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Abstract 

Abstract 

Auxetic materials have a negative Poisson's ratio, that is, they expand 

laterally when stretched longitudinally. Negative Poisson's ratio is an unusual 

property that affects many of the mechanical properties of the material, such as 

indentation resistance, compression, tension and shear stiffness, and certain aspects 

of the dynamic performance. Auxetic foam was fabricated from a conventional 

polymeric foam. The unusual mechanical properties of auxetic foams are attributed 

to the deformation characteristics of re-entrant microstructures. 

There are four main aspects to the project. Firstly, the fabrication method for 

auxetic foams has been examined and developed further. Secondly, the 

microstructure of the foams has been characterised using electron and optical 

microscopy. Thirdly, the foams have been tested for their static and dynamic 

mechanical properties. Comparative tests have also been performed on conventional, 

non-auxetic foams. Fourthly, theoretical models have been developed to relate the 

observed microstructures to their properties. 
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Notation 

Notation 

A, B, C= Foam block orientation factors 

Across-section = Cross sectional area of the cell ribs (mm2) 

Ao = Initial cross-sectional area (mm2) 

a= Chordal radius of the indentation profile (mm) 

b= Thickness of cell rib (mm) 

C, c= Constants 

d= Chordal diameter of the indentation profile, or deflection 
(mm) 

D = Diameter of the ball, or diameter of a circular plate (mm) 

E, EX, Ey, E, = Young's moduli in the principle directions of foam (kN/m2) 

EB = Young's modulus of the ball (kN/m2) 

ES = Young's modulus of the base solid (kN/m2) 

EM = Young's modulus of the testing material (kN/m2) 

E' = Storage Young's modulus (dyne/cm2) 

E" = Loss Young's modulus (dyne/cm2) 

E* = Complex Young's modulus (dyne/cm2) 

F = Force (kN) 

f = Frequency (Hz) 

g = Acceleration due to gravity (9.81 m/s2) 
G, G; j = Shear moduli of foam (kN/m2) 

GS = Shear modulus of the base solid (kN/m2) 
G' = Storage shear modulus (dyne/cm2) 

G" = Loss shear modulus (dyne/cm2) 
G* = Complex shear modulus (dyne/cm2) 
H = Static indentation resilience or hardness (kN/m2) 
h = length of vertical rib in foam cell, or the depth of 

impression, or height of the specimen (mm) 

hl = The dropping height, or the height of fall (mm) 

h2 = The ball rebound height (mm) 

I = Second moment of area of cell rib for foam (mm4) 

Kg, Kh, KS = Flexure, hinging, and stretching force constants (kN/m) 

K = Bulk modulus (kN/m2) 

L, Li = Length in the principle directions of foam specimen, or 
length of cell rib in foam cell, or the length of cylinder (mm) 

AL = The change in length (mm) 

M = Moment (kNm) 

m = mass (kg) 
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0 = Initial Point of a line (or curve) 

P = Pressure (kN/m2) or Force (kN) 

Pm = Mean pressure (kN/m2) 

Rc = Volumetric compression ratio 
R = The radius of the cylinder (ball) (mm) 

r, rl = The radius of the ball (mm) 

rB = The radius of the ball (mm) 

S = Shearing area (mm2) 

t = Cell rib thickness, or the thickness of a circular plate (mm) 

T = Temperature (°C), or Force (kN) 
Tg = Glass transition temperature (°C) 

Tm = Melting temperature (°C) 

V° = Initial volume of specimen (mm3) 

VI = Final volume of specimen (mm3) 

W = Energy absorbed per unit volume (J), or the normal load 
(kN) 

w = the width of the specimen (mm) 

x, y, z = Co-ordinates 

X, Y, Z = Co-ordinates 

X0, Yo = The original length (mm) 

X', y', Xy" = The changing length (mm) 

a = The ratio of h/L. Where: L, is the length of the angled rib at 
the end of the vertical rib whose length is h. 

aY = The angle subtended by the chordal diameter of the 

indentation 

= The ratio of t/L. Where: t, is the cell rib thickness and L, is 

the length of angled rib. 
y = Geometric angle of foam cell or re-entrant cell face, or the 

shear strain 
S, S; = Deflection (mm), or the phase angle (Deg. ) 
Sx, Sy, Sl = Maximum compression displacement of the foam rise 

direction and the other two direction. 

E, E; = Principle strains 
EQ = The critical elastic collapse strain, or maximum output strain 
Em = The maximum elastic strain 
ýo = Maximum output strain 
B = Cell rib angle with x direction (Deg. ) 
v, v; j = Poisson's ratio in the principle directions of foam 

v8 = Poisson's ratio of the ball 
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Notation 

Vm = Poisson's ratio of the material 

p = Density of foam (kg/m3) 

pS = Density of cell rib solid (kg/m3) 

p* = Relative density 

ß, (Ti = Principal stresses (kN/m2) 

6Y = Yield stress of foam (kN/m2) 

60 = Maximum output stress (dyne/cm2) 

ap = Plateau stress (kN/m2) 

't, Ti = Shear stresses (kN/m2) 

= Geometric angle of foam cell, or re-entrant cell face, or the 

volume fraction of material 

=A measure of filler phase, structural factor. 

cý = Angular frequency (radians/sec. ) 
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Introduction 

Chapter 1 Introduction 

1.1 The Nature and Classification of Conventional Foams 

Cellular materials are widespread. Such materials are common in nature as 

bread, cork, sponge and bone. Man has made use of these natural cellular materials for 

many centuries. Wood is the world's oldest structural material and cork was used as 

stoppers for wine bottles in Roman times. More recently man has made his own 

cellular materials such as honeycombs and foams. The unusual mechanical properties 

of foams come from their porous cellular structure. Foams can be stiff, yet light, and 

they are also capable of absorbing large amounts of energy. For this reason, therefore, 

they are an important class of engineering materials as they extend the range of 

mechanical properties available to the engineers. It has been suggested that changing 

the cell geometry to optimise the cell shape, size, and cell rib thickness will improve 

the mechanical properties of the foams (Gibson and Ashby 1988). 

A cellular material is a low density porous solid, made up of an interconnected 

network of solid struts or plates which form the edges and faces of cells. The simplest 

structure is a two-dimensional array of polygons which pack to fill a plane area similar 
to the hexagonal cells of a bee's honeycomb; for this reason, such two-dimensional 

cellular materials are called honeycombs. Cellular material made up of three- 
dimensional polyhedral cells are termed foams. An open-cell foam resembles an 

assembly of beam-column elements which forms the edges of the cells, while a 
closed-cell foam has solid closure distributed on the face of each cell as well as its 

edges. Depending on the nature of the cell wall material, cellular materials can also be 

characterised as elastic (e. g. rubbers), plastic (rigid polymers and metals), and brittle 
(e. g. ceramics and glasses). 

Polymeric foams are usually classified according to their stiffness: rigidity and 
flexibility. Sckochdopole and Rubens (1965) have defined a rigid foam as one in 

which the polymer matrix exists in the crystalline state, or if amorphous, is below its 

glass transition temperature. Following on from this, a flexible foam is a system in 

which the matrix po: ymer is above its glass transition temperature. Polymeric foams 

are multiphase systems that consist of a polymer matrix and a fluid phase; the fluid 

usually being a gas. Most polymers can be expanded into a cellular product, but only a 

small number have been exploited commercially. In terms of volume consumed, 

polyurethane, polystyrene, poly(vinyl chloride) and the polyolefins have dominated 

the markets. This thesis is concerned with the mechanical properties of elastic, 

flexible, polyurethane foams. 

I 



Introduction 

1.2 Manufacture of Polymeric Conventional Foams 

The chemical and technological aspects of the manufacture of polymer foams 

have been described in detail in publications edited by Frisch and Saunders (1972). 

Although foams can be produced in a variety of ways, the most commonly employed 

method is the expansion process. In principle, this consists of (1) the nucleation of gas 
bubbles in a liquid polymer system, (2) the growth and stabilisation of these bubbles 

and (3) the solidification of the polymeric phase by crosslinking or cooling to give a 

structurally stable cellular system. Details of this process will depend upon the nature 

of the starting materials, i. e. thermoplastic or thermosetting plastic. The structures 

resulting from this expansion process may be open cell or closed cell. In some cases, 

such as with some flexible cellular polyurethanes, the foam undergoes a chemical 

treatment, called 'reticulation', which causes the disappearance of all the membranes 
between adjacent cells and produces a completely open-cell structure. 

Polyurethane foams have been described as being unique in the family of 

cellular polymers. They are manufactured by accurate metering and mixing of two 

catalysed liquid components: a polyol and an isocyanate. The polyol component has 

either a polyether or a polyester backbone chain and contains either a chain extender or 

crosslinking agent and a catalyst. Once the components have been mixed the 

polymerisation and expansion take place simultaneously. It is to be noted that physical 
blowing agents are often included in the formulation which are completely responsible 
for, or assist in, the blowing of the foam. 

The structural parameters of a foam such as the size, the structural geometry, 
and the orientation of the cells are all controlled by the way the foam has been made. 

1.3 Properties of Conventional Polymeric Foams 

The properties of foams can vary widely depending on the choice of the solid 
from which they are originally made. Also important are the volume fraction of the 

solid and the geometry of the cells. The properties: density, thermal conductivity, 
Young's modulus, and the compressive strength as collated by Gibson and Ashby 

(1988) are shown in Figure 1.1 along with their ranges. The bar with dotted shading 

shows the range of the property spanned by fully dense solids; the heavy shading bar 

shows the extension of this range made possible by foaming. The enormous extension 
in these properties creates new and interesting applications for foams, and offers 

potential for engineering ingenuity. 
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Fig. 1.1 The range of properties available to the engineer through foaming: (a) density; (b) 
thermal conductivity; (c) Young's modulus; (d) compressive strength. (Gibson and Ashby, 1988) 

1.4 The Applications of Polymeric Foams 

Recently, foams have become very important in sandwich panel fabrication. 
The common skin materials used in sandwich panels are fibre-reinforced plastics, 
whilst a light weight foam is used in the core. The core acts as a filler to separate the 

stiff faces, increasing the second moment of area of the panel. The principle of a 
sandwich panel is the same as an 'I' beam, i. e. the amount of material in the region of 
the neutral axis is reduced to minimum. The increase in the moment of inertia gives 
sandwich panels a high ratio of bending stiffness to weight. As a result, they are used 
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Introduction 
in applications where weight is critical, e. g. as structural components in aircraft, space 

vehicles, skis, racing yachts and portable buildings The bending stiffness of a 

sandwich beam depends upon two factors: its flexural rigidity and on its shear rigidity. 
This is different from isotropic beams where shear deflections are usually negligible. 
To obtain the sandwich effect, the core material must be stiff enough in shear to 

prevent the skins from sliding over each other and stiff enough in compression to keep 

the skins the correct distance apart (Gibson, 1984). 

Over the last few years, there has been an increased utilisation of foams for 

thermal insulation, vibrational damping, buoyancy, cushioning and packaging 
applications. An effective package must absorb the energy of impacts. Foams are 
particularly well suited for this. The strength of a foam can be adjusted over a wide 
range by controlling the cell geometry and the properties of the polymer matrix. The 
details of cushioning, packaging and energy absorption of foams are discussed in 
Chapter 7. Here, it is noted that foams also offer a secondary advantage as packaging 
materials. Their low density means that the package is light, reducing handling and 
shipping cost. Currently, the foams most widely used in packaging are polystyrene, 
polyurethane and polyethylene (Suh and Skochdopole, 1980). 

1.5 The Deformation Mechanisms of Foam 

It is obvious from the examination of a 3D foam structure that deformation of 
the cells can arise from bending, hinging or stretching of the cell ribs. Commercially 

available foams are considered to deform elastically by flexing of the cell walls. This 
behaviour has been quite accurately described by a flexure model based on the 
assumption that the cell walls bend like beams (Gibson and Ashby, 1982 and 1988). 
For a rigid plastic foam, hinging might be the dominant mechanism, i. e. deformation 

occurs by a change in the cell angle alone. The final mechanism is stretching, in which 
the cell angles are considered fixed and deformation occurs by axial extension of 
transversely stiff cell walls. Gent and Thomas (1959, and 1963), Lederman (1971), 

and Chan and Nakamura (1969) have used stretching mechanism to describe the 

mechanical behaviour of foams. 

In general, macro-foam structures will deform by either flexing or hinging, the 
particular mechanism being determined by the properties of the cell wall material and 
the cell geometry. However, it is feasible to imagine that all three mechanisms could 
operate concurrently and that a general elastic deformation model can be obtained by 

combining the appropriate equations. The details of the deformation mechanisms of 
foams are discussed in Chapter 4 and 5 of this study. 

4 
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1.6 Limitation of the Conventional Hexagonal Cell Shape 

It can be seen from Figure 1.2(a) (Evans, 1990) that a sandwich panel 

comprises of stiff composite laminate skins of carbon or glass fibre reinforced plastic 

sandwiching a light, porous core material, which may be a foam or a honeycomb 

material. Such a panel is very stiff, but it has the disadvantage that, when a sheet of 

core is bent out-of-plane, it produces the anticlastic or the saddle shaped curvature 

shown in Figure 1.2(b). This is a direct result of the in-plane positive Poisson's ratio 

of the core material. Currently, the only way to overcome this problem is to machine a 

block of conventional core to the required contours, but this is obviously expensive, 

and also damaging to the core material. 

Synclastic curvatures (Figure 1.2(c)) will occur naturally if the core structure 
has a negative Poisson's ratio. This can be achieved by making the cells re-entrant in 

shape. The synclastic, or dome shaped curvature can be of obvious benefit when 

making aircraft bodies, wings, car doors and body panels (Evans, 1990; Masters, 

1994) 

ýil dIll i' 

(a) (b) (c) 

Fig. 1.2 A sandwich pane. (a) comprising of high stiffness composite laminate skins and a 
honeycomb core; (b) a conventional hexagonal honeycomb deforms to a saddle shape when it is 
flexed, whereas (c) a re-entrant honeycomb produces a dome-like double curvature on flexing. (Evans, 
1990) 

In 1987, a conventional hexagonal celled PUR (polyurethane) foam was 

converted into a re-entrant celled foam by Lakes (1987). This material was reported as 
isotropic and had a Poisson's ratio of -0.7. A negative Poisson's ratio is produced 
from a re-entrant cell structure. However, very little experimental work has been 

carried out on re-entrant celled foams. 

The primary purpose of the research presented in this thesis is, therefore, to 

investigate the properties of the re-entrant celled foam using both mathematical 

modelling and practical experimentation and to compare them with their parent 

conventional foams. To enable this objective to be achieved considerable research into 

developing the fabrication route for the auxetic foam was also required. 

5 



This chapter has served as a brief introduction to this project. Chapter 2 

reviews the literature concerned with previous theories and the mechanical testing 

methods involved, with particular emphasis on both conventional and auxetic 

polymeric foams. Chapter 3 explains the experimental method for the fabrication of 

auxetic foams. Extensive experiments on a wide range of foams are reported. A multi- 

stage fabrication method is developed. Chapter 4 details the microstructure of auxetic 
and conventional foams. Examples of the microstructural deformation mechanisms 
observed are presented. The results of optical and scanning electron microscopy 
studies for the geometric parameters of different foams are analysed. Chapter 5 is 

concerned with the development of a three dimensional foam model, and develops a 
theory for the mechanism involved in the deformation of both auxetic and conventional 
foams. Theoretically, the mechanical properties of an open-cell foam are calculated by 

analysing a representative elongated rhombic dodecahedral cell. The different 
deformation mechanisms, such as flexure, hinging and stretching are also analysed 
using classical beam theory. Finally, the general mechanical properties of the 
anisotropic foams are derived in terms of the solid properties and the cell geometrical 
factors. Chapter 6 describes the experimental methods used, and the results obtained 
from the static tests. Extensive experimental results such as compressive modulus, 
tensile modulus, shear modulus, the Poisson's ratio, creep and Dynamic Mechanical 
Thermal Analysis (DMTA) are reported. Chapter 7 studies the indentation resilience 
and the energy loss of the foams. Chapter 8, the discussion chapter, draws together all 
the information gained both experimentally and theoretically and discusses the results. 
This leads to the conclusions of this research. Finally, areas of future research are 
listed in Chapter 9. 
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Literature Review 

Chapter 2. Literature Review 

2.1 Introduction 

A critical discussion of the results obtained for this thesis requires an 

understanding of the current state of knowledge in these areas. A survey has therefore 
been made of published work that is relevant to the chosen project area. 

To provide a background for the study of auxetic foams, 1 shall first review 

conventional cellular foams. Then follows a more detailed review on auxetic foams. 

2.2 General Review of Conventional Polymeric Foams 

Almost any material can be foamed. Polymers are common materials to be 

foamed, but metals, ceramics, glasses and even composites can also be fabricated into 

cells. Descriptions of the foaming processes can be found in Harding (1965) and Suh 

and Skochdopole(1980). Foams are made using different techniques for different 

types of solid. Polymers are foamed by introducing a gas into the liquid monomer or 
hot polymer with a blowing agent, allowing the bubbles to grow and stabilise, then 

solidifying the foam by cross-linking or cooling (Hilyard, 1982). Metallic foams are 
made by mixing carbon beads into a metal melt in an inert atmosphere. When the metal 
has cooled and solidified, the carbon is burnt off, leaving a cellular matrix (Davis and 
Zhen, 1983). Ceramic foams are made by infiltrating an open-cell polymer foam with 
a fine slurry of ceramic in water or some other fluid, when the aggregate is fired, the 

slurry bonds to give an image of the original foam, and finally the original polymer 
foam is burnt off (Gibson and Ashby, 1988). Foaming dramatically extends the range 
of properties such as: density, thermal conductivity, Young's modulus, and 
compressive strength available to the engineer. The extension of these properties 
creates applications for foams which cannot easily be filled by dense solids. The low 
density permits the design of light structural components (Gibson et at. 1989; 
Triantafillo et al. 1989). The low thermal conductivity allows cheap and reliable 
thermal insulation (Hanhi and Stenberg, 1993). The low stiffness makes foams ideal 
for cushioning (Chessin and Driver, 1967; Throne et al. 1985; Campbell, 1979; Neet, 

1975). Finally, the low strengths for large compressive strains make foams attractive 
for packaging and energy-absorbing applications (Zhang and Ashby, 1994; Schwaber 

et al. 1971; Mills and Hwang, 1989; Meineck and Schwaber, 1970). Their uses 

exploit the unique combination of properties offered by cellular foams. For a more 
detailed description of the applications of natural and man-made cellular materials, 

readers may refer to a book by Gibson and Ashby (1988) and a review by Gibson 

(1989). 
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In recent years, significant effort and resources have been devoted to 

characterise the mechanical properties of plastic foams used as cushioning materials. 
The major requirement of these foams is to protect fragile products during handling 

and transportation. The properties sought include: Force-Deformation (or stress-strain) 
in compression and shock and vibration transmissibility curves. Acquisition of the 
data however requires highly sophisticated and costly equipment and involves a 
tremendous amount of experimental work. As a result of this, published data on the 

mechanical properties of plastic foams as related to their protective characteristics and 

on the relationship between structure and performance of cushioning materials is quite 
limited, despite the amount of literature on conventional polymeric foams is a large 

one. However, the approaches of relevant work are summarised in the following 

sections. 

2.3 Cell Geometry and Most Appropriate Cells 

Unit cells are often used in modelling cell shape in foams. The non-prismatic 
polyhedra which pack to fill space are rhombic dodecahedra, with 12 regular faces 
(Plateau, 1873), and tetrakaidecahedra, with six square and eight hexagonal faces 
(Kelvin, 1887; Smith, 1952; Thompson, 1961; Ko, 1965). Other polyhedra which do 

not pack to fill space properly unless distorted have been suggested at various times 
for the unit cells of foams; these include the tetrahedron, the icosahedron and the 
pentagonal dodecahedron (Jones and Fesman, 1965; Harding, 1967; Chan and 
Nakamura, 1969; Menges and Knipschild, 1975; Barma et al., 1978). 

We assume that a foam is made up of a collection of the three dimensional 

array of cells, and that the shape of each single cell may well be different. Normally 

man-made polymeric foams have cells which are anisotropic. However, for a first 

approximation of the theoretical model the structure can be thought of as typified by 

one of the regular units. In 1988, Gibson and Ashby investigated the microstructures 
of conventional foams. From their work on foam cell geometries, they summarised the 

most appropriate cells used for modelling as shown in Figure 2.1. Their mathematical 
model for foams was actually based on a box-like structure shown in Figure 2.2. 
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Fig. 2.1 Stet polyhedral cells: (a) tetrahedron, (b) triangular prism, (c) rectangular prism, (d) 
hexagonal prism, (e) octahedron, (f) rhombic dodecahedron, (g) pentagonal dodecahedron, (h) 
tetrakaidecahedron, (i) icosahedron. (Gibson and Ashby, 1998) 
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Fig 2.2 A box-like model for an open-cell foam showing the edge length 
,h and L, and the edge 

thickness, t. (Gibson and Ashby, 1988; and Huber and Gibson, 1988. ) 

The cell structure of low density conventional plastic foams was suggested by 

Gent and Thomas (1963). They used a simple cubic lattice of struts which 
Kanakkanatt (1973) modified to include anisotropy. The microstructure of rigid 

polyurethane foams was studied by Dawson and Shortall (1982). They found that the 

foams with a density of the order of 35 kg/m3 are shown to be best represented by 

pentagonal dodecahedra. Waterman and Phillips (1974) stated that the structure of 

foams of density higher than about 200 kg/m3 was one of isolated spherical holes in a 

polymer matrix, low-density foams had a polyhedral structure. Chaffanjon and 

Verhelst (1992) proposed an automated image analysis method for the characterisation 
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of flexible foam cellular structure. This method was used by Huang and Gibson 

(1993) to measure the cell size and the mean dimension of the conventional foam cells. 
The degree of microstructural orientation in a foam is a fundamental quantity of wide 
interest to those studying mechanical properties of both natural and man-made foams. 

2.4 Theoretical Models for the Deformation of 
Conventional Foams 

Foams, with complicated geometry, are difficult to model. One of the earliest 
attempts at incorporating anisotropy into a model of foam behaviour was that of 
Lederman (1971). The foam was modelled by bars oriented in random directions 

connected by rigid spheres. The orientation of the bars is specified by a direction 
distribution function. Loads are assumed to be carried axially by the bars and only 
stretching is considered. The Young's modulus of the foam is then correlated to the 
distribution function. Lederman only considered two extremes: (a) complete alignment 
of the bars with the loading direction, and (b) complete alignment perpendicular to the 
loading direction. The first case gives a modulus of 0.6 times that of an unoriented 
foam, while the second gives a modulus of zero. No experimental data was presented 
for the function or any method suggested to obtain it for a general oriented foam. 

Early studies assumed that the cell walls carried axial loading only (Gent and 
Thomas 1959,1963 and Lederman, 1971). This assumption leads to a conclusion 
which is inconsistent with experimental data, that the Young's moduli of a foam 
should vary linearly with its density. Later work recognised the dominant 
contributions of cell wall bending to the mechanical properties, and the linear elastic 
moduli of cellular materials has been considered to reflect mainly the bending of the 
cell members (Ko, 1965; Patel and Finnie, 1970; Menges and Knipschild, 1975; Abdd 
El-sayed et al, 1979; Gibson et al, 1982; Gibson and Ashby, 1982; Green, 1985; 
Warren and Kraynik, 1987,1988; Klintworth and Stronge, 1988,1989). 

Ko (1965 ) assumed that the morphology of a three-dimensional foam could be 

represented by the topology of interstices that is determined by the idealized 

arrangement of uniform spheres in hexagonal close packing (hcp) or face-centred- 

cubic packing (fccp). Since these structures are inherently anisotropic, he arbitrarily 
chose a principle direction of uniaxial strain and calculated the effective Young's 

modulus of the foam from a three-dimensional beam analysis of the structure. For a 
hcp and low relative density foam, Ko obtained: 
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where E/Es, is the relative Young's modulus, v, is the Poisson's ratio, and A/L2, is 

the slenderness of the cell rib. 

For a fccp and low relative density foam, he obtained: 

Eý 
63ý-3 

P 
X21 

(2.3) 
s 71+16v+ý Ä 

V=8 (2.4) 

Ko considered both stretching and bending of the cell ribs. The difference in his 

asymptotic results reflects a change in the dominant deformation mechanism, which 
depends upon the morphology of the structure and its orientation with respect to the 
principle axes of strain. To explain his experiments, he had to suppose that real foams 

are a mixture of 67% hcp and 33% fccp. 

Chan and Nakamura (1969) derived expressions for E/Es and v for open and 
closed- cell foams based on the bending deflection of an initially bent column or plate 
loaded axially. This method breaks down if the columns or plates are initially straight: 
because they are loaded axially and no bending occurs. Therefore, their derivation 
does not analyse the actual mechanism of deformation for the linear elastic behaviour 
of foams. 

Menges and Knipschild (1975,1982) noticed from microscopic examination 
that the faces of closed cell foams have very little stiffness and strength and conclude 
that the membrane closures do not contribute significantly to the stiffness or strength 
of the foam. They then treated open and closed- cell foams identically. The choice of 
microstructural element: four identical struts meeting at a tetrahedral junction is a 
noteworthy feature of their model. Their analysis of the bending and axial deformation 
of the cell edges gave: 

EIE= C1(P / PS )2 
s (P/PS)+C2 

(2.5) 

Where: C1 and C2, are constants, to be determined by experiment. E/ Es, is the 
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relative Young's modulus, and p/ ps, is the relative density. Their experimental 

results for rigid, closed cell polyurethane are in good agreement with this expression. 

Barma et al. (1978) have derived an expression for the Young's modulus of 

rigid polyurethane foams by modelling these foams as pentagonal dodecahedra with 
open faces and with some initial curvature in the cell edges. Like Chan and Nakamura, 

they calculated the bending deflection of the initially curved cell edges under an axial 
load and then related this to the axial displacement. However, they neglected the 
bending of members loaded perpendicularly to their length. This derivation does not 
therefore analyse the actual mechanism of deformation for the linear elastic behaviour 

of the foams. 

Warren and Kraynik (1988,1991) attempted a more exact analysis for the 
properties of low-density foams. A three-dimensional open-cell foam is considered as 
an aggregate of tetrahedral structural elements, which consists of four half-beams of 
length L meeting at equal angles of cos-1(-1/3) or 1090. Their analysis for both 
assumed a homogeneous deformation at the cell level, whereas, in reality, cell walls 
which lie parallel to the loading axis deform less than those which lie at an angle to it. 
Their method is a 'geometry' method in principle, which gives a conservative estimate 
of displacement, and an upper bound for Young's modulus. They supposed an 
admissible deformation mode, which is a homogeneous deformation in their particular 
case. The elastic moduli for their isotropic model were derived as: 

e 2(IJ+44) 
ES (10 + 3l e+ 442) (2.6) 

(1- 4)(5 + 40) 
(10+310+442) (2.7) 

G 
__ 

ý2(I1 +4ý) 
E3 30(1+20) (2.8) 

K 
-ý ES -9 (2.9) 

Where: 4, is the volume fraction of the material, and is equal to the relative density 
P/ ps. G, is the effective shear modulus, K, is the bulk modulus. 

Kanakkanatt (1973) used a repeating unit cell, an axisymmetric box, to model 
an anisotropic foam. Average cell dimensions were introduced to characterize the 
structural anisotropy of the foam. The anisotropy in Young's moduli were calculated 
in terms of these average cell dimensions. 
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Tension: 
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ý- 
y) 
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Compression: 

Ey 
=(/h)(1 

+ YL) 
(2.11) 

E. (5 
L)11 + Yh) 

Where: E,, and Ey, are the Young's modulus of the foam in the x and y direction 

respectively. L and h, are the cell rib length in the x and y direction respectively. t, is 

the cell rib thickness. 

Hilyard (1982) assumed a model similar to that of Kanakkanatt (1973). A 

rhombic box was employed as a representative cell. Hilyard further considered the 
anisotropy in elastic collapse stress, a, by relating it to the aspect ratios of the 

rhombic cell. 
ß, 0.228502a 
ES 1-Vp2 

(2.12) 

Where: a, takes account of the influence of the specimen preparation, and is assumed 
to be approx. 0.8. vp, is the Poisson's ratio of the base material. 

Mehta and Colombo (1976) considered a foam as a composite of solid matrix 
and a 'filler' of liquid or gas. They further extended the Halpin-Tsai equation (1968) 
for predicting the composite modulus to the foam, obtaining the ratio of the solid 
modulus ES to the foam modulus E as: 

E+ PS 1+ (2.13) 

Where: the factor ý, is a measure of filler phase (i. e. cell geometry and orientation). 
An exponential function was assumed between this structure factor 4 and the aspect 

ratio h/L of the cell geometry, which, in turn, is related to experimental shrinkage data. 
A foam sample was immersed in a hot oil bath and the change in dimensions measured 
after cooling. The ratio of foam moduli parallel and perpendicular to the foam rise 
direction, Ey/E, was calculated in terms of the shrinkage data shy and shX. The 

experimental data generally fall within ± 20% of the predicted values for these ratios. 
The method of using shrinkage data to decide the aspect ratio of the cell may provide 

an alternative way to that of measuring the mean intercept lengths, proposed by 

Kanakkanatt (1973), Harrigan and Mann (1984) and Huber and Gibson (1988). 
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Harrigan and Mann (1984) found that a second rank tensor can describe the 

degree of anisotropy in orthotropic materials. They also demonstrated that this material 

anisotropy tensor is symmetric and adequately represents the mean intercept length 

measurements. The experimental techniques and data of this tensor on five human 

bones can also be found from the paper. 

In 1988, Gibson and Ashby illustrated the microstructures of honeycomb and 
foams, and at the same time they have successfully developed a very basic model of 
the deformation of conventional foams, which is based on flexure. This three 
dimensional anisotropic model has been represented as shown in Figure 2.2. 
Gibson and Ashby (1982,1988) have derived the equations for open cell foams as: 

E' c2r(1)4 
h 

1+(hJ (2.14) 

` )4 E3=cEs 
(t 14h 

1 (2.15) 

Where: ES, is the Young's modulus of the solid material, E3, is the Young's modulus 
of the foam rise direction, El, is the Young's modulus in the other two directions, C, 
is a constant, t is the cell rib thickness, h, is the height of the cell, and 1, is the width 
of the cell. Poisson's ratio, v, is predicted solely as a function of cell geometry and is 
independent of relative density. Gibson and Ashby (1988) did not give the equation 
for the shear modulus in the three directions, but they derived a formula showing the 
relation between two directions as: 

G31 2 
G12 1+h 

I 

(2.16) 

Huber and Gibson (1988) further studied the anisotropy in shear modulus by 
relating it to the aspect ratios of the rhombic cell. 

G12 = CES 
(Lt 4 (L ) 

h) (2.17) 

G13 = 2CESI t) 
()1 

(2.18) 
J (h/L)+1 

Their experimental results for polyurethane foams are reported to be in good 
agreement with these expressions. But real cells in foams are not cubical, they are far 

more complicated. The cubic is only an approximation for real cell shapes. However, 

as a result of using this over simplified cell model (a cubic cell shape), Gibson and 
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Ashby failed to take cell wall orientation into account. Therefore, a good model 

incorporating both cell wall length variation and cell wall orientation is needed. 

2.5 Mechanical Testing 

Methods for tension, compression, shear and ball rebound testing of foams 

have been published by the ASTM (D-3574). Test methods on foams for ball 

indentation, and the DMTA test (Dynamic Mechanical Thermal Analyst) are not 

available from the ASTM. The Ball Indentation Test is in stark contrast to similar tests 

associated with metals where many books are already in print, such as: Hertz (1882), 

O'Neill (1934,1967), Tabor (1951), Johnson (1985). The same method of DMTA 

testing of polymers can be used for testing the polymeric foams (see Murayama, 

1978). 

The properties of cellular solids can vary widely depending on the choice of 

the solid from which they are made, the volume fraction of the solid and the geometry 

of the cells. The physical properties of flexible foams are generally believed to depend 

upon the structure of both the polymer network and the cells formed as a result of the 

blowing process. The foams may not be homogeneous, isotropic materials. Their use 

as structural materials in complex geometries requires either a good stress analysis or 
large safety factors. For elastic stress analysis, Young's modulus, shear modulus and 
Poisson's ratio are commonly required. (e. g. EX, Ey, EZ, vom, vyx, v., vZZ, vry, vys, G. 

Y� 
Gyx, G. 

,G , 
Gry, andGyZ). Although anisotropy in foams was noticed by Gibson and 

Ashby (1982,1988), little experimental work was carried out to investigate this 

observation. Nearly all flexible polymeric foams have an extremely high elastic limit at 
room temperature, with the result that deformations of most flexible foams are nearly 

always within the elastic region. For example, when a flexible polyurethane foam is 
fully deformed by an external load, it can be restored to its original length after the 

external load is removed. Since there is a large amount of published data on stress- 

strain performance in compression, it is instructive to review this data. (e. g. Gibson 

and Ashby (1988), Gibson (1989), Gibson and Ashby (1982), Feng and Christensen 

(1982), Patel and Finnie (1970), Throne and Progelhof (1985), Gent and Thomas 

(1959,1963), Whittaker (1971), Cunningham (1984), Tsai (1982), and Gibson et. al. 
(1989)). However, the shapes of those stress-strain curves are similar, and most of 

the researchers have only tested the foam in one direction. It is the aim of this study to 

test the behaviour of foams in three directions and investigate any anisotropy in the 

mechanical properties. 

Several experimental studies of creep in polyurethane and polystyrene foams 

have been carried out. Findly and Stanley (1968) measured the creep response over a 
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2 hours period for a rigid polyurethane foam under uniaxial tension and compression. 
Huang and Gibson (1991) measured the creep behaviour of rigid polyurethane foams 

under constant shear. The foams creep at room temperature, thus, limiting their use in 

structural applications. 

Few reports concerning rate effects on polystyrene foams in compression are 
available. The results of Benjamin (1965) are in disagreement with the results of this 

study, showing a decrease in modulus and a slight increase in yield stress for PSB 
foam. Results of Hoge and Wasley (1969) and Rinde and Hoge (1971) on PSB foam 
do, however, show good agreement with the results of this study. Foam properties 
vary according to the different polymers involved, and also depend upon the cell size 
and cell shape. 

Poisson's ratio is one of the fundamental mechanical properties of an 
engineering material. When a material is stretched, the normal expectation is that it will 
become thinner in the direction perpendicular to the stretching direction. Almost all 
naturally occurring materials appear to exhibit this property which is defined by the 
quantity known as Poisson's ratio, v (1829). 

£x 

r( £y 
(2.19) 

Where: cy, is the tensile strain in the stretching direction, F-, is the tensile strain 

perpendicular to this. Since most materials contract in the perpendicular direction, the 
presence of a minus sign in the definition ensures that the ratio is positive. 
Conversely, a material with a negative Poisson's ratio is one which expands in all 
directions when pulled in only one, thus increasing its volume. Although it is 
generally believed that all materials have a positive v, it has been known for over a 
century that a negative v is theoretically possible (Love 1944). Most naturally 
occurring materials have Poisson' s ratio v between 1/4 - 1/3. Rinde (1970) reported 
the Poisson's ratio for anisotropic flexible polyethylene foam was 0.37 in the foam 

rise direction and 0.68 for the transverse direction. His data also showed the time 
dependence of lateral straining at several strain rates. Ko (1965) has determined 
Poisson's ratio in tension on a flexible polyurethane foam rubber containing 47% 

voids and found a value of 1/4. Gent and Thomas (1959) found Poisson's ratio to be 
1/3 for flexible foam rubbers and independent of void content in the range of 50-90% 

voids. Show and Sata (1966) found the Poisson's ratio of some undefined 
polystyrene foam to be 0.03 in compression at high strains. Gibson and Ashby (1988) 
have investigated the Poisson's ratio for rigid and flexible polyurethane foams. Their 

analysis shows Poisson's ratio to be independent upon the relative density and the 

value is about 0.33. Rigbi (1967) presents the temperature dependence of Poisson's 
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ratio for several plastics. Poisson's ratio was shown to be nearly constant at 0.33-0.35 

for the temperature range -50 to 40°C, and then rises to about 0.45 at 80°C. 

Structural foams used in many practical applications are often subjected to 

shear stresses. For example, the use of sandwich panels in aircraft construction is now 

a fairly widespread practice and one of the most commonly used types of core material 
is the polymer foam. To be effective in a sandwich panel, the core must have sufficient 

shear stiffness to prevent the skins from sliding over one another. Direct shear tests 

can be conducted to obtain a measure of shear rigidity for specific foams. However, 

most of the researchers assume that the foams are isotropic materials and they 

calculated the shear moduli using the equations shown in Figure 2.8. There is very 
few experimental data reported. Moore and Couzens (1974) and Gibson and Ashby 
(1988) measured the shear modulus of plastic foams and their data together with mine 
are shown in Figure 8.30 in this study. 

Cellular solids are widely used for cushioning and energy absorption because 

they are highly compressible, even at very large strains. Shock mitigating cellular 

solids are typically subjected to indentation loads that crush some cells owing to 

complex multi-dimensional stress states. Some attempts have been made to correlate 
these features with the cushioning performance of the foam, using relatively simple 
tests. For example, Meinecke and Schwaber (1970,1971) compared the energy 
absorption characteristics of PUR and Nitrile rubber foams as determined from 

compressive and pendulum-impact measurements; Rusch (1969,1970) studied the 

compressive behaviour of several flexible and brittle foams; Gibson and Ashby 
(1988), and Zhang and Ashby (1994) suggested equations for predicting the 

compressive strength and failure envelope of plastic PUR foams as a function of 
density. Klintworth and Stronge (1989) estimated the force for flat punches indenting 
honeycombs by assuming that yield occurs when the maximum principal stress 
reaches a particular value. Cousins (1976) and Orringer et al. (1985) modelled the 
half-space beneath a spherical punch as independent concentric circular cylinders 
deforming in uniaxial compression, and estimated the force-deflection behaviour of the 

punch using experimental material data. Foam behaviour under dynamic impact 

loading were reported by many researchers such as: Throne et al. (1985); Mills and 
Hwang (1989); Sherwood (1992); Richardson and Nandra (1985); Ramon and Miltz 

(1990); Yossifon and Szanto (1987,1989) and Shuttleworth et al. (1985). They have 

examined the effect of distributed and concentrated loads on many different brittle and 
flexible foams. 

O'Neill (1934,1967) has wisely observed that hardness, ' like the storminess 
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of the seas, is easily appreciated but not readily measured'. In general hardness 

implies the resistance to deformation. Hardness measurements usually fall into two 

main categories: indentation hardness, and rebound or dynamic hardness. 

The first satisfactory analysis of the stresses at the contact of two elastic solids 

was due to Hertz (1882). Being guided by his observations of interference fringes, 

Hertz first made the hypothesis that the contact area is, in general, elliptical. He then 
introduced the simplification that, for the purpose of calculating the local 

deformations, each body can be regarded as an elastic half-space loaded over a small 
elliptical region of its plane surface. By using this simplification, generally used in 

contact stress theory, the highly concentrated contact stresses are treated separately 
from the general distribution of stress in the two bodies, which arises from their 

shape, and the way in which they are supported. In order for this simplification to be 
justifiable two conditions must be satisfied: the significant dimensions of the contact 
area must be small compared with (a) the dimensions of each body and (b) the relative 
radii of curvature of the surfaces. The first condition is obviously necessary to ensure 
that the stress field calculated on the basis of a solid which is infinite in extent is not 
seriously influenced by the proximity of its boundaries to the highly stressed region. 
The second condition is necessary to ensure firstly, that the surface just outside the 
contact region approximates roughly to the plane surface of a half-space, and secondly 
that the strains in the contact region are sufficiently small to lie within the scope of the 
linear theory of elasticity. Metallic solids loaded within their elastic limit inevitably 

comply with this latter restriction. However, caution must be used in applying the 
results of the theory to low modulus materials like rubber and foams where it is to 
produce deformations which exceed the restriction to small strains. The Hertz theory is 

restricted to frictionless surfaces and perfectly elastic solids. 

The methods most widely used in determining the hardness of metals are static 
indentation methods. In the Brinell test (Brinell, 1900; Meyer, 1908) the indenter 

consists of a hard steel ball. Another type of indenter which has received wide use is 

the conical or pyramidal indenter as used in the Ludwik (1908) and Vickers (1925) 
hardness tests respectively. These tests involve the formation of a permanent 
indentation in the surface of the metal to be examined, the hardness being determined 
by the load and size of the indentation formed. 

The Brinell hardness number is expressed as the ratio of the load, W, to the 

curved area of the indentation. 

Brinell hardness number= 
2W 

Z 
(2.22) 

nD2 1- 1-(d 

18 



Literature Review 
Where: W, is the normal load, D, is the diameter of the ball and d the chordal diameter 

of the indentation. 

The Meyer hardness is expressed as the ratio of the load, W, to the projected 

area of the indentation. 

Meyer hardness =W =4W 
na 2 ttid 

(2.23) 

Where: 2a (or d), is the chordal diameter of the projected area (indentation profile). 

Tabor (1951) proposed the indentation strain as: 

c= 
.f 

(//D) (2.24) 

and the mean pressure P. is: 

Pm 
7Cd 

= (P` /DI (2.25) 

Where: cp(%), is some function of d/D that still has to be determined. This is the 

same as saying that geometrically similar indentations have the same hardness 

whatever the absolute size of the indentation. 

O'Neill (1934) reported that there is a variation in yield stress at various depths 
in the bulk of the material. It would therefore appear difficult to assign a 
'representative' value to the yield stress of the whole material. However, empirical 
tests by Tabor (1951) suggest that, 

P. = 3ßy (2.26) 

Where: Pm, is hardness of the material and ay, is the yield stress of the material. 

Shaw and Sata (1966) and Wilsea et al. (1975) found that the hardness, H, of 
their foams were almost equal to ay. This is because the foam is compressible under 

the indent, a column of foam collapses, in a way which is hardly influenced by the 

surrounding material. The fact that the factor of 3 associated with completely solid 

materials arises as a result of the restraint offered by the surrounding elastic material as 
the plastic region attempts to extend laterally in accordance with a Poisson's ratio of 
1/2 suggests that the restraint factor should be a function of Poisson's ratio. If 

Poisson's ratio were to be zero or negative the elastic material would offer no 

resistance to plastic flow, since there would be no tendency for the material to extend 
laterally as it undergoes plastic deformation. Therefore, the restraint factor should in 

this case be 1. Finally, Shaw and Sata (1966) pointed out that the mean strain beneath 

the indenter is much larger for a cellular material, and the strain is also far more 
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uniform over the plastically deformed region. 

Wilsea et al. (1975) analysed a plastic foam indented by cylindrical and 

spherical indenters (see Figure 2.4) and found that 

For the cylinder Indentation test: 

da 
£m =-= (2.27) 

by 2R cot( 2 

and 
p_ 71ay H 

2aL ay + sinay 
(2.28) 

For the ball indentation test: 

d a2 
Em =- (2.29) by ~ 2Rh 

(h j 

and I 
1Ga 

+( a)2 
Y2 

a 

Where: AB=2a, the diameter of the indentation profile. The foam yields when the 
maximum principle stress reaches the value -ay, ay, is the angle subtended by AB. 

The trajectories of maximum principle stress bisect the angle ay. R, is the radius of 

the ball. h, is the height of the indentation profile. d, is the displacement. P, is the 
uniform normal indentation pressure. L, is the length of the cylinder. em, is the 

maximum elastic strain. H, is the hardness of the foam. 

Ila1 

Fig. 2.4 The stress system beneath a cylindrical indenter having a uniform indentation pressure. 
(Wilsea et al., 1975). 
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The ball rebound test is deceptively simple in the sense that it is very easy to 

visualise and carry out, but the interpretation of the results requires great care. Static 

indentation tests such as the Ball Indentation Test provide a good way of 

characterising the static hardness of materials. But it requires the use a test machine 
that applies the indentation load to the ball in a controlled manner. The ball rebound 
test was introduced by Shore in 1918 to enable hardness tests to be made on metal 

structures or components without the need to cut specimens from the material. It was 
an early example of non-destructive testing, and provide a simple way of accurately 
providing a known load to a ball that was capable of indenting the material. 

The principle of the test is that a ball, usually of hardened steel and with a 
diameter of 5-10 mm, is dropped from a prescribed height onto the surface of the test 

material. At impact, the ball indents the surface and kinetic energy is either converted 
into stored strain energy, or, if the local yield stress is exceeded, promotes the plastic 
flow that results in a permanent indentation in the material. When the kinetic energy 
has been dissipated, the specimen relaxes and the ball rebounds to a height 

proportional to the amount of energy stored elastically by the specimen. It is thus 
possible to obtain a measure of indentation resilience of the materials without the need 
to obtain a measure of the size or depth of the indentation. 

Polymeric foams are usually made from viscoelastic polymers. Viscoelastic 

materials have some of the characteristics of both viscous liquids and elastic solids. 
Elastic materials have a capacity to store mechanical energy with no dissipation of 
energy; on the other hand, a viscous fluid in a nonhydrostatic stress state has a 
capacity for dissipating energy, but none for storing it. When a polymeric foam is 
deformed, part of its energy is stored as potential energy and part is dissipated as heat. 
A number of mechanisms are at work in absorbing energy. Some of the mechanisms 
are related to the elastic, plastic, or brittle deformation of the cell walls (Gibson and 
Ashby, 1988); some, to the viscoelastic energy absorption (Meinecke and Clark, 
1973); and others, to the compression or flow of the fluid within the cells (Zhang, 
1993). The plateau stress for an elastomeric foam used in cushions and in soft padding 
(see Figure 2.5) is determined by the elastic buckling of the cell ribs. Much of the 
external work stored during loading is released when the foam is unloaded. Friction is 
dissipated as heat, as a result of the intrinsic damping or hysteresis of the elastomer 
and of losses caused by the flow of cell fluid. But, despite this, there is usually some 
rebound on impact. In the case of plastic and brittle foams, the work done in the 

plateau region is completely dissipated as plastic work or as work of fracture, with 
almost no rebound after impact (Hilyard, 1982). 

The static energy absorption mechanisms were carefully studied by Gibson 
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and Ashby (1988). When a foam is loaded, work is done by the forces applied to it. 

The work per unit volume in deforming to a strain e is the area under the stress-strain 

curve up to E (Figure 2.5). 

W= La (r-)dF (2.33) 

when the plateau is flat, the plateau stress, op, is almost constant and W is given 

approximately by: 

wý6PE (2.34) 

The energy, W, and stress, a p, 
depend on the strain-rate, and on the temperature. 
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0 0.5 1.0 

Compressive Strain, e 
Fig. 2.5 Stress-strain curves for an elastic solid and a foam made from the same solid, showing 
the energy per unit volume absorbed at a peak stress a,, . 

(Gibson and Ashby, 1988). 

The long plateau of the stress-strain curve as shown in Figure 2.5 arises from 

the cell collapse by elastic buckling, plastic yielding or brittle crushing. Each of these 
collapse mechanisms proceeds at nearly constant load until finally the foam is almost 
completely crushed, then the load rises sharply. 

In recent years, the technology of investigating the dynamic mechanical 
properties of materials has advanced greatly. The interpretations and applications of 
dynamic data have stimulated interest from both the practical and the scientific stand 
point. The stiffness of a flexible foam is related to its composition and structure. As a 
result of being a viscoelastic material, it would be expected that the small-strain 
dynamic properties of a foam will depend on the frequency of deformation and the 
temperature. 
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Viscoelastic materials are temperature dependent i. e. flexible foams are soft at 

room temperature, but become harder at low temperature (e. g. -300). Viscoelastic 

materials are also time (or frequency) dependent i. e. modulus measurements over 

short times result in high values, whereas, measurements over long times result in low 

values. In the viscoelastic studies of polymeric materials, the method of sinusoidal 

excitation and response is very useful (Ferry, 1961; Kolsky, 1953; and Murayama, 
1978). In this case, the applied force and the resulting deformation both vary 
sinusoidally with time, the rate usually being specified by the frequency fin cycles/sec 
(Hz). or c) = 2irf in radians/sec. For linear viscoelastic behaviour, the strain will 

alternate sinusoidally but will be out of phase with the stress, as shown in Figure 
2.6(B). 

CL 

" Cl AE 

A 
Ö 

" E W c W 
2 

E' (t O) 

(A) (B) 

,t 

Fig. 2.6 Relations between various parameters used to express the results of a dynamic 
mechanical measurements. 

This phase lag results from the time necessary for molecular rearrangements is 

associated with relaxation phenomena (McCrum et al., 1967). The stress, a, and 
strain F-, can be expressed as follows: 

ßo sin(c)t + S) (2.35) 

F- = Eo sin wt (2.36) 

Where: (o, is the angular frequency, and S, is the phase angle. 

6= ßo SinCOtCOSS+ 6o cos wtsin8 (2.37) 

The stress can be considered to consist of two components, one in phase with 
the strain (ßo cos S ), and the other 900 out of phase (ßo sin S ). When these are divided 

by the strain, the modulus can be separated into an in-phase (real) and out-of-phase 
(imaginary) component. These relationships are: 

6= E0 E'sin cot + e0 E" cos wt (2.38) 
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E'= 6° 
cos 6 and E" =6° sins (2.39) 

Eo co 

Where: the real part of the modulus, E', is called the storage modulus, because it is 

related to the storage of potential energy and its release in the periodic deformation. 

The imaginary part of the modulus, E", is called the loss modulus, and is associated 

with the dissipation of energy as heat when materials are deformed. The phase angle, 
6 (see Figure 2.6(A)) is given by: 

E" 
tans=- 

E' 
(2.40) 

The dynamic complex modulus, IE*I, is therefore equal to E' ++E"2 . Where the loss 

tangent, tan S, is proportional to the ratio of the energy dissipated to the energy stored 
during one deformation cycle. 

The impact data can be related directly to the deformation energy (area under 
the loading curve) and the hysteresis loop (area between the loading and unloading 

curves). However, the rate dependence limits the direct comparison of the data 

obtained at one strain rate with the impact data, since in the impact test the rate of 
deformation decreases with penetration distance. 

Flom (1960) attempted to relate the time dependant loss tans to the ball 

rebound measurements, and obtained the following equation: 

tan 8=9.212it log(h/ )/ 4712 - (2.303log(h, / h2 ))2) (2.41) 

Where: tans, is the energy dissipated as heat and manifests itself as mechanical 
damping or internal friction. hl, is the dropping height, and h2, is the ball rebound 
height. 

The loss tan S, can be obtained using a DMTA (Dynamic Mechanical Thermal 

Analyser). DMTA is a commonly used dynamic mechanical instrument which can 

measure the deformation of a material in response to vibrational forces. The dynamic 

modulus, the loss modulus, and a mechanical damping are determined from these 

measurements. The modulus indicates stiffness of material, and it may be a shear, a 

tensile or a flexible modulus, depending upon the experimental equipment. The 

mechanical damping (internal friction) gives the amount of energy dissipated as heat 

during the deformation. 
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2.6 General Review of Auxetic Foams 

In theory, there are two ways of improving the mechanical properties of 

conventional polymeric foams- either by altering the chemical constituents of the 

solid struts or by changing the cell geometry. A lot of the work done in this area has 

concentrated on changing the chemical composition of the foam. Many different types 

of polymeric foam, such as PUR (polyurethane) foam, and PS (polystyrene) foam 

have been widely used all over the world. Most recently, attempts have been made to 

look for a new way to improve the mechanical properties based on changing the foam 

cell geometry. 

In 1987, a very interesting new type of foam was developed by R. S. Lakes. 
This new type of polymeric foam has a re-entrant cell shape which had a Poisson's 

ratio of -0.7. The distinction between this new foam and a conventional foam was that 

when this foam was stretched in one direction, it became fatter in all directions, 

whereas, the conventional foam became thinner in all other directions. Although it is 

generally believed that all materials have a positive Poisson's ratio, it has been known 

for a very long time that a negative Poisson's ratio, is theoretically possible (Love, 

1944). Nye (1960) pointed out that theoretical bounds on Poisson's ratio can be 

obtained by requiring that the strain energy of an elastic isotropic solid remains 

positive under any set of deformations. This gives the bounds -1 < v! 5 0.5 for 

isotropic materials. The upper limit corresponds to materials that cannot change 

volume, and the lower limit applies to materials that cannot change shape. The bounds 

on Poisson's ratio of anisotropic material are much wider (Rothenburg et al. 1991, 

and Lakes, 1993). Typical values are nearly 1/2 for rubber and nearly 1/3 for steel. 
Negative Poisson's ratio materials are of interest because of their unusual nature, and 
because they deform in ways unexpected on the basis of experience with ordinary 

materials. 

In 1991, Evans proposed the designation "auxetic" (from the Ancient Greek 

word auxetos: "that may be increased") for such material. He claimed that the unusual 
behaviour of auxetic foam comes from its unusual cell structure: the cell-ribs of 

conventional foam are protruding outward, whereas, that of auxetic foam are 

permanently protruding inward. Evans also pointed out that a simple two dimensional 

model for a conventional open-celled polymeric foam is that of a hexagonal honey- 

comb which is shown in Figure 2.7. When such a honeycomb is pulled, the cells 

elongate and thin down, thus giving rise to a positive Poisson's ratio. However, if the 

cells are made re-entrant, that is the upper and lower apices are made obtuse, then 

when this honeycomb is stretched, the cross-section broadens and a negative 
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Poisson's ratio results. 

--4" 

§ 

'" 

(b) + 
Fig. 2.7 (a) A schematic diagram of a conventional hexagonal structure and how it 

deforms when stretched, producing a conventional positive Poisson's ratio. 
(b) A re-entrant honeycomb producing a negative Poisson's ratio. (Evans, 1991). 

Foams with negative Poisson's ratios can be produced from a variety of 
conventional materials, these include thermoplastic foams such as polyurethane foams 
(Lakes, 1987, Choi and Lakes, 1992), silicone rubber (Friis, Lakes and park 1988) 

and metallic foams based on copper and aluminium (Lakes, 1987, Choi and Lakes, 
1992). More recent findings of negative Poisson's ratio are in composite laminates 
(Milton, 1992), in honeycombs (Gibson and Ashby, 1988; and Masters 1994), in 

polymer/water gels (Hirotsu, 1991), and in anisotropic microcellular polymers such as 
expanded polytetrafluoroethylene (Evans and Caddock, 1989) and UHMWPE 
Alderson and Evans, 1993). 

In 1988, Gibson and Ashby developed a flexure model for describing the 

mechanics of 2D honeycombs to show how a re-entrant honeycomb exhibits a 

negative Poisson's ratio. Masters (1994) further considered the mechanics of a two- 
dimensional re-entrant honeycomb consisting of thin planar walls of uniform thickness 
but different lengths. He employed a beam analysis to obtain the effective in-plane 

elastic constants for a particular orientation of the cells with respect to the principle 

axes of strain. Hinging and stretching were found to be the preferred deformation 

mechanism for the re-entrant cardboard honeycombs in tension and flexure is the 
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dominant mechanism in compression. 

EI 
_ 

Kh (ýIL+sin 0) 

ES b cos3 0 

Hinging Model: E2 
_ 

Kh cos 9 (2.42) 

E. bsin2 9(h/L+sin 9) 

EI_ Ks ( L+sin 9) 

Es bcos9(2YL +sin2 0) 

Stretching Model: E2 KS (2.43) 

ES cos b8(h+sin 6) 

EIK f(%L+sin 0) 

Es bcos3 0 

Flexure Model: 
E2 

-Kf 
cos B (2.44) 

Es b sing 9(L+sin 9) 

Where: E1/Es and E2/ES, are the relative Young's moduli in the 1 and 2 directions 

respectively, Kf, Kh and Ks, are the flexure, hinging and stretching force constant 

respectively, h/L, is the ratio of lengths of the cell ribs, b, is the cell rib thickness, and 
0, is the angle between the two connected ribs. 

Almgren (1985) used a 2-D array of rigid rods joined by elastic hinges from 

which he developed a 3-D model which is isotropic in its macroscopic elastic 

properties. This model gives v= -1, and G= oo. Almgren showed that the 2-D 

model is not isotropic in the plane although the properties in the I and 2 directions are 
equal i. e. v12 = V21 =-1. when h/L=2 and 0= -30°. Evans (1991) describes this 

condition as square symmetric since measuring Poisson's ratio along directions away 
from the principle axes yields values differing from -1. Wojciechowski and Branka 

(1989) investigated theoretically the negative Poisson's ratios in a 2-D molecular 

system of hard cyclic hexamers in the high-density phase, i. e. with a tilt of the 

molecular axes relative to the crystalline ones. The Poisson's ratio, vp is 
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v-4, 
ýNn - 2X 

447717 +p 
(2.45) 

P 4X4n4n + 2)««n77 -p 

Where: ;.,, 
7,, 7 and x, 44,7,7, are the compressibility-related and shear-related modulus 

respectively. 

Further theoretical and computational work along this line involving 

anisotropic and isotropic particles, molecular networks, tensile springs, and 

topologically constraining rods or strings can be found in references: Rothenburg et al. 
(1991); Evans et al. (1991); Boal et al. (1993) Warren (1990) and Wei (1992). 

In 1988, Lakes et al. proposed the 3D re-entrant foam structure as shown in 

Figure 2.8. Although this geometry produces re-entrancy in three dimensions, there 

are problems with the connectivity of these cells. They cannot be connected together to 
fill space without the presence of an equal number of non re-entrant cells. In this 

situation, it is not clear whether or not the combined structure will still produce a 

negative Poisson's ratio. However, there was no mathematical calculations for this 

model reported. 

Fig 2.8 Idealized re-entrant unit cell produced by Lakes, 1988. 

In order to understand the behaviour of auxetic materials, we need to know 

how co-operative interactions with the material structure produce the novel mechanical 

effects. So far in the current literature there is no three-dimensional anisotropic foam 

model available to analyse the unusual mechanical performance of auxetic foams until 

a 3D re-entrant foam model was developed for this thesis. 
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2.7 Fabrication and Mechanical Test Methods for the 
Auxetic Foams 

Recently, a discussion on fabricating auxetic foam has been given by Friis, 

Lakes, and Park (1988). According to their report, the re-entrant cell structure is 

obtained by triaxial compression at elevated temperature. The method involves 

compressing a foam block into a rectangular mould to reduce the volume of the foam 

by a factor of up to 3.4. The structure of the compressed foam is then 'set' by an 

appropriate thermal treatment. Lakes' method only works for small size specimens 

with a 2.54cm cross section. When the required specimen is larger than this, the 

specified thermal treatment is no longer suitable. As a result of this, the fabrication 

method of auxetic foams requires further development, so that large size auxetic foam 

blocks can be produced. So far only Lakes group has reported on the fabrication 

method for the auxetic foams. 

In 1992, Choi and Lakes reported some mechanical test results on polymeric 
foams. As noted above however, the specimen sizes used were very small, such as: 
10mm x 10mm x 12.5mm for the tensile test; and 10mm x 10mm x 6mm for the 

compression test. As a result of the relatively large pore size (10 pores per inch) of the 

cellular foams used in this work, there may be large end effects involved in these tests. 
To improve the accuracy of the static test results, larger auxetic foam specimens with 
higher aspect ratios need to be fabricated and tested. 

In the same paper, Choi and Lakes also detailed a method for measuring the 
Poisson's ratio of the foams. This was described as: "...... during the test, two lines 
10mm apart were drawn in the middle of the lateral surface of the foam, and the 
longitudinal strain was changed by 5% and lateral deformation was measured with a 

micrometer". This implies that they have only measured the movement of the foam 

surface, instead of measuring the movement of the entire block of foam. Although the 

paper gives some data, it can be seen that no shear measurements have been carried 

out. They assumed that the foam material is isotropic, and derive the shear modulus, 
G, by using the equation G= E/2(1+v). But this assumption may be incorrect because 

of the anisotropic microstructure of the foams. So far, the Lakes group is the only one 

that has reported results on the mechanical properties of auxetic foams. 

In 1993, Dubbelday reported the results of a literature search on auxetic 

materials. The conclusion reached was that: ........ there is no complete set of explicit 
data on the elastic moduli of various auxetic foams. Thus, it was not possible to judge 

how far progress was made in obtaining materials with a large value of G compared 
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with conventional stiff materials". This is one of the issues that will be addressed in 

this thesis. 

2.8 Applications of Auxetic Foams 

Because of the unusual behaviour of auxetic foams under tension or 
compression, as shown in Figure 2.7, Lakes (1987,1991) and Evans (1990,1991) 
have made predictions concerning these new materials. 

As a first step in acquiring an understanding of the nature of the auxetic 
property, we first study the relationship between elastic moduli and Poisson's ratio. 
Figure 2.9 is condensed from Evans (1991) paper and shows the four equations 
relating the constitutive properties. 

(E, D ) 1-º 
E measure of resistance to tensile load 

v measure of change in cross-section under tension 

(G) (K) 

G measure of resistance K measure of resistance to an applied to applied shear load pressure 

K= EGE 
3(l - v) 2(l + v) 

_ 
9KG 

_ 
3K-2G E 

(3K +G) 
v 2(3K +G) 

Fig 2.9 The relationship between the fundamental elastic constants, the tensile or Young's 
modulus, E, the Poisson's ratio, V, the bulk modulus, K, and the shear modulus G, for an isotropic 
material. (Evans, ] 991) 
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For an isotropic perfectly elastic material only two of these quantities need to 

be measured as the other two can be determined from them. Evans (1991) therefore 

suggests that if we have a material with a particular fixed value for its Young's 

modulus, E, we can vary the Poisson's ratio, v. Then as v approaches 0.5, the bulk 

modulus, K, will become very large. On the other hand, if v approaches -1 the shear 

modulus, G, will become very large. Thus Evans predicted that a large negative v 

would produce a benefit by increasing G at the expense of K. For example, a solid 

with v= -1 would be the opposite of rubber: difficult to shear but easy to deform 

volumetrically, G»K. It is clear that a large negative Poisson's ratio 
((-1.0 <_ v< _ -0.5) will improve the ratio G/E. If a material can be modified to alter v 

without significantly altering E then this will result in large increases in the shear 
modulus. 

A further example of the benefits of a negative v, is the case of the deflection 

of a fixed circular plate which is illustrated by Evans (1991) and shown in Figure 
2.10. As U approaches -1 the deflection of the circular plate becomes smaller and 
smaller for a given load. Hence the plate becomes effectively stiffer as a result of 
simply altering the Poisson's ratio. 

F f 
'ý 

-ý d- 
3FR'(1-vý) 

16Et3 
Fig. 2.10 A circular plate, radius R, thickness t, with a Young's modulus E, and Poisson's ratio 
'0, will deflected a distance d, by applying a force F. When 'U approaches -1 the deflection 
approaches zero. (Evans, 1991) 

Another advantage of a sheet of auxetic foam, predicted by Evans (1990), is its 
dome shape curvature under flexure, as shown in Figure 1.2. When a sheet of 
ordinary foam is curved downwards, it natural tendency is to curve up in the 
transverse direction to form a saddle shape. A material with a negative Poisson's ratio, 
because of its unusual cell structure will however curve downwards in both directions 

producing a dome shape. Currently the only way of using honeycombs in curved 
geometries is either by machining them -a costly process, or by forcing them into 

shape and damaging the core material. 

Choi and Lakes (1991) designed a fastener which consists of a hollow 
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circular cylindrical core, made of negative Poisson's ratio material, and a socket with a 

corresponding cylindrical hole. The fastener is made bigger than the hole. When it is 

inserted, the longitudinal force of insertion causes its diameter (transverse dimension) 

to become smaller by virtue of the negative Poisson's ratio. With sufficient force, the 

core diameter becomes equal to the hole diameter and the core can be inserted into the 

hole. As axial force is applied to remove the fastener this causes the core to expand 
laterally, generating an increased frictional force which resists removal. Lakes (1991) 

and Evans (1991) also pointed out that the same principle would apply in minimising 
fibre pullout in fibre reinforced composites. 

In order to justify further work on the development of applications of auxetic 
foams and to examine the veracity of previous predictions, we need to investigate the 
basic mechanical properties of these new materials. These include such properties as 
compression stiffness, tensile stiffness, shear stiffness, Poisson's ratio, creep, 
resilience, indentation resistance, dynamic damping, and kinetic energy absorption 
during impact. All these mechanical properties have been studied in this thesis, and a 
comparison has also been made with the properties of the parent conventional foams. 
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Fabrication Methods 

3.1 Introduction 

One way of obtaining negative Poisson's ratio is by using a re-entrant cell 

structure. Various features of the re-entrant cell shape can be controlled by processing 

techniques. In 1987, Lakes converted an open cell polymeric foam into an auxetic 
foam with a Poisson's ratio of -0.7, and developed the fabrication method for making 

a small auxetic foam specimen of dimensions: 22mm x 22mm x 125mm. The method 

used involved four stages: compression, heating, cooling and relaxation. 

To transform a conventional flexible foam into an auxetic one using this 

method requires that the foam is compressed simultaneously in three dimensions to 
force the cell ribs to buckle. This produces a re-entrant structure which is then heated 

to its softening temperature to preserve the new configuration. Different types of 
polymeric foam (e. g. open or closed-cell) and differing densities of conventional 
foams require different heating times and temperatures. The conventional foams used 
in this work are listed in the Table 3.1. The process used by Lakes is a one-stage 
compression and has several problems. An auxetic foam produced in this way may 
exhibit long term instability, with the material reverting to its original structure. The 

one-stage compression also promotes severe surface creasing. To improve the quality 
of the auxetic product, and to fabricate larger specimens the process was developed as 
described below. 

Type Short hand Supplier Density 

name (K /m3) 

Oppi closed-cell polyester PECC aligen, Britain. 37.9±2.1 

urethane foam 

Oppi reticulated polyester PECO aligen, Britain 33.7±1.3 

urethane foam 

lOppi open-cell polyethe 1000 cticel Via Caligen, Belgium. 4.1±3.1 

urethane foam 

30ppi open-cell polyethe 3000 eticel Via Caligen, Belgium 4.5±2.7 

urethane foam 

Oppi open-cell polyethe 6000 Reticel Via Caligen, Belgium 1.7±1.9 

urethane foam 

Table 3.1 Specify materials used such as: types, suppliers, densities. note: ppi means pores per 
inch. 
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3.2 Fabricating the Small Size Auxetic Polymeric Foams 

3.2.1 General Fabrication Procedure 

All the foam specimens used in this work were cut to size using a Burgess 

band saw fitted with a knife blade. This enabled accurate rectangular blocks to be cut 

with smooth faces. As a result of the foam being flexible and having a very low 

Young's modulus it can easily be squeezed into a small rectangular mould to achieve a 

3-dimensional compression. The starting point for the investigation was the method 

published by Friis and Lakes (1988), described below. 

A Gallenkamp BS oven was pre-heated to 200°C. Next, A square aluminium 

tube (e. g. with inner dimensions: 25.4mm X 25.4mm X 80mm) was used as a mould 

for the foam which was cut oversize (38mm x 38mm x 110mm in the case of the 

open-cell polyether urethane foam). The inner walls of the mould were then treated 

with a general purpose lubricant (WD 40) to aid in the insertion of the foam. At this 

point the foam can be inserted into the tube with the aid of a spatula to help eliminate 

surface wrinkles. This procedure gives compression in two transverse directions. Two 

end-plates made of aluminium (dimensions 1.5mm x 25.4mm X 25.4mm) can then be 

used to block up the ends of the mould, so that the foam is compressed in the third, 

longitudinal direction as shown in Figure 3.1. The compressed foam with the buckled 

cell ribs was then placed in the oven at 200°C for eight minutes to 'set' the new 

configuration. The heating time is very critical since the transformation temperature of 

the foam does not reach the oven temperature. The establishment of the correct heating 

time is discussed later. The mould was then removed from the oven and was cooled at 

room temperature for 15 minutes. Finally, the foam was taken out of the mould by 

hand, and was stretched gently in each of three orthogonal directions to overcome any 

adhesion of the cell ribs. 
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1" square section tube mould 

Conventional foam 

mould 
Mould + Foam 

mp 

Fig. 3.1 Schematic diagram for fabricating the small size auxetic foam technique. 

3.2.2 The Heating Temperature 

His and Lakes (1988) carried out their work at an oven temperature of 
2000C. However, Lakes did not report how and why he decided on this temperature. 
As an attempt to investigate this, an experiment was performed to determine the 
transformation temperature required by the foam. A small specimen of foam was 
placed inside a test tube, and heated using a Bunsen burner. A thermocouple was 
inserted in the middle of the foam to measure the temperature, and the whole 
procedure was carried out inside a fume cupboard as shown in Figure 3.2. The foam 

softening temperature was recorded when the cell ribs began to collapse. Three 

specimens were tested for each type of foam, and the average temperature was taken. 
Although this method is not very accurate, it was possible to obtain estimates of the 

softening, liquefaction and decomposition temperatures respectively. 
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Fig. 3.2 Schematic diagram for examining the heating conditions of the foam specimen. 

It was noticed that the softening temperature of PECO is around 180°C (at this 

temperature, the cell ribs started to collapse), the liquefied temperature 270°C, and the 
decomposed temperature 300°C. There appears to be no sharp melting temperature for 

these polymeric foams. Therefore, a suitable oven temperature for this foam may be 

considered to be 180°C, which was perhaps why Friis et al. (1988) used 200°C as the 

oven temperature for their foam fabrication. As a rough guide to the conversion 
temperature I suggest that this should be about 5-20°C lower than the softening 
temperature in order to maximise stress relaxation and minimise cell rib adhesion. 

The different values of softening, liquefaction and decomposition temperatures 
for different materials are shown in Table 3.2. 

Type of the foam Softening Temp. 
(°C) 

Liquefied Temp. 
(°C) 

Decomposed Temp. 
(°C) 

Oven Temp. 
(°C) 

ECC 00±5.6 90±3.8 20±6.7 00 

DECO 180±5.2 70±4.0 300±5.8 180 

lOCO 175±7.7 40±6.5 70±4.2 175 

3000 175±5.5 40±4.3 70±5.1 175 

160CO 182±7.3 70±6.2 95±4.8 182 

Table 3.2 Investigation of the heating temperature of the foam. 

3.2.3 The Heating Time 

In addition to the heating temperature the heating time (which determines how 
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long the foam takes to reach its softening temperature) is another very useful factor 

which directly affects the fabrication result. 
Under static external loading conditions, one of the remarkable influences of 

sustained exposure to high temperatures is to produce a permanent deformation of the 

strained foam. At the softening point, the stress of the foam relaxes to zero, therefore, 

a conventional foam with an outward cell structure can be converted into auxetic foam 

with an inward cell structure. This is similar in a sense to making a spring from iron 

wire . 
The experiments show that if the heating time is too short, the foam cannot be 

'set', with the result that after it comes out of the mould, the foam soon expands to its 

original size. If, on the other hand, the time at the softening point is too long, the foam 

will be either melted, so that the cell ribs stick together to form a block of dense 

material (this was observed with the 60ppi closed-cell polyester urethane foam); or 

alternatively, the foam may decompose (as in the case of the open-cell polyether 

urethane foams). In order to maximise the stress relaxation and minimise sticking and 

structural collapse it is very important to establish the correct heating time for the foam 

being used. 
The time-temperature profiles for fabricating the auxetic foams have been 

studied. In order to determine the time-temperature profile that is required to produce 

an auxetic foam we performed the following experiment. Starting with the small one 
inch (25.4 mm) square tubular section we fitted one thermocouple sandwiched 
between the mould and the foam, and another thermocouple was inserted into the 

middle of the specimen (Figure 3.3 ). The time and temperature were measured 

starting from the moment that the block was exposed to the high temperature and was 
continued after the block was removed from the oven until the temperature had fallen 

to well below the foam softening temperature (e. g. 30°C). Three specimens were 
tested for each type of foam, the average was taken and shown in Figures 3.4,3.5 

3.6,3.7,3.8. 

Digital thermometer 

End-plate 
Mould 

Foam 
Thermocouple I 

Oven 

Digital thermometer 

Fig. 3.3 Schematic diagram of recording the time-temperature profile for fabricating a small 1" 

square sectional rectangular auxetic foam specimen (dimensions: 25.4 x 25.4 x 80 mm). 
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Fig. 3.4 The time-temperature profile for making a l" square sectional rectangular 60ppi 

closed-cell polyester urethane auxetic foam (dimensions: 25.4 x 25.4 x 80 mm). 
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Fig. 3.5 The time-temperature profile for making a I" square sectional rectangular 30ppi 

open-cell polyether urethane auxetic foam (dimensions: 25.4 x 25.4 x 80 mm). 
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Fig. 3.6 The time-temperature profile for making a 1" square sectional rectangular lOppi 
open-cell polyether urethane auxetic foam (dimensions: 25.4 x 25.4 x 80 mm). 
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Fig. 3.7 The time-temperature profile for making a 1" square sectional rectangular 60ppi 
open-cell polyether urethane auxetic foam (dimensions: 25.4 x 25.4 x 80 mm). 
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Fig. 3.8 The time-temperature profile for making a 1" square sectional rectangular 60ppi 
reticulate polyether urethane auxetic foam (dimensions: 25.4 x 25.4 x 80 mm). 

During the heating time the specimen was left to 'set' in the oven at a constant 
oven temperature (i. e. 200°C). It has been found that the heating time required to 
transform a conventional foam into an auxetic one depends upon the type of foam 
being used. Table 3.3 lists the heating time required for a foam to reach its conversion 
temperature. 

Type eating Time 

(minute) 

Oven Temp. 
oC) 

Conversion 

Temp. (oC) 

Starting Size 
(mm3) 

Finish Size 

(mm3) 
loco 6.2 ±0.5 175 ±2 170±8 38 X 38 X 110 5.4 X 25.4 X 80 

3000 
. 
1±0.3 175 ±2 168 ±6 38 X 38 x 110 5.4 X 25.4 X 80 

6000 
. 
0±0.3 182±2 175 ±8 8X 38 x 110 5.4 x 25.4 X 80 

PECC 11±0.2 00 ±2 185 ±6 38 x 38 X 110 5.4 x 25.4 X 80 

PECO 8 ±0.4 180 ±2 173±8 38 X 38 X 110 5.4 x 25.4 X 80 

Table 3.3 The typical time-temperature combinations for making small auxetic foam with a 
volumetric compression ratio of 3.1. Note: the average error on the sample dimension is ±1 mm. 
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3.2.4 Volumetric Compression Ratio 

From a theoretical point of view, changing the compression ratio of foams 

enables us to fabricate auxetic foams with a range of negative Poisson's ratios. This is 

because this determines the proportion of the cells that will become re-entrant. The 
foams exhibit a characteristic distribution of cell sizes so that the maximum effective 

volumetric compression ratios of the foams are not the same. 
An investigation was carried out to determine the deformation characteristics of 

the foams, using compression in different directions. The conventional foam was first 

cut to the dimensions: L,, X Ly X Lz (e. g. 50mm x 50mm X 50mm), using a band 

saw with a knife blade. During the cutting, particular attention was made to ensure that 

all surfaces were flat. Then, using an Instron 4505 testing machine, the sample was 
tested at a cross-head speed of 2 mm min-1 to attain the compression deformation. The 

values for load and displacement were taken directly from the load cell and cross-head 
movement respectively, and were recorded on the Instron chart recorder. With the 
trace from the chart recorder the compression modulus, the elastic collapse load and 
the elastic densification displacement could be determined. Tests were carried out in 

each of the three dimensions of the conventional foam specimens, to determine the 
point of maximum densification, without significant cell concact, S, in Figure 3.11. 

Fixed top plate 
Load cell 
Steel plate 
Foam sample 

Foam rise direction 

Fig. 3.9 Schematic diagram for compression testing the foam. 

Y 

Z 

Lx 

K -1 
Ia 

IV 

Ly 

SIL 

Moving cross 
head 

X 

Fig. 3.10 Schematic diagram of the three dimensional conventional foam block. 
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Load 

Elastic densification 

Deflection 

04 48. - 
Fig. 3.11 A schematic of the load-deflection curve of the three dimensional conventional foam. 
(A) Compress along the x-direction. (B) Compress along the z-direction. (C) Compress along the y- 
direction. 
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Fig. 3.12 Compressive Load-Displacement curves in two orthogonal directions in the planes 
normal to the rise direction (Face A and Face B) and in the rise direction (Face C) for the 6Oppi closed 
cell polyester urethane foam (PECC). 

42 



0.035 

0.03 

0.025 

0.02 

0.015 
'U 
c4 

0.01 

0.005 

0 

-0.005 

Face C 

---Face A 

- Pace ß 

Error Bar: + 

05 10 15 20 25 30 35 40 

Displacement (mm) 

Fig. 3.13 Compressive Load-Displacement curves in two orthogonal directions in the planes 
normal to the rise direction (Face A and Face B) and in the rise direction (Face C) for the lOppi open- 
cell polyether urethane foam (LOCO). 
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Fig. 3.14 Compressive Load-Displacement curves in two orthogonal directions in the planes 
normal to the rise direction (Face A and Face B) and in the rise direction (Face C) for the 30ppi open- 
cell polyether urethane foam (3000). 
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Fig. 3.15 Compressive Load-Displacement curves in two orthogonal directions in the planes 
normal to the rise direction (Face A and Face B) and in the rise direction (Face C) for the 60ppi open- 
cell polyether urethane foam (6000). 
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Fig. 3.16 Compressive Load-Displacement curves in two orthogonal directions in the planes 
normal to the rise direction (Face A and Face B) and in the rise direction (Face C) for the 60ppi 
reticulated polyester urethane foam (PECO). 
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The original volume for the conventional foam specimen is: 

Vo = LX x Ly x LZ 

when the foam reaches the elastic densification region, the minimum volume of the 

compressed foam becomes: 

V1=(LX- 8. ) x (Ly- by) x (Lz- bz) 

Where: 8 
y, is the maximum compression displacement of the foam rise direction and 

bx and S 
Z, are the maximum displacements of the other two directions. The 

maximum auxetic effect is expected when all the cell ribs have buckled and this occurs 
at the elastic densification displacement. Therefore, the maximum effective volumetric 
compression ratio is given by: 

Rc=Vo/V1 

Experiments have shown (see Figures 3.12 to 3.16) that different types of 
foam have various maximum volumetric reductions which are due to their differing 

mechanical performance. The results are listed in the Table 3.4. 

k1 
YPe Vo (mm3) SX (mm) ÖY (mm) Sz (mm) 1 (mm3) e 

LOCO 52x52x51 5 5 5 7X27x26 7.276 
30C0 50x51 x51 30 30 30 0X21 X21 14.75 
60C0 50 x 51 X 50 9 9 9 1X 22 X 21 13.4 
PECC 149 X 50 X 42 7 7 7 122 X 23 x 15 13.55 
PECO 50X51 X51 8 8 8 2x23x23 11.17 

Table 3.4 The theoretical maximum volumetric compression ratio of various types of foam. 
Note: the average error on sample dimension is ±1 mm. 

Note: (1) the experiments described above have been conducted under 
conditions of uniaxial loading, whilst the fabrication method involves triaxial loading. 
As a result of this, the volumetric compression ratios found in the experimental work 
are smaller than that of the maximum values expected. (2) From a practical point of 

view, we need to give considerations to the visco-elastic behaviour of polymeric 
foams especially at high temperatures. 

Further study in this area has led to another finding. By compressing 
different size starting blocks in the same mould followed by heating, cooling and 
relaxation of the foams, a range of auxetic foams can be made with a variety of 
Poisson's ratios. The results obtained on the 60ppi blue polyether urethane foams are 
shown in Table 3.5 and show how the Poisson's ratio varies with the compression 
ratio 
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Starting Size 

mm3) 

Finish Size 

mm3) 

Volumetric 

Compression 

Ratio 

ensile 
Poisson's 
Ratio, vy, 

PEAO-1 38 X 38 x 100 5.4 X 25.4 X 70 3.2 -0.78 ±0.13 

PEAO-2 33 X 33 X 100 5.4 X 25.4 X 70 .4 -0.57 ±0.10 

PEAO-3 30 X 30 X 100 5.4 x 25.4 X 70 .0 -0.34±0.04 

PEAO-4 38 X 38 X 120 5.4 X 25.4 X 70 .8 0.82±0.03 

PEAO-5 5.4 X 25.4 X 100 5.4 X 25.4 X 70 1.4 +0.1±0.03 

Table 3.5 Various compression ratios of the 60ppi reticulated polyester urethane foams (PECO). 
Note: the average error on sample dimension is ±1 mm. 

3.3 Fabricating Large Auxetic Foam Blocks. 

In order to fabricate larger specimens, it was necessary to develop a new 
fabrication process. Clearly, the force now required to compress such a large block of 
foam (dimensions: 300 X 300 X 100 mm) needs to be increased. For this reason, the 
mould has to be strong enough to withstand this extra force. Figure 3.17 shows the 
arrangement. Although the low moduli of the foams allows the use of a mould to 
achieve our purpose, it does however present another problem i. e. the creasing effect. 
This creasing effect is due to the increased surface area of the larger block. By 
inspection, it is clear that the large volume reduction indicated will require large 

compression of the sides. Clearly, to expect to achieve this in one step without 
creasing the surface is unrealistic. The surface creasing is due to the non-uniform local 

collapse of the foam. In order to overcome this problem, a multi-stage process method 
was developed, featuring a substantially smaller compression ratio for each stage, thus 

minimising the risk of creasing. One stage of this approach is illustrated in Figure 
3.18. 
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of block faces: 

Compression of the three dimensional foam block: 

Fig. 3.17 Schematic diagram of the arrangement for fabricating a large auxetic foam block. 
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compression of block sides: 



Fig. 3.18 Schematic diagram for processing the large auxetic foam block. 

We can achieve the desired compression by carrying out the procedure in four 

stages. For example, if we consider the conventional foam to have the initial 
dimensions of: 300 x 300 x 76 mm. Then the four stages involved in the reduction 
would be to first reduce its dimensions to 275 x 275 x 69.5 mm, then 
250 x 250 x 63 mm, followed by 225 x 225 x 56.5 mm and then finally, 200 
x 200 x 50 mm. This will achieve a total compression ratio of 3.4. The open-ended 

mould was made by screwing four 5mm thick polished stainless steel plates together. 
The four stages require four different sized moulds for which the inner dimensions 

were as given above. Prior to use the inner walls of the mould were lubricated with 
WD 40, so that the foam can be slid into position despite the restraining effect of the 
pressure-induced friction. The top and bottom pressure plates were also made of 5mm 

thick polished stainless steel, and were lubricated with WD 40. 

The first step in using the moulds involved squeezing the 300 X 300 X 76 

mm block into place in the 275 X 275 X 69.5 mm mould by hand. The top plate was 
carefully manipulated into position to achieve a uniform distribution of cell pressure, 
to avoid surface creasing in the mould, and then it was clamped down. The whole 
assembly was then placed into the lab oven at 200°C. 

From the moment the foam was put into the preheated oven the time and 
temperature of the skin and the middle of the foam specimen, were recorded (see 

Figure 3.19 ). From these measurements a plot of the time-temperature profile (Figure 

3.20 ) was produced. At the end of the heating time the specimen and mould 
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assembly were removed from the oven and were cooled at room temperature for 2 

hours. Finally, the foam with a volume of 275 X 275 X 69.5 mm was taken out of the 

mould, and gently stretched by hand in each of the three orthogonal directions to relax 

the cell ribs. The temperatures used here to establish the heating time, compared with 

the temperatures used to convert the small specimens, are lower, because the heating 

time of the larger moulds is much longer than that for the single stage method. 

Thermometer 

Open Mould+ Foam 

End- plate 

Fig. 3.19 Schematic diagram of examining the time-temperature profile for fabricating the large 
auxetic foam block. 

A new time-temperature profile has to be recorded at each of the four 

compression stages. This is because the density of the foam is changing at each stage 

and therefore the time taken to reach the conversion temperature will also be changing. 

The 10ppi Open-Cell Polyether Urethane Foam 
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Fig. 3.20(a) The Time-Temperature profile of the lOppi open-cell polyether urethane foam 
heated in the mould 1. Note: The average error of the temperature measurements is ±1.20C. 
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The 101gq 1 Open-Cell Polyether Urethane Foam 
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Fig. 3.20(b) The Time-Temperature profile of the lOppi open-cell polyether urethane foam 

heated in the mould 2. Note: The average error of the temperature measurements is ±1.50C. 
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Fig. 3.20(C) The Time-Temperature profile of the loppi open-cell polyether urethane foam 

heated in the mould 3. Note: The average error of the temperature measurements is ±2.1°C. 
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The lOppi Open-Cell Polyether Urethane Foam 
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Fig. 3.20(d) The Time-Temperature profile of the lOppi open-cell polyether urethane foam 

heated in the mould 4. Note: The average error of the temperature measurements is ±1.70C. 

Similar curves were obtained for all the open-celled polyether urethane foams. 

The results are shown in Table 3.6. 

The block started to cool as soon as it was removed from the oven. After 

allowing the specimen to cool to the room temperature, the assembly was dismantled. 
It was found that the final block had 'set' at the reduced dimensions defined by the 
final mould (200 X 200 X 50 mm). By the same fabrication method, the 60ppi closed- 

cell polyester urethane foam block (Figure 3.21 ), was converted. 

Type o 
foam 

Heating time o 

mould 1 

(minute) 

eating time o 

mould 2 

(minute) 

Heating time o 

mould 3 

(minute) 

eating time 

of mould 4 

(minute) 

Total heating 

time (min. ) 

loco 17.1±0.35 12±0.27 12±0.21 11.8±0.33 52.9±1.16 

3000 16.8±0.23 15±0.32 14.1±0.28 13±0.25 58.9±1.08 

oCO 20.8±0.34 18.2±0.24 16.3±0.19 15.5±0.21 70.8±0.98 

Table 3.6 The heating time for fabricating the 10,30, and 60ppi open-celled polyether urethane 

foam blocks. (Starting conventional foam dimensions: 300 X 300 X 76mm. Finished auxetic foam 

dimensions: 200 X 200 X 50mm). Note: The average error on sample dimension is ±1 mm. 

(mould 4) 

I 
I 

a 

" X Temperature of the foam skin 
" Temperature of the foam centre 
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Fig. 3.21 The Time-Temperature profiles for fabricating the large 60ppi polyester urethane 
auxetic foam block. Note: The average error of the temperature measurements is ±2.40C. 

It was found that the time-temperature profiles of the foam blocks were 

repeatable to a high degree. As a consequence, the thermocouple was no longer 

required once the time-temperature profile for the foam had been established. This 

means that the thermocouple does not have to be used for the production runs. This 

avoids the introduction of surface gouges in the foam at the centre of the large faces. 

This method works well for the fabrication of large auxetic foam blocks. Obviously, 

the moulds could be made to conform to any reasonable size or shape. 

It has been found that by simply changing the starting conventional foam sizes, 

the volumetric compression ratio also changes, and a range of auxetic foams with 

various negative Poisson's ratio can be made. The results of varying the compression 

ratio to obtain different values of Poisson's ratio (measure at each stage) are shown in 

Table 3.7,3.8, and 3.9. 
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i V l l hV Fi i 
Lx Ly 

Tensile Poisson's Starting 

Type 

Finish 

Type 

Start ng ume o 

m3 

ume o n s 

m3 
Lx -b 

x=z) 

Ly - Sy 
Ratio (Vyx) 

I OCO IOOAO 300 X 300 X 100 200 x 200 X 50 1.5 .5 0.82 ±0.05 

lOCO 0AO 300 X 300 X 90 200 X 200 X 50 1.5 1.8 . 05 -0.78 ±0.0 

loco 80A0 300 X 300 X 80 200 X 200 X 50 1.5 1.6 3.6 0.68 ±0.02 

lOCO OAO 300 X 300 X 70 00 x 200 X 50 1.5 1.4 3.15 0.53±0.011 

Table 3.7 Transform the lOppi open-cell polyether urethane foam blocks into a range of auxetic 
foams with different negative Poisson's ratios. The average error on sample dimension is ±2 mm. 

i S Fi i h V l i S l hV Fi i 
LX Ly 

il ' P i tart ng 

Type 

n s 

Type 

ume ng o tart 

m3 

ume o n s 

m3 
Lx - Ex 

x=z) 

Ly - Sy e ens sson . e o 
Ratio (Vyx ) 

3000 100A0 300 x 300 x 100 00 X 200 x 50 1.5 .5 0.75 ±0.10 

3000 0AO 00 x 300 x 90 200 x 200 x 50 1.5 1.8 . 05 0.67±0.11 

3000 80A0 300 x 300 x 80 200 x 200 x 50 1.5 1.6 .6 0.56±0.02 

3000 0A0 00 x 300 x 70 00 x 200 x 50 1.5 1.4 . 15 0.50±0.03 

Table 3.8 Transform the 30ppi open-cell polyether urethane foam blocks into a range of auxetic 
foams with different negative Poisson's ratios. The average error on sample dimension is ±I mm. 

Startin Finish Startin Volume Finish Volume LX Ly 
il P i ' g 

Type Type 

g 

m3 m3 
Lx - Ex 

x=z) 

Ly - Sy e ens sson e o 
Ratio (Vyx) 

ECC EAC-1 00 X 300 X 100 00 X 200 X 50 1.5 1 2 .5 0.68±0.11 

ECC EAC-2 00 X 300 X 90 00 X 200 X 50 1.5 1.8 . 05 0.63 ±0.1 

ECC EAC-3 300 X 300 X 80 00 x 200 X 50 1.5 1.6 .6 -0.55 ±0.04 

ECC EAC-4 00 X 300 X 70 00 X 200 X 50 1.5 1.4 . 15 -0.49±0.03 

Table 3.9 Transform the 60ppi closed-cell polyester urethane foam blocks into a range of auxetic 
foams with different negative Poisson's ratios. The average error on sample dimension is ±1 mm. 

3.4 To Summarise the Fabrication Method 

1. The fabrication method for auxetic foams has been developed further. We can now 

not only transform the small size conventional foam into an auxetic one, but also can 
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produce large auxetic foam blocks. The stability of the auxetic foams has been 

improved by using the multi-stage method. 

2. The processing conditions such as the heating time, conversion temperature and 

volumetric compression ratios, have been examined on both small size specimens and 
the larger foam blocks. Fabricating a small size specimen requires a shorter heating 

time and less compression load, whereas, fabricating the large auxetic foam block 

needs a much longer heating time and requires a much bigger compression force. The 

multi-stage processing method is preferred for such specimens. 

3. The multi-stage processing technique, which separates the transformation process 
into several stages, can be used to minimize the risk of surface creasing, and therefore 
is a more controlled technique than the one-stage processing method. 

4. By changing the volumetric compression ratio, different values for Poisson's ratio 
of the foam can be obtained. 
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Chapter 4 

Microscopic Examination of the Microstructure 
and Deformation of Foams 

4.1 Introduction 

A cellular foam is produced by dispersing a gas within a semi-liquid solid 

material which is allowed to solidify whilst the gas bubbles are still present. The 

direction in which the bubbles rise though the semi-liquid phase is known as the rise 
direction. Usually, the bubbles elongate as they rise and in the solidified foam and the 
bubble shape is often different in the rise and transverse directions. This effect can 
lead to a lack of isotropy. Assuming similar mechanical properties for the solid 

material comprising the foams, the principle variables affecting the properties of the 
foam are the geometry of the cells. In this chapter the results of optical and scanning 

electron microscope studies of the geometrical parameters for the different foams 

examined are presented. Examples of the microstructural deformation mechanisms 

observed are also presented. Comparison between the conventional foams and their 

auxetic conversions are also made. 
At first sight, one might suppose that the mechanical properties of a foam 

would depend significantly on cell size. However, it is known that cell size makes 
only a minor contribution. A much more significant contribution is attributed to the cell 
shape ( see Gibson and Ashby, 1988). When the cells are equiaxed the properties are 
isotropic, but when the cells become slightly elongated or flattened then the properties 
will depend on direction, often strongly so. Three dimensional foams, in which cell 
walls have random orientations in space, are normally anisotropic, and this is due to 
the way they are foamed. 

There are three different types of foam cell structure: open-cell, closed-cell 
and reticulated foams. The distinctions between these three foams are that closed-cell 
foams have a membrane of variable thickness covering each face of the cell. In an 
open cell foam, most of these membranes are perforated, and in reticulated foams the 
membranes have all been removed by chemical means or with the help of heat 

treatment. These foams can be used as filters. In practice, these cellular morphologies 
can co-exist so that a polymer foam is not always completely open or closed. 

Polymeric foams have been examined using both optical and scanning 
electron microscopy (SEM). Each foam sample was sectioned in each of the three 
dimensions by using a Burgess band saw (Figure 4.1 ). The specimens prepared for 

the SEM were coated with gold by using an Edwards Sputter Coater S150, and 

examined with the Philips 501 SEM (Figure 4.2 ). photographs were taken during the 
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scanning process. The microstructural deformation mechanisms were observed by 

using a Wild M8 & MPS45 Optical Microscopes. A vice was used to deform the 

samples under the optical microscope as shown in Figure 4.3. 

Rise Direction 

X 

Z 
Fig. 4.1 Specimen of foam cut off the foam block in the three directions. 

Fig. 4.3 Examinatwu 'l the cluýuuýýýtlwn of the foam h) MPS45 Optical 
Microscope. 
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4.2 The Microstructure of Conventional Foam 
The classical example of a low density foam is reticulated PUR (poly- 

urethane) foam, and micrographs for this type of material have been given many times 
in the literature (i. e. Gibson and Ashby, 1988). An example is presented in Figure 

4.4. It is seen that the 60ppi polyester urethane foam consist of interconnecting struts, 

and that the predominant configuration is a dodecahedral array of cells with pentagonal 
faces. The foam is an anisotropic material since, as explained above, the cells in the 
foam rise direction when observed from above are more circular and smaller than that 
in the other two directions. 

(a) 

(b) 

(c) 

Fig. 4.4 Optical micrograph showing the microstructure of the 60ppi reticulated conventional 
polyester urethane foam (PECO): (a) Looking at the foam along the z axis (Face B). (b) Looking at 
the foam along the y axis, foam rise direction (Face Q. (c) Looking at the foam along the x axis 
(Face A). 
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Figure 4.5 shows the microstructure of the 60ppi closed-cell conventional 

polyester urethane foam. In the closed-cell foam, most of the cell faces are closed off 
by thin membranes. The solid is not uniformly distributed between the edges and 
faces. The reason why the membranes are thinner than the cell ribs, is because during 

foaming. surface tension draws solid into the cell edges. Descriptions of the foaming 

process can be found in Suh and Skochdopole (1980). 

ý_"', 

ý.. 

Fig. 4.5 Optical micrograph showing the microstructure of the 60ppi closed-cell conventional 
polyester urethane foam (PECC). Looking at the foam along the z axis (Face B). 

Figures 4.6(a), (b), and (c) show the microstructures of lOppi, 30ppi and 
60ppi open-cell conventional polyether urethane foams. Although a few of the cell 
membranes are perfect, most of the membranes are ruptured, so the gases are not 
trapped inside the cells, and the porous open-cell foams allow free movement of air 
throughout the materials when flexed, therefore, they are classified as open-cell 
foams. These foams with different cell sizes as shown in Figure 4.6 and are made 
from the same type of solid material (Polyether polyurethane). However, they have 

various cell geometry parameters (e. g. cell rib thickness etc. ) 

1mm *1i; 7 fto 

it T, 

0 A%; 40 #A I ft- 
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ýe 

(c) 

"T'ý;.. 

Fig. 4.6 MRR rugraphs slmvv i, j_ý ih. microstructure Of We upmi-ceu ,_-. tonal polyether urethane foam. (a) Looking at the 10ppi foam (1000) along the z axis (Face B) (Optical micrograph). (b) Looking at the 30ppi foam (3000) along the z axis (Face B) (Scanning electron micrograph). (c) Looking at the 60ppi foam (6000) along the z axis (Face B) (Scanning electron micrograph). 

Figures 4.7 and 4.8 show the microstructure of the PECC cell ribs. Two 
adjacent straight ribs are connected by a very short curved rib. The cross sectional area 
is triangular in shape. The joint of two ribs is made of two triangles. 

, "- 
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Fig. 4.7 The cell rib of the 60ppi closed-cell polyester urethane foam (PECC). 
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Fig. 4.8 The joint of the cell ribs of the 60ppi closed-cell polyester urethane foam (PECC). 

(SEM). 

4.3 The Microstructure of Auxetic Foams 

The microstructure of an auxetic foam were characterised by using the Philips 

501 SEM and the Wild M8 & MPS45 Optical Microscopes. The micrographs of the 

60ppi open cell polyether urethane foam, the 60ppi closed-cell polyether urethane 

foam, and the 30ppi open cell polyether urethane foam, for example, are as shown in 

Figure 4.14(a), (b) and (c). 

(a) 

60 

A 



(c) 

! 40. 

Fig. 4.9 The micrographs of auxetic foams. (a) The (, (hl� open cell Polyen: r III, Line foam 
(60AO) (SEM). (b) The 60ppi closed-cell polyester urethane foam (PEAL) (optical microscopy). (c) 
The 30ppi open-cell polyether urethane foam (30AO) (optical microscopy). 

4.4 Characterisation of Polymeric Foams 

The microstructure of the foam is very complicated. To characterise the cell 
geometry of the foam, we need some way of averaging the cell geometry. To do this 
the foam in question was encapsulated in a resin matrix (Scandiplast 9101 resin). This 

was subsequently sectioned and polished, using standard metallographic methods. 
Figure 4.10 is a photograph of such a section and shows that each conventional foam 

cell is approximately represented by an ellipsoid. The mean dimension of the cells in 

the rise and transverse directions was obtained by measurement from photographs 

such as those in Figure 4.10. These data were used in conjunction with Figure 

4.11(a) (a model of conventional foam cell) to construct EQ 4.1 and 4.2. 
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Fig. 4.10 Looking at the 60ppi reticulated polyester urethane foam (PECO) along the X axis 
(Face A). (Optical microscopy). This was done by using Scandiplast 9101 resin to fill the foam 
specimen and grinding the faces plane-parallel after hardening. 

Model 

X 
Z 

(a) 

AD = h+4LsinO 
BC = h+2Lsin 9 
Average height of cell = the mean dimension of 
ellipsoids in the Y direction, y= h+3LsinO. (EQ. 4.1) 

Width of cell, EF = the mean dimension of 
ellipsoids in the X direction, x= 2LcosO. (EQ. 4.2) 

For same foam, after conversion to auxetic foam. 
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Y 

Z 

EF=2Lcose 

(c) 

Measured: 

X 

Maximum height of cell, BC = h-2Lsine 

Minimum height of cell, GE =h 
Average height of cell. H= h-Lsin6_ 

HWH 

(b) 

(EQ. 4.3) 

Maximum waist height of cell, JK=h-2Lsin8 
Minimum waist height of cell, AD=h-4LsinB 
Average waist height of cell, W= h-3Lsin6. (EQ. 4.4) 

Fig. 4.11 A schematic representation of the cell geometric parameters of a foam. (a) A model of 
conventional foam cell. The length of the cell rib along the foam rise direction is h, the length of the 
cell rib in the other directions is L. The cell angle is 0. (b) A schematic diagram of a re-entrant foam 
cell. (c) A model of auxetic foam cell. 0 is positive for both auxetic and conventional foams. 

The data, x, y, H and W were obtained from the measurements of about one 
hundred cells in each direction for each foam specimen. EQ. 4.3 and 4.4 combined 

with earlier EQ. 4.1 and 4.2 for same foam in non-auxetic state should give all the 

parameters for the model. Examples of the cell size distributions and a more complete 

characterisation of PUR flexible foams are given in Tables 4.1 to 4.9. 
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Table 4.1 

Material Flexible polyester urethane (PECO) 

Density, p (kg/m3) 33.7±1.3 

Open or closed cells Reticulated 

can edges per face 

Mean faces per cell 12 or 14 

Symmetry of structure Axisymmet ry 
Standard deviation 

can cell edge thickness, t (mm) . 087 ). 025 

verage height of cell, (mm) . 
53 

. 
21 

verage width of cell, (mm) 1.92 . 16 

ib length along the foam rise direction, h (mm) 1.30 . 
044 

ib length along the other directions, L (mm) . 58 . 022 

[ 

ell angle, 8 (degree) 32 .2 

Table 4.1 Characterisation data for the 60ppi reticulated conventional polyester urethane foam 
(PECO). 

Table 4.2 

Material Flexible polyester urethane (PECC) 

Density, P (kg/m3) 37.9±2.1 

Open or closed cells losed 

can edges per face 5 

Mean faces per cell 12 or 14 

mme of structure Axis mme 

Standard Deviation 

can cell face thickness, tf (mm) 
. 
002 

. 
001 

Mean cell edge thickness, t (mm) . 045 . 018 

verage height of cell, (mm) 1.08 . 15 

verage width of cell, (mm) . 
47 

. 
08 

ib length along the foam rise direction, h (mm) . 67 . 011 

ib length along the other directions, L (mm) 
. 
27 

. 
005 

e11 angle, 0 (degree) 30 .6 

Table 4.2 Characterisation data for the 60ppi closed-cell conventional polyester urethane foam 
(PECC). 
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Table 4.3 

Material exible polyether urethane (1000) 

Density, p (kg/m3) 4.1±3.1 

Open or closed cells Open cells 

Mean edges per face 5 

Mean faces per cell 12 or 14 

Symmetry of structure Axisymmetry 

Standard deviation 

can cell edge thickness, t (mm) . 23 . 015 

verage height of cell, (mm) . 93 . 27 

Average width of cell, (mm) . 57 . 19 

ib length along the foam rise direction, h (mm) 
. 
33 

. 
047 

ib length along the other directions, L (mm) 1.55 
. 
021 

ell angle, 0 (degree) 34 3.0 

Table 4.3 Characterisation data for the lOppi open-cell conventional polyether urethane foam 
(1000). 

Table 4.4 

material Flexible polyether urethane (3000) 
Density, p (kg/m3) 4.5±2.7 

Open or closed cells Open cells 

can edges per face 

Mean faces per cell 12 or 14 

Symmetry of structure Axis mme 

Standard deviation 

can cell edge thickness, t (mm) 
. 13 . 

025 

verage height of cell, (mm) 3.18 
. 
25 

verage width of cell, (mm) 1.47 
. 16 

ib length along the foam rise direction, h (mm) 1.80 
. 
044 

ib length along the other directions, L (mm) . 87 . 022 

Mean cell angle, 8 (degree) 32 .0 

Table 4.4 Characterisation data for the 30ppi open-cell conventional polyether urethane foam 
(3000). 
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Table 4.5 

Material exible polycther urethane (6000) 

Density, p (kg/m3) 1.7±1.9 

Open or closed cells pen cells 

can edges per face 5 

Mean faces per cell 12 or 14 

Symmetry of structure Axisymmetry 

Standard deviation 

can cell edge thickness, t (mm) . 036 
. 002 

verage height of cell, (mm) . 65 
. 11 

verage width of cell, (mm) . 
34 

. 
07 

ib length along the foam rise direction, h (mm) 
. 
38 

. 
018 

ib length along the other directions, L (mm) . 19 . 020 

Mean cell angle, 8 (degree) 8 

Table 4.5 Characterisation data for the 60ppi open-cell conventional polyether urethane foam 
(6000). 

Table 4.6 

Material Flexible polyethcr urethane (60AO) 
Density, p (kg/m3) 1±2,1 

Open or closed cells Reticulated 

can edges per face 

Standard Deviation 

Mean cell edge thickness, t (mm) 
. 
036 

. 
002 

verage height of cell, H (mm) 
. 
285 ). 08 

verage waist height of cell, W (mm) .1 . 03 

ib length along the foam rise direction, h (mm) ). 38 . 04 

ib length along the other directions, L (mm) . 19 
. 
05 

Cell angle, 0 (degree) -30 

Table 4.6 Characterisation data for the 60ppi open cell polyether urethane auxetic foam (60AO). 
(The volume of auxetic foam is: 25.4 x 25.4 x 80 mm, and the volume of its parent conventional 
foam is: 38 x 38 x 110 mm). 
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TahhP 17 

Material Flexible polyester urethane (PECA) 

Density, p (kg/m3) 72.4±2.5 

Open or closed cells Membranes are ruptured 

can edges per face 

Standard Deviation 

can cell edge thickness, t (mm) . 
045 

. 
015 

verage height of cell, H (mm) . 53 ). 19 

verage waist height of cell, W (mm) . 24 . 09 

Rib length along the foam rise direction, h (mm) . 67 . 31 

ib length along the other directions, L (mm) . 
27 

. 136 

Mean cell angle, 0 (degree) -32 3 

Table 4.7 Characterisation data for the 60ppi closed-cell polyester urethane auxetic foam 
(PEAC). (The volume of auxetic foam is: 25.4 x 25.4 x 80 mm, and the volume of its parent 
conventional foam is: 38 x 38 x 110 mm). 

of the foam 

Material 

Density, p (kg/m3) 

Open or closed cells 

Mean edges per face 

Mean cell edge thickness, t (mm) 

Average height of cell, H (mm) 

Average waist height of cell, W (mm) 

Rib length along the foam rise direction, h (m 

Rib length along the other directions, L (mm) 

Cell angle, 0 (degree) 

Flexible polyether urethane 

79.1±3.0 77±2.1 76. ±2.2 75±2.5 

Open cells 

6 

0.19±0.05 

1.6±0.1 1.7±0.07 1.75±0.08 1.8±0.06 

3.15±0.04 0.44±0.02 0.59±0.03 0.74±0.03 

2.33±0.71 2.33±0.83 2.33±0.8 2.33±0.96 

1.55±0.6 1.55±0.49 1.55±0.43 1.55±0.28 

-28±2 -24±3 -22±2 -20±2 

Table 4.8 Characterisation data for the lOppi open-cell polyether urethane auxetic foam. 
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Table 4.9 

Type of the foam 

Material 

Density, p (kg/m3) 

Open or closed cells 

Mean edges per face 

Mean cell edge thickness, t (mm) 

Average height of cell, H (mm) 

Average waist height of cell, W (mm) 

Rib length along the foam rise direction, h (m 

Rib length along the other directions, L (mm) 

Mean cell angle, 0 (degree) 

100AO 90AO 80AO 70AO 

Flexible polyether urethane 

95±1.8 84±2.3 73±2.5 69±1.6 

Open cells 

6 

0.11±0.045 

1.45±0.3 1.47±0.2 1.49±0.11 1.52±0.09 

0.76±0.06 0.82±0.06 0.86±0.07 0.95±0.03 

1.80±0.49 1.80±0.52 1.80±0.59 1.80±0.66 

r 87±0.4 0.87±0.37 0.87±0.33 0.87±0.30 

24±3 -22±3 -21±2 -19±2 

Table 4.9 Characterisation data for the 30ppi open-cell polyether urethane auxetic foam. 

The micrographs of conventional foam show that:: - 

(1) Polymer foams are multiphase material systems that consist of a polymer 

matrix and a fluid phase- the fluid usually being gas. 

(2) In low density foams, as depicted in Figures 4.4 to 4.6, the cell morphology is 

determined by energy and structural symmetry considerations. Although a 

tetrakaidecahedron cell, having fourteen faces, minimises the surface area of the 

cell, and hence the surface energy, the angular symmetry associated with the 

pentagonal dodecahedron cell, which has twelve five sided faces, means that this 

type of cell is commonly found in the foams. Invariably, there is some 
distribution of cell morphology within a foam specimen. For example, four and 

six sided faces are observed alongside the pentagonal faces. The presence of cell 

elements with these configurations is necessary to achieve complete packing. 

(3) All the foams in this investigation are to some degree elongated, this is because 

of the way in which they are made. 

(4) Apart from anisotropy, another important issue is the range of cell sizes in the 

foam. The average cell size in the foam rise direction is smaller than that in the 

other two directions, and there a significant proportion of cells that are so small 

that they will not deform and act as junction points within the foam. 

(5) The section of the strut has uniform dimensions over a considerable proportion 

of its length, i. e. between the strut junctions. 

(6) Open cell foam will naturally have thicker cell ribs than closed cell foam, since 
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not as much material is required to form the membranes. 

(7) The cross section area of the cell rib is triangular in shape (not square or round in 

shape). 

(8) The membranes of the closed-cell foam are thinner than the triangular prismatic 

ribs by a factor of ten to twenty times, so that their influence on the mechanical 
behaviour may be neglected. 

(9) From these micrographs, estimates of the important geometric parameters for 

analysis of mechanical properties can be obtained. These are the cell rib 

thickness, cell rib length, and cell shape. The latter being defined later in this 

chapter. 

The micrographs of auxetic foam show that: 

(1) Almost all auxetic foams are anisotropic, and the orientation of the cell 

ribs of auxetic foam is more random than that of the conventional foam. 

(2) Almost all of the membranes of the closed-cell auxetic foam are ruptured 
due to the fabricating process. 

(3) An auxetic foam has a re-entrant shape, but not all of the foam cells can be 

converted into the re-entrant shape. Thus, some cells remain unchanged, 

particularly the smaller cells. 

(4) During the fabrication process, Most of the cell ribs have either buckled or 
collapsed, and some are broken. 

(5) An auxetic foam is denser than its parent conventional foam. 

4.5 The Use of Sodium Hydroxide for Thinning Down the 
Cell Rib Thickness 

In this section, a method is developed to enable us to vary the rib thickness. 
Mechanical tests on thinned foams are described elsewhere. Here we examine the 

effects of the thinning process. 

An investigation was carried out using a water bath containing a solution of 

sodium hydroxide (NaOH) in water as shown in Figure 4.12. Specimens were cut to 
dimensions: 25 x 25 x 140 mm by using a Burgess band saw. The concentration of 

69 



sodium hydroxide used was 10%. The temperature of the water bath was kept at 
50°C. First, a number of specimens were put into sodium hydroxide using tongs, and 

a thin perforated stainless steel plate was used to hold them in position below the 

surface of the solution. Every five minutes a specimen was taken out of the water bath 

and then washed using clean water for half an hour at room temperature. Finally, all of 

the thinned foams were left to dry at the room temperature for about one day. 

Temperature control button 
Time control button 
Water bath 

Foam 

Fig. 4.12 Schematic of the foam cell rib thinning processing. 

The effects of the thinning process are shown in Figure 4.13. 

SEM x 40 (a) 

10 Nm 

SEM x 1250 

-1 

SEM x 40 (b) SEM x 1250 
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SEM x 40 (c) SEM x 1250 

Fig. 4.13 The effects of the thinning process on the 60ppi closed-cell polyester urethane foam 
(PECC). (a) Conventional, as received foam. (b) Thinning for 20 min. (c) Thinning for 50 min. 

The cell rib thickness can be measured from the SEM micrographs. The three 

pairs of photographs shown above are typical of the thinning process. Further 

photographs were also obtained and measured and gave the data for the thinning time 

versus the cell rib thickness plotted in Figure 4.14. 

It Rib-thickness (x0.01mm) 

6 

E 
E 

ö4 
ö 

c 
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Time (min. ) 

Fig. 4.14 Diagram of the cell rib thickness vs. the thinning time of the 60ppi closed-cell 
polyester urethane foam (PECC). 

Figure 4.14 shows that the cell rib thickness is a function of the thinning 

time. The thinning process is affected by: the concentration of NaOH, the thinning 

time, the thinning temperature, and the properties of the cell ribs. An investigation on 
how the foam cell rib thickness may influence the mechanical property of the foam 

was carried out, and the results are given in Section 6.3.6. 
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4.6 Microscopic Examination of Foam Deformation 

The deformation behaviour of the foam cell elements has been studied using 
a Wild M8 & MPS45 optical microscope (see Figure 4.3) for different modes of 
loading, i. e. tension, compression, and shear, using small specimens (dimensions, 40 

x 10 x5 mm). The investigation described here was carried out on the previously 
described PUR flexible foams. Various foam densities, cell sizes and cell shapes were 

studied. 

4.6.1 Conventional Foam Deformation Under Tension 

(a) 

(b) 

(c) 

Fig. 4.15 The micrographs of the elastic tensile deformation of the 60ppi reticulated conventional 
polyester urethane foam (PECO) (note: looking at the foam along the y axis). Stretching, hinging and 
flexing of the cell ribs can be seen. The tensile strains are: (a) c,, =0 (b) ex = 12% (c) ex = 25% 
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Under tensile loading (see Figure 4.15), the ribs AB and LN lying in the 
direction of the external force are stressed in tension. Failure occurs on reaching the 
limit of the tensile strength of the base material by the fracture of these ribs. Ribs FE, 

BC, ED, ML, NK, HI and U lying in the intermediate orientations of the applied force 

are stressed in bending, hinging and stretching, except for a small tensile loading, and 

consequently are exposed to combined normal, hinging and bending stresses. Ribs 
CD, FG, M14 and KJ lying perpendicular to the applied force are either stressed in 
hinging or remain unstressed. 

4.6.2 Conventional Foam Deformation Under Compression 

(a) ýý 

(b) ýý 

tý) -ý 
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(d) - 

(e) ýý 

(0 

Fig. 4.16 Micrographs of the elastic compressive deformation of the 60ppi reticulated 
conventional polyester urethane foam (PECO) (note: looking at the foam along the y axis). The 
compressive strains are: (a) ey = 0% (b) ey = 3% (cell ribs bending) (c) ey = 10% (cell rib buckling) 
(d) FY = 20% (cell rib collapse) (e) e., = 40% (elastic densification occurs) (1) ey = 0% (restored to its 

original shape). Note: the load axis is the same as tension but of opposite sign. 

For compression loading (see Figure 4.16), the stressing of individual ribs is 

similar to the case of tensile loading but of opposite sign. Flexure is the dominant 

mechanism. Here failure occurs in those ribs (e. g. rib AB) which lie in the 
intermediate orientations of the external loading. However, when investigating low 

density foams at large strains this happens before the limit of material strength is 

reached because of buckling of the cell ribs. Ribs lying in the direction or vertical to 
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the direction of the external loading (e. g. ribs CD and EF) are either stressed in 

pressing or remain unstressed. Three modes of deformation corresponding to the 

different buckling situations described by Euler (1746) were observed for ribs stressed 

only in compression. 

4.6.3 Shearing of Conventional Foam 

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 

Fig. 4.17 The micrographs of the elastic shear deformation of the 60ppi reticulated conventional 
polyester urethane foam (PECO) (Note: looking at the foam along the y axis). The shear strains are: 
(a) 0% (b) 10% (c) 20% (d) 30% (e) 35% (f) 0% (resorted to its original shape). 

Under shear loading (see Figure 4.17), the rib stresses may be normal 

stresses, bending stresses or hinging stress or a combination of the, three. In this case 
the critical stresses for non-linear foam deformation is therefore due to a combination 

of stretching, hingeing and buckling. Failure then occurs because of buckling of those 

ribs that lie at an angle of about 450 to the direction of the external load (e. g. ribs AB 
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and ED). At higher loads, rib fracture starts to occur. Figure 4.17 shows a shear 
loaded conventional foam at different stages of deformation. It can clearly be seen that 

k 
the very thin cell ribs buckle and wrinkle under small deformations. The cell in the 
frame rotates clockwise. The deformation under shear loading occurs in those ribs 

which are loaded in compression and that eventually, at large deformations, the ribs 

will break. 

4.6.4 Auxetic Foams Under Axial Loading Conditions 

Under tensile loading (see Figure 4.18), The main deformation mode of 
auxetic foam is hinging (e. g. ribs AB and DC). Ribs lying perpendicular to the 

applied force remain unstressed (e. g. rib BC). The cell expands transversely under a 
longitudinal tensile force. 

(a) 

(b) 

Fig. 4.18 Micrographs showing the elastic deformation of the 60ppi closed-cell auxetic polyester 
polyurethane foam (PEAC). (a) Unloaded. (b) Under tension. 
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(a) 

(b) 

Under tensile loading, the 
buckled rib ABC almost 
'restored' to its original 
undeformed length. 

(c) 

For compression loading, the 
buckled rib ABC buckled even 
further. 

Fig. 4.19 Micrographs showing the elastic deformation of the 60ppi reticulated auxetic polyester 
polyurethane foam (PEAO). (a) Unloaded (b) Under tension (c) Under compression. 

Figures 4.18 and 4.19 show that the deformation mechanism of an auxetic 
foam is the same as that for a conventional foam. But, because an auxetic foam cell 
has a concave cell shape, it therefore becomes thinner in the transverse direction in 

compression, and becomes fatter in tension. A conventional foam cell with a convex 

cell shape expands in the transverse direction under compression, but shrinks under 
tension. In this investigation, the specimens are elastic materials, and can therefore 

recover from their deformations after the deforming forces have been removed. 
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4.6.5 Shearing an Auxetic Foam 

Figure 4.20 shows a shear loaded auxetic foam at different stages of 
deformation. The series of illustrations show the possible deformation modes, i. e. 
bending, stretching, hinging, and indicate clearly that rotation does exist. 

ism 

irr 
Ilk 

(e) 

j 

(b) 

44 

(d) 

8 
loý 

I #A 

4 
10 , 4A 

Rib a is stretched (hinging occurs). 
Rib is compressed (bending occurs). 
Cell and y rotate. 

Fig. 4.20 Micrographs of the elastic deformation of the lOppi reticulated auxetic polyether 
polyurethane foam (70AO). The shear strains are: (a) 0% (b) 10% (c) 20% (d) 30% (e) 40%. 
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4.7 Comparison of an Auxetic Foam and its Parent 
Conventional Foam 

(1) Auxetic foam has a re-entrant cell shape, whereas conventional foam has a 

convex cell shape. 
(2) The density of auxetic foam is much higher than its parent conventional 

foam. 

(3) Auxetic foam shrinks under compression and expands under tension, but 

conventional foam shrinks under tension and expands under compression. 

(5) Summary of the dominant deformation mechanisms. 

Flexure, hinging and stretching all occur when the foam deforms, but 

- for tension, hinging and stretching are the dominant mechanisms. 

- for compression, flexure is the dominant mechanism. 

- for shear, the cell rotates while the ribs are deforming. Flexure is the 

dominant mechanism. 

An undeformed cell A deformed cell 

FF 

FF 

FF 

-0*-- c, = ) -ob- 
CZD 

FF ("N 

W. wz 

Fig. 4.21 Schematic diagram of the deformation of the foam cell under tension and compression. 
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Chapter 5 Theoretical Models for the 
Deformation of Foams 

5.1 Introduction 

The geometry of foams is very complicated, so in order to identify and 

analyse the mechanisms by which a foam deforms, we model the foam as a simple, 

three dimensional array of symmetrical cells. From this model we can derive the elastic 

moduli (e. g. tensile modulus, compression modulus, Poisson's ratio and shear 

modulus) for ideal three dimensional cellular foams. 

The first stage in the development of a model requires us to choose the 

appropriate cell geometry to include in our model. Real cells in foams are neither 

cubical or hexagonal, they are on average tetrakaidecahedral (Thompson, 1961). Cells 

within the foam pack themselves to fill space and, because of surface tension 

requirements, try to minimize their surface area for a given volume. As the number of 
faces on a polyhedron increase it more closely resembles an ellipsoid, and the ratio of 

surface area to volume decreases (Gibson and Ashby, 1988). The microstructure of 

the foam has been presented in chapter 4, where it was seen that the pentagonal 
dodecahedron and the tetrakaidecahedron both pack to fill space, with the 

tetrakaidecahedra having a slightly lower surface area to volume ratio. A box-like cell 

model (Gent and Thomas, 1960; Kanakkanatt, 1973; and Hilyard, 1982) or a model 

of spheres connected by many thin bars (Lederman, 1971) does not represent the real 
foam structure well. Also, these two cell models tempt the researchers to use 

stretching as the dominant deformation mechanism in their analyses. Huber and 
Gibson (1988), and Gibson and Ashby (1982,1988) understand the importance of the 
bending mechanism but they stop short of providing a detailed mechanical analysis of 
the problem because of the oversimplified cell geometry (a cubic box). 

To theoretically analyse the deformations of foam, we need to find suitable 
theoretical models for both conventional foam which has a convex cell shape, and re- 

entrant foam which has a concave cell structure. At the simplest level, we may 

consider the foam as an array of three dimensional elongated rhombic dodecahedron 

cells as shown in Figure 5.1. This model also enables anisotropy to be modelled. In 

this chapter, I calculate theoretically the mechanical properties of an open-cell foam by 

analysing a representative unit cell. I obtain the local forces acting on each rib of the 

cells from the external stress and derive the local deformation at the unit cell level. 

Then, the external strain is calculated from the local deformation, giving the global 

stress-strain response. The linear elastic deformation is analysed using classical beam 

theory. Finally, a set of moduli are derived in terms of the solid property (e. g. ES), and 
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the geometric factors of the foam (e. g. t/L and 0, see Figure 5.1). In this chapter, my 

aim is to develop a general combined model to represent the modes of deformation 

observed in foam. 

(a) 

(b) 
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Y1 

Z 

(d) 

(c) 

X 

Fig. 5.1 (a) One single elongated rhombic dodecahedron cell model of conventional foam. (b) An 
array of elongated rhombic dodecahedron cells of conventional foam. (c) One single elongated rhombic 
dodecahedron cell model of auxetic foam. (d) An array of elongated rhombic dodecahedron cells of 
auxetic foam. 

5.2 Anisotropic Elongated Rhombic Dodecahedron Cells 
Geometry 

The projections of the three dimensional rhombic dodecahedron cell onto the 
reference axis planes are illustrated in Figure 5.2,5.3 and 5.4. 
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XI 
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Fig. 5.2 Conventional foam cell model (a) Projection onto the x-z plane. (b) Projection onto the 
x-y plane. (c) Projection onto the y-z plane. 

By changing the angle of the angled ribs from positive to negative, we can 
convert the conventional foam cell into an auxetic foam cell having a re-entrant cell 
shape as shown in Figure 5.3. 

X 

(a) 
Z 
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Fig. 5.3 Auxetic foam cell model (a) Projection onto the x-z plane. (b) Projection onto the x-y 
plane. (c) Projection onto the y-z plane. 

Figure 5.4 describes projections which show how the conventional and re- 

entrant elongated rhombic dodecahedron cells are connected into three dimensional 

arrays to form a foam network microstructure. 

Z 

N 
D 
h 
0 

U 
N 

J 
V 

2LXcoso 

(a) 

X 

Fig. 5.4 A simple array of the three dimensional cells. (a) Projection onto the x-z plane, same for 
both conventional and re-entrant cell networks. (b) Projection onto the x-y plane for the conventional 
cell network. (c) Projection onto the x-y plane for the re-entrant cell network. 
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Fig. 5.4(b) 
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Fig. 5.4(c) 
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The repeat unit cells for the conventional and re-entrant cell networks are also 

indicated in Figure 5.4 (shaded area). In order to model the mechanical properties of 
foam networks it is necessary to understand the deformation of the repeat unit-cell in 

response to the deformation of the foams. 

In Sections 5.3 to 5.6 the deformation of a foam network due to flexure, 

hinging and stretching of the ribs is modelled by considering one octant of the unit-cell 
for conventional and re-entrant geometric cells (see Figure 5.5 and Figure 5.4 dashed 

outlines). 

t. m 

LXCOStIX 

A 

N 
m 

N 
N 

a + 
m 
N a + 

4ti 

Fig. 5.5 One octant of the three dimensional unit cell. (a) One octant of conventional foam unit 
cell. (b) One octant of auxetic foam unit cell. 0 is positive for conventional foam and 0 is negative 
for auxetic foam. 

The explanations of the theoretical model are made in Sections 5.3 to 5.6. 

5.3 The Flexure Model for the 3D Foam Cell Structure 

5.3.1 Introduction 

It has been reported in chapter 4 that a flexible foam deforms by bending and 
buckling under a compressive loading condition and then recovers from these 
deformations when unloaded. Therefore, Young's modulus, E; Poisson's ratio, V; 

and the shear modulus, G can be calculated from the elastic deflection, S of the 

cantilevered beam under the end load, P. The flexure model for the cubic cell structure 

was well developed by Gibson and Ashby (1982,1988). The flexure model for the 

rhombic dodecahedron cell structure is developed in this section. According to the 

microstructure of foams as described in Chapter 4, the cells are axisymmetric, and the 
experiments show that LZ = LX and 9Z = 6X, therefore we will deal with this special 

case first, then develop the model more generally (e. g. when LZ # LX and 9Z * 9, 
r). 

5.3.2 Loading in the X-Direction 
Consider an octant of the unit cell for conventional foam loaded in the x 
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direction. Ribs AD and BC cause the deflection as shown in Figure 5.6. 
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Fig. 5.6 Cell deformation by cell rib bending, giving linear-elastic compression of the foam. 
(Loading in the x direction) (a) An undeformed octant of the unit cell. (b) Rib bending caused by 
loading in the x direction. (c) Flexure of the cell rib caused by the compressive load in the x direction. 
(d) The deflection of the cell rib and its components along the x and y directions. (e) The cross section 
area of one rib in an octant of the unit cell. (f) The full cross section area of one rib in the unit cell. 

In this case, only ribs AD and BC flex, and half of each cell rib is in one 

octant of the unit cell considered, the other half of each cell rib is in the adjacent octant 
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of the unit cell. Therefore, ribs AD and BC in one octant of the unit cell are equivalent 

to one cell rib of length 1, depth t and thickness b in the unit cell. If the force in the x- 

direction applied to the whole unit cell is F, then that applied to an octant of the unit 

cell is F/4 which is defined here as P, this gives: 

P44 x2(h+2LsinO)x2LcosO (5.1) 

Where: ßX, is negative for a compressive stress in the x direction. 

From Roark and Young( 1976), we know that: 

M=PxLxsinO (5.2) 
2 

Where: M, is the bending moment applied to a rib of length L at an angle 0to the x 
direction. 
According to beam theory (Timoshenko and Goodier, 1970), 

S_ ML2 
_ 

PL3 sin6 (S. 3) 
6ESI 12ESI 

Where: S, is the deflection of the cell rib, ES is the Young's modulus of the solid 

polymer ribs, and I is the second moment of area of a rectangular rib. 
From Figure 5.6(d), the deflection in the x direction is, 

6X=8sin0= PL3 sin2 0 
(54) 

12ESI 

and the deflection in the y direction is, 

6y = -8cos6 =- 
PL3 sin0cos0 (5.5) 

12E J 

Since there is no component of flexure in the z-direction, then, 

SZ = 0. (5.6) 
Now we can easily calculate the engineering strain for one octant of the unit cell by 

using: 
Sx 

= 
SX 

_ 
PL3 sine 6 

RX 
x Lcos6 12ESILcos6 

_ 
cy (h+2Lsin6)L3sin28 

12ESI 
ýs. ýý 

y 
Sy Sy 

y h+2LsinO 

PL3 sin 0 cos 0 -az (h + 2L sin 9)(L cos 0)L3 sin 0 cos 0 
12ESI(h+2Lsin9) 12EsI(h + 2Lsin 0) 

a L4 sin 0 COS2 0 
(5 

12Es1 . 8) 
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eZ = 
SZ 

= 
6z 

= 0. (5.9) 
zL cos 0 

It is to be noted that a compressive stress in the x direction leads to EQ. 5.7 and EQ. 

5.8 yielding negative and positive strains in the x and y directions, respectively. 
The Poisson's ratio, Vxy , can be calculated by using the following equations: 

Ey 
_ 

6XL4 sinecos2 A 12E. rI vý 
EX 12Es1 

X 
aX(h+2Lsin0)L3sin20 

_L 
cos 28 

(h+ 2Lsin0)sin0 (5.10) 

= -£Z = 0. vXZ (S. I1) 
EX 

Here we define the aspect ratio, CX as 

h 
a=- 

L 

cost 6 
then, vXy = (2sin0+(x)sin0 

Combining the strain and the stress, Young's modulus for the x-direction can be 

obtained as: 

_ 
ßX 

_ 
12E! 

EX 
EX (h+2LsinO)L3sine6 

(5.13) 

From beam theory the second moment of area of a rectangular beam of thickness t, 
3 

width b is I=b. We have one flexing cell rib in the x-y plane per octant of the unit 12 

cell, and for the cell rib of equal thickness and width (t = b) we have: 

Es( t )4 

Ex 
(a+2sin0)sin26 

(5.14) 

5.3.3 Loading in the Z-Direction 

Figure 5.7 illustrates the one octant of the unit-cell for the conventional 
geometric unit loaded in the Z direction. In this case ribs AB and CD are caused to 
flex. 
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Fig. 5.7 Cell deformation by cell rib bending, giving linear-elastic compression of the foam. 
(Loading in the z direction). (a) An in-deformed octant of the unit cell. (b) Rib bending caused by 
loading in the z direction. (c) Flexure of the cell rib caused by the compressive load in the z direction. 
(d) The deflection of the cell rib and its components along the z and y directions. (e) the cross section 
area of one rib in an octant of the unit cell. (f) The cross section area of one rib in the unit cell. 
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By symmetry, the engineering strains are: 

ec 
(h + 2L sinO)L3 sine 0 

(S. IS) Z 12Es. I 

-ßzL4 sin 6 cost 0 
ey = 12ESI 

(5.16) 

_s eX 
LX =0. (5.17) 

cosO 

The Poisson's ratios are: 

cost 0 
vZy _ (2sin0+a)sin0' (5.18) 

VZX =- 
EX 

= 0. (5.19) 
Z 

The Young's modulus in the z-direction is: 

ES 
( )4 

Ez 
(a+2sin0))sin26 

(5.20) 

5.3.4 Loading in the Y-Direction 

Figure 5.8 illustrates one octant of the unit-cell for the conventional geometric 
unit loaded in the y direction. In this case ribs AD, BC, AB and CD all flex. 
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Fig. 5.8 Cell deformation by cell rib bending, giving linear-elastic compression of the foam. 
(Loading in the y direction) (a) An in-deformed octant of the unit cell. (b) Rib bending caused by 
loading in the y direction. (c) Flexure of the cell rib in the x-y plane caused by the compressive load 
in the y direction. (d) Flexure of the cell rib in the y-z plane caused by the compressive load in the y 
direction. 

Figure 5.8 shows the vertical compressive loading of the flexible foam. Ribs 

AB, BC, CD and AD in one octant of the unit cell are equivalent to two cell ribs in the 

unit cell. If the force in the y-direction which is applied to the whole unit cell is F, then 

that applied to one octant of the unit cell will be F/4 which is defined here as W, and, 

W=F=a-yx2Lcos0x2LcosO (5.21) 
44 

Where: ßy, is negative for a compressive stress in the y direction. 

From Roark and Young(1976), we know that the bending moment applied to each rib is 

M=WxLx cosh (5.22) 

and according to beam theory (e. g. Timoshenko(1975)), each rib deflects by 

ML2 
_ 

WL3 cos e 
6E, 1 12EI 

In this case, 

(5.23) 

SX =-SsinB=-WL3sin0cos0 (5.24) 
12Es1 

Sy = SyAD + SycD = 26cosO =2 
WL3 Cos0Cos0 (5.25) 

12E I 

Where: SyAD and SyCD are the components of the flexure deflection in the y direction 

for ribs AD and CD respectively. 

-WP cosOsin0 SZ = 12EI (5.26) 
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Then we can calculate the engineering strains, 

EX - 
SX 

- 
SX -WL? sin8cos6 -ßyL2cos2OP cos 8sin 6 

x LcosO 12E, ILcos6 12ESILcos6 

- 
-cv L4sinOcos29 

12ESI 
(5.27) 

- 
Sy 

- 
Sy 2WL3 cost 8 lay (L2 cos2 6)L3 cost 6 

y h+2LsinO 12E, I(h+2LsinO) 12ESI(h+2Lsin0) 

- 
26yL5 cos' e 

12 ESI (h + 2L sin 8) (5.28) 

_ 
SZ 

_ 
S7 

_ -WL3 cos0sin0 
= 

-ßyL2 cost 9L3 cos0sin0 
EZ 

z Lcos6 12ES1LcosO 12ESILcos0 

- 
-6yL4cost8sin8 

12ES1 
(5.29) 

Hence, a compressive stress in the y direction yields a negative strain in the y direction 

and positive strain in the x and z direction. 

Poisson's ratios can be calculated as: 

= -EX sin8(2sin0+a) (5.30) yX Ey 2 cos2A 
and 

- -EZ sin8(2sin0+a) 5.31) yZ Ey 2 cost 0 

From EQ. 5.28, the Young's modulus of the y-direction can be obtained as EQ. 5.32. 

_ 
ßy 

_ 
12E, 1(h+2LsinO) 

Ey 
Ey 2L5 cos4 0 

(5.32) 

3 

Where: I= 
b2 

for a rectangular beam. For the rib of equal thickness and width (t = 
b), Ey is, 

t l4 

= 
ESbt3(h+2Lsin8) 

_ 
ES(LJ (a+2sin6) 

\ Ey 
2 LS cos4 02 cos 

40 (5.33) 

When 9= D°, Ey =2 Esr! 
)4 

x(h) which is the same as the result of Huber and 

Gibson (1988), Ev = CES(L)4 x 
(h) 

on a similar but not identical structure. 
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5.3.5 The Shear Modulus of the Flexure Model 

5.3.5.1 Introduction 

The cell rib is equivalent to a cantilever beam. And the shear modulus, G of 
the flexible foam can be calculated from the shear stress, ti and the shear strain, 'y of 

one octant of the unit cell. The flexure model for the shear modulus of the foam is 

developed in this section. The components of stress acting on a cube are indicated in 

Figure 5.9. 

ýTXY 

TZ 

yx 

ýZ Yý 

Tzx 
tixz 

Fig. 5.9 Shear stresses acting on the unit cell. 

According to the classical elasticity theory of anisotropic material (e. g. Nye 
(1960); when we apply a shear stress, i, we also are applying iyx to keep the body 

in equilibrium. The total moment is: 

-'r, x(xz)xy+-r, x(zy)xx=0, (5.34) 
Force Force 

Therefore, v= Ty.. (5.35) 

Also, the stiffness matrix, the shear modulus G is symmetric, 
Gz, = Gyx. (5.36) 

As the case of shearing in the x-y plane, when we shear in the x-z plane, the shear 
modulus, G,, is equal to the shear modulus, G,,,; and when we shear in the z-y plane, 
the shear modulus, Gy, is the same as the shear modulus GZy. 

5.3.5.2 Shearing in the X-Z Plane 

In this case, the deformation caused by the shear stress which applied in the x 
direction on the faces with outward normal in the z direction, i. e. zu. The shear 
deflection here is entirely due to flexing of the ribs AB and DC, as shown in Figure 
5.10. 
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Fig. 5.10 The deformation due to t,, (Flexure model). (a) One undeformed octant of the unit 
cell. (b) An deformed octant of the unit cell. (c) Flexure of the cell rib caused by the shear forces along 
the x direction (projection onto the x-z plane). (d) The deflection of the cell rib. (e) The cross section 
area of one rib in an octant of the unit cell. (t) The cross section area of one rib in the unit cell. 

According to beam theory, 

M=PxLcos9 
2 

and the cell rib deflects by: 

(5.37) 
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S= 
MLZ 

= 
PL3 

cos 0. (5.38a) 
6ESI 12ESI 

In the case that 8= bx 
, and 

PL3 Cos e_ 
Sx =S= 12Esl 

U. (5.38b) 

The shear strain, y, is given by 

Y-zL 
cos e (5.39) 

The shear stress, TXZ, is 

F 4P P 
tu=-_ (5.40) 

xy 2Lcos0 x 2(h+2Lsin8) Lcos6(h+2Lsin0) 

giving the shear modulus G= ti / 'y, hence 

=P 
12EJ 

GL 
cos 6(h + 2L sin 9) X PL3 

_ 
Esxbt3 

L3 cos 0x (h +2Lsin 9) (5.41a) 

when b=t, and a=h/L, then: 

C=s( 
14 

(5.41b) 
cos ßx (a +2 sin O) ̀ I 

By symmetry, when the deformation caused by the shear stress which 
applied in the z direction on the faces with outward normal in the x direction, i. e. gyn. , 
the shear modulus 

- 
Es(f) 

a 

GZ` 
cos 0x(a+2sin 0)ý 

(5.41 c) 

4 (h ), which is what Huber and Gibson get on a Again, when 0= 0°, GZX = ES( 
J 

similar (but not identical) structure (see Figure 2.2). 

5.3.5.3 Shearing in the Z-Y Plane 

Consider a shear stress exerted on a half of the unit cell of the foam in the z- 
direction on the faces with outward normal in the y direction, i. e. rZy. All ribs flex as 

shown in Figure 5.11. 
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Fig. 5.11 The deformation due to 2., y 
(flexure model). (a) Half of the undeformed unit cell. (b) A 

simple array of the 3D cells. Projection onto the y-z plane for the conventional cell network. 
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Since moments applied to BD, AB and BC are all applied along the z axis, 

and the moment about B: MBD = 2M BE +2M, "B, (5.42) 

Where MBD, is the moment applied to rib BD, MBE (equal to MBF) is the moment 
applied to rib BE (or BF), and MZ`B (equal to M, BC) is applied moment to rib BE (or 

BF) along the z direction. 

Let MZ be applied moment in the z direction. Then component of moment MZ 
at an angle ß to z axis in the y-z plane is: MM = M= cosß = MZ sin 0. (5.43) 

Y 

ý 
p=9cý e eZ 

MZ 
Fig. 5.11(d) The applied moment M, in the z direction and its component M. 

Mß is therefore the moment applied to a rib at rib angle 0 at junction B. 

MBE = M.. (5.44a) 

M"B =Mß =Misin B (5.44b) 

and, MZ'a along z direction is, 

M, "B = M. sin 6=M, sin' 0, (5.45) 

From EQ. 5.42 to 5.45, 

MBD = 2M, + 2M= sin2 9. (5.46a) 

Moment applied to BD is, MBD = 
Fh 

, (5.46b) 

Fh 
hence, M= 

4(1 + sine 0) (5.46c) 

Follow the two dimensional analysis of Gibson and Ashby (1982), 

Y 

z 

Irl F V ýs 

Fig. 5.11(e) Cell deformation (flexure and the internal rotation) under the shear stress, ry. 
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The cell deformation under the shear stress, zsy is illustrated by Figure 

5.11(e). There is no relative motion of the points E, B and F. The shearing deflexion 

of the structure is entirely due to bending of beam BD and AB (and BC), and their 

rotation about the point B. The forces are shown in Figure 5.11(c). The shear 
displacement of unit cell in the z direction is: 

u==2(us+2us, '). (5.47) 

All the joints rotate through an angle 0. The deflection of BE is: 

S= 
6mBEP EI =OL' (5.48a) 

s 

_ 
M=LZ 

- 
FhL2 

OL 
6E31 24(1 + sin 2 6)Ej (5.48b) 

Shearing deflection of the point D with respect to B is: 

us=1 h+ 
Fh3 

(5.49a) 2 3ES1( 2) 

Shearing deflection of A with respect to B is: 

AB 22 

uJ'=OLsin0+ 
6E L 

=OLsinO+MIs6E jxL 
ss 

_ OL sin O+ FhL2 sin 9 
(5.49b) 24(1 + sin O)Esl 

Hence, 2= 2us + us' 

_ O(h +L sin 6) + 
Fh 

(h2 + 
LZ sin 9) 

12E31 2(1 + sine 0) 

FhL(h +L sin 6) 
+ 

Fh h2 + 
LZ sin O 

24(1 + sinn O)Esl 12Es1 2(1 + sin 2 9) 

Fh 
h2 + 

L(h + 2L sin 0) 
12Es1 2(1 + sine 6) (550a) 

Since, I= 
bt2 

for a rectangular beam, and when b=t, we have, 

uZ Fh 
h2 + 

L(h + 2L sin 0) 
2 Est4 2(1 + sine 0) (550b) 
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The shear strain is, uZ 
y=y = (5S1) 

2(h+2L sin 9) 

22X 
2(h + 2L sin 0) 

The shear modulus is, G Tu 
=F 

Yzy 4L COS 2 u= 

_Eta 
(a+2sin9)(1+sin2 6) 

(5.52a) 
4acos20 L 2[a2(1+sin2O)+(+sinOl 

J 

From the classical elasticity theory of anisotropic materials (e. g. Nye (1960), we 

know that: 
ES t4 (a +2 sin 9)(1 + sine 9) 

G=G=a (5.52b) 
'Z Zy 4acos2 0L [a2(1+sin2 

9)+ 2 +sin0 

5.3.5.4 Shearing in the X-Y Plane. 

In this case, the deformation caused by the shear stress which applied in the x 
direction on the faces with outward normal in the y direction, i. e. r ,, Y. 

By symmetry, 

G=G= 
ES 4 (a +2 sin 8)(1 + sine 0) 

(5.52c) 
4a cos2 0(! 

) 
[a2(1+sin20)++sinO] 

l4 
When 6= 0°, Gam, =4LJxLx\ -h -l 1 which is similar to what Huber and 

L) 2 

4 

Gibson (1988) get, GXy = 2CE, 
) h) h l1 on a similar (but not identical) 

fL LI+1 

structure with 0= 0°. 

5.3.6 Summary of the Flexure Model 

From Figure 5.5, We can see that the shape of the conventional foam unit cell 
differs from that of the auxetic foam unit cell only by the angle, 6; 9 being positive 
for the conventional foam and negative for the auxetic foam. Therefore, the results are 

actually different for the two cases. Table 5.1 contains the elastic moduli due to 
flexure of the ribs. 

100 



Theoretical Models For the Deformation of Foam 
(Table 5.1) 

xpressions (9= = 9= = 0) General Expressions (Lx * Lz) and 0#9, . 
(Ls = LZ = L) 

/t \4 12E, s1 Ex E31 LI lll (h+L; sin0 +Lsin6 )Lx3sin26 

)sin2 6 (a+2siinü 

/t \4 12E! (h+L, sin 0, +L., sinO,, ) 
y E, I 

L) 
(a+2sinO) 

l 
(Lx3C0526x+L23cos2O )(Lxcos6Y)(L. 

cos0, ) 

4 2cos 6 
12E1 (f) 

(h+Lxsin0 +L, sinO )LZ3sin2O 
(a+2siinO))sin2 0 

y cos2B Lxcos2ox 

(2sin8+a)sin0 (h+Lxsin 0 +L=sin 0z)sin0., 

0 4 

V, X 0 0 

vry cost 6 LZ cos2 9: 

(2sinO+a)sinB (h+Lxsin Ox +L=sin 6Z)sin Bt 

yy: sin6(2sin0+a) Lx2sin 0. (h+L; sin 9; +L= sin B=) 
2coS e Lx3 COS2 ez +L Z3 COS2 e. 

y= 
sin 0(2sin0+a) LZ2sin 0, (h+Lxsin Ox +LZsin 0. 

2cos2 B L; 3 coS2 6x + LZ3 cost e. 

/t 14 12Es! (1+sin20 )(h+L., sin0. +L. sin0=) 
x Esl LI (a+2sinü)(1+sin2O) l/ 2h(Lscos0xL=cosO )[Lx(h+L=sin0j)+L=2 sin 0z+2h2(1+sin20Z)] 

4acos2 B 
a2(1+Sin20)+ 

2 
+sinü 

14 
E 

12E3! (1+sin26x)(h+Lxsine, +LZsinO, ) 
zy 3 LJ (a+2sinO)(1+sin20) 

cosO LcosO=)[L=(h+L sinox)+L 2sin0 2h(L +2h2(1+sin20 ) 
4acos2 B 

a2(1+sin2 B)+ 2 +sinO 
z . s x X 

t4 E 
12EX1(1+sin2BX)(h+LxsinO, +L, sinO ) 

yz S 
( 

L (a+2sin0)(1+sin20) (h+L 
cosO )[L sine )+L 2h(L cosO L 2sin9 +2h2(1+sin20 )] 

2 4acos B ra2(1+sin20)+ 2 
+sinB 

j = = x x , z k z 

L 

4 t 12E31(1+sin20 )(h+LXsin0., +L, sin9, ) 
y L) (a+2sinB)(1+sin29) ES( 

2h(Lzcos9; L=cosO, )[Lx(h+L=sing, )+L12Sin 0=+2h2(1+sin26 )] 
4acos 2o [a2(i+sinzo) 

+ +sin0 
2j 

__________________________________________________ 

1 4 /t 14 12E31 
xz 

) 
ES( 

,ILI \ )l LZ2L., cos0. (h+Lxsin0., +LZsin0, ) 

2sin6) cosOx( a+ 
/t 14 12ES1 

zx ESI LI \ J Lx2L=cos 0, (h+Lxsin 8x+LZsin 0. ) 

2sin O) cos 0x( a+ 

Table 5.1 The flexure model expressions of the Young's modulus, Poisson's ratio and the shear 
modulus of conventional and auxetic foams. 0 is positive for conventional foam and 0 is negative 
for auxetic foam. a=h/L. 

101 



Theoretical Models For the Deformation of Foam 

5.4 The Hinging Modeyr the Foam Cell Structure 

5.4.1 Introduction 

Experiments have shown that under a tensile force the flexible foam deforms 

not only by flexing but also by hinging of the cell ribs. In addition, when the tensile 
force is removed the foam recovers. It has been noticed that each member behaved as 
if it was fixed at one end, and the other end was free to translate horizontally. The cell 
rib is equivalent to a cantilever beam. Therefore, Young's modulus, E, Poisson's 

ratio, V, and the shear modulus, G can be calculated from the linear elastic deflection, 
b of the cantilevered beam under the end force, T. The hinging model is developed in 

this section. From the examination of the microstructure of foams as described in 
Chapter 4, the cells are axisymmetry, and the experiments show that LZ = Lx and 
eZ = 9X, therefore we will deal with this special case first, then develop the model 
more generally (e. g. when LZ # LX and 6Z # 8X). 

5.4.2 Loading in the X-Direction 

When the cell deforms by hinging of the ribs, we assume that each cell rib is 

rigid along its length and deflection occurs at the junction with another cell rib by a 
change of angle AO. 

Oo- 
F/4 

A 
C"f 

F/4 
F/4 

C 

F/4 

0 

Fig. 5.12 (a) Fig. 5.12 (b) 
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Yº 

4s 
sy 

sX 

X 

Fig. 5.12 (d) 
Fig. 5.12 (c) 

Y 

T 

A 

X 

Y 
t/2 

lb 
DO. X(Z) 

Fig. 5.12 (e) Fig. 5.12 (f ) 

Fig. 5.12 Cell deformation by cell rib hinging, giving linear-elastic compression of the foam. 
(Loading in the x direction). (a) An in-deformed octant of the unit cell. (b) The deformation caused by 
loading in the x direction. (c) The hinging deflection of the cell rib caused by the compressive load in 
the x direction. (d) The deflection of the cell rib and its components along the x and y direction for 
compression along x. (e) The hinging deflection of the cell rib caused by the tensile force in the x 
direction. (f) The cross section area of one rib in an octant of the unit cell. 

Figure 5.12 illustrates one octant of the unit cell for the conventional 
geometric unit loaded in the x direction. In this case ribs AD and BC are caused to 
hinge. The cell rib is assumed to act as a cantilever beam, fixed at the right end but 

guided and loaded at the left end thus ensuring a moment there. If the force in the x- 
direction applied to the whole unit cell is F, then that applied to the faces of one octant 
in the y-z plane will be F/4 which is defined here as T, so that 

F ßx x 2(h+ 2LsinO) x 2Lcos6 
T=4=4 (5.53) 

Where: ßs, is negative for a compressive stress in the x direction. 

The deflection, 5 is, 

5 =Lsin06=Lz O 
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Where: S and AO are as defined in Figure 5.12. 

and from the analysis in Figure 5.12(d), we know that, 
SX = -LAO sin0 (5.55) 

Sy = LAO cos O (5.56) 
for compression loading in the x direction. 

Since hinging only occurs in the x-y plane for a stress applied in the x-direction, 
SZ = O. (5.57) 

The engineering strain can be calculated as, 

Sx 
- 

Bx 
-__ 

LAOsinO 
ýx -x LcosO LcosO 

(5.58) 

Sy 
_ 

Sy 
_ 

LAO cos 8 
Ey 

y h+2LsinO h+2LsinO 
(5.59) 

and 
EZ =0. (5.60) 

The Poisson's ratios can then be obtained as, 

v- -Cy 
- 

LAOcos8 
X 

LcosO 

ex h+2Lsin6 LEOsin9 

_ 
cost A 

sin0((c+2sin0) 
(5.61) 

and 

v, - 
-EZ 

= 0. (5.62) 
EX 

From EQ 5.53 and 5.58, the Young's modulus, Ex can also be easily calculated as, 

E_ ßX TxL cos 9 
s ex (h+2LsinO)Lcos6 LLOsin8 

(5.63) 

In this case, according to the usual definition, and resolving the force across the beam 

direction, 
T sin 0= KhLL\9 (5.64) 

Where: Kh, is the hinging force constant defined in the standard way (i. e. F= Kh8, 

and here F=T sin 0). 

hence, T= 
KhLAO 

(5.65) 
sin 0 

x 
L2 

therefore, EX = 
KhLAO 

(h+2LsinO)LcosO LAOsin 6 

_ 
Kh 

(h+ 2LsinO)sin2 6 
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_ 
Kh 

L(a+2sin0)sin20 
ýS ýý 

5.4.3 Loading in the Z-Direction 

Ribs AB and CD are caused to hinge. By symmetry, 

-Ey 
- 

cost 8 
vZy _ 

cz sin6(a+2sin0) 
(5.67) 

E 
vzx= X =0. (5.68) 

Z 

_ßz _ 
Kh 

Ez 
EZ L(a +2 sin 6) sine A 

(5.69) 

5.4.4 Loading in the Y-Direction 

Figure 5.13 shows the vertical tensile loading of the foam. In this case ribs 
AB, BC, CD and AD all hinge. As for the previous case, the cell rib can be assumed 
to act as a cantilever beam, fixed at the right end but guided and loaded at the left end 
thus ensuring a moment there. If the force in the y-direction applied to the whole unit 
cell is F, then that applied to one octant of the unit cell will F/4. 

F/4 
O' 

O' B 

A 
lä 

F/4 

7zjx 

C 
AA 

e+de 
/- -- 

p. - 

F/4 O 
F/4 

(a) (b) 
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Yý L 

r4 A' 

(c) 

Tj 
c 

4-4 

Cý 
_ 

(e) (f) 
Fig. 5.13 Cell deformation by cell rib hinging, giving linear-elastic tension of the foam: (a) One 

octant of the in-deformed unit cell. (b) The deformation caused by a tensile force in the y direction. (c) 
The hinging deflection of the cell rib in the x-y plane caused by the tensile force in the y direction. (d) 
The deflection of the cell rib and its components along the x and y directions. (e) The hinging 
deflection of the cell rib in the y-z plane caused by the tensile force in the y direction. (f) The cross 
section area of one rib in an octant of the unit cell. 

From beam theory, the deflection of each rib is, 

s=LSinAO=LAO. 
Therefore, the total extensions of one octant under a tensile load in the y direction are 

given by: 
SX = -LAO sin 0 (5.70) 

By =SyAD+SyDC =(LAO cos0)+(LAO cos0) (5.71) 

Where: SyAD and SyDC are the components of the hinging deflection in the y direction 

for ribs AD and DC, respectively. 

and sZ = -LAO sin 0. 

Therefore, 

X 

Se Sy 

SX 

(d) 
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"- 
SX 

_ 
Sx -LAO sin 0 

(5.73) 
xL cos OL cos 0 

ey 
8y 

_ 
sy 

_ 
2LAOcos0 

(5.74) 
yy h+2Lsin6 h+2Lsin8* 

E 
SZ 8L 

- 
-LAO sin 0 

(5.75) Z- z- L cos OL cos e 

From EQ 5.73,5.74 and 5.75, we can calculate the Poisson's ratio in the y direction, 

_ -EX _ 
sin 8(a +2 sin 0) 

(5.76) yX - Ey - (2cos2 e) 

and 

_ -EZ 
- 

sin0((x +2sin0) (5.77) yZ Ey (2 cost 8) 

Since the tensile force applied to one octant of the unit cell is T, then, 

T= ay(Lcos6)(Lcos0) (5.78) 

Where: csy, is the tensile stress in the y direction. 

and from the usual definition, 

T cos e= Khs = KhLAO, (5.79) 
ßy T h+2LsinO 

hence, Ey -- 
Ey L2 cos2 6X 2LL9 cos O 

KhLAO h+2LsinO 
-x 

L2cos3e 2LtOcose 

_ 
Kh((X +2sin0) 

(5.80) 
2Lcos4 e 

5.4.5 Shear Modulus of the Hinging Model 

5.4.5.1 Shearing in the Z-Y Plane. 

Consider a shear stress exerted on a half of the unit cell of the foam in the z 
direction on the faces with outward normal in the y direction, i. e. gay. See Figure 

5.11(a) and (b). 
The cell deformation under the shear stress, r,,, is illustrated by Figure 5.14. 

There is no relative motion of the points E, B and F. The shearing deflexion of the 

107 



Theoretical Models For the Deformation of Foam 
structure is entirely due to hinging of beam BD and AB (and BC), and their rotation 

about the point B. The forces are shown in Figure 5.11(c). The shear displacement of 

unit cell in the z direction is: 

u==2(us+2us'). (5.81) 

Y 

Bob- z 

Fig. 5.14 Cell deformation (hinging and internal rotation) under shear stress, 2zy. 

All the joints rotate through an angle 0. The deflection of BE is: 

8 =OL. (5.82) 

According to the usual definition, in this case, 

4 
sing = KhS = KhLq. (5.83) 

From EQ. 5.44(a) and EQ. 5.46(c), 

MBE =F sin Ox L= Fh 
= KhLZO, (5.84a) 4 4(1 + sinZ 0) 

hence 0= 
Fh 

Z2. (5.84b) 4Kh(I+sin 9)L 

Shearing deflection of the point D with respect to B is: 

us =2 Oh. (5.85a) 

hence, uS'= 
Fh2 

8Kh (1 + sine 9)LZ ' (5.85b) 

Shearing deflection of the point A with respect to B is, 

uS = OL. (5.86) 
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uZ =2x(2u5+us') 

Fh (2L +2 h) 
=x (5.87) 

2LZKh (1 + sine 6) 

The shear strain, y,, is given by: 

y =! 
L 

= 
uZ (5.88) 

y 2(h+2Lsin 0) 

The shear stress, 'ry, is, 

'r y. 
F=F 

(5.89) 
yz xz (2L cos 9)2 

giving the shear modulus G= t/ y, 

_F 
2(h+2Lsin0) 

Gzy 
4L2 cost 0X uz 

K,, 
X(a+2sin6)(1+sinn0) (5.90) 

hcost e (2 + a) 

From the classical elasticity theory of anisotropic materials (e. g. Nye (1960)), we 
know that: 

GyZ = Gy 

therefore, 
(5.91) 

G_ 
Kh 

x 
(a+2sin 9)(1+sin 29) 

(5.92) 
h cost 9 (2 + a) 

5.4.5.2 Shearing in the X-Y Plane 

In this case, the deformation caused by the shear stress which exerted on an 

octant of the unit cell in the x direction on the faces with outward normal in the y 
directional. i. e. ry. By symmetry, 

Kh (a+2sin9)(I+sine 9) 
Gý =G=h 

cos Z0x (5.93) 
(2+2J 

5.4.5.3 Shearing in the X-Z Plane 

Consider a shear stress exerted on an octant of the unit cell of the foam in the 
x direction on the faces with outward normal in the z direction, i. e. ti, rZ. The shear 
deflection is entirely due to hinging of the ribs AD and BC as shown in Figure 5.15. 
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Fig. 5.15 The deformation due to 'L,, (Hinging model). (a) An in-deformed octant of the unit 
cell. (b) An deformed octant of the unit cell. (c) The hinging of the cell rib caused by the shear forces 
along the x direction. (Projection onto the x-y plane. ) (d) The cross section area of one rib in an octant 
of the unit cell. 

The deflection, 8, which caused by the shear force is, 

8= LcosesinAe = (Lcos9)A6. (5.94) 

since here, 

6 =ö=(Lcos9)06=uS. (5.95) 

therefore, the shear strain, y, is given by 

us 
_ 

us (Lcos6)Ae 

zL cos OL cos ü 
(5.96) 

The shear stress, tix,, is 

_T_ 
T 

tiXZ 
xy LcosO(h+2LsinO) 

(5.97) 

giving the shear modulus G= ti /y, hence 

G=TX 
LcosO 

G. 
Lcos6(h+2LsinO) (LcosO)AO (S 9ý) 
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and according to the usual definition, 

therefore, 

G= 
KtiLt OX1 

h+2Lsin6 (LcosO)EO 

Kh 
Lcos 9(a + 2sin 0) (5.100) 

By symmetry, 

5.4.5.4 The Determination of Kh 

From the micrographs of the foams, we know the two adjacent ribs are 
connected by a very small curved rib, q, and behave as one long bending beam 
(Figure 5.16). Under certain circumstances flexure was observed in the junction. This 
flexure is being interpreted as a hinging deformation mode. Assuming that a curved 
beam behaves in accordance with simple bending theory (Roark & Young 1975), then 
the change in angle due to an applied moment M is given by, 

oe=Jaýaq 
S 

T= Kh8 = KhLAO (5.99) 

_ 
Kh 

GZZ 
Lcos9(a+2Lsin6) 

(5.101) 

(5.102) 

Where: q, is the length of the small curved beam DD'. L\O is the change in cell angle. 

Hence, 

AO = 
M9 
ESI 

(5.103) 

Because q«L as shown in Figure 5.16, therefore, the applied moment acting on the 
hinge is approximately, 

M=(Tcosh)x 
. (5.104) 

Where: 0, is the cell angle. 

Combining EQ 5.103 and EQ 5.104, the deflection AO is derived as, 

De = 
(TcosO)Lq 

2E5I (5.105) 

Comparing EQ. 5.105 with EQ. 5.79, Kh can be obtained as: 
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Kh =J (5.106) 
9 

The second moment of area of a rectangular beam of thickness, t, and width, b, is, 
3 

I= 
bý 

, when b=t, 

_Est4 Ký 
6L2q 

(5.107) 

Y 

X 

Fig. 5.16 The two adjacent ribs are jointed by a very small curved beam, q. (e. g. DD). 

5.4.6 Summary of the Hinging Model 

The elastic moduli due to hinging of the ribs are summarised in Table 5.2. As 

already noted, 0 is positive for conventional foam and 0 is negative for auxetic foam. 
(Tahle S_2' 

Expressions (8X =0=0, Lx = LZ = L) General Expressions (Lz * L=, 9x * 9s ) 

E Kh KhLxcosOX 
x L(a +2 sin B) sine B LZ cos 8= (h + Lx sin 6., +L, sin BZ)sin 2 Bx 

Kk(a+2sin9) Kh(LX +LZ)(h+LZ sin9= +L; sinOZ) 
y 2Lcos4o (cos 0x+cos 0, )(Lscos 0x)(L. cos 0, )(L, cos 0, +Lzcos 8) 

Ez Kh KhLZCOs0Z 
L(a+2sin0)sin20 Lxcos 0X(h+L. sin 0. +L, sin 81)sin2O 

V cos29 L. cost 9Z 
., y 

(2sin 0+ a)sin 0 (h+L., sin 0., +L. sin 0, )sin 0., 

vxz 0 0 

V 
zx 

0 0 

v coste L=cost eZ 
zy (2 sin 0+ a)sin 0 (h+ LX sin Bx +LZ sin 9= )sin B= 
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V 
yz 

sin6(a+2sin0) . sin6 (h+LxsinOx+L2sin6 ) 

(2cos20) cos OX (Lxcos Ox+Lscos 0, ) 

sin 6(a+2sin0) sin 0, (h+Lx sin 0. +L=sin 0, ) 
yZ (2cos20) cosOZ(Lx cosOx +L, cos0, ) 

13 
(a+2sin9)(1+sin26) Kh KhLz(1+sin26 )(h+L, zsin6 +L1 sinB=) 

z' x 
hcos2 0 (2+ a) Lxhcosox cosh=(L, +LZ +O. 5h) 

2 
(a+2sin6)(J+sin20) Kh KhLZ(1+sin 26)(h+LxsinOx+L=sin0. ) 

yz x 
hc (2+a) 

2 
LýhcosBxcosB, (Lx+L=+O. Sh) 

Kh (a+2sin0)(1+sin20) KhL. (l+sin29=)(h+Lxsin0, +L=sin0Z) 
' 

hcx (2+a) LXhcos0, cos0, (L=+LL+0.5h) 
2 

xy (a+2sinß)(1+sin26) Kh KhLz(l+sin26Z)(h+Lxsin6x+LZsin0Z) 
x 

hcos26 (2+a) 
2 

Lxhcos0xcos0, (Lx+Ls+0.5h) 

xz Kh KhL: 
Lcos0(a+2sin6) Lxcos0 (h+Lxsin B=+L=sin 0=) 

zx Kh KhL� 

Lcos6(a+2sin0) LZcos 0z(h+Lxsin 8x+L=sin 0, ) 

Table 5.2 The hinging model expressions of Young's modulus, Poisson's ratio and shear 
modulus of conventional and auxetic foams. 0 is positive for conventional foam and 0 is negative 
for auxetic foam. 

Comparison of Table 5.1 and Table 5.2 reveals that the expressions for 
Poisson's ratio are identical for flexure and hinging. Furthermore, if we define the 
flexure force constant as: 

_ 
Est4 

- 
12E IKf- 

L3 - L3 
(5.108) 

then, for the special case: 9X = 9, = 0, the expressions for Young's Modulus are seen 

to differ only by the ratio of the force constants involved. 

E Dinging K 

i. e. E"9"g = K" . 
(note: i is x, y, or z). (5.109) 

f 

5.5 The Stretching Model for the Foam Cell Structure 

5.5.1 Loading in the X-Direction 

This model assumes that the cell wall junctions are rigid so that the cell angles 

remain constant whilst the walls can only stretch along their axes. To develop the 

equations for the stretching model consider the force W applied to the yz faces of one 
octant of the unit cell: 

W= ßx(h+2Lsin8)LcosO. (5.110) 

i 
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Fig. 5.17 Cell deformation by cell rib stretching, giving linear-elastic extension of the foam: (a) 
An undeformed octant of the unit cell. (b) The stretching deformation caused by loading in the x 
direction. (c) The extension of the cell rib AD caused by a tensile force in the x direction. (d) The 
extension of the cell rib and its components along the x and y directions. (e) The cross section area of 
one rib in an octant of the unit cell. 

In this case, only ribs AD and BC stretch, and they are equivalent to one rib in the unit 
cell. When the force W is applied parallel to the x axis, ribs AD and BC extend by S, 

and according to the usual definition: 

wcose=KSS (5.111) 

Where: K, is the stretching force constant defined in the standard way. 

6W cos @L 
Since ES = ES =xs (5.112) 

tf- S 

Where: ßs, is the tensile stress applied on one rib. 
Therefore, the force constant for stretching, Ks, is 
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KS = 
Eý 2. 

(5.113) 

From Figure 5.17 (d), the total deflection in the x-direction of the unit cell due to the 

extension of one rib is: 

6x=8cose=W see. (5.114) 
Ks 

The total deflection in the y-direction of the unit cell is: 

Sy = 8sin6 =W 
co sin8 

(5.115) 
Ks 

Since there is no component of rib extension in the z-direction of the unit cell, 

SZ = 0. (5.116) 

The Poisson's ratios for the x direction can be calculated by using the following 

equations: 

-sing -E -6 Lcos6 
= r-r 

S= a+2sin0 
(5.117) ýý 

E. h+2LsinO X_ 

Where: a=h. 
L 

and, v. = 
EL 

cos OxLSs 
0_ 

0. (5.118) 
x 

The engineering strain for one octant of the unit cell can be calculated by using: 

Ex 
Sx S., 

_ 
Wcos29 

_ 
ax(h+2Lsin8)Lcos30 

x LcosO K,. Lcos0 KSLcos0 
(5.119) 

Combining the strain and the stress, Young's modulus for the x-direction can be 

obtained as: 

_ 
ßx 

_ 
KS 

_ 
ES t2 E= 

E (h+ 2Lsin6)cos2 0 (a+ 2sin8)cos2 0L (5.120) 

5.5.2 Loading in the Z-Direction 

By symmetry: vzy = -sin6 
a+2sin6 

(5.121) 
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v2 =0 (5.122) 

and 
Et2 

(5.123) EZ 
L) 

5.5.3 Loading in the Y-Direction 

The force W applied to the xz faces of one octant of the unit cell is: 

W= ßy x L2 cos2 8. (5.124) 
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Fig. 5.18 Cell deformation by cell rib stretching, giving linear-elastic extension of the foam: (a) 
One in-deformed octant of the unit cell. (b) The stretching deformation caused by loading in the y 
direction. (c) The extension of the angled cell rib caused by the tensile force in the y direction. (d) The 
extension of the angled cell rib and its components along the x and y directions. (e) The cross section 
area of one angled rib in an octant of the unit cell. (f) The extension of the vertical cell rib caused by 
the tensile force in the y direction. (g) The cross section area of one vertical rib in an octant of the 
unit cell. 

In this case, the vertical ribs O'B and OD equivalent to one rib of length h, depth t/2 

and thickness t12 in one octant of the unit cell, and 

cssW h Es=etXs 

sy 

4 

(5.125) 

Where: ßs, is the tensile stress applied along one vertical rib of length L (e. g. 
O'B+OD) in the y direction, and Sy" the extension of the vertical rib of length h in the 

y direction. 

According to the usual definition, 

W= KSh&yh. (5.126) 

Where: KSh, is the stretching constant for the vertical rib of length h. 

From EQ 5.125 and EQ 5.126, 

ES = 
4K2 hh 

(5.127) 
t 

hence, 

and 

2 

Et2 Est K 
KS h_ 

4h 4a 4a 1 (5.128) 

syh 
_WWx 

4a 
(5.129) 

KS KS 
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The stretching deflection of the vertical rib in the other two directions is zero, i. e. 

SXh =0 (5.130) 

SZh = 0. (5.131) 

Where: 6" and öh are the components of the extension of the vertical rib. 

The angled ribs AD and BC in one octant of the unit cell are equivalent to one 

cell rib of length L, depth t and thickness t in the x-y plane of the unit cell, and the 

other two angled ribs AB and CD in the same octant of the unit cell are equivalent to 

one cell rib of length L, depth t and thickness t in the y-z plane of the unit cell. 
Therefore, The total stretching deflection of the two angled ribs in the unit cell is: 

storall = 61 + S1 =2 61. (5.132) 

By definition, 

W sin 0= KS' (5.133) 

Where: 81, is the extension of one angled rib of length L. 

The total deflection of the two angled ribs in the y-direction is: 

Sy' = S1 sine + S1 sing = 
2W sin2 8 

K (5.134) 
s 

the total deflection of the angled ribs in the x-direction is: 

SXl = Si cos o+ Sl cos 90o = 
Wsin9cos8 

(5.135) KS 

and the total deflection of the angled ribs in the z-direction is: 

SZI = Sl co s6+ 81 cos 90° =W 
sin 9 cos O 

(5.136) KS 

From EQ. 5.130 and EQ. 5.135, the total extension in the x-direction of one octant of 
the unit cell is: 

sX 
_8xh+Sx' _0+Wsin9cos6 = 

Wsin8cos8 
(5.137) 

Ks Ks 

From EQ. 5.131 and EQ. 5.136, the total extension in the z-direction of one octant of 
the unit cell is: 

SZ = SZh +SZI = p+ Wsinücos6 
= 

WsinOcos6 
(5.138) 

KS KS 

From EQ. 5.129 and EQ. 5.134 the total extension in the y-direction of one octant of 
the unit cell is: 
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Sy = Sys' + 8yl =K (4a + 2sin2 6). (5.139) 
Ks 

Poisson's ratios for the y direction are obtained as: 

__EX _ -Sx x 
h+2lsinO 

_ 
-sin6((x +2sin0) 

(5.140) yX ey lcos9 Sy 4a+2sine8 

and v- 
Ez 

= -SZ X 
h+21 sinO 

- 
-sin6((x +2sin0) 

(5.141) yZ Ey l cos A Sy 4a +2 sin 9 

Since 
S 8y 

=6 
l3 cos26(4(x +2sin20) 

Ey (5.142) 
y h+2lsin6 ESt2(h+21sin0) 

the Young's modulus for the y direction is, 

_ 
Cry 

_ 
ES(a+2sin0) t2 Ey 

y 
y cost6(4a+2sine0)( 

5.5.4 Shearing in the X-Z Plane 

Consider a shear stress exerted on an octant of the unit cell of the foam in the 
x-direction on the faces with outward normal in the z-direction, i. e. tiXZ. Since there 

are no ribs causing the stretching deflection, therefore y=0. The shear modulus, Gxz 

is: 
ö Gxz = 

tix` 
=Z =oo. (5.144) 

Y 

By symmetry, GZZ =Z=o. (5.145) y 

5.5.5 Shearing in the Z-Y Plane 

Consider a shear stress exerted on a half of the unit cell of the foam in the z 
direction on the faces with outward normal in the y direction, i. e. r,,. See Figure 

5.11(a) and (b). Since the rib BF shortens as much as rib BE extents; and the other 
ribs DB, AB, BC do not cause any stretching deflection, therefore, y=0. The shear 

modulus, G, y is, 

'rzy G, 
y = Gy= _=ö= (5.146) 

5.5.6 Shearing in the X-Y Plane 
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In this case, the deformation caused by the shear stress which applied in the x 

direction on the faces with outward normal in the y direction, i. e. T. Y. 
Ribs DC and 

AB cause the deflection. By symmetry, 

Gay = Gys = 
'r_ (5.147) 
Y 

5.5.7 Summary of the Stretching Model 

The elastic moduli due to stretching of the ribs are summarised in Table 5.3. 

As already noted, 8 is positive for conventional foam and 0 is negative for auxetic 
foam. Hence it is noted that for stretching auxetic behaviour is predicted to arise due to 

the conventional cell. 

(TAhla C 11 

Moduli Expressions (0 = 0, = O, Lz = LZ = L) Expressions (LX # LZandO, r # Oz) 

E 
Es 12 Es Across-sec ton 

x 28L 
(L 

(a+2sin0)cos (h+Lx singx +L: sin 0, )L: cos9: cosO x 

Bs(a+2sin9) It l2 Es'`across-section(h+LxsinOx+L=sinO=) 

y 
cos 6(4a+2sin29)lL) (4h+sin2 OLx+sin20, L=)LxcosOxLzcos0, 

ES 
2 EsAcross-hoc 

Lion 
z 

(a+2sinO)cos 8L (h+L sing +L sing L cosO cosh :: :)::: 

-sing -Lx sin9X 

a+2sin9 h+L. sin 0x+L2sin 0, 

Vxz 0 0 

Vzz 0 0 

V -sing -L= singt 
Zy a+2sinO h+L., sin0. +Lzsin0, 

vy" -sin O(a+2sin9) 
2 

-sin0x(h+Lxsin0., +L= sin Bt) 

4a+2sin 9 4h+L, sin2O +L. sin2O 

V 
(Z 

-sinO(a+2sin0) -sin0, (h+Lzsin0. +L. sin 0, 

4a+2sin o 4h+ Lx sin 9X+L2sin B= 

x 00 00 

z co co 

z 00 00 
yx 

00 00 

xz 
00 00 

zx 
0o tb 

Table 5.3 The stretching model expressions of Young's modulus, Poisson's ratio and the shear 

modulus of conventional and auxetic foams. 0 is positive for conventional foam and 0 is negative 
for auxetic foam. Note: is the cross sectional area of the cell rib. 
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5.6 The Combined Model for the Foam Cell Structure 

The deformation of a foam network due to the combination of flexure, 

hinging and stretching of the ribs is modelled in this section. 

5.6.1 Loading in the X-Direction 

Consider one octant of the unit cell, the total deflection in the x-direction, SX, 

due to a force, P, applied normal to the yz faces, is: - 

Sx = sx flexure +8x hinging +8x stretching 

Psin2 0 Psin20 
+ 

Pcos2 0 

Kf Kh Ks 
(5.148) 

Et2 Et4_12EI Est 2EI 
Where: Kf =t L3S ' K'` _Et LZs and Ks =i defined in EQs. 

49 

5.108,5.107, and 5.113 respectively. 

The total deflection in the y-direction, Sy, is 

Sy =8y 
flexure +8y hinging +8y stretching 

Psin9cosO 
_ 

Psin8cos8 Psin9cos9 
_-+ (5.149) 

Kj Kh Ks 

The total deflection in the z-direction, SZ, is zero. 

The Poisson's ratio, vXy, can be calculated by using the following equations: 

vxy = 
-ey 

- 
-6y xL 

cos 8 

Ex h+ 21 sin 0 SX 

cos8 
sin0cos0 + sin0cos0 

- 
sin0cos0 

Kf Kh KS 
_ (5.150) 

(a +2 sin 6) sine A+ sine () 
+ 

cost 0 

Kf Kh KS 

-öz The Poisson's ratio, vxz =-Z-X`Se0. (5.151) 
x 

Lcos 8 Sx 

The engineering strain for one octant of the unit cell can be calculated by using: 
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p sine 6+ sin' A+ cost 

Sx 
_ 

Sx Kf Kh Ks 
xI cosA rcose 

sine 8 sine 8 cos 29 
=y (h+2lsinO) 

K+K+K 
(5.152) 

fhs 

Where ßX, is the stress applied in the x-direction. 
Combining the strain and the stress, the Young's modulus for the x-direction can be 

calculated from: 

Ex = 
6X 

= 
Ex 

1 

sine A sine 9 cost 0 
(a+2sin6)L 

Kf Kh 
+K 

fs 

5.6.2 Loading in the Z-Direction 

By symmetry: 

cosh 
sinecose + sinecos0 

- 
sin0cos0 

Kf Kh KS 
vZy = 

((x +2 sin A) sine 8+ sine 6+ cost 6 

Kf Kh KS 

V21 =0 

and 

E =62 =1 Z cZ 
((x +2 sin 6)L sin2 9+ sine 9 cost 8 

+ 
Kf Kh KS 

(5.153) 

(5.154) 

(5.155) 

(5.156) 

5.6.3 Loading in the Y-direction 

Consider one octant of the unit cell, the total deflection in the x-direction, SX, 

due to a force, P, applied normal to the xz plane, is: - 

Sx = Sx flexure +Sx hinging +Sx slretching 

PsinOcosO 
_ 

PsinOcosO Psin6cos9 
+ (5.157) 

KfK,, K, 

The total deflection in the z-direction, SZ 
, is 

öz =- szflexure +8z hinging +8z stretching 
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PsinOcosO 
_ 

PsinOcosO PsinOcos8 
+ (5.158) 

Kf Kh Ks 

The total deflection in the y-direction, Sy, is 

SY =sY 
flexure +8 

Y 
hinging +sY stretching 

2Pcos2 6+ 2Pcos2 O+ 2P(2(x + sine 8) 
(5.159) 

Kf Kh Kg 

Poisson's ratios are obtained as: 

v_ -F-� = -SX Xh+ 
2L sin 9 

yX 9y Lcos6 Sy 

sin0cos0 +sin0cos0 _sin 
0 cos 0 

((x +2sin0) 
KfK,, KS 

(5.160) 

2 cos O cos20 
+ 

cost 6+ 2a + sine 0 

KfK,, Ks 

and v _EZ - -Sz X 
h+2Lsin6 

yZ ey Lcos0 Sy 

sin0cos0 + sin0cos0 
- 

sin0cos0 
J(ct 

+2 sin 0) 
Kf Kh KS 

2cos8 cost6+cost6+2a+sine6 
Kf K, KS 

Since 

2P COSZ e+ cost e+ 2a + sine e 

Y= 
sr 

= 
sr 

_ 
Kf Kh Ks 

y h+2LsinO h+21sinO 

26 Lcost6 cost8+cost8+2a+sine9 
y 

= 
Kf Kh K6 

(5.162) 
a+2sin8 

Where: ßy, is the stress applied in the y-direction. 

Hence, 
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E_ 
ßy a+2 sin 9 

(5.163) 
y Ey 2L cost 6 cos20 + cost 6+ 2a + sine 9 

Kf Kh K. 

5.6.4 Searing in the Z-Y plane 

Consider a shear stress exerted on an octant of the unit cell of the foam in the 
z-direction on the faces with outward normal in the y direction, i. e. r y. 

The total 

deflection in the z-direction, u., is 

2aF 
a2+ 

a+2sin0 2Fh(2L+0.5h) 
u= =Kf 2(1 + sine 9) 

+ 
4K;, 12 (1 + sinn 9) (5.164) 

The shear strain, yry, is given by 

y 2(h + 2L sin 6) (5.165) 

The shear stress, r y, 
is 

F 

4L2 cos' 9 
(5.166) 

giving the shear modulus, G 

_F 
2(h + 2L sin 9) 

Gry 
4L2 cost 9x Fh(2L +1 h) 2aF 

a z+ a+2sinO +2 
Kf 2(1 + sin 2 9) 2KhL2 (I + sine 9) 

(a+2sin6) 
X1 2Lcos29 2a(a2 a+2sinO )+ (2a+0.5a2) (5.167) 

Kf 2(1 +sine 0) 2K,, (1 +sine 0) 

From the classical elasticity theory of anisotropic materials (e. g. Nye (1960)), we know 

that: 

GZy = Gy: 

therefore, 

(a+2sin6) 
XI GyZ 

2Lcos2 0 2a(a2 
+ a+2sin0 )+ 

(2a+0. Sa2) (5.168a) 

Kf 2(1 +sin2 0) 2Kh(1 +sin2 0) 
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5.6.5 Shearing in the X-Y Plane 

By symmetry, 

(a +2sin 9) 
x1 Gý -Gyx = 2Lcos26 2a(a2+ a+2sin0 )+ 

(2a+0. Sa2) (5.1686) 

Kf 2(1 + sine 9) 2Kk (1 + sine 9) 

5.6.6 Shearing in the X-Z Plane 

In this case, a shear stress exerted on an octant of the unit cell of the foam in 
the y-direction on the faces with outward normal in the z direction, i. e. E,,. Ribs AB 

and CD cause the deflection. The total deflection in the x direction, Sx, is 

sX =PK+PK (5.169) 
fh 

and in this case, 

SX = us. (5.170) 

The shear strain, y, is given by 

us 
' 

Lcos0 
(5.171) 

The shear stress, ix,, is 

P 

Lcos@(h+2Lsin0) 
(5.172) 

giving the shear modulus, G 
7 

_P 
Lcos0 GXZ i Lcos6(h+2Lsin8) X111 (5.173) 

P+ 
Kf Kh 

1 
_ (5.174) 

L(a+ 2sin0 
11 

Kf Kh 

By symmetry, 

Czx =1 (5.175) 

L(a + 2sinO) + 
- 

f Kh 
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5.6.7 Summary of the Combined Analytical Model 

The elastic moduli due to the combination of flexure, hinging and stretching 

of the ribs are summarised in Table 5.4. As already noted, 0 is positive for 

conventional foam and 0 is negative for an auxetic foam. 
(Tahli 5.41 

Modulus Expressions (0x = 0Z = O, Lz = Ly = L) 

E,, 
sing A sing A Cos 

t 
(a+2sine)Lý ++ 

K f Kh Ks 

a+2 sinO 
y 

2A cos20+cos20+2a+sin20 2L cos Kf Kh KS 

1 

sing A cost A (sing A 
(a +2 sinI ++ K K K f lhs 

V, 
Cos 0 sin 0 Cos 0+ sin 0 Cos 0_ sin 0 Cos 0 

Kf Kh Ks 

Sinte singA Coste 
+ + a+2sine)I 

Kf Kh Ks l 

vxz 0 

v 0 zx 
vzy 

COS 0 
sin 0 Cos 0+ sin 0 cos 0- sine cos 0 

Kf Kh Ks 

sing 0 sing A cost e 
+ + a+ 2 sin A 

Kf Kh Ks 

V 
yx 

( 
sin 0 Cos 0+ sin ü cos 9_ sin 9 cos 6 l(a 

+2 sin 9) I 
\Kf Kti K., ) 

Cos29 cos2B 2a+sin28 
+ + 2cos9 

KfK,, KS 

Vyz [sinOcose+sinecosO_sin8cosel(a+2 
sin A) I KfK,, K,, J 

COS2A 2a+sin29 Cos2A 
+ + 2cose 

KI K,, KS 

(a+2sin0) 1 
Xy X 2Lcos2 B 2a 

(a2 + 
a+2sinO )+ 

(2a+0.5a 2 ) 
Kf 2(1+sin20) 2Kti(l+sin20) 

(a+2sinO) 1 
y Z x 

2Lcos20 2a(a2+ a+2sinO )+ 
(2a+0.5a2) 

Kf 2(1+sin20) 2K,, (1+sin20) 

(a+2sin0) 1 
YZ X 

2Lcos2 0 2a 
(a2 + a+2sinO )+ (2a+0.5a ) 

Kl 2(1+Sin2 0) 2K,, (1 +sin2 0) 

126 



Theoretical Models For the Deformation of Foam 
Gyx (a+2sin0) 1 

2Lcos2 B 2a 
(a2 + a+2sin0 )+ (2a+0.5a )2 

Kf 2(1+sine 9) 2Kh(I+sine 9) 

xz I 

Lcos9x(a+2sinO)I + 
Kf Kh 

Zx 1 

+K Lcos6x(a+2sinO)( 
Kf h 

Table 5.4 The combination model expressions of Young's modulus, Poisson's ratio and shear 
modulus of conventional and auxetic foams. 0 is positive for conventional foam and 0 is negative 
for auxetic foam. Kf, Kh and KS are the flexure, hinging and stretching force constant respectively. 

K 
Est4 12EI 

K=E, t4 
= 

2EsI 
and K= 

ESt2 
f L3 L3 ti 6 L2q Laq SL 

5.7 Summary 

The linear elastic behaviour of a foam is characterized by a set of moduli, 
Young's moduli, E, Poisson ratio, v, and the shear moduli, G. At first sight, one 
may think that stretching is the dominant deformation. But since only the struts which 
are aligned parallel to the principal axis of stress carry purely axial forces; the rest 
carry bending and hinging moments as well. Therefore, flexure and hinging may be 

the dominant deformations. However, because low density open-cell foams are made 
of long and thin struts, the bending deformation rather than the hinging deformation is 

the primary one under compression. It has been noted that Gibson and Ashby (1988) 

proposed the bending of the cell edges is the dominant mechanism and developed the 
flexure model (cubic box) for conventional foam. In this chapter, the flexure, hinging, 

stretching and the combined models (rhombic dodecahedron) for conventional and 
auxetic foam are developed. 
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Chapter 6 The Mechanical Properties of Foams (I) 

6.1 Introduction 

The mechanical properties of foams is divided into two parts: part one, 
Chapter 6, presents the basic, strain dependent elastic properties of the foams, in 

tension, compression, and shear, in each direction for each foam. In Chapter 7, 

emphasis is placed on the elastic resilience, energy absorption and time dependence 

of the foams which using ball indentation test, ball rebound, hysteresis loop, and 

DMTA tests. 

6.2 Compression 

6.2.1 Introduction 

Most foams are anisotropic, although most previous work has assumed 
isotropy. In this chapter we present the results of of 'aining full sets of elastic 

properties for both conventional and auxetic foams. As the polymer used for these 

foams is viscoelastic it is important, first, to characterise this effect to ensure the 

measurement of consistent elastic properties. 

6.2.2 Compressive Creep 

A material subjected to a constant load will deform over time. This 

phenomenon is known as creep. To determine how quickly readings have to be taken 

or tests done to ensure negligible effects due to creeps, we need to carry out an 

investigation on both conventional and auxetic foams. The apparatus used to 

investigate the creep behaviour is shown schematically in Figure 6.1. The foam was 

cut to dimensions, 50 x 50 x 50 mm, the average error was ±0.3 mm. To aid 

measurement, two pins were inserted into the foam specimens over a 10 mm gauge 
length in the central region of the gauge section. Care was taken to ensure that the 

pins were pushed straight through perpendicular to the specimen. The specimen was 

then loaded by a dead weight (e. g. 500±0.05g). Firstly, the specimen was 

photographed without a load, and then an external load was suspended from the end. 

Every minute a photograph was taken. After 10 minutes, the load was removed, and 

the foam began to recover from its deformation. Photographs were then taken every 

minute for a further 12 minutes, before the test was stopped. The photographs were 

then enlarged using a slide projector, and the distance between the pins measured for 

each case. This enabled the longitudinal strain and hence the creep behaviour of the 

specimens to be studied. Six conventional and auxetic specimens were tested for 

each type of the lOppi polyether urethane foam (i. e. IOCO and l(iOAO). The strain- 

128 



The Mechanical Properties of Foams (Part I) 

time diagrams are shown in Figures 6.2 and 6.3. The Figures show that the foam 

creep response is dependent on the cell geometry. It can be seen that: 

The creep behaviour of a foam depends on the cell geometry and the property 

of matrix polymer. 

(1) Auxetic foam requires less time than conventional foam to restore to its 

original shape once the external load is removed. 

(2) Within the same period of deformation time (e. g. 10 min. ), the 

deformation of auxetic foam is less than that of conventional foam. This 

implies that auxetic foam may be a better load-bearing material than 

conventional foam. (Further investigation is shown in Chapter 7). 

Foam 
y 

Risc 
Load Direction 

Foam 

x 

Pins 
z 

End plate 

Fig. 6.1 Schematic diagram of compressive creep test. 
(The pin dimensions: 0.2 x 0.2 x 50 mm). 

lOppi Polyether Urethane Foam 
0.02 

0 

-0.02 

-0.04 

-0.06 

-0.08 
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-0.12 

..... ... ............. 

................... ................. 

ý_ E . -- 

-5 05 10 15 20 25 

Time (min. ) 

Fig. 6.2 Diagram of compressive strain versus time for the lOppi 
conventional open-cell polyether urethane foam (IOCO). 
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lOppi Auxetic Polyether Urethane Foam 
0.02- 

0-- .. 4 ý ..... ........ _...... - -- -- ........ .... ........ ..... 
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..... -0.02 ....... --------- ...... .. _ .... ............. _ _ ........... 

-0.04-- 
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e 
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-0.12 
-5 05 10 15 20 25 30 

Time (min. ) 

Fig. 6.3 Diagram of compressive strain versus time for the lOppi auxetic open-cell 
polyether urethane foam (IOOAO). 

6.2.3 Strain Rate Ef 

Since the foam is a viscoelastic material, it is expected that it may be strain 

rate dependent. In order to investigate this, a series of compression tests at cross 
head speeds of 20,10,5 and 0.1 mm/min. were conducted on an Instron 4505 test 

machine. 
Strain rate is defined as the rate of strain change with time, and it is 

calculated as follows: 

Strain rate = Cross-head speed / Original gauge length, L (6.1) 

The 60ppi closed-cell conventional polyester urethane and the 60ppi open- 

cell auxetic polyether urethane foams had dimensions of 50 x 50 x 50 mm. For each 
foam, tests was carried out at 4 different cross-head speeds and, hence, at 4 different 

strain rates. Three specimens were tested for each type of foam and all errors were 

within 3%. The results are shown in Figures 6.4 and 6.5. 
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601211i Closed-Cell conventional Polyester Urethane Foam 

(Compress along face B) 
1.2 
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0.2 
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=-7, ' --/ 

Error Bar: + 

-0.2 1. .... 1. 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Strain 

Fig. 6.4 Compressive stress-strain curves for the 60ppi conventional closed-cell polyester urethane 
foam (PECC) tested at 4 different cross-head speeds. 

5 

4 

E3 

z 

0 

(Compress along Face B) 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 

Strain 

Fig. 6.5 Compressive stress-strain curves for the 30ppi auxetic open-cell polyether urethane foam 
(30ppi, IOOAO) at 3 different cross-head speeds. 
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Figures 6.4 and 6.5 show that the influence of strain rate at room 
temperature is small for both conventional and auxetic foams. Modulus values and 

the stress at 10% strain show only small variations. However, the stresses at higher 

strains and the elastic collapse stress do show substantial dependence on strain rate. 
It appears that when the strain rate is increased the stress-strain curve is shifted 

upwards. This is due to the viscoelastic behaviour of the foam. 

6.2.4 Suecimen Geometry Effect 

An investigation into the effect of the specimen geometry was carried out. 
The base area of the 60ppi open-cell conventional polyether urethane foam samples, 
LxW, was varied from 620 mm2 to 39600 mm2, and the height h, of the samples 

was varied from 22 mm to 141 mm. The slenderness of the 30ppi auxetic open-cell 

polyether urethane foam, was varied from 13.34 to 146.32. The tests were carried out 

using an Instron 4505 at a cross head speed of 2 mm/min. Three specimens were 
tested for each foam type and the average errors were within 5%. The results of the 

tests are shown in Figures 6.7 to 6.9. It can be seen that the compression is 

dependent on the height and the base area of the specimen. Scatter of the test results 
decreases with increasing base area. This is because, for larger cross sections, 

random inhomogeneities have less effect. Also the compressive buckling strain, 
decreases with specimen height. On the other hand, the elastic modulus determined 

from these measurements increases with specimen height. Since the effect of the 
disturbed regions on the total deformation decreases with increasing specimen 
height, smaller characteristic compressive strain and hence higher modulus of 

elasticity, will be obtained for larger specimen heights. If the aspect ratio is too large 

(e. g. h= 141 mm), there is also the possibility of transverse displacement of the 

entire sample. If the height of the specimen is too small (e. g. h= 22 mm), there will 
be the end effects. 

P 

WZ7 v Slenderness of 

La 
foam: LhxW 

h 
Foam Specimen Size: 

LxWx h 

P 

Fig. 6.6 Schematic diagram of the foam specimen aspect ratio. 
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Fig. 6.7 Compressive stress-strain curves for the 6Oppi conventional open-cell polyether urethane 
foam (6000) tested with 7 different gauge lengths, h. 
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Fig. 6.8 Compressive stress-strain curves for the 60ppi conventional open-cell polyether urethane 
foam (6000) tested with 6 different cross section areas, LxW. This figure shows that higher 
modulus of elasticity will be obtained for smaller specimen cross-sectional areas. 
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Fig. 6.9 Diagram of compressive stress-strain for the 30ppi auxetic open-cell polycther urethane 
LxW 

foam (30ppi, 100AO) tested with 5 different slenderness, h. 
This figure shows that the Young's 

modulus of auxetic foam is dependent on the specimen geometries. 

It can be seen from Figures 6.7 to 6.9 that to obtain the highest possible 

accuracy in the measurements of the characteristic data, we need to use same 

dimensions for all samples. 

6.2.5 The Compressive Stress-Strain Behaviour 

A foam specimen, shown in Figure 6.10, was subjected to an axial 

compression force, P, using an Instron 4505 testing machine as shown schematically 

in Figure 6.11. The foam sample was placed between the parallel compression plates 

of the machine and compressed at a constant cross-head speed of 2 mm/min. At 

various increments of force, P, the change in length, AL, for the specimen with an 

initial gauge length, Lo, was recorded on the chart recorder, and the engineering 

stress is calculated by using: 

6= P/Ao (6.2) 

Where: the stress, a, is measured in kN/m2, since the force, P, is measured in kN 

and the initial cross-section area, Ao , in square meters. 

The compression force, P, also produces an axial reduction of the 

specimen. For the initial gauge length, Lr,, of the specimen, the stress is assumed to 

be uniformly distributed for all cross sections. It is also assumed that this uniform 
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stress will produce a uniform reduction, AL. With the uniform reduction assumed, 

the deformation is expressed by the engineering strain, E. 

E= AL /Lo (h. 3) 

The engineering strain, e, is measured in mm per mm since the change in length, 

AL, and the original gauge length, Lo, are both expressed in mm. 

Within the linear elastic region Hooke's law can be considered valid, so that 

the average engineering stress is proportional to the average engineering strain, 

6 

-=E= cons tan t 
C 

(6.4) 

The constant of proportionality, E, is known as the modulus of linear elasticity or the 
Young's modulus. 

With PUR flexible foam, anisotropy in the cell structure (see Figure 4.4) 

may lead one to expect differences in the mechanical properties of foams when 
loaded in different directions. The studies will show the degree of scatter in the 

mechanical data that is likely to occur because of the variation in the cell structure of 

each dimension. 

These compression tests on PUR foam conform to ASTM-D3574-91(C). 

The test specimens were 50 ± 0.5 mm cubes with all sides perpendicular to within 

±0.5 mm and opposite sides parallel to within ±0.5 mm. End plates, which were 60 x 
60 x 2.62 mm of stainless-steel stock parallel to within ±0.03 mm, were bonded onto 

the loaded surfaces. Apollo Adhesive A. 2874 (Apollo Chemicals Limited, Staffs. ) 

was used between the specimen and the loading surface. All the tests were carried 

out using an Instron 4505 at a cross head speed of 2 mm/min. The test configuration 
is shown schematically in Figures 6.10 and 6.11. Five types of conventional foams 

were investigated, and their micrographs were shown in Figures 4.4 to 4.6. Three 

specimens were tested for each type of foam, some variation in the relative density 

of each specimen was observed but was considered negligible. The errors associated 

with the tests were within 10%. The effects of the orientations are shown in Figures 

6.12 to 6.16. The primary effects of anisotropy are the decreasing value of the 

critical elastic collapse strain, CQ, and the increasing value of the Young's modulus 

in the foam rise direction. A decrease in the average cell size is accompanied by an 
increase in the Young's modulus and a decrease in the critical collapse strain, eQ, of 

the foam. It is evident that changing the cell structure has a pronounced effect. 
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Fig. 6.10 Schematic diagram of a foam compression test specimen. 

Instron Testing Machine 
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Foam Specimen 
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Fig. 6.11 Schematic diagram of the compression test configuration. 
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Fig. 6.12 Compressive stress-strain curves in two orthogonal directions in the planes normal to the 
rise direction (Face A and Face B) and in the rise direction (Face C) for the 60ppi conventional elastic 
reticulated polyester urethane foam (PECO). 
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Fig. 6.13 Compressive stress-strain curves in two orthogonal directions in the planes normal to the 
rise direction (Face A and Face B) and in the rise direction (Face C) for the 60ppi conventional elastic 
closed-cell polyester urethane foam (PECC). 
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Fig. 6.14 Compressive stress-strain curves in two orthogonal directions in the planes normal to the 
rise direction (Face A and Face B) and in the rise direction (Face C) for the 60ppi conventional elastic 
open-cell polyether urethane foam (6000). 
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Fig. 6.15 Compressive stress-strain curves in two orthogonal directions in the planes normal to the 
rise direction (Face A and Face B) and in the rise direction (Face C) for the I Oppi conventional elastic 
open-cell polyether urethane foam (1000). 
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Fig. 6.16 Compressive stress-strain curves in two orthogonal directions in the planes normal to the 
rise direction (Face A and Face B) and in the rise direction (Face C) for the 30ppi conventional clastic 
open-cell polyether urethane foam (3000). 

It can be seen that there are three regions in the above conventional foam 

stress-strain diagrams (see Figures 6.12 to 6.16) and these are indicated in Figure 

6.12. The initial linear portion of the curve, OQ, is the linear elastic region within 

which Hooke's law is obeyed. Point Q is the proportional limit, defined as the stress 

at which the stress-strain curve deviates from linearity. The slope of the stress-strain 

curve in this region (OQ) is the modulus of elasticity (the Young's modulus in 

compression). The second region, from Q to R, is described as the elastic collapse 

region. In this region, cells of the foam undergo an elastic collapse, the stress is 

almost keeping steady with the strain. The third region is the elastic densification 

region, RS. Elastic densification begins when the cell ribs of the foam are starting to 

touching each other and the foam density increases becoming more like a solid. As 

the densification increases, the foam becomes stronger (strain hardening) so that the 

load required to compress the specimen increases with further strain. Eventually, the 

load reaches a maximum value when the foam is fully deformed. For flexible 

polymer foams, such as the polyether urethane and polyester urethane foams used in 

this study, the specimen soon begins to recover once the load has been removed, as a 

result, the foam does not have any permanent deformation even after having been 

fully compressed. 
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Since cell geometry has a strong influence on the shape of the stress- 

strain curve, more markedly than any other variable, it is this parameter which 

should be changed if the strain function of a given foam is not desirable for a certain 

application. To vary the cell geometry, we can either change the cell shape or the 

slenderness of the cell rib (i. e. rib thickness (t) / rib length (L)). To investigate this, 

the stress-strain behaviour of auxetic foam were examined. The compressive stress- 

strain curves for auxetic foams which have a re-entrant cell shape are shown in 

Figures 6.17 to 6.20. The method used was the same as used for the conventional 
foam. All the tests were carried out at a cross head speed of 2 mm/min, and three 

specimens of each type were tested. The specimen dimensions were 50 x 50 x 50 

mm, the average error was ±0.4 mm. The average errors of all the testing results 

were within 9%. As can be seen from these diagrams, the shape of the compressive 

stress-strain curve of auxetic foam is very different from that obtained from a 

conventional foam. The curves can be divided into two parts. The first region OM, 

having a relatively low modulus, is followed by a gradual transition MN to an 
increasingly larger modulus. 
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Fig. 6.17 Compressive stress-strain curves in two orthogonal directions in the planes normal to the 
rise direction (Face A and Face B) and in the rise direction (Face C) for the lOppi auxetic open cell 
polyether urethane foam (IOOAO). 
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Fig. 6.18 Compressive stress-strain curves in two orthogonal directions in the planes normal to the 
rise direction (Face A and Face B) and in the rise direction (Face C) for the lOppi auxetic elastic 
open-cell polyether urethane foam (90AO). 
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Fig. 6.19 Compressive stress-strain curves in two orthogonal directions in the planes normal to the 
rise direction (Face A and Face B) and in the rise direction (Face C) for the lOppi auxetic elastic 
open-cell polyether urethane foam (80AO). 
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Fig. 6.20 Compressive stress-strain curves in two orthogonal directions in the planes normal to the 
rise direction (Face A and Face B) and in the rise direction (Face C) for the lOppi auxetic elastic 
open-cell polyether urethane foam (70AO). 

From the stress versus strain diagrams shown in Figures 6.17 to 6.20, it can 
be seen that the mechanical performance of conventional foam in compression is 

different from that of the auxetic foam. The mechanical properties of the 

conventional foam depend heavily on the directions of loading, whereas, the auxetic 
foam behaves more like an isotropic material (i. e. it is not strongly dependent on the 

loading direction). The compressive elastic modulus was measured by determining it 

from the linear elastic region (i. e. 0-5% strain for conventional foam and 0-8% 

strain for auxetic foam). The gradient of the load-displacement trace was obtained 
from the Instron 4505, then using the original cross-sectional area and original 
length to give the Young's modulus. The results are shown in Table 6.1. Loading in 

the rise direction of conventional foam deflects the shorter cell edges, of length, L. 

The stiffness in the rise direction is greater than that loading in the plane normal to 
it. However, for an auxetic foam, the orientation of the cell ribs is more random, and 

the re-entrant cell structure is similar in each dimension. Therefore, the mechanical 

behaviour in the three directions are similar. 
Table 6.1 

ECC ECO 0CO 3000 LOCO IOOAO 0AO 0A0 0AO 

P(kg/m3) 37.9±2.1 3.7±1.3 1.7±1.2 4.5±2.2 4.1±1.4 9.1±2.2 6.9±1.8 6.3±2.8 4.7±2.5 
Ex(kN/m2) 58.3±3.3 4.7±1.7 1.1±3.4 1.3±2.4 9.2±1.8 35.1±1.5 2.4±2.3 7.8±2.7 9.4±1.2 

(kN/m2) 150.3±4.5 8.2±2.3 170.4± 5 110.0±3 61.5+2.21 38.2+2.1 3.6±2.5 8.5±1.4 51.4±2.3 

z(kN/m2) 9.6±2.7 5.6±1.5 110.2±3 7.8±3.5 8.3±2.4 36.3±1.6 3.9±3.0 7.1±1.6 50.7±3.1 

Table 6.1 The compressive modulus for the foams. 
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6.3 Tensile Test 

6.3.1 Introduction 

According to ASTM 3574-91(E), the tensile stress of a PUR foam, together 

with the corresponding tensile strain, is determined using rectangular specimens as 

shown in Figure 6.21. The force was applied using end-wise T profiles. These 

profiles were stuck onto the foam using Apollo Adhesion A. 2874 in such a way that 

an articulated suspension is effective in both directions as shown in Figure 6.22. 

Z 

Y 

gAC 

X 

Tensile test on: Face B FaceC 

C 

4 
Face A 

Fig. 6.21 Schematic of the tensile test foam specimens. 

Instron Testing machine 
Load Cell 

Tensile Grip 

Foam Specimen 

Aluminium T- sections 

Clamping Plate 

Cross Head 

Fig. 6.22 Schematic of the tensile test. 

In a tensile test special consideration must be given to the application of the 

force. In order to obtain an unambiguous state of stress in the gauge length, the 

specimen was loaded along the central axis so that it was free of any bending 

moment. Properties of the foams depend upon the following effects as indicated in 

Sections 6.3.2 to 6.3.4. 
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6.3.2 Strain Rate Effect 
The foams were cut to dimensions, 25 x 25 x 130 mm (the average error 

was ±0.5 mm). The tensile tests were carried out using an Instron 4505 at cross head 

speeds of 0.5,2,10 and 20 mm/min. At each cross-head speed, three specimens were 

tested and the errors were within 6%. (see Figures 6.23 and 6.24). 
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Fig. 6.23 Tensile stress-strain curve for the lOppi conventional open-cell polyether urethane foam 
(1000) tested of 4 different cross-head speeds . 
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Fig. 6.24 Tensile stress-strain curve for the lOppi auxetic open-cell polyether urethane foam 
(100AO) tested of 4 different cross-head speeds. 
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Once again, the tensile behaviour is similar to the compressive behaviour. 

The diagrams show that the influence of strain rate is small for both conventional 

and auxetic foams. It seems that when the strain rate is increased, the slope of the 
initial linear elastic region of the stress-strain curve also increases. This is due to the 

viscoelastic behaviour of the polymeric material. Comparing the tensile test results 

of this study with published data, it is found that Benjamin (1965) reported data on 

rigid polystyrene foam tested in tension at several strain rates which do not agree 

with the results presented here, as no change in failure strength was observed but an 
increase in modulus was. Since the type of foam used by Benjamin was a plastic 

rigid foam, this may account for the difference in the results. However, results 

obtained by Rinde and Hogg (1971) and by Green et. al. (1969) show that the failure 

stress is independent of rate, and the modulus increases with strain rate, which is 

agreement with the results of this study. 

6.3.3 Specimen Geometry 

An investigation on the 60ppi closed-cell conventional polyester urethane 
foam and the 30ppi auxetic open-cell polyether urethane foam was carried out. The 

sizes of the specimens tested are shown in Figures 6.25 to 6.27. The tensile tests 

were performed using an Instron 4505 at a cross head speed of 2 mm/min. Three 

specimens were tested for each case, and the errors were within 8%. 
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Fig. 6.25 Tensile stress-strain curve for the 60ppi conventional closed-cell polyester urethane foam 
(PECC) tested with 4 different cross section areas. 
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Fig. 6.26 Diagram of tensile stress versus tensile strain for the 60ppi conventional closed-cell 
polyester urethane foam (PECC) tested with 9 different gauge lengths. 
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Fig. 6.27 Diagram of tensile stress versus tensile strain for the 30ppi auxetic open-cell polyether 
urethane foam (30ppi, IOOAO) tested with 6 different slenderness. 

Figures 6.25 to 6.27 show that the tensile stress-strain behaviour is also 
dependent on the length and the base area of the specimen. Increasing the base area, 
results in a reduction in the scatter of the test results; but increasing the length of the 
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specimen, causes an increase in the scatter of the test results. This is in agreement 

with the observation under compressive loading. 

6.3.4 Tensile Creen 
An investigation was carried out on rectangular specimens having 

dimensions of 25 x 25 x 130 mm, the average error was ±0.5 mm as shown 

schematically in Figure 6.28. The photographic measuring technique used in the 

compressive creep tests was used to give a point strain-time value for tensile creep. 
The results are shown in Figures 6.29 to 6.31. 
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Fig. 6.28 Schematic diagram of the tensile creep test. ( The pin dimensions: 0.2 x 0.2 x 25 mm). 
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Fig. 6.29 Diagram of tensile strain versus time for the lOppi open-cell conventional polyether 
urethane foam (LOCO). 
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Fig. 6.30 Diagram of tensile strain versus time for the 60ppi reticulated conventional polyester 
urethane foam (PECO). 
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Fig. 6.31 Diagram of tensile strain versus time for the lOppi open-cell auxetic polyether urethane 
foam (IOOAO). 

From Figures 6.29 to 6.31, it can be seen that conventional foam requires 

less time to restore to its original length once the external tensile load is removed. 
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The strain-time curve shape is similar to that of the compression test. The foams are 

non-linear viscoelastic materials. 

6.3.5 The Tensile Stress-Strain Behaviour 

An Instron 4505 was used to conduct the tests and the modulus was 

calculated from the load-displacement traces, and by substituting the original cross- 

sectional area and the original length of the foam specimens. The dimensions of all 

the PUR tensile specimens were, 25 x 25 x 130 mm (the average error was ±0.3 

mm). All the tests were carried out at a speed of 2 mm/min. Three specimens were 

tested for each type of foam in the three directions and the average errors were 

within 10%. The experimental results are shown in Figures 6.32 to 6.39. 
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Fig. 6.32 Tensile stress-strain curve for the 60ppi conventional open-cell polyether urethane foam 
(6000). The graphical end-points represent fracture of the foam at the glue joint. 
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Fig. 6.33 Tensile stress-strain curve for the 30ppi conventional elastic open-cell polyether 
urethane foam (3000). 
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Fig. 6.34 Tensile stress-strain curve for the lOppi conventional elastic open-cell polyether urethane 
foam (IOCO). 
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Fig. 6.35 Tensile stress-strain curve for the 60ppi conventional elastic closed-cell polyester 
urethane foam (PECC). 
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Fig. 6.36 Tensile stress-strain curve for the lOppi auxetic open-cell polyether urethane foam 
(70AO). 
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3D lORni Auxetic (80-50) Polyether Urethane Foam 

(Tensile Test) 
25 

--- Pace C 
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Strain 

Fig 6.37 Tensile stress-strain curve for the lOppi auxetic open-cell polyether urethane foam 
(80AO). 
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Fig. 6.38 Tensile stress-strain curve for the l0ppi auxetic open-cell polyether urethane foam 
(90AO). 
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3D 10ppi Auxetic (100-50) Polyether Urethane foam 
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Fig. 6.39 Tensile stress-strain curve for the lOppi auxetic open-cell polyether urethane foam 
(100AO). 

With the flexible conventional and auxetic foams under tensile loading, the 

stress initially increases approximately in proportion to the strain so that it is 

possible to determine a tensile modulus with reasonable accuracy. (see Figures 6.25 

to 6.32) as in the case of compression, the proportional limit depends upon the 
detailed cell structure and the properties of the cell ribs. For conventional foams, the 

tensile proportional limit is approximately 2.5% (strain) this is the case for the data 

shown in Figures 6.32 to 6.35. For auxetic foams, the tensile proportional limit is 

about 6% (strain) as shown in Figures 6.36 to 6.39. This small Hooken region (e. g. 
OH for both conventional and auxetic foams) is followed by a region in which the 

stress does not increase linearly with increasing strain (e. g. HJ). 

However, the Young's modulus of conventional foam is about twice that of 
auxetic foam in the linear elastic region. The results are shown in Table 6.2. 

Table 6.2 

ECC ECO OCO 3000 LOCO IOOAO 0AO 0AO 0AO 

p(kg/m3) 37.9±2.1 33.7±1.3 1.7±1.2 4.5±2.2 4.1±1.4 9.1±2.2 76.9±1.8 6.3±2.8 74.7±2.5 

Ex(kN/m2) 9.1±4.5 56.7±3.2 1.1±2.1 9.6±3.4 0.5±3.5 1.8±3.1 3.2±2.3 50.3±2.8 58.2±2.5 

E (kN/m2) 161.5±5. 3.9±2.5 170.4+5 131.3±2 4.7±2.4 2.4±2.3 5.3±3.0 3.6±2.1 3.1±2.2 
Ez(kN/m2) 2.4±4.7 l. 1±2.8 110.2±4 7.2±3.3 2.3±3.8 2.3±2.2 4.8±2.1 51.1±2.3 1.8±1.9 

Table 6.2 Tensile moduli of the foams. 
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6.3.6 The Effect of Cell Rib Thickness 

Specimens with different rib thickness were prepared as described in 

Chapter 4. The dimensions of the rectangular specimens were 25 x 25 x 130 mm 

and the average error was ±1 mm. The tensile tests were carried out using an Instron 

4505 at a cross head speed of 2 mm/min. Four specimens were tested in each case. 
The average values were used to plot Figure 6.40. 

100 

90 

. ft. 80 
1 

70 
Z 

60 
W 

50 

40 

,ýn vv 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 
t/L 

Fig. 6.40 Diagram of the tensile modulus versus cell rib thickness/cell rib length for the 60ppi 

conventional closed-cell polyester urethane foam. 

6.4 Poisson's Ratio 

6.4.1 The Tensile Poisson's Ratio 

The samples were sectioned to the dimensions shown in Figure 6.41. Nine 

pins were inserted into the foam in a three by three arrangement in the central region 

of the gauge section. They were spaced at equal distances apart and care was taken 

to ensure that the pins were pushed straight through the foam. One end of the foam 

was suspended from a retort stand. First, it was photographed without any weight 

hanging from it and then weights of varying size were suspended from the end. To 

minimise creep effects, the weights were left for a maximum of one minute before 

photographing. The weight was then removed, and the foam left to recover for five 

minutes before another weight was suspended. This procedure was repeated for six 
different weights. Three specimens were tested in each case. The photographs were 

enlarged using a slide projector, and the distance between the pins measured for each 
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case. This enable the longitudinal and the transverse strains to be determined, and 
hence the Poisson's ratio to be calculated. This pin method has the additional 

advantage of measuring a through-thickness average property of the foam. 

ýbý (c) (d) (e) C a) 

25mm 

1 

(g) (h) 

Retort stand 

clamp 
Foam 

Pin 

End Plate 

Weight 

Fig. 6.41 Schematic diagram of the preparation of the tensile Poisson's ratio test specimens. 
Measure: (a)v 

y, 
(b)vu, (c)v, 

y, 
(d)vix, (e)vy,, (f)vyz. (g) The dimensions of the foam specimen. (h) 

Schematic diagram of the apparatus used to measure the tensile Poisson's ratio of foam. (The pin 
dimensions: 0.2 x 0.2 x 25 mm). 

Calculation of Poisson's Ratio 

The distance between the pins was measured and plotted against the 

weight in both directions. The graphs were then extrapolated to zero weight to obtain 

values for X0 and yo; the original lengths and widths respectively. The distances 

between the centre set of pins in both directions were used and the values of X0 and 

yo as shown in Figure 6.42 to calculate the longitudinal and the transverse strains, 

EX =X 
Xo 

(65) 
xo 
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and ey =Y 
Yo (6.6) 

Yo 

The transverse strain versus the longitudinal strain was plotted and the best 

linear fit to the small strain data found. The gradient was the Poisson's ratio, vy; , 

Vyx =-E. (6.7) 
Ey 

Note that the graph should pass through the origin. For example, Figures 6.43 and 
6.44 are typical of tensile strain plots of conventional foam and auxetic foam 

respectively. 

Foam 

Y 

(a) (b) (c) 

Fig. 6.42 Schematic diagram of the tensile Poisson's ratio measurements. (a) unstressed foam 

specimen (b) conventional foam under tension. (c) auxetic foam under tension. 

Figures 6.43 and 6.44 show that the longitudinal strain is not always 

proportional to the transverse strain, hence the Poisson's ratio is non-linearly 
dependent on the axial strain. This is because the cell ribs become aligned at large 

strains, inducing stretching as well as hinging and bending. The Poisson's ratio 

presented in Table 6.3 is for the linear region indicated by the thick line. 
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60ppi Blue Conventional Foam Poisson's Ratio (Face A) 

0.05 
Tension 

n ....................................................................................................... 

-0.005 ......... ................... ............. ................. ................. .................. ................ 

-0.01 ................................... ............ ..................................................... 

-0.015 ....................................................... ................ F 1-11-i 

0.02 ..................................................... 
5.................................. 

v =+0.44891 0.025 .................................... 
ä................ 

.................................... .............. 

-0.03 

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 

dy/y 
y= -4.2802e-06 + -0.44891 x R= 0.99643 

Fig. 6.43 Diagram of the tensile transverse strain versus the tensile longitudinal strain for the 
60ppi open-cell polyether urethane conventional foam (6000). 

lOppi Polyether Urethane Auxetic Foam 
Tension 

U. Ub 
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X 0.0 3 
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0.02 

0.01 
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_n ni vv 
-0.01 0.04 0.09 0.14 0.19 0.24 

dy/y 
Fig. 6.44 Diagram of the tensile transverse strain versus the tensile longitudinal strain for the 
lOppi blue open-cell polyether urethane auxetic foam (90AO). 
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Three specimens were tested in each case and an average was taken. The 

results are shown in Table 6.3. The Poisson's ratios greater than 0.5 do not violate 

any physical law since the foam is an anisotropic material. 

Tahly Al 

oisson's Ratio PECC _. 
0CO loco 100A0 OAO 80A0 0A0 

uxy ). 42±0.03 . 
37±0.02 ). 21± 0.033 0.79±0.02 0.64±0.03 0.59±0.01 0.52±0.013 

V ,y . 38±0.04 . 32±0.01 . 25±0.022 0.76±0.03 0.61±0.04 0.66±0.02 0.54±0.022 

ux: 
. 15±0.02 . 18±0.01 ). 12±0.018 0.38±0.01 0.36±0.02 0.22±0.02 0.18±0.005 

V. 
. 13±0.01 ). 11±0.01 ). 07±0.008 0.43±0.01 0.43±0.04 0.28±0.01 0.21±0.004 

vyx 
. 
62±0.03 ). 48±0.02 ). 407±0.05 0.82±0.05 0.78*0.05 0.68±0.02 -0.53±0.011 

vyZ 
. 
58±0.02 ). 44±0.03 . 

38±0.045 0.88±0.03 0.75±0.03 0.62±0.04 0.54±0.015 

Table 6.3 Tcnsile Poisson's ratio of conventional and auxetic foams. 

6.4.2 The Comoressive Poisson's Ratio 

The specimens were sectioned to the dimensions shown in Figure 6.46. All 

the compression tests were carried out using an Instron 1185 at a cross head speed of 

2 mm/min. The test arrangement is shown schematically in Figures 6.45. 

q' `B A7 w0000, ", 000, 
AC 

... C... B... 

... 

(a) T (b) ' (c) 

/fgC"C 
AA 

40"0.. 0000 

1 

(d) T (e) I (f) 

Fig. 6.45 Schematic diagram of the compressive Poisson's ratio specimens. Measure: 
(a)vZ)�(b)v, K, (c)vry, (d)v,, (e)vy., (f)vy,,. 
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Instron 

Load Cell 
End Plate 
Foam 

-ross Ilead 

Fig. 6.46 (a) Diagram showing the sample dimensions. (b) Schematic diagram of the apparatus 
used to measure the compressive Poisson's ratio of foams. 

A schematic diagram of the deformations of the foam samples is shown in 

Figure 6.47. The photographic measuring technique and method of calculation are 
the same as for the tensile test. 

Plated 

X 

" " 

y""y"" 
"" 

Foam Pin 
(a) (b) 

Fig. 6.47 Schematic diagram of the compressive Poisson's ratio measurements. (a) An unloaded 
foam specimen (b) Conventional foam under compression. (c) Auxetic foam under compression. 

The transverse strain, ex, versus the longitudinal strain, F -Y. is plotted in 

which the gradient of the initial linear region is the compressive Poisson's ratio for 
foam. A typical C, versus F-, plot for a conventional and an auxetic foam loaded 

under compression is shown in Figures 6.48 and 6.49, respectively. 
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10ppi Polyether Urethane Conventional Foam 
(Compression) 

0.05 

0.04 .............. ........... ..... '.. ........ ------------ . -........... ............... 

------------------ ................................ 
<----- ---- ------....... ...... ----- 0.03 

K 
dx/x x 0.02 

0.01 ......... ..................... ..................................................... .............. 

0 ................................................................................. . 
Poisson's Ratio = 0; 26 

-0.01 
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 

dy/y 

Fig. 6.48 Graph of compressive transverse strain versus longitudinal strain for the lOppi 
conventional foam (LOCO). 

Compressive Poisson's Ratio (Auxetic Foam) 

(Face C) 90AO 
0.005 
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-0.01 
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n nllc -V. VLJ 
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dy/y 

Fig. 6.49 Graph of compressive transverse strain versus longitudinal strain for the lOppi auxetic 
foam (90AO). 

Figures 6.48 and 6.49 show that the Poisson's ratio in compression is non- 
linearly dependent on the axial strain, implying that some cell rib buckling or contact 

occurs before the yield strain is reached. This behaviour is similar to the results 
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obtained by Rinde (1970), Choi and Lakes (1992), and Evans and Caddock (1999), 

even though Evans and Caddock used a dense polymer. The experimentally 
determined values for Poisson's ratio in compression are presented in Table 6.4. 

Values shown are average values obtained from four or five determinations. Note: 

the Poisson's ratio is given in the sense of a strain range for linear behaviour, within 
12% deviation from a tangent line through the origin. 

Table 6.4 

Poisson's Ratio ECC 3000 loco IOOAO 0AO 80A0 0AO 
V 

. 
22±0.06 ). 22±0.04 ). 14± 0.03 0.76±0.02 0.63±0.04 -0.55±0.01 0.48±0.01 

v=y ). 17±0.04 . 2(}±0.03 ). 12±0.03 0.73±0.021 0.64±0.03 -0.51±0.02 0.42±0.02 

Vu 
. 08±0.01 . 11±0.03 ). 05±0.01 [0.26±0.012 -0.10+-0.02 -0.08±0.02 0.06±0.004 

V ). 04±0.01 ). 08±0.02 ). 02±0.005 -0.21±0.011 -0.15±0.02 -0.08±{). 01 0.07±0.003 

vrx 
. 
26±0.05 ). 24±0.05 ). 20±0.08 0.66±0.06 0.60±0.05 -0.54±0.02 0.43±0.03 

uv= ). 25±0.08 
. 
20±0.06 ). 26±0.04 0.7±0.06 0.59±0.05 -0.52±0.04 0.41±0.01 

Table 6.4 The compressive Poisson's ratio of conventional and auxetic foams. 

Poisson's ratio for conventional and auxetic foams has been determined in 

both tension and compression. For flexible PUR foam, Poisson's ratio is greater in 

tension than in compression, and is not linear in either tension or compression, 

showing a larger value below the elastic collapse strain and a value near zero for 

high strains. 

6.5 Shear Test 

6.5.1 Introduction 

In isotropic materials the Young's modulus, E, the Poisson's ratio, v, and 

the shear modulus, G, are related by: 

G= 
E 

2(l + v) 
(6.8) 

However, no single relationship exists in an anisotropic material. Therefore, the 

shear moduli, G; j, were measured to look for their independence. 

6.5.2 Static Shear Modulus Measurement 

Two equal samples from the same foam were cut to the dimensions as 

shown in Figure 6.51 (a). A direct shear stress is applied to the specimen as 

represented schematically in Figure 6.50. Double shear was used to test the foams. 
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Six straight lines were marked onto the surfaces of the foam in a two by three 

arrangement in the central region of the gauge section. They were spaced an equal 
distance apart and care was taken to ensure that the lines were marked straight. The 

sides of the foam were fixed to aluminium plates using Apollo A. 2874 Adhesive and 

the end of the middle plate was suspended from a retort stand. First, it was 

photographed without any weight hanging from it, and then weights of varying size 

were suspended from the end of the middle plate. To minimise creep effects, the 

weight was left for a maximum one minute before photographing. The weight was 
then removed and the foam was left to recover for five minutes before another 

weight was suspended. This procedure was repeated for six different weights. Three 

specimens were tested in each case. The photographs were enlarged using a Ilford 

Multigrade 500 enlarger and the angle of deformation, Y, and hence, the shear strain 

was measured using a protractor for each case. Using EQ. 6.9 the shear stress 
together with the shear strain enable the shear modulus to be calculated. 

Retort Stand 

Free contact steel rod 

Foam specimen 

Aluminium plate 

Weight 

60mm 

I 
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Fig. 6.50 Schematic diagram of the shear test. 

Fig. 6.51 (a) 
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JB fJ B 
h fT 

A 

C B C ß 

(c) 

Jý fJ ýf 
ý ý 
1f Iý 

(G) 

Fig. 6.51 Schematic diagram of the preparation of the shear test specimens. (a) The dimensions of 
the foam sample. Measure: (b) G, y (c) G,,, (d) G, y (e) G�, (f) Gyx (g) Gy,. 

Free contact steel rod 
Aluminium Plate 

Foam Specimen 

Aluminium Plate 

Force F 

Retort stand and 
clamp 

Fig. 6.52 Schematic diagram of the photographic measuring technique for the shear test. 

6.5.3 Calculation of the Shear Modulus 

The double shear method shown in Figures 6.50 to 6.52 was used to 
determine the shear modulus. In such a case twice the area of the foam is resisting 
the applied force so that the shear stress is calculated by using: 

Shear stress i=F/ 2S (69) 

Where F is the applied force as shown in Figure 6.52, and S is the shear area of one 

side of the foam as shown in Figure 6.51(a). 

The shear strain, and the angle of deformation, Y, were measured using 

enlarged photographs. The shear stress versus shear strain was plotted and the shear 
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modulus calculated from the gradient of the linear portion of the curve. Note: the 

graph should pass through the origin. Figures 6.53 to 6.55 are the typical shear 

stress-strain diagrams of conventional and auxetic foams. 

60ppi Polyether Urethane Conventional Foam (Gxy) 

1.44 

1.02 

z 'ý, ' 0.6 

0.18 

........... ........... ................................ ........................... 

...................... ............ V............... 0................ 0............................. 

Shea Modulus, G Xy 6.64 RCN/m2 
-V. LF 

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 

7 
Fig. 6.53 Graph of the shear stress versus the shear strain for the 60ppi conventional foam (6000). 
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0.5 -a- i ............ ...... . 
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ý............... 
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0.2 c............ ........... c......................... .......... 

......... ............ p............ 
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ý........... ........... 
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7 

Fig. 6.54 Graph of the shear stress versus the shear strain for the lOppi conventional foam (LOCO). 
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Fig 6.55 Graph of shear stress vs. shear strain for the lOppi auxetic foam (70AO). 

From Figures 6.53 to 6.55, it can be seen that, for a conventional foam, the 

shear stress-strain diagram can be divided into two parts exhibiting significantly 

different stress-strain behaviours. The first region, having a relatively high modulus, 

is followed by a region where there is a large increase in strain for a small increase in 

stress. The transition between the two regions can be specified quite accurately. For 

an auxetic foam, the behaviour is different, an almost linear relationship between the 

shear stress and strain is observed throughout. These differences were detected with 

all of the types of foam investigated. Furthermore, the shear modulus depends 

heavily on cell size as well as cell shape. The effect of cell size is still not fully 

understood. 
To get an accurate value of the shear modulus, three or four specimens were 

tested in each case and an average was taken. The results are shown in Table 6.5. 

Tnhip XS 

Shear 

Moduli 

N m2 

ECC ECO 0CO IOCO IOOAO 0AO 80A0 0A0 EAO 

z . 
42±1.6 1.97±0.8 

. 
24±1.9 

. 
8±1.2 2.4±0.1 . 

2±0.1 1.8±0.1 1.7±0.1 
. 
3±0.2 

x 3.03±2.2 1.93±1.0 . 79±1.2 . 5±1.9 1.5±0.1 . 1±0.1 1.9±0.1 1.6±0.1 . 0±0.1 

xz . 
8±0.5 1.24±0.5 . 3±0.5 . 9±0.3 10.4±1.2 18.6±1.8 35.2±2.0 26.2±2.3 

. 1±0.5 

zx . 
2±0.4 1.36±0.5 2.1±0.4 . 

6±0.3 13.7±1.0 17.5±1.6 6.0±2.0 17.9±1.9 
. 
3±0.8 

Z . 
69±2.8 1.85±1.3 2.54±2.9 3.0±1.6 2.6±0.7 . 

3±0.5 2.0±0.3 1.9±0.4 . 5±0.6 

2.84±2.2 2.16±1.9 2.53±2.6 
. 
6±1.9 1.7±0.6 . 

2±0.5 1.9±0.3 1.7±0.3 
. 6±0.8 

Table. 6.5 The shear moduli of foams. 
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Table 6.5 shows that the shear modulus of a foam depends upon the 

physical properties of the solid material making up the cell ribs, the cell shape, the 

cell size and the loading directions. In some directions, the shear modulus of a 

conventional foam is lower than that of an auxetic foam and in the other directions, 

the reverse is true. The volumetric compression ratio changes in an auxetic foam is 

accompanied by a cell shape change as well as a cell size change. The high value of 

the shear modulus of an auxetic foam is not always due to the high value of the 

volumetric compression ratio. The shear modulus depends upon the Poisson's ratio 

of the foam. The results show that a better way to improve the shear stiffness may be 

to use a conventional foam of higher density. 

6.5.4 Dynamic Shear Modulus Measurement 

An investigation of the dynamic behaviour of foams was carried out using a 
DMTA (Dynamic Mechanical Thermal Analyser), shown in Figure 6.56 to measure 
the dynamic shear modulus. The shear sandwich arrangement is shown in Figure 
6.57(a). Two identical disc shaped samples were fixed between the drive shaft plate 
and the supporting studs using Apollo A. 2874 Adhesive . The sample radius was 
4.0±0.05 mm. The dimensions of the foam sample is shown in Figure 6.57(b) and 
the Z-X planes were sheared. The thickness of the adhesion layer was approximately 
0.003 mm. Three pairs of samples were tested for each case, the average error of the 
LogG' and the loss tan 8 was within 8% and 10% respectively. The testing results of 
the LogG' and tan 3 are shown in Figures 6.58 to 6.63, and 7.31 to 7.36 

respectively. Here G,, Z was measured and the storage moduli are presented for 

Fig. 6.56 The DMTA, Dynamic Mechanical Testing Analyser. 
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Adjustment Screw Shear Sample 
Stud 

Z 

2±0.02 m 

Yp"- 
(Foam Rise Direction) 

-)ampie 

(a) (b) 
Fig. 6.57 (a) Shear sandwich arrangement. (b) The dimensions of the foam sample. 

The properties of the prepared PUR foam samples were measured using the 

DMTA. The temperature, the storage modulus (G') and the loss tan 6 were recorded. 

LogG' was used to measure the change of stiffness with temperature. DMTA 

analysis was carried out at a frequency of 10 Hz over the temperature range -70°C to 

100°C. The heating rate used was 2°C/min. Liquid nitrogen was used to achieve 

maximum cooling. The DMTA graphs are illustrated in Figures 6.58 to 6.60. The 

effects of frequency on the dynamic modulus are shown in Figures 6.61 to 6.63. 
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Fig. 6.58 DMTA results of the open-cell polyether urethane foams. Comparison of the storage 
shear modulus of an auxetic foam (90AO) with its parent conventional foam (IOCO). (The testing 
frequency was 10Hz). 
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Fig. 6.59 DMTA results of the 60ppi reticulated polyester urethane foam. Comparison of the 
dynamic behaviour of auxetic foam (PEAO-4) with its parent conventional foam (PECO). (The 
testing frequency was ]OHz). 
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Fig. 6.60 DMTA results of the 60ppi closed-cell polyester urethane foam. Comparison of the 
storage shear modulus of an auxetic foam (PEAC-1) with its parent conventional foam (PECC). (The 
testing frequency was 10 Hz). 
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Typical dynamic mechanical properties of foams as a function of 

temperature are illustrated in Figures 6.58 to 6.60. The storage shear modulus LogG' 

is plotted versus temperature in the range from -75 to 100°C at a constant frequency 

of 10 Hz. Two changes of gradient of modulus are discernible in the case of 

reticulated and open-cell foams: one corresponding to the glass transition at around 

-30°C, and a secondary peak at around 25°C. A sharp decrease in modulus of 

approximately one and half orders of magnitude is seen to occur as the temperature 
increases through the glass transition region over a temperature range of about 60°C 

after which the sample enters the rubbery region (above the glass transition 

temperature, Tg) where a slight decrease in modulus is observed to occur with 

temperature rise, over the range 30°C to 100°C. All the PUR foam samples prepared 

showed similar thermal relaxation trends. However, the DMTA results show that the 

storage shear modulus, G,, of auxetic foam is higher than that of conventional foam 

over a large temperature range (e. g. 0° <Temp. < 100°) at the normal dynamic 

testing frequency of 10 Hz. For clarity and brevity, the DMTA data have been shown 
for only a single frequency. However, when other frequencies were used, the trends 

of the curves were observed to be the same, the curve shifted upwards as the 
frequency was increased, and shifted downwards as the frequency was reduced as 

shown in Figures 6.61 and 6.62. 
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Fig. 6.61 DMTA results of the 60ppi reticulated auxetic polyester urethane foam (PEAO-4). 
Illustration on effect of frequency on the storage shear modulus, Log Gxz'" 
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Fig. 6.62 DMTA results of the 60ppi reticulated conventional polyester urethane foam (PECO). 
Illustration on effect of frequency on the storage shear modulus. 
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Figure 6.63 shows that decreasing the frequency decreases the shear 

modulus of both conventional and auxetic foams. When the frequency is 10Hz, 

LogG' is approximate 5.45 dynes/cm2 for the conventional foam (PECO) and is 

approximate 5.05 dynes/cm2 for the auxetic foam (PEAO-4). (Note: One kN/m2 is 

equal to 104 dyne/cm2). If we compare these dynamic experimental results with the 

static experimental results (Table 6.4), we can see that the dynamic shear modulus 

(G,, Z or G�, ) of both conventional and auxetic foams is of the same order of 

magnitude as the static shear modulus. Both static and dynamic shear moduli of the 

auxetic foam PEAO-4 are higher than that of its parent conventional foam PECO. 
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Chapter 7 The Mechanical Properties of Foams 
(II) 

7.1 Introduction 

The behaviour of polymeric foams in energy absorption applications, such as 

automotive seating, where static and dynamic indentation resilience are the main 
functional attributes, is governed by two material properties: the effective stiffness; 

and energy loss through hysteresis. In most applications the foam is subject to 

combined stresses (tension, shear and compression) and in some characterization 

procedures, such as ball indentation and ball rebound, these conditions prevail. In this 

chapter we present the results of ball indentation, hysteresis, ball rebound and DMTA 

tests for both conventional and auxetic foams. 

7.2 The Ball Indentation Test (Static Indentation Resilience) 

In engineering terms the indentation resilience or the hardness of a material is 

a measure of its resistance to local indentation. The Ball Indentation Test has been 

used for many years to measure the hardness of metals. Foams are widely used for 

packaging, and usually the packaged object has corners. Therefore the local 

indentation resistance is an important mechanical property of foams. 

The indentation resilience of the lOppi and 30ppi open-cell polyether urethane 
foams, consisting of conventional and auxetic foams with a range of densities, were 

examined. The relevant properties are summarised in Table 7.2. Both spherical and 

cylindrical indenters (Table 7.1) were compressed into the rectangular foam samples 
in the foam rise direction using an Inston 1185 mechanical testing machine, with a full 

scale deflection of 0.1 kN, at a cross head speed of 2 mm/min. as shown 

schematically in Figure 7.1. The load-deflection response was recorded by the 

Instron chart recorder. The shapes of indentation profiles of the cylinder and the 
indentation depths were recorded by a camera (see Figure 7.3,7.4, and 7.5). 

Although the indentation profile of a ball cannot be recorded directly by the camera, 

we know that the diameter of the ball indentation profile is qualitatively similar to that 

of the cylinder indentation profile (see Wilsea, Johnson and Ashby (1974)). 
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Direction) 
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Fig. 7.1 Schematic diagram of the Ball Indentation Test, looking along the z direction. 

(. 
Foam 

Profile 

10 x 

z 

Ball y 
Foam 

Fig. 7.2 (a) View of the ball at 45° above the horizontal level. (b) View of the ball along the z 
direction. 

Cylinder 
Profile 
Foam X 

Fig. 7.3 Schematic diagram of the Cylinder Indentation Test, looking along the z direction. 

Examples of the photographs taken of the indentation profiles are given in 

Figures 7.3 and 7.4. 
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Fig. 7.4 Compressive displacement of the lOppi conventional foam (LOCO) produced by a 
cylindrical indenter. The displacement is (a). 4mm. (b) 8mm. (c) 0mm (Restore to its original height). 
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Figure 7.4 and 7.5 show typical photos of the deformation below a 

cylindrical indenter. The circular cap of elastically deformed foam is clearly visible, 

and it is evidence of shear banding. In all cases, the indented area was much larger 

than the area of any individual cell, and the diameter of the indentation profile is larger 

than that of the indenter. 

Table 7. I 

Indenter Steel Ball 1 Steel Bali 2 Steel Cylinder I Steel Cylinder 2 

Diameter, D (mm) 50±0.002 22±0.001 50±0.002 22±0.0013 

Length, L (mm) - 200±0.5 2(x)±0.3 

Table 7.1 The sizes of the indenter. 

Table 7.2 

Sample 

X 

Dimensions (mm) 

Y Z 

Density (kg/m3) Compression 
Poisson's Ratio, Vyx 

10ppi-100AO 203±2.8 53±0.5 204±2.5 79±3.0 -0.66±0.06 

lOppi-90AO 205±2.5 51±0.3 202±2.7 77±2.1 -0.6±0.05 
lOppi-80AO 202±2.2 50±0.5 203±2.5 76±2.2 -0.54±0.02 

l0ppi-70A0 198±2.0 49±0.3 200±1.7 75±2.5 -0.43±0.01 

1000 200±1.5 50±0.5 199±1.2 24±3.1 +0.2±0.08 

30ppi-100AO 203±3.2 52±0.8 200±2.5 95±1.8 -0.62±0.05 
30ppi-90AO 202±2.6 52±0.3 204±3.1 84±2.3 -0.56±0.04 
30ppi-80AO 201±3.0 53±0.3 202±2.6 73±2.5 -0.50±0.04 
30ppi-70AO 200±2.1 50±0.5 200±2.7 69±1.6 -0.38±0.02 
3000 198±2.3 50±0.4 200±1.8 24.5±2.7 +0.24±0.05 

Table 7.2 The Dimensions, Poisson's ratios and densities of the testing samples. 

The test were performed by allowing a steel ball (i. e. Steel Ball 1) to penetrate 
into the test specimen and the ball indentation load-displacement curve recorded on the 
Instron chart recorder. The specimen restored to its original dimensions once the load 

was removed. Then, a steel cylinder of identical diameter (i. e. Steel Cylinder 1) was 
forced into the same specimen and the cylinder indentation load-displacement curve 

was also recorded on the Instron chart recorder. It was photographed right from the 
beginning of the Cylinder Indentation Test. An average 25 photos were taken for each 
test. The photographs were enlarged and the diameter of the indentation profile, d, and 
the depth of the impression, h, were measured as shown in Figure 7.6. 
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Fig. 7.6 The stress system beneath a cylindrical indenter having a uniform indentation pressure. 
d, h are the diameter and the height of the profile respectively. D= 2R, d= 2a, d/D= a/R. 

Figure 7.6 shows the indentation of a flexible foam by a smooth steel 
cylindrical indenter of radius R and length L under the action of a load P. Suppose, in 

the first instance, that the indentation pressure is uniform and the foam remains elastic: 
Timoshenko and Goodier (1934) show that contours of principal stress are circles 

passing through A and B (e. g. AEB). The maximum (compressive) principal stress is 

given by: 
P 

cT, =-2; 
raL(a+sina) 

(7.1) 

Where: AB =d= 2a, and a is the angle subtended by AEB. The trajectories of 

principal stress bisect the angle a. 

The static indentation resilience (or the Meyer's hardness) of the foams, 11, 

was obtained from the force applied to produce a given indentation depth, h, divided 

by the projected area of the indentation profile (Tabor, 1951), 
H=Zra2. (7.2) 

The indentation strain (or Ball Indentation Size), e, experienced by the foam 

during the indentation test was calculated according to an empirical formula proposed 
by Wilsea et al. (1974): 

ID (7.3) 

Where: D, is the diameter of the indenter, and d, is the chordal diameter of the ball 
indentation profile. 

Both the Ball Indentation and the Cylinder Indentation Tests were carried out 

on the ten lOppi and 30ppi open-cell polyether urethane foams with a range of 

compression ratios and, hence, with a range of Poisson's ratios (Table 7.2). in total, 
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20 separate tests were carried out to ensure accuracy. Approximately two hundred and 
fifty photos were taken. Two repeat tests were made for each type of foam. Average 

load-displacement data was taken to plot the Figures 7.7 to 7.14. The average errors 

were within 8%. 
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Fig. 7.7 Cylinder indentation load-displacement curves in the foam rise direction for the lop pi 
polyether urethane foams. The diameter of the cylindrical indenter is: 22 mm. 
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Cylinder Indentation Test 
(The 10ppi Open Cell Polyether Urethane Foam) 
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Fig. 7.9 Cylinder indentation load-displacement curves in the foam rise direction for the lOppi 
polyether urethane foams. The diameter of the cylindrical indenter is: 50 mm. 
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Fig. 7.10 Ball indentation load-displacement curves in the foam rise direction for the lOppi 
polyether urethane foams. The diameter of the spherical indenter is: 50 mm. 
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Cylinder Indentation Test 
(The 30ppi Open Cell Polyether Urethane Foam) $ Conventional Foam 
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Fig. 7.11 Cylinder indentation load-displacement curves in the foam rise direction for the 30ppi 

polyether urethane foams. The diameter of the cylindrical indenter is: 22 mm. 

Ball Indentation Test 
(The 30ppi Open Cell Polyether Urethane Foam) 

Ball Diameter. 22 mm. 
10 

Error Bar: + 
8  

Ffa 

0 
0 i, 131W 

2r 
0 

0 Conventional Foam 

-f- 70AO(30ppi) 

ü-- 80AO(30ppi) 

--ý - 90AO(30ppi) 

-" Ar---- IOOAO(30ppi) 

-2 
-2 02468 10 12 14 

Displacement (mm) 

Fig. 7.12 Ball indentation load-displacement curves in the foam rise direction for the 30ppi 

polyether urethane foams. The diameter of the spherical indenter is: 22 mm. 
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Cylinder Indentation Test 
(The 30ppi Open Cell Polyethcr Urethane Foam) 

Cylinder Diameter: 50 mm, Cylinder Length: 200 mm. 
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Fig. 7.13 Cylinder indentation load-displacement curves in the foam rise direction for the 30ppi 

polyether urethane foams. The diameter of the cylindrical indenter is: 50 mm. 
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polyether urethane foams. The diameter of the spherical indenter is: 50 mm. 
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Figures 7.7 to 7.14 show that the shape of the load-displacement curve for 

the cylinder and ball indentation of conventional foam is different from that of an 

auxetic foam. There are three regions in the conventional foam load-displacement 

curve. The first very short linear elastic region, OM, is followed by a rapid elastic 

strain hardening region, MN. The gradient of the third region, NQ, is higher than that 

of the first region, OM, but is much smaller than that of the second region MN. 

Whereas, the load-displacement curve of auxetic foam can only be divided into two 

parts (see Figure 7.7). The first region, OD, having a relatively low slope, is followed 

by a region, DE, where there is a increase in displacement for a large increase in load. 

The mechanical behaviour of the ball and cylinder indentation is not only dependent on 

the properties of the cell ribs and the diameter of the indenter, but also on the cell 

geometry of the foams. In order to show the latter clearly, I have to put in some 

photographs of the cylinder indentation of honeycombs, see Figures 7.15 and 7.16. 

Since honeycombs are actually two dimensional foams, and usually have a much 

bigger cell size, we may be able to use them as an example to show the mechanisms 

involved in the local indentation. 

Fig. 7.15 Compressive deformation of the conventional honeye nh I)roducc, i I, \ ;rLý IinrºricaI 
inr1Pnter 

Fig. 7.16 Compressive deformation of the auxetic honeycomb produced by a cylindrical indenter. 
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Figures 7.15 and 7.16 show that, only the local area has deformed when a 
cylindrical indenter was indented into the conventional honeycomb, and that the cell 

ribs next to the indenter have failed (collapsed) due to flexure. Whereas, the large area 
deformed when a cylindrical indenter was indented into the auxetic honeycomb, none 

of the cell ribs failed. Hinging is the dominant deformation mode. This may suggest 
that auxetic material may be a better packaging material. 

7.2 The Indentation Stress-Strain Curves 

The average compressive stress, P, in the cylinder indentation was calculated 
by 

F 

Lxd 
(7.4) 

Where: F, is the compressive load, L, is the length of the cylinder and d, is 
the chordal diameter of the indentation profile (see Figure 7.6) which were measured 
from the photographs (For example, see Figures 7.4 and 7.5). The cylinder indention 

strain was calculated by using EQ. 7.3. The results are shown in Figures 7.17 to 
7.20. 

The compression stress in the ball indentation is not simple to calculate. The 

approach used was as follows. Firstly, the ball indentation sizes (e. g. d, the chordal 
diameter of the indentation profile, and h, the height of the indentation profile) were 
measured from the cylinder indentation test using the photographic method. Then, the 

corresponding value of the compressive load, F, for each displacement, h, was 
obtained from the ball indentation load-displacement curve. The value of the ball 
indentation area, A, associated with each value of the displacement, h, was calculated 

"2 by, . The ball indentation stresses and strains for all the tests were calculated by 

using EQ. 7.2 and EQ. 7.3 respectively. The results are shown in Figures 7.21 to 
7.24, The average errors were within 12%. 
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Cylinder Indentation Test 
(The I Oppi Open Cell Polyether Urethane Foam) 
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Fig. 7.17 Cylinder indentation stress-strain curves in the foam rise direction for the lOppi open 
cell polyether urethane foams. The diameter of the spherical indenter is: 50 mm. 
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Fig. 7.18 Cylinder Indentation stress-strain curves in the foam rise direction for the lOppi open 
cell polyether urethane foams. The diameter of the spherical indenter is: 22 mm. 
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Cylinder Indentation Test 
(The 30ppi Open Cell Polyethcr Urethane Foam) 
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Fig. 7.19 Cylinder indentation stress-strain curves in the foam rise direction for the 30ppi open 
cell polyether urethane foams. The diameter of the spherical indenter is: 50 mm. 
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Fig. 7.20 Cylinder Indentation stress-strain curves in the foam rise direction for the 30ppi open 
cell polycther urethane foams. The diameter of the spherical indenter is: 22 mm. 
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Ball Indentation Test 
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Fig. 7.21 Ball Indentation stress-strain curves in the foam rise direction for the lüppi open cell 
polyether urethane foams. The diameter of the spherical indenter is: 50 mm. 
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Fig. 7.22 Ball indentation stress-strain curves in the foam rise direction for the lQppi open cell 
polyether urethane foams. The diameter of the spherical indenter is: 22 mm. 
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Ball Indentation Test Z -ý- 100A0(30ppi) 
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Fig. 7.23 Ball indentation stress-strain curves in the foam rise direction for the 3Oppi open cell 
polyether urethane foams. The diameter of the spherical indenter is: 50 mm. 
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Fig. 7.24 Ball Indentation stress-strain curves in the foam rise direction for the 30ppi open cell 
polyether urethane foams. The diameter of the spherical indenter is: 22 mm. 
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Figures 7.17 to 7.24 show that, in each case there is a substantial gain in 

indentation resilience for the auxetic foam specimens compared with the conventional 
foams. In addition the following features are apparent: 

1. The indentation resilience of a foam increases slowly with the ball (or 

cylinder) indentation strain. 
2. The incompressibility of the foam increases more rapidly with the strain 

when the indentation material is auxetic. 
3. The indentation stress-strain curves are not strongly dependent on 

the diameter of the indenter. They depend on the cell structure and the cell 

rib property of the foam. 

7.3 Hysteresis Loop 

As part of the investigation of the non-linear elastic mechanical properties of 
foams the hysteresis loops were examined. The hysteresis loops of the lOppi 

polyether foams (IOCO, 70AO and SOAO) are shown in Figures 7.25 (a), (b) and (c). 

All of these examples of hysteresis loss were measured by applying a force to a foam 

(dimensions: 200 x 200 x 50 mm, and the average error is ±0.5 mm) using a Instron 

1185 at a cross head speed of 2 mm/min. over the same deflection of 2.8 mm and then 

allowing the foam to relax back to zero deflection by reversing the movement of the 

cross-head at a fixed rate of 2 mm/min. The areas within the loop reflect the loss of 

energy per cycle. In general the lost energy is dissipated as heat. 

Hysteresis Loop (LOCO) 
35.00 

30.00 

25.00 

Z 20.00 

-p 15.00 

10.00 

5.00 

0.00 

-5.00 
Error Bar: i 

-0.5 0 0.5 1 1.5 2 2.5 3 
Displacement (mm) 

Fig. 7.25(a) The hysteresis loop for the lOppi open-cell conventional polyether urethane foam 
(LOCO). Note: The foam was tested along the foam rise direction. 
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Hysteresis Loop (70A0) 
35.00 
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20.00 

15.00 
10.00 
5.00 
0.00 

-5.00 

Fig. 7.25(b) The hysteresis loop for the lOppi open-cell auxetic polyether urethane foam 
(70AO). Note: The foam was tested along the foam rise direction. 

Hysteresis Loop (80AO) 
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Fig. 7.25(C) The hysteresis loop for the lOppi open-cell auxetic polyether urethane foam 
(80AO). Note: The foam was tested along the foam rise direction. 

Figures 7.25(a), (b) and (c) show that the area within the hysteresis loop of 
auxetic foam is much smaller than that of the conventional foam. Hysteresis is a 
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measure of the energy lost by a foam when subjected to a deformation cycle. 
Therefore, at small strain and low strain rate the energy lost by an auxetic foam is less 

than that of conventional foam, and an auxetic foam with a higher negative Poisson's 

ratio (e. g. 80AO) has a smaller energy loss than auxetic foam with a lower negative 
Poisson's ratio (e. g. 70AO). 

Energy loss is also strain rate dependent as shown in Figure 7.26. High strain 

rates may cause the foam to lose more energy. 

Hysteresis Loop 
25 

20 

15 

.0 10 

5 

0 

S 

Instron Cross Head Speed: 

0.5mm/min 

2mm/min 

1(hnm/min 

Error Bar: i 

2.00 0 00 2.00 4.00 6.00 8.00 10.00 

Displacement (mm) 

Fig. 7.26 Diagram of the hysteresis loop for the 30ppi open-cell auxetic polyether urethane foam 
(30ppi, 100AO), showing strain rate dependence. Note: The foams were tested along the foam rise 
direction. 

Foams with a high level of hysteresis show poor energy absorption, since the 

energy lost in the loading and unloading cycle is not able to do work. The net result of 
this may be either: deformation of the original shape of the foam, or the foam may be 

slow in regaining its original configuration. A ball or some other light object when 
dropped into the foam surface may show a low rebound. In contrast to a conventional 
foam, an auxetic foam has low hysteresis and will have a high rebound for the same 

object dropped from an identical height. 

7.4 The Ball Rebound Test (Dynamic Indentation Resilience) 

An alternative measure of energy absorption by a foam is the ball rebound test. 
This explores a higher frequency range than does the hysteresis loop measurement. 

In cushioning and packaging, the aim is to absorb any kinetic energy imparted 

to the packaged object, to keep the item being protected from damaged. An 
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investigation using the ball rebound test was carried out to compare the capacity of 

auxetic foam with conventional foam to dissipate energy. 

According to ASTM D 3574-91(H), the Ball Rebound Test apparatus consists 

of a vertical clear plastic tube, such as acrylic, with an inside diameter of 38 mm. Into 

this tube a steel ball with a diameter of 16 mm (mass: 16.68g) is held and released by 

an electromagnet as shown in Figure 7.27 from a drop height of 500mm. 

The steel ball was allowed to fall under gravity onto the foam surface without 

rotating. Centring of the ball was assured by a recess at the base of the electromagnet. 
The height of the drop was 500 mm. Since it is more convenient from a practical point 

of view to note the position of the top of the ball on rebound, the top of the ball when 
held by the electromagnet was positioned 516 mm above the surface of the foam. The 

scale on the back of the tube was marked as follows: at intervals of every 1 cm, a 

complete circle was scribed and at every 0.5 cm a 120° arc was scribed. The test 

specimens were sectioned to dimensions: 100 x 100 x 50 mm. Care was taken to 

make sure the specimens had parallel top and bottom surfaces. At the beginning of 
each test, The specimen was centred at the base of the tube and the height of the tube 

adjusted so that zero rebound was 16 mm above the surface of the foam specimen. 
Then the ball was released and drppped onto the foam, and the maximum rebound 
height noted. If the ball struck the tube on the drop or rebound, the value obtained was 
invalid. This condition is usually due to the tube not being vertical or to irregularities 

on the specimen surface. Triplicate tests were made on each specimen. Four 

specimens per sample were tested. The median of the four specimen medians was 

reported as the ball rebound resilience value of the sample in Tables 7.3 and 7.4. 

Electromagnet and Clamps 
Steel Ball 

Scribed Acrylic Tube 

Foam 
Retort Stand 

Fig. 7.27 Schematic of the ball rebound test. 
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Table 7.3 

PECO PEAO-4 PECC PEAC-1 

Density (kg/m3) 33.7±1.3 81±2.0 37.9±2.1 89±1.6 

Compressive Young's Modulus (KN/m2) 68.2±2.3 - 150.3±4.5 - 
Rebound Height (cm) 11.86±0.1 5 17.85±0.2 14.49±0.38 26.6±0.15 
Compressive Poisson's Ratio, Vy= 

- - 0.25±0.08 - 

Table. 7.3 Table of the hall rebound test for PECO, PEAO-4, PECC, and PEAC. Note: The 
foam was tested along the foam rise directi on. 

Table 7.4 

I OCO 70A 80A0 90AO 1(X)AO 

Density (kg/m3) 24±3.1 74±2.5 76±2.2 77±2.1 79±3.0 

Compressive Young's Modulus (KN/m2) 61.5±3.44 51.4±2.51 48.5±2.43 43.6±1.20 38.2±0.82 
Compressive Poisson's Ratio, Vr= ). 20±0.08 -0.43±0.03 -0.54±0.02 -0.60±0.05 -0.66±0.06 

Ball Rebound Height (cm) 14.7±0.34 21.3±0.48 24.6±0.35 25.2±0.3 25.4+0.5 

Table. 7.4 Table of the ball rebound test for the lOppi foams, i. e. IOCO, 70AO, 90AO, 90AO, 
and 100AO. Note: the Young's moduli and the Poisson's ratios were obtained from the compression 
tests (Table 6.1 and 6.4). The foam was tested along the foam rise direction, 

Table 7.3 and 7.4 shows that the ball rebound height of auxetic foam is 

larger than that of its parent conventional foam. 

7.5 DMTA - Loss Tangent 

An alternative measure of energy absorption by a foam is the loss tangent, 

tan 5 which can be obtained from the DMTA test. 

The loss tangent, tans is called internal friction or damping, and is the ratio 
of energy dissipated per cycle to the maximum potential energy stored during a cycle. 

tan S =G "/G' (7.11) 

where Gis the storage modulus, G" is the loss modulus. The detail of the DMTA test 
was explained in Chapter 6. Here the DMTA results related to the loss tan 6 are 
presented in Figures 7.28 to 7.33. 
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tans (Conventional Foam) 
tans (Auxetic Foam) 
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"" 
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100 -50 0 50 100 150 
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Fig. 7.28 DMTA results of the open-cell polyether urethane foams. Comparison of the loss 
tangent, tans of an auxetic foam (IOOAO) with its parent conventional foam (LOCO). (The testing 
frequency was 10Hz). 

tans (Auxetic Foam) 

tans (Conventional Foam) 

0.4 

0.35 
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0.25 

G 0.2 
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0.1 

0.05 

0 

-100 

Fig. 7.29 DMTA results of the 60ppi closed-cell polyester urethane foam. Comparison of the 
loss tangent, ianS of an auxetic foam (PEAC-1) with its parent conventional foam (PECC). (The 
testing frequency was 10Hz). 
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TanS (Conventional Foam) 

L TanS (Auxetic Foam) 
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11 
-150 _ßp0) -50 0 50 100 150 200 

Temperature (T) 

Fig. 7.30 DMTA results of the 60ppi reticulated polyester urethane foam. Comparison of the 
loss tangent, tan S of auxetic foam (PEAO-4) with its parent conventional foam (PECO). (The 
testing frequency was 101-1z). 
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Fig. 7.31 DMTA results of the 60ppi closed-cell conventional polyester urethane foam (PECC). 
Illustration on effect of frequency on the loss tangent, ran S. 
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30Hz 
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Fig. 7.32 DMTA results of the 60ppi closed-cell Auxetic polyester urethane foam (PEAL-1). 
Illustration on effect of frequency on the loss tangent, tan 8 at a large range temperature. 
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Fig. 7.33 Tana is a function of frequency for both auxetic and conventional foams. 

Figures 7.28 to 7.33 show that at a relatively high frequency (i. e. 10Hz) 
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tans of auxetic foam is higher than that of conventional foam in a large region. 
Therefore, auxetic foam may be a good damping material. Figure 7.31 to 7.33 show 

that tans is a function of the frequency. Increasing the test frequency increases the 

value of tan S. 
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Chapter 8 Discussion 

8.1 Introduction 

In Chapter 5, a new theoretical model was developed for the deformation of 
foams. In the first part of this chapter, the aim is to investigate the effects of variations 
in the cell geometry for each of the three models developed. First, plots are made of 
the moduli E,, (or EZ), Ey, G,, y (or GZy, Gyz, Gyx), and GXL (or G7 ), and the 
Poisson's ratios v, (or, v, Y 

), v. (or, vZx ), and vyx (or, v, ), against the cell angle 0 for 

various values of h/L and t/L. Next, the work on the elastic properties is brought 

together with the work on the ball indentation. According to Gibson and Ashby 
(1988), the Young's modulus of solid flexible PUR, Es=45000 kN/m2. In order to 
simplify the calculations the plots have been drawn for the cases h= 2L, for various 
values of t/L; t=0.1L, for various h/L values, and q=t, for the hinging model. 

In the second part of this chapter, the experimental results are discussed 
together with the theoretical models. 

8.2 Comparison of the 3D Model with the 2D Model 

In order to view the 3D foam modelling in a broader context, It is necessary 
to examine the model by considering whether it reduces to the known answers 
developed by Gibson and Ashby (1987) and Masters (1994) on a similar, but not 
identical 2D cell structure (see Figure 8.1). 

When 0, = 90°, and L7=0 the rhombic dodecahedron cells (Figure 5.1) are 
reduced to the conventional 2D hexagonal cells. Following the same method used in 
Chapter 5, and by putting the thickness of the unit cell in the z direction=t for the 2D 
foam model, the formulas for the Young's modulus and Poisson's ratio in Table 5.1, 
5.2,5.3 can be reduced to the 2D results, as shown in Tables 8.1,8.2, and 8.3 

respectively, of Gibson and Ashby (1987) and Masters (1994). The calculations for 

the shear modulus of the 3D model is completely different from that of the 2D case. As 

a result of the more complicated nature of the 3D model it is necessary to consider the 
3D internal rotation in the unit cell and for this reason, it can't simply be reduced to the 
2D model. However, the 3D shear moduli expressions can be reduced to the cubic box 

model which is given by Huber and Gibson (1988). The comparisons were made in 
Table 8.4. 
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Table R. 1 

General Expressions (Chan, 1994) x ressions Gibson and Ashby, 1988 

x E,. cos 9; 3 3 ES cos 8 (t 1 

(h/Lx +sinBx)sinz Bx 

(tý, ) 

(h! L+sinB)sine8\L 

y E, (h/L,, +cos9x) t3 ES(h/L+cos9)r t 13 

cos3 9z 

(Lx) 

cos3 9\LJ 

yXY COS2o. COS2 e 

(h / Lx + sin 6; ) sin 9x (h /L+ sin 8) sin 9 

vyx sin 0. (h/Lx+sin ßx) sin9(h/L+sin 9) 

COS2 ox COS2 B 

Table 8.1 The flexure model expressions of the Young's moduli, and Poisson's ratios of the 2D 

conventional and auxetic foams. 0 is positive for conventional foam and 0 is negative for auxetic 
foam. 

TAhIN RI 

General Expressions (Chan, 1994) x ressions (Masters, 1994) 

E 
Kh cos 0,, K. cos 9 

x 
(h/Lx+ sin 9z )t sin2 BX (h /L+ sinO)tsin B 

Kh(h/Lx+ sin 0x) Kh(h/L+sin9) 
y 

t Cos3o x 
t Cosa 8 

v Cosz e Cos2 B 
xy z 

(h/Lx+ sin0, )sin 0, (h/L+ sinO)sin0 

ýyx sinox(h/Lx+sin°x) sin 9(h/L+ sin 0) 

Cost es Cost B 

Table 8.2 The hingeing model expressions of the Young's modulus, and Poisson's ratio of the 
2D conventional and auxetic foams. 0 is positive for conventional foam and 0 is negative for 
auxetic foam. 

Tok1. {! Z 

General Expressions, (Chan, 1994) xpressions (Masters, 1994) 

E 
Ks 

x (h/L+sin9X)tcos0x _ (h/G+sinB)tcos9 
Ks (h/Lx+sin 0x) K,. (h/L+sin0) 

y tcos0x(2h/Lx+sin2ox) tcos9(2h/L+sin26) 

y sin9x -sin 8 

h/Lx+sin 0x h/L+sin0 

yyx -sing (h/Lý+sinO) 
-sinO(h/L+sin0) 

2h/Lx+sine ex 2h/L+sine 0 

Table 8.3 The stretching model expressions of the Young's modulus, and Poisson's ratio of the 
2D conventional and auxetic foams. 0 is positive for conventional foam and 8 is negative for 
auxetic foam. 
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(a) (b) (c) (d) 

Fig. 8.1 Schematic of the 2D honeycomb models. (a) and (c) Gibson and Ashby (1988), and 
Masters (1994) model. (b) and (d) Chan (1994) model. 

8.3 Examination of the Special Cases 

When 61 = 0°, 0, = 0°, and L. = LL * 0, the rhombic dodecahedron cell 
(Figure 5.1) is reduced to a cubic box (Figure 8.2). This box-like structure is similar, 
but not identical to the model of Huber and Gibson (1988) (see Figure 2.2). The 

results reduced from Table 5.1 together with Gibson and Ashby model are shown in 

Table 8.4. 

When 0. = 0, = 90°, and Lx = LL = 0, the rhombic dodecahedron cell (see 

Figure 5.1) is reduced to a rectangular beam along the y direction and the foam 

becomes a solid polymer beam. 

X 

Fig. 8.2 One single box-like cell model which is reduced from a rhombic dodecahedron cell model 
shown in Fig. 5.1. 
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Table S. 4 

Expression for the Box-like Model The Model of Huber and Gibson Expression for the soli 

Chan (1994) 1988) polymer beam 

x 00 CE, (t)4 (L) (, 
+(L)3 

) 
RS) 

F, y Es 
4 

CrS 
4 

Es 
2 l lL LJ l lLl \ LJ 

00 ýs 14 ý1 (1+( ljl 
) 

L h 

V 
xy O° - 

`S 

2G3 

vu 0 - 
ES 

-1 2G,. 

vu 0 - 
ES 

2G,. 

vom' 00 - 
ES 

2G, 
5 

vyx 0 - 
G 

-1 2 
s 

vy: 0 - 
E G 2 
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X 4 
IL 1 

2CF, 
(L) (L) l GCs" 

L / C 
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+I 
i ll h )+l ( 

L 2 L 

Zy 
4J1 L 

J, 
(hl ' 

2CE 
(L14 rh l G(5' 

)( h / )+ \l l1 h ( ) 
+1 

L 2 L 

yz S 
) )4 ( l 

2C! 
S 

LJ4 hý l 
L 4 ( h ti l 

+ 
l h 

+j 
ý 

L ) 2 L 

y , 1 
2CE, 

ý)4 (L) I qS 
4L hC h 1 

)+ L h ( 
h)+, 

L 2 L xz E, 
ý )( 4 

cr, -1) 
4 

Gs 
L h L h 

zx Edý 
ý4 

CLs( 
)4( ) GS) 

L L h 

Table 8.4 The flexure model expressions of the Young's modulus, Poisson's ratio and the shear 
modulus of the box-like structure, and solid polymer block. Note: ES and Gs are the Young's modulus 
and the shear modulus of the solid polymer respectively. We assume that the solid polymer is an 
isotropic material. 

8.4 Examination of the Combined Model 

In order to check the final expressions (Table 5.4) for the combined model, it 
is necessary to reduce the combined model to the individual model expressions by 
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putting Ki (i= f, h, s) -4 oo. 

Firstly, when Kh, and Kf -4 oo, EQ. 5.153 is reduced to E_ 

Kf Kf(a+2sin0) 
EQ. 5.163 is reduced to Ey = EQ. 5.150 is reduced 

(a +2 sin 9)L , sin 20' 2L cos4 0 

to v rnsz B EQ. 5.160 is reduced to v 
sin 8(a +2 sin B) EQ 5.151 is 

ý= sin9(a+2sin9) , Y, = 2cos 8, 

+ 2s 
vu = 0, EQ. 5.167 is reduced to Gz,, = 

(2L 
cos2 9) x 2a (a2 +a+2 sin 9), and EQ. 

Kf 2(1+sin2 B) 

5.173 is reduced to Gu = 
KJ 

which are identical to the flexure model 
Lcos9(a+2sin9) 

expressions for EX (EQ. 5.13), Ey (EQ. 5.32), vom, (EQ. 5.12), vy, (EQ. 5.30), v. 

(EQ. 5.11), GLy (EQ. 5.52a), and Gxz (EQ. 5.41b) respectively. 

Secondly, when Kf, and Ks -4 oo, EQ. 5.153 is reduced to Ex = 
K'' 

Z, EQ. 5.163 is reduced to Ey = 
K. (a + 24in e), EQ. 5.150 is reduced 

(a +2 sin 9)L sin 0 2L cos 

to v= cost B, EQ. 5.160 is reduced to vyx =sin 
9(a +2 sin B) EQ. 5.151 is 

sin 6(a +2 sin 9) 2 cos B 

v=0, EQ. 5.167 is reduced to G'' = 
(a 

L+2cos2sin9 2a0) x (2a+0. 
sin 2 
5a2 ) 

6), 
and EQ. 5.173 is 

reduced to G. = 
Kh 

which are identical to the hinging model 
L cos O(a +2 sin 0) 

expressions for Ex (EQ. 5.66), Ey (EQ. 5.80), vom, (EQ. 5.61), vyx (EQ. 5.76), vxZ 

(EQ. 5.62), G, y (EQ. 5.90), and G, « (EQ. 5.100) respectively. 

Thirdly, when Kf, and K. EQ. 5.153 is reduced to Ex = 
K` EQ. 5.163 is reduced to E, = 

KS(a + 2sin 9) 
, EQ. 5.150 is 

(a+2sin9)Lcos B, 2L cos 2 0(2a+sin 0) 

reduced to v=- sin B, EQ. 5.160 is reduced to vx=- sin B(a + 22 in e) 
, 

EQ. 
a+2sin0 y 2(2a+sin 9) 

5.151 is vu =0 which are identical to the stretching model expressions for EX (EQ. 

5.120), Ey (EQ. 5.143), Vom, (EQ. 5.117), vyx (EQ. 5.140), and v. (EQ. 5.118) 

respectively. 
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8.5 Effects of Cell Geometry on the Flexure Model 

Figure 8.3 shows the modulus E,, (or E, ) plotted against the cell angle, 0 

using EQ. 5.14 and 5.20. The maximum values of EX occur when the cell angles are 

small and the walls of length L are orientated along the direction of loading. Because 

we are dealing with a flexure model, then when 0=00, EX (or E, ) becomes infinity 

since no flexure can occur at this angle. Increasing the h/L ratio reduces the values EX 

for a given cell angle. As can be seen from the graph of Ex versus 0, the curve is not 

quite symmetrical around 0=00. This results in a re-entrant cell of geometry h/L=2 

and 0=-30°, having a modulus Ex of l8kN/m2; whereas, to achieve the same 

modulus in a conventional foam cell using the same h/L values requires a cell angle of 
180 (see Figure 8.3(a)). For a conventional foam the modulus EX for a given h/L 

value within the range, 0° <0< 90°, increased as the angle becomes less positive. 
For a re-entrant cell of the geometry h/L=2, very high moduli are achieved when the 

cell angle is numerically Larne and small i. e. -90° <6< -80° and -10° <9< 00 

respectively. This 'U'-shaped curve of EX versus 0 shows a high degree of symmetry 

around 0=450, From Figure 8.3(b), it can be seen that, for a given t/I_ ratio, to 

obtain the same value of Ex in a re-entrant cell as in a hexagonal cell, it is necessary to 
increase the size of the re-entrant angle. For example, for a hexagonal cell of the 

geometry t/L=0.1 and 0=100, the modulus EX is 63.5 kN/m2. To achieve an 

equivalent modulus in a re-entrant cell of the same aspect ratio requires a cell angle of 

-120 or -740. It is noted that all the curves of Ex versus 0 for re-entrant cells in Figure 

8.3(b) are 'U'-shaped, and they are very nearly symmetrical around 0=450. The 

trends of the curves are the same: the curves shift upwards as the value of t/L is 

increased. For most foam structures t«L so small variations in t/L have little effect on 
the value of E. 

Figure 8.4 shows the modulus Ey plotted against the cell angle, 0 using 
EQ. 5.33. Very high moduli are achieved when the cell angle is numerically large (i. e. 
60° <8< 90°, -70° <0< -90°) the cell ribs of length L become oriented parallel to 

the load direction as shown in Figure 8.4(a). For conventional foam cells, it is clear 
that as the ratic of h/L is increased there is a increase in the value of Ey. The curves are 

all skewed to the left so that the minimum value of Ey occurs at 8=-120 and 0=-28° 

when the values of h/L are 0.5 and 1 respectively. The modulus Ey of a foam for a 
given h/L ratio is thus reduced as the angle becomes negative. Figure 8.4(b) shows 
that as t/L ratio is increased there is a significant increase in the value of Ey particularly 

when the cell angle is large. The graph of Ey versus 9 is not truly symmetrical around 
00, with the result that a re-entrant cell of geometry t/L=0,1,0=300 has a lower 
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are independent of t. Figures 8.5 and 8.6 show the effects of h/L on Poisson's ratio 
vyz and vry respectively. A significant feature of both of these graphs is that ratios of 

much less than -1 and much greater than +1 are achieved. It can be seen from Figure 
8.5 that increasing the value of h/L increases the numerical value of the effective 
Poisson's ratio for both hexagonal and re-entrant cells. v, is correspondingly 

reduced as shown in Figure 8.6. It should also be noted that the graphs are not 
symmetrical. For example, in Figure 8.5, a hexagonal cell of geometry h/L=2,8=20° 
has a Poisson's ratio vy==0.52 whereas the re-entrant cell of h/L=2,8=-20° has a 
Poisson's ratio vyx=-0.255. A limitation of the model is that at large angles 

approaching +900 and -90° very high Poisson's ratios are achieved. This is clearly 

unrealistic as 8=+90° or -90° the cell has completely collapsed and all the cell walls 
are aligned in the direction of the applied force, in which case vy., must be the same as 

the Poisson's ratio of the cell wall material. 

The maximum shear modulus, G,, y (Figure 8.7(a)) is achieved at 0=+900 or 

-900. Increasing the value of h/L reduces the value of GXy over the majority of the cell 

angle range, and increasing the value of t/L significantly increases the shear moduli, 
GXy (Figure 8.7(b)). EQ. 5.52c is used for these plots. 

For a given h/L ratio, the minimum shear modulus, GXZ, of a hexagonal cell 
(Figure 8.8(a)) is achieved at around 0=+450. The 'n'-shaped curves of GXZ versus 0 

of re-entrant cells are almost symmetrical around 6=470 so that a re-entrant cell with 
cell geometry h/L=2,6=45° has a higher modulus, GXZ, than the corresponding 
hexagonal cell with the same geometry. Figure 8.8(b) shows the effect of t/L ratio on 
the moduli, G, (,. For these plots h=2L. Again, the value of GXZ greatly increases as 
the ratio of t/L increases. EQ. 5.41 b is used for these plots. 

Notes: There are limits on the possible range of negative angle, 0 values due to the 
NýA 

geometric constraints of the cell. i. e. the cell ribs overlap, V ý, isn't possible. The 
maximum negative angle, 0. is depending on h/L ratio. i. e. 

0 
,,. 

is -14.5° for h/L= 0.5. 

9,,. is -30° for h/L=1. 

0. is -901) for h/L? 2. 
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8.6 Effects of Cell Geometry on the Hinging Model 

The graph of 1':, versus 0 plotting EQ. 5.66 (Figure 8.9(a) and (b)) and Ey 

versus 0 plotting EQ. 5. tilt (Figure 8.10(a) and (b)) are identical in shape to those for 

the flexure model. dift'erinz only in the value of the force constant Ki as shown in EQ. 

5.109. For a given t/I_ ratio, the hinging mechanism is operative at much larger forces 

than those required for tle\ure. As a result, the effects of h/L on the moduli EX and Ey 

are significantly increased. In contrast to this, for a given h/L ratio, the hinging 

mechanism is operative at rauch lower forces than those required for flexure. The 

effects of t/L on the modulus ul:, and E,, are significantly reduced as a result. 

Comparison of I: Q. 5.1 1 with 5.62, EQ. 5.12 with 5.61, and EQ. 5.30 with 
5.76 shows that the effect of h/I. on the Poisson's ratio v., vom, and vyx is identical to 

those for the flexure nuxiel and is shown in Figures 8.5 and 8.6. 

Figures 8.11 (3) and (h) show the reduction in the shear modulus, GXy caused 
by increasing the h/l. ratio, or reducing the t/L ratio for a conventional hexagonal cell. 
EQ. 5.93 is used for these plots. 

Figures 8.12(a) and (h) show the shear modulus, Gxz, plotted against the cell 

angle, 0 using E: Q. 5,98. The curves are all skewed to the right so that for a given h/L 

or t/L ratio and 0a re-entrant ccll has a higher modulus, Gxz, than the corresponding 
hexagonal cell of the sank gecometry. 
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varying cell geometry (0, (C and t/L). (a) Varying 0 and CX for t=0.1L. (b) Varying 0 and t/L for 
h=2L. 
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Fig. 8.12 Plots of GX, vs. 0 for the hinging model of conventional foam showing the effects 

of varying cell geometry (0, (X and tfL). (a) Varying 0 and CC for t=0.1L. (b) Varying 0 and t/L 
for h=2L. 

8.7 Effects of Cell Geometry on the Stretching Model 

Unlike the moduli graphs for the flexure and hinging models, the moduli Ex, 

and Ey, for the stretching model, both reach their maxima at +900 and -900. Figure 

8.13(a) shows that the plot of E,, is skewed to the right with the minimum value of EX 

moving further to the right as t/L is increased. The value of EX rapidly rises when the 

cell angle lies in the ranges -30° <0< -60° and 60° <0< 90° and increasing the 

value of t/L causes an increases in E, ( for a given angle. As expected, the t/L ratio is 

important to the moduli in stretching since the latter is directly proportional to the 

cross-sectional area of the cell walls. Figure 8.13(b) shows that the plot of E, is 

skewed to the right with the minimum values of E, moving further to the right as h/L 

is reduced. As h/L decreases E, increases. Figure 8.14(a) shows the reduction in the 

Young's modulus, Ey caused by increasing the h/L ratio for a conventional hexagonal 

cell. For a given h/L ratio, i. e. 2, the graph of Ey versus 0 (Figure 8.14(b)) shows 

the reduction in the Young's modulus, Ey, caused by decreasing the t/L ratio, and that 

the value of Ey of a conventional hexagonal cell is always larger than that of the 

corresponding re-entrant cell of the same geometry. 
The plots for Poisson's ratio are shown in Figures 8.15 and 8.16. The most 
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important feature is that both v=y and vyx are positive for re-entrant cells and negative 
for hexagonal cells. The plots are not symmetrical. Decreasing h/L ratio increases the 
numerical value of v, y 

for both hexagonal and re-entrant cells (Figure 8.15). Figure 
8.16 shows that increasing h/L ratio increases the value of vyx of the re-entrant cell, 
and decreases the numerical value of v, of the hexagonal cell. 
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of varying cell geometry (0, Oc, and t/L). (a) Varying 0 and t/L for h=2L. (b) Varying 8 and cc for 
t=0.1 L. 
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8.8 Effects of Cell Geometry on the Combined Model 

The graphs of EX versus 0 (Figure 8.17(a) and (b)) and Ey versus 0 (Figures 
8.18(a) and (b)) are almost identical in shape to those for the flexure and hinging 
models described earlier. As expected, flexure and hinging are more important to the 
moduli than the stretching mechanism since the value of the force constant, 
K f<Kh<Kc. This is obvious when EQs. 5.107,5.108 and 5.113 are compared. 
Similarly, the effects of t/L on the moduli Ex (Figure 8.17) and Ey (Figure 8.18) are 
identical to those for the flexure and the hinging model only differing in the value of 
the moduli. EQs. 5.153 and 5.163 are used for Figures 8.17 and 8.18 respectively. 

Figure 8.19(a) and (b) show the effects of h/L and t/L on Poisson's ratio vv,. 

EQ. 5.150 is used for these plots. A limitation of the model is that for small angles, 
i. e. U0 the highest Poisson's ratios are achieved. Decreasing h/L or t/L ratio increases 

the numerical value of the effective Poisson's ratio of both hexagonal and re-entrant 

cells. It should also be noted that the graphs are not symmetrical. Very low Poisson's 

ratio are achieved when the cell angle is numerically large (i. e. -70° <0< -90°, and 
60° <0< 90°). 

Figure 8.20(a) and (b) show the effects of h/L and t/L on the Poisson's ratio 
v. respectively. EQ. 5.160 is used for these plots. The lowest value of vyz is 

achieved when the cell angle is extremely small, i. e. 0°. Increasing the value of h/L 
increases the numerical value of the Poisson's ratio of both hexagonal an re-entrant 

cells (Figure 8.20(a)). However, increasing the value of t/L decreases the numerical 

value of the Poisson's ratio of both hexagonal and re-entrant cells (Figure 8.20(b)). 

Again, it should also be noted that the graphs are not symmetrical. 
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Fig. 8.17 Plots of Ex vs. 0 for the combined model of conventional foam showing the effects 
of varying cell geometry (0, CC and t/L). (a) Varying 0 and a for t=O. IL. (b) Varying 0 and t/L 
for h=2L. 
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Figure 8.21(a) shows the reduction in the shear modulus, G,, y, caused by 

decreasing the t1L ratio for both the hexagonal and re-entrant cells. The value of Gxy 

for a re-entrant cell is always lower than the corresponding hexagonal cell of the same 

geometry. As the value of h/L is increased, the shear modulus, GXy, of a re-entrant cell 
is also increased, but Gxy of a hexagonal cell is reduced (Figure 8.21(b)). 
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Fig. 8.21 Plots of Gxy vs. 0 for both the flexure model and the combined model showing the 

effects of varying cell geometry, 0, tlL and h/L. EQ. 5.168 is used for these plots. (a) Varying 0 

and t/L for h=2L. (b) Varying 0 and OC for t=O. 1L. 

Figures 8.22(a) and (b) show the reduction in the shear modulus, G, 1, caused 
by increasing the h/L or decreasing UL ratio for both the hexagonal and re-entrant 

cells. The value of G,,, of a re-entrant cell is always higher than the corresponding 

hexagonal cell of the same geometry. EQ. 5.174 is used for these plots. 
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Fig. 8.22 Plots of Gu vs. 0 for both the flexure model and the combined model showing the 

effects of varying cell geometry, 0, t/L and h/L. (a) Varying 0 and a for t=O. IL. (b) Varying 0 and 
t/L for h=2L. 

Plots of the equations for the models show that if the cell angle is kept 

constant then the elastic properties are governed by the ratio of the cell rib lengths (i. e. 
h/L). Specific values of E; , v; j and Gib can be obtained for any required density of 
foam. The limiting factor governing the density is the cell size for a given rib 
thickness. 

8.9 The Stress-Strain Behaviour of Foams under Small 
Strain 

The typical compressive and tensile stress-strain curves for both conventional 
and auxetic foams obtained using EQ. 5.28,5.80,5.143, and 5.162 are shown in 
Figures 8.23,8.24,8.25, and 8.26. As a result of the different cell geometry of the 
foams, in order to simplify the calculations, the plots have been obtained by putting 
ES=45000 kN/m2, h/L=2, t/L=0.2, q=t, and 0= ±30°. (note: 0 is positive for 
conventional foam and negative for auxetic foam). 

From Chapter 5, it is known that Kf 
Est4 
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12E I E, t4 
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and K, _tKf and KI, are much more sensitive to small deviations in the values of 

t and 1, than is K, The flexure and hinging model are the dominant mechanisms for 

the deformation of foams. For the combined model, because it is internally consistent, 

it should prove to be a valid model to test against experiments. However, there are 

some small discrepancies between the theory and the experimental results. There are 

two possible sources for this variation: (a) the complicated cell geometry of foams i. e. 

h, L, t, d and 0 vary between cells; or, (b) the value used for the solid Young's 

modulus. Es, could be incorrect. E5 is rarely known accurately- it being dependant on 

the degree of polymer chain alignment, on chemical changes brought about by the 

foaming agent, on the gradual ageing and oxidation of the polymer and on other such 

uncontrolled factors. These errors can cause the apparent variation between the theory 

and the experimental results. 

The compressive stresses in the foam rise direction are plotted against the 

compressive strain for conventional foams shown in Figure 8.23. For comparison 

with the experimental results the theoretical stress-strain curves are also plotted in the 

same figure. Figure 8.23 shows that for the low strains (< 5%) used in these 

experiments, the linear behaviour is a reasonable assumption. As was presented in 

Chapter 6, there are three regimes of behaviour: at small strains (< 5%) the material 

can be modelled as a network of bending ribs while at high strain it behaves like a 

solid containing spherical holes. Mackenzie (1950) has derived expressions for the 

shear and bulk moduli of such materials. It can be seen from Figure 8.23 that the 

experimental results follow the theoretical curves although the combined model appear 

to over estimate the values of Ey of the open cell foams and under estimate the values 

of Ey of the closed cell foams. 

Figure 8.24 shows the tensile stress-strain for a conventional foam in the foam 

rise direction. The experimental results from this study predominantly lie between the 

upper and the lower theoretical values showing good agreement with the model. 

Figure 8.25 and 8.26 show the equivalent plots for an auxetic foam. For both of the 

compression and tension, the experiment data fit the model very well. 

There is considerably more scatter in the experimental data measured by other 

researchers. The degree of scatter can be accounted for by the variety of the cell 

geometry of the foams (i. e. the cell size and the cell rib thickness). It is clear that the 

gross foam geometry is unlikely to be constant for different foams. Therefore, for 

comparison with others experimental results the theoretical equations (i. e. EQ. 5.28, 
5.80,5.143, and 5.162) might need to be evaluated for new values of Kf, Kh, and Ks 

to achieve the best fit. 
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Fig. 8.23 Experimental and theoretical stresses plotted against strains for conventional foam 
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Fig. 8.24 Experimental and theoretical stresses plotted against strains for conventional foam 
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Fig. 8.26 Experimental and theoretical stresses plotted against strains for auxetic foam loaded 
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8.10 Comparison of Experimental and Theoretical Results 

The foam usually deforms by one or a combination of three mechanisms (see 

chapter 4). As a result, the equations (Table 5.4) used to draw the theoretical curves 
(Figure 8.27 to 8.42) for describing the different deformation modes needed to be 

modified with the loading conditions. The geometrical parameters for conventional and 

auxetic foams were determined in Chapter 4. For a comparison, the experimental data 
for Young's modulus (Table 6.1 and 6.2), shear modulus, (Table 6.5), and Poisson's 

ratio (Table 6.3,6.4) are also shown in the same figures. Note: a is h/L, and ß is t/L. 

Figure 8.27 to 8.42 include data from Chapter 4 for PECC (Table 4.2), 

PECO (Table 4.1), 6000 (Table 4.5), 3000 (Table 4.4), 1000(Table 4.3), 100AO 

(Table 4.8), 90AO (Table 4.8), 80AO (Table 4.8), and 70AO (Table 4.8). The curves 

on each figure show the theoretical prediction for open-cell foams. Since the surface of 

closed-cell foam is about 20 times thinner than the cell edges, it may be possible for it 

to be described using a microstructural model for open-cell microstructure. The data 

(except Poisson's ratio) for closed-cell foams generally lie above the theoretical 

prediction for open-cell foams. Probably because the contribution of the cell fluid in 

the case of closed-cell foams is not taken into account in the theory for open-cell 
foams. An auxetic foam with many broken ribs may also cause scatter of the results. 
However, if we take the irregular and very complicated cell structure into account, we 

can see that the experimental results agree reasonably well with the theoretical model. 
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Fig. 8.27 Data for the compressive Young's modulus, EX and E7 of PECC, PECO, LOCO, 
3000, and 6000 plotted against the cell angle 0. The curves represent the flexure model for these 
conventional foams. 
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Fig. 8.28 Data for the compressive Young's modulus, Ey of PECC, PECO, LOCO, 3000, and 
6000 plotted against the cell angle 0. The curves represent the flexure model for these conventional 
foams. 
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Fig. 8.29 Data for the tensile Young's modulus, Ey of PECC, PECO, IOCO, 3000, and 6000 

plotted against the cell angle 0. The curves represent the combination of the hinging and stretching 
model for these conventional foams. 
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Fig. 8.30 Data for the tensile Young's modulus, EX and EZ of PECC, PECO, LOCO, 3000, and 
6000 plotted against the cell angle 0. The curves represent the combination of the hinging and 
stretching model for these conventional foams. 
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Fig. 8.31 Data for the shear modulus, G, y, Goy, Gy,, and Gy7 of PECC, PECO, LOCO, 
30CO, and 6000 plotted against the cell angle 0. The curves represent the flexure model for these 
conventional foams. 
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Fig. 8.34 Data for the compressive Poisson's ratio, vy, and vn of PECC, PECO, 1000, 
3000, and 6000 plotted against the cell angle 0. The curves represent the flexure model for these 
conventional foams. 

Tensile Poisson's Ratio cose 
sin1cos6 

_ 
sin0cos0 

(Conventional Foam) Theoretical Curves: V= 
Kh KS 

xy 
(a+2sin0) sin2Hcos2Bý 

2 
Kh Ks 

Ce3 1.5 
((x=2.46, (3=0.167)PECC 

- (a=2. O7, ß=0.15)3000 

,ý-- (a=1.5,13=0.15)1OCO 
>"V (Experiments) 

ö\ 018 v (Experiments) 

.r1\ 
Xy 

I. d \ 

0.5 

O 

o 0 15 30 45 60 75 90 

0 (Deg. ) 

Fig. 8.35 Data for the tensile Poisson's ratio, vxy and v, y of PECC, PECO, IOCO, 3000, and 
6000 plotted against the cell angle 0. The curves represent the combination of the hinging and 
stretching model for these conventional foams. 
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Fig. 8.36 Data for the tensile Poisson's ratio, vyx and vyz of PECC, PECO, IOCO, 3000, and 
60CO plotted against the cell angle 0. The curves represent the combination of the hinging and 
stretching model for these conventional foams. 
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against the cell angle 0. The curves represent the combination of the hinging and flexure model for 
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Fig. 8.38 Data for the Young's modulus, Ey of 100AO, 90AO, 80AO, and 70AO plotted against 
the cell angle 0. The curves represent the combination of the hinging and flexure model for these 
auxctic foams. 
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Fig. 8.40 Data for the Poisson's ratio, vyx and vy, of 100AO, 90AO, 80AO, and 70AO plotted 

against the cell angle 0. The curves represent the combination of the hinging and flexure model for 

these auxetic banns. 
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Fig. 8.41 Data for the shear modulus, Gx7 and G, X of ]OOAO, 90AO, 80AO, and 70AO plotted 
against the cell angle 0. The curves represent the combination of the hinging and flexure model for 
these auxetic foams. 
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Fig. 8.42 Data for the shear modulus, G, y, Gy,, Gyz and GXy of 100AO, 90AO, 80AO, and 
70AO plotted against the cell angle 0. The curves represent the combination of the hinging and 
flex tire nuxlel for these auxetic foams. 

8.11 The Mechanical Properties in Terms of Relative 
Density 

From Figure 5.5, when 0. = 8z, and L,, =LZ the relative density of a foam 

((r + _'sinH) 
1 

I h: ýrcuLal <'unc;: G=x 
2Li-u. c2 0 'or 2 a+2sin19 )+ 

(2a+0.5x2) 

Kf 2(I+sin2B) 2Kti(1+sin `9) 

10 ý"1'+'^Tý7"Tý ýTý ýTý ýTý "1 

S 

h 

4 

Oll 

can be calculated as: 

12(2L+ 
h) 

2 2+ a 
4 4- 8.1 

p{ (h+2Lsin O)L cos2B L (a +2 sin 0) cos 20 () 

Ey (EQ. 5.32) in terms of the relative density is: 

ey 
_ 

(a+2sin0)3 P2 
( 12 E' 

2I 4 
+2 CosS 

(8.2) 

When 
r(a+ 

2 sin B)3 
= 1, EQ. 8.2 can be rewritten as 

E'' 
_pz which is 

2I 4+ 2)2 I cost 9 
E' 

ýP, 

what Gibson and Ashby (1988) got for a cubic box-like model (see Figure 2.2). 

G, y (EQ. 5.52a) in terms of the relative density is: 
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((T+ 2cinO))'(]+Nin o) (PS 
(8.3) 

1 
4u W, (I +sin''O) 4 +sinB 

(a 12sin0)(1+sin20) 
When EQ. 8.3 can be rewritten as 

Jar 
ýa"(I 

f sin2o) +2 +sin0 
8 

=' = {' which is what Gibson and Ashby got (1988) for a cubic box-like model 

(Fig ure, 2 
. 
'_). 

Poisson's ratios, v= 
cos 28 

(EQ. 5.12), vx= =o (EQ. 5.11), and xy (2 sin 0+ a) sin 0 

yin 0(' sin 0+ (x) are solely the functions of cell geometry and are independent of 2c c` o 

density. Gibson and Ashby (1987) proposed that the Poisson's ratio of a foam is 

approximately a constant. v=0.33. 

Data for Young's modulus, shear modulus and Poisson's ratio, for foams 

with a wide range of densities are taken from this study (Table 6.1 to 6.5) and from 

literature. These are shown in Figures 8.43,8.44,8.45, and 8.46. The figures 

include data for rigid polymers, elastomers, metals and glasses. The normalizing 

properties pr= 1.2 Mg/m3 and Es = 45000 kN/m2 for the flexible polyurethane foams 

are chosen from Gibson and Ashby (1988). In these figures, the experimental data are 

plotted as symbols. The solid and dashed line on each figure shows the equation for 

open-cell foams developed in this thesis (EQ. 5.32) and by Gibson and Ashby (1988) 

respectively. 
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represents the theoretical value of Gibson and Ashby (1988). 
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Fig. 8.46 Data for the relative shear modulus of foams, Gzy/Es, plotted against relative density, 
p* /p, . The two solid lines represent the theory for both conventional and auxetic foams. The dashed 
line represents the theory of Gibson and Ashby (1988). 

Figures 8.43 and 8.46 show that the experimental data for the foams fit well 

with the theoretical curves. The large scatter in the data for Poisson's ratio (Figures 

8.44 and 8.45) reflects, in part, the variability in v for foams of different cell 
geometry (cell shape, as discussed above) and, in part, the inherent difficulty in 

measuring this property. 

8.12 The Cross Sectional Area of the Cell Ribs 

The loading on a component can generally be broken down into some 
combination of axial tension or compression, bending, hinging, and torsion. Almost 

always, one mode dominates. The effect on the shape of the cross sectional area 
depends upon the mode of loading. In axial tension, the area of cross-section is 
important but its shape is not: all sections with the same area will carry the same load. 
On the other hand, in bending and hinging it is the shape that matters. This is because 
the second moment of area is dependent on the shape of the cross-section as shown in 
Table 8.5. 
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Section Shape A (m2) I (m4) 

aa 

a 

2 

29 

d3 
4a 

7tr2 

t2 

stab 

Table. 8.5 The second moments of sections. 

4 
a 

32ý-3 

7tr4/4 

t4112 

ita3b/4 

The best material-and-shape combination depends upon the mode of loading. 

The cross-section area of a foams is normally triangular in shape. If we assume a=t, 

then the moduli of foam having triangular ribs are 
72 times that of foam having 

square ribs. Although the shapes of the moduli-cell angle curves are the same for the 

two cases, the curve for the foam having triangular shape will shift upwards. The 

reason a rectangular rib was used instead of a triangular rib in the foam model is 

because each vertical rib, h, is equally sheared between 4 identical cells. In order to 

divide the vertical rib into four identical ribs, it was necessary to choose the 

rectangular rib instead of the triangular rib. However, the results should be the same 
for both of the cases, the only difference being that the values of the moduli of the 

foam having the ribs triangular in shape are 
32 

times that of the foam having the 

ribs square in shape. 
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It should be noted that the theoretical models can also be used for molecular 

design. Several types of the cross-sections, and therefore, second moment of area can 
he chosen according to the nude of loading. 

8.13 Elastic Theory of the Ball Indentation Test 

The theory of plastic hardness of the foams were developed by Wilsea et. al. 
(1974) and Shaw and Sata (1966). Since the foams used in this study are elastic 

materials and have no yield stresses they are therefore different from plastic foams. As 

a result the approach of Wilsea et al. (1974) and Shaw (1966) cannot be used here to 

analyse my experimental results. However, the theoretical treatment of elastic hardness 

of metal is well developed. Both static and dynamic indentation resistance to elastic 
deformation have a dependence on Poisson's ratio that is predicted from the classical 
hertz equation (Tabor, 1951). This equation was originally derived to describe the 

penetration of an elastic surface by an elastic ball (see Figure 8.47). 

Fig. 8.47 Schematic diagram showing the indentation of an ideal elastic surface by a steel ball. 

a= Fr 
1-vß2+1-vß,, 2 

4 EB EM (8.4) 

Where: a= radius of indentation 

F= applied load 

r= radius of ball 

VB= Poisson's ratio of ball 

vM= Poisson's ratio of material 

EB = Modulus of ball 
EM = Modulus of Material 
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'I'hj steel hall is much harder than the foams, therefore the ball is considered 

toi ik" infinitcl\' , titt and then the equation can be rewritten as: 

I- v� 
cr =- Fr (8.5) 

4 EAG 

Relate the radius of the indentation, a to the depth, h, we know that 

r' -u22 (8.6) 

h)')y (8.7) 

here lore, 

Y2 / 3r 1- VM2 3 
-! t)`ý =F 4xE (8.8) 

M 

(r2- (r - /1)z)ß 

, (8.9) 
_3r 

1-V42 
Y3 

-x 4 EAf 

So, for a given radius of indenter and applied force, the indentation resistance 

of the material in this case is proportional to (1- VMZ)-3. It can clearly be seen that, as 

vM approaches ±1, the material will become much more difficult to indent. Since the 

compressive Poisson's ratio for the conventional polymeric foams is normally around 
0.33 (Gibson and Ashby, 1988), and that for the auxetic foams can be as large as 

-0.76. Therefore, the indentation resistance of auxetic foam maybe higher than that of 

conventional foam. 

The equation 8.9 was used to plot the Figure 8.48. The value of E, and vm 

were listed in Table 6.1 and 6.4. Figure 8.48 shows the load/deflection curves 
expected for the l Oppi conventional and auxetic polyether urethane foams under the 
indentation of the two different sizes spherical indenters, Ball 1 and Ball 2. In both 

cases there is an initial linear region, and the indentation resistance is dependent on the 
indenter size. However, Despite having low in-plain shear moduli and Young's 

moduli auxetic foams can offer greater resistance to indentation. 
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Fig. 8.48 Plot of the Hertz equation for the two sizes spherical indenters, Ball I and Ball 2 
indenting the l Oppi conventional and auxetic polyether urethane foams in the foam rise, y direction. 

Figure 8.49 shows the experimental load-deflection curve of the lOppi 

conventional polyether urethane foam (LOCO) together with the theoretical plots under 
indentation of the Ball 1 and Ball 2. For very low strains there is reasonable agreement 
between theory and experiment, but the equation breaks down at larger strains. 

An equivalent plot for an auxetic foam (70AO) is shown in Figure 8.50. The 

theory predict that Ball I has higher benefit for auxetic foam in the entire strain range, 
The experiment shows this prediction is true only when the strain is greater than 12%. 

Since the experimental data for Ball 1 and Ball 2 are close, so if we take the 

measuring errors into account the experimental results may agree well with the theory. 

Figures 8.51 and 8.52 show the load-deflection of the lOppi polyether 

urethane foams (IOCO and 70AO) under the indentation of Ball 1 and Ball 2 with 

those obtained from the theory. The initial gradient shows good agreement with the 

theory. Again, the theory overestimates the resistance to indentation and the deviation 

from linearity in the experimental data arises from the change of the effective area of 
foam supporting the load. Unlike dense solids, which can be considered to be 

incompressible when deformed plastically to large strains, foams change their volume 

when compressed. This is because the cells of the foam collapse as the foam is 

squeezed, so much so that, for low density foams, axial compression produces almost 

no lateral spreading. However, it can be seen that caution must be used in applying the 
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rr'uit< of the Hertz theory to low modulus foams where it is easy to produce 

dc toniiations hich exceed the restriction to small strains. 
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Fig. 8.49 Load versus displacement plot for the two sizes spherical indenters, Ball 1 and Ball 2 
indenting the lOppi conventional polycther urethane foam in the foam rise, y direction. 
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Fig. 8.50 Load versus displacement plot for the two sizes spherical indenters, Ball I and Ball 2 
indenting the l0ppi auxetic polyether urethane foam in the foam rise, y direction. 
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Fig. 8.51 Load-displacement plot for the spherical indenter, Ball 1 indenting the 10ppi 
conventional and auxetic polyether urethane foams in the foam rise, y direction. 
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Fig. 8.52 Load-displacement plot for the spherical indenter, Ball 2 indenting the lOppi 
conventional and auxetic polyether urethane foams in the foam rise, y direction. 
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In every case it is evident that auxetic foam is more resistant to indentation 

than its parent conventional foam. It could be argued that this is to be expected 

considering that it is three times as dense. However, this is not the most important 

consideration. Experimental examination of the uniaxial stress-strain curves in Figures 

7.7 to 7.14 show that in the initial part of the load-deflection curve for the auxetic 
foam is less stiff than its parent conventional foam. This weakness can be attributed 

firstly to a difference in the initial deformation modes of conventional and auxetic 

foams (see Figure 7.7 and 7.8). With the conventional foam, the applied load must 

overcome the inherent stiffness of the straight ribs that make up the hexagonal cells. At 

a relatively low load this mode changes as the ribs start to buckle and the progressive 

collapse of the structure into a buckled form generates the elastic collapse, the plateau 

region of the load-deflection curve. The microstructure of auxetic foam is different 

from that of conventional foam. Since the ribs of auxetic foam are already buckled 

inwards, and the increased density of the foam plus the additional densification that 

occurs as a consequence of the negative Poisson's ratio enables the material to sustain 

a constant modulus that is comparable with but smaller than that of the initial modulus 

of the parent conventional foam as shown in Figures 8.51 and 8.52. From EQ. 8.9, 

we know that increasing the diameter of the inderter reduces the gradient of the load- 

displacement curve. It is noted that when we try to interpret the results obtained with a 

spherical indenter we should consider the effective contact area of the indenter- 

indentation profile as shown in Figure 7.6. Therefore, a more accurate elastic 

indentation theory for the low modulus material requires further development in the 

future research. 

Looking at honeycomb indentation (Figure 7.15 and 7.16) we can see a much 
more local indentaion in the conventional honeycomb whereas the auxetic honeycomb 

has a wider indentation. Exactly the same effect is seen in the photographs of foams 
(Figure 7.4 and 7.5). A possible explaination for this effect is: (see Figure 8.53) 

2 --w,. 
1 

Fig. 8.53 Schematic diagram for the ball indentaion test on an auxetic foam. 

Region 1: Material is squashed. This because region 2: material to be drawn in from 
sides. This movement of material increases width of indentation. 
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Compare the ball indentation profile of auxetic foam with that of conventional 

foam (Figure 8.54), we can see that the auxetic foam has a much smaller shear strain 

than the conventional foam. For a given h, the diameter of the indentation profile, d, is 

smaller for the conventional foam. This means that the shear bending of auxetic foam 

is less than that of conventional foam. 

1, 

High shear strain 

(a) (b) 

Fig. 8.54 Schematic diagram for the ball indentaion test on (a) convetional foam, and (b) auxetic 
foam. 

8.14 Elasticity Theory-of the Ball Rebound Test 

The energy expended during the rebound test is very difficult to quantify if we 

attempt to measure it directly by the indentation produced. This is because, as we shall 

see, as a result of elastic recovery there is no indentation remaining in the surface 

when rebound occurs. The approach used here is that adopted by Shore (1918) and by 

Roudie (1930). In their methods, the height of rebound itself was used as a measure 

of the dynamic resilience. It was found that if the height of fall is constant, the height 

of rebound is roughly proportional to the static indentation resilience of the material 

concerned. The result for the foams (Tables 6.4,7.3 and 7.4) is shown in Figure 8.55. 
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Fig. 8.55 The ball rebound height vs. the compressive Poisson's ratio for the lOppi open cell 
polyether urethane foams (LOCO, 100AO, 90AO, 80AO, 70AO) and the 60ppi closed cell conventional polyester urethane foam (PECC). 
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The experiments show that the region of contact deformed elastically. Although 

the foam may he slow in regaining its original configuration because of its viscoelastic 
behaviour, the surface recovered elastically and separate without residual deformation 

after the impact. Suppose the indenter has a mass m, and a radius rR, and that it falls 

from a height ht, onto a flat foam surface. After the collision, the indenter rebounds to 

a height h,. and leaves a indentation profile in the foam surface of diameter d=2a 

(Figure 8.50). We assume that (1) the mechanism involved in the dynamic indentation 

is essentially the same as that which occurs under static conditions. That is to say, 

when the elastic deformation has been completed there is a release of elastic stresses in 

the indenter and in the indentation. (2) The energy involved in the release of these 

elastic stresses is equal to the energy of rebound of the indenter. (3) The Young's 

moduli for the indenter and the foam are essentially the same as for static conditions. 
Consider the indentation after the impact has occured. Since there has been a release of 
elastic stresses in the indentation, its radius of curvature will not be rB but will be 

somewhat greater, say r,,,. If the indenter apply a mean pressure, P, at the end of the 
deforming process, and it deforms the foam (and itself) elastically, according to 
Tabor's equation (1951): 

S 
11,4 Mg 1-VBz I- Vm2 

4 

P 
/11 - 112 

1? X 109r, 3 ER 
+ 

Em (8.10) 

Where: m and rß are the mass and the radius of the spherical indenter respectively. g, 
is the acceleration due to gravity (approx. 9.81 m/s2), ht, is the height of the ball free 
fall, and h2 is the height of the ball rebound. ER and En, are Young's moduli for the 
indenter and the foam respectively, and v,,, v. are Poisson's ratios. 

I 

and m 

Fig. 8.56 A hard spherical indenter of mass m, radius rl, falls from a height hl on to a massive anvil, rebounds to a height h2 and creates an indentation of chordal diameter. (Tabor, 1951) 
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Since the steel hall is much harder than the foam under test it is therefore the 

ball is considered to be infinitely stiff, and then the equation can be rewritten as: 

)-Y4 

p` 
11,4 

x 
pig 

31- 
V"'2 

(8.11) 
3 

fiý1 
109rR Em, 

l'R`l 

If we assume the bracket involving Young's moduli and Poisson's ratio does 

not vary greatly for most foams during the contact, we may treat this factor as a 

constant and plot P as a function of h2 for a given height hl. The theoretical curve is 

shown in Figure 8.57. Note: the experimental values of h2, hl, m, rB, v., and En, 

from Table 7.3 and 7.4 were used to calculate P by using EQ. 8.11. Figure 8.57 

shows the calibration Data (o) and the theoretical P-h2 curves (full line and dashed 

line). 
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8.57 Dynamic indentation resilience as a function of the height of rebound for a fixed height of fall 
of 516mm. The equation used to plot the theoretical curves is given in EQ. 7.12. 

It can be seen from Figure 8.57 that the dynamic resilience of auxetic foam is 
higher than its parent conventional foam. Therefore auxetic foam may have good 
potential as packaging material. 

The dynamic indentation resilience of a foam is the pressure with which it 

resists local indentation by a rapid moving indenter. Under this experimental 

condition, where the speed of impact is much more higher than the speed of static ball 

indentation, the dynamic elastic collapse pressure is approximate ten times the static 

elastic collapse pressure, so that, as with static indentation resilience, dynamic 

indentation resilience is essentially a measure of the elastic collapse limit of the foam. 

The actual value of the dynamic elastic collapse pressure, however depends not only 
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on the size of the indentation as in the Meyer hardness test; it also depends on the 

velo'city. of impact and on the way in which it is computed. 

K. 15 Relate the Loss Tangent with the Ball Rebound 
Measurements 

The viscoelastic deformation of the foam during the ball rebound test, is a 

`hear process, and it is time dependent. The effects of this process on ball rebound 

measurements has been outlined by Flom (1960) as follows: In determining the elastic 
loss in a material it is convenient to represent the dynamic shear modulus as a complex 

quantity, G*. The stress-strain relationship is ß(cß)=G`((j))e(o))where 

G' (c>>) _ (; '((o)+ jG"(c)). The ratio G"/G' is =6 by which the stress leads the 

strain and is called the loss tangent. Flom then shows how tans can be obtained from 

the rebound height by the equations: 

tan ,5- c(2.303 
)Lo 

Where: hi, is the original height of the ball, h2, is the rebound height of the ball, C, is 

it constant depending on the geometry of the microstructure. It should be noted that in 

this analysis Floni assumes that the polymer is not permanently indented by the impact 

of the ball, and the frequency is assumed to be very low. 

If we assume that the frequency of stress in the ball rebound was the same as 
in the DMTA (l OHz). Then the loss tan (5 obtained from the DMTA curves (Figure 
7.28,7.29 and 7.30) can be plotted against ht/h2 obtained from the ball rebound test 
(Table 7.3, and 7.4) as shown in Figure 8.58. For comparison with the experimental 
results the theoretical equation (EQ. 8.12) is also plotted in the same figure (dashed line). 
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I inures 8.58 shows that the loss tanS of an auxetic foam is larger than that 

for it\ parent conventional foam. Since the loss tangent, t! anS is one of the 
harn trriýtir. of a material that determines its dynamic damping capability, then we 

can \« that auxetic foam is better at absorbing dynamic energy. 

f i, Qure 8.58 also shows that the ball rebound height for the auxetic foam is 

higher than its parent conventional foam. Here the foam which we have used is an 

non-linear viscoclastic material, and actually the frequency of the ball rebound test is 

tauch lo er than that of the DMTA test. Therefore, it may not be a good idea to 

compare the result of the hall rebound test with that of DMTA. We would expect the 
hall reN)und measurements to be more closely related to the hysteresis loop than to the 
Loss tangent. Experiments show that auxetic foams have a larger rebound height and a 

smaller hysteresis loop. 

In order to relate the frictional energy loss with slip at the ball-foam interface, 

it is necessary to develop a more relevant mathematical model for the loading and the 

unloading phases of the stress-strain response. This model should not only account 
for the variation of strain over loaded area but also the non-linear mechanical 
behaviour and the frequency dependence of the material properties. 
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Chapter 9 Conclusions and Future Work 

9.1 Conclusions 

( 1) A large block of auxetic foam exhibiting negative Poisson's ratio has been 

fabricated. The negative Poisson's ratio arises from a re-entrant cell structure. 
Various features of the re-entrant cell shape are controlled by the processing 

techniques. Auxetic foams based on thermoplastic polymers (i. e. PUR) were 

produced by a thermomechanical technique from conventional low density 

polymeric foams. The 'multi-stage' fabrication method is used to achieve the triaxial 

compression for the large size foam specimen. The foam cell structure was 

transformed by a compression, heating, cooling, and relaxing procedure into a re- 

entrant structure. The required times and temperatures were determined 

experimentally for each type of foam examined. PUR foam subjected to different 

permanent volumetric compression ratios can be produced by varying the starting 

sizes of the foams. 

(2) In tension and compression, the transverse expansion and contraction due to 
the negative Poisson's ratio was observed. By contrast, in the case of a conventional 
foam, as tensile force is applied in one direction, the cells elongate in that direction 

and constrict in the orthogonal directions. It was observed that the cell structure 
become more compact as the permanent volumetric compression was increased. The 
foam cell structure is very complicated. The cells rotate under the shear stresses. 

(3) Results of uniaxial tensile and compressive load-deformation tests revealed 
significant differences between auxetic and conventional foams, which are known to 
exhibit three regions of behaviour: (i) an approximately linear behaviour for strain 
less than about 5%. (ii) a plateau region in which strain increases at constant or 
nearly constant stress, and (iii) a densification region of the stress-strain curve in 

which its slope increases markedly with strain. As for an auxetic foam, this study 
disclosed the absence of a plateau region in the stress-strain curves. Moreover, the 
tensile and compression stress-strain curves of auxetic foam exhibited a much wider 
range of linear behaviour. 

(4) The auxetic foams exhibited lower Young's modulus. Negative Poisson's 
ratio and Young's modulus decreases with increasing permanent volumetric 
compression. The shear modulus of auxetic foam in some directions, (i. e. G, y, 

Gyx, 
Gy,, and G, 

y) is lower than that of conventional foam. However, in other directions 
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NII h a.: (,,, and G, the shear modulus of auxetic foam exhibit higher values. This 

static testing result is the same as the dynamic testing result obtained from DMTA. 

i In the indentation of it block of foam by a localised circular pressure 
di,, trihution of radius it, a foam with a negative Poisson's ratio is more difficult to 
indent. The reason for this is the local shear strain of the auxetic foam is much less 

than that of conventional foam. The hexagonal cells with the positive cell angles are 

very easy to collapse whereas the re-entrant cells will constrict and the cell sizes 

become smaller. 

(() At small strain and low strain rate, the energy loss of conventional foam is 
higher than that of auxetic foam. However, at large strain and high strain rate, the 
hysteresis of auxetic foam exhibits a higher value. 

(7) A rhombic dodecahedron model based on foam micro-structure has been 

developed. Foam can deform by one or any combination of three mechanisms: 
tlexure, hinging, or stretching, and all of these deformation modes can be described 

by force constant models. The model uses direct measurement of geometric 

parameters from SEM and optical microscope observation of the specimens. The 

Young's modulus, Poisson's ratio and shear modulus of both conventional foam and 

auxetic foams were comparable to those predicted by microstructural analysis based 

on the deformation of cell ribs. The three dimensional foams have complicated 

geometries which cannot be completely expressed. The theoretical model for foams 

can only be an approximate analysis. Models describing the properties of foams in 

terms of cell rib property and cell geometry can be used to select the most 
appropriate material for a particular engineering application. 

9.2 Future Possibilities and Future Work 

Applications of negative Poisson's ratio materials may be envisaged based on 
either the value of Poisson's ratio itself or another unusual physical property that 

results from the underlying structural mechanism. Some applications such as: air 
filters, gaskets, fillings for high way joints, fasteners, and sandwich panels need to 
be examined experimentally in the future work. 

Further experimental studies on auxetic foams are: 

(1) Looking for a more accurate way to determine the parameters of the cell 
geometry (i. e. L, h, and 0). 

253 



Conclusions and Future Work 

(2) A model which can be used to predict the mechanical behaviour of foams at 
large deformation strains requires further development. 

(3) An indentation theory on elastic foams requires development. 

(4) The foams are made from polymers. At the moment, we are using the 

property of polymers, i. e. ES instead of the property of the cell rib. However, actually 

the foaming process and heat treatment may change the property of the cell ribs. 

Therefore, we need to find a way to measure the Es of the foam ribs. 

(5) At the present of time, an auxetic foam has to be transformed from a 

conventional foam. This may give rise to broken or damaged ribs in the cell. 
Therefore, we need to look for a new way to manufacture auxetic foam, so that it is 

no longer necessary for an auxetic foam to be converted from a conventional foam, 

but can be made directly from the expansion process. 
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