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Abstract 

Abstract 

This study aims to evaluate and advance our ability to predict the effects of 
disturbance on communities using statistical models. This is important because 
climate change is likely to alter the patterns of disturbance experienced by 
ecosystems. 

In the first chapter, I review the evidence for effects of climate change on the 
disturbance regimes experienced by marine ecosystems, particularly coral reefs. I 
also outline theories about how disturbance affects communities, and give 
background information on two field sites: Heron Island in the Great Barrier Reef, 
and Salthouse Dock in Liverpool. 

Chapter 2 is a comparison of four models for coral community dynamics at Heron 
Island; a discrete-time Markov model and a nonlinear continuous-time model, each 
with and without the effects of cyclones. The models are fitted using Bayesian 
methods. The addition of cyclones improved the fit of the model, with cyclones 
causing some coral mortality, although recovery was rapid. Recruitment appeared 
less important than the growth and mortality of existing corals. 

In Chapter 3, I use the best model from Chapter 2 to examine how different the 
dynamics at Heron Island for the years 1962-1992 might have been under a range of 
cyclone frequency scenarios. Under current or slightly increased cyclone frequency, 
coral cover could be either high or low, depending on the timing of cyclones. With 
increasing cyclone frequency, there was a transition from the outcome being 
contingent on chance events to being almost certain about the outcome. 

In Chapter 4, we take the two models with cyclone effects from Chapter 2, and run 
them forwards in time until the year 2008. We then compare the predictions with 
newly collected field data using Bayesian methods. The continuous-time model 
predicted significantly less coral than was observed in 2008. Conversely, the 
discrete-time model predicted significantly more coral than was observed. Overall, 
the predictions made by the continuous-time model are closer to the observations. 

Chapter 5 is a two-year experimental study on the effects of disturbance on marine 
sessile communities. A two-year study was carried out at the Salthouse Dock site to 
determine whether a disturbance regime would cause persistent changes in 
community composition. Recovery was rapid. A simple mathematical model 
suggests that recovery is almost inevitable in systems of this kind, especially for 
species with planktonic larval stages. 

Comparing the Heron Island and Salthouse Dock results highlights the importance of 
external recruitment in recovery from disturbance. I discuss the advantages and 
disadvantages of alternative modelling strategies, and argue that simple models 
based on extensive data may be useful. 
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Chapter One: Introduction 

Chapter One: Introduction 

There is increasing evidence that climate change is happening and that these 

prospective changes will impact on ecosystems on local and global scales (Harris et 

al. 2006). Climate change predictions include increases in mean temperatures, sea 

level, and the incidence of extreme climatic events, along with changes in patterns of 

weather and precipitation (Harris et al. 2006). In marine systems, the indirect effects 

of climate change appear to be the most widespread (Walther et al. 2002). Climate 

change will not only cause responses in individual species (Mieszkowska et al. 

2006), but may also disrupt their interactions with other species on varying trophic 

levels (Walther et al. 2002). Thackeray et al. (2010) found that most life history 

events are occurring earlier in the year, although this has been less pronounced for 

secondary consumers than for producers or primary consumers; these results are 

consistent with warming trends. Furthermore, the combined effects of multiple 

stressors increase the sensitivity of species to extinction (Travis 2003). We can 

quantify the sensitivity of a species to extinction using Quasiextinction risk (QER) 

(Ginzburg et al. 1982) and use this to examine the effects of climate change 

predictions on communites. 

Rapid climate change or extreme climatic events can change community composition 

(Walther et al. 2002). Long-term changes in the physical environment (e.g. climate 

change) can have effects on long-lived communities over large regions (Connell et 

al. 1997). For example, during periods of warmer water temperatures, substantial 

impacts have been observed on coral reef community structure (Walther et al. 2002). 

1 



Chapter One: Introduction 

Thus, it seems likely that climate change will result in large changes to ecosystems. 

The ability to predict these changes and their subsequent effects on marine 

communities will aid the management and possible restoration of these communities. 

White and Pickett (1985) defined a disturbance as any discrete event in time that 

disrupts ecosystem, community, or population structure, and changes resource 

availability. Succession can be defined as the changes in an ecological community 

following a disturbance (Connell and Slatyer 1977). Connell (1978) suggested that 

the rate of succession is often much slower than the rate at which disturbance events 

occur. Thus, frequent disturbances can prevent a system from reaching the endpoint 

of succession. Connell also argued that diversity will tend to be highest when 

disturbance is sufficiently frequent to prevent dominant competitors from eliminating 

other species, but not so common that few species have an opportunity to colonise a 

habitat before the next disturbance event. This is known as the intermediate 

disturbance hypothesis. Connell suggested that this mechanism might be responsible 

for the high diversity observed in coral reefs and tropical rainforests. Historically, 

cyclones have always been present in tropical climates. However, an increase in the 

severity and frequency of cyclones due to anthropogenic climate change may cause a 

reduction in the abundance and diversity of corals. The frequency and severity of 

disturbances create a regeneration niche that will be occupied by species that have 

regeneration times that are shorter than the disturbance period (McClanahan 2002). 

Coral reefs are one of the most biologically diverse and economically important 

ecosystems (Diaz-Pulido et al. 2009). They are also one of the most vulnerable 

marine ecosystems and there would be dire consequences if coral reefs were lost 
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Chapter One: Introduction 

(Hoegh-Guldberg 1999). A new disturbance regIme on a reef can cause the 

ecosystem to fundamentally change its species composition from previous ecological 

states (McClanahan 2002). We will apply a disturbance regime to experimental 

communities to determine whether alternative ecological states can be stimulated or 

whether the intermediate disturbance hypothesis would apply. 

Dudgeon et al. (2010) defines a phase shift as a change in the community 

equilibrium in response to a persistent change in environmental conditions. However, 

there are varying definitions of what actually constitutes a phase shift (Lees et al. 

2006). There is evidence that some reefs have undergone a phase shift from a coral­

dominated system to a system that is dominated by algae (Hughes 1994). Phase shifts 

occurred on Caribbean reefs as a consequence of cyclones, overfishing, and the loss 

of a key grazer (Tanner et aJ. 1994). Whilst these case studies are not currently 

representative of reefs worldwide, they serve as a warning of the consequences of 

multiple disturbances on reef communities (Bruno et al. 2009). 

An increase in the frequency of tropical storms has increased the need to understand 

the ecological disturbances of these disasters. Phase shifts have been documented in 

a range of different ecosystems, including oceans, forests, and lakes (Scheffer et al. 

2001). Dudgeon et al. (2010) defmes alternative stable states as more than one 

community configuration that can occur in the same space and under the same 

environmental conditions at different times. The influence of scale and the possible 

existence of dynamic equilibria make it difficult to distinguish phase shifts from 

alternative stable states (Dudgeon et al. 2010). 
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Chapter One: Introduction 

In this study, models of coral reef dynamics were developed to enable predictions 

about the future trajectory of coral reef system diversity to be made, and to further 

our understanding of the dynamics of the system. Models may be empirical, that is 

based on observations, or mechanistic, which are based on actual processes within 

the system. There are also models of varying complexity, with a simple model being 

the ideal, whereas a more complex model may be required to adequately simulate the 

system dynamics. 

There are three attributes of a model that we wish to maximise; generality, precision, 

and realism (Levins 1966). Generality is the ability to take a model that is based at 

one location, and apply it to another ecosystem at a separate location. Precision is the 

ability of the model to make accurate quantitative predictions. Realism is how well 

the model's structure and processes mimic those of the natural system. In reality, it is 

impossible to find a model that maximises these three attributes, and we must 

sacrifice one to reach our goal (Levins 1966). 

We can also describe a model along two axes: its realism, and its complexity (Fig. 

2.1.). An empirical model may sometimes be realistic only over a limited domain 

(e.g. the current set of environmental conditions). It may not necessarily be the case 

that this limited domain covers all observable conditions. Mechanistic models can be 

realistic, but are usually also complicated, which reduces their generality. 
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Empirical 
X 

Discrete-time 
X 

Tanner 
Continuous-time 

X 
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X 
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Figure 1.1 Diagram to represent trade-offs in model attributes. Illustrated with our 
discrete-time and continuous-time models, and models from Tanner et al. (1994), 
McClanahan (1995), Wolanski et al. (2004), and Mumby et al. (2006). 

Previous models of coral reef dynamics have tended to be complicated. McClanahan 

(1995) described an energy -based coral reef fisheries model that simulates the entire 

ecosystem including fishing pressure. Fulton et al. (2004) described a very 

complicated biogeochemical ecosystem model, with over 750 parameters. 

Blackwood et al. (2010) described a model of the effect of fishing on coral reefs. 

They add the effects of parrotfish into an existing model, which makes the model 

more complicated and more realistic. However, because the values of the new 

parameters are unknown, the model does not become more precise. 

In this study we produced a number of simple statistical models. We developed 

simple and more empirical models because they are realistic and precise. In 

accordance with Levins's (1966) theory, we sacrificed generality, so therefore we are 
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Chapter One: Introduction 

making models for a specific ecosystem that may have restricted applicability to 

other systems. 

Testing a model against real data is important, with different kinds of models 

requiring different levels of testing. Qualitative testing can be relatively easy (e.g. 

visual comparison of plots of model output), whereas quantitative testing is more 

difficult. Quantitative testing involves choosing a suitable measure of discrepancy, 

calculating this for a suitable data set, and then comparing this with that of the model 

output. For qualitative testing, parameters can come from the literature, or be chosen 

to make the model look like the data. Plausible parameters for quantitative testing 

can be determined using the discrepancy measure. 

Model testing, or validation, is an important and ongomg feature of model 

development. Validation can be defined as a demonstration that a model possesses a 

satisfactory level of accuracy for the intended use of the model (Rykiel 1996). 

Specific methods of model validation, and their relative advantages and 

disadvantages will be discussed. Models will be assessed using both quantitative and 

qualitative means, and recommendations for model validation will be made. 

Field sites 

I will study the effects of disturbance on the dynamics of two contrasting 

communities: the Heron Island coral reef, and the fouling community in Salthouse 

Dock, Liverpool. 
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Chapter One: Introduction 

The Great Barrier Reef is the world's largest continuous reef system. It is home to 

most of Australia's marine biodiversity and provides a breeding ground for seabirds 

and marine mammals (Hennessy et al. 2007). Marine substrates, such as corals, are 

vital to the functioning of the ecosystem as a whole (Connell et al. 1997). 

Our main study site, Heron Island, is a platform reef near the southern end of the 

Great Barrier Reef (Connell et al. 2004). A series of permanent quadrats were 

established on three sites on Heron Island in the early 1960's (Tanner et al. 1994). 

The quadrats have been sampled at regular intervals (-2 years) since, making it one 

of the longest available time series of coral community data. We use data from the 

Protected Crest site, which is on the southwestern rim of the island. The crest is 

protected from waves by the Wistari reef, which lies to the West of Heron Island. 

A long-term study of coral community dynamics at the Protected Crest site (Connell 

et al. 1997) will be used. Historically, coral cover at this site has experienced large 

losses (>40%) during cyclone events (Connell et al. 1997), with recovery times 

ranging from 3 to 25 years (Connell et al. 2004). 

The Liverpool South Dock chain was started in 1753 with the building of Salthouse 

Dock (Jones 2004, p92). They were built because the strong tides and shifting mud 

banks of the Mersey Estuary were major restrictions to the growth of the shipping 

trade in the 17th century (Hawkins et al. 1999). Later, the increasing size of boats 

necessitated using larger docks, and after 1920 the Docks were no longer used 

commercially (Jones 2004, p25). The South Docks were closed in 1972 and their 
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gates were left open; this led to the docks filling with large quantities of silt (Jones 

2004, p30). The Liverpool South Docks were restored for the International Tall Ships 

race in August 1984; the restoration involved removing 12 feet of silt, dredging the 

docks, and repairing the walls (Jones 2004, pp34-35). 

The South Liverpool Dock chain is dominated by benthic filter feeders, and 

relatively diverse fish communities (Fielding 1997). This dock system will be used 

as a secondary study site to further inform potential models of sessile community 

dynamics. 

Study Objectives 

This study aims to advance our ability to predict the dynamics of marine 

communities using statistical models. This involves: adding environmental data to 

models, investigating the impact of climate change on disturbances, evaluating 

predictions using new data, and investigating the methodology used in making these 

predictions. These aims are addressed in five chapters: 

Chapter 2 is a comparison of four models for community dynamics at Heron Island. 

Markov models are used to describe systems where a future event is only dependent 

on the current status and not on any previous states (Renshaw 1995). In the study of 

sessile community dynamics, it has been demonstrated that simple Markov models 

can be applied to organisms as diverse as forests and corals (Tanner et al. 1996). 

However, recent work has suggested that nonlinear models may be more appropriate 
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Chapter One: Introduction 

in some cases (Spencer and Tanner 2008). I compare four models, a discrete-time 

Markov model and a nonlinear continuous-time model, each with and without the 

effects of cyclones. The models are fitted to data and are compared to one another 

using Bayesian methods. 

Chapter 3 examines the effect of different climate change scenarios on cyclones, and 

therefore coral reefs. Using the best model from Chapter 2, we examine how 

different the dynamics at Heron Island for the years 1962-1992 might have been 

under a range of cyclone frequency scenarios from the literature. 

Chapter 4 is an assessment of the predictions made using current models for coral 

reef dynamics tested against recent data. We take the two models with cyclone 

effects from Chapter 2, and run them forwards in time from the end of the 

observation period until the year 2008. We then compare the predictions with newly 

collected field data, using Bayesian methods. 

Chapter 5 is an experimental study on the effects of different disturbance regimes on 

marine sessile communities. A two-year study was carried out at the Salthouse Dock 

site to determine whether a disturbance regime would cause changes in community 

composition. The disturbance regime was implemented after a period of settlement. 

Chapter 6 is a general discussion of all of the previous chapters. Recommendations 

for further work are made, along with suggestions for model improvements. The 

need for synergy between ecological theory and data is discussed, as is the use of 

simple statistical models. 
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Chapter Two: Predicting the effects of cyclones on coral 

reefs 

Introduction 

Coral reefs are one of the most biologically diverse ecosystems on the planet, and are 

also important economically (Diaz-Pulido et al. 2009). There is clear evidence of a 

global decline in both the abundance of coral and quality of reefs due to the 

cumulative effects of a number of anthropogenic pressures including warming 

oceans, ocean acidification, coral disease, declining water quality, eutrophication, 

physical damage and fishing overexploitation (Hughes 2003, Bellwood et al. 2004, 

Bruno and Selig 2007, Graham et al. 2008). In many parts of the world coral 

bleaching has resulted in significant declines of live coral (Hoegh-Guldberg 1999). 

Coral bleaching occurs when corals lose their symbiotic zooxanthellae, and is a 

result of the corals being stressed (e.g. thermal stress) (Hughes 2003). 

Species diversity in coral systems is critically dependant on natural mortality in the 

reef system and the continual mortality of the competitive dominants is essential to 

promoting diversity (Connell 1978). Natural coral mortality can occur as a direct 

result of storm events, such as cyclones. A cyclone is a 'non-frontal synoptic scale 

cyclonic rotational low pressure system of Tropical origin, in which 10 minute mean 

winds of at least 17.5 m s -I occur with the belt of maximum winds being in the 

vicinity of the system's centre' (Australian Bureau of Meteorology (ABM) 2011a). 

Cyclones are generated by high wind speeds, low pressures, and a sea surface 
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temperature (SST) above 26°C and are therefore strongly influenced by SST 

(Webster 2005). Increasing SST has led to an increase in cyclone frequency 

(Webster 2005). Cyclones have also increased in power over the last 50 years 

(Emanuel 2005). Cyclones cause coral mortality by sediment scouring, direct 

mechanical breakage, and the removal of substratum (Mumby 1999). 

An ecological disturbance has been defined as a departure, relative to a normal state, 

or trajectory (White and Pickett 1985). The intermediate disturbance hypothesis 

(Connell 1978) states that high diversity is maintained in coral reef systems through 

disturbances at intermediate intervals. Cyclones have always been present in tropical 

climates but the increased severity and frequency of cyclones, due to anthropogenic 

climate change, may result in a reduction in the abundance and diversity of corals. 

The frequency and severity of disturbances create a regeneration niche that will be 

occupied by species that have regeneration times that are shorter than the disturbance 

period (McClanahan 2002). Algae have the fastest regeneration times in coral reef 

systems (McClanahan 2002). A new disturbance regime on a reef can cause the 

ecosystem to fundamentally change its species composition from previous ecological 

states (McClanahan 2002). Dudgeon et al. (20 I 0) define a phase shift as a change in 

the community equilibrium in response to a persistent change in environmental 

conditions. Coral reefs are potentially susceptible to such phase shifts as there is 

some evidence that some reefs have undergone a phase shift from a coral-dominated 

system to a system that is dominated by algae in response to changes in nutrient and 

sediment inputs, due to eutrophication (Hughes et al. 2007). 
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Chapter Two: Predicting the effects of cyclones on coral reefs 

One of the longest time series of coral reef community data is from Heron Island. It 

is a platform reef near the southern end of the Great Barrier Reef (Connell et al. 

2004). Historically. coral cover has experienced large losses (>40%) during cyclone 

events (Connell et al. 1997), with recovery times ranging from 3 to 25 years (Connell 

et al. 2004). A series of permanent quadrats were established on three sites on Heron 

Island in the early 1960s (Tanner et al. 1994) and have been sampled every 1-3 years 

since. 

Several models have been created to describe the dynamics of this system (Tanner et 

al. 1994. Tanner et al. 1996, Spencer and Susko 2005. Spencer 2006, Spencer and 

Tanner 2008). Tanner et al. (1994) is a discrete-time Markov model, whereas Tanner 

et al. (1996) is a semi-Markov model where transitions depend on how long a point 

has spent in its current state. Spencer & Susko (2005) is a continuous-time version of 

a Markov model. In this context. Markov models describe the dynamics of discrete 

states (in these cases. groups of species) at fixed points in space. The probabilities of 

transitions between states are assumed to depend only on the current state. Markov 

models are generally used because they are relatively easy to parameterise from field 

data, and have a relatively simple structure, compared to many other models of 

community dynamics. Markov models can be used to quantify the structure of a 

community (e.g. succession. Hill et al. 2004). or to predict the outcome of a 

disturbance event (Wootton 2004). In contrast, Spencer & Tanner (2008) is a 

continuous-time Lotka-Volterra competition model. It fits the data significantly 

better than the other simple models because the transition rates are dependent on 

density. However. a goodness-of-fit test shows that there is still a large amount of 

unexplained variability in the model. The model does not include cyclones. or other 
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environmental parameters, which may explain this variability. There are other 

models which incorporate cyclones (e.g. Massel and Done 1993, Wolanski el al. 

2004) but these are mostly mechanistic and have not been rigorously evaluated 

against data. 

In this chapter, we aim to develop statistical models that can be used to predict the 

consequences of future cyclone events on the coral reef system. These will consist of 

a linear discrete-time Markov model, and a nonlinear continuous-time model based 

on Spencer & Tanner (2008). These models will be tested using the Heron Island 

dataset. More generally, these models will act as a framework for adding 

environmental variables into statistical models of community dynamics. 

Methods 

Data 

Infonnation on the study site is given in Chapter 1. At 17 unequally spaced times, 

between 1962 and 1989, the states (coral, algae, free space) of at least 1249 fixed 

points in space were recorded (Tanner el al. 1994). The 1249 fixed points were from 

across all six quadrats and the data from the quadrats were pooled. For each pair of 

observations at consecutive times, I, and f2, a matrix of transition counts was 

calculated, whose entries were the number of times that we saw state i at 12 given 

statej at I,. 
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Discrete-time model 

We make the following assumptions: all time intervals are equal in length, in reality 

this is not exactly true (mean time interval = 1.60, with a standard error of:t 0.18 

years); transition probabilities are constant over every time interval that has the same 

environmental conditions; that the true matrix. of transition probabilities is irreducible 

and primitive, as it ensures that the model has a unique stationary distribution 

(Caswell 2001); and that all intervals that include one or more cyclones are affected 

equally; in reality this depends on when in the interval cyclone/s occur. 

We used a Bayesian approach to estimate the model parameters, using Bayes' 

theorem (Equation 2.1). The output was the posterior distribution (p(aly» of the 

unknown (possibly multidimensional) parameter a given data y, which was 

dependent on the prior, pea), and the data distribution, p(yla). The prior expresses our 

knowledge of the system, and the data distribution is the probability of these data 

given parameter a. 

p«(J I y) oc p«(J)p(y I (J) (2.1) 

(Gelman et al. 2004, p8) 

We derived transition counts for the discrete-time model by separating the observed 

transition counts into intervals with and without cyclones. These were then summed 

to create two sets of transition counts: cyclone, and nocyclone. Intervals are included 

in the cyclone transition counts if there is at least one cyclone at any time during that 

interval. 
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A unifonn Dirichlet prior on transition probabilities out of a given state is used, as 

we do not have strong prior knowledge about the transition probabilities. This prior 

makes any set of transition probabilities equally likely. The Dirichlet distribution has 

all aj set to a value of one for the unifonn case. 

The Dirichlet density function is 

p(8Ia)OCrr~ 8~rl 
J-l J 

where k is the number of possible outcomes (Gelman et al. 2004, p83). 

Using this Dirichlet prior, and assuming a multinomial model for the counts of 

transitions out of a given state, the posterior distribution is also Dirichlet: 

where y is the vector of counts of the number of observations of each outcome 

(Gelman et al. 2004, p83). A similar prior was used on the initial probabilities of 

each state, resulting in a similar Dirichlet posterior distribution. 

We were able to sample directly from the posterior distribution of transition 

probabilities. Random samples were taken from a set of gamma distributions with 

scale parameter = 1, and shape vector =Y+l, where Y is the matrix of transition 

counts. The gamma samples were then transfonned into Dirichlet samples as 

described in Gelman et al. (2004, p582). 
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Continuous-time model 

An existing continuous-time Lotka-Volterra competition model was used as the basis 

for a new model incorporating cyclone effects (Spencer and Tanner 2008, 2.). The 

basic model is a system of nonlinear differential equations, and does not include any 

environmental variables. 

dx 
--(XA-C)x 
dt (2.2) 

Here, A is a matrix whose off-diagonal elements are the interaction coefficients aij, 

which specify the transition rate from state j to state i, and have dimensions time-i. 

The diagonal elements are zero. X is a diagonal matrix with entries Xi if i 1= e, and 1 if 

i = e, where e is empty space. C is a diagonal matrix of column sums of XA. x is a 

column vector of probabilities of each state. 

Modelling cyclone effects 

The simplest approach to add cyclone effects to the model is a step change in coral 

mortality sustained for a period of time after the cyclone hits (tc). We assume that all 

cyclones cause the same increase in mortality. We also assume that more than one 

cyclone in quick succession does not cause a further increase in the rate of mortality, 

only an increase in the duration of the increased mortality. Added parameters were 

the increased mortality due to cyclones and the duration of increased mortality after a 

cyclone occurs, which we assume to be fixed and constant. We believe that coral 

mortality is sustained due to the mortality caused by coral fragments and smothering 
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caused by sediment (Mumby 1999). The original model used a matrix of transition 

rates, A. The new model (Equation 2.3) uses two matrices of transition rates. 

dx {(XA- C)x 
dt - (XAe - Ce)x 

when time since last cyclone> tc• 

when time since last cyclone so tc 

where Cc is a diagonal matrix of column sums of XAc . 

(2.3) 

Three new parameters were also added to the model. The original matrix, A, is used 

when cyclones are not determined to be causing mortality. A new transition matrix, 

Ac differs only from A in one term, the transitions of corals to empty space (a31), 

which has been multiplied by c in Ac. We assume that the duration of increased 

mortality after a cyclone occurs is fixed and constant. 

The parameter c is a measure of increased mortality, which is the change in 

transitions from coral to empty space. When c=1 there is no change to mortality (Le. 

cyclones are not causing increased mortality). Ac is used when cyclonic effects were 

known to be occurring. These occurrences were determined using the dates of known 

cyclones and the duration of their effects. A vector of dates when cyclones caused 

coral mortality at the study site on Heron Island was used (Connell et al. 1997). tc is 

the duration of cyclone mortality. This was estimated at six months after a range of 

two months to two years was obtained from the primary literature (e.g. Emslie et al. 

2008, Gardner et al. 2005, Guillemot et al. 2010). We do not estimate tc from the 

data because we want to estimate as few parameters as possible, as the number of 
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observations is fairly small. There are also potential identifiability problems because 

c has no effect as Ie approaches zero. 

Parameter Estimation 

Markov Chain Monte Carlo (MCMC) analysis is a method of estimating the 

posterior distribution of model parameters in a Bayesian analysis. The posterior 

distribution of a parameter contains all the information we have about the value of a 

parameter, both from prior knowledge or beliefs and from the current data. We 

define a Markov chain whose stationary distribution is the required posterior. We 

then simulate this chain. After an initial period, which is discarded (the bumin), the 

simulated sample is approximately a sample from the posterior distribution. 

The priors used for most of the parameters were vague. We thought that an 

informative prior for coral mortality was important because we did not believe that 

the estimate of coral mortality in the original model was biologically plausible as it 

was too low (Clancy el al. 2010). To generate an informative prior, data for coral 

mortality were obtained from searching electronic journals for 'coral mortality'. The 

data were the survival of colonies over time. Survival rates were obtained for varying 

lengths of time (Table 2.1). It was assumed that the rate of mortality was constant 

over the time period. Studies that focused on a disturbance event (e.g. tsunami, 

cyclone, storm) were excluded as we are trying to assess the background level of 

coral mortality. Where a study used an experimental treatment the control group was 

used. We ended up with information from four papers covering at least thirteen 

different coral species. For each species in each study the instantaneous rate of coral 

mortality was calculated using the exponential growth equation 
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(2.4) 

Here, Nt is the proportion alive at time t, No is proportion alive at time 0 (No = 1), r is 

the instantaneous mortality rate, and t is time. Equation 2.4 was rearranged to give 

the instantaneous growth rate (r) for each coral mortality value (Table 2.1): 

InN, r---- (2.5) 
t 
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Table 2.1. Instantaneous rates of coral mortality (r) from the literature, calculated 
using equation 2.5. Mortality rates were assumed to be constant over time. Original 
data were over varying lengths of time (t). 

Reference Reef Species r (years' t 
Location I) (years) 

Bak & Luckhurst Curacao Agaricia agaricites 0.204 
5.00 

(1980) 
A.lamarcki 0.023 5.00 
Montastrea annularis 0.030 5.00 
M cavernosa 0.030 5.00 
Meandrina 0.096 

5.00 meandrites 
Other coral 0.109 5.00 

Harriott (1985) Lizard Island Faviafavus 0.038 1.33 
Porites spp. 0.122 1.33 
Lobophyllia 0.167 

1.33 corymbosa 
Pocillopora 0.435 

1.33 damicornis 
Tanner (1997) Heron Island Acropora hyacinthus 0.199 1.25 

Pocil/opora 0.497 
2.00 damicornis 

Babcock (1991) Geoffrey Goniastrea aspera 0.278 
1.00 Bay 

G. aspera 0.148 1.00 
G.favulus 0.251 1.00 
G.favulus 0.171 1.00 
Platygyra sinensis 0.196 1.00 
Platygyra sinensis 0.218 1.00 
G. aspera 0.209 1.00 
G. aspera 0.223 1.00 
G.favulus 0.167 1.00 
G·favulus 0.178 1.00 
Platyf(Yra sinensis 0.128 1.00 
Platyf(Yra sinensis 0.232 1.00 

Once calculated, the values of r were plotted as a histogram (Fig. 2.2). A gamma 

distribution (Evans et al. 2000) was appropriate as a model for these data as 

mortality rate is non-negative, and the gamma distribution has a flexible shape. The 

parameters of the gamma distribution, shape and rate, were determined using the 
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function 'fitdistr' in the MASS package in R (Venables and Ripley 2002). Figure 2.1 

shows the fitted gamma distribution plotted against a histogram generated from the 

data in table 2.1. 

-

o 

0.0 0.1 0.2 0.3 0.4 0.5 

Figure 2.1. Histogram of instantaneous coral mortality rates (r) from the literature. 
Line represents a gamma distribution fit to the data using the function 'fitdistr' in the 
MASS package in R. 

The estimated gamma distribution (Evans et al. 2000), with parameters of scale = 

2.2166 and shape = 0.0818 was used as a prior for coral mortality. The model was 

implemented in Matlab R2009a (Mathworks 2009) and was run twice for 1 x 107 

iterations to check for convergence on a Debian Lenny linux server with a 3 GHz 

Intel Xeon processor and 4G RAM, using a bumin length of 1 x 106
. Models were 
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compared using Bayes' factors (Gelman et aZ. 2004, p184) based on harmonic means 

(Newton and Raftery 1994). 

Results 

Discrete-time Model 

The discrete-time model without the effect of cyclones quickly approaches 

equilibrium (Fig. 2.2.). The equilibrium state probability for empty space is highest 

at approximately 0.6, whereas coral is approximately 0.38, and algae is 0.02. Initially 

uncertainty decreases; the effect of initial conditions decays as equilibrium was 

approached (Fig. 2.2.). However, the uncertainty did not disappear; uncertainty in 

the transition probabilities was reflected in the uncertainty in where the equilibrium 

lies. This model approaches equilibrium too quickly and does not capture the trends 

in real data. 
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Figure 2.2. Posterior of discrete-time model without cyclones. Circles are observed 
proportions of each state. Each solid line represents an iteration of the model from 
the posterior parameter distribution, where thick solid lines represent a number of 
overlapping iterations. Vertical bars represent intervals with cyclones. Time is 
measured in years since 1963. 

The discrete-time model with the effect of cyclones showed short-term fluctuations 

caused by cyclones around a long-tenn mean. When a cyclone hits, the state 

probabilities of empty space and algae increase, whereas the state probability of coral 

decrea es, where cyclones cause mortality of corals (Fig. 2.3). As with the model 

without cyclones, the effect of uncertainty in initial conditions decays over time (Fig. 

2.3). ncertainty is higher, especially in algae, when cyclones occur. This model 

does not capture the overall trends in the data but it does capture the apparent effect 

of cyclones. For example, in the real data, the proportion of empty space increases in 

4/4 time intervals with cyclones but only 7/12 time intervals without cyclones. In the 

model, the proportion of empty space increases over every cyclone interval. 
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Figure 2.3. Posterior of discrete-time model with cyclones. Circles are observed 
proportions of each state. Each solid line represents an iteration of the model from 
the posterior parameter distribution, where thick solid lines represent a number of 
overlapping iterations. Vertical bars represent intervals with cyclones. Time is 
measured in years since 1963. 

There are two key differences between the transition probabilities for time intervals 

with and without cyclones. Intervals with cyclones have higher transitions from coral 

to free space, and lower coral persistence (Fig. 2.4,2.5). Intervals with cyclones also 

have higher uncertainty in transition probabilities out of the algal state due to smaller 

sample sizes (Fig. 2.4,2.5). The transition probability from coral to free space in 

intervals when there is not a cyclone occurring has a posterior mode of 

approximately 0.4 (Fig. 2.4G). 
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Figure 2.4. Probability density functions for posterior transition probabilities for 
discrete-time model with cyclones when a cyclone is not occurring. C to C is coral 
persistence, A to C is algae to coral, F to C is free space to coral, C to A is coral to 
algae, A to A is algal persistence, F to A is free space to algae, C to F is coral 
mortality, A to F is algal mortality, and F to F is persistence as empty space. 

The probability of a coral to free space transition when there is a cyclone occurring 

has a posterior mode of just above 0.5 (Fig. 2.50), which is higher than when a 

cyclone is not occurring (Fig. 2.40). The probability of coral surviving decreases 

from approximately 0.6 when a cyclone is not occurring (Fig. 2.4A) to 

approximately 0.5 when a cyclone is occurring (Fig. 2.5A). This decrease is because 

the transition probabilities in any column must sum to one. Thus, a change in one 

transition probability must be balanced by changes in other transitions in the same 

column. 
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Figure 2.5. Probability density functions for posterior transition probabilities for 
discrete-time model with cyclones when a cyclone is occurring. C to C is coral 
persistence, A to C is algae to coral, F to C is free space to coral, C to A is coral to 
algae, A to A is algal persistence, F to A is free space to algae. C to F is coral 
mortality. A to F is algal mortality. and F to F is persistence as empty space. 

A Bayes factor was calculated comparing the discrete-time model with cyclones to 

the discrete-time model without cyclones. The Bayes factor was 112.7, which is 

'strong' evidence that the discrete-time model with cyclones is better than the 

discrete-time model without cyclones (Raftery 1996). 
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Continuous-time Model 

Continuous-time nwdel without cyclones 

Figure 2.6 shows the marginal posteriors for one run of the continuous-time model 

without cyclones. The other, not shown, was very similar. Transitions from coral to 

algae, algae to free space, and empty space to algae were all large (Fig. 2.6). The 

values were similar to those in Clancy et al. (2010), which shows that having 

different priors made little difference. The rate of transitions from coral to empty 

space (a31) is too small; even with a strong prior (Fig. 2.1) for this model the data 

suggest a smaller coral mortality than is biologically plausible (Fig. 2.6). 
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Figure 2.6. Probability density functions for marginal posteriors of continuous-time 
model without cyclones (one of two similar runs shown). The diagonal components 
are initial state probabilities of coral P(C), algae p(A), and free space p(F). The off­
diagonal components are rates of transitions where C=coral, A=algae, and F=free 
space (years-I). Run for 1 x 107

, bumin was 1 x 106• 
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Figure 2.7 shows one run of the continuous-time model without the effect of 

cyclones. The other, not shown, was very similar. It approaches equilibrium after 

about 30 years (Fig. 2.7). The equilibrium state probability for empty space is 

highest at almost 1, whereas coral is approximately 0, and algae is 0.02. Initially 

uncertainty decreases for coral and empty space (Fig. 2.7). Uncertainty is higher in 

the algal state (Fig. 2.7). The model captures the overall trend in coral and free space, 

but there is some scatter of the data around the model predictions. 

08 005 

10 1 
004 

06 
I I 

~ 04 

OJ 003 

'" 0-
Cij 002 

02 001 I 
I 

0 I 9 I 
40 SO 60 0 10 30 40 SO 

trne (years) 

08 

21 06 a 
(I) 

8l 04 
• 101 

02 I I 
I I 

0 I I 
0 10 20 30 40 SO 60 

tme (years) 

Figure 2.7. Posterior of continuous-time model without cyclones (one of two similar 
runs shown). Circles are observed proportions of each state. Each solid line 
represents one of 1000 iterations of the model from the posterior parameter 
distribution where thick solid lines indicate a number of overlapping iterations. 
Vertical dashed lines represent dates of cyclones, where thick dashed lines indicate 
more than one cyclone in quick succession. Time is measured in years since 1963. 
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Continuous-time model with cyclones 

Log likelihoods for both runs (Appendix I) seemed to converge after c. 5 x lOs 

iterations. The key difference between the two runs of the model with cyclones is in 

the estimates of coral mortality parameters. The second run has higher coral 

mortality in the absence of cyclones (a31 is between 1 and 1.8 x 10-4 in the first run, 

Figure 2.8G, and 0.005 to 0.01 in the second run, Figure 2.9G). The real difference in 

model behaviour is not that great, in that in both runs, almost all coral mortality 

occurs after cyclones. 
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Figure 2.8. Probability density functions for marginal posteriors for continuous-time 
model with cyclones (first run). The diagonal components are initial state 
probabilities of coral p(C), algae p(A), and free space p(F). The off-diagonal 
components are rates of transitions where C=coral, A=algae, and F=free space 
(years-I). Run for 1 x 107

, bumin was 1 x 106• 
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However, the 95% credible interval for the increase in coral mortality during cyclone 

periods (c) was higher in the first than the second run (4769-8286 for the first run, 

and 82.4-156.6 for the second). As a result, mortality of coral during a cyclone (the 

product of c and transitions from coral to empty space) is within one order of 

magnitude for both runs (Fig. 2.10), while mortality of coral outside cyclone periods 

is very low in both runs. There seems to be a strong trend in coral mortality during 

cyclones in the first run, and in both runs, it looks like there are some fairly long-

term changes (Fig. 2.10). This is evidence that the MeMe is having difficulty 

converging, even though the biological conclusions are similar in both runs. 
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Figure 2. 10. Coral mortality during a cyclone for both runs. Mortality = a31 * c for 
both runs, where a31 is transitions from coral to empty space and c is the increase in 
mortali ty due to cyclones. 

The posterior trajectories for both runs of the continuous-time model with cyclones 

(Fig. 2.11 ,2.12) are the closest match to the observed patterns out of all the models 

considered so far. Coral cover (Fig. 2.11 ,2.l2) shows a strong overall downward 

trend, with sharp decreases when cyclones hit, followed by fairly rapid partial 

recovery. The patterns in free space (Fig. 2.11 ,2.12) are more or less a mirror image 

of the patterns in coral cover; with a strong upward trend overall, accompanied by 

sharp short-term increases after cyclones. The posterior trajectories for algal cover 

(Fig. 2.11 ,2.1 2) are not a particularly close match to the observations, but this is 

likely to be a consequence of the very low algal cover throughout the time series. For 

all three state , the uncertainty in the posterior trajectories is relatively low. 
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Figure 2.11. First run of continuous-time model with cyclones. Circles are observed 
proportions of each state. Each solid line represents one of 1000 iterations of the 
model from the posterior parameter distribution, where thick solid lines indicate a 
number of overlapping iterations. Vertical dashed lines represent dates of cyclones, 
where thick dashed lines indicate more than one cyclone in quick succession. 
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Figure 2.12. Second run of continuous-time model with cyclones. Circles are 
observed proportions of each state. Each solid line represents one of 1000 iterations 
of the model from the posterior parameter distribution, where thick solid lines 
indicate a number of overlapping iterations. Vertical dashed lines represent dates of 
cyclones, where thick dashed lines indicate more than one cyclone in quick 
succession. 

Bayes factors were calculated comparing both runs of the continuous-time model 

with cyclones, with both runs of the continuous-time model without cyclones. The 

first run of the continuous-time model with cyclones, when compared to both runs of 

the continuous-time model without cyclones, produced a Bayes' factor of 44.2. This 

is 'strong' evidence that the continuous-time model with cyclones is better than either 

of the continuous-time models without cyclones (Raftery 1996). The second run of 

the continuous-time model with cyclones, when compared to both runs of the 

continuous-time model without cyclones, produced a Bayes' factor of 11.4. This is 

'positive' evidence that the continuous-time model with cyclones is better than either 

of the continuous-time models without cyclones (Raftery 1996). 
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Discussion 

The addition of cyclones and the use of the continuous-time model both make the 

models developed here produce output that looks more like the observed data, which 

is evidenced by the Bayes' factors. Both models show that including cyclones causes 

the modelled coral mortality to better resemble the data set. Inclusion of the cyclone 

mortality causes a large increase in coral mortality in the continuous-time model and 

a much smaller increase in the discrete-time model. The mechanisms thought to be 

responsible for this increased mortality are immediate direct damage, increased 

sedimentation, and delayed damage from rubble in the water (Mumby 1999). Our 

model does not explicitly include these mechanisms but it does generate the patterns 

we would expect these mechanisms to produce. 

Visually, the continuous-time model produces output that is a better match for the 

observations than the discrete-time. This may be because the continuous-time model 

is nonlinear, with transition rates that depend on local abundances. In contrast, the 

discrete-time model is linear, and can be viewed as describing an open system with a 

constant input of recruits. It has been suggested that Lotka-Volterra and similar 

models may not be appropriate for marine invertebrates such as corals that have 

sessile, space-limited adults and pelagic larvae (Roughgarden et al. 1985). 

Roughgarden et al. (1985) used a "supply-side" model whose basic formulation is a 

linear Markov model. In practice, both local growth and dispersal are likely to be 

important. The growth rate of an existing coral population seems inherently likely to 

depend on coral cover. For example, under the simple assumption that each unit of 

cover has a constant growth rate, a unit of free space will be filled more quickly 
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when coral cover is high than when it is low. Other, more complicated, scenarios 

such as size limitation and density dependence (Artzy-Randrup et al. 2007) will give 

different growth rates, but are not likely to remove the qualitative dependence of 

growth rate on coral cover. However, since the continuous-time model looks more 

like the data it could be argued that recruitment is not as important as the growth and 

mortality of existing corals. However, coral reefs have been shown to have high 

spatial variability in recruitment (Connell et al. 1997) therefore for some reefs 

recruitment will be important. 

Uncertainty still remains about the rates of some transitions in the continuous-time 

model. This is especially true for transitions that involve algae as they have fast 

dynamics. Algae have been shown to be capable of undergoing a complete growth 

cycle in four to six months (Jompa and McCook 2003). Since observations are taken 

at time intervals much longer than this, it will be difficult to reconstruct algal 

dynamics from the data. Discrete-time models are much easier to fit to such data 

because they make no predictions about what happens between observations (e.g. 

coral to free space followed by colonization by algae becomes coral being overgrown 

by algae). The uncertainty about what happens to algae in the model may in part be 

due to cyclones both causing instantaneous mortality, and stimulating growth by the 

production of bare substrate. The time resolution in the data is insufficient to pick up 

algal dynamics. Any large changes in algae are dampened by the relatively low 

frequency of algae in the dataset. Algae are not a major ecosystem component at this 

site but are at other sites (e.g. in the Caribbean). Some reefs that have undergone 

recurrent disturbances (e.g. cyclone. disease. bleaching) have undergone a phase shift 
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from a coral dominated system to one that is dominated by macroalgae (Bruno et al. 

2009). 

Coral mortality due to cyclones is not large, and recovery is fast. In our case, this 

short-term recovery is superimposed on a longer-term decline. Thus disturbance 

should be thought of as moving the system temporarily away from a trajectory 

towards an equilibrium (which may be changing over time), and recovery as a return 

to the initial trajectory (Jeffries 1976). Corals have been shown to be suppressed by 

cyclones and recover comparatively slowly between recurrent events (Hughes et al. 

2010). 

Related to this, our estimates of background coral mortality from the continuous-time 

model appear implausibly low, even after supplying strong prior information (Fig. 

2.2). Again, this may be due to widely-spaced observations. In such cases, coral 

death followed by algal overgrowth may be attributed to direct algal overgrowth 

rather than to coral mortality. 

It seems possible that there is not enough information in the data to reliably estimate 

all the parameters of a nonlinear model. This may be the cause of our convergence 

problems with the MCMC despite our efforts, and is a problem associated with 

modem, complex models (Lavine 2010). The model can not be made more 

complicated by adding additional parameters, as the data to support it are not 

available. We may be able to solve this problem simply by having a longer time 

series. 
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Returning to the ideas of generality, precision, and realism (Levins 1966) mentioned 

in Chapter One, the choice of model depends on whether the purpose is to 

understand a system or be able to make predictions. Using the discrete-time model, 

we could test hypotheses about impacts of stressors such as cyclones, and l'0ssibly 

other factors such as SST. We had at least qualitative agreement with the continuous­

time model, while being much easier to work with. The data requirements are less 

restrictive for the discrete-time model; we don't run into problems with processes 

that occur on much shorter time scales than the observation interval. Predictions 

made using the discrete-time model might be a bit risky because it does not fit the 

data well, so would be unlikely to be accurate in the future. Our continuous-model 

would be more appropriate to use for quantitative predictions. We could also test 

whether the addition of data for other environmental variables could further improve 

the continuous-time model. With the current model, there is still some uncertainty in 

the predictions, which would need to be addressed. Despite our uncertainties, there 

are much less well-studied models that are used for predictions at much larger scales 

(e.g. McClanahan 1995, Mumby et al. 2006, Wolanski et al. 2004). It has been 

demonstrated that, beyond a threshold, as model complexity increases, model 

effectiveness decreases (Fulton et al. 2003). 

In conclusion, although the effects of cyclones on coral cover are well known 

(Tanner et al. 1994, Connell 1997), it is surprisingly complicated to fit a quantitative 

model of cyclone effects to a time series of coral and algal reef states at points in 

space. It is important that we can make quantitative, rather than qualitative, 

predictions about the consequences of environmental change on coral reefs and we 

need a framework for models of such effects on ecosystems in general. Fitting 
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models to community time series is difficult because of the often large numbers of 

parameters, strong nonlinearities, and range of time scales for the underlying 

processes. Such fitting is therefore rarely attempted. Nevertheless, the reasonable 

performance of the simple continuous-time model that we used suggests that our 

approach has some potential. 
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Chapter Three: Effects of increased frequency of cyclones 

on coral reefs 

Introduction 

Cyclones are predicted to increase in power and frequency due to global warming 

(Chapter 2 and references therein). Severe cyclones (those in categories 4 and 5 on 

the Saffir-Simpson scale) have been increasing since the 1970s and are predicted to 

increase further (Webster 2005). Severe cyclones have been shown to cause 

extensive damage to adult corals and recruits (Mumby 1999). 

We cannot carry out experiments to simulate the effects of cyclones on coral reefs 

because of practical and ethical difficulties. An observational, 'natural experiment' 

type, study would require a large number of reefs with different cyclone regimes and 

community structures. There are observational studies that attempt to estimate 

cyclone effects; most of these are not quantitative or predictive. One such example of 

an observational study, by Adjeroud et al. (2005) described the effect of cyclones 

and other natural disturbances on coral reefs in French Polynesia. Whilst sites on 13 

islands were monitored over a 10-year period, cyclones only occurred in one of these 

years. As a consequence the study was largely descriptive, and as the responses to 

disturbances were varied and causal relationships were not clear, conclusions could 

not be made about the future effects of cyclones. 
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To predict coral reef dynamics under future cyclone scenarios using a model, we 

would need to make predictions about how each of the model parameters would 

change in the future. Each of those predictions would have an associated uncertainty, 

and the combination of uncertainty in many parameters would result in high overall 

uncertainty in the model output. 

Instead we model 'alternative pasts'; we use the current model parameters with 

different cyclone scenarios to see how changes in cyclone frequency would have 

changed the community structure at Heron Island over the years 1963-1993. This has 

the advantage that we already have estimates of uncertainty in all the relevant 

parameters, and have shown that the model is a good description of the data for these 

years. Alternative pasts have previously been used in conservation biology to 

determine which of a number of climate scenarios fit historical ecological data 

(Kirkpatrick and Fowler 1998). 

After modelling the effects of an environmental change scenario, we need a way of 

summarizing these effects that incorporates uncertainty. Quasiextinction risk (QER) 

is the risk of a population falling below a set threshold at any point within a given 

time frame (Ginzburg et al. 1982). The threshold is chosen to be relevant to the 

question. For example, it could be a level below which the population is at high risk 

of stochastic extinction, or a level below which we do not want the population to fall 

for economic or aesthetic reasons (Burgman et al. 1993). Predictions about future 

increases in cyclone frequency are translated into decreases in mean waiting times 

(time intervals between events of a given type: (Raup 1991». We carried out an 

ecological risk analysis for the effects of changes in cyclone frequency on coral 
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cover. Such analyses are often done at the population level, treating the dynamics of 

a single species in isolation (e.g. Brook et al. 2000, Bacelar et al. 2009, Keith 2009), 

but here we use quasiextinction risk for coral embedded within a model of 

community dynamics. Ecological risk is also frequently assessed at the individual 

level, largely because this avoids the complexity of constructing a population 

dynamics model. It is sometimes hoped that if we protect individual organisms, then 

we are probably protecting the population as well (Demott et al. 2005), although this 

may not be the case when interspecific interactions are accounted for. In addition, 

individual-level risk assessment may be less relevant than population or community 

level assessment, if the population or community is the level at which we want to 

protect the system. 

Here, we used our semi-mechanistic continuous-time model with cyclones from 

Chapter 2 to look at alternative pasts under three different cyclone scenarios. We 

assessed the consequences of these scenarios using quasi extinction risk for corals 

embedded within a community dynamics model to test the hypothesis that scenarios 

with a larger cyclone frequency would result in communities with lower coral cover. 

Method 

Simulating cyclones 

The simplest model for occurrence of cyclones is to assume that they have a constant 

rate per unit time and are independent of each other. This leads to an exponential 
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distribution of waiting times between successive cyclones (Evans et al. 2000). 

Waiting time of 35 severe cyclones affecting the Eastern coast of Australia between 

1970 and 20 II were used to create an exponential probability plot (ABM 2011 b, Fig. 

3. 1) Waiting times would form a straight line if they came from an exponential 

di stribution. 
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Figure 3. 1. xponential probability plot of observed cyclone waiting times between 
1970 and 20 11 for the Eastern coast of Australia. Dashed line is a reference line for 
an exponential di tribution. n=35 (ABM 2011 b). 

yclon s were found to only occur between the months of November and April 

during this p riod (ABM 20 11 b), which demonstrates that cyclones are highly 

ea onal (Fig. 3.2). As a re ult, the exponential probability plot (Figure 3.1) is far 

from a traight line and the exponential distribution is not a plausible model for the 

waiting time between cyclones. 
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Figure 3.2 Cyclone frequency per calendar month, over 41 years (ABM 2011b) for 
the Eastern coast of Australia. 

We therefore considered the next simplest model. We assumed that the rate of 

cyclones is zero outside of the observed cyclone season, and constant within this 

season (Fig. 3.3). Simulated waiting times under this model were obtained using 

Algorithm 3.1. 
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Figure 3.3 A imple model for seasonality of cyclones where ts = length of cyclone 

season, tn=length of the no-cyclone season, and 11 is the rate of cyclones during the 

cyclone season. 

Algorithm 3.1 imulated cyclone times 

1) Initialise to = time zero in model (time between the start of the model 

and the tart of the cyclone season) 

ts = length of cyclone season 

tn = 1-15, where In=length of the no-cyclone season 

Imax = total length of simulation 

,u=mean waiting time between consecutive cyclones during the season 

2) nti) t>fmax, 

i) ample a waiting time, W, from an exponential distribution 

with mean,u 

ii) et t=f+w . 

iii) If 1 i outside of the current cyclone season, move it to the 

next one: 

while I mod 1>15 

(where I mod 1 is the fractional part of t) 

3) ith waiting time = 1i+ 1 - Ii - 10 
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Figure 3.4 hows a simulated probability plot under this model with parameters 

estimated from the data in Figure 3.1. The overall pattern is similar to the probability 

plot of the actual data, in that it shows the same characteristic steps. We therefore 

used this model to simulate cyclone times. 
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Figure 3.4. Exponential probability plot of simulated cyclone waItmg times. 
Parameter e timated from the data in Figure 3.1. Dashed line is a reference line for 
an exponential di tribution. 

Three scenario were chosen for the analysis; one with current cyclone waiting 

times and two cenarios with increased cyclone frequency (decreased waiting time), 

based on tudie by Leslie et al. (2007) and Walsh et aI., (2004). Leslie et ai. (2007) 

predicted a 22% increase, whereas Walsh et aI. , (2004) predicted a 56% increase in 

cyclone , both by 2050. Walsh et al. (2004) used a horizontal resolution of30 km, 18 

vertical I I , and a wind speed threshold of 17 ms- I
, whereas Leslie et ai. (2007) 

u ed a re olution of 50 km, 24 vertical levels, and a wind speed threshold of 15 ms- I
. 

Wal h el al. (2004) compared early simulated results with observations from the 

Joint T phoon Warning Center' s best track data, whereas Leslie et ai. (2007) 
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compared observations with data from the World Meterological Organization. Also, 

the area modelled in Walsh et ai. (2004) was described as Eastern Australia, whereas 

Leslie et ai. (2007) described the area modelled as the Southwest Pacific Ocean. 

These scenarios were used to simulate cyclone waiting times (Algorithm 3.1). For 

each of these scenarios, a sample of 1000 simulated trajectories were taken from the 

coral community dynamics model, using Algorithm 3.2. 

Algorithm 3.2 Coral dynamics with simulated cyclone times 

I) Use Algorithm 3.1 to generate 1000 sets of waiting times for each 

given future cyclone scenario 

2) For each simulated set of waiting times, 

i) Sample the parameters ofthe coral dynamics model from 

the posterior distribution estimated in Chapter 2. 

ii) Solve the differential equation 2.2 to obtain the 

proportions of coral, algae, and free space at regularly 

spaced time points. 

3) Use the sample mean of each state probability at each time as an 

estimate of the posterior mean probability of that state. 

4) Calculate 50% and 95% Highest Posterior Density (HPD) regions, 

where the HPD is the smallest region (not necessarily continuous) 

that contains a given proportion of the distribution. 

Preliminary analysis suggested that the posterior distributions of coral cover and free 

space for some time points and some cyclone frequency scenarios were bimodal. 

Equal-tailed credible intervals can obscure the locations of the modes in multimodal 

distributions. We therefore summarized the results of simulations using Highest 

Posterior Density (HPD) regions (Hyndman 1996, Fig 3.5). An HPD region is the 
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smallest region that contains a specified proportion of the distribution, and is not 

necessarily continuous. We calculated both 50% and 95% HPD regions. 

Equal-tailed 95% 

HPD95% 

Figure 3.5 Comparison of equal-tailed intervals with highest posterior density 
(HPD). adapted from Hyndman (1996). 

The outcomes of each scenario were also summarized by calculating the 

quasi extinction risk. Quasiextinction risk is usually defined as the probability of a 

population falling below a set threshold at any time during a set time period 

(Ginzburg et al. 1982). Here, we apply the concept to community dynamics. In this 

case, the quasiextinction risk is calculated as the proportion of trajectories whose 

coral cover falls below the threshold within the time period. A time period of 41 

years was used, as this was the time frame of the original model. The decline 

threshold of 50% of initial coral cover was used because it represents a substantial 

loss of coral cover; declines do not have to be to some critical level (Burgman et al. 

1993). Quasiextinction risk was calculated for a range of waiting times to determine 

its relationship with mean waiting times. A range of waiting times, 0.1-10 was used 

as this covered the quasiextinction risk from 0.1-1. We then expressed these waiting 
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times relative to the actual waiting time. The results were summarized by plotting 

quasiextinction risk against the ratio of scenario waiting time to actual waiting time. 

We also ran simulations with very short and very long mean waiting times to 

determine whether the observed bimodality in coral cover was caused by parameter 

uncertainty, alternative stable states, or the sequence of waiting times. If these 

simulations do not show bimodality then the observed bimodality is due to the 

sequence of waiting times. If these simulations do show bimodality then this may be 

due to either uncertainty in our parameter estimations or the presence of alternative 

stable states. 

In a stochastic system, the trajectory of a single reef is unlikely to display the full 

range of possible patterns of coral cover. We therefore compared the posterior 

distributions of coral cover under the current cyclone frequency with the recent 

distribution on 69 reefs in the Great Barrier Reef. We obtained these data from 

Bruno et al. (2009). Hard coral cover on these reefs was estimated using a variety of 

methods. We used the most recent coral cover recorded for each reef. 

Results 

Figure 3.6 shows five example trajectories from the model, using the observed mean 

waiting time; each line on the graph is an iteration, where each iteration has a 

different set of waiting times. When a cyclone hits, coral cover decreases, proportion 

of free space increases, and algae are not greatly affected. 
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Figure 3.6. Example trajectories of the nonlinear model with simulated cyclones for 
(a) coral (b) algae, and (c) free space, on varying vertical axis scales. Red horizontal 
line indicate an extinction threshold of 50% of original coral cover. Mean waiting 
time i estimated from observed cyclone data from Heron Island, Australia. 5 
iteration. 

Because the times at which cyclones occur are stochastic, a series of closely-spaced 

cyclone can reduce coral cover down to a very low level, while a long interval 

without cyclones can allow coral cover to become high. In the set of 1000 

trajectories sampled from the posterior distribution, using the observed mean waiting 

time, we do not ee as large steps in the boundaries of the HPD regions as we do in 

individual trajectories, because cyclones hit at different times in different replicates 

(Fig. 3.7). After about 30 years, the 50% highest posterior density (HPD) region 

contains almo t 100% free space, and almost 0% coral (Fig. 3.7). The 95% HPD 

region is trongly bimodal, with low coral cover being most likely, but high coral 

cover al 0 being po sible (Fig. 3.7). 
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Figure 3.7 Highest posterior density regions for observed cyclone frequency for (a) 
coral, (b) algae and (C) free space, with algae on a much smaller vertical axis scale. 
1000 iterations. Black is the 50% HPD region, and grey is the 95% region. 

With an increase of 22% in cyclone frequency, after about 25 years, the 50% highest 

posterior density (HPD) region contains almost 100% free space, and almost 0% 

coral (Fig. 3.8). The 95% HPD region is again bimodal, with low coral cover being 

more likely than at current cyclone rates (Fig 3.7, 3.8). 

50 



Chapter Three: Effects of increased frequency of cyclones on coral reefs 

0.75 

OJ 8 0.5 

0.25 

20 
time (y ears) 

0.75 

8 .-
g- 0.5 
II 

~ 
025 

20 
time (years) 

40 

40 

0.01875 

Q) 

~ 0.0125 
<i 

0.00625 

20 40 
time (years) 

Figure 3.8 Highest posterior density regions for an increase of 22% in cyclone 
frequency for (a) coral, (b) algae, and (c) free space, with algae on a much smaller 
vertical axis scale. 1000 iterations. Black is the 50% HPD region, and grey is the 
95% region. 

After about 20 years, the 50% highest posterior density (HPD) region contains 

almost 100% free space, and almost 0% coral (Fig. 3.9). The 95% HPD region is no 

longer bimodal' low coral cover is now the only outcome (Fig. 3.9). So, as cyclone 

frequency increases a state of low coral cover becomes the most likely outcome 

(Fig. 3.7-3.9). 
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Figure 3.9 Highest posterior density regions for an increase of 56% in cyclone 
frequency for (a) coral, (b) algae, and (c) free space. 1000 iterations. Black is the 
50% HPD region and grey is the 95% region. 

When we use a very low mean waiting time (e.g. one cyclone every 111000 years), 

cyclones are very frequent. This causes coral cover to decline rapidly in all 

replicates; coral approaches 0% cover whilst free space approaches 100% cover after 

about five years (Fig. 3.10). As there is no evidence of bimodality for these 

conditions we can use equal-tailed intervals. Algal cover increases slightly under a 

frequent cyclone regime (Fig. 3.10). 
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Figure 3.10 Mean and equal-tailed 95% credible intervals for 1000 iterations at a 
mean waiting time of 0.00] years. Red horizontal line indicates an extinction 
threshold of 50% of original coral cover. 

When we u e a very high mean waiting time (e.g. one cyclone every 2000 years) , 

cyclone are very rare. This allows coral to grow, and increase in cover in all 

replicates up to almost 100% after 15 years (Fig. 3.11). Again, equal-tailed intervals 

are appropriate because there is no evidence of bimodality. Algal cover decreases to 

almost 0% cover after 15 years of a cyclone-free regime (Fig. 3.11). This suggests 

that the bimodality seen in Figures 3.7-3.9 is due to moderate waiting times allowing 

two e entualitie rather than alternative stable states or parameter uncertainty. 
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Figure 3.11 Mean and equal-tailed 95% credible intervals for 1000 iterations at a 
mean waiting time of 2000 years. Red horizontal line indicates an extinction 
threshold of 50% of original coral cover. 

Quasiextinction risk increases as mean waiting time decreases (Fig. 3.12). When the 

mean waiting time is very short, coral cover is almost certain to drop below 50% of 

the observed initial value by the end of the simulation (Fig. 3.12). When the mean 

waiting time is very long, the risk is only 10.2% (Fig. 3.12). The observed waiting 

time i between these two, which is why we see bimodality (Fig. 3.7). As mean 

waiting time increases about the current value, the slope gets steeper (Fig. 3.12). This 

show that mall increases in waiting time will have large effects on quasi extinction 

ri k (Fig. 3. 12). Therefore, a small uncertainty in waiting time estimates translates 

into a larger uncertainty about the corresponding quasi extinction risk. 
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Figure 3.12 Quasiextinction risks for varying mean waiting time ratios, where 1 is 
the current cyclone waiting time, with a threshold of a 50% reduction in initial coral 
cover, for 1000 iterations over 41 years. 

In order to determine whether this bimodality occurs in real reefs on the GBR, the 

distribution of hard coral cover from 69 different reefs was examined (Bruno et al. 

2009, Fig. 3.13). Some bimodality is possible in these data, although the sample size 

is not large. Nevertheless, it is clear that the modelled distribution for Heron Island 

with the current cyclone frequency occupies the extremes of the range for the 

broader GBR data. Although the coral category in our model includes both hard and 

soft corals, soft corals were only abundant in the late 1980s and early 1990s, when 

hard coral cover was very low (Connell et al. 2004). This was the result of the habitat 

drying due to environmental changes caused by a boat running aground (Connell et 

al. 1997). Thus, differences in categories do not explain the difference between the 

model output and the broader GBR data. 
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Figure 3.13 Hard coral cover percentage cover for 69 sites on the Great Barrier Reef, 
using the most recent data for each site (data from Bruno et al. 2009). 

Discussion 

We used a model for cyclone waiting times coupled to our coral community 

dynamics model to see how the coral cover over the period we modelled would have 

varied had the cyclone regime been different. Under current or slightly increased 

frequency one of two things can occur depending on when cyclones occur in the time 

series. When corals have a long period where they are not disturbed by cyclones, 

they increase their cover to a level (>50%) that is able to withstand subsequent losses 

due to cyclones. When cyclones hit early on in the model, the coral is unable to 

reco er between subsequent disturbances, and cover drops to low levels «50%). 

With increasing cyclone frequency, there is a transition from the outcome being 
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contingent on chance events, at a mean waiting time of O!: 2.64 years, or a mean 

waiting time ratio of O!: 1 (Fig. 3.7-3.8), to being almost certain about the outcome at 

a mean waiting time of2.07 years (Fig. 3.9). 

However, the posterior distribution for the current cyclone frequency does not match 

what we see on the rest of the Great Barrier Reef (GBR). While coral cover may be 

bimodal on the GBR (Fig. 3.12), the two possible modes are much closer than in our 

model (20-28% and 36-44%, versus <25% and >75%). These outcomes seem less 

contingent on chance events than our model suggests. This may be due to variation 

in other factors, such as the Bruno et al. (2009) data being only for hard corals, 

whereas our model uses all types of corals grouped together. Differences in 

community structure and biodiversity may also make this environment differ from 

the rest of the GBR. The physical environment on Heron Island was so drastically 

changed by the effects of some cyclones that it was not suitable for colonization by 

corals for some time (Connell et al. 2004); this may explain why coral cover drops 

much lower in the Heron Island model than on other reefs. 

The Heron Island model is currently at the steepest part of the quasiextinction risk 

(QER) curve (Fig. 3.11). The consequence of a steeply sloped QER curve is that an 

accurate estimate of QER depends on an accurate estimate of the mean waiting time 

(1-'). There is uncertainty associated with the predictions of how !-l will change in the 

future, as suggested by different predictions of increases in cyclone frequency. This 

uncertainty is likely to be mainly due to model uncertainty, but will also include 

lesser effects from the other five types of epistemic uncertainty, as discussed in 

Regan et al. (2002). The uncertainty in the model predictions may be due to different 
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areas being modelled, different numbers of vertical levels, varying resolution, and 

different threshold wind speeds (Walsh et al. 2004, Leslie et al. 2007). The other 

types of epistemic uncertainty are measurement error, systematic error, natural 

variation, inherent randomness, and subjective judgement (Regan et al. 2002). There 

is also uncertainty in how accurate our estimates of risk are. For this reason, it has 

been suggested that modelled risks should not be interpreted quantitatively but 

should instead be interpreted relative to a standard of current conditions (Beissinger 

and Westphal 1998). This method allows the comparison of different risks or 

management scenarios, without necessitating precise quantitative risk assessment 

(Beissinger and Westphal 1998). This approach has previously been used to compare 

the risk of different timber harvesting regimes to vulnerable bird and mammal 

populations (Liu el al. 1995, Lindenmayer and Possingham 1996). Relative to 

current conditions, QER will increase as we decrease mean cyclone waiting time 

relative to current mean waiting time. 

The inclusion of cyclones into the model does not make the model output resemble 

algal dynamics better (Fig. 3.7-3.9). There are no direct effects of cyclones on algae 

in our model, although cyclones do indirectly affect algae by increasing free space 

available for colonization. Algae are not limited by competition with corals in the 

model, as they reach a similar equilibrium with and without coral cover. Instead, it 

appears that in our model, algal cover is limited by sources of mortality that are not 

strongly affected by coral cover. Algae also have very high turnover rates, often in 

the order of weeks (Mumby el al. 2005). The resolution of the model may be too low 

to detect these frequent transitions; algal colonization events have been shown to be 

underestimated by quarterly observations (Mumby et al. 2005). Algal cover has 
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historically been low at this site «5% cover), whereas free space has remained high 

(>25% cover) (Connell et al. 1997). 

In general, it is likely that indirect effects will be important for the assessment of 

ecological risk at the community level. For example, Yodzis (2000) studied a 29-

species community and concluded that the predicted effect of a fur seal cull on the 

hake population was noticeably affected by using the entire food web rather than just 

the predator-prey interaction between the seals and hake. This shows that in complex 

community models, indirect effects can be important (Y odzis 2000). There are only 

three state variables in the model, so there is not much scope for long chains of 

indirect effects. Separation of our, rather coarse, categories would change this, but 

this would increase the number of parameters in our model. Number of parameters 

increases approximately with the square of the number of categories and we would 

quickly reach a point where we would be unable to estimate the parameters 

accurately enough to make the model useful. The coarse groupings do inherently 

introduce potential biases, but have the advantage of reducing variability. 

The model was a good description of what has happened over the years 1963-1993. 

Thus, it provides a plausible baseline against which we can assess alternative past 

scenarios, in which we can examine the effect of a single factor such as cyclone 

frequency. It is likely that we can be more confident about alternative past studies 

than about predictions under future scenarios, because any number of factors could 

change in the future. The scenarios only concern changes in cyclone frequency. 

Cyclone intensity is also predicted to increase in the future (Emanuel 2005). If 

cyclone intensity does increase, then our model is likely to underestimate the impact 
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of future climate change. In the next chapter we will see whether the model is any 

good at predicting future observations. 
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Chapter Four: Evaluation of long-term predictions made 

using statistical models 

Introduction 

Models are often assessed by comparing a number of different models of the same 

system to choose which is 'best' (George and McCulloch 1996). However, this only 

determines which of the candidate models best represents the system, and does not 

assess how close the model output is to the actual system. Validation is defined as a 

demonstration that a model possesses a satisfactory level of accuracy consistent with 

the intended application of the model (Rykiel 1996). A model can be validated by 

comparison with new data (Hilborn and Mangel 1997). Validation of a model 

demonstrates that it provides testable hypotheses that are relevant to important 

problems (Levins 1966). 

Models can be evaluated qualitatively, by comparing graphical data to see if patterns 

match, or quantitatively, by comparison with new data. Rykiel (1996) lists 13 

different methods of model validation. The most relevant here are face validity, 

visualization techniques, comparison to other models, statistical validation, historical 

data validation, and predictive validation. 

Face validity is where knowledgeable people decide whether the structure and 

behaviour of the model are reasonable (Rykiel 1996). This forms an important part of 
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model acceptance, as the model must be believable, however it is difficult for this to 

be objective. 

Visualisation techniques involve comparing the system and the model using plots 

(Rykiel 1996). This is also a subjective method of validating models; different 

visualization techniques can suggest different conclusions. Tufte (1993) states that 

graphics are instruments for reasoning about quantitative information. The ease with 

which misleading graphics can be produced demonstrates that visualization is not 

trivial (Tufte 1993). Validation is often determined subjectively by a statement that 

praises the visual goodness of fit (Rykiel 1996). 

Comparison to other models involves evaluating the output of different models 

against one another (Rykiel 1996). The model that fits the existing data best is the 

one with the highest belief attached to it (Hilborn and Mangel 1997). Twenty years 

ago, Agren et a/. (1991) stated that comparisons of ecological models are just 

beginning to occur; model comparison is now much more widespread (e.g. Hanson 

and Stark 2011, Loo et al. 2007). 

Statistical validation includes a variety of tests that can be performed on the model, 

either during model calibration or on the finished model (Rykiel 1996). This can be 

used to compare the model to data from the real system, compare several models, or 

determine whether variation in output variables from the model fall within 

acceptable limits (Rykiel 1996). 
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Historical data validation is where part of a historical dataset is used to build the 

model and another part is used to test the model to see if the model and system 

behaviour correlate (Rykiel 1996). This requires a method of splitting the data into 

two distinct sets; in time-series data the sets are usually divided by time (Power 

1993). 

Predictive validation involves using the model to make predictions about future 

behaviour of the system; these are then compared to other data or future observations 

(Rykiel 1996). This is the most robust method for evaluating predictive models but is 

not widely used, as collecting new data is not possible for many ecological models 

(Power 1993). 

The models in Chapter 2 were constructed using a long-term data set from 1963-

1993. As discussed in Chapter 3, using those models to make predictions would 

inherently and explicitly make a number of assumptions about the system since 

1993. Here, we test the predictions made using the models with cyclones from 

Chapter 2 against new field data obtained in 2008 with data on recent cyclones to 

assess if the model is valid past the end of the dataset upon which it is based. We will 

also discuss the validity of such predictions given that other temporal changes may 

be occurring in these communities. 

Temporal change in communities is the composite of processes over time (Glasser 

1982). These processes are due to abiotic factors, such as current and wave action, 

and changes in temperature, or biotic interactions, such as predation, competition, 

disease, and parasitism (Dobson and Frid 1998). These processes can either affect 
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colonization or the survival of species (Glasser 1982), depending on the frequency 

with which a particular level of a factor occurs (Dobson and Frid 1998). The 

outcome of these combined processes can take many different forms. For example, 

changes in marine communities in the UK have mainly been gradual trends over the 

last 20-30 years, although discontinuous step changes have also been found (Spencer 

et al. 2011). 

In this chapter, the predictions made by the continuous-time model with cyclones 

and the discrete-time model with cyclones are compared to new data obtained in 

2008. This study aims to assess how well these model predictions match the current 

state of the reef. 

Method 

Photographs were taken in August 2008 of the six permanent quadrats set up on the 

Protected Crest site (Connell et al. 2004) at Heron Island, in the Great Barrier Reef. 

The quadrats are permanently marked by the presence of steel stakes in each comer, 

to minimize movement (Tanner et al. 1996). At each quadrat, a plastic 1 m2 quadrat 

frame was placed over the steel stakes (Fig. 4.1) and a photograph was taken from 

directly overhead using a hand-held camera without a tripod. 
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Figure 4.1 Photo of 1 m2 quadrat on the reef flat at Heron Island, on the Great Barrier 
Reef, ugu t 2008 . 

Photograph were taken from a height of approximately 1.5 m. Locations were 

recorded u ing a handheld GPS. Sketches of live coral colonies were made in the 

field to si tid ntification (Fig. 4.2 shows one example). 
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Figure 4.2 Sketch map of coral colonies within quadrat F at the Protected Crest site, 
Heron Island, on the Great Barrier Reef, August 2008. 

Perspective distortions were removed from the photographs using Rectilinear 

Panorama Pro v.1.2.2, within ArcGIS 10. This programme returns the quadrat frame 

to a square by tagging the comerfi and making the sides of equal length. The six 

photographs were digitized by drawing around colonies using a Wacom Bamboo Fun 

graphics tablet and converted into polygons. ArcGIS was then used to calculate area 

for each species. Polygon areas were summed by species for the three categories of 

coral, algae, and free space. ArcGIS was used to calculate the polygon areas, and 

these were summed for coral and algae, and used to calculate free space. 
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Observed coral cover was compared to the predictions of the discrete-time model 

with cyclones, and the continuous-time model with cyclones, as described in Chapter 

2. The dates of cyclones passing within 200 kIn of Heron Island from 1993-2007 

were obtained from the Australian Bureau of Meterology's Tropical Cyclone 

Tracking Information tool (ABM 2011b). Cyclone dates for the 2007/2008 season 

were obtained by studying individual cyclone reports during that period, from the 

Australian Bureau of Meterology (ABM 2011b). Only one cyclone was found to 

meet these criteria during the period 1993-2008; it was added to cyclone dates for the 

period 1963-1993 (Chapter 2.) and the model run was extended by 16 years. 

Model comparison compared the data to the posterior predictive distributions of the 

models (Equation 4.1; Gelman et al. 2004, p161). In general tenns, the model output 

was the posterior predictive distributions of coral cover in 2008, #PlY), where yep 

is defined as the predicted data that would be obtained using the same model and 

value of 8 that produced the observed data (Gelman et al. 2004, p161). The model 

predictions for given parameters 8, p(yrep 18), were integrated over posterior 

distribution of parameters y, p( 8I.Y). 

p(yrep I y) _ f p(y'ep I 8)p(8 I y)d8 (4.1) 

We then define a discrepancy measure T(y, 8) which summarises the difference 

between the model predictions of the new data (in our case, the difference between 

observed and predicted coral cover). By analogy with classical p-values, we then 

defme a posterior predictive p-value, the probability of a discrepancy at least as 

extreme as observed if the new data really came from the model, 
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Bayes p-value = Pr(T(y'ep
, fJ) ~ T(y, ~IY). The p-values were estimated from samples 

of size 1000 from the MCMC output described in Chapter 2. The one-sided p-values 

generated by this procedure were doubled to form two-sided p-values. 

Results 

A total of seven coral species were found in 2008; four of these were found at the 

last survey in 2005. The 2005 survey also found seven different coral species. In 

2008, these mainly comprised of staghom corals from the family Acroporidae (Fig. 

4.3). 
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Figure 4.3 Percentage of coral cover of species, summed over all six quadrats, found 
at the Protected Crest study site, on Heron Island, on the Great Barrier Reef, in 
August 2008. 

In the 2008 sampling, coral covered 5.12% of the six quadrats. No algae were found 

in the quadrats. The continuous-time model predicted significantly less coral than 

was observed (p<0.00001, Fig. 4.4). 
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Figure 4.4 Histogram of 1000 iterations of coral cover from the continuous-time 
model with cyclones for 2008. Vertical line indicates observed coral cover. 

The discrete-time model predicted significantly more coral than was observed 

(p<0.00001, Fig. 4.5). In absolute terms, the difference between predictions and 

observations was much larger for the discrete-time model (Fig. 4.5) than for the 

continuous-time model (Fig. 4.4). 
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Figure 4.5 Histogram of 1000 iterations of coral cover from the discrete-time model 
with cyclones for 2008. Vertical line indicates observed coral cover. 
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To compare th pr dictions of the continuous-time and discrete-time model , we use a 

ternary graph (F ig. 4.6). The continuous-time model prediction is closer to the 

ob erved community tructure than the discrete-time model prediction in axis space 

(Fig. 4.6). 

algae 

free space coral 

Figur 4.6 . T rnary diagran1 of observed data (black), continuous-time model output 
(blu ), and di r t -time model output (red). Coral cover runs from 0 at the free 
pac -algae edg to I at the coral vertex, algae runs from 0 at the free space-coral 

edg t 1 at th alga ertex and free space runs from 0 at the coral-algae edge to I 
at th fr pa 
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Discussion 

The continuous-time model predicts significantly less coral than was observed in 

2008, whereas the discrete-time model predicts significantly more coral than was 

observed. Overall, the predictions made by the continuous-time model are closer to 

the observed community. 

A possible explanation for the overestimate of coral cover from the discrete-time 

model is as follows. The discrete-time model was constructed using data from a 

period in which, on average, coral cover was much higher than it was over the period 

for which we are making predictions. This model assumes that transition 

probabilities, and also the underlying rates of transitions between states, are 

independent of state abundances. However, it was argued in chapter 2 that the rate at 

which coral colonizes free space is likely to be higher when coral cover is high than 

when it is low (hence the success of the continuous-time, nonlinear model). Thus a 

linear Markov model constructed under high coral conditions will tend to 

overestimate the rate at which coral colonizes free space when coral cover is low. As 

a result, such a model will predict faster recovery from low coral cover than will 

occur in the real system. 

A possible explanation for the underestimate of coral cover in the continuous-time 

model is the assumed absence of external recruitment. This model idealises the 

Heron Island reef as a completely closed system (in the sense of having no external 

inputs: (Loreau 2010, p2). The reality is that there is external recruitment, which is 

likely to be highly variable, especially in species that broadcast gametes (Connell et 
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al. 1997). This input may be quantitatively unimportant when coral cover is high, but 

could substantially increase the rate of recovery from low coral cover. 

Caswell (1988) states that we should find the simplest model that is able to generate 

an observed pattern. Neither of our models is able to generate the observed pattern, 

so we need something different and probably more complex. As the continuous-time 

model is closer to the observations, then that would be an obvious starting point. 

Adding coral recruitment into the continuous-time model would make its predictions 

closer to the observed value and would still result in a relatively simple model. 

The study site was dominated by the branching coral, Acropora pulchra, in the 2008 

sampling. The growth of corals from fragments is an important recruitment process 

in some branching corals (Wallace 1985). Coral fragments were commonly found in 

post-cyclone samplings at the study site (Connell et al. 1997). Soong and Chen 

(2003) have shown that under experimental conditions, Acropora pulchra fragments 

of just 4 cm long were able to transplant and survive. The dominance of this 

branching coral at the study site may be due to the transplantation of coral fragments 

produced by cyclones. 

We used visualization techniques as one of our methods of model validation. The 

histograms of the individual models show a relatively large distance between the 

model outputs and the 2008 sampling, whereas the ternary diagram shows that the 

2008 sampling and the model outputs are relatively close in axis space. Both 

methods of visualization use the same data, but different conclusions can be drawn 

from each. This demonstrates Tufte's (1993) view that visualization techniques are 
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highly subjective. We would therefore recommend that one of the more quantitative 

validation techniques (e.g. statistical validation, predictive validation) was used in 

conjunction with visualization techniques to present more objective results. 

There may be some variation in the coral cover between quadrats that is causing the 

difference between the model outputs and the observed value. We could test the 

heterogeneity of the quadrats. possibly by comparison with a Dirichlet distribution. 

to see if variability between the quadrats is larger than expected. A Dirichlet 

distribution is the simplest distribution that describes a composition (where the parts 

are non-negative and sum to one) (Gelman et al. 2004. p582). We could fit a 

Dirichlet distribution to the quadrat data, and ask whether there is more variability 

among the quadrats than would be expected among six samples from the Dirichlet 

distribution. If there is. then we would expect that there is important heterogeneity 

between the quadrats. 

It is possible that our 2008 sampling was atypical of the dynamics of the reef over a 

longer period. In linear regression, 15-20 new observations are recommended for 

evaluating a model (Montgomery and Peck 1982). Our evaluation is based on just 

one new time point. Between 1993 and 2008 there were several unusual events that 

reduced coral cover on the Great Barrier Reef, including widespread bleaching in 

1998 and 2002, and subregional outbreaks of the crown-of-thorns starfish 

Acanthaster planci (Osborne et al. 2011). Nevertheless, the changes in coral cover 

on individual reefs may be quite different from the average change at the subregional 

level (Sweatman et al. 2011). so it is not possible to conclude that the time interval 

between 1993 and 2008 was necessarily an unusual one on Heron Island. 
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There is a 16-year period between the last data point that was used to generate the 

models in Chapter 2, and the new data from the 2008 sampling. This is over half the 

length of the original time series used to develop the model. We are trying to predict 

quite far beyond our data, in relative terms. There may be temporal changes in the 

system over this time period that are not related to disturbances that are causing the 

differences between the models and the new observations. For comparison, Saether 

et al. (2002) had over 40 years of data on a single bird species and a sophisticated 

analysis, and were still only able to make reliable predictions a few years into the 

future. Their model fitted the data well, but the uncertainty in predictions increased 

quickly as they looked further into the future. Our models are attempting to describe 

a more complicated system, based on fewer data and less sophisticated functional 

forms than those of Saether et al. (2002). They are therefore likely to have relatively 

low uncertainty but high bias, exactly as seen in Figure 4.6. 

In conclusion, our models were not outstandingly successful at making predictions 

far beyond the data on which they were developed. Nevertheless, the ways in which 

they failed can give us some insight into what may be missing from them, and into 

what might be reasonable expectations about the performance of predictive models 

in community ecology. 
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Chapter Five: Effects of experimental disturbance on 

fouling communities 

Introduction 

Succession has many controversial definitions in ecology, but here can be defined as 

a directional change over time at a site as a result of the processes of colonization 

and local extinction (Dobson and Frid 1998, page 208). Ecological succession 

usually occurs when a disturbance has caused some change in localized species 

composition (Connell 1975). 

The frequency and severity of disturbances create a regeneration niche that will be 

occupied by species that have regeneration times that are shorter than the disturbance 

period (McClanahan 2002). A new disturbance regime can cause an ecosystem to 

fundamentally change its species composition from previous ecological states 

(McClanahan 2002). Such fundamental changes are sometimes referred to as phase 

shifts, defined by Dudgeon et al. (2010) as changes in the community equilibrium in 

response to a persistent change in environmental conditions. 

In some cases, human activity such as overfishing has resulted in unintended phase 

shifts. For example, Daskalov et al. (2007) found that in the Black Sea a shift to a 

jellyfish-dominated state was triggered by intense fishing pressure. However, it is not 

always easy to distinguish between permanent phase shifts and large-scale but 

transient changes in ecosystem structure, given observations on the state of a natural 
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ecosystem over time. For example, Frank et a1. (2011) argued that in the case of the 

Scotian Shelf ecosystem off the east coast of Canada, an apparent phase shift that has 

been sustained for two decades is in fact a transient state, and that the ecosystem will 

eventually return to its original structure. For this reason, experiments have an 

important role in the study of phase shifts. Connell and Sousa (1983) discuss 

methods of determining whether community structures are stable, whereas Petraitis 

and Dudgeon (2004) reviewed experimental designs for detecting alternative stable 

states. 

In addition, there are some cases in which humans have deliberately caused phase 

shifts. One example is the management and regeneration of docks in the UK. Much 

of this work has focused on the restoration of docks at Liverpool, Salford, and 

Preston (Allen 1992, pi 7). Various studies have been carried out on the Merseyside 

dock systems, with relation to hydrography, ecology, and water quality management 

(e.g. Allen 1992, Fielding 1997). Allen (1992) found that salinity and water quality 

caused considerable variation in the diversity of biota on dock walls. The restoration 

processes in the Liverpool South dock chain resulted in a phase shift from a 

plankton-dominated system, to an ecosystem dominated by filter feeders (Allen 

1992, p 188). The existence of two alternative stable states was evidenced by a 

sudden change from turbid to clear water conditions (Allen 1992, p193). Fielding 

(1997) found that docks in the Liverpool South Dock chain that had had Mytilus 

edulis settlements were now dominated by them and had relatively low plankton 

densities, whereas docks with an absence of benthos still maintained high number of 

zooplankton. 
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Here, I will study the effects of disturbance on the post-restoration fouling 

community in Salthouse Dock, Liverpool, UK. Specifically, I applied different types 

of disturbance to communities on experimental panels, with the aim of determining 

whether they are resilient to disturbance, or whether they have alternative stable 

states. Two of the treatments were selective, and targeted the species that was 

dominant after a year; this would be analogous to predation or a disease outbreak 

affecting a single species. The other treatments were non-selective, and were 

analogous to physical disturbances, such as storms and volcanic activity, that remove 

almost all organisms from affected areas. Two different levels of each removal type 

were used, to determine whether there were thresholds beyond which the system 

would undergo a change, along with a control treatment. 

Method 

The sample sites were located in the Salthouse Dock (530 24' 6.13"N, 20 59' 

24.73"W), in the Liverpool South Docks chain (Fig. 5.1.) 
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Figure 5.1. althou e Dock in the Liverpool South Docks Chain. Study site is the 
floating p nto n, hich follow an 'L' shape around the dock. 

Epib nthi cornmunitie on experimental panels were monitored for 24 months. In 

earl pril 200. 6 t tured expanded polystyrene panels (0.25 m2 each) were 

attach d t of 12 rnm marine plywood (0.37 m2
) using Geocel® Aquaria 

alant ( ig. 5._). 11 'p rimental set-up were pre-leached in holding tanks before 

u . The t-up ere atta hed to permanently moored pontoons in Salthouse Dock, 

and ubm rg d at appro imately O.Sm below water level, weighted so that the panels 

hung rti all 
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Figure 5.2. xp nm ntal et-up. The green plastic container is filled with sand to act 
a a w i ht. 

Monthl ampling on i ted of removing each setup from the water, overlaying with 

a purp built frame, and obtaining a digital photograph of each polystyrene panel. 

The frame, made of wood and metal, slotted into holes in the setup to ensure that the 

photograph r taken from the same position relative to the panels each time. 

Aft r ampling. th pan I were resubmerged, making it a nondestructive technique. 

After a ar, a di turbanc regime was initiated on the panels. There were four 

di turbane tr atm nt , ach applied to four patches of 78 cm2 each (which together 

ummed t half the ampling area on the panel, Figure 5.3). There was only one 

treatm nt typ n a h panel. The treatments were 100% removal of all erect 

organl m (T tal "r ct), 50% removal of all erect organisms (Low Erect), 100% 

remo al f Ciona infe linali (the most aburJdant organism on the panels at the end 
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of th fir t ear) (Total Selective), and 50% removal of C. intestinalis (Low 

elective) . Th re were 7 panels of each treatment, along with 8 that were not 

di turbed ( ontrol). 

Figure 5.3. Quadrat u ed for disturbance regime. Blue lines illustrate sampling area. 
Black tar how di turbed patches. 

Di turbanc arri d out every four weeks, a total of six times. After the end of 

the di turban e r gime, panels were sampled for a further six months to monitor 

recov ry. The ampling area (Fig. 5.3) was used to collect abundance data., the rest 

of the pan 1 a not sampled to avoid edge effects. Samples from before the 

di turban r glffi and after the recovery period are analyzed here (Fig. 5.4). 
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Figure 5.4. Diagram of experimental timeline. Red circle denotes pre-disturbance 
sampling; green circle denotes post-recovery sampling. 

At the end of the study, the boards were removed and all of the organisms were 

removed by scraping all of the living material from the panels. Samples were 

weighed wet and then placed in a drying oven at 90°C for seven days. After this, 

samples were weighed and then re-weighed after a further 24 hours in the drying 

oven to ensure that no more water was lost. 

Digital images from each sample date were analysed using Corel Paintshop Pro X. 

Photographs were cropped and scaled to uniform size, before being overlain with a 

grid. The grid covered the central 0.0625 m2 of the board, and had 100 points at 

intervals of 2.5 cm. Transitions were recorded by creating a three layered image 

consisting of the previous sample, the current sample, and the grid itself. At each 

point on the grid, the organism present was identified to species level. The transition 

between the two ampling dates was recorded and placed into a matrix. 
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Statistical analysis 

BiomtlSS 

One-way ANOVAs, in Minitab 16, were used to determine whether mean final 

weights (both wet and dry) differed between treatments. Both wet weights and dry 

weights were used as dry weights can be strongly influenced by organisms with 

shells. 

Diversity indices 

Species richness, abundance, Shannon-Weiner diversity and Berger-Parker 

dominance indices were calculated for each panel for the pre and post-disturbance 

time intervals. Species richness is the number of species recorded, whereas 

abundance is the total number of individuals in the sample (Magurran 2004, p76). 

Shannon-Weiner is widely used as a measure of biological diversity (Magurran 2004, 

pi 01). The Berger-Parker index is a measure of dominance (Magurran 2004, p 117). 

One-way ANOV As were carried out in Minitab 16 to determine whether the 

difference between pre and post disturbance values of these indices depended on 

treatment. 

Perturbations 

We denote the pre and post-disturbance compositions on a given panel by the vectors 

x(O) and X(/) respectively, where for D species (excluding free space), x=[x}, X2, ••• , 

D 

}:x. -1 
XD], and i-I I • We assume that 0<x;<1 for each i. Here, we outline two measures 
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of change in composition from pre to post-disturbance, the overall change, and the 

net change excluding the direct effects of disturbance. 

We first define the closure operation (Aitchison 1986, p31) e[W]-w/~Wi' which 
i 

converts a vector w of positive numbers into a composition. Then we can defme a 

perturbation p that transforms the pre-disturbance composition to its post-disturbance 

value: 

x(t) - x(O)~p 

- e,x. (O)P •• xz(O)Pz ..... xD(O)p D J 

Here, eis the perturbation operator (Aitchison 2003, p4) (analogous to addition), 

and p is the overall change in composition between times 0 and t. 

Ifwe know x(O) and x(t), then we can fmd the perturbation p as follows: 

p - I(t)8x(O) 

_ e[XI(O)PI ,X2(0)P2 , ... , xp(O)pp . 
Xl (0) X2(O) xp(O) 

(5.1) 

_ e[ x1(t) ,~, ... , xp(t)] 
xl(O) X2(O) xD(O) 

Here, 9 denotes the inverse of e, and is analogous to subtraction (Aitchison 2003, 

p3).We require that none of the components of x(O) is equal to zero, otherwise the 

result would be undefined. We suggest a solution to this restriction later. 

It may also be useful to remove the direct effects of disturbance from the measure of 

change. Each treatment involves a series of disturbances that result in known 

proportional changes in abundance of each species, along with natural change in 
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between (Figure 5.5). Using the notation above, we can write 

x(t ) = x(O) (f) a(l ) (f) bel ) (f) a(2) (f) b(2) (f) .. . ® a(k) (f) b(k), 

where a(l), .. . , a(k) are disturbances, b(l), ... ,b(k)are natural change, and k is the 

number of disturbance events. 

I­
(l) 

> o 
u 

start 

1 2 3 

end 

4 5 6 
Time (months) 

12 

Figure 5.5 Disturbance and recovery in the experiment. The horizontal axis 
represents time, and the vertical axis represents community composition (which in 
reality is multivariate, but is shown in univariate form for simplicity) . Six 
disturbance events (al -~) remove equal proportions of organisms, and six recovery 
events (bl-b6) occur in the five periods between disturbances and a six-month 
recovery period. The overall change p is the perturbation required to get from the 
start point to the end point. The net change c excluding the direct effects of 
disturbances removes the known events al-36. 

As (f) is a commutative operator, the order of the disturbances and natural changes 

does not matter so 

xU) = x( 0) (£) {a(O) (£) a( 1) (£) .. . (£) a( k)} (£) {be 0) (£) b(l) (£) ... (£) b( k)} 

= x(O) (£) {a(O) (£) a(l) (£) ... (£) a(k)} (£) c 
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where c - b(O)~ b(l)~ ... ~ b(k)is the net natural change from time zero to time t 

excluding the direct effects of disturbances. If we apply the same proportional 

disturbance each time, then 8(0) - 8(1) - ... - 8(k) - 8. Ifwe define the power 

operation (Aitchison 2003, p4) (analogous to multiplication) 

k®w -e[~ k,~ k , ••• ,aD
k

] for a scalar kand a composition w, then we can write 

x(t) - x(O)(t)(k®a)(t)c . 

Finally, because x(O), x(t), Ie, and a are known, we can find the net change excluding 

the direct effect of disturbance: 

c - x(t)9(x(O)~ k ® 8). (5.2) 

The disturbances a depend on treatment, and will be described in detail in the Results 

section. In general terms, 8 - e[ d1 ,d2 , ••• ,d D]' where dl is the proportion of species i 

removed in a disturbance event. It is necessary to exclude empty space, because the 

proportional change in empty space depends on the abundances of other species, not 

just on the current proportion of empty space. The closure operator can in fact be 

dropped here, because it can be applied once at the end of the sequence of 

calculations. 

We now discuss a solution to the problem that all parts of the composition are 

assumed strictly positive. We do not believe that if we did not see a species on a 

given panel at a given time, there was zero chance of it appearing. Therefore, we use 

add-one pseudocoun! estimates x, -"in, + 
1 

,where n, is the sample COWl! of the 
(n/ +1) 

j 

ith species. Then a zero count becomes 1 . This is a Bayesian estimator under 
lOO+D 
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the assumption of a uniform prior over the D categories, which is sensible as there is 

only a small number of categories (Manning and Schutze 2002, p202). 

M ulti-t/imensional scaling 

Non-metric multi-dimensional scaling (MDS, Kruskal 1964) was carried out in 

Primer 6 using Euclidean distances. MDS was used on the pre and post-disturbance 

assemblages, both separately and together to determine if there was variation within 

the pre and post-disturbance communities, and if there were overall changes in 

community composition over time. MDS was also carried out on the perturbation 

measures p, and c, to determine if there were differences in the overall and net 

community change between treatments. ANOSIM (Warwick and Clarke 1993) was 

used to determine whether there were significant differences in net change over the 

sampling period among the different treatments. Post-hoc pairwise tests were also 

carried out to determine which treatments resulted in different community 

compositions. 

Transition probabilities 

Transition counts were calculated by counting the number of points undergoing each 

possible transition from one state (all species, plus empty space) to another 

(including persisting in the same state). These counts were then pooled over 

replicates for each treatment. We then calculated a p-value from a likelihood ratio 

test of the null hypothesis that the count matrices for all treatments are generated by 

the same discrete-time Markov chains, against the alternative hypothesis that they are 
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generated by different discrete-time Markov chains, as described in Tanner et a1 

(1994). 

Results 

Biomass 

There was little evidence for differences in mean wet (Figure 5.6; One-way 

ANOV A, df=4,31, F=0.60, p=0.666) or dry (Figure 5.7; One-way ANOV A, df=4,31, 

F=O.38, p=O.819) weights between treatments. 

300 

250 

3 200 

t 150 

r--r- rl- r--r-- + 
I 100 

50 

o 
Control Low Erect Low Selective Total Erect Total Selective 

Treatment 

Figure 5.6. Comparison of means (:t: standard error) for wet weights across 
treatments on panels in Salthouse Dock, Liverpool where low is 50% removal, total 
is 100% removal, selective is removal of dominant species (Ciona intestinalis), and 
erect is removal of erect organisms. Sample size n=7 except for control (n=8). 
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Figure 5.7. Comparison of means (± standard error) for dry weights across 
treatments on panels in Salthouse Dock, Liverpool where low is 50% removal, total 
is 100% removal, selective is removal of dominant species (Ciona intestinalis), and 
erect is removal of erect organisms. Organisms were dried at at 90°C for seven days. 
Sample size n=7 except for control (n=8). 

Scalar indices 

Species richness decreased in all five treatments over the time interval (Fig. 5.8). The 

decreases were not significantly different from one another (One-way ANOV A, 

df=4,31 , F=0.40, p=O.810). 
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Figure 5.8. Comparison of means (± standard error) of species richness across 
treatments on panels in Salthouse Dock, Liverpool where low is 50% removal, total 
is 100% removal, selective is removal of dominant species (Ciona intestinalis), and 
erect is removal of erect organisms. Pre values are from before a disturbance regime; 
post values are from 6 months after the end of disturbance. Sample size n=7 except 
for control (n=8). 

Abundance increased in all five treatments over the time interval (Fig. 5.9). The 

increases were not significantly different from one another (One-way ANOVA, 

df=4,31, F=0.15, p=0.960). 
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Figure 5.9. Comparison of means (± standard error) of abundance across treatments 
on panels in Salthouse Dock, Liverpool where low is 50% removal, total is 100% 
removal selective is removal of dominant species (Ciona intestinalis), and erect is 
removal of erect organisms. Abundance is measured as the number of points (out of 
100). Pre values are from before a disturbance regime; post values are from 6 months 
after the end of disturbance Sample size n=7 except for control (n=8). 

Diversity (Shannon-Weiner) decreased in all five treatments over the time interval 

(Fig. 5.10). The decreases were not significantly different from one another (One-

way ANOVA, df=4,31, F=0.65, p=0.634). 
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Figure 5.10. Comparison of means (± standard error) of the Shannon-Weiner index 
of diversity across treatments on panels in Salthouse Dock, Liverpool where low is 
50% removal, total is 100% removal, selective is removal of dominant species 
(Ciona intestinalis), and erect is removal of erect organisms. Pre values are from 
before a disturbance regime; post values are from 6 months after the end of 
disturbance. Sample size n=7 except for control (n=8). 

Dominance (Berger-Parker) increased in all five treatments over the time interval 

(Fig. 5.11). The decreases were not significantly different from one another (One-

way ANOV A, df=4,31, F=0.94, p=0.456). 

91 



Chapter Five: Effects of experimental disturbance on fouling communities 

0.9 

0.8 

>< 
0.7 

G> 
'C 0.6 .S 
"" G> 0.5 ..:.:: 
"" ~ 

Q. 0.4 , 

I- I I I I- I I- I I I 
"" G> 

r.c 0.3 
G> = 0.2 

0.1 

0 
'0 '0 t t CI) CI) t t ~ ~ .b .b CI) i:! > > CI) CI) 

J-. .€ .€ J-. J-. '.0 '.0 
c c ~ ~ ~ ~ u u 
0 0 CI) CI) CI) CI) 

u u ~ ~ ~ ~ ] ] ~ ~ 
oS 0 en en en en 

....J ~ ~ ~ ~ ] ] 0 0 
....J ....J ~ ~ 

Pre Post Pre Post Pre Post Pre Post Pre Post 

Treatment 

Figure 5.11 . Comparison of means (± standard error) of the Berger-Parker index of 
dominance across treatments on panels in Salthouse Dock, Liverpool where low is 
50% removal total is 100% removal, selective is removal of dominant species 
(Ciona intestinalis), and erect is removal of erect organisms. Pre values are from 
before a disturbance regime; post values are from 6 months after the end of 
disturbance. Sample size n=7 except for control (n=8). 

Multi-dimensional scaling 

The pre-disturbance communities were highly variable (Fig. 5.12). 
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Figure 5.12. Multi-dimensional scaling, using Euclidean distances, for the pre­
disturbance communities where low is 50% removal, total is 100% removal, 
selecti e is removal of dominant species (Ciona intestinalis), and erect is removal of 
erect organi m. ample size n=7 except for control (n=8). 

The po t-di turbance communities were also highly variable (Fig. 5.13). 
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Figur 5.13. Mul ti-dimensional scaling, using Euclidean distances, for the post­
di turbanc communitie , values are from 6 months after the end of disturbance. Low 
i 50% r moval , total i 100% removal, selective is removal of dominant species 
( iona inl linali) , and erect i removal of erect organisms. Sample size n=7 except 
for control (n=8). 
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When plott d together on a single MDS plot, the pre and post-disturbance 

communitie formed rea onably distinct groups (Fig. 5.14). This implies that there 

wa ub tantial change in community composition over time. 
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Figure 5. 14. Multi -dimen ional scaling, using Euclidean distances, for the pre and 
po t-di turban communi tie , where post values are from 6 months after the end of 
di turban . ample ize n=7 except for control (n=8). 

A mea ure of th 0 eral l change over the sampling period, p (Equation 5.1 ), did not 

show any dif£ r nc between the treatments (Fig. 5.15). 
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Figure 5.15 . Multi-dimensional scaling, using Euclidean distances, for the overall 
difference in communities prior to and 6 months after a disturbance regime (p). Low 
is 50% removal , total is 100% removal, selective is removal of dominant species 
( iona intestinali ), and erect is removal of erect organisms. Sample size n=7 except 
for control (n=8). 

Di turbance vectors 

A total removal is 100% removal of half of the area, this is equal to a 50% removal 

over the hole ampling area. Similarly, low removal is 50% removal of half the 

area, which i qual to a 25% removal overall. Selective removal only affects Ciona 

inte tinali , and erect removal affects all species except Botryllus schlosseri, which 

form flat colonies (Hiscock 2008). We can calculate the disturbance vector a for 

different tr atments where the elements of the vector a represent effects of the 

treatment on iona inte tinali , Styela clava, Botryllus schlosseri, Mytilus edulis, and 

Dendrodoa ro sularia; acontrol=[I , l,l , l , l] , alow erect=[0.75,0.75 ,1,0.75,0.75], atotal 

ercct=[0.5,0.5,1 0.5,0.5]. alow selective=[0.75 ,1,1,1,1] , and atotal selective=[0.5,1,1,1,1]. 

A m asure of the net change over the sampling period, c (Equation 5.2), had 

eparated group with some overlap for the low selective and total selective 

treatment (Fig. 5.16). There were high levels of similarity between the groups 
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(ANO 1M, R=0.443). Post-hoc pairwise tests showed high similarity between the 

control and low elective (ANOSIM pairwise, R=0.547), the control and total 

selecti e (A 0 1M pairwise, R=0.907), low selective and total selective (ANOSIM 

pairwi e, R=0.254), low selective and total erect (ANOSIM pairwise, R=0.568), low 

selecti e and low erect (ANOSIM pairwise, R=0.363), total selective and total erect 

(ANO 1M pairwise, R=0. 822), and total selective and low erect (ANOSIM pairwise, 

R=0.720) treatments. There was lower similarity between the control and total erect, 

control and low erect, and total erect and low erect treatments. 
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Figure 5.16. Multi-dimensional scaling, using Euclidean distances, for the net change 
in communitie prior to and 6 months after a disturbance regume, minus the direct 
effect of the di turbances ( c). Low is 50% removal, total is 100% removal, selective 
is remo aJ of dominant pecies (Ciona intestinalis), and erect is removal of erect 
orgaru m . ampl ize n=7 except for control (n=8). 

Perturbation 

The alue of th parts (species) of the net change measure c varied among 

treatment (Figur 5.17-5.21: note that the vertical scales of these figures differ). 

Net change for iona intestinalis was highest for the total selective treatment (Fig. 

5.17). 
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Figure 5.17. et change c for Ciana intestinalis, where c is our approximation of 
change ov r a one year period which included a six month disturbance regime and a 
six month recovery period. Disturbance treatments were carried out on panels in 

althou Dock, Liverpool where low is 50% removal, total is 100% removal, 
selecti e i removal of dominant species (Ciana intestinalis), and erect is removal of 
erect organi m. ample size n=7 except for control (n=8). 

For tyela clava, net change was highest for the total selective treatment (Fig. 5.18). 

For Batryllu chla eri , net change was highest in the control treatment (Fig. 5.19), 

while for Myfilu edulis (Fig. 5.20) and Dendradaa grassularia (Fig. 5.21 ), there was 

relatively little variation among treatments. 
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Figure 5. 18. et change c for Styela clava, where c is our approximation of growth 
o er a on ear period which included a six month disturbance regime and a six 
month reco ery period. Disturbance treatments were carried out on panels in 

althou e Dock, Liverpool where low is 50% removal, total is 100% removal, 
selective i r moval of dominant species (Ciona intestinalis), and erect is removal of 
erect organi m. ample size n=7 except for control (n=8). 
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t change c for Botryllus schlosseri, where c is our approximation of 
n y ar period which included a six month disturbance regime and a 

ry p riod. Disturbance treatments were carried out on panels in 
Li erpool where low is 50% removal, total is 100% removal, 
al of dominant species (Ciona intestinalis), and erect is removal of 
ample size n=7 except for control (n=8). 
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Figur 5.20. et hange c for Mytilus edulis, where c is our approximation of growth 
ear p riod which included a six month disturbance regime and a six 

p riod . Disturbance treatments were carried out on panels in 
Liverpool where low is 50% removal, total is 100% removal, 

electi al of dominant species (Ciona intestinalis), and erect is removal of 
ample ize n=7 except for control (n=8). 
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Figure 5.21. et change c for Dendrodoa grossuiaria, where c is our approximation 
of growth 0 er a one year period which included a six month disturbance regime and 
a six month recovery period. Disturbance treatments were carried out on panels in 

althou e Dock, Li erpool where low is 50% removal, total is 100% removal, 
selective is removal of dominant species (Ciona intestinalis), and erect is removal of 
erect organi m . ample size n=7 except for control (n=8). 

Tran ition probabilitie 

There wa little evid nce for differences in transition probabilities among the 

different tr annents (p>0.9999, lambda = 144.9737, 10 =-2.9851e+03 , la 

2.9126e+03 , df =224). 
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Discussion 

There was no significant difference in wet or dry weight between treatments, which 

shows that biomass recovered to pre-disturbance levels within the six month 

recovery period. Species richness and Shannon-Weiner diversity decreased in all 

treatments over the time interval, and the decreases were not significantly different 

from one another. Abundance and Berger-Parker dominance increased in all 

treatments over the time interval, and the increases were not significantly different 

from one another. 

The multi-dimensional scaling (MDS) showed no patterns with respect to treatment 

in either the pre or post-disturbance communities. MDS of both the pre and post 

communities showed clustering of each with transitions moving in the same direction 

of dissimilarity. MDS of p, total change, showed no patterns. There was some 

clustering, especially in the low selective and total selective treatments, in the MDS 

of c, net community change. There was no significant difference in the transition 

probabilities between treatments. 

Taken together, these results suggest that the fouling community on our experimental 

panels was able to recover from realistic levels of disturbance, and did not show any 

evidence for disturbance-induced phase shifts. A simple, abstract mathematical 

model for communities of this type may help to explain why this happened. We 

define Xi(t) as the proportional cover of species i at time t. If we have D species in 

total, XD+l(t) denotes the amount of free space at time t. For each species i==1,2, ... ,D, 

its cover at time t+ 1 consists of two contributions: the proportion Si of cover at time t 
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that survives to time t+ 1, and the proportion rj of free space at time t that is colonised 

by species i at time t+ 1. We assume that this proportion does not depend on the 

amount of space already occupied by species i; this assumption is plausible as the 

panels fonn an open system, in which most increases in the cover of a species are 

likely to be the result of colonisation by larvae originating elsewhere in the docks. 

Then 

Xl(t + 1) - SIXI (t)+ 'i (XD+I (t» 

x2(t + I) - S2~(t)+ r2(xD+I(t» 

D 

(5.3) 

where 0 $ 'i $1, ~ 'i $1, and 0 $ Sj $1. The amount of free space at time t+ 1 is then 
j.1 

the proportions of free space at time t that was not colonised by any species, plus the 

sum of the proportions of each species at time t that did not survive. 

D D 

xD+I(t+l)-(1- ~'i)XD+I(t)+ ~(I-Si)Xi(t) 
i-I i-I (5.4) 

Equations 5.3 and 5.4 can be written in matrix fonn: 

xl(t+ I) 51 0 0 'i xl(t) 

x2(t + I) 0 52 0 r2 x2(t) 

- (5.5) 

xD(t+ 1) 0 0 SD rD xD(t) 

xD+1(t+l) 
l-s1 l-s2 l-sD 1- ~'i XD+I(t) 

i-I 

This is a discrete-time Markov model, because the matrix on the right hand side of 

5.5 is non-negative, and all of its columns sum to 1. It is therefore a transition 

probability matrix. The well-known Roughgarden et al. (1985) model for an open 
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size-structured population is also a discrete-time Markov model, although the way 

they wrote it doesn't make that obvious. The possible transitions between states are 

shown in Figure 5.21. The transition probability matrix for this model is irreducible, 

because there is a path in Figure 5.21 from any state to any other state (Caswell 

2001 p79. There are loops of lengths one and two in Figure 5.21 that do not pass 

through any state more than once. The greatest common divisor of the loop lengths is 

one so the transition probability matrix is primitive (Caswell 2001, p81). By the 

Perron-Frobenius theorem (Caswell 2001, p79) this model therefore has a unique 

stationary distribution. 

Figure 5.21 Diagram of transitions between states, where D is the number of states, 
and XD+I is empty space. 

The consequence of this is that whatever disturbance we apply, the modelled system 

will eventually recover. We cannot say in general how long this recovery will take, 

but it was rapid in our experiment. A possible exception to this result is priority 

effects. If several species cause permanent (or at least very long-term) habitat 
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alterations of different kinds, which then determine the set of other species that can 

occupy the habitat, there may not be a unique stationary distribution (e.g. reef­

building organisms such as Sabel/aria spp.). The addition of overgrowth (one species 

directly replacing another) does not alter the result, provided that at least one state 

has a non-zero probability of persisting for more than one time step (so that there is 

at least one loop of length one). 

Other empirical data support the idea that open fouling communities do not have 

alternative stable states at the local scale. For example, Scheer (1945) examined the 

changes in composition over time of communities on submerged objects and in all 

cases found a clear successional structure from algae to ascidians to a climax 

community of mussels. Similarly, Mook (1981) found that different levels of 

nonselective disturbances of communities on tiles did not affect the structure of the 

fouling community present. Thus, both theory and data suggest that most open 

communities will eventually recover from local disturbances. 

Alternative stable states may be possible for fouling communities at larger spatial 

scales, at which the community might be more appropriately viewed as closed. This 

is because models in which local reproduction is the dominant form of change in 

abundance tend to be nonlinear (e.g. the continuous-time model in Chapter 2), and 

often have multiple equilibria (May 1977). For example, the dock system as a whole 

was in a quasi-stable state before the Tall Ships of 1984 (Jones 2004, p34) with 

dense phytoplankton populations and without mussels (Hawkins et al. 1999). The 

closed system became an open population with the opening of the dock gates. A 

large natural settlement of mussels occurred in the South Docks in 1988, which may 
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have been due to the movement of vessels during the Tall Ships race (Hawkins et al. 

1999). The dense mussel settlement created a secondary substrate for a rich 

associated fauna (Hawkins et al. 1999). This allowed colonisation by mussels, which 

grew to dominate the system (Hawkins et al. 1999). The mussel populations are now 

thought to be self-supporting, so that the current state of the system is also stable. 

Genetic analysis could be undertaken to determine whether the populations of 

mussels within the docks are currently genetically isolated from the mussel 

populations in the Mersey Estuary (so that the docks as a whole represent a closed 

system). or whether there is still substantial exchange with the outside world. 

In conclusion, our experimental finding was that the fouling community that we 

studied recovered quickly from small scale disturbances. This can be explained by a 

simple mathematical model that may apply generally to other similar communities. 

Nevertheless. at larger spatial scales, such as the entire dock system, alternative 

stable states may be possible. 
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Chapter Six: Conclusions 

There has been a trend in ecological modelling to produce complicated, mechanistic 

models that can be applied to different ecological systems. Levins (1966) stated 

models must sacrifice generality, precision, or realism in order to achieve the other 

two attributes. More complicated models introduce more model uncertainty with 

each additional parameter, and are therefore precise, or able to be used to make 

accurate predictions. 

The models produced in this study were simple statistical models, which were 

designed to be used to be able to make predictions about future ecological states. 

Previous models of this system have not explained the variability in the data; 

environmental data was added in the model to make the model better 'fit' the data. 

We were also concerned about changes in future environmental conditions due to 

climate change, and the impact of these changes on ecological communities. 

Models are assessed using different validation techniques; Rykiel (1996) identified 

13 different methods of model validation that are commonly used. Quantitative 

model validation is ideal, but many models do not have sufficient or relevant data 

against which they can be tested. Qualitative methods of model validation are highly 

subjective; different visualisation techniques can appear to demonstrate different 

results (Tufte, 1993). 
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This study aimed to advance our ability to predict the dynamics of marine 

communities using statistical models. This involved adding environmental data to 

models, investigating the impact of climate change on disturbances, evaluating 

predictions using new data, and investigating the methodology used in making these 

predictions. 

Chapter 2 showed that coral mortality due to cyclones is not very large, and recovery 

is quite fast. The addition of cyclones improved the fit of the model, with cyclones 

causing some coral mortality. The continuous-time Lotka-Volterra model, which had 

a large increase in coral mortality associated with cyclones, also fitted better than a 

discrete-time Markov model with cyclone effects. The continuous-time model is 

nonlinear, and its transition rates depend on local abundances. Therefore, recruitment 

is likely to be less important than the growth and mortality of existing corals. We are 

uncertain about what happens to algae in the model, as the model resolution cannot 

detect the fast algal dynamics. 

Chapter 3 used the model from Chapter 2 as a baseline against which we can assess 

alternative past scenarios. Coral cover over the period we modelled would have been 

different had the cyclone regime been different. Under current or slightly increased 

cyclone frequency, the timings of cyclones caused one of two things to happen. 

When the corals had a long period where they were not disturbed by cyclones, they 

increased their cover to a level that was able to withstand subsequent losses due to 

cyclones. When cyclones hit early on in the model, the coral was unable to recover 

between subsequent disturbances, and cover dropped to low levels. With increasing 
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cyclone frequency, there was a transition from the outcome being contingent on 

chance events to being almost certain about the outcome. 

In Chapter 4, I showed that the continuous-time model predicted significantly less 

coral than was observed in 2008. Conversely, the discrete-time model predicted 

significantly more coral than was observed. Overall, the predictions made by the 

continuous-time model are closer to the observed proportions of coral, algae, and 

free space. There appear to be changes over time in the system that are not accounted 

for in the model. 

In Chapter 5, recovery from experimental disturbances to the fouling community in 

Salthouse Dock, Liverpool, was rapid, with biomass returning to pre-disturbance 

levels. There were no differences in diversity measures between the treatments. The 

selective treatments, where the dominant organism Ciona intestinalis was targeted, 

had much higher net growth of C. intestinalis over the period, so that they remained 

dominant despite being selectively removed. A simple mathematical model suggests 

that recovery is almost inevitable in systems of this kind, especially for species with 

planktonic larval stages. 

Our continuous-time model for coral community dynamics is different to many 

ecological models as it is relatively simple and is based on a relatively large data set. 

Many ecological models are much more complicated and use fewer data (e.g. 

McClanahan 1995, Wolanski et al. 2004). Developing models without fitting them to 

data tells us what could happen. Fitting models to data is closer to telling us about 

what actually does happen. It could be argued that the history of ecology is 
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characterised by excessive focus on the fonner question at the expense of the latter. 

Much of theoretical ecology consists of adding refinements to existing models, with 

no attempt to confront them with data. For example, one of the classic explorations 

of what could happen in a predator-prey system is Rosenzweig and MacArthur 

(1963). lSI Web of Knowledge reports 528 citations for this paper, of which 18 were 

in 2011 (up to 24/9/11). Of these 18, only one (Shelton and Mangel 2011) uses 

models as descriptions of real data, rather than as objects of study in their own right 

or as metaphors. Directing a higher proportion of effort towards the challenge of 

building models for data might help to advance both applied ecology (by giving us 

better answers to questions of real-world importance) and theoretical ecology (by 

suggesting genuinely new directions for model development). 

The Heron Island model has no external inputs, whereas the Docks model is entirely 

driven by external inputs. Heron Island is in reality an open system, whereas the 

Docks study site is neither strictly an open nor a closed system. Both of our study 

sites recovered from disturbances quickly, and in the case of Heron Island, more 

quickly than we expected. This may be due to the underlying resilience of these 

systems. Supply-side dynamics are thought to be important for open populations 

(Roughgarden et al. 1985). But although Heron Island is apparently open, a closed 

model fitted the data much better; this may be because the growth of existing coral 

colonies makes a greater contribution than the settlement of recruits from outside. 

In both the Heron Island dataset and the Docks experiment, the communities 

recovered faster than we expected. Therefore, they are resilient to the current levels 

of disturbance. Heron Island had a rapid recovery because of recruitment from 
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surrounding areas. In the Docks experiment, removal of the dominant species created 

empty space, which was re-colonised by the dominant species. This demonstrates 

that recruitment of the dominant species, Ciona intestinalis, is high and that 

recruitment is not dependent on current abundance. C. intestinalis dominates the 

study site, and therefore when empty space becomes available through its removal, it 

also dominates the colonisation of the new empty space. Further work at the Docks 

study site could include a genetic comparison of the sessile populations in the 

Mersey Estuary and within the dock system, to determine if these populations are 

isolated. This would tell us how open or closed the system is and would inform our 

knowledge of the system. On coral reefs, it has been shown that the state of the 

surrounding area has enhanced the resilience of coral-dominated systems (Elmhirst et 

al. 2009). In their model, Elmhirst et al. (2009) showed that, for both coral and algal 

dominated systems, recruitment was only an important part of resilience when 

grazing was optimal (low or high, depending on the dominant species). There may be 

other factors affecting how these species re-colonise an area after a disturbance. In 

coral reefs, a framework of dead coral, and coral rubble provide a substratum for the 

settlement of larvae (Nystrom and Folke 2001). This change in habitat complexity 

may increase coral recruitment, and assist a faster recovery from a disturbance. 

In the Heron Island dataset the species are grouped into coral, algae, and free space. 

Although coral cover was recovering after disturbance by cyclones, the relative 

abundance of coral species within that group may be changing. It may be the case 

that coral species that are more resilient are replacing those that are more vulnerable 

to the effects of disturbance. The most recent data from the Heron Island site, 

collected in 2008, show that Acroporid corals dominate the study site. Acroporid 
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corals are characterized by rapid growth and competitive dominance and have been 

shown to dominate coral assemblages on the Great Barrier Reef that are recovering 

from disturbances (Halford et al. 2004). 

We could improve on our coral model by adding in a recruitment parameter. If there 

are patches of disturbance, then recovery will be faster as other patches that have not 

been disturbed will provide recruits. This would indirectly put ecological resilience 

into the model, and make our predictions more accurate. Adding dispersal and 

recruitment dynamics into models of these systems would improve both our 

understanding of the system and the model predictions. 

In both systems, we did not apparently need many species categories to understand 

the fundamental dynamics of the system. This may be because neither system had a 

very large number of species, and most of the species that we found were not 

abundant. Generally, most species are rare in most communities (May 1975). This 

suggests that we might only need to model a few, numerically dominant species if 

we want to make accurate predictions of dynamics in most situations. On the other 

hand, it has been suggested that large numbers of species may make important 

contributions to ecosystem function (Loreau 2010, xi). For example, out of 147 

grassland plant species studied in a set of 17 experiments, 84% made positive 

contributions to ecosystem functions such as biomass production and nutrient uptake 

on at least one occasion (Isbell et al. 2011). One possible explanation for this 

apparent contradiction is that there are many ways to define importance. In Isbell et 

al. (2011), a species was defined as making an important contribution to an 

ecosystem function if it was included in a multiple regression model chosen by 
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backward elimination, using AI C as the model selection criterion. This "statistical 

importance" does not necessarily imply that the contribution was large enough to be 

biologically significant. In a highly replicated experiment, even relatively small 

effects might be detectable. AIC is also well known to select over-complicated 

models when the true model has finite dimension (e.g. Bozdogan 1987), which is the 

case for experimental studies. In consequence, some of the species in the 

experiments analysed by Isbell et al (2011) might not even be genuinely important in 

a statistical sense. 

Both sites were dominated by one species or a group of species having at least a 

moderate level of functional similarity. One obvious approach to reducing model 

complexity is to group functionally similar species (as we did for the Heron Island 

models). Another possibility is to retain all species, but ignore the differences 

between them. Hubbell's (2001, pp320-321) unified neutral theory of biodiversity 

makes the obviously false assumption that all species are identical. There may be 

situations in which this assumption is a reasonable approximation. For example, trees 

within a forest in Panama all have the same life history trade-off between shade 

tolerance and growth rate (Hubbell 2001, pp322-323). Every species in the 

community must obey this constraint to survive, therefore the community can be 

described using many fewer parameters than treating every species individually 

(Hubbell 2001, p323). However, Wootton (2005) demonstrated that, for a rocky 

intertidal community, Hubbell's theory performed poorly at predicting experimental 

results. Therefore, there are situations where we can treat species identically, which 

will enable us to use much simpler models of community dynamics. But, this is not 
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always the case, and we should not assume that species can always be grouped, or 

treated as if they were identical. 

Returning to Levins's (1966) model trade-offs between generality, precision, and 

realism, I believe that if we are to create models that will generate accurate 

predictions then we have to discard the 'one size fits all' approach and sacrifice 

generality to produce models that are realistic and precise. Creating models based on 

a long-term dataset still generated model uncertainty and limited our ability to make 

predictions into the future. These tools are however still useful from a management 

perspective; they can be used to choose between management decisions to obtain 

relative rather than absolute outcomes. In order to advance the understanding of 

ecological dynamics, I believe that we must be able to quantitatively validate 

ecological models. This requires the funding and maintenance of long-term 

ecological datasets. 

In this thesis, I have shown that simple statistical models can be used to understand 

the behaviour of complicated ecosystems. Simple models have been used for a long 

time in ecology (e.g. Leslie 1945, May 1974, Skellam 1951, Volterra 1926) but they 

were never meant to describe actual data. In my thesis, the models are intended as 

descriptions of real dynamics: admittedly imperfect, but nevertheless representing 

much closer linkage between data and theory than the situation that May described in 

the 1970s: "Unfortunately, the complications inherent in multi-species systems 

almost invariably preclude any quantitative confrontation between theory and data. 

For mUlti-species communities, the empirical observations remain largely anecdotal, 

and the theory remains largely metaphorical" (May 1977). In my thesis, empirical 
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observations, rather than being anecdotal, were systematically collected and 

subjected to detailed study on the basis of models. This synergy between data and 

theory is becoming a major theme in modem ecology. 
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Figure A l.I Log likelihood for the first run of the continuous-time model with 
cyclones, where the y-axis is log likelihoods and the x-axis is iterations of the model. 
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Figure A 1.2 Log likelihood for the second run of the continuous-time model with 
cyclones, where the y-axis is log likelihoods and the x-axis is iterations of the model. 
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