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SYNOKIS

This thesis deals with the elastic instability of frames with 
complicated sway deformations, subjected to concentrated or distributed 
external loading and having members of constant or variable flexural 
rigidity and of trusses having redundant members and supports. Elastic 
critical loads are predicted by exact and by approximate methods for 
infinitesimal deformations*

/



Preface

In this thesis a number of assumptions are made which are normally 

made in structural analysis. One of them is that the small deflection theory 

applies. There is an aspect of this assumption which should be considered 

further by those reading this thesis. Even though the lateral deflections of 

the individual members is small and hence the individual stiffnesses, carry-over 

factors etc. are correct, the theory will be in error ji the deflections of the 

joints becomes large as is quite possible near the critical load.

A case in point is Example 1 of Chapter 2 shown in fig. 2.6. The

values of the axial forces are determined with the assumption that deflections

remain small and these forces yield the critical load given. But if the deflection
2-5o,k,C)cl

of the joints are obtained by substitution in equations A  it is seen that they 

are in fact large. Hence the calculation is in error.

This is not to say that the calculations are therefore of no interest 

or use. Undoubtedly the axial forces change relatively as the external load is 

increased, and a calculation ignoring this change is in error. As a step 

towards the true solution, however, it is possible to calculate the critical 

load for the particular changes in axial force which would occur if all the 

deflections did remain small. This is the solution given in Chapter 2.

To obtain the exact solution the very much more difficult mathematics 

of the elástica and finite joint deflections must be used. This of course is 

entirely impracticable for real structures. As an alternative, an electronic 

computer could have been used to obtain a better approximation to the solution.

The intention of this thesis, however, is not to investigate this 

particular problem more deeply but to concern itself with a wider field. In 

most structures the translations of the joints is known to be small and in these



Ifcases the assumption of small deflections introduces very little error, 

application of the external load results in large bending moments appearing in 

the structure, however, large deflections of the joints may be expected to occur. 

It is in the case of these structures, like that of fig. 2.5, in which caution 

must be used in interpreting the results of the calculation.
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Notations

Unless otherwise defined the following notation applies 
a direction cosine
A =<Vm 
A'=dA/dP

A ~2A.(x) = 1 f cosGt^+xtMt, Airy integral functioni iT J
A'(x) = 4 (A. (x)) dx i
b direction cosine
B = /2
Bi(x) = 2 J[sin(yt^+xt ) + . ^ — 3 ̂  ) 1 d + , Airy integral function

Bi<x> = f J V x))
c direction cosine in chapters 12 and 13

shear coefficient of prismatic strut under uniform axial load
Cs, shear coefficient of prismatic strut under non-uniform axial load
C, shear coefficient of battened strutb
c carry over factor
c'= dc/dP
d^ depth at end 1

E Young’s modulus of elasticity
G Modulus of rigidity in chapters 12 and 13
G = — ----r- . Magnification factor in chapter &

1 - P/Pc’
J fcO %s l n C f e - A i r y  integral function

x "a
G!(x) = d (G.(x))

1  dx X
H horizontal force component



i unit vector
I moment of inertia

unit vector
J (x) Bessel function of the first kind of order n n
k = El/L, flexural stiffness
k_= GI /L, torsional stiffness u z

k

K

L,1
M

< V i

unit vector
stiffness of a complete structure 
length 
moment
fixed end moment at end 1 

m = 1 / ( 1 -nY/2o(), magnification factor
m The power hy which the moment of inertia of a non prismatic strut

varies along its length
m1= (Mp^/WL 

n = s (1 - m(l+c)/2 )
N number of storeys of a tall building frame
o = s(-c + m(l + c)/2 )
p distributed axial load per unit length
P„ axial force at end 11
P elastic critical loadc
P(x) axial force at x 
Pe Euler load of members

Euler load of equivalent strut



Py Plastic collapse load
qW reaction due to distributed lateral loading W at the end with 

axial force
Q shear factor due to unit of the ration ■£ of the memberlength
R axial force in the rafter
s stiffness factor
s'=ds/dP
ŝ  modified stiffness of the end with the smallest moment of inertia 

in chapter
modified stiffness of the end with the smallest axial force P̂  

in chapter 15 

s"=s(1 -C2)
sc carry over moment due to unit rotation t

sc modified carry over moment due to unit rotation
(sc)’= -|p(sc)
T stiffness of a joint in a truss and the "no shear" stiffness of 

a joint of a portal frame 
u = dj/dj
v shear force in members or vertical force component in frames 
w distributed external load per unit length
Vi external load
x axial coordinate and coordinate axis
y coordinate axis
y(x) deflection at x



Y (x) Bessel function of the second kind of order n
z coordinate axis
o( =s (1+c ) 
d =  dc//dP

s1+sc
Q rotation of a joint
fi angle of inclination
A  determinant
<5 sway

e =p/pe
9 increment
^ spring stiffness or slenderness ratio
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Chapter 1

General introduction

\A method has been suggested by Professor ¥• Merchant that for
-1a parjicular loading pattern on a structure

Pf = f(Pc,PY,1 ) 1.1
where \

P̂, is the failure load of the structure if all the loads are increased
slowly and in constant proportion.

P is the critical load of the structure i.e the theoretical load c
at which it would offer no resistance to some applied disturbance 
if its members remained elastic.

Py is the plastic collapse load of the structure i.e the theoretical 
collapse load if only material properties are taken into account 
and stability effect ignored.
is a parameter representing imperfections of manufacture and

.

loading conditions on the structure.
■

It is the object of this thesis to investigate the elastic stability
of structural frameworks under concentrated and distributed external
loading. Approximate and exact methods of calculating the elastic critical
loads P for infinitesimal deformations are established. The influence of c

■
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>7. on the elastic critical load Pc can also be included in the analysis 
as is demonstrated in chapter k.

Chapter 2 deals with the stability of symmetrical frames with 
complicated sways, under symmetrical loading applied at the joints. This 
has been tackled by establishing two sets of equilibrium equations. The 
first set of equations gives the axial forces in the members at different 
stages of loading and the second set of equations gives the stability 
criterion. The external load which satisfies both sets of equilibrium
equations is defined as the critical load.

/
Chapter 3 is devoted to the approximate estimation of the elastic 

critical load of multi-bay gabled frames and other more complicated 
frames. The method described, reduces gabled frames to equivalent 
rectangular frames with pin joints in the beams. The axial forces in the 
members were determined approximately by establishing upper and lower 
bounds to these forces. The method is easy to apply, accurate enough for 
design purposes and requires little arithmetic to calculate elastic 

critical loads.
Chapter k deals with the elastic instability of unsymmetrical and 

symmetrical frames under unsymmetrical external loading. This has been 
tackled by establishing a set of equilibrium equations for determining 
the forces in the members. Solution of these equations yields a 
relationship between the external load and the internal axial forces in 

the members. The maximum external load obtained, is defined as the elastic
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critical load. This method is also used to investigate the effect of 

initial imperfection on the elastic critical loads of structures.

Chapter 5 deals with the elastic instability; of frames when the 

influence of pre-buckling deformations is taken into account. The 

calculations show that an analysis based on this method yields elastic

critical loads smaller than those given by the method of chapter 2.
Ci.rid ezach

Chapter 6 is devoted to the approximatej^estimation of elastic 

critical loads of trusses with redundant members. The approximation has 

been found to give results within 1Cf/o of the exact values. In this 

chapter it is shown that the elastic critical load of a reduhdant truss 

is approximately reached when the forces in the members of the truss 

are so distributed that as many as possible of the struts meeting at 

the critical joint of the truss, carry axial forces which are equal 

proportions of their respective Euler loads.

Chapter 7 deals with the elastic instability of trusses with 

redundant supports. The approximate method established in chapter 6 is 

applied to estimate the elastic critical load of trusses with redundant 

supports. The influence of the redundant reactions at the supports on 

the critical load is studied.

Chapter 8 deals with the accuracy of Bolton's approximate method. 

The calculations show that the approximate elastic critical load obtained 

by Bolton's method is in error by about + 10?j.

Chapter 9 deals with the magnification factor of trusses with



redundant members. It is shown that an isolated strut with redundant
\

end restraints has a variable elastic critical load bigger than the 

initial critical load and lower than the ultimate elastic critical 

load. Its value depends on the magnitude of initial imperfection in the 

strut and the external load. In redundant trusses the difference between 

the first and ultimate critical load is usually small.

Chapter 10 deals with the influence of partial restraint at the 

supports and the joint connections on the stability of frameworks. The 

analysis for establishing the relationship between the restraint and 

the elastic critical load is shown. Calculations show that nearly the 

vfull capacity of frames can be obtained by providing moderate restraints 

at the joint connections and supports.

Chapter 11 deals with the influence of various types of bracing 

on the stability of portal frameworks. Knee bracing was found to raise 

the elastic critical of the frames by a large amount. Simple approximate 

methods for estimating the elastic critical load of knee braced frames 

are proposed.

Chapter 12 deals with the elastic instability of space frames. In 

establishing the stability criterion the torsional rigidity of the 

members was taken into account. The analyses for establishing the stability 

criteria of several frames with vertical stanchions and one frame with 

inclined legs are shown.

Chapter 13 deals with the elastic instability of multi-storey
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portal frames. An approximate method for estimating the critical load 

of portal frames is proposed. This establishes upper and lower bounds 

to the elastic critical load. The influence of shear forces on tall 

portal frames is also investigated. It is shown that an analysis based 

on orthodox methods, estimates the elastic critical load due to the 

local failure of the weakest'storey.

Chapter 1*f deals with the elastic instability of frames having 

non-uniform members. The moment of inertia of the cross-sections of the 

members has been taken to vary according to a power m of the distance 

along the members. The standard slope-deflection equation was modified 

to take into account the varying moment of inertia. This equation 

indicates new stability functions. A program for the electronic computer 

was written to tabulate these functions for three values of m and four 

ratios of end depths u. The analyses for determining the elastic critical 

loads of isolated struts and portal'frames is shown. For structure 

having m and u other than those tabulated a graphical technique is 

suggested.

Chapter 15 deals with the elastic instability of structural 

frameworks under distribued external loading. The standard slope-deflectior 

equation was again modified, this time to take into account the 

variation of the axial forces along the members. An expression for the 

modified stability functions was derived. These functions were tabulated 

by the computer for different ratios of the end axial forces. The
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analysis for calculating the elastic critical loads of frames under 

distributed external loading is shown.

Existing methods of calculating the elastic critical load of -portal 

frames and statically determinate trusses 

The methods avaliabie for calculating the elastic critical load 

of structural frameworks are:-

(1) The energy method

(2) The slope-deflection method

(3) The moment distribution method

(.k) Modified moment distribution methods:

(a) The successive substitute method

(b) The convergence method

(c) Bolton's method of approximation

(5) Southwell's method

(6) Stiffness method

(1) The energy method

This method is applied to investigate the staoility of simple
2structures and was established by TimosWnta When a structure carrying

a load P less than its critical load P , is deformed the bending energyc
A U  is greater than the loss in potential energy AT. A state of 

instability is indicated when ATJ - AT = 0,
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(2) The slope-deflection method
This method is used mainly in estimating the elastic critical 

load of frames with complicated sways. An infinitesimal disturbance 
is applied to the structure which causes rotations at the joints and 
sways of the members. The moments and forces appearing at the joints 
are expressed as functions of the deformations and the stability 
functions of the members, by the modified slope-deflection equation 
which takes axial forces into account. Equilibrium requires that the 
total moment and force is zero at the undisturbed joints and infinitesimal 
at tested joints. This infinitesimal disturbance becomes zero at the 
critical load. Thus, the determinant A  formed by the coefficients of 
the deformations will be the stability criterion. The smallest external 

load mailing this determinant vanish will be the critical load.

(3) The moment distribution method
In a moment distribution method, a load factor is chosen, the 

forces in the members of the structure obtained and hence the value of 
the stability functions for each member found from tables. An 
arbitrary moment is applied at any joint and the moments carried over 
to adjacent joints are obtained. The other joints are balanced in turn 
as in normal moment distribution, until every joint in the structure 
except the tested joint is balanced. If the moment carried back to the 
tested joint is less than the applied moment, the structure is stable.
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A higher value of load is now chosen and the process repeated until 
the moment carried hack is equal to the applied disturbing moment.
This method is lengthy and requires several complete moment distribution 
calculations. Also, near the critical load the convergence of 
calculation becomes very slow and many cycles are required.

(¿i-a) The successive substitute method
This method is used to calculate the elastic critical load of 

trusses. The fundamental operation is to replace successively each 
member of a truss by the elastic restraints it provides to the joints 
it connects. Finally the truss is reduced to one member with elastic 
restraints at each end and the stability of this member is investigated. 
This amountsto no more than evaluating the determinant of<2)by 
systematic physical process. This method can be applied easily to 
one path trusses but it becomes tedious when the number of joints and 
paths becomes large.

(Vo) Convergence method
A.Winter and Hoff have described a method of obtaining the value 

of the elastic critical load using the moment distribution method. In 3 

when all the joints except the tested joints are balanced and rebalanced, 

the end moments will either converge or diverge depending on the external 

loads. If the process converges to finite values and if the moment
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remaining at the tested joint does not change sign, the frame is 

stable. In this case a greater load parameter is chosen and the 

calculation repeated until the critical load is bracketed. The 

disadvantage of this method is that a demand for accuracy involves 

■working close to the critical load of the truss. At such a load many 

cycles of balancing are required before it can be decided whether the 

moment remaining at the tested joint has become negative or not and 

whether other joints can be balanced. This method was improved by
A.

Dr. A. Bolton. Bolton shown that if disturbing moments corresponding 

to the joint rotations of the critical mode are applied to the joints 

of the frame, each joint balanced and carry-over moments calculated, 

it will be found that exactly the same moments as was originally applied 

remains at each joint when the frame carries its critical load. Belov; 

the critical load every moment is reduced and above the critical load 

every moment is increased. Since the joint rotations of the critical 

mode are not available, he proposed as an alternative that an arbitrary 

pattern of moments should be applied to the loaded frame. Then two or 

three cycles of balancing and carry-over are carried out. The■arithematical 

total of the balancing moment at every joint is calculated for succeeding 

cycles. This total will give a satisfactory indication of convergence 

or divergence of the process.
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(¿¡•c) Bolton’s method of approximation

All the previous methods are exact for calculating the elastic
5

critical load. This is an approximate method. Bolton assumed that only 

members connected to the least stiff joint of the truss and the joints 

adjacent to it have a significant effect on the elastic critical load 

of the truss. In assessing this stiffness, members radiating from joints 

adjacent to the joint considered are assumed to be fixed at their remote 

ends. The least stiff joint is located by comparing the stiffness of the 

joints at the ends of the member which carries the highest fraction of 

its Euler load. When the rotational stiffness of this joint vanishes, 

Bolton demonstrates that a good approximation to the elastic critical 

load of the truss is obtained.

(5) Southwell’s method
6The southwell plot has been used for the determination of elastic 

critical loads. The successful application of the Southwell plot depends 

on the predominant magnification of initial imperfections corresponding 

to the relevant budding mode as the critical load is approached. The

basic equation of the Southwell plot is
Ç - 1
ü ” 1 - p/p„

1 . 2

where
is initial imperfection at zero load
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B is the inperfection at P load

P is the elastic critical load c
When S/S"» is plotted against <bP/§, a strainght line is obtained, 

the inverse gradient of which represent the critical load. The linear 

relationship holds exactly, provided that the initial imperfection 

used in deriving the deflected shape under load has the sane form as 

the primary buckling node. If some other initial form of imperfection 

is used, the Southwell's plot will not be linear because the exact 

hyperbolic relationship will not be obtained, although it will be 

approached with increasing accuracy as the load tends toward the critical 

load. The ratio ‘b/o"0 is obtained from the solution of the equilibrium 

equations given by the slope-deflection equation in which the effects 

of initial imperfection are included. Two trial loads are required to 

estimate the critical load.

(6) Stiffness method
1This lias developed by Dr. D. B. Chandler and is based on the 

fact that the stiffness of a structure decreases with the increase of 

the axial forces in its members. At the critical load the stiffness of 

the structure is zero. Thus it is possible to determine the critical 

load of the structure by plotting its stiffness It=Q/S" (where Q is the 

disturbance and "b the deformation) against the external load. The
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intercept of the graph on the load axis represents the critical load 

of the structure«

Chandler has shown that if the disturbance is exciting the 

primary budding mode, the stiffness graph will be a straight and if 

the disturbance is exciting any other budding mode the stiffness graph 

will be a curve. The shape of the stiffness curve depends upon the 

magnitude of the component of the budding mode present in the disturbance. 

The larger the component of budding mode, the smaller is the curvature.

Existing methods of calculating the elastic critical load of redundant

trusses

An exact method for calculating the elastic critical load of

redundant trusses was developed by Kasur? But such calculations are

lengthy and complicated for highly redundant trusses. He proposed two

theorems which establish a lower and an upper bound to the ultimate

elastic critical load of redundant trusses. Usually the gap between

the upper bound and lower bound is fairly large and the upper bound is

much larger than the ultimate elastic critical load. It is, therefore,

advisable to estimate the elastic critical load using the lower bound.

He has appied these two theorems to the truss of Figure 1.1. 3y several 
n.

trials of arbitrary force distribution and using the convergence process,
Phe obtained 'P= 30EI/L for the lower bound. Applying theorem II, he
2obtained P = 75.A-EI/L for the upper bound. This value is much greater
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2than, the correct ultimate elastic critical load of P =33«72i/L *

The lower bound theorem will be investigated and it is the object 

of chapter 6 to improve it to deal with highly redundant trusses with 

redundant members and redundant supports.
8On the analysis of redundant trusses trusses Merchant and Brotton 

have written a paper on the use of the electronic computer to investigate 

the force distribution in redundant trusses for different values of the

applied external load
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Chapter 2.

The elastic instability of framewprks with complicated sways 

Introduction

The behaviour ox rigidly jointed frameworks is governed by 

elastic instability, plastic instability and imperfections. This 

chapter deals with the estimation of the elastic critical load of 

rigidly jointed, single and multi-bay frameworks with complicated 

sways and inclined members but confines itself to those cases in 

which both the geometry and loading are symmetrical. The external 

loads are assumed to be lumped at the joints.

Owing to the fact that the number of unknowns involved in the 

analysis increases as the number of joints increases, matrices are 

used for the determination of the forces in the members and the 

evaluation of the stability conditions.

The method of analysis presented here is based on the following 

assumptions:-
(1) A linear relationship exist between the applied actions 

(moments and forces) and the resulting deformations (rotations andt -

sways). The standard slope-deflection equation which has been used 

to relate th& actions and deformations in the members of the frameworks 

has been modified to take into account the effect of the axial
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forces in the members. For member AB in Figure 2.1 with rotations 

of both ends and the sway£ , the moments at the ends will be

= k (sQ. + sc©„ - o< S/L) 2.1aAjd A B.
and /

M_. = k (sc©.+ s©^ - ©<§/L) 2.1bJjA A
The shear force called into play by the moments is 

v = k/L. (<X©A +«><©,, - 2AS/L) 2.1c
where s, c, o(, and A are tabulated by Livesley and Chandler (9 ) in 

terms of £ the ratio: of the load in the member to its Euler load 

= s(1+c) and k = EI/L.

The sign convention used regards clockwise rotations of the 

joints, clockwise moments apnlied to the ends of the members and 

sway causing the member as whole to rotate in a clockwise direction 

as having positive signs. A positive shear force on a member is that 

which tends to rotate the member in an anti-clockwise direction.

This will balance positive bending moments.

(2) Deformations due to the bending moments alone are considered 

and axial and shear deflections are neglected. For singly connected 

frames a Williot diagram will be used to relate the sways of the 

members. For more complicated frameworks where there are three 

members rigidly connected at some of the joints (even though these 

are not triangulated) another method is used. This consists of making



16

vertical and horizontal deflections at each joint, then relating 

these deflections by considering that the axial deformation of any 

member is negligible. Usually the Williot diagram when axial shortening 

is neglected performs the same operation graphically. For member AB 

in Figure 2.2 subjected to the shdwn deflections, deformation along 

AB is

( S" - ) cosfi + (A-Ag) sinj# = 0 2.2a
and the sway of the member is 
( < b - S o ) sin$ - (A - cosjZS

(3) The deflections of the frameworks are not large enopgh to 

change the geometrical configuration of the frame appreciably. For 

large distortion^, the shortening in the member due to bending would 

also have to be taken into account.

(it-) Each member of the framework is assumed to have a constant 

cross-section.

(5) It is assumed that the material of the framework remains 

elastic.

Sway freedoms

The number of sway unknowns involved in the analysis depends on 

the number of joints free to displace, the geometry of the framework 

(for example if it is symmetrical or unsymmetrical), the pattern of
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loading (symmetrical or unsymmetrical), and the mode of buckling.

Generally the number of possible deflections of the joints 

exceeds the number of sway unknowns by the number of the members.

For symmetrical frames under symmetrical loads and when considering 

a symmetrical sway mode there are two cases

(a) An odd number of .joints /

If the possible number of deflections for half the frame, 

including the central joint is D ( the central joint has no horizontal 

deflection) and the total number of members of half the frame is m, 

the number of sway components for the whole frame will be 2(D - m).

(b) Sven number of joints

The central line will cut one member. If the number of possible 

deflections for half the frame is D (the two central joints have no 

horizontal deflection) and the number of members of the half frame 

including the bisected member is m, the number of sway components for 

the whole frame will b e 2 ( D - m + 1 ) .

Elastic critical modes

The elastic critical mode is influenced by the geometrical 

configuration of the framework and the pattern of loading. There 

are three possible modes.

The anti—symmetrical sway mode is the usual mode of instability 

in symmetrical frames with symmetrical loading. The symmetrical joints
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and members have deformations which are equal in value and direction. 

For unsymmetrical frames the critical mode is usually an unsymmetrical 

sway mode.

The symmetrical sway mode of instability takes place only in 

symmetrical frameworks under symmetrical loading. The symmetrical 

joints and members have deformations which are equal in value and 

opposite in direction.

In the joint rotation mode the joints do not translate. Instab-, 

ility occurs solely by reason of the rotation of the joints. If the 

frame is symmetrical and carries symmetrically applied loads, this 

mode may have either symmetrical of anti-symmetrical rotations of 

the joints.

Anti-symmetrical sway mode stability criterion
I0

The analysis is based on the fact that the framework at the 

critical load offers no resistance to any disturbing action (moment 

or force). The loads on the framework are carried by the components 

of axial force and bending moment which have been built up by the 

rotations and sways of the members. An infinitesimal disturbing 

action is then applied and this will cause new deformations in the 

framework in such a way as to neutralize, if possible, the effect 

of the applied disturbance. In this process, the rotations of the



joints and the sways of the members will change so that they remain 

in equilibrium. The size of the new rotations can be obtained from 

the joint equilibrium equations and the size of the new sways from 

the sway force equilibrium equations. There is a force corresponding 

to each sway freedom of the structure. The value of each force can 

be obtained by statics from t^e total shear forces in the members 

involved in each sway mechanism. The sway force multiplied by the 

displacement of its point of application along its line of action 

is equal to the sum for all members involved in the mechanism of the 

shear force in the member multiplied by its sway displacement, 

e.g in Figure 2.3
3

F X S = v.'b . 2.3. i x
where v. is the shear force in the member due to all rotations andi
sways and are the sways for the mechanism considered.

Hence a system of homogeneous linear equations is obtained 

equal in number to its degree of freedom, and instability is charact

erized by the vanishing determinant formed by the coefficients of 

deformations.

Forces in the members
The axial forces in the members must be known so that the values 

of the stability functions can be obtained from tables. The external

1 9
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loads are supported by the shear forces and the axial forces in the

members. When the joints rotate and the members sway, the shear forces

change and hence the axial forces in the members also change. For any

rotation and sway the modified slope-deflection equation can be used

to find the bending moments and hence the shear forces in the members.

The joint equilibrium equations and the member equilibrium equations

form a system of homogeneous equations containing terms due to the

external loads and to the internal force component unknowns. Solution

of these equations yields expressions for the values of the force

component unknowns at the joints which enable the axial forces in the 
bemembers toj^obtained. These axial forces are thus seen to be functions 

of the external loads, the physical properties of the members and the 

stability functions. It is the fact that the axial forces are dependent 

on the stability functions which makes them difficult to determine.

They could be obtained by trial and error.

The member equilibrium equation requires a number of internal 

reaction components at the joints to balance the axial forces and 

shears in the members. The expression connecting the value of a typical 

internal reaction component w with the external load P is 

H A, = P A 7 Z.k

where A, and A *  are determinants formed by the coefficients of the 

unknowns and the external loading as is derived in detail later. A
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value of H/P is assumed, giving the relative forces in the members 

and then trial values of P are tested to find which value of P satisfies 

the assumed value of H/P. A new value of H/P is then assumed and the 

appropriate value of P is obtained. From several such determinations 

the graph of P against H/P could be drawn. In this graph the maximum
H

value of P obtained is defined as the symmetrical sway elastic critical 
«load. The anti-symmetrical sway critical load is lower than this value 

and therefore tests of frame stability must be made at lower values.

The graph of P against H/P, however, continues to give the correct 

axial forces in the members up to the point at which anti-symmetrical 

sway intervenes and hence the stability tables can be used for the 

known values of axial force in the members. This procedure is demonst

rated in the first numerical example given later. Naturally if there 

is more than one internal reaction unknowns the process of satisfying 

several equations would interlock and become very laborious.

The trial and error method of solution also becomes impractically 

lengthy when the determinants A vand ^become large since it involves 

many cycles of calculation. An alternative numerical technique can 

be used to find the internal reactions at different stages of loading 

of the framework. In this process, the following steps are followed:-

(1) The axial forces in the members are assumed to be zero i.e 

the £ -values are taken to be zero.
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(2) Using these f -values the internal reaction unknowns are 

calculated from equation 2.k.

(3) The axial forces in the members are now determined from 

statics. One of the members which has an axial force dependent on the 

internal reaction unknown is chosen as a reference member and it

f -value is made equal to the value it is intended to test. Thef -values 

of all other members are obtained by scaling.

The steps 2 and 3 are repeated until successive values of the

internal reaction unknowns remain constant. The number of cycles

required will be dependent on the load distribution in the members

and wjether the value of ^ in the reference member is below or above

the critical one. If the reference^ chosen is below that for the highest

possible applied load P, few cycles are required since the calculation

converges very rapidly to give the required axial forces in the

members, although the number might increases as load approaches the

highest value. (This method might fail to give a solution for a

reference f -value greater than that of the highest load, since the

calculation is likely to diverge when one of the determinants approaches

zero. Such a test, however, still yield useful information since it

indicates an upper bound to the critical load.)
. __ loa<A

From the value of the internal reaction unknown and the external X

a point on the graph can be plotted. To obtain another' point- on tXe
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graph another value of the reference p is assumed and the internal 

reaction unknown is calculated using the relative load parameter of 

the last test as the initial load distribution. The work involved is 

very much smaller than before since the relative load parameters will 

need very littlet correction. Enough values of the reference ̂  are tested 

until the highest value of the external load is obtained. At this 

stage of the calculation the axial force in each member for any given 

external load is known.

If only the elastic critical load given by the anti-symmetrical 

sway mode is required, the following steps are used:-

(1) The axial forces in the members are assumed to be zero i.e 

the f-values are taken to be zero.

(2) The internal reaction unknowns are calculated from equation 

Z.k using these £ -values.

(3) The relative ^-values for the members are now calculated 

from statics.

(¿f) The critical value of f for the reference member is determined 

by trial and interpolation using the anti-symmetrical sway mode 

stability criterion and hence all f -values are known. Steps 2, 3 and 

k are repeated and this one repitition will usually give a sufficiently 

accurate value of the critical load. This process is illustrated by 

the calculation of the critical load of the two bay gabled frame of
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Figure 2.10 given later.

Experimental determination of the elastic critical load

Tlie natural frequency of oscillation of a frame decreases 

with, increasing external load ( 1 ). When the vibrational stiffness 

is plotted against the applied load, an almost straight line 

relationship is obtained. Curving may occur near the elastic critical 

load when large deflections begin to have an effect. An estimation 

of the elastic critical load is made by the extrapolation of the 

linear part of the graph. In this chapter it is this value of experimen

tal elastic critical load which is compared with the theoretical value.

Theoretical analysis 

Frame-1
a) Theoretical., analysis of a single bay framework

Since the framework of Figure 2,b is symmetrical and under 

symmetrical loading, it will have symmetrical deformations until the 

anti-symmetrical sway mode interfers. For this frame, the number of 

sway unknowns is

= 2 ( 3 - 3 + 1)

= 2

These sway unknowns will be taken as the sway of members AB and 

A'B’. On the application of the external load, the following

deformations occur:-
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1) Equal and opposite rotation of joints B and B' by ©p.

2) Equal and opposite rotation of joints C and C* by ©^.

5) Members AB and A'B' will sway by S, but in opposite directions.

Members BC and B'C' will sway by - S/sinj0, but in opposite in 

directions, as is determined from the Williot diagram in Figure 2.4a.

Due to these deformations there will be moments in the members 

and these are tabulated in Table 2.1.

Joint equilibrium at B and B* requires 

Mg= ̂ (ks)1+(ks)2]©B+(ksc)2ec+[(ko^Lsin^)2 - (kc/L)^S = 0 2.5a

and joint equilibrium at C and C' requires
2.5bM_=(ksc )3©_+ [(ks)-+(ks(1-c )),]©_+ ( k c ^ / E s i n = 0 C 2 B L 2 3-> C 2 fat

This frame has only one internal reaction^unknown, this is the 

horizontal force component H, Figure 2.4b. The equilibrium of AB 

requires that

H = (ko/L)1GB - (2kA/L2 )1S 

and that of BC requires

H sin0 - P cos0 = (ko£/L)2©B+ (ko^L)B©^+ (2kA/L sln0)^S 

Solution of these four equations yields

H A, = P A.a.

where

(ksc)2 - [(ko/LsinjZ5)2 - (ko/L)^]

2.5c

2.5d

2.6

(ks)1+(ks)2

(ksc)_ |Cks)2+(ks(1-c))^J (kd/Lsinj3)2

^ko/Lsinji)2-(ko/L)y]] (ko/Lsin$)2 [(2kA/L2 )^+(2kA/L2sin^)2]
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and

( k s ) 1+ ( k s ) 2 ( k s c ) 2 [(kc(/LsinjZ5)2 - (k o /L )^ ]

(k sc  )2 [(ks )2+ (k s (1 -c  ) )S \ (kc/LsinjZS )2

-  (k o /L )1 0 (2kA/L2 ) 1

When the dimensions of the frame and its loading are specified 

equation 2.6 can be solved numerically to yield a relationship between 

H and P. The maximum value of P thus obtained, determines the 

symmetrical sway elastic critical load.

Stability criterion for the anti-symmetrical sway mode

The anti-symmetrical sway will occur at<|load lower than the 

symmetrical sway elastic critical load. In order to establish the 

condition under which the structure first becomes laterally unstable, 

it is necessary to consider the equilibrium of the frame in its 

slightly buckled state. This state can be obtained by superimposing 

on the symmetrical deformations an infinitesimal anti-symmetrical 

deformation which corresponds to a set of small variations in the 

joint rotations and sways of the members. The number of incremental 

sway unknowns for this mode is 

= k X 2 - 5 

= 3
These incremental unknowns will be taken as the incremental 

sways of AB, BC and A*B*. On the application of infinitesimal equal
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horizontal forces H & at joints B and B', the joints and the members 

deform in the following way,;-

1) Equal incremental rotations of joints B and B' by 3q„.
.D •

2) Equal incremental rotations of joints C and C' by 39^.

3) Equal incremental sways of members AB and A'B' by 3S^ *

¿0 Equal incremental sways of members BG and B ’C* by

Member CC' will sway anti-clockwise by 23S2cosj?5 which is obtained
(

from the Williot diagram of Figure 2.5.

Associated with these variation in the deformations are changes 

in the axial forces but this secondary effect is neglected herein.

Due to these incremental deformations there will be changes in 

the moments in the members and these are tabulated in 'Table 2.2. From 

the consideration of joint equilibrium, the total change of moment at 

each joint is zero. Hence

[(ks)1+(ks)2]3©B+(ksc)23©c-(kc/L)13S1-(ko/L)23S2= 0 2.7a

3MC= (ksc)2393+ ̂ (ks)2+(koOj]3©Q+ [(2koCcos0/L)^-(ko/L)23 35^=0 2.7b

Due to 35^ only members AB and A ’B ' are swayed by 3S^ , the shear 

force equation gives the following relation between and the 

incremental shear forces in AB and A'B'.

2Hb 3S‘1= -33,, [(ko/L^Gg-UkA/L2 ).,^]

At the critical load HgVanihes, hence

H = -(ko/L) 39 +(2kA/L2 ) 33 = 0 2.7cB 1 B ■ 1 1
Due to 332, members BC and B'C* will sway by dd2 and member
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CC' by 23o2cosjZ5. The shear force sway equation gives 

2Hc3S2sinj25 = -23$2 [(ko/L)^ (o©B+3©c ) - (2kA/L2 )23S?]

+23S’2cosji £(2ke/L(^kAcosjii/I/- )_o<i2]

Bearranging this equation and putting H_=0, since the disturbing 

forces were applied only at B and B*, yields 

Hcsin^ = -(ko/L)23©B+ ̂ (2ko(cosji/L)^-(ko/L)2^ © c

+ [(21iA/L2 )2+(^kAcos^/L2 )3 ^ oS2= 0 2.7d

These incremental equilibrium equations can be represented in the 

matrix form as

2*8

The determinant of the square matrix is the anti-symmetrical 

sway mode stability condition. The load satisfying equation 2.6 and 

making this determinant vanish is the critical load.

If the rows of the determinant are in the order (83^, 3ôç, , 

35 ), the columns should be in the order (3Mgt H^, H^) so that

the correct sign of the determinant is obtained. If the assumed load
riis smaller than the critical one, the determinant will have a positive

'3 ' ’38s"

3Mc 304
3S,
3Sa

Cks)|-j-cks)z cksoij, —
Cksc)i Cksia-nk««H 0

0 0

Û

o

o

o

sign.
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Joint rotation mode stability criterion

The criterion for stability in symmetrical joint rotation mode 

is obtained from A, by considering only joint rotation and equilibrium 

and ignoring the sway terms i.e

~3iB

®Hc. I3scJ
'•f

(ksc )-

(ksc )-

(ks)2+(ks(1-c))~

0

0
2.9

The criterion for the anti-symmetrical joint rotation mode is 

similarly obtained from 2.8 by ignoring the coefficients of the 

sways i.e

^ks)1 + (ks)2

r

<VodV-/

1o1__

,& I c . he. (ksc )2 (ks)2+(koO^ 0
2.10

b ) Numerical examples 

Example 1

The elastic critical load of the frame in Figure 2.6 is calculated

when there are loads only at joints C and C'. The members have equal

stiffnesses and Euler loads P • Xn the classical calculation thee
following steps are followed:

Step 1

The curve relating the horizontal force component H to the 

external load is obtained using the numerical technique shown before
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on page 2.I • A few values were also calculated by the trial and error 

process to check the curve given by the numerical technique.

When the lengths and the relative k-values are substituted in 

equation 2.6, this relationship becomes

TT

P  '

S , j + S 2  ( s c ) 2 1 . V 1  k o L  -  o< 1

( s c ) 2  s 2 + ( s ( 1 - c ) ) ^ 1 . ^ 1 ^ 0 ^

1 . V l ^ o ^ - o i j  1 , 4 l 4 o ^ 2 A ^  + k k ¿

s . j + s 2  ( s c ) 2 ' \ A A c < z  -  o< 1

- ( s c ) 2  s 2 + ( s ( 1 - c ) ) ^ 1 . V l 4 o ^

-  0 < 1 0 2 A 1

The initial value of H/P which corresponds to zero load on the 

frame is obtained by substituting the values of the stability functions 

for zero axial load i.e s=̂ -* sc=2, o$=6 and A=6 in the above equation.

This gives 

H/P = 0.^85

With this value of H, the forces in the members and the relative load- 

parameters are calculated. These are tabulated.

Member AB(1) BC (2 ) CC* (3)

Force P 1.05P 0A 85P

rel.P • e 1 1 1

rel. f 1 1.05 0.^ 85

\
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new
A value of ̂  isj^assumed and the load parameter (0 of each other 

member is calculated. Hence when ^  =0.42, =0.40 and £ =0.194.

From tables(9 )

3.4439 oi,= 5.5936 An= 3.6197

¡2= 3.4144 o^= 5.5726 A2= 3.5000 (sc)2= 2 .1 5 8 2

;3= 3.7297 (sc)y= 2 .0 7 0 1

Substituting these values in 2.11 leads to 

H/P = 0.71

With this new value of H, the forces and the relative load parameters 

are tabulated

Member. (1) (2) (3)

Force P 1.21P 0.71P

relPe 1 1 1

rel. Ç 1 1.21 0 .7 1

?-values 0.347 0.42 0.246

The same procedure is followed. T'his leads to

H/P ■ 0.732*
This is not far from the value given by the first cycle of

calculation and is therefore assumed to be near enough to the exact

value. Hence 
• 0.42P =

1.734 X 0.707
= 0.342 P
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Following the same procedure, other values of ̂  are assumed 

ond the corresponding H-values are calculated. The results obtained 

are shown in Figure 2.7 

Trial and error process

A value of H/P is assumed, say H/P = 1.0. The axial forces and 

the relative load parameters are calculated. These are tabulated

Member (1) (2 ) (3)

Force P I.Vl^P P

rel. P e 1 1 1

rel. C 1 1 .^1^ 1

The load parameter f of the members which result in H/p given 

by equation 2.11 also being 1.0 is calculated by trial and error 

process.

First trial

C, = 0.3^ & = 1.VI4 X 0.3^ = o A 8  e3 = 0.3^

From tables(9 )

^3 3 .5 3 1A- oCj 5»6561 3«9782 (sc)., 2.12^7

s2= 3 .32^7 o^= 5*5093 A2= 3 .1^06 (sc)2= 2.18^6

Substituting these in 2.11, leads to 

H/P = 0.93
A higher value of (=> is taken f = O .3 6 and when the calculation 

is repeated it is found that:
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H/P = 0.99

By extrapolation the critical^ is

f 0.36 + 0.01 X 0.02
. ' — oTo2----

*= 0.363

Likewise the load parameter £ corresponding to other values of 

H/P is calculated. These values are also shown on the curve of Figure 

2.7

Step 2

The anti-symmetrical elastic critical load is calculated using 

the stability condition. When the lengths and the relative k-values 

are substituted in 2.8, the determinant is modified to

s ^+32 (sc - <V1 ” .°f 2
(sc)2 s2+eb, 0 1.4l4o^ -

= A
2 .1 2

- ^  0 2An 0

- 0̂  1.4l4o^- 0̂ 0 2A2+2A ^

A value of the load parameter which it is hoped will make this 

determinant vanish is assumed. The value chosen was ^ = 0.34. From 

Figure 2.7, the value of H/P corresponding to this value of f is 0.73» 

The forces in the members and the relative load parameters are therefore

Member- (1) (2) (3)

Force P ~1.225P 0.73P

rel. P. e 1 1 1

rel. (* 1 1 .2 2 5 0.73

f-values 0.34 0.415 0.248
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From tables( 9 )

s1= 3.5314 

s2= 3.41 44

o 5.6561 A1= 3.9782

o^= 5.5726 A2= 5.5300 (sc)2= 2 .1 5 8 2

o<3= 5.7^87 A3= *f.5151

Substituting these values in equation 2.12 yields 

A  = -  100

A lower value of fj = 0.32 is therefore tested. Figure 2.7 shows that 

the value of H/P is O.6 3. Thus the load parameters of the other 

members are Q = 0.368 and = 0.202

Substituting the stability functions corresponding to these load 

parameter in 2,12 gives

A =  + 340

Hence the critical load parameter £> by linear interpolation is

■£=. 0.336

Thus the elastic critical load of the framework is

2P = 2 X 0.336 P e
* 0.b?2Pe
This value corresponds with the value 0.710Pe obtained

 ̂m q 11 pi.i wipf 1 bus
experimentally^on a model of the framework made of bright steel strip 

members of -̂-"X 1/6” cross section and 12" length, shown in Figure 

2 . 8 .  IVh oW^lec+iat'i s ^va^eLooi k L>*cs>vie \ay°)e on e a r^  sVa^e »►> "^e

Cx 4* 0.34 - 0.02 X 100
440
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Example 2

The elastic critical load of the framework of example 1 is 

calculated when the external load is applied equally at the four 

joints of the frame.

Step 1

The curve relating the horizontal force component H to the 

external load is calculated by trial and error, using equation 2.11 

The curve obtained is shown in Figure 2.9. This curve shows that 

axial force effects have resulted in H being decreased and that the 

framework has no symmetrical sway mode.

Step 2

The anti-symmetrical elastic load is calculated using the 

stability condition of equation 2.12. When is assumed to be 0.44, 

the value of H/P obtained from Figure 2.9 is 0.485. Thus the forces 

and the relative load parameters are

Member (1) (2) (3)

Force 2P 1.05P 0.485P

rel.P 1 1 1e
rel. £ 1 0.525 0.242

f -value 0.44 0.251 0 .10 6

From tables(9 )
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sn= 3.3847 

s2= 3.6879

oi,= 5 .5 5 1 6  An= 3.3803

o^= 5 .7 6 9 2 A2= 4.6342 (sc)2= 2.0814

0̂ = 5.90 0 6 a 3= 5.37^1 (sc)3= 2.0339

Substituting these values in 2.12 gives the value of the determinant as

A  = - 6 6 . 5

A lower value of £ = 0.42 is therefore tested. The value of H/P 

obtained is again 0.485. The value of the determinant is 

A =  + 236

By linear interpolation the critical load parameter p is

^5=0.436

Thus the elastic critical load is

4P = 2 X 0.436 Pe
= 0.872Pe

This value corresponds with the value 0.882P obtained 

experimentally on a model of the framework, shown in Figure 2.8

Comments on the examples

A careful study of the examples just completed shows that the 

numerical technique of successive correction, used in obtaining the 

curve relating H to the external load, converges rapidly to give the 

exact values of force component after a few cycles of calculation.

In example 1, stability consideration results in an increasing
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horizontal force component H and a peak value of the external load 

is attained. This is because the axial force and load parameter £ of 

the stanchions are smaller than those of the roof members. The stiffness 

of the roof members reduces more sharply than those of the stanchions 

with an increasing external load. Thus the stanchions provide an 

increasing restraint against lateral displacement, for the roof 

' members. In example 2, the curve relating H and the external load P 

in Figure 2.9 shows a decreasing horizontal force component with 

increasing external load and the curve has no peak value, 'f’hus it 

has no symmetrical sway elastic critical load. This is because the 

axial force and load parameters of the stanchions are bigger than 

those of the roof members. With increasing external load, the stiffness 

of the stanchions is reduced more sharply than that of the roof 

members and thus less lateral restraint can be provided.

The anti-symmetrical sway elastic critical load of the frames 

in example 1 and 2, given by the calculation was less than the 

experimental values by 5.5% and 4.9%. This is because geometrical 

changes were ignored in establishing the stability criterion and 

calculating the axial forces in the members.
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, Frame 2 _

Two bay gabled frame

The framework of Figure 2.10 will again have symmetrical 

deformations for the reason given before. The number of sway unknowns 

is

= 2 ( 5 - 0  

= 2

The sway unknowns will be taken as the sway of AB and A'B*. On 

the application of the external load, the following deformations occur:

1) Equallana opposite rotations of joints B and B' by 0^.

2) Equal and opposite rotations of joints C and C' by

3) Members AB and A'B' sway by 3 but in opposite directions.

Members BC and B'C' sway by - 3/2sinj# but in opposite directions.

Members CD and C'D' sway by + 3/2sinjZ$ but in opposite directions,

as was determined from the Williot diagram of Figure 2.10a.

There is no rotation at joint D since there are equal and opposite 

deformations in members CD and C'D. Due to the deformations listed 

above there will be moments in the members and these are tabulated in 

Table 2.3.
This frame has two internal reaction unknowns. These will be 

taken as the horizontal force component H and the vertical force 

component v acting on BC as shovra in Figure 2.10b.
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Equilibrium of the joints requires that

Mg= [(ks)1 + (ks)2]e3+(ksc)29G+ [(ko/2Lsinj3)2-(ko/L)n] S = 0 2 .1 3a

Mc=(ksc)29B+[(ks)2+(ks)j]©c+[(ko^Lsin/^-iko^Lsin/)^] *&= 0 2.13b

Equilibrium of member AB requires 

H = (ko/L)nGB - (21cA/L20^Sy.h,o 

and of BC:
p

H sin/ - v cos/ = (kc^L)2(©2+©^) + (kA/L sin/)2"b 

and of CD:
p

- H sin/ + (B-v) cos/ = (kc/L)_©c - (kA/L sin/)j$ 

Solution of these five equations yields

h A, = p Aj
and

v A , =  p  A s
where

A, = 2

2.13c

2 .1 3d

2.13e

2.1^

2.15

(ks)1+(ks)2 

(ksc )_

(ksc)2 

(ks)2+(ks)^

[(ko/2 Ls in/) 2 - (ko(/L) ̂ ] 

|^(ko/2Lsin/)2~ (ko/2Lsin/j

[(ko/2Lsin/ )2- (kd/L)^ko/2Lsin/ )->- (ko/2Lsin/ )^2kA/L2 )̂  + (kA/2Lsin/ )

+ (kA/2L2sin/

A 2=Co¥

(ks)1+(ks)2 

(ksc )2 

- (ko/L)^

(ksc)2 

(ks)2+(ks)^ 

0

j( ko/2Ls in/) 2~ (ko/L) 

[(ko/2Lsin/)2-(ko/2Lsin/) 

(2kA/L2 )n



(ks^+Cks)^ (ksc)^ |ko/2Lsin0)2 -(ko/L)^] 

j( ko/2 Ls in0 ) ̂ - (ko/2 Ls in,0 ) 
[(2kA/L2 )1+ (kA/L2sin0 )£ ]

When the dimensions of the frame and its loading are specified

equations 2.1^ and 2 .1 5  can be solved simultaneously to yield 

relationships between H, v, and P. The maximum value of P thus obtained, 

determines £he symmetrical sway elastic critical load.

Stability criterion for the anti-symmetrical sway mode

The analysis for establishing the anti-symmetrical sway stability 

criterion will be given briefly. The number of incremental sway 

unknowns for this mode is 

= 2 X 5 - 7  

= 3
These incremental..sway unknowns will be taken as the sway of AB,

DE and A'B1 . On the application of an infinitesimal disturbing force 

2Hd at D, the incremental rotation of the joints and the sway of the 

members will be as follow

1) Equal incremental rotations of joints B and B 1 by

2) Equal incremental rotations of joints C and C ’ by 

5) Incremental rotation of joint D by 36 •



4) Equal incremental sways of members AB and A'B' by .

5) Incremental-", sway of DE by oS^.

Equal incremental sways of CB and C'B' by (SS^-o^V^sinJ#.

Equal incremental sways of CD and C'D by -(So^-SS^ )/2sinj0. These 

were determined from the Williot diagram.

Due to these incremental deformations, there will be incremental 

moments at the ends of the members and these are tabulated in Table 2.4 

Following the previous procedure of analysis, equilibrium consideration 

yields

3MB" r

3 Me 30c

3 Mo = 3#o

He, 33,

H d- -J 3Sa

(ks),-t cks)a. 

(ksclj.

0

(ksc)i

CksU-t cksJj

iksc)5

L aLsm$ 1 1 L a Ls>»4

0

iksc)5

ZL.ii«.</>
_ /-k̂ L. \ [/ kcA \ /JsbL_") 1

aLsm^ * *• zLsAd 15 ~2.Lsi«4 X aLsinfi 2 2.L 'zLsAji 3 '•¿Isi»̂ ’

k-<
ULst̂ v 0

["/ k <*(___\ _/ k^
L llsin 0 ■ai si’n ̂ 4 1 U 1

2L S)n <fi■)z

w k
Z LSi'n <PlxlxLSm <£

k i s r ^ - cr r ^
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The determinant A  of the square matrix is the anti-symmetrical 

sway mode stability condition. Any load satisfying equations 2.14 and 

2 .1 5  and making this determinant vanish is the critical load.

Numerical example

The elastic critical load of the two bay framework of Figure 2.11 

is calculated when all the members have the same length and El-values
. oand the inclination of the rafters is 45.

Step 1

When these values are substituted in equations 2.14 and 2.15 

the force components expressions become:-

s1+s2 (sc )2 0.7070(2“ o(j
2H
P (sc )2 s2+ s5 O.707(o^-o^)

0.7070^-oC, O.707(o^-o^) 2A1+A3+A4

s1+s2 (sc)2 O.707o^- 0^

= (sc s2+ s3 . 0.7 0 7(0^-0̂ )

- oi, 0 2A1
andd

s1+s2 (sc )2 0.7070(2- Pi,
2v
P (sc)^ s2+ s? ' 0.7 0 7(0(2-0^)

0.7070^-c^ 0.707(c^-o^) 2A1+A3+A4



2 .1 7b
S1 +S2 (sc )2 0.7070^- 0^

(sc )P S0+ S-, 2  p 0.7 0 7(0̂ -0^

1 .Vlifo^-o 2A1+2A2

The initial value of the force components H and v corresponding 

to zero external load is calculated by putting s=if, sc=2, d?6 and A=6 

in the above equations. This gives 

H/P = 0.22^ 

and.1

v/P = 0.532

Thus the axial forces and the relative load parameters of the members 

are:

Member AB(1 ) BC (2 ) CD (3 ) DE (if)

Force 0.532P 0.535P 0.^9P 0.93ÔP

rel#Pe 1 1 1 1

rel. f 0.57 0.57 0.525 1

Step 2
When the relative lengths, k-values and the angles are substituted 

in 2 .1 6 , the determinant is modified to



S 1 + S 2 • ( s o ) 2 0  0 ^ - 1 .  *f14-0tj

( s c  ) 2
V s3

( s c ) ^  0^ -  0^

0 ( s c ) ^ s 3 + ^ s ^  - 9 ^ 0^ - 0 . 7 0 7 0 ^

f e - 1 - ' n ' K i f e - q ' j ] - C k  if A 1 + 2 A 2 + 2 A ^ - 2 ( A 2 + A 3 )

f ^ - ^ D ^ - 0 * 7 0 7 0 ^  - 2 < W
2 A 2 + 2 A 3 + 2 A Zf

2.17c

The approximate elastic critical load corresponding to the initial 

relative load parameters is obtained by trial and interpolation.

First trial C* = 0.78

e„- °-^5 e*= OAl

From tables(3 )

sit2=.3.38^7 °̂ l,2 = 5*5516 An 2 = 3.3500 (sc)1f2 = 2.1669

s3= 3.^292 o/3= 5.5831 A_= 3.5598 (sc),* 2.15^0

s^= 2.849^ 0^= 5.1838 A^= 1.33 V?

Substituting these values in 2.17c gives by a lucky chance in this

case, the value of the determinant as

Zh = 0

Thus the approximate elastic critical load is 
0.JZ8X2

0 . 9 3 6 e
=1.66 Pe

Step 5
The force components H and v -are now recalculated using the 

approximate critical load parameters obtained in step 2. This
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immediately gives 

E/P = 0.198 

and

v/P = 0.505

The axial forces and the relative load parameters are now:-

Member (1 ) (2 ) (3) W

Force 0.505P 0.^97P 0A9P 0.99p

rel. P 1 1 1 1 -e
rel. C 0.51 0 .50 2 0.^95 1

Step

The elastic critical load parameter C corresponding to the revised 

relative load parameters obtained in step 5 is also obtained by trial 

egad error.

When 0 = 0.80 was.tested, the value of the determinant was +2830

Another value ^ = 0.82 was tested and the value of the determinant was

+170. Thus the critical load parameterf3 by linear extrapolation is

0 .8 2 1 and the elastic critical load is 
_ 2 X 0.821

* “ ■ O .9 9 e 
= 1 .66Pe

This value corresponds with 1.65Pg obtained experimentally on a 

model of the frame-having members lengths of 12", shown in Figure 2.11a



Frame 3

The elastic instability of the frame shown in Figure 2.12 is 

analysed when the external load is lumped at the joints. This frame 

will have no deformations until the anti-symmetrical sway mode 

intervenes. The axial forces in the members can therefore be obtained 

by statics.

Stability criterion for the anti-symmetrical sway mod

The analysis for establishing the anti-symmetrical sway stability 

criterion is briefly given. The number of sway unknowns for this mode 

is

= 2 X ^ - 6  

= 2

These sway unknowns will be taken as the sway of AB and BC. On 

the application of an infinitesimal horizontal force 2H^ at joint C, 

the joints and the members will be deformed in the following way:-

1) Joints B and B' rotate clockwise through an angle S©B.

2) Joints C and C* rotate clockwise through an angle

3) Members BC and B'C' will sway by 3b^. 

k) Members AB and A'B' will sway by 9S2*

Member BB* will sway by - 23?>2cosjZ5 and member CC’ by - 2QSncos,0. 

Members BC and B'C' will have extra sway of-dS^. These sways are



determined, from the Williot diagram shown in Figure 2.13»

Due to these deformations, there. Will be moments in the members 

and these are tabulated in Table 2.5»

Equilibrium consideration yields

'3H&' I
02 <X> P--
J ’ *0

3 Hc 3Se 0

He as, 0

H b dSx 0

The1 determinant A  of the square matrix is the stability criterion. 

The load making this determinant vanish is the critical load.

Numerical example

The elastic critical load of the structural framework of Figure 

2.1^ is calculated when equal loads P are applied to the joints. The 

members have constant El-values. All the members have equal lengths L 

except BB* which has a length 2L. Thus member.BB* has a stiffness -gk 

where k is the stiffness of the other members. The angle of inclination 

JZ5 is 60°. The axial forces and the relative load parameters are:



4 8

Member ABO) BB'(2) BC(3) CC'(4)

Force 2P/sin60Q Pcot60° P/sin60° Pcot60°

rel.Pe 1 1 1 1

rel. £ 1 1 0.5 - 0.25

When the relative k-values and lengths are substituted in 2.18 

the determinant A. is modified to

s1+0.5c^+s ^ (sc s
<^+0.250^- 0̂,

(sc s3+c4f °3

- °3 V  °5 A^+ 2A5 “ 2A5
0.250^-oi, a4 A2/8 +2An

The load parameter P making h. vanish is obtained by trial and
M i

error.

First trial = 0.92 

f2 =0.92 £3 =0.46 ^=0.23

From tables( 3 )

sn 2= 2 .6 10 0 oC^2= 5.0264 a 1<2= 0.4864

s^= 3.3548 o^= 5.5305 A^= 3 .2 6 0 5 (sc)5= 2.1757

o^= 5.7692 A^= 4.6343

Substituting these values in 2.19 leads to 

A  = - 757
i.e the frame is unstable and a lower value of ^ is therefore tested. 

When f * 0,84 A =  “ 37

When P = 0.83 A = 0
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Thus the elastic critical load is

¿¡-P = 2 X sinoO X 0.83 Pe
= l.**35Pe

This value corresponds with *tP = (32/22)P_= 1 .^5P obtained
6 ©

experimentally on a model of the frame.

• • •

Frame k

The elastic instability of the framework in Figure 2.15 is

analysed. The framework will have symmetrical deformations until the

anti-symmetrical sway mode intervenes. The number of sway unknowns in
\

the symmetrical sway mode is

= 2 (5 - 3)
= k

These sway unknowns will be taken as the sway of members AB,CB 

C ’B' and A'B'. On the application of the external load, the following 

deformations occur

1) Equal and opposite rotations of joints B and B' by >■©£•

2) Equal and opposite rotations of joints C and C* by 9^.

3) Equal and opposite sways of AB and A'B* by .

k) Equal and opposite sways of BC and B'C' by

Members CD and C'D sway by -(S^+^sin^ )/sin^2 but in opposite
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directions as is seen from the Williot diagram of Figure 2.15a.

Joint D will not rotate because of symmetry. Due to these deformations, 

there will be moments in the members, these are tabulated in Table 2.6 

Joint equilibrium at B and B* requires

Mg= [(ks)1 + (ks)2]eB+(ksc)2©c-(kc^'L)1S1 -(ko/L)2S2= 0 2 .20a

and joint equilibrium at C and O' requires

Mc=(ksc)2©B+ [(ks)2+(ks.)^ec+(ko/L)^(S1+S2siA01 )/sin$ 2 -(kot/L)^2

= 0 2 .20b

The frame has only one internal reaction unknown, this is the 

horizontal force component H in Figure 2.16. The equilibrium of AB 

reqires that

H = (3eo/L)1 (0b - 2^/xr^I^) 2*20,

and that of BC requires 

H sin0^- P(1+p)cosjZ5.j = (ko/L)2 (0B+9B - 

and that of CD requires

H s in ^ 2-Pcosj252=(ko/L)j(9B+2(5^+’S2 sin^^ )/m ^L^sin02 ) 

Solution of these five equations yields 

H A , =  P 

where

2 .20d

2 .20e

2 . 2 1

<.Ws\-+Cks)2.

Cksc)a <UcSjj-f.cks)3

_ (Jksi)

- c — ) ̂L I
(U) _i_

 ̂sin$:L *• - ( H I

0
h1 1
0

0 Sih^

0

0

)

Sm

Sm0
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and

tks) i+cksJi tkscj^ 0

(ksc)a cksJa-i-cks)3 /ksM J _
u 3 0

- i % a . 0 ( a k A  )V—jj-  J\ 0 0

0 Cl-tu.jcos^

0 _zakA\ J __
k •'3

_ ( X k A \  Si»qa> 
t!- 5 sm <jbj_ CCS X.

Equation 2.21 can be solved numerically to yield a relationship
Ibetween H and P when the dimensions of the framesand its loading are 

specified.

Stability criterion for the anti-symmetrical sway mode

The analysis for establishing the anti-symmetrical sway stability 

criterion will be given briefly. The number of incremental sway 

unknowns for this mode is 

= 2 X 5 - 6

= k

These incremental! sway unknowns are taken as the sway of AB, BC 

C'B* and A'B*. On the application of an infinitesimal horizontal 

forces Kg at joints B and B %  the joints and the members will deform 

in the following way:-

1) Equal incremental rotations of joints B and B* by 3©^.

2) Equal incremental rotations of joints C and C' by 3©^.

3) Incremental rotation of joint D.by o©_.
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k) Equal incremental swaysof members AB and A*B' by oo„.

5) Equal.1incremental sways of members BC and B'C* by 3*5P.

Equal incremental sways of members CD and C'D by-oo^cosjZ^/cosjZL, 

which is determined from the Williot diagram of Figure 2.17*

Due to these incremental deformations, there will be changes in 

the moments at the ends of the members and these are tabulated in 

Table 2.7

Equilibrium consideration yields

X
r^ 3 n

3 mc 2 e c

" b

Hc  j 3 5 ,L 2 - L

(lcsc)2 'jCks )2+(hs)-^ (ksc)^

0

-(ko/L),

(ksc )- (ks).

CoS«&i
0

n

- (koj/L)̂

0

0

(2kA/L2 ),

i} 0

2 . 2 2

' l  C.OS<&2 " l- ' i j  L'  L- i

~(ko/L)2

< ^ > 3

s s s t
0

(2kA/L2 (cosjZ^/cosj^ )2+ (2kA/L2 )2

The determinant A of the square matrix is the anti-symmetrical 
sway mode stability criterion. The load satisfying equation 2.21 and 

making the determinant vanish is the critical load.

1
' o '

0

= 0

0

L°.
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Numericallexample

The elastic critical load of the framework in Figure 2.18 is 

estimated when all the members have the same flexural rigidity El, 

^=60, $2=30°, ji=2 and and L^= 0.^591. Thus k^=k^=k and

k^ =2.18k* On substituting the relative k-values and the lengths in 

2 .2 1 and ignoring the effect of stability i.e putting s=^, sc=2 , o(=6 

and'A.=6 , the initial value of H turns out to be 

E/P =1.56

From this value of H and the known vertical force components, the 

axial forces in the members are found, ^he axial forces, the relative 

Euler loads and the relative load parameter of the members are next 

tabulated.

Member (1 ) (2 ) (3)

Force 3P 3.375P 1.85P

rel.P ^.75 1 1e
rel. f 1 5.35 2.94

When the relative k-values and the lengths are substituted in 

the stability criterion 2 .2 2, the determinant is modified to

2 . 1 8 s ^+S2 ( s c ) 2 0 - 2 . 1 8 oCj - 0^

(sc  )2 s 2 +s5
( s c ) 5 0 o ^ / 1 .73 - 0^

0 (sc)^ s 3
0 0^/1 .7 3

- 0 0 2An 0

-  °k oL / 1 .7 3 - o/2 c i/ 1 .7 3 0 2A2 +-|A^
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The critical load making the determinant vanish is obtained 

by trial and error.

First trial ft. = 0.42

C\ = 0 .0 785 e3= 0 .2 3 1

s1* 3.8956 <*,= 5 .9 2 0 6 A1= 5.5258

s2= 3.4144 o>z= 5.5722 a 2= 3.50 0 0 (sc)2= 2 .1 5 8 2

s3= 3.6879 oi= 5 .7 6 9 2 a t= 4.63423 (sc)7= 2.0814 5
On substituting these values into 2.23 5 the value of the determinant 

is

A  = +64

i.e the frame is stable. A higher value of f is therefore tested.

When Cz = 0.46 A  = - 447

A sufficiently close value of £ can be obtained by linear interpolation

0.42 + 0.04 X 64
511' X

is 0.425

At this stage the approximate value of the axial forces in the 

members are kno*ifn and the corresponding stability functions can be 

read from the stability tables. The same procedure is followed to 

give:

H/P = 1.575
The new value of H is nearly the same as before when the effect 

stability was neglected and the critical load parameter ̂  will be
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more or less unchanged. The critica 1 load is therefore 

6p = 6 P
5.575 e 

= 0.755 Pe

where P is the Euler load of BC. e
In an experiment carried out on a model steel frame having L=12"

the elastic critical load for this model was found to be 0.819P fe
giving an error of 7 »8/°.

Frame 5

The elastic instability of the frame in Figure 2.19 is analyzed.

The framework will have symmetrical deformations until the 

anti-symmetrical sway mode intervenes. The number of sway unknowns 

for the symmetrical sway mode is

= 2 (6 - 5)

= 2

These sway unknowns will be taken as the sway of members AB and 

A»B*. On the application of the external load, the following deformations 

occur

1) Equal and opposite rotations of joints B and B' by 9^.

2) Equal and opposite rotations of joints E and E' by 9^.

5 ) Equal and opposite sways of members AB and A'B’ by S.
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Equal and opposite sways of members BC and B'C' by -SsinjZ^/sinJ^.

Equal and opposite sways of members ED and E'D* by -’bsinjẐ cotjZŜ .

Equal.., and opposite sways of members EB and E'B' by -'bsinj#̂  , are 

determined from the Williot diagram of Figure 2.19a.

Due to these deformations there will be moments in the members 

and these are tabulated in Table 2.8.

There are three internal reaction unknowns. These unknowns will 

be taken as the shear force v and the axial force in member ED and 

the horizontal force component at joint A. Equilibrium consideration 

yields

t " ■"
<n

CO [cks>,-v (.ksJs-t-tW s)*] C ^ c )5 ' <t>, -
Si n fix  *■

) ,1

Be LV.sc \s ' . clcs)4 - t  C b )s U % ) 4 Si" 0, ( J ^ ) S Si'n p, ]

S O & u . U a ) ; [_ ) S m  0 i 1 
Lx 5

V 0 Sl»  ^i ^  f a  ]

■ 0 - c ^ V

0 / ijeA  j sm 0 i 
L1- 1 Si« 03

0 0 0 0

0 0 0 0

0 -1 0 — 0

- \ 0 0 0

0 0 — sin 0 , -^Pcos^,

caS($x Si n(f>j — s in 0  x
mi

— f c o S ^
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Solution of 2,2k yields the relationship between the external 

load and the internal reaction unknowns.

Stability criterion for the anti-symmetrical sway mode

The number df incremental s\vay unknowns for this mode is

= 2 X 6 - 9  

= 3

These incremental sway unknowns will be taken as the incremental 

sways of AB, A ’B' and the horizontal deflection at joint E, On the 

application of an infinitesimal horizontal force 21k, at joint E t the 

joints rotations and the sways change by the following way:-

1) Equal incremental rotations of joints B and B' by ^Gg.

2) Incremental rotation of joint C by ^G^.

3) Incremental rotation of joint D by 3Gg.

k) Equal incremental rotations of joints E and E' by 3g_,.

5) Equal incremental sways of members AB and A'B' by .

6 ) Incrementa 1 displacement at joint E by

There also occur, as obtained from the Williot diagram of Figure 2.19'c 

Equal incremental sways of members BC and B'C1 by oS^cos^/cos,^» 

Incremental- sway of CD by (3Sg— ) (sin^-^gi/cos^-,.

Equal incremental sways of members ED and E'D. by 'BS^cos^.

Equal incremental sways of members EB and E'B1 by ^S^sin^^,
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Due to these incremental deformations, there will be changes 

in the moments at the ends of the members and there are tabulated in 

Table 2.9.

Equilibrium consideration yields 2.25. The determinant of the 

square matrix is the anti-symmetrical sway mode stability criterion. 

Any load satisfying 2.Zb and making the determinant vanish is the 

critical load.

Numerical example

The elastic critica 1 load of the framework is estimated when 

0^=60° and ,02=30°. All the members have the same El-values.'The lengths 

and the relative k-values are tabulated

Member AB(1) BC (2 ) CD (5) DE(M EB(5)

length 1.5L 2L L 1.73L 2L

rel.k 1.33 1 2 1.152 1

Substituting these values in 2.2^ and ignoring the effect of the 

axial forces in the members by making s=4, sc=2, ô =6 and A=6 gives 

Hn = v = 0

and

S2/p =1.73

The axial forces, relative Euler loads and the relative load

parameters of the members are:-
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Member (1) (2) (5) (k) (5)
Force 3.^6P 2P P 0 P

rel.P . e 1.78 1 k 1.55 1

rel. Ç 1.95 2 0.25 0 1

When the lengths ana the relative k-values are substituted in 

2 .2 5 , the determinant is modified to

(?c)i 0 (Sc.)* V^s-b-olc^

(Sc)3 ii-t-s, 0 cKa-t-2 3̂ — Zc2.̂

0 Cscj 5 s^+i-lsis^ |.|SHstJ4 M51. - 2^ 3

(2*0 5 0 I.IF1 CS.CJ4. VI 1* I52cK4 -t-l-S"c>i4 —  ̂ 5

Ĉ a-.3.0"Io<| I • I 2*2 “ (4 ~ 0/3 |.| sio/4 Ll.3/44 +3/1 ri-4/V M-®4,] 4A 3

— —  CVS -  L ^ A s - v ? ^  [2AS+2/ U
=  ¿k 2.. 1 C

The load making' this determinant vanish is obtained by trial and

error.

First trial la= 0.88

c =0.96* f *0 .8 8 P=0.11 c =0

From tables( 9 )

s^= 2.71M 0^=5 .09^5 An=0.850^ * •
s2= 2.6797 0̂ =5 .0 7 1 8 ¿2=0 .7 2 9 2 (sc)2= 2.3921
s3= 5 .8 5 5 2 0^=5.8 9 0 6

y
a 3=5.5^78 (sc)_r2.0375

S^= ^r.0000 0(̂ =6.0000 a ^=6.oooo (30)^=2.0000

6^=5.58^7 5
<^=5 .5 5 1 6 A =5.5803 5

(sc) =2.16695
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Substituting these values in 2*26 gives

A = -790000

Second trial Q =0*78 gives &  = -310000

'’’hird trial =0*7^ gives A  = -5^5

Hence the approximate critical load parameter is ^=0.7^. At this 

stage the approximate values of the axial forces are known and the 

corresponding stability functions can be read from the stability 

tables and are substituted in 2.2^. This leads to 

Hn = v = 0 

and

h2/ p =1.73
There is no change in the H2-value. Thus the elastic critical

load parameter is C =0.7^ and the elastic critical load is
6 6 X 0 «7ft p

■3A6 e
= 1.28 Pe

where P is the Euler load of AB. e
This value corresponds with 6p =(5^»2/39)Pe = ^»39Pe obtained 

experimentally on the model of the frame having an EX—value of ,?20Ib.in
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Chapter 5

An Appro x inato method o fast imatn -

Load of ‘F ru - '.r .s with Vertical Stanchions and Inclined Rafters.

1. Introduction

In the past few years many rapid methods for the

calculation of the elastic critical loads of rectangular portal frames have

been developed. More difficulty arises when dealing with frames having

inclined members.' This is because redistribution of the axial forces in

the members occurs as the loading on the frame is increased, and it is

necessary to know these axial forces before the elastic critical load can

be calculated. Accordingly a method is needed by which .these axial forces

can be calculated, exactly or approximately, for any externally applied

loads. This additional step must be carried out before a test can be made

of the stability of the structure. A further difficulty arising in frames 
*

with inclined members, is that it may be necessary to consider several 

possible sway modes. Experience shows, however, that the anti-symmetrical 

sway mode is the most important. Accordingly this mode is the only one 

considered in this chapter#

The approximations described in this chapter reduce gable 

frames to equivalent rectangular portal frames with pin joints in the beam.

Only a little preliminary arithmetic is needed to do this and the determination 

of the elastic critical load of the equivalent portal is very rapid.

Multi-bay gable frames can be dealt with either by reducing them to
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multi-bay rectangular portals with pin joints in each span, or, with slightly 

more approximation, to single bay rectangular portals. The calculated 

results obtained from these approximations agree well with those obtained
t

experimentally on model frames.

2. The forces in the members

It can be shown that the axial force, R, in the rafter of 

the gabled frame shown in Figure3i, is given by the equation 

R = P f sin0 + cos>3 o co 12/0 U/ \ x i

where Y  =
|(lcs)̂ +(!cs)IjC 2kA/Tr kx/L), j ( bx/Ls ixx0) ? - (1&/L)

f(les).(ks)J '_(2kA/L ).+(2kA/Lsin0 )J]- |(k«/Lsin̂ })_- (k

for values of external load less than the critical load. In this equation 

sf o." f and A are stability functions tabulated by Livesb/ and Chandler.

The axial force R cannot be determined immediately since the values of
s

and A cannot be obtained from the tables until the values of the axial forces 

R and P in the members are known. This can lead to a tedious process of 

trial and error before accurate values of the axial forces R and ?, are 

obtained.

It is possible, however, to obtain an upper and a lower 

bound to the magnitude of the axial force' R in the rafter giver, by 

equation(2‘l). For the anti-symmetrical sway mode instability must occur at 

an axial force in the stanchion less than the Euler load PQ of the stanchion 

since the function n which determines this mode of instability 

(appendix equation ), becomes equal to - oo at the Euler load, in.the



stanchion. For values of axial force in the stanchion less than the Euler load,

all values of s. oi , are positive, but A^ might lie bctv/een +6 and

-6 . Trial of any possible values of and ^2 shows that <ls
ki Li ‘

has a value between zero and unity. The value zero corresponds to the

rafter being much stiffen than the stanchion and the value unity corresponds.

to the stanchion being very stiff relative to the rafter. Hence when the

rafters are very stiff the value of 1  tends to sin p and when the

stanchion is verv stiff the value of - tends to — =— . For any normalF sin p J
value of relative stiffness, the value of 3  as influenced by stability 

effects must lie between these two bounds. The lower bound with very flexible 

stanchions corresponds to the roof being supported on rollers at the eaves.

The upper bound with very stiff stanchions corresponds to the roof being 

fized against lateral displacement at the eaves. For these extreme cases, 

the result of calculations gives the critical load values shown in Figure 

for various gable angles p.

6k

For angles of inclination p greater than about 30°,

Figured shows that the elastic critical load corresponding to those two

limits are reasonably close and in this case the middle value of 3 gives?
a very good approximation to the elastic critical load.

When the inclination p of the rafter becomes small, 

the two limits give elastic critical loads which are widely spaced. For
pthose frames, however, in which' the value of _e of the stanchion is less
L

.i> i —
than twice that of the rafter, the graph of Figure3-3 obtained from 3 .1  shows
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R /that p lies between unity and sin ptwhich is a much smaller range than

that from — to sin ii, sin p

To investigate the effect of a small inaccuracy in the 

value of R the graph shown in Figure3.4 was prepared. Thi3 shows the 

critical value of  ̂ of the stanchion when the load in the rafter is changed, 

for different ratios of the stiffness of the rafter to that of the stanchion.

It is seen that a change in the axial force in the rafter has a much.smaller 

percentage effect on the critical value of ^ . Hence it is not to be

expected that an error in the relatively small range from sin p to unity 

will make an appreciable error in the critical load. To obtain a conservative 

answer and for convenience, the value of is taken as unity for these frames.

pFor those frames in which the value of _§ of the
L

stanchions is bigger than twice and less than four times that of the rafter,
nthe graph of FigureJ-3 shows that ~ is always bigger than unity but much % ^

- 1 Psmaller than . Hence for these frames is also taken as unity,

but the value of the critical load obtained will not now be conservative.

PIf the value of for the stanchion is very much

greater than that of the rafter, the value of 5  ’ may be taken as — , .P J sin p
Figure33 shows that this is a reasonable approximation which leads to a 

conservative estimate of the elastic critical load,

Figure3-3 shows the value of ~ when the reduction inP
stiffness of the members by axial loads is ignored. When this effect is
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ptaken into account the value of —

.— or sin ¡5. Little error sin p
given in this section, since the a 

axial force effects are included.

moves towards the nearer limit.' 

therefore is introduced by the approximations 

pproximation becomes more accurate when the

There are a few remaining cases which are not covered by

the approximation given above. These are structures in which the inclination

of the rafter is less than about 30°, and in which the U  value of the
L -

stanchion is more than four times that of the rafter. For these frames it 

is necessary to calculate the value of from equation 3 .1 . -With this 

exception, the approximations suggested give reasonable estimates of the 

axial forces in the members and there is no need to have recourse to 

successive re-calculation for most franes.

3. Derivation of the stability criterion

Symmetrical single bay gabled frames_
%

It is shown in the appendix that the elastic critical 

load of a symmetrical gabled frame is the same as that of a rectangular 

portal with a hinge in the middle of the beam. In the equivalent portal the 

axial force in the beam is chosen to be the same as the axial force in the 

rafter of the gabled frame. The length and SI value of each half beam 

are made the same in both frames. A gabled frame and its equivalent 

rectangular portal are shown in Figure3£a and̂ îa. The stability condition 

for the anti-symmetrical sway mode of Figure 5a is demonstrated in the 

appendix to be:

IC = .(kn)x * (ks“ ) 2 3-2
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This is also the stability condition for the rectangular portal of Figure3-5b.

In this equation K represents the "no-shear" stiffness of the joints 3, and

3', k is the usual —- value and n and s" are the stability functions

tabulated and defined by Liveshy and Chandler . To obtain the critical load

the least value of the load which makes the "no-shear" stiffness vanish is

determined by trial and interpolation. For the load case to be tested the

approximations of § 2 will give the ratio of P = —  for the rafter and
re

the stanchion. The trial and interpolation process itself is illustrated in 

later examples.

Unjjymmetrical single bay gabled frames_

The exact determination of the critical load for these

frames involves the evaluation of determinants of the seventh order. To avoid

the excessive amount of arithmetic involved, this type of frame is also reduced

to an equivalent rectangular portal as shown in Figured, but this time the 
%

equivalence is only approximate. In the equivalent structure again hinged at C, 

the lengths, the FI values and the axial loads of 3C and CD remain the 

same as in the original structure.

' For the equivalent structure the operations table giving 

the bending moments and forces in the frame is shown in Table31.

Operation
h A B

V ! M3 A i * r*‘iry'__ .... ...... A*ryi? m  T T

1)Hoto3 (ksc)1©3 (ks)v,Q_ i (ks")_e„* i ¿1- -D
• j— (ke*/. a) „9-.

2)RotoD tIi Cks")_S„ 3 D *r D (ksc)#l0̂ -. (ko/L) i*T U *T i3)Sway. -(bx/L)^ - ( W D ^ d  (2kA/L2 )^Co
!i ■ j +(.2kA/I?,)t $

TABLE 3-1.
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prior this table is defined in the appendix and s and sc are stability
9functions tabulated and defined by Livesly and Chandler.

hence

The equilibrium of joint 3
ye „ T, r r\I'.i-n A v Miy* — ULjsj

( V D ,

'equires that:-

(ks)  ̂+ (ks")2 * “
Joint D is in equilibrium, hence

(WL),,

V (ks),.+ (ks'<) p
The total horizontal force at 3 is therefore:-

F = [(2kA/La),+ (2kA/i?)j£- [ ( W D f o *  C W D ^ J  

Substituting for 63 and 8^

F/g = (2kA/L~), + (2kA/l¿)|
r (WL)?

, (ks)1+ (ks")2

( W D j

(ks)^+ (ks")^
3-3.

To obtain the critical load from equation 3-3' , the least 

value of the external load which makes the sway stiffness £ vanish iss
determined by trial and interpolation.

The approximate value of the elastic critical load of the 

unsymmetrical gabled frame of Figurel-IQ^ will be determined as an example.

In this frame kq = k-j_ = k^ and k3 = 0.577k^, L]_. = Lg = and L3 = JP L-¡_.

On substituting the relative values of k and the lengths in equation 3*3', the

sway stiffness becomes; 
T 2F.£ = (2Á¡ + 2A4) -

y. sn + s"2 + 0.577s"_
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The different axial force in the inclined members obtained by fixing B and 

D against displacement and making them free to displace respectively, are

1
1 Li ember ! —
|

■ ■ ........... i
Force when B & D For 
are fixed are

ce when 3 & D 
free

Mean value

ji pC
i

P cos 30 P cos3 30 7 J? P/16
1 CDI i

? cos 60 ? cos3 60 5P/16

Following the approximate procedure of section 2, the mean value o 

forces in the rafters are used in the calculation which follows." 

forces, the Euler loads and the relative load parameter are now;-

member Forcé Euler load p relative P
• Pq P- 0

7 _ 7 pAB — p4 pe 1 ~* e
1

30 V- p P 0.432
• 16

■
16 P0

CD JL %p 15 ? 0.53516 3 e 16 ?e

DB 5 p Pa 5 P 0.715
- 4

________
e

4  • i

parameter Pc

Knowing the relative load parameters, the critical load 

is obtained by trial and error using the stability condition:

3.4-! as follows:- 

First trial = 0.50_

C-l = 0.50 

From tables (9)

s1 = 3.1403 
ex'1" = 5.3310

f2 = 0.26

s£ = 2.443

f3 = 0.322 = 0.43

y

a i
= 2.4201

s’! = 2.3019 s4 = 3.3996
oe; = 5.5621
A4 = 3.44015
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r '5 .3810 .7 ' 5.5621) 1
F 9 = (4.84' + 6.88- ) -  ! 5.5846 + 4.7296 i
Í L~

11.72' (5.19 + 6.55)

= - 0.02

This shows that the sway stiffness is negative so a smaller load is

Secón,d trial = 0.58

Ci = 0.53 ' C2 = 0.25 e3 « 0.31 Q  - °*415
S,1 - 3-i71S s 2 = 2.4673 s£ = 2.3260 s4 = 3.4200
or = 5.4026 o<4 = 5.5776i
A = 2.5404 A4 = 3.5299
" 1

rC 5.4026)“ (5.5776)'!
*¡7* _(5.08 + 7.05 ) - 5.6383 v 4.762 J

= 12.14 - (5.2 Hi- 6.51)

= * 0.43; ‘

i.e. the frame is stable.

' The critical value of ^ is now obtained by linear

interpolation. To two significant figures its value is 0.60. The total load 

carried by the gabled frame is 

3? = ■—  x 0.60 ? 0

= 1.03 PQ

This compared with a value of 0.940 ?e obtained experimentally for a model 

steel gabled frame.

l:ulti-bav frames

Symmetrical multi-bay frames can also.be^ reduced to

approximately equivalent portal frames in the same way For example, the two bay
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gabled frame of Figure3*7a is reduced to the tv 

Figure3*7b. Again the lengths, 21 values ar

ro bay rectangular portal of 

axial loads of the half beans

in the equivalent portal, remain the same as these of the real frame.

In deriving the stability condition, the joints 3, D and 

3' are displaced horizontally by an amount S «nd each joint, rotated to 

balance the sway moment. The sway stiffness -E is given by:-

2(k*/L);
F/c = (¿fkA/L2) + (2kA/L2) - i -

* 10

( W L ) 2
3,5 :

ks)., + (ks" ) 2 (ks)_ + 2(ks")2-

This equation is used to illustrate the solution of the frame shown in 

Figurc3i0$. In this frame k-j_ = kg = k- and the length of all the members 

is the same and - 45°» Substituting these values injr5", the stability 

condition becomes:

- .L = (4 A2 + 2 Ag) _ O/j __7_
$ , +  s ;

The forces in the inclined members are
S3 -v- 2,Sa 3:

I ’.'ember
•

Force when 3 & C Force when 3 £ C
!

.s styi va 1 u 0
are fixed are free

3C, CD 1.414 ? 0.707 ? 1.06P

The moan value for the axial force in the rafter is again used in the 

calculation. The axial forces in the members and the relative load parameters

r are:- 
?e

Member Force rel. P ---*- e
p

rel. -r

A3 P 1 1.00

30, CD 1.06 P 1 1.06

D2 2 P 1 2.00
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First trial C^ =_0_,44

= 0.44 C2 - 0.465 CO00•oIICO

From tables (9 )

s = 3.3847 s£ = 1.9298 S 3 = 2.6797
^  = 5.5516 

1
<*3 = 5.0718

a = 3.3803 
A1

A3 = 0.7292

7? o r? x(5.5516)i ( 05.0718)*-]
| L2 = (13.52! + 1.461) - [5.3145 6.5393 j

= 14.98 

= - 0.17

- (112 + 3.95)

The sway stiffness is thus negative and a lower value of the load is tested.

Second_trial_ ̂  = 0.42_

= 0.42 . ^  = 0.445 f = 0.84

From tables ( 9 )

s1 = 3.4144 ff* = 1.9830
el = 5.5726 

= 3.5000

v r 2 xf5.5726)*
| L2 = (14 +1.94 ) - L 5.3974

= 15.94’ - (11.55 + 3.90)

« 3 = 2.7483~ . 
= 5.1168

A3 = 0.9716

(5.1168)* 7 
6.7243 J

= + 0.49.

i.e. the frame is stable.

The critical P, by linear interpolation is 0.44 - 0.02 x =
1 0.56

and the corresponding elastic critical load is

4? = 4 x 0.435 ?e

= 1.74 ?Q

0.435
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This value compared with 1,65 P- obtained experimentally or. a model 

of the gabled frame.

Tho expression3-5' givtn above can be further simplified 

with very little extra approximation. Thera is already in existence an 

approximate method (1 1 ) for estimating the elastic critical load of multi

bay rectangular portal frames. In that approximation, the multi-bay portal 

frame is replaced by a single bay portal frame having each stanchion 

stiffness equal to half the total stiffness of the stanchions and a beam- 

stiffness equal to the total stiffness of tho beams. The axial force in an 

equivalent stanchion is taken to be half the total of the applied loads,and 

its Suler load half the sum of the Suler loads of the stanchions .

Following this ph«<Ju*e'fche original symmetrical multi-bay gabled frame of Pig %-7 

is reduced to a single bay rectangular portal in which: -

(1) Each stanchion stiffness k-, is equal to half the sum of the stiffnesses
%

of the stanchions.

(2) Each stanchion load is equal to half the total applied load.

(3) Each stanchion Suler load is equal to half the sum of the Suler loads 

of the stanchions.

(4) There is a hinge at the middle of the beam, each half beam having a 

stiffness k0 equal to half the sum of the stiffnesses of the inclined

•members.

(5) The axial forces in the half beams are made equal to half the sum of the 

axial forces in the inclined members.

The stability condition for estimating the elastic critical



load is thon simply

37;

7k

K = ( k n ) 1 + (k s”)2

The least value of the load which makes the "no-shear" stiffness K, vanish 

gives the elastic critical load*

The two bay gabled frame of Figure was recalculated in

this way. The frame of FigureB-lOB is replaced by a single bay frame with

stanchion stiffness — — ; and rafter stiffness 2 —■ The xorce in eacn
2 L h

stanchion is 2P and that in the rafter is 2 x 1.06 P. Thus the relative 

stiffness of the rafter is kp = ~ 1*33 and its relative load parameter

is £ = 0.795 f, . Substituting for k2 in 3*7/, the stability

condition becomes:

IS. — nn + 1.00 3>*8

First tr^al _k1 - 0.53_

f i = 0.53' Ca - o'.45

From tables ( 3 )

H1 = -2.5733 si » 1.943

K = -2.5733 + 1. .33 x 1.9433

= +0.0167

i.e. the frame is stable

Seeond_trial_ =_G_,59

£ = 0.59 f2 = 0.47

nx = -2.7074 = 1.9115

K = -2.7974 + 1.33 x 1.9115 

= -0.155

i.e. the frane is unstable
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The critical ^ by linear interpolation is 0.53 * .01 x -~L? = 0.581— . -1 * 7
xno tlio corresponding eias oic cri i/icul 10o.ci is

= 3 x 0.581 u
= 1.74 P„

In essence this approximation assumed that all ridge joints 

rotate the same amount, as do all eaves joints. There would in fact be some 

slight adjustment required since some joints would rotate more or some less 

than the average. But the effect of these adjustments on the value of the 

horizontal forces and hence on the sway stiffness is very small.

These two methods can also be used for unsyiametrical 

multi bay frames. For example, the two bay unsymmetrical gabled frame of 

Figure3-8a is reduced to the approximately equivalent two bay portal of 

Figure3-8b. Again the lengths, 21 values, and axial forces of the members in 

the equivalent portal are the same as in the gabled frame. The sway stiffness 

of the frame of Figure$8 b is:

JL = f/2.UJA , ( 2'<M , /2kM ~[ _ F ( W l)? , ( W /  l)I  CUct/ij;
s La 4 v L3 /7J L (u^+cits*^ *r ~r cws^+.cus'V

M l)\ (y«/L)y \

The second approximation can also be used for unsymmetrical 

multi-bay gabled frames, as for example north light frames. In this case the 

left hand portion of the equivalent beam is obtained by summing each left 

hand rafter, the right hand portion of the equivalent beam by summing- each 

right hand rafter and each equivalent stanchion is half the sum of the real 

stanchions. Several examples, shown in Figure3-10, were calculated using 

these two approximations and the results obtained are compared with the

experimental-values in Table32.
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In multi-bay frames, the axial forces in the rafters near
uthe centre span of the frame will approach ----since they are largelysin p

restrained against lateral movement. The outer bays will have progressively

smaller loads. If the end rafters are assumed to have an axial force of

P sin ft and all the others to have an axial force — - , a good
sin p

approximation to the force distribution is obtained.

• Extension to deal with more complex frames.

The exact analysis of the single bay frame of Figure^a 

will involve dealing with two fourth order determinants. The size of the 

determinants will grow to the seventh order when another bay is added and 

to larger sizes when the number of bays is increased.

The approximate method for predicting the elastic critical

load of gabled frames can be extended to deal with frames like that of 
%

Figure3-9a in which the stability of the stanchions is the dominant factor 

in estimating the elastic critical load of the frame.

The frame of Figure3£?a is replaced by the equivalent 

gabled frame ABD3'A’ of Figure3-9b to determine the axial forces in the 

members of the equivalent rectangular portal frane which is obtained as 

before. The equivalent beam will have an El value chosen by inspection 

to be about the average of the members BC and CC' and each half will be 

of the same length as 3D.

76
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Multi-bay frames of this kind, are replaced by 

equivalent multi-bay portal frames or by equivalent single bay portals.

The stability conditions of(j5) an are used in estimating the elastic

critical loads of such frames.

When the ridge of a complex frame is only a short distance 

above the level of the eaves it is better to obtain the horizontal force 

component H in the equivalent rafter in the following way. The joints 3 

and 3* are first assumed to be fixed and the horiKontal thrust determined. 

When 3 and 3' are assumed to be supported on rollers the horizontal 

thrust is, of course, zero. The value of H used for the equivalent rafter 

is taken to be the mean of these two values, i.e. one half of the "fixed-end" 

thrust.

7 7

This method can also be applied to other frames in which 

the linkage of members connecting the two vertical stanchions is stiff 

enough for failure.to occur mainly by sway of the stanchions. A good 

approximation is likely to be obtained when the Euler load of the equivalent 

rafter is not less than that of the vertical stanchions. As an example of 

this method of approximation the critical load of the frame of Figure^iOE 

is determined. All the members have the same values of k and L and 

ft = 450, The frame is replaced by a single bay gabled frame having a rafter

length of 1.45 L, an El value equal to that of the original members, and
Phence a relative k£ value of 0.688 k-j. The ratio of — § of the stanchion 

to that of the equivalent rafter is (1.455)^ = 3.07, thus the axial load 

R, in the rafter is taken to be half the applied load at the apex i.e.

R = P. The forces, the relative Euler loads, and the relative load parameter
j
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of the equivalent members ares-

Member Force .rel.. P ... Prel. p- e
AB 2P 2.12 1

3D P 1 1.06

The stability condition is 

K = nx + 0.688 s£

First trial = 0.45_ ■

Co = 0.477

From the tables (9 ) '
S.

n i = -1.2537 5» = 1.8973

Substituting the value in (10) gives 

K = -1.2537 * 0.688 x 1.8973

= *0.048

This value is positive and the frame is stable so a larger value of ^
%

is tested.

Second_trial_ =_0^46

C2 = 0.437 ">

nx = -1.3357 = 1.8693

and K = -1.3357 * 0.688 x 1.8693 

= -0.0457

The critical value of £ obtained by linear interpolation is 0.455, and 

the elastic critical load is 2P = 2 x 0.455 e
= 0.91 PQ

iwhere PQ is the Euler load of AB.

(.3-1°)
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The value obtained experimentally on a model of the frame 

having L= 12” and El = 320 Ib.in^t was 0.882 Pe#

\



VT -u .

‘“C3 * C3*
Hence 2(ks)2 ( c ^

Therefore ©c = - c
* Sc)

2®b

Joint 3 is also in equilibrium and hence

((ks)^ (ks)^) ©q + (k s c)2©c - = 0 (3*Ha)

Substituting for ©c and using the definition £(l - ĉ ) = s1'

I
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8*1

[ ( k s ) ^  ( k s " ) 2 } e 3 - C3*líb)

The disturbing force at 3 to produce these deformations vanishes at the 

critical load. Hence ¡-

Hb = - kl *1 ’klAl &
SB * " i p = 0 (5*11°)

The determinant of the coefficients of the unknowns in 3*U \> and 34kc ) is 

(ks)1 * (k s'% ■-

~ kl<*l

This reduces to

^1

lq_2 C3-Ud)

A - 2klAl
^  £""2 ^kn}l * (k ¿,)2 ) C3-12)

The elastic load parameter ^ which makes vanish, is the

critical one. The value of the load parameter f making vanish is unity.
%

That making the term (.kn)^+ (k s" )„ ) vanish is loss than unity by an amount 

depending on the relative stiffnesses of the rafter and stanchion. It follows 

that '(kn)-j + (k ¿O2 ) = 0 is the condition which gives the elastic 

critical load of the gabled frame since it gives the lowest value of ^ at 

which the stiffness of the frame becomes zero.

The term (kn)-j + s“)2 ) is also the "no-shear"

stiffness of the joints of the rectangular portal frame shown in FigureSob. 

In this portal the length of each half beam ia the length of the rafter in 

Figurería, and the axial force in the beam is equal to that in the rafter.
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The critical load of this equivalent portal is obtained when the "no-shear" 

stiffness vanishes. To estimate the critical load of a gabled frame as in 

Figure35a, therefore, the structure is reduced to the rectangular portal of 

Figure35b, and the well known procedure ( t£) for rectangular portal frames 

is used._

<

i
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Chapter h
Stability of frames with unsymmetry 

Introduction
The stability of symmetrical frames subjected to unsymmetrical

loading and also unsymmetrical frames with any loading at the joints
is examined. The results indicate that the elastic critical loads
of the symmetrical frames are appreciably reduced when there is
unsymmetry in the loading. The amount of the reduction will be depend
ent on the. .degree of unsymmetry in the loading of the frames. The
rapid change of the force components was found to be responsible
for the major part of the reduction.

In investigating the elastic instability of frameworks, the
toanalysis is ususlly based on the fact that the framework at the 

critical load offers no resistance to any disturbing action. In the 
test a disturbing action is applied to the framework which causes 
fresh deformations in the framework. The. action .and. the deformations 
in the framework are related by the equilibrium conditions viz:- 
[actionJ = [a J £deformationj
[AJ being a square matrix formed by the coefficients of the 
deformations and represents the overall stiffness of the-framewoxk 
for a particular mode of elastic instability. Instability occurs 
when the determinant A  of the matrix [A} vanishes
i.e A  = 0
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Sometimes the axial forces in these frameworks are statically 
indeterminate and it is well known that the forces in the members 
must be obtained before a test is made since the determinant 
contains the stability functions s,c etc. of the members. The intef- 
nal reaction unknowns can be determined in terms of the applied 
load P, the. .geojne.t.ry of the framework and the stability functions 
of the members in the form

Hn A , =  P A „  ^-3

where A t and A.n are determinants formed by the coefficients of the 
unknowns and the external loading as is derived in detail later.

In ;the case where A,= C A , where C is an arbitrary constant, 
the method of analysis for predicting the elastic critical load 
using equation k.2. as the criterion for elastic instability is not 
applicable since this, will give rise to very large force components 
when A — > 0 • Equation, if.3 is used instead as the criterion for 
instability. The »umber of equations obtained from h.3 is equal to 
the number of the internal reaction unknowns. These; .equations can 
be solved simultaneously to yield relationships between the internal, 
reaction unknowns and the external loads. The elastic critical load 
may be defined as the highest load P, thus obtained from the 
relationship of h.3 as indicated in Figure ^.5

In the following calculations it is assumed that the modulus 
of elasticity is constant; the members are straight; of uniform
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cross-section and obey the simple theory;;- stresses produced by the 
loads in the members are within the .elastic range; and that deflection 
due to the bending moment will be the only deformations and that 
these axe small.

Experimental determination of the critical load

The natural frequency of oscillation of a frame decreases 
with increasing external load ( 1 ). When the vibrational stiffness 
is plotted against the applied load, ah almost straight line 
relationship is obtained. Curving may occur near the elastic criti
cal load when large deflections begin to have an effect. An 
estimation of the elastic critical load is made by the extrapolation 
of the linear part of the graph. In this chapter it is this value 
of experimental elastic critical load which is compared with the 
theoretical value.

Theoretical solution

The, s.lope-deflection equation is adopted herein to analyse 
the elastic instability of the frame in Figure h.1. The. loads on 
the frame are assumed to be lumped at the joints. When the loading 
is applied the framework will be deformed in the following way:-
1) ̂Joint B rotates clockwise through an angle
2) Joint C rotates clockwise through an angle ©^.

c
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3) Member AB sways clockwise by Ssirtj^.
Member BC sways anti-clockwise by •

Member CD sways clockwise by SsinjZ^ * These are obtained from 
the Williot diagram of Figure f̂.1a.

Due to .these deformations,, there will be moments at the ends 
of the members which are tabulated in Table k,'\.

Joint equilibrium of B requires that

^BA+^BC=°
Substituting for M ^  and M^^ from ^able ¿f.1 leads to 
[ c k s ) , - t C k s t ) j 9 c

iirt + —  ( ̂  Si'n ̂  ] S = 0 ^.^a

Likewise the equilibrium of joint C requires that
Cksc )a 9& -+• [t ks)i -*(Ws)3 ] &c

“I" i ( si” *-C^)3 Sin 0 , ] s  * 0 .̂̂ b
There are two force component unknowns for the statically 

indeterminate frame of Figure ^.1. For convenience, these will be 
taken as the horizontal force H at one of the supports and the 
force component v keeping the member BC in equilibrium. Consequently 
the force components distribution will be as shown in Figure ^.1b. 
The equilibrium of BC requires that
v = C -t(3k£)2S)'H C0(-f-#a) £> , ^.^c
and that of AB requires that
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and that of CD. requires that
►

— H -t- CuP—v ) U *
There are five unknowns in five homogenous equations, solution

of these equations yields

H A, = P
and
V Zh, = p Z^3 
where

Zks),-fCks Ja

^•5

k.6

A . = — — —
1 SŴ >( Smpa

CkscJj

CkscK Cks)1 +-(ks)3 L ^ ) li'‘n^<+<^}-Cx^sin̂ ]

[ ( Sinc£,+&.) — (¿2!), s m [ ( il ' nC^+ A "*’ h  Sln^i

<krf|-fdcs)i (.kscĵ

C M x  tbJ^cics), [C^x5»kC^M)-C^5^^3

iff

I L  Lv. V"ii9,+9i)

<3nc{

C ks), + Cks)x Cksĉ  Sin ^  II
0<sc)i Ck̂ -I-Cks)̂  £(kjz Sîi _(_kii)3 Sln^l

^  l C ^ ) a S.n(^, +  ̂ 3
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When the dimensions of the framework and its loading conditions

are specified equations 4.5 and 4»6 can be solved numerically to

yield relationships between H,v and P. The maximum value of P thus

obtained, determines the critical load of the frame.

• • •

Numerical examples

Example 1, Unsymmetrical frame

The. elastic, .cr.i,t.ical load of the frame of Figure 4.2 is

estimated when j^=60, $2=4 5, I^=L^=L , 1^=0.8l6L, ji=0 and (EI),j =

(EI)-.= (EI),. Substituting these values in equations 4.5 and, 4.6 k 3
gives

1 .2246^+62 (sc)2 0.9660^- l.o6oi,

A, = 1.635 (sc)2 s2+ s 3 0.9660^-0.865^

0.9666^-1. 06ô  0.9660^-0.8650^ 1.84A1+1.87A2+1

1,224s^+S2 (sc)2 0.9660^-1 .060^

A 2= 0.578 0) 0 s2+ s 3 0.9660^-0.8650^

1,414o^ 1.932A2+2.448a 5

and

1 .224S^+S2 (sc)2 0.966o^-1.06c^

^ 3 = 0,578 (sc )2 s2+ s3 0.966o^-0.865<^

4 1.932A2
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Ignoring the effect of the axial forces in the members i.e 

taking s=4,sc=2, o£=A=6 and substituting in equations 4.5 and 4.6 

gives the force component unknowns as 

H/P = 0.308 

and

v/P = 0.132

The axial forces, the relative Euler load and the relative 

load parameters of the members are, thus

Member AB (1 ) BC (2 ) CD(3)
--

Force 0.904p O.3O8P 0.312P

rel. Pe 1.5 1 .0 1 .0

rel. P/P e 1 .0 0.511 0 .5 1 8

A value of f( is assumed and the load parameter £ of each other 

member is calculated. Hence when " =0.60,^=0.60 X 0.51'! = 0.30? and

= 0 .6 0  x  0 . 5 1 8  =  0 . 3 1 1

The stability functions, corresponding to these load parameters 

are obtained from the stability tables are substituted into equations 

4.5 and 4.6. This yields 

H/P = 0.360( 

and

v/P = 0.152

;
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With these new values of H and v, the forces and the load 

parameters are recalculated.

Member (1 ) (2 ) (3)

Force 0.915P O.3 6OP 0.362P

rel. P e 1.5 1 .0 1 .0

rel. P/P © 1 .0 0.59 0 .5 9 5

C-value 0 .6 0 0.35^ 0 .3 5 8

The same procedure is followed. This. lea,ds. .to

H/P = 0.355

and

v/P = O.lV?

and the relative load parameters are

■ e.s •. f ,  = 1 : 0.583 : 0 . 5 9 .

These new relative load parameters are so close to those of 

the last cycle that the critical load cannot be far from the value 

given by the second cycle. The axial force in member AB is O.9 1 5P,

thus the external load P is
1.5 X 0 .6 0  

= 0.915 e
= 0.985 P ©

Pe being the Euler load of member BC.

r~
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Following the same procedure, the external loads calculated 

for values of ^ are tabulated.

p, H/P P/Pe
0 0 .308 0

0 .6 0 0.355 0.985
0.80 0.383 1 .3 2 0

. 0 .9 0 0.420 1.460

1 .0 0 0 .5 2 0 1 .5 6 0

An attempt to calculate the critical load when P -  1.04 was'i
made. The results for three cycles of calculations are

Trial v/P H/P

1 0 .2 0 1 0.530

2 0 .2 10 0 .7 1 6

5 0 .7 6 0 - 0 .0 19 6

The method of calculation thus fails to give any value to P 

when (̂ = 1 • Ô f

figure- 4.3 shows the numerical results obtained. The elastic 

critical load P obtained from the graph is I.5 6P . This value... v?
corresponds with 1.54Pg obtained experimentally on a model of the 

frame having -¿-"Xl/^" steel strip members, shown in Figure 4.4.
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Example 2, Symmetrical frame under unsymmetrical loading

The elastic critical load of the frame is estimated when

=02=45°, Ce D 1 = (EI)2=(EI)5 and p.=0. When these values 

are substituted in equations 4.5 and 4.6, the determinants become
s1 +s2 (sc)2 1.414 o£- ©(j

A,= (sc)2 s2+s3 1.4l4of2-

1.4l4o£- oij 1 ,4l4o£-o^ 2A1 +4A2+2Aj

s1+s2 (sc )2 1.4l4oj,-

Zha= (sc)2 s2+s3 1.4l4c^- o^3

and

O.70 7o^ 0.70 7o^-o^ 2A2+2A3

s1 +s2 (sc)2 1.4l4o^ -

^ 3 = (sc)2 s2+s3 1-4.1W2 - o/̂

O.707o^ 0.707c/2 2A2

Following the procedure illustrated above, the numerical

results obtained are tabulated as

f. H / P P / P e
0. 0 .5 0 0
o . 6 o 0.55 - 0.631
0.90 0 .6 1 0.900

1.00 0.67 0.945
1 .0 6 0.725 0.955
1.10 0.79 0.950
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These results are shown in Figure 4.5. The elastic critical

load obtained iron the graph is P = 0.955Pe. This value corresponds

with P = 0.90Pe, obtained experimentally on a model of the frame.

When the external load P is applied equally at the two joints

i.e y = tt.O, the elastic critical load is 1 .60Pe, bigger than the

first load by 67%. For values of y between zero and unity, the

elastic critical load will be between 0.955? and 1.60P .
6 6

Frames with a small amount of unsyrametry

In frameworks where the unsymme.tyy in the geometry and 

loading are in such proportion that the applied loads are carried 

solely by the axial force in the members and there is no call on 

the members to resist some of the external load by their flexural 

regidities, the forces in the members will be constant until 

instability occurs. The elastic critical load of such frames can 

be predicted by using 4.2 as a stability criterion.

In other .unsymmetrical frames where the portion of the 

external load carried by bending moments in the members is small 

or where the variation with the external load of any force component 

is small, the elastic critical load can be calculated approximately 

using 4.2. In these frames, the redistribution of the forces in the 

members becomes rapid when C approaches zero. The elastic
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critical load obtained using b.Z v/ill be an upper bound to the 

elastic critical load.

Figure b.G shows the curve relating P and the force component 

v of the framework given in example 1 , when jx = 1 .0. The highest 

load obtained from this curve is 1.99Pe* This value corresponds 

with 2.12Pe obtained by using b.Z and Z.Obp^ obtained experimentally.

The difference between the exact elastic critical load and 

the value obtained from b,Z will increase as the amount of »asym

metry increases. For example, the approximate elastic critical load 

of the frame in example 1, obtained from b.Z, using the initial

force distribution was Z.b'lP giving an error of 55%; the approximate©
elastic critical load of the frame in example 2, obtained from b.Z 

was 1.62P , an error of 68%.

Equation b.Z was used to calculate the elastic critical 

load of the unsymmetrical gabled frame of Figure b.7. The 

approximate value of the elastic critical load obtained was 1 .028P 

which corresponds with 0.9^Pe obtained experimentally.

Initial imperfection in structure

The method of analysis developed in this chapter can also 

be used to investigate the effect of initial imperfection in frames. 

The elastic instability of the structure of Figure *f.8 is analyzed

I
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when the strut AB has an initial sway S"0. On the application of 

external load P, member AB will sway by o’ - S  and joint B will 

rotate clockwise by © . The moments at the ends of the members are:D

Operation MAB 1-iBA
1)Hot. B 

2 )Sway

(ksc)1©B

- (ko^/L)^ (S -<0o )
(ks)ieB
-(k<* /l ) 1 ( £ - s ; )

3k2«B

Equilibrium of joint B requires

MB-[(ks)1+(3k)2]©B ” Om X/D. jCS' - S 0 ) = 0 4.7a

The structure has only one internal reaction unknown, this 

is taken as the reaction v at C. The structure- h.as, ,no horizontal 

force component beaause joint C is on a roller support. Equilibrium 

of BC gives

v =(3V D 2©b ^-7b

Equilibrium of member AB requires 

- (koi/L)1©B+ (2ko</L )n( V a v / O  = 0 4.7c

Solution of equations 4.7a and 4.7c yields

©„ 5 (kQ< h ^ “ 1) . if-7d
(kn)1+ 3^

Substituting equation 4.7d and rearranging, equation 4.7b becomes 

oL (m1- 1 )
• 3/rrz- (Pe )2 ^*8v nl+3k2/k1
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and th.e axial force in AB is

e (p6)1= ? + v

Equation A-.8 can be solved numerically to yield a relationship 

between P and v when k^/k^ and L~/L^ are specified. The maximum value 

of P thus obtained, gives the elastic critical load of the structure.

Numerical exam-pie

The elastic critical load of the structure is calculated 

when k2/k^L2/L^= 1 and Oo/L = 1/40. Substituting these values in 

equation A . 8 becomes

v=0.76X10“ 2
(m1 - 1 )

v can be calculated for different values of the load parameter £ .

Case 1 Ci = 0.5

From tables (9 )

0A= 5.^ 8 8 1 m1= 1 .8 1 6 8 n1= - I.691Q 

Substituting these values in ^.9* gives

5.^ 881 x  0 .8 16 8 x  0 .7 6 X 1 0 " 2v = ------------ -— --------------- - P
1.309

= O.C£6P
e -

and the external load is therefore

p = (0 .5 - o.o26? ; p6 

= 0A 7A  P
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Figure k.9 shows the numerical results obtained for other 

values of Ç . The elastic critical load obtained from the graph is

P = 0.50P . The elastic critical load of the perfect structure ise
P = 0.611?^. Figure ^.9 also shows the relationships between P and 

v obtained when So/L = 1/80 and 1/ 16 0 respectively.
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Chapter 5

Effect of prebuckling deformations

Introduction

In chapter 2, it was assumed that the frames were free of 

bending moments before the anti-symmetrical sway elastic critical 

load is reached. Consequently, there is no bending deformation 

in any part of the structure until the anti-symmetrical sway mode 

interfers. Obviously these conditions cannot be satisfied in 

practical frames. Thus, it is necessary to study the effect of the 

prebuckling deformations on the stability of the structural frames 

and to compare the results with those obtained by ignoring these 

deformations.

E. F. Masur, I. C. Chang, and L. H. Donnell (Y3) developed 

a method for analyzing the stability of frames with pin jointed 

supports, taking into account the effect of initial bending moments. 

This method is extended to deal with frames having fixed supports 

and many roof members. The assumptions of chapter 2 still hold 

and the methodsof calculating the forces in the members and the 

symmetrical sway elastic critical: load are the same.Prebuckling 

deformations are taken into account only when analyzing the anti- 

symmetrical sway mode of symmetrical frames under symmetrical 

loading.
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In the following, the elastic instability of the gable frame 

shown in Figure 5*1 is analyzed. Theoretical solutions for both 

the symmetrical and anti-symmetrical sway modes are obtained and 

a numerical example is given.

Forces in the members

Since the framework is symmetrical and under symmetrical 

loading, it will have symmetrical deformations until the anti- 

symmetrical sway mode interfers. On the application of the external 

load, the following deformations occur:-

1) Equal and opposite rotation of joints 3 and B' by ©_,•

2) Equal and opposite sway -o of A3 and A'B'.

Equal and opposite sway of CB and CB', which is determined from 

the Williot diagram of Figure 5.1a as +S/sin0.

Due to these deformations, there will be moments in the 

members and the.se are

O p e r a t i o n M 8fl m 6c ^ C B /

0 Roh Bi S/ Cksc), 9 q (Ws)t % (ks) Q q Cksc)2 -(ksc )20s

2)Smstf & j S_** L ^Sin0
. / _2_+  CT W n ^ |

Joint equilibrium at B requires

M3=^(ks)1+ (k s)2 î9B+ (jkot/W^-Ckc/ /Lslnfi)^ = 0 5 .1a

The gabled fpams has only one unknown force component, this
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is the horizontal force component H in Figure 5*1b* The equilibrium

of BC requires

H = (k<*/L)1 03+ (2kA/L2 )nS 5.1b

and the equilibrium of BG requires

HsinjZi - Pcos$ = (ko</L)3Q.g- (2kA/L2sin,02 5.1c 

Solution of. these equilibrium equations yields 

H A =  P A ,  5 . 2

Gb.A= Pcot0 ̂ (ko(/LsinjZi)2 - (kctf/L).^ 5.5

and

S A, = Pcotj2$̂ (ks)1+(ks)B  ̂ 5.̂

(koi/L)^- (ko</Lsinj25)2 

(21cA/L2 )n+ (2kA/L2sin02

(ko</L)1- (ko</LsinjZi)2 

(2kA/L2 )T

S = HcdsjZJ + Psinji 5*5

When the dimensions of the, frame and. its. .loading are specified 

equation 5*2 can be solved numerically to yield a relationship 

between H and P. The maximum value of P thus obtained determines 

the symmetrical sway elastic critical load.

(ks)^+ (ks)2

(kcK/D^- (ko<'/Lsinj25)2

and

A 2 =
(ks)^+ (ks). 

(kot/L).

The axial force in the rafter is

£>
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Stability criterion for the anti-symmetrical sway mode

The anti-symmetrical sway will occur at a load lower than 

the symmetrical sway elastic critical load. In order to establish 

the condition under which the structure first becomes laterally 

.unstable, it is necessary to consider the equilibrium of the frame 

in its slightly buckled state as shown in Figure 5*2. ^bis. state 

can be obtained by superimposing on the symmetrical deformations 

an infinitesimal antisymmetrical deformation which...corresponds 

to a set of small variation in the joint rotations b© and sway bS 

of the members. These are:

1) Equal incremental rotations of joints B and B ’ by b©B.

2) Incremental rotation of joint C by b©^.

3) Equal incremental sways of AB and A'B' by - bS. The rafters
\

have no changes in their sways since there is equal displacement 

at B and 3'.

Associated with .these variations in the deformations are 

changes bp in the axial forces in a typical member which in turn 

cause oh&nges in the stability functions.

The modified moments at the ends of the members are tabulated

in Table 5.1» in which
s ds \ _os = ¿pdP

b(sc)= d(£-c-). bPdp

bA = dP bP

5.6
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The terms ds d(sc) .etc, represent respectively thedP * dP
rate of change of the coefficients s,sc,...etc with respect ,to the 

axial force P. Their values are given in terms of s,c,c<,P and B 

by the following expressions (I'd)

c - i ? ==r F £ci- ScC,~ ij)
= <»■-sc) S  5.7

C2cJ „JL (.H- a c - sc)
j\'= A A  —  sc) — ,
n  «ip p -x

The increment in the stability functions of CB are positive

and those of CB1 are negative. T^is is because the axial force is 

increased for CB whilst it is decreased for CB1 as in Figure 5.3» 

The change in the moment dMg at joint B is given by

i -Kksk] (ksc)j 9 9C

in which

ös-, ds?
" dB

\ , dty? o°2 = ^

a(sc) = &

bn

bn 5.9

where öS is the change. ,in the axial force of the rafter. The 

horizontal force H is unchanged, thus ÖB is related to oP by 

bn = ÖP sinj# 5.10
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The. .change in the moment 3m ,̂ at joint C is given by
2<k«c)j a(ks)j  30e -t-2 t c k s s c ) 40& —( * 3 S-ll

Joint equilibrium requires that
DMg = 3m c = 0 5 .1 2

On s?Xbs.ti,t,û ting 5.6,5.9.5.10,5.12 and rearranging, equation 5.8
becomes

' S t ' U - f c k O . - t - t w i l l  5 0 8 - ! - < W r O a 3 9 c  ■ + ( J^ ) | 3 S

• f  [{< ks'l, +  C ks'im  0 )i$ h  t , - 0^)x\ s l  3P= 0 5.13

and equation 5.11 becomes
QMc* CkscJx 3 G b '¿Qc

t C {WlK.'tm 4{i 0b - (t ?1 >a 5 3 5P-0 5.1k
The equilibrium of AB requires
H = 36fe-h 1 ^ 1 , 3 5

+  [ < M ^ ) i  ®B -t-C 3-k-jLi),S ] « 0 5 .1 5" U**
On substituting 5.1b and 5*6 and rearranging, equation 5*15 becomes
C^), 5 0 8 ^ -0 ^ 0 ) ,  +  e6 + ( I t 3 \ s ]  3 P =  0 5.16

The equilibrium of BC requires
Him# - CP+5P) cosi * [t^)i6g-c^i V 5 ] - f - t tof )i.308

On substituting 5.6, 5«9, and 5.10, equation 5*17 becomes
(ki)* 36e +  C ^ ) i 3 ® «  l a p

5.18=  0
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The determinant of the coefficients of the unknowns of
equations 5.1?» 5.14, 5.16, and 5.18 is
Cks)i*KksH Ckj«)a ksV» 0 )»
Cks ) x CksK 0 C C k CIO' t»Vi <> ] Ô* -[( Jig 1

0

0

_ = A  5.19

The values of ©_ and ? are obtained from equations 5*5 and
5.4. Equation 5.19 is the anti-symmetrical sway, jaode stability 
criterion. Any load satisfying equation 5.2 and making this 
determinant vanish is the critical load. The coefficients of 3P 
in the four equilibrium equations are due to the prebuckling 
deformationsO Ô and S . Ignoring these coefficients will result±J

in, a, /ytafr̂ ltty criterion similar to those obtained by the, method 
given in chapter 2.

Numerical example 
Educes in the members

The forces in the members and the critical load of the 
symmetrical sway mode can be obtained from the solution of equation
5.2 which expresses implicitly the horizontal force component H as 
a function of the applied load. When the dimensions of the gabled

/
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frame and its loading conditions are specified equation 5»2 can 

be solved numerically as in chapter 2. Curve A in Figure 5.*+ shows 
the results obtained for a gabled frame with L^L^, and

0=30°. The maximum value of P given in Figure 5»^ represents the 

elastic critical load is the symmetrical sway mode.

Anti-symmetrical sway elastic critical load
Anti-symmetrical deformations become possible when the 

applied loads reachc such a magnitude that equations 5 .2 and 5»19 

are simultaneously satisfied. This implies that both modes are 

equally possible for the frame under this load.

A numerical solution of equation 5.19 can be obtained by the 

same procedure as that used previously for solving equation 5 .2 .

By substituting the values of k and L in 5*19, the determinant 
becomes

[  £s /hf  0.5 Sx') &S - +  ( o / / -  c*n!) £  1

CSc)», s* 0 0 L o - S C s c ) '  Q q  -  o i /  i  ]

0 V 4 , L  2/4 7 ^  J

C<3L 0

-A  5-20

The load parameter^of the stanchion, for particular ratio 
, making s this determinant vanish is obtained by a trial andc.

M
. and S  are obtained from equations 5*3 and 5 .1f.J3error process
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(?For £ 7 = 1 . 0  
First trial ^ = 0.50 
From tables (3 )
8=3,2945 c(=5«488l 0=0,6659 A=3,020? B=2.4674 s c = 2 .19 3 6  

By using equationss5*7
s»P= -0.757 <A'P= -0.532 A'P= -2.9994 (sc)'B= 0.238 
By using 5.3 and 5*4 
©B= 5.6 X 10-£ l A
S/L= 6.75 X 10"^I/k
These values are substituted in 5«20 and gives the value of the 

determinant as 

& =  -  7.00

A lower value ofP is therefore tested.
'1

Second trial

=0.48 gives a value to the determinant of h  = - 1.74 

By linear extrapolation the load parameter making the determinant 

vanish is

£ -2:0.48 - 0.02 X =

= 0.473

and the external load is
P = 0.473 P,©
P being the Euler load of the stanchion, e

Curve B in Figure 5*4 shows the numerical results obtained
pfor other assumed values of . The point at which, .this curve



intersects curve A, gives the anti-symmetrical sway elastic

critical load which is P= 0.^58 P .e
Curve C in Figure 5«^ is obtained from the solution of the 

equation
/

(kn)1+ (ks»)2= 0 5.21

given in chapter 3 » which was obtained by ignoring the effect of

the prebuckling deformations. The elastic critical load given by

this, cur.ve, i-6 P = 0.^82 P •e
• • •

Numerical procedure

The classical method of calculation is lengthy and tedious, 

especially when the number of roof members is increased. An 

alternative numerical procedure is possible. The following steps 

are followed.

1) Using equation 5*2,H is calculated ignoring the effect of 

stability on the stiffness of the members i.e s,c,oi, and A are 

given the. y.alues ^,-^,6 and 6.

2) The relative values of and ^are calculated using the H-value 

obtained in step 1 .

3) The critical value of £ satisfying equation is calculated.

4) The H-value for the approximate csitical load of step 3 is 

calculated from equation 5 .2 .
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step k are calculated.
6) The critical value of P which satisfies equation 5«^9 is calculated. 

Conclusion
The calculation; for the frame of Figure 5»1 shows that the 

elastic critical load is smaller when prebuckling deformations are 
taken into account thah it was when these deformations were ignored 
as in chapter 2. The two values, however, are very similar. Work 
carried out on rectangular portal frames with pinned feet by Lu (I4) 
shows a similar reduction in tbe calculated value of the critical 
load as was demonstrated in a discussion (l5) to Lu's paper.

This indicates that the large amount of extra calculation 
has little effect on the value of critical load obtained. Moreover, 
experimental work carried out on models of the frames calculated 
show that even the values of chapter 2 are lower than the 
experimental values. For simple frames it can be seen that taking 
finite deflections into account could explain the increase in the 
practical values but finite deflections have not been taken into 
account in the present work.

The, .calculations of chapter 2, therefore, are perfectly 
adequate for normal work. The object of this chapter was in fact to
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show how prebuckling deformations could be taken into account if 
necessary and also to show that normally prebuckling deformations 
can be ignored.
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Chapter 6

Elastic instability of trusses with redundant members
. .. . PAST I.' Approximate estimationIntroduction -------  — ------------------- —

The method of estimating the elastic critical load of rigidly-

jointed redundant trusses used in this chapter, is based on the fact

( 7 ) that the elastic critical load of redundant truss is the largest

critical load which can be obtained with any statically possible

distribution of forces in its members. Such loads have in the past

been determined by first assuming several different but statically

possible distributions of forces in the members of the truss. The

elastic critical loads were then calculated for each of these

distributions and eventually, hy a trial and error process, the

particular distribution of forces in the members of the truss which

gave the highest elastic critical load was obtained. For a highly

redundant truss, this procedure can be extremely lengthy, even when

critical loads are estimated only approximately as by BoltonC5 )•

In thi« chapter it shown that the elastic critical load of a

redundant truss is approximately reached w heu t>ie forces i” the

members of the truss are so distributed that as many possible of struts

meet-5ng at the critical joint of the truss, carry loads P which are

equal proportions of their respective Fuler load P^ i.e have the same

values of F/P • The struts chosen for carrying P should be these which 
6



have components along the line of action of external load or which 

indirectly load one of the other members which ha« such components. 

The procedure has been found to give results within 10% of those 

obtained experimentally, and by lengthy repetitive calculations. 

Bolton's method of estimating the elastic critical load of a truss 

is used in the present work.

Technique for the redundant truss of Figure 6.1

The development of the technique put forward here for the 

estimation o£ th<* elastic critical load of redundant trusses, can 

perhaps be most easily followed by dealing with two examples. Let 

us first consider the cantilever truss of Figure 6.1 which will be 

assumed to be made from members which have the same cross-sectional 

properties. This truss, when pin-jointed, has one redundant member. 

The choice of different values for the load in a member AB, which 

may be designated the redundant member, gives different statically 

possible systems of forces in the members of the truss.; Some possible 

systems or patterns are shown in Figure 6.1a to d* For each pattern 

of load distribution, the elastic critical load can be quickly 

determined using the Bolton method. The results obtained are those 

shown in column 7 of Table 6.1, in which P is the Euler load of 

each of the members AB, BC, CD and AD. From column 6 of this table

111

i
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i t  c an  be s e e n  t h a t  i n  th e  c r i t i c a l  c o n d i t io n  th e  r a t i o  o f  th e  lo a d  

i n  th e  m ost h e a v i ly  lo a d e d  s t r u t  t o  i t s  E u le r  lo a d  i s  a p p ro x im a te ly  

c o n s ta n t ,  even  th o u g h  d i f f e r e n t  members become th e "m o s t h e a v i ly  

lo a d e d "  s t r u t .

Proceeding from Figure 6.1b to 6.1d, the forces in AB and AD 

decrease* continually but although the critical load at first increases 

it decreases after the member AE becomes the most heavily loaded strut. 

In fact the maximum value of the critical load occurs in. the region 

where the two struts are equally loaded. This ">'s to be expected 

because the stiffness of a strut decreases ever more sharply as its

a x i a l  lo a d  i s  in c r e a s e d .  T h is  means t h a t  i n  g e n e r a l  i f  i t  i s  p o s s ib le
be

for an external load to>.carried by different patterns of loading in

two or more struts the most stiff arrangement will be that in which

th e  two o r  more s t r u t s  c a r r y  th e  same f r a c t i o n  o f  t h e i r  E u le r  lo a d s .

Any o th e r  a rra n g em en t w hich  re d u c e s  th e  a x i a l  c o m p re ss io n  i n  one o f

the struts at the expense of increasing it in another will give an

increase in stiffness of the one strut which is more than offset by

th e  g r e a t e r  r e d u c t io n  i n  s t i f f n e s s  o f  th e  o th e r .

I f  th e  P /P g v a lu e s  o f  AB and AE a r e  e q u a l ,  and th e  c o m p re ss iv e

force in the member AB is 0W, the force in the member AE is 42(1-,0)W.

S in c e  th e  E u le r  lo a d  o f  AE i s  tw ic e  th e  E u le r  lo a d  o f  AB, how ever, th e

value of P/P for AB is and that of AE 42(1-0)-^-.e p 2 P The f r a c t i o n  o f



113

their respective Euler loads which they carry will be equal when:-

6.10 w_ . V5(1 . n  jl
P 2Pe e

i.e when 0 = 0.VI5

With this value of the members AB,AD and AE all carry equal 

proportions of their respective Euler loads.

The elastic critical load calculated for this pattern in which

jZ5 has the value 0.VI5 is ^.31P as detailed in Appendix I.
©

.Q°>

To check this value, the elastic critical load of the truss was

calculated using the lengthy repetitive method already described, in

which various values for the load in AB were tried in succession.

The result of doing this is shown in Figure 6.2 which gives the

elastic critical load of the structure as about k,k2.P i.e 2.%}C larger©
their* that of our approximate calculation. As a further check a model 

of the truss 2^inches square was made from bright steel strip. The 

Euler load of the member AB of this truss was 5*5 lb. the experimental 

critical load of the truss was 2^.5 lb. The experimental value of the 

critical load is thus (2^.5/5 .5 )P = A-.MfP i.e 3% higher than the 

value estimated.

Technique for more highly redundant trusses

The critical joint in the redundant structure of Figure 6.1 

which had to be located before the Bolton method could be used, was



found with ease. For a more highly redundant truss, the task of

locating the least stiff joint is more elaborate. The process
Car*

involved is nevertheless basically simple and^be generalized in 

the following procedure

(a) The redundant truss is reduced to separate statically 

determinate trusses by removing a number of members equal to the 

degree of redundancy of the truss. The forces in the members of these 

basic trusses, due to the external loads, are then determined by 

statics. These constitute the basic force patterns from which any 

pattern can be synthesized.

(b) The patterns of the forces in the trusses are combined 
ifc

two 1

(i) to reduce the forces in the most heavily loaded struts

at
ijjartime.

and

(ii) so that the values of th<» load parameter ̂  of the two most 

heavily loaded struts are equal in the combined patterns.

(c) From the various combination of the basic natterns, the 

one which gives the highest value of external load for a given value 

of  ̂ in its most heavily loaded strut is chosen. For this pattern 

the weakest joint is found and the forces are further adjusted by 

making as many as possible of the.struts which meet at this joint 

carry the same fraction of their Euler loads. The struts chosen for
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adjustment should be those which have components along the line

of action of the external load or which indirectly load one of the

other memberswhich has such component. During the distribution of«
the forces meeting at a critical joint, care must be taken that the 

equilibrium of the forces at any adjacent joint is not upset. The 

load parameter of any other struts should not exceed the load 

parameter of the struts which meet at the critical joint. If it
I

turns out that some distant member is required to have a greater 

^ -value, the axial load in one or more of the struts meeting at 

the critical joint is reduced.

(d) The critical load of the truss for this pattern of 

loading in now estimated.

There is a second way of obtaining the critical distribution 

of axial forces in the truss. This is based on the fact that the 

load parameter of any strut does not exceed the critical £ -value 

of the truss. A limit is set to the f -value of any member of the 

truss. The axial forces in the struts and tie members meeting at 

any externally loaded joint are adjusted so that the maximum external 

load can be carried within the limiting value of ̂  . The critical 

joint is then located and the elastic critical load calculated as 

illustrated in the next example.'
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Example

The elastic critical load of the thrice redundant three bay- 

truss of Figure 6.3 is estimated. This has three redundant members. 

It will be assumed that its members have the same cross sectional 

properties; also that the truss is subjected to external load at H 

and the supports only, and that these loads are vertical.

The load W at joint H is carried by the members HC, HI and HJ. 

The maximum tensile force in HI is^2P since the largest possible 

compressive force in BC and BA is P where P a&d. that of HC is

2nJ2P since the Euler load of Cl and CJ is twice those of the horiz

ontal and vertical members. We are now in a position to find by 

statics the reaction at A which is (1+-j2)p# Therefore the applied ¿ 

load at H is W = 3/2. (1+^2 )P.' This relation is obtained by talcing 

moments about F for the whole truss. Considering the equilibrium 

of the forces at joint H, the force in HJ can be determined as a

C yields that the force in CD is a compressive force of P.

The force distribution of the truss is shown in Figure* 6.4a 

but to find the forces in the right hand panel, the magnitude of 

one force in this panel has to be chosen. If we assume that the 

force in DK is 2x, the forces in the complete framework are obtained 

in terms of P and x. Also x can be obtained in terms of P if at the
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joint D we again assume that the struts T>E-and DK carry equal 

proportions of their Euler loads. We then find from Figure 6.4b

since DK has twice the Euler load of DE, that

■y(1 + -Î2)P -'¡2. x 
P

2_x
2Pe e

whence 

2 x = P

with this value for the force in DK, the forces in every member of 

the truss and th» external load, are obtained in terms of P.

The possible critical joints aneB and C. At joint B there are 

two most heavily loaded struts and one tie member and at joint c, 

there are four most heavily loaded struts and one tie member, therefore 

joint B i.P stiffer than joint C. Hence joint C is the critical joint.

The force distribution of Figure 6 ,4 c  could have been obtained 

using the first method, since most of the struts at the critical 

joint are "most heavily loaded" struts.

Tt is now possible to proceed with the Bolton calculation of 

the critical load by testing the least stiff joint. C. As indicated 

in Appendix II, this gives the critical load as 7»70P•v ©

In order to ch»cV this value a model of the truss of Figure

6.3 was made from bright steel strip. The Euler load for member CB

was 5 »5 I'd . and th e  e x p e r im e n ta l  c r i t i c a l  lo a d  found  was 4 3 .3  lb .

T h is  g iv e s  th e  e x p e r im e n ta l  c r i t i c a l  lo a d  a s  7 .8 5 P  •©
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E x p e rim e n ta l  te c h n iq u e

The s t i f f n e s s  o f  a  s t r u c t u r e  d e c r e a s e s  w ith  th e  in c r e a s e s  o f  

th e  a x i a l  lo a d  i n  i t s  members and i s  re d u c e d  to  z e ro  when th e  t r u s s  is 

u n d e r i t s  e l a s t i c  c r i t i c a l  lo a d .  The e l a s t i c  c r i t i c a l  lo a d ,  th e n ,  

c an  be e s t im a te d  by p l o t t i n g  th e  s t i f f n e s s  o f  th e  s t r u c t u r e  a g a in s t  

th e  lo a d  and th e  i n t e r c e p t  o f  th e  c u rv e  on th e  lo a d  a x i s  b e in g  th e  

c r i t i c a l  v a lu e .

I f  th e  d i s t u r b i n g  moment a p p l ie d  a t  a  j o i n t  i s  3 m and th e  

r e s u l t i n g  r o t a t i o n  i s  3©, th e n

3 m = K 3© 6 .2 a

where K is the rotational stiffness of the joint.
When the truss is not loaded, the rotation caused by the

d is tu r b a n c e  i s  3©, hence0

3m  = K 3©G | 6.2b
When th e  t r u s s  i s  lo a d e d , th e  r o t a t i o n  c au se d  by th e  d is tu r b a n c e  

i s  3©. hence

3M = KS© 6 .2 c

E l im in a t in g  8m be tw een  6 ,2 b  and 6 ,2 c  y i e l d s

K 5© 
K„ " 9©0

6 .3

During the testing of the truss for finding the elastic critical 
load, it is convenient to test the critical joint to obtain the best 
curve. The elastic critical load of the single bay cantilever truss

i
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o f  F ig u re  6 .1  was e s t im a te d  by t h i s  m ethod . The c u rv e  o b ta in e d  i s  

shown i n  F ig u re  6 .5»

The u l t im a te  e l a s t i c  c r i t i c a l  lo a d  o f re d u n d a n t t r u s s e s  can  

a l s o  be e s t im a te d  by u s in g  S o u th w e ll  p lo t  a s  w i l l  be shown i n  

c h a p te r  8  •

In  o th e r  t r u s s e s ,  i t  was n o t p o s s ib le  to  t e s t  th e  c r i t i c a l  

j o i n t s  b e ca u se  th e y  w ere i n  th e  u p p e r boom. A n o th e r te c h n iq u e  was 

u s e d . T h is  was b a se d  on th e  f a c t  t h a t  when a  d i s tu r b a n c e  i s  a p p l ie d  

to  a  s t r u c t u r e  i t  w i l l  c a u se  a  d e fo rm a tio n  i n  th e  s t r u c t u r e .  The • 

s t r u c t u r e ,  i f  i t  i s  i n  s t a b l e  e q u i l ib r iu m , w i l l  r e c o v e r  i t s  f i r s t  

s t a t e  on th e  rem o v a l o f  th e  d is tu r b a n c e  b u t w i l l  s t a y  i n  any  p o s i t i o n  

i f  i t  i s  i n  n e u t r a l  e q u i l ib r iu m . T h is  t e s t  was p e rfo rm ed  on th e  

m ost h e a v i ly  lo a d e d  s t r u t  f o r  d e te rm in in g  th e  e l a s t i c  c r i t i c a l  lo a d  

o f  th e  t r u s s e s .

C o n c lu s io n

T h is  a p p ro ach  h a s  b een  a p p l ie d  to  s e v e r a l  re d u n d a n t t r u s s e s .  

E x ac t c a l c u l a t i o n s  and e x p e r im e n ta l  t e s t s  f o r  su c h  t r u s s e s ,  g iv e n  

i n  T a b le  6 . 4 , i n d i c a t  t h a t  t h i s  m ethod o f  e s t im a t in g  th e  c r i t i c a l  

lo a d  o f  re d u n d a n t t r u s s e s  g iv e s  v a lu e s  w hich  a r e  w i th in  10% o f  th e

c o r r e c t  v a lu e s
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PART II

Exact estimation
it is sUokih "fhat

In redundant trusses the axial forces in the members are so 

distributed that the highest external load is carried by the redundant 

structure. This implies that the axial forces are so distributed that 

the stiffness K =f^ (k,s,sc)*') of the structure is the highest possible 

i.e has a maximum value. For a maximum value of K, the first derivative 
of K with respect to the force jZ)W in the redundant member must be zero, 

i.e

T h is  e q u a t io n  c o n ta in s  te rm s  o f  th e  f i r s t  d e r i v a t i v e  o f  th e  

s t a b i l i t y  f u n c t io n s  d s /4 ?  and d s c /d ? .  d s /d ?  and d s c /d f  a r e  r e l a t e d  to
I3th e  s t a b i l i t y  f u n c t io n s  t a b u la t e d  by L iv e s le y  and  C h an d le r  b y j^ eq u a tio n s  

d s / d f  = s__ (1 -  s c ^ )  ‘ 6 . J i
2 e

and

d s c / d f  = s__ (1 +2 c -  s c )  6 .3 1 1
2%

T hese f u n c t io n s  a r e  t a b u la t e d  and a l s o  p l o t t e d  i n  F ig u re  6 .7 .

From th e  maximum c h a r a c t e r i s t i c .  —— i n  6 .2  w i l l  have a  p o s i t i v e
d0

v a lu e  f o r  0  lo w er th a n  th e  c r i t i c a l  v a lu e  0  and a  n e g a t iv e  v a lu e  f o rc
0  h ig h e r  th a n  0  . Hence i t  i s  p o s s ib le  t o  c h ec k , f o r  any  lo a d  d i s t r i b u t i o  c
w h e th e r  th e  lo a d  i s  th e  e l a s t i c  c r i t i c a l  lo a d  o r  n o t .  E q u a tio n  6 .2  i s
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u s e d  a s ^ g u i d e  i n  e s t i m a t i n g  t h e  e l a s t i c  c r i t i c a l  l o a d  b y  t r i a l s  o f  fi.

T h e  a p p r o x i m a t e  m e t h o d  p r e s e n t e d  i n  B a r t  I  o f  t h i s  c h a p t e r  w i l l  

b e  u s e d  a s  a  f i r s t  t r i a l  o f  fi i n  t h e  c a l c u l a t i o n  a s  w i l l  b e  d e m o n s t r a t e d  

i n  t h e  f o l l o w i n g  e x a m p l e .

T h e  e l a s t i c  c r i t i c a l  l o a d  o f  t h e  t r u s s  s h o w n  i n  F i g u r e  6 . 8  w i l l  b e  

e s t i m a t e d .  T h e  t r u s s  w h e n  p i n  j o i n t e d  h a s  o n e  r e d u n d a n t  m e m b e r . T h e  

s t i f f n e s s  o f  t h e  d i a g o n a l  m e m b e rs  i s  0 . 7 0 7 k , w h e r e  k  i s  t h e  s t i f f n e s s  o f  

t h e  h o r i z o n t a l  a n d  v e r t i c a l  m e m b e r s .

T h e  a x i a l  f o r c e  i n  AB i s  a s s u m e d  t o  b e  fid,  h e n c e  t h e  f o r c e s  i n  

t h e  m e m b e rs  a r e

V  fij
P2 = ( 2 ( 1  -  fi)W 

P3 =  - ( 1  - 0 )W

T h e  s t i f f n e s s  o f  t h e  s t r u c t u r e  f o r  t h e  c r i t i c a l  m o d e  i s

K  =  k  ( s . j +  s ^ +  0 . 7 0 7  s 2  - ( s c ) ^ )  6 . 5

F o r  a n y  p a r t i c u l a r  v a l u e  o f  fi, t h e  c r i t i c a l  l o a d  m a k in g  K  v a n i s h  

i s  o b t a i n e d  b y  t r i a l  a n d  e r r o r .  F o r  e x a m p le  w h e n  t h e  l o a d ;  p a r a m e t e r s  

o f  AB a n d  BA' a r e  t h e  sa m e  i . e  fi=0,7k, t h e  l o a d  p a r a m e t e r s  m a k in g  K  

v a n i s h  a r e

fj =  2 .5 * f  a n d  f  s  -  O . 8 9 6

a n d  t h e  e x t e r n a l  l o a d  i s

2w = 2 * p 
0.7^ e

=  6 . 8 7  p ^©
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\

T h e  v a l u e  o f  d K / d p  i s  n o w  e v a l u a t e d  t o  f i n d  o u t  w h e t h e r  t h e

c a l c u l a t e d  2W i s  t h e  e l a s t i c  c r i t i c a l  l o a d  o f  t h e  t r u s s  o r  n o t .

Differentiating equation 6.5 with respect to P, gives
dK _ k ( ds* +0.707 ds?+ ds-r - d(sc)-z)
^  dp dp dp dp

* k ((

\a

ds) d?,+0.707(ds) d?z + (ds) d^ - (dsc) d€3 )
d M  ¿d?>3 dp id? >5dp

d Pt I . /.dS_\ d fl _L _  “  Ids ) d R _L
•■Jei oiuw.

F r o m  6 . 4  

dP1/ap = w 
dP2/dP = -f2 W 

d P , / d P  =  WP _
Substituting these values in 6 .® and talcing (P ),,»(P )-=(P )

© i 6  >  ©

(Pe)2= iPQ gives

6-6

6-7

and

d K / d p  =  { ( d s / d C ) .  - 2(ds/de)0 + ( d s / d e ) ,  4 (dsc/ajS), } B J / P  6 . 8
1 P e

From Figure 6.7i ds/dO and dsc/d? corresponding to f = 2.54 and'!/2

Q j =  - O . 8 9 6  a r e  

¡6d s / d £  ) <1=  4dh/dF)2 = -  4 . 9  

( d s / d e ) 3 =  - 1 . 0 7 5  ( d s c / d f ) 3 =  + 0 . 1 9 5  

S u b s t i t u t i n g  t h e s e  v a l u e s  i n  6 . 8  g i v e s  

d K / d p  =  (  - 4 . 9  + 9 . 8  -  1 . 0 7 5  -  0 . 1 9 5 )  W P e  

=  +  3 . 6 4  B i / P

i.e p is lower than the critical value pf, a higher value of P is tried.c
When p=0.8, the critical load parameters of the members are
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= 2 .7 7  Ç*= 1 .9 6  and P = -  0 .6 9 3  and th e  e x t e r n a l  lo a d  i s

= 6.925Pe

(ds/df) and dsc/d? corresponding to these load parameters are

(ds/dO^s -6.6O 

( d s / d f ) 2 = - 2 .9 8  

(d s /d C )3= -1 .1 1 (dsc/d(°),= +0 .2 2  3
Substituting these values in 6 .8  gives 

dl</d0 = -  1.97KW/P

i . e  0  i s  h ig h e r  th a n  th e  c r i t i c a l  v a lu e  o f  0  • Thus 0  l i e s  be tw een  0 .7 ^c c
and  0 .8 .  Any t h i r d  t r i a l  o f  0  m ust be b e tw een  th e s e  v a lu e s .  The c r i t i c a l

load of the truss is 2W = 7«0 P obtained bv the lengthy method.
Trusses with more than one redundant axial force

Naturally if there is more than one redundant members, the process

of satisfying several equations similar to 6 .2 would interlock and

becomes very laborious. The elastic critical load of the truss shown in

F ig u re  6 .9  i s  e s t im a te d .  T h e re  a r e  f o u r  re d u n d a n t members (w ith  two

f o r c e  unknow ns) when th e  s t r u c t u r e  i s  p in p o in te d .  A l l  th e  members have

the same El and equal length. The axial force in AB and AC are fid and

'1W r e s p e c t i v e l y .  Hence th e  f o r c e s  i n  th e  members a r e

6 .9

The stiffness of the structure is
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6.11

6 . 1 2

6.13

K = k ( s^+ 2s^+ 2s^)

The first derivative of 6.10 with respect to 0 is 

dK/dfi = k( ds^/d0 +2 ds2/d0 +2 ds^/d0 )

if ■+ i f  -*•2 ̂  i f  ]

From 6.9 substituting for dP/d0 gives 

dK/d0 = £(ds/df)1 - 1.Vl4 (ds/dC)3]ld-J/Pe
Similarly it can be shown that 

dK/dl = :{kds/de)2 - 2 .ifif (ds/df)3 ]kSi/Pe

When the f-values of the members are taken to be equal i.e 

0 = *]_ = O.̂ i-83, the £-value making K vanish is 2.0A-8 and the external load 

is

2W = 2 .X. P
0.^83 e

= 8.^5 Pe
¿K/d0 and dlV’dl are evaluated to find the changes in 0 and 

required to obtain the highest possible value of 2W. ds/df corresponding 

to fa 2.M-8, obtained from Figure 6.7, is -3.17. Substituting this 

value in 6,12 and 6 .1 3  gives

dK/d0 = -O.Vl4 X -3.17 Wi/Pe 

= + 1 .3 1 KW/P

i.e a higher value of 0 is required, 

and

dK/d^ = - o M  X -3 .1 7  *W/*e

= + 1.395 KW/Pa 
6
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i.e a higher value of^ is required.

The elastic critical load, cLK/dfi and dK/dl for other trials of 

fi and 1 are shown in the Table below:

fi \

—

\ CD dK/dp dK/d 1

0.483 0.483 8.45 + 1.31 + 1.395

0.5 0.5 8.51 + 0.72 + 0.29

0 .5 2 0.5 8.53 + 0 .3 2 + 0.05

0 .5 4 0.49 8.55 - 0.0 2 + 0.09
Trusses with more than two npints

When there are more than two joints in the truss, the approximate
5stiffness K of the truss, given by Bolton, is used:- 

K = Tn - 2(ksc)2/Tf 6.14

where

T =£lzs is the stiffness of the critical joint, n
Tf=^ks is the stiffness of the adjacent joint.

The first derivative of K with respect to any redundant axial force R 

is
dVffl = di /as - <-0s=£:$ 2idi;g=ZdB) . <aV4B> / If \ 6.15

11 It l ksc J
For example the elastic critical load of the truss shown in

Figure 6.10 is estimated. The force in AB is taken to be J0W. Hence

the forces in the members are

P1= fin

P2=i2(1-j0)W

P,= - (2 fin  5
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p^= -(1 - 0)W

Joint A is the least stiff joint, hence the approximate stiffness 

of the truss is

K = Ta - 2k(sc)^/TB - k(sc)B/2Tc 6 .1 6

where

Ta = k(2Sl+0.707s2 )

= k(s«j + 0.707sj+s^) — T^

Tq = k(0.707s2+2Sif)

The first derivative of K with respect to 0 is 

S ’ f e ' "  " T k l  SO, "Ti i aTc i  t>Oa Tc ?
6-17

«1 p dq> 
where

& • } * $ > >

Ji f  - tftj, J*
¿etch . - %.2lg (¿SS). ¿w 
¿ 4  ~  Pe

When the load parameters of AB and AC are taken to be equal i.e

0=0.7*1-, the load parameters of the members making K vanish are £ = ̂ = 1 .7 6

C3 = -4.98 and f̂  = -0 .6 2 1 and the external load is

W = P
0.7^ e

= 2.379Pc
dK/d0 is evaluated to find the change in 0 required to obtain 

the elastic critical load. The stability functions and their derivatives
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K

corresponding to the load parameters are

s 1 j 2 =0.8233  (s c ) ^ 2 = 10 .058 7

s,= 8.^5
%= k.7 5 6

( s c ) 1 t2 = 3 . 1 7 1 5  (ds/dc)1 i 2 = -2 .6 3  ^ d s c ^ ^ j l . 2 9

(ds/de)3= -0.663

(ds/dC)^ -1 .1^

Substituting these values in 6.17 gives
T. MO-0587? 1- SS 2 -A-kH'i> /Û-0SS7C s-ésfcìU.iq ? 1 kîü

L u L s -m s  n . s w J 1 20-1 SÉ, <- 3 \ T | 5 /o-a13^ •-1 Pfi

= [ - 1 . 7 9  + 1 . 2 9 ]  K-I/Pg

= - 0 .5 M'J/P e
i.e a lowerr value of fi is required.

The elastic critical load and dX/dj# for other trials of fl are 

tabulated below:

ft W/Pe (dK/d$)/(hW/Pj©
o.lb 2.379 - 0.50

0.72 2.386 + 0.65

0.70 2.373 + 1 .75

a
This example was also solved by Bolton* by using J^different 

approach for finding fi which gives the elastic critical load of the 

truss.

* A. Bolton, "The elastic instability of trusses with redundant members"

To be published in the Structural Engineer
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Appendix 1

Table 6.2 shows a stiffness calculation for the distribution 

of forces shown in Figure 6.1f. The stiffness calculated is -0.349 

units.

The calculation was repeated for a £ -value of 1.78 in AB, and

the stiffness obtained was +0.11. By linear interpolation the value

of p at the critical load is:-
0.04 X 0.11= 1.78 + 

= 1.79

0.46

Therefore

¥ = 1.79P /0.415e
= ^.31 ?e

Appendix II

Table 6.3 shows a stiffness calculation for the distribution 

of forces shown in Figure 6.4c. The stiffness calculated is -5.85 

units.

The calculation was repeated for a f -value of 2.16 and the
4 1

stiffness obtained was -1.03 units. By linear extrapolation the 

value of f at the critical load is:- 
' a 2>16 .

4.82

= 2.13

ThereforeP = 2.13 P
©

W = 2.13  X | ( 1  + |2 )  Pgand
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Chapter 7

The elastic instability of trusses with redundant supports

In chapter 6 it was shown that an approximation could be used
cu

to find with relatively^ small amount of arithmetic the critical load 

of a frame with redundant members. In this chapter the method is used 

to calculate the critical load of frames which are statically determinate 

except for the presence of redundant supports and frames which have 

redundant members as well as redundant supports.

Redundant supports

At small loads the reactions can be obtained by classical methods 

like strain energy, which assume that the forces in and the extensions 

of the members are linearly related. At high loads and in particular 

.close to the elastic critical load this assumption no longer applies. 

Bending of the members either because of magnified initial eccentricity 

or secondary changes of geometry causes appreciable shortening of the 

members. This shortening can be introduced into the analysis as an extra 

term and the effect on the values of the reactions obtained but the 

analysis then becomes very tedious' unless a digital computor is 

available.

On the other hand merely to find the elastic critical load, at
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which, the frame would buckle even if it remained elastic, is 

comparatively easy. There is an analogy here with plasticity. To work 

through the elastic range into the partly plastic range and so to the 

plastic collapse load requires very tedious calculation. But merely to 

calculate the plastic collapse load is relatively easy, it is in the
i

intermediate calculation when the frame is partly plastic and partly 

elastic that the difficulty arises.

In a similar way it is difficult to analyse a frame when buckling 

is beginning to have a large effect on the members but easy when the 

critical load is reached and the stiffness of every joint becomes zero. 

By finding the values of reactions which give the highest critical 

load it is possible to obtain these values in one computation instead 

of attempting to find how the original elastic reactions are redistrib

uted in step by step calculations.

It is interesting to note that there are two general types of 

reaction which must be considered. One is the usual type which induces 

both compressive and tensile forces in the truss members. The other is 

the type which induces only tensile forces. For example the bottom tie 

of a roof truss might act as a catenary supporting loads by direct 

tension, if a redundant horizontal reaction is introduced at the 

supports. Obviously this kind of behaviour arises if a member, or a 

chain of members in a straight line, connects two supports where

i
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redundant reactions are provided along the line of the members. For 

convenience reactions of this type will be referred to as catenary 

reactions. The importance of catenary reactions is that they allow a 

very large redistribution of the forces in the members, since tension 

members are inherently stable and the remaining structure sheds its 

load onto the stable portion of the structure. With normal reactions 

this effect does not occur since the ties can only be loaded by the 

struts with which they must be in statical equilibrium and when the 

struts have reached the limit of their strength the ties can not be 

loaded further.

Method of calculation for ordinary redundant reactions

Tn finding the elastic critical load of a redundant structure 

there are two stages in the problem. The first is to find the appropriate 

distribution of forces in the members and-the second is to calculate 

the critical load. This is necessary since the stiffness of the members 

and hence the critical load depends on the axial loads carried. There 

is a vicious circle here, because the "appropriate" distribution of 

forces in the members is that which gives the highest value of the 

critical load.

It is not necessary to revert to iterative calculations however, 

since the two stages can be kept separate if the possibility of an

i
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error, which seems unlikely to exceed 10% in practice, can be tolerated. 

It is a common observation amongst engineers calculating critical loads 

that for any given type of truss the ratio of the axial force in the 

most heavily loaded strut to its Euler load is very nearly constant.

In other words, if it is found that for-a certain truss, for example, the 

biggest axial force at the critical load is 1.9 times the Euler load of 

the strut concerned, then any other load case, and even if some other 

strut becomes most heavily loaded, the new critical load will also 

occur at a pproximately 1.9 times the Euler load of the strut concerned. 

Hence it is possible in a redundant structure to find the "appropriate" 

distribution of forces without doing any critical;, load calculations at 

all. All that is required is to find the pattern of force distribution 

in the members which gives the highest value of external load for a 

given value of P/P in any strut of the framework. The P/Pe value has 

been designated j> in a very useful table of member stiffnesses which 

is latter used in the calculation of critical load.

To find the required pattern of forces it is convenient to reduce 

the redundant structure to a number of statically determinate primary 

structures by removing a number of reactions equal to the degree of 

redundancy. These primary statically determinate structures are then 

combined in the way which gives the highest external load for a given
. t

value of ^ . If any strut has a higher value of  ̂than the others, the
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f -value is reduced, if this is possible, by using a greater proportion 

of the particular primary .'structure which unloads this member. After a 

few steps of this kind the critical joint (the weakerlof the two joints 

at the ends of the critical., strut) will be determined. The pattern of 

forces is now adjusted by loading as many as possible of the struts, 

which meet at the critical joint, to the same value of £ as the critical 

strut. The struts chosen for adjustment should be these which have 

components along the line of action of external load or v/hich indirectly 

load one of the other members which has such component. This procedure 

is illustrated in examples 1 and 2 .

Example 1

The truss shown in Figure 7.1 has one redundant reaction. All 

members have been taken as having the same cross-section which means 

that the Euler loads of each horizontal and vertical member is twice 

that of the diagonals.
The three primary statically determinate trusses obtained by the 

elimination of the reactions at H, E and A respectively are shown in 

Figures 7.2a, 7.2b and 7.2c.

In Figure 7.2a, member CE has the highest ̂ -value and C is the
sHuVs • •

critical joint since three^and one beam meet at C but a tie and two

beams meet at E. The external load W for this distribution is easily

obtained:-
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J2W / P _ p
a g S - t

w = 0 .7 0 7 £ Pe
ki’lnchie fe V* +ke E u ler lo a d  of a  vetHcaj sWut*

In Figure 7.2b member CE has again the highest ^-value and C is

again the critical joint. This time:-

J2W/3 = (“ P / 2  ' e
vi = 1 .0 6 f ?e

Any combination of the patterns of Figures 7.2a and 7.2b will obviously

results in a-value of W lying between 0.707? P and 1.06p P .' e  ̂ e
In Figure 7.2c, CE again has the highest £ -value but this time E

is the critical joint. The value of W becomes P H e n c e  this

distribution of forces would carry only half the external load of Figure

7.2a for the same limiting value of ^ or one third that of Figure 7»2b.

The best distribution of forces for our purpose is thus that of Figure

7.2b which gives the highest external load. Any combination of Figure

7 .2b with either 7 »2a or 7 .2c will give a lower value of external load

than the 1.06 P of Figure 7.2b. e
When an attempt is made to adjust the patterns of load to make 

as. many struts as possible have the same  ̂-value, it is realised that 

conditions of equilibrium result in member FH having a much higher value 

of f for the same external load. For example if member CD is taken to 

have the same  ̂—value as the critical strut CE, which carried load P 

equilibrium conditions applied in turn at joints D, B, C and F give the
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axial force in FH as.\/2(2-1/</2)P which, is greater than P, the load; in

the critical strut. Hence FH would have buckled before CE and the

external load would have been 0 . 7 ^ P • Example 2 given later shows

the procedure used when adjustment of the forces is possible.

The critical load for the pattern of forces in Figure 7.2b was

calculated and was found to be 2.62P . As a check on this value a trusse
was made of bright steel strip of ■̂•I,X1/16" cross-section and with panels 

2'0" square. The experimental critical load was found to be 15 lbs. and 

the value of P was 5*5 lbs. Hence the experiment gave the critical 

load as

W = 05/5.5 )Pe
= Pe

It is a matter of interest that the frame supported as in Figure 

7 .2b has a higher critical load than the same frame supported as in 

Figure 7»2a although this seems to be the opposite of what might be 

expected. Experiment, however, confirmed the theory given above since 

the frame supported as in Figure 7.2a would only carry about 12.5 lbs.

Example 2

The truss shown in Figure 7.5 is similar to that of Figure 7.1 
tut it has an extra bay and an extra redundant reaction . It is necessary 

to use this more complicated frame to illustrate the adjustment of the 

forces in the members meeting at the critical joint when this has been
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determined as in example 1.

The three primary structures considered are shown in Figures

7.^a, 7«^b and 7.^ 0 (it is obvious from example 1 that there is no

point in considering the modes in which the reaction at A is removed).

In Figure 7»̂ a. BC is the most heavily loaded strut and C is the

critical joint. The external load W is given by:-

W = k(Pe/3 
= n^3(Pe

where P is the Euler load of BC. e
In Figure 7»̂ t>» CE is the most heavily loaded strut and C is again 

the critical joint. The corresponding external load iss-

W = 3?Pe/2l2

= 1 .0 6ePe

In Figure 7.̂ -c, CE is again the most heavily loaded strut and C 

is again the critical joint. The corresponding external load is:-

W = f P /{I

= 0.707 P e
Since in all three patterns C is the critical joint, any 

combination of the three will result in C remaining the critical joint. 

Hence C is assumed to be the critical joint and this takes us over the 

first stage of the calculation.

The second stage is to adjust the forces in the members meeting 

at. C so that as- many struts as possible have the same maximum value.
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It is convenient to start with the distribution of Figure 7.4a since 

W is then a maximum. To check it if is. possible to give the struts BC,

CD and CE equal^values, the distribution of Figure 7*5 was checked.

The force in CE is only half that of the forces in the other two struts 

since its Euler load is only half as big. The forces in the members 

meeting at F, E, G, I and J cannot be determined due to the indeterminacy 

of the supports E and I. The patterns of forces for the two cases are 

shown in Figures 7»6a and 7»6b. (Again it would have been possible to 

consider the frame supported at A, E and H, but it is immediately 

apparent that the £ -value for FH must exceed the critical value).

The external load in Figures 7»6a and 7»6b is the same W =2.707P 

and either could be used to obtain the approximate critical load. It 

is apparent that both will give very nearly the same value. In fact 

when these were calculated both Figure 7.6a and Figure 7.6b gave 

W =2.5?P , 1.9/o less than the elastic critical load for the mode shown
G

in Figure 7.4b.

Effect of redundant catenary reaction

There are two effects of catenary reactions. The first is the 

direct action of straight chains of members in carrying the loads and 

the second is the appearance of large forces in the members which become 

curved due to joint rotations and which are prevented from shortening.'

To illustrate the result of these forces on the elastic critical
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of structures for four simple cases are shown in Figures 7*7» 7*3,7*9 

and 7«10. In the corresponding tables the critical loads for several 

values of catenary force have been shown. In the structures of Figures 

7.9 and 7»'10 the -values for all struts have been made equal for the 

reasons given before. It is seen that the critical load increases as 

the catenary force increases. The effect of the catenary reaction is 

large when the struts at the critical joint are connected only to the 

members carrying this force. The difference between the critical values 

for R=0 and R=G0 is then about 20%. When the critical joint and its 

struts are only partially dependent on the redundant reaction as in 

Figures 7*9 and 7«'10, the difference is even .smaller.

When there is justification in assuming that the redundant 

catenary reaction is large, the assumption of fixity of the ends of 

the struts connected to the members carrying this unknown force, will 

give values very close to the elastic critical load. This is because 

the curve relating the elastic critical load to the redundant force 

R, approaches its limiting value at only moderate values of S. The 

redundant catenary reaction has a very small effect when the tie 

member carrying the unknown catenary component is not connected to a 

joint adjacent to the critical joint.

Example 3
To illustrate these points, the load distribution of the truss of
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Figure 7»11 when there is no catenary reaction is shown. The truss 

members are of constant cross section and the bays are square. Using
5

the approximation , the elastic critical load was found to be 2.09Pe
where Pg is the Euler load of member AB. The most heavily loaded strut 

in this case was.- CE, but when a horizontal restraint is imposed, the 

load distribution changes because the members AF and FE start to deflect- 

as. the applied load is increased. Some of the load is carried by the 

vertical force components of these two members and this results in the 

rapid increase of the load in members AF and FE, Member: CF then starts • 

to carry more load to relieve member CE. The value of the external load 

is highest when the P/P values of members CF and CE are the same. This 

occurs when the force in CF is twice that in CE, since the Euler load of 

CF is twice the Euler load of CE. From the consideration of equilibrium 

at joints C and B, the forces in members BC, BA and BF can now be 

determined. Joint F is also in equilibrium under the action of the . 

forces in CF and BF and those in AF and FE which have a resultant vertical 

component of (0.7 3SWT0 .3 6 9 X 0.707*0. If this is considered with the 

small deflection of F it shows that the tensile load in AF and FE is 

very large and is indeterminable since the deflection is indeterminate.

The load distribution will therefore be as shown in Figure 7*12 and 

since R and S are very large, the ends of the members connected to the 

tie will be considered fixed as shown in Figure 7»13»

The critical load of this frame was also calculated and found to
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i>e 3.72P as compared with the value 2.09P obtained before. The s e
increase due to providing a horizontal reaction is therefore 7&%.

To check the value of 3»72?e experimentally, a model of the truss • 

was made of bright mild steel strip. The Euler load of AB was 5.5 lbs. 

and the elastic critical load 20.5 lbs. Hence the experimental value of

the critical load was 3 .7 5? •e

Trusses with redundant members as well as redundant supports

It is obvious that the amount of work involved in critical load 

calculation will increase as the number of redundant members and 

reactions increases. The number of primary structures to be considered 

grows and the number of possible combinations of these structures 

increases even more quickly. In practice it is easy to use the method 

demonstrated above for up to three or four redundants but for greater 

number it is better to use the method given in this section.

When there are a large number of redundants it is better to avoid 

the question of which is the most heavily loaded strut and concentrate 

immediately on the question of which is the critical joint* It may 

sometimes be obvious that one particular joint is likely to be critical. 

In this case all struts meeting at that, joint are given the same £ value 

and the axial loads nn the other members are obtained by equilibrium 

considerations. If it turns out that no other strut is required to have 

a greater value of  ̂ then the one at the joint considered, then this



joint is likely to be the critical one. The value of the external load 

is calculated. Generally, however, there will be some doubt as to 

which of two or three joints is the critical one. In this case the 

process is repeated for each of the joints concerned and the one which 

gives the highest value of external load for the given f value is 

assumed to be the critical one. If it happens that when a joint is 

tested some distant member is required to have a greater f -value, the 

axial load in one or more of the struts meeting at the tested joint 

is reduced.

There is a second way of obtaining the critical distribution of 

axial loads, already given in chapter 6 . This is set a limit to the 

f -value for struts anywhere in the frame and then use conditions of 

equilibrium to adjust the forces in the members so that the maximum 

external load can be carried. This after a few steps indicates the 

critical joint. In both cases once the critical joint is located the 

critical load is determined by the approximation used above. These 

two approaches^ have been found to be very quick for even complicated 

trusses.

For illustration, the elastic critical load of the truss in 

Figure 7.1^ has been estimated. The truss has three redundant members 

and one redundant support. All the members are taken to have the same 

cross section and the bays are square. There is one external load VJ

applied at joint L.
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The load W at joint L is carried by the tie members LG, LB 
and.-LF. The maximum tensile force in LG is/2P and that of LB is 2>[2P 
where P= fPg and P^ is the Euler load of LB. For the largest external 
load W , member LF must provide the largest possible tensile force. Its 
magnitude is dependent on 'how much compressive force is possible in BC 
and CM and the tensile force in CD. The maximum possible compression in 
BC and CM is P and the tensile force in CD is '¡2P, Considering the 
equilibrium at joint C, the forces in the members CF and CE can be 
determined since the forces in the other members are known. The tensile 
force in CF is (1 + '/2)P and the compressive force in CE is P. The external 
load W corresponding to this mode of Figure 7»15 is (2+2 ^+1/2)P=5*535P.»

V

The possible critical joints are B, H, and E. At joint B there are four 
most heavily loaded struts and only one tie and at joint H, there are 
two most heavily loaded struts and one tie member, therefore joint B 
is weaker than H. At joint E, there are two most heavily loaded struts 
and two struts having P/P =0.5P and the four adjacent joints are 
relatively stiff, therefore it would be expected that joint H is weaker 

than E.
The elastic critical load parameter f was calculated by testing 

the three joints in turn. The results obtained are tabulated below:-

Joint B H E

^Highest 2.065 2.076 2.104
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This confirms that joint B is the critical joint. Therefore the
: - *!elastic critical load W corresponding to the mode of Figure 7*15 is

W = 5.535 X.' 2.063 Pe
= 1 0 .'kPe

This value was confirmed by an experiment on a model of the truss,
which gave a critical load of (62.7/5*5)P = 10.4P.

© ©
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Magnification factor of redundant trusses 

Statically determinate structures

It is convenient when discussing the magnification factor to 

consider an isolated pin jointed strut under an axial load. It has
cfbeen shown, ( 2. ), that due to initial imperfection, the deflection of 

this strut will increase hyperbolically as the load increases and will 

become very large as the load approaches the critical value. For this 

strut, the magnification factor G of the initial imperfection is 

approximately:-

O = ----- ------  8 .1
1 - P/Pe

In the case of statically determinate trusses, the same ¿.. 

magnification is used by considering a typical strut in the truss 

under an axial force J0W where W is the external load and end restraints 

mobilized by the other members in the truss. The stiffness of the 

equivalent restraints are known since there is only one possible 

distribution of forces in the members of the truss. At the critical 

load W , this strut will have a critical load parameter jtM/P • On 

replacing P in 8.1 by J0W and P by p P , the magnification factor becomes-6 'o Q

1 - jto/t ,Pe

and replacing P P by J0W yields'o 6 C
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G = -- ------ 8.2
1 - W/Wc

Result 8.2 was suggested by Professor Merchant(I6 )•

Statically indeterminate structures

The effect of indetermdncy may be introduced by considering the 

pin jointed strut to have restraining end springs having a variable 

stiffness K depending on the end rotation © of the strut such that.

k = s © 8.3
where S is constant.

force
In the new strut, the axialj^in the strut is known to be P, but

the stiffness of the end springs is unknown and is determined once the

end rotation is known. Since for every end stiffness there is a

corresponding elastic critical load P , P will be dependent on thec c
end rotation 0.

To establish the elastic stability criterion for determining the

elastic critical load P , the end rotation at any stage of loading will
0 ' *

be assumed to be © which gives an end stiffness of SQ. Equal and opposite 

disturbing moments 3M are then applied at the two ends of the strut 

which cause infinitesimal end rotations 3©. The moment appearing at 

each end is
> 5 » *

3m  = [ks(l-c) + s© ] 3© 8.4
Ignoring terms of second order.



At the critical load, the stiffness of this joint 3^/3© becomes 

zero and this equation becomes

s(1-c) = - S©/k 8.5

In the absence of inital imperfection in the strut, the member-o

will be undeformed as the end load P is increased from zero till it

reaches its first buckling load Pg which is obtained by making the

righthand side of equation 8.5 zero. As the load P is increased beyond

Pg, deformation occurs and consequently the ends will rotate. This

mobilizes restraints at the ends. These restraints in turn increase

the elastic critical load Pc of the strut since any value of S©/k

bigger than zero will give P/P bigger than unity. The upper limit to©
the elastic critical load of this strut is ^P which is obtained whene
S©/k —>00. The graph relating the elastic critical load P / P  to the 

deformation is shown in Figure 8.1.

In the presence of initial imperfection in the strut, the ends 

will be rotated right from the begining of loading and a restraint is 

mobilized from the start of loading. The magnitude of rotation will 

be dependent on the initial imperfections and the axial force in the 

strut. The relationship between the end rotation and the applied load 

can be established when the initial imperfections are known. Assume 

that the above strut has an initial curvature of the form yQ=a sin(px/L) 

where'a'is the deflection at the centre of the member at zero load and
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. V
cfr VV\c ends

the initial rotation^is + an/L. When an end load P is applied and the 

ends are free to rotate, the central deflection according to 8 .1 will 

be changed to a, where

a -
1 - P/P

8.6a

and the end rotation becomes 

/ = + an/L

= + an/L . --------
1 - P/P e

The change in the end rotation is
P/P^

0 - an/L = + an/L •

8.6b

8.6c
1 - P/P

If the ends had not been free to rotate during the application of the

external load P, the fixed end moments appearing there would have been
’ P/P

M = + ks(1-c). aTT/L . ---- 2---- 8.6d
1 - P/P ' e.

When the strut has end springs, the ends will rotate by +© and the 

moments at the ends of the strut are

M = + ks(1-c)© - ks(1-c). ar/L •
P/P

1 - P/P
8.6e

This moment is equal to the moments provided by the springs which is

8.6fm = + se2
Substituting 8.6f in 8.6e and rearranging the equation

2 ’ P//P 
SQ + k s (1 -c )  © -  k s ( 1 - c ).an/L. ----- ----- “ 0

1 - P/P
8 . 7

/
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Solution of equation 8.7 gives the relationship between 9 and P for

a particular^value of a/L.Thus the elastic critical load will be Pe
for P = 0 and will be greater than Pe as soon as any load P is applied.

The rate of increase in the elastic critical load P^ will be dependent

upon the amount of initial imperfection in the strut as shown in Figure

8.2. It follows that the elastic critical load P is variable and canc
be expressed as

P = P P c v e
where f5 is the critical load parameter obtained from equation 8.5» On 
replacing P in 8.1 by £ P q the magnification factor becomesQ 6
G = --- -  8 .8

1 - P/ePe

The increased initial imperfection in the strut will push up the

elastic critical load P nearer to the ultimate value P P .e vc e

Redundant trusses

Redundant trusses can be treated in the same way. A typical strut 

having an axial load 0 'W and withiits ends restrained will be considered 

to investigate the magnification factor of redundnat trusses. The end 

restraints will have v. variable stiffnesses depending upon the load 

distribution in the truss. This distribution changes when the joints 

are deformed.and the change in fcke stiffness of the restraint: will

depend upon the amount of rotations. Thus the elastic critical load W e
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will also depend on the deformation in the truss.

In the case of exactly constructed redundant trusses with no

eccentricity and ignoring secondary deformations, the force distribution

at the working load can be obtained by the classical methods and is a

definite one. For this particular force distribution, there is a first

elastic critical load . If the applied load W exceeds this value, joint

rotations will occur in the truss which causes a redistribution of the

forces in the members of the truss such that more external load W can

be carried. This redistribution continues until the highest possible

load W is reached. The truss durine this redistribution will have c
-2. W cj>.<.Wc depending on the applied load W.

In redundant trusses, the difference between W„ and W is not 

so large as that of the isolated strut. Table 8.1 shows numerical 

values of these loads for different redundant trusses.

Frame . W1 Wc
Fig. 6.6a 1.925?e 2.385Pe

6.1 k.05 Pe 4.45 P. e
6.8 7 .0 0 Pe 7.00 Pe
6.6c 2.00 P 3.42 pe e

Table 8.1
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In the presence of imperfection in the truss and because of 

secondary stresses, deformation will grow from the start of loading. 

This causes a redistribution of the forces in the truss and the elastic 

critical load W being always bigger than when the external load is 

applied. Thus a good approximation to the magnification factor can be 

obtained by taking the ultimate critical load as the elastic critical 

load.

Southwell plot

Figure 8.1 shows that there is a region near the ultimate elastic

critical load P where the increase in the end stiffness results in a c
very small change in the elastic critical load of the strut. This 

behaviour is also to be expected in redundant trusses near the ultimate 

elastic critical load. This means that the loading in the truss is 

largely redistributed at the begining of the loading and the relative 

redistribution is much smaller near the ultimate distribution. Thus, 

a good estimation of the ultimate elasticjcritical load can be obtained 

by a southwell plot.in this region.

An experiment was carried out on a square redundant trusscshown 

in Figure 8.5. A plot of — “ T  against A - A 0 is shown in Figure 8.^.

A 0 being the deflection of a point on AD O.36L from A at load W Q and 

A is the deflection of this point at any value of W. Member AD is
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chosen because its ends do not displace during the deformation of the 

truss. The curve obtained is smooth running into a straight line for 

large deformation in the truss. This curve shows that the elastic 

critical load of the truss is increased as the external load W is 

increased till it reaches a region where more or less no further 

redistribution occurs. This region gives a linear relationship .

between and A - A a and consequently the value of the ultimate
W —Wo

elastic critical load is given by the inverse gradient of the straight 

line. W obtained from the plot is (2*t-.5/5 »5 )? = ^.^5? compared withC G G
^.^5P obtained by the lengthy method of calculation shown in chapter 6G

• • •

i
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Chapter 9

Accuracy of Bolton's method

Introduction.

Bolton assumed that only members connected to the least stiff 

joint of the truss and the joints adjacent to it, have a significant 

effect on the elastic critical load of the truss. In assessing this, 

stiffness, members radiating from joints adjacent to the joint considered 

are assumed to be fixed at their remote ends. The least stiff joint is 

located by comparing the stiffnesses of the two joints at the ends of 

the membercwhich carries the highest fraction of its Euler load. When 

the rotational stiffness of this joint vanishes, Bolton demonstrates 

that for non-redundant trusses a good approximation to the elastic 

critical load^of the truss is obtained.

This approximate method gives a good estimate of the elastic 

critical load of trusses when there is only one critical joint and 

there are many members radiating from this joint. But when there are 

few members connecting the critical joint to adjacent joints or when 

there is more than one critical! joint perhaps because of symmetry, 

the estimate given by this method may be as much as 10?o bigger or 

smaller-than the true elastic critical load, although for statically 

determinate trusses the error is not likely to be greater than 5/°»
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A few exact calculations of the elastic critical load of redundant 

trusses have heen made and these values will be compared with the 

approximate values obtained by Bolton's method.

(i) Few members connecting the critical .joint to the adjacent .joints 

Usually in this case the difference between the exact and the 

approximate value is small for normal trusses. The stability of the 

truss of Figure 9*1 will be first investigated using an exact method. 

There are two possible modes of elastic instability for this truss, 

the symmetrical and the anti-symmetrical modes.

(a) Symmetrical mode

This mode is only possible in symmetrical trusses under

symmetrical loading. Symmetrical joints have equal and opposite joint

rotations at the critical load. The stability condition is obtained

by applying equal and opposite disturbing moments 3m  at joints A andA
A' which causes equal and opposite rotations 06^ at joints A and A' as 

in Figure 9.1a. Joint B will not rotate since there are equal and 

opposite deformations in the struts connected to this joint. Joints A 

and A' are in equilibrium, hence 

3ma= S1 +1=2 ( S (1 -C ) )2] 3©a
At the critical load, the ratio $Ma/3«a which measures the 

stiffness of the joint vanishes, hence
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sn + k (s(1 -c) ) 2 = 0 9.1

where k = k^/k^

The external load which satisfies 9*1 will he the symmetrical 

elastic critical load of the truss.

(b) Anti-symmetrical mode

In the case of symmetrical trusses under symmetrical loading, 

similar joints will have equal rotations. The stability condition is 

obtained by applying a disturbing moment cil-Lg at joint B which causes 

a rotation of 3©g at joint B and 3©^ at joints A and A 1, shown in 

Figure 9.1b. Joints A and A' are in equilibrium and the applied 

disturbance 3k , vanishes at the critical load. Hence

The determinant A  of the coefficients of the unknowns is reduced to

The external load which makes A  vanish is the anti-symmetrical elastic 

critical load.

According to Bolton's approximate method, the stability condition

9 .2a

9 .2b

9.3

9 A

In this condition, the term has the lowest

is

A.
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loadvparameter £ and is the stability condition for estimating the 

elastic critical load. This expression is similar to the exact 

expression 9.3 except for the presence of s-jkCsc)^ in 9.3« Therefore 

the £ -value satisfying 9*3 must be higher than that satisfying 9.A-.

It may be of interest to calculate the values given by 9»1| 9.3 

and 9.^ for a particular case. When all the members of the truss are 

taken to have equal lengths and El-values and the axial tensile force 

in AA' is taken to be 2.5 times the force in AB, the load parameter 

(P/Pg)^ satisfying 9 . 1 will be bigger than 2 . 0 5 since (s(1-c ) ) 2 has 

a positive value. The value of PAQ satisfying 9*3 is found to be 1.715 

and that satisfying 9.^ is 1 . 6 7 1 which is less than the exact value by 

about 2.5%. These calculations show that the anti-symmetrical mode is 

the important mode and that Bolton's approximation is 2.5% low. It will 

be noticed that as the tensile force in AA’ is increased, the value of 

(sc)^ is reduced thus reducing the difference between the exact and the 

approximate values of f* • The difference will be bigger when the 

tensile force is reduced. The difference will grow much bigger when 

the force in AA* becomes compressive. For example, when the compressive 

forces in all the members are equal, the value of satisfying 9»3 

is 1 . 5 6 7 that satisfying 9.^ is 1 . 2 9 5 less than the exact value 

by 2k%. ~ •



(ii) Presence of more than one critical .joint

Sometimes there is symmetry in loading together with symmetry 

in the truss which causes more than one joint to become critical at 

the same time. The elastic critical load of the truss in Figure 9*2 

will be estimated by the exact and approximate methods of estimation. 

There are also two possible modes of elastic instability

(a) Symmetrical mode

When equal and opposite disturbing moments oH^ are applied at 

joints A and A 1, there will be only equal and opposite rotations 3©A 

atvjoints A and A*. The other joints do not rotate since there are equal 

and opposite deformations in the members connected to joints B and B' 

shown in Figure 9»2a. The moments oM^ at joints A and A' vanish at 

the critical load so the stability condition is 

A  = 2s«j + k(s(1“c))g - 0 9.5

where k is the relative stiffness of the diagonal members.

(b) Anti-symmetrical mode

When equal disturbing moments are applied at joints A and A' 

they will rotate clockwise through an angle 8©^ an<* joints B and B* 

through an angle 3©^, shown in Figure 9.2b. Joints B and B' are in 

equilibrium and the disturbance 3m . vanishes at the critical load,A

1 5 6

hence
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3MA = J_(2ks ) 1 + (koO^]3©A + (2ksc)1 = 0 9.6a

= (2ksc)13eA+ ^(2ks)1+(ko02j3eB = 0  9.6b

The determinant of the coefficients of the unknowns is reduced to 

A. = (2s1+ko^)(2s1+ko )̂ -  4(sc)^ = 0 9.7

According to Bolton's approximate method, the stability condition

■*-s 2 2(ksc)? 2 (sc) 1
= (2s^+ksj)  ----*--- — ----------  = 0 9*8

Bs^+ks^ 2s1+ksB

If we take k=0.707» the truss to be square, and the load parameter 

of AA' equal to that of the other struts, the stability condition 9*5 

becomes

A =  G.?07s1 (5 .8 2 8 - cn)

The load parameter for which c, =3.828 is approximately 1.78. The 

load parameter (P/P^^ satisfying 9 . 7 and 9 . 8 are found to be 1 .7Vi

and 1.58 respectively. The mode of failure is the anti-symmetrical mode. 

Therefore, the elastic critical load given by Bolton's methos 9.8 is 

less than the exact value by about 9»k°/o.

In this example, ■ Bolton's method underestimates the elastic 

critical load. Sometimes it overestimates the elastic critical load.

For illustration, the elastic critical load of the same truss will be 

estimated when the diagonal tie member BB* is replaced by two hinged
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supports at B and B' as shown in Figure 9*3» This truss has similar 

modes of elastic instability and the stability conditions will be 

those of the previous truss except for the omission of the stiffness 

term of the removed tie member. The symmetrical mode condition will be 

unchanged as it follows that the symmetrical mode load parameter (P/Pe )̂  

must again be 1.?6. The anti-symmetrical mode condition becomes 

A =  Sl(2sn+kc^) - 2 (sc)^ = 0 9 . 9

and the approximation 9 . 7 becomes

A  = r 2 S ^ k S 3>- i£iL - _ 9.10
J S, aSrt-kSs

The elastic load parameters f satisfying 9«9 and 9.10 are found 

to be 1.253 a nd 1.3^2 respectively. When the approximate value of 

is compared with the critical value of  ̂ we notice that Bolton's 

method estimates f 5 »9% higher than the exact value.

When the redundant truss of Figure 9*3 is made statically 

determinate by removing the supports B and B' we obtain a statically 

determinate truss with two critical joints. In this truss, the external 

load is taken b6 the diagonal strut only. The exact elastic critical 

load parameter £ , is found to be 2 . 9 5 and the approximate value, obtained 

by Bolton's method is 2.89 with a difference of about 1.7%.

The stability of the truss of Figure 9.2 was also investigated 

when the truss was loaded as in Figure 9 The condition of elastic 

instability and the critical load parameter £ are tabulated in ^able 9.1
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All the members are taken to have the same value of P/Pe. The critical 

value of P/Pe was also calculated by the exact and approximate methods 

for,the trusses in Figure 9.5. The results obtained are tabulated in 
Table 9.2.

Mode Stability condition P/PgWhen k=0 .7 0 7

(i) Symmetrical mode:

(a) Diagonals have single 

curvatures, Figure 4b

(b) Diagonals have double 

curvatures, Figure 4c

ks(2/k + 1 - c ) 1.76

2+k
(2-k)s (2_k “ c) 1.55

>ii) Anti-symmetrical 

mode, Figure 4a
(2+k)s(1 +c) 2.05

Bolton's approximate 

method.
(2+k)s - 2 ( s c ) 2  (ksc>2 

(2+k)s (2+k)s
1.42

Table 9.1

Frame Approximate P/P Exact P/P (0 /(2 )
(1 ) 6 (2 ) 6

Fig. 9.5a 2 .0 6 2 . 1 1 0.975

Fig. 9.5b 2.09 2.13 0.983

Table 9*2
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Chapter 10

Elastically restrainfed supports and connections 

Elastically restrained supports

The elastic critical load of a 

feet is considerably lower than that of an identical fixed base 

rigidly jointed frame. By fixing the stanchions bases of a pinned 

base frame, the elastic critical load can be increased by a factor 

of U for frameworks having relative beams stiffnesses k bigger than 

1 .0, -and a factor bigger than and up to infinity for k smaller 

than 1.0. This is shown in the graph in Figure 10.1.

In practice, stanchion bases are neither fully pinned nor 

fully fixed but they are intermediate between the two extremes i.e 

there is a rotational restraint. This rotational restraint increases 

the elastic critical load of the rigidly jointed frame relative to 

the pin jointed frame. If a reasonable value of the rotational 

restraint is provided at the bases of the stanchions, the elastic 

critical load can be increased almost to that of the identical 

frame with fixed feet. This is shown in the graph in Figure 10.2.

The rotational restraint at the feet of the stanchions is 

provided either by inserting a restraining beam between the stanchion 

bases or by using a stiff foundation!? In the first case the restrain

ing moment and the rotational deformation are linearly related.

rigidly jointedjwith pinned
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In the second case it is assumed that action (moment) and deformation 

(rotation) are linearly related. The foundation is represented by 

a spring having a rotational stiffness V  such that M = ̂  9 where 

SI is the restraining moment provided by the foundation and 9 is the 

rotation of the foundation which is caused by the deformation of 

the soil.

In t^e fr.ames considered, two modes of elastic instability 

ire possible and these are the anti-symmetrical sway and joint 

rotation modes. Of these, the anti-symmetrical sway mode is the 

Important one since it has the least elastic critical load. Therefore 

;he analysis of the anti-symmetrical sway mode is shown here.

To establish the relationship between the rotational restraint 

at the bases of the stanchions and the carrying capacity of the 

frames, the analyses for establishing the stability criterion of 

a single bay and single storey portal frame and a framework with 

inclined members are shown.

Single bay portal

On the application of a disturbing moment 3M; the. joints A 

and A' of the portal in figure 10<>3 will have no shear rotation: 

d 9 and joints B and B' have no shear rotation 3©B. Due to these 

deformations, the changes in the moments at the ends of the members 

are:
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Operation Restraint moment MAB ^ A MBB'
1 )Rot.A&A' X 3o a (kn)1‘3©A -(koO-jS©^

2)Hot.B?*B* - (kc013©B (kn)1 3©B (koi)23©B

Equilibrium consideration yields

3m a = (V+Ckn^) 3©a - (ko).j3©B = 0  1 0 .1 a 

3 ^  = - (ko013©A + [(kn)1 + (ko02']i©B = 0 1 0 .1b 

The determinant of the coefficients of the unknowns is

¥ + (kn)1 - (koO,j

- (koO,, (kn)1+(kd)2
1 0 . 2

This is the stability condition, any load making this 

determinant vanish is the critical load, ^his equation can be 

solved numerically when the relative stiffness of the beam and the 

supports are specified. Some numerical results are tabulated for 

different values of ^/k^ when k2=k^.

Vk, 0 1 . 0 2 . 0 4.0 10 20 00

2P/Pe 0.3 69 0.649 0.831 1.04 1 . 2 6 8 1.373 1.495

These results are also plotted in figure. ,10.2
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Framework, with inclined members

For the framework of ^ieure 10.^, only one degree of sway 

freedom is possible. On the application of a disturbing horizontal 

force 2Hg at joint B, the following deformations occur:

1) Joints A and A' rotate clockwise through an angle 3ga.
2) Joints B and B ’ rotate clockwise through an angle 3©^.

3) Members AB and A'B’ will sway clockwise by 38.
Member BB' sway anti-clockwise by 23Scos0, which is obtained 

from the Williot diagram.

Due to these deformations, there will be moments in the 

members and these are tabulated

Operation Restraint
moment m ab ^ A MBBI

1)Rot.A&A* (ks* )^3ga (ksc

2 )Rot .B&B3. (itsc^c^ (ks)109b (ko<.)23eB

3 )Sway - (koj/L^SS -(ko/L)13S + (2kc(c osjÔ/li )^ab

Equilibrium consideration yields

'38A

3<SB
OO.

’(ks)1+K (ksc)1 -(ko/L)^

(ksc)^ (ks^+CkoC^ (2kofcos0/L)2- (kc//L)1

r (ko/L)1 [(2kc<cos^/L)2-(kc^L)^ [(4kAcosj^/L2 >2+ (2kA/L2 )̂ \

10.3
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The determinant of the square matrix is the stability 

condition. Some numerical results obtained by the solution of 

the determinant when ^=0.707^, and 0=k5 are obtained

for different values of X/k^ .These are

0 1.0 2.0 4.0 10 20 00

2P/Pe 
______.

0.64 0.807 0.9 65 1.110 1 . 2 6 5 1 . 3 3 5 1.414

These are also plotted in Figure 10.5.

Elastically restrained connections

The elastic critical load of a rigidly jointed fixed base 

portal frame is bigger than that of a fixed base portal frames 

with other joints pinned by a factor of between one and four 

depending on the relative stiffness of the beam. 'I’hip is shown 

in Figure 10.<>. For frameworks with inclined members, the difference 

between the pinned and the rigidly jointed framework is bigger 

and the factor is greater than four for k^/k^ bigger than 0.3, 

and smallerthan4.0 for values of k^/k^ smaller than 0.3, for an
O

inclination ,0=45. The factor will be less for frameworks having 

0>45 and bigger for frameworks having .0.<45 . Th‘i s is show« in Figure. 10-1.
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Usually, the joint:. connections are neither fully pinned 

nor fully rigid but are in an intermediate stage between these 

extremes when ordinary riveted or bolted connections are used, :It 

is found that some particular relationship exists between the

restraining moment at the end of the member and t^e relative angular
»3rotation between the connection and the member. It is assumed that 

this relationship is linear of the form M « <$© where M is the 

moment at the end of the member, Q is the relative rotation and o 

is the rotational stiffness-of a spring joining the member to the 

connection.

The analysis of the anti-symmetrical sway mode will be 

shown for two frameworks, to establish the relationship between 

the rotational restraint at the connections. and. the. .elastic critical 

load of these frames. To facilate the analysis, the stability 

functions will be modified to take into accounttthe elastic 

restraint of the connections.

Modified stiffness and carry over

For member AB of Figure 10.8 when subjected to moment M and 

moment M ^ ,  the connections will rotate by 0 and ¿t at A and B 

respectively. The ends A and B of the member will rotate through
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and. connection at A is therefore 9—  G| and that at B Is 

The end moments are related to the relative rotation by

ma b= ^1 “ S ) = ^  ei+ 1030 V7

MgA= ^ ( 4  - %, ) = ksc©1+ ks i±K

Putting &=k\ in the above equations and rearranging yields 

(s + V,)©1+ sc ¿t, = \, e 

sc + (s +'Xi)t1= Vit 

Solution of these two equations gives

a> =

and

4r. =•

X \ C S -+ Va)
—  (.•sc)2-

0  -
SC

(.S-vV iXSi-Vi') —-(Sc)-1-

Vi sc G + \t Cs>”V V \
CSfViyS-vVx') -C^o1 CS-v\\'H?+Vx') —  c ^ 2-

Substituting for ©^ and . the end moments become

Lt

M =A3 k SAB© + k SC ¿¿z
and

M = 6K k SC© + k SBA^

where
c — . V» [ SCI— C?) -f \y. 1 gSA3 (S-t ViHS + X )  — ( S O 2
SC = V» Xa Sc

(S4-X1) (.S-V Va") -- 6sc}l
and

~V 3 c
bBA" " c s.-vv«x t -v- —  esc)2*

10.4a

10.4b

10.4c 

10.4d

\o-4e

\b-4r

1 0 . 5
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Special cases

(i) G = Lt and X\ = = V

^  aMg^a k(S+SC) G = k cR 9 10.5a

where

o< = X

(ii) ¿¿=0 and X^= 00
Xs . _=AB

sc=

X -+• s  
X

V  -t- s
sc

and

\fc-sW

SCl-c1) -r X c
SBA= T T v ------

Modified sway moments and shear force

When the connections are displaced laterally without rotation 

the moments - .koiS/L in the member due to the sway S will cause end 

rotation 9, and ̂ i n  the member at A and B respectively. The moments 

at the connections are

ksQ^+ksc^t, - ko>$/I> 10.6a

Rg.s ksc©1+ksii|- kdS/L 10.6b

Putting X=kX , these equations cani-be written as

(s + XiJG^+sc^tjS ĉ S/L 10.6c

sc G^+Cs + X^)ii = c$>/L - 10.6d

Solution of these two equations gives
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©i = • 
and

S "V V*i. *“ sc
C s - v X i X  s V X * .')  —  c s c ) X  

SCI— C ) —V X \

— c* 10.6e

6L S.
( S-t Xi) (.S i-Vx") —-CsO^- 

Substituting these values to give the modified sway moments 

X, (_SCI — O  —p V-2.X

10.6f

14 = _ ' '' v -___ ;__:--------- ilià S»
AB Cs-pXiKs-t-XO —  esc)'1- L
and

MBA=
V a C s o - c )  -*V\ ka £
(s-+Xi)<S+>>i) —  U O *  L

The shear force balancing the moments is F which is

F = (2kA/L2' )S - ko{/L. (©, + ¿fc,)

Substituting for 0, and Lt] and rearranging gives

d Sd - O  —f~ C V»-v— Vj.)c _ \ 2VA _ kJ-1
L La L1 CSirVi)(SfX^ —  CSC

1 1  s
J1 J

Special cases

( i )  X = v =  >

m a b=mb a = -
X kd g

X -p L

and
•o r iWA 2 icĉ 1 
* - L-TT ~  T T !—  "IS

IS L> \-vcJ J
(ii) X^= CO and ^ = X

M ______ ^ ^  9
^  W S  L

10.6g

10.6h

10.6 i

Ì0.6 j

10.6k

1 0 . 6 1

10.6m
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“BA"
and

SC \ \ ko! C
Sn-V ' L

F = [ ìL M  —  lisi2 _ L  1 s
L L> l1 !-+> '*

10.6n

10.6o

Analysis for establishing the anti-symmetric al sway mode stability

criterion

Single bay portal frame

In the frame of Figure 10.9 only one degree of sway freedom 

is possible and this is the horizontal displacement of joint B. On 

the application of a horizontal disturbance 2Hg at joint B, the 

following deformations occur

1) Joints B and B' rotate clockwise through an angle 3©^.

2) Members AB and A'B' will sway.clockwise by 33.

Due to these deformations, there will be moments in the 

members which are modified to take into account the effect of the 

elastic connections, at joints B and B'. These moments are:

Operation MAB !T3A ^BB1

1)Rot.B&Bi

2)Sway

Vi-ChsAj disc )̂ 9. (ks)^©_
B r-KUsi, 1 B

-(ko0|9.B

.(■kSO-e)̂ -tV (kc/ L ) < ] o S---- ó----(ko/L^BS
dM) I -T y-*-Ckd)i
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Equilibrium consideration yields 

y cVts), .t J[_____tWdrt:1308

as

Y
Y** C k sij f - r ( k c O i

_ Y  ,W.ol \
Y-t-CJ<s). h

Y-t-CWO)

(akB) -  j±i£L____
‘ L\ (Y-t- Cks)^

10-7

F'he determinant of the square matrix is the stability condition. 

This expression can be solved for any value of 'o and k^/k^ by finding 

the least load which makes the determinant vanish. The elastic' 

critical load of the portal when k^k^ was calculated for different 

assumed values of o. T^e results obtained are tabulated and are also 

plotted in figure 1 0 .1 0 .

0/k, 0 1 . 0 2 . 0 k.o 10 20 00

2P/Pe 0.50^ 0 .6 52 0.795 0.9^8 1 . 1 8 2 1 . 3 1 6  1.49*f

"Framework with inclined member

If the supports of the framework of Figure 10.5 are fixed, 

the stability condition is modified to

(ks) +(ko0 (2kofcos0/L)^- (keC/L)̂

(2ko(cos^/L)R- (kcl/l){ (4kAcos0/L* )JJ + (2kA/L*)l
= 0 1 0 .8a

When the joints B and B' are assumed to be elastically 

restrainted, the stability functions in the above stability equation 

10.8a will be replaced by the modified values. The stability
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condition becomes

—  cks), -v y
li ~t 0<S)j ^-f- CWol)«̂

k°/ )
u Jl

K c k « ) ,  " 1 1 L * c w j ^  ■ w

= o 10.8b

When k z/k(, L^/L^ and 0 are specified this equation can 

bw solved numerically to give the relationship between ̂  and the 

the elastic critical load.

The elastic critical load of the framework was estimated 

for different assumed values of ^ when 1̂ = 0.707^  .L^I^ and $=^5° 

The results obtained are tabulated and are also plotted in the 

graph of Figure 10.11.

o/k, 0 1.0 2.0 b.o 10 20 00

2P/Pe 0.226 0.^8 0.66 0.886 1.1^ 1 . 2 6 1 'lA'ik

Comment on the results

^he graphs in Figures 10.k. 10.6. 10.10, 10.11 show that 

the elastic critical load of frameworks increases as the restraints 

at the supports and connections are increased. And that the increase 

is very pronounced for small values of o. The curves flatten and 

approach the highest value of 2P(&/k=00) even at moderate values
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of o7k, . Consequently, almost the full carrying capacity of the 

framework could he obtained by providing reasonable restraints 

at the supports and connections.
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Chapter 11 

Bracing

Introduction

In portal frames anti-symmetrical sway, if it is possible, leads 

to the lowest value of critical load. If sway is prevented a large 

increase in the critical load results. In this chapter ways of increasing 

the anti-symmetrical critical load are discussed.

There are three ways of increasing the critical load for a given 

weight of structural material. Firstly it is possible to distribute the 

material between beam and stanchions in the most economic ratio.

Secondly, one or more bays of the portal may be stiffened by diagonal 

bracing. Thirdly one or more bays may be stiffened by knee-braces. For 

each of these cases an analysis shows the increase in critical load 

which results. In the case of knee-braced frames an approximation is 

also proposed for single-bay single-storey portal frames and this is 

extended to the case of multi-storey and multi-bay frames.

Change of beam and stanchion stiffnesses

Graph Figuretl*1a shows the carrying capacity of a single storey 

portal framework with the variation of the relative stiffness of the 

beam to the stanchion. In the process of rasing the elastic critical 

load of a portal framework, the stiffness of the beam could be increased
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but the improvement is not significant when the load parameter P/Pe
of the stanchion is already high. In the case of higher values of the

load parameter P/P stiffer stanchions could be used to raise thee
elastic critical load.

The critical values of P/P& for a two storey portal frame dare

shown in graphs Figure 11.1b for different values of beam stiffnesses.

Curve A shows the variation of P/Pg for changes of the relative stiffness

of the upper beam when the stiffness of the lower beam is kept constant.

Curve B shows the variation of P/P for changes of the relative stiffness© •

of the lower beam when the stiffness of the upper beam is kept constant. 

It is seen that increasing the stiffness of the beams begins to have 

very little effect when the stiffness of the beam is about twice that 

of the stanchions.

To illustrate the effect of redistribution of the structural 

weight between beam and stanchions Figure 11.2 has been prepared for 

the single storey, single bay case. It was assumed that the I-value 

for a rolled steel joist was related to the weight per unit length by 

the equation •

I = O . 6 1 5 w2*2^ 1 1 . 1

The constants in this equation were obtained by plotting logl against 

logw for commericially available steel sections.

A constant weight requires that

2W.JL.J + w^L^ = constan't

* 2 woL1 1 1 . 2
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where w^ is the weight per unit lenght of the stanchion,

w^ is the weight per unit lenght of the beam.

Wo is weight per unit lenght of the stanchion when all the

material is concentrated in the stanchions.

L represents the lengh-fcv.

The relationship between w,j and w2 is obtained from 11.1 which gives

= (w2/wn )2 *2^ 1 1 . 3

The elastic critical load of any framework is

W. = 2 f P c v e
Dividing both sides by (P ) where (P ) is the Euler load of thee o e o
stanchion wheir the material is concentrated in the stanchions, yields

W /(P ) = 2 f U . / w 11.4c e o v n o

since

V ‘V o  - V 1. ■ (W 2'24
Wc/(Pe)Qcan be obtained when L2/L^and I^/Lj are specified. For 

the case when L^/L^ = I^/1^= 1.0 the critical value of the load parameter^» 

obtained from tables is

e = 0 .7 4 7 5

Using 11.5 gives

w2= W1 •
Substituting these values in 11.2 yields

V wo = ^
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Substituting these values in 11.4 yields

W /(P ) = 0.61c e o

In a similar way the values in Table 11.1 were obtained for other 

ratios of I^/Lj.

I2^11 0 0 .2 5 0.5 0.75 1.0 2.0 4.0

V ( V o 0 . 5 0 .5 6 5 0 .6 1 0 .6 1 6 0 .6 1 0 .5 3 5 0 .3 1

Table 11.1

If it is assumed that there is no yielding of the material 

Figure 11.2 shows that, when the lengths of stanchion and beam are 

equal, the distribution of steel which produces the highest critical 

load is that which makes the I-value of the beam about three-quarters 

that of the stanchion. A similar graph can be obtained for any ratio 

of span to height. Figure 11.2 is sufficient: * however, to show that, 

even apart from any strength requirement, redistribution of material 

between beam and stanchion is insufficient to produce a significant 

increase in the critical load. It is shown later that considerable 

increases can be obtained by diagonal or knee-bracing and these methods 

are therefore investigated further.

Diagonal bracing
Diagonal bracing might be used to reduce sway in a rigidly jointed
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portal frame or at the other extreme it might be used to give stiffness 

to a pin jointed framework which would otherwise be merely a mechanism. 

Both cases were investigated.

(a) Rigidly jointed frames

If one of the storeys of a multi-storey single bay portal is 

braced by a diagonal member it acts as a very stiff beam for the storey 

below. If this lower storey happened to be the critical storey some 

improvement of the critical load would be obtained as described above 

but if the value of the critical stanchions were already high little 

improvement could be made. If the critical storey itself is braced, 

however, a considerable increase in the critical load results.

To illustrate this behaviour calculations have been performed 

for the two storey portal shown in Figure 11.3. When there is no 

diagonal bracing the elastic critical load is *fP = 1.39? where P is 

the Euler load of AB. When the upper storey is braced by a member of

the same cross-section the critical load rises to -̂P = 1.61P • When the• . .. * 0 '
critical lower storey is braced the critical load is 4P = 2.58Pe* Hence 

bracing the upper storey increased the critical load by 1 5 *6% but 

bracing the lower storey increased the critical load by 85%.

The analysis of these two cases is set out below.

(i) Bracing the upper storey.

In the framework of Figure 11.3b only one degree of sway freedom 

is possible. This is the displacement of the whole upper storey which

1 7 7
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is produced by the sway of the members AB and EF. On the application 

of a disturbing horizontal force H at joint B, the following 

deformations occur

1) Joint B rotates clockwise through an angle 8© .B •
2) Joint C rotates clockwise through an angle 8© .C
3) Joint D rotates clockwise through an angle 3©^. 

b) Joint E rotates clockwise through an angle Ili
5) Members BA and EF will sway by 38.

Due to these deformations, there will be moments in the members 

and these are tabulated in ^able 1 1 .2 .

Equilibrium consideration yields

cksO* tk sc )-7 cksc)s q
(ks>7 -hi Us) *3
<ksc)i cks)i-tc.ks)3 cUsc^ 0 0 osec

390

3#£
9$W J _

Cksc) 7

Cksc)5

<.ksc>5 <ks)3 + tks>,+<.V:s)4 tkscj4 0

0 Ckcc)4 fcksJ4+Cks)s^(ksJd -0g)6
-<■¥><Q

U*5

rPhe determinant of the square matrix is the stability condition. 

The numerical coefficients in the determinant are' calculated for 

the k-value of'the diagonal equal to 0 .7 0 7 and the value of the 

low.er stanchions twice that of the upper. ..This yields a determinant

S1 +S2+ 6 ,828 (sc )2 1 »k'lb- _ 2 °<l

(sc)2 2 0 0

1 A'lk 2 s^+6 .8 2 8 (sc)^ 0

2 0 (sc)^ s2f+s6+^
0 0 2 (A1+A

11.6
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The load parameter f making this determinant vanish is obtained 

by trial and interpolation.

First trial f, =(&= 0.8*)- 

f2 =?4 =0.42 

From tables ̂

s1>6= 2 .7 6 3 0 -o^6= 5.1168 A1j6= 0 .9 7 1 6

S2 ,V= ^
Substituting these values in 11.6 gives 

A  = - 2180

A lower of (* is therefore tested* v\
When f, =0.80 £.= + 370

By linear interpolation the critical value of ^ is O .806 and the

critical load of the frame is

4-P = 2 X 0.806 P e
= 1.612Pe •

This value of *fP corresponds with the value (36.4/22)?^= 1.65Pg

obtained experimentally on a model of the braced portal frame.

Asithe stiffness of the bracing member is increased the carrying

capacity of the frame increases but the load is always less than 2P^.

This is the load most nearly approached when the stiffness of the

bracing member is infinitely large.
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(ii) Bracing the lov;er storey.

In the framework of Figure 11.3c one degree of sway freedom is 

possible. This is the horizontal displacement of joint C which is 

produced solely by the sway of the stanchions CB and DE. On the a 

application of a disturbing horizontal force H at- joint C, the 

following deformations occur:-

1) Joint B rotates clockwise through an angle 3©_.Jj *
2) Joint C rotates clockwise through an angle 3©^.

ckwise through an angle 3©^.3) Joint D rotates clo

4) Joint E rotates clo

5) Members BG and DE will sway by 3S. 

Due to these def

and these are tabulated in Table 11.3 

Equilibrium consideration yields

ckwise through an angle 3©g.

ermations there will be moments in the members

s e .  ' £cks)| -t-cUsÎ7 ri
O

0

-Kks^-j-CksJi]
3 Q c Cksc )X Cks03

3 0 c 0 Cksc>5 (Us)-5-t (ks)4

Cksc)4 0 (ksc)4

a s
i

L ^ k

0

Cksc)^

L ^ k

)a nn

ik041rCks)^ttks)5 £ ^ 4  0

The determinant of the square matrix is the stability condition. 

When the lengths and the relative k-values are substituted in 

1 1 .7 , the determinant becomes
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S1+S2+6.82 ( s c ) ^ 0 2

( s c  ) 2 s 2 + 4 2
0' <*!

0 2 s ^ +  4 ( s c ) ^ *4
2 0 ( s c O ^ s 5 + s V f  ^ «4
°2 «4 <4 •

2 (A2h

1 1 . 8

The load parameter making this determinant vanish is obtained

as before and turns out to be £ = 1.29. Thus the critical load is

4 P =  2 X 1.29 P e
= 2.58Pe

This value corresponds with the value (61.2/22)P = 2.80P obtainede e
experimentally on the model of the portal frame.

(b) Pin .jointed frames

Sometimes in two storey frames, the upper and the lower beams

can be regarded as pin jointed. The diagonal bracing member,'..might also

be pin jointed. The stability of such a frame is therefore investigated.

With such bracing the elastic critical load is small. For example, if

the frame of Figure 11.4a is loaded only at the top, the elastic

critical load is 1.05P . When the beams are pin jointed, the elastice . •
critical load is reduced to 0.125Pg and when a pin jointed bracing 

member is added, the elastic critical load is increased to 1 .02Pe.

If the beams of the two storey frame are pin jointed to the



182

stanchions, the stability condition of the portal frame is obtained 

by considering the stability of a stanchion which is fixed at the 

foundation and under external loads at the beams positions. The stability 

condition is obtained by applying a disturbing moment at B which causes 

no shear rotation 9©^ of joint B. The disturbing moment at the critical 

load vanishes, thus

9Mg = [(kn).^ (kn'O^BQg = 0  1 1 . 9

where

n" = n - o^n

If only C and C' are loaded by a vertical load 2P, the critical

load of the frame will be

2P = 2 (P /¿0 e
= 0.5 P e

where P is the Euler load of AC.' e
When a pin jointed bracing member is added to the top storey, 

the stability condition of the frame is also obtained by considering 

the stability of the stanchion. This time the stability condition is 

obtained by rotating joints B and B 1 giving

(kn),j + (ks"^ = 0 1 1 . 1 0

The elastic critical load of the frame shown in Figure 11.^b is 

estimated when the stanchions of the frame are of equal lengths and 

have the same cross section. The stability condition of 11.10 becomes

n + s" = 0
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By trial and interpolation the critical load parameter is obtained. 

First trial £= 0.51 

From tables^

n = 1 .8 0 5 6 s"=1 .7 8 7 5

Substituting these values in the stability condition gives

A. = + 0 .0 18 1

A higher value of £ is therefore tested.

0.52

n = 1.777^ s»=1.8875

Thus

-  0.1101

By linear interpolation the critical value of is 0.511 and the

elastic critical load is

2 P =  2 X  0.511 P ©
= 1.022Pe

Knee bracing

This type of bracing may be used for any type of frame. A short 

diagonal member is used to connect the beam to the stanchions. This 

method is probably the best., if internal bracing can be allowed, since 

the elastic critical load of the framework can be raised to several

times the original elastic critical load.
For illustration, Figures for the knee braced frame of Figure 11.5
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with beam to stanchion stiffness ratio: of ■§• is given. With no bracing

the elastic critical load is 2P = 1.34P where P is the Euler load ofe e
AC. When the portal frame is braced as shown in Figure 11.5 by a member 

having the same moment of inertia as that of the stanchions and having 

an inclination of 45, the elastic critical load is raised to 2P = 5»34P . 

The ratio of the braced length to the total height of the frame is a 

half. When the triangulated area BCD is replaced by a stiff area, the 

elastic critical load is further increased to 2P = 7»68Pe.

There are three possible modes of instability for the knee braced 

portal of Figure 11.5:-

(1) Anti-symmetrical sway.

(2) Buckling of the stanchions ( Symmetrical failure).

(3) Joint rotation.

The application of disturbance and the resulting deformations will 

be obtained exactly as shown in chapter 2 .

Stability criterion for the anti-symmetrical sway mode

The number of sway unknowns for the frame in Figure 11.5 is 

= 6 X 2 - 9  

= 3
These will be taken as the horizontal deflection of B, B' and C 

respectively. On the application of a horizontal force H at joint C, 

the following deformations occur:-
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1) Joints B and B* rotate clockwise through, an angle ‘3ô_.B
2) Joints C and C  rotate clockwise through an angle '3ôri.

5) Joints D and D*rotate clockwise through an angle 3©^.

Horizontal deflection of C by 3£ will give rise to the moment;.- .

- (ko/L)1 35‘ at A, B, B* , and A'.

5) Horizontal deflection of B and B' by give rise to the moments:-

k a b - " ki[(s<= V

“bA = " k 1 [S1 + 0<1I'2/Lll

Due to these deformations, there will be moments in the members 

and these are tabulated in Table 11.

Equilibrium consideration yields

30c

BÔ,

2S

(cb),r (ksjj-f Ck^]Cksc)i (ksc)4

tksc)j tksc03

ikscL Cksc), (k^+iks^-K^

j

0 0

0 - ^ ( ¿ 5+ ^ ? * )

û

0

The determinant of the square matrix is the stability condition. 

Stability criterion for the buckling of the stanchions mode 

In this mode the number of sway unknowns is

WM

= 2 ( 5 - k- ) 

= 2
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These will be taken as the horizontal displacement of joints 

B and B'. In this mode joints C and C* do not displace during the 

application of the distrubance. On the application of equal and 

opposite disturbing horizontal forces H at joints B and B', the 

following deformations occur

1) Equal and opposite rotations of joints B and B* through an angle 3©_,

2) Equal and opposite rotations of joints C and C  through an angle 3© .C •
3) Equal and opposite rotations of joints D and D' through an angle 3©D> 

k) Opposite horizontal deflections of joints B and B 1 by give rise

to the moments

MAB= “ k1

liBA= " kJ  S1 + °<1L2/L1 1 *
MjjjjT  - 0 C S ( 1 - C ) ) 5 *t

Due to these deformations, there will be moments in the members 

and these are tabulated in Table 11.5»

Equilibrium consideration yields:-

36b cks)t-tCIts)a,-+ cks),̂ cksc)i cks«)* — W . C S , ) ‘0

35c £ksc)a cks)i-t-Cks)? Cksc>3 0 0

30q <ksc)4 (ks c)3 [ckŝ +Cks)4-tCksCi-̂ si -(ksO-C-))̂ = 0

£
. a
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The determinant of the square matrix is the stability condition. 
Joint rotation mode

In this mode there are no displacement at the joints. The 

stability conditions for the symmetrical and anti-symmetrical joint 

rotation modes are obtained from the previous stability conditions by 

ignoring the coefficients of the lateral deflections.

Of these three modes the anti-symmetrical sway mode is likely 

to be the lowest and this is calculated for illustration for the knee 

braced frame of Figure 11.5. The frame has a total height of 2L and 

beam length 3L and the angle of inclination of the bracing member is
O

^5 and AB/AC = 0.5. The relative k-values and the load parameters P/Pg 

are

Member AB(1) BC (2 ) CD(3) BD(*0 DD*(5)

length L L L 2 L L

rel.k 1 1 1 0.707 1

rel.Pe 1 1 1 0.5 1

force P P 00 0 0

rel. 1 1 0 0 0

When the lengths and the relative k-values are substituted in 

il-il , the determinant becomes

%
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2s+2 .8 2 8 sc 1.414 —Q\ -(s+oO
sc s+ 4 2 0 0

1.414 2 12 .8 2 8 0 - 1 8

o< +4.242 c4 6 -1.758 0 36
o< 0 0 -2A ~(o( +2A )

The critical load parameter £ making this determinant vanish is 

obtained by trial and interpolation.

First trial C =0.67 

From tables'^

s = 3.0293 c<= 5.3050 A = 1.9987 sc = 2.2758

Substituting these values in 11.13 leads to 

& =  - 724

A lower value of f is therefore tested.

C* = 0 .6 6

s = 3.0453 oL= 5.3159 A = 2 .0 5 8 9 sc = 2.2706

Substituting these values in 11.13 gives 

/h. = + 1950

By linear interpolation the critical £ is 0.668 and the critical load 

is

2P = 2 X 0.668(P \
K e ;AB

= 5.34 e - •
where P is the Euler load of member AC e

This value corresponds with ('2p — 5‘6-?Q obtained experimentally
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on a model of the knee braced portal frame made of bright steel strip. 

When the open triangules BCD and B'C'D1 are replaced by stiff

calculated using the stability functions n* and ĉ' defined by Livesley 
9and Chandler, The elastic instability condition becomes

The knee bracing member might be regarded as pin jointed to the 

beam and the stanchion. To work out the extreme case it was assumed 

that the joint between beam and stanchion was also pinned as in 

Figure 11.6.

Stability criterion for the anti-symmetrical sway mode (pin jointed) 

On the application of a disturbing force 2H at joint C, the 

following deformations occur

1) Joints B and B' rotate clockwise through an angle Sik..jD •
2) Joints D and D ’ rotate clockwise through an angle

3) Joints C and C' displace horizontally by SS giving rise to the 

moment -(koV'L) $6 a£ joints A, B, B ’ and A'.

4) Horizontal displacement of joints B and B* by which gives rise 

to the moments

membranes the critical load is increased to 7»68P « This value wase

Ckn, ) 1 + (kov* = 0 11.14

• W  • kiL<soV  

MBA= ” k 1 L 31 + °'llV L1 ^
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Due to these deformations there will be moments in the members 

and these are tabulated in Table 11.6.

Equilibrium consideration yields

The determinant of the square matrix is the stability condition.

Approximations for knee-braced portals

Critical load calculations have been carried out for a braced 

portal frame of constant flexural rigidity El having a total height L 

and beam length 1 .5D. T’he length of the braced part of the stanchion 

has been taken to be x.

If the largest load parameter P/P^ of the knee braced portal

frame is f , the elastic critical load of the frame will be reached

P = PP  ' e
where P is the Euler load of the part of the stanchion with the

highest £ -value. For x/L less than 0.5j P^ .¿s the Euler load of member 

A^. Thus

3£0 0 (ksj3 -v- s

e
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Let the critical load parameter P/P of the simple portal frame

he f0 then its elastic critical load is

P = P (P ) o V  e l C
and the ratio P/Pq is

P/Po = C <P. W (V aO
= C/(1-x/L)2 11.16

ewhere C = ——

For different ratios of x/L and different angles of inclination 

of the bracing member, the values of C were' evaluated by satisfying the 

stability conditions 1 1 .1 1 , and 1 1 . 1 5  of the anti-symmetrical sway 

mode. The anti-symmetrical sway mode is the important one for practical 

values of the ratio x/L but for higher values the buckling of the 

stanchions and joint rotation modes may become dominant and this is 

shown in Figure 11.7« The following numerical results were obtained:-
—

■Higidly 
0=30 “

jointed
¿=^5° ¡3=60°

Pin jointed

x/L C c C c

0 1 .0 0 1 .0 0 1 ,0 0 1 .0 0

1/ 6 1 . 1 6 1 .0 6 1 .0 0 0 .998

1/3 1 .2 0 1.07^ 0.98 0.9^5

1/ 2 — 0.995 0 .9 0 0.7^5

It is seen from these results that the ratio of the elastic^ 

critical loads of rigidly jointed portal frames in which the inclination
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ô °
of the bracing member is ^5 - 60 differs from the ratio of the Euler 

loads by less than + 10%. The same is true for portals with a pin-jointed
O

knee brace inclined at -̂5 until the ratio x/L becomes larger than y.

Therefore instead of using the exact method of analysis, the

elastic critical load of a knee braced portal frame, could be obtained

in practice by multiplying the elastic critical load of the simple

portal frame by the ratio of thé Euler load of AB to that of AC i.e
2the bracing factor 1/(1-x/L) .

O
For inclination / smaller than *¡-5» the elastic critical load of 

the framework is higher than that given by the approximation. For
Oframeworks with pin jointed knee braces having an inclination of ^5 

the elastic critical load of the framework is lower than that given by 

the approximation for large values of x/L. For smaller ratios of x/L 

the approximate method gives almost exact agreement.with the true 

critical loads. In Figure 11.8 curves of total carrying capacity 

against the ratio x/L for inclinations 60, ^5 and 30 for rigidly
ojointed frames and -̂5 inclination for pin jointed bracing member and 

the approximate method are shown.

Multi-storey knee braced frames

In the exact estimation of the elastic crxtical load of braced 

single storey portal frames, the number of unknowns involved in the 

analysis was five. For multi-storey frames the number of the unknowns
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involved will be five times the number of storeys. Therefore the 

stability condition will be represented by a determinant■of size 

X 5n where n is the number of storeys. Consequently the exact 

analysis will necessiate the use of an electronic computer and 

emphasises the necessity of an approximate method.
2The approximation based on the bracing factor 1/(1-x/L) given

above can be used to predict the elastic critical load of multi-storey

braced frames after certain modifications. The unbraced frame usually

has an elastic critical load which is obtained using the classical

method. If the lowest storey is assumed to be the weakest and the other

storeys are braced by inclined members as in Figure 11.9a the second

storey will become much stiffer since the Euler loads of the stanchions

of this storey are modified by the bracing factor to

Pp = P /(1-x/L)2 e e
and the stiffness of the stanchion to 

k = k / (1 -x/L)

The stiffness of the beam is also increased. The beam is assumed 

to be moved down to the level of DD' as in Figure 11.9®. It has been 

shown in Figure 11.1b that the increase in the stiffness of the upper 

beams will result in increasing the critical load parameter P/Pg of the 

lower stanchions and that the difference in the elastic critical load 

for an infinitely stiff beam and a moderate stiff one is very small. 

Therefore the new load parameter of the lower stancnions will be
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estimated using the modified second storey of Figure 11.9c. If the

new value of P/Pg is f then the elastic critical load of the frame

of Figure 11.9c is

P = 2 ? P ' e
If the lower storey is also braced the elastic critical load of the 

frame of Figure 11.9c will be increased by the bracing factor to

P = 2 e P /(1-x/L)2 11.17O

The approximate elastic critical load of the frame of Figure 11.10 

was determined. The members have constant El value throughout, the* "x
two storeys have equal lenght, beams lengths are 1 . 5  times the stanchion 

height and x/L = 0.5» The critical Ç-value of the lower storey after 

the modification of the upper storey was found to be 0.70. On 

substituting these values in equation 1 1 .1 7 » the approximate value of

the elastic critical load will be«
4P = 2 X 0.7 p / ( £ ) 2 0

= 5-6 p0
The experimental value of 4P was (61.2/9.75)? = 6.2ÔP » a 

difference of about 1 0.5%. The difference is expected to be smaller 

for small values of the ratio x/L as shown in the previous approximation.

Multi-bay braced frames

The elastic critical load of multi-bay braced frames can also be
2

estimated approximately using the bracing factor 1/(1-x/L) . The
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critical load parameter (> is calculated for the unbraced frame by

the exact method of analysis. The elastic critical load of the braced

frame is then obtained by multiplying the previous load by the bracing 
2

factor 1/(1-x/L) . For example, the elastic critical load of the two

bay frame of Figure 11.11a is

3P = 2.315 P e
where P is the Euler load of the stanchion, e

When bracing members are added to the frame as in Figure 11.11b

where x/L = 0.5, the approximate elastic critical load will be

3P = 2.315 P / ( ^ ) 2 ©
= 9.26 Pe . . .
The experimental value of 3P was (85/9»75)Pe = 8.71Pg. The

difference is 6.3% and is expected to be smaller for smaller values

of x/L.

Effect of beam loading

In the previous frameworks, the applied loads were assumed to 

be lumped at the top of the stanchions. When the load is distributed 

equally among the joints of the beams, the elastic critical load will 

be reduced because axial loads are introduced into the beams and
V

bracing members, and it is well known that the introduction of an axial 

load in the beam of a simple rectangular portal frame reduces the 

critical load. This behaviour was noticed experimentally when the loads
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on the frame of Figure 11.10 were distributed equally at the joints in 

the beams. The elastic critical load was reduced from 61.2 lbs to 56 lbs.

Effect of changing the moment of inertia of the inclined member-

To find the effect of the size of moment of inertia of the inclined 

bracing member, critical'load, calculations have been carried out for 

different values for the same single storey portal of Figure 11.5* Using 

the exact method of solution, the following results were obtained:-

•^D ^ XAB 0.25 1 .0 0 2 .0 0 00

L
0.606 0.668 0 .7 2 0 0.960

It is seen that the elastic critical load has been increased by

about 10% when the moment of inertia was increased from 0 .2 5 to 1 .0.

The increase, is 8% when the moment of inertia is changed from 1.0 to

2.0. The elastic critical load of this framework never exceeds O.96Pe
where P is the Euler load of AB and this value is attained when the e
stiffness of the inclined member becomes infinitely large. This shows 

that most of the increase in the elastic critical load has been obtained 

when the moment of inertia of the inclined member is about the same as 

that of the stanchion..The increase in the elastic critical load of the 

portal frame will be smaller when the ratio x/L becomes less than 0.50. 

The critical load parameters for an- infinite bracing stiffness are
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tabulated for different values of x/L.

x/L 0 0.1 0.2 0.3 0.4- 0.5

t 0 .669 0.727 0.79^ 0.859 0.915 O.96O
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Chapter 12

Elastic instability of space frames 

Introduction

In this chapter, the elastic stability of space frames is 

examined. The method of analysis is based on the same assumptions 

and principles as the plane framework except for the consideration 

of the torsional rigidity of the framework members. In investigating 

the elastic instability of frames with inclined members, the standard 

slope-deflection equation was modified to take into account the effect 

of the torsional moments as well as axial forces. This modified 

equation without taking the effect of the axial force was called the 

slope-deflection-gyration equation.

The solution of a space framework with members having any 

directions in space has been attacked by establishing the flexural 

moments and the torsional moments in each member and then projecting 

these moments along three cartesian axes. Equation 2.3 was used and 

modified to relate the shear forces and some of the end moments to the 

sway forces at the joints.

The number of the unknown deformations has been reduced to the 

minimum by taking advantage of any-possible symmetry of the framework 

and any speciallgeometry. The best possible choice of the caruesian 

axes has been made for each example demonstrated. In the case of

i
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symmetrical framework under symmetrical loading, .the symmetrical 

joints will have either equal and like or equal and unlike deformations 

depending on the mode of elastic instability tested.

The space frames are assumed to have cylindrical members of 

circular cross-section and furthermore the frames are loaded so that, 

the axial loads in the members can be determined by statics.

Modes of elastic instability

For symmetrical frameworks under symmetrical loadings there will 

be the following four modes of instability:-

1) The anti-symmetrical sway mode

In this mode, the rotation of similar joints for a given sway 

will be equal when the sway is in their plane. This mode includes 

sways along the coordinate axes and combination of these sways.

2) The sway mode in which the whole structure twists( twisting sway 

mode )

In this mode, usually the upper horizontal plane of members 

rotates and this is provided by the sways and torsional rotation of 

the stanchions, or by the sway of the stanchions and the roof members. 

The rotations of the similar joints will be equal when the components 

of displacements at the joints have the same sign and will be equal 

and unlike when the components of displacements of the joints are in

opposite direction
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3) Symmetricallsway mode

In this mode, similar joints will have equal and opposite 

deformations.

*»■) Joint rotation mode

This is a non-sway mode, the similar joints will have equal and 

like rotation if it is an anti-symmetrical joint rotation mode or equal 

and unlike rotation if it is a symmetrical mode.

Method of analysis
to

The method of analysis is based on the fact that at the critical 

load, the stiffness of the framework is reduced to zero. A test 

disturbance is applied which causes the joints to rotate and displace 

along the three cartesian coordinate axes x, y, z with the joints 

remaining in equilibrium i.e the total moment along each axis at each 

joint is equal to zero. If the disturbing force is along one axis it 

may not necessarily always cause deformations in the directions of the 

other axes. The forces at the joints causing the members to sway are 

related by equation 2.3 to the shear forces in the members. This 

equation can be modified to take into account cases where one or more 

joints rotate in the sway mechanism. This modified, equation may be

written;
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External Displacemnet in
X

Force direction of this

Shear force X sway 

of the member

force All members

End moment X (Joint rotation 

due to sway) 1 2 . 1

All rotated joints ’

This equation is applied to modes in which some of the members 

are not allowed to sway but geometrical consideration necessitate the 

ends of other members rotating. This equation gives also as many 

relationships as the number of s\iay components.

Actions and deformations are related by either the slope-deflection 

equation or the modified slope-deflection-gyration equation,taking 

stability effect and torsion into account. This leads to a system of 

homogeneous linear equations, instability being characterized by the 

vanishing determinant formed by the coefficients of the deformations.

Frames with vertical stanchions and beams in two orthogonal planes

mhe analysis of such frames is relatively simple for simple

frameworks. These frames are assumed to have members which are parallel

to the cartesian axes. 'I'he standard slope-deflection equation is used

to relate the deformation and the flexural moments along two axes, and

the torsional moment M and the axial rotations along the third axisz
of the member is given .by :-
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M = k„( Q - 9 J  zn G zn zf
vmere

“o ■ G V L
G = modulus of rigidity

12.2

and 9 , © „ are the axial angular rotations of the near and far ends
ZZI Z X

of the member respectively.

Sign convention

Flexural moments, torsional moments, shear forces and deformations 

are represented by vectors which have positive signs if they coincide 

with the positive direction of the three axes.

Theoretical analysis 

Frame 1

The stability of the framework shown in Figure 12.1 is investigated. 

The framework has a height L,( and a square roof of side length The 

torsional stiffness of the stanchions is assumed to be kn_ and that ofill
the roof members kn~. The cartesian axes x,y,z are chosen such that the¿S'*

x-axis is along the member BA, y-axis is along the member AD and the 

z-axis.is along the member AA‘. Only three modes of elastic instability 

are-, possible, the anti-symmetrical sway mode, twisting sway mode and 

joint rotation mode, ^he analysis for establishing the various criteria 

for elastic instability are shown.
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Stability criterion for the anti-symmetrical sway mode

There are two degrees of freedom of movement, one along the

x-axis and the other is along the y-axis. Other modes of sway.can be

invoked by the combination of the two sways. Herein only one sway is

considered and that is the sway along the y-axis.

If equal disturbing horizontal forces H^are applied at A and B

all: the joints will be deformed by &9._,0,0,0«S r,0) since there arex y
disturbances along the y-axis only and there is no call on the members 

to resist disturbance along the other axes. Consequently, the problem 

is reduced to that of considering the stability of the plane frame 

AA’DD'. It is well known that the"no-shear" stiffness of the joints in 

the x-plane is the anti-symmetrical sway mode elastic stability criterion. 

K = (kn)1+6k2 12.3

The least load parameter f making the "no-shear" stiffness K vanish is 

the critical^-value. This is obtained by a trial and error process.

Stability criterion for the mode in x-;hlch the whole structure twists 

The criterion for elastic instability can be established in two 

ways which correspond to equation 2 . 3 and. the modified equation 1 2 .1 .

The first method consists of applying disturbing forces perpendicular 

to the diagonals of the roof ABCD which rotate the roof bodily in a 

clockwise direction by ft where ft = 23S/L-,. The deformations occurZ Z i~dm
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solely in the stanchion members in the form of a sway in which at
joint A for example«)? =35=3$ and a torsional rotation of ¡6 in eachx y z
stanchion. Due to the symmetry of the framework, all the joints will 
have equal.'!, deformations but the direction of the deformations may be 
different.

From Figure 12.2b, there is a displacement along the member AD 
which requires that the forces in the members AA' and DD* should have 
the same directions. These forces are built up by the sway 35 and the 
rotation 3© in the yz-olane. rnhus the rotation 3© at A and D are 
equal. Member AD is rotated by fi which is due to the sway of members 
AA* and DD' in opposite direction. This requires that the forces in 
the stanchions due to the rotations at A and D in the xgi-plane should 
be equal but in opposite directions, thus the rotation^© at A and Dy
are equal and opposite. Likewise the rotations in the xy-plane©© arez
equal. A further elimination of one of the unknowns can be made by 
finding the relationship between 3©^ and 3©^. Member AA’ sways in 
the y-direction by 35 which causes a clockwise moment k<^33/L^ in the 
x-plane. The member also sways in the x-direction by 35 which causes 
antil.elockwise moment ko(35/L^ in the y-plane. Therefore the rotations 
required to balance the sway moments will be equal in value but opposite 
in direction i.eo3© = - 3© . In this case the equilibrium of the

y  x

moment in either the x or the y-plane should be considered since the
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relation between 3©_ and 3© is already known. The deformations at
*  y

the joints will be

joint A: (3© , 3 © (=-3©),3© ,33 (=33),33 (=33),0)j*. y X Z X y

joint D:(3© ,-3© (=3© ),9© ,-3S (=-33),33 (=33),0)x ’ y x 5 z J x y
and similarly at joint 3: (3© ,3© (=3© ), d© ,33 (=od),-33 (=-oS),0) ̂ 0 x ’ y x ’ z’ x y

Due to these deformations, the moments at the ends of the members
meeting at joint A are:-
Member AB Member AD Member AA'

9 m =2k__3©x 2G x

3m  =-6k->3©y 2 x
3 m =6k_3©z 2 z

9 m =6k_9©x 2 x

3m  =-2k-,~9© y 2G x

9m  =6k_9©z 2 z

3m  =k.s 9© +(ko/L)/c>5X 1 X 1

9 m  =-k^s9© -(ko/L),.9S y I x i

The disturbing forces at the four corners are equal and since the 

four stanchions are symmetrical each disturbing force is resisted by 

the shear forces in each-stanchion. Equation 12.1 leads to 

&  H ad =(vx9Sx+vy9Sy+9Ma0z )AA, 1 2 .¿fa

inhere

93 =3 S' =33X y
V =v

x  y

and v =(ko/L)^3 ©„+(2kA/L^)ij3S
y  .

Substituting these values in 12.¿fa and knowing that K vanishes at the

critical load gives:
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<2 h 3o = 2[(kc/L)130x+(2M/L7)13S] 3$ +k1G(3ez+23S/L2 ) 23S/l2=o 12 A b

Equilibrium at th.e joints requires that the total moments at 

joint A along each axis is zero. Hence the equilibrium equations will

be

3m  =-3m x y iBel
X 2k2G+6k2+(ks)^ 0 (ko/L)^ 'o'

3m z ■= 30z 0 12k2+k1G 2klG/L2 = 0

Ê H  j 3$_ _2(ko/L) 1 2k1(,/L2 (4kA/L2 )1+4klG/L2 'o »--

The determinant:of the square matrix can be reduced to

12.4c

A  =2 ((ks )1+2k2f,+6k2 ) (k1Q+12k2 ) [ (2kl/L2 )n - (ko/L)2/ ((ks )1+2k2G+6k2 )

+ 24(k1Gk2/L2 )/(k1G+12k2 )] 12.5

The lowest load parameter £ that makes this determinant vanish 

is the torsional elastic critical -value.

The quantity [(2kA/L2 ) 1 - (ko/L)2/C(ks)1 +22^+61^)

+ 24(k-jGk2/L2 )/ (k^G+12k2 ) | must vanish at lower value of ̂  than 

((ks)^+2k2G+6k2 ) since the latter occurs in the denominator of a 

negative term in the former and the term (k^_+12k-j) is a constant.

Hence [(2kA/L2 ),, - (ko/L)2/( (ks) .,+2^+61^) + 2 k ^ / L 2 )/(k.,12k£ ) j 
is the expression used to test for instability.

This stability condition can be obtained in another way which 

corresponds to equation 2.3» In this method no joint rotation is 

allowed to take place in the stanchions when the displacement is imposed 

by the disturbance. The roof members will be subjected to sways and the
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3m  = k„„3sz 1G z

= 2k_„oS 3m =2G x X

=-6k„3© 3m =2 x y

=6k_39 -  (12k/L)„3S 3m =(Zi t- s

stanchions will sway without rotation. The sane joint rotations will 

take place and the following nonents will be in the members at joint A.

Member AA * Member AB Member AD

5k03s2 x 

"2k

■z a z ...... a- z

Equation 2.3 is used to relate the sway forces at the corners to 

the shear forces in the members which leads to

(2. h 3S=(v 3S +v 3S )AA/+(v 33 /2 ) „+(v33/2) _ 1 2 .6ax x y y AA 1 y y A3 x x AD 

since each disturbance stores energy in one stanchion and the halves 

of two roof members. In this equation

=3Sy W  ®

(vx = vy >AA'

- 2 3 5

(vx )A „  =(ko/L)13©x+ (21cA/L2 )13o 

and

- (1W ) A -  W l 2 ) 2®

Substituting these values in 12.6a and knowing that H vanishes at the 

critical load gives

fzH =(2ko/L)13©_-(2WL)23©z+[(4kA/L2 )1+(^8ls/L 52]3o = 0 12.6b
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Equilibrium of the joints requires that the total moment along 

each axis at each joint is zero. Hence the equilibrium equations 

represented in matrix form will be:~

3m  =-oiX •1
y X

(ks) ̂ +2k2j,(+ok2 0 (ko/L)1 p

Nik
CO

= ^9 z 0 k1(J+1 2k2 -(2W D 2 =. 0

/2H
— .35 (2ko/L) 1 - (24VL)2|(^kA/L2 )1 + (li-8lc/L20I0.

1 2 .6c

The determinant of the square matrix can be reduced to 

=2((ks)1 +2k2G+6k2 )(k1G+12k2 ) [_(2kA/L2 ) 1 - (ko^L)2/((ks)1 +2k2G+6k2 )

+ 2M k lGk2/L2 )/(k1G+12k2 )]

Joint rotation mode

The criterion for the elastic instability of the lowest joint 

rotation mode is obtained when the deformation chosen calls into play 

no torsional restraint, but only bending. This condition is obtained 

by considering the symmetrical joint rotation of the plane AA'DD*. The 

stability condition is simply

K = (ks) 1 + 2k2 1 2 . 7

Numerical example

The elastic critical.!, loads of the framework are calculated when 

the lengths and the El-values of all the members are assumed to be
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constant and the torsional stiffness of each member is 0.7 7k where 1c 

is the flexural stiffness of the members. It follows that the relative 

flexural stiffness of the members is 1 . 0  and the "no-shear"stiffness 

of the joint given in equation 1 2 .3  is :

K = n + 6

The load parameter (■> of the stachion when n=-6 is 0.7475 aad the 

anti!symme trie allsway elastic critical load is

4P = 4 X 0.7475 Pg 

= 2.99 Pe

where P is the Euler load of the members, e
This value corresponds with (34/11.6 )P = 2.93P obtained e

• © ©

experimentally on a model of the framework.

The twisting elastic critical load is obtained by using 12.5. 

when the lengths and the relative k-values are substituted in 1 2 .5 , 

the stability condition becomes

A  = 2A - cA‘ + 1.45 1 2 .6d
s+7-54

The stanchion elastic load parameter f* making this expression 

vanish is obtained by a trial and error process.

First trial f = 0.78 

From tables.

s = 2.8494 o<= 5.1838 A = '1.3347

Substituting these values in 12.6d gives

A  = 2.6694 + 1.45 - (5.183&)2/ 10.3894

= + 1.53
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i.e the frame is stable. A.higher value of f is therefore tested. 

When f =0 .9 0 A= +0.211
When £ =0.92 A =  -O.O65

The critical load parameter ̂  by linear interpolation is 0.916 

and' the corresponding twisting elastic critical load is

4 p  =  k x 0 . 9 1 6  Pe
= J>.66k P e

This value corresponds with (41/11.6)P = 3»55 P obtained , - © ©
experimentally, shown in Figure 12.3.

The joint rotation elastic critical load is obtained from 12.7 

which become 

K = s + 2

The load parameter ^ whose s= -2 is 2.55 and the corresponding

elastic critical load is

4P = 4 X 2.55

= 10.2 P e

Frame 2

The elastic stability of the space frame in Figure 12.4 is 

considered. The frame has a total height and beam lengths L^and L̂ , 

This frame has two possible modes of elastic instability, the 

anti’-symmetric allsway mode and the joint rotation mode, ^he 

anti—symmetrical sway mode only is considered since it has the least
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elastic critical load.

The cartesian axes x,y,z are chosen such that the x-axis is 
along the member CA,ay-axis is along the member BA and the z-axis is 

along..,the member A’A.

Stability criterion for the anti-symmetrical sway mode

There is only one freedom of movement and this is the movement 

in the x-direction. Due to the symmetry of the frame, when a disturbing 

force 2H^ is applied at joint A similar deformations will take place at 
A and C of (0,3©y,392 ,35x ,0,0) since the rotations in the y and z planes 

are called upon to resist the disturbance. Due to these deformations, 
the following moments will appear in the members meeting at joint A:- 

Member AA* Member AB Member AG

.When the sway at joint A is imposed, the stanchions and the beams

3m  =(ks)13© -(ko/L) 33y y
3m  =6k-,3ey ;> y

(Sk/lÔ SS 3M2=6k̂ 3©2

BA and DC sway; by 3S", therefore the shear force sway equation of 2.3
gives:

x x AB 12.7a

where

3S- = 3SX
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a n d '  (v x )AB= ( 6 l5/ L ) 2 3 ©z  + ( 1 2 k /L  )23 o

Substituting these values in equation 12.7a and knowing that Knvanishes
A

at.-the critical load gives:-
.2 .Ha= -(ko/L)13«v+(6k/L)2>3Sz+[(2kA/L2 )1 + (12l5/L2 )2 ] '¿'b = 0 1 2 .7b

The joints are in equilibrium, hence the total moments along 

eachlaxis at ea ch joint is zero. Hence equilibrium equations are 

represented in the matrix form as

[•3m  *1 y (ks)1+k2G+6k^ 0 -(ko/L^ 'o'

= ^ Z 0 k1G+^k2+6k^ (6lq/L)2 = 0

-HA- as -(ko/L) 1 (6k/L)2 (2kA/L2 ) 1 + (12k7L2 )a 0
— —

12.7c

The determinant of the square matrix can be reduced to 

= ( (ks)1 +k2G+6k^)(k1G+ifk2-»-6]ĉ ) £ (2kA/L2 )̂  + (12lq/L2 )2~ 7 ^ /

- (ko/L)2/( (ks)1+k2G+6lĉ ) - (6k/L)2/k1G+ii-k2+6k^) j

r 2 2The term l(2kA/L ). + (12h/T. )? -----------—  _ -----------
L ‘ Cks),-+l<ic-t̂ K5

1 2 . 8

]

is used to find the lowest load parameter £ that makes the determinant 

vanish.

Numerical example

fphe anti-symmetrical sway ela.stic critical load of the framework

is calculated when all the members have equal lengths and the same

cross-section. k_ is taken to be 0.7 7^ where k is the flexural stiffness G
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of the members. When the lengths and the relative k-values are

substituted in 1 2 .8, the stability criterion becomes

A  = 2A - 8.66 1 2 .8a
s +6 . 7 7

The load*parameter £ of the stanchion making this expression vanish is 

obtained by a trial and error process.

First trial C = 1.54 

From tables.

s = 1.3653 Os= 4.2809 A = - 3.3189

Substituting these values in 12.8a gives:

A  = -6 .6 3 7 2 -2 . 2 6 + 8.66 

= - 0.2372

i.e the frame-if; unstable, a lower value of is therefore tested.

When £ = 1.52 A  = 0

Therefore the critical load parameter £ is 1.52 and the elastic critical 

load is

2P = 2 X 1.52 Pg 

= 3.04 Pe . . .
This value corresponds with (34.2/11,6)Pe=2.95Fe obtained

experimentally on a model of the framework.

Frame 3~

The elastic critical load of the two bay framework of figure 12.5 

is estimated. The frame has a total height and the bays are of width



. The stanchions are assumed to have equal Euler load and axial loads.

The cartesian axes x,y,z are chosen as in the previous frame. Only two

modes of elastic:;instability are possible, the joint rotation and the

anti-symmetrical sway mode. The analysis for establishing the

anti-symmetrical sway mode stability criterion is only shown.

Due to the symmetry there will be a similar deformations at joints

A and F of (0,3© ,3© ,33*..,0,0) and at joints B and S (0,3$ ,3$ ,3Sp,0,0) y z i • y z 2

when a disturbancesalong the x-axis is applied. These deformations 

will result in the following moments appearing in the members meeting 

at joint Ai-

Member AA* Member AF Member AB

3 m  =k (3© -3$ )y 2G y y

(Sk/lO^ob.j

and-at joint B:-

Member BB' Member BEMember BE Member BG

3m  = (ks).j3$-(ko/L)1 

3nz=k1G^ z

9S2 3My=6k530y 3My=k2G3̂ 5y

. 3Ma=6kJ30a 3Mz=i+k23jZ52+(6li/L)23o2

Member BA

3m =k__(3jz5-£e )y 2G y y

3m  =2k03© +^k-3$ +(6li/L)?3S'.Z  2 Z  2 Z 2 i

Due t o  t h e  sw a y 3S*n , m em bers AB, E F , F F 1 an d  AA‘ sw a y  b y  3$^
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therefore the shear force sx-ray equation 2«3 gives

where

1 2 . 8 b

asr = 35;X 1

( O ba= (6lx/L)23©z+ C6ix/L)23^2+ (12h/L2 )2oo1

and, (vx )AA,= - [(ko/D13jZ5y -(2kA/L2 )13S^ ]

Substituting these values in 12.8b and knowing H vanishes' at the 
critical load gives:-
HA=-(ko/L)1 3©y+(6fc/L)23©z+(6VL)23j0z+ [(12h/L2 )2+(2kA/L2 )1]d01

+ (2kA/L2 )13S2= 0 12.8c

When the swayv33^ is imposed, members CB, BBJ FF*,aIiE, EE 1 and 

AA'csway by oS^therefore the shear force sway equation 2 . 3 gives:

2HB3S2= 2 [ (Vx3Sx )B3' + (vx3Sx )GB +<tx 8S'I )AA'] 12-8d

where

3o = ooPx 2

< V bc -(V e d - c & / i > X +(iav 'l2)23S2

and (t;;)be, = (vx )se,= - [(kc//L)1 3̂ ly- (2H / I 2 )., do2 ]

Substituting these values in 12.8d and putting Hs=0 since there is no 

disturbance gives

Hb=- (kfl/Dn3©y- (ko/L)13jiy+ (6k/L)23j25z+ (2kA./L2 )^3S^+ [(12h/L2 )2+ (4kA/L2 )^o 2

= 0 1 2 .8e
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Equilibrium of the joints and the forces at the joints yields 

the equilibrium equations represented in matrix form as
•a«,/

1---

i__
_ Cks), -irék-̂-fk 0 -kxo- 0

i---

j“{'J
si n

0

0 îG- 4ki 3 2ka 0 0

2 % -kiG Û C^-Kks-j-lkjjs. 0 0 -o&, û

0 2 ki 0 kwn-tkn-aki (~)x L $ h ô

^A 3S, C^)» 0 0

. f a dS2 _ r(l£}, 0 — ùé) < $ h r^4), ¡ ^ 1 + ^ 1 0

The determinant of the square matrix is the stability condition 

and the load parameter ^ of the stanchion making the determinant vanish 

is the critical one«

Numerical example

The elasticccritical load of the space framework is calculated 

when all the members are assumed to have the same cross-section and 

equal lengths. The torsional stiffness k^ of the members is taken to 

be 0.77k where k is the flexural stiffness of the members. When the 

lengths and the relative stiffnesses of the members is substituted in 

1 2 .9 » the determinant becomes



s+6.77 0 -0 . 7 7 0 -ck -oC

0 10.77 0 2 6 0

-0 . 7 7 0 s+7 .5^ 0 0 -c(

0 a 0 1^.77 6 6

-o( 6 0 6 12+2A 2A

-oC 0 -ot 6 2A 12+̂ -A

The load parameter f of the stanchion making this determinant 

vanish is obtained by trial and error. The critical  ̂ was found to be 

O . 9 8 and the elastic critical load is therefore

4-P = k x 0 . 9 8 Pe

= 3*92 P e
This value corresponds with (hk/'l 1.6 )P = j5»79Pe obtained 

experimentally.

Space frames with inclined members 

The analysis for investigating the.elastic instability of space 

frames with inclined members is more complicated. This requires the 

projection of the flexural! and torsionallmoments of the members alo"g 

threeecartesiannaxes in considering the equilibrium of the joints. The 

deflections of the joints in the direction of the axes are also required 

in determining the sway forces. The way of performing the projection 

is shown and the derivation of the modified slope-deflection-gyration

equation is also given
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Projection of components

A vector can be represented in any coordinate system if its 

components in another coordinate system are known. Therefore if the 

two sets of coordinates are x'jy^z' and x,y,z with units vectors

«h1 and ijjijk along these axes and the components of the vector 

along these axes are A ,, A ,, A , A . A,r and A respectively, then 

the vector can be represented by either

A = Ax ti' +Ayti' +Azi£' 1 2 .10a

or

A = A_i + A^2 + Azk 12.10b

The components A , A , A along x,y,z axes could be projected x y . z .
along the other set of axes x}y}z' by the folloxtfing:-

When the vector A represented by 12.10a is scalar multiplied by

the unit vector ¿'(scalar product), then A, , is given by

A = A . i' x' — —
since iJ. .i' = 1 and ¿¡i' = k' .i' = 0 

Likewise A ,= A. I’ and A ,= A . k*

If the vector A represented by 12.10b is scalar multiplied by the unit 

vector i', then

A . i' = A (i.i!) +A (j .i') +A (k .i’) 12.10c— — x --- y — z ~  —

where A , = A .i' and (i.i*), (£.!•) and (k.i*) are the direction 

cosines of the x ’~axis with respect to x,y,z axes*
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If we assume the direction cosines of the x ’-axis w.r.t x,y,z to be

V*ax* av 5 a^’ of> the y * -axis b_, bw , b^and that of the z'-axis to

be c , c , c , then equation 1 2 .1 0c becomes x y z
A , = a A + a A  + a A  x ’ x x y y z z
Likewise it- can be shown that

1 2 .1 0d

A . = b A + b A + b A y' x x  y y z z
and

1 2 .1 0e

A . = c A + c A + c A z* x x  . y y z z
Equations 12.10d,e,f can be represented in the matrix form by

A ‘ A r
x ’ X

A « —m Ay' y

A , A
Z 'J z x

12.1 Of

The direction cosines comply with the following conditions:

1 2 . 1 1

2 2 2 . a + a + a = 1  x y z
,2 ,2 ,2 .b + b + b = 1x y z
2 2 2 . C + C + c = 1  X y z

and

x
b b b

y  z

Following the same procedure it can be shown that
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‘ A [A ,X X*

A A ,
y y '

A A ,L zj z*J c. z

1 2 . 1 2

Modified slope-deflection-gyration equation

For any member in space, a set of axes could be defined to 

represent its torsional axis which is the longitudinal axis of the 

member and will be taken as the z'-axis. Its pricipal and secondary 

axes of inertia will be taken as the x'-axis and y'-axis respectively, 

and these axes are further assumed to be axes of symmetry. The direction 

of these axes will be defined by their direction cosines as above, with 

respect to a system of cartesian axes selected x,y,z.

The two joints of any member NF shown in Figure 12.6 in a 

framework are subjected to two types of deformations such as angular 

fotatibn-and displacement causing the member to sway. These deformations 

can be represented by vectors since an angular deformation can be 

defined as a vector with axis coinciding with the axis of rotation.

At each joint, there will be three angular rotations which will 
he taken as the rotation in the plane of the selected axes x,y,z and 

three types of displacement which will be taken as the displacements 

in the directions of the selected axes x,y,z. At joint N there will

be deformations (© ,© ,© ,$ ,*5 ),Tand at joint F there will bex* y* z ’ x* y* z N
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deformations (©x ,©y,©z,Sx , ? T T h e s e  deformations will be projected 

along the axes of the member by using relationship 1 2 . 1 1

r © , r ©X* X

© , ©y* y
© , ©z ' — z
S’ , Sx' X

S’ , S
y J y

S Z_

x 0

0

0

0

0

0

0

0

0

0

0

0

0

a
12.13

The deformation along the member has been neglected since it 

was assumed that the deformations due to the flexural moment are 

dominant.

. Considering the flexural bending moments and torsional moments 

resulting from these deformations, it will be seen that in the x'-plane,

there are two joint rotations ©.. , and ©_, . and sway of -(S_ ,-S\ t )Nx' Fx' j y '  i iy '
which gives rise to

0/ 1 ) 12.14a

and..

MFxl=EI3/I.(seeiIxl+sapx.+ (iFy,-^y,) ô L) 12.14b
In the y'-plane there are two angular rotations ©Ny|and Q ^ i and 

sway of (SFx,-SNx'^ which gives rise to 

HNy,-EIy ,/l.(aeN3r, « 09ry,-(Spx,-SNx,) o/D 12.14c

and
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MFy,~"EIy ^ SCeNy ,+sQFy1 ”^ F x 1 "^Nx' ̂ ' 12.1^d
In the zJ-plane, there are only two angular rotations of ©„ .and ©Nz’ Fz *
which gives rise to torsional moments of

^ zt=GIz,/L.(©Kzt-SFz,) 12.14.

and

^Fz»“ “ ^Nz'^Fz*  ̂  12.l4f

These six equations 12.1ifa,b,c,d,e,f canlbe represented in the matrix 
form as

[m  :X* re :x ’ k s 0X* 0 0 -o/L "
M ,

y '
— © , 

y '

o to 0 o/L 0
M , © . 0 0 k , 0 0z'J z ' z'

$  ,x ’

. y'-1Sf

oo(0;* 0 0 + o/L .

0 k ,sc
y '

0 -o/L 0 12.15a

0 0 -k , z ' 0 0 J

and
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M .1 [ 9 ,x ' X'
M . 9 ,

y ' y '
M ,t  z 'J 9 ,

F z ' 4’’

i V

0

,sc

0

0

0 -k

0

o/L

0

-o/L

0

0

•w

9

9
y*

kx'.?
o

0

V s

0

- 0/  . 

kz'

0

-o/L

0

o/L

0

0

12.15b

ez'

These moments are along the axes of the member and these must be 

projected along the x,y,z axes in considering the equilibrium of the 

joints and relationship 1 2 . 1 2  is used.

1 2 . 1 6

It is seen from 12.16 that (M ,M ,M ) are functions of (M ,,M , )x y z , k ' y ' z '
and from 12.15 that (M , .M ,,M ,) are functions of (9 ,. 9  .,9 .)x ' V y . z *  . x "  y 1’ z'* x*’ y ‘
and from 1 2 . 1 3  that (9 , ,9 , ,9 ,,S ,,S ,) are functions of

(9 ,9 .9 .S' .S’ ) so that (M ) can be expressed as functions ofx y z x* y z x ’ y: z
(9 .9 .9 ,S .S ,S ) as shown in 12.17 x ’ y* z’ x* y* z

' m M ' a  b cX x ' X X X

M M ,
y*

M .

a  b c
y

M
y  y

a  b o

ZJ z'J L z Z z
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Shear forces

To determine other equilibrium relationships of actions and 

deformations it .Lis necessary to find the shear forces along the 

principal and secondary axes of the members and express them in terms

of (© ,© ,© ,S  ).x* y* z ’ x ’ y* z
For the member NF the shear force v^,is built up by the moments 

Mjjy, and , in the y-plane and is equal to

VNx,= "̂y ^ ® N y ' +<̂ Fy' ~^°Fx'"”̂ Nx* ̂ ^A/L) 12.18a

and the shear force vNy, is built up by the moments Mj^and Myx ,in the 

x*-plane and is equal to

v,T - k ,/L. (o&T ,+o©„ t + (S^ ,) 2A/L) 12.18bNy 1 x' Nx’ Fx' Fy' Ny'
or in the matrix form as

Vy«l

©

y*

X'

V .

' 0 k t0$/Ly 1

-k , o/L 0. x 1 '

-N

0

0

2k , A/L
y ’

o

2k ,A/lf x 1 '

©X

©
y*
ez«
$*,X

k .d/Ly 0

0

-2k .A/lf y 1

-2k , A/L x ’ ' J

12.19
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The corresponding shear forces at the other end of a member will 

be of the same value but in opposite direction, 

i.e V , ’ V ,x' X 1
= -

V ,L y'J/V L y'J
From 12.19 it is seen that (vx ,,vyl) are functions of 

(«x ,,Qyt,ezl,Sx ,,Sy ,) and from 1 2 . 1 3  that (©x ,,9y ,,©z ,,$x ,,$y ,) are

are'.'functions of ( eX ’ y
,©’ z

expressed as a function of ‘ v e

v , Q 'a a a 0 0 0 'x' X x y z

9 b b b 0 0 0
y'JN y x y z

0 c c c 0 0 0z X y  „ z
S 0 0 0 a a aX x y z

o’ 0 0 0 b b b
y x y Zj

S
L H 1

G a a a 0 0 0x x y z
+

G b b b 0 0 0
y x y z

G c c c 0 0 0z X y z

S 0 0 0 a a aX x y z
cr-
0 0 0 0 b b b
y • x y z.

S. z_ F

0 k , o/Ly'
-k , o/L 0x' 7

0

0

2k ,A/L 0y*
0 2k ,A/Lfi x' '

0 k , o/Ly'
-k . o/L 0L X 1

0

0

-2k ,A/L 0
y

0 -2k , A/jf~x'

12.20a

/
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or

lV .Ti

e

e

©

Sl. z

b k ,o/L b k to/L b k ,o/L a 2k ,A/L2 a 2k ,A/L2 x y* ' y y' z y' v  / v vi“'x y y y ’

-a k 'o/L -a k ,o/L -a k ,o/L b 2k ,A/L2 b 2k ,A/L2 i- x x ‘ 7 y x* 7 z x* 7 x x' 7 y x ‘ 7

a 2k ,A/L2 z y * 7

b 2k ,A/L2 z x*

N

*h
©

©

©

b k ,o/L b k ,o/L b k ,o/L -a 2k ,A/L -a 2k 4/L‘x y y  y z y x y y  y '

y x' z x X X'a k . o/L -a k ,o/L -a k ,o/L -b 2k ,A/L -b 2k ,A/L x x'^ y x* 7 z x* 7 x x' 7 y x' 7

-a 2k .h/lf z y'

-b 2k A/T2 z x' J

1 2 .20b

The moments and shear forces expressed in terms of the deformations 

at the joints will have signs which are automatically given by the 

direction cosines.

Direction cosines of the axes of a member with circular section in space 
For any member in space, the axis of torsion can be defined since 

its projections along the cartesian coordinate axes x,y,z can be easily
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computed. Some difficulties arise when the direction cosines of the 

other axes are determined.

Let the unit vector along the torsional axis by z* then

z’ = c i + c i + c k  1 2 .2 1a— x— y* z—

where

c =(x - x )/L , c =(y - y )/L and c =(z - z )/LJi V j O Zi o

If the unit vector along the axis of the member x'-axis has direction

cosines a ,a .a and this unit vector is taken to be perpendicular to x y z
the z-axis then

x' . z = 0  1 2 .2 1b

where

and z = z k

It follows from 12.21b that

a z = 0 z
but z ^ 0 thus a = 0  1 2 .2 1cz

z' and x'are the two axes of the member and these are perpendicular to 

one another hence

z* . x' = a c + c a  = 0  1 2 .2 1d- - X X  y y

From the conditions of the direction cosines

a2 + a2 + a2 = 1 ' 12.21ex y z
If the unit vector x' is measured in the positive direction of the x-axis
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then. 1 2 .2 1c, 1 2 .2 1d and 1 2 .2 1e gives

ax * * V 0* 57 M
and

1 +(Cy/c„) 12.21f

a = - 1/y 1 +(c^/c„)X 1 2 .2 1 g

If the unit vector along the third axis is ^'sb^i+b^j +bzk 

and this vector is perpendicular to the x' and- z'vectors, then

a1. y' = c b + c b + c b = 0— x x  y y z z

x ’.t' = a b + a b  = 0- x x y y

The direction cosines of the third vector satisfies
2 2 2b + b ' + b = 1  x y z

Solution of equations 12.21h,i,j gives

b = + z 1 7  J i i a / a * ) 2 +  1 i l V C  y- ° x V ai  + 1

b = - c b /Yc - c a /a } y z z / v y  x j r x 7

and

xb„ = - a_b^/a.

These direction cosines satisfy the condition

x y z
allowing the arithmetic to be checked.

1 2 02 1h

•1 2 .2 1i

12 .213

1 2 .2 1k

1 2 . 2 1 1

1 2 .2 1m
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Frame 4

The elastic critical load of the framework of Figure 12.7 with 

inclined members is determined. The three modes of elastic instability- 

are possible but the analysis of the critical mode is only shown. A 

model of the framework was made of members having equal lengths and 

flexural rigidity El. The members had circular sections. When the 

framework was loaded it was found that the second mode of instability 

was the critical mode since any dynamic disturbance applied to the frame 

causes the dominant torsional vibration only. 'I’he cartesian axes x,y,z 

are chosen as in frame 1. Due to the number of parameters given by 12.1? 

it is more convenient to deal with a frame with known direction cosines.^
cThe inclined members are assumed to make 45 with the z-axis and their 

projections on the xy-plane make also 45°with the x-axis. wence equations 

12.21f,g,k,l,m gives the direction cosines of member AA‘ as 

' -0.70?, -0.707, 0

+0.5 , -0.5, 0.707

-0.5, +0.5 0.707 „

Stability criterion for the twisting sway mode

As in frame 1, if the deformations at joint A are (3©x ,39^,0©^,

3S" (s=3o),3$’ (s=3S),0) then the deformations at joints B and D will be*v * * v 1 . -
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respectively* Due to these deformations the following moments will 

appear at the ends of the members meeting at joint A.

Member AB Member _AD

x)23ex3V  2k2G®8*

il

<ÎO

3m  =(ko0_3e 3m  =;y  2 y y

3m  =Ck«),3o -(2ko/L)53S' z 2 z 2

M» *'2 z ^  '2

The moments attthe end of member AA' are obtained by substituting the

direction cosines in 1 2 , 1 7  and putting 3S =3<b = 3b and 3S- = 0 which° x y z
gxves

3m
X F3eX

3m y X 0©y
3m z A 3©z

,3S .

0.75-'(hs)1 +P.-25klG

0.2 5 (ks^-0.25k1G

0.25(ks)1 -0.25k1G 0.3535 ( (ks).,-^) 

0.750cs)1+0.25k1G— 0.3535 ((ks)1-k1G)

0.7073ÜCO/L),

-0.707 (kc/L),

(ko/L)n
For the reason given in frame 1, each disturbing force at each 

corner stores energy in one inclined member and the halves of two roof 

members. Thus the shear force sway equation 2 , 3 gives

2*3S =Cvxt3S'xl+vy ,3Syt )AA, + (vy3Sy/2-)AB+(vx3S3/2)AD 1 2 .22a

where

(Vy)AB= - Ĉ fkA/L
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(vx )AD= - [ (2ko/L)23ez - CtoL/L2)23o ]

® y w < %  - ® .
<3Sx >2e ,'and (33^, \ ^ r e  obtained by using 12.11

3 3  , l a s '
X* X

33 , 33y*JAA» L y . -

-O . 7 0 7

0.5

-0 .7 0 7

-0 .5

But at joint A 3? = 00” = 33 hence 0 x  y

--
-1 a~>

>
r

=  [ » J
-1.VlV

3?„, 0
J AA*

^x'^AA 1 obtained from 1 2 , 2 0 which is

M =AA 3«j[o.50co/L)1 -0.5(ko/L)1 0.707(ko/L)1 2.828(kA/l2 )1]

9©

S8:5

33

Substituting these values in 12.22a gives

H  -
3©

3©y

0©2
33

2
[o.707(ko^'L) 1 -0.707(kc/L) 1 JOco/L)1-(^ko/L)2^ ^(8kA/L )2

+ (*HcA/L2)£]

1 2 .22b

At the critical load H vanishes therefore the above expression is equal 

to zero. Equilibrium at the joints requires that the total moments at 

joint A along each axis is aero. Hence the equilibrium equations will be
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oM
X (ko02+2k2G+0.75 Cks) 1+0.25k1G 0.2 5 ((ks)1-k1G)

CO 9 e
y 0.2 5 ((ks^-k1G) (ko02+2k2G+0.75(ks)1+0

3 mz 2 e z 0.3535((ks)1-k1G) -0.3535((ks)1-k1G)

t
r

■-----,
toCO [o.7 0 7(ko/L)n -O.707(ko/L)n

"1G

0.3535 (Ocs)1-k1G)

-0.3535 ((ks)1-k1G)

O.707(ko{/L).

-0.707(ko/L).

0 ‘

0

0

' 0

1 2 .2 3
(2ko02+0.5(ks)1+0.5klG (ko/L^-C^-ko/L^

(ko/L)1 -(¿fko/L) 2 (8kA/L2)2+(ifkA/L2:

The determinant of the square matrix is the stability condition, 

and the load parameter ^ making the determinant vanish is the critical 

one which is obtained by a trial and error process.

Numerical example

The framework was .assumed to have equal lengths and ET-values 

therefore the relative flexural stiffness of all the members is equal. 

The torsional stiffness of the members is assumed to be 0.77k where k 

is the flexural stiffness. When the lengths and the relative k-values 

are substituted in 1 2 .2 3, the determinant becomes.
0.707«^ 

- 0 .7 0 7 o£,

« £ + 0 .7 5 8 ^ 1 .7 3  0 .2 5 s 1 -0 .1 9 2  0 .3 5 3 5 s 1-0 .2 7 2

-0.35355^+0.2720 .2 5 s 1 - 0 . 1 92 c£ + 0 .7 5 s 1+ 1 .7 3

0 .3 5 3 5 3 ^ -0 .2 7 2  -0 .3 3 3 5 8 ^ + 0 .2 7 2  2 c£ + 0 .5 s ,j+ 0 .3 5 3 5

0.707oCj -0 .707cC, o q - V 2 8A2+ifA1

1 2 .23a
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The forces, the relative Euler loads and the relative load 

parameters of the mothers are:

Member AA*(1) AB,AD(2)

force 1.V14P 0.707P

rel.P 1 1e
rel. f 1 0.5

The critical load parameter^ is obtained by trial and error. 

First trial fi =0.8^

?»=°.te
From tables#

s n= 2 . 7^-83 0^ = 5 .1168  A1=0 . 9 7 1 6

0^=5*5726 a ,j=3.5000

Substituting these values in 12.23a gives 

¿1= + 4710

i.e the frame is stable, a higher value of is therefore tested. 

When f( =0.92 = +59

The elastic critical load of the framework is therefore 
gp _ 0-92

- l 7 m  e 
= 2.6 Pe • *

This value corresponds with {28/11.7)Pe=2.393Pe obtained

experimentally.

!
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Chapter 13

Multi-bay and multi-storey building frames with, vertical stanchions

\

Introduction

In multi-bay and multi-storey building frames, the size of the 

matrices used in estimating the elastic critical loads becomes very 

large and this necessiates the employment of the electronic computer.

In these frames there are three possible modes of elastic instability 

•in the absence of external influences. These influences may introduce 

other modes of stability such as partial sway mode. These modes will be 

investigated to determine the critical mode.

It is well known that the mode of instability where no lateral 

movement is allowed has an elastic critical load bigger than other modes. 

To investigate vjether the sway or the twisting sway mode is the critical 

one, the elastic critical loads of the two modes of the frame in 

Figure 12.1 ii/ere estimated for different beam stiffnesses. The results 

obtained are tabulated below:-

k2/ki sway critical ^ twisting sway critical
fi

0 0.25 0 .2 5

1 0.75 0 .9 1 6

2 0.855 1.009
00 1 . 0 0 1.123
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These results shows that the anti-symmetrical sway elastic 

critical load is the least load for fixed stanchion feet.

The sway deformation in the twisting sway mode is a combination 

of stanchion sway and either torsional rotation of the stanchions or 

the sway of the roof members. The extra torsional rotation or the sway 

of the roof members increases the stiffness of the frame, thus increasing 

its elastic critical load. When the torsional stiffness k„ of the 

members tends to zero, the twisting elastic critical load approaches 

the anti-symmetrical sway elastic critical load since the twisting 

sway stability condition of 12.5 is then modified to 

A  = 2(kA)1 ((kn)1+6k2 ) /'3.1

when k2Q= 0

This is the stability condition of the anti-symmetrica.l sway 

mode, since ̂ (kn^+ôk^ has the lowest elastic load parameter £ that 

makes A  vanish. Therefore, the sway elastic critical load is a .lower 

bound to the twisting elastic critical load. It can be concluded that 

the critical sway mode is the particular mode which requires the least 

number of members to sway whilst satisfying geometrical and equilibrium 

conditions. This is true for frames with partially restrained stanchion 

feet and the analysis to be carried out was made easier by the 

modification of the stability functions.

Modified stability functions

The stability functions are modified to take into account the
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the partial fixity of the supports. The supports are replaced by 

three springs resisting deformations in the three dimensions at the 

feet of the stanchions. The stiffness of each of these springs is 

assumed to be K. Derivation of an expressions for the modified functions 

are obtained by imposing deformation at one end of the member and d 

deforming the other end to balance the moment. From the resultant 

moment at the first end and the shear force in the member, the modified 

functions areoobtained.

For member AB connected to a spring at B and subjected to an end 

moment M^g at A, the ends will be rotated through angles and ©g 

respectively. Due to these deformations, the moments at the ends are 

tabulated:

Operation Mspring ^ A ma b

1. Rot. A ksc©,A ks8A

2. Rot. B k o b ks©B ksc©s

B is in equilibrium, hence

ksc©^ + (K + ks)6 g  = 0

which gives

G.0 = - kscG, / (K+ks)B A
A is also in equilibrium, hence

M. _ = ks ;©. +ksc©„ AB A B

= ks'©„
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where 

s' = s ( s!l + K A  )
s +K/k

Using the sane procedure, it can be shown that the shear force due 

to the rotation of A is koC0^/L and that the sway moment at A due to a 

sway S of A is - kok'S/L where

= <X(1----pyr- )s +K/k

The swayyshear force is 2kA,<b/L^ v/here 
2

A» = A ----—---
2 (s+K/k)

and the torsional moment appearing at A due to the torsional rotation 5̂ 

is k ^ A v;here

k* = V K/k
k^/k+K/k

The no-shear bending moment appearing at A due to the rotation ©^is

kn'Q. where 
A 2

n ’ = n " ^ k

The two elastic critical loads of the frame are then calculated 

using the modified stability functions obtained above. The results 

obtained by assuming different beam and spring stiffnesses are tabulated

below:

K/k, k2/kn sway critical^ twisting svxay critical^,
0 0 0 0

0 1 0.184 0.195
0 00 0 .2 5 0 .2 5

2 1 0.412 0.545
00 1 0.75 0 .9 1 6 [
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The elastic .critical load of the twisting sway mode in multi-bay 

building frames will be much higher than that of the sway mode. This 

is because rotation of any floor level as a whole will call into play 

sways in every beam at that level which greatly increases the stiffness 

of the structure as indicated by frames 2 and 3 in chapter 12.

Plane frames

Approximate methods for estimating the sway elastic critical load, 

Pulti-eav frames
11

There is already an approximate method for estimating the elastic 

critical load in which the multi-bay frame is replaced by a single bay 

frame having each beam stiffness equal to the sum of the beam stiffnesses 

at the corresponding level in the multi-bay frame stanchions stiffnesses» 

Euler loads and axial forces equal to the sum of those of the multi-bay 

frame. A few calculations using this approximation were made. The exact 

values and the approximate values which show satisfactory agreement, 

are tabulated for different numbers of bays. The frames are assumed to 

have members of equal lengths and stiffnesses and to have inner stanchions 

which carry double the axial forces of the external stanchions.

Number of bay (1) Exact£P/Pe (2)Approx. 2P/Pe (2)/ (1)
1 1.^95 1.^95 1.000

2 2.295 2 .3 8 8 1.0if0

3 3.*161 3 .2 6 0 1 . 0 3 1

if if. 01 *f if.122 1 . 0 2 7

5 if. 862 if.982 1 . 0 2 5



Tall_buildin°; frames

It is well recognised that the sway mode of instability of tall 

portal frames has the least elastic critical load and instability usually 

occurs in this mode, in the absence of lateral bracing and horizontal 

constraints at each floor level. There are two possible modes of sway 

instability

(i) Instability due to local failure of the weakest storey.

Usually this mode of instability is possible in multi-bay and 

multi-storey or single bay multi-storey portal frames. An approximate 

method for predicting this elastic critical load is given.

(ii) Instability due to the failure of the whole building as a built-up 

strut.

This mode of instability is possible in multi-storey tall buildings 

with a single or a small number of bays. The tall building frame becomes 

unstable in the same way a battened strut behaves.

Approximate method for local failure of the weakest storey

The approximate method is based on the fact that the deformation 

in the weakest storey at the critical load of the frame will be large 

compared with those of the adjacent storeys. These deformations will be 

sway of the stanchions of the storey concerned with joint rotations to 

wipe out the shear forces and keep the joints in equilibrium. ±ne storeys 

near the weakest storey will be affected by the large dexormauion ouo



the amount of deformation will be less as the stiffnesses of the other 

storeys become bigger. For convenience, the.no shear stability functions 

will be used in obtaining the stability conditions and therefore the 

deformation will be reduced to a no shear rotation of the joints only.

Each joint at the critical storey will undergo a rotation 0 when 

a disturbance is applied and as result the adjacent joint will be 

subjected to a moment carried from the critical storey joints, causing 

these joints to rotate through an angle ©. The value of © is smaller 

than 0 because the adjacent storeys joints are stiffer than the joints 

of the critical storey. When © is taken to be zero i.e when the adjacent 

joints are fixed, the elastic critical load given by this mode will be 

bigger than the exact elastic critical load. And when © is taken to be 

equal to that of the critical joints 0, the elastic critical load given 

by this mode will be lower than the exact value, following the argument 

that Q<£0»

These two cases i.e © = 0 and 9 = 0  will be taken as a method for 

estimating upper and lower bounds of the elastic critical load. The 

exact value of the elastic critical load will be nearer to one or other 

of the bounds depending on the conditions in the adjacent storeys. The 

mean value of the two bounds will be taken as an approximation to the 

elastic critical load of tall portal frames. It is believed to give

values good enough for practical purposes.

To increase the accuracy of the method, more joints could be taken
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giving the proper deformations to these joints but leaving the last

joint either fixed or rotated through an angle similar to the one before

the last. This will be illustrated in obtaining the stability conditions.

The upper bound of the elastic critical load has been proposed by 
|2

Dr. Bolton as an approximate method for estimating the elastic critical 

load of tall building frames.

Derivation of the stability conditions

1) First approximation

Let the weakest storey be the rth storey. Rotate the upper and the 

lower joints of this storey through ©^, and ©^ respectively. For obtaining 

the upper bound of the elastic critical load, joints B and B’ will be 

fixed. The moments appearing at joints A and A' vanish at the critical 

load hence

where T is the no—shear stiffness of the joint anc! is eaual to 

(kn)r +Clcn)r+1+6lCg.
The determinant of the coefficients of unknowns is reduceable to

1 3 .2 a

where



For the lower bound of the elastic critical load, joints B and B ’ 

shown in Figure 13.1 will be rotated through and 9, respectively. 

The moments appearing at joints A 1 and A will become 

MA,=ClA,-(ko)r-1)SAl -Cko)r9A = 0

“a  - - (to>r9A. *<TA -(ko>r+1)eA= 0

The stability condition of 13.2a will be also modified to 

h  = Ta Ta , (1 - flr ) 13.2b

where

% s (k0)r /(TA'"(ko;)r-1)(TA “(ko)r+1)

Any load parameter ^ making ^ =1 will be the upper bound of the 

elastic critical load parameter and that making ̂ T=1 will be the lower 

bound of the critical load parameter since the terms in the brackets 

become zero before TA and T^,.

2) Second approximation

The proper deformations of the (r—1)th, rth and (r+1)th storeys 

are considered. For the upper bound of the elastic critical load, the 

upper joints of the (r-2)th storey and the lower joints of the (r+1)th 

storey will be fixed. Accordingly, the moments appearing at the joints 

are:

«B.- V ® B .  - (lto)r-ieA'= 0

2kk
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V s -(k0)r9A. +TA9A -(k0)r+l V  0 

V  -^o)r+1eA+ t3©b= o

The determinant of the coefficients of unknowns is reduceable to 

a simpler form and in this expression the term which gives the lowest 

load parameter is

A =  (1 -'O ) - ' 0  1 5 . 3 aLr-i Lr
where

V r  and T v+r < k“>r+l / V B

For obtaining the lower bound of the elastic critical load, the 

upper joints of the (r-2)th storey and the lower joints of the (r+2)th 

storey will be rotated through ©3 ,and ©3 respectively. It follows that 

the stability condition of 1 3 »3a will be modified to

-  «  - V ,  J O - T r .1  > - I t  13-3b
where

i ; „  = O c o ^ / ^ . d B . - O c o ) ^ )  and <[

3) Third approximation
The proper deformations of the (r-2)th, (r-1)th, rth, (r+1)th 

and (r+2)th storeys are considered. For the upper bound of the elastic 

critical load, the upper joints of-the (r-3)th storey and the lower 

joints of the (r+3)th will be fixed. Then the stability condition

will be
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For the lower bound, the joints of the (r-3)th storey will be 

rotated through the sane angle as the (r-2)th and similarly the joints 

of the (r+3)th storey. The stability condition 13.^a will be modified to

The stability conditions 13 • ̂ a and 13»^b are reduceable to any of 

the previous approximations by fixing some of the joints to cause some 

of the *2 terms to vanish. In special cases, when the weakest storey is 

at the bottom, the stability conditions, starting from the bottom storey

and the lowest joint A s are modified to

Approximat ion Stability condition 

for the upper bound

Stability condition 

for the lower bound

First Approx. ta= o 13.5a TA J (1co)2= ° 13.5b

Second Approx. oniv- 1 3 .6a 1 - V  o 1 3 .6b

Third Approx. 1- (W ss0 13.7a 1- < V 2 3 )-° 15.7b
I

Partial fixity at the supports

Sometimes, the supports of a portal frames are not rigidly jointed 

but only partial fixity is provided by some means such «s joining che 

two sunnorts by a cross beam etc0. The bounds of the elastic critical

load..will be estimated in the same way. The 2. term of the bottom storey
/

will be unchanged and the *2. term due to the supports will be equal to

*2. since there is no storey beyond the supports to modify the ^ term.
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Numerical examples

Example 1

The elastic critical load of the frame in Figure 13.2 will be

estimated using the three approximate methods. All the members have

the same cross-section and equal lengths. The stanchions of the bottom

storey have the highest relative load parameter P/P and it followse
that the bottom storey is the weakest one. So the conditions13.5, 13.6 

and 13.7 will be used in the estimation. On substituting the relative 

stiffnesses, the "no-shear" stiffnesses of the joints are:

Ta= n1 +n, +6 -I.:.'

"E~r:2+r‘3+^ T -*(ko)-,= n0+n-,+6 ~ 0-, £> 3 2 p 3

TC=n3+rV 6 Tc -(ko)i,=n3+nIt+6 -ok

v  4 v b y

V  « ÿ ' V o % -  4 v w

Using equations 13.5a and 13.5b, the calculations for predicting 

the bounds are shown in Tables 13.1a and 13.1b. Using the other two 

approximations 1 3 . 6 and 1 3 .7 , the bounds obtained are tabulated, together 

with the exact value obtained by the classical method of prediction 

using 7X7 determinant, in Table 13.2

Approximation Upper bound £ Lower bound Q mean value^ Exact value
C\

13* 5° 0 .6 52 0.5k ■ 0.596

13.6 0.56k 0 .5 2 0.5h2 0.546

13.7 0.546 0.534 0.5 40

Table 13.2



Example 2

Tiie elastic critical load of the frame in Figure 13.2 will be 

estimated when there is a concentrated loads only at the top floor of 

the portal frame. In this frame the weakest storey is' probably the 

second one. The second approximation of 13*3 will be used to evaluate 

the upper and the lower bounds of the elastic critical load. The no

shear stiffness of all the joints will be equal to 

T = 2n+6 and T -(ko) = 2n+6-o

The term since the supports are fixed,'0 ¡5 y^-ysCo/T)^ and

VL= o /T(T-o). Accordingly equations 13.3a and 13.3b become.^

The calculations for predicting the two bounds are shown in 

Tables 13»3a and 13«2b. The mean value of P/P^ obtained is 0.^322.

As the number of storeys in this frame is increased, the weakest 

storey will move upward. For example when the third storey is taken to 

be the weakest one, the mean value of P/P^ will be 0.VI9. When the 

number of the storeys becomes fairly large, the joints far from the 

foundations will rotate more or less the same amount, then the stability 

condition becomes

T - 2o "  13.3c

The load parameter p making &  vanish is about 0,^02. This is the 

lowest possible critical load parameter 0 for the uniform storeys shown

1 - 2*2,

A  = 1 -  CMZ') 1 3 .8b

1 3 .8a



in Figure 13.2. The exact values of the elastic critical load parameter 

C are tabulated for different number of storeys.

Number 1 2 3 4 5 6  7  0 0

P/Pe 0.?48 O .523 0.462 0.436 0.423 0.^15 0.410 0.402

Example 3

The two bounds of the elastic critical load of the frame in 

Figure 13.3 will be estimated. In this frame, the bottom storey is the 

critical one. The second approximation of 13»3 will be used. The exact

value of the elastic critical load was obtained by R.B.L Smith and
20W. Merchant.

The no-shear stiffnesses of the joints A, B and C are 

Ta= 3*4 +2.22nn 

Tb =2 ,22n^+3.1112+6

Tc=3.1 n2+2 .6n^+6

’i,.-C2.22o1)2/TATB

\  » O.1 o2 )2/TbT0 =■ (5.1 o2 )2/Tb (T0-2.60j )

Equations 13.3a and 13.3b are reduced to 

A = 1 13.9a

A =  1 - 13.9b

The calculations for estimating the two bounds are shown in 
Tables 13.4a and 13.4b. The results obtained can be tabulated as follows
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Upper bound
r,

Lower bound
e»

mean value Exact value

0.4 31 0.398 0.414 0.415

This method has been applied to other frames of Figure 13.4. The 

second storey is taken to be the weakest storey. The approximations of 

13»3 was used. The results obtained are tabulated below:

Number of storeys 1 2 3 4 5 7
Upper bound O .2 58 0 .2 1 3 0.164

Lower bound f 0 .2 50 0 .1 9 6 0.134

Mean value (*, 0.254 0.204 0.149

Exact value f 0.748 0.478 0.338 0.257 0.206 0.145

Instability of the whole building frame

This kind of instability is possible in a very tall building

when each individual storey is well designed and when there are few

bays. The curve relating P/P to N, the number of storeys, is shown
©

in Figure 13«5» This curve is obtained by the classical method of 
2lestimation • This curve shows that after a certain number of storeys, 

reduction in the elastic critical load is very small as the number N 

is increased and that there is a least value of P/P^ equal to 0.402 

which is attained when N is infinitely large. It could be concluded 

that after a certain value of N, increase in N has'-in'-practice no 

effect on the elastic critical load. This is not true, however, and
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the elastic critical load given by the previous calculation is merely 

that of the local failure mode of the weakest storey and is not the 

elastic critical load of the whole building frame. Therefore, the 

classical method of prediction ceases to be applicable in the estimation 

of the elastic critical load of tall building frames. The method of 

estimation must be modified to take into account the number of the 

storeys of the building. In the previous method it was found that the 

effect of the axial deformations of the stanchions has a very small 

effect on the elastic critical load of the portal frames when the 

number of storeys is small and therefore an assumption was made that 

the axial deformations are negligible. To obtain the correct value of 

the elastic critical load, these deformations must be considered. 

Consideration of these deformations will show the reduction of the 

stiffness of the critical storey joints and the amount of reduction 

is usually dependent on the number of storeys N.Such analysis and 

calculation will be very long and tedious especially for very tall 

building where the size of the mattes of the elastic stability condition 

rapidly necessiates the employment of an electronic computer. Actual 

estimation is not shown but the basic equations are given. The following 

steps are to be followed

1) Apply a disturbance which causes c. no-shear rotations in the joints 

of the frame such that all the joints remain in equilibrium. For the 

rth joint, the moment is
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3m = i(kn) + (kn) +(kcx) "VSd - (ko) 3d . -(ko) .3dr L r r+1 Br4 r r  r r-1 r+1 r+1
-(ko/L)Br^ 2 u x = 0 1 3 .10a

=̂i
where

n,o, and. o( are the stability functions, and

u, is the axial deformation of each-stanchion. In each storey there 

will be extension in one stanchion and contraction in the other.

2) There will be a shear force v on each cross beam of size
t r

vr = <2ko/I.)B80r - (2kA/L2 )Br^ 2ux
2C.-I

3) Each stanchion is deformed by u where
* N r

I -

1 3 .10b

13.10c
r _(EA/L)r irrx

oVvey A-cross seeK. jna\ area.
From these three conditions, there will be 3N force and deformation 

unknowns and will be also 3N relationships. A square determinant can be 

written down which is the stability condition. Any load parameter P/P^ 

which makes this determinant vanish will be the critical load parameter, 

of the frame.

Special case

When N is very large and the stanchions have equal El, L and carry

the same axial fcrce, the joint* rotations,-axial deformations and the 
shear force on the beam can be assumed to be equal to mean values/. The

three conditions 1 3 . 1 0  can be modified to 

3M = [(2kn-2ko)+(koO-p] 3d +(ko/L)B 2ru = 0BJ
v =(2ko/L) 3d - U k A / L ^  2ru B -D

13.11a

13.11b
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13.11c

The determinant of the coefficients of unknowns is reduceable to

13.12

where

0 = (Mii!/L2 )B/(EA/L)

When N=GO, 13.12 becomes 

= 2k(n - o)

The lowest load parameterp making (n-o) vanish is zero. This shows 

that the critical load of a frame which is an infinite number of storeys 

is in fact zero, as is to be expected by analogy with an infinitely 

long strut of finite cross-section.

The estimation of the elastic critical load of tall frames using 

the above method 1 3 . 1 0  is not practical due to the number of unknowns 

involved. There is another way of predicting the approximate value of 

the elastic critical load of special frames. The tall building frame 

behaves like a battened strut built up from two or more main members 

which carry the axial load and which are held at a fixed distance by 

the beams. Therefore, the elastic critical load of the tall building 

can be estimated by considering the stability of the equivalent strut.

Equivalent battened strut

The shearing force in a strut reduces the value of the elastic
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critical load by a factor C called "shear coefficient". For the case of 

battened struts, the shear coefficient depends upon two factors: battens 

spacing and batten dimensions. According to Timos^etkothe elastic critical 

load of a solid strut under uniform axial load is

P ..= C P crrt s c 13.13

where

C = s 1+ n1 PC/AG

p = CP c e
£ = load parameter P/P depends upon the end conditions of the strut.

P = Euler load of the strut. e
a n u m e r ic a l  9-a.ckor d e p e n d * o n  aVape of* cross se.c\ncYi.

A = cross sectional area 

G = modulus''.of rigidity 

For a battened strut

P ..= C, P crat b c 13.1^

According to Timoshenko
1

where
1 + Pc \ +  -ai

a = length of the stanchion 

b = length of the batten

I = moment of inertia of the stanchion c
= moment of inertia of the batten
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B = P ./2TTEI /a2 r crz' c

This is an approximate value of since an assumption is made

that points of contraflexure occur at the middle of the stanchions. 

The coefficient can be expressed in another form as.

k=relative stiffness of the batten 

V- slenderness ratio

1= moment of inertia of the equivalent solid strut 

The elastic critical load of a solid strut under non-uniform axial force 

is

C 1

where

3/1 = 2+-|Cb/a)2ycc

15.15

where

C»s 1 + n C P /A G 1 P c s

P.j, are the axial loads at the ends of the strut

P = P c ' e
 ̂ is the load parameter (P̂  + P^VSP^ its value depends upon the 

ratio- P^/P^ and the ends conditions.

C^=factor depends upon P^/P^. It has a value of unity when P^/P2=1 

and about 0.879 when P^/P2= 0. The approximate evaluation of

/
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Cp and the derivation of the elastic critical load of a solid strut 

fixed at one end and free at the other is obtained approximately by 

the energy method, shown in the appendix.

For battened struts subjected to non-uniform axial load, the 

shear coefficient will be similar to-C^-.except P^ is replaced by 

C P in the denomintor. P =0.5996 for P./Po-0, For other values of P,/P_ 

the load parameter  ̂ can be obtained from the stability tables of chapter

15.

The above expression? for the shear coefficients are applied only

to building frames having storeys of equal height and the same stanchion

properties. For other frames, the problem can be tackled by estimating

C of a solid strut having variable flexural rigidity El and in which s
the change in slope of the deflection curve produced by shearing is 

variable *

Numerical example

The elastic critical load due to the local failure of the weakest

storey of the frame in Figure 13. 6 is

P = 2 P P c L e
= 2pN2PE/ ( V i c) . 13.16

vrhere P„ is the Euler load of the solid equivalent strut.Xi
When Y is taken to be 50 equation 13.16 becomes 

P /P_ = P N?626 13.17aC Xj '

I
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It xias shown in example 2 that for £!!>>■ 7 > ^ will be about 0.402t 

hence equation 1 3 .1 7a becomes

P /P = 0.641 X 10-3 ^2 13.17bC ij
For N^.7, the values of f can be obtained from the table in example

2. Substituting these results in 13.17a. the curve relating P /P_ andC E
N is obtained and is shown in Figure 13.7«

The curve relating P /P_ to N for the equivalent battened strutC £ j

is obtained by using equation 13.14 taking n^/AG = 3 and ̂  =0 .2 5 and

ignoring the effect of stability. The modified equation is

15.17c
'c E 1 + 390/1r

The curve obtained from 13.17c is also shown in Figure 13.7. These 

curves show that the load parameter P /P_ for the local storey instability 

becomes very large for big values of N and tend to infinity when N 

becomes infinity. Equation 13«17c shows that the load parameter P /E_ 

increases as N is increased but it has a limit of 0.25 when N=00. This 

equation also shows that the effect of the shearing is pronounced for 

small N and the effect decays as the number of storeys is increased.
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Appendix

Take the deflection curve of -the strut in Figure 15.8 to.be approximately

= S (1 - costtx/2L)
The bending moment at any section mn is 

PL
M =J p(1- y) d X

Substituting for y in this expression and also observing that 

^ = $ (1 - cosrrf/2L) 

we obtain

M = pS £ (L-x)cosn2i/2L - 21/u . (1-sinn^/2L) } „

15.18

15.19a

15.19b

15.‘19c

Substituting this in the expression for the strain energy of bending

we obtain 
L

AUm=J H^ dx/2EI =s>1£ £ i ± + x 3 3  '¿El ’  r f * rr-3'o
The shear force at section mn is

L

15.20

Q = dF/dx = “ P df

= - p(L -x) dy
dx

sinTix/2L 15.21= - p(L - x) ;2L

Substituting this in the expression for the strain energy of shear, we 

obtain
n, ̂  %2nxl , \= J n^Q dx/2AG =•AG- IG  ̂3 Ti2- )

The total work done by the loads during buckling is

15.22

M ‘= 2 i (L“x)(fl) **
-JlIiL&fA____L 'j 15.25
" 8 ^4 rr̂ J

At the critical load, the strain energy of the strut is equal to the
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work done by the external loads. Hence

A U m =  & T  ' , 13*24
Substituting 15.20, 12.22 and 13.23 in equation 13.24 we obtain an 

approximate critical load

(pL/2) = P/(1 +C P m/AG) 13.25C C JJ c *
where

P = P P c v e

e * 2 (1/4 - 1/pr*) / (1/6.:+ 9/ui - 32/rr"5)

= 0.3996114
■ "i   __ —. . ■ • : ■
cp = (1/ 3 - 2/ r r * )  /  (1 / 4 - 1/rr*)

= 0 .8 7 9 0 15
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Chapter 1^

Elastic instability of frameworks with non-uniform members 

Introduction

Members in portal frames sometimes have a varying cross section, 

the section being increased where an increase in the bending moment 

is expected to make the members approximately uniform in strength.

Such members are quite frequently met with in engineering structures 

especiably in frameworks where the flexural rigidity of the members 

plays a role in carrying the external load applied to these frameworks 

i.e in rigid frameworks where the loads on the framework are taken 

by the framework components of axial forces, and bending moments in 

the members. In this chapter a practical method of estimating the 

elastic critical loads of frameworks with uniformly tapered members 

in which the moment of inertia of the cross section varies according 

to a power of the distance along the member, is presented using 

tabulated stability functions. The stability functions are obtained 

by solving the basic moment equation at any section along the tapered 

members. The exact solution of this equation is shown and the results 

obtained are checked by an approximate solution using the finite 

difference method.

The subject of the stability of isolated struts having 

particular ends conditions has been investigated by different

i
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2.*2. 0*5writers ' ’’5 J . Good approximate values of the elastic critical 

loads of struts having either pinned or fixed ends can be obtained, 

using the approximate methods proposed by some of the writers. But 

the approximate methods fail when the conditions at the ends are 

neither pinned nor fixed. Therefore, there are limitations on the 

previous work when the partial fixity provided by the adjacent members 

in the framework is considered and when a foundation provides some 

restraint.

The method of analysis used and the assumptions made are 

similar to those of chapter 2, except that the stiffness, carry over 

and the shear factors in the standard slope-deflection equation are 

different. The stiffnesses of the two ends of the tapered strut are 

different, the stiffness s^ of the smaller end being less than the 

stiffness s^ of the other end. The moments appearing at each end of 

the member due to unit rotation of the other end are the same and 

will be referred to as sc. The moments appearing at the ends of the 

member due to the sway of one end are different and will be referred 

to as oij and o^. The values of and are shown in the appendix 

to be Sl+sc and s^+sc. The values of these stability functions have 

been calculated taking into account the effect of the axial load and 

the change in the moment of inertia from one end to the other.

Therefore, with this notation, the modified slope-deflection 

equation for the end moments of the member AB of Figure 1^.1 due to
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the rotations Q̂  and at the ends and the sway *6 are 

M1 = kl(s1©1+ sc©2 - c^S/L) 14.1a

and

M2 = k^(sc©1+ s2©2 -  o^S/L) 14.1b

and the shear force balancing the moments is

v = kn/ L . (oi,61+ -  Q S/L) 14.1c

The moments and the shear force have been expressed in term of 

the k-value and the load parameter ̂  of the smaller end.

The purpose of the calculation which follows is to evaluate 

s, , sz a sc, and Q in a form suitable for computer use and to obtain 

tables of some values which could be used in desk calculation. These 

tabulated values have been used in the calculation of the elastic 

critical loads of non-prismatic isolated struts and portal frames 

with non-uniform stanchions.

Derivation of the fundamental equation

- The strut considered has a uniform taper in one plane. The 

point of intersection of the two sides of the tapered strut will be 

taken as the origin of coordinates. The smaller end of the strut will 

be denoted as end 1 and the larger as end 2. The depths of the cress 

sections at 1 and 2 are d^ and d^ respectively and the length of the
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strut is L. Therefore the depth of cross section d nay be expressed

by

a* “ V i J - y f ) 14.2a

in which d̂ r is the depth of any cross section located at distance 

x fron the origin which is itself at distance a fron the end 1 and 

b from the end 2. The moment of inertia of the cross sectional area 

of the strut about the axis of buckling is expressible in the form
x , , x - mI = I (  — ) = 1 ( 5 = )x V  a ' V  b ; 14.2b

in which I is the moment of inertia at distance x from the origin, 

denotes the moment of inertia of the smaller end 1 and denotes 

the moment of inertia of the larger end 2. m is a shape factor that 

depends on the cross sectional shape and dimensions of the strut. The 

shape factor m may be evaluated from equations 14.2a and 14.2b which 

yields the condition

m =(L0GT2/Ir) / LOG u 14.2c

where

u = d_/d^ i

Therefore the shape factor can be determined once the dimensions 

of the end cross sections are known. For struts of rectangular cross 

section the shape factor m is equal to either 1 or 3 depending upon 

the axis about which buckling occur. A strut having an open web or 

an open base section consisting of equal areas at the corners of the
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cross section has a value of 2 fapproximately) and a tapsred strut 

with solid circular cross section has a value of m= k» For struts 

of wide flange shape or closed box section, the shape factor will 

be between the limits m=2.1 and "m=2.6 f£3).

The differential equation of the deflection curve of a slightly 

bent ideal strut under the action of a uniform compression, can be 

obtained by considering the bending moment at any section along 

the member at a distance x from the origin.

*1 ' A2 '' b-a 7 ‘ “1M = P y - (M.+lOC — —  ) + M„

By beam thebry, the moment and the radius of curvature is related by

Nx = E i
R

and

R = _

1^.3b

14.3c
dx

hence

M = - EL x
¿ T
cdx2 . 1^.3d

Subsituting 1^.2b and 1̂ f.3d and rearranging, equation 1^.3a becomes 
.5

dx2
in which P is the axial load, y represents lateral deflection of the

El (|)n — | = M (— f - 1) + M ( ~ )i a  v T o - a  2  b - a <\k.k

strut and and are the applied'end moments.
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Stability functions

In finding the elastic critical loads of frames with uniform

members, the stability functions tabulated by Livesley and Chandler

have been found of value. In a similar manner it was decided to

tabulate functions for non-prismatic members.

The stability functions for different values of m and u were

evaluated by solving the fundamental equation *1̂ .4. The expressions

for the stiffnesses and shear factors are given later. In the case in
be

which m=k, the stability functions were found to>simple functions of 

the stability functions of the strut with constant moment of inertia 

which are tabulated by Livesley and Chandler. These are

S^ = u s
5S2 = U S

—  2SC = U sc

s” = u s"

s^ = U5s"
. 2 cgj = u s + u sc
, 3 2= u s  + u sc

Q = u s + u5s + 2 u 2 ( s c  -  B) 

and

ej = u2 e
where s, sc, s". B and £ are the stability functions of the uniform

stmt
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Therefore, the stability functions for any value of and u 

can be obtained, and in turn the elastic critical load of any frame.

For m other than 4-, the stability functions are not simply 

related to those of the uniform strut. Therefore, the stability 

functions were tabulated for four values of u.

m u

3.0 1.5. 2.0, 2.5, 3.0

2 A .2®5

2.0 2.0, 3.0, k.O, 5.0 j
*------------- ------ ---------- i

For values of u between these, the elastic critical load can 

be calculated by graphical and calculation technique.

Elastic instability of struts

The elastic critical loads of struts with the middle portions 

of uniform cross sections shown in Figure 14,2 will be determined. 

The struts will be considered to be' hinged at the ends. The length 

of the strut will be taken to be L and the length of the middle 

portion will be denoted by z. The moment of inertia of the middle 

portion will be L, and that of the ends is £j •

There are two possible sway modes of elastic instability which 

are equilivalent to the first and the second budding modes of the
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uniformly cross section strut with hinged ends. It'is well known 

that the first mode has the lowest value of the two elastic critical 

loads. Therefore the analysis of the first mode will be shown only.

If equal disturbing forces H are applied at B and B{ the 

following deformations will occur

1) Joints B and B 1 will rotate in opposite directions through an 

angle

2) The portions AB and A'B* will sway in opposite directions by BS.

Due to these deformations there will be moments at the ends of 

each of the three portions of the strut. These moments are tabulated.

Operation MAB >lba lvIBB'

1)Kot.B&B’

2 )Swayo5 

5 ) Baiane eAScA1

-(ko^S/L)^ 

+ ( ko^ò/L ) ̂

(ks”) ^ B 

-(ko|S/L)1 

+ (kflej6/D1(S£)1

(ks(1-c))|©B

Joints B and B' are in equilibrium, hence

BKg= [(ks(1-c))2+(ks^)1] 6©b +(ko^™. _ o^^BS/L = 0 1^.5a

The disturbing force at B and B* is

H = *»(ks!j) B©g/D + — !<e~j (1 — ))^aS/L - C \A"S b

At the critical load this force H vanishes since the stiffness of the

strut becomes zero
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/ S OThe term (orj—  ~ cû \  can be reduced to the simpler form
S ']  1

- by using the definitions of cij and ci» Likewise the term 

(Q “ o^(1+ ” )),jis reduceàble to (s2 -FT • It follows that the

equilibrium equations become

[ ( k s ( 1 - c ) ) 2+ ( k s ” )ÿ © B ^ ( k s i p ^ S / L  = 0 1 ^ .5 c

-  (1es^ ) 13©b/ L  +k j[s” - n " Ç 1o S/Lî = 0 1^.5d

The determinant of the coefficients of the 1 unknowns is

(ks(1-c))2+(ks^)1 ^cs2

- (ks»)1
= 0 \4’G

'k1is2 "^9*1
This is the condition for the elastic instability, any load 

parameter ^ satisfying this condition is the critical one,
2The elastic critical load of the strut is expressed as KEI2/L 

by some writers (-4), where K is a quantity given in tables for 

different values of m,u and z/L. K is here expressed in terms of £ , 

u, m and z/L, to check the calculations with other writer^* results.

Let the critical load parameter of the smaller end be , hence

P < (?e)11
------§ 1 -  ( p  )m  ̂ e ;21 u
_ _£u_ , vfSI21 m — ----ru ,Jj"Zv2

2 24  e„ n z

from 1^,2

ua (1- z / L )

Y  • 2I2/L
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Thus

IC= 4 n Z f„ . 
un (1-z/L)2

14.7

Numerical examples 

Example 1. Taper so that m=4

For this case of m, the elastic critical load can be calculated 

for any value of u. The stability functions snp  ̂ and ̂  are replaced 

by the equivalent stability functions of the uniform cross section 

strut. Thus the stability condition 14.6 is modified to

-*, (ks(1-c))_, 
u3 " X ---- 2 14.8

The elastic critical loads will be calculated for different values 

of z/L and u.

(i) z/L = 0 and u=1.78 (L,/I2= 0.1)

In this case the stiffness of the middle portion becomes

infinity so that the stability condition 14.8 becomes

s " -  - 0 - A

and equation 14.7 gives 
4 rr2K = ~ r  P4TcT m

The value of f which satisfied the stability condition is obtained
'i

by trial and error process.
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First trial e, =0.38 

From tables(3 ) 

s»= 2.1532

Substituting these value in the stability condition gives

A =  2 . 1 5 3 2 - 2 . 1 1  

= + 0.0432

A higher value of ̂  is^therefore, tested.

When ^ =0.40 A =  - 0.1179

By linear interpolation the critical ^ is 0.385» and K = 4.8.

For other values of u, the^ and K values obtained are tabulated in 

Table 14.1.

V h
4u

— ---------------

I * « I K

0.1 10 s" - 5-55 e, 0.385 | 4.80
0.2 5 s" - 6.64Ç( 0.338 5.96
0.4 2.5 s» - 7 . 9 e, 0 .298 ; 7.45
0.6 1 . 6 7 s" - 8 .7 3 e , 0 .2 7 6 ! 8.45
0.8 1.25 s» - 9 . 4 e, 0.260 9 . 1 6

1 . 0 1 . 0 s” - n% Ç,
__!_______________

0 .2 5
:

rr*

Table 14.1

(ii) z/L = 0.6 and u = 1.78 (1^/1^= 0.1)

The relative k and Ç values are tabulated
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Member AB(1 ) BB* (2)

rel. I 1 . 0 10.0

rel. L 1.0 3 . 0

rel. k 1 . 0 10/3

rel.Pe 1 . 0 10/9

rel. ^ 10/9 1.0

The load parameter of the uniform strut is ̂  = Cv/u

= 10(3/9/10 

= 0.351 P*

When the relative k values and the u value are substituted 

in the stability criterion 1^.8, the determinant is modified to

S If + 0.395 Cs(1-c))2

- s"

and equation 1^.7 gives

- gtl 
S1

slj - 5.55 ̂
A 14.8a

K = k n'
10 X 0 . 1 6  

2h n ‘

e.

e,
9 X 0.16

The critical (^satisfying 14.8a is obtained by trial and error, 

First trial 2̂ = 0.52 

(p = 0.32 X 0.351 = 0.112 

From tables($ )

/
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s”= 2 . 7 7 1 6

^2= 3*5^02 (sc)2= 2 . 1 1 6 6

Substituting these values in the stability,condition 1^.8a gives:

A =
3 .6 2 6 6

2 . 7 7 1 6

- 2 . 7 7 1 6

2.1^76

= + 1 . 3 6

A higher value of ^ is therefore tested.

When £ = 0.3^ A =  - 1.65

By linear interpolation, the critical £ is 0.329 and therefore 

K = 9*03* This value compares with 9*08 obtained by Dinnik.

Example 2. gaper so that m=3

For values of m other than the elastic critical load can 

be calculated for certain values of u. For intermediate values of 

u, a graphical method will be used to determine the elastic critical 

load. This will give results which are good enough for practical 

purposes because the curves relating the critical load and u are 

smooth. This will be shown in determining the elastic critical 

load of the same struts for"m=3.

(i) z/L = 0 and u = 1.3

As before, the stiffness of the middle portion is infinite 

and the stability condition 14.6 becomes:-
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A =  s», - n ‘ f,, 14.9

and equation 14.7 becomes

(1.5)3
The value of ^ satisfying 14,9 is obtained by trial and error 

using the stability table for m=3 and u=1.5.

First trial ■«» = 0.97 

s” = 5,8724

Substituting these values in 14,9 gives 

A  = 5.8724 - 5.62 

= + 0,2524

A higher value of P is therefore tested.

When £ = 0 .6 0 A =  - 0 .1 5 5 2

By linear interpolation, the critical ^ is O .5 89 and K=6.90. For other 

values of u, the critical load parameterP and the K-values arevii
tabulated below.

u 1 1.5 2 . 0 2 . 5 3.0

p„ 0.25 0.589 1 . 0 8 1.737 2.556

K rr 6 .9 0 5.32 4.40 3.74

These values are plotted as curve A in Figure 14.3. The elastic
critical load of struts having intermediate values of u can be read

£*4from the graph. On the same curve are the values given by Dinnik.
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(ii) z/L = 0.2 and u=1.5

The relative k and ^ values are tabulated below

Member
I AB(1 ) BB'(2)

rel. I 1 . 0 5.575
rel. L 2 . 0 1 . 0

rel. k 1 . 0 2 X 3.575
rel.Pe 1 . 0 4 X 3.575

rel. £ 1 . 0
:

0.074

When the relative k values are substituted in the stability- 

condition 14.6, the determinant becomes

s ^ +  6.75 (s(1 -c ) ) 2

S21

-

s2 1 - n 'f„
14.9b

and equation 14.7 becomes 
4 nTK =

(1.5)3 X 0.64

The critical load parameter  ̂ satisfying 14.9b is obtained by trial 

and error.

First trial.Ci = 0.59 

C2 = 0.39 x 0 .0 7 4 = 0.0288 

From table m=5 and u=1.5 

s" = 6.4355
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From tables ( 5 ) 

s2 = 3.9683 (sc)2= 2.0079

Substituting these values in 14.9b gives 

19.6355 - 6.4355

^  - 6.4355 2.5955

= + 9.5

A higher value of (^is therefore tested.

When (¡, = 0.42 £ =  + 2.85
and when (* = 0.45 /\ = - 4.10

By linear interpolation f is 0.432 and K= 7.90. The 'same procedure 

was followed in calculating K for other values of u using the 

tabulated stability tables of m=3. The numerical results obtained 

a r e #

u 1 . 0 1.5 2 .0 2.5 3.0

4 0.25 0.432 0 .852 1.448 2.203

K TT2 7.90 6.57 5.71 5.05

Curve B in Figure 14.3 shows these results. Also on this curve
24are the values given by Dinnik. Curve C shows the numerical results 

obtained when z/L = 0.4.

The elastic critical loads of strut having m other than those 

tabulated can also be estimated using the tables. Figure 14.3a shows 

the relationships, obtained from the tables, between P/Pg and u for
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m = A-,3 and 2 for pin jointed strut« From Figure 1^.3a, Figure 1^.3b 

is obtained which shows the relationship between P/P^ and T5 for

particular value ¡of u.

Portal frames

It is necessary to be able to investigate the elastic stability 

of rectangular portal frames with non-prismatic members« In the 

following analyses the beam is assumed to have uniform cross section 

and the stanchions to have variable cross sections as shown in 

Figure

There are two possible modes of elastic instability, the joint 

rotation and the anti-symmetrical sway modes.

1) Joint rotation mode

On the application of equal and opposite disturbing moments 

oM at the two joints, the two joints will rotate in opposite directions 

through an angle oO^« Hence

condition, any load making the stiffness of the joint vanish is the 

critical load and is obtained by trial and error.

2) Anti-symmetrical sway mode

In this mode there is only one freedom of sway movement, that 

is the horizontal displacement of the "joints. When a disturbing

1 ^ ,1 0

The stiffness of the joint
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horizontal force 2Hg is applied, the following deformations occur:

1) Joints B and B* rotate clockwise through an angle S© .

2) Members AB and A*BS sway by So»

Due to these deformations, there will be moments at the ends 

of the members. These are tabulated as follows

Operation MAB ^ A ^BB*

1) Rot.B&B’

2 ) Sway 0$

(ksc

- (ke^BS/L

(ks2 )1‘S©3 

- (kop^S/L
6k23eB

The joints are in equilibrium, hence 

oKg= [(ks2 )1+6k2"] c©p - (kc|)13o/L = 0 

The total horizontal force at B is 

2Hb= 2 [ - (kcpnc^ + (k^SS/L2] r- ,

14.11a

14.11b

At the critical load, the stiffness of the frame becomes zero resulting 

in Eg being zero also. The determinant of the coefficients of the 

unknowns is

(ks2 )1+ 6k2 

- (kC'2 ) 1

- (kt̂ ) 1

OsQ) 1

= A =  0 14.12

This is the anti-symmetrical sway mode elastic stability 

condition.
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Humerical example

The elastic critical load of the joint rotation mode will be 

calculated when = 1.0, m=3 and u=1.5. Thus from 1^.10 the

stiffness of the joint is

A  = s21+ 2

The critical load parameter making the stiffness of the joint vanish 

is obtained by trial and error.

First trial = ^.20 

From table m=3 and u=1.5 

s21= - 1 .8 7 2 2

Substituting this value in the stability condition gives

A  = - 1 .8 7 2 2 + 2 

= + 0 .1 2 7 8

A higher value of ̂  is therefore tested.

Second trial 6?-.= 4.23 

s21= - 2 .0 2 6 2

and the joint stiffness is

A =  - 2 .0 2 6 2 + 2 

= - 0.0262

By linear interpolation the critical f is ^.225 and the elastic 

critical load of the joint rotation., mode is

2P = 2 X ¿f.225

= 8.^5?e11

P
e 11
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where P is the Euler load of the smaller end of the stanchion. 
e 11

For other values of u the elastic critical loads are tabulated:—

u 1 . 0 1.5 2 .0 2.5 3.0
2P/P

e 11
5.103 8.45 1 2 .6 6 23-5$^

s2 1+ ^ - “¿1

~ °2i «1

Anti-symmetrical sway elastic critical load

The elastic critical of the portal is calculated when k^/k^=8 

m =3 and u=2.0. The stability condition 1^.12 is then modified to

= A  1̂ .12a

The critical load parameter ^ satisfying 1^.12a is obtained by trial 

and error.

First trial Qi = 2 .$6

From table m=3 and u=2

s21= 13.0731 o£1= 19.93 Q1= 6.13

Substituting these values in 1^.12a yields 

A  = - 2h

A lower value of (j, is therefore tested.

When fu= 2.52 A = + ^.5

By linear interpolation the critical load parameter is 2.526 and the 

anti-symmetrical elastic critical load is

2P = 2 X 2.526 P
'1 1

= 5 .052P
'11
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For other values of u and k̂ /k,. t the critical loads are 

tabulated in Table 14.2. The results are also plotted in Figure 14.5. 

The curves obtained are smooth. The elastic critical load of portals 

for the intermediate values of u can be read from the graphs v?ith

good accuracy.

2P/P
e11

u=1.0 u=1.5 u^2.0 9 u=2. 5  r u=5.o;
0 0.5 0.715 0.952 1 .0 9 4 1 .5 2 0

1 . 0 1.495 2 .0 5 1 2.40 2 . 7 1 2 2 .8 7 7

2 .0 1.712 2 .6 5 2 5.510 5 .7 6 0 4 .1 2 8

4.0 1.845 5 .1 0 0 4.275 5.248 5.964
8 .0 1.914 5.408 5.052 6 .6 8 0 8 .1 5 6

16 1 .9 6 0 5.582 5.540 7.716 9.960
00 2 .0 0 0 5.770 6.0 96 8.982 1 2 .4 5 2 ]

Table 14.2
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Appendix

Methods of solution of the differential equation 

Exact method

The right hand side of equation 14.4 can be reduced to zero by

replacing y by z where

2  = 3 -
M t  (  2 C —  CL

P \b - a - 0 +
Thus the differential equation 14.4 becomes

2L =  • 0
J27 *2_± 'C o  2C

14.13a

14.13b

wnere 
^__7 P a *

El,
This equation is a transformation of a Bessel equation. The Bessel

equation of the form(26)
,2- 2CX-I dz 

dx*
d z  2*-t dz + [|sY:>c' + c* -  n  y al

*!5 -*ac oc
has a general solution

Z  =  0

Z  — . fc [ A  J n (|l -ir B  Y n (f dcx) j 

z  = . ^ c “ [ A J „ ( ^ ‘ ) +  B J n ( ^ y) ]

14.13c

14.13d

according as n is an integer or not. A and B are the constants of 

integration. Therefore the solution can, at once, be written down 

in terms of Bessel functions, by given particular values to the 

constants c*; js>, % and n. Comparing the two equations 14.13b and 14.13c

we find that

©< = i  ; ■YVl -t- 2 n  — -r
-m-t- 2 / » - 2 - m I4.13e
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Hence the general solution of the fundamental equation 14.4 is
a =s[AJ„(f=ciH B Y n((5=c1'>]+ )
a = & [ a  J n( ^ 5) + B J „ ( f x !) ] +  - 1 )  +  $ < £ 5 f )
depending on whether n is an integer or not*

I4.ljf

There are four unknowns A, B, , and which have to be 

determined from the following conditions at the ends 

at x = a y = 0 and

and at x = b y = 0 and d".

-d-2 = © dx 1

= Q-jdx 2

I4.l3g

Derivation of expressions for the stability functions 

Taper so that m=4

In' l4.13e if 5 is replaced by 4.0, the values of the constants

become
fpc?X = - i j n  = +  ̂  ; =  -h ̂

M

E I t
and the general solution is

a = ’5 c [ A J Lrg)-t-BJ,(<§)]+ ! l ( ^ s )  1 4 .1^
2 ~2 ‘ b-a P b - a

The Bessel functions of order a*id -i" are expressible in the form

B  cosC^/x^ —  14.14b

oc

c o s
=  B ' £ ST

¿C-r X  JUS* Jl/hC 

Substituting in equation 14.14 and-rearranging, the equation becomes

14.14ca - 3e lA ,» B S  +  B ' e o « E ] i - i j ! ( = f f - 0  +  ! i C | = 3 )
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The first derivative of equation 14.14c is

~  -  A 7 (  s r _  S c o s  2 2 : )  6 ^ cos 2 2 :  sin  i 4 . i 4 dox ^ sc ‘ x x p(b-a)
The values- of the constants A and B/ are obtained by substituting
the two end conditions y =0 at x=a and x=b in equation 14.14c. Which, 

yields

X

B x =-
v a b J 

!

[ H,^ L o - C O S S + f i a  cos -atkb a j

sir, \  Q[ %  s in  +  Mi s in  S t ]fc> 1 b a
I4.l4e

O so

The values of and are obtained by substituting the two conditions 

at x=a and ™  = «2 at x=b in equation l4.l4d.

M ,  =  £ L . U . c < (\ -2 c ? <  c o r  2 c* )
r a n  <x i e .

Eli . u2 Ky0-2o./cof Z'->'} I h e x - sin %oi 1 Q 
4 L'hantf — <x J  j. sinEcf—  2.o/ces 2.0/J a i4.l4f

M  - Oi . U J 2 cob 2 of 1 f 2 cr-~ siva ac*______1 n
1 >2 h Lra n o' —  j [ ojn 2.c< — 2c* cos Zc< J U *:

where

= f
9It is observed that

_i_ U j . t?- f ̂ d - 2 ^  cot 2 of ] a
* L L •fan si —  c* J ^ *

| cK ( 1 — 2 ^ Cof~ 2 c/ ]
a i~On ck — oi -I
and
rCX(\- 2o< coi- 2.crf “| f S
f_ "han o', _, 0/ i L <

2 . o (  —■ S i n  2.o<
■ ]

== SC
Zc< —  2c* cos 2d

where s and sc. are the stability function tabulated by Livesley

and Chandler



The end moments due to the rotations of the ends can be

M1 = Elj/L. ( Sl©n+ sc 02 ) 

lip = EI^/L. (sc ©.,+ s^©^)
i4.nifg

where ŝ  and sp are the stiffnesses of the smaller and larger ends 

respectively and sc is the moment appearing at either end due to 

unit rotation of the other. Comparsion of 1^.14-f and l^f.l^g yields

I4.1^h
S1

n
w 

* tfi

S2 = U S
2sc = U SC

Modified stiffnesses ŝ' and s^ •

If 0 i.e end 2 is pinned, then we define M^= k̂ s!j ©^

wnere

sv = S1 S2 ~ (sc ‘̂

and if M^= 0 then M2= k̂ slj ©2

wnere
s^S2 - (sc)2

and these are expressible in terms of the stability functions 

tabulated by Livesley and Chandler as
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Sway factors , ci,, and Q

If one end of a pin jointed non-prismatic strut is displaced 

laterally by o, the strut will rotate bodily by a clockwise rotation 

a = s/l  ass in Figure 1ii-.6a» If the two ends are rotated such that 

the two end portions are parallel to the initial position as shown 

in Figure '[k,6lo1 end moments will appear at the ends» These are 

M-j = - ktj ( s1+sc ) S/L

= - k ^ S / L  

where

= S<J+ sc

and

M.., = - k^ (s2+ sc) S/L 

= - knoUS/L 

where

o> = s0+ so

Thus the modified slope-deflection equations becomes

M. = k^Cs^©,^ sc ©2 “ o*] S/L ) 1^.15a

and

M2 = k̂ (sc ©1+ s2©2 - 0̂  S/L) 1̂ .15b
The force required to keep the strut in the position shown 

in Figure 1^.6b is

F  _ - * V  - ? S / I
L
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Substituting for and LL, using and l4.1ifk, givas

F = + kn (o>j + cp V i 2 ~ P S/L
= + k.jio^+ c£ -rr“ )̂ o/L2

= + knQ V l2 1 if. 1 5 c

where

Q = oij+ cC, - n"8,
These stability functions are expressible in terns of the

stability functions tabulated by Livesley and Chandler as 
2©>j= u s + u sc 1if.l6a

3 2c^= u s  + u sc 1 *f,16b

and

Q = su(1+u2 ) + 2 u2 (sc - B) 1*f.l6c

where

2B = rr" p

Taper so that ~5 = 3

When m = 3» the constants in 1*f.13e are 

0 = ~ 2  - n = -ri J / J - -  “
and the general solution of the basic equation is

3-1= [A J,Cff )+ 5 X ( f f  > +  ¥*<S=f)
The first derivative of equation 1 if. 17a is

¿i.Af i i lD  _ sc J. C )]+B r^CSL-s'Y(W)]+!4±Mi
dx L 4  X  L jqr 3C i p(b-a)

1if.1 7a

1 if.17b
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This equation can be expressed in terms of Bessel functions of the 
second order as

but it is more convenient to use equation 14.17b in tabulating the 
stability functions. The values of the constants A and B are obtained 
by substituting the conditions y=0 at x=a and x=b in equation 14.17a.

X<5>]
I4.1?d

where

c > =  -  Y ( 5 )  J,ib)
ana
a 2 ^  3 b ~ d S k  an4 -IF

111 U-i ‘ B-i
The values of M, and are obtained by substituting the two conditions
dy — dy ,at x=a and - f~ r -  Q 0 at x=b in equation 14.17c.
G.X * 0.X d

$  ci

1

6,

n u-i l , r
_  EJi.nx4 c, sir _______________________

ana

8 14.17§

M 2= -  P  n2i c ( _±i
* *- m. r  e 0.

£7. a P „ QCj-f-(Ci—f ) ^ C a
T  I,C| -----------------[ I'uc, + cu-o^<if{

® 2 1t..17x
su rr
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where
C ,  = J e w  Y e a )  — Y ( b )  1 ( 5 )

and
C 3 b) J v(a) -  J 6(E>)Y4(q )

From these two expressions for the end moments, it follows that 

the stiffnesses and sc are

s

£ ^ ~  rrt c, UC,-i-Cu-»)$SCa
*' t t u c . - K u - O * ^ i  +e. ? M

—  - o _L _j_ „
sc =  -  r/a7_ C, nTT ft • c 1

1^.176

[fu c |+Cu-llrfc.}{A + a^r^CJ^ - ! | j J 1i: +  Cl ^ ]
- r e

The expressions,for the modified stiffnesses and sway factors are

s" =

s^ =

s^s,- (sc)

_ to2 x2S^Sp- (sc)

Oij = s^+ sc

C2 = S2 r 
Q = c*J+

Hf.1 ?h

Taper so that m=2«*fr

Vihen m = 2.^, the constants in 1̂ -.1ge become

H i  n = |  i ^ = s ^  =  s  ^V/
0

I Pa** 
E*u



2 3 9
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where

C1 = J5/2 (a} . ¿ 5 / 2 ® “ ^5/2(S) " J5/2 (b)

C2 = J_5/2 (b) ' J5/2 Cb) .. J_

C-, =3 J-5/2(i) • J yy2 (b) + J5/2 (a) . J_

/ = IT P

, (a) 

.(b)

u - 1 ■ e-j
*?u> ,a = 5 0

5 0b =
V 5u

The Bessel functions involved in this analysis are expressible in 
the form2°

J5/a(z> '

j-5/2(2)

Si" z COS Z. ]

I J: SiViZ - K  3. _ i) CoS-2.■'irrx L ^

/ £ /  ( h  i.) S,n 2 _ (iS-Ocosxl
i rrx 1 ^ J

'-7/2 (s) = iTz. L -2»( i i _ l ) 5 i n 2  -v( IS ~  | - 3  CoS X  1
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Thus the stiffnesses and so are
t o  ~±) c-. - r  c .

S . =  rr'1 ^  C ,  u6/s1 O '

C^„ -jï P Q 0CU~- I ) ¿2. 4* C I

^  ' [ ¡« u -K t+ c , Ü  \ - î  ‘ ^  f ]

—  o r -, Çni Jd-rJ
Sc =. — r r j _  c ,  __________________________________________

The expressions for the modified stiffnesses and the sway- 

factors are similar to those given in case ra=3 .

Taper so that m = 2

When m=2, the reduced fundamental equation is

E l , i f f  +  P z =  o
c¡K* \ 2 The integral of this equation can be obtained as ( Timo. 127)

=■]¥[£ Sin^^3 14

and the general solution as

a =if-íA sín í f ̂  « f  •>? ■+ if c* cf )?]+h! (f̂ ji l

The first derivative of equation 14.19c is

= / l H  <53 s!" +-jf* £ “ s \ \  4 ^  ]

- +  B  r-¿ J5  « *  ? P ̂  P P  V i  > ? ! k  g g 0

.19a

.19b

.19c

I4.l9d
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On substituting the usual boundary conditions in equations 

1^ .19 0 and 1 f̂.1 9d the values of the unknovms are

A — — A— f cos -- ri. |
sin iji— p  P  s b ^

1t.19e

B M

M  „ a . n » £  _____________ _ Q
L e, 1

FI, ,n a g  s i W -  ^
L ii, r<u^i)2(_i _ JT)aVjif.+J5 5 H J  —  C0S4-'? ̂

1*F.l9f

K/f crj. n P  s l n 4 - -  — r 1 pcost/-
M 2 =  ---------- ___________*— n=* rvo-ni. i «i ■> _ • . c 9

[ < a p \ 4 - « n  U i h i h o s ^ n  '
^  ^ r -Tu U »liit.i9S

FI, ,n \ P  -?■' ^ ‘i"“ c u ~ ' 1 P cos^
T

wnere L

J £©^ {-Aj
- / £

Thus the stiffnesses and sc are

A" - /7- R  ^  s,n I3“ '1*e
[ ^ ( ¡ j r - p )  r m ^ + l  UuzL) _  < u k L > M t  ̂  ]

wu

S a  — u  S

__.. t . o  ssn 4 -̂
-Sc -  _  r* i-p  —

U —  I
•Tu £ CoS ¿¿-

*■ L ^ c V  f1) s;» tu- A  I5 3
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Taper so that n = 1

When m'= 1, the constants in l4.13e are

5 n =  +l =r Si? cwà '«*“  nS ~  _£l
£1, a

'2

and the general solution is

j  —  ' I x Î r )  j [  ( 2 u TiTx ) -f- £  ;[ ( 2 u j f e ) ~ i - i r  -uh( l d #?Oa

The first derivative of equation 14.20a is

¿ 1 =  ] - r  Î i 2 lir
PCb-a)c- n 14.20b

On substituting the boundary conditions in equations 14.20a 

and 14.20b9 the values of the unknowns are

A " 14.20c

M .=  E ï  - if -T  c, -ro rC| (?_. I ü it I H ci s irn  e| fi, i4-2od 
• 1 L  %  r  5 , ------- -------  1>

M 2 =  È i - n ^ c ,  V 1 Z ±  0, Ü  n*-£c, 4  14-20 e
> A

where
c ,  =  3",( 5 j  y , t b i -  J,Cb)'/i(s)
c2 = J.(ô)y,cm -  ïïicmÿ.te)
c3 =  y,cs) j y b - )  -  i c 5 )  y „ ( f )

X  = ü < * o - o  c4 + c , ^  ^

<5 =2$4 , l== 2(ÿfü and 4  =  ¿ j - f §



29^

Approximate solution of equation 1^.4
li

li vías necessary to chéck^few values of the basic stability

functions s^, s^ and "sc given by the exact method before tabulating
the stability functions. The finite difference method of solution1̂

vías used. This method of solution is based upon the solution of a
linear set of finite didderence equations.

The origin of the coordinates will be taken as the end 1« Thus

the moment of inertia I at any cross section at distance x from thex
end 1 is

I = L (  1 + (u-o x/L yJL t
m 1^.21a

and the fundamental differential equation is
r.2. _ >L H- ■
— ? + y = — — ( x/L - 1) + ---( x/L)El

14.21b
ox El El

X X  X

If the strut is now donsidered to be divided into N equal 

spaces numbered at 0 at the end 1 and proceeding to N at the end 2, 

the first and the second derivatives at any point n can be approximated 

by their difference equivalents (2.7 )
( ¿ I )vdx'n

^n+l" yn- 1 

2h
yn+1 “ 2yn + yn-1

1^f.21c

dx2 n

where h is the interval between the points i.e h = L/N since these_ 

are equally spaced. Using these approximations, the differential
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equation 14.21b becomes

yn~1 +^ 2p/EIx “ 2 )yn +yn+1 + (1 - n/N) lA^/SI . - n/K.li^/EI^O 14.22

Since the strut has been divided into N equal spaces there can 

be a maximum number of (N+1) finite difference equations and 

corresponding (N+5) unknowns (y ,... y^, y ^  , y ^  , M„ , l-̂ ). Four 

additional equations can be formulated from the conditions at the 

ends» It f¿Hows that the number of relationships are sufficient 

to determine the unknowns.

One of the end stiffnesses will be evaluated at each cycle of

calculi .on. Thus one end will be rotated while the other is held

fixed. If the end 1 is rotated through an angle 0^ and the other end 

2 is fixed, the boundary conditions are

y c = yN = o

(Ë2.) - qdx o " 1

14.23a
and < & T  0

By using the approximate equivalent of the first derivative, the 

following is obtained

yN-r1 " yN-1 14.23b

y.-i = y.-i“ 2h9i

The moments and which are caused by the rotation 9̂  can always 

be denoted as 

M1 = EI^/L. s1 ©1
✓

l-k = EI^/L. sc
14.2 3c
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where s( is the stiffness of the smaller end and sc is the moment

appearing at end 2 due to unit rotation. If we define a set of

quantities 
2 2K = EL /N El - 2 n 7 x

ct = El /El »n l x
"V

= -EXj/EI„.

N ■» n 
N3

n/N3

14.23d

these together with the expressions for the moments 14.23c reduce 

equation 14.22 to

y „+K y +y „ +e/ s„L©„ +8 sc L€4 = 0 14«;Jn- 1 n^n "n+1 n 1 1 in 1

Applying this equation to the points along the strut and using the 

results of 14.23b in considering the end points, the following set 

of equation is obtained

n=0 ^scL91+2y 1 C/̂ S/jIQ̂ — 2Jj©/j/N

n=1 îscL©1+K1y 1+y2 fl<s1L©1 * 0

n=2 l̂ scL©1+y1+K2y24y 5 Q/jŜ  L9/j = 0

n=3 ^ scL ©1 +y2+IC5y5+yZf ft'5s 1L©1 = 0 14 . 25a

n=N-1 L f cLS % - 2+KN-1yN-1,<& L81= 0
n=N 0

‘T’hese equations can be represented in matrix form as
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K. I

K» |

I K* I

- - sc L0,-|
i

r-2.1.0.N .

j
<V, y, 0

0

oi3 as 0

°C-, yN., 0

aI o(N - -S.L6, . . 0 .

!4-2st

The quantities of 14.23d can be expressed in more useful form as
K = C P/P - 2 n n e,j

where
C = (n/N)2 (1/(1 + (u-l)n/N)m ) n

o( = (N - n)/N5. 1/(1+(u-1 )n/N)m n

= - n/N^. 1/(1+(u-1)n/N)m

If end 2 is now rotated through an angle and end 1 is fixed, 
the Oew boundary conditions are

= y N s  0

= 0 and ©P• dx o dx N 2
By using 14.21c, the following is obtained 

y-i= y+i.

yN+r  2is + yN-i

14.26a

14.26b
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The new end moments are

M., = E3yL.sc e2

M2 = EI/I. s2«2
14.26c

If the new expressions for and are subsituted in equation 

14.22 together with the defined quantities of 14.23d equation 14.22

becomes
v

yn- 1  +Knyn+yn+1 +<S P L82+ R 62 M 2 * 0 l l f -27

By similar reasoning, the matrix form for calculating s2will be

- i .  1 >- Sx L -I r o T

f. K, . 0

fJ • J K» 1 0̂  2 «a 0

h  1 K , 1 * 5 0

1 *»-. °C ., ^AM 0

• f c 2  • 0/„ _ _ ic u k . ►

l4-l£

I
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Tabulation of the stability functions 

Exact values

An ©(-code programme to calculate the stability functions has 

been developed using the English Electronics "DEUCE" Computer. The 

expressions given in the appendix were used in the tabulation. Three 

programmes for the cases m = 2 , 2 .*f, and 3 were arranged to tabulate 

the stability functions for any value of u. The stages in the programme 

are listed below:-

(1) Read in the values of the constants, the starting value of 

f , the increment ̂  and u.

(2) Using the initial value of p generate the values of the*i
basic stability functions s^, S£, sc. There was a facility for 

calculating the Bessel functions of zero and first order. This was 

used in the case m=3. For the case m=2.*f, v. subroutines were used to 

calculate the Bessel functions since they are functions of the 

trigonometrical functions.

(3) Generate other stability functions using the basic stability 

functions and store in succession.

(4) Print out the value of £* followed by the corresponding 

values of the stability functions.

• (5) Change to and repeat steps 2, 3 and

Another separate.o<-code programme was used to tabulate these 

functions in table form.
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Approximate values 
a

To check/few values of the basic stability functions, the
k

basic differential equation was solved by the finite difference 

method. This requires two programmes, an o( -code and GIP programme. 

The stages of the o(-code programme are as follows

(1) Read in the values of the constants, the starting value of 

the increment and u.

(2) Using the initial value of generate the values of Kn t o(n*

(3) Place the numbers and the values calculated in the right 

places in the square matrix 1 *f.25b.

(4) Punch out the square matrix on cards.

(5) Change to and repeat steps 2, 3* and k.

The stages in the GIP programme is listed

(1) Read in the matrices.

(2) Invert the square matrix.

(3) Transpose the inverted matrix.

(J+) Multiply the transposed matrix and the column matrix.

(5) Print out the results (column matrix).
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Chapter 15

Elastic instability of frameworks with distributed loading 

Introduction

In the previous chapters it was assumed that the external 

loads are lumped at the joints and that all members carry constant 

axial forces with fixed lines of actions passing through the joints 

at t*e ends of each member. In practice, the loads on the framework 

are often distributed along the members of the frame. The total 

external load diagram of the framework indicates that there is a 

variation in the vertical force component from one end of the member: 

to the other. It follows that there are variable axial forces in the 

members when the vertical forces have a component along the members. 

When the members deform, the distributed loading displaces in 

accordance with the deformations and the line of action of the compo

nents along the member will be dependent on the displacement of each 

section from the initial position. Thus the problem becomes one of 

considering a variable axial force with a variable line of action.

The basic equation for this case will be different from the one used 

by Livesley and Chandler for calculating the stability functions. 

Therefore the stability functions used for finding the elastic critical 

load of some frames with distributed loads will be different from
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those tabulated by Livesley and Chandler.

The values of the stability functions presented here were 

obtained by solving the basic equation of the shear force on any 

section along the member. The axial force in the strut was assumed 

to vary linearly from one end to another. The stability functions 

were found to be dependent on two parameter; ^ the ratio of the 

mean vaine of the end axial forces to the Euler load of the strut 

and the ratio of the end axial forces .

The elastic critical load of an isolated strut free at one 

end and fixed at the other, subjected to its own weight, was invest

igated by Timoshenko and other writers ( 2. ) using Bessel functions 

in the solution of the differential equation of the buckled strut. 

The stability of this strut was also considered when in addition 

to the strut weight there was a concentrated compressive load at 

the free end. The values of the compressive forces were tabulated 

for different ratio of the distributed load to the critical load 

of uniformly loaded strut free at one end. By using the energy 

method, the stability of a hinged strut submitted to the action 

of its own weight in addition to compressive force, was also consid

ered. Tyler and Christiano (2.2) have given an analytic method of 

solution of a beam column with partial uniformly distributed lateral 

load with variable axial force whose line of action does not change
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as the column deflects. They used the Airy integral functions in 

solving the basic equation. Their analysis has no direct use in this 

work since the line of action in the problem at hand deflects as the 

strut deforms but it helps in solving the basic equation of the 

shear force.

The analyses investigating the stability of some complete 

structures are also given. The assumptions of chapter 2 still hold. 

The method of analysis is similar to that of chapter 2 except that 

a modified slope-deflection equation is used with the new values of 

the stability functions. The stiffness of the end with the lower 

axial force is s^ and that with the higher axial force is s^ and the 

moment carried over, due to unit rotation, is sc. 0% ̂ and ok ̂  are the 

shear factors due to the rotations of the joints. o( ̂  and o(^ and Q 

are the sway moments and the shear factor due to unit of the ratio 

sway/length of the member.

Fora member 12 rotated at both ends through angles and 

and subjected to sway S, the end moments and the shear force are

M«j = k (s-j©1+ sc ©^ - e< */L> 15.1a

= k (sc ©^+ s2 ©2 - oi^S/L) 15.1b

and

v = k/L (oC,©1+ o^©2 - Q V L ) 15.1c

The method for calculating the forces in the members is similar 

to that of chapter 2 except that the effect of the fixed end moments

I
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is included. The values of the fixed end moments were tabulated for 

struts with variable axial forces and anexpression for their values» 

in terms of the stability functions tabulated by Livesley and Chandler 

for struts with constant axial forces was derived.

The purpose of t^e calculations which follow is to express 

s^ , s^, sc» » Ov> and Q in a form suitable for computer evaluation.

Derivation of the basic equations

The distributed loads along the members of a framework have 

different effects depending on the inclination of these members.

(1) If the members are horizontal and the external loading is 

perpendicular to them, there will be end moments at the ends of t>>e 

members and the axial forces in the members and the:; lines of actions 

will be constant. The basic equation for determining the fixed end 

moments when the external load is uniformly distributed is 

Sy 2El — p+ Py = - M_- wLx/2 + wx /2 15*2dx *
where y is the deflection of a section at distance x from 1 .

Mp is the fixed end moment.

v; is the distributed load per unit length.

P is the axial force in the member 

The distribution of the external load might vary with the
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distance along the member. In this case, the basic equation for 
evaluating the fixed end moments is

where w(x) denotes the distributed load per unit length at distance x.

The loading may^continuous or with a discontinuity or might be 
concentrated at one or more points along t^e member. This requires 

the solution of a number of separate differential equations depending 
on the number of the discontinuities in the loading. Two functions 

are introduced to obtain a single differential equation applying to 
the entire span of the strut. These functions are the Heaviside unit 

H(x-a) and the S-function S(x-a).
H(x-a) is defined as function which has a value of zero in the 

interval x=0 and x ^ a  and at x ^ a  assumes a value of unity which is 
maintained for the remaining portion of the strut.

CO O^x^-a
H(x-a) S

l 1 a £ x £  L

The S function is defined as function which has a value of zero
at x ^ a  and x >  a and assume a value of unity at x=a

f 0 x l a
S(x-a) \

L 1 x = a
The basic equation for patially distributed loading is

El iLZ + p -  j^H(x-a) + H(x-b) +... ] w 
dx dx

1 5 .
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and that of the concentrated loading is

EI~^+ P-— W^S’(x-a) + w^SCx-b) + ....
dx dx' 15.^b

The solutions of the last two equations can be obtained by using 

the Laplace transform where the Laplace transform of H and S functions
are

Since it is not possible to tabulate the values of the fixed 

end moments for the various cases of discontinuity due to the 

variation in the positions of the external loads, the solutions of 

equations 1 S.^a a^d 1 5 .^b is not shown and another technique is used 

for evaluating the fixed end moments using the already tabulated 

stability functions ( 3 ). For example, in the case of a concentrated 

external load at the mid-span, the point of loading is assumed to be 

a joiht undergoing deformation to balance the transverse loading. So 

that the fixed end moment for the stfcut loaded at the mid-span can 

be obtained by causing the mid-point to deflect by S. The mement 

appearing at the ends of the strut is

where k and 1  are the stiffness and length of half the strut.

Half the external load W is carried to each end by each half of the 

strut, hence the equilibrium equation of each half requires

p£S(x-a) = 1

Kp = T  ( ko/1 ) S -15.5a
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Wi/2 - (2kAS/i) = 0 15.5b
whence

S = ii-i2 15.5c¿fkA
Substituting for ^ 

Mp = + W l A  . o!/k 15.5d

o/A = m (by previous definition'' and L =2 i; hence

v *  f WL 15.6

In calculating , the load parameter^» of half the stmrt- is 

used and not that of the whole strut in reading m from the tables(*3 ).

The same procedure can be used in evaluating the fixed end 

moments in the presence of more than one point load on the span or . 

in case of partially distributed load, using the expression derived 

for the fixed end moment and the stability functions( 5 ).

(2) Tf the member iso not horizontal, the distributed loading 

has a component along the member due to vertical loads. The loads 

inclined to the axis of the strut can be resolved into two components, 

one along the axis and one perpendicular to it. The basic equation 

can be obtained by considering an element of length dx along the strut 

AB of Figure 15.1. It is in equilibrium, so that the total vertical 

force on the element is zero. Hence 

- V + w dx + (V + dV) =0

/
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whence

dV £ 
dx - w 15.7a

Taking moments about n and assuming that the angle between the axis 

of the strut and the centre line of the element is small, we obtain 

M + w dx.dx/2 + (V+dV)dx - (M+dM) + (P(x) + pdx^xdy - pdx/2.dy=0

Neglect terms of second order, this equation becomes

f  -  K x )  &  = V 15.7bdx dx
The expression for the curvature of the axis of the strut is

d2yEl “ 2 = “ M 1 5 .7c
dx

Thus the basis equation is

El + P ( x ) ^  = - V 15.8
cbc dx

The value of V will be dependent on the deformation of the 

member and the end moments. Its value .will be constant along the 

strut in t^e absence of the distributed lateral loading. This equation 

is used for the evaluation of the new stability functions and the 

fixed end moments.

There might be a discontinuity in the loading along the inclined 

members, in this case, the evaluation of the stability functions and 

the fixed end moments will require the solution of a set of basic 

equations depending on the number of the discontinuities. For example.
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the basic equations for the strut in Figure 1 5* 1a are

El + p-
dx
¿5y2

EI — =—+P(x)
dx^

EI ---£ + P
dx3

d y

dx
d ^

dx

d y

1 = -  v

dx

= - V

I = - V

(i)

(ii)

(iii)

15.9

In the case of concentrated loads on the inclined members, 

the set of the basic equations will be similar to equations (i) 

and (iii). The solutions of these equations will be more involved 

since it requires the evaluation of many constants.

Stability tables

To facilate the calculation of the elastic critical loads of 

structural frames taking the effect of distributed loads into account, 

it was necessary to prepare new tables of stability functions. These 

functions are dependent on two parameters p and P/P , where p is 

defined as P^/P^ and P= (P̂  + P^ )/2. P̂  and P^ are the smaller and 

larger axial forces at the ends of the strut and P is the Kuier
v

load. The value of yu must therefore lie between zero and unity. 
Livesley and Chandler tables are for the special case when p is unity.
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The stability functions were tabulated for compressive force only 
and for » = 0, 0.1, 0.2, 0.3 and O.̂ f.

For values of yi between these values and between O . k  and 1.0, 
a graphical method must be used to obtain the value* of- + h e  stability 

functions as will be demonstrated in the later examples. The express
ions for the stability functions are those given in the appendix.

In calculating the force components in structural frameworks, 
it was necessary to replace the distributed loading by equivalent 
concentrated loads at the ends with fixed end moments. Thus express

ions for these ends loads and moments were also obtained when the 

stability functions, hadbljeen determined and these are also tabulated. 

The fixed end moments occuring with a uniformly distributed loading W 
are expressed as varying coefficients of WL. These fixed end moments 

are unequal at the two ends, the coefficients for the end with the 
smaller axial force will be termed m^ and the other m^. The end loads 
are also unequal. The load at the end with the smaller axial force 
is qVJ and that at the other end is (1-q)W is also tabulated.

In cases in which the distributed lateral loading is not 
perpendicular to the axis of the strut, the fixed end moments will 

both be the same as before but the length L of the strut in the 
expression m^V7L is replaced by Lcos25 where is the angle between 

the applied external load and the perpendigxilar to the axis of the

strut
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It is shown in the appendix that the fixed end moments for 
uniformly distributed loading W acting on struts carrying uniform 
axial forces can be expressed in terms of the Livesley and Chandler 
stability functions as

Mp =+ 07WL 1 5 . 9

where
s(1 - c K  

2 '

Theor.et.icAl analysis for frames having members with constant axial

forces

As an illustration, the elastic instability of t^o frame in 
Figure 15*2 was analyzed. Since t^e frame is symmetrical and under 
symmetrical loading, it will have symmetrical deformations until 

the anti-symmetrical sway mode intervenes. On the application of 
the external load 2P on the beam BB', -joints B and B' rotate in 
opposite direction by ©„• The moments at the ends of the members±J

are;-
Operation MAB “bA ^BB'
1 )Fixed end moment 
2)Rot. B&B' (ksc)1©B (ks)^©B

?F.
(ksO-c))^^
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Joint equilibrium at B requires

[(ks)1+(ks(1-c))J ©B- Mp = 0 1 5 .10a
Hence

(ks ),j + (ks (1-c ) )
1 5 .10b

The frame has only one force component unknown, this is the 

horizontal force component H, shown in Figure 15*2a. The equilibrium 
of AB requires that

H sinjZÍ - P cos0 = (ko</L)1©B 15.10c

Substituting for ©B and replacing Mp by 2 j Z e q u a t i o n  1 5 .1 0c 
becomes

H/P = 1/sin0 [ cos0 + L^/L^. 2 o C ]^ / - [ s ^ +  k^/k^cisO-c ) ] 15.11 .
and t^* force in AB is

R = H cosjó + P sinjá 15,12

When the dimensions of the frame and its loading are specified 

equation 15.11 can be solved numerically to yield a relationship 
between H and P.

Stability criterion for the anti-symmetrical sway mode

To establish the condition for t^e anti-symmetrical sway mode,
an infinitesimal disturbing horizontal force 2H_. is applied at. Bn

which causes the following incremental deformations:-
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1) Equal incremental rotations of joints B and B' by 8© .

2) Equal incremental sway of AB and A'B’ by 3S.

Member BB* sway by - 23£ cosj#, as determined from the Williot 

diasxamr.

Due to these incremental deformations, the incremental moments 

at the ends of the members are:-

Operation MAB ' “BA ^BB'
1 ) Kot.B&B$

2 ) Swayoo

(ksc),|3eB

-(ko/L)13S‘

(ks)19QB

-(ko/L^SS

(ko,)13©B

+ (2k©< cos^/L)b 3S

Eqilibrium consideration yields
-
5®B ’|ks)1+(ko02 ] j(2kof cosjtf/D^- (kef-'L)^ ' 0~ •

Hgsi: [(2kof coe0/L)2- (ko/L)j [(BkA/L^+^kAcosjZS/L2 )^ -
0

15.13

The determinant of the square matrix if* the anti-symmetrical 

sway mode stability condition. Any load satisfying equation 1S.11 

and making the determinant vanish is the critical load.

Numerical examples

Example 1

The forces in the members and the critical load in the symmet

rical mode can be obtained from the solution of equation 15*11» When

i



the dimensions of the frame and its loading conditions are specified, 
equation 1S.11 can be solved numerically.

The frame has members of the same El-valuerand length, ,0-is 

and the external load 2P is distributed uniformly along BB*.

P in equation 15.11 is replaced by R and H using equation 15.12.
When the k-values and the lengths are substituted in the modified

)
equation obtained from 1 5 .1 1 , tbs equation becomes

1 - &2§ - 1.414)(0.707 + 2^20'̂1— ------- ] _ 0 1 5 . 1 4
s1+ (s(1-c) )2

^2 is given by 15.9

The load parameter f of the inclined member, for the particularc 

value of , satisfying equation 15.14 is obtained by a trial and 

extrapolation process.
For = 0.60

from tables (‘5)

s2= 3.1405 (sc)2= 2.2ho7 b2= 2.9 6 0 9

Thus _ L _  (1 . 3,1403 ,- ,„2,2407)
5.9218  2

= 0.093

Equation 15.14 becomes

1 - (£5- -l-4IA)(0.707,+0, °9^ - ') - 0
0/6 * * ~

First trial =0.78
i 1

15.14a

From tables(3 )
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s1= 2.8494 d^= ^.1838

Substituting these values in 15.14a

A  = 1 - ( 1.56 - 1 .4 1 4 )(0 .7 0 7 + IO.3 6 7 6 X 0.093 )
0.6“ 3.7490

= 1 - 1.14

= - 0.14

A lower value of f is therefore tested.

When (J = 0.74 A  = - 0.013

by linear extrapolation is

^=0.74 - 0.04 X 0.013 
0.127

^0.736

Equation 15*12 gives

P = (1.414 X 0.736 - 0.60) Pe
= 0.443Pe

and H/P = 0.6/0.443 = 1.352

C”rve A in Figure 15*31 shows the numerical results obtained 

for several assumed values of ̂  . The value of 2P = 1.26 Pg given at 

the top of curve A represents the elastic critical load of the frame 

in the symmetrical joint rotation mode. This differs from the value 

2.54Pe obtained when the load 2P is lumped at the joints. 

Anti-symmetrical sway elastic critical load

Anti-symmetrical deformations become possible when the applied 

load# reaches such a magnitude that equations 1 5 * 1 1 and 1 ^ . 1 3 are
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simultaneously satisfied.

A numerical solution of equation 15.13 can be performed. By 

substituting the values of k, and the lengths in equation 1 5 .1 3 , 

the determinant becomes

c£-

2A„+2A_
1 ‘s„ +

1 .Vl4o£- ci,
15.15

The load parameter ^ of AB, for the particular value of H/P, 

making the determinant 1 S . 1 5  vanish is obtained by a trial and 

interpolation process. Curve B in Figure 15*5 shows the numerical 

results obtained. The point at which this curve intersects with 

th° other curve A, gives the anti-symmetrical sway elastic critical 

load which is 2B=1 ,60Pwhen the loads are lumped at the joints and 

1.175P when the external load 2P is distributed along BB'.

Example 2'

The elastic instability of the same frame will be investigated 

when ji) = 90°. When the values of k, L and ¡6 are substituted in 15.11, 

the equation becomes

H
— +P s^+CsO-c))^

= 0 15.16

Equation 15*16 can be solved numerically as shown in example1.
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Curve A in Figure 15«^. shows the numerical results obtained when

the external load 2P is distributed along BB'. The symmetrical elastic

critical load corresponding to this load case is 2P=3.27P . Idhen the©
load 2P is lumped at the joints B and B', the symmetrical elastic

critical load is 2B= 5.10P •0

Anti-symmetrical sway elastic critical load

The stability criterion for the portal frame in the anti-symmet

rical sway mode is

(kn)1+ (kc02= 0 1 5 .1 6a

Equation 15.16a can be solved numerically to yield a relation

ship between H and P. The curve B in Figure 15»^ shows t^e numerical 

results obtained. The anti-symmetrical sway elastic critical load of 

the portal when the load; is lumped at the joints is 2P= 1.^95Pe and

is 1.̂ -86P....when the load 1= distributed along BB*. e

Comment on the numerical examples

Based on the results presented herein, the following conclusions 

may be drawn regarding the^stability of frames under distributed 

external loads.

(1 ) The critical load associated with the s?rmmefcrical mode of 

instability is considerably reduced when the loads are not lumped at
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the joints.

Due to lateral loading, there will be lateral deflection of 

the beams which tends to draw the-eaves inward, reducing the compre

ssive force in the beam. This may delay th» appearance of symmetrical 

elastic instability. When the load is approaching the symmetrical 

elastic critical load, the central deflection of the beam will 

become large and this renders the analysis given here invalid. This 

would necessiate the consideration of finite deflections and the 

effects of change of geometry on the analysis.

(2) The anti-symmetrical sway mode is also influenced by lateral 

loading. In portal frames, the reduction is very small, of the order 

of a few precent. In frames where the axial forces in the most heavily 

loaded strut is dependent on the force component unknown,!!, the 

reduction is considerably larger.

Theoretical analysis for structures having members with variable

axial forces

1. Isolated struts

The elastic instability of isolated struts under different end 

conditions and different ratios of end axial forces, will be investi

gated
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(i) A strut with one end is fixed and the other free

To establish, the stability condition, an infinitesimal 

horizontal disturbing force is applied at A, shown in Figure 15»5« 

Joint A will sway by^S and rotate byS©^. The end moments are:-

Operation ll£>k mab
1) Rot. A

2) 9 way “oô

k sbS©A 

- kc^S/L

k 3^ a 

- koCj^/L

Joint equilibrium at A requires that:-
J;

k s^Q, - k oC^S/L = 0 1 5 .1 7a

The horizontal force at A is resisted by the moments in AB and 

this force vanishes at the critical load, hence

HA = - (ko/L)f©A + (k^/L2 ) ^  15.17b

The determinant of the coefficients of the unknowns is

= (k/L)2 ( eft - c*2 ) 15.18

Any load making this determinant vanish is the critical load. 

Equation 15.18 can be solved to yield a relationship between p. and 

the external load. A typical calculation is shown for p = 0.

First trial C = 0,*f 

From table pi = û

s,= 3.7177 <*,= 5.1699 Q= 7 . 1 6 6 6

Substituting these values in 15.18 gives:-
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2 6 . 6 - 26.8 

=  -  0.2
i.e the strut is unstable and a lower value of (» is tested.

Second trial ^ =0.38 

From table ju=0

s,= 3.^328 o<= 5.2135 Q = 7.^152

= 27.7 - 2 7 . 2  
Vr

= + 0.5

i.e the strut is stable.

The critical ^ by linear interpolation is 0.39^.

By definition

? = V P2
P =(P1 + P2 )/2

= £ P v e
From these definitions it can be shown that

2 f P e
P? = ------ 15.19

1 + F
Thus the total load carried by the strut is

P2 = 2 X 0.39^ Pe

= O.788P e
For other values of ji, the critical ^-values and P^ are tabulated

in Table 15•1
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Y C V Pe

0 0 .3 9 4 0 .7 88

0 .1 0.360 0.655
0 .2 0 .3 3 5 0.558
0 .3 0 . 3 1 5 0.485
0.4 0.300 0.429
0.0 0 .2 50 0.250

Table 15.1

(ii) A strut with both ends pin-.jointed 

The stability condition is

s!j = s” = 0 1 3 . 2 0

This equation can be used to establish the relationship

between u and the external load P^. The critical^ values and P^ 

obtained are tabulated in Table 15*2 for different values of u.

Y
e

p /p 2 e

0 0.941 1.813
0.1 0 .9 5 8 1.740
0.2 0 .9 7 2 1 . 6 2 0

0.3 0.981 1.510
0.4 0 .9 8 7 1.400
1 . 0 1 .0 0 0

_______________
1.000

Table 15.2

(iii) A strut with one end pin-.jointed and the other fixed

There are two cases, the first is when the end with the bigger
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axial force is pin- jointed . The stability condition for this 

case is

s2 = 0 15.21a

Using the stability tables, the critical^-values and P^ obtained 

by satisfying 1 5 .2 1a for different values of ji are tabulated in 

Table 15.3.

r c V pe

0 1 . 5 2 0 3 • 040
0 .1 1 . 6 0 0 2 . 9 1 0

0 .2 1 . 6 7 1 2 . 7 9 0

0 .3 1.736 2 . 6 7 0

0.4 1.794 2.5^0
1 . 0 2.o46 2.0h6

Table 1 5 . 3

The other case is when the end \iitVl the smaller axial force is 

pin-jointed. The stability condition is then 

s1 = 0 ‘ 1 5 .2 1b

For various values of p, the critical^ -values and P^, obtained 

from 15.21b are tabulated in Table 15.4

P e V Pe

0 . 2 .6 6 0 5.319
0 .1 —
0 .2 2 . 4 7 8 4.120
0.3 2.397 3 .6 8 0

0.4 2.325 3.320
1.0 2.046 2.046

Table 15.4
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The numerical results given in the tables are shown in Figure 

15*6* For any value of p otherX^those given, the critical load can 

be obtained from Figure 15*6.

2. Frame containing members with variable axial forces
The elastic instability of the frame in Figure 15»7 is analyzed 

when the external load 2P is distributed.uniformly along the members 
AB and A'B1. On the application of the external load 2P, the two 

members will deflect but the joint B will not rotate because of 

symmetry. The vertical reactions at A and A' are P and at joint B 
there is only a horizontal force component E. This is resolved into 
two components along and perpendicular to the members. The perpendic

ular component EsinjZS necessary to keep each member in equilibrium 
can be obtained as:- 
E sin$ = qP cosj# 

whence
E/P = q cot0 15*22

When the angle JZ5 is specified, equation 15*22 can be solved 
numerically to yield a relationship between H and P.

In equation 15.22, q is known for certain values of p. For 
intermediate values of p, q can be obtained graphically. Figure 15*8 

shoi^s the curves relating q and p for different values of f •
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The stability condition for the anti-symmetrical joint 
rotation mode is

2k sn= 0 1 5 . 2 3

Any load satisfying equation 1^.22 and 15.23 will be the critical 
load of the structure.

Numerical example

The elastic critical load of the structure will be determined 
when Equation 15.22 becomes
H/P = q

The axial force in A3 at B is 

The axial force in AB at A is 

The mean axial force in AB is

Hence the external load is 2P 

and

Y =

Substituting for H/P, u becomes

l1 =

For different values of ç

0.707H 

0.707(H+P) 

0.707(H +0.5P)

0.5 + H/P

0.707 H______
0.707CH+P)

____S____
1 + q
the tabulated q-values are plotted
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against p. Figure 15.8 shows the curves obtained by taking £ =1.0, 

2 .0, 2.5, and 3 .0.

Ignoring the effect of stability i.e a = 0.5, gives 

H/P = 0.5

and

P = 0.5
1 + 0.5 

= 0.333

From Figure 15*8, the q-value corresponding to £=1.0 and ji= 0.333
is 0.5158. Thus 

0.5156P = ---— ----
I+O. 5 1 5 6

= 0.3^2

q is corrected again. When £=1.0 and |a=0.3^2, q is O.5 1 5 . Thus
f  = SL-.V1 ....

1+0 . 5 1 5

= 0.3P0

Thus the value of H/P corresponding to £=1.0 is 0 .5 1 5 9 and the

external load is 
2P = 2.828 X 1.0

0.5+ 0.515 ®

= 2.78 Pe
Curve A in Figure 15*9 shows-the numerical results obtained

when £=2 .0, 2 .5 , and 3 .0.
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Equation 15.23 can be also solved to yield a relationship

between K and P. But this tine it ca-n be solved using the tabulated

stability functions directly. For example, when p=0.2, the load

parameter ̂  whose s^ is zero is 2 .V78. Thus the H/P-value and the

external load are
H/p = JllL ----

1 -  0 . 2

= 0 .2 5

and
_ 2.828 X 2,^78 p 

0.5 + 0 .2 5 e

= 9.33Pa e

Curve B in Figure 15.9 shows the numerical results obtained

when ¡u = 0, 0.2, 0.3, and O.̂-t-. This curve intersects curve A at

2P = 6.30P^ which is therefore the anti-symmetrical critical load.

When the external load is lumped at joint B, the elastic critical

load is 2P = 2.9P •e 3

3 . 'Frame with variable axial forces and sway

The elastic instability of the frame in Figure 15.10 will be 

analyzed when the external load 2P is distributed along the inclined 

members only. On the application of the external load 2P, the joints
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B and B' rotate by equal and opposite amounts Thus the momentsB •
at the ends of the members are:-

Operation M M MAB BA BB«

1)Fixed e^d moments - M21 + M11
2)Rot. B&B* 
____________________

(ksc)^9„ . 1 B (kV l « B <ks(1-c))29B

Joint equilibrium at B requires

[Oas1 )1+(ks(1-c))2 ] ©B + M11 = 0  15.25a

where M^1= n^^PL^cos^

Hence
“11

9 = - --- --- ^ -------- H u  cos,0 15>'25b
15 (ks^ )1+(ks(1-c))2 '

At the supports there are vertical force components P and at 

the joints B and B' there are horizontal force components H only. 

Member BB’ is in equilibrium since there are equal and opposite 

rotations at the ends of the member. Member AB is in equilibrium 

under the action of the external load P, the moments and H, hence 

H sinfi - qr  P cosj25 - (kO^/L)^ = 0 15.25c

Substituting for 9̂  and rearranging the aquation
< °^ 1  n11___________ )

- " C° ^ i ̂  " sl1+k2/k1*(s(‘“c))2 )
15.26
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When ,0 and k^/k^ are specified, equation 15»26 can be solved 

to yield a relationship between H and P.

Anti-symmetrical sway mode stability criterion

To establish the condition for the anti-symmetrical sway mode, 

an infinitesimal disturbing horizontal force 2H_ is apllied at E 

which causes the following incremental deformations:-

1) Equal incremental rotations of joints B and B* by ij
2) Equal incremental sways of AB and AiB' by co.

Member B3* sways by - 2oo cosjS, as obtained from the Williot 

diagram.

Due to these incremental deformations, the incremental moments 

at the ends of the members are:-

Operation MAB ^ A ^BB1

1 )Sot.B8cB*

2 )Sway do

(ksc)13©3 

- (ko^/L)n3S

(ks1)13eB

- (koij/D^So

(ko')2o93 

+ (2 keb o s.0/ L ) 2 do

Equilibrium consideration yields.

3mB (ks^ )^+ (ko02 (2kdbosj25/L)2“ Ckc^/L)^

_H sinjZJ

—l
to . (2kofcos^/L)2- (koij/L)̂ (¿HoAcosji/L2 )2+ (kVL2 )n .

Any load satisfying 15»26 and making the determinant of the 

square matrix vanish is the critical load.
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Numerical example

The elastic critical load of the frame will be estimated when

, L2=L1 and $=^5^
The axial force in AB at B is 0.707 H

The axial force in A3 at A is 0*707(H+?)

Thus
-5/P. .u =i 1 + H/P

Equation 15.28a can be rearranged to give H/P in term jx as 

E/P =

The mean axial force in A3 is

1 5 .28a

15.28b

E = 0.707(H/P +0.5) P

= e p„
and the external load is
2p - 2,828 C,

0.5 + H/P e
The load parameter of AB is = P/P£

and that of BB* is

1 5 .28c

e* = v p .
Hence

ft. _ I.VWfr H/P
C, " 0 . 5 + H/P 1 5 .28d

When the values of k and j3 are substituted in 15.26, the

equation becomes 

H = q„. -
P

¿/ m 11 11

s11 + (s(1-c))2
15.28e
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The ratio H/P when, the effects of axial forces in the members 

is ignored is:- 

E/P = 0.5 - 6- y *2.

= 0.4167

From equations 15.28a and 15*28d

_ 0.4167 
^ ~ 1.4167

= 0.294 

and
£2. _ 1.414 x 0.4167 
e," 0 .9 1 6 7

= 0.642

A value of £ is assumed and its tabulated stability functions 

S11 ,G11 an<̂  1̂' are P-'-0"^e<̂  against p as shown in Figure 15*11.
This gives the values of the stability functions at values of ji other 

than these tabulated in the stability tables.

From Figure 15.11» the stability functions of f =1.0 corresponds 

to p=0.294 are

s11 = 2.87 0^  = 4.23 0.5165 and = 0.0996

and from the stability tables C^), the stability functions of (^=0.642 

are

s2 = 3.0771 (sc)2= 2.2605

Substituting these values in 15.28e, gives
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H/P = 0 . 5 1 6 5 - i^3_I.p,,0,996,
3.6 8 2

= 0.4022 

and jx = 0 .286

The difference in the y-value is small and the difference in 

the stability functions will also be small. Thus the external load 

is
- 2.828 X 1.0 
" 0.5+0.4022 e
= 5.14 P e
Following the previous procedure, the B/P-value and the elastic 

critical load is calc”lated when^ =1.40. The results are shown in 

Figure 1S.12, curve A.

Equation 15*27 can also be solved to yield a relationship

between H and P. This t̂ 'me, the tabulated stability functions are

used directly in the solution of equation 15*27. For example, when

p. = 0.2, equation 1 5 .28b gives

H/P = —
7 1 -  0.2

= 0.25

and equation 15*28d gives
.£ 1.414 X 0.25

~ 0.5+ 0.25

= 0 .4 7

When the k-values and the,lengths are substituted in 15.27, the
determinant becomes
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sin+ 1.4l4o^ - 0^1

1.4l4c^ - e^1 2 A2 + Q1

The load parameter satisfying 15.28f is obtained by a trial' 

and error process.

First trial C( = 1.24 

C,= 1.24 (^= 0.583

^roa table pi — 0-2

sni = 2.6482 oiI1 = 3.584? Q1 = - 3.3209 

From tables (9 )

eh, = 5.4026 A 2= 2.5404

Substituting these values in 15.28f

Zh =
8.0508

4.0653 

= - 2.4

A lower value of

¿-.0653

1.7599

is therefore tested.

When C, = 1.20 £  = + 3.8

Q by linear interpolation is 1 . 2 2 5 and the critical load is
p p  _ 2.828 X~1.225r 

" 0.5 + 0.25 e

= 4.62 Pe
f’.urve B in Figure 15.12, shows the numerical results obtained

when p = 0, 0.2, 0.3 and 0.4. This curve intersects curve A at

2P = 3.60 P . The carrying capacity of this frame is 1.6p when the e ©
external load is lumped at the joints B and B'.
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APPENDIX
S o l u t i o n  o f  t h e  b a s i c  e q u a t i o n s

Equation 1$.2
W  L 3Ç
a

woe
a

Tile gerenal solution of this equation is
a=AsinîJx: +  ̂

A ft <x<« CoWSVavxVi- 
The first derivative of equation 15.29a is

NJP^  =AtS- cos 13* oc —  cr8sirV5>x —  ̂
When x=0, y=0, equation 15.29a gives 
g =  iHr _ i_  WjETM p ^  pa.

Also when x=L, y=0, equation 15.29a gives

0 =  A  s i n •+■ B c o s i t  —
Substituting for B, equation 15.29a gives 

where
t±- «a ”Cy L and ^

1 5 .29a

15.29b

15.29c

15.29d

15.29e
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By definition ( 5)

S =  Coj* 2 c* ) of
-f-QKl Of -- of

and
£ _  2 c>f—  s'\n2of

Si n 2ctf — 2 cf cos 2<X
where

Using these definitions, it can be shown that

s(1 - c) = n f f  cot- rr B1 u? i
Substituting 15*29i in 15#29h and using the definition 

Mj,= 1~-K1 - s(1-c )/2) wL2

15.29i

gives

15-30

Equation 15*8

E i 4 + f w  = - v

The point of zero axial force will be taken as the origin of 

the coordinates x,y. Let this point to be at distance a from end 1 

and b from end 2. Then the axial force at any point along the strut 

can be expressed as 

P(x) = P1(x/a) = P2 (x/b)

where P, and Pa are the axial forces at end 1 and end 2 respectively. 

Thus equation 15•S can be written as

= - v  1 5 .3 1a

Put and'EMs , equation 15»31 a becomes

15.31b6 vy
f e  +  r a  * *  =  - f i

I
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The complementary solutions of this equation can be shown

to be function of Bessel functions of order -y and -y, but the

solution
¿y _ x

of

VÜ

the standard equation (SqB'.A)

=  fC*|) 15.31c

is known in term of Airy integral functions. Equation 15«31b is

transformed to the standard equation 1 5 .3 1c by putting

x1 = - ® x 15.31d

Equation 15.31b becomes
sis. —  oc, 2. =  D  
d * ,1 1 15.31e

where *
D = — V/tlto
The solution of equation 15*31e when D is constant is

z )-f ̂ B; (x,) —  n  D  Gi-(acj)
ioVwtx (¡> <*a«. 0^4 A,'O0 > B-Cv.) »Cn-UO Q.Ve JWmBy definition z = g  ‘ ^  J

t 1 5 .3 1f
Intervals
c

= ¿Zdx^ dx

- dx^ 1 5 .3 1g

Thus equation 15»31f becomes

Jx,”  B,*CaC|)—  n  D  G;(*i) I5.31h

The integral of equation 1?.51h is

- r a y  4 * ^ - n O / +  X 15.31Ì

and the first derivative of equation 1 5 «3 1h is

— c*Ai (x i) *+■ fi B, *() —  n  û  G,* (*1 ) 1 5 .3 1 j
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D e r i v a t i o n  o f  s 1 , s 2 , s c ,  cj^, an d <?2

When x=a, x( = -"Ga = a and "fx = ” -c- ®1 * Substituting these
values in 1^.3^ gives

-+ 0, = 5 ?  A s i a )  +  B ; ( o  ) -  n  D  G ; ( a }  15 . 32a

When x=b, x̂  = -ab = b and ^  ©2# Substituting these values

in 1 5 »3 1h gives

+  e a =  * A \ i B;<b) - r r  D G ;(b )

Solution of equations 15«32a and 15,32b yields

o?=-^- [ B,*(b) 0, ~  Bf (a) 6z -f-jT^rz D ]

and
= [-Aj(b) 9, -j- A;(a) 6 2 -t n  ¿j- 3 D  J

15.32b

15.32c

15.32d

where

%  «
Aj(a) 

A  i ( b)

8 |(a)

Bj(b)

G;(a) BjCa)
^■2 —

and
G;(b) Bi ibj

^ 3 -
A-, (a) 

Aj ( b)

Gj(ff) 

. GjCb;

When x=a, x^= "a and y = 0. Substituting these values in 15.31i gives 

0 =  c* /  A M d t  J j3-(+)df — 77 D f  Qr;( t )  d h  - f - Y  1 5 -3 2e

Also when x=b, x =b and y=0. Substituting these values in 15-31i gives
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b b> b
0 =O(JA-,(+)JH '^i' Bjltidt- -  n D J G i C + ì J t  -t- Y  15-32f
Subtracting 15*32f from 15.32e, to eliminate Y  gives the resulting 

equation.

^  -t- p ^  —  rr D == 0 I 5. 32g

where _

S  A ;  Cl) ci+ — SA i CD d i  — Lkq
J a Q\ CD dl — Weil- =  l- t s

S G*Cl)dt ■—fo iC t)  di'
Substituting equation 15.32c and 15.32d in 15.32g gives

n D  = 4 »  6, -f ct^ 9 a 15.32h
where

and

= ^4 St-(b)~ AlCb)

I _ A-CcP 5̂ -  E>f Cq) ^4
2 —  ^sj

When x:=a, x = a and(^-\ = - 2liL i.e = - —  Hi . Substituting 
\U*;l El A** EE

these values in equation 1 5 .3 1 J gives

^  -~c< f \ \ Cq ) - f - ^  — n  D G j  C«J 15.32Ì

Substituting equations 15.32c, 15.32d and 15.32h in 15«32i gives

FT = ^a4=J +  -t* ^ a ^ s )Er utj
where

15.323

,/
A;(&) 6 ;  ( a i  — / I f C a J  B ;C a )  =* f r  I d e n V » h j  

t̂*-y ~Bj CL>l ¡\\(ò i) Al C.lo) B f Ca )

and
hrg ~  ^  A / C à )  “h4r5 B((a) — L£ [ (j{ Cq )
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Jm
Also when x=b, x( =b a.nd(-̂ )̂ =. -+- . Substituting

these values in equation 1 5 .3 1 j gives

" p  ¿  =  c<Af(b)-+-j§ —  rrd G,-cb) 1 5 .32k

Substituting equations 15.32c, 15.32d and 15.32b in 15.32k gives

~ H  =  Ji M - 7 r + Ltiodr’‘'l fi|-+C 6 1 I 15.32L
where

3,CO — A ;C 1 3 B ; ( k)  =  -

^ 9  —A (*Ca) S,'Ck) —/\-t ( b) I3',(a )
and

^IQ —  Bf ct) —  i G-iCb)

If we define

M^= ^  ( s ^ *  sc ©2 )

rr (identity)

El ,_ _ _ .M2= —  (sc ©1+ s2©2 )

T = f  V

1 5 .32m 

15.32n 

15.32o

Comparsion of equations 15.32j and 15.32m; 15.32k and 15.32n; 

and 1 5 .32h and 1 5 .3 2o yields

•-t,

15-33

Sa= -  zsL

9, =

%  =  ̂ x<qb*

H=io<=̂ x)
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Derivation of the sway factors , ci,, and Q

V̂. - q - o
~dl~ v

The basic equation, its solution 15«31h, integral 15.31i and

its first derivative 1 ^ .3 1 3 are the same as before but the boundary'

conditions are different.
— ¿*4When x=a, x. =a and -— = G-= 0, alsod-* |

when x=b, x =b and 

Thus putting 9^=©p= 0 in equations 1 5 »3 2c, and 1 5 .32a, the new values 

of cR and are

P< =  -SL JT D  ' 15.34a
and

f> ~  n 0  l5-3^b
When x=a, x^= "a and y =0. Substituting in 15«31i gives

Q - — tiD  J  -f-Y 15.34c

When x=b, x. = b and y = 'b. Substituting in 15«31i gives

-S-S? -t -ff  BjCfjdh — n O f  G;(+)cif I5.34d

Subtracting 15»34d from 15»34c to eliminate^yields 

5 iX? -=3 ^  -f- p L£s —  17 0  74 15.34e

Substituting equations 15«34a and 15»34b in 15»34e yields

0 0  =  ~  'l5*3'fi
When x=a, x„ =a and Hi . Substituting these values i

1 ax.r cv
xn

¿*■1* T*X E l

equation 15*310 and using 15»34a, 1 5 «34b and 15«34f, the following

relationship is obtained
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M i  -  —  T3X L ________________  £
^  *+■ *is) ^

When x=b, x =b a n d ^ M n _ . l  Mi . Substituting these values
^  o l f T

equation 15-31j and using 15.34a, 15.34b and 15*34f, the following

15-34g

in

relationship is obtained

_ £ b = —  zaxL '
El

If we define
—  ( **>. kq •+ 3 1

L

rr 21 . %h.= “ “ &] T1

I2 1

L
El
L
El

L
s

M-  - ^  * > 1

v = _ _  Q, tsL

15-34h

15.3H
15.34j

15.34k

Comparasion of 15.34i and 15.34g; 15*34,1 and 15.34h and 15.34k and 

15.34f yields
‘i-S ,cK, ^  ̂  —  C "I" L±-z)i±t; )

~ —  rail

G> -  -t-

<0

^  Lh  )
( c3 l ) z _____________ '
rr

15.35

Derivation of , nm, and q

The basic equation 15*8 is the sane but this time the shear 

force is dependent on x since there is a distributed load w. The 

shear force at any section is D + (x-a) w where D is the reaction 

at end 1 due to the distributed load and the deformation in the strut. 

The basic equation can be written as



Using the previous definitions equation 1 5 .36a is transformed to
‘ ‘i

d ’Z
Jx?
where

D '  =  f e

■,■== = D 4 - W a 15.36b

wa
Elto1

The solution of equation 15«36b is

■2 =  s ? L x\) -Jrp —  n-D'G; (*.) -4- - ~

The integral of equation 15.36c is 
x, A AX|

- ■ c r y « *  /  4-^ —  n O ' j G i  I5.36d
ana the first derivative of equation 1 5 .36c is

-  U? =  *  A ; M  -+& -~1T D /Ui(x l) 15.36eC| *
When x=a, x^=~ and = 0, i.e z=0. Substituting these values in* 4x

15.36c

0 ^ / 4 r ( a ) 4 -PB-iC a ) _ n O /G-iCa) 4- A ?
n

equation 1 5 .36c yields
\ nr n//l • r~'< . CV

15.36f

Also when x=b, x^= b<:.and z=0. Substituting these values in equaion 

1 5 .36c yields

0 = o < / \ i ( b) -+ ̂  B»'( W  — D  G] (k) ~r ^  i5.36g
h

Solution of equations 15«36f and 15*36g yields
0( "  C B ^ C b ) — B\  La ) 4 -  TT D ^ o ) ]a w

IT 1 5 «36h

and

^ - % \ ~ W C AiC<r’ 15.361
When x=a, x^=a £nd y =0. Substituting t^ese values in 15»36d yields

0=G< j 4-j§ j* — fTD J Q j (+) cif 4r^p^ 0 4rV I5.36j
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Also when x=b, x ^ E  and y =0. Substituting these values in 15.36d 

gives
¡3 b /

0= ©( jAj(t)df - ¡ - f t j'S',(+)̂r — nDj { j yOO db -X 15»36k
Subtracting 1 5 .36k from 1 5 .36k and substituting for or and yields

b l -----1 T « w l
^ s )  J L r. J4r, ^

Equation 1 5 .36L can be further reduced using 15.33 and 15.35 to
15.36L

15.36L'
ĵv\  ̂ t

Vihen x=a, x1='a and ( Mi . Substituting these values in 15.36e 

and substituting for^j^ and n0/yields
M i___ "cs- T L_ , l , j ,  A-y i_ii_ ^  (o ’-  VO 1
&1 =  -  jr-i- %  15-56m
Equation 1 5 .36m can be further reduced using 15.33 and 15.35 to 

| ^  =  -[s,-t-sc —  15.36m*

Also when x=b, x =b and(-A) fcjl . Substituting these values in• p»1* *55* EX
15.36e and using 15.36h, 1 5 .3 6 1, 15.36L, 15*33 and 15.35, gives

^  = [si +  ^  15.36n
If we define

H = V P2= a/b
The mean value of axial force is P = (P̂  + P^V^ 

which gives P„= --- P0 1 1 + p.
The length of the strut is L = b - a
Hence a = -£1 - JX
M1= m^wL

15.36o

15.36p

15.36q
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M2= m2wL 1 5 .36r 

v = q wL ' 15.36s 

Comparsion of 15.36m1 and 15.36q; 15.3on and 1 5 .36s and I5 .36L' and 

15.36t using 15.36o and 15.36p yields

W | *  - l -+ M l
P/Pe

C Si-+ Sc —  cA , \

m x = -  ̂ r ~ T  "STo C^+-SC - ^ )
aO-fO P/&

1 5 . 3 7

¥
It is convenient to tabulate the stability functions in term 

P / P . Hence the parameters ‘a, "b and tsL as expressed in terms P/P
and u are
a = _ r ------ - E l

*6 = "a/p

•ou

u

Modified stability functions

The factors s'.', s", q* and are those of the strut pinned at 1 2 '1

one end. These values can be obtained as functions of the stability 

functions which hava already been obtained. When joint 2 is pin- 

jointed and a moment M^ is applied at 1 , joint 1 will rotate clock

wise through an angle and joint 2 will rotate clockwise through 

an angle ©2 to balance the moment ksc ©^ appearing at 2. Hence 

k sc ©^ + k s2©2= 0
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which gives 
sc

«2 = - s2 S 1 5 .38a

The moment at end 1 is 

M1= k (s1G1+ sc ©?)

Substituting for ©^ yields
, S'iSp-(jsc)5,M1 = k — -— —---- ©.

1 s 12
If we define

M = k s''©. , + W  —I I I  Sj.
The shear force required to keep the pin-jointed strut 

equilibrium is
i£ I o Q c. A T _  k f  a __ Q CsZlT 1 .QL i * ‘ ~ X L  h l2- Si. i

If we define the shear force by

1 9," ft
Comparsion of 15.38d and 15»38e yields

t f - P i . -  *u f 1']
Following the same procedure, it can be shown that

II S,SA —  ( sc) -j
S, J

and

II
* << 
0"' tii-i, -fr1]

13.38b

15.38c

in

15«38d

15.38e

I5.38f

I5.38g

I5.38h
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Electronic Computer Programming

The stability functions were found to be function of the 

Airy integral functions, A.(t)dt, B.(t)dt', G. (t)dt, fl. (x ), [b . (x )
1  1  ZL X  ZL

r f t /
JG^Cx), A^(x), B^(x), G_^(x). These functions are series and their 

.expressions can be obtained from ( Z\, ^ 3a jbM) . The number of terms 

taken in the evaluation of these functions will be dependent on the 

argument x of the functions. For values of x less than unity, the 

first few terms in the series will be sufficient to give the values 

of the functions, but once the x-value exceeds unity, more terms 

must be taken and for large values of x, the asymptotic expansion 

of these functions must be used.

On the Liverpool University Electronic Computer, there is a 

facility for calculating these functions. This necessiated writting 

a subroutine consisting of a number of first order differential 

equations equal in number to that of the Airy integral functions.

If the values of these functions are given for some starting value 

x of the argument, then the valuesoof these functions at x +h can 

be obtained. The h-value was obtained for equal interval of 0.02 of 

the load parameter P/Pe of the strut.

The functions A^(x) and B^(x) are independent solutions of the 

differential equation 

y" = xy

C
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Then A_̂ (x) and its integral and derivative will satisfy 

A£(x) = x A.(x)

and likewise for B^(x) and its integral and derivative satisfy 

BV (x) = x B_. (x)

The function G.. (x) and its integral and derivative satisfy 

G”(x) - x G .(x) = - —1 2. JT

Then the set of the differential equations will be 

d ( f A .(t)dt ) = A (x)
— J  X 2.
dx
d (A. (x) ) = A! (x)— i idx

d (A.! (x) ) = x A. (x) 
dx

X.
d ( /  B (t)dt ) = B.(x) 
dx
d (B (x) ) = 3!(x) 
dx

d (B! (x) ) = x B. (x)
dx 1 1

d ( f  G.(t)dt ) = G.(x)
dx 1 1

d (G (x) ) = G!(x) 
dx

(G!(x) ) = x G.(x) - -— a 2. n
dx

Once the subroutine has calculated these functions, the machine 

will proceed to calculate the stability functions. The expressions
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for sc was given in two forms in 1 5 .3 3  which have the same 

numerical value. The programme was made to calculate these values 

which was taken as a measure of the accuracy of the evaluation. 

Some of the results obtained are tabulated below and it will be 

noticed that and as calculated on the machine were found to be 

equal to and ci,.

F = 0 .2

f 0.0 2 0.V*

S1 3 .982^0602
9 3.587^7105

sc 2.00662220 2.16775032

I sc 2 .006622^6 2 .1677^ 610
I

e2 3 .96^81301 3.177188^6

q 1 5 .967030^0 5.237^6903

! q2 5 .993W 707 5.870^3593

! *1 5.9670 30 53 5.237^79

| *2 5 .9 9 3 ^ 7 7 2 ' 5.870^3697
f

Q
11.7 6 3 0 0 3 2 6.72105253j

! mi 0.0835812285 i 0.089^1823A-

“2 0.083636^873 0.09075771^5

q 0.500312^83 O .507638205
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