this vector, E(G)‘
is clearly' EB/ r.

4-6-2

If the metric tensoi‘, in a general orthogonal coordinate

system is given as:

»




B
1 9 3
a
1| )’
2
g = 2| - (hy)
3 (h3)2

then, the relation between the tensor components of electric

force, E, and the tensor-de nsity components of electric flux

density, D, is:

E, h °
2
g2 Ih .
2 "B, = h ° ,
L h
£, - ‘*___./iD - ihl-—z K E ' (4-37)
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( . K is the relative permittivity of the media and
42,

50 = 8,854 x10 "y M.K.S. system of units are used)

Similar equations can be written for the magnetic field

quantities.
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CHAPTER 5 .

NETWORK MODEL FOR MAXWELL'S EQUATIONS

" The network model for the region of space studied is

established by first dividing the region into subregions, small

enough to give the desired degree of accuracy. The subregions

122

are blocks formed with edges Ax1 ) sz and Ax3. Any curvilinear

reference system may be used to give the coordinates xl, x2

and x3 and the bl ocks may be of uneven lengths in different

directions. Line, surface and volume integration of the magnetic

and electric field quantities (expressed as exterior differential
forms) is carried out over the biocks. Some of the integrals
reduce to simpler forms by the use of Stokes' theorem. ) Thé:
resulting integrals are displayed as network quantities. The
(26)

model developed by Kron makes use of ideal transformers

in addition to inductors, capacitors and resistors. Kirchhoff's

algebraic relations for the network model translate the
differential relations in field equations, summarised by
Maxwell, for elec‘;r"omagnetic field into micfo-mesh network
quantities. The algebraic diagram developed in Chépter 2 .s:

(Section 2-3) is used with the field network to bring out the -

-
.
1

TR T U o .
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. differential sj:ructural relations.

”

In the algabraic analysis of Kron's network model it
is difficult to display clearly on the algebraic. diagram, the
various equations of Maxwell, and in é, manner in'whiéh it can
be developed for a more general case than in three dimensions.
A different type of network model is first introduced.  In this,
the integrals of the differential forms aésociat.ed with electric
field quantities are lumped into branches connecting adjacent
points i. e. the edges forming blocks shown in Fig. 5a. The
branches consist of capacitofs and resistors. Integrals of the
differential forms of the magnetic field quantities are associated
with the surfaces of the blocks. Since the electric and magnetic
field quantities are interacting, the resuiting model is called
an interconnected moéiel. The algabraic structural relations are
studied for this model. In Kron's network model, the magnetic
field quantities are also lumped into branches using inductprs
and ideal transformers. This model is more suitable for

practical applications using network analysers.

5-1 Inferconnected Model

The branches of the network model in Fig. 5a are:

constructed by considering the line integral of electric force,
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PART (o)
FIG. 5. INTERCONNECTED NETWORK MODEL FOR FIELDS
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fE , and the surface integrals of current density, [/# J,
and electric flux density, /f* D, as follows. The exterior

1-form for the electric force,

g

E=E dx + E,dy + E, -dz,

1 2 3

is integrated along the edges of the blocks as:

/E = ﬁl dx + Ez dy + Es dz (5-1)

Under the integration sign, dx,: dy and dz are treated as
ordinary differentials (Section 4-2). For exz;mple, along the
edge PQ (Fig.‘ 5a), dy = dz = 0, and the integfal is E1 AX, and
is shown by the voltage drop across an impedance. Along

branches NT and PR they are E2 AY and E3 AZ respectively.

For current density J, the exterior 2-form is:

*J = JI/EdyAdz+J2\/g-'dz¢dx+J3/E' dx A dy (5-2)

The star denotes that the 2-form above is a dual of the

directional vector J; dx + J, dy + J, dz.' The dualis
integrated over an area normal to the branch. The term /g
arises out of the star operation in taking the dual of vector 7

(Section 3-10-3). For the branch PQ, the integration of the

2-form is performed over a small area X (Fig. 6a):
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by

\[/‘Jl\/g‘ dy dz . (sincedx=0on 3 )
S

Jl‘/é"AYAZ‘

s
'

The quantity Jlf, = v, is'a "tensor density" component
4 . .
of the current density (Section 4-4). The integral J1 AY AZ

appears in the network as a current through the resistor. This

1
gives the conduction current. The displacement current, A?

AY AZ is, likewise, given by a current through the capacitor.

The voltage drops and currents in y- and z-directions are.

expressed in terms of the corresponding vector components.

5-1-1

The values of the resistances and cagacitances can be
evaluated in terms of the conductivity and permittivity of the
 media as follows. The relation between the tensor components
intermsof KX and ¢ is éivef'x in Section 4-6-2 for

orthogonal systems:

1
g D h_h
é.:-—IE_-: 23 /zfo

1

1 !

(In these equaitions, g is the determihant of the metric tensor:
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= (hy)

K is the permittivity of the media; & = 8.854 x 10713,

The capacitance in branch PQ (Fig. 5a) is then:

h_h

. AY AZ _ , 23, OY AZ. o
C, = € —xx —(hl)( =) " & (5-3)
Similarly, the conductance in branch PQ is: -
h,h : .7
23 AY AZ ’

G, = | oy ) (—3x%
The resistance in branch PQ = R1 = l/Gl' The impedance values
in y- and le directions are also evaluated in terms of A and 6~
If the coordinate system is not orthogonal, the simple relations
of equation 4-37 can no longer be used. The resulting model

would then have mutual resistance and capacitance terms,
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5-1-2

In this section the voltage induced in a mesh of the
network model, due to varying flux density is represented by
a set of generators. For example, mesh PRSQ (mesh B) in

Fig. 5a links a flux

ﬂ *B = B/ AzAX - B Az ax

area
PRSQ

In this integfal the star denotes that the 2-form is a dual of

e ~p e
directional vector B1 dx + 132 dy +.B3 dz ,

The induced mesh voltage is given, according to Faraday's law,
' .

by the negative rate of change of flux {.e. -( sz | at) AZ AX.

The same result is obtained directly from Maxwell's equations

using Stokes' theorem from Section 4-2, equation 4-7,

/;, ik

In this integratlon, S, is an area enclosed by a curve 3_2 .
The line integral of E is given by voltage drops across the

impedances. For the mesh PRSQ, they,mu'st equal the induced



mesh voltage shown by generators (since the total mesh voltage
is zero by Kirchhoff's law). The term, -%f& . must,
ther;efore, represent the induced voltage. ‘ "

The induced voltage, in a mesh, due to varying flux
density is represented by a set of four generatdrs. For
example, in mesh B, there are fwo generators of the type
( bAl/ dt) AX along branches PQ and RS; two of the type
( bAa/ ?t) AZ along branches PR and QS. Although the
generators in branches PQ and RS are both shown as

( bAl/ dt) AZ, they represent numerically different

quantities.

A
. . - _ 1
(A AX)RS - (A1 AX)PQ = (57— 42) AX

(the dot over the letters denotes time derivatives). Similarly,

, _ 24,
(A3 AZ)gg - (Ag AZ)pp = (—5— 4X) AZ

The total mesh voltage due to generators in this mesh

2A A 3

A
= 1- a'XS)AZAX=B2AZAX

2z
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This corresponds to the equation:

—Ig = curl X
where, A is the magnetic vector potential. In Section 2‘-1,
the mesh voltages in electric circuits were expreséed in terms
of branch voltages as: vé = (Cc)t .V (equation 2-5)."
For the field network this relation gives:

0A

._.b._B._. = curl [y
ot ot

The total voltage drop across the branch PQ. Fig. 5a, is:

bAl '
VPQ = 30 AX + E1~ AX

Using the field equation

T o= - %A/ ot + (grad ¥) ,
VPQ = (grad\{f)lAX = -b%:- AX
=AY )pq | : (5-6)

. . 2' ‘ . . ) . .
The integral B© AZ AX as such is not shown by any
network paramefer. It is aésociated with areas such as PRSQ.

This quantity can be considered to exist in a circuit consisting



of 2-dimensional elements such as AX AY, AY AZ and AZ AX.

Such a circuit is a 2-chain and is considered further in Section

»

5-2-3.

For the interconnected model, it is seen that
impedances consist of resistors and capacitors. The conduction
and displacement currents are given by the surface integrals of
dual quantities, *J and %D | The resulting terms are of the
type it /e . AY AZ and /—' AY AZ. The voltage
drop across the impedancgs are given by the line integral of the
electric force, E(i.e. terms of the type E1 AX). The
"generator" voltages are given in terms of magnetic vector
potential by terms of the type —a—a‘;l- AX. When the induced ..

mesh voltage is expressed as a sum of the branch "generator"

voltages, i.e. (Cc)t . v, the induced voltage takes the form

- .....EE. = -acurl __A_A_.
ot ot

The tdtai branch voltage is given in terms of a scalar potential

as AY .
5-1-3

The mesh currents of the network are examined in this

133



134

section. Their relation to branch currents, given in electric

t
circuit theory by the equation: i = C_. i® is studied. The

c
relation bétween mesh currents and the magnetic force, H is
first analysed. The mesh currents contribute to magneto-
motive forces. The mmf's across the blocks are given by the
line integrals /H These are of the type H1 AX. The mesh
currents are not shown as i's but as i1 AX, i2 AY and 13 AZ,
so that the magnetic force, H, can be directly related to "i". |

The mesh currents il AX , i2 AY and 13 AZ in the
network of Fig. 5a contribute to a m}agnetic field according to
Ampére's law, The magnetic field due to sources outside the

region under consideration can be evaluated in terms of a scalar

27 .
magnetic potential £2 "', The total magnetic force in terms

of these is:

H=1+grad {1 =i+ df2 (5-17)
The exterior differential (denoted by d ) of equation 5-7 gives:
dH = di + d(d2)

By Poincare Lemma, since {2 1is a scalar field (exterior O-form), .

d(dnN ) = 0, sotﬁat

dg = di . (5-8)
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The exterior differential, di, will now be shown to
relaté branch currents to mesh currents. The branch current
PR (in Fig. 5a) cankbe expressed in terms of two mesh currents
of the type i2 AY for meshes A and B and two other mesh currents
of the type i1 AX lying in y-z plane. The contribution of the

mesh currents A and B to the branch current of PR is:

2 i

.2 .
! mesh B - ¢ ®Ymesha ° o AX aY

12 ay)

Similarly the two mesh currents in y-z plane contribute a term

1
b .
= . ——— AY AX . The branch current PR,as a sum of the mesh

oy -

currents is, then:

t

2i2 21!
("'57' i ) AX AY X

The same branch current, in terms of resistor and capacitor

currents is:
] . ]
(J3 + bD3 | dt) AZ AY

b.Z .1” . ’ ! 4
alx ) g;) | (5-9)

2 a3 et =
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In mesh ahalysis of electric circuits (Section 2-1), this
relation between branch and mesh currents ‘was written in the

' .c'
form i = (Cc) i

Equation 5-9 can be extended to other branches as well

to give the general relation

*(J+D) = di (5-10)

From equations 5-8 and 5-10, it is seen that

1Y
.

dH = *(J+D)
giving the Maxwell equation: curl H = T+ 65/ ot,

5-1-4 .

In the nodal analysis of electric circuits (Section 2-2),

Kirchhoff's current law is expressed in the form:"

(A), - 1 =0

This is now examined in terms of field quantities. At the node R
(Fig. 5a), the branch currents add up to zero (Kirchhoff's current

law). The branch currents RS and NR add to, at node R

{0 +dhavaz § - {@!'+ BV)ay az f
~ms- o 'NR
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2 '+ DY) ax Av az
0x \

The other branch currents likewise add to:

1 et ' . o
_b_z;-(J2+D2)AXAYAZ and —% %' + %) ax av Az

The addition of all currents at node R is then:

{-—%;"-(Jl' +Dl) + :y @2+ 5 + 2 (13 + DY) | ax Ay Az

This is zero by Kirchhoff's current law,

(Ao)t .1=0, giving

div (J+D) = 0 - (5-11)

The divergence equation, div D- = f,A follows as a
consequence of eduation 5-11 (in Section 4-1l-.3 this was established
assurhing conservation of charge). To each node,. suo;h as node
R in Fig. 5a, is attached six capacitor plates. The charges on
the ‘capacitor plates add up to a total of /' AX AY AZ.

For the interconnected model, it is seen that branch current;
mesh current relation, i = C_. ic', leads to the equation: |
curl H = J+ bB/ dt. It is also seen that Kirchhoff's current
law, (A ), - i = 0, results in: div (J + ®3D/ 2t) = 0. From

this the divergence equation, divd =, follows.
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5-2 Algebraic Diagram

The algebraic structural relations of the network
can be sumrﬁarised in the form of the flow diagram or
nalgebraic diagram" developed in Section 2-3 for electfic
circuits. Fig. Ta extends the algebraic diagram developed in
Section 2-3 (Fig. 2) to circuits formed by 2-dimensional
regic;ns (Z;Chains) of the ty‘pg z.kX'-AY, AY AZ and AZ AX.
These will be called "2-netwi)i'ks". A closed volume bounded
by surfaces would represent a géneralised 2-mesh, for ekample,
a cube bounded by six squares. It was pointed out in Section
5-1-2 that field quantities of the type B2,' AZ AX do nét
appear in the field network as such, but are associated with
the cofrespc;nding area elements. These will be examined in

terms of 2-networks. First, the l-circuit is examined.

5-2-1 1-Circuit Voltages
Fig. 7a recapitulates the algebraic diagrams of Figs.

2 and 3 (Sections 2-3 and 2-5). The transformation Clc links

closed-mesh currents to branch currents, and A01 links the

\

node-pair (open-mesh) voltages to branch voltageé. The

voltage, v, represents impressed voltage from a source
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connected in series with the ’impedance element. The
respénse voltage, Vl' denotes the total voltage drop across
the branch. A The voltage dro; 'ac;'oss the impedance is
(Vl + Vl)' The current, i1 is a response due to the source
voltage and flows through the closed meshes of a network.

The branch currents of the field network are of the
type (31 + V) Ay a2, (3% +D %) Az A and (33 +D )
AX AY., The branch impedances are here seen to consist of
resistors in pargllel with capacitors. The impedance drops
are E1 AX,'EZ AY and E; AZ. The impedance is of the type
1/(6 + éo/r-gr . These are shown in the algebraic diagram
by long verfical liﬁes (Fig. 7b). The "primitive" elements of
the field network are shown in Fig. 5b. It is seen that the
impedance droﬁ, E, is split into two parts: (i) dvy (or grady)
corresﬁonding to the total branch voltage drop, Vl' and
(ii) 2A/ ¥t corresponding to the generator voltage, vy
The éléctric force, E, is split into its scalar and vector
potentials.

| In the circuit analysis of Section 2-1, it was pointekd out

that:

1‘ : _ 1 1 _. 1 v
(C )y (Vy+vy) = (C, Vi+(C vy =0+v, (5-12)
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The term (Clc)t V1 sums up voltage drops of the branches

in a closed mesh and is zero by Kirchhoff's laws. In thé
field network this corresponds to d (dy-) which is zero by
Poincare Lemma. This is demonstrated using equation 5-6

in Section 5-1-2.

. 0
VPQ__b—xKAX

For the closed mesh PQSR in Fig. 5a,

VPQ+VQS+VSR+VRP =0

i. e. !
oY oy
(—K)PQAX*'(—@;Z—)QS AZ )
Wy 2 g
-(_&_)RSAX' (—D_E_)PR AZ = 0
i.e
d QY : 2 oY ‘
=% (Tez) A% AX - —-(53) AXAZ = 0

Similar analysis for other meshes gives the geheral relation
d@v) = o
In equation 5-12 the term (Ct)t .V, was analysed for

field networks in Section 5-1-2, The mesh voltage in terms of




142

the branch generator voltages were found to be of the form: |

curl .._b_JA— = aB
3t ot

Equation 5-12 thus translates into circuit terms the

differential equation: -

3(E)=A@Y - ) = A@Y) - 3 () = 0 - * () (5-13)

The algebraic diagram Fig. 7 shows these results.

5-2-2- 1-Circuit Currents

In electric circuit theory, the branch current - mesh
. !

current relation is given in Section 2-1 as: - il = Clc ic1 . For

the field network, the analysis in Section 5-1-3 gave equation

5-10:

di = *(J+D) . - (5-10)

Further, in circuit theory, Kirchhoff's current law for the

nodes is expressed in Section 2-2 in terms of transformation
matrix A . as:
: )

' d
(Aol)t lA =0

For the field network, the analysis in Section 5-1-4 gave

4

equation 5-11: .
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dx(J+D)=0 . - C(5-11) .

Such constraints on the circuit currents and voltages and
the corresponding field quantities are shown in Fig, 7. . Also,

combining equations 5-10 and 5-11,
d*(J+D) = d(di) = 0 (5-15)

This is a statement of Poincare LLemma which in network terms

leads to:

1 1 .cl'
P §

)t'i

1
>

(Aol

5-2-3~ 2-Circuit Voltages

In the network of F1g 5a, the ﬁagnetic field quantities
are not shown as such by any network parameters." The
magnetiéwflux density, for example, is integrated over regions
such as AX AY, AY AZ and AZ AX. To an area PQ SR is
attached an integral le AZ AX (Fig. 5a) and so forth.

These quantities do not appear on the branches of the network.

The areas.can be assumed to form a network of 2-dimensional

regions. For example, a cube is a closed volume bounded by
 gix square (or rectangular) areas. A closed mesh or loop in

l-circuit theory is a chain of lines enclosing an area. A closed

gt i o e s B s
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2-mesh (for a 2-network consisting of area elements) would
give a chain of areas enclosing a volume such as a cube.

The surface integrals of magnetic flux density

1 !
B" av Az, B 3' AX AY and three similar

'
AZ AX, B
quantities appear on the six faces of a cube AX AY AZ (Fig,. 6b).

They add up to:

»BY »82 %
(5=t t ) AXAY Az

The bracketed term gives the divergence of magnetic flux
density. The sum of the integrals on the six faces of the cube
is therefore zero. If the surface integrals are treated as
2-circuit voltages, V,, they add up to zero on a closed 2-mesh,

This is shown on the algebraic diagram by the relation '

2
(Cc)t .

law for closed meshes of a 2-circuit,

V2 = 0 (Fig. 7) - an extension of the Kirchhoff's voltage

5-2-4 2-Circuit Currents

In electric circuit theory, the imprgssed current, I,
is applied across the two boundaries of a branch or a chain of
branches forming an open path. The boundaries are called

node-pairs and the current, I, as an impressed node-pair
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current. For 2-circuits, the boundary of an area is the

mesh surrounding the area. The mesh current, il, can be
regarded as an impressed 2-circuit current Iz. The algébraic
diagram (Fig. 7) can then summarise the 2-circuit relgti’ons.
This relationship is now examined in terms of field quantities.

. - ->
Maxwell equation, curl H = J+ 3D/ 2t, becomes

in exterior notation:

dH = *(J+ 1.)) (equation 4-4b)

The integral of the 2-forms'abov¢, over an area AY AZ

(Fig. 6a) is: . .
‘[/aH = //“*(J+I’))
s <
= f{H (by Stokes theorem)
32 ,

The éynﬁbol 3% stands for the boundary of the area, i.e.
A-B-C-D-A.

The surface integral A//"%‘(J + f)) has been‘represented
earlier in the network model,iy branch currents. In Fig. §a,
thé surface integral over the érea S is shown as branch

“current PQ. That is, the dual of the directional vector,
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J1 .d_;: + J2 5;' + J3 EZ, gives a 2-form, *J, Th.is
quantity is integrated over areas such as 3 . The resulting
surface integrals, J*J, are now associated, not wi"ch”
the areas such as 5 , but with the duals of these areas.
In Fig. 6a, branch PQ represents the dual of area &
The integrals could be represented in a symbolic form as
% // * (J + I.)). The integral of the magnetic field vector, H,
| along a line can likewise be associated with a surface normal
to the line. The line integral \3/ H in Fig. 6a, = H2 AY, could
be associated with the surface PQ SR. Symbolically it can be
written as ¥ / H and is shown on the algebraic diagram as a
2-circuit current (i.e. as I2 + i2 ) (Fig. 7).

In Section 5-1-3, the magnetic force, H, was considered

to be a sum of the effects of sources outside the region under

consideratiém and those inside. Equation 5-7 gave:
H=i+gradl =i+ dQN
For the area PQ RS in Fig. 6a, this corresponds to

. .2 ) :
Hy AY = i" AY + (A0 ), ~ (5-15)
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In equation 5-15, the mésh curfelnt 12 AY can be regarded as
an impressed 2-circuit curlrent 12. The algebraic diagram )
(Fig. 7) summarises the equations rélating the 2-ciféuit
quantities.

Maxwell's differential equatiéns are thus seen to be
_summarised by an algebraic diagram. | The network‘ model
translates the differentiai structure into an algebraic structure.
Kirchhoff's iaws interpret the electr"omagr’leytic laws. However,

a more general form of Kirchhoff's laws to cover 2-circuits

ig used,

5-2-5

The field tensors an (equation 4-31) and 3 G

(equation 4-33) can be written in terms of partitioned submatrices

as:

¢
JES

and HTP =

eS|
n
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The matrices above have been partitioned into space- and time-
varying terms. The TILDE over star denotes the dual of

a vector in 3-space and not the dual of the vector in the four
space-time coordinate system. The grouping of the electric
and magnetic field vectors above is indicated on the algebraic
diagram, Fig. b, The field tensors F__and H ' are seen
to be expressed by the gene?alised current and voltége tensors.
* It is seen that the voltage terms are E (covariant tensor) and'
*B. Although B has been expressed as a contravariant

tensor, Ba, the dual of B (=‘  £ 0"3')’ B'Y) is doubly covariant.
The current terms are J + D (contravariant tensor) and *H
(doubly contravariant tensor). These aré expressed as
cohomology aﬁd homology sequences in Fig, 8. This is
developed further in Section 5-2-6.

The Kirchhoff's voltage laws for closed meshes are
seen to give the field relations: curl E + 3B/ at =0
and divB = 0. Interms of field t_'ensor an, the two relations
are combined into one equation:

Foe  Fxm % -
+ + ) = 0  (4-32)
T o ‘ _bxk o
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The current laws of Kirchhoff for open meshes give the .
field relations: curlH = J + 2D/ 3t and
div (T + D/ dt) = 0. Interms of field tensor H™™, the

‘two relations are combined into one equation:

b(Hmn /g_' )
n

1
./g—1 ox

3 O (4-34)

5-2-6

When 'the field variation with respect to time is
sinusoidal and has a frequency, f, the operator 3/ ¥t can
be replaced by jw (= j 2 © f). The algebraic diagram can then
be ‘simplifiéd to that of Fig. 8. The algebréic diagram alsq
shows possible extensions (dotted lines) using incidence'
ma‘trices shown in Fig. 3. (Section 2-5). The incidence
matrices connect points to. lines, lines tovplanes, planes to
cubes and so forth. They can be expressgd by a matrix product

of the transformation matrices as shown in Seétion 2-5;

o _ ax0 , . }
Cc . (Aol)t . M1 (equation 2 21)
Cl (A ,), = M1 | (equation 2-24)
¢’ o2t 2 :
gimilarly,
2 _ 2
Ce- (AO3)t = My
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The covariant voltage tensors are said to be in' cohomology
sequence in topological language. The contravariant current
tensors are in homology sequence.

The algabraic diagram of Fig. 8. also shows how the
generalised curl and divergence of the field quantities are
obtained in network terms, The generalised curl in exterior
notation is "d". The gradient of the scalar potential, vy ,
gives a vector dy . The generalised curl of electric force,
E, results in a 2-form, dE = -*B. The generalised curl of
this 2-form is: 4 (A E) = -d (*B) = 0, i e. the divergence
of flux density = 0. The generalised divergence is given‘the

notation *d*. In this notation, *d* (J+ D) = 0. Also the

. - o
curl equation, curl H = T+ dD/ dt can be rearranged as:

#3% (*¥H) = (J+ D)

The generalised divergence takes a 2-form into a
1-form (vector) and a l1-form into a 0-form (scalar).

Fig. 9 is reproduced from Kron's analysis of multi-
dimer;sional space filters (R'eferéhce 6). This is seen to be

an extension of the algebraic diagram developed for the inter-
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connected model. Kron's analysis, however, includes
abstract quantities like magnetic poles and magnetic

conduction currents,

5-3 Kron's Network.Model(ze)

in the netwc;rk model developed by Kron (Fig, 10),
the magnétic ﬁeld quantities so far associated with surfaces
are lumped into inductors and ideal transformers. Fig. 11
shows the elements of this network in z-x pllénes. In each
mesh such as ABCDEFGH (Fig. 11), there are, in addition
to the impedance elements, t..wo i‘deal transformers (i. e. one-
to-one ratio transformers with zero leakage reactances and
resistances,zero magnetiéing currents and therefore infinite
self and mutual inductances). Meshes such as ABCﬁEFGH
consisting of inductors, capacitors, resistors and ideal
transformers will be referred to as "large" meshes (as
opposed to "small" meshes EFKL etc. consisting of
inductors and ideal transformers only). Each "large" mesh
consists of the two primaries of two ideal transformers and
_their secondaries, placed diagonally opposite to the primaries

in the same mesh. The polarities of the windings are such
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FIG. 10. KRONS NETWORK MODEL , |
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FIG 11 KRON'S NETWORK MODEL IN X-I PLANES
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that, around the "large" mesh éach primary voltage cancels

the corresponding secondary voltage. The inductors in the
meshes of Fig. 11 carry a current of the type H2 AY apd their
voltage drops are of the type 1 B2 AZ AX, where

B 2! bB / dt. The resistors, capacitors, the'ir currents
and voltage drops are exactly the same as those of the nefWork
developed earlier (Fig. 5). The inductance values in z-x

planes are given by%— BZ' AZ AX /H2 AY., Their values in
terms of the permeability of the média are obtained by extending

equations 5-3 and 5-4 to the inductances:

( 7 =4 x10™7) (5-16)

The inductances in other planes follow similarly.

5-3-1

The Maxwell equation, curlE = - 2B/ 2t was
| expressed in Section 5-1-2, in integral form as:

JE /f%B

Iz
In particular, for the 1arge mesh (F1g 11) the impedance

drops across the capacitor-resistor branches were associated
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with the line integral of E. The surface integral of *B

B2

ot

the above surface integral is given by four voltage drops,

resulted in (- AZ AX). In the network of Fig. 11,
each a quarter of the integral, across the inductors. The

" primary and secondary voltages of theideal transformers
cancel out in the large mesh. The voltage drops around the

mesh ABCDEFGH add to:

(Eq AZ), + (B) AX)p - (Eg AZ)n
)z
dt

'(EIAX)FG + AZ "AX = 0,
satisfying Kirchhoff's voltage law.

5-3-2

The mesh éurrents in the small meshes such as EFKL
(Fig. 11) are zero, since the impedance offered by the ideal
transformers is infinite to such mesh currents(zs). If
currents are allowed to circulate in the srﬁall'ineshes, the

resulting network will no longer be homogeneous. It follows

that the currents in the large nieshes are of the type H2 AY,
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For the previous network model (Fig. 5), the mesh currents

were of the type i2 AY related to H, AY by equatioh 5-7 as:

2
H=i+df

The scalar magnetic potential {2 expressed the effects of
magnetic sources outside the region under consideration. In
Kron's network model, the ideal transformers at the
boundaries would be energised from outside the region. The
scalar magnetic potentials are thus already taken into account.
Moreover, the network.propagates electromagnetic waves and
not simply currents and voltages.

When the br'anchi currents were expressed as a sum of
mesh currents in Fig. 5a (Section 5-1-3), equation 5-10 |
resulted:

*(J+D) = &i
Since the mesh currents in Kron's network (Fig. 11) are given
in terms of the magnetic fiel'q veé;:or, H, the above equation
now takes the form:

*(J+ D) = dH

-» -
(i.e. Maxwell's equation curl H' = J+ 3D/ at).
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The divergence equation, div 1-3’ = 0, is derived
in Appendix 2 in two stages (i) the flux density, B, is
related‘to the flux linkages of the ideal transformers
(ii) the divergence of B is seen to be zero as a consequence
of the general equation div (curl) = 0. The divergence
equation, div D = £ , is derived as shown in Section 5-1-4.

Practical application of Kron's network model for field
problems such as waveguides and electric machines is
examined in Chapter 6. It is, however, seen that for developing
the algebraic relations, the network model developed earlier
in the thesis is more convenient. The exterior differential
relations are given in terms of algebraic structural relations.
Moréover, the interconnectéd model presents the relations in
a form in Which it can be ex;éndéd for more abstract studies |
such as those of Kron's wave automaton using mégnetic poles
and magnetic conduction currents in more than three
dimensions. Kron's network model for Maxwell's equationé,
using ideal fransformers, is essentially a l-circuit model.
It is, therefore, more convenient in practical solutions of lfield
problems. The interconnected model is also seen to express
the 4-dimensional field tensors Fo.n and H™! ag generalised

voltages and currents,
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CHAPTER 6

APPLICATION OF FIELD NETWORK MODEL

The network model described in Chapter 5 representing
Maxwell's field equations will be examined here in its application
to waveguides and electric machines ... Solution of ﬁeld
problems. by analogue techniques and equivalent electrical circuits

(29)

is a well known engineering appré.ach.' Karplus has

summarised a wide variety of field-plotting and analogue simulation
methods.

Kron's network model however has been derived in terms
of general coordinates. The general network can be simplified
wherever., in an application, symmetry, known distribution and
other such properties are present. In deriving his network, Kron
places the emphasis on physical properties associated with
integrals over infinitesimal regions rather than merely satisfying
mathematically a set of partial differential equations. This process
is physically more satisfying since the whole space of the network

can be imagined to be filled with fields represented by these

integrals.
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6-1  Two-Dimensional Electromagnetic Field Problems

In a wide variety of problems, variation of field
quantities along one of the coordinate axes is negligibly small
(or at least the coordinates can be transformed to satisfy
this condition). Such cases will be called "2-dimensional
field problems. " It should be emphasised here thai, in this
thesis, the term 2-dimensic;na1 field problems denotes the
lack of variation of the field quantities along a particular
direction,and does not suggest that all field quantities lie ig
2-dimensional planes. If the coordinate, x2 ( = y), be taken
in this direction, the partial derivatives of the electromagnefc_ic

field quantities with respect to y are:-

1 .
R T S AU
dy 2y dy )
also,
‘ 2! °H d C
D _ - 3 . Hl = 0 ete. (6-1)
dy 2y DY .

Making use of this property, Maxwell's. equations (Section 4-4-1,

equations 4-28) split into two independent parts.
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(a) ' (b)
- ——— : ' ] 3'
28> _ ; >B" . 9B _ o
2y 0 | dx dy .
:
}2' : dE aBl'
]
bEl bE3 _ 0B : _ 2 _
dz X 2t | dZ ot
.
, ! 31
1 ' aB
PH, RO »pl i By
Y . ot ; dx dt
'
‘ [}
v 1 '
¥H, o, o ' oHy oMy 2, D2
- T x ot ; dz 3X t
)
:
{ : 1 ' 21
| S P 2D” |
dx dz ' by
[]
' -
. S,
]
(6-2)

It is noted that part (a) of equation 6-2 contains the terms
' ' ' ' 1 ’
BZ', El’ E3, HZ' J1 s J3 R D1 and D3 and f only;
2'

. !
part (b) contains the terms B1 , B E Hl‘ H J” and

Dz' only. This suggests that the two sets of equations can
be solved independently of each other. Kron's network model
(Fig. 10) also splits up into two parts under this condition -

the network of Fig. 1 and the network of Fig. 12, The solution

- of 2- dimensmnal f1e1d problems could be carried out
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FIG 12 TWO DIMENSIONAL FIELD MODEL




separately on the two networks. It is noted that in the
network of Fig. 11, all the elements are in z-x planes,

The netvs}ork of Fig. 12 can be further simplified to the
network of Fig. 13. Equations 6-2(b) are seen to be satisfied
by the latter network. The ideal transformers are implied '
in the network model of Fig, 13 although not actuélly shown,
It was pointed out in Section 5-3 that the two windings of an
ideal transfqrmer are placed d‘iagonally opposite in a "large"
mesh and have equal and 6pposite voltages across them. For
2-dimensional field problems, in the network of Fig. 12, the
two adjacent ideal transformers in a "large" mesh also have
equal and opposite voltages across them. For ﬂumerical
computations involving network of the type in Fig. 12, the
simplified version of Fig. 13 can be used, in which it is not

necessary to use ideal transformers.

6-2 Rectangular Waveguides

To bring out the order of ‘errors involved in
discretisation of field problems, numeric‘al computation of a
rectangular waveguide problem is studied. Rectangular and
circular waveguides transmitting signal under "TE mode"

can be simulated by the field network of Fig. 13. The symbol
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F1G. 13. SIMPLIFIED TWO DIMENSIONAL FIELD MODEVL"
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TE indicates that the electric field is everywhere transverse
to the axis of transmiésion. As shown later, the network
of Fig. 13. can also be used to simulate electric machines
when end effects are either ignored or when these are
calculated separately and then superposed. A brief
desc;ription of the rectangular waveguides follows.

~ Waveguides are used in radars, communications ete.
v;'hen frequencies of the order of 1010 cycles per second have
to be transmitted. The electromagnetic waves are guided
by metallic walls throuéh a hollow tube. The at.tenu‘atio‘n of
the waves, as they are transmitted across, will depend upon
the conductivity of the metal and the frequency.

Fig. 14a shows one mode of transmission in which the
electric field is transverse t:ﬁ 'thé; axis of transmission. The
magnetic field is shown by dotted lines and the electric field
by solid lines. There can be no tangential component of electric
field at a perfect copductive surface. For, if there were,
it would exex}t a force on the charges withinkthe'conductor and
move them from one point to another until the electric field
was reduced to zero. In the rectangular waveguide, the

electric field near two of the conducting walls is tangential and
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FIG. 1. REGTANGULAR WAVEGUIDE (TE,MODE)




has zero intensity and it is normal to the other two walls.
It is assumed that the field quantities do not vary along the
. height of the waveguide. Further, the variations along the
width of the waveguide and along the axis of transmission are
assumed sinusoidal. This mode of transmission is known
as the TEI, o modg(so). The subscript "1" denotes that the
‘number of maxima of the electric field along the width is one,
The subscript "o" denotes that there is no variation along
the height. |
‘The electric field compénents in x- and z-directions

arezero, The electric field in y-direction is given by'(31):

A X
= E. : gin (— 1 = si -
Ez Ez . 8in ( ) h s1n (BZ w t)

where the "phase constant"

B = lﬂ—%—)z - : )2 - (6-3)

(W= 2 f, ¢ = velocity of light)

The instantaneous waveform is shown in Fig. 14b. The wave-
form can be regarded as a combination of two plane waveforms

with crests C; and C, and troughs T, and T, as shown in

1 2
Fig. 14b. In electric machine analysis a pulsating field is

often resolved into two oppositely revolving fields, In

(31
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particular, in equation 6-3, when

a_ . : ie. B8 =0

A . x
Ez-‘-E2 ~.sm(—a-ﬂ-) csin wt

This expression describes a "standing wave" and the two
component waves could be thought of as racing from ohé wall
to another in opposite sense. The frequency under this .
condition, i. e. the phase constant 8 = 0, is known as cut-off

freqﬁency. At wavelengths longer than the cut-off wavelength,

the wave will be rapidly attenuated.

6-3 Numerical Computation

The matching impedances for a waveguide have been
calculated by a theoretical formula and also by the network
modél of Fig. 13. The error incurred in using the field
network is plotted as a function of the subdivisions.

" Ifa transmissiont line is terminated witﬁ the
: characteristic impedance at the frequency of the applied signal,
there will be no reflections from the end of the line; the only

signal appearing on the line will be the incident wave, . If some
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other terminating impedances are used, a portion of the
incident wave will be reflected and the total signal appearing
on the line will be the sum of the incident and reflected

waves. The theoretical characteristic impedance is given in

terms of wave impedance:

_ w
z, = 377 g2 (6-4)

‘(‘377= /720/62 )

For the network of Fig. 13, the theoretical matching
impedance terminating each section is:

: AY
Z = ZW . -A_X (6‘5)

The waveguide studied was selected from the American

Services Standard List(so,). It has a cross-section of 4. 3 inch

x 2.15 inch. The recommended operating range of f requency

for TE mode is 1. 70 - 2. 60 kmc/sec. For the first part

1,0
of computation, a frequency of 2 x 109 c/s was selected. For

this }‘requency.

Be _
= 0. 731955
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The width, 4.3 inch = 11 cm, was first subdivided in’;o five
parts (AX). For varying subdivisions, AZ, along the axis

of trénsmission, the inductance and capacitance values of the
field network of Fig. 13 were determined. The boundary
condition, Ey = 0 at the éurface of the s;de walls, i.e. no
tarigential electric field at conducting surfaces, is represented
in the field network by short-circuiting the admittances to the
'grm;nd along these planes. Further, a lossless transmission
line was assumed so that, apart from the terminal impedance,
none of the other elements in the network of Fig. 13 include
resistors. With AX = 2.2 cm (five subdivisions), AZ = 2,2 cm

andf = 2x 109 cycles/second the parameters are;

Be/w = 0.731955
X = j(1.579 x 104) AY ohm/section
X, = -j(1.857 x 104) AY ohm/section

Theoretical matching impedance

= (2.3395 x 104) AY ohm/section

If AZ 7( AX, the inductors along the axis of transmission and
those transverse to the axis have different values in the

equivalent network.
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Calculations were carried out on a digital computer
to obtain the matching impedance of the waveguide, as outlined

. below:

Number of subdivisions = .5 or 8
I
Read frequency
I
Calculate Be/ &y and theoretical
" matching impedance
]
Read AZ
1
Calculate reactances of inductors
and capacitors per section
1
Assume output voltage
— |
- Calculate voltages along transmission -
axis with various terminating

impedances in the range - 0, 85 to 1.15
times theoretical matching impedance

The computed matching impedance is obtained when the voltage
along the transmission axis varies in phase angle only énd
not in amplitude (i. e. no standing waves).
The results are shown piotted in Fig. 15, The .error
is plotted in a linear scale but the subdivision, AZ, along the

axis of transmission (as a percentage of the wave length) is
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first squared and then plotted on a liﬁear scale, Caiculations
were repeated with eight subdivisions of the width of the
waveguide instead of five. The resulting curves are seen to
be straight lines, The scale of the graph is non-linear dlong
the abscissa. |
Calculations were repeated with varying frequencies
and a fixed subdivision, AZ, along the axis of transmission.
The results are shown in Fig. 16. It is observed from Figs. 15
and 16 that a subdivision alohg the axis of tr;ansmission equal
to 10% of the wave length gives an error of about 4% whereas
a subdivision of 5% of the wave length gives an error of about

one per cent. These are seen to agree with the network

analyzer studies of Whinnery and Ramo(32), )

6-4 Electric Machines

When the variation of the field quant‘ities parallel to
the axis of the shaft of an electric machine is ignored, then
the 2-dimensional type of network given in Fig.. 13 canbe
used to solve machine problems. Current flow is assumed to
be wholly'in a direction parallel to the shaft axis (Fig. 22, p. 200)

and the magnetic field quantities in this direction put equal to

S
.
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zero. Under sinusoidal distribution, a simpler l-dimensional
"transmission" type of network (Fig. 17b) is shown to result.

" This agrees with the equivalent network of Barton and Cullen(sa)

(Fig. 18).
The z-coordinéte is taken parallel to the shaft (Fig. 17a).

The field quantities do not vary along this axis. The ‘other

two coordinates, x1 and xz, are the usual polar coordina;ces r

and 0. .The' nétwork of Fig. 17a gives the parameters in polar -

coordinates. The permeabilities shown are inhomogeneous

(i. e. Hye 7‘ yg-). This arises when, in a theoretical analysis,

the effects of slots and teeth are simulated by a single medium

(34)

having different permeability in different directions The

reas;)n for this is that the sl?ts cpt in the steel punchings of
electric machines offer highéf reluctance to fluxes parallel to
the air-gap whereas mést‘ of the radial flux is carried by the
highly permeable teeth., The resistances and permeabilities

~ in directions parallel to and perpendicular to the air-.gap are
appropriately averaged.

The network of Fig. 17b is obtained as below, from the

network of Fig. 17a, when sinusoidal distribution is assumed.
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The voltage V2 shown in the network can be expressed
A ) '
as V sin (P0), since sinusoidal distribution is assumed

(P = pairs of poles). The voltages V, and Vg are given by

. : v A
V sin [P(B - AO)] and V sin [P(G + AB)] respectively.
The currents, ' and 12, are given in terms of these voltages

as:

1

ra0. AZ) ol . (v .y

b, T (6-6)

y

¢

(w, 822y 1% = (vy-vy 5 ped/dt (e

The resultant current leaving the node is: IR = I1 - 12.

In terms of IR, a relation is obtained by subtracting equatit;n

6-7 from 6-6, giving: R

rAf . AZ R

r Ar

(1 ) I = (2V, - V) - Vy) (6-8)

In equation 6-8, the voltages can be expressed as sine functions

of the maximum voltage as:

. A A ' ‘
2V, - V) - V4 = 2V sin (PO) - V sin [ P(0 - A0)]

- \'}sian(9+A9)] P

2 V sin (PO) {1- cos P(A0)}

2V, (P. 40)2 (6-9)
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Substituting equation 6-9 in equation 6-8 and rearranging,

M, (r)? Az R : :
{ 3 } pI" = Vv, (6-10)
(P) Ar.rA0 ' '
. R -
i.e. LR pl V2

That is, a single inductor grounded at one end and connected

to the node V2 can simulate the two'currents' I1 and 12. The

value of the inductance is given by the bracketed term of
equa%ion 6-10. This procedure can be carried out at every
node in the r-direction, resuiit'ing in a network of the type in
Fig. 17b.. This is analogous to the representation of a -
transmissidﬁ line. For electric machines, the value of the

capacitance is negligibly small and the network can be further

simplified to that of Fig. 18.
Fig. 18 is repf'oduced from reference 33. This agrees

with the network of Fig. '17b with the following substitutions:

B, = Ky
=‘ux

= 6y

"
et

Ho

Ar

' Az <. rAf
. .

"f)"'

1
v'3
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Capacitance is ignored. Mdreover in reference 33
cartesian coordinates are assumed i, e. the air--gap and teeth
dimensions are considered small compared to the radius.

This transmission line representation of machine with
sinusoidal distribution has been derived by first considering
a more general network, then ignoring end effects, assuming
sinusoidal distribution and a suitable coordinate system. In
reference 33 the same final result is derived by first
simplifying-Maxwell's.equations in a particular coordinate
system and then comparing it with a transmission line network.
Such network studies in electric machines can be usefully

applied to solve problems such as eddy-currents or skin eﬁ"ects

in conductors(as) and solid iron effects(43).

Kron's network model i8s seen to cover a wide variety
of applications. In particular the TEL o mode of transmission
is similar to electric machines, as far as the network
topology is concerned. The resolution into forward and
backward revolving fields in electric machines can be .

compared to the resolution, into plane waves, of the total wave

in a wave guidg. When the phase constant "B" is zero for the
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.

wave guide, the two component waves travel in opposite |
directions analogous to the resolution of a pulsating field,
in an electric machine, ipto two equal and oppositely rotating
fields (revoi;ring field theory of single-phase machines).
When the wave guide is terminated by its characteristic
impedance, there will be no ‘i'efléctions from the end of the
line. vThe voltage along the transmission axis vafies’ in phase angle
only and not in amplitude. In a polyphase evlectric machine,
under balariced condition, a similar distribution results. The
resultant field of the various phases are combined into one
revolving field. In the case of a wave guide, if it is not
properly mé.tched, there will be a standing wave along the -
transmission axis. In an electric machine, this condition
corresponds to the unbalanced case when the two revolving
components are uheqﬁal. and the resultant field is revolving
as well as pulsating. L
Resolving a field into a set of two component fields has
been used by Kron in his multidimensional wave analysis.’ |
(Kron states that in his wave automaton, fbr the propagation

of waves, the p-dimensional and its dual (n-p) dimensional

polyhedra serve as a set of orthogonal reference frames).
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The subject of electric machines will be examined
in further detail particularly with reference to the tensorial

analysis of electric machine fields.




CHAPTER 7

FIELD CONCEPTS IN ELECTRIC MACHINES

The previous chapters dealt‘with stationary fields.

. That is, the media and the sources of fields are stationary

with respect to the observer,

Thié chapter deals with tﬁe concepts of electrorﬁagnetic
fields in rotating electric machines, Kron uses " Straight-
forward géneralisations of conventional rotating electrical
machinery" to analyse the field of magnetohydrodynamic
generators in his wave autorr;aton. | The analysis in a charge
coordinate system for the electric machine is seen to lead to
more geheral exterior differential forms. A simpliﬁed version
of the conventional electric m.achine is considered in the
analjsis. » The idealised machine envisaged by Park, Kron
and others is described. This model represents the machine
by means of relatively rﬂoving coils with their associated
voltages and currenté. The parameters are expressed as
iﬂductances and resistancés. For the fiel&'study, a model is -

described making use of current sheets and distributed
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parameter's.‘ The four dimensional field tensors, introduced
in Cﬁapter 4, are utilised to __expi_:ess the maLgnetic stresses
and Poynting energy flow vect'o.r. A comparison is made
between the discrete modei with'coils and the continu(;us rr;odel
- with curfent sheets,

Kron‘used tensor analysis in his treatment of electric
machines and demonstrated that such an analysis is universal
in its application to most kinds of rotating macﬁines and for
multi-machine system studies. The field concepts are analysed
in these terms. This épproach appears to converge with the
relativistic treétm_ent of unified field theory.

In developing the ﬁeld' network model for Ma#well's |
equations (Chapter 5), integrals of differential forms over
subregions were defined. Integrals of field quantities over
certain regions of the electric machine provide the link between

the two treatments mentioned above. The differential forms,

however, assume a more general form, when transformations

involving non-integrable relations are used. These ’ .

transformations were used by Kron to demonstrate the fact
that most eléctrical,machines are members ‘of a family or:

group. Throughout the analysis, hyetereéis of iron and changes
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of saturation are ignored. The electric flux density vector,

D, is also ignored.

7.1  Park's Idealised Machine'>>)

‘The idealised machine envisaged by Blondel, Park,
Kr"on(z) and 6thers. has at least one cylindrical iron stru’cture
(say, the rotor). The other member can be cylindrical (non-
salient), or can have a salient structure (Fig. 19). Each
member has a layer of winding. On the stator, the winding is
usually represented by a coil on the salient pole. (qun '
in;roduces another coil in the inter-polar region).” On the
srotor (armature), there are two sets of brushes,
(hypothetical sets for synchronous machines and induction
motors). The brushes are centred on two orthogonél axes
through which currents idr and i% flow. The rotor winding
is assumed to be symmetrically distributed. The axes are
called direct- and quadrature- axes.. In the diagramétic
representation of windings by coils, the axes of coils denote
the axes of magnetisation, While the conductors forming the

armature rotate. the resultant coils between the brushes are

RS S
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- stationary; that is, the coils are composed of different
conductors from instant to instant. The dr; and qr- coils
(.Fig. 19) are therefore known as pseudo-stationary coils, their
self and mutual inductances being given in matrix form along

with the stator quantities aé:

ds dr qr qs

ds L M

ds d
dr Md Ldn
Ly =  ar 'an Mq : ('}-1)
qs MCl qu

When the armature revolves at a speed of p @

(capital theta is used here to avoid confusion with polar

(2),

coordinates), the voltage equation is

b b . b
" +L pi +G, 1 p e (7-2)

N

a Rab

v

In equation 7-2, Vo is the applied vdltage; Rab is the

resistance matrix; Gab » the torque matrix, is:
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i\ _ds dr qr qs
a
ds
. dr L' - | M
G, * -1 il (13
a [4
ar | -My |-y,
qs

When the flux density wave is sinusoidal the unprimed aelf
and mutual inductances in matrix 7-1 can be used for the

primed quantities in matrix 7-3.

The torque applied to the shaft of the machine is:

T =M’ ®+R p®-1.G.1 O (7-9)

- (M is the rotor inertia; R_ is the fii'ctional resistance; i,

is the traﬁsposed current matrix),
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7-2 Field Model

The field model makes use of current sheets. The
conducting strips carry a finite current per unit width, but
as their thickness is ‘réduc'ed to zero, the current pér unit
area becomes infinite. In such cases the finite current per
unit width is used in the analysis. If is called linear current
density or line density. It is denoted by the German letter
(current density being usually denoted by "J"). The unit for
line density is amp per metre. Current sheets are uséful
simplifications of complicated problems, since they localise
current sources and the rest of the region is current-free,
Integration over the current sheet region is also easier,
Hague(ss) has shown that so far as the air-gap field is ‘concerned.
windings in slots may be replaced by fictitious currenf sheets
fastened to smooth steel surfaces. Fig. 20 shows two hollow
cylindrical tubes (current sheets) which replace the windings
shown by the coils in Fig. 19. The line density.(linear current
| d ensity) is assumed to be parallel to the shaft axis at all

_points. "It is also assumed to be sunusoidally distributed over

the circle.
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i,e. for the rotor current sheet, |

J - y‘dr cosd + J ¥ sino . (7-5)

(sﬁperscript ‘'dr and qr refer to the direct- and quadrature-
éxis, described in Section 7-1 for the rot’or; angle 0 is
measured as shown in Fig. 20 from the direct-axis. A 2-pole
configuration is assumed).

The following sections establish the relationships
between various fieid ’quahtities. Tﬁe 'stress-energ.y teﬁor
is set up‘ and the electromagnetic torque and power flow are

discussed in these terms.
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7-2-1 Magnetomotive Force and Magnetic Force

-l

The Maxwell equation, curl H = :I-, cannot be used as
such in the region occupied by the current sheet, since the
currént density is infinite. However, the integral form using

Stokes' theorem (Section 3-9) can be used. In this form

fue
o1 3
where, X is an area bounded by a closed curve Y3

The surface integral of current density, J, gives the total -

current enclosed by the area Z . For the current sheet this

" ig finite, and is given by
, 8 '
/ S rdo
e,

are the angles corresponding to the extremities

2

of the current sheet in the area & ).

: (91 gndG

Equation 7-6 is usuall'y' known as the "circuited law",

It is applied to two small areas. ABCD and AB.'C'D (Fig. 21),

i

as follows.

. First, the small area'ABCD (Fig. 2la) is considered.

In equation 7-6, the left hand side denotes the line intégral of
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magnetic force, H, around the closed curve 3% which, in
the present case, is A-B-C-D-A. For paths B-C and D-A,
the magngtic force is assu‘med zero (iron infinitely permeable).
For paths A-B and C-D, the .variation of the radial magnetic

force normal to the air-gap is ignored so that.
B

er dr =~ (Hr)ABa
A

(a is.the air-gap length).

Equation 7-6 for the area ABCD is then: o

(M), a+0-(H)y, a-0= Srag
i. e. . 8H_ - : o
- -—5—9—2 aldd = yrﬂ@ . (7-7)

Since sinusoidal distribution is assumed, Hr can be expressed

as:

Hr = Hdr. cosf + qu sinf , (7-8)

e ; i

Substitution of equations 7-8 and 7-5 in equation 7-7 yields:
(Hdr sin@ - qu cosf) a AQ
= (9% coso + I ging) r A0

e et e i A a2
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1. €.
. ,
g -H -1 H
.2 S il
r r r
e Hy,. 1 H,.
L (7-9)

Equation 7-9 gives a relation:in terms of dr- and qr-
cc;rrnponents. The transition from r, 0, z componénts is
aéhieved by assuming a sinusoidally dis tributed field. Using
a "tilde" over letters to denote dr- and qr-components,

equation 7-9 can be expressed in the form:

J . -g- f . H amp/metre (7-l1‘6-)

( L is the skew-symmetric rotation matrix).

(M

In equation 7-5 only the rotor current sheet was
considered. When the stator is also energised, the stator
liﬁear current density is added to the rotor line density in
equation 7-9.

Magnetomotive force describes the effectiveness of a
coil as a source of magnetic field. As the coil is distribut 'ed

inside an electric machine, a closed path is used to describe



mmf. an example being the path ABCD (Fig. 2la). The line

integral, fH, for this path gives the mmf. Usually a path

is chosen with the returning path CD one pole-pitch away from
D B '

AB. For such a case C’er dr =Aer dr = (Hr)‘AB a.

The total line integral around the closed path, i.e. the mmf,

is then 2a(H ), ;. Denoting this quantity by the German letter

H , equation 7-9 becomes:

r
g9 1 -1 H,.
g - 1 ?{'qr
~ 1 ~
S 5 LA \
7-2-2- Tangential Component of Magnetic Force

Even with thé simplified field model, the magnetic
field in the air-gap .is not purely radial. There is a tangential
component of magnetic forcé in the air-gap. Itvis necéssary,
therefore, tb establish the order of this component and its
value adjacent to the stator and rotor surfaces. For this, a

closed path AB'C'D (Fig. 21b) is considered. The integral

b3
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relation of equation 7-6 now takes the form:

viAr + (He) A9 Ar - 0

‘Hr)AB' : B'C! - (Hr)C'D

= Irao . (7-12)

If Ar is made sufficiently small, the magnetic force

adjacent to the rotor surface is, from equation 7-12,

Hy = 5’ r (7-13)

The physical component, H(g), for polar coordinates

is equal to He/r (Section 4-6-1). Thus, from equation 7-13,

H(O) = J amp/metre (7-14)

Comparing equatidns 7-14 and 7-10, it is seen that the ratio
of the two components (radial : tangential) is r : a. Since, in
a typical machrine, r>>a, the tangential component is of ten
ignored. For example, in the 'integral A/?Ir dr (Fig. 2la),
the variation of the radial magnetic force, Hr nqrmal to the
air-éaé was ignored (Section 7-2-1). This would not be so, if
the tangential co.mponent of magnetic force is a significant

qﬁantity compared to the radial force. Care must, however, be
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taken even if r>>a, when product terms involving the
tangential magnetic force arise. This occurs in Maxwell's
electromagnetic stresses, Poynting energy-flow vector and

in calculating the tangential force on the rotor as shown in

. Sections 7-3-4 and 7-3-5.

A similar analysis near the stator surface relates the
stator line density to the tangentié.l magnetic force adjacent
to the stator surface. This need not be equal to the rotor
surface Hg, since the currents carried by stator and rotor
coils are not necessarily the same. The tangential force

exerted on the stabr structure must, of course, equal the

force exerted on the rotor structure.

7-2-3  Vector Potential and Flux Density

In general, the direction of the vector potential is the
same as that of the element of current by which it is prod\;ced(an
Fig. 22 shows the directions of the field quantitiies B, H, A and
also the line density, J , for the field model when a single
rotor coil is considered. The arrows are drawn at positions

where their maximum values occur. The air-gap is usually

very much smaller than the radius so that the field quantities,

.
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col'tL FIELD DISTRIBUTION

FIG. 22, DIRECTIONS OF FIELD QUANTITES
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B and H, are shown nearly radial.

With sinusoidal dis tribution, the vector potential

can be expressed as:

A = A

2 dr cos0 + Aqr 5in0 (7-15)

The flux denksity components Br and B9 can be expressed in

terms of the vector potential as

dA dA
1 z : 1 2
(+ —35) and (- & =77)

respectively, from the equation, curl A = B For the

~

‘radial component, with sinusoidal distribution,

BT = B coso + BY sino (7-16)
2A |

From equation 7-15, _ﬁ_z_ is:

'Adr sinf + Aqr cosf

S .
The equation B iy 0 ¢ becomes:

201

dr ' '
~ A 1 | Adr

qr R 1
B | A, -1 A

(7-17)




Equation 7-17 expresses a relation between dr- and qr-

components., With TILDE notation,

~ _ 1 ~
B = — f; A (7-18)

( f; is the transposed rotation matrix).

A similar analysis can be carried out at the stator surface.

7-2-4 Induced Electric Field

For stationary bodies (i. e. stationary with respect to

the observer measuring the field quantities), the induced

electric field is:

oA

E = zZ

z Y (7-19)

For moving bodies. the additional term U x B

arises, where U is the velocity of the moving body with
respect to the observer and B is the field relative to the
observer. For the rotor conductors moving with a velocity

p @ , the induced electric field is:
‘ bAz i‘ . r '
E, = - > T P ® B , (7-20)
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Now with sinusoidal distribution, the induced electric field

can be expressed as:

Ez = Edr cosf + Eqr sin® _ (7-21)

Equations 7-21, 7-15 and 7-16 can be substituted in equation

7-20, giving

Eqp bAdr/ ot ‘ gdr
= - -r p@® (7-22)
Eqr T SWAL BYY
With tilde notation,
~
E=-—=2-rp@x B (7-23)

~ -~
Equation 7-18, expressing B in terms of A, is substituted in

equation 7-23 to give:

2 2A , ~ .
B=-5 -p 0 fA (1-24)
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7-2-5 Four Dimensional Field Tensors

The field tensors in space-tinie coordinate system
developed in Section 4-5 are here applied to electric machine
fields. The fourth coordinate, x4, is taken to denote time in

seconds. The first field tensor is from.equation 4-31,

—n
l r %] z t
m
T ' --:I:‘B9
r
rB
0
F = (7-25)
mn
P4 ng -rBr Ez
t "By



The second field tensor, is from equation 4-33,

=8
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n .
r Z t
m
' Mo
by
H
I
r
(7-26)
Ho | A
r r
The stress-energy tensor is, from equation 4-36,
m ‘
r z t
18 H B
r
r
B H9 -3
r
-iB H,
E_H, E
z 0 15T
- ~ 1B Hr
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In equation 7-27, in the diagonal terms, the addition of the
quantity Be H9 is ignofed when compared with BY Hr' '

The stress-'energy tensor gives Maxwell's magnetic
stresses and Poynting's energy-flow vector. The tangential
stress can be related to the torqﬁe on the rotor and the radial
Poynting component to power flow, These relationships are
developed' in Sections 7-3-4 and 7-3-5.

7-3 Relation between Field Model and Lumped Parameter
Model ' ‘

The following sections relate the field quantities to
terminal quantities, for theidealised machine. The performance
equations are seen to be obtained directly from Maxwell's
equations. Field-terminal relations such as current density-
coil currents, vector potential-coil flux linkages, induced
electric force-induced emf, tangential magnetic stress-.torqq‘e,

and Poynting radial energy flow-power flow are described.




7-3-1 Current Density-Terminal Current Relation

Fig. 23a shows the representation of a distributed
winding, by a coil. The coil carries a current i. Fig. 23b
shows the equivalent field model, with a current sheet having
a line density .}? sin®, (peék value denoted by a wedge over the
letter). If this maximum value is directed along an axis at
right angles to the axis A-A', then the field produce& by the
current sheet is in the same direction as the coil of Fig. 23a.
Moreover, for the two models to be equivalent, the mmf
around the closed path (shown by the dotted. line) must be equal
to that produced by the coil. For the coil representation, the

mmf is Ni (N being the number of turns of the coil). For the

field model,

1 A
mmf = f(fsine)rd9=2 fr
OA
jee Ni = 2J r
or, A
J - X ' (7-28)

Denoting the directions by the superscripts dr and qr,

equation 7-28 becomes:
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g9 . N 1% (7'-29)
* 2r

This space-relation is shown in Fig. 24. A similar analysis

for the coil current idr gives:

.qr
dr _ - Ni
\7 - = or (7'30)

Equations 7-29 and 7-30 are combined into one matrix equation:

dr : qr

g -t !
ggr idr 1 . iqr

.dr
i

or

J. N p

2r

ol }

amp/metre (7-31)

From equations 7-31 and 7-11 it follows that
~ ~
H = Ni | : (7-32)
That is, the mmf{'s are given by the ampere turns of the

winding and the axes of magnetisation are given by the axes

of the coils, as stated earlier.
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LJr . L
A
q‘f‘
9
. >
E
]
| :
jdr 5

F16.20. SPACE VECTOR DIAGRAM



The space relations between currents and current

densities are illustrated in Fig. 24.

7-3-2 Vector Potential - Flux Linkage Relation

The inductance of a winding can be calculated in terms

of vector potential as(27’ 37):
.J ds
L = _——‘//A 5 x  length of conductor
i (7-33)

(dS is an elemental area on the cross-section of the conductor).

The integration is carried out over the cross-section of the

conductor. For the current sheets, equation 7-33 reduces to:

./'A.frde
2

i

x length of conductor (7-34)

L =

211

! A
For the coil of Fig. 23. with sinusoidal distribution, A = A sin®

) A
and \7 = \7 sind (peak values denoted by wedges over letters).

Equation 7-34 becomes:

27
A

A
I = -{4,— fAsinO J sing rdo
: 0
1

A .
-’-{—[25 A | (7-35)
i

(! = rotor length )
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A
Substituting .7 = Ni/2r (equa_tion 7-28).

7”n A
L - AN 4
2i
or,
A 2 . ' '
A= o7 Li weber/metre - (7-36)

Equation 7-36 gives tfxe peak value of the vector potential
due to a current i in the coil shown in Fig. 23, and is seen to
be directed along an axis at right angles to the coil
representation of the winding. Denoting the directions ‘by

subscripts dr and qr, equation 7-36 becomes:

_ 2 .dr
Aqr T ANI Ldr 1

Sim'ilarly, a coil in the quadrature axis carrying a current {97

produces a vector potential Adr cosB, where

_ 2 .qr
Adr R < 4 Lqr i

19T

- NI ' dr
qr ' “Lgr 1
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: 1 Lge i
= ————2 - ’
71Nl -1 . L lqr
qr
(7-37)
or,
~ ' 2 ~ ‘
A= - NI /t L i  weber/metre (7-38)

The contribution of the stator winding to the rotor

surface vector potential will be expressed in terms of Md ids.
and Mq i%%, The vector potential of the field model is thus
seen to be related to the flux linkages of windings in the coil

mbdel.

7-3-3 Induced Elect ric Force and EMF

To arrive at the induced emf, £ , in a winding, the
induced electric force, E, is integrated around the winding,
appropriately weighted according to the distribution of

conductors. The coil shown in Fig. 23a has "N" turns.
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If the distribution of these turns around the periphery of the
rotor is assumed to be approximately sinusoidal, then the
number of rotor conductors in a small sector of the rotor
subtending A0 radians at the centre will be ( -1;— sin0 A0).

The induced emf, £ , in such a coil, in terms of the induced

electric force, E, is:
2N

. N . |
& = { of(—z— sin® ) E do } x (length of conductor)
The induced electric force, is, from equétion 7-21:

E = K cosf + B sin@
z dr qr

With this substitution, the integration shown above reduces to:

5=HN(.E
2 . qr

Since the currents and voltages associated with the |

coil in Fig. 23a are denoted by a suffix " dr", the emf is

written as | g
dr

i. e,

g dr 2 qr



A similar analysis for a coil in qr-axis yields:

= nN{
5qr = - Ear
i. e,
Edr - : 1 Edr
T{N?
2
E -1 E
qr - qr
“or,
~ ~ .
£ - "g” f; E volt (7-39)
~ ~
Substitution of E in terms of A from equation 7-24 in
7-39 gives:
~ ~
g .. nN/L dA ~ )
= L2 fEre) (140
3 ) . N |
Substitution of A in terms of L. i from equation 7-38 in
7-40 gives:
~ . ~
, - dLi v )
£ - S * /t Lip ®)
e .
= -(LTT + SiLip®) (7-41)

215
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Equation 7-41 can be compared with equation 7-2 in

which the induced emf is expressed as:

b

: . .b
-(Labp1 + Gabl p ® )

It is seen that the torque matrix, Gab gives the term ftL
in equation 7-41. Equation 7-3 gives the terms of the torque
matrix and the primed quahtities are equal to the unprimed

quantities under sinusoidal distribution.

7-3-4 Electromagnetic Torque

The torque on fhe rotor due to the electromagnetic
field can be éstablished in terms of the tangential Maxwell
stress (the space of the electromagnetic field being conceived

‘to be in a state of tension analogous to an elastic medium).

From the stress-energy tensor (equation 7-27), the

tangential stress on the rotor surface is:

To = B Hy

(The superscript "r" in the tensor component Tg denotes that

the stress acts on an area normal to the radial direction;

the subscript "8" denotes the direction of force).
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The torque on a small element of area rd@ dz is:

Tg rdodz = BrH9 rdo dz

In polar coordinates the determinant of the metric

. 2 : ‘s .
tensor is: g = r°. A tensor multiplied by /g is a tensor
density. The term (Tg r) is thus the tensor density component
of the stress-energy tensor. In Section 4-4, it was pointed out
that tensor densities can be integrated over infinitesimal
regions. For larger regions, the integration implies a

summation of tensors not located at the same point and -

generally, this is not permissible. For a purely cylindrical
-

0

is always normal to the radius. It can therefore be integrated

structure, however, the direction of the quantity T. r d0 dz

over the rotor surface to’give the rotor torque:.
[ 2n V4 n
r r
fng rdodz = \/j/; H9 r do dz (7-42)
(-2~ ] 90 ) ’

Substitutions of equations 7-16, 7-13 and 7-5 in

equation 7-42 yield:

Torque lfr2 { (Bdr ydr + qu yqr)

~

¢ J newton-metre (7-43)

n r21 (g)
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In equation 7-43, the current-density vector is at
right angles to the current vector (Fig. 24). The equation is

thus seen to correspond to the well known torque equation:

idr ) ¢dr ;1 9r

T P

qr
Further substitutions of equations 7-18, 7-31 and 7-38 in

equation 7-43 yield:

. v pe op T
Torque = 1tLtf i = lt‘ptLi (7-44)

The electromagh‘etic torque derived in equation 7-44 cah be
compared with equation 7-4 in which the generated toréue due
to currents is expressed as it . G . i. The torque matrix, G,
can b.é expressed as ﬁL. .
In equation 7-42, the téhgential component of magnetic
force, }Hg, appears. Even though this component is sﬁmall |

compared to the radial magnetic force, nevertheless it cannot

be ignored in the calculation of tangential magnetic stresses.

7-3-5 Power Flow

The radial component of Poynting's energy-flow vector,

r .
'1“t , can be 1ptegrated over the rotor surface to give the radial
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pdwer flow. From equation 7-27,

EZHQ

t . (7-45)

It is again seen that the tangential component, He. cannot be
ignored in Poynting's energy-flow analysis.
Total radial power flow is:

l ew an .
P - '/fTrrdedz=-ﬁEH do dz
t ve 2 O

r 00
Substitution of equations 7-21, 7-13 and 7-5 in the above

integral yield:

-nrd (Erfdr+E

qr
r d r‘g )

P
q

~ < o~
- Ard (E)tf= -;rr/(y)tE watts

(7-46)

Further substitutions of equations 7-41, 7-39 and 7-31 yield:

~
o~ di

P T, LS + ﬂcL;p@' ) - (7-47)

~
In equation 7-47, the term TtL%-,t- represents the power

flow required to meet the change in magnet stored energy with

varying load and the second term, ?t ft L '{p @ = '{t G"{p e,
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represents the electro-mechanical power conversion.
In the calculation of Poynting's energy-flow vector,
the induced electric field has been considered. This is

(38). In a conducting

termed "'partial field" by Hammond
material, the induced electric field causes additional charge
distribution in order to produce a resultant electric force £
( P is the resistivity and J is the current density). To qﬁote
Hammond " ... it.is rather surprising to find that an
'exploring test charge would not be able to differentiate between
the case when the motor is stationary and when it is running,
In either event the observed electiric force would be L.
Neither the applied potential difference nor the induced e. m‘.’f.
can bé observed separately. " Again "It will be noticed that
the Poynting method is exactl.)'; ‘analogous to the back-e. m. f.
method used in power devices, because the back-e. m. f. is
also essentially a partial field, which it is convenient to keep
separate for the purposes of computation. "

In Secﬁon 7-2-4, the induced electric fofce for the
| moving rotor conductors was established. These results have

in fact been used in this section to express the Poynting vector

(equation 7-47). In Section 7-3-3, the induced electric force



been related to the back emf. The analysis in this section

is thus seen to correspond with Hammond's partial-field

approach. .

y

7-3-6  Units and Dimensions

In the foregoing analysis, the field quantities developed
for the field model have been related to the terminal quantities
of Park's idealised machine, Maxwell"s equations for the
field quantities resulted in the performance equation of the
machine. Dimensional balance has been maintained in the
field-terminal relations (equations 7‘-31, 7-38, 7-39, 7-43 and
7-46) and the M. K. S. system of units has been used throughout,
The dimensional constants (N/2r), ( # N l /2), ( rfrzl ) and .
(7 r l) abpearing in the equations can all be made unity by
considering a machine with unit radius (r = 1), unit area per
pole (7 r £ = 1) and unit turns per pole (N = 2 for a 2-pole
configuration). Alternatively, a per-unit system for field
' quantities related to the per-unit system for tefminal quantities
can be established, to make the constants unity.

In arriving at the field equations and field-terminal

221
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relations, hysteresis of iron, changes of saturation and the
electric flux density vector, D, are all ignored. Sinusoidal
space distribution is assumed. Tangential field components
are taken into account.
A 2-pole configuration has been assumed for simplicity,

For P pole-pairs, the field terminal relations 7-31 and 7-38
are unaltered if N is now taken as the number of turns of a
coil, per pole-pair. The sinusoidal distribution for cﬁrrent

density (equation 7-5) then becomes:
dr
J = 9% cos (P9) + JI sin (Po)

The generated torque it G i now gives torque per pole-pair,

The generated voltage is Gab ib p & P,
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7-4 Covariant Field Analysis

(2,39)

Kron demonstrated that by using such concepts

as covariant derivatives, as developed in Riemannian and
non-Riemannian geometry, the performance equations of
many kinds of electric machines could be reformulated in a
géneral manner. The equations of the "family" or group of
machines could be set up in a way independent of the reference
frame adopted. (Each machine is a "reference frame"). The
field quantities in a machine could be expressed in terms of

(40'41), The "field" analysis presented

covariant derivatives
by Kron and analysed in some detail below is not, in‘ fact, the
true "point" field description already described in Sections 7-2
and 7-3 in terms of geometrical space-coordinates and time,
Now in his generalised theory of electric machines, Kron's
reference "coordinates" are charges. He must therefore
describe the fields in this abstract "electrical” space. To do
t his, he defines at least one fundamental field quantity in this
spaée directly. The field equations in the abstract space are

then built on this. The quantity which can most readily be

defined in terms of charge "coordinates" is the vector potential.
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Defined in this manner as in Section 7-4-5, the term which
is c.alled "vector potential" is in fact an integral of the "point"
vector potential, over local regions of the machine.

The use of "Charge coordinates" enables a unified
description of machines to be derived. In addition, the
theory as already mentioned, carries over into multi-machine
systems, which are coupled mechanically or electrically.
Tensor transformations give the family of machine equatibns.
This implies that in such transformations; differentials of
field qu_antities will arise and therefore covariant differentiation
of field quantities must be used in the abstract space. In

analysing Park's idealised machine, the Park transformations

‘U

_are seen to lead to a skewsymmetric torsion tensor, SA}‘, .

(40)

Kron pointed out that the analysis of field relations in such

terms converges with Novobatzky's proposed relativistic

42 . .
( ). In this, five vectors are introduced

universal field fheory
to bring gravitation and electricity into a single system. The
essence of Novobatzky's treatment can be illustrated by two
short quotations.

*[The theory]is based on the principle that the

connection between adjacent tangential spaces in the four-
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dimensional world is not affinitive but projective..... the

~ theory of the five-vectors is a projective equivalent to the ordinary
four-vectors .... at every world point there is a normal
direction N. The four-term space of the tangent vectors is

then extended to a five-vector space. Four components of the

five-vector unit lie within the tangential space, the fifth has

the normal direction. "
'Y [.l
)

"Obviously it (the additive introduction of the tensor S A%

relates to a rotation of the rigid vector body after the

conclusion of translation, since only a rotation will alter

neither the magnitude nor angle. The local axes of rotation

can be anywhere ac‘co‘rding to the values of the S’-componen'.c;a. cee
It follows from this that S, ., ==S _~ must be skewsymmetrical

1k5

in the indices k, 1 L o

Seir © Fra* Siks T Fra ¢ i

in which F, . is a skewsymmetric tensor in the four-dimensional

kl
world i. e. the electromagnetic field quantity. "

Novobatzky attempts to combine gravitational and
electromagnetic effects into one unified field theory. A general

relativistic theory of this form has still not been successful.

However, the electromagnetic field-gravity structure in all the
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proposed "unified" field theories is surprisingly close tq
Kron's generalised electro-mechanical presentation of

. rotating rﬁachine’ theory. The link is in the generalised curl
concept. In unified field theory, the tangent space of four-
vectors is extended to a ﬁve-vec;cor space by consideriﬁg a
normal direction to the tangent 4-space. The generalised curl
is exﬁreséed in terms of skewsymmetric tensors of the type

S " In the machine theory, the current vectors lie in a

5k1’
tangential space in the abstract charge-coordinate system and

the rotor angle © denotes a direction normal to the "current

space. " The generalised curl is here expressed in terms of
torsion tensors of the type SB(S‘); (given by equation 7-77;
the coordinate xS = © ). Inboth cases the covariant
divergence, curl and gradient a;re used.

In the following ahalysis, the electromagnetic field
equations will be expressed in terms of covariant differentials,
The covariant differentials will be derived for Park's rc_aference
system and the field quantities examined in these terms.

These are then compared with those in the field model described

in Section 7-2.
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7-4-1 Covariant Differentials

If Aa and Aa are tensor components in two different
reference frames with coordinates x ® and xa, they transform

as:

R’
Aa Ca Aa

(C: is the transformation tensor and repeated index a in the

above equation implies a summation withea = 1, 2, ..., n).

It is seen that the partial derivatives do not, in general,

transform as tensors:

oA o(C; A ) ’C; . A,
b b 5~ A1 C, b
© X oX 0X oX
a
- Cq A + % oA, %"
x° . @ a b;cB 2x° °
i.e
2A ac? dA
a a a B o
- A, +CICp  —f (7-48)
bxb ox @ a , b dx

The appearance of the first term on the right-hand side of

equation 7-48 contravenes the tensor law of transformation.



However, ‘the "covariant derivative" of a vector is a tensor

6A ’ QA Sk pa .
2. - e 7 A | (7-49)
6x° L af A A

where, the "affine connection" is:

n ns  98sq 2835 28, |
AR T A e L (7-50)
afl dx dx dx ,
In equation 7-50, gm(3 etc. is the "metric tensor", and g ny
' SA -
gives the terms of its inverse. The covariant derivative S
‘ 6x

is defined similarly. It can be shown that covariant

es (21)
derivatives transform as tensors .

b8,y « B A |
= C, G T3 (7-51)
6xb a b 6x l

"
The law of transformation for the affine connection r' oB is:

[-‘P r"" a B ~p P bCZ ' 7‘
= c C. C + CI (7-52
ab of 2 PN " )

From equation 7-50, it is observed that thé affine connection
here is symmetric, because the metric tensor gaB is

symmetric.

(21),

228
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i' e'

In equation 7-50, the bracketed term on the right-hand

side is known as the Christoffel symbol and is usually denoted

by CaBo 6] .

7-4-2 . Exterior Differentials - Covariant Form

The exterior derivative of a vector (1-form) is, from

Section 3-10-4, equation 3-45:

1 6ab t)Ab bAn bAm

1! mn - (7-53)

it
—

]
~——

a

dX bxm bxn

A term, l'_" P A_ can be added to andsubtracted from
mn P
equation 7-53. Now using the definition of covariant derivative

(equation 7-49), it is seen that, the exterior derivative of a

vector can be written as;

6 An 5Am _ 1 ab 6Ab
( o n ) = -i-,- 6 .
5x bx ! mn

(7-54)
6xa o
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In fact, the exterior derivative of a tensor of rank p in
terms of covariant differentials is obtained by replacing the

partial derivatives in equation 3-45 by covariant derivatilves.

i.e. .
1 6abc...g aTbc...g
p! - mn...q’ > %2 :
1 _abc...g GTbc g‘ 5
=p_g- Smn. .. q  6x | (7-55)

For the four-dimensional electromagnetic field tensor, F
: , mn’

the exterior derivative (equation 4-32) can be written as:

/

6F SF 130 .
nk km mn
m + n * k ' (7-56)
&x éx 6x

The divergence of a tensor in terms of covariant differentials

is defined as:

be. .. m

6T .
p— . (7-57)
6x

For a tensor of rank one, the divergence is:

= +

xP axP ap

B 8P ' '
|"‘p B? - (7-58)



From equation 7-50,
p .
_ c c)
30 (e | (7-59)
ap Bx
If the determinant of the metric tensor is denoted by g, then
by the law of differentiation of determinants,

2L g PO (7-60)

bxa bx

»

Substitutions of equations 7-59 and 7-60 in equation 7-58

yield:
p P
6B - B N 21 . ag 58
61" . bxp g dx?

(/e B9 (7-61)

1
T o

Similar analysis for a general case shows that the divergence

of a tensor of rank p (equation 7-57) is:

_1—- NTbc...m/g—) |
s N (7-62)
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Equation 7-62 is seen to be identical with the
expression derived earlier (Section 3-10-4, equation 3-46).

In the earlier section the divergence was first defined as the
dual of the exterior derivative of the dual of a tensor.

It is seen that the exterior derivatives and divergence
operations derived earlier, although in terms of partial
derivatives, are in fact tensors. To express them in
covariant differential form, the partial derivatives are
- replaced by covariant derivatives.

In the divergence equation, comparing equations 7-‘57
and 7-62, it is seen that the affine connection terms appearing
iﬁ the covariant derivatives also include the term /E This
term arises in taking the dual of a tensof.

In some transformations, the relations between the
coordinates are implicitly given in terms of an equation between
~ the differentials of the coordinates. When such relations appear
in a non-integrable form, the transformation is said to be

"non-holonomic". An additional geometric object appears in

differential expressions, defined as(39):
Y Y
T 1A b ¥3C 3Cy .
L) 2% Y8158 T & (7-63)
af . dx d3x
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The affine connection (equation 7-50) is defined for such a

non-holonomic reference frame as:

-

. CBﬂ - g"ﬁ [03;5] + g7f6 gBo' néa

" ¢ n

t g By il - €1, (7-64)

7-4-3 Non-Holonomic Transformation in an
Electric Machine-

Park's transformation is seen to be a speéial case of
the non-holonomic transformation. The skewsymmetric
rotation matrix arising out of such a transformation plays an
important role in the tensor field analysis of machines.
(Secfions 7-4-5 to T7-4-8).

For the case of a revolving armature synchronous
machine, Park's analysis is carried out in terms of’hy'pothetical
stationary brush currents and voltages. Fig. 25 shows the
transformation diagramatically, A two-phase synchronous
machine is assumed, for convenience. In the-figure, aandb
denote the axes of magnetisation of the two phase-coils, and

d and q are the hypothetical stationary brushes. The relation

~
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FI G. 25. PARKS AXES TO SLIP RING AXES I[N
A SYNCHRONOUS MACHINE



between the slip-ring currents and‘the hypothetical brush

currents is:

97 - ® cos @ - ibsin'®

.qr

i i sin @ + i° cos @ (7-65a)

Also, the rotor angular displacement is denoted as follows:

S (= 0) (7-65b)

The charges flowing across a cross-section of the windings,
a and b, are denoted by x® and xb respectively. The currents,

in terms of charges, are:

.a dx> . b dxb

eS-T:

Hypothetical charges x dr and X% are defined, usihg

‘ equatiohs 7-65 (a) and (b) as:
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- a m
dxdr dr cos(xs) -sin(xs) dx?®
ax4* = qr | sin(x”) cos(x") | ax®
ax® . s . 1 dx®

. -a _ a . m _
je.- dx = C_ = dx . \ (7-66)
It is seen that:

e ) ’Co .
- (7-67)
bxn D A

The left-hand side of equation 7-66 is not then an "exact

S i a -a m
differential”, since C_ cannot be expressed as dx "] ax .
Equation 7-66 cannot be integrated to obtain the variables %,
Such transformations are known as non-holonomic( ' 39). Th

term "quasi-holonomic" is used when (a) some coordinates,

such as xS. transform holonomically (b) the other coordinates
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transform non-holonomically, and (c) the transformation
tensor is a function of the coordinates under heading (a) only.

Using equation 7-66, the non-holonomic object defined
by equation 7-63 can be seen to take the form:

~

dr qr 8

!

41 dr -1

ﬂpcs) “% qr| 1 (7-68)

The matrix in equation 7-68 can be seen to be the skewsymmetric

rotation matrix used earlier in field analysis (Sections\(7-2) and

(7-3)).

7-4-4  Geometric Interpretation of Performance
Equation ‘

Kron pointed out the close analogy between the equations

of performance of rotating electric machines and the equations

(39)

of differential geometry of abstract spaces . H’e recognised

that the magnetic stored energy of an electric machine remains



invariant under such transformations as Park's transformation,

as do certain quadratic differential forms in the geometry of

abstract spaces. Kron's analysis is briefly reviewed in this

section.

In Fig. 25, the magnetic stored energy of the windings,

. .2 b
a and b, carrying currents i~ andi is:

.a .a .a b 1 b .b B
m Laa i1 +Mab1 i+ 2Lbb1 i (7-69)

=
1
(M0

(L represents the self, and M thg mutual inductance). - The

. 2 .
stored kinetic energy is 1 Lyg(P @ )°. where Lg is the
rotor inertia. The total stored energy can be expressed as

dxm dxn

1 er‘in T @ (?epeated indices implying summation).

In terms of currents 'idr and i7" (hypothetical for

a synchronous machine) the magnetic stored energy is

_ .dr .dr .qr .qr '
Wy, = dLg i 1+ dn % (7-70)

Obvibusly the two expressions for magnetic stored energy
(equations 7-69 and 7-70) must be equal. In terms of charges
and angular displacement, the total stored energy can be

expressed as:
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dxm dx
mn di dt

=
n

Nj=
-

This can be compared to the -invariant line element in a

geometric space:

2 _ m n
(ds)” = €n dx dx

where, gmr'1 is the "metric tensor". For an electric |
machine, the inductances and inertia serve as the metric tensor.
The affine connection, (equation 7-64) in terms of inductances

and rotor inertia, is:

no_ g M xe . J
CB " [epo]l + L7 Lge N2

G n
Ly 020 N

asc = 6B af (7-71)

In Park's reference system (lthe stationary brush axes),
the Qhristoffel symbol [aB, 7] is zero since the inductances
are constant (thg Christoffel symbol term consists of partial
derivatives of inductances with respect to éhax?ges and angular
displacement). Moreover, multiplying equation 7-71 by L x

one obtains:
e



found by the present author to give f: 8, v
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ig - 6
r;,v | r;B Doy © LB@OW ¥ Lao‘Qvﬁ
n
v, L2, (7-72)

Equation 7-68 gives the Q terms. Fig. 26 was

from equation 7-72.

In the figure,

Y = Y
= L = L
S ‘Oa(S) vB f a B
and,
Y Y
= 2 Q = L /
VozB La‘y B(S) ay = B
i. e;
VQB = (GBa)t
Fig. 26 can be explained ﬁsing the performance equation:
) w
dx 8 dx
Ve TR @@ T Lyn w &
.
_ R-’ _c_l_:_c_:' L d2 x”+ L dx” de
vr dt 0% 1 dtz yr aof dt dt
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For voltages,

n
n ; r-, S

; [~ dx @
(S)B, u dt (7-73)

. The last two terms on the right-hand side of equation (7-73)

add to:

1 _ & 1 B

2 (G, VW) ip® + Z(GNB+.VHB)1 p ©

- o

= G“a i p @
i, e.

n
_ R di no,
VT Ryt v Ly g * Gl p O (7-74)

Equation 7-74 can be seen to sum the voltage drops as
resistance drop, back e.m.f. due to rate of change 6f flux
linkage and back e. m. f. due to the conductors moving in

a magnetic field.
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The torque equation is,

: S 2 S -
dx d“x , 1 a B
v. = R —-—— + L —_— 4 i i
s s(s) dt S(S) dt2 o, s
S 2 S
dx dx .a B
= — + - l :
Rets) @ Lg(s) 02 2 G+ Vo) 11
S 2.5
_ dx d™x . B
" Ree) @ T hss) 200t Gt

It is seen from both the performance equations and fig. 26 that
there is nothing to suggest that the relations have been
obtainéd by first considering a reference system in which the
winding currents i* and ib are the variables (slip-ring axes)
and then transforming them to stationary brush-currents idr'
anci iqr. The geometric object ’—‘ is seen to consist of
terms of the type GO’B | and VaB’ ~Tifa's.re in turn consist of the
rotation tensor and the metric tensor. An analysis could

therefore be carried out beginning with Park's reference

system and defining a tensor

p
_Pan = Io:;v (7-175)

(the letter P over the equal sign denoting the validity of the

equation in Park's axis only). Kron points out that whereas
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the earlier analysis dealt with a Riemannian space, the
analysis which begins with Park's axis and equation 7-75 deals

with a non-Riemannian space. It follows that:

| ~

[ =-QﬂL

[eB] vy ' [B1 ,v af ney

P

The square brackets indicate that the asymmetric part with
respect to indices o and B is considered here. If the

. asymmetric part of tensor Paﬁ'y is denoted by a tensor SO’B‘Y'

it follows that:

P n
s, = -{2. L

ofy a8 ny
Also,
| o P ”
SGB = . _(203 | (7-176)

In the covariant analysis of the electro-magnetic field
quantities, the skewsymmeti‘ic torsion tensor given by
equation 7-76 plays an important role which is investigated in
Sections 7-4-5 to 7-4-8. To sum up a holonomic reference
frame is the starting point. The transform;tion to stationary

brush axes is quasi-holonomic. That is, the geometric objects
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n
(@

frame without the aid of the old reference frame. Consequently

, [aB, 7] and F;B, ¥ may be expressed in that

there is nothing in the appearance of the transformed geometric
objects to charac;terise them as being in a non-holonomic frame.
We now have a choice of regarding the new system either as

a Riemannian space referred to a non-holomic reference frame,
or else as a non-Riemannian space referred to a holonomic
reference frame. With the latter interpretation a torsion

tensor S;Bw appears which replaces the geometric object .D. .

From equations 7-76 and 7-68, : ,

B dr qr 8
Y
“dr 1
it .
28 = r{ -1 T=717
B(s) q | | ( )
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7-4-5 Vector Potential

The following séctions express the electromagne.tic

field relations in covariant terms. The four-dimensional

field tensor, FaB’ developed in Section 4-5, is established
"here from vector potential considerations. The magnetic flux-
density vector and electric-force vector are expressed in

terms of this field tensor, FaB the magnetic-'force vector being
expressed in terms of a second four-dimensiohal field tensor
HaB‘ The electric flux-density vector is ignored in ;che analysis,

Maxwell's field relations are here examined in terms of the two.

field tensors FOIB and HQB.

To bring out the salient features
of the analysis, only the rotor winding is considered. It is'.
shown, later, how the analysis can be readily extended for |
other layers of windiqg. The results of the following analysis
are compared with the field model analysis of Section 7-.2.

The four-dimensional field tensor, FQ‘B' in terms of
scalar and vector potentials, ¢ , is obtained from equation 4-’30

(Section 4-5). The partial derivatives are replaced by

covariant derivatives to give:' ‘
: iﬁ - _3_6 ) (7-78)
6x 6x '

F013=(
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The vector and scalar potentials are here denoted by ﬁ .
rather than by A to avoid confusion with the actual potentials
in the machine air-gap. "The reduction of the quantity Fik
to thg primitive vector ¢i (electromagnetic potential). is not
based simply on ad-hoc considerations, but is a result of our
third requirement that the variational principles must be the
only source for the field equations. " (Novobatzky(42)).

Using the relationships obtained in Section 7:3-2, the
flux linkages of the windings can be defined in terms of

electromagnetic vector potentials. That is:

k [0 4 '
dr qr 8

= L ,i" = .dr | qr : (7-79)
¢a . QB Ldr 1 Lqri 0

This relation implies integration carried out over the current
sheet surface (Equation 7-35),
The microscopic field quantity (vector potential)

associated with points in a non-Riemannian space is thus related



to a macroscopic quantity (flux linkage) associated with the
physical three dimensional rnachine‘ space.

The flux density is obtained in terms of vector potential
frbm the equation, curl X - -15 In the exterior form of this
equation (Section 4-4-1, equation 4-26), the partial derivatives

are replaced by covariant derivatives to give:

248

56, &
S = (- =0 e - BT (7-80)
‘g ox 6x
Equation 7-80 reduces to:
Y dr qr. 8
1 - d
s = Ly, i r Lqriqr N (7-81)
as follows:
6 62, by% '
s : rr
( - =) = - ) -
5x” sx° ax P ( Z? F Zre)
b M n
= f - g) s2 [ &,
ox dx (aB]
i ,

( -
3x? be

e,
) + 28,4 P (7-82)
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The partial derivatives of the flux linkages with respect to
t he charges and angular displacement of the rotor are zero in
Park's axis. Therefore, when equation 7-82 is substituted in

equation 7-80, the resulting equation is:

Los" g T - - (7-83)
The skewsymmetric torsion tensor Sa./b ig obtainen?
| from'equation 7-77. The term E BY is the tensor density
component denotéd by B‘Y'. Equation 7-79, giving g!” in
te4rms of flux linkages, can be substituted in equation 7-83,
This results in equation 7-8l. Equation 7-83 can be expressed

as:

Absolute Curl 96 = B

The curl operation is extended, in the following section, to a
spé.ce which includes the time-coordinate as well. In Section
- 4.5, it was seen that, for the usual space-time system, the curl
of a tensor comprising of vector and scalar potentials resulted /
" in a four-dimensional field tensor Fon ‘Maxwell's equations
were then obtained by seiting the exterior derivative of an

equal to zero.



250

7-4-6 First Field Tensor

The field tensor, FQB’ ‘can be established by extending

equation 7-78 to the time-coordinate as well. The scalar

3 ' ' (X3 ".
potential ¢t is taken as zero. The torsion tensor SaB is
extended to the time coordinate by defining(41);

o ” e » ﬂ de . )
Sty * Sa(s) @ | (7-83)

Maxwell's equations are studied by setting the exterior
derivative of FaB equal to zero'(Section 4-5 equation 4-32).

Equation 7-83 is seen to result from the definition of

L. (21
intrinsic derlvatlve( ):

5P d & ¥ Ide
a=dta‘r Sﬂn'a'r'

6t aB N
=A d¢a " dxs
T ) r:('S) ¢7\‘ at
d@ '
- a -
e 7 g,
where, x ﬂ ' S
Ty L &
“a(t) alS)
T w r"" .‘25? _ S..ﬂ _5135_51

n

]
e |
2
=
-J

H]
‘2
@
(.t}
[« 8
=3
R
(22}
A
Q.
123

a(t)



[e4
dr qr s t
ﬂdr .d_xf
dt

) NS ..y
- ar - g = -

s

t

In equation 7-78, when 8 = t,

6 y'zft 6 ¢f¥ o,

F = - ) = | -
a(t) 6xa 6xt ax"‘ bxt
a Ut dx
= (0- 5—) r dat P
a
aif 4 8

(7-85)
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This is seen to be the induced emf given by equation 7-41

(Section 7-3-3). In the earlier analysis, the induced emf was

obtained by integrating the induced electric force around the

winding.



' In terms of flux density and induced emf, the field -

tensor FaB is:

B
dr qr 8 t
a qr
dr , -.B gdr
dr!'
ar B gqr (7-86)
F =
O’B 1
. s | BF _Bdr'
t-Sar |- qu

Maxwell's equations are obtained by setting the exterior
derivative of FaB equal to zero (Section 4-5). The covariant

form of exterior derivative is, from equation 7-56,

6% SF 5F
By . Yo . @B _ 4
a B ¥
6x 6x 6x
i. e, ‘
F 0F oF
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.0” .o‘ﬂ . 00”f
2S rP
aB “Hy

(7-87)

(i) WhenB =8, aandvy = drorqror s, equation 7-87

reduces to:
0+040+25  "F 428" p
(S)y na Yo n(s)
o X )
= 0
+ZSQ<S) FIY‘Y

The first three terms are zero since the flux linkages
in Park's axis do not véry with charges or angular displacement
of the rotor, If neither of the indices @ and vy is mechanical

(i.e. 7‘= s), the last three terms are also seen to be zero.

Ifa=s,
LI 4 7{ F L4 "
By T T Bys T O

Thus in all cases the relation:

absolute divergence B = 0
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igs satisfied.

(ii) B = t, aandy = dr or qr or s.

Equation 7-87 now reduces to:

oF '
,Ya . oﬂ oo"
0+ + 0 + 28 F + 2S5
bxt (thy "nea Ya F‘nr('c)
zs-"" F 0
+ =
a(t) nY

If neither of the indices o and y se mechanical, all the terms
are seen to be zero. Ifa=s,

M () o o N -

. .
" By T T By Fa =0

From equations 7-77, 7-84 and 7-86, the above relation

becomes: )
d | S |
S Sy LSV LE) =0
i. e. |

E’=-%tg- /& pe
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This is exactly the same equation as equation 7-85. Thus

in all cases the relation:

absolute curl & = - absolute 2B/ ot

is satisfied.

7-4-7  Second Field Tensor

The second field tensor expresses the magnetic-lforce
vector (equation 4-33, Section 4-5-1). The electric flux density

term, D, is ignored so that: "

B
dr qr s t
a
dr | . -‘.7{'
qr
’
qr H
B dr
H = (7-88)
/ /
s g{qr '%r
t
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Maxwell's equations are oblained by setting the

B

divergence of u® equal to the current- and charge-density
vector in 4-space (Section 4-5-1). The covariant form of
divergence is, from equation 7-57,

su?® _ ou® ]"‘B\ ar % 7w
P R ng +r;BH

B
In Park's axis, r = 0
"B
. rg . .
Also, since H is skewsymmetric, |
r H = [—‘ H .= ZS" (S) H
"B [ g2 .
Therefore, b
ap aB )
B - S s w0 (7-89)
5x X

In Park's axis, the magnetic force, H , does not vary with
charges or rotor angular displacement. Also Ha(t) is zero.
The partial derivative term in equation 7-89 is consequently

zero, Substituting equation 7-77 in 7-89,
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‘?a. dr qr s t

ap
sH n’ 4
= Vil 0 0
B ﬁdr qr
&x
¢ ar qr 8 t
= 197 14T 0 0 (7-90)

That is, in the covariant field analysis, the c.oil currents are
defined as the current-density vector. This can be cdmpared
with equation 7-31 (Section 7-3-1) in which the current density
of the field model is related to the coil currents.

The magnetic stored energy density is given by

HBY H

and coil currents is, from equations 7-81 and 7-90:

+ BAr ;?{qr) which in terms of flux linkage

dr .d «
W= b(Lg. i A R Lor 197 19Ty : (7-91)

That i, in the covariant field analysis, the energy density is,

in fact, the integral of the total air-gap magnetic energy.
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Equation 7-90 can be compared to equation 7-32 (Section
7-3-1). It is seen that the magnetic force in the covariant
analysis does, in fact, represent the mmf in the machine,

Equation 7-90 can be expres:sed as:

absolute curl 7f = i

It is also seen that

+ [ 1 = 0,

6x7 dx na

(The f)artial derivatives with respect to charges and angular
a a
displacement are zero; whena=1t, 1" = 0; moreover, l';a

is ze ro in Park's axis). The divergence equation can therefore

be expressed as:

absoiute div. i = 0

This equation expresses the conservation of charge (Section

4-1-3, equation 4-6).
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7-4-8  Stress-Energy Tensor

The stress-energy tensor is, from equation 4.36,

dr Bdrﬂé -w | B &
r dr
dr : qr |
B H -W
. qr qr B ?H'qr
T =
o ,
s -W
‘ q}r f;!fqr
t -z 5‘{' w
qr dr

(7-92)

The stored energy, W, is given in equation 7-91. In the stress-

s .
energy tensor, the term, Tt , is seen to give the reactive

power.

Lo d

qr dr .

- & K . £ H,
o dr qr

- r dr
= &, {9 . gqr i (7-93)



7
From equations 7-85 and §-2, it is seen that:

v+€ = R i

That is, applied voltage and back emf add to give the

resistance drop. In terms of applied voltage, equation 7-93 is:

S - B dr qr
Tt vqr i - vdr i

This is, in fact, an expression for the steady state reactive
power of a synchronous machine in terms of Park's voltages and

currents.

The asymmetric part of the stress tensor is seen to

give the electromagnetic torque:

qr dr _ qr dr -

- T = -
Tar qr B g{dr B %qr
- .qr .dr dr .qr

Lqr i i - Ldr i i (7-94)

(from equations 7-81 and 7-90). |

Equation 7-94 in terms of torque matrix, G, is:
it G i
Thus the electromagnetic stress in the covariant analysis is an

integral of the tangential stress carried out over the rotorv

surface of the field model,
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The covariant analysis developed by Kron for the
performance equation of an electric machine is thus seen to
have far deeper field concepts. It connects Legrange's /
dynamical e.quations to Maxwell's field equations. The field
quantities in such an analysis do not express the machine air-
gap field directiy; but are given in terms of integrals of
machine field vectors over the physical dimensions of the
machine.

The analysis can be extended for other iayers of winding
by considering a rotation type torsion tensor, S;é," for each
layer. The rotation tensor is seen in Chapter 8 to relate the
abeolute changes to apparent changes, when the observer has a
varying velocity relative to the winding of an electric rr;achine.

Park's reference system is preferred in analysing
Maxwell's equations. ~ The field quantities are independent of
the rotor position in this system and partial derivatives with
respect to rotor angular displacment are zero. Moreover, in

this system, the stator and rotor reference frames are rigidly

connected to each other.
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In the tensor theory of networks, the closed-path
and open-path currents represented, geometrically, /’-/
orthogonal subspaces. In the tensor theory of electric machines,
the electrical and mechanical coordiﬁates were seen‘ to’form
orthogonal subspaces. In an interconnected multimachine
system, there will be both types of subspaces and interconnected
subspaces. Kron develop's his theory of wave automaton with
such interconnected space-structures, called polyhedra(g).
In fact Kron claims that the sources in his multidimensional
networks are more general magneto-hydro-dynamic types of
generators. (3) The performance equations of such sources
would seem to emerge from the field equations of electro-
dynamic machines presented in tensor notation in this chapter
and fluid-flow equations. The equivalent network for an
electromagnetic field, presented earlier, could be coupled

(55). This study is, +

with an equivalent network for fluid flow
however, not undertaken in the present thesis.
Kron claims that the bscillatory behaviour of multi-

dimensional networks form the backbone of his self-organizing

automata. A study of the oscillatory behaviour of the electric
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machine is undertaken in the next chapter. The tensor
concepts used in the present chapter are extended to analyse
the synchronising and damping torques during oscillation of

an electric machine.



CHAPTER 8

OSCILLATORY BEHAVIOUR OF ELECTRIC MACHINES

The performance of an electric machine under

. conditions of small oscillations can be studied in Park's axes

using the results of Chapter 7. Although the hunting torque
components can be evaluated correctly in Park's éxes, it is
difficult to associate them with the machine constants or the
operating conditions. Dreyfus(47) and Nickle and Pierce(48)
suggested that the daniping torque could be related to the IZR
loss due to the oscillating currents, but no mathematical
indication of this appears to have emerged. The nature of.

(49)

" damping torque was also examined by Liwschitz who
obtained a formula for the positive damping torque from the
field winding, but was unable, at that time, to extend this to

embrace negative damping from the armature. The reason

for the limitations in these cases appears to be that the writers

were working with Park's reference frame.  In this referehce

gsystem, during hunting, there is a relative oscillation between

the rotating armature windings and the stationary axes of the

264



265

armature brushes (hypothetical for synchronous machines
and induction motors). In the reference frame introduced by
Kfon(44), the reference éxes rotate at a uniform speed with
respect to the windings. It has been pointed out in reference
45 that, in Kron's reference frame, it is possible to aésociate
the hunting torque components with an equivalent circuit.

A realistic picture of the generation of positive and negative
components of synchronising and damping torques during
hunting is obtained. There is a simple relation between the
reference axes of Park and Kron, and this is examined in
Section 8-1.

The tensorial analysis, used in Chapter 7 to study field
concepts, ‘can be used to discuss the relationship between the
oscillating currents and voltages in the two frames and the
association of the various components of hunting torques, with

machine constants. These are examined in Sections 8-3 and

8-4.
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8-1 Reference Framés of Park and Kron

| In Park's reference frame for synchronous machines,
the axes for armature and field are both fixed to the field
structure. Dliring steédy- state operation, with a balanced
supply to the armature, ‘the resultant armature m. m. f.
rétates synchronously and hence appears stationary relative
to .the field structure. In Fig. 27,  OP represents the steady-
state armature m.m. f. (in the figure, the main field winding
is on the rotor and the stafor contains the armature windings).
The components of the afmature m.m.f, OP (fig. 27) along
Park's direct and quadrature axes will be OA and OB. During
hunting, let OP increase to OP' at a given instant, while the
rotor angle changes by AA . The changes as seen fro;n the
d- and q-axes, which move with the rotor, are AlAz and

BIBZ' Obviously,

AA, + BB, # PP
The changes as seen along Park's axes are not the .

actual changes induced in the armature currents and voltages.

Now, if the axes rotate synchronously (Kron's reference system),
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FIG. 27, CHANGES [N ARMATURE CURRENT AND MMF.
AS SEEN FROM PARK'S AND KRONS AXES



| changes in OP (fig. 27) will be seen as AA' and BB!', which
add vectorially to give PP". These are absolute change:s
seen by Kron's reference frame for the armature. For the
field winding, the reference frame is fixed to the field
‘stru;ture (which is the same as Park's axes for the field).
That is, Kron'uées a hybrid éystem in which the armature
axes rotate at a uniform éngular velocity and the field axeé
hunt along with the field structure. Thus, there is a relative
motion between the armature reference axes and the field
reference axes during hunting in case of Kron's system.
There is, however, né oscillation between the armature and
its reference axes, and the armature windings, with its
associated transmission lines and transformers, appear as
a stationary network. There is a simple mathematical
relationship between the quantities shown in fig. 27 along
Kron's axes and those along Park's axes. Neglecting second-

order effects, from Appendix 4,

AL, AA' + PA A

BB, ~ BB' - PB AA (8-1)
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where,

excursion during oscillation.

state armature current, the apparent changes, Ai, seen by .

is the angle representing rotor

If OP represents the steady- '

Park's axes and the absolute changes, zi, seen by Kron's

axes can be written, using relations 8-1, as:

~
Aidr

Ai

dr

dr

A%

14T

= ai - L1 ax

(8-2)

The skewsymmetric rotation matrix, f' , has been
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AA

used earlier in Sections 7-2, 7-3 and 7-4 to relate fhe machine

air-gap field quantities to the dr- and qr- components, to.relate

the field quantities to the terminal quantities for an idealised

machine and in the covariant field analysis.

The role of the

rotation tensor in electric machine analysis is discussed further

in Chapter 9.




The changes in armature voltage seen by Park's
axes, Av, and Kron's axes, Zv, can be related, using a

similar analysis, as:

Av = Av + /t-V‘,AA (8-3)

8-2 Damping and Synchronising Torques

The equation of motion of rotating machine during

oscillation can be represented by a second order differential

equation as:

AT = Mp2 (A© )+po(A9 )+TSA8 (8-4)

where AT is ény externally applied torque, M is the inertia
constant of the rotor and T d and 'I‘S are respectively the
damping and synchronising coefficients of torque. The
synchronising torque (TS A® ) is a function of the rotor
 excursion during small oscillations; the damping torque

T 4P (A® )) is a function of the change in the angulgr velocity
of the rotor during oscillation. These two torque components
are, therefore, in phase quadrature with réspect to each other.
The component (Mp2 (A6 )) is the inértia torque, due to

the éngular acceleration of the rotor.
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In terms of frictional resistance, RS' and torque

matrix, G, the hunting torque equation is (from Appendix 4):

2
AT = Mp~ (A©®@ ) + Rsp(A9 ) - ATelect (8-5)
where,
= A3 . 1 + . n~ . LW A ‘ - o JC .
ar,, = (&G itGAi)HthiAa i K4 A2
(8-6)

In equation 8-6,

=-j’t.G

and Ai is the oscillating current matrix in Kron's axes.
Comparing equations 8-5 and 8-4, it is seen that RS
gives T dm’ the mechanical damping torque; ATelec ¢ gives

T

de’ the eléctrical damping torque and TS' the synchronising
torque. Equation 8-6 gives the various components of T de and
‘ TS. This subdivision of the torque equation was originally -

(44)

derived by Kron ,using tensor calculus and covariant
differentiation. This is discussed in Section 8-4,
For sinusoidal oscillations, the substitution, p = j htJ,

is made and equation 8-6 assumes a cbmplex form:

211
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“cija+() I (8-7)

The bracketed groups of terms, in fact, separate out the
po'sitive and negative components of the synchronising torque
and the damping torque. For example, the last térm of
equation 8-7, f,is a component of synchronising torque wh.ich
is always positive for a synchronous motor operating at a
lagging power factor. | The total quantity AT in equation 8-5 is the
same whatever reference system is ychosen.
For a synchronous motor connected to the mains
- (considered to be infinite busbars) the components of
synchronising torque ¢, e and f in equation 8-7 where computed
and are shown plotted in fig. 28. The computation aspecfs |
and machine parameters are discussed in Sections 10-1 and 10-2.
Fig. 28 is reproduced from reference 45 (attached to the
thesis). The advantages‘to be obtained in using the above-
method of analysis are pointed out there. The various
components of synchronising and damping torques could be
associated with the design parameters and the state of tﬁe
machine. The component, ¢, in fig.j 28 is associated with the

reactivé power of an equivalent circuit (fig. 29), The component,
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F1 6, 28. COMPONENTS OF SYNCHRONISING TORQUE
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f, is the steady-state reactive power in the machine. The
component, e, is due to the relative oscillation between the
armature and rotating field structure. The components are
shown for various values of excitation in fig. 28. The damping
torque was also split iﬁto two con’ﬁponents - positive damping
(given also by the ohmic loss in the equivalent circuit (fig.. 29)
corresponding to the field winding)and negative damping (given
by the ohmic loss in the equivalent circuit corresponding to

the armature). Posiﬁve damping is also provided by any
winding (amortisseur) on the field structure. Kron's reference
frame is thus seen to indicate the physical nature of the torque

4
(47, 48, 49) used Park's reference

components. Earlier authors
frame in hunting analysis, and in this system, it is difficult
to associate the torque components with the machine conétants

or the operating conditions.

8-3 Covariant Differentials

In Section 7-4-1, it was pointed out that whereas partial
derivatives do not, in general,' transform as tensors, covaﬁant

derivatives do. It is also seen from equations 8-2 and 8-3 that -
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co;wentional increments, Ai, Ki, Av and Av do not transform
as tensors. An extra term appears in these equat'ions, given
by /i AA in one case and ft .v Adin the other.
"Covariant differentials", however, transform as tensors,
This is examined heré.

The covariant derivative of a tensor, Aa' is defined in

Section 7-4-1 by equation 7-49:

6Aa bAa '___'7( .
= —F - A (7-49)
6x ox aff ﬂ

The "covariant differentials” follow from equation 7-49:

”w
- B
A, = AA, - f;; A, A&X
Similarly, )
” 4 n
s = at” + [T AP (8-8)
. aB

The covariant differentials transform as tensors:

7" . 4 S -
N 4 (8-9)

If Greek letters denote Park's axes and Roman letters denote
” .
Kron's axes, the transbrmation tensor, Cp , from Park's

to Kron's reference system is, from fig. 30,



(TMRK) qr

(KRON) cfr'

FIG. 30. PARKS AXIS T0 KRONS AXIS 1IN

A SYNCHROUS MACHINE
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p(Kron) » »
dr qr e
B o §
(Park) i
dr cos A =8in A
n | ‘
Cp = qr sin A cos A - (8-10)

® 1

In Kron's reference system, used in hunting analysis,
the angle A is zero during stea‘dy-state, but during hunting
AN = AO® . The transformation tensor given by equation
8-10 is used to relate the covariant differentials in equation 8‘-'9.

In Kron's axis, the covariant differential is:
‘ ~Dp P a b : ‘e
s = AP + [ 1 Ax (8-11)
ab :

Substitution of equations 8-11 and 8-8 in equation 8-9
is seen to lead to the relation (Appendix 4):
" 4 ” |
¢ AP = A - f 1" A , (8-12)
P p _ o
Moreover, ignoring second order effects

N o~ v
c’ AP 2 8. AP (8-13)
¢ p

(Appendix 4). |



When equation 8-13 is substituted in equation 8-i2, the
resulting‘equation is the same as equation 8-2 derived earlier
using a vector diagram.

Tensor analysis is thus seen to be a useful tool in
diff'erentiating between quantities which transform from one
reference frame to another as tensors, involving only
transformation tensors C or their inverse or both as products,
and those which do not. The physical significance, in terms of
the machine constants and the operating conditions, of the
covariant differentials of currents and voltages in the abstra;:t

non-Riemannian space is being examined.

8-4 Tensor Equations of Hunting

Instead of taking the conventional increment, A, in the

transient equation of a machine, the covariant increment, §,
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can be considered to establish the hunting equations. These can

then be expanded in terms of conventional increments, A, and
affine connection, [ . Such an analysis is seen to lead to the
grouping of terms established in Section 8-2 by considering a
vector diagram (equation 8-6). The hunting equa‘;ion is

considered here in Kron's freely rotating frame.
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In tensor notation, the‘perform'ance equatibn of an

electric machine is, from Section 7-4-4,

dxP 5, dxP

v. =R -— + L

c cp dt cp ot (dt ) (8-14)

Taking the covariant increment, é, in the tensor equation

above:
dxp

| 8 dxp |
v, = a(ch 7o)t L 8 =T dt )} (8-15)

The covariant differential of the metric tehsor. 6L,

cp
- is zero(m). In equation 8-15, if the order of covariant operators

& and &/ &t is commuted, an additional tensor appears(44):

S dxp {

6v, = SR G Lep 6t 5 ( }

m n
dx dx k
*Kokne & T A (8-16)

The Riemann-Christoffel curvature tensor, Kmknc’ is defined

(44) .
as:’ .

K = .___b’:m c b[:k,c + [—l [-.P

mknc : Bxk bxm- ok, ¢ s
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The organisation of the hunting eduation in terms of covariant
differentials and curvature tensor results in certain terms
being #dded to and subtracted from thé conventional equation of
hunting. This is examined here.

In equation 8-16, Ax® = A2 , since all the objects’
are functions of angle A only. When equation 8-16 is analysed
"for the hunting torque equation, bo‘th indices m and n denote

the electrical coordinates. Consequently certain terms become

zero and in equation 8-17, the non-zero terms are:

ar;m’c y = l—‘ r_,P and 2 [—‘ np

bx(u) pm,c n(u) np, ¢ m(u)

(the brack;ated variable u denotes the angle A ). The above
terms are expanded in Appendix 4 for voltages and tox:que. In
| particular two of the above terms represent the set added to
and subtracted from the conventional equation of hunting
(Appendix 4).

For the voltage equation the set is:

{P f;("uf’-_zr" N°

} ax™ 4t (u)
pm,c np, ¢ m(u)

dt dt ax

=G *f i p@® AN,
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and for the torque equation:

T pv . P m n
r.' 7.-2 ‘Q' )dx 9_}_{;_ A(U)
pm, (S) ™ n(u) r:p, ® mw & %
s iiea P A (8-18)

2, ¢

The contribution of the term, ———-—u’—- , for the voltage

e

equation is:

a[:m c  dx™  ax® (u) d
. . _ ¢
ST Ax By Wi LA -G
and for the torque eqﬁation:
br:m, () dx™ dx Ax(u) —i . VG 4 Al
35 dt dt t oA _ ;
(8-19)

(Appendix 4)

In torque equation, subtraction of equation 8-18 from 8-19 results

in a term:

G A\ n
4 i A +it-G~/'i AA

-1t.ﬁc-—-—g-1;-\"--i AN + itoG-f«i AA

-it-ﬁt'G-i AA

i.K.1 AA.
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The torque equation 8-6 derived in Section 8-2 does precisely
the same grouping of terms in a simpler way, It is séen that
the earlier analys'is in fact involves such advanced concepts
as curvature tensor and presents the hunting equation in a

manner similar to the analysis of disturbed geodesics.



284

CHAPTER 9

ROTATION TENSOR IN MACHINE DIFFERENTIAL
STRUCTURES

In the study of electric machine fields, the rotation tensor,
f , arose as an orthogonal operator when a sinusoidal distribution
" of the electromagnetic field quantities was assuméd (Section 7-2).
When Maxwell's equations were expressed in terms of covariant
derivatives in Section 7-4, the transformation of reference frames
wisle seen to lead to the rotation tensor. In covariant divergence
and covariant curl operations, an extra term containing the
rotation tensor appeared in addition to the partial derivatives,
resulting in more general exterior forms. When differentials were
considered in small-oscillation study of machines (Chapter 8), the
rotation tensor related the apparent and absolute changes,

Tﬁe rotation tensor is examined now by considering further

the covariant derivatives. In Park's reference system for an
electric machine, the analysis is shown to lead to a set comprising

the rotation tensor, .P , and another tensor, f , In covariant

¢
—

field analysis, the second tensor, S, does not appear, The

presence of f in hunting analysis complicates the tensor

equations unless the problem is linearised and seéond order effects



ignored. These are examined in the following sections.

7
9.1 Affine Connection CB

Covariant derivatives consist of partial derivatives and
in addition certain "affine connection" terms. For example,

~ the covariant derivative of a vector 525 is, from section 7-4-1,

s B, 28,

—= - == - [ 4 (9-1)
6x ox af n : .
The geometric object, r' , 1s defined as:
aB, v
' "
Coer,
aB, v af

and in Park's reference system for an electric machine this is

given by fig. 26.

From the figure, it is seen that the covariant form of

affine connection, r' , 1is of the form:
aB,y

+ + :

iV

(XY

( G

where, "G" is the torque matrix given by equation 7-3,

(Section 7-1 ) and "V" is the transpose of "G",
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i, e. VQB GBO!

It was pointed out in Section 7-3-3 that the torque matrix is

related to the inductance matrix by the equation:

G = ft L
| .
i. e. ,- GaB = f; L‘B
It follows.thaf:
Vs L, f=1L/
. - -
i,e. - V«‘:‘L\f
af as B

ﬂ .
The affine connection, r-' , follows from F :
) QB aBl Y

l-—m'= L *Y [—-\ »\_

af , af, v

This is of the form:

-1 ,+ +

L (-32G ~- 3V) |
It is ftirther s.een that:
s i

LWY V = L”‘Y L f =

o ’YQ 'Y‘ a X4

TR P

o

LY e =LY "

Yo | y oo

- (9-2)
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In equation 9-2, the rotation tensor is pre-multiplied
by the inverse metric tensor and post-multiplied by the metric
tensor. In Section 3-10-2, it has been pointed out that such

operations are represented by "raising" and "lowering" the
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indices. In equation 9-2 the covariant index of the rotation tensor

is raised and the contravariant index lowered. If the resulting

tensor is denoted by, s , then:

AN .0" .
= "y e Ay
"C B L . [; Laﬂa ;- L o G‘ya (9‘3)

The affine connection, ‘: ;, in Park's axis is thus seen to be

a set comprising the rotation tensor, ﬁ » and another tensor, ./3 .
When the transient and hunting equations are derived, using
covariant derivatives and differentials, the two tensors, / and

f , mentioned above would appear. However,. it is seen in the

following section that terms containing F cancel out in the field

analysis.



9-2 Field Equations

The exterior derivative of a vector ;5 , in covariant -

form, is, from Section 7-4-2, equation 7-54,

sy 84, >4 ’F,

n
- — = - y+ ([ -7
sx” ox ox” AxB af Ba) ¢"
b.Ye o) bXes
B a Ny
= (— - y+ LY - )
ox? axB a3, v Ba, v 96"

This represents the curl of the vector in covariant form. In

Park's axis, when B = 8 (mechanical coordinate):
© 3
%) ¢ 2 _ (F{S) ) a¢a)
5x% 6x(s) »x? bx(s)

A N A (9-3)

aS), v (S)a, v

The second term on the right-hand side of equation 9-3 reduces to:

11 Y - 1 - .
LY 3G, - 4V, - $G, - V)

- LY - g
L (-V‘YQ) B 4
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'In exterior derivatives, the rotation tensor term is added to

the partial derivatives., It is also seen from the above equation

"y o
that the term L7 G_ , = fa, is both added to and subtracted
144
from .ﬁ and thus cancels out.

9-.2-1 Divergence Equation

n
The divergence of a two-form, H ﬁ, in covariant form is,

from Section 7-4-2, equation 7-57,

su™® P s 7y, [“B e
af

GxB ) be aB

. g ' -
= l}_IB__ + LWY r_‘ HQ'B + LBQ’ {-1 Hﬂa
X ' aB, v af, vy .

(9-4)

In Park's axis, the second term on the right-hand side of equation

9-4 is:

Y g® o [ o8
O(S),'Y (S)B:‘Y

=' ny I | O’(S) - ny B(S)
L (3 Gva -1 vva) H L (% G‘YB.+ ) V‘YB) H
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: N
= XY a(S) a(S)
= L° 7 (-V H = -
V-V, S u
The last term of equation 9-4 is:

LBy [ - Puec 1y

- = 0
(S)B. v LC

*/B)

Therefore, in Park's axis,

B B "
§H _ a(S)
Gx] ) ax] ] ‘{ "

One arrives at the same result by considering divergence as the
dual of the exterior derivative of the dual of a tensor. It is again

seen that the term s GW, = .é ”, is both added to and
subtracted from the divergence equation and thus cancels out.

In the more general form of exterior derivativeé used lhere,
in addition to partial derivatives certain "affine connection" terms
appear. Thése are seen in Park's axis to reduce to the rotation
tensor. In differential geometry, this would represent the rotation
of a "frame" along a curve on a general surface, Y(Frame denotes

a set of mutually orthogonal unit vectors.). In the method of

moving frames of E , Gartan, the rate of change of the frame along
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such a curve is expressed in terms of the frame itself,

i.e. : N

ad _ <] -

d e, = r dx e, : (9-5)
rs

In equation 9-5, the changes in coordinates along the curve
are represented by dx®. The unit vectors are represented by —é’v
-
and der represents the change of the frame. The affine connection

v
[_-' represents the rate of change of the frame, Further

rs
development of the subject of moving frames will be found in

reference 17,

9-3 Hunting Equations -

In the anélysis of small oscillation performance Kron(44).

-Ku(sl)' and others make use of covariant differentials:

(equation 8-8, Section 8-3).

Computation showed that the covariant differentials lead to
complicated equations unless the problem is linearised and second
order efiects ignored. The analysis can be represented

geometrically by a local "current" space tangent to the underlying
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(non-Riemannian) "charge" space described earlier (Section
7-4-4, It is possible to construct in the tangent space a set of
mutually orthogonal unit vectors. Since in an electric machine,
‘the transformations of reference frames are "orthogonal" in
nature, the unit vectors will be transformed to another sét of
mutually orthogonal unit vectors. Such reference frames will
have a metric tensor in which the elements along the diagonal .
‘are unity and the remaining elements zero. With this metric; the

operations carried out in equation 7-64 (Section 7-4-2 )‘

results in:
- »
a(S) - a
i e.
i Al - f: £ Ax® (9-6)

The above equation can be compared with equation 8-2 (Section 8-1 ;1):

A= ai-FL 1 aA (8-2)

In equation 8-2, 'the term Zi represents absolute changeé in currents’
being given by Kron's axes components.
The rotation tensor arose naturaily in Chapters 7 and 8

in the derivation of the machine equations in both field and circuit
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forms, and in the transient and hunting cases. In the present
chapter this tensor has been seen to possess important
geometrical significai'}ce. | The relation bétweén .a set of -
differential equations for elecfric machines and concepts in
differential geometry was first published by Kron and continues

to be the basis for all pfesent day work in this area.
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CHAPTER 10

COMPUTATION AND EXPERIMENTAL STUDY OF
OSCILLATIONS

Computation of small oscillation performance and the

experimental work carried out to verify the computation are

studied in this chapter.

10-1 Computation of Oscillating Torque Components

‘In Section 8-2 it was pointed out that the torque
components can be computed in terms of rotor excursion, AA
and oscillating currents, '&i, in Kron's axes (equations 8-4,
8-5 and 8-6). The currents, Ki, can be evaluated from the
oscillating voltages, Av, by first establishing an equation in
terms of Park's axes quantities Av and Ai, and then using

the relations:

: Zv = Av + fthi\ : | (equation 8-3)
A = a1t - S1oar (equation 8-2)

" The analysis is applied in this section, to a synchronous motor

connected to infinite bus-bars. In the analysis, no damper



windings are considered, since the machine tested was
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completely laminated and had no amortisseur winding. The

. be written

field winding is assumed to be in the direct axis 6nly. The

conventional hunting equations for a synchronous machine can

(2, 46)

Park(ss) in his original paper on synchronous machines,

with the same basic assumptions as made by

Ryg+Lp| Myp al®
, d
Mgp | Ro+LyP| L, p® Lqr‘t,‘" ol
“Mp® | -L,p® | R,+L,b|-MIEL | |&1"
q . ds '
MdL' (L, - Lqr)t (LMiL ‘;‘ R, +Mp Ap®
dr~ tar)L
(10-1)

These equations are obtained by taking conventional increments

in the transient equations of a synchronous machine, shown

below.

The voltage equation 7-2 (Section 7-1) and torque

equat:lon 7-4 are combined into one matrix equation



Ay,
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. ds
Rds+ Ld P N‘alp L
.dr
Mdp Rr"‘ Ldrp Lqrpe L
. ar
- Mdp® = dp@ Rr'f‘ Lqrp L
Md i'qr L“!’ L ~Lar Ldr Rs +Mp pO
(10-2)
The substitutions shown by equations 8-2 and 8-3 give:
: d
RitlP| Myp -M, "p X
-(L, L+Mﬁp@ ~odr
Mdb Rr"' Ldrp Lqrpa Al
-L."p
: dr. . d
- ~(LEemidp] | o
PO PO ) Rerbyp LT Lo | |4°
R p '
: . .d .
Mdtqr stq' Mden-Ls(. M, i '.’;, AN
LB( dr dr lf":c')
» (10-3)
where Ly = (Ldr‘f Loy ’
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(The derivation is shown in Appendix 9-1, reference 45).

If the field winding is connected to a constant voltage
d..c. supply, Av ds ” 0. Moreover, the armature windings are
connec'ted to infinite bus-bars, so that the absolute changes
in voltage, zv, in Kron's axes are zero, If the externally
applied torque is éonstant, AT = 0. No impressed
oscillating voltages and torque are considered here. The
hpnting impedénce matrix given by equation 10-3 is now
computed for the synchronous machine, under given operating
conditions. The eigen-values are then established from the
ixnpédance matrix. A typicali set of solutions for the matri.x

of equation 10-3 in case of the machine studied were:

-5, 53)314 -
e( 5.53)314 t -d. c. component

,(~0.00028 ¥j0.012)314 t - hunting a. c. component

+
e(-0. 15—~ 3j 0.56)314 t - second a.c. component

The time-constants of the three componenfs are given by the
reciprocal of the real parts of the eigen-values. It is seen from
the above values that the d. c. component and the second a. c.

component decay much more rapidly that the hunting a, c.
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component, In the normal operating range of the machihe

studied, the time constants of the d. c. component and the
second : a. c; component were less than 8, 5% of the hunting

time-period. For the hunting analysis, therefore, their

effects can be ignored and the substitution:

p = (-u+jhw

' can be made in matrix 10-3 for the operator p = d/dt.

In the above equation "h" denotes the ratio of hunting frequency
to rated frequency and "u" gives the reciprocal time-constant
of the oscillations. With this, the impedance matrix of

equation 10-3 assumes the form:

elect mech -
elect - Z Z
' L 2 (10-4)
mech - Z3 _ Z{1

where Zl‘ Zz, Z3 and Z 4 are complex'sﬁbmatrices. For

example:

Z, = Rgl-u+ i)W + M (-u+ jh)% w2

ds ,dr

v dr dr cir qr
i i -(Lqr-Ldr)(i‘i -1 1Y)

-"_'Md



Eliminating the currents, the matrix equation
Z2,-2,2 2, =0 . -~ (10-5)

gives the equation of motion:

Mp? (A8 ) + Tp (40 ) + T_A0 = 0
(equation 8-4). -

With p = (-u+ jh)& , equation 8-4 becomes:

Me?-nw? - wwT T,

~j2uhw’M + jhw T = 0  (10-6)

Since the real and imaginary parts of equation 10-6 must be

separately zero, it follows that:

Ts - Mh W = uw(Td-Muw) (10-7)

and,

del= 2ulJ M | .(10-8)

In equation 10-7, the right hand side terms are normally very

small compared with both TB and M h2 2 so that:

Ty - Mhzwz': 0

299
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vIn the calculation of torque components, TS and T g’
‘it was found that the substitution of p = jhtv instead of
p = (-u+jh)W resulted in an error ;ess than 0.13%.
" This substitution is made in equations 10-3, 10-4 and 10-5.

.- In equation 10-5, the substitution, p = jha , results in:
z, = iRghw -mn*w? - 1.6 L4

+ :lt-K'i

The imaginary part (RS h «w ) in the above equation

gives the mechanical damping torque, T dm"- The term

(-M h2 wz) is the inertia torque. The terms (it ey i)

and (it° K ' i) contribute to synchronising torque, Ts’ and

their significance has aiready been discussed in Section 8-2.

‘The real part of Z, Zl'1 Z2 gives the remaining terms of

Ts, and the imaginary part gives the electrical damping

" de’

tofque.

In equations 10-7 and 10-8, the synchronising torque
coefficient, Ts’ and damping torque coefficient, can be computed

theoretically. The quantities (-M h2 oJ 2) é.nd (2u w M)
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can be established from experimentél work as shown in
Section 10-4. In these expressions, M is the rotor inertia,‘
hw is given by the hunting frequency and uws . by the time
rate of decay of oscillations. These éan be measured from
hunting tests. Figs. 31 and 32 show the results, Solid lines
give theoretical results. Dotte‘d lines give experiméntal
results. The stability limits predicted are found to agree with
the laboratory tests. When the synchronising torque becomes
negative, the rotor does not oscillate but pulls out of | |
synchronism. When the damping tqrque becomes 'negative.

. the oécillations become larger and llargerl till the machine

eventually loses synchronism. The computer program used is

-~

given in Appendix 5.

- 10-2 | Machine Parameters

A universal laboratory machine was used for the hunting
tests. The machine has a laminated stator and rotor structure
and closely resembles the idealised machine as defined by

(35)

. The parameters shown in Table 1 were measured by

standard tests.
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TABLE 1

Reactances of Machine, Per-Unit Values

Type of machine and rating . Universal machine, 240V,
3-phase, 2,25A, 2-pole
i connection
Xdr (gnsaturated) et 0,99
X o ‘ . 0,97
qr ’ ‘, - - l C .
Xgs M oo ne
n . ' '
de R - .0.978
oo : 0.034
Xd | 7

The values obtained had previously been found by Sen Gupta-

“to be accurate in the prediction of performance under both

steady-state and transient short-circuit conditions(sz).

The small air-gap built into the design of this machine

for ihduction motor operation leads to a high ratio of x ar - x'd.

" The armature resistance of the universal machine is also high and

&

was measured by using sub-standard ammeter and voltmeter.
. -The d.c. resistance per phase is 1. 43 ohms (with a delta

connection), - Skin-effect was ignored because the conductors
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are smail (wire gauge 18 8.w. g.). The a.c. resistance can
be reasonably assumed to be equal to the d.c. resistance.
In per-unit,

R_ = .0078 p.u,

The rotor winding is tapped for both two-phase and

- three-phase outputs and connected to slip rings. It is also
connected to a commutator for d.c. operation, The brushes
on the commutator were lifted for synchronous maphine

- operation. The rotor winding was used as the field, and the
d. c. supply connected to two of the slip rings. To include the
effect of brushes in the field resistance, the rot‘or was driven
"~ at 3000 r.p. m. and a graph of d. c. current against voltage
-across input terminals was plotted. The slope of the graph
gave an effective resistance of 0. 26 ohm. - It is necessary to

obtain the field resistance in per-unit values referred to the

armature, In Rankin's formula(53);
, ) R 1 ‘
L 3 fo f .2
S fp-u’ 2 X ":3313 ] B
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where Xbo is the base impedance in ohms, If is the field

) current selected as the base and Ia is the peak rated
armatﬁre current, The bracketed term in equation 10-7 is

" called the base-current ratio. To obtain it from a short-
circuit test, howevef, a modification is required to account
for the magnetising current needed to overcome the leakage-
reactance drop in the short-circuited condition, The p. u.

field resistance is now given by: -

Ry = 3 Rto (if X ina,? 10-8)
_ 3 | ) i
f'p.u 2 Xbo % 13, Xd :

ey

0. 0165 p.u.

- In equation 10-8, if is the field excitation corresponding to
a short circuit of peak value ia in th_e armature,

The moment of inertia of'the rotor of the uhiversal
machine coupled with é, d. c. machine is 0.1546 kg - mz, as
sp;ecified by the manufacturer. This was checked by a |
retai‘dation test applying a knowh power load to the shaft of

(54)

the machine . For this test the fric'gional power at rated

spee‘d was first determined from a no-load test. In per-unit

value, M = 0,052 p.u, The inertia constant, H = Mwy/2 = 8.17,
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' 10-?-1 Frictional Resistance Rs

The frictional torque for this_ machine is not diréctly
proportional to the rotor angular spéed. The frictional
resistance to oscillations .was determined by measuring the
frictional to_rque at fafed speed from a no-load test and the
+ frictional torques at other speeds by the retardatioh method,
after open-ciréuiting .,all the elecfric‘éircuits. The result is

shown plotted in fig. 33. Under this condition,

Mp29 +RS p® =0

The frictional torque, RS p© , isthus equal to the inertia

torque. In the retardation test a recording of p® , the

~ rotor angular velocity, is obtained. From this the inertia

torque can be calculafed. First the angular velocity, p® ,
is plotted as a function of time (seconds). The slope of the

- graph gives the acceleration, p2® . From these resulis the
frictional torque (= - M p2® ) is plotted as a function of the

rotor angular velocity.' p® . The graph is shown in fig, 33.

scale of abscissa) = 00215

5 R B tand x (scale of ordinate

S
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‘Therefore RS p A® during hunting
= Rg j hw A@:= jho0.68 A®
The imechanical damping torque‘ coefficient

Tdm = 0.68 p.u.

10-3° Experimental Set-up

The circuit diagram for the.tests is shown in fig. 34.
-The field winding was connected to the d. c. supply, as shown“‘
through a potentiometer and a series resistance both of which

can be yaried. This method of control is used to vary the
field current, without changing field time-constant.
Throuéhout thé tests, the effectiire field resistance was kept

" constant at 0 98 ohm (0. 0624 p.u.). A 3-phase variable resistance
simulates variable line resistance, The universa} machine

was l'syx;chronised to the mains supply (assumed to be an infinite
bus;bar), in the usual way. The supply voltage’ available in the |
laboratory s 200 volts, 3 phase at 50 ¢/s.

The machine operated as a 3-phase synchronous motor
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and was driving a separatély excited d. c. machine, with a
weak field. To induce oscillations, an impulse load wés

: applied' to the d. c. .machine, which was otherwise operating
with the armature open-circuited. With this arrangement, it
was found that the d. c. machine contributed no significant
damping to the system. On closing the switch in the d. c.
machine circuit, a current flowed in the circuit which was
interrupted by tiqe circ‘uit brt?a}kef in less than 0.1 second.
Thié produced an impulse load on the synchronous motor which
was driving the d. c. generator, The 1mpu1§e load was

' adjusted so that the oscillations were smalll (in accordance
with small-oscillation theory), yet large enough to giye
feas'énably accurate results. An oscillation not exceeding
s degree angular excursion was found to be suitable for this
purpose. Time is counted aftef the impulse is over and
therefore AT, the externally applied torque to the shaft of
the synchronous machine, cgn. bev' taken as zero. The impulse
only initiates the oscillations and does not affect the values of

‘T, and Ts' The d. c. machine rotor inertia and frictional

d
resistance have already been included in the retardation tests

and need not be calculated separately.
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10-4 Experimental Determination of Inertia and Damping
Torques

Dur‘ing hunting tests, the hunting frequency and the
rate of decay of motor oscillations were meaéured, and from
these the inertia and damping torques were determined, Tbe
hunting frequericy, hos , was measured from the oscillograms
of the field and armature currents. The recording instrument
was an ultra-violet recorder working on the principle of a
duddell oscillograph. A convenient way to determine the rate
of decay of the oscillations is to plot the amplitude on a semi-

~ logarithmic graph paper. Now:

h = ST x oscillation frequency,

and the inertia torque is given by -M h2 w 2; The damping
torque is given by:

2 M
t{ime constant

Td=2uwM=

(time constant being given ‘by the time in seconds taken by

the oscillations to decay to 36, 8% of their original vaiues).
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This chapter dealt with the computation and
experimental aspects of the oscillatory behaviour of elec;cric
mavchines. The stabiiity limits predicted are found to agree
within 14% oAf the laboratory tests. Changes in saturation and
effects of spéce harmonics have been ignored in the analjsis.

The computation of the oscillating torque components
in Kron's axes was seen in Chapter 8 to lead to a certain
grouping o-f.btérms, and the components were related to an
equivalent circuit.' This method of analysis indicates the
physical nature of the damping and synchronising torques in

an electric machine,
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CHAPTER 1

CONCLUSION

As stated in the introduction, this thesis is an attémpt
to establish the basic éteps on which Kron builds the multi-
dimensional wave automaton. In the pr'ocess, the differential
relations of Maxwell for electromagnetic fields have been
" interpreted as algebraic structural relations for an equivalént
micro-mesh network., The use gf exterior differential calculus
has been seen to lead to a network structure independerit of the
coordinate system. In an orthogonal coordinate system, a
model, first proposed by Kron, follows which is physically
realisable and both analog and digital solutions are possible,
The digital solution for a waveguide problem showed how the
errors involved in discretisation of field problems can be made
~ as small as desirecllf

It is hoped'that with the use of the universal apprc;ach to
differential problems, whiéh exterior forms and exterior
calculus provide, the analysis~ can be extended to multi-

dimensional fields and networks. Though analog simulation of

such models is not feasible, digital computers are capable of
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handling "arrays" (generalised matrices) exceeding three
dimensions. The systematic organisation of such multi-
dimensional problems can be based on the algebraic or flow
diagram presented in the thesis for three dimensional electro-
magnetic field problems. The more general fields would
involve the application of such concepts as generalised Stokes'
theorem. Thus much of the ground work has been carried out
in the thesis for multidimensional problems. The systematic |
solution of such problems would also involve a diakoptic
treatment of linear networks. Once the structure is established
in a general manner, in an actual digital programming schedule,
few conceptual points are expected to arise. It is for this
reason that exterior forms and exterior calculus, mostly |
found in advanced mathematical literature, are presented here
from an engineering view point. In addition to being ﬁniversal
in its application, the use of such mathematics is seen to vlead
to equivalent networks physically more satisfying than other
types of analog networks,

The algebraic diagram developed for electromagnetic
field network model v—vas seen to separate the field qua'ntities
. into generalised "voltage" and "current" terms. The same

division also appears in the four dimensional analysis of field

. "
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tensors FO’B and HQ’B. These were examined for an electric
machine, an electro-dynamic type of network., The tensorial
presentation of electric machine fields, first examihed by
Kron and studied in some detail in the thesis, would seem to
be a pointer to the more general magnetohydrodynamic types
of generators. The orthogonal electrica.l and mechanical
variables were coupled by means of a torsion tensor, a concept
which ét.lould help to couple MHD magnetic and fluid-flow
networks. Thé tensor formation of an electric machine has
been seen to interpret correctly certain concepts which
previously had been ignored (e. g. the tangential magnetic
field, physical nature of hunting torques etc.).

The self-organising function of a system such as a wave
automaton would be guided by its oscillatory behaviour. The
absolute changes, during small oscillations, have been seen to
reinterpret correctly the behaviour of an electric machine,
Moreover, the tensor hunting equations can be used to study
Kron's mult'idimensional rotating machine (refe.rence 3). Such
a machine (purely a theoretical device) could have more than
one mechanical axes and bg capable of rotating in different

directions simultaneously. The freely rotating reference frame
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used in Chapter 8 could be used to analyse such devices.

In Chapter 5, the connection matrix, C, for the nétyyork
model expressed the relations between mesh and branch
quantities. The same relation satisfied Maxwell's equations
(the field relations being expressed in an integral form of
exterior differentials). In the electric machine analysis
(Chapter 7), the transformation tensor, C, is a function of the
mechanical coordinates. The torsion tensor, S;,[gh: arose out
of such transformations and was expressed as a function of C.
The more géneral absolute form of Maxwell's equations
resulted, containing terms of the type SO!B” The Lagrangegn
electrodynamic equations were reinterpreted as Maxwell's
equations,

In Chapters 5 and 6 the electromagnetic field equations
were viewe;i as algebraic structural relations for a network
model, Many interesting'interpretations arose in such a study.
The Poincare Lemma for distributed field sysrems, for exarnple,
was interpreted as an algebraic structural relation, (Ao) ; Cc = 0,

for networks. Conversely, every network can be regarded as

_ being surrounded by an invisible field. Kirchhoff's laws
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(and Lagrangean equations for dynamical systems) can

then be interpreted as Maxwell's field equations. ‘The inter-
action of network quantities is then studied as an interaction
of the electromagnetic waves in the surrounding field. Human
memory for example is being studied by some neurologists as
(56)

a continuum rather than as an on-off process In such a

study the waves arriving at many synapto; dendritic junctions

- are thought to interact and produce patterns similar to |
interference or Moiré effects. Physicists have already
succeeded, using lasers, to captﬁre the diffracted waves from
an object both in amplitude and phase using interferometry

(a technique called holography) and then project it to
"reconstruct the wave-front", the resulting waves being
indistinguishable from the original waves., Such holograms

are thought -possible in neural structures in a human brain,

(3) (8),

and "crystal computers

Kron's proposed "artificial brain"
employ éuch concepts as propagation of a sequence of electro-
magnetic and magnetohydrodynamic waves across polyhedral

networks and could perhaps lead to a new class of computers.

The study of neural networks may involve determination

of a statistically dominant pattern of activity, This would mean
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that the study of diakoptics of electric circuits has to be
extended to cases where the probabilistic patterns of the
individual elements are known and the stable overall pattern

is required to be assessed. In non-linear systems, the
piecewise solution of large-scale systems will depend on the
development of a non-linear diakoptics. Another aspect of
these networks is the self organising and synchronising

nature of behaviour. Wiener, the cyberneticist, calls it the
"rhythmic system!". ’yRandomly distributed particles in a state |
of rhythmic oscillation can affect one another through ivnter-'
"actions ‘between the'm. In non-linear systems, the various modes |
of oscillations of the elements of a group couple together and
the mathematics of such oscillating systems is complex.
Wiener obgerved many examples of groups, which by "pooling-
effect", produced synchronised rhythms.

As stated earlier‘, the t'h,esi'é does not reach as far as
Kron's wave automaton. However, it is felt that many of the
basic steps have been elucidated. The concepts émployed here
are general in nature and the possibility of extending these to

multidimensional interacting networks, programmed on a
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c;omputer, does not now seem so remote. The inv.evstigation
of information processing by such networks was being actively
pursued by Dr. Gabriel Kron up to the time of his death.

Many aspects of this Work have no doubt been clarified by him

but have not yet been published.
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CHAPTER 12

APPENDICES-

12-1  Appendix1

(i) To show, in the space-time coordinate system,

#(dxady adz) = - dt

The dual of the 3-form in brackets is normal to all three base

vectors dx, dy and dz. The dual is thus a 1-form containing d¢

term only.

Let *(dx Ady Adz) = K dt
In equation 3-14 which defines the dual in terms of inner and
exterior products, let the exterior form A = d¢. Then, from

equation 3-14,

(dxadyadz)adt = ((Kdt, dt)) do
i'. e.'
de = ((K d¢, dt)) do

-K d¢

or,
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and,
#(dxadyadz) = Kdt = -dt

(ii) To show, in the same system,

“(dyadzadé) = -dx

The dual of the 3-form in brackets is normal to all three base
vectors dy, dz and dt. The dual is thus a l-form containing dx
term only. Let A = dx in equation 3-14 and the dual of the

3_form = K' dx.. Then, from equation 3-14,

(ciy/\ dz A dt )A dx ((K' dx, dx)) do™

= K'd¢

dy ndz Adta dx ~dxAadyadzaAdt

- -de
i.e.
-de = K'dc
or, K' = -;l
.”*(d}’AdZ/\d’C) = K'dx = -dx



323

12-2 Appendix 2

To show,

'_ ~ B
*d% (H) = Jydx + J,dy + J,dz - c F de

where,

~
H = Hldy/\dz + Hz dz Adx + H3 dx Ady

dyadt + cD, dza dt

3

'+ ch dx A dt + ch

The divergence of a similar 2-form has been derived in Section

3-7-2. The following substitutions are made in the 2-form of

Section 3-7-2:

H4 = ch
H5 = cD2
H6 = cD3

Equation 3-31 will then take the form:

3D dH
] = W -
d * (H) (c = * 3 5 ) dx
' 3D, D, D4
-(o-t) dy - (o'n) dZ - C( a + by 4 bz ) d%
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The first three bracketed terms above give the vector expression:

-y

2D
2%

c curl ﬁ i. e. ( -3')

The last bracketed term is:
div D ie. S , the charge density

It follows that:

%% (H) = J odx + J, dy + J, dz - c f a
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12-3  Appendix 3

To show div. —15 = 0, in Kron's network model.

First the flux linkages of the ideal transformer windings
are defined in terms of a line integral of a vector A, The sum
of the flux linkages of the "small" meshes in Kron's network is
then equated to zero. From this a relation, -}5 = curl K, is
obtained, indicating that the vector X is the usual magnetic vector
potential. Consequently, div. B = div. (curl &) = 0, by Poincare
Lemma. |

Fig. 35a show a "large" mesh P-R-S-Q in Kron's network
by dotted lines. The area PWVS shown by the solid lines is an_
area formed' by joining the diagonals of the large meshes. Fig.
35b shows a "small" mesh at the corner R. The ideal transformer
Winding marked @ in the figure will have its seco'ndary winding
in the "small" mesh at corner Q. Since the transformer is
assumed ideal, the primary and secondary flux linkages should
be identical. One may reasonably assume that they will be
proportional to the line integral of a vector A along the path PS,
being the path of symmetry, In fact the flux linkages of the

primary (marked @ ) at corner R and its secondary at corner Q

is defined as:



AREA Z= 2A24X

(a)

FI 6. 35. FLUX LINKAGE OF IDEAL TRANSFORMERS
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S S
L A .L/A
2/ 2P ldX+A2dy+A3dZ

which is equal to } (A, AX + A, AZ). For the ideal transformer
windir'xgs in the "small" mesh at corner R, 'marked @ , @ ,
@ and @ , the flux linkages are defined in terms of line
integrals of vector K along paths P-W, W-V, V-S and S-i’.
The results are given in fig. 35b. The flux linkages of the
inductors have already been defined as % B2' AZ AX each.

Next, the flux linkage of the "small" mesh at corner R is
set equal to zero. For, there are no resistances present in the
circuit and constant flux linkage theorem can be applied. If ever
in its past history, the field has vanished, this constant flux --
linkage must be zero. Since one may reasonably assume that
the initial creation of the field was at a finite time ago, we
conclude that the total flux linkage of the "small" mesh is zero.

This gives, for the "small" mesh at corner R,

2

, |
- 1 g2 AZAx+-;-(A3AZ-A1AX)1--§-B'AZAx
+ 3 Ay AZ+A AX), - 1 5% Az aX

. ] )
S az- A ax), - 1B Az ax

327
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- (A, AZ+A AX), = 0
1. €. : .
2 e 1 -
8% azax = & {(a), + (&), - (&)
- (A, Jax 4 3 {ay), + Ay, - (A,
'_ 3)4} AZ
i. €.
2
B% Az axX = ¥ ( A1 AZ AX
A '

- X bx3) AX AZ

This in fact represents the integral relation:

s e - s f/aA | (2
%

b2

The area 25 is marked in fig. 35a.By Stokes" theorem,

%gfaA = %aZ/A | (12-2)

The boundary, 3% , for the area X is P-S-V-W-P. This was
in faét the starting point of the analysis and the procedure is seen

to be consistent with Stokes' theorem.
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“Equation 12-1 is seen to relate the flux density' vector,
’é, with vector A by the equation:
B = curl A

The vector A used in the analysis is thus the well known magnetic
vector potential.

The divergence of B

= x@ (B) = xa [aw]

= 0, by Poincare Lemma
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Appendix 4

»
oo

12-4-1

To show, in fig. 27, neglecting second order effects,

Mh, @

Ble :

b4

Ahp, =

R

AIR

"RA, =

2

R

R

12

A
BB' =

BQ «

n

QB!

R

23

BBy

R

Vector Diagram.’

AA' + PA AR
BB' - PB AA
AlR + RA2
AA!

P'R sin (AA)

P'R AA

PA AA

AA' + PA AA
BQ + QB!

BB,

‘P'B' tan (AA )

P'B' AA
PB A}
BB' - PB AA

330
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12-4-2  Hunting Torque Equation

The torque equation in Park's axes is, from equation

7-4, Section 7-1,
T = Mp?® + RgpO -1 G-i (7-4)

(M is the rotor inertia, R is the frictional resistance and G
is the torque matrix).

Equation 7-4 can be written as:

T = Thech - Telect (12-3)
where,
T oot = 47 Gl (12-4)

Taking increment A in equation 12-3,

AT = AT een - ATelec‘c

AT (12-5)

2
Mp~ (A® ) + Ry P (A ) - AT oot

From equation 12-4, it is seen that:

AT

elect A (lt *G i)

Alt'G'l + 1t-AG-1 + 1t-GvA1
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In Park's axes, the inductances are constant during

oscillation, so that the term AG is zero and,

ATelect = Alt'G'l + 1t'G~A1 | (12-6)

In order to obtain an expression in terms of the absolute changes
~n
in armature current, Ai, seen by Kron's axes, equation 8-2

is substituted in equation 12-6:

(AL -G+i + i -G-Al) +

AT

elect t t
it'JDt-G-i‘A?\ +‘it-c,-f-i AA
~ ~ - ‘
= (Ai-Gi+ iG-AD + it-G-ﬁi AA
-1i-K-1i AM " (12-7)
where, |
K = - .,;.‘G=-',;'f;'L (12-8)

Equétions 12-5 and 12-7 correspond to equations 8-5 and 8-86.
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12.4.3 Covariant Differentials

To show, that using covariant differentials,

~ X
. aif i’ f % aa (8-12)

]
P
R

and,
c" aiP » 6”-Zip (8-13)

From equations 8-8, 8-11 and 8-9, it is seen that,

7 * B. . *® ,=op P a . b
(AL + I_;B it Ax7) = cp (ai® + f;b i~ Ax))
(12-9)

Using the law of transformation for the affine connection
, oB

5

(equation 7-52):
p n ' 6Ca
M. e e v CF b

With this substitution, equation 12-9 reduces to:
s .

' 3C
» x
AP = Al - P —2 33 AP
p p o bxb
[
% n aCa. .a b
= A - ‘So" T 17 Ax

dX
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~ i
c AP = oAl - L C2L % AxP (12-10)
P axb o

Using the transformation tensor, C, given by equation 8-10, in

equation 12-10, it follows that:

ig ” x
c;- AP = Al - /;-1“ AA : (12-11)

In equation 8-10, the angle A is zero during steady-state and

A2  during hunting -

P
r~
e e. Cp - 7‘

COSAA -sinAA

sinAA cosAA
1

P

Al 1 -AA
~ A 1

1

(neglecting second order effects)
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):
o
<

7t | P
-
1 -AM AT
X ~
- C .aiP = AA | 1 A 9
1 Ap®
N
A
: ~
LA
~ .qr A p
= Ai = 6p-A1 (12-12)
Ap®

(neglecting second order effects)

Equations 12-11 and 12-12 correspond to equations 8-12 and 8-13,
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12-4-4 Tensor Equations of Hunting

Equatién 8-14 gives the transient equation of an electric

machine in teasor notation:

- axP §  dxd
e " Rep & Tl wilEY

dx d ad

dxn dx
ch @ cp dt ‘dt) * 1_‘ dt dt

nm, ¢ .
(8-14)
Taking increments, 4, in this equation,
D dL
) s ecp d ,dx, . k
Av, = ch M)+ wE () Ax
+ d (Adxp) + anm,c ax" o™ Axk
' k ot
cp dt dt )% dt t
n m n m
dx dx dx dx
+l-_1 (Adt )dt * nm,c dt (4 dt )
mn, ¢
(12-13)

When covariant increments, 6, are considered certain
regrouping of terms are involved, and this is examined here

:2 Kron's freely rotating reference frame.
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Equation 8-16 gives the tensor huniing equation:
o de
= £1I/0 —=; +
AR ep dt ch 6t { (w— }

+.K -‘-:_»--w- — AX . (8‘16) .

where,

' , P
v S s o em——— e 1 r—
xkne k m .

' p
. r fr—’ -2 r—l ﬂ (8-17)

pm, ¢ ak np, c

(50)

Kron has shown that the tensor equation 8-1C consists of

the conventional equation 12-13 with the following terms added

and subtracted:

(_—— + {—‘ } + 2 F {7 R _—d)‘: Ax®
bx pm, ¢ nk np, c km

It is seen that the bracketed terms above give the

negative components of the curvature tensor (equation 8-17).
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s ation 7-528

)
— (7-52)

Bxb




339

Yol

: Fi{ -
= Y P n } .n
l | Cp CC { Co_ Y i p@ AA

_ | e
= 3G, -V )c oc fr i pe M

¥ Y
= 1 v Pp .n -
t (G - Vep) VA S 1) ax (12 14)
Similarly, the term
P n m
27 N & I At
: dt dt
np, c km
P
= 2 2 m
(S) p,.e - (um P@ i aa
- 1 .m :
1 (ch + ch) fm i po a1 (12-15)

The term added and subtracted from the conventional equation
of hunting is the sum of the terms given by equations 12-14 and
12-15,

i. e.

Gy g 1" pep  al | | (12-16)
n ’ ‘
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(ii) Torque Equation:~

In the torque equation both indices m and n denote the

electrical variables. The term, -—-b—’—:ni{-’—(-s-), is therefore zero.
t bx

Also,

p | p ., dx" & |k
F [-' +2F _Q )-d_t—.Et——Ax

pm, (S) nk np, (S) km

—

(r + 9 r—v DP .n .m AX(U)

pm, (S) n(u) np, (S) u)m
_ Il fp .Im Az | 2.1
= -1 an m 1‘ (12-17)

This term is added and subtracted from the conventional

equation.

(iii) Curvature Tensor:- .

In equation 8-17, the negative térms have already been

calculated (12-16 and 12-17). The remaining terms are:

o , -
e e (12-18)

ox pk,¢ nm
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For the voltage equation,

n m
dx dx
=G i p@
. rr:n,c dt . dt
and,
brr:m,c dx"  dx™ A (m) _ 3G , O Al
NECURE I A P A

For the torque equation,

r" _cl;ﬁ dx™> - "‘i G i
nm, (S) dt dt N !
and,
Br:m, (5) ax’ ax W _; 3G, a0
(u) dt dt t D
dx .

The second term in equation 12-18 is zero for this particular

-~

system.
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12-5 Appendix 5

Computer Program for Electric Machine
Oscillation Study

The program is in Algol language and the computations were
carried out on a KDF9 computer., The detailed program follows

the flow diagram below:

1l.. Read Machine Parameters and Operating Condition .

2, Calculaté Steady State Currents

3. Caleculate Determinant of Matrix Z1 and its inverse

4. Establish Matrix Zz,' Invert Matrix Z1 and Establish
' Matrix Z3

5. Compute Oscillating Currents, Synchronising and
Damping Torques '




*E43>

begin real delta,emf,line,ra,rf,xd,xq,xf,md,det,id,1q,if,vd,vq,h,sq,

xs,dt,st,p,q,r,s; integer Jj,k,m,n; realarray a,b[1:3,1:3],
c,d,e,l,gl1 i3]5

xd:=DATA;xq:=DATA;md:=DATA;xf:=DATA;11ne§=DATA;xs:=xd-xq;
start: delta:=DATAjemf:=DATA; ra:=DATA; rf:=DATA; h:=DATA;

det:= raxra+xdxxq; det:=1/aet5-
vd:=-1inexsin(delta); vq:=emf* - linexcos(delta);
id:=(raxvd - xqxvq)xdet; iq:=(xdxvd + raxvq)xdet;
if:=emf/md;

NEWLINE (1) ;PRINT(1f,l,4); PRINT (1d,4,4);PRINT (1q,4,4);

pi=raxraxrf - hxhxxdxxdxrf . - 2hxhXraxxdxxf + rfxxdxxd + raxhxhxmdxmd
4+ raXhxhxXxfxxs + rfxhxhxXxdxxs - rfxxdxxsj;

| qi=hxxfxraxra - hxhxhxxfxxdxxd + XhxxdXraxef - hxmdxmdxxd

+ hxxfxxdxxd + hxhxhxxdxmdxmd - rfxXraxhxxs + hxhxhXxxdxXxfxxs

e€ve



- hXxfxxdxxs - hxhxhXmdxmdxxs + hXmaxmdxxs 3

sq:=pxptaXq; sq:=1/sq; ri=pXsq; s:=-qxsq;

c[lj:=—hx1qudXS;‘ 6[2]:=1meer +_xsx1de - hxxsxiqxs;
70[3]§=-hxifxdes -.hXXSXidXS - xsxigxr;

d[1] :=hxigxmdxr; d[2] :=1fxmdXs + hxxsxigXr + xsxidxs;
d[3]:=hxifxmdxr + hxxsxidxr - xsxigXsX1j

a[1,1] :=raxra+xdxxd-hxhxxdxxd + hxhxxdxxs - XAXXS 3

al1,2) :=hxxmdxxd ~ hxhxmdxxs; al1,3]:=0;
 al2,1] r=-xdxmd+hxixdxnd + mdxxs - hxhxndss;

‘a[2,2] :=raxrf-hxhxxfxxd + hxhxxfxxs; al[2,3):=-rfxxd + rfxxs;
a[3;J]==raxmd; al3,2) :=rfxxd; al3,3]:=rfxra-hxhxxxxd+hxhxmdxmd ;
~ bl1,1]):=2xraxinxxd - hxxsxra; b[1,2]:=-hxmdxra; b[1,3]:=hxmdxxd - hxxsxmg

b[2,1]i=-hxmdxra; Db[2,2] :=hxraxxf+hxrfxxd - rIxXhXxs; |

b[2,3] s=-hxxfxxd + hxxfxxs; |
b[3,1]:=05 bl3,2]:=-hxmdxmd-+hxxdxxr ; b[3,3]:=hXx:xra+hxxdxrf;
gl 1] :=mdxiq; ‘ gl2):=xsxiq;; gl[3]:=mdxif + xsXid;

/44"



for m:=1 step 1 until 3 do begin e[m):=0; f(m]:=0 end;

- for m:=1 step 1 until 3 do begin

for n:=1 step 1 until 3 do begin

e[m]:=e[m)+a [mynlxcIn]-blm,nlxdlnl;

£[1:=f[m)4a [m,n)xd[n]+blm,nlxc[nl;

end;

NEWLINE(2) ;PRINT (e [m],4,4) ;PRINT(£[m],4,4); end;
str=mdxifxid + xsxidxid - xsxigxlq; dt:=0;

for m:=1 step 1 until 3 do begin

st:=st+e[m]xg[in]; dt:=dt+f[mlxglm]; end;
NEWLINE(3) ;PRINT(st,4,4) 3dt:=dt/n;PRINT(dt,4,4);

NEWLINE(6); goto start ;3 end»

14543
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