
Resolution-Based Methods for

Linear-Time Temporal Logics

with Applications to Formal Verification

Thesis submitted in accordance with the requirements of the l1niversity of Liverpool

for the degree of Doctor in Philosophy by

Michel Ludwig

April 2010

Department of Computer Science

University of Liverpool

Primary Supervisor: Dr. Ullrich Hustadt

Department of Computer Science

University of Liverpool

Secondary Supervisor: Dr. Boris Konev

Adviser:

Internal Examiner:

External Examiner:

Department of Computer Science

Cniversity of Liverpool

Dr. Clare Dixon

Department of Computer Science

University of Liverpool

Dr. Alexei Lisitsa

Department of Computer Science

University of Liverpool

Dr. Anatoli Degtyarev

Department of Computer Science

King's College London

iii

Abstract

Originally designed to represent tense in natural language, temporal logics have been used

successfully in numerous application areas. In this thesis we focus on formal verification

through resolution-based proof methods for two linear-time temporal logics: propositional

linear-time temporal logic (PLTL) and monodic first-order temporal logic (FOTL). Both of

these logics are interpreted over a model of time that is isomorphic to the natural numbers.

A machine-oriented resolution-based calculus called fine-grained temporal resolution

has been previously introduced for PLTL and monodic FOTl. The calculus operates on a

clausal normal form for PLTL and monodic FOTL formulae, the so-called clausified temporal

problems. In this thesis, we consider its refinement, the ordered fine-grained temporal

resolut1on with selection calculus, J:~. It extends fine-grained temporal resolution with

ordering restrictions and selection functions. A full proof of refutational completeness for

ordered fine-grained temporal resolution with selection is given in this thesis.

Besides refutational completeness, another aspect of ordered fine-grained temporal

resolution with selection that we analyse in this thesis concerns the elimination of redundant

clauses. The question arises whether tautological and subsumed clauses can be eliminated

without losing refutational completeness in the context of the J~t -calculus. To that end,

we identify syntactic criteria for identifying temporal clauses as tautologies. Moreover, we

define a subsumption relation on temporal clauses and we illustrate how the calculus has to

be extended to remain compatible with the removal of subsumed clauses and of tautologies.

However, some issues regarding the applicability of the J~;'sub-calculus in practice remain

as it contains inference rules whose applicability conditions are only semi-decidable in general.

Consequently, fair derivations, i.e. derivations in which every non-redundant clause that is

derivable from a given clause set is eventually derived, cannot be guaranteed in practice as

the applicability check for some inference rules might not terminate. We therefore present

an inference procedure based on the J~c'.sub-calculus that can construct fair derivations for

reasoning in monodic first-order temporal logic, and we prove its refutational completeness.

We also show that the new inference mechanism can be used as a decision procedure for

some specific classes of temporal problems.

The fair inference procedure has been implemented in the monodic first-order temporal

logic prover TSPASS, which is based on the first-order theorem prover SPASS. We describe

the implementation and we analyse the effectiveness of redundancy elimination and the

v

vi ABSTRACT

proof search performance of TSPASS on several examples.

In the final part of the thesis we are trying to fill a gap in functionality that resolution

based techniques admit over tableaux-based reasoning for formal verification purposes

based on PL TL. In the case of a failure to prove the validity of a specific property by a

tableaux-based method, a counter example demonstrating the erroneous behaviour has

already been constructed. On the other hand, only the knowledge that the specification

does not satisfy the required property is generally available for resolution-based verification

attempts. We therefore present an algorithm that allows us to automatically construct

a model for a satisfiable PL TL formula based on the J~G':s -calculus and on the regular

resolution-based model construction for sets of propositional clauses. We also briefly analyse

the implementation of the model construction procedure as an extension of TSPASS, and we

provide some experimental results on the practical performance of the model construction

mechanism applied on benchmark classes.

Acknowledgements

Foremost, I would like to thank Ullrich Hustadt for his invaluable support during the three

years of my PhD studies. Not only his interesting research ideas, but also his constructive

criticism and generous assistance regarding problems of any nature greatly contributed to

making this thesis possible.

I would also like to extend my gratitude to Boris Konev for giving helpful suggestions

and to Clare Dixon for additionally being a thorough tester of TSPASS. Consequently,

numerous bugs have been discovered and corrected. Moreover, I am grateful to my fellow

PhD colleagues at the Department of Computer Science, who contributed to creating an

enjoyable working atmosphere, and special thanks go to my parents and sisters.

Finally, I am thankful for the opportunities to present most of the results contained in

this thesis at various international workshops and conferences.

The results described in Chapter 4 were published in [661 and presented at the Interna

tional Workshop on First-Order Theorem Proving (ITP 2(09) held in Oslo, Norway, during

6-7 July, 2009.

Chapter 5 is based on the material published in [651 and presented at the 22nd Interna

tional Conference on Automated Deduction (CADE-22) held in Montreal, Canada, during

2-7 August, 2009.

The description of the theorem prover TSPASS given in Chapter 6 is derived from the

material published in [681.

Lastly, the results described in Chapter 7 were published in [671 and presented at the

16th International Symposium on Temporal Representation and Reasoning (TIME 2009)

held in Brixen-Bressanone, Italy, during 23-25 July, 2009.

vii

Contents

Abstract

Acknow ledgements

Contents

1 Introduction

1.1 Formal Verification

1.1.1 Formal Languages

1.1.2 Model Checking .

1.1.3 Direct Proof Methods

1.1.3.1 Tableaux-Based Proof Methods

1.1.3.2 Automata-Based Proof Methods

1.1.3.3 Resolution-Based Proof Methods.

1.2 Novel Contributions

1.3 Thesis Outline

2 Linear-Time Temporal Logics

2.1 Introduction..................

2.2 Propositional Linear-Time Temporal Logic;;

2.3 First-Order Temporal Logics .

2.3.1 The Monodic Fragment .

2.4 Additional Notions

2.5 Divided Separated Normal Form

2.6 Clausification of Temporal Problems

2.7 Summary

3 Ordered Fine-Grained Resolution with Selection

3.1 Introduction...........

3.2 Monodic Temporal Resolution.

3.3 Inference Rules

3.3.1 Fine-Grained Step Resolution and Eventuality Resolution

ix

v

vii

be

1

1

2

4

4

5

5

5

9

10

13

13

13

14

17

17

20

24

28

29

29
30

34

35

x

3.3.2 Resolution-Based Loop Search Algorithm

3.4 Refutational Completeness.

3.4.1 Refined Monodic Temporal Resolution ..

3.4.2 Properties of the Ref-BFS algorithm ...

3.4.2.1 Proof of Refutational Completeness

3.4.3 Proof of the Lifting Theorem

3.4.4 Proof of Refutational Completeness

3.5 Summary

4 Redundancy Elimination in Monodic Temporal Reasoning

4.1 Introduction

4.2 Adding Redundancy Elimination

4.2.1 Tautological Temporal Clauses

4.2.2 A Subsumption Relation on Temporal Clauses

Contents

38

40

40

42

46

48

65

74

11

77

78

79

79

4.2.3 SUbsumption-Compatible Ordered Fine-Grained Resolution with Se-

lection

4.2.4 Subsumption Lemmata

4.3 Subsumption and Loop Search

4.3.1 Subsumption-Restricted Loop Search Algorithm

4.3.2 Properties of the Loop Search Algorithm

4.3.3 Refutational Completeness

4.4 Summary

5 Fair DerivatiollB in Monodic Temporal Reasoning

5.1 Introduction

5.2 Constructing Fair Derivations

5.2.1 Fairness Problems

5.2.2 The Fair Inference Procedure F

5.3 Refutational Completeness .

5.4 F as a Decision Procedure

81

82

90

91

92

101

103

105

105

106

106

108

111
119

5.5 Summary 121

6 TSPASS - a Fair Monodic Temporal Logic Prover 123

6.1 Introduction................................ 123

6.2 Fine-Grained Step Resolution and First-Order Logic 124

6.3 Implementing a Fair Architecture for Monodic Temporal Reasoning. 126

6.3.1 The Architecture of TeMP. 126

6.3.2 Fairness Problems of TeMP

6.3.3 Implementation of the Fair Inference Procedure.

6.4 Implementation of TSPASS

6.4.1 Saturation Architecture of SPASS

129

129

132

133

Contents

6.4.2

6.4.3

6.4.4

6.4.5

6.4.6

6.4.7

6.4.8

Implementation Basics

General Architecture of TSPASS

Translation Into DSNF

Clausification and Translation to FOL

Efficient Access to Loop Search Clauses

Temporal Saturation

Loop Search Testing

xi

134

137

138

141

143

144

147

6.4.9 Implementation Peculiarities 149

6.4.10 Fairness Problems Related to the Regular Clause Selection FUnction 150

6.5 Experimental Results. 151

6.5.1 Considered Temporal Problems 151

6.5.2 Performance on Propositional Temporal Problems 153

6.5.3 Effectiveness of Redundancy Elimination 162

6.5.4 Performance on Monodic Temporal Problems 163

6.6 Summary .

7 Resolution-Based Model Construction for PLTL

7.1 Introduction.............

7.2 Propositional Model Construction

7.3 Temporal Model Construction .

7.3.1 Construction Principle .. .

7.3.2 Proof of Correctness

7.4 Practical Considerations and Complexity

7.5 Implementation

7.6 Experimental Results

7.7 Alternative Model Construction Approaches .

7.8 Minimal Models

7.9 Summary

8 Conclusion
8.1 Summary of the Results

8.2 FUrther Research Possibilities

Bibliography

Index

165

169
169

170

171

174

177

179

181

181

183

184

185

187

187

189

193

203

Chapter 1

Introduction

In this introductory chapter we give a brief overview of the scientific field of formal verification,

to which the methods developed in this thesis are meant to contribute. We begin by

motivating the usefulness of formal verification before we introduce the two main constituents

that different approaches towards formal verification have in common: the specification

languages and the reasoning methods for establishing the correctness of a specified system.

We conclude this chapter by briefly describing tht> nowl contributions and we give a general

outline of the thesis.

1.1 Formal Verification

The field of formal. verification is concerned with verifying that a hardware or software

system behaves correctly in all situations, which is an essential prerequisite in the design

and construction of safety critical systems. In addition to knowing that a verified system is

correct, the quest for formal verification is motivated by the high costs incurred in case of

failure and when corrections of errors are required. For examplt>, the following four case

studies illustrate the dramatic consequences which errors in complex hardware and software

systems can have .

• In order to improve the performance of the floating point unit (FPU) in the Pen

tium CPU, a new algorithm was used for computing the results of floating-point

divisions [431. This new algorithm used look-up tables with 1066 non-empty entries

in intermediate computation steps. However, due to a mistake in how this table was

initially constructed, 5 of those entries were not copied into the processor design, and

as a result, the FPU returned wrong values on certain floating point computations.

This became known as the Pentium FDIV bug in 1994, and the manufacturer Intel

was forced to replace the dt>fective chips .

• In the case of the maiden flight of the Ariane 5 launcher [611, flight 501, on 4th June,

1996, the launcher started to disintegrate 39 seconds after lift-off and was destroyed by

an automatic safety mechanism, resulting in an associated financial loss of 1.9 billion

2 CHAPTER 1. INTRODUCTION

French Francs. The erroneous flight behaviour was caused by wrong input given to the

on-board computer by the Inertial Reference System. The input data provided was in

fact an error message but was interpreted as flight data instead. The error message

resulted from a software exception which occurred due to the conversion of a 64-bit

floating point number to a 16-bit signed integer number, which yielded an overflow.

The overflow occurred during computations that were in fact intended for the Ariane 4

launcher but were no longer required for Ariane 5, resulting in computations with

higher numerical values than the software expected. The software showing faulty

behaviour on the Ariane 5 was initially designed for the Ariane 4 and was intended

for a different flight path. According to [61] system engineering faults were the root

cause of flight 501 's failure.

• In 1999 the Mars Climate Orbiter spacecraft reached Mars and was supposed to enter

a low orbit around Mars. However, during the design and construction phase of the

spacecraft one error remained unnoticed [34]: the software used to control the thrusters

on the ground was working with Imperial measurement units, whereas the spacecraft

itself expected metric units. As a result the spacecraft descended to an altitude of

57 km above Mars, which was too low for its survival .

• Finally, the Mars Polar Lander was subject to a similar fate in 1999 [34]. Its mission

involved a landing on the surface of Mars, but its last transmission was received when

it prepared for entering Mars' orbit. The real cause of its disappearance still remains

unknown. However, a logic error leading to a premature shutdown of the descent

engines was discovered later on, together with problems related to the touchdown

sensors. One possible explanation for the loss of the spacecraft would hence be a free

fall onto the surface of Mars.

For formal verification to be applicable, precise yet understandable ways are necessary for

specifying complex systems and what constitutes correct behaviour. In addition, exhaustive

methods for determining that a system behaves correctly for all input patterns are required.

In Section 1.1.1 we de>eribe the former aspect of specifying systems in a formal way

in greater detail. For the latter point concerning methods to establish that systems show

correct behaviour, two different approaches can be identified: model checking-based and

direct proof-based verification methods, which are discussed in the Sections 1.1.2 and 1.1.3,

respectively.

1.1.1 Formal Languages

The specification of hardware and software systems for formal verification is based on

abstracting the behaviour of the considered system using a "language" for which the

meaning of its "sentences" is defined in a precise way. The definition of the specification

language is typically given on two levels.

1.1. FORMAL VERIFICATION 3

The definition of its grammar, i.e. the way how "sentences", or more correctly formulae,

are built in this language, is given on the first level together with the definition of the

vocabulary that can be used, i.e. the basic building blocks, which are called constants,

functional symbols, terms, propositional symbols, or predi.cates in our case, and the operators

connecting the basic building blocks, like 1\, V,:::::}. Formulae can be seen as tree-like

structures with basic building blocks appearing on the leaves and operators in the inner

nodes.

On the second level, then, a precise way of interpreting the different building blocks and

the operators connecting them together is provided. The interpretation assigns the value

"true" or "false" to a formula according to the values assigned to the basic building blocks

and according to the operators connecting them. If there is an assignment to the basic

building blocks of a formula F such that its interpretation w.r.t. to the assigned values is

"true", we say that the formula F is satisfiable. If every assignment leads to a interpretation

that is "true", the formula F is said to be valid. An assignment of values to the basic

building blocks such that the formula F is interpreted as "true" is called a model for the

formula F.
In this thesis we focus on tempomllogi.cs as specification languages, which were originally

designed to represent tense in natural language [76]. Temporal logics can be used to express

conditions that should hold in different moments in time and are as such naturally suited for

expressing the specification and properties of hardware and software systems whose state

changes over time.

A wide variety of different temporal logics exist. Beside having different vocabulary,

they also differ in the considered model of time. Generally speaking, the class of languages

with a branching-time model [33] represent several possible choices over time in a tree-like

structure as interpretations for formulae, whereas the class of languages with a linear mOtiel

of time [73,74] considers a single time line for which ouly one choice is possible at any

moment in the time line. In addition to differences in representing time flow, temporal

logics also vary in their notion of instants in time. Moments in time can be dense [16]'

i.e. isomorphic to the real numbers, or rather considered as discrete time instants [74],

i.e. isomorphic to the natural numbers or integers. Moreover, temporal logics that do not

consider time instants but rather time intervals also exist [71,82].

Important concepts in the verification of reactive and concurrent system can also be

specified in temporal logics. For example, the notions of

• safety: "nothing bad happens",

• liveness: "something good eventually happens",

• fairness, i.e. constraints that exclude unwanted behaviour of the specified system,

represent important verification properties and can be expressed in temporal logics [32,74].

For instance, reactive systems are an important class of systems in the field of formal

verification 1451. Their behaviour is characterized by a continuous interaction with the

4 CHAPTER 1. INTRODUCTION

environment they are in. Verifying properties of reactive systems has been successfully

achieved using temporal (and modal) logics [29,32,39,73,86].

Besides formal verification, other application areas of temporal logics include the specifi

cation of programs [74], temporal databases [89], knowledge representation through temporal

description logics [5J, logic programming in the form of executable temporal logics [l1J, and

the analysis of natural language [85].

In this thesis we focus on propositional linear-time temporal logic (PL TL) and first-order

temporal logic (FOTL) as specification languages. For both languages we assume a linear

time flow model composed of discrete time instants with finite past and infinite future,

i.e. a model of time isomorphic to the natural numbers. PL TL can be seen as an extension

of propositional logic with temporal operators, whereas FOTL is a similar extension of

first-order logic.

In the following two sections, we describe the two main approaches for establishing that

a system behaves according to some specified behaviour in temporal logics.

1.1.2 Model Checking

Model checking is a prominent method for verifying that a system specification exhibits

certain properties. It has been applied successfully both in the verification of hardware and

software systems [19J.

Verification via model checking involves validating that a specific temporal formula,

which represents the property that is to be verified, is fulfilled in every possible state that the

system can enter. Obviously, the number of possible states that can occur in hardware and

software systems can grow very large, which is especially a problem for software verification

via model checking. Tremendous research effort has gone into combating this space explosion

problem, and impressive results have been achieved. Moreover, automated model checking

tools like SPIN [48J and NuSMV [18J have also been developed. In the case where a

specification does not fulfil a property, a counter-example, i.e. the error path in the state

space, is automatically constructed by the model checking tool.

However, the model checking approach to formal verification presents problems in the

case of infinite-state systems, which frequently occur with timed and hybrid systems [2OJ,

for example. Obviously, determining whether a property holds in every state is not possible

directly in that case, and as such model checking can, for instance, only be applied to finite

reductions of these infinite-state systems [21]. Other ways of handling infinite-state model

checking have been developed, see e.g. [15], but the fundamental problem remains that it is

impossible to check in finite time whether a property holds in infinite-state systems simply

by visiting all the possible states of the systems.

1.1.3 Direct Proof Methods

In contrast to model checking, verification based on direct proof has the advantage that it

can also be easily applied on infinite state systems. Instead of verifying that a property holds

1.1. FORMAL VERIFICATION 5

in every possible state that a specified system can be in, the proof-based verification methods

try to perform "reasoning" with the system specification formula 'P and the property 1jJ

that is to be verified. More specifically, as proving the validity of the fonnula 'P =* 1jJ

is equivalent to e>tablishing that the formula ...,('P =* 1jJ) == 'P 1\ ...,1jJ is unsatisfiable, the

proof-based verification methods try to determine that the formula 'P 1\...,1jJ is unsatisfiable.

In the following we present three proof methods that are of particular importance for

temporal logics.

1.1.3.1 Tableaux-Based Proof Methods

Tableaux-based proof methods try to construct structures, so-called tableaux, for formulae

from which models can be built easily. If such a structure has been exhaustively constructed

and when it become> apparent that no model can be extracted from it, one can conclude that

the considered formula is unsatisfiable, and its negation therefore valid. As such the proof

of unsatisfiability for a formula can become rather involved as the full structure representing

all the potential models has to be explored before one can conclude that no model can exist.

One has to note, though, the tableaux-based algorithms typically do not suffer from the state

space explosion that is present in model checking approache>. However, tableaux algorithms

share the aspect of model checking approache> that a model can be easily obtained once a

formula is determined to be satisfiable, which is equivalent to finding a counter-example in

the case of validity checking.

Tableaux algorithms for PLTL are given, for example, in [93], and for a fragment of FOTL

(and decidable subclasses) in [60]. Implementations of tableaux algorithms for PLTL exist,

for instance, in the Logics Workbench [46], the Tableaux Work Bench [4J and LoTREC [42J.

1.1.3.2 Automata-Based Proof Methods

Proofs based on automata are mainly available for PL TL. The general idea behind this proof

method lies in the structure of PLTL models: they can be seen as infinite strings over the

language consisting of all the subsets of propositional symbols occurring in a specific formula.

Biichi automata, i.e. automata that manipulate infinite strings, can be constructed in such

a way that they only accept infinite strings which represent models of a given fonnula 'P.

Then, if such an automaton for the formula ""'P dOffi not accept any infinite words, we can

conclude that the formula ""'P is unsatisfiable, and therefore 'P is valid. More details can be

found in [75J.

1.1.3.3 Resolution-Based Proof Methods

The main goal of resolution-based proof methods consists in deriving a contradiction from a

given set of formulae. Broadly speaking, two different clas...'leS of resolution inference systems

exist: non-clausal and clausal re>olution. They mainly differ in the type> of fomlUlae on

which the inference rules can be applied.

6 CHAPTER 1. INTRODUCTION

Non-clausal resolution methods can be applied on arbitrary formulae. Such an inference

system has been developed for PL TL in [2], an extension to FOTL was given in [3]. The

practical drawback of the inference systems presented in [2,3J lies in the large number of

inference rules, which makes an implementation difficult.

In this thesis we therefore focus on clausal resolution. The inference rules of clausal

resolution can only be applied on formulae that are in a normal form, the so-called clausal

normal form. Formulae in clausal normal form are also called clauses. Essentially, in

the non-temporal propositional case, clauses are mutisets of literals, where a literal is

either p or ""p for a propositional symbol p. The empty clause, denoted by .1, plays an

important role in clausal resolution calculi as we will see later. Note that the empty clause is

unsatisfiable. In the first-order non-temporal case, the notion of literal is extended to include

arbitrary positive or negative predicates, Le. pet}, ... , tn) or ""P(tl' ... , tn), where tI, ... , tn

are arbitrary terms. Efficient algorithms for transforming sets of arbitrary formulae into

"small" clausal normal forms have also been developed.

The resolution calculus was initially introduced by J.A. Robinson in 1965 [79J. It consists

of the following two inference rules:

• Resolution
CvA Dv...,B

(C V D)a

where C, D are disjunctions of literals and a is a most general unifier of the atoms A

and B

• Factoring
CvAvB
(C V A)a

where C is a disjunction of literals and a is a most general unifier of the atoms A

and B

A unifier a of two atoms A and B is a function that substitutes terms for variables such

that Aa = Ba.
The resolution rule states that if two clauses C V A and D v...,B contain atoms A and B,

respectively, which can be unified by a (most general) unifier a, then one can derive a clause

(C V D)<T, where the variables in the disjunctions of literals C and D are replaced by the

terms assigned to them in a. In the propositional case the intuition behind the resolution

inference rules is the following: if one assumes that the two propositional clauses C V A,

D V ...,A are true, it is clear that C V D must hold as A and ...,A cannot both be true. The

intuition behind the resolution rule in the first-order case is similar if one takes into account

that first-order clauses are implicitly universally quantified, i.e. the fact that a first-order

clause is true implies that it is still true if variables are replaced consistently by arbitrary

terms.
The factoring rule, then, states that two occurrences of positive literals which can be

unified by a most general unifier can be replaced by a single occurrence of them after

1.1. FORMAL VERIFICATION 7

the computed unifier has been applied on all the literals. In the propositional case the

factoring rule simply removes duplicate literals from clauses, whereas the factoring rule

in the first-order case removes literals that can be unified, i.e. made equal through the

application of a unifier, from a given clause.

In an attempt to determine whether a set of clauses is unsatisfiable, the inference rules

of the resolution calculus are exhaustively applied on the clauses contained in the set. New

clauses are obtained from the applications of these inference rules, which are again considered

for further inference computations. If the empty clause ..1 is obtained at some point, one

can conclude that the initial set of clauses is unsatisfiable. Otherwise, if the resolution and

factoring inference rules have been exhaustively applied and no new clauses can be derived,

one can infer that the initial set of clauses is satisfiable.

Despite having been developed to increase the efficiency of automated theorem proving,

a straight-forward implementation of the resolution inference rules presented above would

not lead to an efficient theorem prover as the number of possible inferences would be far

too large. To tackle this problem, numerous strategies have been developed that can help

reduce the number of possible inferences and prune the search space in that way. These

strategies include, for example, ordering restrictions and selection functions [10], which lead

to modified inference ruJes, or, for instance, the set of support strategy [63], which enforces

that only specific combinations of clauses are considered for computing inferences.

Other optimisations include the elimination of clauses that do not contribute or rather

prolong the derivation of the empty clause. Techniques such as redundancy elimination can

be applied here. Two important classes of redundant classes are tautologies and subsumed

clauses. Tautologies are clauses that are true in every interpretation and they can (usually)

be safely discarded as they cannot contribute to derivations of the empty clause. The

notion of clause subsumption deals with "smaller" clauses that subsume "larger" clauses,

i.e. whenever the "smaller" clause is satisfied in a model, the "larger" clause is also fulfilled.

Additionally, the "larger" clause would potentially lead to longer derivations of the empty

clause. Subsumed clauses can therefore be removed from the clause sets used for inference

computations.

On the practical side then, the notion of fair derivations plays an important role in the

design of automated theorem provers. Theorem provers must ensure that fair derivations

are constructed, i.e. every (derived) clause must be considered for inference computations at

some point in time. If one clause would never be chosen for computing inferences, it could

happen that a clause essential for deriving the empty clause from an unsatisfiable clause set

is not used and the empty clause couJd not be obtained. A variety of selection strategies for

choosing clauses to compute inferences with whilst maintaining the fairness of derivations

have been developed, see e.g. [91].

A large number of automated theorem provers for first-order logic based on resolution

have been developed over time. The prover Otter [70] can be seen as the ancestor of all

modern resolution-based theorem provers as its design principles laid the foundation for the

architectures of modern provers. Other notable automated theorem provers for first-ordt'r

8 CHAPTER 1. INTRODUCTION

logic (with equality) include E [81], which is based on superposition calculus for equational

clausal logic [9]' SPASS [92] and Vampire [78]. There also exist theorem provers for first-order

logic (with equality) that are not based on resolution (or the superposition calculus) as

such. One example of such a prover is Waldmeister [64] (for unit equational logic), whose

inference procedure uses unfailing Knuth-Bendix completion [8].

When developing new inference calculi based on resolution, there are two theoretical

concepts that are of particular importance: soundness and refutational completeness.

The concept of soundness relate. to the correctness of the inference rule.: one has to

show that if a models fulfils all the premises of an inference rule, then the conclusion of that

inference rule is also satisfied by the model. The property of correctness can be used to show

the unsatisfiabiIity of a clause set once the empty clause has been derived. If one assumes

that the originally considered clause set has a model, it would follow from soundness of

the inference rules that the empty clause would be satisfied in that model, which is then

a contradiction as the empty clause is equivalent to false and consequently, it cannot be

fulfilled by any model.

The concept of refutational completeness can be essential for the practical usefulness

of a calculus. It characterises the fact that if a clause set is unsatisfiable, then the empty

clause can be derived by an exhaustive application of the inference rules of the calculus on

the clauses contained in the considered set.

If a calculus is both sound and refutationally complete, one can conclude that a clause

set is unsatisfiable if and only if an exhaustive application of the calculus' inference rules

derive. the empty clause. It is common that proving the refutational completeness of a

calculus is a harder task than showing the correctness of its inference rules.

For PL TL clausal resolution-based calculi were, for example, introduced in [17] and [90].

In this thesis we focus on the approach introduced in [37]. There, temporal formulae are first

transformed into a normal form called Separated Normal Form (SNF), which is characterized

by separating the different temporal aspects of temporal formulae. The transformation of a

PLTL formula into SNF results in (possibly) several new PLTL formulae that are of three

different types: formulae which have to hold at the initial moment in time, formulae that

link consecutive time points and formulae that express conditional eventualities. Resolution

inference rules are then devised that can operate on the first-two SNF formulae type.,

whereas a special inference rules is required to handle conditional eventualities.

For first-order temporal logic we only consider the monodic fragment in this thesis. In

the monodic fragment formulae that appear under a temporal operator are only allowed to

have at most one free variable. A first resolution-based calculus, called monodic temporal

resolution, was introduced in [23]. A normal form called Divided Separated Normal Form

(DSNF) has been developed for that calculus, which can be seen as a minor extension

of SNF. A type for formulae that should hold at every moment in time has been added,

and additionally, only unconditional eventualities occur in DSNF. As in the case for PLTL,

monodic temporal resolution uses special inference rules to handle unconditional eventualities,

the so-called eventuality resolution rules, and resolution-like inference rule. for the remaining

1.2. NOVEL CONTRIBUTIONS 9

DSNF formulae types.

Despite representing a big step towards efficient automated theorem proving in monodic

FOTL, most inference rules of monodic temporal rffiOlution have applicability conditions

that are computationally too complex to be implemented efficiently. As a remedy, a more

machine-oriented resolution-based calculus, the fine-grained (temporal) resolution calculus,

has been introduced in [57, !'i8], which operates on problems in DSNF that have been

clausified. The computationally complex inference rules of monodic temporal resolution

have been replaced by resolution-based inference rules that operate on the different temporal

clause types of clausified DSNF. In this regard fine-grained resolution can be seen as being

more fine-grained than monodic temporal resolution as it performs "smaller" inference steps

by manipulating temporal clauses. Moreover, special algorithms have been developed that

aid the search for the premises of the eventuality resolution rules. As a refinement, the

ordered fine-gmined (tem.poml) resolution with selection calculus has been presented in [51].

It extends fine-grained resolution with ordering restrictions and selection functions. Another

advantage of using clausal resolution and the normal form DSNF is that the temporal clauses

in clausified DSNF can be translated into first-order logic. State-of-the-art theorem provers

for first-order logic can then be used for temporal reasoning as most temporal inference

rules can be mapped onto first-order resolution and factoring rules. A special treatment of

eventualities remains necessary, though.

As a consequence of these theoretical advances, automated theorem provers based on

resolution have been developed for PLTL and monodic FOTL. TRP [52,53] and TRP++ [49]

are theorem provers for PLTL that implement the resolution-based calculus introduced

in [37]. TRP is written in Prolog, whereas a C++ implementation of the temporal resolution

calculus is available in TRP++. For monodic FOTL then, the theorem prover TeMP has

been developed [50]. It is based on ordered fine-grained resolution with selection, and uses

the first-order prover Vampire as inference kernel.

We continue now by stating the novel contributions of this thesis to the field of formal

veri fication.

1.2 Novel Contributions

The novel contributions that can be found in this thesis consist in the following .

• A full proof of refutational completeness for ordered fine-grained temporal resolution

with selection is given. The proof also includes the full details of the requirffi lifting

theorem .

• The compatibility of redundancy elimination, i.e. the removal of tautologies and

subsumed clauses, in combination with ordered fine-grained temporal resolution has

been studied formally. In order to show the refutational completeness of ordered fine

grained temporal resolution with selection in the presence of redundancy elimination,

we have extended the calculus with two new inference rules. The proof of refutational

10 CHAPTER 1. INTRODUCTION

completeness for the extended calculus uses proof-theoretical means. i.e. we show that

for a given refutation that involves subsumed or tautological clauses, there also exists

a refutation from the subsuming clauses which does not contain tautologies .

• We have developed an inference procedure for monodic FOTL based on ordered

fine-grained temporal resolution with selection which can ensure fair derivations.

Some inference rules of ordered-fine grained temporal resolution with selection have

applicability conditions that are only semi-decidable. As a consequence, fair derivations

cannot be guaranteed in practice. We have also proved the refutational completeness

of the fair inference procedure, and we have shown that the fair inference algorithm

can be used as a decision procedure for certain classes of temporal problems .

• The inference procedure has been implemented in the theorem prover TSPASS. We

provide a detailed description of its implementation, which is based on the first

order theorem prover SPASS. We have also analysed the effectiveness of redundancy

elimination and the proof search performance of TSPASS on several examples. Binaries

and the source code for TSPASS are available at

http://www.csc.liv.ac.uk/-michel/software/tspasB/

• We have developed a model construction algorithm for satisfiable PLTL formula that

uses saturations under ordered fine-grained temporal resolution with selection, for

which we also provide a proof of correctness. The model construction procedure has

been implemented as an extension of TSPASS, and we have analysed its practical

performance on numerous examples.

We conclude this chapter by giving an organisational overview of this thesis.

1.3 Thesis Outline

The thesis is organised as follows.

In Chapter 2 we define the syntax and semantics of propositional linear-time temporal

logic and first-order temporal logic. We also introduce the normal form that we consider

for formulae of these logics, and describe how the formulae that are in normal form can be

clausified for the resolution-based calculus that is introduced in Chapter 3. We also define

some notions that are important for the subsequent parts of this thesis.

The main aim of Chapter 3 is to define the ordered fine-grained resolution with selection

calculus and to prove its refutational completeness. The inference rules of ordered fine

grained resolution with selection can be classified into two categories: the fine-grained step

resolution rules and the eventuality resolution rules in combination with the loop search

algorithm FG-BFS. In order to show the refutational completeness of the calculus we briefly

recall the monodic temporal resolution calculus before we define a refined version of monodic

temporal resolution that is used in the proof of refutational completeness of the ordered

1.3. THESIS OUTLINE 11

fine-grained resolution with selection calculus. Subsequently, we then prove the lifting

theorem for ordered fine-grained resolution with selection, which is required for the proof of

refutational completeness in the final part of the chapter.

The focus of Chapter 4 lies on analysing the compatibility of ordered fine-grained

resolution with selection with redundancy elimination methods such as the deletion of

tautologies and subsumed clauses. We show how the calculus has to be extended in order

to remain compatible with redundancy elimination rules. We also prove the refutational

completeness of subsumption-compatible ordered fine-grained resolution with selection.

In Chapter 5 we present a new inference procedure for monodic FOTL that can ensure

fair derivations. The inference procedure is based on ordered fine-grained resolution with

selection and its main design principle consists in integrating the loop search procedure of

ordered fine-grained resolution with selection into the main saturation under fine-grained

step resolution. In this way the sequential execution of these two categories of inference

rules, which can potentially lead to unfairness, can be avoided and fair derivations can be

guaranteed.

Chapter 6 then describes the implementation of the fair inference procedure for monodic

FOTL in the automated theorem prover TSPASS. We give a detailed description of how the

first-order theorem prover SPASS 3.0 has been modified in order to accommodate the fair

inference procedure for monodic FOTl. The chapter concludes with experimental results

demonstrating the effectiveness of TSPASS on various problems mainly in comparison with

the automated theorem prover TeMP. We also illustrate how the combinations of different

redundancy elimination rules such as forward or backward sUhsumption and tautology

deletion can influence the execution time required for finding proofs with TSPASS.

Finally, in Chapter 7 a method for automatically constructing models of satisfiable PL TL

formulae is introduced. The construction is based on computing saturations under the

PLTL version of ordered fine-grained resolution with selection. Regular model construc

tion for propositional clause sets is then used to construct propositional models at the

different time points of the temporal model. We present the construction procedure and

prove its correctness. Additionally, we describe some practical considerations regarding

the implementation of the model construction algorithm in the theorem prover TSPASS.

Subsequently, we analyse some experimental results obtained by comparing the temporal

model construction of TSPASS with a tableaux-based reasoning procP.dure implemented in

the Logics Workbench on series of PL TL benchmark formulae.

Chapter 2

Linear-Time Temporal Logics

2.1 Introduction

Originally dffiigned to reprffient tense in natural language [76], temporal logics have been

used successfully in numerous application areas.

For example, important concepts in the verification of reactive and concurrent systems.

such as safety, fairness and livena>s, can be specified in temporal logics [32,74]. Verifying

propertiffi of reactive systems has been succffisfully achieved using temporal (and modal)

logics [32,73,86].

Besides formal verification, other application areas of temporal logics include the specifi

cation uf programs [74], temporal databases [89], knowledge reprffientation through temporal

description logics [5], logic programming in the form of executable temporal logics [11], and

the analysis of natural language [85].

The aim of this chapter is to give a fonnal definition of the syntax and semantics for

the two languages that we consider in this thesis: propositional linear-time temporal logic

(PLTL) and monodic first-order temporal logic (FOTl). Both of thffie logics are interpreted

over a model of time that is isomorphic to the natural numbers.

This chapter is organised as follows. First of all, we dfficribe the syntax and semantics

of propositional linear-time temporal logic. We then define the syntax and semantics of

first-order temporal logic, and we give a formal definition of the monodic fragment. We

also introduce some notions that are essential for the following parts of this thesis. In the

subsequent section we prffient the normal form that we consider for Pl TL and monodic

FOTl formulae, and we conclude the chapter with a description of how the formulae that

are in normal form can be clausified for the resolution-based calculus that is defined in

Chapter 3.

2.2 Propositional Linear-Time Temporal Logics

The language of Propositional Linear Time Temporal Logic, Pl Tl, is an extension of classical

propositional logic by temporal operators for a discrete linear model of time (i.e. isomorphic

13

14

V1ln F T
V1ln ~ 1.
V1ln FP
V1ln F -'rp
V1ln FrpV1/1
V1ln FrpA1/1
V1ln F rp ::::} 1/1
V1ln F rp ¢:> 1/1
V1ln F Orp
V1ln F Orp
V1ln F Drp
V1ln F rp U 1/1

V1ln FrpW1/1

CHAPTER 2. LINEAR-TIME TEMPORAL LOGICS

iff P E Dn
iff not V1ln F rp
iff V1ln F rp or mn F 1/1
iff mn F rp and mn F 1/1
iff mn F -'rp or mn F 1/1
iff V1ln 1= rp ::::} 1/1 and V1ln 1= 1/1 ::::} rp
iff V1ln + I 1= rp
iff there exists m ~ n such that V1lm F rp
iff for all m ~ n, mm 1= rp
iff there exists a m ~ n such that V1lm F 1/1

and mi 1= rp for every i, n ~ i < m
iff V1ln F rp U 1/1 or V1ln F 0 rp

Figure 2.1: Truth-Relation for Propositional Linear-Time Temporal Logic

to N). The vocabulary of PLTL is composed of a countably infinite set of propositional

symbols p, q, Po, PI,Pl, ... , the propositional operntors T (true), 1. (false), -', v, A, ::::}, ¢:>

and the tempornloperntors D ('always in the future'), 0 ('eventually in the future'), 0 ('at

the next moment'), U ('until') and W ('weak until').

The set of PL TL fonnulae is defined as follows: T and 1. are PL TL fonnula; any

propositional symbol P is an atomic PLTL formula or atom: if rp and 1/1 are PL TL formulae,

then so are

-'rp, rp V 1/1, rpA 1/1, rp::::} 1/1, rp ¢:> 1/1, Drp, Orp, Orp, rpU 1/1, and rpW1jJ.

Formulae of this logic are interpreted over temporal structures V1l = (Dn)nEN that

associate with each element n of N, representing a moment in time, a propositional model (or

valuation) Dn given by a set of propositional symbols. The definition of the truth-relation

V1ln 1= rp is given in Figure 2.1.

For a set N of PLTL fonnulae and n E N, we write V1ln F N if and only if mn 1= rp

holds for every formula rp E N.
A temporal structure V1l = (Dn)nEN is said to be a model for a formula rp if and only if

it holds that V1l0 1= cpo A fonnula is satisfiable if and only there exists a model for rp. A

formula rp is valid if and only if every temporal structure V1l = (Dn)nEN is a model for c.p.

We say that a set of PLTL formulae N entails a formula 1/1, written N 1= 1jJ, if and only if

every temporal structure V1l that is a model for every formula rp E N is a model for 1jJ.

We now the define the syntax and semantics of first-order temporal logic.

2.3 First-Order Temporal Logics

First of all, let X = {x, y, Z, XO, Xl, ..• } be a countably infinite set of variables, CS =

{c, d, CO, CI, ... } be a C(>untably infinite set of constants, FS = {I, g, h, fo, .. . } be a count ably

infinite set of function symbols, each with a fixed arity ~ 1, and PS = {P, Po, ... } be a

2.3. FIRST-ORDER TEMPORAL LOGICS 15

non-empty set of predicate sym.bols, each with a fixed arity ;::: O. We write fin or Pin to

indicate that a function symbol or predicate is of arity n, respectively. A proposition is a

predicate of arity O.

We now introduce the notion of terms.

Definition 2.3.1. Let E ~ CS u FS and Y ~ X. Then the set of terms Tr;(Y) built Oller

the set E and the set of variables Y is the smallest set inductively defined as follows:

(i) Every variable y E Y 1S contained in TE(Y)'

(1i) Every constant c E En CS is contained in TE(Y).

(lii) If il," .• in E TEO") and fin E En FS is a function symbol, then f(t1, ... , in) is

contained in TdY).

Next we recall the syntax and semantics of first-order logic, FOL, without equality. The

set of FOL formulae (without equality) is defined as follows: T (true) and .1 (false) are

FOL formulae; if P is an n-ary predicate symbol and tl, ... , in are variables or constants,

then P(t \ , t n) is an atomic FOL formula; if 'P and til are FOL formulae, then so are

FOL formulae are interpreted over first-order structures 9Jt = (D, I), where D is a

non-empty set, the domain, and I is an interpretation. The interpretation I maps every

constant c E CS into an element J(c) E D, every function symbol fin E FS into a function

J(f): Dn - D and every predicate Pin E PS into a set I(P) ~ Dn. An assignment a is a

function from the set of variables X to D. For an assignment a the interpretation I induces

a interpretation of tf'rms IQ: TcsLFs(X) - D which is inductively defined as follows:

• For a variable x EX:

• For a constant c E CS:

JB(c) = J(c)

• For terms t\, ... , tn E TCSI~'FS(X) and a function symbol fin E FS:

The definition of the truth-relation 9Jt FQ 'P for FOL is given in Figure 2.2.

Now, the language of First-Order (Linear Time) Temporal Logic, FOTL, is an extension

of classical first-order logic by temporal operators for a discrete linear model of time (i.e.

isomorphic to N). The vocabulary of FOTL (without equality and function symbols) is

composed of the set of variables X, the set of constants CS, the set of predicate symbols PS,

the propositional operators T . .1, .." V, /\. :::;., ¢}, the quantifiers 3Xi and VXi, and the

16

rot Fa T
rot pba .l

CHAPTER 2. LINEAR-TIME TEMPORAL LOGICS

rot Fa P(tl, ... , tm) iff (P(tt), ... , P(tm)) E I(P)
rot Fa ""'P iff not rot Fa 'P
rot Fa 'P V t/J iff rot Fa i.p or rot Fa t/J
rot Fa 'P II t/J iff rot Fa i.p and rot Fa t/J
rot Fa i.p ~ t/J iff rot Fa ""i.p or rot Fa t/J
rot Fa 'P # t/J iff rot Fa 'P ~ t/J and rot Fa t/J ~ 'P
rot Fa 3xi.p iff rot FI! i.p for some assignment b that may differ

from a only in x
rot Fa 'rIxi.p iff rot FI! 'P for every assignment b that may differ

from a only in x

Figure 2.2: Truth-Relation for First-Order Logic

temporal operators 0 ('always in the future'), 0 ('eventually in the future'), 0 ('at the

next moment'), U ('until') and W ('weak until').

The set of FOTL formulae is defined as follows: T and .l are FOTL formulae; if P is an

n-ary predicate symbol and tl, ... , tn are variables or constants, then P(tl, ... , tn) is an

atomic FOTL formula; if i.p and t/J are FOTL formulae, then so are

An occurrence of a variable x in a FOTL formula i.p is bound if and only if it occurs within a

subformula t/J of'P such that 3xt/J or 'rIxt/J is also a subformula of 'P; otherwise, the occurrence

is free. A FOTL formula 'P is said to be open if and only if it contains at least one free

variable, and it is closed otherwise. For a given formula i.p, we write i.p(Xl' ... ,xn) to indicate

that all the free variables of i.p are among Xl, ... , Xn . The set of variables contained in a

term t E TcsuFs(X) or FOTL formula i.p (Le. bound and free variables) is denoted by var(t)

and var(i.p), respectively; for the set of constants contained in the term t or FOTL formula i.p,

we write const(t) and const(i.p), respectively. A term t E TcsuFs(X) or FOTL formula 'P is

said to be gr01Jnd if and only if var(t) = 0 or var('P) = 0 holds, respectively.

Formulae of this logic are interpreted over structures rot = (Dn, In)nEN that associate with

each element n of N, representing a moment in time, a first-order structure rotn = (Dn, In)

with its own non-empty domain Dn and interpretation In. An assignment a is a function

from the set of variables X to UnEN Dn. The interpretation of terms I! induced by an

interpretation In for an assignment a is defined analogously to the first-order case.

The definition of the truth-relation rotn Fa 'P (only for those a such that a(x) E Dn for

every variable x) is given in Figure 2.3.

In this thelis we make the expanding domain assumption, that is, Dn ~ Dm if n < m,

and we assume that the interpretation of constants is rigid, that is, In(c) = Im{c) for all

n, mEN and constants c E CS.

A structure rot = (Dn,In)nEN is said to be a model for a formula 'P if and only if for

every assignment a with a(x) E Do for every variable x it holds that roto Fa 'P. A formula

2.4. ADDITIONAL NOTIONS

!.mnFIlT
!.mn l>f Il .1
rotn Fil P(tl,.'" tm) iff (l~(td,··· ,I~(tm)) E In(P)
rotn Fil -''P
!.mn Fil 'P V 1p

rotn Fil f'/\ 1/J
!.mn F Il 'P :::} 'I/J
rotn Fil 'P ¢:} tj,.

rotn Fil 3x'P

rotnFIlO'P
rotn Fil Of'
!.mnFIlD'P
!.mn Fil 'P U 1/J

iff not !.mn Fil 'P
iff!.mn Fil 'P or !.mn Fil w
iff!.mn Fil 'P and !.mn Fil '1/1
iff!.mn Fil -''P or !.mn FIl w
iff !.mn Fil 'P :::} 1/; and !.mn FIl W :::} 'P
iff!.mn Fb 'P for some assignment b that may differ

from a only in x and such that b(x) E Dn
iff!.mn F b 'P for every assignment b that may differ

from a only in x and such that b(x) E Dn
iff !.mn+1 FIl 'P
iff there exists m ~ TI such that !.mm Fil 'P
iff for all m ~ n, !.mm Fil 'P
iff there exists m ~ n such that !.mm Fil 1/J and

!.mi Fil 'P for every i, TI ~ i < m
iff!.mn Fil 'P U 1jJ or !.mn Fil D'P

Figure 2.3: Truth-Relation for First-Order Temporal Logic

17

is satisfiable if and only there exists a model for p. A formula 'P is valid if and only if every

temporal structure!.m = (Dn,In)nEN is a model for 'P.

2.3.1 The Monodic Fragment

We can now define the notion of monodic FOTL formulae.

Definition 2.3.2. A formula 'P of FOTL is calle.d monodic if and only if any subformula of

'P that is of the form O'I/J, D tj,., Ow, 1/;1 U '1/12, or 1/;1 W 1/;2 contai,ns at rrwst one free variable.

For example, the formulae 3xD'v'yP(x, y) and 'v'xDP(c, x) are monodic, whereas the

formula 'v'x3y(Q(x, y) :::} DQ(x. y)) is not monodic.

The set of valid formulae of FOTL is not recursively enumerable [87,881. However, the

set of valid monodic formulae is known to be finitely axiomatisable [94].

2.4 Additional Notions

We now introduce some important notions that are used in the subsequent sections and

chapters. First of all, we define the concept of substitutions and some associated terminology

like the domain and co-domain of substitutions.

Definition 2.4.1. Let E ~ CS u FS. A substitution u: X -+ TdX) is a fu.nction from

variables to t.erms such that there are only finitely many variables x E X with u(x) i' x.

By id we denote the identity substitution. which is defined as id(x) = x for every variable

xE X.

18 CHAPTER 2. LINEAR-TIME TEMPORAL LOGICS

The set of all the substitutions over the variable set X and signature ~ is denoted by

SubstE(X).

Definition 2.4.2. Let ~ ~ CS u FS and let u: X TECX) be a substitution.

(i) The domain dom(a) of the substitution u is defined as follows:

dom (a) = {x E X I a (x) f; x }

If dom(a) = {Xl, ... ,xn}, then the substitution a will also be represented as

(ii) The co-domain codom(u) of the substitution a is defined in the following way:

codom(a) = {u(x) I X E dom(a)}

Then, the application of substitutions on terms, atoms, literals and formulae is defined

as follows.

Definition 2.4.3 (Application of Substitutions on Terms). Let ~ ~ cs u FS, let u: X

T1;(X) be a substitution and let t E TECX) be a term. Then, we inductively define a term

ta E TdX), which is the result of the application of the substitution a on the term t, in

the following way:

• For t = X EX:

ta = xu = u(x)

Two substitutions can be composed in the following way.

Definition 2.4.4 (Composition of Substitutions). Let a, T: X TdX) be substitutions.

Then the composition aT: X TdX) of the two substitutions u and T is a substitution

defined as follows. For x EX, let

(aT)(X) = (xa)T.

Then, the application of substitutions to atoms, literals and clauses is defined as follows.

Definition 2.4.5 (Application of Substitutions on Formulae). Let ~ ~ CS u FS, let

a: X TdX) be a substitution and let F be a FOTL formula built over ~ and PS. Then,

we inductively define a FOTL formula Fa built over E and PS, which is the result of the

application of the substitution a on the formula F, in the follOwing way:

• true (T = true

2.4. ADDITIONAL NOTIONS 19

• false a = false

• For PEPS and terms fl.·.· .fn E T~(X):

• For FOTL formulae G and H built over E and PS such that:

- Fa = (...,G)a = ...,(Ga)

- Fa = (G /I. H)a = Ga /I. Ha

- Fa = (G V H)a = Ga V Ha

- Fa = (G =? H)a = Ga =? Ha

- Fa = (3xG)a = 3y(G([x y]a))

- Fa = (VxG)a = Vy(G([x y]a))

- Fa = (OG)a = O(Ga)

- Fa = (::JG)a = O(Ga)

- Fa = (OG)a = O(Ga)

- Fa = (GUH)a = (Ga)U(Ha)

- Fa = (GW H)a = (Ga)W(Ha)

where y is a fresh variable such that y ¢ var(G), y ¢ dom(a) and y ¢ var(codom(a)).

As a first simple observation, we note that the composition of substitutions is associative.

Lemma 2.4.6. Let E ~ CS u FS, let a,T,V: X - TdX) be substitutions, let t E TdX)

be a term and let F be a FOTL formula built over E and PS.

Then it holds tlUll (aT)v = a(Tv), t((aT)v) = t(a(Tv)) and F((aT)v) = F(a(Tv)).

Finally, we define certain properties of substitutions.

Definition 2.4.7. We say tlUlt a sub.qti.tution a: X - TE(X) is

(i) a variable renaming if and only dom(a) = codom(a);

(ii) invertible if and only if there exists a s'ubstit'ution a- 1 : X - TdX) such that aa- 1 =

id;

(iii) idempotent if and only if aa = a ..

(iv) ground if and only if for every van.able x E dom(a): a(x) E TE (0) ..

(v) grounding for a sct N of tcrm..q or FOTL formulae if and only if for ellery term or
FOTL formula '-P E N, the term or FOTL formula cpa is ground.

20 CHAPTER 2. LINEAR-TIME TEMPORAL LOGICS

Definition 2.4.8. Let (T and T be two substitutions. We say that the substitution (T is more

general than the substitution T, written (T S T, if and only if there is a substitution (J with

(T(J=T.

We now introduce the normal form that we are considering for PLTL and monodic FOTL

formulae.

2.5 Divided Separated Normal Form

Every monodic temporal formula can be transformed into an equi-satisfiable normal form,

called divided separated normal form (DSNF) [58].

Definition 2.5.1. A monodic temporal problem P in divided separated normal form (DSNF)

is a quadruple (U, I, S, £), where

• the universal part U and the initial part I are finite sets of first-order formulae;

• the step part S is a finite set of formulae of the form p ~ Oq, where p and q are

propositions, and P(x) ~ OQ(x), where P and Q are unary predicate symbols and x

is a variable;

• the eventuality part £ is a finite set of formulae of the form OL(x) (a non-ground

eventuality clause) and Ol (a ground eventuality clause), where L(x) is a unary non

ground literal with the variable x as its only argument, and l is either a proposition or

a unary ground literal.

We associate with each monodic temporal problem P = (U, I, S, £) the monodic FOTL

formula II\ DU 1\ D'v'xS 1\ D'v'x£. When we talk about particular properties of a temporal

problem (e.g., satisfiability, validity, logical consequences, etc.) we refer to properties of this

associated fornnula.
The transfornnation to DSNF is based on a renaming and unwinding technique which

substitutes non-atomic subfornnulae by atomic fornnulae with new predicate symbols and

replaces temporal operators by their fixed-point definitions as described, for example, in [37].

In a first step, the formula for which the divided separated normal form is to be

computed is transformed into negation normal form (preserving formulae equivalence), i.e.

negations are pushed "inwards" as far as possible until they only precede atomic formulae.

Double negations are removed. For example, negations applied on temporal operators are

transformed as follows:

-'D'P(x) - O-''P(x)

-'Ocp(x) - D-'cp(x)

-, 0 cp(x) - O-'cp(x)

-,(cp(x) U t/J(x» - -,t/J(x) W (-''P(x) 1\ -,t/J(x»

-'('P(x) Wt/J(x» - -,t/J(x) U (-,cp(x) 1\ -,t/J(x»

2.5. DH7DEIJ SEPA.RATED NORMAL FORM 21

In order to avoid an exponential increase in the formula size, it can be necessary to rename

the formula -,t/J(x) after having transformed the formulae 'P(x) U t/J(x) and 'P(x) W t/J(x) into

negation normal form (also see e.g. [721).
After the transformation into negation normal form, each innermost open subformula

~(x), whose main connective is a temporal operator, is recursively renamed by Pe(x), where

Pe(:c) is a new unary predicate, and each innermost closed subformula (, whose main

connective is a temporal operator, is renamed by p(, where p(is a new propositional symbol.

In the terminology of [471, Pe(x) and p(are called the surrogates of ~(x) and (, respectively.

Renaming introduces formulae defining Pe(x) and p(of the following form (since we are

only interested in satisfiability, we use implications instead of equivalences for renaming

positive occurrences of subformulae, see also [72]):

(a) i'v'x(p{(x) =* O<p(x))

(b) O'v'x(Pe(x) =* C</I(x))

(c) C'v'x(p{(x) =* ¢(x) U t/J(x))

(d) O'v'x(p{(x) =* ¢(x)Wt/J(x))

(e) [J'v'x(P€(x) =* O<p(x))

The renamings introduced for closed sub formulae (are of a similar form.

A formula of type (a) is already in the required form after the potentially complex

formula occurring under the 0 operator has been renamed by a fresh symbol U that is

defined by the formula O'v'x(U(x) =* </I(x)), which is th~n added to the set of universal

formulae.

Formulae of type (b) are reduced in a satisfiability preserving way as follows:

O'v'x(Pe(x) => R(x)) 1\ [J'v'x(R(x) =* OR(x)) 1\ O'v'x(R(x) =* 'P(x))

where R is a fresh unary predicate. Then, formulae of type (c) are satisfiability equivalent

to:

C'v'x(Pe(x) =* 01l-'(x)) 1\ D'v'x(P€(x) =* (cP(x) V w(x))) 1\ D'v'x(Pe(x) =* (S(x) V 1j1(x)))

1\ O'v'x(S(x) =* O(cP(x) V 1j1(x)))

1\ D'v'x(S(x) =* O(S(x) V 1j1(x)))

where S is a fresh unary predicate. Finally, formulae oftype (d) can be transformed in a

satisfiability equivalent way into:

[]'v'x(Pe(x) => (¢(x) V l/.,(x))) 1\ D'v'x(Pe(x) =* (T(x) V t/J(x)))

1\ D'v'x(T(x) =* O(cP(x) V w(x)))

1\ D'v'x(T(x) =* O(T(x) V 1/J(x)))

22 CHAPTER 2. LINEAR-TIME TEMPORAL LOGICS

where T is a fresh unary predicate. One has to note that new formulae of type (e) are

introduced during the transformation of type (c) formulae. In a final step then, formulae of

type (e) are first simplified to D'v'x(P~(x) '* OL(x)), by renaming complex formulae under

the 0 operator through fresh unary predicates L, and are then transformed in a satisfiability

preserving way as follows:

D'v'x((P~(x) 1\ -,L(x)) '* waitForL(x))

II D'v'x(waitForL(x) '* O(waitForL(x) V L(x)))

II D'v'xO-,waitForL(x)

where waitForL is a fresh unary predicate. After renaming complex subformulae under

o operators for newly introduced formulae of type (a), the transformation is complete. We

hence obtain the following theorem:

Theorem 2.5.2 (see 123J, Theorem 3.4). Any monodic fonnula in first-order temporal logic

can be transfonned into an equi-satisfiable monodic temporal problem in DSNF with at most

a linear increase in the size of the problem.

We now illustrate how the following monodic FOTL formula :F can be transformed into

DSNF. Let

:F = Dlfx3y'v'v'v'w(Q(y, x) II (P(x, tl) '* P(y, w)))

II D'v'x(F(x) '* -,-, 0 D(G(x) V H(x)))

II Dlfx(F(x) '* -,(K(x) W F(x)))

II F(c).

We can observe that the formulae D'v'x3y'v'v'v'w(Q(y, x) II (P(x, v) '* P(y, w))) and F(c)

are already in DSNF, being universal and initial formulae, respectively. The computation of

the negation normal form for the formula D'v'x(F(x) '* -,-, 0 D(G(x) V H(x))) yields

D'v'x(F(x) => OD(G(x) V H(x))),

and the negation normal form of the formula Dlfx(F(x) '* -,(K(x) W F(x))) is

D'v'x(F(x) '* (-,F(x) U (-,K(x) II -,F(x)))).

We then rename the subformula 0 (G(x) V H(x)) of the formula D'v'x(F(x) '* OD(G(x) V

H (x))) by a fresh unary predicate U 1. Consequently, we obtain the formulae

D'v'x(F(x) '* OU1(x))

and
D'v'x(U1 (x) '* D(G(x) V H(x))).

We can thus observe that the former formula is already in DSNF, whereas the latter formula

is of type (b).

2.5. DIVIDED SEPARATED NORMAL FORM 23

As all the considered formulae are now of the types (a) - (e), we can apply the reductions

described above. The formula C\ix(U1(x):::} O(C(x) V H(x))) is transformed into

LVx(U1(x) :::} R(x)) 1\ CVx(R(x) :::} OR(x)) 1\ O\ix(R(x):::} (C(x) V H(x))).

And the formula C\ix(F(x):::} (-,F(x) U (-,K(x) 1\ -,F(x)))) becomes

. 'Vx(F(x):::} O(-,K(x) 1\ -,F(x)))

1\ ~\ix(F(x):::} (-,F(x) V (-,K(x) 1\ -,F(x))))

1\ [JVx(F(x) :::} (S(x) V (-,K(x) 1\ -,F(x))))

1\ OVx(S(x) :::} O(-,F(x) V (-,K(x) 1\ -,F(x))))

I\! l\ix(S(x):::} O(S(x) V (-,K(x) 1\ -,F(x)))).

In a final step formulae of type (e) have to be transformed, which only concerns the formula

n\ix(F(x) :::} O(-,K(x) 1\ -,F(x))) ill our example. The transformation results in the

formula:

CVx(F(x)::} OL(x)) 1\ o (\ix(L(x) ::} (-,K(x) 1\ -,F(x))))

The first subformulae under the conjunction is then transformed in the following way:

~Vx«F(x) 1\ -,L(x)) :::} waitForL(x))

1\ =Vx(waitForL(x):::} O(waitForL(x) V L(x)))

1\ u\ixO-,waitForL(x)

Now, complex subformulae under 0 operators remain to be renamed. We obtain the

following formulae:

O\ix(S(x) ::} OU2 (x))

1\ D\ix(U2(x) ::} (-,F(x) V (-,K(x) 1\ -,F(x)))),

O\ix(S(x) ::} OU3(x))

1\ Q\ix(U3(x) ::} (S(x) V (-,K(x) 1\ -,F(x)))),

O\ix(waitForL(x) :::} OU4 (x))

1\ C\ix(U4 (x):::} (waitForL(x) V L(x)))

Thus, the DS:,\F obtained for the formula F is the monodic temporal problem

P,- = ({Vx3y\il'Vw(Q(y. x) 1\ (P(x, v) ::} P(y, w))),

\iX(Ul(X) ::} R(x)),

\ix(R(x) ::} (C(x) V H(x))),

Vx(F(x)::} (-,F(x) V (-,K(x) 1\ -,F(x)))),

\ix(F(x) ::} (S(x) V (-,K(x) 1\ -,F(x)))),

\ix(L(x):::} (-,K(x) 1\ -,F(x))),

24 CHAPTER 2. LINEAR-TIME TEMPORAL LOGICS

V'x«F(x) 1\ ...,L(x» :::} waitForL(x»,

V'x(U2 (x) :::} (...,F(x) v (...,K(x) 1\ ...,F(x»»,

V'x(U3 (x) :::} (S(x) v (...,K(x) 1\ ...,F(x»»,

V'x(U4 (x):::} (waitForL(x) V L(x»)},

{F(c)},

{F(x) :::} OU1(x),

R(x) :::} OR(x),

S(x) :::} OU2 (x),

S(x) :::} OU3 (x),

waitForL(x) :::} OU4 (x)},

{O...,waitForL(x)})

The main purpose of the divided separated normal form is to cleanly separate different

temporal aspects of a FOTL formula from each other. Sometimes we additionally require

the left-hand sides of step clauses in a temporal problem to be unique.

Definition 2.5.3. A temporal problem P = (U,I, S,t:) is said to have unique left-hand

sides in step clauses if and only if there are no two step clauses F :::} OC, F' :::} OG' E S

with (F:::} OG) # (F' :::} OC') and F = F'.

Remark 2.5.4. For example, if a temporal problem P = (U, I, S, £) contains step clauses

P(x) :::} OQ(x), P(x) :::} OQ'(x) E S with Q(x) =f. Q'(x), then their left-hand sides can be

rendered unique by replacing the two step clauses by a new step clause P(x):::} OU(x) and

a universal formulae OV'x(U(x) :::} (Q(x) 1\ Q'(x») for a fresh unary predicate symbol U.

For the resolution calculi in this thesis we will need to go one step further by transforming

the universal and initial part of a monodic temporal problem into clause normal form. In

the next section we show how monodic temporal problems in DSNF can be clausified.

2.6 Clausiftcation of Temporal Problems

For first-order formulae the clausification of a closed formula g can be briefly described as

follows (see e.g. [63J for more details).

First of all, the prenex normal form of g, PrenexW), has to be computed, i.e. equivalences

are replaced by conjunctions of implications, and quantifiers are moved outside of the formula.

This transformation is performed by applying the following rewrite rules on innermost

subformulae until the required form is obtained:

F ~ G - (F:::} G) 1\ (C:::} F)

~xF-Qx...,F

(QxF) 1\ C - Qy(F[x ~ yJ 1\ C)

2.6. CLAUSIFICATION OF TEMPORAL PROBLEMS

(QxF) V G -> Qy(F [x 1--+ y] V G)

(QxF) :::} G -> Qy(F [x 1--+ y] :::} G)

F /\ QxG -> Qy(F /\ G Ix 1--+ y])

F V QxG -> Qy(F V G Ix 1--+ y])

F :::} QxG -> Qy(F :::} G Ix 1--+ y]),

25

where F, G are arbitrary first-order formulae, Q E {V,3}, 3 = V, "9 = 3, and y is a fresh

variable. The transformation results in a formula

where G is quantifier-free and Qi E {V,3} for every i, 1 :::; i :::; m. In the second step,

also called Skolemization step, the existential quantifiers 3 are removed, starting from the

left-most quantifier in the prenex normal form. The variables bound by existential quantifiers

are replaced by fresh constants or function symbols. The arity of the newly created constants

or function symbols is determined by the number of universal quantifiers that precede the

considered existential quantifier in the prenex normal form. The arguments of the fresh

function s)1l1bols will be exactly the variables bound by the preceding universal quantifiers

in the prenex normal form. After the Skolemization step, we have obtained the form

9 "'" VX1 ... VXn: H.

One has to observe that Skolemization usually does not preserve formulae equivalence but

only satisfiability, which is sufficient for our purposes. We still have to note that there exist

other variants of Skolemization, which can be found, for example, in 1721.
Finally, the formula H has to be brought into conjunctive normal form (CNF). The

transformation can be performed by applying the following rewrite rules recursively on the

formula H.

F ~ G -> (F:::} G) /\ (G:::} F)

F => G -> -,F V G

-,(F /\ G) -> -,F V ...,G

...,(F V G) -> -,F /\-,G

(F /\ G) V H --+ (F V G) /\ (F V H)

where F, G and H are quantifier-free first-order formulae. H is then brought in the form

m n,

H"", A V L~
i=l j=l

where Li , is a positive or negative atom, or literal, for every ij , 1 :::; i:::; m, 1 :::; j:::; nj. In

order to avoid an exponential increase in the size of the formula obtained by transformation

26 CHAPTER 2. LINEAR-TIME TEMPORAL LOGICS

to CNF, subformulae might have to be renamed during the CNF transformation process [72].

The set

{Lj I 1 5 i 5 m, 1 5 j 5 nj }

will be called the clause nonnal fonn of the first-order formula g.

Definition 2.6.1. We define that

• a literal is either a positive or negative atom, t.e. P(tl,oo.,tn) or ...,P(tl,oo.,tn),

respectively, where Pin E PS and tt, ... , tn E T!;{X);

• a clause is a multiset of litemls, written as Ll V ... V Ln, where Ll"'" Ln are litemls.

The empty clause is denoted by 1..

• a clause is said to be positive/negative if and only if it only contains positive/negative

litemls.

Now, the c1ausification of a monodic temporal problem P is defined as follows. Note that

the usual first-order c1ausification process is performed for initial and universal formulae.

Definition 2.6.2. Let P = (U, 1, S, C) be a monodic tempoml problem. The c1ausification

Cls(P) of P is a quadruple (U', I', S', £') such that

• U' is a set of clauses, called universal clauses, obtained by clausification of U;

• I' is a set of clauses, called initial clauses, obtained by clausification of I;

• S' is the smallest set of step clauses such that all step clauses from S are in S' and

for every non-ground step clause P{x) ~ OL(x) in S and every constant c occurring

in P, the clause P(c) ~ OL(c) is in S';

• £' is the smallest set of eventuality clauses such that all eventuality clauses from £ are

in C' and for every non-gr01Jnd eventuality clause OL(x) in £ and every constant c

occurring in P, the eventuality clause OL(c) is in £'.

One has to note that new constants and, especially, function symbols of an arbitrary

arity can be introduced during the Skolemization process1
. As a consequence it is not

generally possible to instantiate every variable that occurs in the original problem with

all the constants and function symbols. On the other hand, the variables occurring in the

step and eventuality clauses have to be instantiated with the constants that are present

in the original problem (before Skolemization) in order to ensure the completeness of the

resolution-based calculus presented in Chapter 3.

The notion of step clause can be generalised as follows.

IThe definition of term interpretations and first-order interpretations has to be extended in the usual
way for FOL in order to be able to handle function symbols.

2.6. CLAUSIFIC.1TION OF TEMPOR1L PROBLEMS 27

Definition 2.6.3 (Arbitrary Step Clause). A (arbitrary) step clause is a formula of the

form
m n

AAi:::;'O V L j

i=1 j=1

where AI, Am are at m.ost unary predicates and L1, ... , Ln are literals. For m = 0 we

define 1\7~ I Ai = true, and for n = 0 we set V;= 1 L j = false.

Step clauses of the latter form can be derived by the calculus defined in Chapter 3.

The c1ausification of the monodic temporal problem PF of Section 2.5 yields the following

clausified temporal problem

CIS(PF) = ({Q(f(x),x),

-.P(X,ll) V P(f(x),'UJ),

-.UI(x) V R(x),

-.R(x) V G(x) V H(x),

-.F(x) V -.K(x), -.F(x),

-.F(x) V S(x) V ...,K(x),

...,F(x) V S(x),

...,L(x) v...,K(x),

...,L(x) v...,F(x),

...,F(x) V L(x) V waitForL(x),

...,U2 (x) V -.F(x) V -.K(x),

-.U2 (x) V -.F(x),

-.U3 (x) V S(x) V -.K(x),

...,lh(x) V S(x) V -.F(x),

-.U4 (x) V waitForL(x) V L(x)},

{F(c)},

{F(x) :::;. OUI(x),

R(x) :::;. OR(x),

S(x) :::;. OU2 (x),

S(x) :::;. OU3 (x),

waitForL(x) :::;. OU4 (x),

F(c) => OUI (c),

R(c) => OR(c),

S(c) :::;. OU2(c),

S(c) => OU3(c),

waitForL(c) :::;. OU4 (c)},

28 CHAPTER 2. LINEAR-TIME TEMPORAL LOGICS

{O-,waitForL(x)}),

where f is a fresh unary function symbol.

Finally, we introduce the notions of clause equality, clause set inclusion, and clause set

equality up to variable renaming.

Definition 2.6.4. We say that two clauses C and V are equal up to renaming, written

C = x V, if and only if there exists a variable renaming a such that Ca = V.

Definition 2.6.5. Let C be a clause and Nand M be sets of clauses. Then we say

• that the clause C is contained in the set M, written C Ex M, if and only if there

exists a variable renaming a such that Ca EM, and

• that the set M is included in the set N up to variable renaming, written M S;x N, if

and only if for every clause C EMit holds that C Ex N, and

• that the sets M and N are equal up to variable renaming, written M = x N, if and

only if M S;x N and N S;x M holds.

2.1 Summary

In this chapter we gave a formal definition of the syntax and semantics for the two formal

languages we are considering in this thesis: propositional linear-time temporal logic and

monodic first-order temporal logic. Both of these logics are interpreted over a model of time

that is isomorphic to the natural numbers.

First, we presented the syntax and semantics of propositional linear-time temporal logic.

We then defined the syntax and semantics of first-order temporal logic, and we gave a formal

definition of the monodic fragment. We also introduced some notions that are essential for

the following parts of this thesis. Subsequently, we described the normal form for PL TL

and monodic FOTL formulae that we consider in this thesis. Finally, we illustrated how the

formulae that are in normal form can be c1ausified for the resolution-based calculus that is

introduced in Chapter 3.

Chapter 3

Ordered Fine-Grained Resolution with

Selection

3.1 Introduction

For monodic first-order temporal logic a first resolution-based calculus, called monodic

tempoml resolution, was introduced in [231. The calculus operates on temporal problems in

DSNF and uses special inference rules to handle eventuality formulae and resolution-like

inference rules for the remaining DSNF formulae types.

However, as most inference rules of monodic temporal resolution have applicability

conditions that are computationally too complex to be implemented efficiently, a more

machine-oriented resolution-based calculus, the fine-grained (temporal) resolution calculus,

has been introduced in [58]' which accepts problems in DSNF that have been clausified.

The computationally complex inference rules of monodic temporal resolution have been

replaced by resolution-based inference rules that operate on the different temporal clause

types of clausified DSNF. In this regard fine-grained resolution can be seen as being more

fine-grained than monodic temporal resolution as it performs "smaller" inference steps by

manipulating temporal clauses. Moreover, a special algorithm called FG-BFS has been

developed which allows to exhaustively search for the premises of the eventuality resolution

rules. As a refinement, the ordered fine-gmined (tempoml) resolution -with selection calculus

has been presented in [511. It extends fine-grained resolution with ordering restrictions

and selection functions. In this chapter we prove the refutational completeness of ordered

fine-grained resolution with selection.

This chapter is structured as follows. We first recall the inference rules of monodic

temporal resolution. We then introduce the ordered fine-grained temporal resolution

with selection calculus before we focus on its proof of refutational completeness. For the

completeness proof we define a refined version of monodic temporal resolution, for which we

also prove that it is refutationally complete. Finally, we show that derivations of refined

monodic temporal resolution can be simulated by ordered fine-grained resolution with

selection, which obviously implies its refutational completeness.

29

30 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

3.2 Monodic Temporal Resolution

We begin by defining some notions that are necESsary for prESenting the inference rule;

of monodic temporal rESolution. More specifically, we introduce the concepts of constant

flooding and of derived, merged derived and full merged step clauses.

Definition 3.2.1. Let P = (U, I, S, £) be a monodic temporal problem. Then, we say that

the temporal problem ~ = (U, I, S, £C) where

£C = £ u {OL(c) I OL(x) E £, c is a constant in P}

is the constant flooded form of P. Evidently, ~ is satisfiability equivalent to P.

Definition 3.2.2. Let P = (U, I, S, £) be a monodic temporal problem.

(i) Let

(3.1)

with k ~ 0 be a subset of step clauses contained in the set S. Then formulae of the

form

and (3.2)

where c is a constant in P and j = 1, ... , k, are called derived step clausesl built from

the temporal problem P.

(ii) Let {4>l ~ 0'11 1, •.• , ~n ~ O'l1n } be a set of derived step clauses or ground step

clauses in P. Then U\~=l ~;) ~ 0(1\~=1 .;) is called a merged derived step clause

built from the temporal problem P.

(iii) Let A ~ OB be a merged derived step clause, let P1(x) ~ OMl(x), ... , Pk(X) ~

OMk(X) with k ~ 0 be a subset of the original step clauses in P, and let

k k

A(x) ~f .A A A J{(x) and B(x) ~f B A A Mi(X).
i=1 i= 1

Then 'tx(.A(x) ~ OB(x)) is called a full merged step clause built from the temporal

problem P.

Note that formulae of the form (3.2) are logical consequence; of (3.1). In what follows,

A ~ OB and A ~ OBi denote merged derived step clause;, 'tx(.A(x) ~ OB(x)) and

'tx(A;(x) ~ OBi(X)) denote fuJI merged step clauses.

We also define relations c and !;;; on full merged and merged derived step clauses as

follows.

lIn /231 derived step clauses are called e-derived step clauses.

3.2. MONODIC TEMPORA.L RESOLUTION 31

Definition 3.2.3. Let P = (U, I. S. £) be a monodic temporal problem. We then define

relations C and ~ on the right-hand si.des of the merged derived and full merged step clauses

built from the temporal problem P as follows.

(i) For every full merged or merged derived step clause V'x(A(x) => OB(x)) with B(x) -=t

true, we set true C B(x) and true ~ B(x).

(ii) Add'i.tionally, for two full merged or merged derived step clauses V'xo(A(xo) => OB(xo)),

V'x~(A'(x~) => OB'(x~)) and variable renami.ngs 7]1, 7]2 such that

• Prener(B(xo)) = 3XI.···, xp 1\~=1 L i , Prenex(B'(xo)) = 3x~, ... , x~ /\';=1 Lj,

• {xoT7I.XI171.··· ,xp T7d n {xo1J2,X;1J2 ... ,x~rn} = 0, and

• {LIT7ICT, ... , Ln1]lCT} s:;; {L;1J2, ... , L~1J2} as multisets, where CT is a variable re

nam·tng,

we define that B(xo) C B'(x~).

{ii.i} Finally, for two full merged or merged derived step clauses V'xo(A(xo) => OB(xo)) and

V'x~(A'(xo) => OB'(xo)) such that B(xo) C B'(x~) or such that there exist variable

renamings 171, 172 w·dh.

• Prenex(B(xo)) = 3XI,···, xp 1\~=1 L i , Prenex(B'(xo)) = 3x;, ... , x~ /\7=1 Lj,

• {X0T71,XI1]I, ... ,xp7]d n {xo1J2,X;rn··· ,x~rn} = 0, and

• {LIT7ICT, Ln1]lC1} = {L'I172, ... , L~rn} as multisets, where CT is a variable re

naming,

we set B(xo) ~ B'(x~).

Remark 3.2.4. We extend the previous definition on formulae that are of the same form

as the ri.ght-hand sides of full merged (or m.erged derived) step clauses but do not necessarily

result from full merged (or merged derived) step clauses.

Finally, for every temporal problem P we define a set M(P) of full merged step clauses

which do not contain duplicate subformulae.

Definition 3.2.5. Let P = (U, I. S, £) be a monodic temporal problem. Then we denote

by M (P) t.he set of all merged derived step clauses A => OB and full merged step clauses

V'x(A(x) => OB(x)) built from the temporal problem. P such that

(i) every step clause from the set S is used at most once in the construction of a derived

step clause, and

(ii) every deriveil step clause and every ground step clause from the set S i.s used at most

once in the con.~truction of a merged derived step clause, and

(iii) no merged derived step clau.~e contains multiple occurrences of the same ground step

clause, and

32 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

(iv) every non-ground step clause from the set S is used at most once in the construction

of a full-merged step clause, and

(v) for each two derived step clauses 3x Fl(X) :::} 03xG1(x) and 3x F2(X):::} 03xG2(X)

that occur in a full-merged step clause 'v'x(A(x) :::} 08(x» or in a merged derived step

clause A ~ 08, it does not hold that

• Fl(X) ~ F2(x) and G 1(x) ~ G2(X), or

• F2(X) ~ Fdx) and G2(X) ~ Gdx).

Note that case (iii) ensures that derived step clauses P(c) ~ OQ(c) which are already

contained in the set S do not occur twice in merged derived step clauses.

Remark 3.2.6. As every tempoml problem P only contains finitely many step clauses, it is

easy to see that every set of full merged and merged derived clauses M(P) is finite.

For example, the full merged step clause

'v'x(!P(x) 1\ 3yR(y) 1\ 3z(R(z) 1\ T(z»] ~ OIQ(x) 1\ 3yS(y) 1\ 3z(S(z) 1\ V(z»)])

does not satisfy the condition (v) of Definition 3.2.5 as {R(x)} ~ {R(x), T(x)} and {S(x)} ~

{S(x), V(x)}, but condition (v) is satisfied for the full merged step clause

'v'x([P(x) 1\ 3yR(y) 1\ 3zR(z)] ~ O[Q(x) 1\ 3yS(y) 1\ 3zV(z)]).

We can now define the monodic temporal resolution calculus, Je , for the expanding

domain case. The inference rules of Je are the following .

• Step resolution rule w. r. t. U:

A~08 (Ou) ...,A rea , if Uu {8} ~.L

• Termination rule w. r. t. U and I:

• Eventuality resolution rule w. r. t. U:

_'v'X-...:(_A..;...1 (.,;...x.:....) ~_0=--8..;...1 (x_)_) _--,--:::-'v'_x(_A..._(x_) _::::}--.;;.O_B_n _(x_)) __ O_L_(--,-x) (O~ ..),
'v'x 1\:=1 -,A(x)

where 'v'x(A (x) ~ OBi (x» are full merged step clauses such that for every i, 1 $ i $ n,

the loop side conditions 'v'x(U 1\ Bi(X) ~ -,L(x» and 'v'x{U 1\ B.{x) ~ V.;=I(Aj (x»)

are valid. 2

The set of full merged step clauses, satisfying the loop side conditions, is called a loop

in OL(x) and the formula V;=l A,(x) is called a loop formula.

:lIn the case U 1= Vx...,L(x). the /kgenerote clawe. true => Qtrue. can be considered as a premise of
this rule; the conclusion of the rule is then -.true == false.

3.2. MONODIC TEMPORAL RESOLUTION 33

• Ground eventuality resolution rule w. r. t. U:

whereAt ::::} OBi are merged derived step clauses such that for every i, 1 ~ i ~ n,

the loop side conditions U 1\ Bi F= -.[and U 1\ Bi F= v;= 1 Aj are valid. The notions of

ground loop and ground loop formula are defined similarly to the case above.

The notion of a derivation in the calculus J e is defined next.

Definition 3.2.7 (Derivation). Let P = (Uo,I,S,c) be a monodic temporal problem.

A derivation from P is a sequence of universal parts. ~ = Uo ~ U1 ~ U2 ~ "', such

that Ui+ 1 is obtained from Ui by applying an inference rule to (Ui, 1, S, £) and adding its

concluswn to Ui . The initial. step and eventuality part of the temporal problem are not

change.d during a deri:lIat1on.

A derivation terminates if and only if either a contradiction is derived, in which case

we say that the derivation terminates successfully, or if no new formulae ron be derived by

further inference steps.

A derivation ~ = Uo ~ U1 ~ U2 ~ ... ~ Un from (Uo, 1, S, £) is called fair (we adopt

terminology from /1 OJ) if and only if for every i ~ 0 and for every formula cp which can

be der'ive.d by the inference rules ofJe from premises in (Ui ,I,S,£C), there exists an index

j ~ i such th.at 't' E Uj .

Note that any derivation can be continued, yielding a terminating derivation. Note

further that since there exist only finitely many non-equivalent merged derived or full merged

step clauses, the number of non-equivalent conclusions of the inference rules of monodic

temporal resolution is finite. Therefore, every derivation is finite. However, it is important

to note that this does not imply the decidability of monodic first-order temporal logic as

the applicability of the inference rules is not decidable.

Soundness and completeness of J e is stated in the following theorem.

Theorem 3.2.8 (see 123, Theorem 10.5]). The rules of Je preseroe satisfiability over

expanding domains. A monodic temporal problem P with unique left-hand sides in step

clauses is unsatisfiable over expanding domains if and only if any fair derivation in Je

from pc: terminates successfully.

We now give an example refutation under Je . Let P be the following temporal problem

P = (f'ix(T(x) ::::} (Q(x) 1\ -.L(x))), 'v'x(S(x)::::} Q(x))},

{3xP(x)},

{P(x)::::} OS(x),Q(x)::::} OT(x)},

{OL(x)})

34 CH.4PTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

Function BFS
Input: A temporal problem P = (U, I, S, E) and an eventuality clause OL(x) E E.
Output: A formula H(x) with at most one free variable.
Method: (1) Let Ho(x) = true; No = 0; i = 0

(2) Let Ni+l = {Vx(Aji+l)(x) ~ O BJi+l)(x»}j=l be the set of
all full merged step clauses such that for every j E {l, ... , k},
Vx(UI\Bji+l)(X) ~ (-,L(x) 1\ Hj(x») is valid. (The set M+l possibly
includes the degenerated step clause true =* Otrue in the case
U 1= Vx(-,L(x) 1\ Hj(x».)

(3) If M+l = 0, return false; else let Hi+l(X) = V~=l A;i+l)(x)
(4) IfVx(Hj(x) =* Hi+l(X», return Hi+l(X).
(5) i = i + 1; goto 2.

Figure 3.1: Breadth-First Search Algorithm

First of all, we can observe that the temporal problem P is already constant-flooded, i.e.

pc = P. Then, for the full merged step clause Vx(Q(x) =* OT(x» it holds that the loop side

conditions Vx[«Vy(T(y) ~ (Q(y) 1\ -,L(y»» 1\ T(x» =* (Q(x) 1\ -,L(x»] are valid, i.e. we

can apply the eventuality resolution rule for the eventuality OL(x) and derive the universal

formula Vx-,Q(x). Now, for the (merged) derived step clause 3x(P(x) =* OS(x» it holds

that {Vx(S(x) =* Q(x», Vx--,Q(x), 3xS(x)} 1= .L. We can therefore apply the step resolution

rule and obtain the universal fonnula Vx-,P(x). Finally, as {3xP(x), Vx-,P(x)} 1= .l, an

application of the termination rule allows us to derive .L.

The task of finding suitable full merged step clauses (or merged derived clauses) for

applications of the eventuality resolution rules can be delegated to the Breadth-First Search

(BFS) algorithm depicted in Figure 3.1. It returns all the possible loop formulae for a given

eventuality and sets of universal and step clauses as input.

Monodic temporal resolution remains sound and refutationally complete if the eventuality

resolution rules are restricted to loops found by the BFS algorithm.

Theorem 3.2.9 (see [23, Theorem 9.5 and 10.5]). A monodic temporal problem P with

unique left-hand sides in step clauses is unsatisfiable over expanding domains if and only

if any fair derivation in J e from P: with applications of the eventuality resolution rules

restricted to loops found by the BFS algorithm terminates successfully.

This concludes the description of monodic temporal resolution. In the next section we

present the ordered fine-grained resolution with selection calculus.

3.3 Inference Rules

In this section we introduce the inference rules of ordered fine-grained resolution with

selection. First, we present the core deduction rules, and subsequently, we introduce the

FG-BFS algorithm, which can be used to find premises for the eventuality resolution rules.

3.3. INFERENCE RULES 35

The FG-BFS algorithm can be seen as a resolution-based variant of the BFS algorithm

depicted in Figure 3.1.

3.3.1 Fine-Grained Step Resolution and Eventuality Resolution

Before we can give the definitions of the inference rules, we still have to introduce some

auxiliary concepts. We begin by introducing the notion of most general unifier briefly.

Definition 3.3.1. Let E ~ CS u FS. Furthermore, let E = {SI :b tl, ... , Sn :b in} be a

muitisei of terms equations over Tr.{X).

(1) A substdution a: X - T~(X) is a unifier of the equation multiset E if and only if

The set of all the unifiers of the equation multi.set E is denoted by Unif(E).

(ii) A substi.tution a is called a most general unifier of the e.quation multiset E if and only

·if

'r/ T E SubsiE(X): T E Unif(E) =:;. a ~ T

{iii} The equation multisel E = {Sl :b i l , ... , sn :b in} is said to be in solved form if and

only if

• 'r/ i. 1 ~ i ~ n: .'J;. EX, and

(ivY Let A = p(SI ,sn), B = P(tl,·.· ,tn) be two atoms. A substitution a is said to be a

most general unifier of the atoms A and B if and only if the substitution a is a most

general unifier of the equation muitiset {s I :b t I, ... , Sn :b t n }.

Then, we assume that we are given an admissible atom ordering >-, that is, a strict total

ordering on ground atoms which is well-founded, and a selection function S which maps

any first-order clause C to a (possibly empty) subset of its negative literals. For proving

the refutational completeness of ordered fine-grained resolution with selection, we require

selection functions to be instance compatible:

Definition 3.3.2. We say that a selection function S ·is instance compatible if and only if

for every clause C. for every substitution a and for every literall E CO" it holds that

1 E S(Ca) {::::::::} 3/' E S(C): l'a = l.

The atom ordering >- is extended to ground literals by ...,A >- A and (...,)A >- (...,)8 if and

only if A >- B. The ordering is extended on the non-ground level as follows: for two arbitrary

literal .. Land L', L >- L' if and only if La >- L'a for every grounding substitution a. A

literal Lis c-B.lled (strictly) maximal w.r.t. a clause C if and only if there is no literal L' E C

36 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

with L' ~ L (£' t L). A literal L is eligible in a clause Lv C for a substitution 0' if either it

is selected in £ V C, or otherwise no literal is selected in £ V C and £0' is maximal w.r.t. Cu.

The atom ordering ~ and the instance compatible selection function S are used to

restrict the applicability of the deduction rules of fine-grained resolution as follows. We also

assume that the clauses used as premises for the different resolution-based inference rules

are made variable disjoint beforehand.

(1) First-order ordered resolution with selection between two universal clauses

C l V A ...,BVC2
(Cl V C2)0'

if 0' is a most general unifier of A and B, A is eligible in (Cl V A) for 0', and...,B is

eligible in (...,B V C2) for 0'. The result is a universal clause.

(2) First-order ordered positive factoring with selection

C l V A vB
(Cl V A)O'

if 0' is a m~t general unifier of A and B, and A is eligible in (Cl V A V B) for 0'. The

result is again a universal clause.

(3) First-order ordered resolution with selection between an initial and a universal clause,

between two initial clauses, and ordered positive factoring with selection on an initial

clause. These are defined in analogy to the two deduction rules above with the only

difference that the result is an initial clause.

(4) Ordered fine-gmined step resolution with selection.

Cl => O(D l V A) C2 => O(D2 V...,B)

(Cl 1\ C2)0' => O(Dl V D2)0'

where C l => O(Dl V A) and C2 => O(D2 v...,B) are step clauses, 0' is a most general

unifier of the atoms A and B such that 0' does not map variables from C l or C2 into

a constant or a functional term, A is eligible in (Dl VA) for 0', and...,B is eligible in

(D2 V ...,B) lor 0'.

C l => O(Dl V A) D2 V ...,B
C,O' => O(D l V D2)(1

where C, => O(D, V A) is a step clause, D2 v...,B is a universal clause, and 0' is a m~t

general unifier of the atoms A and B such that 0' does not map variables from C l into

a constant or a functional term, A is eligible in (Dl V A) for 0', and...,B is eligible in

(D2 V ...,B) lor 0'. There also exists a similar rule where the positive literal A is contained

in a universal clause and the negative literal ...,B in a step clause.

3.3. INFERENCE RULES

(5) OrdereA fine-grained positive step factoring with selection.

C ~ O{DV Av B)
Co ~ O(DV A)o

37

where (1 is a most general unifier of the atoms A and B such that (1 does not map

variables from C into a constant or a functional term, and A is eligible in (D V A V B)

for (1.

(6) Clause conversion. A step clause of the form C ~ 0.1 is rewritten to the universal

clause ...,C.

Step clauses of the form C ~ 0.1 will also be called terminating or final step clauses.

(7) Dupli.cate literal elimination in left-hand sides of termi.nating step clauses. A clause of

the form (C /\ A /\ A) ~ 0.1 yields the clause (C /\ A) ~ 0.1.

(8) Eventuality resolution rule w.r.t. U:

\:I_X~{_A_l (~x~) ~_O;;....B_l_(x_)_) _--:-;;-\:I_x_{_An-:-{_x-:-) _~_O_Bn_(_x)_) __ O_L_(x--,-) (O~s),
\:Ix /\~=1 ...,At(x)

where \:Ix (At (x) ~ OBi(X)) are formulae computed from the set of step clauses such

that for every i, 1 $ i $ n, the loop side conditions \:Ix(U /\ Bi(X) ~ ...,L(x)) and

\:Ix(U /\ Bi(X) :::;> V]=l Aj(x)) are valid.3

(9) GrounA eventual'i.ty resoluti.on rule w.r.t. U:

A....:..l:::;>--==O:.....B-=l_--=-_An...:..:.....-:::;>----=O::....B-=n~_O_1 (O~.),
/\~=l...,At

where At ~ OBi are ground formulae computed from the set of step clauses such that

for every i, 1 $ i $ TI, the loop side conditions U /\ Bi F ...,1 and U /\ Bi F V]=l Aj are

valid. The notions of gmund loop and ground loop formula are defined similarly to the

case above.

Rules (1) to (7), also called rules of fine-grained step resolution, are either identical or

closely related to the deduction rules of ordered first-order resolution with selection; a fact

that we exploit in our implementation of the calculus.

Let ordere.d fine-graine.d resolution M.th selection be the calculus consisting of the rules

(1) to (7) above, toget her with the ground and non-ground eventuality resolution rules

described above, i.e. rules (8) and (9). We denote this calculus by J~~.

Just as in the regular first-order case, selection functions are used as a control mechanism

for handling the non-determinism that arises from inferences on negative literals. The

proof of refutational completeness for regular first-order ordered resolution with selection

lin the cue U ~ V:r...,L(:r). the degenerate dause. true ~ Otrue. can be considered 88 a premise of
this rule; t he conclusion of the rule is then ...,true == false.

38 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

given in [10/ does not put restrictions on which negative literals have to be chosen for

inferences. They can hence be selected in a "don't-care", non-deterministic way. In practical

implementations different strategies for selecting negative literals are employed. For example,

the theorem prover SPASS 3.0 allows to define a list of predicates that become candidates

for selection. Additionally, SPASS offers, for instance, the following selection strategies [92):
the selection of one negative literal in any clause with more than one maximal literal, or the

selection of one negative literal in a clause if it contains at least one negative literal. In these

cases if no negative literal from the given list of selection predicates is present in a clause,

a negative literal of maximal weight is selected. Other theorem provers like Vampire also

allow a multitude of different selection strategies together with the selection of both positive

and negative literals [78/. The available selection strategies are also often goal-oriented.

Next we define the concept of derivations in the context of ordered fine-grained resolution

with selection.

Definition 3.3.3 (Derivation). A (linear) derivation ~ (in J~ci) from the clausification

Cls(P) of a monodic temporal problem P is a sequence of tuples

such that each tuple at an index i + 1 is obtained from the tuple at the index i by adding

the conclusion of an application of one of the inference rules of J~ci to premises from the

sets Ui , Ii, Si to that set, with the other sets as well as e remaining unchangtxf. The

derivation ~ will also be denoted by a sequence of clauses C1, C2, . .. where each clause C. is

either contained in the problem (Uo, 'Lo, So, e) or is newly obtained in the inference step that

derived the problem (~, Ii, Si, e).
A derivation ~ such that the empty clause is an element of a Ui U Ii is called a

(J~ci -)refutation of (Uo, Io, So, e).
A derivation ~ is fair if and only if for every i ~ 0 and for every clause C which can be

derived by the inference rules of J~ci from premises in (U., Ii, Si, e), there exists an index

j ~ i such that C occurs in (Uj , I j , Sj' e) .
A set of temporal clauses N is said to be saturated under ordered fine-grained resolution

with selection if and only if the resulting clauses from all the possible inferences under the

rules of ordered fine-grained resolution with selection are already contained in the set N.

3.3.2 Resolution-Based Loop Search Algorithm

Loop formulae, which are required for applications of the eventuality resolution rules (8)

and (9), can be computed by the fine-grained breadth-first search algorithm (FG-BFS),

depicted in Figure 3.2. The process of running the FG-BFS algorithm is called loop search.

The algorithm takes as input a set of universal clauses U and a set of step clauses S

saturated by ordered fine-grained resolution with selection, and an eventuality clause

"In an application of ground eventuality or eventuality resolution rule, the set U in the definition of the
rule refefB to U •.

.'1..3. INFERENCE RULES

Function FG-BFS
Input: A set of universal clauses U and a set of step clauses S, saturated under

the fine-grained step resolution inference rules of ordered fine-grained
resolution with selection, and an eventuality clause OL(x) E E, where
L(x) is unary literal.

Output: A formula H(x) with at most one free variable.
Method: (1) Let Ho(x) = true; Mo = 0; i = 0

39

(2) Let M+I = U U {P(cl) => OM(cl) I original P(x) => OM(x) E S} U
{true => O(...,Hi (cl) V L(d))}. Apply the fine-grained step resolution
rules of ordered fine-grained resolution with selection except the clause
conversion rule to NiT I. If we obtain a contradiction, then return the
loop true (in this case 'Vx...,L(x) is implied by the universal part).
Otherwise let Mi+1 = {Cj => 0l.}j=1 be the set of all new tenninating
step clauses in the saturation of M+ I.

(3) If MiTl = 0, return false; else let Hi+I(x) = V;=1(3Cj){cl
-+ x}

(4) If 'Vx(H;(x) => Hi+I(X)), return Hi-t-I(x).
(5) i = i + 1; goto 2.

Note: The constant cl is a fresh constant used for loop search only

Figure 3.2: Breadth-first Search Algorithm Using Fine-grained Step Resolution.

OL(x) E E. It computes sequences of disjunctions Ha, HI, H2, ... such that for every i > 0

the formula 'Vx(H;(x) => (H;_I(x) 1\ ...,L(x))) is valid. A loop in OL(x) has been found

whenever the formula 'Vx(H;(x) => Hi+I(x)) is valid as well (step 4).

For the proof of refutational completeness we do not consider the FG-BFS algorithm, but

we use its refined variant Restricted-FG-BFS, shown in Figure 3.3, instead. The operation

LT(S) performs constant-flooding with the loop search constant cl in original step clauses

contained in the set S, i.e.

LT(S) = {P(cl
) => OM(cl

) I original P(x) => OM(x) E S}.

The refined algorithm imposes an additional filtering step on the computed terminating

step clauses. The set of terminating step clauses is not allowed to contain clauses C => Ol.

and D => Ol. such that (3C){d -+ x}!; (3D){d -+ x}.

We show that ordered fine-grained resolution with selection remains refutationally

complete if applications of the eventuality resolution rules are restricted to loops found by

the Restricted-FG-BFS algorithm.

We conclude this section by providing an example refutation under)~c;- of the temporal

problem P that was introduced in Section 3.2. The clausification Cls(PC) of pc yields the

following

Cls(PC
) = ({...,T(x) vQ(x),

...,T(x) v...,L(x).

...,S(x) V Q(x)},

{P(c)},

40 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

{P(x) :::} OS(x),

Q(x) :::} OT(x)},

{OL(x)})

where c is a fresh constant introduced during Skolemization. We consider the atom

ordering >- defined by

L(c) >- P(c) >- Q(c) >- S(c) >- T(c)

and a selection function S which does not select any literals. We can first of all apply

the FG-BFS algorithm on Cls(PC). For the first iteration we have Ho(x) = true and

we obtain the terminating step clauses Q(x) ~ 0.1., i.e. Ht(x) = Q(x). As the formula

'v'x(Ho(x) ~ Ht(x» is not valid, we have to continue with the next iteration, where

we can derive the terminating step clauses Q(x) ~ 0.1. and P(x) /\ Q(x) ~ 0.1., i.e.

H 2(x) = Q(x) V (P(x) /\ Q(x». Now, as the formula 'v'x(Ht(x) ~ H 2 (x» is valid, the

FG-BFS algorithm returns the loop formula H2(X), which results in the two universal clauses

..... Q(x) and P(x) V Q(x) after applying the eventuality resolution rule.

By resolving the universal clause Q(x) with the universal clause S(x)vQ(x), we obtain

the universal clause S(x), which can be resolved with the step clause P(x) ~ OS(x),

resulting in the terminating step clause P(x) ~ 0.1.. An application of the clause conversion

rule yields the universal clause P(x). Finally, the universal clause ...,P(x) can be resolved

with the initial clause P(c) and we obtain the empty clause.

In the following section we provide the full proof of refutational completeness for ordered

fine-grained resolution with selection.

3.4 Refutational Completeness

The proof of refutational completeness for ordered fine-grained resolution with selection is

organised as follows. First, we define a refined version of the monodic temporal resolution

calculus and show its refutational completeness. Then, we prove that for every refutation

of a monodic temporal problem under refined monodic temporal resolution there exists a

"similar" refutation under ordered fine-grained resolution with selection. In order to be able to

show this result we also have to prove the lifting theorem for ordered fine-grained resolution

with selection (without the eventuality resolution and the duplicate literal elimination in

terminating step clauses rules).

3.4.1 Refined Monodic Temporal Resolution

As the step resolution rule of monodic temporal resolution can be applied on arbitrary

merged derived clauses and as the BFS algorithm returns all possible longer combinations

of full merged step clauses once a shorter loop formula has been detected, one can see that

not all the full merged step clauses and merged derived clauses that occur in a je-derivation

can also be derived by ordered fine-grained resolution with selection.

3.4. REFUTATIONAL COMPLETENESS 41

Function Restricted-FG-BFS
Input:

Output:
Method:

A set of universal clauses U and a set of step clauses S, saturated under
the fine-grained step resolution inference rules of ordered fine-grained
resolution with selection, and an eventuality clause OL(x} E C.
A formula R(x} with at most one free variable.
(I) Let Ro(x) = true; Mo = 0; i = 0
(2) Let M+I = U U LT(S) U {true :::} O(-,~(d) V L(d))}. Apply the

fine-grained step resolution rules of ordered fine-grained resolution
with selection except the clause conversion rule to M+ I. If we obtain
a contradiction, then return the loop true (in this case Vx-,L(x) is
implied by the universal part).
Otherwise let ~+ 1 = {Cj :::} OJ.. }j=1 be the set of all new terminating
step clauses in the saturation of M+I which is free of step clauses
C :::} OJ.. and D :::} OJ.. with Cu = D, where u is a variable
renaming. Additionally, let MHI = {D j :::} 0J..}j=1 ~ 1;+1 be the
set of all the minimal terminating step clauses w.r.t. the relation !;
and the set (3~ + 1){ C' -+ x}.

(3) If)\1i+! = 0, return false; else let ~+I(X) = V;=1(3Dj){d -+ x}
(4) If Vx(Rj(x):::} RHdx)), return RH1 (X}.
(5) i=i+l;got02.

Figure 3.3: Restricted Breadth-First Search Using Ordered Fine-Grained Step Resolution
with Selection

Hence, in order for our completeness proof for ordered fine-grained resolution with

selection to succeed, the premises of some inference rules of monodic temporal resolution

have to be restricted.

First of all, we have to restrict the step resolution rule by imposing an additional

constraint on the merged derived step clauses that are used as premises. The refined

inference rule is defined as follows.

Refined Step Resolution Rule w.r.t. U:

if 8 is minimal (w.r.t. the relation c) such that

UU{8}FJ..

Furthermore. we do not run the BFS algorithm (Figure 3.1) to compute premises for the

eventuality resolution rules. but instead we use the refined breadth-first search (Ref-BFS)

algorithm depicted in Figure 3.4.

The Ref-BFS algorithm can be seen as a refined version of the BFS algorithm. A

comparison with the BFS algorithm shows that the selection constraints on full merged

clauses in the Ref-BFS algorithm have been refined in a similar way as the refined step

resolution rule mentioned above. Thffie additional constraints in the selection process of full

merged step clauses ensure that exactly the same full merged step clauses can also obtained

during J~;; -derivations.

42 CH.4PTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

Function Ref-BFS
Input: A temporal problem P = (U,I,S, £) and an eventuality clause OL(x) E £.
Output: A formula H'(x) with at most one free variable.
Method: (1) Let H6(x) = true; No = 0; i = 0

(2) Let N:+l = {V'x(AY+l)(x) ::::} OBji+l)(x»}J=l ~ M(P) be the set
of all fuJI merged step clauses such that for every j E {I, ... , k}, the
formula V'x(U A Bji+l)(x) ::::} (-,L(x) A Hj(x») is valid and such that

for every j E {I, ... , k} and every B'(x) C Bji+l)(x), the formula
3x(U AB'(x)A -,(-,L(x)AHj(x») is satisfiable. (The set N:+l possibly
includes the degenerated clause true ::::} Otrue in the case U F
V'x(-,L(x) A Hj(x».)

(3) If N:+l = 0, return false; else let H:+1(x) = V;=l(A;i+l)(x»
(4) IfV'x(HI(x)::::} H:+1(x», return H:+1(x).
(5) i=i+l;goto2.

Figure 3.4: Refined Breadth-First Search Algorithm

The refutational completeness of the calculus derived as described above from monodic

temporal resolution will be proved in the subsequent section. The refined calculus will be

called refined monodic temporal resolution in the following, and denoted by J~.

3.4.2 Properties of the Ref-BFS algorithm

Before we can show the refutational completeness of refined monodic temporal resolution,

we have to prove some properties of the Ref-BFS algorithm.

First, we introduce the notion of upward closure under the relation r;: of a set of full

merged (and merged derived) step clauses.

Definition 3.4.1. Let P = (U, I, S, £) be a monodic temporal problem and let N ~ M(P)

be a set 01 full merged or merged derived step clauses. Then we define a set of full merged

or merged derived step clauses MfN(P) as follows:

MfN(P) = {V'x(A'(x) ::::} OB'(x» E M(P) 13V'x(A(x) ::::} OBex»~ EN: 8(x) r;: B'(x)}

We now show a couple of properties related to sets of full-merged step clauses N: that

have been constructed in a run of the Ref-BFS algorithm.

Lemma 3.4.2. Let P = (U,I,S,£) be a monodic temporal problem and let OL(x) E £
be an eventuality clause. Furthermore, let No, N{, . .. be the sequence of sets and let

Ho(x), H~ (x), ... be the sequence of formulae constructed by a run of the Ref-BFS algorithm

applied on the temporal problem P lor the eventuality OL(x).

Then it holds lor all i ~ 1 that N:+l ~ MfN:(P) and that the formula V'x(HI+l(x) ::::}

H:(x» is valid.

Proof By induction on i. We first of all observe that the formula V'x(Hi(x) ::::} true) is

valid.

3.4. REFUTATION:tL COMPLETENESS 43

Now, let i ~ 1. We may assume that N:+l =f. 0 as otherwise N:+ 1 = 0 and H:+ 1(x) =
false. Then, 0 ~ N: would clearly hold and the formula V'x(false ::::} H:(x)) would be

valid. Without 10&> of generality, let V'x(Ai+l(x)::::} OBi+l(X)) E N:+l (the case for true::::}

Otrue E N:+l is similar). Then it holds that the formula V'x(U A. B(i+l)(x) ::::} (....,L(x) A.

HI(x))) is valid and that for every B'(x) c B(i+l)(X), the formula 3x(U A. B'(x) A.,(....,L(x) A.

HI(x))) is satisfiable. From the induction hypothesis (and the validity ofV'x(H1(x) ::::} true))

it follows that the formula Vx(H:(x) ::::} HI-l (x)) is valid, which implies that the formula

Vx(U A B(i+l)(X) ::::} (....,L(x) A. H:_ 1(x))) is valid as well. Hence, there exists a formula

Vx(A(x) ::::} OB(x)) EN: such that A(x) ~ Ai+l(X) and B(x) ~ Bi+l(x) (and thus, the

formula VX(Ai+l(X) ::::} A(x)) is valid). We can conclude that N:+l ~ MIN:(P), which

implies that the formula Vx(H:+ 1(x)::::} HI(x)) is valid. 0

Corollary 3.4.3. Let P = (U, I, S, £) be a monodic temporal problem and let 0 L(x) E £ be

an eventuality clause. Furthermore, let No, N{, . .. be the sequence of sets constructed by a

run of the Ref-BFS algorithm applie.d on the temporal problem P for the eventuality OL(x).

Then it holds for all i ~ 1 that MiN:+1 (P) ~ MiN:(P).

Proof. Let i ~ 1 and let VX(A"(X) ::::} OB"(x)) E MiN:+1 (P), that is, there exists a full

merged step clause Vx(A'(x) ::::} OB'(x)) E N:H with B'(x) ~ B"(x). By Lemma 3.4.2 there

exists a full merged step clause Vx(A(x) ::::} OB(x)) EN: with B(x) ~ B'(x). Therefore, it

is easy to see that B(x) ~ B"(x) holds. 0

Lemma 3.4.4. Let P = (U, I, S, £) be a monodic temporal problem and let OL(x) E £ be an

eventuali.ty cIa·use. Then the Ref-BFS algorithm applied on the problem P for the eventuality

o L(x) will re.quire only finitely many iterations.

Proof. Let No,N{, . .. be the sequence of sets and Hb(x), HHx), ... be the sequence of

formulae constructed by the run of the Ref-BFS algorithm. By Corollary 3.4.3 it holds

for all i ~ 1 that M!N:+1 (P) ~ MiN:(P)' As every set MiN:+1 (P) is finite, it either holds

that thpre exists an index j ~ 1 with MiN;+l (P) = MiN;(P) or there exists an index k ~ 1

with N~ ~ .\If iN~ (P) = 0, which immediately implies that the algorithm Ref-BFS stops at

the k-th iteration. If Nj ~ MIN;(P) = MiN;+l (P) ;2 Nj+l' then it is easy to see that the

formula Vx(Hj(x) ::::} Hj+ l(x)) is valid and the algorithm Ref-BFS stops at the (j + 1)-th

iteration. 0

Lemma 3.4.5. Let P = (U, I, S, £) be a monodic temporal problem and let OL(x) E £ be

an eventuality clause. Furthermore, let No, Nt, ... ,N:, N:H , N:+2 be a sequence of sets and

let HMx), H~ (x), . .. ,H:(x), HI+ 1 (x), H:+ 2(x) be a sequence of formulae constructed by a

run of the Ref-BFS algorithm appli.ed on the temporal problem P for the eventual-i.ty OL(x).

Additionally, we assume that the formula Vx(HI{x) ¢} H:+ 1(x)) is valid.

Then it holds that N:+ 1 = N:+ 2 ·

44 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

Proof. First of all, we can observe that if H/(x) = false or HI+l (x) = false, it must hold

that HI(x) = false = HI+l (x). It then follows from Lemma 3.4.2 that N/+l = 0 = Nt+2'

Hence, we may now assume that HI(x) -I false -I HI+l(x).

Next, we show that N!+l ~ N!+2' The inclusion N/+2 ~ N!+l can be shown analogously.

Without loss of generality, let 'cfx(A(x) :::} OBex»~ E N:+ 1 (the remaining case for true:::}

Otrue E N:+ 1 is similar). Then it holds that the formula 'cfx(U 1\ B(x) :::} (-.L(x) 1\ HI(x»)

is valid and that for every B'(x) C B(x), the formula 3x(U 1\ B' 1\ -.(-.L(x) 1\ HI(x») is

satisfiable. Hence, as the formula 'cfx(HI(x) <=> H/+1(x» is valid, it follows that the formula

'cfx(U 1\ B(x):::} (-.L(x) 1\ H:+1(x») is valid and that for every B'(x) C B(x), the formula

3x(U 1\ B' 1\ --,(-..,L(x) 1\ HI"f"l (x») is satisfiable. We can conclude that 'cfx(A(x) :::} OBex»~ E

N:+ 2· 0

Corollary 3.4.6. Let P= (U,I,S,£) be a monodic temporal problem and let OL(x) E £ be

an eventuality clause. Furthermore, let No, N{, ... ,Nt, N!+ 1 ,N!+2' . .. be a sequence of sets

and let H6(x), Hf(x), ... , H:(x), H:+1(x), HI+2(x), ... be a sequence of formulae constructed

by a run of the Ref-BFS algorithm applied on the temporal problem P for the eventuality

OL(x). Additionally, we assume that the formula 'cfx(HI(x) <=> H/+l (x» is valid.

Then it holds for all j ~ 1 that N:+ j = N/-;-j+l and that the formula 'cfx(H:+j(x) <=>

HI+j+l(X» is valid.

Proof. Follows from Lemma 3.4.5 and from the fact that for all j E N the set equality

N:"f"j = N:+ j+ 1 implies that the formula 'cfx(HI+j(x) <=> H:+ j+1 (x» is valid. 0

The next lemma establishes a correctness result for the Ref-BFS algorithm.

Lemma 3.4.7. Let P = (U,I,S, £) be a monodic temporal problem and let OL(x) E £ be

an eventuality clause. Additionally, let H(x) denote the formula computed by the Ref-BFS

algorithm applied on the problem P for the eventuality OL(x).

Then the formula 'cfx(U 1\ H(x) :::} OD-.L(x» is valid.

Proof. Similarly to the proof given in [23J. o

The subsequent lemma shows that if a monodic temporal problem admits a loop formula

V;=l A,;(x) for an eventuality OL(x), then the Ref-BFS algorithm computes a loop formula

V';=l Ak(x) such that the formula 'cfX(V;=l Aj(x) :::} V';=l Ak(X» is valid.

Lemma 3.4.8. Let P = (U, I, S, £) be a monodic temporal problem such that the set U is

satisfiable, let 'cfx(Aj(x) :::} OBj(x» for j E {I, ... , n} be full merged step clauses and let

OL(x) E £ be an eventuality clause soch that the loop side conditions 'cfx(U 1\ Bj(x) :::} -.L(x»

and 'cfx(U 1\ Bj(x) :::} V;=l A,;(x» are valid for all j, 1 ~ j ~ n.

Then the Ref-BFS algorithm applied on the temporal problem P for the eventual

ity OL(x) returns a formula H(x) = V';=l Ak(x) such that for all 'cfx(Aj(x) :::} OBj(x»,

j E {I, ... , n}, there exists a full merged step clause 'cfx(Ak(x) :::} OBk(x» E M(P)

3.4. REFUT.4.TIONAL COMPLETENESS 45

with 1 ~ k ~ m, A~(x) !; Adx) and Bk(x) !; Bdx), which implies that the formula

'iX(V~=1 Aj(x) =} V;~I A~(x)) is valid.

Proof. Let N~,N{, ... ,N:, ... be the sequence of sets and Ho(x),H1(x), ... ,HI(x), ...

be the sequence of formulae constructed by a run of the algorithm Ref-BFS applied on

the temporal problem P for the eventuality OL(x). We show by induction on i with

i ~ 1 that for all 'ix(Aj(x) =} OBj(x)), j E {1, ... ,n}, there exists a full merged step

clause 'ix(Aj(x) => OBj(x)) E N: such that the formula 'ix(Aj(x) =} Aj(x)) is valid.

By Lemma 3.4.4 the algorithm Ref-BFS then returns a formula H(x) with the required

properties.

For i = 1, we first of all observe for all j, 1 ~ j ~ n, that the formulae 'ix(U /\ Bj(x) =}

..,L(x)) == 'ix(U /\ Bj(x) => ..,L(x) /\ true) are valid. It follows for every j, 1 ~ j ~ n, that

there exists a full merged step clause 'ix(Aj(x) => OBj(x)) E N{ such that Aj(x) !; Aj(x)

and Bj(x) !; Bj(x), which implies that the formula 'ix(Aj(x) =} Aj(x)) is valid for all j,

1 ~ j ~ n.

If i > 1. then it follows from the induction hypothesis for all j, 1 ~ j ~ n, that

there exists a full merged step clause 'ix(Aj(x) =} OBj'(x)) E N:_ I such that the formula

'ix(AJ(x) => Aj(x)) is valid. Hence, H:- I (x) == H:'-I (x)VV;=1 Aj(x) for a formula H:'_l(x).

We obtain for all j, 1 ~ j ~ n, from the formula 'ix(U /\ Bj(x) =} V~=l Aj{x)) that the

formula 'ix(U /\ Bj (x) =} V~= 1 Aj (x)) is valid and thus, we can conclude for all j, 1 ~ j ~ n,

that the following formulae are valid:

n

'ix(U/\Bj(x) =} ..,L(x)/\(H:'-I(x)V V Aj(x))) == 'ix (U/\ Bj(x) =} ..,L(x)/\H:_1(x))
j=1

Thus, it is easy to see that for every j, 1 ~ j ~ n, there exists a full merged step clause

'ix(Aj(x) => OBj(x)) E N: such that Aj(x) !; Aj(x) and Bj(x) !; Bj(x). Clearly, the

formula 'ix(Aj(x) => Aj(x)) is valid for all j, 1 ~ j ::; n. 0

Finally, we show that the Ref-BFS algorithm computes the same loop formulae if it is

applied for the same eventuality OL(x) on two sets U, U' with U ~ U' and U' ~ U.

Lemma 3.4.9. Let P = (U,I,S.£) and P' = (U',I,S,£) be monodic temporal problems

such that U ~ U' and U' ~ U, and let OL(x) E £ be an eventuality clause. Additionally,

let No,N1, ... be a sequence of sets and let Ho(x), H1{x), ... be a sequence of formulae

c-Onstructed by a run of the Ref-BFS algorithm applied on the temporal problem P for the

eventuality OL(x). Finally, let N~.N{, ... be a sequence of sets and let Hb(x), HHx), ...

be a sequence of formulae constructed by a run of the Ref-BPS algorithm applied for the

eventuality 0 L(x) E £ on the tempoml problem P'.
Then it hold.~ for all j EN that N j = Nj and Hj(x) = Hj(x).

Proof. By induction on j. For j = 0 we have No = 0 = No and Ho{x) = true = Ho(x).

If j > 0, then it follows from the induction hypothesis that N j _1 = Nj-l and Hj-l{x) =
Hj_dx). We now show that N J ~ Nj. Let 'ix(A(x) =} OB(x)) E N j . Then, it follows

46 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

that the formula Irtx(U 1\ B(x) ~ (-.L(x) 1\ Hi(X») is valid and that for every B'(x) c B(x),

the formula 3x(U 1\ B'(x) 1\ -.(-.L(x) 1\ Hi(X») is satisfiable. Hence, as U F U' and U' F U,

the formula Irtx(U'1\ B(x) ~ (-.L(x) 1\ Hi(X») is valid and for every B'(x) c B(x), the

formula 3x(U' 1\ B'(x) 1\ -.(-.L(x) 1\ Hi(X») is satisfiable. We can conclude that Irtx(A(x) ~

OB(x» E NJ. Analogously, one can show that NJ ~ Nj. Finally, we also observe that

Hj(x) = Hj(x) as Nj = NJ. 0

We have now established all the required results to prove the refutational completeness

of refined monodic temporal resolution.

3.4.2.1 Proof of Refutational Completeness

The proof of completeness for refined monodic temporal resolution proceeds by simulating

a derivation of (regular) monodic temporal resolution :Ie by refined monodic temporal

resolution :I;. For every deduction step U U {j,}, where F is the newly derived formula by

(regular) monodic temporal resolution, and every set of universal clauses U with U F U, we

show that there exists a derivation step U U {F} by refined monodic temporal resolution

such that U U {F} F U U {F}. Thus, if the set U U {F} is unsatisfiable, it must also hold

that the set U U {F} is unsatisfiable.

We begin by simulating the step resolution rule.

Lemma 3.4.10. Let P = (U, I, S, £) be a monodic temporal problem and let U be a set of

universal formulae such that U F U. Additionally, let A ~ 08 be a merged derived clause

such that U U {8} F .L

Then there exists a merged derived step clause A ~ OB such that B !;;; B, U U {B} F 1.

and B is minimal with respect to U. Furthermore, it holds that:

Proof It is clear that a merged derived clause A ~ OB exists such that A !;;; A, B !;;; 8,
U U {B} F 1. and B is minimal with respect to U exists. Thus, -.A F -.A and we obtain

Uu {-.A} F UU {-.A}. 0

Now, we show that the eventuality resolution rule of (regular) monodic temporal resolu

tion can be simulated in the refined calculus.

Lemma 3.4.11. Let P= (U,I,S,E) be a monodic temporal problem such that the setU

is satisfiable and let U be a set of universal formulae such that U F U. Additionally, let

Irtx(Aj(x) ~ OBj(x» for j E {I, ... , n} be full merged step clauses and let OL(x) E £

be an eventuality clause such that the loop side conditions Irtx(U 1\ Bj(x) ~ -.L(x» and

Irtx(U 1\ Bj(x) ~ V;=l Aj(x» are valid for all j, 1 ~ j ~ n.

Then there exists a loop formula H(x) = V';=l A~(x) computed by the Ref-BFS algorithm

applied on the temporal problem P = (U,I,S,£) for the eventuality OL(x) such that the

3.4. REFUTATIONAL COMPLETENESS 47

formula 'rjX(V;=1 Aj(x) => V7:=1 A~(x)) is valid. Moreover, it holds that:

m n

U u r-v'x(1\ -'A~(x))} F U u {'rjx(1\ -,Aj(x))}
k=1 j=1

Proof. First of all, as U F U holds, it follows that the formulae "'ix(U 1\ Bj(x) => -,L(x)) and

'rjx(U 1\ Bj(x) => V;=l Aj(x)) are valid for all j, 1 $ j $ n. Thus, by Lemma 3.4.8 the Ref

BFS algorithm applied for the eventuality OL(x) on the temporal problem P = (U,I,S,£)

computes a formula H(x) = V 7:= I A~(x) such that "'ix(V';=1 Aj(x) => V7:=1 A~(x)) is valid.

Furthermore, we obtain that the formula 'rjx(I\7:=1 -,Ak(x) => /\';=1 -,Aj(x)) is valid

as well. Hence, we can infer that {"'ix(I\7:=1 -'A~(x))} F {"'ix(I\';=1 -,Aj(x))} , and finally

U U {'rjx(I\~1 -'A~(x))} F U u {'rjX(I\;=1 -,Aj(x))} as U F U. 0

The next proposition then regroups the previous results.

Lemma 3.4.12. Let P = (Uo.I,S,t:) be a monodic temporal problem and let ~ = Uo ~

UI ~ ... ~ Urn be a den'vation in Je · Then there exists a derivation ~ = Uo ~ U1 ~ ... ~ Un

(m ~ n) in J~ from P where Uo = Uo and such that Ui F Ui for all i, 1 $ i $ n, and for

all i. 1 $ i $ n, either the set Ui t.s unsatisfiable or it i.s obtained through an appli.catwn of

the samei.nference rule as the one used to derive the set l1i , except that

• every application of the (regular) step resolution rule is replaced by an application

of the refine.d step resolution rule on a step clause A' => 013' with 13' !;;; 13, where

A=> 013 is the premise of the (regular) step resolution rule,

• the appl-icat'i.on of the eventuality resoluti.on rules is only performed on satisfiable sets

of univer,qal formulae and it is restricted to loops found by the Ref-BFS algorithm.

Proof. By induction on the length n of the derivation employing Lemmata 3.4.10 and 3.4.11

and by using the observation that for every two sets of universal clauses U, 11 with U 1= 11
and a set of initial clauses I, U u I F U u I holds. 0

Finally. we can establish the refutational completeness of refined monodic temporal

resolution for monodic temporal problems with unique left-hand sides in step clauses.

Lemma 3.4.13. Let P = (Uo. I, S, £) be an unsatisfiable monodic temporal problem with

unique left-hand sides in step clauses and let P' be its constant-flooded form.. Then there

e:ri~ .. ts u successfully terminating derivation ~ in J~ from P' which restricts the application

of the e·ventualit·y resolution rules to loops found by the Ref-BFS algorithm. Furthermore, the

refined step resolution rule and the e'ventuality resolution rules are only applied on satisfiable

sets of univer,qal formulae in the derivation 6.

Proof. By Theorem 3.2.8 there exists a successfully terminating derivation ~' = 110 ~ 111 ~
... ~ Urn in Je from pc such that 1. in lim and 1. ft Uj for all 1 $ j < m.

48 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

Then, by Lemma 3.4.12 there exists a J~-derivation ~ = Uo ~ U1 ~ ... ~ Un (m ~ n)

such that either .1. E Un or the set Un is unsat isfi able. fUrthermore, the eventuality resolution

rules are only applied on satisfiable sets of universal formulae in the derivation A. Moreover,

if the set Un is unsatisfiable but .1. ¢ Un, we can apply the termination rule and extend the

derivation ~ with the set Un+1 = Un U {.l}.

Finally, if in the derivation ~ the refined step resolution rule is applied on an unsatisfiable

set of universal formulae, then the first such application can be replaced by an application

of the termination rule in order to obtain the desired result. o

Note that the condition which states that the step resolution rule and the Ref-BFS

algorithm are only applied on satisfiable sets of universal formulae is again necessary for

ensuring the correspondence between specific full merged or merged derived clauses and

those step clauses found by resolution-based methods.

3.4.3 Proof of the Lifting Theorem

Before we can show the refutational completeness of ordered fine-grained resolution with

selection, we have to prove the lifting theorem for J~t without considering the eventuality

resolution and the duplicate literal elimination in terminating step clauses rules.

But as the inference rules of fine-grained step resolution that involve step clauses require

special restrictions on most general unifiers, we need to analyse the notions of substitutions

and most general unifiers in greater detail before we can prove the lifting theorem. For

example, for the instantiation pee) =* Oq(e) of the step clause p(x) =* Oq(x) using the

substitution u = [x t-+ el, there exists a resolution inference between the step clause

pee) =* Oq(e) and the universal clause -,q(e). But due to the restrictions imposed on most

general unifiers for variables occurring in left-hand sides of step clauses, no inference is

possible between the uninstantiated step clause p(x) =* Oq(x) and the universal clause

-,q(e). Consequently, in order to obtain a result that is similar to the "traditional" lifting

theorem (see, e.g., [101), one can, for instance, allow specific instances of clauses only. A

"traditional" result can be shown for ordered fine-grained resolution with selection if the

substitutions that link the non-instantiation to the instantiation level only map variables

into constants that do not occur on the un instantiated level, which is also sufficient for

proving the refutational completeness of the J~t -calculus. Additionally, as arbitrary function

symbols can be introduced during the Skolemization process, we have to prove some results

involving arbitrary terms and not only constants, which complicates the required proof steps

considerably.
First of all, we show some properties of substitutions and most general unifiers. Unless

noted otherwise, we assume in this section that E is a set of constants or function symbols,

i.e. E ~ CS u FS, and that atoms are built over the term set TdX).

Lemma 3.4.14. Let u: X - TdX) be a substitution. Then u is idempotent if and only if

it holds that dom(u) n var(codom(u» = 0.

3.4. REFUTATIONAL COMPLETENESS 49

Proof. Can be found in [62]. o

Lemma 3.4.15. Let a: X --+ Tr;(X) be. a substitution. Then a is a variable renaming if

and only if a 1.s invertible.

Proof. Can be found in [62]. o

Lemma 3.4.16. Let a: X --+ Tr;(X) be a variable renaming. Then a is injective.

Proof. By Lemma 3.4.15 the substitution a is invertible with inverse a-I such that aa- 1 = id.

If we assume that there are variables x, y E X with x '" y and a(x) = a(y), then it follows

that x = xaa- I = yaa- 1 = y, which contradicts the fact that x '" y. 0

Lemma 3.4.17. Leta: X --+ TdX) be an inverti.ble substitution and leta-I: X --+ Tr;(X)

be a substitutionW'i.th aa -1 = id. Then a-I is invertible.

Proof. First of all, as the substitution a is invertible, we can infer that dom(a) = codom(a) by

Lemma 3.4.15. Additionally, codom(a) ~ X and codom(a- 1) ~ X must hold. Furthermore,

it is easy to verify that dom(a- 1) = codom(a) and codom(a- 1) = dom(a), which implies

that dom(a- 1) = codom(a- 1). Hence, we can conclude that a-I is invertible by applying

Lemma 3.4.15 again. 0

Lemma 3.4.18. Let a, T: X --+ Tr;(X) be variable renamings. Then it holds that aT is a

vari.able renaming.

Proof. It follows from Lemma 3.4.15 that there are substitutions a-I, T- 1 with aa- 1 =
i.d = rr-l. Thus, (aT)(T-la- l) = id and aT is invertible, which implies that aT is a

variable renaming by Lemma 3.4.15. o

Lemma 3.4.19. Let a, T: X --+ TI;(X) be most general unifiers of two atoms A and B such

that a is idempotent. Then it holds that T = aT.

Proof. As the substitution T is a unifier of the atoms A and B, there exists a substitution f3

with T = a/3. Additionally, as a is idempotent, it holds that T = (aa)f3 = a(af3) = aT. 0

The following proposition can also be found in [62].

Lemma 3.4.20. Let a, T: X --+ TI;(X) be most general unifiers of two atoms A and B such

that a is idempotent. Then there exists a variable renaming 'P with a'P = T.

Proof. First of ali, we define a substitution 0 as follows. For x EX, let

{
r(x)

o(x) = x
if x E dom(T) and x ¢ dom(a)

otherwise

As a is idempotent, it holds by Lemmata 3.4.14 and 3.4.19 that T = aT = ao. Moreover, as

the substitution a is a unifier of the two atoms A and B, there exists a substitution f3 with

50 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

u = T(3. Thus, we obtain u = T(3 = uo.(3. Now, for x E dom(o.) it holds that x rt dom(u),

which implies that x = xo.(3. As o.(x) f. x, it follows that codom(o.) ~ dom((3) ~ X and

that o.ldom(a) is injective as for any two variables x, y E dom(o.) with xo. = yo. it holds that

x = xo.j3 = yo.j3 = y.

Let -y: codom(o.) \ dom(o.) - dom(o.) \ codom(o.) now be a bijection. We then define a

substitution 0.' = 0. U -y. The substitution 0.' is well-defined and it is a variable renaming as

dom(o.') = dom(o.)U(codom(o.)\dom(o.» = codom(o.)U(dom(o.)\codom(o.» = codom(o.')

Furthermore, we show that codom(o.) \ dom(o.) ~ dom(u). Let therefore x E codom(o.) \

dom(o.). If we assume that x rt dom(u), then it follows that x = x(3 as u = uo.(3. Thus,

x rt dom(j3), which contradicts the fact that codom(o.) ~ dom((3).

Finally, we can conclude that T = uo. = uo.' as dom(u) n var(codom(u» = 0. 0

Lemma 3.4.21. Let u: X - n:;(X) be a most general unifier of two atoms A and B.

Additionally, let (be a variable renaming. Then it holds that u(is a most general unifier 0/
A and B.

Proof Let T be a unifier of A and B. We need to show that there is a substitution 'P with

u('P = T.

As u is a most general unifier of A and B, it follows that there is a substitution 1jJ

such that u1jJ = T. Moreover, by Lemma 3.4.15 there exists a substitution (-1 such that

((-1 = id, which implies that

Hence, by choosing 'P = (-11jJ, we obtain the desired result. o

The next major result in this section will be established by Lemma 3.4.32, which can

be seen as a lifting lemma for most general unifiers. It states that for a set of constants

C ~ CS and atoms A,..4, B, fJ such that the substitution u: X - TI;(X) is a most general

unifier of ..4, fJ and such that there is a substitution 1/: X - TI;(X) with A1/ = ..4, B1/ = 8,
and codom(1/) ~ C, there exists a most general unifier T: X - TI;(X) of A and B, and a

substitution 'P: X - TI;(X) with T'P = 1/u and codom('P) ~ c.
The proof of the following lemmata relies on derivations produced by the rule-based

unification algorithm U shown in Figure 3.5, which computes a most general unifier. The

algorithm has been introduced in [7]. We prove the existence of most general unifiers with

certain properties by analysing derivations produced by the algorithm U.

We first of all define the following notions that are related to the algorithm U.

Definition 3.4.22. In the context of the rule-based unification algorithm U we define that:

(i) A system A is either 1.. (the failure system) or a pair P; S consisting of a multiset P

of unifirotion problems and a set of equations S in solved form.

3.4. REFUTATIONA.L COMPLETENESS

Trivial:
{s ~ s} U pi; S :::;. pi; S

Decomposition:

U(Sl, ... ,Sn) ~f(tl, ... ,tn)}UPI;S:::;. {SI ~tl, ... ,Sn ~tn}Upl;S

for n 2: 0

Symbol Clash:

U(SI, ... , sn) ~ g(tl, ... , t m)} U pi; S:::;..l

if f =I g

Orient:

{t ~ x} U pi; S :::;. {x ~ t} U pi; S

if t is not a variable

Occurrence Check:

if x E var(t) and x =I t

Variable Elimination:

{x ~ t} U pi; S :::;..1

{x ~ t} U pi; S :::;. pi {x t}; S {x t} U {x ~ t}

if x fi. var(t)

Figure 3.5: Rule-Based Unification Algorithm U

(ii) A derivati.on V produced by the algorithm U is a sequence of systems

51

where n > 1 and for every i with 1 < i 5 n, the system Ai results from the system A i - l
through an application of one of the inference rules depicted in Figure 3.5. The length

of the derivation V is denoted by lVI, i.e. IVI = n.

(iii) A derivation V = AI, ... , An is said to be maximal if and only if An = ..1. or An = 0; 8

for a set of equations S in solved form.

(iv) For a set S = {Xl ~ tl, ... ,Xn ~ tn} of equations in solved form, we write Us to

denote the substitution [Xl fl,··· ,xn tnJ that is induced by the set of equations S.

Thus, the algorithm U deriVe> new systems from given systems through its ded uction

rule>. When started on a system {A ~ B}; 0 with two unifiable atoms A and B, it eventually

computes a most general unifier of the atoms A and B as stated in the following correctne>S

result for the algorithm U.

Theorem 3.4.23 (see [7]). Let A and B be two unifiable atoms.

Then any maximal derivation computed by the algorithm U shown in Figure 3.5 starting

from the system P; S = {A ~ B}; 0 results in a system 0; S such that Us is an idempotent

52 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

most general unifier of A and B, (dom(O's) U (codom(O's) n X)) ~ var(A) U var(B) and

const(codom(O's)) ~ const(A) U const(B).

The proofs of the next two lemmata rely on Theorem 3.4.23.

Lemma 3.4.24. Let A, B be two unifiable atoms and 0': X -+ TdX) be a most general

unifier of A and B. Then it holds that const(codom(O')) ~ const(A) U const(B).

Proof First of all, it follows from Theorem 3.4.23 that the unification algorithm shown

in Figure 3.5 computes a most general unifier A of A and B such that const(codom(A)) ~

const(A) U const(B). Moreover, as a is a most general unifier of A and B, there is a

substitution ep such that O'ep = A. If we now assume that there is a variable x and a constant

c E const(O'(x)) such that c ¢. const(A) U const(B) , then it follows that c E const((O'(x))ep)

as cep = c. Thus, c E const(codom(A)) ~ const(A) U const(B), which is obviously a

contradiction. 0

Lemma 3.4.25. Let a, T: X -+ TdX) be most general unifiers of two atoms A and B.

Then there exists a variable renaming ep with O'ep = T.

Proof By using, for instance, the algorithm U depicted in Figure 3.5, we obtain from

Theorem 3.4.23 that there exists an idempotent most general unifier (J of the atoms A and B.

Moreover, it follows from Lemma 3.4.20 that there are variable renamings ep,t/J with (Jep = a

and Ot/J = T. Lemma 3.4.15 implies that there is a substitution c.p-l with epep-l = id. Thus,

0= O'ep-l and O'(ep-lt/J) = (O'ep-l)t/J = (Jt/J = T. Finally, it follows from Lemmata 3.4.15,

3.4.17 and 3.4.18 that c.p-lt/J is a variable renaming. 0

The next major result in this section will be established by Lemma 3.4.32. For a

set C ~ CS of constants and atoms A, A, B, E such that the substitution 0': X -+ TdX)

is a most general unifier of A and E and such that there is a substitution 'f/: X -+ TdX)

with A'f/ = A, B'f/ = E, and codom('f/) ~ C, the existence of the most general unifier

T: X -+ TdX) of A and B, and of the substitution ep: X -+ TdX) with Tep = 'flO' and

codom(c.p) ~ C will be shown by analysing a special kind of derivations of the algorithm U.

We will only consider liftable derivations produced by the unification algorithm U depicted

in Figure 3.5:

Definition 3.4.26. Let V = PI; 8 1 => P2; 82 => ... => Pn ; 8 n be a derivation produced by

the algorithm U. We say that the derivation V is liftable if and only if the following three

conditions are satisfied:

(i) the trivial rule is only applied to pairs of variables x 1: x or to pairs of constants c 1: c,

and

(ii) the decomposition rule i8 only applied to pairs of terms f (81, ... , 8n) 1: f (t 1, ... , tn)

with n > 0, and finally

3.4. REFUTATIONAL COMPLETENESS 53

(i.ii) every application of the orient rule is immediately followed by an application of the

occurrence check or variable elimination rule.

The next lemma then proves some simple properties of derivations produced by the

algorithm U.

Lemma 3.4.27. Let V = P1; Sl => ... => Pn; Sn (n ~ 2) be a derivation produced by the

algorithm U such that 8 1 = 0.
Then it holds that for every i with 1 ~ i ~ 11 that

• dom(O"sJ ~ dom(O"sHI) for i < 11,

• {x ~ t} E Pi implies that x ft dom(O"sJ,

• const(codom(asJ) ~ const(Pi-d U const(8i -d for i > 1, and

• dom(as,) ~ var(Pt}.

Proof. Follows straightforwardly from the definition of the algorithm U shown in Figure 3.5.

o

The follOWing two lemmata prove some results that are needed for Lemma 3.4.30.

Lemma 3.4.28. Let C ~ CS be a set of constants. Additionally, let P; S => P'; fj' be

a transformation step performed by the algorithm U in a liftable derivation that has been

initially started on an empty set of solved equations such that the orient rule is not applied

and such that there is a substituti.on '\: X - TdX), a multiset of equations P and a set of

equations in solved form 8 wi.th

(a) codom('\) ~ C,

(b) P'\ = P,

(c) T/x E dom(as): xas'\ = xa§, and

(d) T/ x E dom(as}: x ~ dom(as} => xO"s'\ = x'\.

Then there exists a multiset of equations P", a set of equations 8", a derivation P; 8 =>.
P"; 8" produced by the algorithm U and a substitution 'P: X - TdX) such that

(i) dom('\) £; dom('P),

(ii) dom('P) \ dom('\) £; dom(a§,),

{iii} T/ x E dom(,\): 'P(x) = '\(x),

(iv) codom('P) £; C,

{v} P''P = P',

54 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

(vii) 'V x E dom(O's'): x ¢. dom(O'ii') => XO's'<P = X<p, and

(viii) 'Vx E dom(O's') \ dom(O's): x¢. dom(O's') => x E dom(A).

Proof. We have to distinguish between the different rules that could have been used to

obtain the derivation step F; S => Pi; [P. Since Pi; S' is not the failure system .1, neither

the occurrence check, nor the symbol clash rule could have been applied in the derivation

of Pi; S'.
For the trivial rule, we obtain P = {s -l::. s} U Q, in = Q and S = S'. As the considered

derivation is liftable, we can conclude that s is either a variable or a constant. Let now

s -l::. t E P such that SA = sand O. = S. If s = t, then the trivial rule can be applied on

P; S = {s -l::. s }uQ; S. The result of the application is the system P"; S" = Q; s, i.e. S" = S,

and as QA = Q, the properties (i) to (viii) are obviously satisfied for the substitution A.

Otherwise, s -=I- t holds, and as codom(A) ~ C, there are the following possibilities: sEC

and t EX, or sEX and tEe, or sEX and t EX.

If sEX and t = c E C, we can infer that A(S) = c -= t = S. Thus, the variable

elimination rule can be applied on the system P; S = {s 1::. c} U Q; s, which results in the

system P"; S" = Q{ S 1--4 c}; S{ S 1--4 c}u{ S ~ c}. It is then easy to see that O's" = O's{ s 1--4 c}.

Now, let <p := A. The properties(i), (ii), (iii) and (iv) are then trivially satisfied. As QA = Q,
A(S) = c, and therefore, {s 1--4 c}A = A, it holds that P"<p = P"A = Q{s 1--4 c},x = Q = Pi,
i.e. property (v) is satisfied. For property (vi), let Z E dom(0' s") = dom(0' s). Hence,

ZO's<P = ZO'SA = zO'§ = zO's' and as again {s 1--4 c}<p = <p, we obtain ZO's"<p = zO's';, i.e.

property (vi) holds. Now for property (vii), it first of all holds that SO's"<p = c = Sip. We

still have to consider the case when Z E dom(O'sll) such that Z ¢. dom(O's') and Z -=I- x. It

follows that Z E dom(O's) and Z ¢. dom(O's)' which implies ZO's<P = zO's,x = zA = zip. And

therefore, as {s 1-+ c}<p = <p, it holds that ZO's"<p = zip. Finally, we note that s E dom(A)

and thus, property (viii) is satisfied.

If s = dEC and t E X with A(t) = d = s, we can apply the orient rule rule on the system

P; S = {d 1::. t} U Q; s. The result of its application is the system pi; S' = {t 1::. d} U Q; S.

It is now possible to apply the variable elimination rule on the system pi; S', resulting in

the system P"; S" = Q{t 1-+ d}; S{t 1--4 d} U {t ~ d}. Again, note that O's" = O's{t 1--4 d},

and for the substitution <p := A it holds that {t 1--4 d}A = A. Similarly to the previous case

one can show that the properties (i) to (viii) are satisfied.

Finally, if s = x E X and t = Y EX, we can apply the variable elimination rule on

the system P;S = {x 1::. y} UQ;S, which derives the system P";S" = Q{x 1--4 y};S{x 1--4

y} U {x ~ y}. It is again easy to see that O's" = O's{x 1--4 y}. Let now <p := A, for which it

holds that {x 1--4 y}<p = 'P as <p(x) = <p(y). Again, it can be shown similarly to the case of

sEX and tEe that the properties (i) to (viii) are satisfied.

For the decomposition rule we obtain P = {f(s}, ... , sn) 1::. l(i1, •.• ,in)} U Q, Pi =

{Sl -l::. i1, .. • , Sn 1::. in}uQ and S = S'. As the considered derivation is liftable, we have n > O.

3.4. REFUTATIONAL COMPLETENESS 55

Additionally, as codom(A) ~ C, it follows that there is I(Sl, ... , sn} :b l(t1, ... , tn) E P such

that (/(Sl,"" Sn))A = 1(81,"" 8n) and also (/(t1"'" tn))A = l(i1, ... , in). Consequently,

we can apply the decomposition rule to P; S = {f(Sl"'" sn) :b 1(t1, . .. , tn)} U Q; s, which

yields the system P"; S" = {Sl :b t1, ... , Sn :b tn} U Q; s. As QA = Q and thus P" A = P',
it obviously holds that the properties (i) to (viii) are satisfied for the substitution A.

For the variable elimination rule, we have P = {x :b l} U Q, in = Q{x 1-+ i}, f" =

Six 1-+ f} U {x :b i} and x ~ var(i). Let x:b t E P such that XA = x and tA = i. Thus, as

x E X, it must hold that A(X) = x = X. FUrthennore, we obtain x fi var(t) as otherwise

x E var(i). So, we can apply the variable elimination rule on P; S = {x :b t} U Q; S, and

the result of its application is the system P"; S" = Q{x 1-+ t}; Six 1-+ t} U {x :b t}. Let now

'P := A. The properties (i), (ii), (iii) and (iv) are trivially satisfied. Additionally, as A(X) = x

and codom('P) = codom(A) ~ C, we get:

{x 1-+ t}'P = 'P{x 1-+ t'P} = 'P{x 1-+ i}

And hence, as Q'P = Q>. = Q:

P"'P = (Q{x 1-+ t})'P = Q({x 1-+ t}'P} = Q('P{x 1-+ l}) = (Q'P){x 1-+ i}

= Q{x 1-+ i}

= in

Property (v) is thus satisfied. Moreover, it follows from the properties of the algorithm U

(see Lemma 3.4.27) that x fi dom(l1s} and that x = x fi dom(l1s)' Thus, we obtain

l1s" = l1s{x 1-+ t} and l1s' = l1.six 1-+ f}. For property (vi), it first of all holds that

Xl1s"'P = t'P = i = Xl1s" Then, let Z E dom(l1s') such that Z -=I- x, which implies that

Z E dom(l1s) and thus Zl1s'P = Zl1s>' = Zl1s' Applying the substitution {x 1-+ i} on both

sides of the equality yields the following result:

Then, for property (vii), let Z E dom(l1s") such that Z fi dom(l1s'), which implies thnt

Z -=I- x. Thus, Z E dom(l1s) and as dom(l1§) ~ dom(l1s'} (see Lemma 3.4.27), it holds that

Z ~ dom(l1s)' We can conclude from the assumptions then that Zl1s'P = Zl1sA = ZA = z<p.

Thus, as codom('P) ~ C, it holds that either Zl1S'P E X or Zl1s'P E C. Consequently, we

obtain that Zl1s E X or Zl1s E C. Furthermore, if we assume Zl1s = x, then it would follow

that x = x<p = Zl1s'P = Z'P, which contradicts property (iv). Hence, Zl1s -=I- x and:

Zl1s"<P = Zl1s{x 1-+ t}'P = Zl1s<P = z<p

Finally, it holds that x = x E dom(l1s') and thus, property (viii) is satisfied. o

Lemma 3.4.29. Let C ~ CS be a set of constants. Additionally, let P; S => PI; S' => P"; S"

be two consecutive tronsformation steps performed by the algorithm U in a liftable derivation

that has been initi.ally started on an empty set of solved equations such that the system PI; 8'

56 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

is obtained through the orient rule and such that there is a substitution'x: X - Tr;(X), a

multiset of equations P and a set of equations in solved form S with

(a) codom('x) ~ C,

(b) p,x = P,

(c) Vx E dom(u§): xus'x = xu§, and

(d) V x E dom(us): x f. dom(u§) ~ xus'x = x'x.

Then there exists a multiset of equations P", a set of equations 8", a derivation P; S ~.

P"; 5" produced by the algorithm U and a substitution rp: X - T E (X) such that

(i) dom('x) ~ dom(rp),

(ii) dom('P) \ dom('x) ~ dom(u§,),

(iii) VXE dom('x): 'P(x) = ,X(x),

(iv) codom('P) ~ C,

(v) plI'P = pll,

(vi) VxE dom(u§,,):xus"'P=xus",

(vii) Vx E dom(us"): x f. dom(us") ~ xUs"'P = xrp, and

(viii) V x E dom(us") \ dom(us): x f. dom(u s") ~ x E domp).

Proof. Let P = {i .:b x} U Q and Pi = {x .:b i} U Q such that i is not a variable and

hence, x f. i. Additionally, 8 = S' holds and as the derivation Pi; S' ~ pll; fj" is liftable

but not failing, it must have been obtained through the variable elimination rule. Hence,

pll = Q{x i} and 8" = 8{x i} U {x .:b i} such that x f. var(i). Let t .:b x E P such

that t'x = i and x'x = x. Thus, as x E X, it must hold that 'x(x) = x = x. Furthermore, we

obtain x f. var(t) as otherwise x E var(i).
Then, if t is not a variable, we can apply the orient rule to the system P; 5 = {t .:b

x} U Q; 8 and we obtain the system pi; 5' = {x .:b t} U Q; 5. An application of the variable

elimination rule yields the system P"; 5" = Q{x t}; 5{x 1-+ t} U {x .:b t}. Similar

arguments to the ones used in the proof of Lemma 3.4.28 show that the properties (i) to (viii)

hold for the substitution ,x.
It remains to consider the case when t is a variable y EX. It cannot be that x = y as

otherwise x E var(y) = var(t). So, x f. y and we can apply the variable elimination rule to

the system P; 8 = {y .:b x} U Q; 5 and we obtain the system p lI ; 5" = Q{y 1-+ x}; 5{y 1-+

x} U {y.:b x}. We now define a substitution 'P as follows. For Z E X, let

'P(Z) = { i
'x{z)

if z = x

otherwise

3.4. REFUT.4TIONAL COMPLETENESS 57

r.p is well-defined and as x ¢ dom(>.), we get dom(>.) ~ dom('P) and hence, property (i) holds.

Moreover, property (ii) is satisfied as well as dom(r.p) \ dom(>.) = {x} and x = x E dom(a s')'

Then, for property (iii) we simply observe again that x ¢ dom(>'). Furthermore, as

i = >.(y) E codom(>.) and codom(>.) ~ C, it obviously follows that codom('P) ~ C, i.e.

property (iv) is satisfied. Additionally, as >.(x) = x, we obtain 'P = >'{x i}, and it holds

that:

>.{ x i} = >.{ x >.(y)} = {y x}(>'{ x >.(y)}) = {y x}r.p

Thus, we get:

P"r.p = (Q{y x})r.p = Q({y x}r.p) = Q(>.{x i}) = (Q>.){x i}

= Q{ x i} = P"

Hence, property (v) holds. Similar arguments to the ones used in the proof of Lemma 3.4.28

show that as" = as{y x} and as" = as{x i}. For property (vi), we observe that

x ¢ dom(as") ;:2 dom(as) as otherwise the equation y ~ x would not be an element of P,

which implies that:

xas"r.p = xr.p = I = xa S" = xa S"

Now, let z E dom(as") such that z =f x, from which it follows that z E dom(as)' Hence, by

using the assumptions we obtain zas>' = za S, which implies that:

zas"r.p = z(as{y x})'P = zas({y x}'P) = zas(>.{x i})

= (zas>.){x i}

= (zas){x i}

= z(as{x i}) = zas"

Then, for property (vii) it first of all holds that yas"'P = X'P = i = y>. = Y'P. Now,

let z E dom(as") such that z ¢ dom(as") and z # y, which implies that z E dom(as)

and z ¢ dom(as) as dom(as) ~ dom(as"). Hence, it follows from the assumptions that

zas>' = z>. and therefore:

zas"r.p = z(as{y x})'P = zas({y x}r.p) = zas(>.{x i})

= (zas>'){x i}

= (z>.){x i}

= z(>'{x i}) = zr.p

Finally, we note that y E dom(>.) as >.(y) = i ¢ X and thus, property (viii) is satisfied. 0

The next lemma regroups the results established by the two previous propositions.

Lemma 3.4.30. Let C ~ CS be a set of constants. Additionally, let jj = P; 0 ::::} + Pi; 8'
be a liftable derivation of the algorithm U such that there is a substitution T/: X -+ TI;(X)

and a multiset of equations P wi.th

58 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

(a) codom(1J) ~ C, and

(b) P1J = P.

Then there exists a multiset of equations pi, a set of equations S', a derivation P; 0 ~.
pi; S' produced by the algorithm U and a substitution r.p: X _ TE(X) such that

(i) dom(1J) ~ dom(r.p),

(ii) codom(r.p) ~ C,

(iii) "Ix E dom(1J): r.p(x) = 1J(x),

(iv) dom(r.p) \ dom(1J) ~ dom(us '),

(v) plr.p = Pi,

(vi) "Ix E dom(us '): xUs'r.p = xus', and

(vii) "Ix E dom(us'): x ¢ dom(us') ~ xus,r.p = x1J/\ x E dom(1J).

Proof By induction on the length IVI of the derivation V. If IVI = 1 and the orient rule

is not applied, or IVI = 2 and the orient rule is applied as first inference step, then the

properties (i) to (vii) follow immediately from Lemmata 3.4.28 and 3.4.29.

For the case where IVI > 1 and which is not covered above, we can split the derivation V
into a derivation i = P; S ~. Q; R and into a double rule application Q; R ~ PI; SI ~
Pi; S' if the system has been obtained through the orient rule or into a single rule application

Q; R ~ Pi; S', otherwise. By applying the induction hypothesis, we can conclude that

there is a derivation £ = P; S ~. Q; R and a substitution ,X such that the properties (i)

to (vii) hold for the derivation £ and the substitution 'x. It now follows from Lemmata 3.4.28

and 3.4.29 that there exists If. derivation Q; R ~ + pi; S' and If. substitution r.p such that

• dom('x) ~ dom(r.p),

• codom(r.p) ~ C,

• "Ix E dom('x): r.p(x) = 'x(x),

• dom(r.p) \ dom('x) ~ dom(us'),

• plr.p = Pi,

• \f x E dom(us'): x ¢ dom(u s') ~ xus,r.p = xr.p, and

3.4. REFUTATIONAL COMPLETENESS 59

Thus, as dom(T]) ~ dom(-X), we obtain dom(T]) ~ dom(<p), i.e. property (i) is satisfied.

Moreover, the properties (ii), (v), and (vi) hold as well.

For statement (iii), let x E dom(17), which implies that x E dom(-X) and 17(X) = -X(x)

(through the induction hypothesis). Finally, as hence -X(x) = <p(x), it holds that T](x) = <p(x).

In order to prove property (iv), we first of all note that dom(aRJ ~ dom(a.s,). Let now

x E dom('f') \ dom(T]). If x E dom(-X) , then it follows (from the induction hypothesis) that

x E dom(ail), from which we conclude that x E dom(a.s,). Otherwise, x ¢ dom(-X) and we

immediately obtain x E dom(a.s,).

For the remaining property (vii), let x E dom(as') such that x ¢ dom(a s'). It follows

first of all that xas''f' = X'f'. Moreover, as dom(ailJ ~ dom(as '), it holds that x ¢ dom(ailJ

We need to distinguish between the following two cases now. If x E dom(aR}, then we

can conclude from the induction hypothesis that x E dom(17). Hence, by property (iii) we

have T](x) = if'(x) and thus, xas,<p = x17. Finally, for the case where x ¢ dom(aR), we

immediately obtain x E dom(-X) ~ dom(<p). Furthermore, by property (iv) x E dom(17) must

hold as otherwise x E dom(a.s,). Hence, by property (iii) we have T](x) = <p(x) again, which

implies in conclusion that xas,'P = XT]. 0

We still need to prove one property related to the derivation and the substitution obtained

through the previous lemma.

Lemma 3.4.31. Let C ~ CS be a set of constants. Add'itionally, let jj = P; 8 :::;,. P'; 8' be

a liftable derivation of the algorithm U such that there is a substitution 17: X -+ TE(X) with

PT] = P, asT] = as and codom(T]) ~ C for a multiset of equations P and a set of equations

1n solved form S, Additionally, let V = P; S :::;,* P'; S' be the derivation and <p: X -+ TE(X)

be the substi.t'ution obta1ned through Lemma 3.4.30. Then it holds that:

'if x E dom(as'): x E dom(as') V x E var(codom(as'))

Proof. Let x E dom(as') for which we assume that x ¢ dom(as'). As x E dom(as'), it

follows from the properties of algorithm U that there is exactly one application of the

variable elimination rule contained in the derivation jj which has added the variable x to

the domain of the substitution as" By considering how the derivation V has been obtained,

one can see that there is a corresponding application of the variable elimination rule in

the derivation V, which adds a variable y to the domain of an intermediate substitution (1

such that x E var(codom((1)) (as x ¢ dom(as,), none of the other possible cases for

obtaining a corresponding application of the variable elimination rule can apply). Finally,

as x ¢ dom((1s'), the variable elimination rule is not applied on the variable x in the

derivation V and hence, the variable x is not replaced by another term in the derivation V.

Thus, x E var(codom(as'))· 0

Now we can state the result that links most general unifiers to substitutions 17 with

codom(17) ~ C.

60 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

Lemma 3.4.32. Let C ~ CS be a set of constants. Additionally, let A, A, B, 8 be atoms

such that the substitution a: X - TdX) is a most general unifier of A and 8 and such

that there is a substitution TJ: X - TdX) with ATJ = A, BTJ = 8, and codom(TJ) ~ C.
Then there exists a most geneml unifier T: X - Tr;(X) of A and B, and a substitution

i.p: X - TdX) with Ti.p = TJa and codom(i.p) ~ C.

Proof Let A = p(Sl, .. . , sn) and B = P(tl, .. . , tn) for a predicate symbol p of arity n

and terms SI, ... , Sn, tl,···, tn· Additionally, let P = {Sl ~ tl, ... , Sn ~ t n} and F = PTJ.

As the atoms A and 8 are unifiable, it follows from Theorem 3.4.23 that any maximal

derivation by the algorithm U which starts from the system F; 0 ends in a system 0; 8
such that the substitution as is an idempotent most general unifier of A and 8, and

dom(as') ~ var(A) u var(iJ). Moreover, it is easy to see that a liftable derivation of U

which starts from F; 0 and ends in 0; 8' exists. Let f = as, be the resulting most general

unifier of A and 8. Then, as 0TJ = 0, it follows from Lemma 3.4.30 that there exists a

derivation produced by the algorithm U which starts in the system P; 0 and ends in the

system P'; 8', together with a substitution i.p such that

(i) dom(TJ) ~ dom(i.p),

(ii) codom(i.p) ~ C,

(iii) 'Vx E dom(TJ): i.p(x) = TJ(x),

(iv) dom(i.p) \ dom(TJ) ~ dom(as'),

(v) P'i.p = 0,

(vi) 'Vx E dom(as'): xas'i.p = xas', and

Obviously, P' = 0 and the derivation is maximal, which implies that T := as' is an

idempotent most general unifier of A and B by Theorem 3.4.23. We now define a new

substitution t/; as follows. For Z EX, let

t/;(z) = { TJ(z)
i.p(z)

if z ¢ var(codom(T»

otherwise

It is clear that codom(t/;) ~ C. We still need to show that Tt/; = .,.,r. For that purpose, let

x E X be a variable .

• Assume x E dom(f). It follows then from property (vi) that XTi.p = xf. Additionally,

we have x ¢ dom(TJ) as otherwise x ¢ dom(f) ~ var(F) would hold. Consequently,

TJ(x) = x and XTi.p = x.,.,r.

- If x E dom(T), then XTt/; = XTi.p holds and therefore, XTt/; = xTJf.

3.4. REFUTATIONf\L COMPLETENESS 61

- If x fI. dom(r), then we obtain x E var(codom(r)) by Lemma 3.4.31 and thus,

xr1t' = x1t· = X'P = xr'P = xrrf·

• Assume x fI. dom(f).

- If x E dom(r), then it follows first of all that xr1/J = xr'P holds. FUrthermore, by

property (vii) we have xr'P = X"l, which implies that xr1/J = X"l.

* If x fI. dom(TJ), then "I(x) = x and thus, xr1/J = X"l = x = xf = x"lf.

* If x E dom(TJ), then as codom(TJ) ~ C, we obtain XTJ = xTJf and hence,

xr1b = xTJf.

- For x fI. dom(r), we need to distinguish between the following cases:

* If x E var(codom(r))

If x ft dom(TJ), then it follows from property (iv) that x ft dom('P), which

implies that X'P = x = XTJ. Thus, we obtain:

xr1/J = x1/J = X'P = X"l = x = xf = xTJf

If x E dom(TJ), then by property (iii) X'P = XTJ holds. Additionally, as

codom(TJ) ~ C, it follows that XTJ = x"If, and therefore:

xr1/J = x1/J = X'P = XTJ = xrrf

* If x ~ var(codom(r)), then it first of all holds that xr1/J = x1/J = XTJ .

. If x ft dom(TJ), then "I(x) = x and thus, xr1/J = XTJ = x = xf = xrrf.

If x E dom(1]), then as codom(TJ) ~ C, we obtain XTJ = xTJf and hence,

xr1jJ = xrrf.

Finally, as f and (7 are most general unifiers of the atoms A and B, it follows from

Corollary 3.4.25 that there exists a variable renaming (with f(= (7 and codom(() ~ X.

We now define a substitution v as follows. For z EX, let

{

1b(1')
v(z) =

Z

if 3v E X: ((v) = z Av E dom(1/J)

otherwise

The substitution v is well defined as the substitution (is injective by Lemma 3.4.16, and

we have codom(v) ~ C. We now show that (v = 1/J(. For that purpose, let z E X. We

need to distinguish between then following two cases then. If z E dom(1/J), then it holds

that z(v = z1/J = z1b(as codom(1jJ) ~ C (and as codom(() ~ X). For the remaining case in

which z ~ dom(1/J), we obtain z(v = z(= z1/J(. Hence, it holds that:

(r()v = r((v) = r(1/JO = (r1/J)(= ("If)(= "I{TO = "1(7

Finally, by using Lemma 3.4.21, we obtain that r(is a most general unifier of the atoms A

and B. 0

62 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

Before we can prove the lifting lemmata for the different inference rules, we still have to

show one additional proposition.

Lemma 3.4.33. Let C ~ CS be a set of constants. Additionally, let A, B, ..4, H be ato'fflS

such there is a substitution 7]: X - TE(X) with A7] = ..4, B7] = H, codom(7]) ~ C and such

that (const(A) n C) U (const(B) n C) = 0. Moreover, let u: X - TE(X) be a most geneml

unifier of..4 and B and let Y ~ X be an arbitmry variable set with 'V x E var(Y7]): u(x) EX.

Finally, let T: X - Tr;(X) be a most geneml unifier of A and B and let t.p be a substitution

with Ti.p = 7]U.

Then it holds for all x E Y that r(x) EX.

Proof Let x E Y. First of all, if follows from Lemma 3.4.24 that const(codom(T» n C = 0.
We now need to distinguish between the following two cases.

If x E dom(7]), then it holds that XTt.p = X7]ff = X7] E C. Thus, it must hold that T(X) is

either a variable or a constant. But if we assume that T(X) is a constant, then it follows

that XTC.p = XT ¢ C as const(codom(T» n C = 0, which is obviously a contradiction.

Finally, for the case that x ¢ dom(7]), we obtain x E var(Y7]), and hence, XTt.p = X7]ff =

Xff E X. It is now easy to see that T(X) E X must hold. 0

We can now prove the first lifting lemma for the step resolution rule between two step

clauses.

Lemma 3.4.34 (Lifting Lemma 1). Let C ~ CS be a set of constants. Additionally, let C,
1), C, V be step clauses such that there are substitutions A1, A2: X - TE(X) with CAl = C,
1)A2 = V, codom().IJ U codom(A2) ~ C, (const(C) n C) U (const(V) n C) = 0 and such that

the step clause t is a binary resolvent by fine-gmined step-resolution from C and jj.

Then there exists a binary resolvent & by fine-gmined step resolution from C and 1) such

that const(&) n C = 0 and such that there exists a substitution t.p: X - Tr;(X) with &t.p = t
and codom(i.p) ~ C.

Proof Let C be i\ ~ 0(C2 V..4), V be D1 ~ 0(D2 V...,H). Additionally, let ii and iI be the

variable renamings used such that Cii and Dil are variable disjoint. Then, the resolvent tis

of the following form:
(C1ii" D1i1)U ~ 0(C2ii V D2i1)U

where ff is a most general unifier of the literals ..4ii and Hil such that ff does not map

variables from C 1ii or D1i1 into a constant or a functional term, ..4ii is eligible in C2ii V ..4ii

for U and ...,HiI is eligible in D2i1 V ...,BiI for ff. Additionally, let S denote the instance

compatible selection function that has been used in the inference.

Now, let C be C 1 ~ 0(C2 V A) and 1) be D1 ~ 0(D2 V ...,B) such that C1A1 = C\,
C 2).1 = 62 , AA1 = ..4 and D 1).2 = Db D2A2 = D2, B).2 = H. Moreover, due to the instance

compatibility of the selection function we can assume that the literal B is selected in the

clause D2 V B if the literal B).2i1 is selected in the clause (D2 V B»).2i1. As codom(At) ~ C

and codom().2) ~ C, there are substitutions I' and l/ respectively such that the clauses CI'

3.4. REFUTATIONAL COMPLETENESS 63

and Vv are variable disjoint. Hence, it is easy to see that there exists a substitution .,.,

with codom(.,.,) ~ C, CI1.,., = CiL and Vv.,., = Vii, which implies that the substitution .,.,U is a

unifier of the two literals All and Bv. Obviously, it holds that const(CJ.L) = const(C) and

const(Dv) = const(D); thus, by Lemma 3.4.32 there exists a most general unifier T of AJ.L

and Bv, and a substitution <p with T<P = .,.,U and codom(<p) ~ C. Additionally, by applying

Lemma 3.4.33 on the set var(Ctv) U var(Dt l1), we can see that T does not map variables of

Ctvor Dtl1 into a constant or functional term.

Furthermore, if the literal -,Bii = -,BA2ii has been selected in the clause D2ii V -,Bii,

then it follows from the instance compatibility of the selection function that there exists

a literal B such that the literal -,Bv is selected in the clause D2v V,Bv. Otherwise, no

literal is selected in D2ii and the literal -,Biiu is maximal w.r.t. D2iiu. Consequently,

as (D2V V ...,Bv).,., = D2ii V -,Bii, we obtain again from the instance compatibility of the

selection function that no literal is selected in D2V, and as,Biiu = -,Bv.,.,u = -,(BVT)<p

and {hiiu = D2V.,.,U = (D2VT)<p, it follows from properties of the ordering >- on literals that

...,BVT is maximal w.r.t. D2vT. Hence, -,Bv is eligible in D2V for T. Similarly, one can show

that All is eligible in C2J.L for T, i.e. there exists a resolvent £ by fine-grained step resolution

from CI1 and Dv, which is of the following form:

Additionally, it holds that:

£'f' = (C111/\ DtV)T'f' ::::} O(C2J.L V D2v)T'f'

= (Gt l1/\ Dtv).,.,u ::::} O(C2J.L V D2V).,.,u

= (Gtft /\ Dtii)u ::::} O(G2ft V D2ii)u

=f

Finally, Lemma 3.4.24 implies that const(£) n C = 0. o

We now state the lifting lemma for the resolution inference rule between step and

universal clauses.

Lemma 3.4.35 (Lifting Lemma 2). Let C ~ CS be a set of constants. Additionally,

let C, C be step clauses and V, i> be universal clauses such that there are substitutions

At, A2: X -+ TdX) with CAt = C, VA2 = i>, codom(At) U codom(A2) ~ C, (const(C) nC) U

(const(D) n C) = 0, and such that the step clause f is a binary resolvent by fine-grained

step-resolution from C and i>.
Then there exists a binary resolvent £ by fine-grained step resolution from C and V such

that const(£) n C = 0 and such that there exists a substitution <p: X -+ TdX) with £<p = f
and coelom('f') ~ C.

Proof. Analogously to the proof of the Lemma 3.4.34. o

64 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

Now we prove the lifting lemma for the factoring in right-hand sides of step clauses

inference rule.

Lemma 3.4.36 (Lifting Lemma 3). Let C ~ CS be a set of constants. Additionally, letC, C
be step clauses such that there is a substitution A: X - Tr;(X) with CA = C, codom(A) ~ C,

const(C) n C = 0, and such that the clause i is the conclusion of the ordered fine-grained

positive step factoring with selection rule applied to C.
Then there exists a step clause £ which is the conclusion of the ordered fine-grained

positive step factoring with selection rule applied to C such that const(£) n C = 0 and such

that there exists a substitution ep: X - Tr;(X) with £ep = i and codom(ep) ~ C.

Proof Let C be C't ~ 0(C2 V A V iJ). Then, the clause i is of they following form:

where U is a most general unifier of the atoms A and iJ such that U does not map variables

from C1 into a constant or a functional term and such that the literal A is eligible in

C2 V A V iJ for u. Additionally, let S denote the instance compatible selection function that

has been used in the inference.

Now, let C be C1 ~ O(C2 V A V B) such that CIA = 61, C2A = C2, AA = A and

BA = E. Then, by Lemma 3.4.32 there exists a most general unifier T of A and B, and a

substitution ep with Tep = AU and codom(ep) ~ C. Additionally, it follows from Lemma 3.4.33

that T does not map variables from C 1 into a constant or functional term.

Since the literal A is eligible in C2 V A V iJ for u and A is positive, it follows that no

literal is selected in C = C2 V A V E and Au is maximal w.r.t. ihu. Thus, as CA = C, we

obtain from the instance compatibility of the selection function that no literal is selected in

the clause C2 V A V B. Additionally, as (AT)ep = AAU = Au and (C2T)ep = C2AU = (:2U,

we can infer from the properties of the literal ordering >- that the literal AT is maximal

w.r.t. C2 T. Thus, the literal A is eligible in the clause C2 V A V B for T, i.e. we can apply the

ordered fine-grained positive step factoring with selection rule on the step clause C together

with the substitution T. The result of its application is the following step clause £:

Moreover, it holds that:

£ep = C1Tep ~ O(C2 V A)Tep

= C1AU ~ O(C:? V A)AU

= C1u ~ 0(C2 V A)u

=i

Finally, Lemma 3.4.24 implies that const(£) n C = 0.

Next, we prove the lifting lemma for the clause conversion rule.

o

3.4. REFUTATIONAL COMPLETENESS 65

Lemma 3.4.37 (Lifting Lemma 4). Let C ~ CS be a set of constants. Additionally, let C, C
be step clauses such that there 108 a substitution A: X - TI;(X) with CA = C, codom{A) ~ C,

const(C) n C = 0. and such that the universal clause t is the conclusion of the clause

conversion rule applied to C.
Then there exists a universal clause £ which is the conclusion of the clause conversion

rule applied to C such that const(£) n C = 0 and £A = t.

Proof. Let C be C\ ::;. 0.1 and C be C l ::;. 0.1. Then, we obtain t = ..,61 . By applying the

clause conversion rule on the clause C, we get a clause £ = ..,Cl . Clearly, const(£) n C = 0,
and as CA = C, it holds that £A = t. 0

We conclude by stating the lifting theorem for ordered fine-grained temporal resolution

with selection without the eventuality resolution and the duplicate literal elimination in

terminating step clauses rules.

Theorem 3.4.38 (Lifting Theorem). Let C ~ CS be a set of constants. Additionally,

let N be a set of constant-flooded temporal clauses with const(N) n C = 0, and let .iii
be a set of instances of clauses in N such that there is a substitution A: X - TI;(X)

with codom(A) ~ C and NA =.IiI. Additionally, let ~ = Cl,'" ,Cn be a :J';~-derivation
from N which does not contain an applicati.on of an eventuality resolution or duplicate literal

elimination in terminating step clauses rule.

Then there exists a Ji~ -derivation a = Cl, ... , Cn from N such that for every i,

1 ~ i ~ n, there exists a substitution Ai: X - T~(X) with CiAi = Ci and codom(Ai) ~ C,

which is denoted by a ~s.c ~ . It also holds that const(a) n C = 0.

Proof. By induction on the length I~I of the derivation ~ using Lemmata 3.4.34, 3.4.35,

3.4.36, 3.4.37 and the lifting lemmata for ordered first-order resolution with selection (see,

e.g., [10]). 0

3.4.4 Proof of Refutational Completeness

The proof of completeness for ordered fine-grained resolution with selection consists in a

simulation of a derivation produced by refined monodic temporal resolution J; by ordered

fine-grained resolution with selection. We show that in each derivation step both calculi can

derive formulae which have the same clausification result.

The next three lemmata are the key propositions for the completeness proof. They

establish that particular merged derived and full merged step clauses can also be obtained

by resolution, and vice versa, that some refutations by step resolution correspond to merged

derived and full merged step clauses. Similar (but more concisely written) proofs can be

found in [58].

Unless noted otherwise, we assume in this section that we are given an admissible atom

ordering >- and an instance compatible selection function S. Also, the equality relation

on formulae is interpreted w.r.t. commutativity of the disjunctions and the conjunctions

66 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

present in the formulae and w.r.t. consistent renamings of bound variables occurring in the

formulae.

The next two lemmata show that merged derived and full merged step clauses which are

of a special form can also be derived by ordered fine-grained resolution with selection.

Lemma 3.4.39. Let P = (U, I, S, f) be a monodic temporal problem with unique left-hand

sides in step clauses such that the set U is satisfiable and let P = (U', I', S',£) be a

temporal problem such that the set I' is the clausification of the set I, the set S' is the

clausification of the constant-flooded set S (with respect to the temporal problem P) and

such that Cls(U) ~ U'. Moreover, let A ~ OB be a merged derived step clause such that

U U {B} F false and for every B' c B the set U U {B'} is satisfiable.

Then there exists a step clause P ~ 0.1 obtained by ordered fine-grained resolution with

selection from P such that Prenex(A) = 3P.

Proof. As the set U is satisfiable and U U {B} F false, it holds that A ~ OB is different

from true ~ Otrue. The merged derived clause A ~ OB is thus built from some (derived)

step clauses Pi ~ Oqi, 1:5i:5m1' Pj(Cj) ~ OQj(Cj), 1:5J:5m2' and M/k(x) ~ ON/k(x),

1:5k:5m3, l:5l:5nk in P, i.e.

ml m2 ms nk

A == 1\ Pi 1\ 1\ Pj (Cj) 1\ 1\ (3x 1\ M/k (x))
;=1 j=1 k=1 /=1

and
ml rn2 rn3 • nk

B == 1\ qi 1\ 1\ Q j (Cj) 1\ 1\ (3x 1\ N/k (x))
i=1 j=1 k=1 /=1

Furthermore, by definition of the step resolution rule, it holds that U U {B} F false, which

implies that
rnl rn2 rn3 nk

U U { 1\ qi 1\ 1\ Q j (cj) 1\ 1\ 1\ N/k (dk)} F false
i=1 j=1 k=1/=1

holds, where dk, 1 :5 k :5 m3, are fresh Skolem constants. Let now

be the clausification of B, consisting solely of positive unit clauses. As U U {B}, and hence,

LC uU is unsatisfiable, it follows from refutational completeness of ordered resolution with

selection (without the duplicate literal elimination rule) that there is a refutation A of

LC U U. Moreover, as U is satisfiable and U U {B} is unsatisfiable, the set LC cannot be

empty. Additionally, it is important to note that every unit clause contained in the set

£C is involved in the refutation A as otherwise there would exist a formula B' c B such

that A is a refutation of U U {B'}, which contradicts the fact that the set U U {B'} is

satisfiable. Similarly, it is easy to see that the literals Pi, 1~i~m1, Pj(Cj), 1:5J~m2, and

M/(x), l~l:5nk are pairwise different.

3.4. REFUTATIONAL COMPLETENESS 67

Let SC be the following set of step clauses that correspond to the literals in L c,

sc = {pi => Oqi I 1 $ i $ m 1 } U { Pj (Cj) => OQ j (Cj) I 1 $ j $ m2 }

U {M/,(dk) => ON1(dk) 11 $ k $ m3, 1 $1 $ nk}

As every step clause in SC is ground, it is possible to redo the derivation A as a derivation r'
on the level of universal and step clauses in the calculus J~~. The result of the derivation r'
is a step clause pc => 0.1., where

ml m2 m3 nk

pc == 1\ Pi 1\ 1\ Pj(Cj) 1\ 1\ 1\ M1k(dk).
i=l j=l k=lI=l

By setting C = {dk 11 $ k $ ma}, it follows from the Lifting Theorem (Theorem 3.4.38)

that there exists a derivation r such that r $s,c r' and such that r is a proof of the clause

p => 0.1. with
ml ffi2 m3 nk

p == 1\ Pi 1\ 1\ Pj(Cj) 1\ 1\ 1\ M1k(Xk).
i=l j=l k=ll=l

As the set of clausified step clauses S' is constant-flooded, the derivation r only uses

clauses from the temporal problem P'. Finally, through applications of the duplicate literal

elimination rule on the step clause P => 0.1., we can obtain a step clause P' => 0.1. such

that Prenex(A) = 3P'. 0

Lemma 3.4.40. Let P = (U, 1, S, f) be a monodic temporal problem with unique left-hand

sides in step clauses such that the setU is satisfiable and let P' = (U',I',S'uLT(S'),f) be

a temporal problem such that the set I' is the clausification of the set I, the set S' is the

clausification of the constant-flooded set S (with respect to the temporal problem P) with

Cls(true => O...,4>(d)) ~ P' and such that Cls(U) ~ U'. Moreover, let 'v'x(A(x) => OB(x))

be a full merged step such that the formula 'v'x(U 1\ B(x) => 4>(x)) is valid and such that for

every B'(x) C B(x) the formula 3x(U 1\ B'(x) 1\ ...,4>(x)) is satisfiable.

Then there exists a step clause P => 0.1. obtained by ordered fine-grained resolution with

selection without the clause conversion rule from P' such that Prenex(A(x)) = (3PH d -+ x}.

Proof. The proof is similar to the proof of Lemma 3.4.39.

First of all, if the full merged step clause 'v'x(A(x) => OB(x)) is equal to the step

clause true => Otrue, then it follows from the assumption that the formula U 1\ ...,4>(d)

is unsatisfiable. Thus, there exists a refutation A of the set U U {...,4>(d)} by ordered

first-order resolution with selection. By replacing the clauses resulting from clausifying the

formula ...,4>(d) by step clauses resulting from the clausification of true => 0...,4>(d), it is

easy to see that the derivation A can in fact be identified with a derivation of the final clause

true => 0.1. by ordered fine-grained step resolution without applying the clause conversion

rule.

Otherwise, the full merged step clause 'v'x(A(x) => OB(x)) is different from the clause

true => Otrue. We have that the formula U 1\ B(d) 1\ ...,4>(cl) is unsatisfiable and that

68 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

for all B' c B the fonnula U 1\ B'(c') 1\ ...,~(cl) is satisfiable. Analogously to the proof of

Lemma 3.4.39, by lifting all the constants except d we obtain a step clause P => 01.
obtained by ordered fine-grained resolution with selection without applying the the clause

conversion rule from P' such that Prenex(A(d» = (3P). We can thus conclude that

Prenex(A(x» = (3P){cl ~ x}. 0

We now show the converse statement, i.e. we prove that some derivations of terminating

step clauses correspond to full merged step clauses with some special properties.

First of all, we have to define the operations Res(U) and Resoo(U) which are applied on

sets of first-order clauses U.

Definition 3.4.41. Let U be a set of first-order clauses. Then we denote by Res(U) the set

of all the clauses resulting from applying the ordered resolution with selection and ordered

positive factoring with selection rules on clauses from the set U . We also define that

Reso(U) = U, Resi(U) = Res(Resi-1(U» for i > 0 and

00

Resoo(U) = U(Resi(U»
i=O

The next proposition is a direct adaptation of an analogous proof found in [581.

Lemma 3.4.42. Let P = (U, I, S, £) be a monodic temporal problem with unique left-hand

.~ides in step clauses such that the set U is satisfiable and let P = (U', I', S', £) be a temporal

problem such that the set I' is the clausification of the set I, the set S' is the clausification of

the constant-flooded set S (with respect to the temporal problem P) and such that Cls(U) ~ U'

and ResOO(U') = Resoo(Cls(U». Additionally, let ~ be a proof of a final clause C => 01. by

the step and universal clause deduction rules of ordered fine-grained resolution with selection

except the clause conversion role from the set of universal clauses U' and the set of step

clauses LT(S') U Cls({true => O...,~(cl)}). Moreover, we assume that at least one of the

clauses that originate from the formula true => O...,~(d) is involved in the proof of the

terminating step clause C => Ol..
Then there exists a full-merged clause 'v'x(A(x) => OBex»~ built from P such that the

formula 'v'x(U 1\ B(x) => ~(x» is valid and Prenex(A(x» = (3C){d ~ x}.

Proof. First of all, we assume that the derivation ~ is tree-like, i.e. it may contain multiple

copies of some clauses. Let Pi => Oqi, l~i~ml' and Mj(xj) => ONj(xj), 1$j~m2' be all

the step clauSES contained in the set LT(S') that are involved in the derivation ~, where

Pi => Oqj either denotes an original ground step clause or a ground step clause that has

been added by constant-flooding. If ml = 0 and m2 = 0, then it follows that C = true.

We can also infer that the set of clauses U U Cls(-,~(d» is unsatisfiable, which implies

that the set of fonnulae U U {3x""~(x)} is also unsatisfiable, and thus, we obtain that

the fonnula U => 'v'x ~(x) is valid. The full-merged step clause true => Otrue fulfils the

required properties. We may now assume that ml f 0 or m2 f O.

3.4. REFUT.4.TIONAL COMPLETENESS 69

By accumulating the variable renamings and most general unifiers that have been applied

on the step clauses in the derivation d, it is possible to construct a derivation d' from a

finite set of instances of the step clauses Pi '* Oqi (1 $ i $ mt) and Mj(xj) '* ONj(xj)

(1 $ j $ m2) (and some universal clauses) such that the most general unifiers are identity

substitutions on the variables occurring in the left-hand sides of step clauses5 . Thus, there

exist substitutions {1i,j for 1 $ i $ m2 and 1 $ j $ Si such that:

ml m2 Sj

C = APi 1\ A A M j (Xj){1j,k

i=l j=l k=l

Due to the restrictions on most general unifiers for the step resolution rules, one can see (by

induction) that every substitution {1j,k for 1 $ j $ m2 and 1 $ k $ Sj maps the variable Xj

into a variable.

In order to construct the full-merged step clause, we need to classify the step clause

instances according to the values of the substitutions {1j,k. We define an equivalence

relation E on the step clauses as follows. For every j, j', 1 $ j, j' $ m2, and every k, k' with

1 $ k $ Sj and 1 $ k' $ Sj' we have:

(M(x){1' k '* ON·(x .)(1. k M·,(x ',){1" k' '* ON·,(x ',){1" k') E E J J J, J J J,' J J J, J J J ,

if and only if Xj{1j,k = Xj,{1j',k', Furthermore, let N be the number of equivalence classes

of E and let II for 1 $ I $ N be the sets of index pairs corresponding to the step clauses

contained in the l-th equivalence class. Hence, we get:

A M'(X'){1'k J J J,
i=l 1=1 (j,k)EI,

Now, let D = 1\:\ qi 1\ l\~ll\(j,k)EII N j (Xj){1j,k be built of the right-hand sides of

the considered step clauses. Then, it follows from the assumptions that there exists a

refutation of the set {'~'D} uU' U {....,<P(cl)} by (regular) first-order resolution such that the

most general unifiers used are just identity substitutions on the variables Xj{1j,k (1 $ j $ m2,

1 $ k $ S j). Consequently, as Resoo (U') = Resoo (Cls(U)), there exists a refutation of the

set {VD} U Cls(U) U {""'<P(cl)}, which implies that VD I\U 1\,4>(c/) F false. Furthermore,

by replacing the variables {Xj{1j,k 11 $ j $ m2, 1 $ k $ 8j } in the first-order derivation by

fresh constants d1, ... , d N, it is easy to see that:

m) N

1\ qi 1\ 1\ 1\ (Nj (Xj){1j,k){Xj{1j,k -+ dl} I\U 1\ ""'4>(c
/
) F false

i= 1 1= 1 (j,k)EII

Hence, it follows that:

m) N

1\ qi 1\ A 3Y(1\ (Nj (Xj){1j,k){Xj{1j,k -+ y}) 1\ U 1\ ""'4>(c
/
) F false

i= 1 1= 1 (j,k)EII

5We assume that the non-ground binary resolution rule can be applied on premises that are not
variable-disjoint, which maintains the soundness of the derivation.

70 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

Finally, as cl ¢ U and cl ¢ const(Nj(xj» for all j, 1 :5 j :5 m2, we obtain:

ml N

3X(f\ qdcl
-+ x} /\ /\ 3Y(/\ (Nj(Xj)O"j,k){XjO"j,k -+ y}) /\ U /\ -.4>(x») 1= false

1=1 1=1 (j,k)EI,

Thus, it holds that Vx(U /\ B(x) => 4>(x» is valid and Prenex(A(x» = (3C){d -+ x},

where the full-merged step clause Vx(A(x) => OBex)) results from the following full-merged

step clause built from the temporal problem P, after potentially adjusting the number of

duplicate occurrences of some predicates:

o

We can now show the simulation invariant for the eventuality resolution rules, first on

the level of the Ref-BFS and the Restricted-FG-BFS algorithms.

Lemma 3.4.43. Let P = (U, I, S, E) be a monodic tempoml problem with unique left-hand

sides in step clauses such that the set U is satisfiable and let P = (U' , I', S', E) be a tempoml

problem such that the set I' is the clausification of the set I, the set S' is the clausification of

the constant-flooded set S (with respect to the tempoml problem P) and such that Cls(U) ~ U'
and Resoo (U') = Resoo (Cls(U». Additionally, let No, N{, . .. be the sets of merged derived

clauses and HQ(x), H~ (x), . .. be the sequence of formulae constructed in a run of the Ref

BFS algorithm applied on the tempoml problem P for an eventuality OL(x) E E. Finally, let

Mo, M 1, . .. be the sets of terminating step clauses and Ro(x), Rl (x), ... be the sequence of

formulae constructed in a run of the Restricted-FG-BFS algorithm applied on the tempoml

problem P for the same eventuality OL(x) E E.

Then it holds for all i ~ 0 that Prenex(HI{x» = Prenex(Ri{x» and:

{Prenex(A(x» I Vx(A(x) => OBex»~ E Nfl = {(3D){cl
-+ x} I D => 0.1 E Mi}

Proof By induction on i. In the case of i = 0 we have HQ(x) = true = Ro{x) and

No = 0 = Mo. For i + 1 with i ~ 0, we can first of all assume that Nf =f 0 =f Mi

and it it follows from the induction hypothesis that Prenex(HI(x» = Prenex(~(x»,

which implies that H:<x) == Ri(X). Now let N:+l = {VX(A)i+l)(X) => OBY+l)(x»}J=l'

1i+1 = {Cj => O.1}.i=l and Mi+l = {Dj => O.1}j=l be the sets respectively computed by

the Ref-BFS and Restricted-FG-BFS algorithms. We show that

- 1
{Prenex(A(x» I Vx(A(x) => OBex»~ E N:+l } = {(3D){c -+ x} I D => 0.1 E Mi+l}.

For Vx(A(x) => OBex»~ E N/+ 1, we obtain by Lemma 3.4.40 (for ~(x) = -.L(x) /\ ~(x»

that there exists a step clause P => 0.1 obtained by ordered fine-grained resolution with

3.4. REFUTATIONAL COMPLETENESS 71

selection without the clause conversion rule from (U', I', S' U Cls(true ~ O-'<)(cl)), E) such

that Prenex(A(x)) = (3P){d - x}. If we assume that there is a Cj ~ 0.1 E'Ii+! for 1 $

j $ m such that (3P){ d - x} ::J (3Cj){ cl
- x}, then it would follow from Lemma 3.4.42

that there exists a full merged clause 'v'x(A'(x) ~ OB'(x)) built from P such that the

formula 'v'x(U 1\ B'(x) ~ ..,Li(x) 1\ H:(x)) is valid and Prenex(A'(x)) = (3Cj){d - x}.

Thus, it would hold that B'(x) c: B(x) and that the formula 3x(U 1\ B'(x) 1\..,(-,L(x) 1\ Hi (x)))

is unsatisfiable, which contradicts the fact that 'v'x(A(x) ~ OB(x)) E N/+ 1 . We can hence

conclude that P ~ 0.1 E Mi+l'

Let now Dj ~ 0.1 E Mi+ 1 for 1 $ j $ n. Then it follows from Lemma 3.4.42 that

there exists a full merged clause 'v'x(A(x) ~ OB(x)) built from P such that the formula

'v'x(U 1\ B(x) ~ ..,Li(x) 1\ H:(x)) is valid and Prenex(A(x)) = (3Dj){c l
- x}. If we

assume that there is a full merged step clause 'v'x(A'(x) ~ OB'(x)) built from P such that

8'(x) c: B(x) and the formula 3x(U I\B'(x)I\-,(-,L(x) 1\ Hi (x))) is unsatisfiable, then it would

follow from Lemma 3.4.40 for the minimal such full merged step clause 'v'x(A"(x) ~ OB"(x))

that there exists a step clause C ~ 0.1 obtained by ordered fine-grained resolution with

selection without the clause conversion rule from (U',I',S' U Cls(true ~ O-'<I>(cl)),E)

such that Prenex(A"(x)) = (3C){c l
- x}. Hence, it would hold that C ~ 0.1 E 1;+1

(or potentially a variable-renamed version) and (3C){d - x} c: (3Dj){d - x}, which

contradicts the fact Dj ~ 0.1 E Mi+l' Thus, we obtain 'v'x(A(x) ~ OB(x)) E N/+ 1 .

Finally, we observe that .1 ¢ ResOO(U') as ResOO(U') = ResOO(Cls(U)) and U is satisfiable.

Hence, Prenex(H:+ 1(x)) = Prenex(~+t{x)) holds. 0

In a second step we prove the simulation invariant for the eventuality resolution rules

w.r.t. the formulae computed by Ref-BFS and the Restricted-FG-BFS algorithms.

Lemma 3.4.44. Let P = (U, I, S, E) be a monodic tempoml problem with unique left-hand

sides in step clauses such that the set U is satisfiable and let P = (U', I', S', £) be a

temporal problem such that the set I' is the clausification of the set I, the set S' is the

clausification of the constant-flooded set S (with respect to the tempoml problem P) and such

that Cls(U) ~ U' and ResOO(U') = ResOO(Cls(U)). Additionally, let H'(x) be the result of

applying the Ref-BFS algorithm on the temporal problem P and let R(x) be the result of

applying the Restricted-FG-BFS algorithm on the sets U' and S', both for an eventuality

OL(x) E E.
Then it holds that Prenex(H'(x)) = Prenex(R(x)).

Proof. By Lemma 3.4.43 we obtain Prenex(HI(x)) = Prenex(Ri(x)) for all i ~ O. Thus, it

holds that either H'(x) = false and R(x) = false, or Prenex(H'(x)) = Prenex(Hj(x)) =
Prenex(Rj(x)) = Prenex(R(x)) for a j ~ 1. 0

Finally, we can establish the refutational completeness of ordered fine-grained resolution

with selection. First, we prove the result for monodic temporal problems with unique

left-hand sides in step clauses.

72 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

Theorem 3.4.45. Let P = (Uo, I, S, £) be an unsatisfiable monodic temporal problem

with unique left-hand sides in step clauses, let pc be its constant-flooded form and let

P' = Cls(P") = (Uo, I', 8', £C) be the clausification of PC. Additionally, let)- be an admissible

atom ordering and S be an instance compatible selection function.

Then there exists a refutation of P' by ordered fine-grained resolution with selection (J:;;)
such that the premises for the eventuality resolution rules are found by the Restricted-FG-BFS

algorithm, which is only applied on the set of step clauses 8'.

Proof. The proof of completeness proceeds along the lines of the completeness proof of JrG

presented in [58].

By Lemma 3.4.13 there exists a successfully terminating derivation A = Uo, ... ,Un

from pc in J~ (i.e . .1. E Un) which uses the refined step resolution rule instead of the regular

step resolution rule and which restricts the application of the eventuality resolution rules to

loops found by the Ref-BFS algorithm. Furthermore, the refined step resolution rule and the

eventuality resolution rules are only applied on satisfiable sets of universal formulae in the

derivation A. By induction on the length of the derivation we show that this derivation can

be simulated by J:;;-. We construct a refutation A~ = CJ, ... , C[;O, ... , C~, ... , C:" of p'

where each step in ~ will correspond to one or more steps in A~. At the start ~ just consists

of Uo and the corresponding derivation Ao consists of all the clauses CJ, ... , Coo in P'. Let

J(AD, U(~~), SeA:) denote the set of all initial, universal and step clauses in A~ (1 $ i $ n),

respectively. By the fact that clausification preserves satisfiability, Uo is satisfiable if and

only if U(Ao) is satisfiable and Uo uI is satisfiable if and only if U(Ao) u J(Ao) is satisfiable.

Furthermore, if Uo would contain .1., then Ao would contain the empty clause. It is clear

that Cls(Uo) ~ U(Ao) and ResOO(U(Ao» = ResOO(Cls(Uo».

Now, in each step of ~ a first-order formula ut, 1 $ i $ n, is added to Ui - 1 to obtain U;,

where Ui is the conclusion of one the deduction rules of J~ applied to (Ui - 1,I, S, E). We

show that using J;;;- we can derive a formula C;n' from the clauses in the derivation ~~-1

constructed so far such that Cls(C;n') = Cls(ui). We then add CJs(C;n') and all intermediate

clauses Cl, ... , C;n' -1 used in its derivation to A~_I' It obviously holds then that Cls(U.) ~

U(AD and Resoo(U(A~» = ResOO(Cls(Ui ». To show the existence and derivabiIity of Ci
m

"

we consider which deduction rule of J~ has been used to derive Ui with i 2: 1. As

i > 0, it follows from the induction hypothesis that there exists a derivation A~_1 =

CJ, ... ,Coo,,,,,Cjl_l,,,,,C~'11 such that Cls(Ui-d ~ U(A~_I) and ResOO(U(A~_d) =
Resoo (ClS(Uo-l ».

Suppose Ui has been derived by an application of the (initial) termination rule (which

implies that Ui is .1.). Then the set Ui - 1 U I of first-order formulae is unsatisfiable. By

completeness of first-order ordered resolution with selection (see, e.g., [10]), we will be able

to derive the empty clause in a derivation cl, ... ,C;n', i.e. C;n' = .1., from the clauses in

Cls(Ui-t} U CJs(I). Thus, as Cls(Ui-t} ~ U(A~_I) and Cis (I) ~ J(A:_1), it is possible to

derive the clauses cl, ... ,C;n- (identified as universal or initial clauses) also from U(A~_I) U

J(A:_1) using the resolution and factoring rules of J~;;- for universal and initial clauses,

3.4. REFUTATIONAL COMPLETENESS 73

that is, rules 1 to 3. We extend ~~-1 by cl, ... , C;n'.
Suppose Ui has been derived by an application of the refined step resolution rule

on a satisfiable set of universal fonnulae Ui - 1 . Then, we have Ui = -,04, where A ~

OB is a merged derived step clause built from (Ui _ 1,I,S,£C). By Lemma 3.4.39 there

exists a step clause P ~ 0.1 obtained by ordered fine-grained resolution with selection

from (U(~~_I),I',S',£C) such that Prenex(04) = 3P. An application of rule 6 for clause

conversion allows us to derive the universal clause -,P. It is easy to see that Cls(-,04) =

cls6'-'p), We add all the clauses in the derivation of P ~ 0.1 to~' as Cl, ... , C;n,-I for

some mi, and also add Cls(V-'P) as Cr'.
Suppose Ui has been derived by an application of the non-ground eventuality resolution

rule on a loop formula H'(x) = V~=I o4j(x) found by the Ref-BFS algorithm which has been

applied on a satisfiable set of universal formulae ~-1 for an eventuality OL(x) E £ and

where Vx(AI(x) ~ OBI (x)), ... , VX(Ak(X) ~ OBk(X)) are full merged step clauses built

from (Ui - I , I, S, £C). Then, it holds that Ui = Vx -,H'(x) = Vx t\~=1 -,Aj(x). It follows

from Lemma 3.4.44 that the algorithm Ref-BFS applied on the sets U(~~_d and 8' for the

eventuality OL(x) will compute a formula R(x) such that Prenex(H'(x)) = Prenex(R(x)).

It is easy to see that Cls(Vx -,H'(x)) = Cls(Vx -,R(x)). We add Cls(V'x -,H'(x)) to ~~_I'

Finally, the remaining case where the clause Ui has been derived by an application of

the ground eventuality resolution rule follows in analogy to the non-ground eventuality

resolution case. o

In a final step we prove the refutational completeness of ordered fine-grained resolution

with selection for arbitrary monodic temporal problems.

Theorem 3.4.46 (Refutational Completeness). Let P = (Uo, I, S, £) be an unsatisfiable

monodic temporal problem, let pc be its constant-flooded form and let P' = Cls(PC) =

(Ub, I', S', £C) be the clausification of PC. Additionally, let >- be an admissible atom ordering

and S be an instance compatible selecti.on function.

Then there exists a refutation of P' by ordered fine-grained resolution with selection J~ci

such that the premises for the eventuality resolution rules are found by Restricted-FG-BFS

algorithm, which is only applied on the set of step clauses S'.

Proof. Let

ml m2

S' = U{ Pi(X) ~ OQ;(x) 11 '5. j '5. n;} U U{Pi ~ Oq; 11 '5. j '5. n;} U T,
i=1 i=1

where T only contains step clauses with unique left-hand sides and T is maximal with that
-I - -

property. Now, let P = (Ub,I',S',£C) be a temporal problem with

ml m2

Ub = Ub u U{ -,Ri(X) V Qj(x) 11 '5. j '5. nIl U U{ -,ri V q; 11 '5. j '5. n;}
;=1 ;=1

74 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION

and

S' = Tu U {Pi(C) ~ ORi(C) 11:5 i:5 ml}
cE const(P)

where R, 1 :5 i :5 ml, and Pi, 1 :5 i :5 m2, are fresh unary predicate symbols and fresh
- I

propositions, respectively. It is easy to see that the temporal problem P is satisfiable if and

only if the temporal problem pI is satisfiable. Moreover, the step clauses in the temporal
- I _

problem P have unique left-hand sides. By Theorem 3.4.45 there hence exists a refutation ~
-I

of the temporal problem P by ordered fine-grained resolution with selection J:~ such that

the premises for the eventuality resolution rules are found by Restricted-FG-BFS algorithm,

which is only applied on the set of step clauses S'. We can assume without loss of generality

that the derivation .6. does not contain any clauses that do not contribute to the derivation

of the empty clause.

As the literals Ri(X) (1 :5 i :5 mt) and Ti (1 :5 i :5 m2) occur positively only in the

set S' and negatively only in the set U~, one can infer that in the derivation ~ those positive

occurrences of a literal R(x) (1 :5 i :5 mt> or Ti (1 :5 i :5 m2) not removed by factoring

inferences are eventually resolved with their corresponding negative occurrences, and vice

versa. Additionally, the literals R(x) (1 :5 i :5 md and ri (1 :5 i :5 m2) are only directly

involved in derivations of terminating step clauses C ~ 0.1. Furthermore, as the positive

occurrences of ~(x) (1 :5 i :5 ml) and ri (1 :5 i :5 m2) are essentially unit clauses in

the derivation .6., it is therefore easy to see that th~ literals R(x) (1 :5 i :5 mJ) and ri

(1 :5 i :5 m2) add an additional resolution inference in comparison to applying ordered

fine-grained resolution with selection on the original temporal problem pI directly. We can

thus infer that for every derivation of a terminating step clause C ~ 0.1 from the temporal

problem p' by J:~ there exists a corresponding derivation by J:~ from the original temporal

problem pI, which results in the same terminating step clause C => 0.1 (up to variable

renaming).
Thus, we can conclude that a refutation ~ can be obtained from the temporal problem p'

by ordered fine-grained resolution with selection such that the premises for the eventuality

resolution rules are found by Restricted-FG-BFS algorithm, which is only applied on the set

of step clauses S'. 0

3.5 Summary

The aim of this chapter was to prove the refutational completeness of ordered fine-grained

temporal resolution with selection.

After having briefly recalled the inference rules of monodic temporal resolution and

ordered fine-grained temporal resolution with selection, we focused on the proof of refutational

completeness for ordered fine-grained resolution with selection. First, we defined a refined

version of monodic temporal resolution, for which we also proved that it is refutationally

3.5. SUMMARY 75

complete. We then showed the lifting theorem for ordered fine-grained resolution with

selection without the eventuality resolution rules and the arbitrary factoring in left-hand

sides of terminating step clauses rule. Subsequently, we proved that derivations of refined

monodic temporal resolution can be simulated by ordered fine-grained resolution with

selection. As refined monodic temporal resolution was shown to be refutationally complete

for temporal problems that only contain step clauses with unique left-hand sides, we obtained

a completeness result for ordered fine-grained resolution with selection restricted to those

temporal problems. In a final step we then extended this completeness result to arbitrary

temporal problems.

Chapter 4

Redundancy Elimination in Monodic

Temporal Reasoning

4.1 Introduction

In this chapter we focus on another aspect of ordered fine-grained temporal resolution

with selection, namely, redundancy elimination. In order to decrease the time required for

finding proofs in practice, one would ideally like to identify clauses that do not contribute

to refutations or lead to longer derivations. The use of an ordering and a selection function

which restricts inferences to literals which are selected or, in the absence of selected literals,

to (strictly) maximal literals, already reduces the number of possible inferences considerably.

However, it cannot prevent the derivation of redundant clauses, e.g. tautological clauses or

clauses which are subsumed by other, simpler, clauses. Redundancy elimination is therefore

an important ingredient for practical resolution calculi and for theorem provers based on

such calculi. In fact, it is common that state-of-the-art resolution-based theorem provers

spend more time with reducing the clause sets used for inference computations than with

deriving new clauses.

The question arises whether tautological and subsumed clauses can be eliminated without

losing refutational completeness in the context of the J~;;- -calculus. The answer is not as

straightforward as it may appear. For example, lock resolution is not compatible with the

removal of tautologies [lOJ. So, there is at least the theoretical possibility that our calculus

could become incomplete if tautologies were to be removed from derivations. However, this

will turn out not to be the case. Regarding the elimination of subsumed clauses, we will

show in Section 4.2.2 that the notion of a subsumed clause needs to be defined carefully in

our context otherwise refutational completeness will indeed be lost.

The chapter is organised as follows. Section 4.2 focuses on redundancy elimination in

combination with the resolution-based inference rules of ordered fine-grained resolution with

selection. We first show which temporal clauses are in fact tautologies. Then we define

a subsumption relation on temporal clauses and we illustrate how the calculus has to be

extended to remain compatible with the removal of subsumed clauses and of tautologies.

77

78 CHAPTER 4. REDUNDANCY ELIMINATION

The extended calculus will be called subsumption-compatible ordered fine-grained resolution

with selection. We also prove the subsumption lemmata for the sUbsumption-compatible

calculus.

In Section 4.3 we analyse the problem of combining the loop search process with

redundancy elimination: it is not clear at first sight whether the FG-BFS and the Restricted

FG-BFS algorithms still compute loops correctly if, for example, subsumed clauses are

removed. For this purpose, we introduce a resolution-based loop search algorithm called

Subsumption-RestrictedrFG-BFS. After proving some of its properties, we conclude with

showing the refutational completeness of sUbsumption-compatible ordered fine-grained

resolution with selection where applications of the eventuality resolution rules are restricted

to loops found by the Subsumption-Restricted-FG-BFS algorithm.

4.2 Adding Redundancy Elimination

Given that our calculus uses an ordering refinement, it seems natural to establish that the

calculus admits redundancy elimination by using the approach in [10, Section 4.2J. To do so,

we would first need to define a model functor I that maps any (not necessarily satisfiable)

temporal problem P not containing the empty clause to an interpretation rotp and then

show that ':0>" has the reduction property for counterexamples with respect to the model

functor I and an ordering)-, that is, for every temporal problem P and minimal clause C in

P which is false in rotp, there exists an inference with (main) premise C and conclusion V
that is also false in P but smaller than C w.r.t.)-. We could then define a clause C to be

redundant w.r.t. P if there exists clauses CI , ... , Ck in P such that CI , ... ,Ck F C and C)- Ci

for all i, 1 ~ i ~ k, and it would be straightforward to show that '~t remains complete if

redundant clauses are eliminated from derivations.

First of all, we can observe that the notion of reducing counterexamples does not

really fit well with the eventuality resolution rules and moreover, due to the presence

of eventualities in temporal problems, defining an appropriate model functor is a non

trivial and open problem. For example, consider the satisfiable propositional temporal

problem P = ({p V q}, 0, {p ::::} O...,l}, {Ol}) and an ordering)- such that p)- q. Applying

the standard model functor defined in [lOJ to the clause p V q results in a model in which p

is true. Given that p V q is a universal clause, it would be natural to define rotp in such way

that p is true at every moment of time. However, due to the step clause p::::} 0...,1, DOL is

not true in rotp which means that rotp is not a model of P. Thus, this simplistic approach

to defining a model functor is not correct for temporal problems containing eventualities.

In Chapter 7 we introduce a model functor I for propositional temporal problems, which

is able to associate a model rot of P with every satisfiable temporal problem P, but ,~o>" is

not reductive w.r.t. I. Thus, this model functor is not suitable for establishing that ':t
admits redundancy elimination.

Consequently, we have to follow a different approach in order to show that ordered

fine-grained resolution with selection can be extended with redundancy elimination rules.

4.2. ADDING REDUNDANCY ELIMINATION 79

In the following we will define the notions of a tautological clause and of a subsumed clause.

For proving that J~~ is still complete if such clauses are eliminated during a derivation,

we need to show that for every refutation without redundancy elimination there exists a

refutation with redundancy elimination. It turns out that in order to be able to do so, we

need to add two inference rules to our calculus.

4.2.1 Tautological Temporal Clauses

First of all, we consider tautological clauses. As a tautological clause is defined to be a

clause that is true in every structure rot = (Dn, In)nEN' we obtain the following lemma:

Lemma 4.2.1. Let P = (U, I, S, f) be a temporal problem, and let C be a initial, universal

or step clause. Then:

(i) If C is an initial or universal clause, then C is a tautology if and only if C = -,L V L V C' ,

for some possibly empty disjunction of literals C'.

(ii) If C = C1 ~ OC2 is a step clause, then C is a tautology if and only if C2 = -,L V L V C2,
for some possibly empty disjunction of literals C2.

Proof. Follows straightforwardly from the fact that if a clause does not contain complemen

tary literals, then one can construct an interpretation which falsifies it. 0

Note that for point (ii) of the lemma above C1 is assumed to be true or a non-empty

conjunction of atoms.

Thus, just as in the non-temporal first-order case, there is again a syntactic criterion

for characterising tautologies, namely the presence of complementary literals. For a set of

clauses N or a temporal problem P, we denote by taut(N) or taut(P) the set of all the

tautological clauses contained in the set N or the temporal problem P, respectively.

4.2.2 A Subsumption Relation on Temporal Clauses

The subsumption relation on initial, universal and step clauses is now defined as follows.

Definition 4.2.2. Let P = (U, I, S,£) be a temporal problem. We define a subsumption

relation ~8 on initial, universal and step clauses as follows:

(i) For two initial clauses C and V, two universal clauses C and V, or a universal clause C
and an initi,al clause V we define

C ~s V if and only if there exists a substitution (1 with C(1 ~ V.

(ii) For two step clauses C = C1 ~ OC2 and V = D1 ~ OD2 we define

C ~8 V if and only if there exists a substitution (1 with C1 (1 ~ D1, C2(1 ~ D2 and

for every x E var(C1) n var(C2): (1(x) E X.

80 CHAPTER 4. REDUNDANCY ELIMINATION

(iii) For a universal clause C and a step clause V = D1 :::} OD2 we define

c ~s V if and only if there exists a substitution (1 with C(1 ~ ...,D1 or C(1 ~ D2 .

For two sets of clauses Nand N' we denote by N ~s N' that all clauses in N' are subsumed

by clauses in N.

Remark 4.2.3. For two formulae C and D with

m) n) I) m2 n2 12

C = /\ Af(x1,i) " /\ A;(cj) " /\ Pk and D = /\ BI(x2,d" /\ B;(dj) " /\ qk,
i=1 j=1 k=1 i=1 j=1 k=1

where Ai, Al' BI, B] are monadic predicates, x1,i, x2,i are variables, Cj' dj , are constants

and Pk, qk, are propositions, we write C ~8 D if and only if there exists a substitution (1 with

C(1 ~ D, i.e,C ~s ...,D holds, where ...,C and ...,D are considered to be negative universal

clauses.

Thus, subsumption between two initial, two universal or an initial and a universal clause

is defined analogously to the subsumption on regular first-order clauses. However, we can

only allow a universal clause to subsume an initial clause, but not conversely, as an initial

clause only holds in the initial moment of time while a universal clause is true at every

moment of time. We also allow subsumption betwee'! a universal and a step clause if and

only if the universal clause either subsumes the negated left-hand side or the right-hand

side of the step clause.

For subsumption between two step clauses C1 :::} OC2 and D1 :::} OD2 , we have to

impose an additional constraint on the substitution that is used for the multiset inclusion:

in analogy to the inference rules of the calculus that involve step clauses (rules 4 and 5 of

ordered fine-grained resolution with selection), it has to be ensured that variables occurring

both in the left-hand side C1 and in the right-hand side C2 are only mapped to variables.

While for the inference rules themselves this restriction is imposed to ensure soundness, here

the motivation is completeness.

To see that, consider a temporal problem P with universal clauses P(x) and ...,Q(c) and

a step clause P(x) :::} OQ(x). The clausification of P will then also contain a step clause

P(c) :::} OQ(c). This additional step clause can be resolved with ...,Q(c) using rule 4 of ordered

fine-grained resolution with selection together with the identity substitution as unifier to

obtain P(c) :::} 0.1, which, using the conversion rules, gives us a new universal clause ...,P(c).

Another inference step with P(x) results in a contradiction. Now, without a restriction

on the substitution that can be used in subsumption, P(x) :::} OQ(x) would subsume

P(c) :::} OQ(c). We could then try to derive a contradiction by resolving P(x) :::} OQ(x)

with ...,Q(c). However, the unifier of Q(x) and Q(c) maps the variable x, which also occurs

in the left-hand side of the step clause to the constant c. Thus, an inference by rule 4 using

these two premises is not possible and a contradiction can no longer be derived.

4.2. ADDING REDUNDANCY ELIMINATION 81

Definition 4.2.4. Let C and V be initial, step or universal clauses. Then we say that C

properly subsumes V. written C <s V, if and only ifC subsumes V but not vice-versa, i.e.

C <8 V if and only ifC ~s V and V 'is c.

Remark 4.2.5. For two formulae C and D with

ffil nl II m2 n2 12

C = 1\ A;(X1,i) 1\ 1\ A;(Cj) 1\ 1\ Pk and D = 1\ Bi(X2,d 1\ 1\ BJ(dj) 1\ 1\ qk,
i=1 j=1 k=1 i=1 j=1 k=l

where Ai, AJ' BI, BJ are monadic predicates, XI,i, X2,i are variables, Cj, dj , are constants

and Pk. qk. are propositions, we write C <8 D if and only if...,C <s ...,D holds, where ...,C

and ...,D are considered to be negative universal clauses.

We can now show the following two lemmata.

Lemma 4.2.6. The relation <s is well-founded.

Proof. Follows from the fact that the inclusion relation on multisets is well-founded. 0

Lemma 4.2.7. Let C and V be initial, step or universal clauses such that C ~s V. Then

it holds for an initial clause 'D that the formula [(0 riC) ::::} [-;-V) is valid, and for a step

or universal clause V that the formula [D-;-C] ::::} [D~) is valid, where -;-C denotes the

universal closure ofC.

Proof. Follows from the definition of t.he truth-relation given in Figure 2.3. o

Having defined criteria for identifying tautological and subsumed clauses, we could

now try to prove that for every refutation without redundancy elimination there exists a

refutation with redundancy elimination. However, it turns out that such a correspondence is

difficult to establish if the refutation contains applications of the duplicate literal elimination

rule whose premise is subsumed.

For example, consider the step clause V 1 = P(x) 1\ P(x) ::::} 01. which is subsumed by

C1 = P(x) 1\ P(y) ::::} 01.. From V1 we can derive V2 = P(x) ::::} 01. using the duplicate

literal elimination rule. But our calculus does not contain a rule which allows us to derive a

clause C2 from C1 that subsumes 'D2 nor does C1 itself subsume 'D2. Similarly, the universal

clause C3 = ...,P(x) V ...,P(y) would also subsume VI. But again, C3 does not subsume V2

nor can we derive a clause from C3 which subsumes V 2 using the rules of our calculus.

4.2.3 Subsumption-Compatible Ordered Fine-Grained Resolution

with Selection

In order to deal with these two cases, we need additional factoring rules. One of these rules

has be applied on (at most) monadic negative universal clauses:

82 CHAPTER 4. REDUNDANCY ELIMINATION

Definition 4.2.8. A clause C is said to be a (at most) monadic negative universal clause

il and only il the clause C is a negative universal clause -.Al V ... V -.An such that every

atom Ai (1 SiS n) is 01 arity equal to or less than 1.

For example, the universal clauses -'pv-.q and -.P(x) v-.Q(y) Vp are (at most) monadic

negative universal clauses. Next, we extend our calculus by the following two rules:

• (Arbitrary) Factoring in left-hand sides of terminating step clauses:

C A A A B ::} 0.1
(C A A)(T ::} 0.1

where (T is a most general unifier of the atoms A and B .

• (Arbitrary) Factoring in (at most) monadic negative universal clauses:

-.Al V ... V ...,An V ...,An+!
(-.Al V ... V -.An)(T

where -.A1 V ... V -.An V -.An+ 1 is a (at most) monadic negative universal clause and

(T is a most general unifier of the atoms An and An+!.

The calculus ordered fine-grained resolution with selection extended by the two rules

introduced above will be called subsumption-compatible ordered fine-grained resolution with

selection and will be denoted by)~;i,Sub' The fine-grained step resolution inference rules

of J~crSub encompass the fine-grained step resolution inference rules of ordered fine-grained

resolution with selection and are extended by the rules of (arbitrary) factoring in left-hand

sides of terminating step clauses and (arbitrary) factoring in (at most) monadic negative

universal clauses.

As we will see, the arbitrary factoring in left-hand sides of terminating step clauses rule

will also play an important role in our completeness proof for the fair inference procedure

that will be introduced in Chapter 5.

We still have to note that in contrast to the propositions stated in [66] we no longer

require additional restrictions on the selection functions.

4.2.4 Subsumption Lemmata

We now have everything in place to show that subsumption-compatible ordered fine-grained

resolution with selection allows the elimination of tautological and subsumed clauses.

First of all, we prove that tautologies either do not contribute or only prolong derivations

of the empty clause.

Lemma 4.2.9. Let C1, C2 be initial, universal or step clauses such that Cl is a tautology.

Then it holds that every resolvent C 01 C 1 and C2 is either a tautology or subsumed by C2. II
both Cl and C2 are tautologies, then C is also a tautology.

4.2. ADDING REDUNDANCY ELIMINATION 83

Proof. Let Cl = (Cl ~ O)Dl (i.e. Cl = Gl => ODI if Cl is a step clause, and C1 = D1

otherwise), C2 = (C2 ~ O)D2 and Dl = El V L V ~L. Additionally, let Ill, 112 be variable

renamings such that var(Cllld n var(C2112) = 0 and let u be the most general unifier used

in the resolution inference, which is such that variables from var(G1l1d U var(G2112) are

mapped into variables if Cl or C2 is a step clause. It is easy to see that if the literal

which is resolved upon is different from LIIl and ~LII1, then the clause C is again a

tautology as it contains the two complementary literals Lilla and ~LIIla. We may therefore

assume without loss of generality that the literal LVl in the clause C1111 will be resolved

with a literal ~L'1I2 in the clause C2112 (the remaining other case is similar). Thus, let

D2 = E2 V ~L' and C = ((GlIIl 1\ C2112)a ~ O)(E1II1 V ~LIIl V E2112)a. As a is a

most general unifier of the atoms LIIl and 1'112, it holds that Lll1U = L'II2a and hence,

D2112U = (E2 V ~L')1I2a ~ (E1111 V ~Lll1 V E2112)a.

If C2 is an initial clause, we can infer that C is also an initial clause, and consequently,

C2 ~. C holds. Then, if C2 is a universal clause and the clause C1 is an initial or universal

clause, the clause C is also an initial or universal clause, respectively. We can conclude that

C2 ~. C holds again. In the case where C2 is an universal clause and the clause C1 is a step

clause, we have that C is a step clause, and also that C2 ~8 C holds. Finally, if C2 is a step

clause, then it follows that the clause C is a step clause and we obtain for every variable

x E var(C2) n var(D2) that XII2a is a variable. We can thus infer that C2 ~. C holds as well.

We still have to analyse the case where C1 and C2 are tautologies. One can then infer

that the clause C contains a pair of complementary literals, even if C2 is a universal clause

and C a step clause as tautological universal clauses cannot subsume the left-hand sides of

step clauses. 0

Lemma 4.2.10. Let Cl be a tautology. Then it holds that every factor C of C1 is a tautology.

Proof. Let Cl = (C1 ~ O)D l and Dl = D V L V ~L. Additionally, let A, BE Dl be the

atoms which are factored upon and let a be a most general unifier ofthe atoms A and B.
Additionally, if Au -I La -I Ba holds, we obtain again that C contains two complementary

literals La, ~Lu and C is therefore a tautology. Finally, in the case where Au = Lu = Bu,

we can conclude that C contains a pair of complementary literals Aa and ~Aa as factoring

only removes positive occurrences of literals, which also implies that C is a tautology. 0

The next propositions establish the sUbsumption lemmata for the step resolution inference

rules of)~;:Sub' i.e. for every inference rule of)~;:Sub' except the eventuality resolution rules,

and clausesCl , Cl , C2, C2 with Cl ~. Cl , C2 $. C2 and clause C obtained through an inference

between Cl and C2, we show that either

(i) C1 $. C or

(ii) C2 $. C holds, or

(iii) there exists an inference between Cl and C2 resUlting in a clause C with C ~. C.

84 CHAPTER 4. REDUNDANCY ELIMINATION

Lemmata 4.2.22 and 4.2.23 will regroup the results established by the following proposi
tions.

Lemma 4.2.11. Let CI, C2, CI, C2 be universal clauses such that CI $8 CI and C2 $" C2.
Furthermore, let C be a resolvent of CI and C2 by ordered resolution with selection between

two universal clauses. Then one of the following statements holds:

(a) CI $8 C, or

(b) C2 $" C, or

(c) there exists a resolvent C of CI and C2 by ordered resolution with selection such that

C $8 C.

Proof Similar to the first-order case. o

Lemma 4.2.12. Let C and C be universal clauses such that C $8 C. Furthermore, let b be

the result of applying the ordered positive factoring with selection rule on C. Then one of

the following statements holds:

(a) C $8 b, or

(b) there exists a universal clause V obtained through an application of the ordered positive

factoring with selection rule on C such that V $8 iJ.

Proof Similar to the first-order case. o

Lemma 4.2.13. Let CI, C2 be initial clauses and CI, C2 be initial or universal clauses such

that CI $.. CI and C2 $.. C2. Furthermore, let C be a resolvent of CI and C2 by ordered

resolution with selection between two initial clauses. Then one of the following statements

holds:

(a) CI $8 C, or

(c) there exists a resolvent C of C1 and C2 by ordered resolution with selection such that

C $8 C.

Proof Similar to the first-order case by considering that initial and universal clauses can be

identified with first-order clauses. The only difference is that if we resolve an initial clause

with a universal clause or an initial clause, then we obtain an initial clause. A resolution

inference between two universal clauses yields a universal clause again. o

Lemma 4.2.14. Let C1 be an initial, C1 be an initial or universal and C2 , C2 be univer.~al

clauses such that C1 $" C1 and C2 $" C2. Furthermore, let C be a resolvent of Cl and C2 by

ordered resolution with selection between an initial and a universal clause. Then one of the

following statements holds:

4.2. ADDING REDUNDANCY ELIMINATION

(a) C1 S. C, or

(b) C2 Ss C, or

85

(c) there exists a resolvent C of C1 and C2 by ordered resolution with selection such that

C S. C.

Proof. Similar to the first-order case. o

Lemma 4.2.15. Let C and C be i.nitial or universal clauses such that C S. C. Furthermore,

let V be the result of applying the ordered positive factoring with selection rule on C. Then

one of the following statements holds:

(a) C S. V, or

(b) there exists an initial. or universal clause V obtained through an application of the

ordered positive factoring with selection rule on C such that V S. V.

Proof. Similar to the first-order case. o

Lemma 4.2.16. Let C1, C2 be step clauses and let Cb C2 be universal or step clauses such

that C1 S. C1 and C2 S. C2. Furthermore, let C be a resolvent of C1 and C2 by ordered

fine-grained step resolution with selection. Then one of the following statements holds:

(a) C1 S. C, or

(c) there exists a resolvent C of C1 and C2 by ordered fine-grained step resolution with

selection such that C S. C.

Proof. First of all, we assume without loss of generality that var(Cdnvar(C2) = 0 (otherwise,

variable renamings need to be applied accordingly). Let C1 = 61 =? OD1, C2 = 62 =? OD2

D1 = E1 V A, D2 = E2 v -,8 and let C = (61 " 6 2)0- =? 0(E1 v E2)0-, where 0- is a

most general unifier of the atoms A and 8 such that variables from var(6t) U var(62)

are mapped into variables. We first of all observe that if C1 or C2 are universal clauses

such that C1 S. -,61 or C2 S. -,02 holds, then we can infer that C1 S. -,(61 /\ 62)0- or

C2 S. -,(01 ,,62)0- holds, and thus C1 S. C or C2 Sa C. Without loss of generality we

may hence assume that C1 Sa D1 holds if C1 is a universal clause and C2 S. D2 if C2 is a

universal clause.

Now, let C1 = (C1 =? 0)D1, C2 = (C2 =? 0)D2 and 711,712 be substitutions with

Cl711 ~ C\, Dl711 ~ D 1, C2712 ~ 62 and D2712 ~ 152 such that 711 maps variables from

var(C 1) n var(D 1) into variables if C 1 is a step clause and 1]2 maps variables from var(C2) n
var(D2} into variables if C2 is a step clause. Then, if all the literals A with A711 = A occur

together less often in D1 than the literal A in ih, we can infer that Dl711 ~ E1 and thus,

C 11]10- ~ (61 /\ 62)0- and D 11]10- ~ (E1 V E2)0-. Additionally, if C1 is a step clause, then it

86 CHAPTER 4. REDUNDANCY ELIMINATION

holds for a variable x E var(CI) n var(Dl) that XTllo- = yO- = z for variables y, z E X as

y E var(C\). We can consequently infer that Cl ~s C holds.

Similarly, if all the literals -,B with -,BT/2 = iJ occur together less often in D2 than the

literal -,iJ in V2 , we obtain C2 :Ss C.
Otherwise, we consider the case where Cl TJl S;;; Cl , Dl = El V A, ElTll S;;; E l , ATll = A and

C2T/2 S;;; C2, D2 = E2 V -'B, E2T/2 S;;; E2, -,BT/2 = -,i3. Let 1I1 and 1I2 be variable renamings

such that var(Cllld n var(C2112) = 0. We need to show that CIlIl can be resolved with C2112.

Due to the instance compatibility of the selection function, we can assume that the literal -,B

is selected in the clause D2 if the literal -,iJ is selected in the clause D2. It also follows that

AlIl1l1lTllo- = ATllo- = Au = Bu = BT/2o- = B1I211ilT/2u, i.e. the atoms AliI and BlI2 are

unifiable by a most general unifier a with dom(a) U (codom(a) n X) S;;; var(AlIt} U var(B1I2)

(see Theorem 3.4.23). For the substitution Tl = lII l TJl U lIilTl2 we have CllllTl S;;; Cl ,

Dllli = Ellli V AliI, ElIIlTl S;;; El, AlIlTl = A and C2112Tl S;;; C2, D2112 = E2112 V -,B1I2,

E2112Tl S;;; E2, BlI2TJ = B. Moreover, it holds that TJ maps variables from var(CIlIt}nvar(Dlllt}

into variables if Cl is a step clause, and that Tl maps variables from var(C2112) n var(D2112)

into variables if C2 is a step clause (see Lemma 3.4.16).

Then, as AlIlTJo- = Ao- = Bo- = BlI2TJu holds, the substitution TJU is a unifier of the atoms

AliI and B1I2. Thus, let cp be a substitution such that acp = TJu. Now, if CI is a step clause,

let x E var(Cllld. If x ¢ var(DlII1), then we have x ¢ dom(a) as also x ¢ var(D2112) holds,

i.e. o-(x) = x. Otherwise, x E var(Dlllt} and we obtain TJ(x) E var(Ct} , which implies that

xacp = xTJU E X and hence, a(x) EX. Analogously,.one can show that a maps variables

from var(C2112) into variables if C2 is a step clause.

It follows from the properties of the selection function and of the atom ordering that

the literal AliI is eligible in Dllli for a and the literal -,BlI2 is eligible in D2112 for a.

Consequently, there exists a resolvent C = ((CWI "C2112)a ~ O)(Ellll V Fh1l2)a such that

(Cl llt"C2112)acp S;;; (Cl ,,(2)u and (Ellli V E2112)acp S;;; (El V E2)o-. We still have to show that

C ~ .. C holds. If Cl and C2 are universal clauses, we can immediately conclude that C :S .. C
holds. In the case where Cl or C2 is a step clause, let x E var((C1IIl "C2112)a) n var((EllIl V

E2112)o-). Thus, there exists variables y E var(Cllld U var(C2112), Z E var(Elllt} U var(FhIl2)

with a(y) = x = a(z).

If x =I y, we can infer that y E var(Dlllt}Uvar(D2112) as y E dom(a). Hence, it holds that

y E (var(Ctlll)nvar(Dtllt})U(var(C2112)nvar(D2112» and cp(x) = yacp = y",o-. FUrthermore,

as TJ(Y) EX, we have TJ(Y) E var(Ct} U var((2), which implies that cp(x) = YTJo- EX.

In the case where x = Y = z, we obtain that x E (var(Cllld n var(Dllld) U (var(C2112) n
var(D2112», and thus similarly, cp(x) = xacp = xTJo- E X. Finally, if x = y and x =I z, we

get x E var(Clllt} U var(C2112) and x E (codom(o-) n X) S;;; var(Dlllt} U var(D2112). Again,

it holds that cp(x) = xacp = x",o- EX.

We can conclude that C ~ .. C holds. o

Lemma 4.2.17. Let Cl = 61 ~ ODI be a step clause, let Cl be a universal or a step

clause and let C2, C2 be universal clauses such that Cl ~ .. Cl and C2 ~ .. C2. Furthermore,

4.2. ADDING REDUNDANCY ELIMINATION 87

let C be a resolvent of C1 and C2 by ordered fine-grained step resolution with selection. Then

one of the following statements holds:

(a) C1 ~s C, or

(b) C2 ~s C, or

(c) there exists a resolvent C of C1 and C2 by ordered fine-grained step resolution with

selection such that C ~s C.

Additionally, if C2 = C2 , then the statement (a) or (c) holds.

Proof. Similar to the proof of Lemma 4.2.16. If C2 = C2, then one can show that the

statement (a) or (c) holds (in addition to statement (b) being potentially satisfied). 0

Lemma 4.2.18. Let C1 = c\ :::} Oih be a step clause and C1 be a universal or a step clause

such that C1 ~s C1 . Furthermore, let C be the result of applying the ordered fine-grained

positive step factoring rule on C 1. Then one of the follOwing statements holds:

(a) C1 ~s C, or

(b) there exists a universal or step clause C obtained through an application of the ordered

fine-grai.ned positive factori.ng rule on C1 such that C ~s C.

Proof. Let C1 = (C1 :::} O)Dl, ih = DV Av 8 and U be a most general unifier of the atoms

A and 8 such that a does not map variables from C\ into a constant or a functional term

and such that A is eligible in D V A V 8 for U. Hence, we obtain C = G1u :::} O(iJ V A)u.
First of all, if C1 is a universal clause and C1 ~8 G 1, then as G1 ~8 G1u clearly holds, we

obtain C1 ~s Cia and thus, C1 ~8 C. We may now assume that C1 ~8 iYt holds if C1 is a

universal clause. Let 17 be the substitution such that C l 17 ~ (\, Dl17 ~ D1 and such that 17

maps variables from var(Ct) n var(Dt} into variables if C1 is a step clause.

Then, if the clause D1 does not contain a pair of atoms A and B with A17 = A and

B17 = 8, we obtain that Cl17a S; G1a and D1rJU ~ (D V A)a. If C1 is a universal clause, we

have C1 ~s C. Otherwise, C1 is a step clause, and let x E var(Ct} n var(Dd. We obtain

7J(x) E X, i.e. 7J(x) E var(Gt} and thus, X17a E X, which implies that C1 ~s C holds.

Otherwise, let A and B be atoms in the clause D1 with A17 = A, B17 = Band

D1 = D V A vB. We need to show that a factoring step on C1 is possible. We can first

of all infer that A17U = Au = Bu = B17U. Thus, there exists a most general unifier of

the atoms A and B with dom(u) U (codom(u) n X) S; var(A) U var(B) ~ var(Dt} (see

Theorem 3.4.23). Let 'fJ be a substitution with U'fJ = 17u, which implies that C1U'fJ S; G1u
and D 1u'fJ ~ DIU. It then follows from the properties of the atom ordering that the literal

A is eligible in D V A V B for 0". If C1 is a universal clause, we can infer that there exists

a universal clause C = (D V A)u obtained through an application of the ordered positive

factoring with selection rule on C1. As D1u'fJ ~ iYtu holds, we have C ~s C.

88 CHAPTER 4. REDUNDANCY ELIMINATION

Then, in the case where Cl is a step clause, let x E var(Ct} such that x E dom(u). It

follows that x E var(Dd and xur.p = X7]o- E X, which implies that r.p(x) E X. We can infer

there exists a step clause C = C 1u => oeD V A)u obtained through an application of the

ordered positive factoring with selection rule on C1 .

Now, let x E var(C1u) n var((D V A)u). Thus, there exists variables Y E var(Ct} and

Z E var(D V A) with u(y) = x = u(z). If x f. y, we can infer that y E var(D V A V B) =

var(Dd as y E dom(u). Furthermore, it holds that r.p(x) = yur.p = Y7]o-. Hence, as 7](Y) E X,

we have 1](Y) E var(C\), which implies that r.p(x) = x7]o- E X.

In the case where x = Y = z, we obtain that x E var(C1) n var(Dd, and thus similarly,

r.p(x) = xur.p = X1]o- E X. Finally, if x = Y and x f. z, we have that x E var(Ct} and

x E (codom(u) n X) ~ var(Dd. Again, it holds that r.p(x) = xur.p = X7]o- E X.

Finally, we can conclude that C :5" C holds. o

Lemma 4.2.19. Let C1 be a step clause and C1 be a universal or a step clause such that

Cl :5" C1 . Furthermore, let C be the result of applying the clause conversion rule on Cl.
Then one of the following statements holds:

(a) C1 :5" C, or

(b) there exists a universal clause C obtained through an application of the clause conversion

rule on Cl such that C :5" C.

Proof Let C = C => 0.1, C1 = (-,)C(=> 0.1) and C::: -,C. HC1 is a universal clause and

Cl = .1, then C1 :5" C clearly holds. Otherwise, we have Cl = -,C :5" -,6 and thus, C1 :5" C.
Finally, in the case where C 1 is a step clause, we also obtain -,C :5a -,6. An application of

the clause conversion rule on the step clause C1 then yields the clause C = -,C, i.e. C :58 C
holds. o

Lemma 4.2.20. Let C1 = 61 => 0.1 be a terminating step clause and C1 be a universal or

a step clause such that C 1 :5a Cl. Furthermore, let C be the result of applying the factoring in

left-hand sides of terminating step clauses rule on Cl. Then one of the following statements

holds:

(a) C1 :5" C, or

(b) there exists a universal or a step clause C obtained through an application of the factoring

in at most monadic negative universal clauses or in left-hand sides of terminating step

clauses rule on Cl such that C :5a C.

Proof Let i\ = 6" A" E, Cl = (-,)C1(=> 0.1) and C = (6" A)o- => 0.1, where 0-

is a most general unifier of the atoms A and E. Moreover, let 1] be a substitution with

CI1J ~ (-,)C1•

If C 1 does not contain a pair of literals AI, A2 with A 17] = A and A27] = E, we obtain

CI7] ~ (-,)(6" A). Hence, C1 :5" C holds.

4.2. ADDING REDUNDANCY ELIMINATION 89

Otherwise, Gl contains a pair of literals AI, A2 with Al7J = A and A27J 8, i.e.

G l = G 1\ Al 1\ A2. Thus, as the atoms Al and A2 are unifiable with Al7JU = A27]U, there

exists a most general unifier a of Al and A2, together with a substitution ifJ such that

aifJ = 7Ju. If C 1 is a universal clause, we observe that it only contains negative literals with

at most one free variable as C1 ~ -,(\ holds. We can thus apply the factoring in at most

monadic negative universal clause rule on Cl and obtain the universal clause C = -,c V -,A l .

As CaifJ ~ -,(<71\ A)u, we obtain C ~8 C.
Finally, if C 1 is a step clause, we can apply the factoring in left-hand sides of terminating

step clauses rule and derive the terminating step clause C = (C 1\ Ada::::} 0.1. We obtain

(C 1\ AtlaifJ ~ (61\ A)u and we can infer that C ~8 C holds. 0

Lemma 4.2.21. Let Cl = ...,A l V ... V -'An V -,An+ l be an at most monadic negative

universal clause and Cl be a universal clause such that Cl ~s Cl. Furthermore, let C be the

result of applying the factoring in at most monadic negative universal clauses rule on C 1.

Then one of the following statements holds:

(a) Cl ~8 C, or

(b) there exists a universal clause C obtained through an application of the factoring in at

most monadic negat'ive universal clauses rule on Cl such that C ~s C.

Proof. Let C1 = ...,A1 V ... V ...,An V ...,An+l and C = (...,A l V ... V ...,An)u, where 0' is a most

general unifier of the atoms An and An+ 1· Additionally, let 7J be a substitution with Cl7J ~ Cl.

If Cl does not contain a pair of literals An, An+l with An7J = An and An+l 7J = An+l , we

can infer that C17J ~ -,Al V ... V -,An. Thus, Cl7JU S;;; C, i.e. Cl ~s C holds.

Otherwise, Cl contains a pair of literals An, An+1 with An7J = An and An+17J = An+1,

i.e. Cl = G V -,An V -,An+1 for an at most monadic negative universal clause C. Then, as

An7Ju = Anu = An+1u = An+l7]U, there exists a most general unifier a of the atoms An

and An +1 . We can thus apply the factoring in at most monadic negative universal clauses

rule on C 1 and obtain the universal clause C = (C V ...,An)a. Let ifJ be a substitution with

aifJ = 7Ju. Then, it is easy to see that CifJ S;;; C holds, i.e. we have C ~B C. 0

The next two lemmata regroup the previous results. First, we show that if subsumption

is limited to step clauses in the derivation of a step clause C which does not contain an

application of the clause conversion rule, then one can derive a step clause C from the

subsuming step clauses and the same universal clauses such that C ~s C.

Lemma 4.2.22. Let U be a set of universal clauses and let N, N be sets of step clauses

such that N ~s N. Additionally, let A be a derivation of a step clause C from clauses

in U u.N by the fine-grained step resolution inference rules of either ordered fine-grained

resolution with selection or subsumption-compatible ordered fine-grained resolution with

selection, but without applying the clause conversion rule.

Then there exists a derivation ~ of a step clause C by subsumption-compatible ordered

fine-gmined resolution with selection from clauses in U uN such that C ~s C.

90 CHAPTER 4. REDUNDANCY ELIMINATION

Proof Lemma 4.2.22 is shown by induction on the length of the derivation A. For the base

case we assume that C is a step clause in N. Then there exists a step clause C in N with

C:::;~ C.
For the induction step we consider a step clause C that is derived by one of the rules

of (subsumption-compatible) ordered fine-grained step resolution excluding the clause

conversion rule from premises C1 and C2, which are either elements of U U N or previously

derived clauses. It follows that either C1 or C2 (or both) are step clauses. By the induction

hypothesis there are clauses C1 and C2 with C1 :::;8 C1 and C2 :::;8 C2 which are either elements

of U uN or previously derived such that Cl is a step clause if C1 is a step clause, and C2 is a

step clause if C2 is a step clause. Thus, by using Lemmata 4.2.16,4.2.17,4.2.18, and 4.2.20,

either C1 :::;~ C, C2 :::;~ C or we can derive a step clause C with C :::;8 C from C1 and C2. 0

The next proposition is a more general version of Lemma 4.2.22. It allows for arbitrary

sUbsumption and it considers all the fine-grained step resolution inference rules of)~;i,Sul>.

Lemma 4.2.23. Let Nand N be sets of initial, universal clauses or step clauses such

that N :::;8 N. Additionally, let ~ be a derivation of a clause C from clauses in N by the

fine-grained step resolution inference rules of either ordered fine-grained resolution with

selection or subsumption-compatible ordered fine-grained resolution with selection.

Then there exists a derivation ~ of a clause C by subsumption-compatible ordered fine

grained resolution with selection from clauses in N such that C :::;8 C. It also holds that the

clause conversion rule is only applied in the derivation ~ if it has been applied in order to

obtain the derivation A.
The previous statement still holds if N :::;8 N \ taut(N) and C is not a tautology.

Proof Let ~ = Vb ... , Vn-1,C(= Vn). If N:::;8 N, then one can show the existence of the

derivation ~ by induction on the length of the derivation ~ in analogy to Lemma 4.2.22 by

using Lemmata 4.2.11,4.2.12,4.2.13,4.2.14,4.2.15,4.2.16, 4.2.17, 4.2.18, 4.2.19,4.2.20, and

4.2.21.
In the case where N :::;8 R \ tauteR) holds, it can be shown inductively for every

clause Vi (1 :5 i :5 n) which is not a tautology that there exists a derivation ~ of a clause Vi

with Vi :58 Vi by subsumption-compatible ordered fine-grained resolution with selection

from clauses in N\ tauteR) by using using Lemmata 4.2.9,4.2.10,4.2.11,4.2.12,4.2.13,

4.2.14,4.2.15,4.2.16,4.2.17,4.2.18,4.2.19,4.2.20, and 4.2.21. 0

4.3 Subsumption and Loop Search

Lemma 4.2.23 shows that we can eliminate tautologies and subsumed clauses during the

construction of a derivation at the level of inference rule applications of the)~;j,Sul> calculus.

However, the rules of the calculus are also applied within the fine-grained breadth-first

search algorithm FG-BFS (and its more restricted version Restricted-FG-BFS) which is

4.3. SUBSUMPTION AND LOOP SEARCH

Function Subsumption-Restricted-FG-BFS

Input: A set of universal clauses U and a set of step clauses S, saturated under
the fine-grained step resolution inference rules of sUbsumption-compatible
ordered fine-grained resolution with selection, and an eventuality clause
OL(x) E£-.

Output: A formula R(x) with at most one free variable.

Method: (1) Let Ro(x) = true; Mo = 0; i = 0

91

(2) Let N:+l = U u LT(S) u {true ~ O(-.~(cl) V L(cl))}. Apply the
fine-grained step resolution rules of sUbsumption-compatible ordered
fine-grained resolution with selection except the clause conversion
rule to N:+ 1, together with the removal of tautological and subsumed
clauses. If we obtain a contradiction, then return the loop true (in
this case \:fx-.L(x) is implied by the universal part).
Otherwise let M~+l = {Dj ~ O..1.}j=l be the set of all new termi
nati.ng step clauses in the saturation of N:+ 1 .

(3) If M~+l = 0, return false; else let ~+l(X) = V;=1(3D j){cl
-4 x}

(4) If \:fX(Ri(X) ~ Ri+l(X)), return Ri+l(X).

(5) i=i+1;got02.

Figure 4.1: Breadth-First Search using SUbsumption-Compatible Ordered Fine-Grained
Step Resolution with Selection together with Redundancy Elimination

used to find loop formulae for the application of the eventuality resolution rules. Naturally,

the question arises whether tautological and subsumed clauses can also be eliminated within

FG-BFS and Restricted-FG-BFS.

4.3.1 Subsumption-Restricted Loop Search Algorithm

The answer to that is positive. Figure 4.1 shows the so-called subsumption-restricted breadth

first search algorithm using ordered fine-grained step resolution with selection, a modification

of FG-BFS which removes tautological and subsumed clauses during the saturation process

by sUbsumption-compatible ordered fine-grained resolution with selection in step (2) of the

algorithm. In the way in which the algorithm shown in Figure 4.1 is defined the constructed

sets M~ will not contain terminating step clauses C ~ 0..1. and D ~ 0..1. such that C ~8 D.
Due to the removal of tautolOgIcal and subsumed clauses it is not clear at first sight that

the Subsumption-Restriction-FG-BFS algorithm still finds all the possible loop formulae

as the equivalence of two formulae ~(x) and RH1(X) might no longer be achieved. We

will show in the subsequent sections that the Subsumption-Restricted-FG-BFS algorithm

indeed remains correct and computes all the possible loop formulae for a given temporal

problem. We also prove the refutational completene;s of J~tSul> where applications of the

eventuality resolution rules are restricted to loops found by the Subsumption-Restricted

FG-BFS algorithm.

92 CHAPTER 4. REDUNDANCY ELIMINATION

4.3.2 Properties of the Loop Search Algorithm

We begin by showing some properties of the Restricted-FG-BFS algorithm. First of all, we

introduce a couple of notions that are important for the remaining proofs.

For a set of clauses N we denote the set of all the clauses resulting from inferences

by the resolution-based and factoring rules of sUbsumption-complete ordered fine-grained

resolution with selection (Le. without the clause conversion or the eventuality resolution

rules) on clauses from the set N by Ressub(N). Additionally, we define that Re~ub(N) = N,
Res~ub(N) = Ressub(Res~-;;~(N» for i > 0 and

00

ResSub(N) = U ResLb(N)
i=O

For a set of clauses N we denote the set of all the clauses resulting from inferences by the

fine-grained step resolution inference rules of sUbsumption-compatible ordered fine-grained

resolution with selection from clauses in the set N by ReSsub,Conv(N). The notions of

Res~ub,Conv(N), ResLb,Conv(N) for i > 0 and ResSub,Conv(N) are defined analogously to

the sets Res~ub(N), ResLb(N) for i > 0 and ResSub(N) introduced above.

The following two definitions are necessary for showing that the Subsumption-Restricted

FG-BFS algorithm only requires finitely many iterations on any clausified monodic temporal

problem in order to compute all the possible loop formulae.

Definition 4.3.1. Let P = (U',I',S',e) be a clausified monodic temporal problem and

let 0 = {Pl (x), ... , Pn (x)} be the set of all the non-ground atoms occurring in the left-hand

sides of the step clauses contained in the set S'. Then we denote by T(P) the set of all the

terminating step clauses built from the symbols occurring in the left-hand sides of the step

clauses contained in the set S' which are instantiated by constants from const(P) u {d},

free of duplicate atoms and such that each subset of the set 0 occurs at most once in a given

terminating step clause (after renaming the variable used for the considered subset instance

in the terminating step clause to xp. We also assume that the set T(P) contains exactly

one representative for each equivalence class under the relation = X .

Remark 4.3.2. As the sets 8' and const(P) are finite, it follows that the set T(P) is finite

as well.

Definition 4.3.3. Let P = (U', I', 8', e) be a clausified monodic temporal problem and let

N ~ T(P) be a set of terminating step clauses. Then we define a set of terminating step

clauses TiN(P) as follows:

The following proposition establishes a basic result about the terminating step clauses

that are constructed during runs of the Subsumption-Restricted-FG-BFS algorithm.

1 For this definition free variables are not considered to be existentially quantified and the loop search
constant d is not replaced by a fresb variable.

4.3. SUBSUMPTION AND LOOP SEARCH 93

Lemma 4.3.4. Let P' = (U', I', S', e) be a clausijied monodic temporal problem. Addi

tionally, let No. N{, . .. be the initial sets of universal and step clauses in each iteration

and M~. M;, . .. be the sets of terminating step clauses constructed as in a run of the

Subsumption-Restricted-FG-BFS algorithm applied on the temporal problem P for an even

tuality OL(x) E e (without considering potential derivations of the empty clause).

Then it holds that:

(i) for every i and for every terminating 'step clause C ~ 0.1 E M~ there exists a variable

renaming 0 such that true ~ O(-.Co V L(c')) E N!+I; and conversely,

(ii) for every i and for every newly added step clause true ~ O(-.C V L(cl)) E N!+1 there

exists a vari.able renaming 0 such that Co ~ 0.1 E M~.

Proo/. Follows for every i from the construction of the set N!+I. o

In the next lemma we prove that for every terminating step clause C ~ 0.1 constructed

in an iteration i + 1 there exists a terminating step clause D ~ 0.1 obtained in the iteration i

such that D $8 C.

Lemma 4.3.5. Let P' = (U',I',S',e) be a clausijied monodic temporal problem. Addi

tionally, let Mo, M;, . .. be the sets of terminating step clauses constructed as in a run of

the Subsumption-Restricted-FG-BFS algorithm applied on the tempoml problem P' for an

eventuality OL(x) E e (without considering potential derivations of the empty clause).

Then it holds for all i ~ 1 and for every terminating step clause C ~ 0.1 E M~+I that

there exists a terminating step clause D ~ 0.1 E M~ with D $8 C.

Proo/. Let No, N{, . .. be the initial sets of universal and step clauses in each iteration. We

now show the statement of the lemma by induction on i.

For i = 1, let C ~ 0.1 E M2 be a terminating step clause. Additionally, let true ~

0(-,C1 V L(d)), ... , true ~ O(-,Cn V L(cl
)) for n ~ 1 be all the loop search step clauses

from the set N2 that occur in the derivation of the step clause C ~ 0.1. Then, as

N{ = U' u LT(S') u {true ~ OL(c')} and true ~ OL(d) $8 true ~ O(-,Ci V L(cl))

for every i, 1 $ i $ n, it follows from Lemma 4.2.22 that there exists a terminating step

clause D ~ 0.1 E M; with D $8 C. We still have to note that there cannot be a clause

C E Res~b(U'ULT(S')) which subsumes one of the clauses that participates in the derivation

of the terminating step clause D ~ 0.1 and leads to the derivation of a clause V' with

V' <8 D ~ 0.1 as this would imply that C ~ 0.1 ¢ M~+ 1.

If i > 1, let C ~ 0.1 E M~+ 1 be a tenninating step clause. Furthermore, let true ~

0(-'C1 V L(cl)), ... , true ~ o (-,Cn V L(c')) for n ~ 1 be all the loop search step clauses from

the set N!+1 that occur in the derivation of the step clause C ~ 0.1. Then, by Lemma 4.3.4

there exist variable renamings 0), ... , On such that C 10 1 ~ 0.1, ... , Cnon ~ 0.1 E M~.

It follows from the induction hypothesis that there are terminating step clauses Dl ~

0.1, ... , Dn ~ 0.1 E M~_1 such that Di $s Ci for every i, 1 $ i $ n. By Lemma 4.3.4

94 CHAPTER 4. REDUNDANCY ELIMINATION

there exist variable renamings 0"1, ... ,O"~ such that true::::} O(...,D1 0"1 v L(d», ... , true ::::}

O(...,DnO"~ v L(d» EN;' Hence, as true::::} O(""DiO"~ V L(d» :$.. true::::} O(""Ci V L(d»

holds for every i, 1 :$ i :$ n, we obtain from Lemma 4.2.22 that there exists a terminating

step clause D ::::} 01. E M~ with D :$., C. Again, we have to note that there cannot be a

clause C E Res~b(U' U LT(S'» that subsumes one of the clauses that participates in the

derivation of the terminating step clause D ::::} 01. and leads to the derivation of a clause 'V'

with 'V' < .. D ::::} 01. as this would imply that C::::} 01. ¢ M~+l' 0

The following three lemmata establish that the Subsumption-Restricted-FG-BFS algo

rithm only requires finitely many iterations when it is applied on any c1ausified monodic

temporal problem.

Corollary 4.3.6. Let P' = (U', I', S', £) be a clausified monodic temporal problem. Addi

tionally, let Mil, M 1, . .. be the sets of terminating step clauses constructed as in a run

of the Subsumption-Restricted-FG-BFS algorithm applied on the temporal problem P' for

an eventuality OL(x) E £ (without considering potential derivations of the empty clause).

Finally, let for all i, 1 :$ i :$ n, M~' ~ T(P) be the representatives of the equivalence classes

w. r. t. the equivalence relation = X that correspond to the terminating step clauses contained

in the set M~.

Then it holds for all i ~ 1 that:

Proof. Follows from Lemma 4.3.5. o

Lemma 4.3.7. Let P' = (U', I', S', £) be a clausified monodic temporal problem and let

OL(x) E £ be an eventuality. Additionally, letMo,Mi,.·· be the sets of terminating step

clauses constructed as in a run of the Subsumption-Restricted-FG-BFS algorithm applied on

the temporal problem P' for the eventuality 0 L(x) E £.

Then there exists an index i ~ 1 with either M ~ = 0 or 0 f:. M~ = X M:+ 1 .

Proof. Follows from Corollary 4.3.6 and from the fact that the set T(P') is finite. 0

Corollary 4.3.8. Let p= (U,I,S,£) be a monodic temporal problem and let OL(x) E £

be an eventuality clause. Then the Subsumption-Restricted-FG-BFS algorithm applied on

the problem P for the eventuality 0 L(x) will rt:',QUire only finitely many iterations.

The subsequent proposition still establishes a basic result about the terminating step

clauses constructed in an iteration of the algorithm.

Lemma 4.3.9. Let P' = (U', I', S', £) be a clausified monodic temporal problem and let

OL(x) E £ be an eventuality. Additionally, let M o,M1,.·· be the sets of terminating step

clauses constructed as in a run of the Subsumption-Restricted-FG-BFS algorithm applied

on the temporal problem P' for the eventuality OL(x) E £ (without considering potential

derivations of the empty clause).

4.3. SUBSUMPTION AND LOOP SEARCH 95

Then it holds for every i E N and for every step clause D ::::} 0.1 E M~ tlUJt there does

not exist a step clause C ::::} 0.1 E M~ with C <. D.

Proof. Follows immediately from the construction of the different clause sets M~ as subsumed

clauses are removed. 0

The next four lemmata are crucial for proving Lemmata 4.3.15 and 4.3.18. They show

that the loop condition, i.e. the logical equivalence of the formulae ~(x) and R;+l(X)

computed in two subsequent iterations, is in fact equivalent to the equality of the sets

containing the minimal terminating step clauses with respect to the subsumption relation 58
constructed in the iterations i and i + 1.

Lemma 4.3.10. Let p' = (U',I', S',£) be a clausified monodic temporal problem. Addition

ally, let C ::::} 0.1 and D ::::} 0.1 be two terminating step clauses derived by subsumption

compatible ordered fine-grained resolution with selection from P' U LT(S) u Cls(true ::::}

O~(cl» such tlUJt C 5. D.

Then it holds that the formula 'ix((3D){ d x} ::::} (3C){ d x}) is valid.

Proof. First of all, let D == A"Evar(D) A';';1 P!(y) 1\ A~!1 Qj(Cj) 1\ A~!1 Rj(cl
) 1\ A~!, qj,

where c" ... , Cn) are constants such that {Cl,' .. , Cn) } n { cl
} = 0 and ql, ... , qn 3 are nullary

predicate symbols. Additionally, let a be the substitution with Ca ~ D. Hence, we have

" m~

C== /\ /\ P!(y) 1\ 1\ 1\ PJ(y) 1\ /\ Qj(Cj)
"E var(C)\dom(u) jE'L~ "Evar(C)ndom(u)j=' jE'L1

1\ /\ R j (cl
) 1\ /\ qj

jE'L2 jE'L3

with I" ~ {l, ... ,m,,} for every variable y E var(C) \dom(a), II ~ {l, ... ,nt}, I2 ~

{ 1, ... , n2} and I3 ~ {I, ... , n3}'

Moreover, let v.n = (V, I) be a first-order interpretation over the signature of the

formulae C and D. Additionally, let a: X -+ V be a variable assignment. We also assume

that v.n pCl (3D){ cl x} holds.

We can thus infer that v.n pO 3y AjE'L~ PJ (y) for every variable y E var(C) \ dom(a),

v.n pCl Qj(Cj) for every j E II, v.n I=CI Rj(x) for every j E I2 and v.n pCl qj for every j E I 3 .

Finally, for a variable y E var(C) n dom(a) we distinguish between the following cases.

For a(y) = z E X, it holds that v.n pCl 3zA';:1 Pl(z), which implies that v.n pCl
" m'

3y A7.;, PJ(y). If a(y) = cl , then we have v.n pCl Aj.;, PJ(x), from which it follows that

v.n pCl 3y A;'], PJ(y). For a(y) = c and c # cl
, we obtain v.n pO A7i, PJ(c), from which

mil _

we can infer that v.n pO 3y Aj .; 1 PJ (y).

96 CHAPTER 4. REDUNDANCY ELIMINATION

We can hence conclude that:

rot FCI 1\ (3Y 1\ PJ(Y)) /\ 1\ (3Y A PJ(y))
yEvar(C)\dom(<7) jETv yEvar(C)ndom(<7) j=1

/\ 1\ Qj(Cj) /\ 1\ Rj(x) /\ 1\ qj
JET. jET2 JETs

And finally, we can infer that rot FCI (3C){ d 1--+ X} holds. o

Definition 4.3.11. For two first-order clauses C and V, we write C 1-, V if and only the

clause V results from the clause C through an arbitrary factoring inference on a pair of

positive or negative literals. The reflexive and transitive closure of the relation 1-, will be

denoted by I-j .

Lemma 4.3.12. Let C ~ 01. and Dl ~ 01., ... , Dn ~ 01. be terminating step clauses

derived by subsumption-compatible ordered fine-grained resolution with selection from P U

LT(S) U Cls(true ~ 0~1(d)) U Cls(true ~ 0~2(d)). We also assume that the formula

n

Vx((3C){cl x} ~ V (3Dj){cl l--+ x})
j=1

is valid. Then there exists an index j with 1 :5 j :5 n and a negative clause V such that

Vj I-j V and V :58 -,C.

Proof Let F:= Vx((3C){d 1--+ x} ~ V;=1 (3Dj){d 1--+ x}), and let

mil nl n2 ns

C = 1\ 1\ PJ(y) /\ 1\ Qj(Cj) /\ 1\ Rj(cl
) /\ 1\ qj,

yEvar(C)j=1 j=1 j=1 j=1

where C1, .. " Cn! are constants such that {Cl, ... , Cn!} n {d} = 0 and q1,···, qns are

nullary predicate symbols. The clausification of the fonnula -,F == 3x((3C) {d 1--+ x} /\

A; = 1 (V-,D j) {d 1--+ x}) yields the following set of clauses N:

mv n! n2 n3

N = U U{PJ(skyH U U{Qj(Cj)} U U{Rj(skH u U{qj}
yEvar(C)j=1 j=1 j=1 j=1

n

U U{-,Dj{d 1--+ sk}}
j=1

where {sk} U {sky lyE var(C)} are fresh Skolem constants. As the formula -,F is

unsatisfiable, it follows from refutational completeness of (regular) resolution that there

exists a derivation R of the empty clause from the clause set N. Additionally, as the

clauses -,Dj {d 1--+ sk} for 1 :5 j :5 n only contain negative literals, we can observe that the

derivation R essentially consists in variable-free unit clauses resulting from the clausification

of the formula (3C){ d 1--+ sk} being resolved together with a single clause -,Dj {d 1--+ sk}

for a j, 1 :5 j :5 n.

4.3. SUBSUMPTION AND LOOP SEARCH 97

Let a denote the accumulation of the different substitutions used in the derivation 'R2.
Then, the substitution a maps every variable from its domain into a constant. We now

exhaustively apply the (negative) factoring rule on every pair of literals ...,P(x) and ...,P(y)

with a(x) = a(y) or -,P(x) and ...,P(c) with a(x) = c (for arbitrary predicate symbols P

and constants c). After performing some additional elimination of duplicate literals we

obtain a negative clause V such that Dj r-j V holds. We can also infer that there exists

a new refutation R' which involves the clause V and which results from the derivation 'R.
Additionally, as every literal in the clause Va occurs at most once and as variables occurring

in the clause V are consistently replaced by the same constants in the derivation 'R', which

implies that every unit clause is used at most once, it is easy to see that there exists a

substitution a' with Va' ~ ...,C, i.e. V S;s ...,C holds. o

Lemma 4.3.13. Let P' = (U', I', S', £) be a clausified monodic temporal problem. Fur

thermore, let C 1 ~ 0.1, ... ,Cm ~ 0.1 and Dl ~ 0.1,· .. ,Dn => 0.1 be terminating

step clauses derived by subsumption-compatible ordered fine-gmined resolution with selection

from P' U LT(S) u Cls(true ~ O~dd)) U Cls(true => 0~2(d)). We also assume that the

formula
m n

VX(VC3Ci){C
I ~ x} ~ V (3Dj){cl ~ x})

i= 1 j=1

'is valid. Then it holds that for every i, 1 S; i S; m there exists an index j, 1 S; j S; n and a

clause V with Dj r-i V and V S;s ...,Ci .

Proof. First of all, we can infer that the following formula is valid as well:

m n

VX(/\ [(3Cd{cl ~ x} => V (3D j){cl ~ x}])
i=1 j=1

Consequently, we obtain that the subsequent formula is also valid:

m n

/\ Vx((3Cd{cl ~ x} ~ V (3Dj){cl ~ x})
i= 1 j= 1

We can conclude that for every i, 1 S; i S; m the formula

n

Vx((3Ci){C
I ~ x} ~ V (3Dj){cl ~ x})

j=1

is valid and thus, by Lemma 4.3.12 for every i, 1 S; i S; m, there exists an index j, 1 S; j S; n,

and a clause V with Dj r-j V and V S;s ...,Ci . 0

Lemma 4.3.14. Let M and M' be sets of terminating step clauses derived by subsumption

compatible ordered fine-grained resolution with selection from P U LT(S) U Cls(true ~

O~l(d))UCls(true ~ 0~2(d)). We also assume that the sets M and M' are closed under

2 As the unit clauses do not contain free variables, there is no need to rename variables.

98 CHAPTER 4. REDUNDANCY ELIMINATION

the application of the (unordered) factoring rule. Finally, let N = {Cl ~ OJ., ... , Cm ~

OJ.} ~ M and N' = {Dl ~ OJ., ... , Dn ~ OJ.} ~ M' be the sets of all the minimal step

clauses tvith respect to the relation $.. contained in the sets M and M', respectively.

Then the follotving statements are equivalent:

(i) N=xN'

(ii) the formula 'Vx(V:1 (3Ci){d 1-+ x} {:::} V;=l (3Dj){d 1-+ x}) is valid

(iii) 'V i, 1 $ i $ m 3j, 1 $ j $ n: D j $.. Ci and 'V j, 1 $ i $ n 3 i, 1 $ j $ m: Ci $.. Dj

Proof The implication (i) ~ (ii) is obvious. By Lemma 4.3.13 and by closedness under

factoring inferences the implication (ii) ~ (iii) holds. For the remaining implication

(iii) ~ (i) let C ~ OJ. EN. It then follows from the assumptions that there exists a step

clause D ~ OJ. EN' such that D :58 C. We obtain again from the assumptions that there

exists a step clause C' ~ 0 EN with C' $.. D. Thus, we can conclude that there exists a

variable renaming 0' with CO' = D and CO' ~ OJ. EN' as otherwise there would exist a

step clause C' => OJ. E N ~ M with C' <8 C, which would contradict the minimality of

the step clause C ~ OJ..
The inclusion N' ~x N can be shown analogously. o

We now show that the sets of minimal clauses with respect to the subsumption relation

remain unchanged in subsequent iterations (up to vm-iable names) once the loop search

condition has been fulfilled and the algorithm has been kept iterating.

Lemma 4.3.15. Let P = (U',I',S',£) be a clausified monodic temporal problem. Addi

tionally, let Mo, M1, . .. be the sets of terminating step clauses constructed as in a run

of the Subsumption-Restricted-FG-BFS algorithm applied on the temporal problem P' for

an eventuality 0 L (x) E £ (without considering potential derivations of the empty clause).

Finally, let i E N be an iteration index such that the formula 'Vx(V C*O.lEM~ (3C){ d 1-+

x} {:::} V D*O.lEM:+
1
(3D){ d 1-+ x}) is valid.

Then it holds for every j ~ 0 that M: = X M:+ j .

Proof First of all, let No, Nt, .. , be the initial sets of universal and step clauses in each

iteration and let To, T{, ... be the sets of all the terminating step clauses that can be

derived from the sets No,N{, . .. , respectively. Then, by Lemma 4.3.14 it follows from the

validity of the formula 'Vx(V C*O.lEM/3CH d 1-+ x} {:::} V D*O.lEM:+
1
(3DH d 1-+ x}) that

M: =x M:+ 1·

We now show by induction on j that M:+ j = x M:+J+ 1 for every j ~ O. For j = 0 there

remains nothing to be shown. If j > 0, then it follows from the induction hypothesis that

M:+j - l =x M~+j'
Let C => OJ. E M:+ j and let true => O(-,Dl V L(d)), ... , true ~ O(-,Dn V L(d)) be

all the newly added step clauses to the set N/+ j which are involved in the derivation of the

terminating step clause C => OJ.. By Lemma 4.3.4, there exist variable renamings 0'1, ..• ,O'n

4.3. SUBSUMPTION AND LOOP SEARCH 99

such that DkOk ~ OJ. E M~+j-l for every k, 15k 5 n. Thus, it follows from the induction

hypothesis that there exist variable renamings 01, ... , o~ with Dko~ ~ OJ. E M~+j for

every k, 15k 5 TI. Consequently, by Lemma 4.3.4 there exist variables renamings or, ... , o~
such that true ~ O(...,Dkok V L(cl

)) E N:+j +1 for every k, 15k 5 TI. It is hence easy to

see that there exists a variable renaming a with Co ~ OJ. E ~~ j+ l' If we now assume that

the step clause Co :::} OJ. E ~~j+l is not minimal in the set ~~j+l with respect to the

relation 58' then let G' :::} OJ. E ~~j+ 1 be a minimal terminating step clause with C' <8 Co

(there cannot be a universal clause V E Ressub(U) with V <8 Co :::} OJ. as this would

imply that C:::} OJ. ¢ M~+j)' Let true:::} 0(...,E1 V L(cl)), ... , true ~ O(...,Em V L(cl))

be all the newly added step clauses to the set N:+j+ 1 which are involved in the derivation of

the terminating step clause C' ~ OJ.. Thus, it follows again from Lemma 4.3.4 that there

are variable renamings 01"", Om such that E101 :::} OJ.,· .. , EmOm :::} OJ. E M~+j = X

M~+j-l' Hence, by Lemma 4.3.4 again there exist variable renamings 01, ... ,0:'" with

true ~ 0(...,E101 V L(cl)), ... , true:::} O(...,EmO:'" V L(cl)) E N:+ j . We can infer that there

is a variable renaming 0 with C'O ~ OJ. E ~~j and C'O <8 C, which contradicts the

minimality of the step clause C ~ OJ.. We can conclude that Co:::} OJ. E M~+j+l'

The inclusion M~+j+ 1 ~x M~+j can be shown analogously using M~+j ~x M~+j+l' 0

We now prove a lemma that links together two runs of the Subsumption-Restricted-FG

BFS algorithm for the same eventuality OL(x) on two sets of universal clauses U and U
with Res~b(U) 5s U \ taut(U).

Lemma 4.3.16. Let P= (U,I,S,£) be a clausijied monodic temporal problem. Addition

ally, let Mo,M1, ... be the sets of terminating step clauses constructed as in a run of the

Subsumpti.on-Rcstmted-FG-BFS algorithm applied on the temporal problem P for an eventu

ality OL(x) E f (without considering potential derivations of the empty clause). Furthermore,

let P= (U,I,S,£) be a clausified monodic temporal problem with Res~b(U) 58 U\ taut(U)

and let Mo, M 1, . .. be the sets of terminating step clauses constructed as in a run of

the Subsumption-Restricted-FG-BFS algorithm applied on the temporal problem P for the

eventuality OL(x) E f (without considering potential derivati.ons of the empty clause).

Then it holds JOT every i that M~ u Res~b(U U S) 58 M~.

Proof. By induction on i using Lemmata 4.2.23 and 4.3.4. o

Before we can prove Lemma 4.3.18, we have to establish the following result. It states

that a set of universal clauses U logically implies the formula V'x...,(3D){ d 1-+ x}, where D is

the left-hand side of the terminating step clause D:::} OJ. constructed by the loop search

algorithm, if a clause C with C 58 -,D can be derived by resolution inferences from clauses

contained in U.

Lemma 4.3.17. Let P = (U', I', S', f) be a clausified monodic temporal problem. Addition

ally, let C E ReSg~b(U) be a universal clause and D = 1\;= 1 L j , where for every j, 1 5 j 5 TI,

Lj is an at most monadic literal with const(Lj) ~ const(P) U {d}, and such that C 58 -,D.

100 CHAPTER 4. REDUNDANCY ELIMINATION

Then it holds thatU F 'v'x-,(3D){cl x}.

Proo/. First of all, it follows from the definition of the subsumption relation :5" on temporal

clauses that there exists a substitution a with Ca ~ -,D. As cl ¢ const(P'), it is easy to see

that there also exists a substitution a' with Ca' ~ -,D{ cl x} for a fresh variable x, which

implies that the formula YC ::} Y(-,D{ cl x}) is valid. We can thus conclude that the

formula YC ::} 'v'x-,(3D){ d x}) is also valid, and it follows from soundness of sUbsumption

compatible ordered fine-grained resolution with selection that U F 'v'x-,(3D){d x}. 0

Finally, we show that for a loop formula V7=1 Aj(x) w.r.t. a satisfiable set of universal

clauses U and an eventuality OL(x), where Prenex(Aj(x» = (3D j){d x} for 1 :5 j :5 m,

the Subsumption-Restricted-FG-BFS algorithm applied on the clausified monodic temporal

problem (saturated under the fine-grained step resolution inference rules of subsumption

compatible ordered fine-grained resolution with selection) involving the set U for the

eventuality OL(x) computes a formula R(x) = V:=1(3Ci){c' x}, n ~ 0, such that for

every j E {I, ... , m} there either exists a universal clause C E U with C :5" -,Dj or there

exists i E {I, ... , n} such that Ci :58 Dj .

Lemma 4.3.18. Let P = (U,I,S,e) be a clausified monodic temporal problem saturated

under the fine-grained step resolution inference rules of J~tsuh such that the set U is

satisfiable, let 'v'x(Aj(x) ::} OBj(x» for j E {I, ... ,m} and m ~ I be full merged step

clauses with Prenex(Aj(x» = (3Dj){d x} for every j E {I, ... , m} and let OL(x) E e

be an eventuality clause such that the loop side conditions 'v'x(U A Bj(x) ::} -,L(x» and

'v'x(U A Bj(x) ::} V7=l Aj(x» are valid for all j, 1 :5 j :5 m.

Then the Subsumption-Restricted-BFS algorithm applied on the temporal problem P for

the eventuality OL(x) returns a formula R(x) = V~=l (3Ci){d x}, n ~ 0, such that for

every j E {I, ... , m} there either exists a universal clause C E U with C :5" -,Dj or there

exists i E {I, ... , n} such that Ci :5s D j •

Proo/. First of all, for every full merged step clause 'v'x(Aj(x) ::} OBj(x», j E {I, ... , m},

such that Prenex(Aj(x» = (3Dj){d x} and such that there exists a universal clause C E

U with C :5" -,Dj, it follows from Lemma 4.3.17 that U F 'v'x-,Aj(x). We can thus infer that

for every j' E {I, ... , m} with j' f j, the formula 'v'x(U A Bj,(x) ::} Vj"E{l, ... ,m}\{j} Aj"(x»

is valid. Consequently, we may assume without loss of generality that for every full merged

step clause 'v'x(Aj(x) ::} OBj(x», j E {I, ... , m}, with Prenex(Aj(x» = (3Dj){d x}

there does not exist a universal clause C E U with C :58 -,Dj .

Now, let Mo, M I, ... , M, be the sequence of sets and Ro(x), Rl(X), ... , R,(x) be the

sequence of formulae constructed by a run of the Subsumption-Restricted-BFS algorithm

applied on the temporal problem P for the eventuality OL(x). We show by induction

on i with i ~ 1 that for all 'v'x(A.7(x) ::} OBj(x», j E {I, ... , m}, with Prenex(Aj(x» =
(3Dj){d x} there exists a terminating step clause C; ::} 0.1 E M~ such that C; :5" Dj .

For i = 1, we first of all observe for all j, 1:5 j :5 m, that the formula 'r/x(U A Bj(x) ::}

-,L(x» is valid. By Lemma 3.4.40 it follows for every j, 1 :5 j :5 m, that there exists a

4.3. SUBSUMPTION AND LOOP SEARCH 101

derivation of a terminating step clause E ~ 0.1 from P U LT(S) U Cls(true ~ OL(cl))

by ordered fine-grained resolution with selection without the clause conversion rule such

that E :Ss Dj . Then, by Lemma 4.2.23 there exists a clause C E ResSub(U U S U LT(S) U

Cls(true ~ OL(d)) with C :Ss E ~ O.l. If we assume that there exists a clause C with

C :Ss .1, i.e. C = .1, then it would follow that C = .1 E ResSub(U) = U as in saturations

computed by the Subsumption-Restricted FG-BFS algorithm universal clauses can only be

derived through universal clauses. Consequently, it would hold that the set U is unsatisfiable,

which contradicts our assumptions. We can thus infer from our assumptions that there

exists a terminating step clause CJ ~ 0.1 E Ml with CJ S;s E S;s Dj .

If i > 1, then it follows from the induction hypothesis for all Vx(Aj(x) ~ OBj(x)),

j E {I, ... , m }, with Prenex (A(x)) = (3D j){ cl
1-+ x} that there exists a terminating step

clause C;-l ~ 0.1 E M:- 1 such that C;-l :Ss Dj . By Lemma 4.3.10 we can then infer

that the formulae Vx(Aj(x) ~ (3C;~I){d 1-+ x})) and Vx(Aj(x) ~ 14~l(X)) are valid for

every j, 1 :s j :s m. We obtain for all j, 1 :s j :s m, from the validity of the formula

Vx(U 1\ Bj(x) ~ V;=l Aj(x)) that the formula Vx(U 1\ Bj(x) ~ (Ri~l(X) 1\ -,L(x))) is also

valid. By Lemma 3.4.40 it follows again for every j, 1 :s j :s m, that there exists a derivation

of a terminating step clause E ~ 0.1 from P U LT(S) U Cls(true ~ O(-,Ri(cl) V L(d)))

by ordered fine-grained resolution with selection without the clause conversion rule such

that E :S. Dj . Similarly, to the previous case one can infer that there exists a terminating

step clause C; ~ 0.1 E M: with q :Sa E :Sa Dj . 0

4.3.3 Refutational Completeness

In this section we prove the refutational completeness of subsumption-compatible ordered

fine-grained resolution with selection where applications of the eventuality resolution rules

are restricted to loops found by the Subsumption-Restricted-FG-BFS algorithm. The proof

of refutational completeness is based on simulating a J~;;- -derivation in J~t::s.J>'

First, we analyse the formulae computed by the Restricted-FG-BFS and Subsumption

Restricted-FG-BFS algorithms applied for the same eventuality OL(x) on two clausified

temporal problems P = (U,i,S,E) and P = (U,I,S,E), respectively, where I :Sa i\taut(i),

U :Ss U \ taut(U), and S :Ss S \ taut(S).

Lemma 4.3.19. Let P = (U, i, S, E) be a clausified monodic tempoml problem. Additionally,

let H(x) of false be the formula computed by the Restricted-FC-BFS algorithm applied on

the temporal problem P for an eventuality OL(x) E E. Furthermore, let P = (U,I,S,E)

be a clausified monodic temporal problem saturated under the fine-grained step resolution

inference rules of subsumption-compatible ordered fine-gmined resolution with selection and

such that 1 :SO! i \ taut(i), U :SO! U \ taut(U), S :Sa S \ taut(S). Finally, let H(x) be the

loop formula computed constructed by the Subsumption-Restricted-FC-BFS algorithm applied

on the tempoml problem P for the eventuality 0 L(x) E E.

Then it holds that Cls(Vx-,H(x)) uU:Sa CIs(Vx-,H(x)).

102 CHAPTER 4. REDUNDANCY ELIMINATION

Proof First of all, if U ~ 'ltx-,L(x), we can infer that H(x) = true. Furthermore, we obtain

Cls('ltx-,H(x» = {1.} $5 Cls('ltx-,H(x».

Otherwise, U 11 'ltx-,L(x) holds. We can assume that the set U is satisfiable and that

H(x) =I- true. If H(x) = true, we would have U ~ U ~ 'ltx-,L(x) by Lemma 4.2.7. Thus,

let H(x) = V:l(3Dj){cl
1-+ x} and H(x) = V~=1(3Ci){d 1-+ x}. Then it follows from

Lemma 4.3.18 for all j E {I, ... , m} that there either exists a universal clause C E U

with C $5 -,Dj or there exists i E {I, ... , n} such that Ci $.. Dj . As d ¢ const(P) U

const(P) , Cls('ltx-,iI(x» = {-,Ddd 1-+ z}, ... ,-,Dm{d 1-+ z}} and Cls('ltx-,H(x» =
{-,C1 {d 1-+ y}, ... ,-,Cn {d 1-+ y}}, where y, z are fresh variables, it is easy to see that

for all j E {I, ... ,m} there either exists a universal clause C E U with C $" -,Dj { d 1-+ z}

or there exists i E {I, ... ,n} such that -,Ci { d 1-+ y} $.. -,Dj { d 1-+ z}. 0

We can now prove the refutational completeness of subsumption-compatible ordered

fine-grained resolution with selection where applications of the eventuality resolution rules

are restricted to loop formulae found by the Subsumption-Restricted-FG-BFS algorithm.

Theorem 4.3.20. Let P be a monodic temporal problem and let pc be its constant-flooded

form. Let ~ be an admissible atom ordering and S be a subsumption compatible selection

function. Then P is un satisfiable if and only if there exists a J:t.suJ. -refutation of Cls(PC)

with applications of the eventuality resolution rule restricted to loop formulae found by the

Subsumption-Restricted-FG-BFS algorithm. Moreover,. Pis unsatisfiable if and only if any

fair J~t.suJ. -derivation with applications of the eventuality resolution rules restricted to loop

formulae f01Jnd by the Subsumption-Restricted-FG-BFS algorithm is a refutation of Cls(PC).

Proof Soundness of subsumption-compatible ordered fine-grained resolution with selection

follows from soundness of ordered fine-grained resolution with selection and soundness of

the inference rules for arbitrary factoring in left-hand sides of terminating step clauses and

for arbitrary factoring in (at most) monadic negative universal clauses.

We may now assume that the temporal problem P is unsatisfiable, which implies that

the constant-flooded and clausified temporal problem Cls(PC) is also unsatisfiable. It then

follows from Theorem 3.4.46 that there exists a refutation a = C1, C2, ... , Cm = 1. by J~t
from Cls(PC).

In the following we show by induction on the length of the derivation a that for every

clause C, (1 $ i $ m) which is not a tautology that there exists a clause C, E .1 which can

be derived by subsumption-compatible ordered fine-grained resolution with selection from

the temporal problem Cls(PC) such that Ct $.. Ci , which implies that Cm = .1.

If a clause Ci (1 $ i $ m) is contained in the temporal problem Cls(PC) but not a

tautology, then we simply define q = Ct.
In the case where a non-tautological clause Ci (1 $ i $ m) is not contained in the

temporal problem CIs(PC) and has not been derived by the eventuality resolution rules,

we consider the following cases. First of all, we can infer that not both parents C1,. and

C2,i of the clause Ci in the derivation a are tautologies as this would imply that Ct is a

4.4. SUMMARY 103

tautology by Lemmata 4.2.9 and 4.2.10. If one of them is a tautology, i.e. without loss of

generality the clause C2•i is not a tautology, we obtain that C2 •i ~8 Ci holds by Lemma 4.2.9.

Thus, by using the induction hypothesis we obtain a clause C2,; derived by subsumption

compatible ordered fine-grained resolution with selection from the temporal problem Cls(PC)

such that C2•i ~8 C2.; ~8 Ci holds. Otherwise, neither the clause C1,; nor the clause C2,i

are tautologies and we can derive a clause C; with C; ~8 Ci by sUbsumption-compatible

ordered fine-grained resolution with selection from the temporal problem Cls(PC) by using

the induction hypothesis and Lemma 4.2.23.

Finally, if a clause Ci (1 ~ i ~ m) is not contained in the temporal problem Cls(PC) and

has been derived by one of the eventuality resolution rules applied on a loop formula H(x), we

first of all compute the saturation under the fine-grained step resolution rules of sUbsumption

compatible ordered fine-grained resolution with selection. If we obtain a contradiction, then

we can extend the derivation D. accordingly and define Ci = 1.. Otherwise, we can first of

all infer that H(x) i false (as this would imply that Ci is a tautology), and we add all the

clauses computed during the saturation to the derivation D.. We finally obtain the required

clause Ci with C i ~s C; by applying Lemma 4.3.19. 0

4.4 Summary

The aim of this chapter was to provide a formal analysis of combining redundancy elimination

with ordered fine-grained resolution with selection.

First, we focused on redundancy elimination in combination with the resolution-based

inference rules of ordered fine-grained resolution with selection. We presented syntactic

criteria for identifying tautologies among temporal clauses and we defined a subsumption

relation on temporal clauses. We then described how the calculus had to be extended

in order to remain compatible with the removal of subsumed clauses, resulting in the

subsumption-compatible ordered fine-grained resolution with selection calculus. We also

proved the subsumption lemmata for the subsumption-compatible calculus.

In the second part of the chapter we analysed the problem of combining redundancy

elimination with the loop search process. We introduced a resolution-based loop search

algorithm called Subsumption-Restricted-FG-BFS which eliminates subsumed clauses and

tautologies during loop search computations. After having proved some of its properties,

we showed the refutational completeness of sUbsumption-compatible ordered fine-grained

resolution with selection where applications of the eventuality resolution rules are restricted

to loops found by the Subsumption-Restricted-FG-BFS algorithm.

Chapter 5

Fair Derivations in Monodic Temporal

Reasoning

5.1 Introduction

Having focused on theoretical aspects of the Jit - and Jic':sub -calculi until now, this chapter

is more geared towards analysing the behaviour of subsumption-compatible ordered fine

grained resolution with selection in practice. It has turned out that some obstacles can

be encountered when it comes to constructing fair derivations for the J;;'-sub-calculus in

practice, i.e. in an automated theorem prover, for example.

Broadly speaking, the inference rules of (subsumption-compatible) ordered fine-grained

resolution with selection can be classified into two different categories. The majority of

the rules are based on standard first-order resolution between different types of temporal

clauses. The remaining inference rules reflect the induction principle that holds for monodic

temporal logic over a flow of time isomorphic to the natural numbers. The applicability

of the rules in this second category is only semi-decidable. Consequently, fair derivations,

i.e. derivations in which every non-redundant clause that is derivable from a given clause

set is eventually derived, cannot be guaranteed in practice as the applicability check for an

inference rule of the second category might not terminate. But as the ability to construct

fair derivations is an essential requirement for maintaining the refutational completeness of

an automated theorem prover, we have to look for ways t.o overcome the fairness problems

of the J;;'-Sub-calculus if we want to develop a fair prover for monodic first-order t.emporal

logic which is based on J;;,-Sub'

In this chapter we therefore present an inference procedure t.hat. can const.ruct fair

derivations for reasoning in monodic first-order temporal logic, and we prove its refutational

completeness. The new inference mechanism is based on sUbsumption-compat.ible ordered

fine-grained resolution with selection. We also show that the new inference mechanism can

also be used as a decision procedure for some specific classes of temporal problems.

We proceed as follows: after having illustrated the fairness problems related to the

J;c':sub-calculus in the beginning of Section 5.2, we introduce the new inference procedure

105

106 CHAPTER 5. FAIR DERIVATIONS IN MONODIC TEMPORAL REASONING

which can guarantee fair derivations in practice. We conclude the chapter by proving the

refutational completeness of the fair inference mechanism in Section 5.3 and we show that

it can be used as a decision procedure for some specific monodic temporal problems in

Section 5.4.

5.2 Constructing Fair Derivations

We start by examining the fairness problems of the J:C;:Suh -calculus.

5.2.1 Fairness Problems

As stated in Theorem 4.3.20, any fair derivation by subsumption-compatible ordered fine

grained resolution with selection from an unsatisfiable clausified monodic temporal problem

will eventually include a monodic temporal problem containing the empty clause. However,

due to the presence of the ground and non-ground eventuality resolution rules in our calculus,

constructing a fair derivation is a non-trivial problem. The validity of the side conditions

of loop formulae, i.e. Vx(U A Bi(X) => -.L(x)) and Vx(U /I. Bi(X) => V;=l Aj(x)) in the non

ground case, is only semi-decidable. Thus, the construction of a derivation could potentially

'get stuck' while checking these side conditions. For example, if we clausify the unsatisfiable

problem

p = ({P(c, c),

Vx3yVvVw(Q(y, x) A (P(x, v) => P(y, w)))},

{R(c)},

{R(x) => OR(x), R(x) => O-.L(x)},

{OL(x)})

in DSNF, then we obtain the following clausified temporal problem:

Cls(P) = ({P(c,c),Q(f(x),x),

-.P(x, v) V P(f(x), w)},

{R(c)},

{R(x) => OR(x), R(x) => O-.L(x),

R(c) => OR(c), R(c) => O-.L(c)},

{OL(x)}),

where f is a unary function symbol introduced during Skolemization. But the temporal

problem Cls(P) possesses an infinite saturation on universal clauses as universal unit clauses

of the form p(fk(x), v) can be derived for any kEN. Thus, an attempt at detennining

whether the formula Vx(U A R(x) => -.L(x)) is valid, where U is the set of universal clauses

and R(x) the right-hand side of the step clause R(x) => OR(x), might not terminate.

5.2. CONSTRUCTING FAIR DERIVATIONS 107

Function Subsumption-Restricted-FG-BFS

Input:

Output:

Method:

A set of universal clauses U and a set of step clauses S, saturated under
the fine-grained step resolution inference rules of sUbsumption-compatible
ordered fine-grained resolution with selection, and an eventuality clause
OL(x) E f.

A formula R(x) with at most one free variable.

(1) Let Ro(x) = true; Mo = 0; i = 0

(2) Let N:+1 = U U LT(S) U {true '* O(-.~(cl) V L(cl))}. Apply the
fine-grained step resolution rules of subsumption-compatible ordered
fine-grained resolution with selection except the clause conversion
rule to N:+ l' together with the removal of tautological and subsumed
clauses. If we obtain a contradiction, then return the loop true (in
this case 'ix-.L(x) is implied by the universal part).
Otherwise let M~+l = {D j '* OJ..}j=l be the set of all new termi
nating step clauses in the saturation of N:+ 1 .

(3) If M~+1 = 0, return false; else let ~+1(X) = V;=l(~lDj){d - x}

(4) If 'iX(Ri(X) '* Ri+l(X)), return Ri+l(X).

(5) i = i + 1; goto 2.

Figure 5.1: Breadth-First Search using Subsumption-Compatible Ordered Fine-Grained
Step Resolution with Selection together with Redundancy Elimination

One might try to overcome this problem based on the following observation. While

additional step clauses can be inferred in a derivation, these need not be used as premises

for the ground and the non-ground eventuality resolution rule. Instead it is sufficient to only

use step clauses in the original monodic temporal problem for the construction of merged

derived step clauses and full-merged step clauses. Thus, there is actually a finite and static

set of potential premises for any application of the ground and the non-ground eventuality

resolution rule during a derivation. Hypothetically, the validity of the side conditions of

each of these applications could be checked in parallel, allowing us to proceed with those

applications where the side conditions hold. In the following we refer to this approach as

parollel exhaustive loop test. What makes this approach impractical is the fact that while

the set of premises is static and finite, the set of universal clauses U involved in the side

conditions of the rules in questions is not. In particular, applications of the clause conversion,

ground and non-ground eventuality rules may extend U in such a way that a previously

invalid side condition becomes valid. Thus, each time the set U is extended we have to

re-check the applicability of the ground and non-ground eventuality resolution rules to each

potential set of premises.

The use of the Subsumption-Restricted-FG-BFS algorithm to systematically search for

(ground) loop formulae does not solve the problem related to the semi-decidability of the

side conditions used in the eventuality resolution rules. In step (2) of the algorithm we need

to saturate the set of universal and step clauses N:+ 1 using the fine-grained step resolution

rules except the clause conversion rule. This saturation process may not terminate even if

108 CHAPTER 5. FAIR DERIVATIONS IN MONODIC TEMPORAL REASONING

no loop formula exists for a given eventuality clause OL(x) E E or 01 E E and the set of

current universal and step clauses. Thus, the Subsumption-Restricted-FG-BFS algorithm

also cannot guarantee fairness.

If one tries to solve the fairness problem by delaying the application of the eventuality

resolution rules as long as possible, then one faces the problem that the saturation process

under the rules of fine-grained step resolution may not terminate even if the original monodic

temporal problem is unsatisfiable. Consequently, the strategy of executing the SUbsumption

Restricted-FG-BFS algorithm only after the original temporal problem has been saturated

under fine-grained resolution may still lead to unfairness.

5.2.2 The Fair Inference Procedure F

We can thus see that achieving fairness in derivations is not a trivial task and that it can

only be accomplished if the two potentially non-terminating types of saturations, which are

the regular saturation under sUbsumption-compatible ordered fine-grained step resolution

with selection on one hand, and the saturations required for loop search on the other hand,

are not executed sequentially. We hence propose a way of combining these two types of

saturations into one 'global' saturation process.

The first step towards a procedure which guarantees the construction of a fair derivation is

based on an idea introduced in [411 for improving the efficiency of loop search in propositional

linear-time temporal logic. It suggests a minor modification of the Subsumption-Restricted

FG-BFS algorithm. In step (2) of the modified algorithm we now add the clauses which

result from clausification of the formula chi = Sf+l ::::} O(-.Hi(e) V L(e» to N!H' where

sfH is a proposition uniquely associated with index i + 1 and the eventuality clause OL(x)

for which we search for a loop. The proposition Sf+l acts as a marker for these clauses

which are generated purely as a means to conduct the search. As there are only occurrences

of sh 1 in left-hand sides of step clauses, the application of inference rules to these clauses

will 'propagate' the literal sf+ 1 to all clauses we derive from ch l' This also means that

M~+l can now be defined as the set of all clauses of the form Sf+l /\ Cj ::::} 0.1. While this

makes the construction of M~+l operationally easier compared to the original version of

Subsumption-Restricted-FG-BFS, it does not fundamentally mange the algorithm. However,

this small change allows us to take advantage of the following observations. Within iterations

of the steps (2)-(5) of the modified algorithm, the clauses in the various sets N!+l are now

separated by the 'marker' sf+ l' Thus, instead of using different sets N!+ 1 we can use a

single set T which is simply extended in each iteration of the steps (2)-(5). Furthermore,

we can keep the set T between separate calls of the modified Subsumption-Restricted-FG

BFS procedure for different eventualities but also between repeated calls of the modified

Subsumption-Restricted-FG-BFS algorithm for the same eventuality clause OL(x) E E.

Finally, if we restrict the clause conversion rule so that it cannot be applied to any clause

containing a 'marker' sf, then there is no reason to separate the clauses in T from those in

the current monodic temporal problem in clausified form stored by the prover. Figure 5.2

.5.2. CONSTRUCTING FAIR DERIVATIONS

Initialization
(U, I, S, £) ===> AI' 1010 where

AI' = U U IuS U {P(c l
) :::} OM(cl

) I P(x) :::} OM(x) E S}

U {s~ :::} OL(cl
) I OL(x) E £}

Tautology Deletion
Al'u {C} IPIO ===>AI'IPIO

Forward Subsumption
Al'u {C} IPIO ===>AI'IPIO

Backward Subsumption
Al'IPu {C} 10 ===>AI'IPIO
Al'IPIOu {C} ===>AI'IPIO

Clause Processing

if C is a tautology

if some clause in P U 0 subsumes C

if some clause in AI' properly subsumes C

Al'u {C} IP 10 ===> Al'IPu {C} 10 if none of the previous rules applies

Loop Search Contradiction
01 P U {sf:::} O.1} 10 ===> {.1} I PI 0 U {sf:::} O.1} for some i, L

Next Loop Search Iteration
01 P U {sf /\ C :::} O.1} I 0 ===>

109

{sf+l :::} O-,C v L(d)} I P IOu {sf /\ C :::} O.1} for some i, Land C -:f. 0

Clause Conversion
01 P U {C :::} O.1} 10 ===> {D -,C} I P IOu {C :::} O.1} where no sf E C

Regular Inference Computation
01 P U {C} I 0 ===> Al'1 P IOu {C} if none of the previous rule applies and

where AI' = ResSub(C, O)

Loop Testing
o I P I 0 ===> AI' I P I 0 where

AI' = {DVx-,Hl+1(x) I for all i, L with 1= Vx(Hf(x) <=? Hl+1(x))}

and Hf(x) := V{(3Cj){d ---. x} I sf /\ Cj :::} 0.1 E P U O} for all i, L

Figure 5.2: Fair Inference Procedure F

depicts the inference procedure F based on these considerations in the presentation style

of [10]. The inference procedure operates on states (Al'l P I 0) that are constructed from an

initial temporal problem P = (U, I, S, £) .

A state (Al'l P I 0) consists of three sets of clauses AI' (the set of new clauses), P (the

set of clauses that still have to be processed) and 0 (the set of old clauses). The set AI'
collects the newly-derived clauses and the set 0 contains all the clauses that have already

been used as premises in inference steps (or can never be used as premises). Finally, the

set P contains all the clauses that still need to be considered as premises. In the initial state

110 CHAPTER 5. FAIR DERIVATIONS IN MONODIC TEMPORAL REASONING

(No 1010) constructed by the 'initialization' rule, the sets P, 0 are empty and the set No

contains all the clauses contained in a temporal problem P = (U,I, S, £). Additionally, as

motivated above, all the clauses required for loop search are added to No. Subsequent states

are obtained by applying one of the other inference rules depicted in Figure 5.2 on a given

state.

The rules 'tautology deletion', 'forward subsumption' and 'backward subsumption'

perform reductions on the clause sets. 'Tautology deletion' removes tautological clauses

from set of newly-derived clauses N. 'Forward subsumption' and 'backward subsumption'

eliminate clauses that have been subsumed by other clauses. Finally, the 'clause processing'

rule is responsible for moving a clause that has survived the previous reduction steps to the

set P. Once no further reductions are possible, additional clauses can be derived by the

following inference rules.

For the 'loop search contradiction' rule note that the presence of sf =* O.L in P indicates

that we can apply the non-ground eventuality resolution rule, resulting in the conclusion

OVx-, T, which is contradictory. The empty clause is then added as set N and the clause

sf =* O.L is moved to the set of old clauses O. If the set P contains a clause sf A C =* O.L
for some i, Land C =f 0, then such a clause would be part of the set Ni in the SUbsumption

Restricted-FG-BFS procedure, which is used to define the formula HH1(X), which in turn

is used to define the clauses in M~+1' Here, we directly define the one clause from M:+1
which derives from sf A C =* O.L and add it as newly-derived clause set. Finally, if a clause

C =* O.L (without a marker sf) is contained in the set P, then such a clause is a suitable

premise for the application of the clause conversion rule and we add the universal clause

O-,C as newly-derived clause set. The clause C =* O.L is moved to the set O.

In the case where the set P contains a clause C that is not handled by one of the previous

rules, we compute the set Ressub(C,O), which consists of all the conclusions derivable from

the clause C with itself and with the clauses in 0 by the step resolution inference rules of

)5.>- except the clause conversion rule. The computed clauses are then added to the next
FG.s.J.

state as set N and the clause C is moved to the set of old clauses O. The remaining rule

'loop testing' is responsible for checking the loop side condition. First, the formulae Hl

are computed for all eventuality clauses OL(x) E £ and all indices i used to create some

marker sf in the set puO. We then check whether the loop condition Vx(Hl(x) <=> Hft1 (x))

holds for every i and every L. If so, an application of the non-ground eventuality resolution

rule is possible. We compute the conclusion of the application and add it to the set N. This

concludes the description of the fair inference procedure.

There are three important observations to be made about the 'loop testing' rule. First,

we can observe that Hl(x) and Hl+1 (x) are monadic first-order formulae. Thus, the validity

of the loop condition is a decidable problem. Second, in Subsumption-Restricted-FG-BFS,

in order to establish whether Vx{ Hl(x) <=> Hlt-l (x)) is valid we only need to test whether

Vx(Hl(x) =* Hft1(X)) holds as the implication Vx(H/+1(x) =* Hhx)) is always valid by

the construction of Hl(x) and Hl+ 1(x) in these procedures. However, in the context of

the inference procedure F this is no longer the case and we need to test both implications.

5.3. REFUTATIONAL COMPLETENESS 111

Finally, whenever the loop condition holds, we have indeed found a loop formula, although

it may not be equivalent to a fonnula returned by Subsumption-Restricted-FG-BFS. We

will see that eventually an analogous fonnula (w.r.t. to the negation of the loop formula)

will be computed by the procedure F.

5.3 Refutational Completeness

We now prove the refutational completeness of the fair inference procedure. Before we can

state the completeness theorem, we have to prove several auxiliary lemmata.

First of all, we define the notion of a fair derivation produced by the inference procedure F.

For the purpose of the completeness proof we assume that the inference procedure does not

necessarily terminate whenever the empty clause has been derived but continues to derive

clauses instead.

Definition 5.3.1 (Derivation). A derivation ~ produced by the inference procedure F

shoum in Figure 5.2 from a temporal problem P = (U,I,S,£) is a sequence of states

(U,I,S,£) ~ NolPolOo ~ N1IPliOl ~ N21P2102 ~ ... where each state

(Ni I Pi 10i), i ~ 0, results from an application of an inference rule shown in Figure 5.2 on

the state (M-1IPi-110i-l) if and only iii> 0 or on (U,I,S,£) ifi = O.

If M = 0 and Pi = 0 for an index i E N, we define (M I Pi 10i) = (Nj I P j I OJ) for

every j ~ i.

A derivation ~ is sai.d to be fair 1 if and only if U:o nQi P j = 0 and, whenever possible,

every application of the 'regular inference computation' rule is eventually followed by an

application of the 'loop testing' rule.

We now prove for every clause V contained in a set Pi U Oi for i ~ 0 that there exists

an index kEN and a clause C such that C $" V and C E OJ for every j ~ k.

Lemma 5.3.2. Let ~ = (M I Pi 10i)iEN be a fair derivation produced by the inference

procedure F shown in Figure 5.2. Furthermore, let V be a initial, universal or step clause

such that V E Pi U Oi for i ~ O. Then there exists a clause C and an index j E N such that

j ~ i, C E nk~jOk andC $8 V.

Proof If V E Pi, then as the derivation ~ is fair, it follows that the clause V will eventually

be extracted from a set PI for l ~ i. Thus, there either exists a clause V E.M with V <" V

or the clause V is moved to the set 0
"

As there are only finitely many clauses V' with

V' < .. V, there exists a clause V' E PI' with V' <8 V for an index I' E N that is not removed

by backward subsumption in the derivation~. As the derivation A is fair, there hence exists

a clause iY' EO,,, with V" < .. V for an index I" E N. We may therefore assume without

loss of generality that V E Oi (otherwise we consider the clause V E 0, or V" E 0 1,,),

1 Despite its more complex appearance, the definition of fairness for the inference procedure IF follows
the same lines as the Definitions 3.2.7 and 3.3.3, Le. every inference that is possible at a given index will be
performed eventually.

112 CHAPTER 5. FAIR DERIVATIONS IN MONODIC TEMPORAL REASONING

Let N = {C E U~i Oi I C ::; .. V}. By Lemma 4.2.6, the relation < .. is well-founded.

Thus, 88 N =I 0, there exists a minimal clause C E N with respect to the relation < ... Hence,

let C E OJ for an index j ~ i. We now prove by induction that C E nk~j Ok. For k = j there

remains nothing to be shown. If k > j, then it follows from the induction hypothesis that

C E Ok-l. If we now assume that C rt Ok, then it would follow that the clause C has been

deleted by backward subsumption, i.e. it can be shown that there exists a clause C' E Ok'

with C' < .. C for a k' ~ k. We can conclude that C' < .. V by transitivity of the relation < ...
Thus, C' EN and C' < .. C, which contradicts the minimality of the clause C. 0

The proof of refutational completeness for the fair inference architecture F is based on

showing that for every non-tautological clause V that is contained in a refutation ~ by

)~tSvl> there exists a clause C derived by the fair inference procedure such that C ::; .. V holds.

Unsurprisingly, it will be most difficult to show that clauses resulting from applications of the

Subsumption-Restricted-FG-BFS algorithm are subsumed by the fair inference procedure.

The next lemma shows that non-tautological clauses which do not originate from loop

search are subsumed by clauses derived by the fair inference procedure.

Lemma 5.S.S. Let P = (U, I, S, £) be a clausified monodic temporal problem and let

~ = (M I Pi 10diEN be a fair derivation produced by the inference procedure F shown in

Figure 5.2 from the temporal problem P. Let~' = V l , ... , Vn be a derivation produced

by subsumption-compatible ordered fine-grained resol!-'tion with selection from a temporal

problem fY = (U', I', S', £) without applying the eventuality resolution rules and such that

for every clause C2 E U' u I' u S' with C2 ¢ taut(fY) there exists a clause Cl E U:o 0; with

Cl ::; .. C2'
Then it holds for every i with 1 ::; i ::; n that

Proof By induction on i using the fairness of the derivation ~ and Lemma 4.2.23. 0

Essentially, the remaining lemmata are concerned with proving that clauses derived

by the eventuality resolution rules will eventuality be subsumed by clauses derived by the

fair inference procedure. The main difficulty lies in the fact that the order in which the

terminating step clauses for the loop search process are derived is no longer guaranteed to

be the same as for the Subsumption-Restricted-FG-BFS algorithm.

We now prove that for any derivation of the fair inference procedure there exists an

iteration index which contains all the universal clauses that can ever be derived by either

loop search or the clause conversion rule. The underlying reason behind this observation is

again the finite number of step clauses that are contained in the original temporal problem.

First, we define some auxiliary notation.

Definition 5.S.4. Let N be a set of initial, universal or step clauses. Then we denote by

Univ(N) the set of all the universal clauses contained in the set N, and by Step(N) the set

of all the step clauses from the set N which do not contain a loop search marker.

5.3. REFUTATIONAL COMPLETENESS 113

Lemma 5.3.5. Let P = (Uo, I', S', £) be a clausified monodic temporal problem. Addition

ally, let ~ = (N; I Pi I Oi)iEN be a derivation produced by the inference procedure F shown in

Figure 5.2 from the temporal problem P. Then there exists an index lEN such that:

00

VC E Univ(U (Pj UOj)): C E Res~b(PI UOI)
j=I

Proof. The only universal clauses (different from the empty clause) which are added to a set

Pk U Ok (k E N \ {O}) and which are possibly not contained in the set Res~b(Pk-l U Ok-d

result from loop formulae or from applications of the clause conversion rule. Each of these

formulae stems from combining the left-hand sides of some step clauses in S'. As there are

only finitely many non-equivalent such combinations w.r.t. the relation =x that are free of

duplicate atoms and which are such that each subset of the non-ground atoms occurring in

the left-hand sides of the step clauses contained in the set S' occurs at most once in them

(see also Definition 4.3.1) and as subsumed clauses are removed, it is easy to see that there

exists an index lEN such that every universal clause C E Pj U OJ with j ~ i has been

derived by the resolution or factoring-based rules from clauses contained in PI U 0/. 0

Remark 5.3.6. The index lEN obtained through Lemma 5.3.5 will be called the universal

clause termination index.

The next two lemmata link terminating step clauses together that have been derived by

the fair inference procedure and the Subsumption-Restricted-FG-BFS algorithm.

Lemma 5.3.7. Let fI = (Uo,I',S',£C) be a clausified temporal problem. Additionally, let

~ = (N; I Pi IOi)iEN be a fair derivation produced by the inference procedure F shown in

Figure 5.2 from the temporal problem fl. Furthermore, let 0 L(x) E £ be an eventuality

and let .Aib, M;, . .. be the sets of (all the) terminating step clauses constructed as in a

run of the Subsumption-Restricted-FG-BFS algorithm applied for the eventuality OL(x) E £
on the temporal problem (U', I', S', £C), where U' is a finite set of universal clauses with

U' ::;8 Uo \ taut(Uo) and U;:oOj ::;8 U' \ taut(U').

Then it holds for every iteration index i E N that:

v c =:} 0.1 E M~ 3 kEN 3 D E Ok: D ::;8 sf 1\ C =:} 0.1

Proof. Similar to the proof of Lemma 5.3.3 and by using the properties of the loop search

literals sf (for i E Nand OL(x) E E). 0

Lemma 5.3.S. Let P' = (Un, I' , S' ,£C) be a clausified monodic temporal problem. Addition

ally, let ~ = (N; I Pi I Oi)iEN be a fair derivation produced by the inference procedure F shown

in Figure 5.2 from the temporal problem fI and let I be its universal clause termination

index. Furthermore, let OL(x) E £ be an eventuality and let Ma,M1, ... ,M~,M~+l'" be

the sets of (all the) terminating step clauses constructed as in a run of the Subsumption

Restricted-FG-BFS algorithm applied for the eventuality OL(x) E £ on the temporal problem

(Univ(P[UOI),I',S',£C).

114 CHAPTER 5. FAIR DERIVATIONS IN MONODIC TEMPORAL REASONING

Then it holds for every i E N and for every derivation index kEN that:

'V sf A C ~ 0.1 E Nk U Pk U Ok 3 DE ResSub(Univ(P[U O[) U 8') U M~:

D:53 C ~ 0.1

Proof By induction on i using Lemmata 4.2.23, 5.3.2 and by using the fact that every

universal clause that is contained in Univ(Pk UOk) with k 2: I can be derived from universal

clauses in Univ(P[U O[) without using the clause conversion rule. o

The next lemma establishes that there exists an index J in any derivation of the fair

inference procedure after which no new terminating loop search clauses are derived for a

given eventuality and a given loop search iteration. More specifically, every terminating step

loop search clause for a given eventuality and a given loop search iteration which appears

at some index k 2: J (with Nk = 0) in a derivation of the fair inference procedure F has

already been derived at the index J. Additionally, each considered terminating loop search

clause that appears at the index J is not removed at a later index k' 2: J (with N k , = 0).

The underlying reason for the existence of these indices lies again in the finite number of

step clauses that are contained in a temporal problem.

Lemma 5.3.9. Let P' = (U~,I',S',eC) be a clausi/ied temporal problem. Additionally, let

d = (M I Pi IOi)iEN be a fair derivation produced "'!I the inference procedure F shown in

Figure 5.2 from the temporal problem P', let OL(x) E e be an eventuality and i E N be a

loop search iteration index.

Then there exists an index J E N such that NJ = 0 and

(i) for all kEN with k 2: J and Nk = 0, and for every terminating step clause sf A C ~

0.1 E Pk U Ok it holds that sf A C ~ 0.1 Ex PJ U OJ; and

(ii) for every terminating step clause sf A C ~ 0.1 E PJ U OJ it holds that sf A C ~
0.1 Ex Pk U Ok for every k 2: J with Nk = 0.

Proof First of all, we note that for a terminating step clause of the form

ml ml

sf A 1\ Pi(X) /\ 1\ Rj(y) A E ~ 0.1
i=1 j=1

where J{(x) ~ OQi(X) Ex 8' for every i, 1 :5 i ::; ml, and Rj(y) ~ 08j (y) Ex 8'

foreveryj,l::; j::; m2, such that var(E)n{x,y} = o and {P1(X), ... ,Pm1 (x)} ~

{R1(x), ... ,Rml (x)}, an arbitrary factoring inference on two atoms Pi(X) (1::; i::; m1)

and Rj(x) (1 ::; j ::; m2) from its left-hand side with a substitution (T = Ix f-+ y] yields the

terminating step clause (after eliminating duplicate atoms)

n

sf A 1\ Rj(y) A E ~ 0.1,
j=1

which subsumes the former terminating step clause.

5.3. REFUTATIONAL COMPLETENESS 115

Then, as the number of (ground and non-ground) step clauses contained in the set S' is

finite, there only exist finitely many (maximal) subformulae of the form 1\!=1 Pi(X) that do

not contain duplicate atoms in the left-hand sides of step clauses. Additionally, as subsumed

clauses are removed in the derivation ~ and as the removal of duplicate literals derives

clauses that subsume their parent clauses, we can infer that there only exist finitely many

different terminating step clauses of the form sf 1\ C :::} OJ. in the set U:l (Pi U 0;). Let

now I E N be the index of the derivation ~ in which all such terminating step clauses have

been derived and which is such that NI = 0. It is now easy to see that property (i) holds

already for the index I due to the following observation. Let sf 1\ C :::} OJ. E Nk U Pk U Ok

(i E N) with k < I such that sf 1\ C :::} OJ. ¢x PI U 0 I. Hence, it must hold that there

exists a clause V E NI U PI U 01 = PI U 0 1 with V <8 sf 1\ C :::} OJ. as the step clause

sf 1\ C :::} OJ. is not a tautology. Thus, we obtain sf 1\ C :::} OJ. ¢x PI' U 01' for every

I' 2: I with NI' = 0.
Then, let {sf 1\ C j :::} OJ. I 1 ~ j ~ n} be all the terminating step clauses for the

eventuality OL(x) and the iteration index i that occur in the set U:o (Pi U Oil. For

every terminating step clause sf 1\ Cj :::} OJ., 1 ~ j ~ n, such that sf 1\ C j :::} OJ. ¢x

n:/,N".=0 (Pi U Oil, let k j 2: I be the minimal index such that sf I\Cj :::} OJ. ¢x Pkj UOkj

and N kj = 0. If sf 1\ Cj :::} OJ. Ex n:I,N".=0 (Pi U Oil for 1 ~ j ~ n, we define k j = I.

Finally, we set J = max({kj 11 ~ j ~ n}).

Now, let k > J such that Nk = 0 and let sf 1\ C :::} OJ. E Pk U Ok. As k > I, it holds

that sf 1\ C :::} OJ. Ex PI U 0 I· If we assume that sf 1\ C :::} OJ. ¢x P J U () J, then it would

follow that there exists a clause V' E NJ U P J U OJ = P J U OJ with V' <8 sf 1\ C :::} OJ.
as the step clause sf 1\ C :::} OJ. is not a tautology and sf 1\ C :::} OJ. Ex PI U 0 1 ,

Consequently, it would hold that sf 1\ C :::} OJ. ¢ Pk U Ok, which is a contradiction. We

can infer that property (i) holds for the index J.

Finally, let sf 1\ C :::} OJ. E P J U OJ and kEN be an index with k > J and

Nk = 0. Note that then sf 1\ Cj :::} OJ. Ex n{=I,N.=0 (Pi U Oil. If we assume that

sf 1\ C :::} OJ. ¢x Pk U Ok holds, then let k' E N be the minimal such index among the

indices with k' > J and Nk , = 0. Hence, J 2: k' > J must hold, which is a contradiction.

We can therefore conclude that sf 1\ C :::} OJ. Ex Pk U Ok and that property (ii) holds for

the index J. 0

Remark 5.3.10. The index J E N obtained through Lemma 5.9.9 will be called the i-th

iteration termination index for the eventuality OL(x).

Now, we establish a closer link between the terminating step clauses derived by the

Subsumption-Restricted-FG-BFS algorithm and the loop search process performed by the

fair inference procedure. For any execution of the loop search algorithm (for an arbitrary

eventuality) and for any iteration it can be shown that there exists an iteration index in

a run of the inference procedure F after which the same terminating step clauses (up to

variable names and an extension with loop search markers) have been derived and remain

present in any later derivation index k with Nk = 0.

116 CHAPTER 5. FAIR DERIVATIONS IN MONODIC TEMPORAL REASONING

Lemma 5.3.11. Let fI = (Uo,I',S',£C) be a clausified monodic temporal problem. Addi

tionally, let a = (M I Pi 10diEN be a fair derivation produced by the inference procedure F

shown in Figure 5.2 from the temporal problem fI and let I be its universal clause termination

index. Furthermore, let OL(x) E £ be an eventuality and let Mo, M~, ... , M~, M~+l ... be

the sets of (all the) terminating step clauses constructed as in a run of the Subsumption

Restricted-FO-BFS algorithm applied for the eventuality OL(x) E £ on the temporal problem

(Univ(PI U 01), I', S', £C). Finally, let i E N and let Li be the i-th iteration termination

index of the derivation a for the eventuality OL(x). Then it holds for every kEN with

k ~ max(l, Ld and Nk = 0 that:

Proof First of all, let kEN such that k ~ max(l, Li) and Nk = 0.

Then, let C ~ 01. E M~. It follows from Lemmata 5.3.2 and 5.3.7 that there exists an

index k' ~ k such that N k, = 0 and a clause C' E P k, U Ok' with C' ~3 sf A C ~ 01.. If we

assume that C' <3 sf A C ~ 01. holds, then we have to distinguish between the following

two cases. If C' is a universal clause or a step clause without the loop search marker sf,
it follows that C' E Ressub(Univ(PI U 01) U S'), which would imply that C ~ 01. ¢ M~,

contradicting the assumptions. Otherwise, we have that C' is a step clause which contains

the loop search marker sf, for which it follows from Lemma 5.3.8 that C ~ 01. ¢ M~

holds again. Thus, we have sf A C ~ 01. Ex Pk' U Ok'. By definition of the i-th iteration

termination index, we can conclude that sf A C ~ 01. Ex Pk U Ok.

Now, let sf A e ~ 01. E Pk U Ok. Then, we have by Lemma 5.3.8 that there exists

a clause V E ResSub(Univ(PI U 0 1) US') U M~ such that V ~8 e ~ 01., which implies

that V ~ taut(P). If we assume that V E Ress~b(Univ(PI U 01) US'), we can infer by

Lemmata 5.3.2 and 5.3.3 that there exists an index k' ~ k such that N k , = 0 and also

a clause V' E Pk' U Ok' with V' $s V $8 sf A C ~ 01.· As V' is either a universal

clause or a step clause without the loop search marker sf, we obtain V' <s sf A C ~ 01..
Thus, by definition of the i-th iteration termination index, we can conclude that sf A C ~

01. ~x Pk U Ok, which contradicts our assumptions. Therefore, V = D ~ 01. E M~

such that D ~3 e holds. If we now assume that D <3 C holds, then it would first of all

follow from Lemmata 5.3.2 and 5.3.7 that there exists an index k" ~ k with Nk" = 0 and a

clause V" E Pk" UOk" such that V" $8 sf AD ~ 01. <3 sf Ae ~ 01.. Again, by definition

of the i-th iteration termination index, we can conclude that sf A e ~ 01. ¢x Pk U Ok,

contradicting the assumptions. We can conclude that e = x D and e ~ 01. E M~. 0

We can now prove the analogous proposition to Lemma 5.3.3 for clauses derived by

the Subsumption-Restricted-FG-BFS algorithm, i.e. we show that any non-trivial loop

formula computed by the Subsumption-Restricted-FG-BFS algorithm there exist subsuming

clauses for the different negated subformulae of the loop formula that are derived by the

fair inference procedure.

5.3. REFUTATIONAL COMPLETENESS 117

Lemma 5.3.12. Let P' = (UO,I',S',fC
) be a clausified monodic temporal problem. Addi

tionally, let ~ = (.vi I Pi 10i)iEN be a fair derivation produced by the inference procedure F

shown in Figure 5.2 from the temporal problem P'. Let OL(x) E f be an eventuality and

true f- H (x) = V; = 1 (3Cj){ d ~ x} with n ~ 1 be a loop formula computed by an applica

tion of the Subsumption-Restricted-FG-BFS algorithm on the clausified temporal problem

(U', II, S', f C
), where UI is a finite set of universal formulae with U' $s Uo \ taut(Uo) and

U;10j $s U' \ taut(U I
). Finally, let ""Cdc'l-+ y}, ... , ...,Cn{d 1-+ y} be the clausification

of the formula '<Iy...,H(y), where y is a fresh variable.

Then there exists a index N E !'Ii such that for every j with 1 $ j $ n there exists a

universal clause Vj E PN U ON with Vj $s ...,Cj{c' 1-+ y}.

Proof. Let I be the universal clause termination index for the derivation ~ (see Lemma 5.3.5).

Additionally, let M~, M~, . .. be the sets of terminating step clauses computed by the

Subsumption-Restricted-FG-BFS algorithm applied on the temporal problem (U',I',S',fC
).

Let j1 E !'Ii be the minimal index such that Mil + 1 = { Ci "* 0.1 11 $ i :s n} and the

formula '<Ix(V D~O.lEM;1 (3D){d 1-+ x} ¢} V:=1(3Cd{cl 1-+ x}) is valid. Then it follows

from Lemma 4.3.15 that Mil =x M~ for every k ~)1, and in particular it holds that

M~ f- 0 for every k ~)1·

Furthermore, let Mo, M~, ... be the sets of terminating step clauses computed by the

Subsumption-Restricted-FG-BFS algorithm applied on the temporal problem (Univ(US [U

0 1), II, S' , fC). By Lemma 4.3.7 there exists an index)2 E !'Ii \ {O} such that either M i2 = 0

or 0 f- Mi2 =x MidI'
If we now assume that Mi2 f- 0 and Mi2 =x Mi2+1' then let L12 and Lj2+1 be the

h-th and h + I-th iteration termination indexes of the derivation ~. By Lemma 5.3.11 it

would hold for every index K E !'Ii with K ~ max (1, L12 , Lh+d and NK = 0 that

and

Mi2+1 =x {C "* 0.1.1 812+ 1 /\ C "* 0.1. E PK U OK} f- 0.

As Mi2 = X Mid l' we could infer the following set equality for every index K E !'Ii with

K ~ max (1, L12 , Lh + tl and NK = 0:

{C,,* 0.1. I 812 /\ C "* 0.1. E PK U OK}

=x {C "* 0.1.1 812+ 1 /\ C "* 0.1. E PK U OK}

By Lemma 5.3.2 and through an application of the 'Loop Testing' rule using the fairness

of the derivation ~, we can conclude that there would exist an index KI ~ max (1, Lh , Lh + 1)

with NK' = 0 such that for every 812 /\ C "* 0.1. E PI U 0 1, where I is the minimal index

with I ~ max (1, L j2 , Li2 +d and Nt = 0, there would exist a universal clause V E OK' with

V :S8 ...,C {cl
1-+ y} <s 812 /\ C "* 0.1. as y is a fresh variable, i.e.

118 CHAPTER 5. FAIR DERIVATIONS IN MONODIC TEMPORAL REASONING

We have obtained a contradiction.

Consequently, we have Mj2 = 0, and it follows that M~ = 0 for every k ~ h. Hence,

there exists an index J E N with Mj1+ 1 = Mj and Mj = 0. Thus, as ResSub(Univ(USJ U

OJ)) ~3 U' \ taut(U') it follows from Lemma 4.3.16 that ResSub(Univ(USJ U OJ) U 8') ~ ..

Ntj1 +1· By Lemma 5.3.3 we can infer for every i, 1 ~ i ~ n, that there exists an index ji E N

and a universal clause Vi E OJ. with Vi S8 ...,Ci . It is easy to see for every i, 1 ~ i ~ n,

that Vi ~s ...,Cdd 1-+ y} as d rt. const(Vi). Finally, the required index N E N is obtained

through Lemma 5.3.2. 0

We now have all the prerequisites in place to prove the refutational completeness of the

inference procedure F.

Theorem 5.S.1S. Let P = (U, I, S, £C) be a clausified and constant-flooded monodic tem

poral problem. Let)- be an atom ordering and S an instance compatible selection function.

Additionally, let ~ = (M I 'Pi I OdiEN be a fair derivation produced by the inference proce

dure F shown in Figure 5.2 from the temporal problem P using the atom ordering)- and

selection function S. Then it holds that:

00

Pis unsatisfiable if and only if 1. E U OJ
j=O

Proof The implication "-¢:" follows from the soundness of subsumption-compatible ordered

fine-grained resolution with selection. For the remaining implication "~" we first of all

obtain from Theorem 4.3.20 that there exists a derivation .& = VI, ... , Vn where Vn = 1.

such that applications of the eventuality resolution rules are restricted to loops found by the

Subsumption-Restricted-FG-BFS algorithm. We now inductively show for every i, 1 S i ::5 n,

for which the clause Vi is not a tautology that there exists a clause Ci and an index j E N

with Ci ~ .. Vi and Ci E Pj U OJ.

Now, let i E N with 1 ::5 i ::5 n such that the clause Vi is not a tautology and has not

been derived by a run of the Subsumption-Restricted-FG-BFS algorithm. It follows then

from Lemma 5.3.3 that there exists a clause Ci and an index j E N with Ci ::53 Vi and

Ci E Pj UOj.

Otherwise, if a clause Vi for 1 ::5 i ::5 n that is not a tautology has been obtained through

the c1ausification of a formula 'r/x...,H(x), where the formula H(x) has been computed by the

Subsumption-Restricted-FG-BFS algorithm for an eventuality OL(x) E £c, we distinguish

between the following cases.

For H(x) = true (and hence, Vi = 1.), the run of the Subsumption-Restricted-FG-BFS

algorithm just consisted of a single iteration in which either the empty clause has been

derived from universal clauses Univ(Vo, ... , Vi-d, or there exists a derivation of a step

clause true ~ 01.. If the empty clause was derived in the single iteration of the algorithm,

then by Lemma 5.3.3 there exists an index j E N such that Vi = 1. E Pj U OJ. In the

situation where the Subsumption-Restricted-FG-BFS derived the step clause true ~ 01.,

5.4. F AS A DECISION PROCEDURE 119

we can apply Lemma 5.3.7 and obtain an index j E N such that there exists a clause

Vi E 'Pj U OJ with Vi ~s sf :::;. 0.1, which implies that Vi = .1 E OJ for an index J 2: j.
Finally, in the case where H(x) -:J true, we can apply Lemma 5.3.12 and obtain an index

J E N such that there exists a clause Cj E 'P J U OJ with Ci ~s Vi. 0

5.4 IF as a Decision Procedure

In this section we examine the possibility of the fair inference procedure to be used as a

decision procedure.

Just as with subsumption-compatible ordered fine-grained resolution with selection, we

will see that when the "first-order" reasoning that is necessary for constructing derivations

with the fair inference algorithm becoma. decidable, then derivations produced by the

fair inference procedure are also guaranteed to terminate. Consequently, the inference

algorithm F can act as a decision procedure for the unsatisfiability of suitably rallricted

monodic temporal problems.

We now state and prove the corresponding theorem.

Theorem 5.4.1. Let C be a fragment of first-order logic without equality or (non-constant)

function symbols for which the validity problem is decidable by ordered resolution with

selection, and let P = (U, 1, S, £C) be a constant-flooded monodic tempoml problem such that

(i) the sets 1 and U (without consideTi.ng the preceding 0 -operator) only contain formulae

from the fragment C, and

(ii) the sets U U {VC1, ... , VCrn} are still containe.d in the fragment C, where for every i,

1 ~ i ~ m, Ci is a negative clause that contains at most monadic litemls with predicate

symbols stemming from the left-hand sides of step clauses contained in the set S and

such that const(C;) ~ const(P), and

(iii) for every eventuality OL(x) E £ and for full-merged step dall.'1es 'v'x(A(x) :::;. OBi(x)),

1 ~ i ~ n, built from the tempoml problem P and a set of formulae U U {VC1, ... , VCrn}

defined as in the previ.ous point, the formulae

and

n

'v'x(U U Bi(X) U {VC1, ... , VCrn} :::;. V Aj(X))
j=l

are contained in the fragment C for every i with i ~ i ~ n, and

(iv) the previous point also holds for merged derived step clauses and ground eventualities.

Then the inference procedure F shown in Figure 5.2 is a decision procedure for the

satisfiability of the temporal problem P.

120 CHAPTER 5. FAIR DERIVATIONS IN MONODIC TEMPORAL REASONING

Proof. Let Cls(P) = (U' , I', S', £e), let ~ = (M I Pi IOi)iEN be a fair derivation produced

by the inference procedure F shown in Figure 5.2 from the temporal problem CIs(P) and

let I be its universal clause termination index.

We can first of all observe that under the conditions (i) to (iv) described above the

validity of the loop side conditions becomes decidable for any eventuality from the set [e

and the set of universal clauses U', potentially extended with new universal clauses obtained

through applications of the clause conversion or eventuality resolution rules. It is also easy

to see that the computation of saturations involving initial, universal or step clauses from the

temporal problem Cls(P), potentially extended with new universal clauses obtained through

applications of the clause conversion or eventuality resolution rules, always terminates.

Then, if the temporal problem P is unsatisfiable, it follows from Theorem 5.3.13 that

there exists an index J E N with .1 E PJ U OJ. Otherwise, the temporal problem P is

satisfiable, and we have to show that there exists an index J with NJ = P J = 0. An

inspection of the inference rules depicted in Figure 5.2 reveals that the only problematic

rule for ensuring termination is the 'Next Loop Search Iteration' rule because it might

potentially generate an infinite number of loop search clauses sf+ 1 ~ OD for i E N if there

is an eventuality contained in the temporal problem Cls(P). We now distinguish between

the following two cases.

If there does not exist a loop formula for the temporal problem P' = (Univ(PJ U

OJ),I',S',£e) and eventuality OL(x) E [e, then the Subsumption-Restricted-FG-BFS

algorithm applied on the temporal problem pi terminates after k iterations because no new

terminating step clauses can be derived and it returns false. It is thus easy to see that there

exists a index i E N such that the set M U Pi does not contain a loop search step clause

sf ~ OD. We can infer that there exists an index J E N such that NJ = PJ = 0.
Finally, if a loop formula true I- H(x) = V;=1(3Cj){d - x} computed by the

Su!:Jsumption-Restricted-FG-BFS algorithm exists for the temporal problem P' and eventual

ity OL(x) E £e (the case H(x) = true cannot occur as the temporal problem P is assumed

to be satisfiable), then it follows from Lemma 5.3.12 that there exists a index N E N

such that for every j with 1 ~ j ~ n there exists a universal clause Vj E PN U ON with

Vj ~8 ...,cj{d 1-+ y}, where y is a fresh variable. Consequently, if a clause V j , 1 ~ j ~ n,

is obtained through the terminating step clause sf 1\ Vj{y 1-+ d} ~ 0.1, we can see that

Vj ~" sf 1\ Vj{y 1-+ d} ~ 0.1 holds, i.e. all such terminating loop search step clauses will be

removed for the eventuality OL(x). Thus, there exists an index M in the derivation ~ such

that the 'Next Loop Search Iteration' rule cannot be applied any longer for the eventuality

OL(x) on Pk with k ~ M. Now, it is easy to see that there exists an index J E N such

that NJ = PJ = 0. 0

We can now state the following corollary.

Corollary 5.4.2. Let P = (U, I, S, £) be a temporal problem in Pl TL. Then the inference

procedure F shown in Figure 5.2 is a decision procedure lor the satisfiability 01 the temporal

problem P.

5.5. SUMMARY 121

5.5 Summary

In this chapter we analysed some theoretical aspects of subsumption-compatible ordered

fine-grained resolution with selection which can lead to problems when fair J~O>:sul>-derivations

should be constructed in practice.

Due to the fact that the applicability of the eventuality resolution rules is only semi

decidable, it becomes impossible to guarantee the construction of fair derivations, i.e.

derivations in which every non-redundant clause that is derivable from a given clause set is

eventually derived, as the applicability check for those inference rules might not terminate.

As the ability to construct fair derivations is an essential requirement for maintaining the

refutational completeness of an automated theorem, we presented an inference procedure

that can construct fair derivations for reasoning in monodic first-order temporal logic based

on the J~;;:s ... -calculus and we proved its refutational completeness. The design of the new

inference mechanism is based on integrating the saturation steps related to loop search, which

may not terminate in general, into the main saturation process. The proof of refutational

completeness proceeded by showing that for every non-tautological clause contained in a

J;O>:s ... -refutation for an unsatisfiable clausified monodic temporal problem there exists a

subsuming clause computed in a fair derivation of the new inference procedure.

We also showed that the new inference mechanism can be used as a decision procedure

for temporal problems in which the first-order formulae are restricted appropriately.

Chapter 6

TSP ASS - a Fair Monodic Temporal

Logic Prover

6.1 Introd uction

As explained in Chapter 1, one advantage of using clausal resolution and the normal form

DSNF is that the temporal clauses in clausified DSNF can be translated into first-order

logic. For temporal reasoning it is then possible to use state-of-the-art theorem provers for

first-order logic as most temporal inference rules of the subsumption-compatible ordered

fine-grained resolution with selection calculus can be mapped onto first-order resolution and

factoring rules. A special treatment of eventualities remains necessary, though.

Several automated theorem provers based on resolution have been developed for PLTL

and monodic FOTL. TRP [52,531 and TRP++ [491 are theorem provers for PLTL that

implement the resolution-based calculus introduced in [37], which is similar to ordered fine

grained resolution with selection. TRP is written in Prolog, whereas a C++ implementation

is available in TRP++. For monodic FOTL then, the theorem prover TeMP has been

developed [50]. It is based on ordered fine-grained resolution with selection, and uses the

first-order prover Vampire as inference kernel.

Now, an important part in the architecture of automated theorem provers consists in

the selection of the clauses which are considered for computing inferences. The order in

which clauses are selected can contribute significantly t.o the amount of time needed to

solve a given problem. But most importantly, one has to ensure that clause selection is fair,

i.e. every clause should eventually be selected for performing inferences in order to maintain

the refutational completeness of the theorem prover.

As described in Chapter 5, the calculus of (subsumption-compatible) ordered fine-grained

resolution with selection contains inference rules that only have semi-decidable applicability

conditions. Consequently, fair derivations cannot be easily obtained in practice as the

applicability check for these inference rules might not terminate. In this chapter we show

that there indeed exist fairness problems with the architecture of TeMP which cannot be

overcome by simply defining a more appropriate clause selection function. We also describe

123

124 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

the implementation of the fair inference architecture described in Chapter 5 in the monodic

first-order temporal logic prover TSPASS, which is based on the first-order theorem prover

SPASS [92J. Additionally, we analyse the effectiveness of redundancy elimination and the

proof search performance of TSPASS on several examples. Binaries for the TSPASS system

and its source code are available at:

http://www.csc.liv.ac.uk/-michel/software/tspass/

The chapter is organised as follows. In Section 6.2 we describe the connection between

ordered fine-grained step resolution and regular first-order resolution, i.e. we show how first

order resolution can be used to simulate fine grained-step resolution. Then, in Section 6.3

we first of all describe the architecture of TeMP, before we outline its fairness problems

and discuss how the fair inference procedure F depicted in Figure 5.2 can be implemented

in practice. Subsequently, the implementation of TSPASS is described in Section 6.4 in

greater detail. We conclude this chapter in Section 6.5 with an analysis of some experimental

results which demonstrate the effectiveness of redundancy elimination in TSPASS and which

illustrate its proof search performance on PL TL and monodic FOTL problems.

6.2 Fine-Grained Step Resolution and First-Order Logic

The deduction rules of (subsumption-compatible) ordered fine-grained step resolution with

selection are close enough to the rules of classical first-order resolution for allowing us to

use state-of-the-art first-order resolution provers as a basis for the implementation of our

calculus.
Let S be a temporal problem in clausal form. For every k-ary predicate, P, occurring in S,

we introduce a new (k+ l)-ary predicate P. We will also use the constant 0 (representing the

initial moment in time), and unary function symbols s (representing the successor function

on time) and h, which we assume not to occur in S. Let <.p be a first-order formula in the

vocabulary of S. We denote by [<.pJT the result of replacing all occurrences of predicates

in <.p by their "tilded" counterparts with T as the first argument (e.g. P(x, y) is replaced

with peT, x, y)). The term T will either be the constant 0 or the variable t (intuitively, t
represents a moment in time). The variable t is assumed to be universally quantified.

Now, in order to realise fine-grained step resolution by means of classical first-order

resolution, we define a set of first-order clauses FO(S) as follows.

• For every initial clause C from S, the clause [C]o is in FO(S).

• For every universal clause D from S, the clause [DJt is in FO(S).

• For every step clause p =* Oq from S, the clause ~p(t) V q(s(t)) is in FO(S), and for
- - 1 every step clause P(x) =* OQ(x), the clause,P(t, x} V Q(s(t), hex)) is in FO(S}.

IThe purpose of the function symbol h will be explained on page 126.

6.2. FINE-GRAINED STEP RESOLUTION AND FIRST-ORDER LOGIC 125

The key insight is that fine-grained step resolution on S, including (implicitly) the clause

conversion rule, can be realised using classical ordered first-order resolution with selection

(see, e.g. [10]) on FO(S). For universal and initial resolution and factoring rules of)~a>-,

rules 1 to 3 and 7 (see page 36), this is obvious. For step resolution and (step) factoring,

rules 4 and 5, we observe that if a clause contains a next-state literal, i.e. a literal whose

first argument starts with the function symbol s, a factoring or resolution inference can only

be performed on such a literal. This requirement can be enforced by an appropriate atom

ordering.

The restrictions on the literal orderings required to realise resolution inferences with

step clauses on the first-order level can be obtained for example with the Knuth-Bendix

ordering (KBO) [6,26,561. The definition of the KBO is given below for two terms or atoms

sand t: s ~KBO t if and only if

(KB01) 'V x: Islx 2: Itlx and w(s) > w(t)

or

(KB02) 'V x: Islx 2: Iflx' w(s) = w(t) and one of the following cases occurs:

(KB02a) s = r(x) and t = x (for n > 0)

(KB02b) s = f(s), .. . , sm), t = 9(t l , ... , tn) with f > 9

(KB02c) s = f(Sl,,,,,Sm), t=f(tl, ... ,tm) with SI = tl, ... ,Si-l = ti-l, and

Si ~KBO ti (for m > 0)

The function w computes the weights of variables, terms, and predicates after weights

(i.e. natural numbers) have been assigned to specific constants, functional and predicate

symbols. A global weight for variables is generally used. The computation of the weights for

terms and atoms is based on summing up the weights of the individual signature symbols

and variables occurring in the term or atom. The symbol> denotes a strict partial ordering

on signature symbols, and by Itlx we represent the number of occurrences of the variable x

in the term or atom t.
It is easy to see that from 8 ~KBO t it follows that w(s) 2: w(t) holds for any two terms

or atoms 8 and t. Thus, by choosing the weight of the temporal successor function such

that it is greater than the weight of every literal occurring in the left-hand side of a step

clause (increased by one), we can ensure that every literal occurring in the right-hand side

of a translated step clause is not smaller w.r.t. the KBO than any literal occurring in the

left-hand side.

Now, during resolution inferences the variables present in the right-hand sides of step

clauses can change. For example, if the step clause -,p(t,x) V ij(8(t),X) is resolved with the

universal clause -,ij(t', z) V i(t', y), the step clause -,p(t, x) V i(8(t), y) is obtained as a result.

The variable x does not occur in the literal r(8(t), y), whereas the variable y does not occur

in the atom p(t, x). Consequently, the condition on variables imposed by the KBO cannot

be fulfilled; the literals -,p(t, x) and f(s(t), y) become thus incomparable w.r.t. the KBO. As

126 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

a consequence both literals are maximal in the step clause -,p(t, x) V reset), y) and resolution

inference; are possible on the literal -,p(t,x). Hence, special care needs to be taken when

computing the maximal literals in a clause in order to prevent left-hand side literals from

becoming maximal (see Section 6.4.9 for more details). Note that for propositional temporal

problems the use of the KBO would be sufficient to re;trict inferences to the right-hand

sides of step clause; only as in PL TL clauSal every predicate contains the same free variable,

namely the temporal variable.

Additionally, note that all rule; performing inference; on (non-terminating) step clauSal

impose the re;triction on most general unifiers q that q does not map variable; occurring in

the left-hand side of a step clause into a constant or a functional term. On first-order clause;,

this reltriction is enforced by the function symbol h introduced by FO: Each temporal

literal OQ(x) is mapped by FO to Q(s(t), hex»~, and the function symbol h "shields" the

variable x from being instantiated by a constant or functional term.

No explicit clause conversion rule, rule 6, is required for the translated clauses.

Moreover, our translation ensure; that the first-order clause -,P(t, x) V Q(s(t), hex»~,
stemming from P(x)::::} OQ(x), doe; not subsume the clause -,P(t,c) VQ(s(t), e), stemming

from Pee) ::::} OQ(c), which is important for the implementation of the calculus to be

complete (see Section 4.2.2).

Finally, we still observe that the Skolemization process is not performed after the

transformation to first-order logic but on the level of DSNF problems already. For example,

for the monodic FOTL formula OV'x3yp(x,y) we obtain the translated clause p(t,x, f(x»

and not the clause pet, x,J(x, t» although the domain element that is assigned to the

variable y can potentially vary in the different time points of a model. This requirement for

Skolem constants and function symbols is already handled at the level of the)~t -calculus

as most general unifiers are only allowed to map variable; which occur in the left-hand side;

of step clauses into variable;. In this way one can prevent that the interpretations of Skolem

constants or function symbols are fixed to the same domain elements across different time

points as the interpretations of constants (and implicitly function symbols) are assumed to

be rigid.

6.3 Implementing a Fair Architecture for Monodic Temporal

Reasoning

6.3.1 The Architecture of TeMP

In this section we describe the design principle; behind the automated theorem prover TeMP,

which is based on the)~t -calculus. As we have seen in the previous section, the fine-grained

step resolution inference rule; of J~t can be easily implemented in an automated theorem

prover that is based on ordered first-order re;olution with selection. However, the ground

and non-ground eventuality resolution rules 8 and 9 of)~ cannot simply be mapped onto

the inference rules of first-order resolution as suitable premises have to be determined first

6.3. IMPLEMENTING A FAIR ARCHITECTURE FOR MONODIC TEMPORAL
REASONING 127

before those rules can be applied.

Instead, in TeMP the (Subsumption-Restricted)-FG-BFS algorithm shown in the Fig

ures 3.2 and 4.1 is implemented in order to find the full merged step clauses (or merged

derived step clauses, respectively) required for the application of the eventuality resolution

rules. The only difficulty related to an implementation of the (Subsumption-Restricted)-FG

BFS algorithm using first-order ordered resolution with selection is that in step (2) of the

algorithm, the rules of fine-grained step resolution are applied with the exception of the

clause conversion rule, rule 6. As no explicit clause conversion rule is required on FO(S),

this restriction cannot be enforced by disabling one of the deduction rules. Instead one can

use a variant FOBFS of FO which has the desired effect. Let SHl be a monodic temporal

problem in clausified form as defined in step (2) of the (Subsumption-Restricted)-FG-BFS

algorithm. Then FOBFS(SHd is defined as follows:

• For every universal clause D in SH1, the clause [DJt is in FOBFS(SHt} .

• For every ground step clause p =* 01 in SH1, the clause -,p(O) V l(s(t)) is in

FOBFS(SHd, and for every non-ground step clause P(x) =* OM(x) in SH1, the

clause -'P(O, x) V M(s(t), h(x)) is in FOBFS(SHt}.

Recall that initial clauses do not contribute to loop search, so we do not include their

translation into FOBFS(SHd· Again, the motivation for FOBFS is that saturation of SHl

under the rules 1 to 5 and 7 corresponds to the saturation of FOBFS(SHd under ordered

first-order resolution as described above. In particular, clauses consisting only of literals

whose first argument is '0' in the saturation of FOBFS(SHd correspond to final clauses (up

to negation). Using this criterion it is straightforward to extract those clauses from the

saturation of FOBFS(SHd to form the set MHl which is the outcome of step (2) of the

(Subsumption-Restricted)-FG-BFS algorithm and to proceed with step (3).

The logical consequence check in step (4) of the (Subsumption-Restricted)-FG-BFS

algorithm is again delegated to a first-order prover: for every Ci(x) E Hi(X) we form a new

clause set Ci(x) 1\ -,HHdx); if all the resulting sets are unsatisfiable, VX(Hi(X) =* HH1(X))

is valid.

Note that it is straightforward to see whether a clause in FO(S) is the result of translating

an initial, a universal, or a (non-) ground step clause. This makes it possible to compute

FOBFS(S) from FO(S) instead of from S. Also, the conclusion of an application of one of

the eventuality resolution rules can directly be computed as a set of first-order clauses of

the appropriate form. Thus, there is no need. to ever translate clauses in FO(S) back to

DSNF clauses. Instead, after translating the input monodic temporal problem once using

FO, we can continue to operate with first-order clauses.

The considerations presented above and in the previous section give rise to the main

procedure for a monodic temporal logic theorem prover. The architecture depicted in

Figure 6.1 has been implemented in the prover TeMP [50J. It consists of a loop where in each

iteration (i) the set of temporal clauses is saturated under fine-grained step resolution, more

128 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

Read initial c1aU!le set S

yes

,
---------, ,

Vampire

"
"
,.

lSaturation under ordered I
first-order resolution I

t:
I,
II

--- _____ ..!I ,

Figure 6.1: Main Procedure of TeMP (Using Breadth-First Search Strategy)

precisely, rules 1 to 7, and (ii) then for every eventuality clause in the clause set, an attempt

is made to find a set of premises for an application of the (ground) eventuality resolution

rule. If we find such a set, the set of clauses representing the conclusion of the application

of the rule is added to the current set of clauses and the resulting set is saturated under

application of the step resolution rules (this helps to identify whether the conclusion of the

eventuality resolution rule is redundant or not). There are two control strategies concerning

how to explore eventualities in loop search: either they are traversed one by one regardless

of whether a loop is found and an application of the (ground) eventuality resolution rule

derives new non-redundant clauses (a sort of breadth-first strategy) or the next iteration

of the main loop is entered as soon as a loop is found for which an application of the

(ground) eventuality resolution rule results in new non-redundant clauses (a sort of depth

first strategy). Figure 6.1 illustrates the breadth-first strategy. The main loop terminates if

the empty clause is derived, indicating that the initial set of clauses is unsatisfiable, or if no

new non-redundant clauses have been derived during the last iteration of the main loop,

which in the absence of the empty clause indicates that the initial set of clauses is satisfiable.

In TeMP the task of saturating clause sets with classical resolution simulating fine-grained

step resolution is delegated to the kernel of Vampire [78J, which is linked to the whole

system as a C++ library. TeMP communicates with the Vampire kernel in a direct way via

the kernel API, thus avoiding expensive textual communication. Internally TeMP uses its

own data structures, and there is a special module in TeMP which rewrites TeMP's data

6.3. IMPLEMENTING A FAIR ARCHITECTURE FOR MONODIC TEMPORAL
REASONING 129

structures to, and from, Vampire's data structures. Note that minor adjustments have been

made in the functionality of Vampire to accommodate step resolution: a special mode for

literal eligibility has been introduced such that in a clause containing a next-state literal

only next-state literals can become eligible.

6.3.2 Fairness Problems of TeMP

As we have seen in Chapter 5, the presence of the ground and non-ground eventuality

resolution rules in the J~; -calculus turns the construction of fair derivations into a non

trivial problem. Both these rules have side conditions which are only semi-decidable. Thus,

the construction of a derivation could potentially 'get stuck' while checking these side

conditions. Take, for example, an attempt to apply the ground eventuality resolution rule to

premises Al ::::} OBI, ... , An ::::} OBn such that for some i, 1 :5 i ::; n, either the condition

U 1\ Bi F -,[or the condition U A Bi F= V;=l Aj does not hold. Assume U A Bi F -,[
does not hold. Then, an attempt to establish whether in first-order logic -,[follows from

U 1\ Bi may not terminate. Thus, executions of the FC-BFS algorithm in TeMP are a first

source of unfairness as those executions are not guaranteed to terminate in general, with the

consequence that the construction of a derivation by the theorem prover might not proceed

beyond this point

Another problem is that in the main procedure of TeMP, the FC-BFS algorithm will

only be executed once the original monodic temporal problem has been saturated using the

rules of fine-grained step resolution. Again, this saturation process may not terminate even

if the original monodic temporal problem is unsatisfiable.

6.3.3 Implementation of the Fair Inference Procedure

The representation of the fair inference procedure F allowed us to prove its refutational

completeness. However, Figure 5.2 does not provide a basis yet for implementing the fair

architecture as, for example, it is not immediately obvious in which order that the inference

rules should be applied in practice. Moreover, the presentation style of Figure 5.2 conceals

the problem of selecting clauses for inference computation in such a way that fair derivations

are obtained. Despite having solved the fairness problems related to the J;;;:Suh -calculus, the

fairness of derivations can still be lost if the clause selection is performed in an inappropriate

way. As we will see in Section 6.4.10, a clause selection function that is fair in the context

of regular first-order resolution does not necessarily guarantee the fairness of derivations

constructed by the fair architecture.

Figure 6.2, then, depicts the main procedure of a monodic temporal logic prover based on

the fair inference procedure in a way that is more amenable for a practical implementation.

After reading the initial clause set S we add to S all clauses required for loop search

right from the start. This is done in step (1). The remainder of the procedure is mostly

identical to the main procedure of a resolution-based theorem prover, confer e.g., [78,81,91\

and Section 6.4.1. This part of the main procedure operates on two sets of clauses, US (the

130 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

I Read initial clause set S I
~

l1. S ,= S U {Ptcl) ~ O'j(cl) I P(",) ~ OM(",) E S}
S ,= S u {'o => OL(c) I OL(",) E q

~
12. WO ,= III; US ,= S I ..

DO Contradiction in US or yes

1
.f =- OJ.. in US for some i. L

DO ./ US ¢ III "- ye.
(U DsaUsn.hle

1
...... 1

(Satisfiable J l3. (Gi"en,USd ,= choo.e(US) I
W ,= WO U {Gi"en}

~
DO Gi"en = .f 1\ C ~ OJ. ye.

1
for some i, L

no ./ Gi"en = C ~ OJ. :;: yeo 16 . NEW ,= {.hI => O~Cv L(CI)}J

1
......

1
14. NEW ,= Inf(Gi"en.WO)J 15. NEW ,= {D~C} 1

..
7. NEW ,= NEW \ FS

NEW ,= NEW \ TAUT
US ,= US \BS

WO ,= WO\BS

t
8. US ,= US uNEW

lIr("') ,= V{(3Cj){cl ~ x} I .f 1\ C j => OJ. E US U WO} for .11 i. L

NEW ,= {D"'x~lIhl ("') I for all i. L with F "'",(lIt<",) ~ lIhl (z»}

t
9. NEW ,= NEW \ TAUT

NEW ,= NEW \ FS
US ,= US \BS

WO ,= WO\BS

+
/10. US ,= US uNEW /

Figure 6.2: Saturation Architecture of TSPASS

6.3. IMPLEMENTING A FAIR ARCHITECTURE FOR MONODIC TEMPORAL
RE.4S0NING 131

set of usable clauses) and WO (the set of worked-off clauses). The set WO contains all the

clauses that have already been used as premises in inference steps (or can never be used as

premises) and the set US contains all the clauses that still need to be considered as premises.

Initially, as set in step (2) of the procedure, the set WO is empty, while US contains all

clauses of S. Next the procedure enters the main inference loop in which it remains as long

as no contradiction has been derived and the set US is not empty. Note that the presence

of sf => 01. in US indicates that we can apply the non-ground eventuality resolution rule

resulting in the conclusion D'v'x...,true, which is contradictory. In the main loop, in step (3),

we use the function choose to select and remove a clause, called the given clause from US.

The given clause is added to WOo We then check whether the given clause is equal to

sf 1\ C => 01. for some i and L. In the (Subsurnption-Restricted)-FG-BFS algorithm, such

a clause would be part of the set Mi+l which is used to define the formula Hi+l(X), which

in turn is used to define the clauses in M+l. Here, in step (6), we directly define the one

clause of M+ 1 which derives from sf 1\ C => 01.. If there is no such clause, but a clause of

the form C => 01. (without a 'marker' sf), then such a clause is a suitable premise for the

application of the clause conversion rule and we compute the conclusion of that application

in step (5). Otherwise, the given clause is not subject to any special treatment. Instead, in

step (4), we use the function in! to compute all conclusions derivable from the given clause

and clauses in WO by the rules 1 to 5 and rule 7 of J~~ and the arbitrary factoring in

left-hand sides of terminating step clauses and in at most monadic negative universal clauses

rules, i.e. the fine-grained step resolution rules of J~t.S.b except the clause conversion rule.

In step (7) redundancy elimination, through backward (BS) and forward (FS) subsumption

deletion, and the removal of tautologies (TAUT) is performed. The newly derived clauses

that were not deleted in the previous step are added to US in step (8). We also prepare the

loop condition test by computing the formulae Hf for all eventuality clauses OL(x) E £ and

all indices i used to create some marker sf in the clause set. We then check whether the

loop condition "tx(Hl{x) {::} Hhl(X)) holds for every i and every L. If this is indeed the

case, an application of the non-ground eventuality resolution rule is possible. We compute

the conclusion of the application and add it to a set N£W. In step (9) the set N£W is
used in reductions again, and finally the remaining clauses are added to the set of usable

clauses in step (10). This completes the main inference loop of the procedure.

Similarly to the inference procedure F depicted in Figure 5.2, there are several important

observations to be made about step (8), which have already been partly described in

Section 5.2.2.

First, we can observe that Hl{x) and H!+l(X) are monadic first-order formulae. Thus,

the validity of the loop condition is a decidable problem.

Second, in the (Subsumption-Restricted-)FG-BFS algorithm, in order to establish whether

"tx(Hl{x) {::} Hl+ 1(x)) is valid we only need to test whether 'v'x(Hl{x) => Hf+1(x)) holds

as the implication "tX(H!+l(X) => Hl{x)) is always valid by the construction of Hl{x) and

H!+l(X) in these procedures. However, in the context of the procedure in Figure 6.2 this is

no longer the case and we need to test both implications.

132 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

Third, by Lemma 4.3.14 the validity of the loop search formula 'rIx(Hl(x) {::} H!+l(X))

is equivalent to the existence of mutual subsumptions for all the disjuncts that are found in

the formulae
m n

Hl(x) = V (3Cj){cl
-+ x} and Hl+l (x) = V (3Dj){cl

-+ x},
j=l j=l

respectively (if unordered factoring has been exhaustively applied on the sets {Cl , ... , Cm}

and {D1, ..• , Dn}). Additionally, by Lemma 4.3.10 it follows for two clauses sf 1\ C => 01.,
sf 1\ D => 01. with C ~ .. D which have been derived during a run of the prover architecture

shown in Figure 6.2 that the formula

is valid. We can thus infer that testing for subsumption on disjuncts of the formulae

Hf (x) and Hlt-l (x) is sufficient to find loop formulae in runs of the fair architecture. The

subsumption test can lead to a significantly reduced number of derived clauses in contrast

to using a logical validity test for testing loop search conditions.

Finally, whenever the loop condition holds, we have indeed found a loop formula, although

it may not be equivalent to a formula returned by (Subsumption-Restricted)-FG-BFS as a

loop formula. However, eventually, for each (negated) formula returned by the (Subsumption

Restricted)-FG-BFS algorithm as a loop formula the algorithm in Figure 6.2 will compute

an analogous one.

In the context of Figure 6.2 a derivation is said to be fair if no clause remains indefinitely

in the set of usable clauses US. Consequently, provided that the function choose selects

given clauses in a fair way using, for example, clause weight combined with clause age,

the procedure in Figure 6.2 constructs a fair derivation. Thus, a derivation from an

unsatisfiable monodic temporal problem in clausified form is guaranteed to eventually derive

a contradiction. It is worthwhile to note that due to the introduction of new propositions

during the derivation, some simpler clause selection functions which are fair for a fixed

and finite signature may not be fair in the context of the algorithm in Figure 6.2 (see

Section 6.4.10 for more details).

We conclude this section by stating the completeness of the fair architecture.

Theorem 6.3.1 (see Theorem 5.3.13). Let pc be a constant flooded and clausified monodic

temporal problem. Let >- be an admissible atom ordering and S be an instance compatible

selection function.

Then pc is unsatisfiable if and only if any fair run of the architecture depicted in

Figure 6.2 using the atom ordering >- and selection function S returns "Unsatisfiable".

6.4 Implementation of TSPASS

The architecture depicted in Figure 6.2 has been implemented in the theorem prover TSPASS

by modifying and extending the first-order prover SPASS 3.0 [92J. The transformation into

6.4. IMPLEMENTATION OF TSPASS 133

Algorithm 1 General Architecture of SPASS

1: procedure SATURATION(N)
2: US:= N
3: WO :=0
4: while US i= 0 and .L ¢ US do
5: (Given, US) := choose(US)
6: WO:= WOU {Given}
7: NEW := inf(Given, WO)
8: NEW := red(NEW,US, WO)
9: US :=USUNEW

10: end while
11: if .L E US then
12: print "Proof found."
13: else
14: print "Completion found."
15: end if
16: end procedure

the normal form DSNF is performed by a separate program, whose output can be parsed by

TSPASS.

We first recall the general architecture of SPASS (see [91]). Then, in Section 6.4.2 we

present some basic considerations behind the implementation of TSPASS, before we describe

TSPASS's general architecture in Section 6.4.3. In the subsequent section we briefly outline

the implementation of the transformation into DSNF. The clausification and translation

into first-order logic is dfficribed in Section 6.4.5, and efficient ways to acCffiS loop search

clauses are presented in Section 6.4.6. The main inference method of TSPASS is explained

in Section 6.4.7. Two ways to implement loop search tffitS are presented in the subsequent

section. Finally, peculiaritiffi related to the implementation of TSPASS are discussed in

Section 6.4.9 and fairness problems regarding the clause selection function are analysed in

Section 6.4.10.

6.4.1 Saturation Architecture of SPASS

The general architecture of the first-order prover SPASS is shown in Algorithm 1. Essentially,

the prover operates on two sets of clauSe> US and WOo The set WO of worked off clauses

contains all the clauSe> on which all possible inferences (potentially with other clauses from

the set WO) have already been performed, whereas the set US of usable clauses contains

clauSe> that still need to be considered for inferences with themselves or with clauSe> from

the set WOo We assume in the following that the sets of worked off and usable clauses are

additionally represented by term index structures (see e.g. [77]).

In line 2 of Algorithm 1 the set of usable clauses US is initialised with the set of input

clauses N. Lines 4 to 10 describe the saturation loop, which is executed as long as the set of

usable clauses is not empty and the empty clause has not been derived. A clause is selected

as "given clause" for inferences to be performed with through the "choose" function. The

134 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

given clause is removed from the set of usable clauses and inserted into the set of worked-off

clauses in lines 5 and 6. Then, inferences with the given clause are computed with respect

to the set of worked-off clauses in line 7, and the resulting clauses from these inferences are

stored in a set NEW of new clauses. In line 8 the new clauses are reduced with respect to

the set of usable and worked-off clauses. Finally, the reduced set of new clauses is inserted

into the set of usable clauses in line 9.

When the saturation loop terminates, the following two possibilities can therefore occur:

either the set of usable clauses contains the empty clause, which implies that there exists a

derivation of the empty clause from the initial set of clauses N. One can hence conclude

that the set N is unsatisfiable. Alternatively, the set of usable clauses has become empty,

from which we can infer that all possible non-redundant inferences have been computed. As

the empty clause has not been derived, we can conclude that the initial set of clauses N is

satisfiable.

6.4.2 Implementation Basics

We now start by describing some basic aspects regarding the implementation of TSPASS.

Upon inspection of the temporal saturation architecture shown in Figure 6.2 one can see

that different tasks are performed depending on the ''type'' of the given clause. In order to

speed up the saturation process, a type field has been added to the clause data structure

initially present in SPASS. The purpose of the type field is to store the temporal type of the

clause. We distinguish between the following types:

• The initial clause type, representing clauses in which every literal contains the con

stant 0 as temporal argument, e.g. p(O) V .q(O, x, y).

• The universal clause type, which characterizes clauses that only contain literals with

one and the same variable as temporal argument, e.g. p(t, x) V q(t) V .;:(t, c).

• The loop search clause type identifies clauses that are used in the loop search process,

Le. they must contain exactly one loop search marker and at least one literal with

a temporal successor term as temporal argument. Moreover, every literal with a

variable as temporal argument must be negative and contain at most one term as

argument (Le. its arity must be less than or equal to 1). Finally, every literal must

use the same temporal variable. An example of a loop search clause is the clause

'8~(z) V .p(t,x) V (j(s(t), h(x)).

• The terminating loop search clause type is similar to the loop search clause type,

except that literals with successor terms as temporal arguments must not occur, e.g.

the clause .s~(z) V .p(t, x) V q(t) is a terminating loop search clause. One can observe

that terminating loop search clauses are in fact universal clauses which contain a loop

search marker.

6.4. IMPLEMENTATION OF TSPASS 135

• The step clause type represents clauses which contain at least one literal with a

temporal successor term as temporal argument. Additionally, every literal with a

variable as temporal argument must be negative and contain at most one argument.

Finally, every literal must share the same temporal variable. An example for the step

clause type is the clause -,]3(t, x) V q(s(t), h(x)).

The type of a clause is initialised whenever a clause is created, and updated whenever

the clause is modified. Moreover, clauses are classified into the most restrictive type that

applies.

The second important part of a problem in DSNF that needs to be implemented efficiently

are eventualities. Firstly, in order to reduce the required implementation effort the different

eventuality formulae '</xOL(x), OL(c) or 01 are simply represented by unit clauses that

contain the eventuality terms L(x), L(c) or I, respectively. The sometime operator 0 does

not occur in the eventuality clauses. Moreover, these eventuality clauses are kept separately

from the other clauses in the implementation.

For the loop search process it is important that additional information is recorded for

each of the eventuality clauses. In particular, if the validity of the loop search side conditions

for a given eventuality OL(x) is to be checked, the number of loop search markers that have

been created so far has to be known. Additionally, the marker symbol for a given loop

search iteration has to be easily retrievable so that the clauses of the form s~(x) /\ C ::::} 0.1
can be found for every i E N. Hence, in order to link eventualities with information about

their loop search markers, we use the data structure depicted in Figure 6.3. The fields

"map" and "mapSize" of the structure "Eventuality.lnr' describe an array of (loop search)

marker symbols, which is required for quickly accessing a specific loop search marker symbol

s~(x) given an eventuality predicate L(x) and a loop search index i. The remaining field

"markerCount" represents the number of markers that have been created so far for a given

eventuality.

As every eventuality term is of the form L(x), L(c) or I, we use hash maps iteratively to

provide fast access to the "Eventuality.lnr' objects for given eventuality clauses. On the first

level two separate hash maps help distinguish between positive and negative eventualities.

The hash map for negative eventualities and the hash table for positive eventualities map

the top-level predicate symbol of unsigned eventuality terms to a second hash table. The

two first level hash maps are accessed depending on the polarity of the given eventuality

typedef struct {
SYMBOL. map;
NAT mapSize;
NAT markerCount;

} EVENTUALITY_INF;

Figure 6.3: Data Structure Used to Link Eventualities with Loop Search Markers

136 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

term. Each of the entries in the two first level hash tables contains another hash table that

maps the argument of the given unsigned eventuality term to an "Eventuality_Inf" object.

In the case where the eventuality term does not contain an argument or the argument is a

variable, we use the unique null symbol as entry key in the second hash table.

The initialisation of eventuality information objects for given eventualities is described

in Algorithm 2 in greater detail. The input parameter of the procedure only consists of

a set of eventuality clauses. An array of eventuality information objects is created in

line 2 containing an entry for every considered eventuality, and the two top-level hashes

are created in the lines 3 and 4. Then, a counter variable i is initialised (line 5) and

an iteration is performed through all the eventualities in the lines 6 to 10. For every

eventuality an eventuality information object is allocated, initialised and stored at position i

in the array (line 7). The newly created eventuality information object is added to the

two-level hash maps for the literal representing the considered eventuality by the procedure

"AddEventualityInformation", which also handles the creation of second-level hash maps.

Finally, the iteration counter is incremented in line 9.

The procedure for retrieving an eventuality information object given the literal represent

ing an eventuality is shown in Algorithm 3. If the considered eventuality literal is negative,

the variable "Root Hash" is initialised with (a pointer to) the hash map representing negative

eventualities (line 3), otherwise the hash map for positive eventualities is used (line 6).

Additionally, the variable "EventualityLit" is made to point to the (positive) literal atom in

the case where the eventuality literal is negative (line 4). The key for the hash map on the

first-level is initialised in line 8 with the predicate symbol of the unsigned eventuality and

the corresponding hash map is extracted in line 9. Then, in the case where the eventuality

literal is propositional or the non-temporal argument of the literal predicate is a variable, the

null symbol is used as key for the second-level hash map (line 11); otherwise, the constant

(symbol) of the non-temporal literal argument is taken (line 13). Finally, the eventuality

information object is extracted from the second-level hash map in line 15.

In the next section we present the general architecture of TSPASS.

Algorithm 2 Initialisation of Eventuality Information Objects
I: procedure INITEvENTUALITYINFORMATION(EventualityClauses)
2: EventualityInfArray:= new EventualitylnqLength(EventualityClauses)]
3: Create(Positi veEventuali tyHash)
4: Create(N egativeEventualityHash)
5: i:= 0
6: for all Eventuality E EventualityClauses do
1: InitEventuali tylnformationStruct(EventualityInfArray[i I, Eventuality)
8: AddEventualitylnformation(GetEventualityLiteral(Clause),

EventualitylnfArray[i])
9: i := i + 1

10: end for
11: end procedure

6.4. IMPLEMENTATION OF TSP.~SS 137

Algorithm 3 Retrieval of Eventuality Information Objects
1: procedure GETEvENTUALITyINFORMATION(EventualityLit)
2: if TopSymbol(EventualityLit) = Not then
3: RootHash := NegativeEventualityHash
4: EventualityLit := FirstArgument(EventualityLit)
5: else
6: RootHash := PositiveEventualityHash
7: end if
8: RootKey := TopSymbol(EventualityLit)
9: SecondHash := GetValue(RootHash, RootKey)

10: if NrOfArguments(EventualityLit) = 1 or IsVariable(SecondArg(EventualityLit))
then

11: SecondKey := NullSymbol
12: else
13: SecondKey := TopSymbol(SecondArg(EventualityLit))
14: end if
15: return Get Value(SecondHash, SecondKey)
16: end procedure

6.4.3 General Architecture of TSPASS

The main method of TSPASS is described in Algorithm 4. The arguments of the main

method are a set of formulae N in DSNF and a threshold parameter for loop search. In

line 2 the set N is clausified and the resulting initial, universal or step clauses are translated

into first-order logic by adding a temporal parameter to each literal. Additionally, four

clause sets representing the different clause types in DSNF are returned, and in line 3 the set

"InputClauses" is created, which will eventually contain the clauses on which the resolution

and factoring inferences are performed. Lines 4 and 5 compute the set of constants that

are initially contained in the problem; Skolem constants, which may be created during the

clausification process, have to be removed from this set as step clauses and eventuality

clauses do not need to be constant-flooded with Skolem constants. Then, the lines 6 to 9

perform the constant flooding using the set of clauses that was previously computed. The

set of eventuality clauses is constant-flooded first and in a second step the loop search

constant c' is used in addition for performing the constant flooding on step clauses if there

are eventualities contained in the problem. The newly obtained eventuality and step clauses

are then added to the original sets of eventuality and step clauses, respectively (lines 10

to 12). The ordering on predicate and functional symbols that is necessary to maintain

some restrictions imposed by the inference rules of the J~;;-:sub-ca1culus on the first-order

level is computed in line 13 (a more detailed description is available in Section 6.4.5). In

line 14 the eventuality information objects are initialised for the obtained eventuality clauses.

The lines 15 to 19 then create a first loop search marker of iteration index 0 for each

eventuality, which is then used in the construction of a first loop search clause for each

eventuality. The second parameter of the "CreateLoopSearchStepClause" method specifies

the iteration index for which the loop search clause will be built and the step literals that

138 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

Algorithm 4 Main Method
1: procedure MONODICPROVER(N, LoopSearchThreshold)
2: (InitiaiClauses, UniversaiClauses, StepClauses, EventualityClauses)

= TemporaIClausify(N)
3: InputClauses := InitialClauses U UniversalClauses U StepClauses
4: Constants := ListOfConstants(InputClauses) U

ListOfConstants(EventuaiityClauses)
5: Constants := RemoveSkolemConstants(Constants)
6: NewEventualityClauses := PerformConstantFlooding(EventualityClauses,

Constants)
7: if length (EventualityClauses) > ° then
8: Constants := Constants U {LoopSearchConstant}
9: end if

10: NewStepClauses := PerformConstantFlooding(StepClauses, Constants)
11: EventualityClauses := EventuaiityClauses U NewEventualityClauses
12: InputClauses := InputClauses U NewStepClauses
13: ComputeTemporaIOrdering(StepClauses)
14: InitEvent uaiityInformation(EventuaiityClauses)
15: for all Eventuality E EventuaiityClauses do
16: CreateLoopSearchMarker(Eventuality, 0)
17: InitLoopSearchClause := CreateLoopSearchStepClause(Eventuality, 0, Nil)
18: InputClauses := InputClauses U {InitLoopSearchClause}
19: end for
20: TemporaISaturation(InputClauses, EventualityClauses, LoopSearchThreshold)
21: end procedure

should be contained in the loop search clause are given as third parameter. More precisely,

"CreateLoopSearchStepClause(Eventuality, i, Literals)" creates and returns the loop search

step clause ...,sf(t) V L(s(t), d) VV;'=l ...,Aj(s(t), tf) V V;=l ...,Aj(s(t)) if Eventuality = OL(x)

and Literals = {-.Al(t, t f), ... , ...,Am(t,tf), -.A~(t), ... , ...,A~(t)}. The loop search clauses are

also added to the input clauses in line 18. Finally, in line 20 the temporal saturation method

is invoked on the input and eventuality clauses (together with the loop search threshold),

which then performs the main inference and reduction steps.

In the next section we describe the DSNF transformation.

6.4.4 Translation Into DSNF

For the implementation of the DSNF translation tool we have used some ideas originally

introduced for the A-calculus. Variables in formulae are represented by so-called de Bruijn

indices (see, e.g., [54J for more details). A variable is represented by the number of

quantifiers that need to be skipped in order to reach its binding quantifier in the formula's

tree representation. For example, in de Bruijn notation the formula Yx03yp(x,y) is

represented by Y03p(0, 1). The use of de Bruijn indices simplifies the comparison of

formulae in the implementation.

An important part of the DSNF transformation consists in the verification of whether a

6.4. IMPLEMENTATION OF TSPASS 139

Algorithm 5 Verification of DSNF Format
1: procedure IsINDSNF(Formula)
2: if ...,ContainsTemporalOperator(Formula) then
3: return true
4: end if
5: if GetTopOperator(Formula) i 0 then
6: return false
7: end if
8: SubFormula := GetFirstSubformula(Formula)
9: if ...,ContainsTemporalOperator(SubFormula) then

10: return true
11: end if
12: if GetTopOperator(SubFormula) = V then
13: SubFormula := GetSecondSubformula(SubFormula)
14: IsQuantified := true
15: else
16: IsQuantified := false
17: end if
18: if ...,IsQuantified and ContainsFreeVariables(SubFormula) then
19: return false
20: end if
21: if GetTopOperator(SubFormula) = =} then
22: LeftSubFormula := GetFirstSubformula(SubFormula)
23: if GetTopOperator(GetSecondSubformula(SubFormula)) i 0 then
24: return false
25: end if
26: RightSubFormula := GetFirstSubformula(GetSecondSubformula(SubFormula))
27: if ...,IsPositiveLiteral(LeftSubFormula) or ...,IsLiteral(RightSubFormula) then
28: return false
29: end if
30: if IsQuantified

and (...,ContainsAtM08tTheFree VariableZero(LeftSubFormula)
or ...,ContainsAtM08tTheFree VariableZero(RightSubFormula) then

31: return false
32: end if
33: return true
34: else if GetTopOperator(SubFormula) = 0 then
35: SubFormula := GetFirstSubformula(SubFormula)
36: if ...,IsLiteral(SubFormula) then
37: return false
38: end if
39: if IsQuantified and ...,ContainsAtM08tOneFreeVariable(SubFormula) then
40: return false
41: end if
42: return true
43: end if
44: ret urn false
45: end procedure

140 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

Algorithm 6 Clausification and Translation to First-Order Logic
1: procedure TEMPORALCLAUSIFY(N)
2: InitialClauses := 0
3: UniversalClauses := 0
4: StepClauses := 0
5: EventualityClauses := 0
6: for all Formula E N do
7: if IsInitiaIFormula(N) then
8: NewClauses := FOClausify(Formula)
9: InitialClauses := InitialClauses U

{TranslateInitiaIClausesToFO(NewClauses)}
10: else if IsVniversaIFormula(Formula) then
11: NewClauses := FOClausify(RemoveAlways(Formula»
12: VniversalClauses := VniversalClauses U

{TranslateU niversalClausesToFO(NewClauses)}
13: else if IsStepFormula(Formula) then
14: NewClause:= TranslateStepFormulaToFO(Formula)
15: StepClauses := StepClauses U {NewClause}
16: else if IsEventualityFormula(Formula) then
17: NewClause := TranslateEventualityFormulaToFO(Formula)
18: EventualityClauses := EventualityClauses U {NewClause}
19: end if
20: end for
21: return (InitiaIClauses, UniversalClauses, StepClauses, EventualityClauses)
22: end procedure

formula is already in DSNF format. The procedure described in Algorithm 5 is used for this

purpose. The only input parameter is a formula and the value "true" is returned if and only

if the input formula is in DSNF format.

If the input formula does not contain a temporal operator (line 2), then the given

fonnula is an initial formula and "true" can be returned in line 3. Otherwise, the input

must contain at least one temporal operator. If the fonnula does not start with an 0
operator (line 5), it cannot be in DSNF format and the value "false" can safely be returned

(line 6). In line 8 we can assume that the formula starts with an 0 operator. The variable

"SubFormula" is initialised with the subformula of the 0 operator. Then, if the subformula

does not contain a temporal operator (line 9), the input formula is of the type O<p and

we can return ''true'' (line 10). It is now also possible that "SubFormula" starts with a

universal quantifier (line 12), in which case we assign the fonnula that is quantified over

to "SubFormula" in line 13 as the remaining checks do not need to consider the universal

quantifier. Additionally, the variable "IsQuantified" is set accordingly (lines 14 and 16). In

the case where "SubFormula" does not start with a universal quantifier but contains free

variables, we can return "false" (lines 18 to 20) as the input fonnula hence contains free

variables.
If the tOJrm08t operator of "SubFormula" is an implication (line 21), the input formula

could potentially be a step clause. The variable "LeftSubFormula" is initialised in line 22

6.4. IMPLEMENTATION OF TSPASS 141

with the left-hand side of the implication. Then, if the right-hand side of the implication

does not start with a 0 operator (line 23), we can return "false" in line 24 as the input

formula cannot be in DSNF format. Otherwise, the right-hand side of the implication

is a formula starting with a 0 operator and the formula underneath the 0 operator is

assigned to the variable 'RightSubFormula" (line 26). If the left-hand side of the considered

implication is not an atom (Le. a positive literal) or the immediate subformula of the 0
operator is not a literal (line 27), the input formula is not a step clause and the value "false"

can be returned (line 28). The two remaining checks shown in the line 30 still verify that

"LeftSubFormula" and "RightSubFormula" contain at most the free variable with index 0 if

a preceding universal quantifier has been found in the input formula.

In the case where the immediate subformula of the D operator (or universal quantifier)

starts with an eventuality operator 0 (line 34), the immediate subformula of the eventuality

operator is assigned to the variable "Sub Formula" . If the immediate subformula is not a

literal (line 36), we can return the value "false" (line 37). And similarly as in the case of

step clauses, it is verified in the lines 39 to 41 that "SubFormula" only contains at most the

variable with index 0 if a preceding quantifier has been detected in the input formula.

Finally, the value "false" is returned in line 44 if the immediate subformula of the

D operator (or universal quantifier) is not a formula that has an implication or an eventuality

as tOJrmost operator.

The implementation of the transformation into DSNF is based on the algorithm described

in [581 and in Section 2.5. First of all, the input formula is brought into negation normal form.

Then, innermost complex subformulae Oif'(x), Oif'(x), Dif'{x), if'{x) U tjI{x), if'(x) WtjI{x)

are successively renamed by new unary predicate symbols P(x), introducing new defining

formulae, called pre-step clauses,

D'v'x(P(x) => ~(x))

where ~(x) is a formula starting with a temporal operator and every proper subformula

of ~(x) does not contain a temporal operator. In a final step the pre-step clauses that are

not already in DSNF are transformed by using the fixed-point definitions of the temporal

operators 'always' D, 'eventually' 0, 'until' U and 'unless' W. In-between the different

transformation steps the procedure depicted in Algorithm 5 is used to identify formulae that

are already in DSNF, which are then excluded from future transformation steps.

In the next section we describe the procedures responsible for the clausification and

translation into first-order logic of temporal formulae in DSNF.

6.4.5 Clausification and Translation to FOL

Algorithm 6 depicts the ''TemporalClausify'' method which is responsible for the clausification

and the translation into first-order logic of a set of input formulae N in DSNF.

In the lines 2 to 5 the set of clauses that will contain the result of the clausification and

temporal translation are initialised. Then, the temporal type of every formula contained

142 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

Algorithm 1 Computation of the Necessary Weight for the Temporal Successor Function
1: procedure COMPUTETEMPORALORDERINc(Clauses)
2: LeftHandAtoms := Nil
3: MaxWeight:= 0
4: for all Clause E Clauses do
5: if IsStepClause(Clause) then
6: LeftHandAtoms:= LeftHandAtoms U ExtractUniversaIAtoms(Clause)
7: end if
8: end for
9: for all Atom E LeftHandAtoms do

10: Weight := ComputeAtomWeight(Atom)
11: MaxWeight := max(MaxWeight, Weight)
12: end for
13: SetAtomWeight(TemporaISuccessorFunction, MaxWeight + 1)
14: end procedure

in the set of input formulae N is determined in the lines 6 to 20 and the corresponding

transformation method is invoked. In a last step the resulting clause is added to the

appropriate output clause set in the lines 9, 12, 15 and 18.

The clausification process of an initial formula is straightforward and proceeds exactly

as in the first-order case through the "FOClausify" method just as if no temporal operators

are present. During the translation into first-order logic the arity of every predicate is

increased by one argument and the temporal constant 0 is added as first argument to every

literal contained in the initial clause. The clausification and translation into first-order logic

of universal clauses is similar after the leading temporal operator 0 has been removed,

but instead of the temporal constant 0 a fresh variable (per clause) is added as temporal

argument to the literals.
For a step clause P(x) =* OQ(x) the clausification is trivial: it suffices to copy the

literals and additionally negate the literal P(x). Again, the arities of the predicates are

increased by one unit and the literal P(x) receives a variable fresh t as temporal argument,

whereas the temporal argument of the literal Q(x) will be the temporal successor term set).

Finally, the clausification of eventualities is also straightforward. After having copied

the literal to the clause, we still have to increase its arity by one and add a fresh variable as

temporal argument.
The procedure for computing the symbol weight of the temporal successor function is

shown in algorithm 7 (see Section 6.2 for more details). The algorithm only has one single

input parameter, namely the set of (temporal) clauses that should be considered for the

computation of the symbol weight. After the variables "LeftHandAtoms" and "Max Weight"

have been initialised in the lines 2 and 3, an iteration is then performed through all the input

clauses (lines 4 to 8). If an input clause is identified to be a step clause, all its universal

atoms, i.e. the atoms from its left-hand side, are added to the set "LeftHandAtoms" (lines 5

to 7). The weight of every left-hand atom is then computed and the maximum of these

weights is calculated by consecutively adjusting the "MaxWeight" variable (lines 9 to 12).

6.4. IMPLEMENTATION OF TSPASS

Algorithm 8 Efficient Retrieval of Loop Search Clauses
1: procedure GETTERMINATINCLooPSEARCHSTEPCLAUsEs(Eventuality, i,

WOIndex,USIndex)
2: Clauses: = Get TerminatingLoopSearchStepClausesFromIndex(Eventuality, i,

USIndex)

143

3: return Clauses U GetTerminatingLoopSearchStepClausesFromIndex(Eventuality, i,
WOlndex)

4: end procedure

Algorithm 9 Efficient Retrieval of Loop Search Clauses from an Index
1: procedure GETTERMINATINCLooPSEARCHSTEPCLAUSESFROMINDEx(Eventuality, i,

Index)
2: Clauses := Nil
3: EventualityInf:= GetEventualityInformation(Eventuality)
4: LoopSearchMarker := GetLoopSearchMarker(EventualityInf, i)
5: Terms := GetUnifiers(Index, LoopSearchMarker)
6: for all Term E Terms do
7: if IsVariable(Term) then
8: continue
9: end if

10: for all Literal E GetAssociatedLiterals(Term) do
ll: Clause := LiteraIOwningClause(Literal)
12: if IsTerminatingStepClause(Clause) then
13: Clauses := Clauses U {Clause }
14: end if
15: end for
16: end for
17: return Clauses
18: end procedure

Finally, the weight of the temporal successor function is set to be the maximum of the

left-hand side atom weights, increased by one unit (line 13).

6.4.6 Efficient Access to Loop Search Clauses

The temporal saturation procedure which is described in Section 6.4.7 requires fast access to

the terminating loop search step clauses that are present in the sets of usable and worked-off

clauses for a given eventuality and loop search iteration index. As the sets of usable and

worked-off clauses can become quite large and as the terminating loop search step clauses

need to be accessed frequently, it is, performance-wise, not feasible to iterate through the

sets of usable and worked-off clauses every time the terminating loop search clauses need to

be accessed.

In order to keep the retrieval performance at an acceptable level, it turns out that the

same clause retrieval procedure that is responsible for finding unifiable literals during the

computation of resolution inferences can be used for the retrieval of terminating loop search

clauses. More concretely, given an eventuality 0 L(x) and a loop search iteration index i the

144 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

terminating loop search step clauses for the eventuality OL(x) and the iteration index i can

be found by searching for all the clauses which contain a literal that is unifiable with the

loop search marker s;(x). As loop search markers do not possess any arguments and as they

only occur in left-hand sides of loop search clauses, the aforementioned retrieval operation

returns all the terminating and non-terminating loop search clauses related to the marker

s;(x). An additional filtering step is required in order to only obtain the terminating loop

search clauses.

The procedures depicted in Algorithms 8 and 9 show how the retrieval of terminating loop

search clauses has been implemented. The method "GetTerminatingLoopSearchStepClauses"

shown in Algorithm 8 uses the procedure described in Algorithm 9 to retrieve the terminating

loop search clauses from the sets of usable and worked-off clauses given an eventuality and

a loop search iteration index.

The main method for retrieving terminating loop search clauses is shown in Algorithm 9.

Its input parameters are the eventuality and loop search iteration index in question, together

with the indexing structure that should be used for the retrieval operations. The set

"Clauses", which will contain the resulting clauses, is initialised in line 2 and the appropriate

loop search marker is retrieved in line 4 through an eventuality information object, which

is accessed in line 3 by the "GetEventualityInformation" procedure shown in Algorithm 3.

The method "GetLoopSearchMarker" retrieves the loop search marker symbol for a given

loop search iteration from a "EventualityJnf' object. Then, a set "Terms" is constructed

in line 5, which contains all the atom (or variable) occurrences that can be unified with the

considered loop search marker. In lines 6 to 16 an iteration is performed through the "Terms"

set. Variables contained in the term set are discarded (lines 7 to 9) and for every non-variable

the clauses associated to the atom in question are retrieved (lines 10 and 11). The procedure

"GetAssociatedLiterals" first retrieves all the literal instances that contain a given atom, and

then the method "LiteralOwningClause" fetches the clause that is associated with the literal

instance in question. Finally, if a considered clause is a terminating step clause, it is added

to the set of returned clauses (line 13).

In the subsequent section we describe the main inference and reduction procedure of

TSPASS.

6.4.7 Temporal Saturation

The main inference and reduction method of TSPASS is depicted in Algorithm 10. Similarly

to the saturation method of SPASS (see Algorithm 1), TSPASS also uses sets of worked off

and usable clauses. The input parameters of TSPASS' saturation procedure are a set of

first-order input clauses, a set of first-order eventuality clauses and a threshold parameter

for performing loop search tests.

In line 2 the set of usable clauses is initialised with the set of input clauses, and the

set of worked off clauses is set to be empty (line 3). The main saturation loop extends

from line 5 to line 33; in line 4 a variable i is initialised which counts the iterations of the

6.4. IMPLEMENTATION OF TSPASS 145

Algorithm 10
1: procedure TEMPORALSATURATION(N, Eventualities, LoopSearchThreshold)
2: US:= N
3: WO:= 0
4: i:= 0
5: while US #- 0 and .1 ¢ US do
6: (Given, US) := choose(US)
7: WO:= WO U {Given}
8: if IsTerminatingStepClause(Given)

and ContainsExactlyOneLoopSearchMarker(Given) then
9: if length(Given) = 1 then

10: NEW := {.l}
11: else
12: NEW := {CreateNextLoopSearchStepClause(Given)}
13: end if
14: else
15: NEW := inf(Given, WO)
16: end if
17: if NEW #- 0 then
18: NEW: = DeleteDifferentMarkerLoopSearchClauses(N EW)
19: US := US U NEW
20: (US, WO) := red (US , WO)
21: end if
22: if US = 0 or i = LoopSearchThreshold then
23: NEW:= 0
24: for all Eventuality E Eventualities do
25: NEW := NEW U PerformLoopSearchTest(Eventuality)
26: end for
27: if NEW =I 0 then
28: US := US U NEW
29: (US, WO) := red(US, WO)
30: end if
31: i := 0
32: end if
33: i := i + 1
34: end while
35: if .1 E US then
36: return U nsatisfiable
37: else
38: return Satisfiable
39: end if
40: end procedure

146 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

saturation loop. A clause is selected as "given clause" in line 6 and it is removed from the

set of usable clauses, i.e. a new set US is returned from which the given clause has been

removed. In line 7 the given clause is already added to the set of worked off clauses. Then,

it is checked in line 8 whether the given clause is a terminating step clause and contains a

loop search marker. Additionally, if the given clause only contains a single literal (line 9),

we can conclude that the given clause is of the form sf ~ 0.1 (for an eventuality Land

an iteration index i). We can thus infer that the initial temporal problem is unsatisfiable

and we assign a singleton set which only contains the empty clause to the set of derivable

clauses NEW. This step replaces the test for the presence of the clause sf ~ 0.1 in the set

of usable clauses US depicted in the case distinction following step 2 in Figure 6.2, which

would lead to a poor performance of the prover architecture in practice. Then, if the given

clause contains more than one literal, a new loop search clause based on the literals contained

in the given clause is created in line 12 for the subsequent loop search iteration by the

method "CreateNextLoopSearchStepClause". It is given a terminating loop search clause

-,sf{t) VV~l -,Ai(t, t') VV;=l ...,A~(t) as its only argument (for an eventuality OL(x)) and it

returns the loop search step clause ""Shl (t) V L(s(t), d) vVj=l ...,Ai(s(t), t') VV;=l ...,Ai(s(t))

created through the "CreateLoopSearchStepClause" method. In line 12 the set NEW of

derivable clauses then just consists of the new loop search clause. Otherwise, if the given

clause is not a terminating step clause which contains a loop search marker, the given clause

is used in line 15 to compute all the possible inferences with the set of worked off clauses.

The newly obtained clauses are stored in the set of derivable clauses NEW.
In the case where the set of derived clauses NEW is not empty, we have to perform

reduction inferences in order to keep the sets of usable and worked off clauses fully reduced.

An important reduction step consists in deleting clauses that contain at least two different

loop search markers (see line 18) as they are not necessary for the overall saturation process.

This deletion is performed by the method "DeleteDifferentMarkerLoopSearchClauses".

Moreover, the removal of loop search clauses that contain at least two different loop search

markers contributes to the possible termination of the saturation process for a satisfiable

(first-order) temporal problem. After having added the set of newly derived clauses to the

set of usable clauses (line 19), the sets of usable and worked off clauses are inter-reduced

(line 20) and the reduced sets are returned by the reduction procedure.

Loop search tests are performed in the lines 22 to 31 whenever the set of usable clauses

is empty or the iteration counter has reached the loop search threshold. Note that it is

important to perform loop search tests when the set of usable clauses has become empty in

order to avoid the situation where additional universal clauses could be derived through loop

search but the loop search is not started due to the iteration counter not having reached the

loop search threshold. Then, in the lines 23 to 26 loop search tests are performed for every

eventuality and the possibly resulting universal clauses are collected in a set NEW of newly

derived clauses. If new clauses have been obtained, they are added to the set of usable

clauses in the lines 27 to 30, and the sets of usable and worked off clauses are inter-reduced

again. Finally, the loop search iteration counter is reset in line 31.

6.4. IMPLEMENTATION OF TSPASS 147

Algorithm 11 Subsumption-based Loop Search Testing Procedure
1: procedure PERFORMSUBSUMPTIONLooPSEARCHTEsT(Eventuality,US, WO)
2: LoopSearchClauses := 0
3: LastIterationIndex := RetrieveLastlterationIndex(Eventuaiity)
4: if LastlterationIndex ~ 1 then
5: Clauses := GetTerminatingLoopSearchStepClauses(EventualityClause, O,US,

WO)
6: end if
7: for i = 0, ... , LastlterationIndex - 1 do
8: l"extClauses := GetTerminatingLoopSearchStepClauses(EventualityClause,

i + I,US, WO)
9: if Clauses -I- 0 and NextClauses -I- 0 then

10: if SetSubsumes(Clauses, N extClauses)
and SetSubsumes(NextClauses, Clauses) then

11: LoopSearchClauses := LoopSearchClauses u
ComputeLoopSearchResult(N extClauses)

12:

13:

14:

end if
end if
Clauses := Nt'xtClauses

15: end for
16: return LoopSearchClauses
17: end procedure

Similarly to the saturation procedure of SPASS, if the empty clause is contained in the

set of usable clauses, the set of input clauses N is unsatisfiable (lines 35 and 36). Otherwise,

the set of usable clauses is empty, which implies that the set N is satisfiable (line 38).

In the next section we describe the implementation of the subsumption-based and logical

loop search test that can be performed by TSPASS.

6.4.8 Loop Search Testing

The subsumption-based loop search test is depicted in Algorithm 11. The input parameters

of the procedure are the eventuality for which the loop search tests have to be performed

and (indexes for the) sets of usable and worked off clauses. In the lines 2 and 3 the set

"LoopSearchClauses" of newly derived universal clauses (through an application of the

eventuality resolution rule) is initialised and the last loop search iteration index for the given

eventuality is retrieved. The remainder of the procedure works with two sets of clauses,

"Clauses" and "NextClauses", which contain the terminating step clauses that have been

derived for two consecutive loop search iterations i and i + 1, respectively. In line 5 the set

"Clauses" is initialised with the terminating loop search clauses contained in the sets of usable

and worked off clauses for the iteration index O. Then, in the lines 7 to 15, the terminating

loop search clauses are first of all retrieved for the subsequent loop search iteration index

and are stored in the "NextClauses" set. If both the "Clauses" and "NextClauses" set are

not empty (line 9), a loop search test can be performed for those two loop search iteration

indexes. The procedure "SetSubsumes", which is invoked twice in line 10, checks whether

148 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

Algorithm 12 Loop Search Testing Procedure Based on Logical Equivalence
1: procedure PERFORMLOGICALLooPSEARCHTEST(Eventuality, US, WO)
2: LoopSearchClauses := 0
3: LastlterationIndex := RetrieveLastlterationIndex(Eventuality)
4: Hi := Nil
5: Hi+l := Nil
6: if Lastlterationlndex >= 1 then
7: Clauses := GetTerminatingLoopSearchStepClauses(EventualityClause, 0, US,

WO)
8: Hi := BuildlntermediateLoopSearchResult(Clauses)
9: end if

10: for i = 0, ... , Lastlterationlndex - 1 do
11: NextClauses := GetTerminatingLoopSearchStepClauses(EventualityClause,

i+ I,US, WO)
12: Hi+l := BuildIntermediateLoopSearchResult(NextClauses)
13: UnifyVariables(Hi , Hi+l)
14: if Hi =I- Nil and Hi+l =I- Nil then
15: Xt := TemporaIVariable(Hi)

16: x := FreeVariable(Hi , HHd
17: H:= "tXt "Ix: Hi(xt,x) <* H i +1 (Xt,X)
18: if TemporaISaturation(Clausify(...,H), 0, -I) = Unsatisfiable then
19: LoopSearchClauses := LoopSearchClauses U

ComputeLoopSearchResult(NextClauses)
20: end if
21: end if
22: Clauses := NextClauses
23: Hi := Hi+i
24: end for
25: return LoopSearchClauses
26: end procedure

every clause contained in the set given as first argument subsumes at least one of the clauses

contained in the set given as second argument, disregarding the loop search marker included

in each clause. If every clause from the "Clauses" set subsumes at least one clause from the

"NextClauses" set and vice versa, a loop has been found. The resulting universal clauses are

computed in line 11 through the "ComputeLoopSearchResult" method. It is given a list of

terminating loop search clauses as input and it computes the resulting universal clauses by

copying the corresponding literals except the the loop search marker literal to a new clause

and by replacing the loop search constant d by a fresh variable, i.e. for the terminating

loop search clause ...,sf(t) V V'; 1 ...,Aj(t, d) V V;=l ...,Aj(t, Xj) V V~=l ...,Aj'(t) the method

"ComputeLoopSearchResult" returns the universal clause Vj=l ...,Aj(t, X)VV;=l ...,Aj(t, Xj) V
V~=l ...,Aj'(t), where x is a fresh variable. The resulting universal clauses are added to the

set "LoopSearchClauses", which holds all the universal clauses that are obtained through

successful loop search tests. Finally, in line 14 the set "NextClauses" is assigned to the set

"Clauses" so that the set "Next Clauses" can contain the terminating loop search clauses for

the subsequent iteration index.

6.4. IMPLEMENTATION OF TSPASS 149

The procedure for logical loop search testing is shown in Algorithm 12. It is organised

similarly to the subsumption-based loop search testing method. In addition to collecting

clauses for consecutive loop search iterations in the two sets of clauses "Clauses" and

"NextClauses", two formulae Hi and HHl are constructed that represent the disjunctions

of the existentially closed (and freed of the loop search constant c') left-hand sides of the

terminating step clauses obtained for two consecutive loop search iterations (see Figure 6.2

for details). The two formulae, or ''terms'' in the terminology of SPASS, are initialised in

the lines 4 and 5. After having obtained the set of terminating step clauses for the loop

search iteration that is currently being analysed (line 11) the corresponding formula Hi+l is

constructed in line 12. The free variables, i.e. the temporal variable and the free variable

resulting from replacing the loop search constant c' , of the formulae Hi and HH 1 are unified

in line 13, and if both formulae are defined, a loop search test can be performed (lines 14

to 21). In order to construct the equivalence formulae necessary for the loop search test, the

temporal variable Xt and the free variable2 x of the formulae Hi (and Hi+l) still have to be

determined (lines 15 and 16). Then, in line 17 a formula H is defined which is valid if and

only if the loop search test is successful for the terminating loop search clauses contained in

the sets "Clauses" and "Next Clauses" (after having removed the loop search markers). Note

that the loop search equivalence formula shown in Figure 6.2 only quantifies universally over

the free variable x, but the formula H also quantifies over the temporal variable Xt, which

avoids the creation of new predicates only for the loop search test. It can be shown that

the formula H is valid if and only if the formula shown in Figure 6.2, which uses the same

predicates, but with reduced arities, is valid.

In order to test for validity the negation of the formula H is clausified in line 18

and the resulting set of clauses is saturated by the "TemporaISaturation" procedure (see

Algorithm to). As t.he value "-I" will be be passed to the"TemporaISaturation" procedure

as loop search threshold (and the empty set for the parameter handling eventualities), the

saturation which is performed is in fact equivalent to a regular first-order saturation. Then,

if the "Temporal Saturation" procedure returns "Unsatisfiable", the formula H is valid and

the loop search test has succeeded. Finally, the resulting universal clauses are computed

in line 19 and added to the set "LoopSearchClauses", which collects the newly obtained

universal clauses.

6.4.9 Implementation Peculiarities

In this section we describe some additional modifications that had to be carried out on the

source code of SPASS in order to support ordered fine-grained resolution with selection.

First of all, the implementation of the (ordered) factoring inference rule had to be

modified in order to accommodate the factoring in the (at most) monadic negative universal

clauses rule. The modifications simply consist in switching to unordered factoring when

2 Hi and HHl can have at most one free variable, but it is theoretically possible that at least one of the
two formulae is closed.

150 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

factoring inferences on a (at most) monadic negative universal clause are to be performed.

Another peculiarity of implementing ordered fine-grained resolution with selection and

the fair inference architecture is related to the missing distinction between terminating

step clauses of the form C :::} 01. and universal clauses on the first-order level. For

example, if a terminating loop search clause s~(x) A P(x) :::} 01. has been derived (for

a unary predicate P(x), a loop search iteration i and an eventuality <)L(x», the only

possible inference on this clause in the original calculus would be an application of the

clause conversion rule. However, such inferences are not allowed on loop search clauses

in the fair architecture. On the other hand, on the first-order level the terminating step

clause s~(x) A P(x) :::} 01. is represented as the clause,s~(x) V,p(t, x), where t is a

temporal variable. For instance, it would now be allowed to perform a resolution inference

on the literal,p(t, x) with the unit clause Pet, x), which would derive the terminating loop

search clause s~(x) :::} Ol.. The presence of the terminating step clause s~(x) :::} 01. would

immediately result in the prover architecture shown in Figure 6.2 to Qualify the currently

considered problem as unsatisfiable, which could potentially lead to a loss of soundness. To

avoid this, the implementation of the (ordered) resolution inference rule has been modified

in such a way that inferences are not performed on terminating loop search clauses.

Finally, the problems mentioned in Section 6.2 related to the special ordering used for

performing resolution with step clauses on the first-order level also had to be considered in

the implementation. After a clause has been modified, a reinitialisation function is called

in the original SPASS prover which ensures that the clause data structure remains in a

well-defined state. This reinitialisation procedure has been extended in order to remove the

maximal literal flag in left-hand sides of step clauses. The properties of the literal ordering

used guarantee that at least one literal remains maximal in the right-hand side of a step

clause even after the maximal literal flags have been cleared in the left-hand side.

6.4.10 Fairness Problems Related to the Regular Clause Selection

Function

While conducting experiments with an earlier prototype of TSPASS it became apparent

that the regular clause selection function of SPASS is not sufficient to guarantee the fairness

of the architecture depicted in Figure 6.2.
In fact, TeMP's architecture (Figure 6.1) can be emulated by alternating between loop

search and non-loop search clauses in the clause selection function whenever no clause of

the currently considered type (Le. either loop search or non-loop search) is contained in the

set of usable clauses anymore.
Consequently, it must be ensured that non-loop search clauses are not continuously

selected as "given" clauses as such a behaviour could lead to a loss of fairness.

On the other hand, special care needs to be taken when loop search clauses are to be

chosen as "given" clauses. The main criterion that SPASS 3.0 considers when selecting a

"given" clause is the size of clauses: smaller clauses are preferred over clauses with a larger

6.5. EXPERiMENTAL RESULTS 151

number of literals. Now, in the situation when the selection strategy only consists in choosing

a loop search clause as "given" clause after a certain amount of non-loop search clauses have

been chosen, it could happen that the smallest clause contained in the set of usable clauses is

a terminating loop search clause C = s! /\C =* 0..1. (in high-level notation). If we additionally

assume that a loop for the eventuality Ol exists and that the equally small terminating loop

search clause S!+l /\ C =* 0..1. can easily be derived once the loop search clause C has been

selected, the architecture shown in Figure 6.2 (page 130) can get "stuck" in the loop process.

Due to the introduction of new clauses S!+l =* -,C V l once a terminating loop search clause

s! /\ C ::::} 0..1. has been found, it might happen that the architecture continuously derives

new terminating loop search clauses S!+2/\ C ::::} 0..1., S!+3/\ C ::::} 0..1., Other loop search

clauses, which would lead to a loop being found, will not be considered by the architecture.

As a remedy a special way of choosing loop search clauses as "given" clauses has been

implemented in TSPASS. The implemented loop search selection strategy only tends to

consider inferences with a clause s! /\ C ::::} OD when the set of usable clauses does not

contain a clause s~ /\ E ::::} OF with j < i. In order to guarantee fairness a free selection of

loop search clauses is performed after a certain number of these "sequential" loop search

clause selections.

Finally, in order to ensure that neither loop search clauses nor non-loop search clauses

are continuously selected, and, for example, more and more marker symbols are introduced

without considering non-loop search clauses, a mechanism which alternates between loop

search and non-loop search clauses during the selection process has been implemented in

TSPASS. The refined loop search clause selection strategy described above together with

an alternation between loop search and non-loop search clause selections has proven to be

quite effective in practice so far.

6.5 Experimental Results

In this section we describe the experiments that we have performed in order to evaluate the

practical performance of TSPASS.

6.5.1 Considered Temporal Problems

For analysing the performance of TSPASS on PLTL problems, we have applied TSPASS on

the benchmark classes for PLTL formulae that were introduced in [531. There, the authors

design two benchmark classes C:an and C;an which can be used to compare resolution and

tableaux-based PL TL provers. Both benchmark classes consist of formulae which partly

follow a pre-defined struct ure. The remaining part of those formulae is composed of randomly

generated clauses. The classes are parametric with four parameters, l, n, k, and p. Regarding

the randomly generated part of a formula, the parameter l determines the number of clauses,

the parameter n specifies the number of propositions, the parameter k defines the number

of literals per clause, and the parameter p determines the probability with which a literal

152 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

is assigned negative polarity. The pre-defined part of a fonnula is only influenced by the
parameter n.

Formulae of the class C;an are of the form

D(OLi V ... v OLl) /\ ... /\ D(OL~ v ... v OLi)

/\ o (--'PI V Op2)

/\ D(--,P2 V 01'3)

where for every i with 1 :$ i :$ I the literals L1, ... ,Li are determined by choosing k distinct

propositional variables randomly from the set {PI, ... ,Pn} of n propositional variables and

by assigning negative polarity to each literal with probability p.

Fonnulae of the class C;"n are constructed as follows:

(rl V L~ V ... V Lk) /\ ... /\ (rl V Li V ... V Li)

/\ o (-,rn VOrl)

/\ D(--,rn-l V Orn)

/\D(-,rl VOr2)

/\ o (-,rn V O--,qn) /\ ... /\ D(--,rl V O--,qn)

/\ (-,rl V qt) /\ (-,rl V -,qn)

/\ D(--'ql V 082) /\ 0(-'82 V q2 V Oqn V ... V Oq3)

where, again, for every i with 1 :$ i :$ I the literals L1, ... , Li are determined by choosing k

pairwise different propositional variables randomly from the set {PI, ... ,Pn} of n proposi

tional variables and by assigning negative polarity to each literal with probability p. In the

experiments cOIlRidered here, the values for k and P were set to 3 and 0.5, respectively, for

both classes. For the parameter n we chose the two values 5 and 12.

The benchmark classes, C~n (n = 5) and C~n (n = 12) are designed in such a way that

fonnulae contained in those classes can be theoretically solved more easily by resolution

based decision procedures, whereas the second set of benchmark classes, C;an (n = 5) and

C;"n (n = 12), ace designed so that the formulae in them can be theoretically solved more

easily by tableaux-based systems.

Then, in order to evaluate the performance of TSPASS on its main input language, the

monodic fragment of FOTL, we consider several types of problems, some of which result

from translating problem specifications expressed in the temporal logic of knowledge KL(n)

6.5. EXPERIMENTAL RESULTS 153

into monodic FOTL. The logic KL(n) is the fusion of PLTL with the multi-modal S5 logic

(see, e.g., [35] for more details); a description of the translation into monodic FOTL that we

used can be found in [36].

In [27,28] a specification of the board game Cluedo [I] in KL(n) is given. The specification

describes an example Cluedo game, for which one can formally prove that the different

players can deduce additional knowledge over the course of the game. We have applied

TeMP and TSPASS on six valid assertions that can be made in this example Cluedo game,

after having transformed the KL(n) formulae into monodic FOTL.

Another application of the KL(n) logic for formal verification purposes can be found

in [30,31]. There, a formal specification of the Needham-Schroeder protocol is given, which

is designed to authenticate two communicating agents A and B against each other. In order

to do so, several encrypted messages containing values private to A and B are exchanged

between the two agents using public-key cryptography. We have used TeMP and TSPASS

to prove several properties of the Needham-Schroeder algorithm using the translation into

monodic FOTL of the KL(n) specification.

Additionally, we have considered other classes of problems that do not result from

translations of KL(n) formulae. A formal model based on parameterised finite state machines

which is suitable for specifying and verifying a range of communication protocols is given

in [25]. Following the approach described in [39]' the formal model can be used to express

the behaviour of various cache coherence protocols in monodic FOTL. Such protocols are

useful for ensuring cache data consistency in shared-memory multi-processor systems. We

have applied TeMP and TSPASS on the specification of the MSI and Synapse N+l cache

coherence protocols (see, for example, [44]) and we have verified one correctness property.

Finally, in the last class of monodic FOTL problems that we consider temporal logic is

primarily used as a formal language for specifying abstractions of foraging robot behaviour,

which are then extended to the presence of multiple robots. The expressivity of first-order

temporal logic (in particular the monodic fragment of FOTL) allows it to consider an

arbitrary number of robots acting simultaneously in these problems, which then results in

an analysis of swarm behaviour. TeMP and TSPASS have been employed to prove numerous

properties of an example transition system that specifies foraging behaviour involving an

arbitrary (potentially infinite) number of robots. More details about the specification can

be found in [13].

All the experiments that we describe in the following were run on a PC with an Intel

Core 2 Duo E6400 CPU and 2 GiB of main memory. We have conducted our experiments

with version 0.92-0.16 of TSPASS.

6.5.2 Performance on Propositional Temporal Problems

In addition to the regular resolution and factoring inference rules, SPASS possesses additional

inference and reduction rules that should increase the performance of the theorem prover.

Before such an additional rule can be used in the context of temporal reasoning, one has to

154 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

analyse its compatibility with the fair architecture in order to ensure that its refutational

completeness is maintained. However, as the proof of refutational completeness is based

on simulating J;C>:s,J,-derivations, proving the refutational completeness of a such extended

architecture is not a trivial task. It has turned out, though, that one can show fairly easily

that one such rule, the matching replacement resolution rule, restricted to PL TL problems

does not destroy the refutational completeness of the fair inference architecture.

The matching replacement resolution reduction rule implemented in SPASS is defined as

follows:
C 1 V A C2 v...,B

C1 V A,C2

if there exists a substitution u such that

(i) Au = B, and

(ii) C1u ~ C2 ·

The effect of this rule is to remove the literal ...,B from the clause C2 V ...,B if there exists a

clause C1 V A and a substitution u which fulfils the conditions (i) and (ii) described above.

Regarding soundness of the inference rule, one can observe that a resolution inference on the

literals A and ...,B of the two premises using the substitution u leads to the clause C1u V C2.

Thus, one obtains the clause C2 after having eliminated duplicate literals, which obviously

suhsumes the clause C2 v...,B.
For propositional clauses C1 V A and C2 v...,B, the applicability conditions for the matching

replacement rule reduce to the conditions A = Band C 1 ~ C2 . Consequently, an application

of matching replacement resolution in the propositional case corresponds to an unordered

resolution inference, which is followed by an elimination of duplicate literals and the removal

of the subsumed clause C2 v...,B. It is therefore easy to see that the refutationai completeness

of the fair inference procedure F is maintained if matching replacement resolution is added as

an additional reduction rule. On the first-order level, then, one has to ensure that matching

replacement resolution is not applied on literals that occur in terminating loop search clauses

(as this would alter the results of loop search computations) and on literals contained in the

left-hand sides of step clauses. In TSPASS the implementation of the matching replacement

resolution rule has been modified accordingly. Moreover, conditions (i) and (ii) ensure that

the clause C2 v...,B cannot be a translated universal clause if the clause C 1 V A is a translated

initial or step clause. Thus, the refutational completeness of TSPASS is preserved if the

matching replacement resolution rule is activated on propositional temporal problems.

We now analyse the performance of TSPASS on PLTL problems. For every value of l

between 1 and 8n, 100 random formulae from the classes C~an and C;an for n = 5 and n = 12

were generated and first tested for satisfiability (using TSPASS). The results obtained are

depicted in the topmost graphs of Figures 6.4, 6.5, 6.6, and 6.7. We can observe that the

probability of a formula from either the class C~an or C;an being unsatisfiable increases with

the value of the quotient "*' eventually culminating in all formulae being unsatisfiable for

C~an (n = 5) or (n = 12) and C;an (n = 12).

6.5. EXPERIMENTAL RESULTS

:
'3

!
~

15

~
~
15

~
c
~

~ a.

100

80 '

60 '

" --

40 f

J
0 1

0

\
\
\

\

\

Ratio of Number a Global Clauses over PropOSItional Venables

100000 r TeM'p ~- 1
TSPASS (MRR) - 11

TRP"'+V2 -
LogiCS Workbench 1 1 'model' function (Schwendlmann's calculus) __

Logics Workbench 1 1 'satisfiable functIon (Janssen's algonthm) f
10000 r

1000 f
fflh I

P \I. ';I

100 t

10 f
I

t)

d "
~ ~~

01

I
001

j
0 6

RatiO of Number of Global Clauses over Propositional Vanables

f
100000 ~

f

TeMP l TSPASS (MRR) -
TRP++ V2 -----

I

10000

1000 f
~

100 f ",' --'-. j

/ .-c -----:~- ---..-...-lj
f y

1 LI -4_~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~_~

o
Ratio of NUmbOf 01 Global Clauses "'Of PropOSlb""al Venables

Figure 6.4: Experimental Results Obtained for Class C;lln (n = 5)

155

156 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

~

"8
~
~

~
,::
:::J
a.
U
c

~
~

~

i
0

" ~
~
'0

~
E
~
Z

~
~
~

i
100 ~

60

60

~o I

20 ~

o I'---------~~~---.Jj
o

Ratio a Number ot initial Clauses over Propositional Vlnabfes

100000 TeMP --
TSPASS (MRR) -

TRP++ V2
logics WOI1cbench 1 1 'rTlOdeI ' 1unctJon ($chwencimann 5 calculus) --

LOOI(;~ Worltbench 1 1 sabsf.ble ' function (Janssen sllgonthm)
TWB --10000

1000 r

r

~

100

i -

r~-~ J
10

01

001

100000

10000

1000

100

10

1
0

r

~
r
o 6

Rallo d Number of Inrtial Clauses over Propositional Vanabfes

TeMP
TSPASS (MRR)

TRP++ V2

6

Robo 01 Number of Inibo' Clouse' ~er PropOSltlonO' Va"able.

Figure 6.5: Exp rimental Results Obtained for Class C;'an (n = 5)

6.5. EXPERiMENTAL RESULTS

:
:;

~
~
:z;

~
~
"IS

t
~

100 f

80 f

60 l

f---

40 r

20 r

0
0

100000 r

10000 r ,
,

1000 ~

100 r

o 1 ~
t

001
o

100000 t

10000 l
I
t

1000 t

\

\

\ , ,

Rallo of Nurmer of Global Clauses aver Propositlonal Venables

TeMP ~
TSPASS (MRR)

TRP++ V2 ---
logics Workbench 1 1 'model function (Schwendimann's calculus) ~

LogicS Workbench 1 1 satisfiable' functIon (Janssens Blgonthm) -
TWB ~

'..,

1 2 3 •

..,
- -~

•
Ratio of Number of Global Clauses fNef Propositional Venables

TeMP ~
TSPASS (MRR)

TRP .. V2 -----

Retlo of Number d Global Clauses aver PropOSItional Venables

Figure 6.6: Experimental Results Obtained for Class C~n (n = 12)

157

15 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

M

S
~
~

.~
:>
a.
()

:iii
'II

~

i
0

" ~ c
~
"0

.8
E
~
Z
c
c
i
::Ii

10<d

80 ~ ..
I
LL

~ 60 f
~
~
~

8- 40 r
i
~ a.

20 f

0 '
0

100000

10000

1000 r

------------------~--

\
\

~I
6

Retlo a Number of Initial Cteuses over Proposdlona' Vanables

TeMP ~-
TSPASS(MRR) --

TRP++V2 - -
logicS Woncbench 1 1 modef functloo (Schwendimann 5 calculus) -.-

Logics Workbench 1 1 satisfiable function (Janssen s &Igcnthm) -
TWB ~

I
(...-------

I 100 f

10

-
01

001
o

100000

10000

1000

100

10

1
0

- - -- --I----- ---

~)

2 6

Rallo d Number of Initial Clluses over PrOPOSItion. I Variables

TeMP
TSPASS (MRR) -

TRP++ V2

-

RatIo d Number at Inlbal Clauses <Her PropositIonal Venables

Figure 6.7: Experimental Results Obtained for Class C~n (n = 12)

6.5. EXPERIMENTAL RESULTS

100000

10000 t
f

1000 t

100

10 ~

I

1
o

100000 f

10000 r

1000 t

r

10 •

1
o

Class C;an (n = 5)

TSPASS
TSPASS (MRR) -

TSPASS (MRR-RGN-ESC)

_00- __

.... ----..-
*- - •

Rallo of Nurrber or Globll Clluses <Ner Propositional V.nlbles

Class C~n (n = 12)

TSPASS
TSPASS (MRR)

TSPASS (MRR-RGN-ESC) -

, , .

Rilio of Nurrber or Globll Clluses <Her PropOS/bonl1 Vanlbles

159

Figure 6. : Experimental Results Obtained for Different Inference and DS F Transformation
Options or TSPASS on the Class C;an with 11 = 5 and n = 12

160 CHAPTER 6. TSPAS - A FAIR MO ODIC TEMPORAL LOGIC PROVER

Class C;'an (n = 5)
.- TSPASS -

TSPASS (MRR) -
TSPASS (MRR·RGN- ESC)

100000 ,

: 10000 ~ ill
Q

i
>
~

0 1000 r
'l5
~

~ z
100 f c

-e ,
~

10 r
f

l '
0 6

Rabo d Number of Inlbs' Cleuses over Proposttlonal V8f1.~es

Class C;'an (n = 12)

100000 f
TSPASS -

TSPASS(MRR) -
TSPASS (MRR·RGN-ESC)

"
10000 t ~

II
Q ,
~

1000 t ~
'l5

! I E
~

100 t z
i
i
~

t
10 r

1 1
0

Rabo d Number of !nlbel Cteuses CHef PropOSItional Variables

Figure 6.9: Experimental Results Obtained for Different Inference Options of TSPAS on
the Class C;'an with n = 5 and n = 12

6.5. EXPERIMENTAL RESULTS 161

For comparing the proof search performance, we have run TeMP, TSPASS with matching

replacement resolution (MRR), TRP++, the Logics Workbench 1.1 using the 'model' and the

'satisfiable' function, and the Tableau Workbench on the generated formulae for the classes

C;an and C;an with 71 = 5 and n = 12. TSPASS was instructed to perform subsumption-based

loop search tests. The required median CPU execution time and the median number of

derived clauses (for the resolution-based systems) on each problem set are shown in the

middle and lowermost graphs, respectively, in the Figures 6.4,6.5,6.6, and 6.7. A time limit

of 1000 CPU seconds was imposed on each problem.

For the class C;an with n = 5, we can observe that the the Tableau Workbench shows

the worst median CPU execution time. For the majority of the systems the execution time

was negligible, and even below O.Ols. Regarding the number of derived clauses, one can

see that TSPASS derives slightly more clauses than TeMP or TRP++, especially on the

problems which are more likely to be satisfiable.

Then, for the class C~n with n = 5, we first of all note that the 'satisfiable' function

of the LWB cannot solve all the problems within the given time limit and that TRP++

requires the least execution time. Furthermore, TSPASS requires less execution time than

TeMP on the problems that are more likely to be satisfiable. For the number of derived

clauses, one can observe that TSPASS derives less clauses than TeMP or TRP++.

The results for the class C;an with n = 12 show that the Tableau Workbench cannot

solve all the problems within the given time limit. Furthermore, TSPASS requires more

execution time than TeMP or TRP++, which needs less than 0.008s on all the problems,

but the execution time of TSPASS is still negligible. Again, TSPASS derives slightly more

clauses than TeMP or TRP++, in particular on the problems that are more likely to be

satisfiable.

Finally, for the class C;'an with n = 12, the Tableau Workbench cannot solve all the

problems within the given time limit. Moreover, the execution times of TSPASS are

comparable with those of TRP++ on the problems that are more likely to be satisfiable.

TRP++ requires slightly less execution time than TSPASS on the problems that are more

likely to be unsatisfiable. Overall, we can observe that TeMP requires more time than

TSPASS. Concerning the number of derived clauses, one can see that TSPASS derives less

clauses than TeMP and TRP++.

In conclusion one can say that the performance of TSPASS is comparable with the

performance of TeMP on PLTL problems. TRP++ is an optimised prover for PLTL, and

consequently, it is natural that it performs slightly better than TeMP or TSPASS on PLTL

problems. We still have to note that TSPASS does not exhibit the drop in execution time

and in the number of derived clauses when the problems tend to be unsatisfiable. We

attribute this observation to the design of the fair inference architecture which does not

give any preference to either the loop search process or the main saturation at different

instants of the proof search process. It might therefore take longer to derive the empty

clause from the set of universal and initial clauses as the main saturation inferences are

regularly "interrupted" by loop search computations. At the same time the fair architecture

162 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

derives significantly less clauses on the problems that are harder to solve for resolution-based

methods, Le. on the class C~an' which is due to the fact that the fair architecture does not

have to compute different types of saturations in the proof search process.

In order to evaluate the effectiveness of the matching replacement resolution rule and also

of different rewrite possibilities for the DSNF transformation, we have executed TSPASS

with different inference and rewrite options on the classes C;an and C~an for n = 5 and

n = 12. The median number of derived clauses for the class C;an are depicted in Figure 6.8,

whereas Figure 6.9 shows the median number of derived clauses for the class C~an' The

rewrite options for the DSNF transformation are

• a regrouping of formulae (O'P) E9 (01/J) into O('P E9 'IjJ) for E9 E {I\, v} called regrouping

of next-state opemtors (RGN), and

• an extension of the definition of step clauses in DSNF format in such a way that

extended step clauses (ESC) are allowed, Le. step clauses which contain more than one

literal in their left-hand or right-hand sides. This extension of the definition ideally

leads to fewer renaming operations in the DSNF transformation process.

First of all, we have to note that the DSNF transformation options result in performance

improvements in the proof search process for formulae of the class C;"n. On the class C;an'

however, these options cause a performance loss for n = 12.

We can finally observe that the use of matching replacement resolution reduces the

number of derived clauses in both problem classes. An even greater reduction is obtained

trough the use of the DSNF transformation options on the class C~n'

6.5.3 Effectiveness of Redundancy Elimination

In order to show the effectiveness of tautology elimination, forward subsumption, and

backward subsumption for the subsumption-compatible ordered fine-grained resolution with

selection calculus, we have applied TSPASS on the Cluedo specification examples, which

are composed of six valid assertions that can be made about an example Cluedo game.

Assertion 4 is the only specification that contains eventuality formulae. A timeout (TO) of

1 CPU hour was imposed on each problem.

The results that we obtained are shown in Table 6.1. Here, '+B', '+F', and '+T' indicate

that backward subsumption, forward subsumption, and tautology elimination, respectively,

have been enabled while '-B', '-F', and '-T' indicate that they have been disabled. Given

that all six assertions are valid, proofs can theoretically be found by a complete reasoner

without the need for redundancy elimination. As the experiments indicate this is clearly

not the case within a reasonable amount of time. On the other hand with all options for

redundancy elimination enabled even the most difficult problem can be solved in little

more than one second. As one might expect, forward subsumption is the most effective of

the three options, followed by tautology elimination, while backward subsumption can on

occasion slow down the process of finding a proof rather than speeding it up. Overall, the

6.5. EXPERIMENTAL RESULTS 163

experiments confirm that redundancy elimination is crucial for effective resolution-based

theorem proving in monodic first-order temporal logic.

6.5.4 Performance on Monodic Temporal Problems

For analysing the performance of TSPASS on monodic FOTL problems, we compared it

against TeMP. Unless mentioned otherwise, a timeout of 12 minutes was imposed on each

problem. For TeMP the input problems were first transformed into its clausal input form

and then TeMP was started on this clausal input without any additional settings. TSPASS

was instructed to perform subsumption-based loop search testing. Every prover run that

terminated without triggering a timeout was repeated three times, and the median value

of the process CPU time for the different runs is reproduced in the tables below. We also

print the number of clauses that were derived by the provers for the different problems. An

entry 'TO' for a time value or '-' as clause count indicates that the prover did not terminate

within the imposed time limit.

The results for the Cluedo verification examples are shown in Table 6.2. Problem 4 is

the only specification that contains eventuality formulae. We observe that TSPASS derives

fewer clauses than TeMP on every problem. TSPASS especially seems to perform well on

problem 4, which demonstrates the effectiveness of the fair architecture. The fact that

TSPASS derives significantly less clauses than TeMP can be explained by the design of its

architecture: the fair architecture does not require the computation of saturations under

fine-grained step resolution in the loop search process and in the subsequent main saturation

steps. Surprisingly, TeMP does not terminate within the time limit on problem 3 although

no eventuality is contained in the problem specification.

The results obtained for the Needham-Schroeder protocol verification examples are

-F/-B/-T -F/+B/-T -F/-B/+T -F/+B/+T
Clauses Time Clauses Time Clauses Time Clau8es Time

1 - TO - TO 239202 328.9388 17664 0.1938

2 - TO - TO - TO 694574 10.959s

3 - TO - TO - TO - TO

4 - TO - TO - TO 529244 12.566s

5 - TO - TO - TO - TO

6 - TO - TO - TO - TO

+F/-B/-T +F/+B/-T +F/-B/+T +F/+B/+T
Clauses Time Clauses Time Clauses Time Clauses Time

1 481 0.035s 480 0.039s 445 0.033s 444 0.038s

2 2354 0.130s 2262 0.1298 1926 0.1158 1892 0.124s

3 11065 1.3758 9912 1.3108 10102 1.3508 9170 1.2788

4 1460 0.0878 1559 0.0978 1125 0.0748 1343 0.093s

5 594 0.0518 594 0.0528 488 0.0448 488 0.0498

6 765 0.0598 765 0.0558 645 0.050s 645 0.0548

Table 6.1: Effectiveness of Redundancy Elimination Performed by TSPASS on the Cluedo
Examples

164 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

Problem
Clauses Generated Time

Result
TeMP TSPASS TeMP TSPASS

1 1105 444 0.101s 0.056s U nsatisfiable
2 4282 1892 0.423s 0.139s U nsatisfiable
3 - 9170 TO 1.318s U nsatisfiable
4 192640 1343 16.733s 0.116s U nsatisfiable
5 3740 488 0.318s 0.069s U nsatisfiable
6 4380 645 0.397s 0.079s U nsatisfiable

Table 6.2: Results Obtained for the Cluedo Examples

Problem
Clauses Generated Time

Result
TeMP TSPASS TeMP TSPASS

0 571822 10744 48.655s 0.884s Satisfiable
1 651599 4849 55.343s 0.520s U nsatisfiable
2 891616 10665 77.646s 1.094s U nsatisfiable
3 636257 2946 54.213s 0.324s U nsatisfiable
4 616989 1274 52.625s 0.218s U nsatisfiable

Table 6.3: Results Obtained for the Needham-Schroeder Protocol Verification Examples

shown in Table 6.3. Problem 0 represents the protocol specification itself and the remaining

problems verify different properties of the protocol. All the problems contain eventuality

formulae. On average TSPASS derives significantly less clauses and it requires less execution

time on all the problems. For problem 0, TSPASS seems to be able to find loop formulae

earlier, which then leads to a higher number of subsumed clauses. The performance

improvements in TSPASS for the remaining problems again seem to be due to the fact that

TSPASS does not have to compute saturations under fine-grained step resolution in the

loop search process and in the main saturation steps for initial and universal clauses.

Then, the experimental results for the verification of the cache coherence protocols

MSI and Synapse N+l can be found in the Tables 6.4 and 6.5, respectively. Again, the

problems 0 contain the protocol specifications, which do not contain eventualities. The

Clauses Generated Time
Result Problem

TeMP TSPASS TeMP TSPASS

0 - 1340237 - 327.578s Satisfiable

1 - 85651 - 4.384s U nsatisfiable

Table 6.4: Results Obtained for the MSI Protocol Verification Examples

Clauses Generated Time
Result Problem

TeMP TSPASS TeMP TSPASS

0 11159 13613 0.263s 0.35s Satisfiable

1 22556 2101 0.438s 0.07s U nsatisfiable

Table 6.5: Results Obtained for the Synapse N + 1 Protocol Verification Examples

6.6. SUMMARY 165

problems 1 each contain one single eventuality and represent the 'non co-occurrence of

states' property. For the MSI protocol, TeMP does not terminate within 12 hours on

both problems. On the other hand, TeMP solves both problems successfully in the case of

the Synapse N+ 1 protocol. Also, TeMP derives fewer clauses than TSPASS and requires

less execution time for establishing the satisfiability of the protocol specification. The

performance improvements of TSPASS over TeMP again seem to be caused by the fact

that TSPASS does not have to compute saturations of clause sets separately for loop search

and the regular fine-grained resolution inferences. Note that an automated reduction from

constant to expanding domains was performed for the verification examples that involve

cache coherence protocols using the approach described in [58]' which adds an exponential

number of new clauses to the considered temporal problems.

Finally, Table 6.6 regroups the results obtained for the specification of some examples on

simple foraging robots and associated properties. Each of these problems contains at least

seven eventualities. TeMP and TSPASS both terminate on the satisfiable problems, but

TeMP cannot solve 15 of the unsatisfiable problems within the given time limit. Additionally,

on average TeMP derives more clauses than TSPASS. Again, we attribute this observation

to the fact that inferences in TSPASS which have been computed once for a loop search

instance do not have to be computed again for further loop search saturations. Additionally,

the design principles of TeMP to compute saturations under fine-grained step resolution for

the loop search and main saturation steps contribute to deriving more clauses than TSPASS.

Also, the problems on which TeMP does not terminate within the given time limit seem

to exhibit its fairness problems as it remains 'stuck' whilst saturating a set of temporal

clauses under ordered fine-grained resolution with selection.

6.6 Summary

The first goal of this chapter was to describe the implementation of the fair inference

procedure F, which resulted in the automated theorem prover TSPASS. The second aim

was to provide an experimental analysis of the effectiveness of redundancy elimination and

of TSPASS's proof search performance on PLTL and monodic FOTL problems.

We first explained the connection between ordered fine-grained step resolution with

selection and regular first-order resolution. Then, we continued by describing the architecture

of TeMP, before we outlined its problems related to guaranteeing fair derivations. Moreover,

we analysed how the fair inference procedure F can be implemented in practice. In the

following, the implementation of TSPASS was described in greater detail.

We recalled the general architecture of SPASS before we explained some basic consid

erations behind the implementation of TSPASS. Next, we presented TSPASS's general

architecture and we continued with a detailed description of its internals, like the clausifica

tion and translation into first-order logic, efficient techniques to access loop search clauses,

the main inference procedure, and ways to implement loop search tests. We then discussed

several peculiarities related to the implementation of TSPASS w.r.t. SPASS and we analysed

166 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER

some fairness problems regarding the regular clause selection function.

Finally, we examined the effectiveness of redundancy elimination in TSPASS and we

evaluated its proof search performance on PL TL and monodic FOTL problems against

TRP++, the Logics Workbench, the Tableau Workbench, and TeMP.

6.6. SUMMARY 167

Problem
Clauses Generated Time (s)

Result TeMP TSPASS TeMP TSPASS
0 19611 5707 0.498 0.407 Satisfiable
1 21812 833 0.538 0.094 U nsatisfiabl e
2 - 4834 TO 0.383 Unsatisfiable
3 - 15707 TO 1.223 Unsatisfiable
4 - 10722 TO 0.781 Unsatisfiable
5 - 10687 TO 0.807 U nsatisfiable
6 20019 6124 0.505 0.424 Satisfiable
7 23670 7230 0.585 0.508 Satisfiable
8 - 10083 TO 0.717 Unsatisfiable
9 - 9786 TO 0.694 Unsatisfiable
10 - 9064 TO 0.600 Unsatisfiable
11 3676 2075 0.111 0.184 U nsatisfiable
12 689 793 0.045 0.091 U nsatisfiable
13 4872 1072 0.138 0.116 Unsatisfiable
14 4799 2009 0.138 0.179 U nsatisfiable
15 4862 2062 0.142 0.190 U nsatisfiabl e
16 9030 6037 0.233 0.432 Unsatisfiable
17 746 549 0.044 0.076 U nsatisfiabl e
18 32395 5262 0.984 0.399 U nsatisfiable
19 590 839 0.041 0.096 U nsatisfiable
20 19716 6560 0.493 0.436 Satisfiable
21 22226 9522 0.554 0.590 Satisfiable
22 22796 8403 0.567 0.530 Satisfiable
23 23365 9363 0.579 0.558 Satisfiable
24 24043 10312 0.593 0.611 Satisfiable
25 23268 8791 0.577 0.533 Satisfiable
26 19716 7060 0.492 0.468 Satisfiable
27 24344 9467 0.604 0.619 Satisfiable
28 19716 7630 0.490 0.517 Satisfiable
29 - 8128 TO 0.608 U nsatisfiable
30 - 31484 TO 2.366 U nsatisfiable
31 - 24168 TO 1.752 Unsatisfiable
32 - 26708 TO 2.012 U nsatisfiable
33 21349 6188 0.531 0.440 Satisfiable
34 24603 7675 0.611 0.547 Satisfiable
35 - 27054 TO 1.935 U nsatisfiabl e
36 - 25437 TO 1.743 U nsatisfiabl e
37 - 23366 TO 1.702 U nsatisfiable
38 - 31313 TO 2.354 U nsatisfiable

Table 6.6: Results Obtained for the Robot Specification Examples

Chapter 7

Resolution-Based Model Construction

for PLTL

7.1 Introduction

Besides clausal resolution-based methods like the J~;;- -calculus, there are a variety of

other proof methods for PLTL including, for instance, tableaux-based approaches [93J.

An implementation of a one-pass tableau calculus [83J exists, for example, in the Logics

Workbench [46J. In order to prove the validity of a formula r.p both proof methods operate on

the negated formula -'r.p. In the case of tableaux reasoning one essentially tries to construct

a model for the formula -'r.p. If no model can be found, then one can conclude that the

formula -'r.p is unsatisfiable, which is equivalent to r.p being valid. For resolution-based proof

methods on the other hand the proof goal consists in deriving a contradiction from the

formula -'r.p, from which one can conclude again that r.p is valid.

It is therefore easy to see that formal verification by using tableaux-based systems bears

the advantage that in case of a failure to prove the validity of a specific property a counter

example demonstrating the erroneous behaviour has already been constructed. For clausal

resolution-based reasoning a set of clauses on which every application of an inference rule

will only derive redundant clauses, a so-called saturated set (up to redundancy), will have

typically been constructed in that case. If the empty clause is not contained in this saturated

set, one can conclude that the formula -'r.p is satisfiable, which implies that r.p is not valid.

Thus, only the knowledge that the specification does not satisfy the required property is

generally available for clausal resolution-based verification.

A way of constructing a model satisfying a saturated set (under ordered resolution) both

for propositional and first-order logic has been devised in [10J. The model construction

algorithm involves ordering the clauses by using an extension of the ordering on propositional

symbols that has been used in the saturation of the clause set. One positive (maximal)

literal is then satisfied per clause, whenever necessary, starting from the smallest clause

w.r.t. the considered ordering. A term model, or so-called Herbrand model, representing the

satisfied literals will be constructed in this way.

169

170 CHAPTER 7. RESOLUTION-BASED MODEL CONSTRUCTION FOR PLTL

In this chapter we are trying to fill the gap in functionality that resolution-based

techniques admit over tableaux-based reasoning for formal verification purposes based on

PL TL. We present a method that allows us to construct a model for a satisfiable PL TL

formula. Our approach is based on analysing the saturated clause set that has been computed

under (subsumption-compatible) ordered fine-grained resolution with selection. A temporal

model is then obtained by constructing models for sets of (non-temporal) propositional

clauses at the different time points. The sets of clauses considered for the individual points

in the time line will be constructed dynamically during the model construction process by

taking those clauses into account that allow to express constraints among different time

points. The whole model construction procedure is designed in such a way that it can be

easily incorporated into existing resolution-based theorem provers for PLTL.

This chapter is organised as follows. We first recall the propositional model construction

procedure in Section 7.2. Then, in Section 7.3 we introduce the resolution-based temporal

model construction algorithm for PL TL and prove its correctness. We then consider practical

aspects of the algorithm and its complexity in Section 7.4. We provide a brief overview

of its implementation in the theorem prover TSPASS in Section 7.5 and we present some

experimental results in Section 7.6. Subsequently, in Section 7.7 we describe alternative

systems and approaches towards PL TL model construction, and we conclude with a short

discussion of finding minimal models in Section 7.8.

1.2 Propositional Model Construction

In this section we briefly recall the model construction procedure for satisfiable sets of

(non-temporal) propositional clauses as it was introduced in [lOJ. This model construction

procedure uses an admissible ordering >- on propositional symbols (see Section 3.3.1), which

is extended on literals by ...,A >- A and (-,)A >- (...,B) if and only if A >- B. This ordering

on literals is then extended on propositional clauses as its multiset extension >-mul. For

two propositional clauses C and V, we define C >-mul V if and only if C f; V and for every

literal L such that C(L) < Vel), it holds that there exists a literal L' with L' >- Land

C(L') > Vel'), where C(L), Vel), C(L'), Vel') represent the number of occurrences of the

literals Land L' in the clauses C and V, respectively. The multiset extension >-mul of the

ordering>- on literals is also simply denoted by >- when its intended meaning is clear from

the context.
The propositional model is then constructed by considering which literals have to be

satisfied in a given clause, starting from the smallest clause w.r.t. the clause ordering.

Definition 7.2.1 (Propositional Model Construction). Let>- be an admissible ordering

and S be a selection function. Additionally, let N be a set of propositional clauses.

For a propositional clause C EN we inductively define a propositional modelI>-.s(C)

and a set EC as follows.

Let C E N be a propositional clause. Then, we define I>-.s(C) = Uc>-v EV, and if the

clause C

7.3. TEMPORAL MODEL CONSTRUCTION 171

(i) is of the form C' V A, where A is the maximal literal in C,

(ii) is false in I~,s(C), and

(iii) if no negative literal is selected in C,

we define EC = {A}; otherwise we set EC = 0. Finally, we define I-r,s(N) = UCENeC.

In line with the definition of the semantics for PL TL given in Section 2.2 propositional

symbols not contained in a propositional model I~,s(N) are false in the modeP.

It can be shown that for an arbitrary admissible ordering, an arbitrary selection function

and for an arbitrary set of propositional clauses saturated under ordered propositional

resolution with selection (w.r.t. to the given ordering) which does not contain the empty

clause, the propositional model construction indeed constructs a model.

Theorem 7.2.2 (see [10], Theorem 3.16). Let ~ be an admissible ordering and S be a

selection function. Moreover, let N be a set of propositional clauses that is saturated under

inferences by the rules of ordered (propositional) resolution with selection and let N not

contain the empty clause. Then it holds that I~,s(N) ~ N.

7.3 Temporal Model Construction

First of all, we have to note that in this chapter we assume that propositional temporal

problems in DSNF contain at most one single eventuality. This is not a limiting assumption

as every propositional problem can be transformed in such a way that it contains at most

one eventuality up to a linear increase in the size of the problem (see [22], Lemma 7).

Now, before we define the model construction formally, we present two examples that

should illustrate the basic ideas behind the model construction procedure. Let us first

consider the construction of a temporal model M 1 for the following satisfiable temporal

problem P1:

P 1 = ({ d V e}, {a}, {a =* Ob, b =* Oc, c =* Oa}, 0).

We observe that P1 does not contain an eventuality and that it is already saturated under

(subsumption-compatible) ordered fine-grained resolution w.r.t. any admissible ordering (and

selection function). Additionally, for M 1 to be a model of P 1, M 1 has to fulfil the initial

(unit) clause a and the universal clause d V e at the initial point in time. Thus, if we apply

the standard propositional model construction on the propositional clause set {a, d V e} with

an ordering ~ given by a ~ b ~ c ~ d ~ e, we obtain the propositional model Ho = {a, d}.
Then, for constructing the propositional model in the time point 1 we have to consider the

universal clause d V e again together with the right-hand sides of those (merged) step clauses

whose left-hand sides were triggered at the initial time point. In this case only the step

clause a =* Ob was triggered by the model Ho. Consequently, we construct a propositional

1 More specifically, the terminology of "don't care" literals from SAT solvers does not apply here.

172 CHAPTER 7. RESOLUTION-BASED MODEL CONSTRUCTION FOR PLTL

model for the clause set {dYe, b} by using the ordering ~ and obtain HI = {b, d}. Similarly,

we can build the propositional model H2 = {e, d} for the time point 2. Now, we have to

consider the clause set {d V e, a} again for the time point 3, which results in the propositional

model H3 = {a, d} = Ho through the standard propositional model construction with the

ordering~. Hence, we can see that MI = (Ho,Ht,H2,H3,Ho,HI,H2,H3,Ho, ...) is a

temporal model for Pl.

In the previous example one single ordering on propositional symbols was sufficient for

constructing a temporal model. But as we will see in the follOWing example, it can be

necessary to change the ordering used for the propositional model construction. Let us

consider the construction of a temporal model M2 for the following satisfiable temporal

problem P2 :

a Vp,

-,1 V b,

-,d V -,[V e,

Iv g},

{a},

{a => 0-'[,

b => Od,

e => O-,e},

{O/}}.

Here, the saturation of P2 under (subsumption-compatible) ordered fine-grained resolution

w.r.t. the ordering ~o given by a ~o b ~o c ~o d ~o e ~o I ~o 9 ~o I ~o p (and an empty

selection function) will derive the merged step clauses b => 0(-,[Ve) and (b/\ e) => 0-,[.

There is no loop formula derivable from the problem P2 · We can see that the two (merged)

step clauses a => 0-,/ and (b /\ e) => 0-,1 imply the negation of the eventuality literal 1 at

the next time point whenever their left-hand sides are fulfilled at the currently considered

point of the time line. Now, if one wants to construct a model for a temporal problem that

contains exactly one eventuality, then one has to ensure that the eventuality is satisfied

infinitely often. The approach that we take here consists in fulfilling the eventuality at a

given time point whenever the clauses that have to be considered for this point in the time

line do not imply the negated eventuality. In this way we can add the eventuality unit

clause 1 to the clause set and saturate the enlarged clause set under propo:;itional ordered

resolution with selection without deriving the empty clause.

Now, for the temporal problem P2 we have to consider the clause set

{J V g, -,d V -,1 V e, -,1 V b, a, a V p, -,1 Va}

for the initial time point. As this clause set does not imply the negated eventuality -,[,

7.3. TEMPORAL MODEL CONSTRUCTION 173

we add the unit clause I and obtain the propositional model Ho = {I, f, b, a} by using the

ordering >-0. Then, as the model Ho triggers the merged step clauses a => 0...,1, b => Od and

b => O(e V ...,/), we have to additionally consider their right-hand sides for the propositional

model construction in the time point 1, i.e. the clauses ...,1, d and e V ...,1. Consequently, as

the clause set

{...,I, f V g, e V ...,1, d,...,d V ...,1 V e,...,f V b, a V p,...,f Va}

implies the negated eventuality ...,1, we do not add the unit clause I to the clause set. The

propositional model construction with the ordering >-0 yields the model Hl = {J,d,b,a}.

We can see that the model Hl again triggers the left-hand side of the step clause

a=> 0...,1. Additionally, due to the universal clause a V p, the ordering >-0 will enforce that

the symbol a is fulfilled (and thus I cannot be satisfied at the next time point) whenever

the propositional model construction is performed with the ordering >-0 (the symbol a

does not occur negatively in the temporal problem). Thus, if we want the temporal model

construction to succeed we have to use a different ordering for constructing propositional

models in some points of the time line. As the model H 1 also triggers the step clauses

b => Od and b => (e V ...,1), we have to consider the clause set

{d,...,f Va,...,f V b, f V g, ...,1, e V ...,I,...,d v...,1 V e, a V p}

for the time point 2. If we now use the ordering >-1 given by p >-1 1 >-1 9 >-1 f >-1 e >-1 d >-1
C >-1 b >-1 a for the propositional model construction, we first of all observe that the set is

already saturated under ordered propositional resolution w.r.t. the ordering >-1. We hence

obtain the model H2 = {p, g, d}.
Finally, as H2 does not trigger any of the step clauses, we only have to consider the

clause set

{/,fV g,...,dv...,1 Ve,""f V b,a V p,...,f Va},

which contains the eventuality unit clause I, for the propositional model construction. By

using the ordering >-0 again we obtain the model H3 = {I, f, b, a} = Ho. We can thus

conclude that M2 = (Ho, H 1, H2, H3 , Ho, Hl , H2, H3 , Ho, ...) is a temporal model for P2.
As illustrated by these examples, the temporal model construction for a temporal

problem P = (U, I, S, £) is based on using the regular propositional model construction

for the different time points of a temporal model. For the initial time point 0 the regular

propositional model construction will be performed over the set of universal clauses together

with the set of initial clauses. For time points different from the initial point in time, the

(merged) step clauses C => OD whose left-hand sides C were fulfilled at the previous

moment in time have to be considered in addition to the set of universal clauses.

If the temporal problem P contains a single eventuality, i.e. £ = {O/}, special care has

to be taken for allowing it to be satisfied infinitely often. We add the eventuality to the

set of clauses used for the model construction in a specific time point if the newly-added

eventuality unit clause does not lead to a contradiction. As a result, the constructed model

will satisfy the eventuality in every time point in which the set of universal clauses and

174 CHAPTER 7. RESOLUTION-BASED MODEL CONSTRUCTION FOR PLTL

the right-hand sides of the step clauses whose left-hand sides were fulfilled at the previous

time point do not imply the negated eventuality. The situations in which we might not

be able to satisfy an eventuality in the next moment of time can be characterised by the

presence of 'critical' merged step clauses A ::} OB such that U U {B} F -.l and U 17" ...,A.

In particular one has to avoid that the left-hand side of one of these 'critical' merged step

clauses is constantly fulfilled from any given time point onwards. One way of ensuring

this requirement consists in varying the ordering on propositional symbols that is used to

construct the models for the different time points, which is also the approach that we take

here.

For example, if we were to construct a temporal model as described above for the temporal

problem P3 = ({P V q},0, {p ::} O-.l}, {Ol}), we have to ensure that the propositional

symbol p is not satisfied at every time point as otherwise we would obtain the sequence of

propositional models {p, l}, {p}, {p}, ... which obviously does not satisfy the formula ~Ol.

In the next subsection we describe the model construction procedure in a formal way

and give an example for the construction of a model, while we prove the correctness of the

procedure in the subsequent subsection.

1.3.1 Construction Principle

Before we can introduce the model construction procedure, we still need to give a couple of

auxiliary definitions.

First of all, for a temporal problem P we associate with every set of merged step clauses C

(and with the power set 9(C» a set Oc of strict total orderings on the set Symbols(P) of

propositional symbols occurring in P.

Definition 1.3.1. Let P be a propositional temporal problem in DSNF and let

be a set of merged step clauses built from the temporal problem P, where A = 1\'; 1 a~ for

1 :5 i :5 n and a1, ... , a:n. are propositional symbols for 1 :5 i :5 n.
We define ON to be the smallest set of admissible orderings on Symbols(P) which

contains for every tuple (i 1, ... , in) E {I, ... , md X •.. X {1, ... , mn} exactly one ordering

~ E ON with Symbols(P) \ {all"'" af,,} ~ all"'" af,,·
For the power set 9(N) of N we define that Ogl(N) = USEgI(N) Os, where 00 = O.

The next definition introduces the set JlS(rot) which contains the right-hand sides of step

clauses contained in a set S whose left-hand sides are triggered by a propositional model rot.

Definition 1.3.2. Let P = (U,I,S,£) be a propositional temporal problem such that £ = °
or £ = {Ol}. Additionally, let S' be a set of step clauses derived by)~t (or)~C>:S",.J from P

7.3. TEMPORAL MODEL CONSTRUCTION 175

and let rot be a propositional model over Symbols(P). Then we define:

~' (rot) = {l1 V ... V 1m I (P1 /\ ... /\ Pm) ::::} 0(11 V ... V 1m) E S'

and rot P P1/\" ·/\Pm}

Next, we define the set Ll (N), which adds to a set N the unit clause 1 if £ = {Ol} and

N Fj -,l.

Definition 7.3.3. Let P = (U, I, S, £) be a propositional temporal problem such that £ = 0
or £ = {Ol}. Furthermore, let N be a set of propositional clauses over Symbols (P). Then

we define:

Ll(N) = {NU{l} if£= {Ol} andNFj-,l

N otherwise

Finally, for a set of propositional clauses N we denote by Res)-,s(N) the set of all

the clauses obtained by an application of the ordered resolution with selection or the

ordered factoring rule using the ordering ~ and the selection function S to premises in N.
We also define that Res~,s(N) = N, Res~,s(N) = Res)-,s(Res~~1(N)) for i > 0 and

Res~s(N) = UiEN Res~,s(N).
We can now give the definition of the temporal model construction procedure.

Definition 7.3.4 (Temporal Model Construction). Let P = (U,I, S,£) be a propositional

temporal problem in DSN F such that .1 ¢ U U I, and £ = 0 or £ = {O/}. Additionally,

let S be a selection junction, and if £ = {Ol}, let N = {A1 ::::} OB1, .. . , An ::::} OBn} be the

set of all the merged step clauses built from the temporal problem P and freed of duplicate

propositional symbols such that for every i, 1 ~ i ~ n:

(i) U U {B;} ~ -,1, and

(ii) U Fj -'A.

The merged step clauses from the set N will also be called critical merged step clauses for

the temporal problem P.

We then define a sequence of propositional models Ho, H1, ... as follows:

and for i 2: 1:

where h (i E N) are admissible orderings on Symbols (P) such that for every j, j 2: 1, with

H j P V~=1 Ak and such that H j occurs infinitely often,

Additionally, for every H j , j 2: 1 with Hj ~ V~=1 Ak we have ~j+1 = ~o.

Let 'H. = (Ho, H 1, . ..) denote the temporal model obtained in this way.

176 CHAPTER 7. RESOLUTION-BASED MODEL CONSTRUCTION FOR PLTL

Remark 1.3.5. For i ~ 0, the propositional model HH1 is called a successor model for the

propositional model Hi built with ordering >-H 1.

One can observe that the process of ensuring that every ordering is used infinitely often

is related to the notion of fairness, which is employed in the field of model checking [401.
As explained above, the sets of initial and universal clauses are considered for the model

construction in the time point O. Additionally, the eventuality is added to the clause set used

for model construction if its presence does not lead to a contradiction. The propositional

model construction is then performed through an initial ordering >-0 on Symbols(P) after

the model construction clause set has been saturated under regular ordered resolution with

selection using the ordering >-0. This saturation process is necessary in order to ensure the

correctness of the propositional model construction.

For any time point other than the initial point of the time line, the universal clauses

together with the right-hand side of any step clause whose left-hand was satisfied at the

previous time point are used for the propositional model construction. Again, the eventuality

is added to the considered set if it does not lead to a contradiction. As noted before, the

ordering on propositional symbols under which the propositional resolution and model

construction is performed has to be varied for the temporal model construction to succeed.

The variation of the orderings on propositional symbols ensures that a propositional model

is found eventually for a time point which does not trigger the left-hand side of any critical

step clause.

For example, for the temporal problem P3 = ({p V q},0, {p ~ O...,/}, {O/}) again, we

cannot use the ordering I >- p >- q at every time point as it would not lead to a correct

temporal model. We have to use an ordering >-' with q >-' p at some time points instead.

We conclude this section by applying the temporal model construction procedure on

a concrete example. We consider the temporal problem P4 = ({pv q}, {p}, {p ~ Oq,q ~

Op}, {O-.p}). Saturating the problem P4 under (subsumption-compatible) ordered fine

grained resolution (with an empty selection function) using the ordering p >- q derives the

universal clause ""p V""q (through loop search), the initial clause ""q, and the step clause

q ~ O...,q. The step clause q ~ OP is a critical step clause for the set of universal clauses

as {p V q, -.p V -.q,p} 1= """"p.
For the initial time point we hence consider the set of propositional clauses {...,q, p, p V

q,""P V -,q} for the propositional model construction procedure. With the symbol ordering

p>- q, we obtain the model Ho = {Pl·
Then, as the step clause p ~ Oq has been triggered at the initial time point, we have

to add the unit clause q to the considered clause set. As {q, p V q, ""P V -.q} 11-'-.p, we add

the unit clause ""p and obtain the set {q,p V q, ""'p,""'P V,q}, which is to be used for the

propositional model construction. After saturation with the ordering p >- q, the propositional

model construction yields the propositional model H1 = {q} in the time point 1.

Finally, as the step clauses q ~ Op, q => O...,q have been triggered in time point 1,

the unit clauses p and -.q have to be added to the clause set used for the propositional

7.3. TEMPORAL MODEL CONSTRUCTION 177

model construction. Additionally, as the set {--,q, p, p V q, --'p, --'p V --,q} is unsatisfiable, the

set {--,q, p, p V q, --'p V --,q} has be to be considered for the propositional model construction,

which results in the model H2 = {p} with the ordering p >- q.

As Ho = H2 the temporal model construction procedure will now construct models for

the remaining time points analogously to ones shown above.

7.3.2 Proof of Correctness

In this section we prove the correctness of the construction procedure introduced in Defini

tion 7.3.4, i.e. we show that the constructed sequence of propositional models is indeed a

model for the considered temporal problem.

First of all, we introduce three lemmata that will be required for the subsequent

correctness theorem.

Lemma 7.3.6. Let N be a set of propositional clauses such that every clause contains at

least one ne1}ative literal. Let >- be an arbitrary admissible ordering on Symbols(N) and

let S be an arbitrary selection function.

Then it holds that I'r,s(N) = 0.

Proof. We show by induction on N with respect to the well-founded (and total) multiset

extension of the ordering >- on clauses that for every clause C E N it holds that £c = 0.

For the minimal clauses C we have I'r,s(C) = 0. As C contains a negative literal, C is

true in I'r,s(C), and therefore, EC = 0. The proof for remaining clauses proceeds along the

same line. o

Lemma 7.3.7. Let N be a satisfiable set of propositional clauses. Moreover, let al, ... ,an

be propositional symbols and let >- be an admissible ordering on propositional symbols such

that Symbols(N) \ {at, ... , an} >- al, ... ,an· Finally, let S be a selection function. Then it

holds that:

Proof. The implication "~" follows from Theorem 7.2.2. For the remaining implication

"::::;.", we assume that I'r,s(Res~,s(N)) 1= al V ... Van. As clauses which contain a literal p

or --'p with p >- al >- ... >- an cannot produce an atom ~ (1 ~ i ~ n) in the interpretation

I'r,s(Res~,s(N)), it follows that there exist clauses in the set Res~,s(N) that only contain

atom symbols from {al, ... ,an }. Let C1, ... ,Cm E Res~s(N) be all such clauses, i.e.

for every i, 1 ~ i ~ m, there exists an index j, 1 ~ j ~ n, such that Ci = C' V aj,

Symbols(C') ~ {ak 11 ~ k ~ n} U {--,ak 11 ~ k ~ n} and I'r,s(Res~s(N)) 1= aj. (Note

that the index j could be the same for every i, 1 ~ i ~ m.)

Then, if we assume that every clause Ci for 1 ~ i ~ m contains at least one negative literal,

it would follow from Lemma 7.3.6 that I)o-,s({Cl. ... , Cm }) = 0 and thus, I)o-,s(Res~,s(N)) Ir'
al V ... Van, which contradicts with our assumptions. Thus, there exists a clause Ci E

178 CHAPTER 7. RESOLUTION-BASED MODEL CONSTRUCTION FOR PLTL

Res~s(N) (I ~ i ~ m) such that Ci is positive and Symbols(Cd ~ {a1' ... ' an}. We can
infer that N F a1 V ... V an· 0

Lemma 1.3.S. Let P be a propositional temporal problem and let N be a satisfiable set

of propositional clauses which only uses propositional symbols from P. Additionally, let

N = {AI "* 081, •.. ,An "* 08n } be a set of merged step clause built from the temporal

problem P, and let S be a selection function. Then it holds that:

Proof The implication ",,*" is obvious. For the implication "~", let A = 1\';:.1 a; for

I ~ i ~ n and propositional symbols al, ... , a:n. for I ~ i ~ n. Then we have:

(afl V ... VafJ
i=l (il •...• i n)E{l •...• ml}x ... x{I •...• m n }

Furthermore, it follows from the assumptions that:

v ~ E ON V (i l , ... , in) E {I, ... , md x ... X {I, ... , mn }: I~.s(Res~s(N» F afl V ... Va::'

Thus, as for every tuple (it, ... , in) E {I, ... , md X ... X {I, ... , mn} there exists an order

ing ~ E ON with Symbols(N) \ {afl"'" afJ ~ afl"'" afn' we obtain from Lemma 7.3.7:

V (iI, ... , in) E {I, ... , m I} X ... X {I, ... , m n} : N Fa! V ... V aT!
"1 In

We can therefore conclude that N F V~=l A. o

We can now state and prove the correctness theorem for the model construction procedure.

Theorem 1.3.9. Let P = (U,I,S,£) be a propositional temporal problem with £ = 0 or

£ = {Ol} which is saturated under (subsumption-compatible) ordered fine-grained resolution

with selection and does not contain the empty clause. Additionally, let'H = (Ho, HI, ...)

be the corresponding sequence of propositional models obtained through temporal model

construction. Then it holds that:

'Ho F II\ DU 1\ OS 1\ D£

Proof Let S be the selection function used in the saturation. Then, first of aU, as the set

UuI does not contain the empty clause, it is easy to see that J. ¢ Res~o.s(L£(UUI». We

can thus conclude that2 'Ho F I and 'Ho F U.
We now show by induction on t that 'Ht F S and 'Ht +1 F U for every tEN. For t = 0,

we already have 'Ho F U, and if we assume that J. E Res~I.S(L£(U U W(Ho»), then it

would follow that J. E Res~.s(U U W(Ho». Thus, as J. ¢ Res~.s(U) there would exist a

derivation of a step clause A "* OJ. with 'Ho F A. Then, as the temporal problem P is

2The notation 11.0 was introduced in the definition of the truth-relation for PL TL given in Figure 2.1 on
page 14

7.4. PRACTICAL CONSIDERATIONS AND COMPLEXITY 179

saturated, we would have U F ...,A and hence, 1to V= A, which is a contradiction. We can

infer that 1. ¢ Res~l,s(LE(U U W(Ho))), 1to F S and 1t1 F U.

1ft > 0, then it follows from the induction hypothesis that 1tt- 1 F Sand 1tt F U. Again,

if we assume that 1. E Res~t+l ,s(LE (U U RS(Ht))), then there would exist a derivation of

a clause A ~ 01. with 1t t F A. Additionally, as the temporal problem P is saturated,

we would again have U F ...,A and 1t t V= A, which is a contradiction. Thus, we obtain

.1 ¢ Res~+l,S(LE(UU RS(Htl)), 1tt F Sand 1tHI FU.

Finally, if £ = {Ol}, let tEN. We still have to show that 1tt F Ol. If we assume

for all t' E N with t' ~ t that 1tt , V= l, then for every t' ~ t with t' ~ 1 it holds that

U U RS(Ht'_l) F ...,l. It also holds that U l1...,l as otherwise we could apply the eventuality

resolution rule and have .1 E U. Additionally, for every t' ~ t with t' ~ 1 there exists

a merged clause At' ~ OBt' E N with U U RS(Ht'_I) == U U {Bt'}, 1tt'-1 F At' and

U U {Bt'} F ...,l, where N is the set of merged step clauses from Definition 7.3.4. Then, as

there are only finitely many valuations Hi (i E N), it follows that there exists an index

T ~ max(t,1) such that every valuation Hi with i ~ T occurs infinitely often in the

sequence Hi, Hi+l, Hi+2, Furthermore, as there are only finitely many merged step

clauses which have been freed of duplicate propositional symbols, there exist merged step

clauses A~ ~ OB1, ... ,~ ~ OB~ E N such that

{ ' OB' A' OB'} {t' t', Al ~ l' ... '''''Tn ~ m = A ~ OB I t ~ T}.

By Lemma 7.3.8 it holds for every t' ~ T that there exists a subset {il ... , ik} ~ {1, ... , m}

such that U U {Bt'} F V~=IA~j' from which we can infer that Uu {Bt'} F V::l~'
Consequently, we obtain for every i with 1 $ i $ m that UU{Ba F V:1 ~ and UU{Ba F ...,l.

We could hence apply the eventuality resolution rule and derive the set of universal clauses

1\';=I...,Aj. Thus, as the temporal problem P is saturated under (subsumption-compatible)

ordered fine-grained resolution with selection, we can infer that 1tT-l 11 AT holds, which it.

a contradiction. 0

7.4 Practical Considerations and Complexity

The temporal model construction as described in the previous section constructs an infinite

sequence of propositional models, as suggested by the definition of the semantics for PL TL
given in Section 2.2. However, for practical applications, a finite representation of a temporal

structure, as given by an ultimately periodic model is more useful.

Definition 1.4.1 (Ultimately Periodic Model). Let P = (U,I,S,£) be a propositional

temporal problem such that either £ = 0 or £ = {Ol}, and let 1t = (Ho, HI, H2, ...) be an

infinite sequence of propositional models over Symbols(P). FUrthermore, let I, J, LEN be

indices such that 1$ L < J, HI = HJ and HL F l if £ = {Ol}, 1= L otherwise.

We then define a sequence of propositional models 1t' = (Hb, H~, ...) as follows:

(i) HI = Hi for every 0 $ i $ J

180 CHAPTER 7. RESOLUTION-BASED MODEL CONSTRUCTION FOR PLTL

(ii) HI = H1+«i-1) mod (J-I) for every i ~ J + 1

It can be shown that if the sequence 'H is a model for P, then the sequence 'H' is also a

model for P [84J.

More concretely, in an implementation of the temporal model construction procedure

one has to keep track of the ordering that has been used for the saturations used in the

different time points. Whenever a previously considered set of clauses is encountered again,

the symbol ordering used for the model construction in the considered time point has to be

changed cyclically. Finally, the construction procedure can terminate whenever a previously

encountered valuation has been computed again and the possibly present eventuality has

been satisfied in between those two time points.

Moreover, it is easy to see that for a set N = {AI::::} 081, ... , An :::} 08n } of critical

merged step clauses for a temporal problem P the set 0 £JI'(N) can be constructed from

9(U~=1 Symbols(Aj)), the power set of all the propositional symbols occurring in left

hand sides of critical step clauses. Every ordering >- E 0 £JI'(N) is characterised by the

subset P ~ U~=1 Symbols(Aj) such that Symbols(P) \ P >- p for every pEP. Thus, in an

implementation it is sufficient to consider all the subsets of U~=l Symbols(Ad in order to

construct the required orderings.

Furthermore, it is also possible to eliminate redundant cycles in constructed temporal

models. For example, if one has built a model for a temporal problem P with a single

eventuality 01 and the constructed model contains a sequence of valuations Hi, Hi+l, ... , Hj

such that Hi = H j and Hk ~ I for every i ~ k ~ j, then the sequence Hi"'" Hj - 1 can be

removed from the final model as it does not contribute to satisfying the eventuality.

It is important to note that the model construction procedure is completely deterministic,

that is, neither the basic building blocks given by I~.s and Res~s, nor the construction

of the sequence of propositional models that form the ultimately periodic model involves

any non-deterministic operation that in an implementation would force us to use a form of

backtracking-search to find a model. On the other hand, just as for standard tableaux-based

model generation procedures for PL TL, there is no guarantee that we will produce a minimal,

that is, shortest possible, ultimately periodic model for a temporal problem or PL TL formula.

In particular, different choices of orderings can lead to different temporal models, which

can greatly vary in size. However, it is not possible to construct every model of a temporal

problem P though the model construction method introduced in this chapter. For example,

the model {p}, {P}, . .. cannot be obtained for the temporal problem ({ p V q}, 0, 0, 0}.
The computational complexity of the temporal model construction procedure is deter

mined mainly by the time required to compute the saturation Res~s(N) of a set N of

clauses under ordered resolution with selection, which is exponential in the size of N, the

size of the Res~s(N), which is also exponential in the size of N, and the maximal length

of the sequence of propositional models in an ultimately periodic model 'H' for a satisfiable

temporal problem P = (U,I,S,£), which is again exponential in the size of P. Overall, we

obtain the following result.

7.5. IMPLEMENTATION 181

Time

LWB'Model' TSPASS TSPASS
Model Construction

C;an (n=5) 0.06s 0.03s 0.05s (O.Ols)
C;an (n=5) 0.06s 0.06s O.71s (0.03s)
C;an (n=12) 1.5s 0.04s 0.89s (0.57s)
C;an (n=12) 0.06s 1.13s 65.08s (0.608)

LWB'Model'
TSPASS Model Properties

Length Model Length Constructed Minimal Critical Merged
Time Points Step Clauses

C;an (n=5) 7 2 (1) 2 0
C;an (n=5) 2 2 (1) 2 0
C;an (n=12) 39 17 (8) 17 17
C;an (n=12) 2 2 (1) 2 0

Table 7.1: Median Results (per Class) for the TSPASS and LWB Model Construction
Procedures Applied on the Benchmark Classes C;an and C;an

Theorem 7.4.2. Let P= (U,I,S,£:) be a satisfiable propositional temporal problem with

£: = 0 or £: = {O/}. Then an ultimately periodic model 'H. for P can be constructed by the

temporal model construction procedure in time exponential in the size of P.

Since for a given PL TL formula 'P an equi-satisfiable propositional problem P in DSNF

can be computed in polynomial time and space, this result also implies the we can construct

an ultimately periodic model for 'P in time exponential in the size of 'P.

It is important to remember that while the satisfiability problem of PLTL is PSPACE
complete, given that ultimately periodic models can be of exponential size in the worst cruw.

we cannot hope for a model construction procedure of better complexity.

7.5 Implementation

The temporal model construction has been implemented as an extension of the theorem prover

TSPASS. The implementation takes advantage of the fact that while the temporal problem is

saturated by TSPASS, the minimal critical merged step clauses for the considered temporal

problem are also computed as part of the overall loop search process (the terminating loop

search clauses s~ /\ C ~ 0.1 for a given eventuality OL(x». Consequently, no further

computation is required to obtain these step clauses.

7.6 Experimental Results

We have compared the resolution-based model construction implemented in TSPASS 0.94-

0.16 with the one-pass tableau calculus described in [831, which is implemented in the Logics

182 CHAPTER 7. RESOLUTION-BASED MODEL CONSTRUCTION FOR PLTL

Workbench (LWB) version 1.1 [46J. We have applied both systems to numerous satisfiable

PL TL fonnulae from the benchmark classes introduced in [53J. As described already in

Section 6.5.1, two of the benchmark classes, C~an (n = 5) and C~n (n = 12), where n indicates

the number of propositional symbols over which the formulae are constructed, are designed

in such a way that they can be theoretically solved easily by resolution-based decision

procedures, whereas the two other benchmark classes, C;an (n = 5) and C~n (n = 12), are

designed so that the satisfiable formulae in them can be theoretically solved more easily by

tableaux-based systems. In particular, in [53J the implementation of the one-pass tableau

calculus in the LWB was indeed performing best on these formulae.

The experiments were run on a PC equipped with an Intel Core 2 Duo E6400 CPU

and 3 GiB of main memory and an execution timeout of 5 minutes was imposed on each

problem.

For TSPASS an empty selection function was used. The scheduling of the orderings on

propositional symbols was done w.r.t. an increasing subset size and in such a way that a

maximal number of different orderings were tried out: whenever a set of propositional clauses

was encountered for the first time the next possible ordering was used for the propositional

model construction instead of starting again from the initial ordering w.r.t. the critical

symbols. Additionally, subsets that only involve propositional symbols occurring in left-hand

sides of minimal critical merged step clauses were considered first for constructing the

required orderings. Currently, TSPASS builds the remaining orderings which are necessary

for the model construction to succeed with all the yet unused propositional symbols that

occur in the left-hand sides of step clauses, i.e. no special processing is performed to exactly

identify the symbols occurring in left-hand sides of critical merged step clauses that are not

minimal. For the C~n classes TSPASS was instructed to perfonn matching replacement

resolution and formulae O(tP) V O(t/J) were rewritten to O(tP V t/J) in order to reduce the

number of required renamings; for the C~n classes no special input rewriting was performed

and no additional inference or reduction rules were activated.

The median results for all the satisfiable formulae of each class are shown in Table 7.1,

with time values in the table being the average CPU time of three identical runs. We

can observe that the number of generated clauses and the execution times increase for the

model construction run of TSPASS, whidl is due to the transformation to single-eventuality

problems and, as a result, an increased number of step clauses. Such a transformation is not

performed if no model construction is required. Additionally, one can observe that the time

spent on the transformation to DSNF is negligible. The numbers in brackets in the model

construction time column indicate the amount of time actually spent on model construction

w.r.t. the global execution time, and the numbers in brackets in the model length column

represent the length of the periodic part. Finally, the median total number of constructed

time points during the model construction in TSPASS is reproduced in the second last

column, some of which are discarded during the elimination of redundant cycles.

The problem set for class C~n (n=5) that we considered contains 2400 formulae in total

of whidl 1217 formulae are satisfiable. On these satisfiable formulae, the model construction

7.7. ALTERNATIVE MODEL CONSTRUCTION APPROACHES 183

of TSPASS could solve all the problems, whereas the 'Model' function of the LWB did not

finish on 26 problems within the given time limit. The set of problems for class C~n (n=5)

contains 1400 formulae in total of which 955 are satisfiable. All the models constructed by

TSPASS and the LWB for this class were at most of length 2. No timeouts were incurred

either in the TSPASS or the LWB runs. The collection of problems for class C;"n (n=I2),

then, contains 4000 formulae in total of which 2264 are satisfiable. The model construction of

TSPASS did not finish on 30 satisfiable formulae in this class, whereas the 'Model' function

of the LWB did not terminate within the given time limit on 284 of the satisfiable formulae.

Finally, the problem set for class C~n (n=12) contains 1900 formulae in total of which 1184

formulae are satisfiable. Again, no timeouts were incurred in either the TSPASS or LWB

run, and all the models constructed by TSPASS and the LWB for this class were at most of

length 2

As one might expect, the Logics Workbench can maintain its execution time advantage

on C;an (n = 5) and C;an (n = 12). On the other hand, the model construction of TSPASS

proves quite successful on C;"n (n = 5) and C;"n (n = 12), computing models of smaller

median length than the LWB.

7.7 Alternative Model Construction Approaches

In this section we briefly discuss other relevant approaches and systems for the construction

of models for satisfiable Pl Tl formulae.

First of all, we note that the Stanford Temporal Prover, STeP, [14,69] can also be used

for model construction purposes. STeP is foremost a tool which supports the verification of

Pl Tl properties for reactive systems. It combines model checking and deductive verification

approaches. Temporal properties are verified through verification rules and verification

diagrams. For this purpose, STeP provides features like automatic invariant generation

and decision procedures for Pl Tl and for large classes of first-order formulae. A theorem

prover based on non-clausal resolution and on paramodulation is also available in STeP.

Pl Tl model construction is therefore possible in STeP either through model checking or

the tableaux-based decision algorithm for Pl Tl given in [55], which is implemented in

STeP. However, according to [53] the tableaux-based decision procedure of STeP for PlTl
is outperformed on the benchmarking examples by the model 'function' of the LWB.

Additionally, one can easily see that a particularly close connection is present between

the model construction mechanism described in this section and MetateM [11,12], which

is a framework for using temporal logics, in particular Pl Tl, as an executable imperative

language. Similarly to the model construction approach presented here, MetateM obtains

a Pl Tl model for a clausified DSNF problem by sequentially executing all the temporal

formulae present in the problem for the different time points. In this way the constraints

that are expressed by the formulae contained in a temporal problem are satisfied in the

different time points of a model. For instance, in MetateM terminology a step clause p => Oq

represents the "executable statement" that the atom q has to be executed at the next time

184 CHAPTER 7. RESOLUTION-BASED MODEL CONSTRUCTION FOR PLTL

point once the atom p is satisfied at the current time point. Different strategies are available

in MetateM to handle the possible choices that can occur when disjunctions, i.e. initial or

universal clauses, or multiple eventualities have to be fulfilled during the execution of a

MetateM program. In particular, in order to recover from choices that do not lead to a

correct model MetateM employs backtracking during the execution of temporal formulae.

Note however that MetateM does not require temporal problems to be saturated under the

inference rules of the J~t -calculus before they can be executed. A Java-based interpreter

for a first-order variant of MetateM is currently being developed [38J.

1.8 Minimal Models

A natural question that arises when models for satisfiable formulae need to be constructed

concerns the computation of "minimal" models. In contrast to the non-temporal case it turns

out that it is no longer obvious how one can define a partial ordering on models that would

lead to a formal notion whidl is intuitively perceived to represent minimal models for a Pl Tl

problem. For instance, the characteristics of models that one can take into consideration for

defining a partial ordering on Pl Tl models are the number of different propositional models

in the infinite chain of the temporal model or the number of propositional variables assigned

to "true" at a given time point. Both properties could be compared lexicographically, for

example.
If we assume that the characterisation for a model to be considered as minimal refers to

(at least) one of the two examples described above, then it is easy to see that the model

construction presented here cannot guarantee the construction of minimal models. The

number of time points that are present in a constructed model and the number of satisfied

propositional variables heavily depend on the choice of the orderings that have been used

for the construction, even for temporal problems without eventualities. For example, for

the temporal problem (0, {p V q}, {p :::} Or, r :::} OP}, 0) the model construction procedure

presented here constructs the model {P}, {r}, {p}, {r }, . .. for an ordering ~ 1 with p ~ 1 q,

whereas one obtains the model {q}, 0, 0, 0, ... for an ordering h with q ~2 p.

Thus, in order to construct minimal models, one would have to explore the different

successor models that one can obtain for a given time point by constructing the successor

models with different orderings. As such, the search for minimal models would result

in having to find a suitable path in a graph structure representing the different possible

successors for every time point (see also, e.g., the notion of behaviour graph in [37]). One has

to note, though, that not every propositional model can be obtained through an application

of the propositional model construction on a clause set. For example, the model {p, q} for

the clause p V q cannot be obtained through propositional model construction. Consequently,

it remains unclear whether a suitable minimal model can indeed be found if the propositional

successor models in the graph structure are constructed by propositional model construction.

7.9. SUMMARY 185

7.9 Summary

The aim of this chapter was to present a fully-automatic procedure for constructing models

for satisfiable PLTL fonnula, which contributes to closing the gap in functionality that

separates resolution-based calculi from tableaux-based reasoning approaches for formal

verification purposes. The procedure is based on computing saturations under ordered

fine-grained resolution with selection while using the standard model construction for

propositional clauses to construct models for the different time points. It is important

to observe that the temporal model construction procedure is not based on performing a

search with backtracking but the construction is guaranteed to succeed once the appropriate

symbol orderings have been considered, and that it can always produce finite, ultimately

periodic models. We also proved the correctness of the model construction algorithm and

analysed some of its practical aspects. We then briefly introduced our implementation of the

algorithm and provided an experimental analysis of the model construction procedure on the

benchmarking classes for PLTL formulae. Sub3equently, we described alternative approaches

and systems for PLTL model construction, and we concluded with a short discussion of the

problems related to finding minimal models.

Chapter 8

Conclusion

We conclude this thesis by summarising the results that we have described in the previous

chapters and by giving an outlook on future research possibilities.

8.1 Summary of the Results

The general area in which the work presented in the previous chapters is situated is that of

formal verification. Chapter 1 gave a brief overview of this field and summarised the main

novel contributions of the thesis.

In Chapter 2 we formally introduced the syntax and semantics of the two formal languages

we are considering in this thesis: propositional linear-time temporal logic and monodic

first-order temporal logic. Both of these logics are interpreted over a model of time that is

isomorphic to the natural numbers. We also defined some notions that were essential for the

following parts of this thesis. Subsequently, we described the normal form for formulae of

the two temporal logics we are considering. Finally, we demonstrated how the formulae that

are in normal form can be clausified for the resolution-based calculus that was introduced

in the subsequent chapter.

We then focused on the proof of refutational completeness for ordered fine-grained

temporal resolution with selection in Chapter 3. First, we briefly recalled the inference

rules of monodic temporal resolution and ordered fine-grained temporal resolution with

selection. Subsequently, we defined a refined version of monodic temporal resolution, for

which we also proved that it is refutationally complete. We then showed the Lifting Theorem

for ordered fine-grained resolution with selection without the eventuality resolution rules

and the arbitrary factoring in left-hand sides of terminating step clauses rule. Next, we

proved that derivations of refined monodic temporal resolution can be simulated by ordered

fine-grained resolution with selection. As refined monodic temporal resolution was shown

to be refutationally complete for temporal problems that only contain step clauses with

unique left-hand sides, we obtained a completeness result for ordered fine-grained resolution

with selection restricted to th<X'ie temporal problems. In a final step we then extended this

completeness result to arbitrary temporal problems.

187

188 CHAPTER 8. CONCLUSION

In Chapter 4 we provided a formal analysis of combining redundancy elimination with

ordered fine-grained resolution with selection. We first focused on redundancy elimination

in combination with the resolution-based inference rules of ordered fine-grained resolution

with selection. We presented syntactic criteria for identifying tautologies among temporal

clauses and we defined a subsumption relation on temporal clauses. We then described

how the calculus had to be extended in order to remain compatible with the removal of

subsumed clauses, resulting in the sUbsumption-compatible ordered fine-grained resolution

with selection calculus (J~C;:Sub)' We also proved subsumption lemmata for the subsumption

compatible calculus.

In the second part of Chapter 4 we analysed the problem of combining redundancy

elimination with the loop search process. We introduced a resolution-based loop search

algorithm called Subsumption-Restricted-FG-BFS which eliminates subsumed clauses and

tautologies during loop search computations. After having proved some of its properties,

we proved the refutational completeness of subsumption-compatible ordered fine-grained

resolution with selection where applications of the eventuality resolution rules are restricted

to loops found by the Subsumption-Restricted-FG-BFS algorithm.

In Chapter 5 we analysed some theoretical aspects of sUbsumption-compatible ordered

fine-grained resolution with selection that can lead to problems when fair J~;tsub-derivations

should be constructed in practice. Due to the fact that the applicability of the eventuality

resolution rules is only semi-decidable, it becomes impossible to guarantee the construction

of fair derivations, i.e. derivations in which every non-redundant clause that is derivable

from a given clause set is eventually derived, as the applicability check for those inference

rules might not terminate.

As the ability to construct fair derivations is an essential requirement for maintaining the

refutational completeness of an automated theorem, we presented an inference procedure

that can construct fair derivations for reasoning in monodic first-order temporal logic based

on the J~C;:sub-calculu8 and we proved its refutational completeness. The design of the new

inference mechanism is based on integrating the saturation steps related to loop search,

which may not terminate, into the main saturation process. The proof of refutational

completeness proceeded by showing that for every non-tautological clause contained in a

J:C;:Sub -refutation for an unsatisfiable clausified monodic temporal problem there exists a

subsuming clause computed in a fair derivation of the new inference procedure.

We also showed that the new inference mechanism can also be used as a decision procedure

for temporal problems in which the first-order formulae are restricted appropriately.

Then, in Chapter 6 we described the implementation of the fair inference procedure that

had been introduced in Chapter 5, resulting in the automated theorem prover TSPASS. We

also analysed the performance of TSPASS in practice. First, we discussed the connection

between ordered fine-grained step resolution with selection and regular first-order resolution.

We continued by describing the architecture of TeMP, before we outlined its problems

related to guaranteeing fair derivations. We also analysed how the fair inference procedure

described in Chapter 5 can be implemented in practice. In the following, the implementation

8.2. FURTHER RESEARCH POSSIBILITIES 189

of TSPASS was described in detail.

We recalled the general architecture of SPASS before we explained some basic considera

tions behind the implementation of TSPASS. Next, we presented the general architecture of

TSPASS and we continued with a detailed description of its internals, like the the clausifica

tion and translation into first-order logic, efficient techniques to access loop search clauses,

the main inference procedure, and ways to implement loop search tests. We then discussed

several peculiarities related to the implementation of TSPASS w.r.t. SPASS and we analysed

some fairness problems regarding the regular clause selection function.

Subsequently, we examined the effectiveness of redundancy elimination in TSPASS and

we evaluated its proof search performance on PL TL and monodic FOTL problems against

TRP++, the Logics Workbench, the Tableau Workbench, and TeMP.

Finally, in Chapter 7 we presented a fully-automatic procedure for constructing models

for satisfiable PL TL formula. This automated construction procedure contributes to closing

the gap in functionality that separates resolution-based calculi from tableaux-based reasoning

approaches for formal verification purposes. The model construction procedure was based on

computing saturations under ordered fine-grained resolution with selection while using the

standard model construction for propositional clauses to construct models for the different

time points. It is important to observe that the temporal model construction procedure

is not based on performing a search with backtracking but the construction is guaranteed

to succeed once the appropriate symbol orderings have been considered, and that it can

always produce finite, ultimately periodic models. We proved the correctness of the model

construction algorithm and analysed some of its practical aspects. We then briefly introduced

our implementation of the algorithm and provided an experimental analysis of the model

construction procedure on the benchmarking classes for PLTL formulae. We concluded

the chapter with a description of alternative systems and approaches towards PLTL model

construction, and we shortly discussed some of the problems related to finding minimal

models.

8.2 Further Research Possibilities

We now briefly present some ideas for further research possibilities based on the results

presented in this thesis. Regarding the fair inference procedure introduced in Chapter 5 and

its implementation in the automated theorem prover TSPASS, it would be worthwhile to

• investigate whether several restrictions that had to be introduced for proving the

refutational completeness of the different calculi in the previous chapters are necessary

or only appear as a consequence of the chosen proof techniques. For example, the

proof of refutational completeness for the J~;;- -calculus given in Chapter 3 requires

that selection function are instance compatible. However, such constraints on selection

functions are not present in the setting of regular first-order resolution. Additionally, for

proving the refutational completeness of the J~~Svl> -calculus in Chapter 4 two additional

190 CHAPTER 8. CONCLUSION

inference rules, namely (arbitrary) factoring in left-hand sides of terminating step

clauses and (arbitrary) factoring in at most monadic negative universal clauses, had

to be introduced. Thus, one could try to find examples which demonstrate that these

additional restrictions are in fact necessary for the completeness of the considered

calculi. If such examples cannot be found, one could explore possibilities for alternative

proofs that do not require additional restrictions. Furthermore, one could

• analyse the compatibility of the fair inference procedure with additional (first-order)

inference and reduction rules, which are, for example, already available in the theorem

prover SPASS. The reduction rule of matching replacement resolution in the general

first-order case and the introduction of splitting rules are here of particular interest [91].

As the proof of refutational completeness for the fair inference procedure F is based on

showing that for every clause derived by the J~;;:Sub -calculus there exists a subsuming

clause computed by the procedure F, one can see that additional efforts would be

required to show that an extended inference procedure remains refutationally complete

if the newly added inference or reduction rule cannot be simulated by resolution

inferences and subsequent subsumption steps (as it is indeed the case for propositional

matching replacement resolution, for example). In particular, it would probably be

most difficult to prove that new inference or reduction rules are compatible with the

loop search algorithm, i.e. one has to guarantee that the conditions for finding loops

can still be achieved. Also, one would have to to ensure that new inference or reduction

rules do not cause undesired side effects such as interfering with the translation of

temporal clauses into first-order logic and allowing inferences or reductions in this way

which would not have been possible on the level of monodic FOTl. Along the same

lines,

• one could analyse the possibilities of extending the fair architecture with inference

rules capable of handling equality. A first attempt to include the handling of equality

mainly into the monodic temporal resolution calculus was presented in [59]. For

fine-grained temporal resolution a fine-grained superposition calculus is also briefly

described in [59], which could form the starting point for an extension of the fair

inference procedure with equality handling capabilities. Presumably, one could prove

the refutational completeness of the fine-grained superposition calculus in analogy

to proof of refutational completeness of the J~~ -calculus contained in Chapter 3,

and consequently the subsumption lemmata could be proved for the fine-grained

superposition calculus. In a final step the refutational completeness of the fair

architecture extended with superposition rules could be established by linking the

extended fair architecture with the fine-grained superposition calculus as it was

described in Chapter 5. The implementation of TSPASS would also have to be modified

in order to take the superposition inference rules of the fine-grained superposition

calculus into account. Note, however, that even the monadic monodic two-variable

B.2. FURTHER RESEARCH POSSIBILITIES 191

fragment of FOTL with equality (but without function symbols) is not recursively

enumerable [24], which brings us to the following point:

• another interesting application area of ordered fine-grained resolution with selection

and the fair inference procedure consists in the full language of first-order temporal

logic with or without equality. Despite not being refutationally complete, the extended

inference rules for full FOTL would still be sound. One would have to extend the

normal form DSNF in such a way that step clauses and eventuality clauses which

involve predicates of arbitrary arity are allowed to occur. The implementation of the

transformation to DSNF would also have to be modified. Additionally, one would have

to change the implementation of the fair architecture in order to be able to handle

eventuality clauses of arbitrary arity. However, TSPASS could hence be turned into a

sound but not refutationally complete automated theorem prover for full FOTl.

Then, regarding the automated model construction procedure for satisfiable PLTL

formulae described in Chapter 7, it would, for instance, be interesting to

• investigate the influence that the choice of orderings has on the constructed models.

Hopefully, it would then be possible to guarantee the construction of small models,

and ideally obtain minimal models (in specific cases). Also, one could try to

• reduce the number of renamings necessary for the transformation to single-eventuality

problems. As a consequence, the number of propositional symbols that have to be

considered during the construction of models will be reduced, which should result

in shorter construction times required to build models for satisfiable PL TL formulae.

Another interesting extension would be

• the answering of queries over models, i.e. given a satisfiable PL TL formula F and a

PL TL query formula cp, one would like to know whether there exists a model 'H. of the

formula F such that 'H. F cp holds. Initially, one could limit the expressivity of the

formula cp by not allowing it to contain eventualities, for example. Moreover, if one

is not interested in the (full) model 'H. itself, but only in the question whether such

a model can exist, it is sufficient to construct time points for the model 'H. until the

formula cp is satisfied, which can potentially reduce the required construction efforts.

Lastly, on a more technical side,

• one could also investigate in which cases an even stronger elimination of redundant

cycles is possible. After the propositional symbols which have been introduced during

the transformation to DSNF have been removed from a constructed model, experiments

have shown that is possible to remove redundant cycles present in the reduced model

in some cases while preserving correctness, Le. the reduced model which has now been

freed of redundant cycles remains a model for the original formula. A formal study of

this problem could potentially identify criteria for when such an extended elimination

of redundant cycles can be performed. Additionally,

192 CHAPTER 8. CONCLUSION

• in the case where the validity of a formula !.p ~ 'I/J cannot be proved as the formula

'P " -,'I/J is satisfiable, the constructed model 'H for the formula !.p" -,'I/J shows why the
formula -,'I/J holds in the context of the formula!.p. However, it would be worthwhile for

the user to visualise how the model 'H satisfies the formula -,'I/J alone by disregarding

any propositional symbols that only occur in the formula !.p, for instance. In this way

one can avoid some potential clutter in the representation of the model 'H that can

be caused by the formula 'P. The user should thus be able to understand erroneous

behaviour more easily.

Finally, we believe that it is feasible to extend the automated model construction method

to CTL formulae, but an extension to first-order temporal logic will require greater efforts

as the reduction to single-eventuality problems is not even generally possible for arbitrary

monodic FOTL problems.

Bibliography

[I] Cluedo. http://www.hasbro.com.

[2] M. Abadi and Z. Manna. Nonc1ausal temporal deduction. In R. Parikh, editor,

Proceedings of the Conference on Logics of Programs, Brooklyn College, June 17-19,

1985, volume 193 of Lecture Notes in Computer Science, pages 1-15. Springer, 1985.

[3] M. Abadi and Z. Manna. Nonclausal deduction in first-order temporal logic. Journal

of the ACM, 37(2):279-317, 1990.

[4] P. Abate and R. Gore. The tableaux work bench. In M. C. Mayer and F. Pirri, editors,

Automated Reasoning with Analytic Tableaux and Related Methods, International Con

ference, TABLEAUX 2003, Rome, Italy, September 9-12, 2003. Proceedings, volume

2796 of Lecture Notes in Computer Science, pages 230-236. Springer, 2003.

[5] A. Artale and E. F'ranconi. Introducing temporal description logics. In C. Dixon

and M. Fisher, editors, Proceedings of the Sixth International Workshop on Temporal

Representation and Reasoni,ng (TIME-99), pages 2-5. IEEE Computer Society Press,

1999.

[6] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

New York, NY, USA, 1998.

[7] F. Baader and W. Snyder. Unification theory. In Robinson and Voronkov [80], chapter 8,

pages 447-533.

[8] L. Bachmair, N. Derschowitz, and D. A. Plaisted. Completion without failure. In

H. Ait-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures

(Volume /J): Rewriting Techniques, pages 1-30. Academic Press, London, 1989.

[9] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection

and simplification. Journal of Logic and Computation, 4(3):217-247, 1994.

[10] L. Bachmair and H. Ganzinger. Resolution theorem proving. In Robinson and Voronkov

[80]' chapter 2, pages 19-99.

193

194 BIBLIOGRAPHY

[11] H. Barringer, M. Fisher, D. Gabbay, R. Owens, and M. Reynolds, editors. The

Imperative Future: Principles of Executable Temporal Logic. Reasearch Studies Press,

1996.

[12] H. Barringer, M. Fisher, D. M. Gabbay, G. Gough, and R. Owens. MetateM: An

introduction. Formal Aspects of Computing, 7(5):533-549, 1995.

[13] A. Behdenna, C. Dixon, and M. Fisher. Deductive verification of simple foraging robotic

behaviours. International Journal of Intelligent Computing and Cybernetics, 2(4):604 -

643,2009.

[14] N. Bj0rner, Z. Manna, H. Sipma, and T. E. Uribe. Deductive verification of real-time

systems using STeP. Theoretical Computer Science, 253(1):27--60, 2001.

[15] T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite state

systems using Presburger arithmetic. In o. Grumberg, editor, Proceedings of the 9th

International Conference on Computer Aided Verification, CAV '97, Haifa, Israel,

June 22-25, 1997, volume 1254 of Lecture Notes in Computer Science, pages 400--411.

Springer, 1997.

[16] J. P. Burgess and Y. Gurevich. The decision problem for linear temporal logic. Notre

Dame Journal of Formal Logic, 26(2):115-128, 1985.

[17] A. R. Cavalli and L. F. del Cerro. A decision method for linear temporal logic. In

R. E. Shostak, editor, 7th International Conference on Automated Deduction, Napa,

California, USA, May 14-16, 1984, Proceedings, volume 170 of Lecture Notes in

Computer Science, pages 113-127. Springer, 1984.

[18] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas

tiani, and A. Tacchella. NuSMV version 2: An open source tool for symbolic model

checking. In Proceedings of the 14th International Conference on Computer-Aided

Verification (CAV 2002), volume 2404 of Lecture Notes in Computer Science, pages

359--364, Copenhagen, Denmark, July 2002. Springer.

[19] E. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge,

Massachusetts - London, England, 1999.

[20] E. M. Clarke and F. Lerda. Model checking: Software and beyond. Journal of Universal

Computer Science, 13(5):639--649, 2007.

[21] E. M. Clarke, F. Lerda, and M. Talupur. An abstraction technique for real-time

verification. In Proceedings of the GM R&D Workshop on Next Generation Design and

Verification Methodologies for Distributed Embedded Control System, 2007.

[22] A. Degtyarev, M. Fisher, and B. Konev. A simplified clausal resolution procedure

for propositional linear-time temporal logic. In U. Egly and C. G. Fenntiller, edi

tors, Automated Reasoning with Analytic Tableaux and Related Methods, International

195

Conference, TABLEA UX 2002, Copenhagen, Denmark, July 30 - August 1, 2002,

Proceedings, volume 2381 of Lecture Notes in Computer Science, pages 85-99, London,

UK, 2002. Springer-Verlag.

[23] A. Degtyarev, M. Fisher, and B. Konev. Monodic temporal resolution. ACM Tmnsac

tions On Computational Logic, 7(1):108-150, 2006.

[24] A. Degtyarev, M. Fisher, and A. Lisitsa. Equality and monodic first-order temporal

logic. Studia Logica, 72(2):147-156, 2002.

[25] G. Delzanno. Constraint-based verification of parameterized cache coherence protocols.

Formal Methods in System Design, 23(3):257-301, 2003.

[26] J. Dick, J. Kalmus, and U. Martin. Automating the Knuth-Bendix ordering. Acta

Informatica, 28(2):95-119, 1990.

[27] C. Dixon. Miss Scarlett in the ballroom with the lead piping. In R. L. de Mantaras

and L. Saitta, editors, Proceedings of the 16th Eureopean Conference on Artificial

Intelligence, ECAI'2004, including Prestigious Applicants of Intelligent Systems, PAIS

2004, Valencia, Spain, August 22-27, 2004, pages 995-996. lOS Press, 2004.

[28] C. Dixon. Specifying and verifying the game Cluedo using temporal logics of knowl

edge. Technical Report ULCS-04-oo3, University of Liverpool, 2004. Available at

http://www.csc.liv.ac.uk/research/techreports/.

[29] C. Dixon, M. Fisher, B. Konev, and A. Lisitsa. Practical first-order temporal reasoning.

Proceedings of the 15th International Symposium on Temporal Representation and

Reasoning, 2008. TIME '08., pages 156-163, June 2008.

[30] C. Dixon, M.-C. F. Gago, M. Fisher, and W. V. D. Hoek. Using temporal logics of knowl

edge in the formal verification of security protocols. Technical Report ULCS-03-022, Uni

versity of Liverpool, 2003. Available at http://www.csc.liv.ac.uk/research/techreports/.

[31] C. Dixon, M.-C. F. Gago, M. Fisher, and W. van der Hoek. Using temporal logics

of knowledge in the formal verification of security protocols. In 11th International

Symposium on Temporal Representation and Reasoning (TIME 2004), 1-3 July 2004,

Tatihou Island, Normandie, France, pages 148-151. IEEE Computer Society, 2004.

[321 E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer

Science, Volume B: Formal Models and Semantics, pages 995-1072. 1990.

[33] E. A. Emerson and J. Srinivasan. Branching time temporal logic. In J. W. de Bakker,

W. P. de Roever, and G. Rozenberg, editors, REX Workshop, volume 354 of Lecture

Notes in Computer Science, pages 123-172. Springer, 1988.

196 BIBLIOGRAPHY

[34J E. A. Euler, S. D. Jolly, and H. Curtis. The failures of the Mars Climate Orbiter

and Mars Polar Lander: A perspective from the people involved. In Proceedings of

24th Annual AAS Guidance and Control Conference, number AAS 01-074. American

Astronautical Society, 2001.

[35J R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. MIT

Press, 1995.

[36J M. C. Fernandez-Gago, U. Hustadt, C. Dixon, M. Fisher, and B. Konev. First-order

temporal verification in practice. Journal of Automated Reasoning, 34(3):295-321, 2005.

[37J M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions on

Computational Logic, 2(1):12-56, 2001.

[38J M. Fisher and A. Hepple. Executing logical agent specifications. In R. H. Bordini,
M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors, Multi-Agent Programming:

lAnguages, Tools and Applications, pages 1-27. Springer, June 2009.

[39J M. Fisher, B. Konev, and A. Lisitsa. Practical infinite-state verification with temporal

reasoning. In E. M. Clarke, M. Minea, and F. L. Tiplea, editors, Verification of

Infinite-State Systems with Applications to Security, Proceedings of the NATO Advanced

Research Workshop "Verification of Infinite State Systems with Applications to Security

VISSAS 200", Timisoara, Romania, March 17-22, 2005, volume 1 of NATO Security

through Science Series D: Information and Communication Security, pages 91-100. lOS

Press, 2005.

[40J N. Francez. Fairness. Springer-Verlag New York, Inc., New York, NY, USA, 1986.

[41J M.-C. F. Gago, M. Fisher, and C. Dixon. Algorithms for guiding clausal temporal

resolution. In M. Jarke, J. Koehler, and G. Lakemeyer, editors, KI2002: Advances

in Artificial Intelligence, 25th Annual German Conference on AI, Aachen, Germany,

September 16-20, 2002, Proceedings, volume 2479 of Lecture Notes in Computer Science,

pages 235-252. Springer, 2002.

[42J o. Gasquet, A. Herzig, D. Longin, and M. Sahade. LoTREC: Logical tableaux research

engineering companion. In B. Beckert, editor, Automated Reasoning with Analytic

Tableaux and Related Methods, International Conference, TABLEA UX 2005, Koblenz,

Germany, September 14-17, 2005, Proceedings, volume 3702 of Lecture Notes in Com

puter Science, pages 318-322. Springer, 2005.

[43J T. R. Halfhill. An error in a lookup table created the infamous bug in Intel's latest

processor. In BYTE. March 1995.

[44J J. Handy. The Cache Memory Book. Academic Press, 1993.

197

[45] D. Harel and A. Pnueli. On the development of reactive systems. In Logics and Models

of Concurrent Systems, volume F-13 of NATO ASI Series, pages 477-498. Springer,

New York, NY, USA, 1985.

[46] A. Heuerding, G. Jager, S. Schwendimann, and M. Seyfried. Propositional logics

on the computer. In P. Baumgartner, R. Hahnle, and J. Posegga, editors, Theorem

Proving with Analytic Tableaux and Related Methods, 4th International Workshop,

TABLEAUX '95, Schlofl Rheinfels, St. Goar, Germany, May 7-10, 1995, Proceedings,

volume 918 of Lecture Notes in Computer Science, pages 310-323. Springer, 1995.

[47] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-order

temporal logics. Annals of Pure and Applt.ed Logic, 106:85-134,2000.

[48] G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison

Wesley, September 2003.

[49] U. Hustadt and B. Konev. TRP++ 2.0: A temporal resolution prover. In F. Baader,

editor, Automated Deduction - CADE-19, 19th International Conference on Automated

Deduction Miami Beach, FL, USA, July 28 - August 2, 2003, Proceedings, volume 2741

of Lecture Notes in Computer Science, pages 274-278. Springer, 2003.

[50] U. Hustadt, B. Konev, A. Riazanov, and A. Voronkov. TeMP: A temporal monodic

prover. In D. A. Basin and M. Rusinowitch, editors, Automated Reasoning - Second

International Joint Conference,]JCAR 2004, Cork, Ireland, July 4-8, 2004, Proceedings,

volume 3097 of Lecture Notes in Computer Science, pages 326-330. Springer, 2004.

[51] U. Hustadt, B. Konev, and R. A. Schmidt. Deciding monodic fragments by temporal

resolution. In R. Nieuwenhuis, editor, Automated Deduction - CADE-20, 20th In

ternational Conference on Automated Deduction, Tallinn, Estonia, July 22-27, 2005,

Proceedings, volume 3632 of Lecture Notes in Artificial Intelligence, pages 204-218.

Springer, 2005.

[52] U. Hustadt and R. A. Schmidt. Formulae which highlight differences between temporal

logic and dynamic logic provers. In E. Giunchiglia and F. Massacci, editors, Issues in

the Design and Experimental Evaluation of Systems for Modal and Temporal Logics,

Technical Report 011 14/01, pages 68-76. Dipartimento di Ingegneria dell'Informazione,

Unversita degJi Studi di Siena, 2001.

[53] U. Hustadt and R. A. Schmidt. Scientific benchmarking with temporal logic decision

procedures. In D. Fensel, F. Giunchiglia, D. L. McGuinness, and M.-A. Williams,

editors, Proceedings of the Eighth International Conference on Principles and Knowledge

Representation and Reasoning (KR-02), Toulouse, France, April 22-25, 2002, pages

533-546. Morgan Kaufmann, 2002.

[54] F. Kamareddine. Reviewing the classical and the de Bruijn notation for A-calculus and

pure type systems. Logic and Computation, 11(3):363-394, 2001.

198 BIBLIOGRAPHY

155] Y. Ke>ten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm for full

propositional temporal logic. In C. Courcoubetis, editor, Computer Aided Verification,

5th International Conference, CAV '93, Elounda, Greece, June 28 - July 1, 1993,

Proceedings, volume 697 of Lecture Notes in Computer Science, page> 97-109. Springer,

1993.

156] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In J. Leech,

editor, Computational Problems in Abstract Algebra, page> 263-297. Pergamon Pre3S,

Oxford, 1970.

157] B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt. Towards the implemen

tation of first-order temporal re3olution: the expanding domain case. In Proceedings

of the 10th International Symposium on Temporal Representation and Reasoning and

Fourth International Conference on Temporal Logic (TIME-ICTL 2003), pages 72-82.

IEEE Computer Society, 2003.

158] B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt. Mechanising first-order

temporal re>alution. Information and Computation, 199(1-2):5~86, 2005.

159] B. Konev, A. Degtyarev, and M. Fisher. Handling equality in monodic temporal

re>alution. In M. Y. Vardi and A. Voronkov, editors, Logic for Programming, Artificial

Intelligence, and Reasoning, 10th International Conference, LPAR 2003, Almaty,

Kazakhstan, September 22-26, 2003, Proceedings, volume 2850 of Lecture Notes in

Computer Science, pages 214-228. Springer, 2003.

[60] R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. Temporalising tableaux.

Studia Logica, 76(1):91-134,2004.

[61] G. L. Lann. An analysis of the Ariane 5 flight 501 failure - a system engineering

perspective. In 1997 Workshop on Engineering of Computer-Based Systems (ECBS '97),

March 24-28, 1997, Monterey, CA, USA, page> 339-246. IEEE Computer Society, 1997.

162] J.-L. Lassez, M. J. Maher, and K. Marriott. Unification revisited. In M. Boscarol, L. C.

Aiello, and G. Levi, editors, Foundations of Logic and Functional Programming, volume

306 of Lecture Notes in Computer Science, pages 67-113. Springer, 1986.

163] A. Leitsch. The Resolution Calculus. Texts in Theoretical Computer Science. An

EATCS Serie>. Springer, 1997.

164] B. LOchner and T. Hillenbrand. A phytography of WALDMEISTER. AI Communica

tions, 15(2-3): 127-133, 2002.

165] M. Ludwig and U. Hustadt. Fair derivations in monodic temporal reasoning. In R. A.

Schmidt, editor, Automated Deduction - CADE-22, 22nd International Conference on

Automated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings, volume 5663

of Lecture Notes in Computer Science, pages 261-276. Springer, 2009.

199

[66] M. Ludwig and U. Hustadt. Redundancy elimination in monodic temporal reasoning.

In N. Peltier and V. Sofronie-Stokkermans, editors, FTP 2009 Workshop Proceedings,

pages 34 - 48. University of Oslo, Department of Informatics, 2009. Research Report

386.

[67] M. Ludwig and U. Hustadt. Resolution-based model construction for PLTL. In C. Lutz

and J.-F. Raskin, editors, TIME 2009, 16th International Symposium on Temporal

Representation and Reasoning, pages 73 - 80. IEEE Computer Society, 2009.

[68] M. Ludwig and U. Hustadt. Implementing a fair monodic temporal logic prover. AI

Communicati,ons, 23(2-3):69-96, 2010.

[69] Z. Manna, N. Bj0rner, A. Browne, E. Y. Chang, M. Col6n, L. de Alfaro, H. Devarajan,

A. Kapur, J. Lee, H. Sipma, and T. E. Uribe. STeP: the Stanford temporal prover. In

P. D. Mosses, M. Nielsen, and M. I. Schwartzbach, editors, TAPSOFT'95: Theory and

Practice of Software Development, 6th International Joint Conference CAAP/FASE,

Aarhus, Denmark, May 22-26, 1995, Proceedings, volume 915 of Lecture Notes in

Computer Science, pages 793-794. Springer, 1995.

[70] W. McCune and L. Wos. Otter - the CADE-13 competition incarnations. Journal of

Automated Reasoni,ng, 18(2):211-220, 1997.

[71] B. C. Moszkowski and Z. Manna. Reasoning in interval temporal logic. In E. M. Clarke

and D. Kozen, editors, Logic of Programs, volume 164 of Lecture Notes in Computer

Science, pages 371-382. Springer, 1983.

[72] A. Nonnengart and C. Weidenbach. Computing small clause normal forms. In Robinson

and Voronkov [80], pages 335-367.

[73] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th A nn'lltd Symposium

on Foundations of Computer Science (FOCS'77), pages 46-57. IEEE Computer Society

Press, 1977.

[74] A. Pnueli and Z. Manna. The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer, 1991.

[75] A. Prasad Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for

Blichi automata with applications to temporal logic. Theoretical Computer Science,

49(2-3):217-237, 1987.

[76] A. Prior. Past, Present and Future. Oxford University Press, 1967.

[77] I. V. Ramakrishnan, R. C. Sekar, and A. Voronkov. Term indexing. In Robinson and

Voronkov [80]' pages 1853-1964.

[78] A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE. AI

Communications, 15(2):91-110,2002.

200 BIBLIOGRAPHY

[79] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of

the ACM, 12(1):23-41, January 1965.

[80] J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning (in 2

volumes). Elsevier and MIT Press, 2001.

[81] S. Schulz. E - a brainiac theorem prover. AI Communications, 15{2-3):111-126, 2002.

[82] R. L. Schwartz, P. M. Melliar-Smith, and F. H. Vogt. An interval logic for higher

level temporal reasoning. In Proceedings of the Second Annual ACM Symposium on

Principles of Distributed Computing, pages 173-186, 1983.

[83] S. Schwendimann. A new one-pass tableau calculus for PLTL. In H. C. M. de Swart,

editor, Automated Reasoning with Analytic Tablea'UX and Related Methods, International

Conference, TABLEAUX '98, Oisterwijk, The Netherlands, May 5-8, 1998, Proceedings,

volume 1397 of Lecture Notes in Computer Science, pages 277-292. Springer, 1998.

[84] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporallogi~.

Journal of the ACM, 32(3):733-749, 1985.

[85] M. Steedman. Temporality. In J. van Benthem and A. ter Meulen, editors, Handbook

of Logic and Language, pages 895-935. Elsevier, 1997.

[86] C. Stirling. Modal and temporal logics. In S. Abramsky, D. M. Gabbay, and S. E.

Maibaum, editors, Handbook of Logic in Computer Science (vol. 2): Background:

Computational Structures, pages 478-551. Oxford University Press, New York, NY,

USA,1992.

[87] A. Szalas. Concerning the semantic consequence relation in first-order temporal logic.

Theoretical Computer Science, 47(3):329-334, 1986.

[88] A. Szalas and L. Holenderski. Incompleteness of first-order temporal logic with until.

Theoretical Computer Science, 57:317-325, 1988.

[89] A. U. Tansel, J. Clifford, S. K. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass, editors.

Tempoml Databases: Theory, Design, and Implementation. Benjamin/Cummings, 1993.

[90] G. Venkatesh. A decision method for temporal logic based on resolution. In S. N.

Maheshwari, editor, FO'Undations of Software Technology and Theoretical Computer

Science, Fifth Conference, New Delhi, India, December 16-18, 1985, Proceedings, volume

206 of Lecture Notes in Computer Science, pages 272-289. Springer, 1985.

191J C. Weidenbach. Combining superposition, sorts and splitting. In Robinson and

Voronkov IBO], pages 1965-2013.

[92] C. Weidenbach, R. Schmidt, T. Hillenbrand, R. Rusev, and D. Topic. System description:

SPASS version 3.0. In F. Pfenning, editor, Automated Deduction CADE-21: 21st

201

International Conference on Automated Deduction, volume 4603 of Lecture Notes in

Artificial Intelligence, pages 514-520, Bremen, Germany, 2007. Springer.

[93] P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1/2):72-

99, 1983.

[94] F. Wolter and M. Zakharyaschev. Axiomatizing the monodic fragment of first-order

temporal logic. Annals of Pure and Applied Logic, 118:133-145,2002.

Index

1=, 14

as, 51

J~;;- , 37

J~;;'Suh' 82
J e ,32

J~, 42

Ex, 28

~x, 28

=x,28

<s,81

~s, 79-80

~s,c, 65

C,31

r;;;;, 31

LT(S),39

Lf(N), 175

1-" 96

I-i' 96
F,l09

M(P),31

MIN(P) , 42

R S (rot), 175

CS,14

FS,14

PS,14

X,14

A=> OB, 30

'v'x(A(x) => OB(x)), 30

Symbols(P), 174

T(P') ,92

7iN(P') , 92

203

admissible atom ordering, 35

arity, 14

clause, 26

(at most) monadic negative universal,

82

negative, 26

positive, 26

clause normal form, 26

CNF,25

conjunctive normal form, 25

constant flooding, 30

const(c.p), 16

const(t) , 16

critical merged step clause, 175

DSNF,20

empty clause, 26

failure system, 50

fine-grained step resolution, 62

FOl, 15

formula

cl~ed, 16

open, 16

FOTl,15

i-th iteration termination index, 115

literal, 26

eligible, 36

loop formula, 32

ground, 33, 37

204

matching replacement resolution, 154

model, 14, 16

monodic, 17

most general unifier, 35

ordered fine-grained resolution with selec

tion

subsumption-compatible, 82

PLTL,14

prenex normal form, 24

Prenex, 24

proposition, 15

Res, 68

Ressub(N), 92

ResSub.Conv(N), 92

Res>-.s(N), 175

satisfiable, 14, 17

selection function, 35

instance compatible, 35

step clause, 27

derived,30

final, 37

full merged, 30

merged derived, 30

terminating, 37

step resolution, 37

fine-grained, 37

Step(N) , 112

substitution, 17

ground, 19

grounding, 19

idempotent, 19

invertible, 19

most general unifier, 35

unifier, 35

variable renaming, 19

S'Ubst];(X), 18

successor model, 176

system, 50

taut(N), 79

temporal problem

unique left-hand sides, 24

term, 15

ground, 16

termination index

i-th iteration, 115

universal clause, 113

unification algorithm, 51

derivation, 51

failure system, 50

maximal derivation, 51

system, 50

unifier, 35

Unif(E),35

Univ(N) , 112

valid, 14, 17

variable

bound, 16

free, 16

variable renaming, 19

var(cp), 16

var(t), 16

INDEX

