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SUMMARY 

The effects of free stream Mach number, angle of incidence and 

base bleed on the base pressure of a symmetrical blunt-base aerofoil in 

the transonic range, 0.6 ,< Me- ,<1.3, were investigated. The tests 

were carried out in a 4" x 4" transonic slotted wind tunnel. 

At -zero incidence, a minimum value of base pressure was obtained 

when the Mach number just ahead of the base was approximately equal 

to 1.42. The effect of increasing incidence was to increase the 

base pressure when the flow was attached. 

With base bleed bleed, the base pressure was increased until 

it reached an optimum value. 

At zero incidence, the flow around the base was investigated. 

Correlations were obtained for the reattachment pressure and position 

and for the base pressure with base bleed. 

Most of the assumptions used by theories for base pressure were 

found to be invalid. 

The boundary layer velocity profile just after separation can 

be calculated using an analysis based on the stream-tube method. 

The free shear layer velocity profile can be calculated using 

the modified Nash method. 
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NOTATION 
yZ 

M2 /1+ y-l M2) C Crocco's number =ý Xi - -F 
CD Total drag coefficient = D/pe,. u»2 h 

J 
CH 

CDf Skin friction drag coefficient = (rw/pe-ue-2h)dx 

0 

CDB Base pressure drag coefficient =- CPB 

CDP Pressure drag coefficient based on trailing edge height 

CDW Wave drag coefficient based on trailing edge height 

CH Chord length 

CPB Base drag coefficient = (Pb-P-)/. pe-ue-2 

(CPB)LIM Limit base drag coefficient (obtained when the flow 

approaching the trailing edge has zero boundary layer thickness 

Cq Base bleed coefficient = m/pe-. ue--. 2h. S 

Cqb = mb/Pec. uec. 2h. S 

d Transition wire diameter 

D Total drag 

h Semi-thickness of the trailing edge; equivalent to the 

back step height. 

H Shape factor = e/a* 
l Splitter plate length 

L Free shear layer length 

LSW Slotted wall length 

m Power law exponent of the boundary layer velocity 

profile (eqn. 2.20) 



4- viii - 

m Mass transported from external stream to the viscous 

region (eqn. 3.21) 

Rate of base bleed calculated from the orifice readings 

(Kg/sec) 

mb Rate of base bleed calculated by assuming that the 

velocity distribution of the base bleed along the span 

is uniform and equal to the velocity near the centre- 

line (kg/sec) 

M Mach number 

'R 
el Mach number at 0.03" upstream of the trailing edge 

Mel Mach number at 0.4" upstream of the trailing edge 

Mp Mach number calculated from Ptp and Psp 

MS Mach number calculated from Psp and the true total 

pressure 
N Reattachment parameter (eqn. 3.16) 

P Static pressure 

Psp Static pressure measured by either pitot-static probe 

or the static probe 

Ptp Total pressure measured by the pitot-static probe 

Re Reynolds number based on the chord length 

S Span 

T Static temperature 

TH Tunnel height 

u, v Velocity along the x and y direction respectively 

uR Reference velocity 

x, y Free shear layer co-ordinates 
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0 

z Distance between the origin of the equivalent asymptotic 

shear layer and the separation point (eqn. 3.13) 

z Distance along the span 

Y Specific heat ratio 

Y Local angle between external stream and the x-axis 

at y=a (eqn. 3.21) 

a Angle of incidence 

i Slotted walls divergence angle 
Angle formed by taking a straight line between the 

corner and the reattachment point 

Boattail angle 

Boundary layer thickness = Yu=0.99 - yu=0.01 

d* Boundary layer displacement thickness 

e Boundary layer momentum thickness 

61,62 Boundary layer thickness before and after expansion 

, 
d*l, ö*2 Boundary layer displacement thickness before and after 

expansion 

else2 Boundary layer momentum thickness before and after 

expansion 

c Eddy viscosity 

Y/ 2/ 

no a2/21 

, ne2 = 22/c- 

= dx 
UR 
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v Prandtl-Meyer angle 

p Density 

Free shear layer velocity ratio = u2/ue2 

02 Velocity ratio of the boundary layer just after 

expansion 

a ýD 

TW Wall shear stress 

TD Shear stress along the dividing streamline 

T1D Shear stress along the dividing streamline at the 

constant pressure region 

SUFFICES 

0 Stagnation conditions 

1 Conditions upstream of the separation point 

2 Conditions downstream of the separation point 

b Base pressure conditions (equivalent to 2) 

Conditions along the centreline of the model in the 

wake 

D Conditions along the dividing streamline 

e Inviscid external stream conditions 

i Incompressible equivalent 
mb Conditions with base bleed rate mb 

opt. Conditions with optimum value of base pressure with 

base bleed 

r Reattachment conditions 
Free stream conditions calculated from plenum chamber 

pressure. (In the theory, m conditions are assumed to be 

equivalent to 1 conditions) 
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INTRODUCTION 

The turbulent base flow over a two dimensional body with a 

blunt trailing edge has, for a long time, been a problem of interest 

that has been studied by both analysis and experiment. In an effort 

to define the aerofoil with sharp trailing edge, Nash(54) argued 

that for the aerofoil to be 'aerodynamically sharp', the trailing 

edge thickness must be of the same order or less than the total 

boundary momentum thickness at the trailing edge. He defined the 

aerofoil with a blunt trailing edge as that with h/CH > 0.01. 

While potential flow theories give zero drag for all shapes, 

experiments show that blunt edge bodies have a large profile drag 

which cannot be explained by the effects of the friction forces on 

their surfaces. 

It was recognised that an essential feature of the flow past a 

blunt edge aerofoil is the flow separation at the trailing edge and 

the existence of a low pressure region behind the separation point 

as compared with the pressure in the undisturbed stream. This low 

. pressure, the base pressure, is the cause of the greater part of the 

total drag especially at transonic and supersonic speeds. 

To investigate the parameters effecting the two dimensional 

turbulent base pressure, numerous experimental data were obtained 

as described in Chapter 1. Previous experimental results had shown 

that at subsonic speeds, the base pressure was periodic because of 

the vortex formation downstream of the separation point. As the 

flow speed was increased, the vortex formation was reduced and 

eventually suppressed at supersonic speeds and the flow was then con- 

sidered steady. 
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At transonic speeds, there were few experimental results with 

no available data on the effect of the angle of incidence and the 

base bleed on the base pressure at these speeds. 

In recent years, the interest the base pressure problem was 

extended to the case of the high-speed gas-turbine blade. The 

cooling air, which is needed to cool the blades, is passed through 

the blade and injected through either holes or a slot in the trailing 

edge back to the main flow. This means that the trailing edge has 

to be made thicker and the knowledge of the base drag becomes 

necessary in the determination and improvement of the turbine's 

overall efficiency. 

Because the flow over a symmetrical aerofoil at an angle of 

incidence resembles that over a turbine blade, the interest in the 

effect of incidence on the base pressure became greater. 

Many theories were developed for the steady base pressure at zero 

incidence, see Chapter 3. All these theories simplify the problem 

by employing many assumptions. 

The purpose of the present work is to: - 

i) Investigate the effect of various parameters on 

the transonic base pressure thus filling the 

-gap in the experimental data at transonic speeds. 

ii) Investigate the flow around the trailing edge 

at zero incidence to obtain a better understanding 

of the transonic base flow and to investigate the 

validity of the assumption and correlations used 

in the theory. 
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iii) Obtain the total drag by measuring the wake 

profile and compare the values of the 

various drag components. 
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CHAPTER ONE 

SURVEY OF PREVIOUS EXPERIMENTS ON 

TWO-DIMENSIONAL BASE PRESSURE 

1.1 Experiment at Subsonic and Transonic Speeds 

Experimental results for base pressure for subsonic flow over 

aerofoils were collected by Hoerner(l'2) who found that the base 

drag data could be correlated in terms of skin friction drag of the 

aerofoil upstream of the trailing edge and gave the correlation 

0.135 CPB 
3 Df 

(1.1) 

Hoerner also analysed measurements of'the base drag of backward facing 

steps and found that for this case the base drag could be correlated 

by; 

PB 3 
(1.2) CC 

Df 

From the above results it could be seen that for given free stream 

conditions the base pressure at subsonic speeds of the blunt trailing 

edge aerofoil was less than that of a back step. Hoerner attributed 

the discrepancy to the exis-tante of a Karman vortex sheet in the wake 

of the aerofoil, whereas in the case of a back step the presence of 

a downstream wall prohibited the formation of any such vortex system. 

To support this argument, the use of a splitter plate was later 

demonstrated by Roshko(3'4) to have the effect of reducing the base 
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drag of a bluff cylinder body and was able to show that as the 

splitter plate was moved downstream from the body the base pressure 

rose and the shedding frequency of the periodic vortices decreased. 

Bearman(5) investigated the effect of varying the length of a 

splitter plate, attached to the. centre-line of an aerofoil, on the 

base drag. He found that the base pressure rose rapidly as the 

length*of the splitter plate was increased but reached a local 

maximum when the splitter plate length was approximately equal to 

the trailing edge thickness (1/2h = 1.0). After this point the base 

pressure decreased until 1/2h was approximately equal to 1.5 and 

then the base pressure began to rise again. The results of Nash et 

al 6) 
showed similar features. 

Chapman et al(7 suggested that'if the periodic vortex formation 

was suppressed, the subsonic base flow would be quite similar to that 

of steady base flow at supersonic speed. Therefore, if the splitter 

plate was long enough, the periodic vortex shedding could be wholly 

suppressed and the base flow would then be steady. Arie and Rouse(s) 

reported that a splitter plate ten times the height of the base was 

necessary before the base pressure was insensitive to further increase 

in length, while Tanner(9) concluded from his results, which were 

obtained by measurements on several wedges under nominally two-dimen- 

sional test conditions, that for a splitter plate of length equal to 

four times its body thickness, the periodic vortex shedding was wholly 

suppressed and the base pressure remained practically constant when 

1/2h was increased above the value of four. 

Nash et al(s) carried out measurements on the base pressure at 
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1" 

subsonic and transonic speed. Using a stroboscope in conjunction 

with a schlieren optical system, he was able to observe the formation 

of the vortex street. He concluded from these observations that as 

the free stream Mach number approached unity, the periodic effects 

collapsed and subsequently the flow closely resembled the ideal steady 

base flow. This could explain the reason why at supersonic speeds 

the splitter plate has a very small influence on the base pressure. 

Tests on aerofoils in the transonic speed range(6,10,11,12,13,14) 

showed a qualitative agreement in which the base drag varied very 

little with Mach number in the subsonic range until the free stream 

Mach number had a value of around 0.9 to 0.95, then the base drag 

increased sharply until it reached a maximum after which it decreased. 

Using a series of aerofoils with-different angles of sweepback, 

Rogers et al 
(13) 

showed that the free stream Mach number at which the 

base drag increased sharply in the transonic speed range could be 

delayed. When the base drag results were plotted against [M cos w], 

where was the angle of sweep, they collapsed to a single curve which 

suggested that the base flow behaved in many respects in the manner 

required by the simple-sweep theory. 

Tanner's (10) 
results showed that for transonic speed there was 

an appreciable influence of the boundary layer upon the base drag. 

The latter decreased as the boundary layer thickness increased. 

1.2 Experiments at Supersonic Speeds 

All the early studies(15916) for supersonic base pressure were 

carried out with the free stream Mach number as the only variable and 
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the general trend was that base pressure (Pb/P. ) decreased with MOO. 

The effect of the boundary layer approaching the base was con- 
(l 

sidered by Chapman 7). In his analysis he assumed that in general 

it was expected that Pb/PCO followed the functional equation 

F= 
f(Me 

9 "h 
1's ßs 

«) 

G 
(l. 3) 

For zero angle of incidence and zero boat tail angle he assumed that 

the turbulent boundary layer just ahead of the base was equal to that 

which had developed over a flat plate of length equal to the chord 

length of the aerofoil and thus was able to write 

Tf Tr e 

for-the turbulent boundary layer, 

Therefore. the equation could be written as 

i Pb 
^f {Me CH 

ms ' ýtJ (1.3a) 

He concluded that for a specific free stream Mach number, the Reynolds 

number had little effect on (Pb/P.. ) j f- the' boundary layer approaching 

the base was turbulent. His experimental results confirmed this. 

Kurzweg(l8), in his studies of the variation of (Pb/P. ) with (Re), 

pointed out that the base pressure for a specific free stream Mach 

a 
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number was not only dependent on the nature of the boundary layer 

approaching the base (turbulent or laminar) but also was strongly 

dependent on the position of the boundary layer transition from 

laminar to turbulent as, presumably, this effected the value of el 

for the turbulent boundary layer at the base. 

The result of Kurzweg(18), Bogdonoff(20) and Kavanau(21), all 

obtained with bodies of revoltuion at Mach numbers of about three, 

showed a similar variation of Pb/P- with (Re) as was predicted by 

Crocco's theory(19)* and there was a marked minimum value of Pb/PO, 

which occurred at (Re = 1.5 x 106). 

Holder and Chadd(22) and Van Hise(23) carried out similar tests 

on a two-dimensional case for a free stream Mach number ranging from 

1.95 to 2.92 and found similar results in which there was a minimum 

value of Pb/P. and at the value of (Re 1 to 2x 106), the base 

pressure ratio became constant with respect to (Re) when the transi- 

tion point became fixed. 

Since the boundary layer thickness was a function of the body 

geometry (i. e. the pressure gradients acting on the boundary layer) 

as well as (Re), the effect of (o1/h) on the base pressure was 

investigated. 

Experimental results(24) behind a two-dimensional step at Mach 

number 1.86 showed that when the ratio of boundary layer thickness 

to base height was halved there was very little change in the base 

pressure ratio. A physical argument 
(22) 

was given for this. The 

argument was that at the corner the flow was accelerated so that the 

* See Section 3.2. 
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part of the boundary layer after expansion, which had high velocity 

gradients, was really much thinner than the boundary layer just 

before the base. This was particularly true for a turbulent boundary 

layer where the part of the boundary layer which had high velocity 

gradients was small to start with so that the flow downstream of the 

base could almost be treated as if there was no boundary layer up- 

stream of it. Therefore, the effect of the boundary layer was 

negligible. 

Hastings (25) 
results showed that this was not the case. He 

carried out tests on base pressure for a back step at Mach numbers of 

1.5,2.0 and 3.1 and the effect of boundary layer thickness was 

investigated by varying the step height. His results s. 'zowed that 

base pressure ratio was very much dependent on the ratio of the 

boundary layer momentum thickness to the step height (e1/h). The 

trend was that as el/h was increased from a very small value, the 

base pressure ratio increased rapidly. The rate of this increase 

diminishes with increasing el/h and when the value of el/h reached 

unity there was very little effect of further boundary layer thick- 

ness increments on the value of base. pressure. 

Nash(54) analysed Hasting's results and suggested the correlation 

for supersonic flows; 

(CPb) 
LIM - CPb = 0.175 

el 
(1.4) 

where (C Pb)LIM is the value of base drag with zero boundary layer 

thickness (i. e. limit base drag) and was assumed to vary with free 
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stream Mach numbers according to the following approximate relation 

(CPb)LIM 
=- (3.627-4.458Meý+1.877Me-2-0.246Me-3) (1.5) 

The effect of boat tail angle on the base pressure was investi- 

gated by Chapman(26). He showed that for a turbulent boundary layer 

and a boat tail angle, ß, in the range of 00 to 200 there was very 

little change in the value of base pressure ratio. * 

Fuller and Reid(27) gave more reliable results as they-used the 

same basic section with different boat tail angles. Their results 

showed a slight increase in base pressure as 7 was increased from 

00 to 8°. This was thought to be due to the fact that as 7 was 

increased the trailing edge thickness was decreased and therefore 

the ratio (eI /h) increased giving a higher base pressure value. 

The effect of incidence on the base pressure was also investi- 

gated 
(26). The results showed that for Mach numbers of 1.5,2.0 and 

3.1, and an angle of incidence, a, of 0 to 50 there was very little 

change in base pressure. Coin (28) 
and Love(29) showed similar results. 

It was concluded from the above results that the influence of the boat 

tail and incidence angles on the base pressure was mainly in the way 

they altered the ratio of the boundary layer thickness to trailing 

edge height at separation. 

" Some results(18) have shown the change in boundary layer velocity 

. profile, by changing the boundary layer temperature profile, which 

* This could be misleading since the results were for wings with different sections and different maximum thicknesses. 
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caused the base pressure to vary in spite of constant values of Me- 

and Re. It was demonstrated by these results that the base pressure 

was reduced when the temperature of the body was low so giving a 

cooling effect to the boundary layer and increased when the tempera- 

ture of the body was increased. 

1.3 Experiments on Reduction of Base Drag 

Because the base drag constitutes an appreciable part of the 

total drag, particularly at transonic and supersonic speeds, various 

methods have been used to reduce the base drag. The oldest and best 

known methods were the use of splitter plates and of base bleed, but 

recently it was demonstrated that the shape of the base had an effect 

on the base drag. These methods are discussed in this section. 

1.3.1 The Splitter Plate 

As already mentioend in Section (1.1), because of the presence 

of a periodic vortex street in the wake behind the two-dimensional 

body with its kinetic energy content, the base drag could be reduced 

by suppressing this vortex shedding. The use of a thin splitter 

plate attached to the centre-line of the base had the effect of 

suppressing the vortex shedding. If the plate was long enough, the 

shedding could be wholly eliminated and the wake was then steady. 

At subsonic speeds, a large reduction of base drag was obtained 

by this method. A reduction of about 50% of base drag was obtained 

by employing a long thin splitter plate with wedges of various 

angles(9). Similar reductions in base drag were obtained for two- 

/' 
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dimensional bodies (5). * 

At transonic speeds, results(6) showed that with a long thin 

splitter plate a maximum reduction of about 60% in the base drag of 

an aerofoil was obtained even for a high subsonic speed. But for 

a Mach number of about unity the base drag with splitter plate was 

only slightly less than that without the plate (about 10%). This 

was because the periodicity of the base flow rapidly decreased at 

M=1 approximately(6) and the strength of the vortex street further 

decreased with increasing Mach number. That was why the splitter 

plate as a device for reducing the base drag was less effective at 

supersonic Mach numbers than at subsonic speeds. 

Results(5'6) showed that for subsonic and transonic speeds, the 

base pressure had local maximum value when (1/2h - 1.0) and that for 

(1.0 < 1/2h , 2.0) the base pressure was decreasing. This led many 

authors(6914) to believe that a splitter plate having a length 

(1/2h'= 1.0) would be the most practical for reducing the base drag 

since a longer thin splitter plate which gave greater base pressure 

(1/2h P 3.0) would not be structurally-strong enough due to its 

length. This practical problem of not using a long thin splitter plate 

was overcome by the use of a long thick splitter plate. These rela- 

tively thick splitter plates gave an additional advantage since the 

pressure acting on the end face of the thick plate was higher than 

the base pressure and therefore the effective base drag was lower 

than that of a thin splitter plate of equivalent length. Results 

showed that it was possible to get still more reduction in base drag 

*A similar reduction in the base drag of circular cylinders was 
obtained by this method 3). 
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by the use of splitter wedges 
(30) 

0 

1.3.2 Base Bleed 

Bearman(92'93) investigated, for incompressible flow, the effect 

of bleeding air through a slot at the base of a two-dimensional wing 

on the base pressure and on the vortex shedding. The base pressure 

drag decreased with increasing bleed rate (Cq) until the base pres- 

sure reached a local maximum at a value of Cq = 0.1 - 0.14 approxi- 

mately depending on the slot width. Greater slot widths seemed to 

give the maximum increase in base pressure. From his observation on 

the vortex formation, it seemed that the effect of the base bleed was 

to suppress the vortex formation, similar, to the effect of a splitter 

plate. 

Bardminarayanau(31) measured the base pressure of a two-dimensional 

body at a Mach number of 2.0 with and without base bleed. These 

results indicated that the base bleed effected the entire flow in the 

mixing region and that a small quantity of air injected into the dead 

air region effected the base pressure significantly causing a maximum 

increase of about 24% in the base pressure when the boundary layer 

approaching the base was turbulent. Similar results 
(32933) 

were 

obtained for supersonic flows over a back step. 

So far there appears to be no available data on the effect of 

base bleed on the base pressure in the transonic range. 

1.3.3 Additional Methods for Reducing Base Drag in Two-Dimensional Flow 

Experimental measurements 
(81) in incompressible flow on rectangular 

wings, having serrated trailing edges, have shown that the serrated 
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separation line inhibited the periodic vortex formation and thus 

created a steady base flow with lower base drag. Results(30) from 

experimental investigation at subsonic, transonic and supersonic 

Mach numbers on rectangular wings have also shown that the base 

drag can be greatly reduced by using a serrated trailing edge 

instead of a straight trailing edge. 

Measurements(14) in the transonic range on two-dimensional 

models with a different trailing edge configuration have also shown 

a reduction in base drag by using these configurations instead of 

a straight trailing edge. 

Measurements(6) on an aerofoil with a half round base in the 

transonic range have shown that up to Mw = 0.55, the base drag was 

considerably lower for the half round base than that for the rec- 

tangular base. In the Mach number range from 0.6 < Me.. < 0.9 the 

opposite was true, while for 0.9 ,< Me- E 1.2 the base drag for both 

trailing edge shapes was almost the same. The conclusion was that 

the rounding of the blunt base seemed to be unfavourable for base 

drag reduction in the transonic range. 

It is reported in Ref. 54 that the use of a base with a venti- 

lated cavity can also give a reduction in base drag. 
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CHAPTER TWO 

THE NATURE OF THE FLOW 

For steady base flow, the flow on either side of the plane 

symmetry in the wake behind isolated base is assumed to be similar 

to the flow past a back step. Fig. 1 shows sketches of the flow. 

The flow separates at S and reattaches at the point R. Thus a dead- 

air region (SRA) is formed where the velocity is low and the pres- 

sure is assumed to be constant everywhere in this region and equal 

to the base pressure. 

Because of the viscous-inviscid interaction between the external 

stream and fluid inside the dead-air region, a mixing layer which is 

called the free shear layer is developed by entraining fluid from 

the dead-air region. Since the mass in this region must be conserved, 

a recompression'is needed at the reattachment zone to slow down and 

eventually reverse part of the free shear layer back to the dead-air 

region. This is why the base pressure essentially must be lower than 

that of the free stream pressure. 

If there is no base bleed, then the separation streamline must 

be the same as the reattachment streamline. This streamline (the 

line SR) is called the dividing streamline. 

2.1 The Flow Expansion and Separation at the Corner 

The features which distinguish boundary layer separation at a 

i 

sharp edge from the usual boundary layer separation are the sign and 
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magnitude of the pressure gradient. In the classical separation 

the shear stress is zero at the point of separation and the pressure 

gradient is adverse causing the boundary layer to thicken, whilst at 

a sharp corner the shear stress at separation is high but finite and 

the pressure gradient is favourable causing the boundary layer thick- 

ness to decrease. 

The expansion at the corner is assumed to be rapid and to occur 

in a very short distance. The boundary layer velocity profile and 

dimensions are effected by the rapid expansion and separation. To 

evaluate this effect, the stream tube method is employed in which the 

expansion along any streamline is assumed to be isentropic* and the 

rate of mass flow between any two streamlines is assumed to remain 

constant throughout the expansion process. 

Fig. 2 shows the boundary layer, of initial thickness dl, approach- 

ing the base to form there a new boundary layer thickness 62 Just after 

separation. To find the velocity profile for the new boundary layer 

after expansion, the flow along any streamline AA' is assumed isentropic. 

Pb Pb 1+2 Mý Y/Y-1 
(2.1) 

+ 
37 m2 

where Ml = Mach number of the streamline AA' just before expansion and 

M2 = Mach number of streamline AA' just after expansion. 

If the. total temperature is conserved along the boundary layer 

* This assumption is reasonable since the expansion process occurs in a very short distance. 
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then 

ul C1 
and 

u2 C2 

uel e' ue2 re2 

1? m 
where C= Crocco's numbers 

1 +jJ M 

(2.2) 

If the initial profile of the boundary layer just before expan- 

sion is given as: - 

ui y1 
'17 

(2.3) - sý uel 

then for any base pressure ratio Pb/P.., the velocity along any 

streamline. can be found from equation (2.1), (2.2) and (2.3). To 

find the position y2 of the streamline AA' after expansion, the con- 

tinuity equation is used, 

yý y2 

pl ul dy = p2 u2 dy 

00 

P 
2Y Y1/a1 

M 
'. ' 

2=d 
äý (2.4) 

"1b21 
0 

Thus the boundary layer velocity profile after expansion is calcu- 
lated once the base pressure ratio (P,, /Pb) is known. 
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The change in the momentum thickness of the boundary layer 

due to the expansion is calculated by the simple approximate 

relation given by Nash(50) 

3 
02 Me- 1+ Me22 

eý jci 
1+ Y-I M`2 

Roberts(62) gives a more accurate but complex relation using 

the stream tube method which is found to differ very little from 

that calculated by eqn. (2.5). White(64) using the momentum- 

integral equation and integrating it across a pressure difference 

gives the relation 

_21.4 L2 3.2 ce2 fCe2) 

011 e -ý 

Fig. 3 shows the values of 
02 

for different values of 
Pb 

for el 
(Mco = 1.0 and 1.3) calculated from equation (2.5) and 2.6). 

In the past it has been assumed that when a supersonic flow 

passes over a rearward facing step or a blunt trailing edge aero- 

foil, the separation occurs smoothly from the corner of the step. 

It has also been assumed that the subsequent mixing region and the 

dividing streamline also originates from this point. The subsonic 

(2.5) 

(2.6) 

portion of the boundary layer provides a channel through which pres- 

sure signals from the base region downstream of the corner can 

propogate upstream. These pressure signals may be felt at a distance 
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of the order (Me. 6i) (Ref. 65) upstream of the corner. Therefore 

a significant pressure drop will be experienced ahead of the corner 

causing the expansion process to start there and not at the corner 

as all theories assume. 

Because the flow will start to turn towards the horizontal 

surface ahead of the corner the wall shear stress will increase 

very rapidly. R. C. Ackerberg(66) in his theoretical analysis for- 

incompressible flow approaching the corner found that the skin 

friction is proportional to the inverse eighth power of the distance 

from the edge (Tw « (-x)-ý) with a singularity point at the corner 

with infinite wall shear stress. * 

A significant step in understanding the supersonic base separa- 

tion has been made by Weinbaum(67) and Weiss and Weinbaum(68) who 

developed a theory for the expansion and separation process that 

occurs at a blunt base trailing. edge. These authors adopt an 

invrscid rotational model for the supersonic portion of the expanding 

boundary layer flow. The assumption is made that the origin of the 

expansion fan is positioned at the corner and that separation occurs 

at the trailing edge. The supersonic portion of the boundary layer 

is assumed to consist of an infinite number of layers with slightly 

different Mach numbers separated by slip lines. Fig. 4A shows two 

of these layers interacting with an expansion wave ABC. 

From their theoretical analysis they concluded that for the 

final deflection angles (c2 and n3) and the final pressures (P2 and 

P3) to be equal, there exists a reflected wave (BF) at the slip line. 

* This is only a theoretical model since experiments showed that 
. 
at the separation point the wall shear stress-is finite. 
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When Mi > /f the reflected wave is an expansion wave and for 

Mi < 12 the reflected wave is a compression wave. These reflected 

waves, when reaching the sonic line, will be reflected as waves of 

the opposite family. Thus for high Mach numbers (Mi > they 

reflect at the sonic line as compression waves and these waves will 

coalesce, typically 5 to 10 boundary layer thicknesses downstream of 

the corner, to form a lip shock (Fig. 4B). 

Contrary to the prediction of the inviscid theory just mentioned, 

Harnma's(69) detailed experiment indicated that the lip shock forma- 

tion distance was less than a boundary layer thickness and that the 

foot of the shock appeared to be located beneath the corner and 

adjacent to the base wall. Moreover, the accompanying static pres- 

sure measurements on the base wall showed that the pressure reached 

a minimum at a small distance and then increased again to the base 

pressure value. 

These results suggest that the flow adjacent to the base must 

be turned sharply, over expanded initially, and then compressed and 

separated from the base face in the region of rapidly increasing 

pressure as shown in Fig. 4C. Dewey (70) in his experiment for hyper-- 

sonic flow over a cylinder showed a"similar pressure distribution. 

where the pressure initially decreased to a minimum value and then 

increased to a constant value at separation. 

Donaldson (71) 
measured the free shear layer very close tp the 

base and the apparent displacement of the mixing region can only be 

achieved by a flow deflection much greater than would be expected 
from the inviscid rotational theory. The difference was significantly 
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large to suggest to the author that at very small distances behind 

the base the neglect of the viscous forces is not justified and that 

even with a supersonic outer flow these forces are sufficient to 

have an appreciable effect on the outer flow and in particular may 

cause the separation point to be on the rear face of the base and not 

at the corner as it is suggested by the inviscid theory. 
(72) To try to explain these experimental results Weinbaum modified 

his original model by assuming that a thin layer exists adjacent to the 

wall where the flow is slow and can be treated as a Stokes type flow 

in which the viscous term is high and the inertia term can be neglected 

in the momentum equation. His mathematical solution led him to the 

following conclusions: - 

i) The separation point is as the rear face of the 

base in a region of adverse pressure gradient and 

not at the corner in a favourable pressure gradient 

as the inviscid theory has assumed. 

ii) The separation streamline is not a straight line 

but has significant curvature near the separation 

point. 

2.2 Free Shear Layer Development 

The development of the free shear layer with zero initial boundary 

layer thickness is similar to that of uniform jet mixing with fluid at 

rest. The velocity profile of the latter is similar at any position 
in the x-direction and can be approximated by the asymptotic error 
function velocity profile (see Section 3.1.1, Eqn. 3.5). 
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To take into account the effect of a finite initial boundary 

layer thickness, Kirk (49ý has proposed a method in which the real shear 

layer can be replaced by an equivalent asymptotic shear layer developing 

over a greater distance with zero initial boundary layer thickness 

(Section 3.1.2). 

When the flow has a finite initial boundary layer thickness, the 

shear layer velocity profile becomes similar and asymptotic only after 

a distance of many boundary layer thicknesses downstream from the 

separation point. Therefore, there exists a region near the separation 

point where the free shear layer velocity profiles are not similar but 

are a function of the distance from the base. 

Denison and Baum(73) tackled the problem of the free shear layer 

development in the non-similar velocity profile region. In their 

analysis, which is for the Laminar shear layer, the assumption is made 

that at separation the boundary layer has a Blasius profile. Knowing 

these initial conditions, the solution for the shear layer velocity 

profile is obtained by a numerical integration of the shear layer, 

momentum equation. 

Kubota and Dewey (74) 
proposed a simple method in which the momentum 

integral method is used to describe the development of the constant 

pressure, Laminar free mixing with finite initial thickness. Their 

technique is to divide the velocity profile of the free shear layer 

into two parts, one above and one below the zero streamline (i. e. the 

dividing streamline). Each part is represented by a simple analytical 

-function containing parameters that may vary with the distance in the 

x-direction. These profiles are substituted in a number of moment of 
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momentum equations equal to the number of these parameters. These 

equations are integrated across the shear layer and the boundary 

conditions are applied at the inner and outer edges. The simplest 

analytical solution is employed in which the incompressible velocity 

profiles above and below the dividing streamline are assumed to be 

quadratic functions. * Therefore, the shear layer velocity profile 

is given as follows: - 

Above the dividing streamline 

ü ao + aý ni + a2 ný2 (2.7) 
e 

Below the dividing streamline 

ü=g= 
bo + bI ni + b2 ni2 (2.8) 

e 

Y 
where - 

yi 
=i ni äiß ný äi 

äi = Incompressible shear layer thickness above the dividing 

streamline, 

ai = Incompressible shear layer thickness below the dividing 

streamline, 

ao, a,, a2, b0, b1 and b2 are constants. 

* This means that at separation, the initial boundary layer has a 
quadratic profile. For a turbulent boundary layer this is quite 
a poor assumption., 
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The boundary conditions are 

24 - 

at ni =1, f=1, af 
=0 

ani 

ni 0,4- =0 
ani 

(2.9) 

The two expressions for the velocity profile are related by the require- 

ment that the velocity and its derivatives must be continuous at the 

joining point (i. e. at the diving streamline where y= 0). Therefore, 

of aý a and f 
an - ä. 9 

ii 

Equations (2.7), (2.8), (2.9) and (2.10) give 

f-1- x(1-ni)2 

g= (1-a)(1+nß)2 

tX, f 

where A=1 -Op 

(2.10) 

(2.11) 

The momentum equation is transformed'intö the incompressible plane 

and integrated across the shear layer. The expressions in Eqn. (2.11) 

are substituted in the momentum integral equation. The solution gives 
the variation of Op with the distance (x) from the base. The solution 

f-1- 



a 

for a laminar shear layer is 

25 - 

veX (2.12) = f(a) 
Ue262 

where 

F(ý) _ 
225 1 (1-13ý 

_1 
a+31 1-a 

45 3-9x+4x2' 3-9x+4x2 

=1 81-9+7j-3 +1 +n+ In (2.12a) 
55�'3" 8a-9-�'3 3º-1 

Since for the present investigation, the free shear layer is turbu- 

lent, the L. H. S. of eqn. (2.12) is slightly modified to 

X 

Edx= F(X) (2.13) 
ue262 

where e= free turbulent eddy viscosity 

--ý Ue2 X 

and Q= rate of spread of shear layer (see Appendix 1). 

Therefore, eqn. (2.13) becomes 

X2 
9 

= kf(x) (2.14) 
o e2 

* 'See Section 37. This is valid only for the case of a turbulent 
shear layer with similar profiles. Since we are treating the case 
of a turbulent shear layer with non-similar profiles, there is an 
element of error introduced here. 
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At any position (x), given the initial boundary layer momentum 

thickness (e2), the velocity along the dividing streamline 0p and 

the shear layer velocity profile in the incompressible plane can 

be calculated using eqn. (2.14) and (2.11). The velocity profile 

can be transformed to the compressible plane. 

Nash (75) treated the problem of the development of the free 

shear layer with finite initial thickness in a different way. 

Following Korst's approximation, the momentum equation can be 

written as 
(36,37,38) 

2 
uR ax 

-7 (2.15) 
ay 

where uR is some reference velocity. 

Nash argued that since uR is some mean value between zero and 

ue2, it is assumed that 

uR = 
u- 

(2.16) 

By making the transformations 

U2 
= UR 

dx ,=u2 (2.17) 

Eqn. (2.15) becomes 

= 
d02 (2.18) 
dy 
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Thus, the momentum equation, simplifies to the one dimensional 

diffusion equation for which standard solution is available(39). 

The following boundary and initial conditions are used: - 

= 1 for c =0, s <y < 

_ 02(y) for c =0, 0 <y<a 

Then the solution of eqn. (2.18) for the velocity profile at 

any streamwise position of the free shear layer is given by 

_ 1+ erf(n-no) + 
na 

Yy) e-(a n) 
2 

doc (2.19) 
r7r 

0 

where 

n--La ,2 (2.19a) 
2 /,.. 0 2/ 

Since the boundary layer at separation is turbulent, the assumption 

is made that the boundary layer just after separation has a 1/m th 

power law velocity profile. Therefore: - 

ý2(Y) vm 
2 (2.20) 

Eqn. (2.19) becomes 
i"0 

=1+ erf(n-no) +. 1 
am e-(a-") da (2.21) 

'no /m 
0 
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For a complete solution, the problem is to specify the varia- 

tion of (e) with respect to (x) in order to determine the value of 

no and thus the velocity profile (o) at that position. The eddy 

viscosity model employed is 

s=K ue 
f, (2.22) 

2 y=o 

where K is a constant determined from the asymptotic shear layer. 

Equations (2.22) and (2.21) give the variation of (no) with 

respect to (x) as* 

-= F(no) (2.23) 
2 

where 

_1 

1/no 

- e-'ßo 
2- 

`2 

romýi-«Zda 

od 
(2.23a) F(n) 1 

i no jm e 
00 

Jo 

Nash found that eqn. (2.23), with m=7, gave the best fit to 

the experimental results of Chapman and Korstng5). These results 

were for incompressible flow where the initial boundary layer has 

a7 th power law velocity profile. 

For the present case, Nash's method is modified since there is 

no reason why the above results cannot be applied to the compressible 

* See Ref. 75 for more details. 
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flow with a different value of m. Table (1) gives the variation 

of (no) with 
aä2 

for different values of (m) according to eqn. 

(2.23). Fig. 5 shows the effect of aä on the shear layer thick- 
2 

ness 6 using eqn. (2.23) and eqn. (2.21) with m= 11. To transform 

a2 to the incompressible plane, we use the Stewardson transformation 

dy = 
Pp 

dyi 

a 
612 

Pe2 d 
6i2 1- Ce22 '2 

01- 
Ce2 

dyi Z Jo p2 yi = 

ai2 2 

=11- Ce22 yi 1m dyi 
1`Ce2 

06 ig 

Therefore, 

62. 
_ 

2+m-mCe2 2 
(2.24) 

612 (1 - Ce2 )(2 + m) 

In the incompressible plane, the boundary layer thickness and 

momentum thickness are related by 

m (2.25) eil (M+1)(M+27 dig 

By using the Stewardson transformation, the momentum thickness 

in the incompressible plane remains equal to that in the compressible 
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plane. Therefore, 

832 = e2 

Eqn. (2.19), (2.20), (2.21) and (2.22) gives 

x_ m+7 (m+2) 
c02 m 

(2+m-mCe22) 
F(no) 

(1-Ce2)(2+m) 

(2.26) 

(2.27) 

Therefore, given the initial boundary layer thickness, eqns. (2.23) & 

(2.27) gives the value of no at any x. This value is substituted 

in eqn. (2.21) to evaluate the velocity profile at that particular 

value of x. 

The position and the velocity of the dividing streamline can 

be calculated using the following analysis: 

Defining ex as the momentum thickness of the shear layer at 

any position in the x-direction. Therefore 

YR p2u2 p2u22 
ex puý 

dy (2.28) 
e2 e2 Pe2ue2 

-00 x 

where yR is some reference value 

At x=0, ex will be equal 

thickness just after expansion. 
YR 

p2u2 
e2 

_ý 
7e2ue2 

x=o 
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in the inviscid external flow. 

to e2, the boundary layer momentum 

Eqn. (2.28) becomes 

Yb pu2 
dy -22 dy (2.29) 

-ý 'e2ue2 
x=o 
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By the definition of the dividing streamline, 

f'R 
p2U2 yR 

p2U2 1 dy = dy 
pe2ue2 

x_o 
pe2ue2 

x -CO 

JYD 

where yp is the dividing streamline co-ordinate. 

Since the pressure in the mixing region is constant then the 

shear layer momentum is conserved. Therefore, 

YR 
p2u22 

YR 
p2U22 

g=- dy 

_W 
tPe2UeJx=o 

-10 
pe2 e2 X 

Equations (2.29), (2.30) and (2.31) give 

(2.30) 

(2.31) 

YR p2G2 YD 
'22U2 

fYR 
P2U22 dy (2.32 ) g2 Pe2 u e2 

dy - Ae2 u e2 
dy - ---- 

Pe2ue2 
2 

nR np R2 

net = (1-Ce22) dn n- do (2.3: 242 1-Ce2 1-Ce2 1-C 
e2 

y where n02 = 
e2 

, Id 
d, Ce2 Crocco's number, 

2F 21; - 

u 2 (eqn. 2.21) ue2 
(2.33a) 
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If ne2, " and Met are known then np and h can be calculated 

using eqn. (2.33) and eqn. (2.21) respectively. 

From equations (2.24), (2.25) and (2.26) and from the definition 

of net we obtain, 

02 02 
"e2 

2r 
"o 6z 

nm 
(1-Ce22)(2+m) 

(2.34) 
0 (m+ m+ (2+m-mCe2 ) 

Fig. 6 shows the effect of Me2 on the variation of 0, with 
x when (m = 11) using eqns. (2.34),. (2.33), (2.23) and (2.21) 

oe2 

Camarta(82) proposed a method for dealing with the problem. 

The initial boundary layer is assumed to have a 
[jj. Jth 

power law 

velocity profile. Near the base, the initial boundary layer profile 

is not wholly effected by the mixing process. Thus, the shear 

layer profile can be divided into two regions. The lower region is 

the part of the initial boundary layer which is effected by the 

mixing and is assumed to have an asymptotic error function velocity 

profile. The upper region is the part of the initial boundary layer 

which is not yet effected by the mixing and therefore the 1Jth 

power law velocity profile is returned in this region. 

The joining point of the two regions is a function of x kT2 

An empirical relation is used to specify the joining point position. 
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Because the two regions have different velocity profiles, the 

shear layer profile has a kink at the joining point where the 

velocity gradient is not continuous. 

Gerhart and Korst(83) proposed a similar but more complex 

method in which the lower region of the shear layer profile is 

assumed to be linear. The joining point of the two regions is 

found from the argument that the momentum of the shear layer 

remains constant with respect to (x) thus, the empirical relation 

of Camarta is avoided. 

2.3 The Reattachment Region 

After separation, the free shear layer will develop and will 

continue to thicken and entrain air from the dead-air region under 

constant pressure. The dividing streamline in the mixing region is 

almost straight. Eventually, the reattachment region is reached 

where. the pressure starts to rise to reverse the air entrained by 

the shear layer back to the dead-air region until the dividing 

streamline reattaches. 

To obtain an idea of the geometric configuration of the dividing 

streamline near the reattachment point, Cheng(76) assumes the flow 

to be incompressible and uses the full Navier-Stokes equations. The 

solution of these equations is assumed analytic. This solution 

shows that in the region very near to the reattachment point, the 

dividing streamline shape is parabolic having an infinite slope at 

the reattachment point. This corresponds to the requirement of 

potential flow at such a stagnation point(87). 



- 34 
i 

Although our present interest is with the compressible flow, 

it is thought that in the neighbourhood of the reattachment point 

the dividing streamline has very low velocities anyway and that 

the incompressible treatment of Cheng is valid there even for a 

high speed external flow. 

The reattachment criterion used by Chapman (7) 
and Korst(36) 

is simply that the reattachment pressure is equal to the free 

stream static pressure. 

Various correlations are given to improve the reattachment 

criterion. In all these correlations, which are for supersonic 

flow, the assumption is made that (Pr) is either a function of 

Me. and Pb or a function of Me_ and some free shear layer para- 

meter in which the free shear layer is assumed to have the asymptotic 

profile. 

The first improvement on the Chapman and Korst reattachment 

criterion is due to Nash(50) who introduced the parameter N(see 

section 3.1.3, egn. 3.16) to account for the fact that Pr is actually 

smaller than P. 
O. 

For supersonic flow,. Nash employs (N =. 35) while 

Cook (53) 
uses (N = 0.5). Experimental results(33,23,25,77) have 

shown that the value of N is between (0.1) and (0.5) for supersonic 

flow. 

Roberts(63) gives a correlation which is valid for Me2 > 2.0. 

The Mach number Mer based on the value of Pr is given as, 

R 

Mer = Mew . 
. 799 + . 156 Me2 - . 08237 Me22 + . 009564 M022 (2.35) 
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C 

Page(78) has tackled the problem in a different way and has given 

the following correlation for 1.95 < Me2 < 4.13 

yr v2 

v -v - 0.5 [1 
- cos (18%-1.8)] (2.36) 

2 

where ýp is calculated by the equivalent asymptotic shear layer 
3,14 (eqn. 

Batham(79) gives another correlation, 

00 -r _K 
(pýU 

Met `1 
pCo Co 

where Tp - the shear stress at the dividing streamline of the free 

shear layer with zero initial thickness (given in Ref. 80). K= 

a constant that can be evaluated from experiment. 

t 

f 
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CHAPTER THREE 

THEORIES FOR STEADY TRANSONIC AND 

SUPERSONIC BASE PRESSURE 

A common feature of the theoretical methods for predicting base 

pressure is the assumption that the base pressure depends on the 

pressure recovery which can be sustained by the wake or by the're- 

attaching shear layer. The final recovery pressure far downstream 

is assumed known; frequently it is either equal to or approximated by 

the free stream static pressure. The base pressure is then found by 

subtracting from this known pressure the computed pressure rise occuring 

between the base and the reattachment point. 

t 

These methods can be divided into two groups: those which en-ploy 

the Chapman-Korst model which depends on dividing the base flow into 

separate flow regions and those which employ integral techniques. 

These two groups will now be discussed. 

3.1 Theories Employing the Chapman-Korst Flow Model 

Chapman(17) studied the supersonic base pressure problem for 

both two-dimensional and axisymmetric inviscid flow. His purpose was 

to develop an understanding' of the problem in its simplest form and 

also to study the effects of variations in profile shape on the base 

pressure. In addition to excluding viscosity and hence the boundary 

layer on the body, Chapman also excludes consideration of the mixing 

of the dead-air with the outside free streamline. He assumes that a 
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dead-air region of constant pressure equal to the base pressure exists 

just behind the base and is terminated by a single trailing shock 

wave. 
For the two-dimensional case he assumes an inviscid flow passing 

over a semi-infinite two-dimensional flat horizontal surface which 

has a step in it"(Fig. 7A). To construct the flow pattern in the 

neighbourhood of the base, the assumption is made that the inviscid 

flow expands through a centred Prandtl-Meyer expansion wave at the 

corner to form the dead-air region (ABC). The line (AB) represents 

the inviscid free streamline which separates the dead-air region from 

the external flow. 

The flow is terminated by a single shock wave (BE) where the flow 

is turned back to the free stream conditions through an angle equal to 

the corner expansion angle. For a specific free stream Mach number 

Me. (which is assumed to be equal to the value just upstream of the 

corner Mel), the maximum possible turning angle, and thus the lowest 

possible base pressure, is determined simply by the requirement that 

this maximum limit angle must be equal. to the maximum deflection angle 

possible for a trailing shock wave to occur at that particular Mach 

number. The base pressure value at this maximum angle is called the 

limiting base pressure. Fig. 7ß shows the limiting base pressure 

coefficient (CPB) as a function of (Me-) assuming the above argument 

to be correct. 

On the basis of this analysis, Chapman concludes that a purely 

inviscid flow theory cannot possibly be satisfactory for predicting the 

base pressure and the shaded area in Fig. 7B represents the region of 
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p 

possible values for this pressure. As we shall see in the following 

sections, the base pressure is in fact determined by the viscous- 

inviscid interation which occurs between where the flow separates 

from the corner and where it reattaches. 

Chapman(34,35) considers the problem of laminar mixing of the 

compressible air stream, separating at the corner of a two-dimensional 

body, with the dead-air region. He assumes that the flow has zero 

boundary layer thickness at separation. 

3.1.1 Theory of Korst 

Korst(36) developed a theory for transonic and supersonic turbu- 

lent flow in which the flow model is the same as in the theory of 

Chapman for supersonic laminar flow. Since this flow model forms a 

basis for most theoretical work and because the assumptions made by 

the theory are to be compared with the present experiment, the theory 

is explained in detail. The Chapman-Korst analysis is based on 

dividing the flow into four regions. The flow mechanism in each 

region is formulated as follows. 

The flow approaching the corner is assumed to be uniform flow 

with zero boundary layer thickness. 

The expansion of the flow around the corner is assumed to occur 

rapidly and isentropically. For supersonic flow, this occurs through 

a centred Prandtl-Meyer expansion originating from the corner. 

Therefore, 

P1+IM2 Y/Y-1 
(3.1) 

P1 

Ii +ý1 M2 2 e2 
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b 

In the mixing region, the free shear layer is assumed to develop 

at a constant pressure equal to the base pressure, Pb' 

The velocity profile at any position along the shear layer is 

obtained from eqn. (2.21). 

Since the boundary layer thickness at separation is zero then 

no =0 and eqn. (2.21) becomes 

o=1 (1+erfn) (3.2) 

It is recognised that the development of the turbulent free 

shear layer with zero initial boundary layer thickness is identical 

to the case of uniform free jet turbulent mixing with fluid at rest 

which has been dealt with theoretically (40,41,42,43). All the theories 

assume that free shear layer velocity profiles are similar. Tollmien(40) 

uses Prandtl's mixing length concept to study the incompressible mixing 

of a two-dimensional jet with a free boundary. His solution for the 

free shear layer velocity profile is in the form 

r) (3.3) 

where a is the rate of spread of the shear layer which is a constant . 

Abramovich (41 ) 
extended Tollmien's results to cover the case of 

compressible flow up to the speed of sound. He found that compress- 
ibility has, only a slight effect on the velocity profile. Experimental 

results(46#47,48) have shown that the free shear layer velocity profile 
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at supersonic speeds differs little in form from that at low speeds 

and the only effect of compressibility is to effect the value of a. 
(See Appendix 1 on the effect of Mach number on the value of a). 
Gortler(42) used Prandtl's new theory(45) of free turbulence in which 

the free turbulent eddy viscosity is defined as follows 

e= 
4-ýý- 

Ue "* x (3.4) 

Substituting eqn. (3.4) in the momentum equation, Gortler obtained 

an infinite series for the solution for the velocity profile. The 

first two terms of this series gave 

+ erf 2](. 5) 

Eqn. (3.5) is known to be in good agreement with the measured 

mean velocity near the centre of the shear layer, with slight deviation 

towards the edges. Because eqn. (3.5) approaches the edges of the 

shear layer asymptotically, it is referred to as the asymptotic error 

function velocity profile. Table 2 gives this velocity profile. 

Eqn. (3.5) can be identified to eqn. (3.2) by putting, 

* x (3.6) 

* It must be emphasised that eqn. (3.6) is valid only when the 
initial boundary layer thickness is zero and the free shear 
velocity profile, eqn. (3.2), can then be approximated by 
the asymptotic error function profile, eqn. (3.5). 
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To-find the velocity along the dividing streamline, op, in the 

constant pressure region, a different approach from that of Korst 

is used to give the same result. If the initial boundary layer I 

thickness is zero then ne2 =0 and the free shear 

asymptotic velocity profile. Therefore, eqn. (2.3; 

JnRJnD 
0= (1-Ce22) 2do- ---C2 do 

1-Ce2 0 1-C 
e2 ý 

layer has the 

3) becomes: - 

nR 2 
-. -ý---ý--ý do (3.7) llCe2 0 

_CO 

where q and n are given by, eqn. (3.5) and eqn. (3.6) respectively. 

If Met is given, then eqn. (3.7) can be integrated numerically 

to obtain the position and the velocity of the dividing streamline. 

Fig. 8 shows the theoretical variation of Op with Me2 for zero 

initial boundary layer thickness according to eqn. (3.7). 

In the recompression region, the pressure rises in order to 

reverse back to the dead-air region that air entrained by the free 

shear layer. If the flow is supersonic, the corresponding recompres- 

sion waves will coalesce to form a trailing shock. 

As did Chapman, Korst made two assumptions for this region. The 

first is that the free stream static pressure (P. ) is equal to the 

reattachment pressure (Pr). The second is that the compression pro- 

cess is isentropic. 

The Mach number along the dividing streamline is given by: - 

222 ýý Me2 
(3.8) MeD 

1t- Me2 (1-0 ) D 
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4 

Since the compression process is assumed isentropic, the flow 

along the dividing streamline is brought to rest according to; 

= PCo (1 + Y-1 Mep2)Y/Y-1 (3.9) 
bb 

Eqns. (2.1), (2.19) and (2.20) give 

Me-2 = (1-ßp2) Me22 (3.10) 

P 1+ M2 
1Y/y-1 Mil 

eco and 
co I+ Y-1 

M--- 
( 3.11) 

2 1_ýD 2 

To evaluate the base pressure for a given free stream Mach number 

Me- the procedure is as follows: - 

i) Assume a value of (Pb/Pý) and substitute this 

value in eqn. (3.1) to obtain Met. 

ii) Use. egn. (3.7) to obtain gyp. . 
iii) Substitute the value of ýp in. either eqn. (3.10) 

or eqn. (3.11). If both sides of the eqn. are 

not equal, assume another value of (Pb/P. ) and 

repeat the procedure to iterate to the correct 

value of (Pb/P-). Few iterations are needed. 
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Thus for zero initial boundary layer thickness, Korst has con- 

structed a simple method to evaluate the base pressure. Fig. 9 

shows the variation of (Pb/P-) with Me- according to the above 

theory. 

3.1.2 Extension of Korst Theory to Include the Effect of Finite 

Boundary Layer Thickness at Separation 

The Chapman and Korst theories are confined to the case of 

zero initial boundary layer thickness at separation. Kirk(49) has 

proposed a means of including the effect of a finite boundary layer 

thickness in these theories. His method -is to assume that the real 

free shear layer developing from a finite initial boundary layer 

thickness becomes asymptotic after a short distance after separation 

and can be replaced by an equivalent asymptotic free shear layer as 

illustrated in Fig. 10. The distance `x, between the shift in the 

origin of the equivalent asymptotic shear layer and the separation 

point is calculated by using the argument that at the separation 

point the momentum of the boundary layer is equal to that of the 

equivalent shear layer. 

In his analysis, Kirk did not include the value of z in the 

final result. For the present case, the value of 'x is included by 

using a different approach from that used by Kirk. At x=4, 

2 
e2 ipp2u2 

pp? ý2 
dy (3.12) 

e2 e2 e2 e2 . -00 x=o 
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where the right hand side of this equation represents the equivalent 

shear layer momentum thickness. 

Because the equivalent shear layer has an asymptotic error 

function velocity profile, eqn. (3.12) becomes 

a82 
. (1-Ce22) 

7 

Co 

do - 

clo 

1-Ce2 ý 
-co -Co 

--------ý- dry ( 3.13 ) 
1-Ce2 ý 

where 0 and n are given by eqn. (3.5) and eqn. (3.6) respectively. 

Fig. 77 shows the variation of 
vet_ 

with Met according to eqn. (3.13). 
X 

Since at any distance x, the equivalent shear layer has the 

length (x+7), eqn. (2.33) becomes 

0e2 2 
nR 

do _ 
tIC 

do _ JnR 
2 

do (3.14' 
22 (x x). e2 -ý 

i-c 
ý2 _ý 

e2 

where 0 and n are given by eqn. (3.5) and eqn. (3.6) respectively. 

The numerical integration of eqn. (3.14) together with eqn. (3.13) 
e2 

gives the variation of 0Q with 
cX 

for any value of Met. 

Fig. 12 shows the effect of Me2 on the variation of ýQ with 

Qe2 according to eqn. (3.14). 
002 

Therefore, 'D is now a function of x2 and Met in contrast to 

the case of zero initial boundary'layer thickness where Op is a 

function of M e2 only. 
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For comparison, Fig. 13, shows the variation of ýp with respect 

to e for incompressible flow as calculated by the above method Q2 
and the two methods described in Chapter 2. 

The effect of the finite. initial boundary layer thickness can 

now be included in Korst's theory using the above method. The base 

pressure is evaluated in the same way as before (section 3.1.1) 

except that ýp is now calculated using eqn. (3.14) with x taken as 

the distance between the separation point and the beginning of the 

recompression region. 

For simplicity, this distance is assumed to be equal to the 

distance between the separation and reattachment points (L). 

For supersonic flow, the dividing streamline is assumed to be 

straight and parallel to the external flow. Thus, 

sn v2-vom 
(3.15) 

3.1.3 Theory of Nash 

In the theory of Nash(50) for turbulent base flow, the flow 

model is essentially the same as that used by Korst. It is possible 

to predict the influences of the initial boundary layer thickness 

and of the base bleed on the base pressure. 

In all previous theories the reattachment pressure, Pr, is 

assumed to be equal to the free stream pressure or slightly less 

for the case of supersonic flow to take account of the pressure 

loss resulting from the passage of the external stream trhough the 
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trailing shock. 

Nash however raises the doubt that reattachment can occur at 

zero pressure gradient. His doubt has been supported by both 

experimental evidence 
(31,33) 

and theoretical treatment of the 

reattachment process(19151152) where it has been shown that the 

reattachment point is reached before the pressure has risen to the 

free stream pressure. The reason for this is that a pressure rise 
is needed to rehabilitate the reattached boundary layer*. Therefore, 

it is apparent that reattachment takes place at a point of adverse 

pressure gradient and a substantial pressure recovery is achieved 

downstream of the reattachment point. Nash therefore, introduces 

a new parameter (N) in the analysis where (N) is defined as 

N= 
Pý-b 

(3.16) 
b 

From experimental results for supersonic flow, Nash assumes the 

value of (N =. 35) instead of unity as has been assumed by all previous 

theories. 

If there is no base bleed into the dead-air region, the theory 

gives the solution for base pressure as, 

T_ El A A-ß (3.17) 

where A= ln(ab) 

* See References 51 and 52. 
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2 
Mee. 

a=]+ -ý M b e2) 
C 

ým )ý 

ým = . 348 + . 018 M* 
e2 

P Y-1 
B= in ry 

Pb 

=N ý= 00 -1 +1 
bb 

tir 7r E1 = 
(Y_, )QM 

I 

L= Free shear layer length. 

For supersonic flow L is defined by eqn. (3.15). Then eqn. 

(3.17) becomes: - 

02 
= EZ A A-8 

where E 
IMe2Te2)3 E1 

2 1MeTeJ sin v2-vom 

(3.18) 

* um is the velocity along the median streamline. This streamline 
(gym) is generally different from the dividing streamline yD" The 
two are related as follows: - 

ýD ý 1'e2 ue2 02 

If the initial boundary layer thickness is zero then ým and ýD are 
identical. 
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As the initial boundary layer thickness approaches zero, the 
p 

base pressure tends to its limiting value b- 
. From eqn. (3.18) 

LIM 

Pb 1_ (3.19) 
[(Xb) 

3.1.4 Later Developments in the Theory Based on the Chapman-Korst 

Flow Model 

Nash(54) later suggested that his value of 0.35 for N is not 
e 

accurate and that N is a function of Mew and -2. Other reattachment 

criterions are given in Section 2.3. 

To avoid the necessaty of introducing a reattachment pressure 

parameter, McDonald(55) has suggested a method for dealing with the 

part of the pressure rise occuring downstream of the reattachment 

point. In McDonald's theory, which is for supersonic flow past a 

backstep, the analysis is the same as for the previous theories until 

the start of the pressure rise at the reattachment region. From this 

point, a momentum integral approach gives the velocity profile thick- 

ness parameters at the reattachment point. The pressure rise to Pr 

is assumed abrupt and therefore isentro. pic. The remaining pressure 

rise (P. -Pr) is related to the change in the shape factor (N) of the 

attached boundary layer between reattachment point and far downstream. 

A similar approach is used by Reshotko and Tucker(56) for the 

separating boundary layer in adverse pressure gradients. However, 

an important difference exists between detaching and reattaching 

flows. Whereas in both cases the pressure rise is in the downstream 
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direction, the shape factor increases in the separating flow but 

decreases in the reattaching flow. 

McDonald assumes that a certain pressure rise is associated 

with a given change of shape factor irrespective of the sign of 

the change. Although this argument does not seem satisfactory, it 

has received some confirmation from Curl 57>. McDonald(52), in a 

later paper, attempts to argue this on a firmer basis. 

Thus, a simple result is used by McDonald which is that the 

rate of change in the shape factor of the reattaching boundary layer 

is merely minus that of the separating boundary layer. Therefore, 

Reshotko results can be used as follows: - 

Me- 
_ 

f(H1) 
(3.20) 

We ri 
where 

2 1/H. +1 
f(Ni) = 

(H i- 1)i (H i +1) 
e1 (3.20a) 

Hi = The incompressible'shape factor. 

Hi is related to H by the Stewartson transformation as 

H= (1 + Met) Hi +ý Me (3.20b) 

McDonald assumes that for a backstep, Hi. is equal to that of 

flow over a flat plate. A mean value of Hi,. = 1.4 is used. 
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,M 

The procedure to evaluate the base pressure for any Meco is as. 

fol]ows: - 
Pb 

i) Assume a value for Tr- 

ii) Use eqn. (3.1) to evaluate M 
e2 

iii) Use eqn. (3.14) to evaluate Op 

iv) Use eqn. (3.8) and eqn. (3.9) to 

evaluate Pr and thus Mer 

v) The velocity profile at reattachment is assumed 

to be asymptotic. Therefore Hir can be evaluated 

vi) Use eqn. (3.20) to evaluate Hi.. If Hi. is not 

equal to 1.4, repeat the procedure (i) to (vi). 

All the above theories do not show any difference between the 

flow past a backstep or an isolated base with no vertex formation. 

In fact, all these theories assume that the two types are similar 

and the results relating to one can be applied to the other. This 

assumption appears to have originated with the older theories like 

that of Chapman and Korst in which Pr i. s assumed to be equal to POO. 

Thus, the flow conditions downstrea of the reattachment point are 

thought to be unimportant. This has received some confirmation by 

experiments which have shown that for supersonic flow the base 

pressure for the two cases are not very different. 

As discussed above, there exists a considerable pressure rise 

after the reattachment point, thus, one expects that the flow field 

after reattachment plays an important role in the determination of 

the pressure field as a whole. 
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The essential differences between the step and the base flow 

lies in the development of the boundary layer after the reattach- 

ment point. In a backstep, there is a wall shear stress and the 

boundary layer must finally recover to that of a flat plate type 

far downstream. In an isolated base, there exists no shear stress 

on the centreline of the wake and the boundary layer must eventually 

have a value of (H = 1) far downstream. 

In view of the above differences, it is difficult to see how 

the McDonald theory can be used for an isolated base since a value 

of (Him = 1) gives f(Hi. ) equal toAnfinity. 

3.2 Integral Method 

All the above theories are incapable of predicting such important 

wake characteristics as the length of the recompression region, the 

location of the rear stagnation'point, the reattachment pressure, 

the longitudinal pressure, variations in the reattachment region and 

most important of all, the difference in the flow behaviour after 

reattachment between an isolated base and a backstep. These theories 

are deficient because they disregard the essential viscous-inviscid 

interation which determines the reattachment process and thus the 

whole turbulent base flow. 

In 1952, Crocco and Lees(19) developed a theory for the super- 

sonic rear wake. The theory includes the effect of the viscous- 

Inviscid interaction through the use of the integral continuity 

equation. Therefore, if *7 is the angle which the external inviscid 

stream makes with the x-direction (Fig. '14), then the rate of mass 
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of fluid which is transported to the boundary layer is 

dm . (dd 
_ ceue(f Y 

Integrating the continuity equation 

(3.21) 

a 
tan Y=e= -- 

- 
[Td (log pe ue)1 ppü dy 

(3.21a) 
e ee 

o 

In their analysis for supersonic two-dimensional turbulent base 

flow, the assumption is made that a single semi-empirical relation 

for the boundary layer parameters is valid for all flow regions from 

the separation point up to the wake. The momentum equation is used 

together with equation (3.21a) and the final equation shows the 

existence of a critical point after reattachment at which the pres- 

sure is still rising. This means that even after the reattachment 

point the pressure is less than the free stream pressure. To 

evaluate the base pressure, a value of Pb/P- is assumed and the 

final equation is integrated from the. separation point towards the 

wake. The correct base pressure value is the one that allows the 

flow to pass smoothly through the critical point. 

The analysis also predicted the dependence of Pb /P,, on Re. 

Fig. 15 shows a sketch of this prediction. There four distinct 

regions. 

Region A-B: Pb/P00 increases as Re increases. The flow is wholly 

laminar in this region. As Re increases, el and the 
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mixing rate decreases. The decrease in the mixing 

rate is apparently more than enough to offset the 

effect of the decrease in the boundary layer thickness 

thus the base pressure increases. Because of the low 

laminar mixing rate, the base pressure ratio is relatively 

high. 

Region B-C: Pb/PCO decreases with increasing Re In this region the 

transition from laminar to turbulent flow starts to 

occur just ahead of the reattachment position and this 

position is moving towards the base. Therefore, the 

shear layers are partly turbulent and as Re is increased, 

the large increase in the local mixing rate causes 

Pb/P- to decrease. At point c the base pressure ratio 

has a minimum value where the hole shear layer is 

turbulent and the transition point is just ahead of the 

base. 

Region C-D: Pb/P- increases with increasing Re. This is because as 

Re increases, the transition point is moving away from 

the base towards the leading edge causing el and thus 

Pb/PC, to increase. 

Region D-E: Pb/P,,, decreases slightly with increased Re. Here the 

transition point has reached a fixed point (namely the 

leading edge) and the flow is wholly turbulent. As Re 

increases, el and therefore Pbdecreases. Since for 

turbulent flow el a l/Rei/5, the rate of decrease in 

Pb/Pco is small. 

i 
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In order to avoid the semi-empirical features of Crocco-Lees' 

method, a theoretical model was developed by Reeves and Lees (58,59) 

for the hypersonic laminar near wake behind blunt bodies. This 

model has improved the Crocco-Lees' solution through the use of an 

additional first moment of momentum equation with a suitable profile. 

Alber and Lees(60) extended Reeves and Lees' model to the 

analysis of turbulent base flow for moderate supersonic flow. The 

effect of the free stream turbulence is now included in the solution 

by using an eddy viscosity model based on Prandtl's theory for incom- 

pressible free turbulence in which the length scale is not the width 

of the shear layer but the momentum thickness of this layer. The 

flow field is treated by dividing it into two distinct regions: - 

The first is the mixing region in. which the free shear layer 

develops and the mixing process is assumed to occur at constant 

pressure. The initial velocity profile for the shear layer is 

assumed to have a quadratic profile similar to that used in the 
2.2 

analysis of Kubota and Dewery(74) (Section 3). 

The second is the wake region where the pressure is starting 

to rise and the flow is beginning to turn back to the free stream 

condition. In the wake region the velocity profiles are assumed 

to be similar and corespond to the solutions of the Falkner-Skon(61962) 

equation of viscous flow in -a pressure gradient with zero shear stress 

on the axis of symmetry. 

The location of the point where the two regions join cannot 

be specified a priori but is uniquely determined by the condition 

that the flow must pass smoothly through the critical point. At 
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the joining point certain flow conditions at the beginning of the 

wake region must be equal to the flow conditions at the end of the 

constant pressure mixing region. * 

* See Ref. 60 for further detail. 
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CHAPTER FOUR 

DESCRIPTION OF THE RIG 

The tests were carried out in a transonic wind tunnel with 

slotted walls. * The slotted wind tunnel has mainly two advantages 

over a closed or open wind tunnel. 

If the model is placed. in a closed wind tunnel with straight 

walls, bulging out of the streamlines is prevented by the direct 

guiding of the wall. Proceeding from the model outwards to the 

walls, the streamlines are gradually straightened out by the in- 

fluence of the walls. The air flow between two adjacent streamlines 

must now squeeze through a smaller area than that of the real con- 

ditions giving rise to higher mean velocities around the model. 

On the contrary, if the model is placed in an open jet wind 
tunnel the streamlines will bulge out more than those under real 

conditions because the free stream pressure must be reached at the 

free jet boundary. Thus, the air flows between adjacent streamlines 

have larger areas and consequently lower mean velocities around the 

model than the real conditions. 

Therefore open or closed wind tunnels produce deformations 

around the model with opposite signs that require velocity corrections 

with opposing signs. If a slotted wind tunnel, having proper open- 

to-closed area ratio is employed, these deformations can be made to 

cancel each other. 

As the flow Mach number reaches unity the slotted wind tunnel 

* See Plate 1. 

I 
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acts like a supersonic nozzle with the throat at the beginning of 
the slots. Thus we are able to obtain Mach numbers higher than 

unity in the slotted wind tunnel by just increasing the stagnation 

pressure of the flow. 

The other advantage is in minimising the flow disturbances 

along the wind tunnel at transonic and supersonic speeds which 

result from the pressure wave reflections. A pressure wave is 

reflected from the solid wall and free jet boundary in like and 

unlike sense respectively. Again, by having a slotted wall with 

proper open-to-closed area ratio, some of the reflected waves are 

expected to cancel each other minimising the effect of these waves 

on the flow. 

The general layout of the closed air circuit for the transonic 

wind tunnel is shown in Fig. 16. The air is passed through a filter 

and an intake value which is controlled by a remote control pressure 

regulator in the wind tunnel room. The air is compressed by a 4- 

stage turbo air compressor. Table 3 gives the compressor specifi- 

cations. The compressed air is then passed through an after cooler 

and a settling chamber before entering'the slotted wind tunnel. 

After leaving the tunnel, air is cycled back to the intake valve. 

An isolating valve is provided in the circuit which can be shut in 

an emergency by pressing a button in the remote pressure regulator. 

An after cooler by-pass is provided for fine temperature adjustment. 

A pressure tapping is provided in the settling chamber for 

measuring the air total pressure. The settling chamber temperature 
is measured using a thermocouple. 
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At the entrance of the tunnel air is expanded between the sub- 

sonic liners and then flows over the model, through the slotted 

section. The test section is nominally4" x 4" with slotted upper 

and lower surfaces and the area of the slotted section can be 

altered by varying the angle of the slotted wall. Schlieren glass win- 

dows are provided on the two solid side walls of the test section 

to enable visualisation of the flow. 

The model is symmetrical about the centreline with pressure 

tappings on both upper and lower surfaces and at the base. To 

investigate the effect of base air bleed, the model is made hollow 

with an air inlet port through each side wall and a rectangular slot 

at the base for the bleed flow at outlet. The model can be set at 

different angles of incidence with respect to the tunnel. Thus, 

different Mach number distributions can be created on the upper and 

lower surfaces of the model and the flow over the model can then 

resemble that over turbine blades. 

To measure the boundary layer velocity profile and to investi- 

gate the flow field near the base, pressure probes can be inserted 

inside the working section through the solid side wall. A traverse 

gear is designed for this purpose. 

The slotted section, the model and the traverse gear have been 
(84) designed by Malhotra. 

4.1 Description of the Tunnel Working Section 

Fig. 17 shows the general layout of the test section. * The 

slotted walls are geometrically similar to those designed by Bansal'85j. 

* See Plate 1C. 
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a 

In each wall, there are three slots having a total open to closed 

area ratio of 1/14. 

The angle of the slotted walls can be varied. This is to 

shift the sonic line backwards and forward. 

4.2 Description of the Test Model 

The flow approaching the base is desired to be uniform and 

parallel as a basic condition for the base pressure correlation. 

Thus, the supersonic part of the model is designed with a contour 

similar to that of a supersonic nozzle, in which the contour must 

first curve outward and then backward until it is parallel to the 

flow direction. 

The supersonic contour obtained by Malhotra, with a final Mach 

number of 1.3 ahead of the trailing edge, can be approximated by 

the polynomial*, 

y= . 2637 + . 0074 x- . 1001x2 + . 0719x3 - . 0223x4 

+ . 026x5 (4.1) 

The shape of the sonic line depends on the profile of the subsonic 

inlet and the angle of the slotted liners. The subsonic part of 
the model is a combination of an ellipse and a straight line. 

Table-4 gives the model dimensions. Fig. 18 shows the model 

which is 6" long with maximum thickness of . 528" and trailing edge 
thickness of 0.3". 

* See Ref. 84 for further design details. 
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Fig. 19 shows the base geometry. The pressure tappings are 

shown in Fig. 20. 

4.3 The Base Bleed Air Supply System 

Fig. 21 shows the air supply system. Air from the recipri- 

cating compressor passes through throttle valves, a pressure 

control valve and an orifice plate. The orifice plate is made 

according to B. S. specification(95) with inside and outside dia- 

meters of 27/32" and 1k" respectively. A thermometer is used to 

measure. the air total temperature downstream of the orifice. 

4.4 Design and Description of the Pressure Probes 

To measure the static pressure in transonic flow represents 

some difficulty since at high subsonic speed the flow over the 

probe becomes supersonic locally and the supersonic region terminates 

by a shock wave. As the flow Mach number is increased, the shock 

moves backward. until it passes the static pressure tappings and the 

recorded pressure becomes lower than the true one. Therefore, as 

the flow Mach number approaches unity the instrument reading falls 

abruptly. 

These effects can be reduced by using a probe with a fine 

tapered head. Experimental results(90) have shown that by using a 

conical probe, a correction of . 002 to . 004 is needed for the Mach 

_number correction over the range of . 98 } 1.2. For M=1.6, experi- 

ments(91) have shown that the static pressure reading is independent 

of the nose shape when the static tappings are more than ten tube 
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diameters behind the shoulder of the nose. 

For the wind tunnel calibration, a static pressure probe was 

P 

used which has a conical nose with an apex angle of 100 followed 

by a steel tube of diameter . 066 (Fig. 22A). Four equally spaced 

holes each of . 013" diameter are drilled at a distance of 1" from 

the nose. 

A'rectangular head pitot-static probe was used for the boundary 

layer traverse and the measurement of the axial pressure and velocity 

distribution on the centreline of the flow near the base. The static 

pressure reading was used only for the latter. 

Although the use of-a pitot-static probe is not suitable for 

transonic flow measurements, the employment of this probe for the 

base region investigations is justified since the flow to be investi- 

gated was of a low Mach number. Fig. 22B shows the pitot-static probe. 

4.5 The Traverse Gear 

The traverse gear was designed to be suitable for boundary 

layer traverse. The flow can be investigated across the height and 

the width of the tunnel and along the flow. 

4.6 Calibration of the Pressure Probes 

The probes were calibrated in the uniform flow in the otherwise 

empty test section. 

Before the model was placed inside the tunnel, the static probe 

was aligned with the flow at the centreline of the tunnel. The pres- 

sure tappings were at the same streamwise position as that of the 

plenum chamber tappings. 
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It was assumed that there was no difference between the static 

pressure recorded by the plenum chamber tappings and the true static 

pressure of the undisturbed flow. Therefore, the pressure recorded 

by the probe was calibrated against the plenum chamber pressure. 

Fig. 23 shows the calibration curve for the static probe; the sub- 

sonic values of zero error confirm the corrections of equating the 

plenum and true static pressure at those Mach numbers though not 

necessarily for M>1. 

The pitot-static probe was calibrated in the same way. The 

pitot total pressure reading was calibrated against the settling 

chamber total pressure. Fig. 24 shows the calibration curve for 

the pitot-static probe. 

4.7 Calibration of the Wind Tunnel Working Section 

Before fitting the model, the wind tunnel was calibrated. 

' Fig. 25A shows the calibration curve for Mew = 1.3 with two 

settings for the slotted walls. It can be seen that a wall diver- 

gence of 1° 2' is giving a better Mach number distribution than that 

of parallel slotted walls. The angle was therefore chosen for the 

tunnel calibration. 
Fig. 25B shows the calibration curves for the tunnel working 

section throughout the transonic range. The waviness of the curves 

at Mew >1 is due to the partial reflections of the pressure waves. 

ý` 
i 
>, 
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4.8 Calibration of the Rate of Basic Bleed 

The air injected through the base bleed is found to have a 

non-uniform velocity distribution along the span with large boundary 

layers near the ends and a fairly uniform velocity distribution 

around the centreline (Fig. 26). Therefore, the rate of base bleed 

(m) measured by the orifice plate is less than the value (mb) which 

is the rate of base bleed calculated with the assumption that the 

velocity distribution along the span is uniform and equal to the 

velocity near the centreline. 

Since the base pressure tapping is situated near the centreline, 

the base pressure recorded is that which corresponds to a rate of 

base bleed equal to (mb). Therefore, must be calibrated against 

mb. 

The calibration was also carried out with different external 

flow Mach numbers, Me-. 

Fig. (27) shows the calibration curve of m with mb for Mew = 02 
0.6 
,' and 1.3. The calibration process was stopped when the injected 

air local Mach number reached unity. 

k 

It can be seen that the effect of 'Me- on the calibration curve 
is negligible. 
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CHAPTER FIVE 

EXPERIMENTAL RESULTS AND DISCUSSION 

5.1 Experimental Procedure 

The aerofoil was aligned at zero angle of incidence by balancing 

the pressure'recorded by the tappings on the upper and lower surfaces. 

Two identical transition wires were fixed along the span on 

the upper and lower surfaces of the model at a distance of 0.475" 

from the leading edge. The size of the wires was above the value 

necessary for transition to occur at the position of the wire (Ref. 

88). Two sets of wires of diameter . 007" and . 024" were used for 

the present investigations. The base pressure was investigated 

with the free stream Mach number in the range of Mew = .6 to 1.3. 

The boundary layer profile of the flow approaching the base was 

measured at 0.4" from the trailing edge. 

. 5.2 Base Pressure Variation Along the Span at Zero Incidence 

Fig. 28 shows the results of Pb/P., along the span for Me- = 0.6, 

1.0 and 1.3. It can be seen that the base pressure is uniform along 

the span and the flow near the centre of the span can be treated as 

a two-dimensional one. 
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5.3 The Base Pressure Variation 

5.3.1 Effect of Reynolds Number 

Fig. 29 shows the results of base pressure variation with the 

chord Reynolds number for Me. = . 945 and 1.24. 

It can be seen that Pb/Pco is independent of Re for the range 

investigated. This result is expected since, for turbulent flow 

with fixed transition point, the boundary layer thickness is a 

function of Re 
1/5, 

(See Section 1.1.2). Thus Re will have a small 

effect on Pb/PCO 

5.3.2 Effect of Free Stream Mach Number at Zero Incidence 

Fig. 30 shows Mach number distribution on either surface of 

the model at zero angle of incidence for different values of Mme. 

Some of these results are plotted again in Fig. 31 to show the 

Mach number distribution near the base. 

It can be seen that the low base 'pressure is felt upstream of 

the base even when Me- is supersonic*. Therefore, the expansion 

process is starting some distance upstream. This distance seems to 

diminish as Me- is increased. 

The result of the variation of the base pressure with M., is 

shown in Fig. 32. The values of Mach number on the blade surface 

at 0.4" and . 03" from the base are included in the scale. 

It is seen that as Me. is increased, Pb/Pý is decreased. When 

the local Mach number just upstream of the base reaches unity (at 

* This is predicted (see Section 2.1). Gibbings(87) obtained similar 
results for incompressible flow. 
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Me- = . 82, Ifel = 1.0), there is a sharp drop in the base pressure. 

This continues until Pb/P. reaches a minimum value at Me. approxi- 

mately equal to 1.15. Thereafter, Pb/P., increases as Me- increases. 

The above results are explained by the following argument. 

In Chapter 2, it is argued that the entrained air by the free 

shear layer causes Pb/P. to be less than unity. This is because 

a recompression is needed at the reattachment region to reverse the 

entrained air back to the dead-air region to conserve the mass 

of the air in this region. 

If the wall shear stress at separation is increased by thinning 

the boundary layer at the corner, the rate of the free shear layer 

entrainment is increased and consequently a lower value of Pb/P- is 

needed to provide the enhanced back flow. 

The fall in pressure that starts upstream of the base in low- 

speed flow results in a thinning of the boundary layer as it approaches 

the base. This thinning will enable the expansion of the external 

flow still to be present when that flow becomes supersonic. 

For a small pressure fall near the base, the corresponding small 

change in the flow direction in the Prandtl-Meyer expansion is 

increased by a factor of the order 3.5 as the local Mach number 

changes from unity to about 1.3. Thus this enhanced flow curvature 

implies a corresponding marked increase in the thinning of the 

boundary layer and correspondingly a fall in the base pressure as 

the flow becomes supersonic locally. 

The reason for the existence of a minimum value of Pb/P- is 

not clear. Two arguments are given here for this. 
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The first argument is that it is interesting to note that the 

minimum value of Pb/P- occurs when the Mach number just ahead of 

the trailing edge is approximately 1.42. 
2.1 

According to Weinbaum's analysis (see Section. 2 r), if the 

supersonic portion of the boundary layer is assumed to consist of 

an infinite number of layers with slightly different Mach numbers, 

then there will be waves reflecting from the slip lines that 

separate these layers (see-Fig. 4A). 

If Mi < IT or Mi > VT , then the reflected waves are com- 

pression and expansion waves respectively. Since the base region 

is essentially a constant pressure region, then these waves will 

reflect at the sonic line as waves of different signs. Therefore, 

compression waves are reflected as expansion waves at the sonic 

line as shown in Fig. 33A. This will cause the sonic line and the 

flow to turn more towards the wake's centreline thus increasing the 

turning angle*. The increase in the degree of expansion will 

increase the thinning of the boundary layer at separation, as dis- 

cussed above, and consequently Pb/Pco will decrease. This may be 

one of the reasons why the base pressure drops sharply when the 

flow becomes supersonic locally. 

When Mi> VT , then the reflected'expansion waves will reflect 

as compression waves at the sonic line as shown in Fig. 33B. This 

will cause the sonic line and the flow to turn away from the wake's 

__centreline 
thus reducing the turning angle**. The reduction in the 

* See Plate 4A. 

** See Plate 2A. 
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degree of expansion, similar to that happening on an aerofoil at 

transonic speeds, will reduce the thinning of the boundary layer at 

separation and consequently Pb/PW will increase. 

The other argument for the reason of the existence of the 

minimum value of Pb/P- is given as follows, 

If the boundary layer is visualised to consist of a subsonic 

and supersonic regions with a hypothetical line, representing the. 

sonic line, separating the. two regions. As seen from the experi- 

mental results, the pressure drop to the base pressure is gradual 

with the expansion process starting some distance before the 

trailing edge. 

As the pressure drops in the streamwise direction, the thickness 

of the subsonic region decreases. This causes the flow in the super- 

sonic region to turn towards the surface thus, expanding to the same 

local pressure. The shape of the subsonic region is that which is 

required for pressure and velocity continuity at the sonic line. 

Fig. 34A shows the shape of the sonic line AB. As Mel is increased, 

a point is reached where the initially subsonic region becomes 

supersonic at the throat causing it to increase its thickness with 

further decrease in pressure. This is clearly incompatable with 

the supersonic region, which must continue to turn towards the 

surface to decrease its pressure. The only solution for this is 

that the subsonic region throat occurs at the corner. At this 

_stage, 
the sonic line is just missing the corner as shown in Fig. 

34B. 

If Mel is further increased, by increasing the stagnation pres- 

sure, the sonic line now starts at a new position A' (Fig. 34C). 
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If we assume that Pb/Pco remains constant or decreases then, the curve 

A'B' will represent the new sonic line with point B' before the 

corner. As discussed before, this is not possible and the throat 

must be at the corner. Therefore, point A' is shifted in the 

x-direction to point A", where the xonic line A"B is now just 

missing the corner. This will cause the expansion process to 

occur in a shorter distance than before* thus giving rise to a higher 

transverse pressure gradient than before. Eventually a point is 

reached where the flow cannot sustain a further transverse pressure 

gradient and Pb/P. has to increase to allow the sonic line to pass 

the corner with further increase in Mel. 

5.3.3 Effect of Angle of Incidence 

Fig. 35 shows the results of the effect of the incidence angle 

on the base pressure through the transonic range. 

It is seen that at any angle of incidence, the variation of 

Pb/P. with Me-* is in qualitative agreement with that for zero 

incidence angle. The effect of increasing the incidence angle is 

to increase the base pressure, particularly at subsonic speeds, 

and to increase the value of Me. at which the base pressure starts 

to drop sharply from Me. = . 82 at 0 to Mew = 1.0 at a= 61. To 

try to understand the behaviour of the flow at these incidence angles, 

the Mach number distributions on the upper surface of the model at 

different values of M&0 are plotted in Fig. 36. The Mach number dis- 

* See Fig. 31. 
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tributions on the upper and lower surfaces of the model for Me- = 0.6, 

1.0 and 1.3 are plotted in Fig. 37. 

It is seen from these distributions that at subsonic speeds 

(Me- < 1), the flow on the upper surface reaches a relatively high 

supersonic speed and a shock wave is formed to compress the flow 

to the trailing edge conditions. At some value of Me-, the shock 

wave interacts with the turbulent boundary layer and causes the flow 

to separate there*. A further increase in Me- causes the separation 

point to move towards the base. The separation ceases either when 

the pressure rise across the shock wave is smaller than that needed 

to separate the flow or when the flow on the upper surface is 

shock-free". 

Fig. 38 shows a schematic diagram of the flow possibilities on 

the upper surface. If the flow does not separate or the separation 

bubble reattaches upstream the trailing edge (Fig. 38A), then the 

flow will represent that of a trailing edge separating two air 

streams of different Mach numbers and boundary layer thicknesses. 

If the separation bubble extends over the base and reattaches 

downstream the trailing edge, then the local pressure in the bubble 

at the base corresponds to either subsonic or supersonic speeds of 

the external flow at the same streamwise position as that of the base 

(Fig. 38B and Fig. 38C). The bubble cannot support any abrupt 

pressure change. The pressure rise along the bubble, which depends 

on the mixing rate and the bubble depth, must be gradual and usually 

small. Thus, it is expected that when the bubble reattaches down- 

stream of the trailing edge, there will not be a large difference between 

the value of P., and Pb. 

* Pearcey(104) showed that a shock wave with a pressure rise ratio 
of 1.4 was needed to separate the turbulent boundary layer. 

** 'See Plate 3. 
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Having discussed the possibilities of the flow pattern on the 

upper surface and examining the Mach number distribution on the 

model, the base pressure results are analysed as follows. 

The general increase in the base pressure as the angle of 

incidence is increased is thought to be because the adverse pressure 

gradient on the upper surface will increase the boundary layer thick- 

ness there thus reducing the entrainment of the succeeding free 

shear layers. The base pressure remains relatively high as long as 

there is"a separation on the upper surface and the bubble reattaches 

downstream of the trailing edge. 

As the separation ceases, usually at high value of Me-, the flow 

on the upper surface is attached and supersonic just ahead of the 

trailing edge and there is a sharp fall in Pb/P., similar to the case 

of zero angle of incidence. 

Therefore, the existence of the separation bubble explains the 

reason behind the increase in the value of Mew at which Pb/P starts 

to fall sharply when the angle of incidence is increased. The 

dotted lines in Fig. 35 correspond to the Meco values at which the 

flow separation on the upper surface, cease. Table 5 gives the values 

of Pb/P. 
0 and the values of Mel on both surfaces for Me- = 0.6,1'. 0 

and 1.3 at different angles of incidence. 

5.3.4 Effect of Boundary Layer Thickness Ahead of the Trailing Edge 

The böundary layer ahead of the trailing edge at zero angle of 

incidence was measured at 0.4" from the trailing edge where the 

pressure gradient in the streamwise direction was very small (see 
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Fig. 30). Therefore the flow streamlines were assumed to be parallel 

to the model surface and the static pressure across the boundary 

layer was constant and equal to the pressure recorded by the surface 

tapping at that point. 

Table 6 gives the boundary layer thicknesses and Pb/P- for Me- 

= 0.6,1.0 and 1.3 and for the two sets of transition wires used. 

It is seen that for each set of transition wires, the boundary 

layer thickness is reduced as Me- is increased. 

It can also be seen that for any value of Me, 
_ 

the effect of 

increasing the wire diameter is to increase the boundary layer 

thickness. This effect diminishes as Meco becomes supersonic. 

Fig. 39A shows the results of the variation of Pb/P- with Meoo 

for the two sets of wires at zero angle of incidence. 

It is seen that the effect of increasing the wire size is 

to increase the base pressure due to the increase in the boundary 

layer thickness. This is consistent with the previous discussion 

in Section 5.3.2. As Me- becomes supersonic, the effect of the wire 

size on the. base pressure diminishes and eventually it disappears 

when Pb/P,. reaches its minimum value. This is partly because at 

supersonic speeds, the effect of the wire size on the boundary 

layer thickness has been reduced. But the total independence of 

Pb/P. on the wire size when the minimum value of Pb/PC, is reached 

seems to suggest that at this value the effect of the boundary layer 

on the base pressure becomes secondary and some other flow mechanism 

dominates the base pressure value (see the discussion on the reason 

for the existence of a minimum value of Pb/P. in Section 5.3.2). 
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Fig. 398, Fig. 39C and Fig. 39D show the variation of Pb/P,,, with 

Meoo for the two sets of wires for a= 20,40 and 60 respectively. 

The boundary layer thicknesses at these angles were not measured. 

It is seen that for these angles of incidence, the base pressure 

is independent of the size of the transition wire. 

5.3.5 Effect of Base Bleed 

Fig. 40 shows the results of the effect of the base bleed on 

the base pressure for different values of Me_ at zero angle of 

incidence. Fig. 41 shows the effect of base bleed on the base 

pressure for Mew = 0.6,1.0 and 1.3 and for different angles of incidence. 

The general trend of these results is that as the rate of base bleed 

is increased, the base pressure is increased until the base pres- 

sure reaches an optimum value, (Pb/P-)opt. Thereafter, the base 

pressure decreases with further increase in base bleed. 

" The reason for the behaviour of the base pressure with base 

bleed in the above manner will be discussed later in Section 5.4.3(11). 

5.4 Flow Around the Trailing Edge at Zero Angle of Incidence 

5.4.1 Flow Approaching- the Trailing Edge 

The boundary layer of the. flow approaching the trailing edge 

was measured in the way mentioned in Section 5.3.4 at 0.4" upstream of 

_the 
trailing edge. Fig. 42 shows the boundary layer velocity profile 

for Me. = 0.6,1.0 and 1.3. 

It is seen that the flow is turbulent and the results fit very 
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well with the 1/7th power law velocity profile. 

5.4.2 Flow Expansion at the Trailing Edge 

To measure the velocity profile of the flow at the corner is 

difficult. This is because as the expansion process starts ahead 

of the corner, there will be a transverse pressure gradient across 

the boundary layer at the corner. This is particularly true for 

high speeds where the flow just ahead of the corner reaches the 

sonic speed giving rise to expansion waves there. Therefore, the 

pitot measurements are not sufficient to give the velocity profile. 

However, at Me- = 0.6, the difference between the upstream pressure 

and the base pressure was small thus the pressure across the 

boundary layer at the corner was assuned to be constant and equal 

to the base pressure. 

Fig. 43 shows the boundary layer velocity profile at the corner 

for Me- _ .6 which fits very well with the 1/11th power law profile. 

For comparison, the boundary layer velocity profile of the 

flow approaching the trailing edge is included in the figure. It 

is seen that even for a relatively low-value of free stream Mach 

number, Me- = 0.6, and a relatively high value of base pressure 

ratio, Pb/Pc _ . 91, the effect of the corner expansion on the 

boundary layer velocity profile is large. 

5.4.3 Axial Pressure and Mach Number Distributions Along the Centreline 

The pitot static tube was used for the measurement of the dis- 

tributions of the axial pressure and the Mach number along the centre- 
line of the model in the wake. 
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5.4.3(1) Without Base Bleed 

Fig. 44 shows the It and M(Ldistributions for Me- = 1.0 which 

is a typical result. The reattachment point is the point where 

the measured total and static pressures are equal. The definition 

of this point is located in the figure. The above results show 

that tot is closely zero along the entire length of the dead-air 

region. Because of the flow circulation in the dead-air region, 

MC will be negative in this region. The probe with the pitot head 

facing the flow cannot measure the negative Mt . 
Since the interest lies mainly in the Pt distribution and the 

value of the reattachment pressure, an assumed Mt distribution of 

zero in the dead-air region, is considered valid for the present 

investigations. Fig., 45 shows the Pý distributions for Me- = 0.6, 

0.75,0.9,1.0 and 1.3. The reattachment points are shown on 

these distributions. 

It is seen from these results that the pressure remains almost 

constant and equal to the base pressure for a distance of about 

x/2h = 2/3. Thereafter, the pressure starts to rise rapidly and 

the flow reattaches in a region where the pressure is still 

rising. There is an appreciable pressure to be recovered by the 

flow between the reattachment point and far downstream. Eventually, 

the rate of the pressure rise- becomessmaller and the flow, presumably, 

will recover to the free stream conditions for downstream. 

In all theories which are based on the Chapman-Korst model*, the assump- 

tion is made that the pressure remains constant for the whole length of 

* See Section 3.1 
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the shear layer and that the recompression to the reattachment 

point occurs in a very short distance so that it can be considered 

isentropic. 

The above results show that this is not the case. The recom- 

pression process is starting at an appreciable distance before the 

reattachment point thus this process cannot be considered isentropic 

particularly when the flow-is turbulent. 

Table 7 gives the present and some previous results for the 

reattachment pressure, Pr. 

5.4.3(ii) With Bleed 

The results in Section 5.3.5 have shown that the base pressure 

varies with the rate of base bleed in a certain manner. Fig. 46 

shows a typical result which is-for Mo_ = 1.3. 

To try to explain the behaviour of the base pressure with the 

base bleed, the P(L and MC distributions for Meoo = 1.3 were measured 

for four different rates of base bleed that correspond to points 

A, B, C and D in Fig. 46. 

Fig. 47 shows these results which can be explained by the 

following argument. 

Fig. 47A (Plate 2A). No base bleed. 

The free shear layer which is formed by the main flow 

will entrain air from the dead-air region. The mass 

in this region must be conserved therefore a recom- 

pression is needed to retard and eventually reverse 
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all the entrained air back to'the region. This means 

that Pb is less than P. Obviously, as the entrained 

mass is decreased, Pbwill increase. Note here 

that the dividing streamline is the same as the 

reattachment streamline. 

Fig. 47B, C (Plate 2ß). Pb/P- increases as the rate of base bleed 

increases. 

The air injected into'the base region will be opposed 

by the adverse pressure gradient in the recompression 

region. The adverse pressure force is greater than 

the momentum of the injected air therefore this air 

will be brought to rest before reaching the reattach- 

ment point. 

Since the injected air must leave the dead-air region, 

it will be entrained by the main free shear layer. 

This means that less air is now needed to be reversed 

back to the dead-air region therefore, Pb/P,, will 

rise. 

Note here that the dividing streamline is not the same 

as the reattachment point and the difference between 

the two streamlines will be proportional to the rate 

of the mass of the injected air. 

Fig. 47D (Plate 2C)Pb/P. decreases as the rate of base bleed 

-increases. 

The momentum of the injected air has now overcome the 

adverse pressure force thus some of the injected air 
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will 'escape' from the dead-air region and will not 

be entrained by the free shear layer. 

Pb/P- will now decrease for two reasons. Firstly, 

there will be less air 'trapped' in the dead-air region 

to be used by the main flow free shear layer. 

Secondly, there will now be four shear layers 

because of the two small dead-air regions which 

are formed between the injected air boundaries and 

the main flow free shear layers. Air will be 

entrained by these free shear layers and a recompression 

is needed to conserve the mass in the small dead-air 

regions. 

From the above discussion it can be argued that (pbIP-)opt is 

directly dependent on the bleed momentum and not on the bleed mass. 

Therefore, it is expected that for any value of Me-, the effect of 

increasing the slot height will be to increase the values of 

(pb/P. )opt and (Cgb)opt. This is because, for the same rate of 

bleed mass, the momentum of the bleed will now be less than that of 

the same base with smaller slot height. In addition, the increase 

in the slot height will reduce the height of the two small dead-air 

regions and less air will be entrained by shear layers of these 

regions giving rise to even higher values of (pb/PJ)opt' 

As the ratio of the slot height to the base height tends to 

one, the value of (Pb/P-)opt tends to one. Then, the base drag will 
be zero. 
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5.4.4 Free Shear Layer Development Without Base Bleed 

Fig. 48A shows the results of the free shear layer velocity 

profile from the separation point up to the reattachment position 

for Me. = 0.6. Table 8 gives the free shear layer parameters. It 

is seen from these results that the shear layer velocity profile at 

the end of the constant pressure region is still developing and has 

not reached the similarity state. This is in contrast to all 

base pressure theories in which the free shear layer profile is 

assumed to be similar and can be approximated by the error function 

profile (see Section 3.1). 

Similar results were obtained for Me- = 1.0 and 1.3. Fig. 48B 

shows the shear layer velocity profile at the end of the constant 

pressure region for these Mach numbers. 

Previous experimental results(43)have shown that the error 

function profile is a good approximation to the free shear layer 

velocity profile when the value of 01/h is small. But, the present 

results suggest that when el/h is relatively large*, the error 

function profile does not represent the shear layer velocity profile 

even at the end of the constant pressure region. 

5.5 The Wake Traverse 

The wake profile was measured at a distance of 2.5" (x/2h = 8.33) 
from the trailing edge for different values of Me_ and a. 

Fig. 49 shows the measured wake profile at a=0 for Me- = 0.6, 

* See Table 6 for the values of el. 
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1.0 and 1.3 without base bleed and with optimum base bleed. 

These results show that the flow has a relatively large 

boundary layer near the wall. Schlieren photographs(Plate 
4) have 

shown that this is caused by the mixing of the air leaving the plenum 

chamber through the slots with the main flow. Similar results were 

obtained for the case of a= 20 and 60 (Fig. 50 and Fig. 51 respect- 

ively). Because of the interference of the air leaving the plenum 

chamber with the main flow', the exact shape of the wake profile 

without this interference and the exact value of the total drap 

coefficient, Cp, will not be known. However, it is thought that 

qualitative values of the total drag and the drag components can be 

obtained if the measured wake profile is approximated. 

The approximation is done by assuming that the total and static 

pressures remain constant between the wall and the point where the 

flow from the plenum chamber is. thought to start interferring with 

the-main flow (the dotted lines in Figs. 49,50 and 51). The 

approximate value of CD is calculated using the analysis given in 

Appendix 2. 

The skin friction drag coefficient, CDf, is calculated using 

the analysis of Ref. 97. 

The pressure drag coefficient, arising from the pressure 

distribution on the upper and lower surfaces of the model, can 

be divided into two parts. 

CDP = (CDP)nose + (CDP)body 



- 81 - 

where (Cpp)nose = Value of CDP between the leading edge and 

the point of maximum thickness. 

(CCP)body = value of COP between the maximum thickness and 

the trailing edge. 

Because of the absence of any pressure tappings in the nose 

of the model, the values of (CCP)nose cannot be calculated and can 

only be estimated from the results. Therefore: - 

CDP = CD - (CDB + CDf) 

(CDP)nose = CD - 
[cDB 

+ CDf + (CDP)body 

where Cpß =- CPB and (CDP) is calculated using the measured be dý 

pressure distributions. 

Table 9 gives the results of the drag components. It is seen 

that at a =, 0, the base drag constitutes a major part of the total 

drag (see the value of CDB/CY). For any specific Me-, as a is 

increased, CDB Is reduced while CDP is increased. Thus the value 

of CpB/CD becomes less. 

The effect of base bleed on CDf and CDP is negligible. This 

is because the change in the surface pressure distribution was 

found to be small and confined to a small distance ahead of the base, 

x/2h < 1.0. Thus, the effect of the base bleed is to reduce the 

total drag by reducing the base drag only. 

The wave drag, CDW, is the drag component which is directly 

related to the loss in the stagnation pressure when the flow passes 

through the trailing shock. 

An attempt is made to calculate C DW but because of the uncertainty 
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of the measured wake profile shape near the slotted wall, the calcu- 
lation is performed for the case of zero incidence only with and 

without base bleed. Table 9 gives these values of CDW. 

It can be seen that with optimum base bleed, CDt4 is reduced by 

almost 50%. The reduction in CDW with base bleed is expected since 

the effect of base bleed is to reduce the strength of the trailing 

shock by increasing Pb/PcI. 
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CHAPTER SIX 

CORRELATIONS AND COMPARISON OF THEORY 

WITH EXPERIMENTAL RESULTS 

6.1 Correlations 

6.1.1 Reattachment Correlations at Zero Angle of Incidence 

Fig. 52 shows the results of the variation of Mer with Me2 

(see Table 7). Results of Mer with base bleed are also included 

in the figure (see Fig. 47). It is seen that Mer is a function of 

Me2 only and not as has been suggested by previous correlations* 

that Mer is a function of Mez and Me-. 

These results give a reattachment correlation valid for 

Met . 4.36 as 

Mel = 0.86 Me2 

At supersonic speeds, theory assumes that the distance L of 

the reattachment point is a function of the Prandtl-Meyer angle 
(see Eqn. 3.15). Experimental evidence suggests that this distance 

is a function of the boundary layer thickness as well. 

Fig. 53 shows the results of the effect of the boundary 

-layer thickness on the location of the reattachment point. A 

correlation is given for this location which is :- 

(s. 1) 

* See Section 2.3. 
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102 
sin a- sin (v2-v%) = 2.26 -2- - 13.75 

3 
+ 41.67 h (6.2) 

where angle formed by'taking a straight line between the 

corner and the reattachment point 

and e2 = boundary layer momentum thickness after expansion 

calculated by Eqn. 2.5 

6.1.2 Correlations for Base Pressure with Base Bleed 

The results of Section 5.3.5 are replotted. Fig. 54 shows 

the variation of (Pb/P-)opt with Pb/PO for different values of a. 

Me- and transition wires. The results suggest that (Pb/P. )opt is a 

function of Pb%P. 
0 only and the angle of incidence possibly having 

a weak effect. A correlation is obtained as: - 

Pb 3 Pb 2 Pb 
ý-- _-1.03 + 2.3 - 1.03 + 0.77 (6.3) 

opt im 

The value of (Cab)opt is difficult to evaluate. This is because 

the curves that represent the variation of base pressure with base 

bleed are fairly flat near this value. But, the results suggest 
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If 

that (Cqb)opt decreases with increasing Me-. 

At zero angle of incidence, a straight line is assumed to 

represent the variation of (C 
qb)opt with Me-. The straight line 

which gives the best fit to the experimental results in the range 

of 0.6 .. < Me- , 1.3 is defined by the equation (see Fig. 55). 

(C 
qb)opt ° 0.113 - 0.096 (Me- - 0.6) (6.3) 

Fig. 56 shows the correlation of the effect of the base bleed 

on the base pressure up to the optimum conditions at zero angle of 

incidence which is: - 

'Pb Pb 
-b (6.4) 11rj. mb co opt co (mp) 

opt 

where (mb)opt is calculated using eqn. 6.3. It must be emphasised 

that all correlations for base pressure with base bleed are valid 

only when the ratio of the slot height to the trailing edge height 

is equal to 1/3. 

6.1.3 Semi-empirical Relation for the Limit Base Pressure 

A semi-empirical relation for the base pressure of a flow with 

zero boundary layer thickness at separation is obtained as follows. 

Consider the flow expanding around the corner of a backstep 

to form the dead-air region SRA (Fig. 57). 
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PQ represents the position where the pressure starts to rise. 

Following the analysis given by Childs et al 
98P for the 

reattachment of the ramp caused separation where the momentum 

and continuity equations are applied to the control volume PQR, 

the following relation is obtained: - 

Pr 2YMe2 21 

1- =1+ atan v2-vom AL 
p2 dx + -AC I2 + (L1/AL)2. 

L1 
pe2ýe2 

I12 

(1-Ce22) [atan(v2v) 
-K 

Ll OD 
.6 

where s= (1 + erf n) 

n=QYfx 

L= h/sin()2-v. ) 

AL=L-L1 

CE22) 
np 

_Co 

12 = (1 - ße22 
np 

) 

ý-2 
2 do 

1-Ce2 + 

2 
do 

1 
e2 

(6.5) 
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TD = Shear stress at the dividing streamline. 

Assuming TD to vary lineary with x between L1 and L, then 

(see Appendix 3). 

dx = 
TI D= 2L pe 2-----ms 

T-I D ý(L-L1 ý22 
iLl 

where rlD = the dividing streamline shear stress at the end of the 

constant pressure region. For any value of Met, nD and ýp are given 

by eqn. 3.7 and eqn. 3.5 respectively. 

Since, 

P+ 
L' 
21M 

1.2 
e2 Y- 

rr1 
. Fb 

l1+1M2erJ. 

0 

and v= f(Me) 

then eqn. 6.5 can be solved for Met/Me, (or Pb/P-) for any value 

of Met once Mer and AL are specified. 

From experimental results, 

Mer = 0.86 Me2 

and L1 = 
4h 

3ö v2-vi 
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Fig. 58 shows the solution of eqn. 6.5 using the experimental 

results. This solution can be approximated by the polynomial 

(-CPB)LIM = 3.77 - 4.43 Me- + 1.89 Me-- 2-0.27 Me-3 (6.6) 

For comparison, other relations for the limit base pressure 

are plotted in the same Figure. It can be seen that some of the 

experimental results with finite boundary layer thickness give 

lower values of C PB than the values of (CPB)LIM calculated by 

either Korst's theory or Nash's relation which is obviously in con- 

trast to the definition of (CPB)LIM' 

The present method gives values of (CPB)LIM which are lower 

than all the available experimental results of CPB with finite 

boundary layer thickness. Some of the experimental results, 

which are interpolated to el/h = 0, are found to give values of 

(C PB)LIM equal to those which are calculated by the present method. 

6.2 Comparison of Theory with Experimental Results 

6.2.1 Boundary Layer Velocity Profile Just After Separation 

The boundary layer velocity profile is calculated using the 

theoretical analysis of Section 2.1 together with the assumption 

that the boundary layer just before separation has a 1/7th power 
law profile. 

Fig. 59 shows the theoretical boundary layer velocity profile 
just after expansion for Me- = 0.6,1.0 and 1.3. 
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It is seen that all these profiles show a great distortion 

from that of the 1/7th power law. At Me- = 0.6, the theoretical 

profile is in good agreement with the 1/11th power law while at 

Me- = 1.0 and 1.3, the 1/17th power law profile is a good fit to 

the theoretical profiles at these speeds. 

The only available experimental result is for Me- = 0.6 which 

is in good agreement with the 1/11th power law profile (see Section 

5.4.2). This means that the theoretical analysis gives a good 

agreement to the experimental results and the boundary layer velocity 

profile just after expansion can be calculated by the simple stream- 

tube method. 

6.2.2 Free Shear Layer Velocity Profile 

The free shear layer velocity profiles at the end of the 

constant pressure region are compared with the calculated pro- 

files using the theoretical analysis (See Section 2.2). 

Fig. 60 shows this comparison for Me. = 1.3. It is seen 

that the modified Kubotas's method gives a very poor agreement 

with the experimental. results. This is_thought to be mainly due 

to the poor assumption in this method-that the turbulent boundary 

layer just after separation has a quadratic profile. 

The modified Nash method, in which the boundary layer just 

after separation is assumed to have a 1/mth power law velocity 

-profile*, gives a better agreement with the results. 

* This is a more realistic assumption than that of Kubota. 
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The agreement seems to improve as the value of m is increased 

from 7 to 17. 

At Meco = 1.3, the stream-tube method gives m= 17 (see section 

- 6.2.1). The figure shows that there is a good agreement between 

the theory, with m= 17, and the experimental results. 

At Me- = 0.6 and 1.0, the stream-tube method gives m= 11 and 

17 respectively. 

Fig. 61 and Fig. 62 show a comparison between the theory and 

the experimental results for Me- = 1.0 and 0.6 respectively. 

Again, there is a good agreement between the theory, with m= 11 

and 17, with the experimental results for Me-- = 0.6 and 1.0 

respectively. 

6.2.3 Base Pressure at Zero Angle of Incidence and Without Base Bleed 

Fig. 63 and Fig. 64 show the comparison of the experimental 

results of Pb/P., for Me-- = 1.0 and 1.3 with the theoretical values 

using Korst and Nash theories. These theories were discussed in 

Chapter three. 

In the theory of Korst, the effect of the boundary layer thick- 

ness is not included in the analysis and the base pressure is assumed 

to be a function of Mew only. While the theory of Nash includes 

this effect. 
It is seen that both theories over-estimate the base pressure. 

Korst's theory underestimates the base drag for Me-0 = 1.3 and 1.0 by 19.4% 

and 40% respectively while Nash's theory gives a corresponding under- 

estimation in base drag of 6.8% and 16.6%. 



- 91 - 

CHAPTER SEVEN 

CONCLUSIONS AND PROPOSALS 

FOR FUTURE WORK 

7.1 Conclusions 

With turbulent flow over a symmetrical blunt trailing edge 

aerofoil in the transonic range, 0.6 , Me- , 1.3, the following 

conclusions can be drawn from the results of Chapters 5 and 6. 

1) The base pressure is independent of the chord 

. Reynolds number in the range of 2.9x106 < Re 

5.0 x 106. 

2) At zero incidence, the effect of increasing 

Me- on the base pressure ratio, Pb/P-*1 is as 

follows: Initially Pb/P., decreases slowly. 

As the local Mach number, Ffel, just ahead of the 

separation point becomes supersonic, Pb/PC 

decreases sharply and continues to do so until 

it reaches a minimum value when 1Te1 is approxi- 

mately equal to 1.42. Thereafter, Pb/P., increases 

with further increase in Me-. 

3) The effect of Me- on Pb/Pco with the angle of 

incidence in the range 2° <ae 6° is qualitatively 

similar to that at zero incidence. 

Generally for the same free stream conditions, the effect 
1 
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of increasing a is to increase Pb/PCO when the 

flow is attached on both surfaces just ahead 

of the trailing edge. 

--When the flow separates on the suction surface 

and reattaches downstream of the base, the base 

pressure remains relatively low and decreases 

very slowly with increasing Me-. This also has 

the effect of delaying the value of Mew at which 

Pb/P- starts to drop sharply from Me- = . 82 at 

a=O to Me =1.0ata=6o. 

4) At zero incidence, for the same free stream con- 

ditions, the effect of increasing the transition 

wire diameter is to increase Pb/Poo. 

However, the rate of this increase in Pb/P- 

diminishes with increasing Me_ and eventually` 

ceases when the minimum value of Pb/P., is reached. 

Over the range, 20 <a4 60, there is very little 

effect of the size of the transition wires on 

Pb/P00 

5) At any angle of incidence and free stream con- 

ditions, the effect of increasing the base bleed 

rate on the base pressure is as follows: 

Initially, the base pressure increases rapidly. 

The rate of this increase diminishes until an 

optimum base pressure ratio, (Pb/p-)opt' is reached. 
Thereafter, the base pressure decreases with 
further increase in base bleed rate. 
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6) It has been found that (Pb/PCO)opt is a function 

of the base pressure ratio without base bleed, 

Pb/Pco, (see eqn. 6.3). 

It is expected that for the same free stream con- 

ditions and angle of incidence, (Pb"Pý)opt will 

increase when. the ratio of the slot height to 

the base height is increased. 

7) At zero incidence, the following conclusions are 

- drawn on the behaviour of the flow in the base 

region:. 

a) The expansion process around the base starts 

ahead of the corner. The boundary layer profile 

is distorted from that of the 1/7th power law 

before expansion to that of a power law with a 

higher exponent value just after expansion. 

A simple method, based on the stream-tube 

analysis, can be used to calculate the boundary 

layer profile Just after expansion if the base 

pressure ratio is known. 

b) For a flow with a relatively thick boundary 

layer before separation, the free shear layer 

velocity profile does not reach the similarity 

state even at the end of the constant pressure 

region. Thus, the error function velocity 

profile is not a good representation of the 

real velocity profile. 
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Instead, the velocity profile can be calcu- 

lated to a reasonable approximation using 

Nash's modified method. This method is modi- 

fied by taking the initial boundary layer 

profile to be of that of a power law of 

index 1/m, where m >. 7 and by taking into 

account the compressibility effect. 

Using the above method, with m calculated by 

the stream-tube method, is found to give 

a good fit to the experimental results. 

c) The constant pressure region ends at a 

distance approximately equal to x/2h = 2/3, 

from the base. The recompression process 

starts at an appreciable distance before the 

reattachment point which suggests that the 

recompression process cannot be considered 

isentropic. 

The flow reattaches at a point where the 

pressure is still rising and there is an 

appreciable pressure to be. recovered down- 

stream of the reattachment. point. 

The reattachment pressure is found to be a 

function of the base pressure only, (see 

eqn. 6.1). 

d) At supersonic speeds, the distance of the 

reattachment point is found to be a function 
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of the boundary layer thickness as well as 

the Prandtl-Meyer angles, (see eqn. 6.2). 

From the above conclusions, it can be seen that 

most of the assumptions made in the theories for 

steady base pressures are invalid. 

8) The theory under-estimates the base drag. Because 

of the absence of more reliable theories, Nash's 

theory can be used to give approximate results. 

9) The wake profile is difficult to measure because 

of the interference of the air from the plenum 

chambers with the main flow. 

However, when the measured wake profile is approxi- 

mated, it is found that the base drag constitutes 

a major part of the total drag and the effect of 

the base bleed is to reduce the total drag by 

reducing the base-drag only. 

7.2 Proposals for Future Work 

i)- Since the model used for the present experiment had 

a rectangular base, it will be of great practical 
interest to compare the present results of base 

pressure and surface pressure, distribution near 

the base with those of similar models having 

round bases with different radiuses of curvature. 

ii) There is an appreciable pressure rise downstream 

of the reattachment point. The parameters 



- 96 - 

affecting this pressure rise are not known. 

Previous work(52,55) had suggested that this pres- 

sure rise is needed to rehabilitate the reattach- 

ing boundary layer. Therefore, an experimental 

investigation on the behaviour of the reattaching 

boundary layer with pressure rise downstream of 

the reattaching point is needed to verify this. 

iii) In the discussion, see 5.4.3 (ii), it is argued 

that the optimum base pressure with base bleed is 

expected to increase as the ratio of the slot 

height to the base height is increased. Experi- 

mental evidence is needed to support this. 

It will be interesting to compare the effect of 

injecting air through a base with one slot to 

that with a number of holes having a total area 

equal to the slot area thereby altering the total 

amount-of. entrainment. 

iv) In view of the invalidity of most of the assumptions 

made in the theory, a new theoretical approach is 

needed. 

0 
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' APPENDIX 1 

RATE OF SPREAD OF THE FREE SHEAR LAYER 

After the separation from a corner, the free shear layer will 

develop. When the shear layer reaches the similarity state, its 

velocity profile can be approximated by that of the error function 

profile where, 

ý= 1(1+erfn) 

and n= Qy/x 

a is called the similarity parameter of the mixing region or the 

rate of spread of the shear layer. For incompressible flow the 

value of ai = 12 generally is used and this seems to be a good 

value for conditions which correspond to the mixing between a 

uniform stream and fluid at rest. 

Various experiments* have shown that a increases when the Mach 

number is increased. 
. 
From a limited number of experiments, Korst 

and-Tripp(loo) suggested an empirical linear relationship, 

c/a1 =1+0.23 Me2 (A1) 

The relationship has been used by many theories for steady base 

pressure 
(36,50) 

and by the present calculations. 

McDonald(55) takes account of the experimental results obtained 

* These experiments are quoted in Ref. 99. 
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in Ref. 106 and develops the equation 

C/aj = (1 + Me22) (1 + 0.035 Me22) (A2) 

In a latter paper, McDonald(52) suggests a different relationship, 

c/Qi = 
I(1 

+ 
ii Me22) (1 + 0.035 Me22)] / (1 + 0.004 Me24) (A3) 

In an analysis given by Channapragada(101) the shear stress is 

based on Prandtl's mixing length hypothesis. Using the Howarth 

transformation and following Mager(102) assumption that the shear 

stress is unaffected by the transformation, Channapragada develops 

the formula 

alai = p/pref 

where pref is the density of some reference conditions. The final 

equation is 

(A4) 

o/Qi = R1 (1+.. )ý1 (A5) 

e1 where Z=1+M2 

Total temperature of the fluid ßl - Total temperature in the dead-air region 

R1 = Divergence factor (a function of Me2)0 
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Alber and Lee's (60) 
uses eqn. A4 with aref taken as the density 

at the dead-air region. For adiabatic flow 

a/a. = a/Pref + -1771 Me22 (A6) 

Further contributions to the effect of Me2 on a have been given 

by Baur(103). 

Experimental results have shown a great discrepancy and it is 

--difficult to say which of the above semi-empirical methods gives the 

best agreement with the results. 

There appear to be two major causes for the descrepancies in the 

results. The first cause may be attributed to the fact that in many 

measured cases the flow has not reached the similarity state because 

of the pressure of a relatively large boundary layer at separation. 

The second cause may be attributed to the use, by several experi- 

mentalists, of various velocity profile techniques in order to 

determine the spreading parameter.. 
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APPENDIX 2 

CALCULATION OF THE TOTAL DRAG 

Fig. 65 shows the control volume ABCD which encloses the 

model. 

Air enters the control volume through AB, where the flow is 

uniform everywhere. Air leaves the control volume through CD 

where the wake profile is measured. Air 'spilles' out through AC 

and AD with a velocity V. 

MAS and MOM represents the base bleed mass and momentum rates 

respectively. 

The continuity equation requires that 

AC 
MAS p,, u,, dy pudy + 2pvdx (A7) 

B 
JD JAC 

The momentum equation in the x-direction requires that 

AC 
F MOM +pu 

2dy 
- pu2dy + 2u pvdx (AB) 

X 00 BD AC 

where Fx represents the total force in the x-direction. Equations 

A7 and AB give 

A 
FX = MOM - (u.. MAS) + pu(u,, -u)dy (A9) 

B 
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But 

.C A 
F = D + P dy - P dy 
X oo 

D B 

where 

D= Total drag 

Equations(A9) and (Alp) give 

(A10) 

AA 
CD =- MOM - (uc. MAS) + pu(ucomu)dy + (Poo-P) dy (All) 

p,, u,, hBB 
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APPENDIX 3 

CALCULATION OF SHEAR STRESS ALONG THE 

DIVIDING STREAMLINE IN THE CONSTANT PRESSURE REGION 

Continuity equation 

äx (PU)- + ay (pv) =o 

Momentum equation 

pu au + pV au _ aP + aT äx By ax By 

Since the pressure is constant, aP/ax = 0. 

Integrate eqn. A13 from -- to yD and use eqn. A12 to obtain 

'11 

YD 
uay + 

Ju 
a (u)dy D 

-CO 

Pu ax 
-oo 

ax p 

1YD 

aX (pu2)ay 

J _CO 

nD 2 
-2- 

2xa (pe2 ue2 ---Pý 2 dn 

-ý pe2 e2 

(A12) 

(A13) 

0 
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where 

Pe2 ue2 2I 

62 

fD 
2 (flD 

2 I2 ' 
pýu2 

do (7 Ce22) do 
- e2 e2 -C3 

1- Ce2 ý 

(A14) 
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APPENDIX 4 

FORTRAN PROGRAM FOR THE CALCULATION OF THE FREE SHEAR LAYER PROFILE 

FOR A GIVEN VALUE OF m AND rýo (EQUATION 2.21) 
C TU START THE PROGRAFt, INPUT P AND EN 
C pom. POWER LAW EXPONENT FOR BOUNDARY LAYER PROFILE JUST AFTER 
C EXPANSION 
C EN- T10 . (SEE TABLE 1) 
C EN2(JJ)=U/UE=VELOCITY RATIO OF THE FREE SHEAR LAYER 
C Y"(JJ)t: T. FUNCTION OF DISTANCE(Y) ACROSS THE FREE SHEAR LAYER 

DIMENSION H(200)'H1(200)'HZ(200)IH3(200)'H4(200)'H5(200)'H6(200), X 
4(200), XX(200), E(-11 (200), EI. 12(200), Y(200), HH(200), X1 (200), YY(20U) 

C CALCULATION. OF ERROR FUNCTION FOR ANY VALUE 
REAL L 
L=0,005 
X(97)=0. - H(97)=0. 
Do 2 Ia97,193 
H1(I)=2. /(1.7728*EXP(X(I)**2. )) 
H2(I)ý-(2, *X(I)*H1(I)) 

H3(I)ýý(2, *X(I)*H2(I)+x. *H1(I)) e 
H4(I)ý-(2. *X(I)*H3(I)+4, *H2(I)) 
H5(I)="(ý. *X(I)+ýH4(I)+Gý*N3(I)) 
H6(I)2"(2, *X(I)*H5(I)+8, *H4(I)) 
I1=I+1 
X(I1)=X(I)+L 

" H(I1)ýH(I)+L*H1(I)+(((L**2, )*N2(I))/2, )+(((L**3. )*113(I))/6, )+(((L* 
ý*4. )*Ito(I))/24, )+(((L**5, )*H5(I))/120 0 *(((L**ý, )ýºHG(I))/720. ) 

IF (X(I1), LT, 0,296)_GOT0 2 
L=O. 0S 

2 CONTINUE 
Lo-0.005 
DaAt1S(L) . 

X(14. 
DO 3 Iloll , 96 
H1(II)u2. /(1,772$*EXP(ARS(X(II))**2, ))' 
H2(II)cw(2, *X(II)*N1(II)) 
H3(II)ýý(2ý*X(II)*H2(II)ý2, *H1(II)) 
H4{II)=u(2, *X(tI)*H3(II)+4, *N2(II)) 
H5(II)ý. (2, *X(II)*H4(II)46, *N3(II)) 
Hb(II)mw(2, *X(II)*H5(II)+8, *H4(II)) 
II1p1I+1 
X(II1)»X(II)+L 
H(II1)ail(II)"D*H1(II)*(((D**2, )+N2(II))/2, ).. (((D. e3, )*H3(II))/6ý)+ 

*(((D**4, ). *H4(II))/26ý)"(((D*+5, )*H5(II))/120, )+(((D**cS1)*H6 (I! ))/7 
+20, ) . 

` - , 

f 
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IF (X(II1). GT, -0,296) GOTO 3 
L=°0.05 
D. =ABS (L) 

3 CONTINUE 
DO 4 TT=1X97 
I=98-1I 
Hr4(I)-H(II) 
X1(I)=X(II) 

4 CONTINUE. 
DO 5 I=1147 
H(I); HH(I) 
X(I)zX1(I) 

5 C014TI. NUF 
G END OF ERROR FUNCTION CALCULATION 
C 
C I' PUT THE. VALUES OF P, EN 

I READ (5,100). P, EN 
100 FORMAT (2F10.6) 

WRITE (o, 199) 
199 FORMAT (15H DISTANCE Y(JJ)r15X, 23H VELOCITY RATIO EM2(JJ)) 

c 
C. CALCULATION OF'THE. INTEGRAL TERM IN EQUATION 2,21. 

NaEN*10, 
MMa(N. 39)/2 

" EM1(1)ýD. 
xx(1)=0. 
DO 6 -J=2014 " 
XX(J)UXx(J"1)+O, 1 

. 6 CONTINUE 
. PP: XX(N)**(1, /P) " 

Y(1)r-2.1 
EM2(1)=o, , DO 24 J J=2, flM 
Y(JJ)=Y(JJ"1)+0.2 
DO 7 Jtt2, N 

'XY=ARS(XX(J). Y(JJ)) 
IF (XY, GT, 10, ) G0T0 9 
Er-i1(J)=(XX(J)**(1, /P))/X297183**IABS(XX(J), 4Y(JJ))**2r)) 
GOTO 7" 

9 EM1(J)zo, 0 

.7 
CONTINUE 
EK1 r0, 
N2214-2 
DO 8 J=l, N2r2 " 
CALL AREA (EMI, XXrEK1, J) 

8 "ThT I NUr 
EK1=EK1/(SQRT(22. /7. )*PP) 
END OF INTEGRAL TERM CALCULATION 

C 
C CALCULATION OF ERROR FUNCTION TERM IN EQUATION 2,21 

YY(JJ)OY(JJ)-XX(N) 
IF FYY(JJ), GT, 2.1) 00T0 14 ", 

9 

ý. _ý. __ 
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DO 10 Is1,193 
IF (YY(. IJ), GT, X(I)) GOTO 10 
EH=H(I) 
GOTO 22 

10 CONTINUE 
14 EH=1, 
22 CONTINUE 

C END OF ERROR FUNCTInN TERM CALCULATION 
C 
C SliMMING UP THE TERMS OF EWUATION 2,21 

EM2 (J J) : s(. 5* (1 . +Eli))+EK1 
C PRINTING THE VALUES OF Y(JJ) AND EM2(JJ) 

WRITE (6x245) Y(JJ), EM2(4J) 
245 FORMAT (F13.6,20X, F13.6) 

IF (EM2(JJ), GT, 0', 49) GOTO 30 
21-'CONTINUE 

. 30 CONTINUE 

- -STOP .. END 
C- 
C 

SUBROUTINE AREA (Et")1, XX, EK1, J) 
DIMENSION Efl1 (200), XX(200) 
Z1=(EMI (J+1)-E1'1 (J)) / (XX(J+1)-XX(J) ) 
V1=(EM1 (J+2)wEF11 (J+1))/(XX(J+'2)»XX(J*1)) 
ß1=(1, /(XX(J+2)'. XX'J)))*(VI-21) 
C1, =z1-, (C+1*(XX(J+1)*XX(J))) . ý, 

-Hl OEM (J)-(Ell *(XX(J)**2))1. (C1*XX(J)) 
A1-((61/3, )*(XX(J+2)**3NXX(J)**3))*((C1/2, )*(XX(J*2)**2-XXtJ)**2)) 
Al=Al+(H1*(XX(J+2)-"XX(J))) 
EK1aEK1+A1 ' 
RETURN 
END 
FINISH " 
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APPENDIX 5 

FORTRAN PROGRAM FOR THE CALCULATION OF THE VARIATION OF no(O. 1 <, n0 < 23.9) 

WITH x/Qd2 FOR A GIVEN VALUE OF m (EQUATION 2.23) 

C TO START THE PROGRAM, INPUT P 
C Pr m. (POWER LAW EXPONENT FOR THE BOUNDARY LAYER VELOCITY PROFILE 
C JUST AFTER EXPANSION) 
C XXX(J)=XX(J)Nllo 
C EKK 1 =F ('1p) tX/Cl62 

DIMENSION XX(bUd), XXX(500), EM1(500), EMM1(500) 
C INPUT P 

READ (5,1ü0) P 
100 FOLD AT (F10,6) 

I CONTINUE 
C SETTING THE VALUE OF (XXCJ)OXXXCJ)) BETWEEN 0,1 AND 23,9 

XX(1)=d. 0 
' EN1(1)ýH, c3 

DO 2 J: 2,481 
XX(J)=XX(J"1)+U, d5 
IF (J. GT, 200) GOTO 15a 
EH1(J)=(XX(J)**((1, +P)/P))/(2,7183**(XXCJ)**2, )) 
GOTO 2 

150 EM1(J)ad, 0 
2 CONTINUE 

C END OF XX(J) SETTING 
C CALCULATION OF THE INTEGRAL TERM IN EQUATION 2,23 FOR A GIVEN XX(J) 

DU 4 Ja1,479,2 
CALL AREA (EMI, XX, EKI, J) 
IF CJ, GT, 200) GOTO 160 
EK2:. (1, /(2,7183**(XX(J+2)**2, )))+((2, *EK1)/(XX(J+2)**(1"/P))) 
GUT0 170 

160 EK2m(2, *EK1)/(XXCJ+2)**(1, /P)) 
17d CONTINUE 

EM1(Jfl)x(1. UEK2) 
4 CONTINUE 

DO 6 J=2,481,2 
J1a(J+2)/2 
EMMl (J1 )zEM1 (J) 
XXX(J1)DxX(J+1) 

6 CONTINUE 
DO 8 J1=2,241 
JJ=24S"J1 
EM1(JJ)=ENMl(JI) "+ 
XX(JJ): 1"/XXX(J1) 

8 CONT I'4UE 
DO 9 J92,241 
JJvJ 
EM1 (J): EMI (JJ) 
XX(J)CXX(JJ) 

9 CONTINUE 
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EK10209 
DO 10 J=1#239,2 
-CALL AREA (EM1, XX, EKI, J) 

C END OF THE INTEGRAL TERM CALCULATION 
XXX(J+2); 1, /XX(J+2) 

C PRINTING THE VALUES OF XXX(J) AND EKKI 
EKKIZ(XX(J+2)"EK1) 
. ºRITE (6,20) XXXIJ+2), EKKI 

10 CONTINUE 
200 FCWMAT (F8,2rF14,5) 

12 CONTINUE 
STOP 
END 
SUHPOUTINE AREA (EMI, XX, EKI, J) 
DIMENSION EM1(54e), Xx(5ad) 
Z1x(EM1(Jt1)«E11(J))/(XX(J+1)"XX(J)) 
V1: (EH1(J+2)"EMI(J+1))/(XX(J+2)"XX(J+1)) 
81=(1, /(Xx(J+2)uXX(J)))*(V1. Z1) 
C1=Z1"(61*CXX(J+1)+xX(J))) 
N1=EMI(J)-(äl*(XX(J)**2))"(C1*XX(J)) 
A1--((81/3, )*(XX(J+2)**3"XX(J)**3))+((C1/2, )*CXXCJ+2)**2. XX(J)**2)) 
AIUA1+(H1*, CXXCJ+2)'XX(J))) 
EK1MEKI+A1 
RETURN 
E% D 
FINISH END JOB 

4 

I 
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Table A. Variation- of T�with xlob2 . (egn. 2.23) 

F(no) = x/d82 

m--7 m=. 9 m_11 m=13 m=15 m=17 
D', a 00 00 00 00 Co CO 
0.1 9.7964 9.8374 9.8646 9.8841 9.8986 9.9099 
0.3 3.1398 3.1787 3.2045 3.2230 3.2368 3.2476 
0.5 1.8191 1.8553 1.8795 1.8967 1.9096 1.9197 
0.7 1.2599 1.2935 10'316o 1.3320 1.3441 1.3535 
0.9 0.9538 0.9850 1.0059 1.0209 1.0322 1.0409 
1.1 0.7623 0.7913 0.8108 0.8248 0.8352 0.8434 
1.3 0.6321 0.6591 0.6773 0.6903 0.7001 0.7077 
1.5 0.5382 0.5634 0.5804 0.5926 0.6018 0.6089 
1.7 0.4677 0.4912 0.5071 0.5186 0.5272 0.5339 
1.9 o. 4128 0.4350 0.4500 0.4606 0.4687 0.4750 
2.1 0.3691 0.3899 0.4040 0.41141 0.4217 0.4277 
2.3 0.3334 0.3531 0.3664 0.3759 0.3832 0.3888 
2.5 0.3038 0.3224 0.3350 0.3441 0.3509 0.3563 
2.7 0.2789 0.2966 0.3085 0.3171 0.3236 0.3287 
2.9 0.2577 0.27141. 0.2858 0.2940 0.3002 0.3051 

3.1 0.2394 0.2553 0.2662 0.2749 0.2799 0.2846 
3.3 0.2234 0.2386 0.2490 0.2565 0.2622 0.2666 
3.5 0.2094 0.2240 0.2339 0.2411 0.2465 0.2507 
3.7 0.1970 0.2110 0.2205 0.2273 0.2326 0.2367 

3.9 0.1860 0.1994 0.2085 0.2151 0.2201 0.2240 
4.1 0.1761 0.1889 0.1977 0.2041 -0.2089 0.2127 
4.3 o, 1672 0.1795 0.1880 0.1941- 0.1988 0.2024 
4.5 0.1591 001710 0.1792 0.. 1851, 0.1896 0.1931 
4.7 0.1518 0.1633 0.1712 0.1769 0.1812 0.1846 
4.9 0.1451 0.1562 0.1638 0.1693. 0.1735 0.1768 
5.1 0.1390 0.1497 0.1571 0.1624 0.1665 0.1697 
5.3 0.1333 0.1437 0.1508 0.1560 0.1600 0.1631 
5.5 0.1281 0.1382 0.1451 0.1501 0.1539 0.1569 
5.7 0.1233 0.1331 0.1398 0.1447 0.1484 0.1513 
5.9 0.1189 00283 0.1348 0.1396 0.1432 0.1460 

ýtý 
_. 
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Table I. (Continued) 

710 F(no) = x/0&2 

mß-7 m=9 m_11 m=13 m_15 m--17 

6.1 0.1147 0.1239 0.1302 0.1348 0.1383 0.1411 

6.3 0.1109 0.1198 0.1259 0.1304 0.1338 0.1365 
6.5 0.1073 0.1159 0.1219 0.1263 0.1296 0.1322 

6.7 0.1039 0.1123 0.1181 0.1224 0.1256 0.1281 
6.9 0.1007 0.1089 0.1146 0.1187 0.1219 0.1243 
7.1 0.0977 0.1057 0.1112 0.1153 0.1183 0.1207 
7.3 0.0949 0.1027 0.1081 0.1120 0.1150 0.1174 
7.5 0.0923 0.0999 0.10.51 0.1090 0.1119 0.1142 

7.7 0.0898 0.0972 0.1023 0.. 1 a61 0.1089 0.1111 
7.9 0.0874 0.0947 0.0997 0.1033 0.10.61 0.1083 
8.1 0.0852 0.0923 0.0971 0.1007 0.1034 0.1056 

8.3 0.0831 0.0900 0.0947 0.0982 0.1009 0.1030 
8.5 0.0811 0.0878 0.0925 0.0959 0.0985 0.1005 
8.7 0.0791 0.0857 0.0903 0.0936 0.0962 0.0982 
8.9 0.0773 0.0838 0.0882 0.0915 0.0940 0.0959 
9.1 0.0756 0.0819 0.0862 0.0894 0.0919 0.0938 

9.3 0.0739 0.0801 0.0844 0.0875 0.0899 0.0918 
9.5 0.0723 0.0784 0.0826' 0.0856 0,0880 0.0898 

9.7 0.0708 0.0767 0.0808 0.0838 0.0861 0.0879 
9.9 0.0694 0.0752 0.0792 0.0821 0.0844 0.0861 

10.1 0.0680 0.0737 0.0776 0.0805 0.0827 0.0844 
10.3 0.0667 0.0722 0.0761 0.0789 0.0811 0.0828 
10.5 0.0654 0.0708 0.0746 0.0774 0.0795 0.0812 
10.7 0.0642 0.0695 0.0732 0.0759 0.0780 0.0797 
10.9 0.0630 0.0682 0.0719 0.0745 0.0766 0.0782 
11.1 0.0618 0.0670 0.0706 0.0732 0.0752 0.0768 

11.3 0.0608 0.0658 0.0693 0.0719 0.0739 0.0754 
11.5 0.0597 0.0647 0.0681 0.0707 0.0726 0.0741 
11.7 0.0587 0.0636 0.0670 0.0694 0.0713 0.0728 
11.9 0.0577 0.0625 0.0658 0.0683 0.0701 0.0716 
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Table 1. (Continued] 

rlo (Fno) = x/62 

m=. 7 m=9- m_11': m=13 m_115, m=1.7 

12.1 0.0568 0.0615 0.0648 0.0672 0.0690 0 ., 0704 

12.3 0.0559 0.0605 0.0637 0.0661 0.0679 0.0693 
12.5 0.0550 0.0595 0.0627 0.0650 0.0668 0.0682 
12.7 0.0542 0.0586 0.0617 0.0640 0.0658 0.0671 
12.9 0.0533 0.0577 0.0608 0.0630 0.0647 0.0661 
13.1 0.0526 0.0569 0.0599 0.0621 0.0638 0.0651 
13.3 0.0518 0.0560 0.0590 0.0612 0.0628 0.0641 
13.5 0.0510 0.0552 0.0581 o. o603 0.0619 0.0632 
13.7 0.0503 0.0544 0.0573 0.0594 0.0610 0.0623 
13.9 0.0496 0.0537 0.0565 0.0586 0.0601 0.0614 
14.1 0.0490 0.0529 0.0557 0.0577 0.0593 0.0605 
14.3 0.0483 0.0522 0.0549 0.0569 0.0586 0.0597 
14.5 0.0477 0.0515 0.0542 0.0562 0.0577 0.0589 
14.7 0.0471 0.050.8 0.0535 0.0553 0.0569 0.0581 
14.9 0.0465 0.0502 0.0528 0.0547 0.0562 0.0573 

15.1 0.0459 0.0495 0.0521 0.0540- 0.0554 0.0566 
15.3 0.0453 0.0489 0.0514 0.0533 0.0547 0.0559 
15.5 0.0448 0.0483 0.0508 0.0526 0,0540 0.0551 
15.7 0.0442 0.0477 0.0502 0.0520 0.0534 0.0545 
15.9 0.0437 0.0472 0.0496 0.0514 0.0527 0.0538 
16.1 0.0432 0.0466. 0.0490 0.0507 0.0521 0.0531 
16.3 0.0427 0.0461 0.0484 0.0501 0.0515 0.0525 
16.5 0.0422 0.0455 0.00478 0.0495 0.0508 0.0519 
16.7 0.0418 0.0450 0.0473 0.0490 0.0503 0.0513 
16.9 0.0413 0.0445 oß. 0468 0.0484 0.0497 0.0507 
17.1 0.0409 0.0440 0.0462 0.0479 0,0491 0.0501 

17.3 0.0404 0.0435 0.0457 0.0473 0.0486 0.0495 
17.5 0.0400 0.0431 0.0452 0.0468 0.0480 0.0490 
17.7 0.0396 0.0426 0.0447 0.0463 0,0475 0.0485 
17.9 0.0392 0.0422 0.0443 0.0458 0.0470 0.0479 
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Table 1. (Concluded) 

110 (Fno) = x/aö2 

m=7 m=9 m=11 
1 

m=13 m=15 m=1 
18.1 0.0388 0.0417 0.0438 0.0453 0.0465 0.0474 

18.3 0.0384 0.0413 0.0434 0.0449 0.0460 0.0469 

18.5 . 0-0380 0.0409 0.0429 0.0444 0.0455 0.0464 
18.7 0.0377 0.0405 0.0425 0.0439 0.0151 0.0459 

18.9 0.0373 0.0401 0.0421 0.0435 0.0446 0.0455 
19.1 0.0370 0.0397 0.0416 0.0431 0.0442 0.0450- 

19.3 0.0366 0.0393 0.0412 0.0426 0.0437 o. 0446 
19.5 0.0363 0.0390 0.0408 0.0422 0.0433 0.0441 

19.7 0.0359 0.0386 0.0405 0.0418 0.0429 0.0437 
19.9 0.0356 0.0382 0.0401. 0.0414 0.0425 0.0433 
20.1 0.0353 0.0379 0.0397 0.0410 0.0421 0.0429 

20.3 0.0350 0.0376 0.0393 0.0407 0.0417 0.0425 
20.5 0.0347 0.0372 0.0390 0.0403 0.0413 0.0421 
20.7 0.0344 0.0369 0.0386 0.0399 0.0409 0.0417 
20.9 0.0341 0.0366 0.0383 0.0396 0.0406 0.0413 
21.1 0.0338 0.0363 0.. 0380 0.0392 0.0402 0.0409 

21.3 0.0336 0.0360 0.0376 0.0389 0.0398 0.0406 
21.5 0.0333 0.0357 0.0373 0.0385 0.0395 0.0402 
21.7 0.0330 0.0354 0.0370 0.0382 0.0391 0.0399 

21.9 0.0328 0.0351 0.0367 0.0379 0.0388 0.0395 
22.1 0.0325 0.0348 0.0364 0.0376 0.0385 0.0392 
22.3 0.0323 0.0345 0.0361 0.0372 0.0381 0.0388 
22.5 0.0320:. 0.0342 0.0358 0.0369 0.0378 0.0385 
22.7 0.0318 0.0340 0.0355 0.0366 0.0375 0.0382 
22.. 9 0.0315 0.0338 0.0352 0.0363 0.0372 0.0379 
23.1 0.0313 0.0335 0.0349' 0.0360 0.0369 0.0376 
23.3 0.0311 0.0332 0.0347 0.0358 0.0366 0.0373 
23.5 0.0308 0.0325 0.0344 0.0355 0.0363 0.0370 
23.7 0.0306 0.0327 0.0341 0.0352 0.0360 0.0367 

23.9 0.03014 0.0324 0.0339 0.0349 0.0357 0.0364 
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Table 20 Error function velocity profile. (eon. 3.51 

11 0 11 0 

-2.1 0.0016 0.9 0.8984 

-2.0 0.0024 1.0 0.9213 

-1.9 0.0037 1.1 0.9400 
-1.8 0.0056 : 1.2 0.9551 
-1.7 0.0082 1.3 0.9669 
-1.6 0.0119 1.4 0.9761 
-1,5 0,0170 1.. 5 0.9830 

-1.4 0.0240 1.6 0.9881 

-1.3 0.0331 1.7 0.9918 

-1.2 0.0449 1.8 0.9944 

-1.1 o. 0'6oo 1.9 0.9963 
-1.0 0.0787 2.0 0.9976 
-0.9 0.1020 2.1 0.9984 

-0.8 0.1290 

-0.7 0.1612 

-0.6 0.1981 

-0.5 0.2398 
-0.4 0.2858 
-0.3 0.3357 
-0.2 0.3887 

-0.1 0.4438 
0.0 0.5000 
0.. 1 0.5562 
0.2 0.6113 

0.. 3 0.6643 
0.4, 0.7142 

0.5 0.7602 
0,6 0.8019 
0.7 0.8388 
0,8 0.8710 
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Table 3. Four stage Turbo Comressor specifications 

Mass flow (lb/sec) 10 

Inlet pressure (p. s. 1. absolute) 14.7 

Delivery pressure (p. s. i. gauge) 30.0. 

Speed ('. p. m. ) 8750 

Horse power 930 
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Table 4. (See Fig. 18 

XY 
inches inches 

0.000 0.000 
0,027 0.070 
00101 00133 
0.223 0.189 
0.378 0.228 
0.555 0.253 
0.631 0.259 
0.750 0.264 
Straight up to X=2.750" 
2.750 0.264 

-2.884 0.263 
2.938 0.262 
3.031 0.259 
3.135 . 0.256 
3.229 0.252 
3.329 0.246 
3.429 0.240 
3.529 0.235 

6 0 26 3. 74 .2 
3.774 0.222 
3.874 0.218 
3°974 0.213 
4.074 0.209 
4.174 0.204 
4,274 0.200 
40374 00196 
4.474 0.191 
4.567 0.188 
4.667 0.183 
4.767 0.179 
4.867 00175 
4.967 0.171 
5.015 0.169 
5.115 0.165 
5.215 o. 163 
5.315 0.159 
5.356 0.158 
5.456 0.156 
5.556 0.153 
5.653 0.1-52 
5.753 0.151 
5.853 0.150 
5.956 0.150 
6.000 0.150 

Y (Calculated from 
egn. L.. 1) inches 

00264 
0,263 
0.262 
0,259 
0.255 
0.251 
0.246 
0.241 
0.235 
0.230 
0,227 
0.222 
0.217 
0.212 
0.207 
0.202 
0.198 
Go194 

0.190 
0.186 
0.183 
0.179 
0.175 
0.170 
0.167 
0.164 
0.161 
Oo160 
0.157 
0.154 
00153 
00152 
0.15'1 
0.151 
0.152 
00153 

t 

4 

k 
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Table 5. Values of Pb /Pc)o for different values of Me,, 

and a 775=57, 

Mel 
a M ew Upper surface Lower surface 

/P Pb 00 

00 0.6 0.645 0.645 0.91 

1.0 1.150 1.150 0.515 

1.3 1-. 360 1.360 0.46 

2° 0.6 0.660 0.645 0.92 

1.0 1.300 1.040 0.52 
1.3 1.380 1.290 0.485 

40 0.6 0.662 0.640 0.94 

1.0 1.340 0.980 0.59 
1.3 1-470 1.110 0.515 

0.6 0.665 0.610 0.955 

1.0 * 0.920 0.725 
1.3 1.550 0.950 0.525 

* It is difficult to evaluate this value since the flow 

is seperating just before the trailing edge (Pig. 37C) 

0 
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Table 7. 

Reference Me,,,, Pb /Poa Pr /PCO hse2 Mer 

Tanner 89) 0.10 0.9972 0.9998 0.12 0.10 

o. 10 0.9957 0.9987 0.13 0.11 

Naah(6) 0.40 0.98 1.01 O. 14 0.38 

0.80 0.89 1.02 0.91 0.78 

0.95 0.78 0,99 1.16 0.96 
1.00 0.65 0.90 1.34 1.09 
1110 0.52 0.70 1.58 1.38 

Chow(86) 2.00 0.36 0.60 2.66 2.33 

Rom (given in 2.24 0.30 0.50 3.02 2.69 

ref. 86 

Hastinge(25) 1.56 0.46 0.75 2.07 1.75 
2.41 0.25 0.48 3.33 2.89 
3.10 0.18 0.40 4.36 3.74 

Present 0.60 0.91 0.98 0.71 0.63 

results 0.75 0.86 0.94 0.90 0.81 
0.90 0.70 0.83 1.20 1-05 

1.00 0.52 , 0.77 1.50 1.20 

1.30 0.46 . 0.59 1,83 1.67 
1-30 0.49 0.70 1.79 1.55 
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Table 8. Free shear layer parameters for M =0.6 

(a_0 
, d=0.024 ) 

'Distance from 
bane(x/2h) 

0 
in. 

b 
In. 

H' 

0 0.021+7 0.0384 1.56 

113* 0.0277 0.0498 1-79 

2/3 0.0318 0.0578 1.81 

1.0 0.0391 0.0822 2.10 

1.5 0.0520 0.1: 164 2.21 
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(A). Subsonic flow over a step. 
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(B). Supersonic flow over a step. 

---- shear layer edge 

FIG. 1. SKETCH OF THE BASE FLOW. 
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FIG. 2. FLOW MODEL AT THE EXPANSION CORNER. 
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C Expansion wave. 
M; + öM; 2 

g S! i ý". p iiný, 

M, D 

A 
Reflected wave 

FIG. 4. a. SCHEMATIC FOR THE INTERAC11ON OF AN EXPANSION WAVE_ 
AT A WEAK MACH NUMBER DISCONTINUITY. (REF. 68) 

Reflected 
waves 

Leading Mach wave 
Trailing Mach wave 

---_---"'^- Lip shock 
t: z----Sonic line 

FIG. 4. b. SCHEMATIC DIAGRAM OF THE EXPANSION REGION. (REF. 68. } 
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Lip shock 

--- ý` ---z conic line 

FIG. 4. c. FLOW BEHAVIOUR NEAR. SEPARATION. (REF. 69) 
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FIG. 7. a. SUPERSONIC INVISCID FLOW OVER M-DIMENSIONAL 

STEP. (REF-17) 
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INVISCID FLOW. (REF. 17) 
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FIG. B. VARIATION OF Oo WITH Me FOR ASYMPTOTIC SHEAR LAYER WITH 

ZERO INITIAL B. L. THICKNESS. (Eqn. 24&. ) 
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FIG. lQ, EFFECT OF THE INITIAL BOUNDARY LAYER ON 
THE FREE SHEAR LAYER DEVELOPMENL, 
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FIG. 14. THE TWO FLOW REGIONS. (REF. 19. ) 
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FIG. 15. VARIATION OF (Pb/(ý) WITH (Re) [REf. 19] 
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YY 'view showing slot tapping. XX view showing base tapping. 

Upper surface Lower surface 
Tapýing 

No. 
Distance 
from base 

in. 

Taýping 
No. 

Distance 
from base 

in. 

Tapping 
týIo. 

Distance 
from base 

in. 

1 0 03 9 1.4 1 0.03 
2 0.1 10 1.6 ' 2 0.1 " 
3 02 11 1.8 3 1.0 
4 04 12 2.0 4 2.0 
5 0.6 13 2.5 5 3.25 
6 0.8 14 3.25 6 5.25 
7 1.0 15 4-25 
8 1.2 16 5.25 

FIG. 20. PRESSURE TAPPING ARRANGEMENT. 
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flG. 33. SCHEMATIC DIAGRAM QF THE EFFECT GF 
THE REFLECTED WAVES ON THE SHAPE 
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(A) Side A 

PLATE 1 GENERAL VIEW OF THE TRANSONIC WIND TUNNEL (Continued) 

1) Settling chamber 
2 Air supply for base 
3 Traverse gear 
4 Angle of incidence 
5) Pitot-static probe 
6) The model 

bleed 

adjustment gear 



(B) Side B 

(C) Side B (With the Side Wall Removed) 

PLATE 1 GENERAL VIEW OF THE TRANSONIC WIND TUNNEL 

1) Settling chamber 
2) Air supply for base bleed 
3) Traverse gear 
4) Angle of incidence adjustment gear 
5) Pitot-static probe 
6) The model 

} .e 



(A) Without Base Bleed 

PLATE 2 BASE FLOW WITH THE MODEL AT ZERO INCIDENCE 

(Mý = 1.3) 
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(B) With Base Bleed (Cqb=0.049) 

PLATE 2 BASE FLOW WITH THE MODEL AT ZERO INCIDENCE 

/M -1 11 
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(C) With Base Bleed (Cqb 0.10) 

PLATE BASE FLOW WITH THE MODEL AT ZERO INCIDENCE 

(Me.., " 1.3 ) 

,q ql 

V ; _, 



dom. "º 

,º.. ý "' 
F ýý 

(A) (Men = 0.19). The flow is separating on the upper surface 

and reattaching downstream of the base. The separation 

point is out of view. 

PLATE 3 BASE FLOW WITH THE MODEL AT 6° INCIDENCE AND 

WITHOUT BASE BLEED 
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(B) (Me-- = 0.92). The separation point has moved downstream 

towards the base. 

PLATE 3 BASE FLOW WITH THE MODEL AT 60 INCIDENCE AND 

WITHOUT BASE BLEED 

OW 
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(C) (Me = 0.93) 

PLATE 3 BASE FLOW WITH THE MODEL AT 6° INCIDENCE AND 

WITHOUT BASE BLEED 
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(D) (Me- = 0.965). The separation point is just visible 

on the extreme right-hand side. 

PLATE 3 BASE FLOW WITH THE MODEL AT 6° INCIDENCE AND 

WITHOUT BASE BLEED 



(E) (Me- = 0.965). The knife-edge is set in the vertical 

position and Plate 3D is repeated to show the shock 

and expansion waves. 

On the upper surface, note the lambda shock on the 

extreme right-hand side. At the free boundary of the 

separation bubble, the rear branch of the lambda shock 

reflects as an expansion wave (see Fig. 38C). 

PLATE 3 BASE FLOW WITH THE MODEL AT 60 INCIDENCE AND 

WITHOUT BASE BLEED 



(F) (M 
e- = 1.3). The flow is attached on the upper surface. 

Note the two shock waves and the two expansion waves that 

follow the corner separation at the lower surface. 

PLATE 3 BASE FLOW WITH THE MODEL AT 60 INCIDENCE AND 

WITHOUT BASE BLEED 
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PLATE 4 THE MIXING OF THE AIR LEAVING THE PLENUM CHAMBER 

WITH THE MAIN FLOW DOWNSTREAM OF THE MODEL IN 

THE WAKE 
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PLATE 4 THE MIXING OF THE AIR LEAVING THE PLENUM CHAMBER 

WITH THE MAIN FLOW DOWNSTREAM OF THE MODEL IN 

THE WAKE 

(B) = 60, Me = 1.0 


