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Abstract 

Originally designed to represent tense in natural language, temporal logics have been used 

successfully in numerous application areas. In this thesis we focus on formal verification 

through resolution-based proof methods for two linear-time temporal logics: propositional 

linear-time temporal logic (PLTL) and monodic first-order temporal logic (FOTL). Both of 

these logics are interpreted over a model of time that is isomorphic to the natural numbers. 

A machine-oriented resolution-based calculus called fine-grained temporal resolution 

has been previously introduced for PLTL and monodic FOTl. The calculus operates on a 

clausal normal form for PLTL and monodic FOTL formulae, the so-called clausified temporal 

problems. In this thesis, we consider its refinement, the ordered fine-grained temporal 

resolut1on with selection calculus, J:~. It extends fine-grained temporal resolution with 

ordering restrictions and selection functions. A full proof of refutational completeness for 

ordered fine-grained temporal resolution with selection is given in this thesis. 

Besides refutational completeness, another aspect of ordered fine-grained temporal 

resolution with selection that we analyse in this thesis concerns the elimination of redundant 

clauses. The question arises whether tautological and subsumed clauses can be eliminated 

without losing refutational completeness in the context of the J~t -calculus. To that end, 

we identify syntactic criteria for identifying temporal clauses as tautologies. Moreover, we 

define a subsumption relation on temporal clauses and we illustrate how the calculus has to 

be extended to remain compatible with the removal of subsumed clauses and of tautologies. 

However, some issues regarding the applicability of the J~;'sub-calculus in practice remain 

as it contains inference rules whose applicability conditions are only semi-decidable in general. 

Consequently, fair derivations, i.e. derivations in which every non-redundant clause that is 

derivable from a given clause set is eventually derived, cannot be guaranteed in practice as 

the applicability check for some inference rules might not terminate. We therefore present 

an inference procedure based on the J~c'.sub-calculus that can construct fair derivations for 

reasoning in monodic first-order temporal logic, and we prove its refutational completeness. 

We also show that the new inference mechanism can be used as a decision procedure for 

some specific classes of temporal problems. 

The fair inference procedure has been implemented in the monodic first-order temporal 

logic prover TSPASS, which is based on the first-order theorem prover SPASS. We describe 

the implementation and we analyse the effectiveness of redundancy elimination and the 

v 



vi ABSTRACT 

proof search performance of TSPASS on several examples. 

In the final part of the thesis we are trying to fill a gap in functionality that resolution

based techniques admit over tableaux-based reasoning for formal verification purposes 

based on PL TL. In the case of a failure to prove the validity of a specific property by a 

tableaux-based method, a counter example demonstrating the erroneous behaviour has 

already been constructed. On the other hand, only the knowledge that the specification 

does not satisfy the required property is generally available for resolution-based verification 

attempts. We therefore present an algorithm that allows us to automatically construct 

a model for a satisfiable PL TL formula based on the J~G':s .... -calculus and on the regular 

resolution-based model construction for sets of propositional clauses. We also briefly analyse 

the implementation of the model construction procedure as an extension of TSPASS, and we 

provide some experimental results on the practical performance of the model construction 

mechanism applied on benchmark classes. 



Acknowledgements 

Foremost, I would like to thank Ullrich Hustadt for his invaluable support during the three 

years of my PhD studies. Not only his interesting research ideas, but also his constructive 

criticism and generous assistance regarding problems of any nature greatly contributed to 

making this thesis possible. 

I would also like to extend my gratitude to Boris Konev for giving helpful suggestions 

and to Clare Dixon for additionally being a thorough tester of TSPASS. Consequently, 

numerous bugs have been discovered and corrected. Moreover, I am grateful to my fellow 

PhD colleagues at the Department of Computer Science, who contributed to creating an 

enjoyable working atmosphere, and special thanks go to my parents and sisters. 

Finally, I am thankful for the opportunities to present most of the results contained in 

this thesis at various international workshops and conferences. 

The results described in Chapter 4 were published in [661 and presented at the Interna

tional Workshop on First-Order Theorem Proving (ITP 2(09) held in Oslo, Norway, during 

6-7 July, 2009. 

Chapter 5 is based on the material published in [651 and presented at the 22nd Interna

tional Conference on Automated Deduction (CADE-22) held in Montreal, Canada, during 

2-7 August, 2009. 

The description of the theorem prover TSPASS given in Chapter 6 is derived from the 

material published in [681. 

Lastly, the results described in Chapter 7 were published in [671 and presented at the 

16th International Symposium on Temporal Representation and Reasoning (TIME 2009) 

held in Brixen-Bressanone, Italy, during 23-25 July, 2009. 

vii 





Contents 

Abstract 

Acknow ledgements 

Contents 

1 Introduction 

1.1 Formal Verification 

1.1.1 Formal Languages 

1.1.2 Model Checking . 

1.1.3 Direct Proof Methods 

1.1.3.1 Tableaux-Based Proof Methods 

1.1.3.2 Automata-Based Proof Methods 

1.1.3.3 Resolution-Based Proof Methods. 

1.2 Novel Contributions 

1.3 Thesis Outline . . . . . . . . 

2 Linear-Time Temporal Logics 

2.1 Introduction.................. 

2.2 Propositional Linear-Time Temporal Logic;; 

2.3 First-Order Temporal Logics . 

2.3.1 The Monodic Fragment . 

2.4 Additional Notions ....... . 

2.5 Divided Separated Normal Form 

2.6 Clausification of Temporal Problems 

2.7 Summary .............. . 

3 Ordered Fine-Grained Resolution with Selection 

3.1 Introduction........... 

3.2 Monodic Temporal Resolution. . . . . . . . . . . . 

3.3 Inference Rules ................... . 

3.3.1 Fine-Grained Step Resolution and Eventuality Resolution 

ix 

v 

vii 

be 

1 

1 

2 

4 

4 

5 

5 

5 

9 

10 

13 

13 

13 

14 

17 

17 

20 

24 

28 

29 

29 
30 

34 

35 



x 

3.3.2 Resolution-Based Loop Search Algorithm 

3.4 Refutational Completeness. . . . . . . . . . . 

3.4.1 Refined Monodic Temporal Resolution .. 

3.4.2 Properties of the Ref-BFS algorithm ... 

3.4.2.1 Proof of Refutational Completeness 

3.4.3 Proof of the Lifting Theorem .... 

3.4.4 Proof of Refutational Completeness 

3.5 Summary .................. . 

4 Redundancy Elimination in Monodic Temporal Reasoning 

4.1 Introduction .............. . 

4.2 Adding Redundancy Elimination ........... . 

4.2.1 Tautological Temporal Clauses ........ . 

4.2.2 A Subsumption Relation on Temporal Clauses 

Contents 

38 

40 

40 

42 

46 

48 

65 

74 

11 

77 

78 

79 

79 

4.2.3 SUbsumption-Compatible Ordered Fine-Grained Resolution with Se-

lection ......... . 

4.2.4 Subsumption Lemmata ........... .. . 

4.3 Subsumption and Loop Search ............. . 

4.3.1 Subsumption-Restricted Loop Search Algorithm 

4.3.2 Properties of the Loop Search Algorithm 

4.3.3 Refutational Completeness 

4.4 Summary . . . . . . . . . . . . . . 

5 Fair DerivatiollB in Monodic Temporal Reasoning 

5.1 Introduction ......... . 

5.2 Constructing Fair Derivations . . . . . 

5.2.1 Fairness Problems ...... . 

5.2.2 The Fair Inference Procedure F 

5.3 Refutational Completeness . 

5.4 F as a Decision Procedure 

81 

82 

90 

91 

92 

101 

103 

105 

105 

106 

106 

108 

111 
119 

5.5 Summary . . . . . . . . . 121 

6 TSPASS - a Fair Monodic Temporal Logic Prover 123 

6.1 Introduction................................ 123 

6.2 Fine-Grained Step Resolution and First-Order Logic . . . . . . . . . 124 

6.3 Implementing a Fair Architecture for Monodic Temporal Reasoning. 126 

6.3.1 The Architecture of TeMP. . . . . . . . . . . . . 126 

6.3.2 Fairness Problems of TeMP ........... . 

6.3.3 Implementation of the Fair Inference Procedure. 

6.4 Implementation of TSPASS ....... . 

6.4.1 Saturation Architecture of SPASS ....... . 

129 

129 

132 

133 



Contents 

6.4.2 

6.4.3 

6.4.4 

6.4.5 

6.4.6 

6.4.7 

6.4.8 

Implementation Basics . . . . . . 

General Architecture of TSPASS 

Translation Into DSNF 

Clausification and Translation to FOL 

Efficient Access to Loop Search Clauses 

Temporal Saturation ..... 

Loop Search Testing . . . . . . . . . . . 

xi 

134 

137 

138 

141 

143 

144 

147 

6.4.9 Implementation Peculiarities ...... 149 

6.4.10 Fairness Problems Related to the Regular Clause Selection FUnction 150 

6.5 Experimental Results. . . . . . . . . . . . . . . . . . . . . 151 

6.5.1 Considered Temporal Problems . . . . . . . . . . . 151 

6.5.2 Performance on Propositional Temporal Problems 153 

6.5.3 Effectiveness of Redundancy Elimination 162 

6.5.4 Performance on Monodic Temporal Problems 163 

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . 

7 Resolution-Based Model Construction for PLTL 

7.1 Introduction............. 

7.2 Propositional Model Construction 

7.3 Temporal Model Construction . 

7.3.1 Construction Principle .. . 

7.3.2 Proof of Correctness ... . 

7.4 Practical Considerations and Complexity 

7.5 Implementation .............. . 

7.6 Experimental Results ........... . 

7.7 Alternative Model Construction Approaches . 

7.8 Minimal Models 

7.9 Summary 

8 Conclusion 
8.1 Summary of the Results 

8.2 FUrther Research Possibilities 

Bibliography 

Index 

165 

169 
169 

170 

171 

174 

177 

179 

181 

181 

183 

184 

185 

187 

187 

189 

193 

203 





Chapter 1 

Introduction 

In this introductory chapter we give a brief overview of the scientific field of formal verification, 

to which the methods developed in this thesis are meant to contribute. We begin by 

motivating the usefulness of formal verification before we introduce the two main constituents 

that different approaches towards formal verification have in common: the specification 

languages and the reasoning methods for establishing the correctness of a specified system. 

We conclude this chapter by briefly describing tht> nowl contributions and we give a general 

outline of the thesis. 

1.1 Formal Verification 

The field of formal. verification is concerned with verifying that a hardware or software 

system behaves correctly in all situations, which is an essential prerequisite in the design 

and construction of safety critical systems. In addition to knowing that a verified system is 

correct, the quest for formal verification is motivated by the high costs incurred in case of 

failure and when corrections of errors are required. For examplt>, the following four case 

studies illustrate the dramatic consequences which errors in complex hardware and software 

systems can have . 

• In order to improve the performance of the floating point unit (FPU) in the Pen

tium CPU, a new algorithm was used for computing the results of floating-point 

divisions [431. This new algorithm used look-up tables with 1066 non-empty entries 

in intermediate computation steps. However, due to a mistake in how this table was 

initially constructed, 5 of those entries were not copied into the processor design, and 

as a result, the FPU returned wrong values on certain floating point computations. 

This became known as the Pentium FDIV bug in 1994, and the manufacturer Intel 

was forced to replace the dt>fective chips . 

• In the case of the maiden flight of the Ariane 5 launcher [611, flight 501, on 4th June, 

1996, the launcher started to disintegrate 39 seconds after lift-off and was destroyed by 

an automatic safety mechanism, resulting in an associated financial loss of 1.9 billion 
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French Francs. The erroneous flight behaviour was caused by wrong input given to the 

on-board computer by the Inertial Reference System. The input data provided was in 

fact an error message but was interpreted as flight data instead. The error message 

resulted from a software exception which occurred due to the conversion of a 64-bit 

floating point number to a 16-bit signed integer number, which yielded an overflow. 

The overflow occurred during computations that were in fact intended for the Ariane 4 

launcher but were no longer required for Ariane 5, resulting in computations with 

higher numerical values than the software expected. The software showing faulty 

behaviour on the Ariane 5 was initially designed for the Ariane 4 and was intended 

for a different flight path. According to [61] system engineering faults were the root 

cause of flight 501 's failure. 

• In 1999 the Mars Climate Orbiter spacecraft reached Mars and was supposed to enter 

a low orbit around Mars. However, during the design and construction phase of the 

spacecraft one error remained unnoticed [34]: the software used to control the thrusters 

on the ground was working with Imperial measurement units, whereas the spacecraft 

itself expected metric units. As a result the spacecraft descended to an altitude of 

57 km above Mars, which was too low for its survival . 

• Finally, the Mars Polar Lander was subject to a similar fate in 1999 [34]. Its mission 

involved a landing on the surface of Mars, but its last transmission was received when 

it prepared for entering Mars' orbit. The real cause of its disappearance still remains 

unknown. However, a logic error leading to a premature shutdown of the descent 

engines was discovered later on, together with problems related to the touchdown 

sensors. One possible explanation for the loss of the spacecraft would hence be a free 

fall onto the surface of Mars. 

For formal verification to be applicable, precise yet understandable ways are necessary for 

specifying complex systems and what constitutes correct behaviour. In addition, exhaustive 

methods for determining that a system behaves correctly for all input patterns are required. 

In Section 1.1.1 we de>eribe the former aspect of specifying systems in a formal way 

in greater detail. For the latter point concerning methods to establish that systems show 

correct behaviour, two different approaches can be identified: model checking-based and 

direct proof-based verification methods, which are discussed in the Sections 1.1.2 and 1.1.3, 

respectively. 

1.1.1 Formal Languages 

The specification of hardware and software systems for formal verification is based on 

abstracting the behaviour of the considered system using a "language" for which the 

meaning of its "sentences" is defined in a precise way. The definition of the specification 

language is typically given on two levels. 
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The definition of its grammar, i.e. the way how "sentences", or more correctly formulae, 

are built in this language, is given on the first level together with the definition of the 

vocabulary that can be used, i.e. the basic building blocks, which are called constants, 

functional symbols, terms, propositional symbols, or predi.cates in our case, and the operators 

connecting the basic building blocks, like 1\, V,:::::}. Formulae can be seen as tree-like 

structures with basic building blocks appearing on the leaves and operators in the inner 

nodes. 

On the second level, then, a precise way of interpreting the different building blocks and 

the operators connecting them together is provided. The interpretation assigns the value 

"true" or "false" to a formula according to the values assigned to the basic building blocks 

and according to the operators connecting them. If there is an assignment to the basic 

building blocks of a formula F such that its interpretation w.r.t. to the assigned values is 

"true", we say that the formula F is satisfiable. If every assignment leads to a interpretation 

that is "true", the formula F is said to be valid. An assignment of values to the basic 

building blocks such that the formula F is interpreted as "true" is called a model for the 

formula F. 
In this thesis we focus on tempomllogi.cs as specification languages, which were originally 

designed to represent tense in natural language [76]. Temporal logics can be used to express 

conditions that should hold in different moments in time and are as such naturally suited for 

expressing the specification and properties of hardware and software systems whose state 

changes over time. 

A wide variety of different temporal logics exist. Beside having different vocabulary, 

they also differ in the considered model of time. Generally speaking, the class of languages 

with a branching-time model [33] represent several possible choices over time in a tree-like 

structure as interpretations for formulae, whereas the class of languages with a linear mOtiel 

of time [73,74] considers a single time line for which ouly one choice is possible at any 

moment in the time line. In addition to differences in representing time flow, temporal 

logics also vary in their notion of instants in time. Moments in time can be dense [16]' 

i.e. isomorphic to the real numbers, or rather considered as discrete time instants [74], 

i.e. isomorphic to the natural numbers or integers. Moreover, temporal logics that do not 

consider time instants but rather time intervals also exist [71,82]. 

Important concepts in the verification of reactive and concurrent system can also be 

specified in temporal logics. For example, the notions of 

• safety: "nothing bad happens", 

• liveness: "something good eventually happens", 

• fairness, i.e. constraints that exclude unwanted behaviour of the specified system, 

represent important verification properties and can be expressed in temporal logics [32,74]. 

For instance, reactive systems are an important class of systems in the field of formal 

verification 1451. Their behaviour is characterized by a continuous interaction with the 
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environment they are in. Verifying properties of reactive systems has been successfully 

achieved using temporal (and modal) logics [29,32,39,73,86]. 

Besides formal verification, other application areas of temporal logics include the specifi

cation of programs [74], temporal databases [89], knowledge representation through temporal 

description logics [5J, logic programming in the form of executable temporal logics [l1J, and 

the analysis of natural language [85]. 

In this thesis we focus on propositional linear-time temporal logic (PL TL) and first-order 

temporal logic (FOTL) as specification languages. For both languages we assume a linear 

time flow model composed of discrete time instants with finite past and infinite future, 

i.e. a model of time isomorphic to the natural numbers. PL TL can be seen as an extension 

of propositional logic with temporal operators, whereas FOTL is a similar extension of 

first-order logic. 

In the following two sections, we describe the two main approaches for establishing that 

a system behaves according to some specified behaviour in temporal logics. 

1.1.2 Model Checking 

Model checking is a prominent method for verifying that a system specification exhibits 

certain properties. It has been applied successfully both in the verification of hardware and 

software systems [19J. 

Verification via model checking involves validating that a specific temporal formula, 

which represents the property that is to be verified, is fulfilled in every possible state that the 

system can enter. Obviously, the number of possible states that can occur in hardware and 

software systems can grow very large, which is especially a problem for software verification 

via model checking. Tremendous research effort has gone into combating this space explosion 

problem, and impressive results have been achieved. Moreover, automated model checking 

tools like SPIN [48J and NuSMV [18J have also been developed. In the case where a 

specification does not fulfil a property, a counter-example, i.e. the error path in the state 

space, is automatically constructed by the model checking tool. 

However, the model checking approach to formal verification presents problems in the 

case of infinite-state systems, which frequently occur with timed and hybrid systems [2OJ, 

for example. Obviously, determining whether a property holds in every state is not possible 

directly in that case, and as such model checking can, for instance, only be applied to finite 

reductions of these infinite-state systems [21]. Other ways of handling infinite-state model 

checking have been developed, see e.g. [15], but the fundamental problem remains that it is 

impossible to check in finite time whether a property holds in infinite-state systems simply 

by visiting all the possible states of the systems. 

1.1.3 Direct Proof Methods 

In contrast to model checking, verification based on direct proof has the advantage that it 

can also be easily applied on infinite state systems. Instead of verifying that a property holds 
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in every possible state that a specified system can be in, the proof-based verification methods 

try to perform "reasoning" with the system specification formula 'P and the property 1jJ 

that is to be verified. More specifically, as proving the validity of the fonnula 'P =* 1jJ 

is equivalent to e>tablishing that the formula ...,( 'P =* 1jJ) == 'P 1\ ...,1jJ is unsatisfiable, the 

proof-based verification methods try to determine that the formula 'P 1\...,1jJ is unsatisfiable. 

In the following we present three proof methods that are of particular importance for 

temporal logics. 

1.1.3.1 Tableaux-Based Proof Methods 

Tableaux-based proof methods try to construct structures, so-called tableaux, for formulae 

from which models can be built easily. If such a structure has been exhaustively constructed 

and when it become> apparent that no model can be extracted from it, one can conclude that 

the considered formula is unsatisfiable, and its negation therefore valid. As such the proof 

of unsatisfiability for a formula can become rather involved as the full structure representing 

all the potential models has to be explored before one can conclude that no model can exist. 

One has to note, though, the tableaux-based algorithms typically do not suffer from the state 

space explosion that is present in model checking approache>. However, tableaux algorithms 

share the aspect of model checking approache> that a model can be easily obtained once a 

formula is determined to be satisfiable, which is equivalent to finding a counter-example in 

the case of validity checking. 

Tableaux algorithms for PLTL are given, for example, in [93], and for a fragment of FOTL 

(and decidable subclasses) in [60]. Implementations of tableaux algorithms for PLTL exist, 

for instance, in the Logics Workbench [46], the Tableaux Work Bench [4J and LoTREC [42J. 

1.1.3.2 Automata-Based Proof Methods 

Proofs based on automata are mainly available for PL TL. The general idea behind this proof 

method lies in the structure of PLTL models: they can be seen as infinite strings over the 

language consisting of all the subsets of propositional symbols occurring in a specific formula. 

Biichi automata, i.e. automata that manipulate infinite strings, can be constructed in such 

a way that they only accept infinite strings which represent models of a given fonnula 'P. 

Then, if such an automaton for the formula ""'P dOffi not accept any infinite words, we can 

conclude that the formula ""'P is unsatisfiable, and therefore 'P is valid. More details can be 

found in [75J. 

1.1.3.3 Resolution-Based Proof Methods 

The main goal of resolution-based proof methods consists in deriving a contradiction from a 

given set of formulae. Broadly speaking, two different clas...'leS of resolution inference systems 

exist: non-clausal and clausal re>olution. They mainly differ in the type> of fomlUlae on 

which the inference rules can be applied. 
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Non-clausal resolution methods can be applied on arbitrary formulae. Such an inference 

system has been developed for PL TL in [2], an extension to FOTL was given in [3]. The 

practical drawback of the inference systems presented in [2,3J lies in the large number of 

inference rules, which makes an implementation difficult. 

In this thesis we therefore focus on clausal resolution. The inference rules of clausal 

resolution can only be applied on formulae that are in a normal form, the so-called clausal 

normal form. Formulae in clausal normal form are also called clauses. Essentially, in 

the non-temporal propositional case, clauses are mutisets of literals, where a literal is 

either p or ""p for a propositional symbol p. The empty clause, denoted by .1, plays an 

important role in clausal resolution calculi as we will see later. Note that the empty clause is 

unsatisfiable. In the first-order non-temporal case, the notion of literal is extended to include 

arbitrary positive or negative predicates, Le. pet}, ... , tn) or ""P(tl' ... , tn), where tI, ... , tn 

are arbitrary terms. Efficient algorithms for transforming sets of arbitrary formulae into 

"small" clausal normal forms have also been developed. 

The resolution calculus was initially introduced by J.A. Robinson in 1965 [79J. It consists 

of the following two inference rules: 

• Resolution 
CvA Dv...,B 

(C V D)a 

where C, D are disjunctions of literals and a is a most general unifier of the atoms A 

and B 

• Factoring 
CvAvB 
(C V A)a 

where C is a disjunction of literals and a is a most general unifier of the atoms A 

and B 

A unifier a of two atoms A and B is a function that substitutes terms for variables such 

that Aa = Ba. 
The resolution rule states that if two clauses C V A and D v...,B contain atoms A and B, 

respectively, which can be unified by a (most general) unifier a, then one can derive a clause 

(C V D)<T, where the variables in the disjunctions of literals C and D are replaced by the 

terms assigned to them in a. In the propositional case the intuition behind the resolution 

inference rules is the following: if one assumes that the two propositional clauses C V A, 

D V ...,A are true, it is clear that C V D must hold as A and ...,A cannot both be true. The 

intuition behind the resolution rule in the first-order case is similar if one takes into account 

that first-order clauses are implicitly universally quantified, i.e. the fact that a first-order 

clause is true implies that it is still true if variables are replaced consistently by arbitrary 

terms. 
The factoring rule, then, states that two occurrences of positive literals which can be 

unified by a most general unifier can be replaced by a single occurrence of them after 
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the computed unifier has been applied on all the literals. In the propositional case the 

factoring rule simply removes duplicate literals from clauses, whereas the factoring rule 

in the first-order case removes literals that can be unified, i.e. made equal through the 

application of a unifier, from a given clause. 

In an attempt to determine whether a set of clauses is unsatisfiable, the inference rules 

of the resolution calculus are exhaustively applied on the clauses contained in the set. New 

clauses are obtained from the applications of these inference rules, which are again considered 

for further inference computations. If the empty clause ..1 is obtained at some point, one 

can conclude that the initial set of clauses is unsatisfiable. Otherwise, if the resolution and 

factoring inference rules have been exhaustively applied and no new clauses can be derived, 

one can infer that the initial set of clauses is satisfiable. 

Despite having been developed to increase the efficiency of automated theorem proving, 

a straight-forward implementation of the resolution inference rules presented above would 

not lead to an efficient theorem prover as the number of possible inferences would be far 

too large. To tackle this problem, numerous strategies have been developed that can help 

reduce the number of possible inferences and prune the search space in that way. These 

strategies include, for example, ordering restrictions and selection functions [10], which lead 

to modified inference ruJes, or, for instance, the set of support strategy [63], which enforces 

that only specific combinations of clauses are considered for computing inferences. 

Other optimisations include the elimination of clauses that do not contribute or rather 

prolong the derivation of the empty clause. Techniques such as redundancy elimination can 

be applied here. Two important classes of redundant classes are tautologies and subsumed 

clauses. Tautologies are clauses that are true in every interpretation and they can (usually) 

be safely discarded as they cannot contribute to derivations of the empty clause. The 

notion of clause subsumption deals with "smaller" clauses that subsume "larger" clauses, 

i.e. whenever the "smaller" clause is satisfied in a model, the "larger" clause is also fulfilled. 

Additionally, the "larger" clause would potentially lead to longer derivations of the empty 

clause. Subsumed clauses can therefore be removed from the clause sets used for inference 

computations. 

On the practical side then, the notion of fair derivations plays an important role in the 

design of automated theorem provers. Theorem provers must ensure that fair derivations 

are constructed, i.e. every (derived) clause must be considered for inference computations at 

some point in time. If one clause would never be chosen for computing inferences, it could 

happen that a clause essential for deriving the empty clause from an unsatisfiable clause set 

is not used and the empty clause couJd not be obtained. A variety of selection strategies for 

choosing clauses to compute inferences with whilst maintaining the fairness of derivations 

have been developed, see e.g. [91]. 

A large number of automated theorem provers for first-order logic based on resolution 

have been developed over time. The prover Otter [70] can be seen as the ancestor of all 

modern resolution-based theorem provers as its design principles laid the foundation for the 

architectures of modern provers. Other notable automated theorem provers for first-ordt'r 
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logic (with equality) include E [81], which is based on superposition calculus for equational 

clausal logic [9]' SPASS [92] and Vampire [78]. There also exist theorem provers for first-order 

logic (with equality) that are not based on resolution (or the superposition calculus) as 

such. One example of such a prover is Waldmeister [64] (for unit equational logic), whose 

inference procedure uses unfailing Knuth-Bendix completion [8]. 

When developing new inference calculi based on resolution, there are two theoretical 

concepts that are of particular importance: soundness and refutational completeness. 

The concept of soundness relate. to the correctness of the inference rule.: one has to 

show that if a models fulfils all the premises of an inference rule, then the conclusion of that 

inference rule is also satisfied by the model. The property of correctness can be used to show 

the unsatisfiabiIity of a clause set once the empty clause has been derived. If one assumes 

that the originally considered clause set has a model, it would follow from soundness of 

the inference rules that the empty clause would be satisfied in that model, which is then 

a contradiction as the empty clause is equivalent to false and consequently, it cannot be 

fulfilled by any model. 

The concept of refutational completeness can be essential for the practical usefulness 

of a calculus. It characterises the fact that if a clause set is unsatisfiable, then the empty 

clause can be derived by an exhaustive application of the inference rules of the calculus on 

the clauses contained in the considered set. 

If a calculus is both sound and refutationally complete, one can conclude that a clause 

set is unsatisfiable if and only if an exhaustive application of the calculus' inference rules 

derive. the empty clause. It is common that proving the refutational completeness of a 

calculus is a harder task than showing the correctness of its inference rules. 

For PL TL clausal resolution-based calculi were, for example, introduced in [17] and [90]. 

In this thesis we focus on the approach introduced in [37]. There, temporal formulae are first 

transformed into a normal form called Separated Normal Form (SNF), which is characterized 

by separating the different temporal aspects of temporal formulae. The transformation of a 

PLTL formula into SNF results in (possibly) several new PLTL formulae that are of three 

different types: formulae which have to hold at the initial moment in time, formulae that 

link consecutive time points and formulae that express conditional eventualities. Resolution 

inference rules are then devised that can operate on the first-two SNF formulae type., 

whereas a special inference rules is required to handle conditional eventualities. 

For first-order temporal logic we only consider the monodic fragment in this thesis. In 

the monodic fragment formulae that appear under a temporal operator are only allowed to 

have at most one free variable. A first resolution-based calculus, called monodic temporal 

resolution, was introduced in [23]. A normal form called Divided Separated Normal Form 

(DSNF) has been developed for that calculus, which can be seen as a minor extension 

of SNF. A type for formulae that should hold at every moment in time has been added, 

and additionally, only unconditional eventualities occur in DSNF. As in the case for PLTL, 

monodic temporal resolution uses special inference rules to handle unconditional eventualities, 

the so-called eventuality resolution rules, and resolution-like inference rule. for the remaining 
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DSNF formulae types. 

Despite representing a big step towards efficient automated theorem proving in monodic 

FOTL, most inference rules of monodic temporal rffiOlution have applicability conditions 

that are computationally too complex to be implemented efficiently. As a remedy, a more 

machine-oriented resolution-based calculus, the fine-grained (temporal) resolution calculus, 

has been introduced in [57, !'i8], which operates on problems in DSNF that have been 

clausified. The computationally complex inference rules of monodic temporal resolution 

have been replaced by resolution-based inference rules that operate on the different temporal 

clause types of clausified DSNF. In this regard fine-grained resolution can be seen as being 

more fine-grained than monodic temporal resolution as it performs "smaller" inference steps 

by manipulating temporal clauses. Moreover, special algorithms have been developed that 

aid the search for the premises of the eventuality resolution rules. As a refinement, the 

ordered fine-gmined (tem.poml) resolution with selection calculus has been presented in [51]. 

It extends fine-grained resolution with ordering restrictions and selection functions. Another 

advantage of using clausal resolution and the normal form DSNF is that the temporal clauses 

in clausified DSNF can be translated into first-order logic. State-of-the-art theorem provers 

for first-order logic can then be used for temporal reasoning as most temporal inference 

rules can be mapped onto first-order resolution and factoring rules. A special treatment of 

eventualities remains necessary, though. 

As a consequence of these theoretical advances, automated theorem provers based on 

resolution have been developed for PLTL and monodic FOTL. TRP [52,53] and TRP++ [49] 

are theorem provers for PLTL that implement the resolution-based calculus introduced 

in [37]. TRP is written in Prolog, whereas a C++ implementation of the temporal resolution 

calculus is available in TRP++. For monodic FOTL then, the theorem prover TeMP has 

been developed [50]. It is based on ordered fine-grained resolution with selection, and uses 

the first-order prover Vampire as inference kernel. 

We continue now by stating the novel contributions of this thesis to the field of formal 

veri fication. 

1.2 Novel Contributions 

The novel contributions that can be found in this thesis consist in the following . 

• A full proof of refutational completeness for ordered fine-grained temporal resolution 

with selection is given. The proof also includes the full details of the requirffi lifting 

theorem . 

• The compatibility of redundancy elimination, i.e. the removal of tautologies and 

subsumed clauses, in combination with ordered fine-grained temporal resolution has 

been studied formally. In order to show the refutational completeness of ordered fine

grained temporal resolution with selection in the presence of redundancy elimination, 

we have extended the calculus with two new inference rules. The proof of refutational 
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completeness for the extended calculus uses proof-theoretical means. i.e. we show that 

for a given refutation that involves subsumed or tautological clauses, there also exists 

a refutation from the subsuming clauses which does not contain tautologies . 

• We have developed an inference procedure for monodic FOTL based on ordered 

fine-grained temporal resolution with selection which can ensure fair derivations. 

Some inference rules of ordered-fine grained temporal resolution with selection have 

applicability conditions that are only semi-decidable. As a consequence, fair derivations 

cannot be guaranteed in practice. We have also proved the refutational completeness 

of the fair inference procedure, and we have shown that the fair inference algorithm 

can be used as a decision procedure for certain classes of temporal problems . 

• The inference procedure has been implemented in the theorem prover TSPASS. We 

provide a detailed description of its implementation, which is based on the first

order theorem prover SPASS. We have also analysed the effectiveness of redundancy 

elimination and the proof search performance of TSPASS on several examples. Binaries 

and the source code for TSPASS are available at 

http://www.csc.liv.ac.uk/-michel/software/tspasB/ 

• We have developed a model construction algorithm for satisfiable PLTL formula that 

uses saturations under ordered fine-grained temporal resolution with selection, for 

which we also provide a proof of correctness. The model construction procedure has 

been implemented as an extension of TSPASS, and we have analysed its practical 

performance on numerous examples. 

We conclude this chapter by giving an organisational overview of this thesis. 

1.3 Thesis Outline 

The thesis is organised as follows. 

In Chapter 2 we define the syntax and semantics of propositional linear-time temporal 

logic and first-order temporal logic. We also introduce the normal form that we consider 

for formulae of these logics, and describe how the formulae that are in normal form can be 

clausified for the resolution-based calculus that is introduced in Chapter 3. We also define 

some notions that are important for the subsequent parts of this thesis. 

The main aim of Chapter 3 is to define the ordered fine-grained resolution with selection 

calculus and to prove its refutational completeness. The inference rules of ordered fine

grained resolution with selection can be classified into two categories: the fine-grained step 

resolution rules and the eventuality resolution rules in combination with the loop search 

algorithm FG-BFS. In order to show the refutational completeness of the calculus we briefly 

recall the monodic temporal resolution calculus before we define a refined version of monodic 

temporal resolution that is used in the proof of refutational completeness of the ordered 
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fine-grained resolution with selection calculus. Subsequently, we then prove the lifting 

theorem for ordered fine-grained resolution with selection, which is required for the proof of 

refutational completeness in the final part of the chapter. 

The focus of Chapter 4 lies on analysing the compatibility of ordered fine-grained 

resolution with selection with redundancy elimination methods such as the deletion of 

tautologies and subsumed clauses. We show how the calculus has to be extended in order 

to remain compatible with redundancy elimination rules. We also prove the refutational 

completeness of subsumption-compatible ordered fine-grained resolution with selection. 

In Chapter 5 we present a new inference procedure for monodic FOTL that can ensure 

fair derivations. The inference procedure is based on ordered fine-grained resolution with 

selection and its main design principle consists in integrating the loop search procedure of 

ordered fine-grained resolution with selection into the main saturation under fine-grained 

step resolution. In this way the sequential execution of these two categories of inference 

rules, which can potentially lead to unfairness, can be avoided and fair derivations can be 

guaranteed. 

Chapter 6 then describes the implementation of the fair inference procedure for monodic 

FOTL in the automated theorem prover TSPASS. We give a detailed description of how the 

first-order theorem prover SPASS 3.0 has been modified in order to accommodate the fair 

inference procedure for monodic FOTl. The chapter concludes with experimental results 

demonstrating the effectiveness of TSPASS on various problems mainly in comparison with 

the automated theorem prover TeMP. We also illustrate how the combinations of different 

redundancy elimination rules such as forward or backward sUhsumption and tautology 

deletion can influence the execution time required for finding proofs with TSPASS. 

Finally, in Chapter 7 a method for automatically constructing models of satisfiable PL TL 

formulae is introduced. The construction is based on computing saturations under the 

PLTL version of ordered fine-grained resolution with selection. Regular model construc

tion for propositional clause sets is then used to construct propositional models at the 

different time points of the temporal model. We present the construction procedure and 

prove its correctness. Additionally, we describe some practical considerations regarding 

the implementation of the model construction algorithm in the theorem prover TSPASS. 

Subsequently, we analyse some experimental results obtained by comparing the temporal 

model construction of TSPASS with a tableaux-based reasoning procP.dure implemented in 

the Logics Workbench on series of PL TL benchmark formulae. 





Chapter 2 

Linear-Time Temporal Logics 

2.1 Introduction 

Originally dffiigned to reprffient tense in natural language [76], temporal logics have been 

used successfully in numerous application areas. 

For example, important concepts in the verification of reactive and concurrent systems. 

such as safety, fairness and livena>s, can be specified in temporal logics [32,74]. Verifying 

propertiffi of reactive systems has been succffisfully achieved using temporal (and modal) 

logics [32,73,86]. 

Besides formal verification, other application areas of temporal logics include the specifi

cation uf programs [74], temporal databases [89], knowledge reprffientation through temporal 

description logics [5], logic programming in the form of executable temporal logics [11], and 

the analysis of natural language [85]. 

The aim of this chapter is to give a fonnal definition of the syntax and semantics for 

the two languages that we consider in this thesis: propositional linear-time temporal logic 

(PLTL) and monodic first-order temporal logic (FOTl). Both of thffie logics are interpreted 

over a model of time that is isomorphic to the natural numbers. 

This chapter is organised as follows. First of all, we dfficribe the syntax and semantics 

of propositional linear-time temporal logic. We then define the syntax and semantics of 

first-order temporal logic, and we give a formal definition of the monodic fragment. We 

also introduce some notions that are essential for the following parts of this thesis. In the 

subsequent section we prffient the normal form that we consider for Pl TL and monodic 

FOTl formulae, and we conclude the chapter with a description of how the formulae that 

are in normal form can be clausified for the resolution-based calculus that is defined in 

Chapter 3. 

2.2 Propositional Linear-Time Temporal Logics 

The language of Propositional Linear Time Temporal Logic, Pl Tl, is an extension of classical 

propositional logic by temporal operators for a discrete linear model of time (i.e. isomorphic 
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V1ln F T 
V1ln ~ 1. 
V1ln FP 
V1ln F -'rp 
V1ln FrpV1/1 
V1ln FrpA1/1 
V1ln F rp ::::} 1/1 
V1ln F rp ¢:> 1/1 
V1ln F Orp 
V1ln F Orp 
V1ln F Drp 
V1ln F rp U 1/1 

V1ln FrpW1/1 
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iff P E Dn 
iff not V1ln F rp 
iff V1ln F rp or mn F 1/1 
iff mn F rp and mn F 1/1 
iff mn F -'rp or mn F 1/1 
iff V1ln 1= rp ::::} 1/1 and V1ln 1= 1/1 ::::} rp 
iff V1ln + I 1= rp 
iff there exists m ~ n such that V1lm F rp 
iff for all m ~ n, mm 1= rp 
iff there exists a m ~ n such that V1lm F 1/1 

and mi 1= rp for every i, n ~ i < m 
iff V1ln F rp U 1/1 or V1ln F 0 rp 

Figure 2.1: Truth-Relation for Propositional Linear-Time Temporal Logic 

to N). The vocabulary of PLTL is composed of a countably infinite set of propositional 

symbols p, q, Po, PI,Pl, ... , the propositional operntors T (true), 1. (false), -', v, A, ::::}, ¢:> 

and the tempornloperntors D ('always in the future'), 0 ('eventually in the future'), 0 ('at 

the next moment'), U ('until') and W ('weak until'). 

The set of PL TL fonnulae is defined as follows: T and 1. are PL TL fonnula; any 

propositional symbol P is an atomic PLTL formula or atom: if rp and 1/1 are PL TL formulae, 

then so are 

-'rp, rp V 1/1, rpA 1/1, rp::::} 1/1, rp ¢:> 1/1, Drp, Orp, Orp, rpU 1/1, and rpW1jJ. 

Formulae of this logic are interpreted over temporal structures V1l = (Dn)nEN that 

associate with each element n of N, representing a moment in time, a propositional model (or 

valuation) Dn given by a set of propositional symbols. The definition of the truth-relation 

V1ln 1= rp is given in Figure 2.1. 

For a set N of PLTL fonnulae and n E N, we write V1ln F N if and only if mn 1= rp 

holds for every formula rp E N. 
A temporal structure V1l = (Dn)nEN is said to be a model for a formula rp if and only if 

it holds that V1l0 1= cpo A fonnula is satisfiable if and only there exists a model for rp. A 

formula rp is valid if and only if every temporal structure V1l = (Dn)nEN is a model for c.p. 

We say that a set of PLTL formulae N entails a formula 1/1, written N 1= 1jJ, if and only if 

every temporal structure V1l that is a model for every formula rp E N is a model for 1jJ. 

We now the define the syntax and semantics of first-order temporal logic. 

2.3 First-Order Temporal Logics 

First of all, let X = {x, y, Z, XO, Xl, ..• } be a countably infinite set of variables, CS = 

{c, d, CO, CI, ... } be a C(>untably infinite set of constants, FS = {I, g, h, fo, .. . } be a count ably 

infinite set of function symbols, each with a fixed arity ~ 1, and PS = {P, Po, ... } be a 
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non-empty set of predicate sym.bols, each with a fixed arity ;::: O. We write fin or Pin to 

indicate that a function symbol or predicate is of arity n, respectively. A proposition is a 

predicate of arity O. 

We now introduce the notion of terms. 

Definition 2.3.1. Let E ~ CS u FS and Y ~ X. Then the set of terms Tr;(Y) built Oller 

the set E and the set of variables Y is the smallest set inductively defined as follows: 

(i) Every variable y E Y 1S contained in TE(Y)' 

(1i) Every constant c E En CS is contained in TE(Y). 

(lii) If il," .• in E TEO") and fin E En FS is a function symbol, then f(t1, ... , in) is 

contained in TdY). 

Next we recall the syntax and semantics of first-order logic, FOL, without equality. The 

set of FOL formulae (without equality) is defined as follows: T (true) and .1 (false) are 

FOL formulae; if P is an n-ary predicate symbol and tl, ... , in are variables or constants, 

then P(t \ .... , t n) is an atomic FOL formula; if 'P and til are FOL formulae, then so are 

FOL formulae are interpreted over first-order structures 9Jt = (D, I), where D is a 

non-empty set, the domain, and I is an interpretation. The interpretation I maps every 

constant c E CS into an element J(c) E D, every function symbol fin E FS into a function 

J(f): Dn - D and every predicate Pin E PS into a set I(P) ~ Dn. An assignment a is a 

function from the set of variables X to D. For an assignment a the interpretation I induces 

a interpretation of tf'rms IQ: TcsLFs(X) - D which is inductively defined as follows: 

• For a variable x EX: 

• For a constant c E CS: 

JB(c) = J(c) 

• For terms t\, ... , tn E TCSI~'FS(X) and a function symbol fin E FS: 

The definition of the truth-relation 9Jt FQ 'P for FOL is given in Figure 2.2. 

Now, the language of First-Order (Linear Time) Temporal Logic, FOTL, is an extension 

of classical first-order logic by temporal operators for a discrete linear model of time (i.e. 

isomorphic to N). The vocabulary of FOTL (without equality and function symbols) is 

composed of the set of variables X, the set of constants CS, the set of predicate symbols PS, 

the propositional operators T . .1, .." V, /\. :::;., ¢}, the quantifiers 3Xi and VXi, and the 
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rot Fa T 
rot pba .l 
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rot Fa P(tl, ... , tm ) iff (P(tt), ... , P(tm)) E I(P) 
rot Fa ""'P iff not rot Fa 'P 
rot Fa 'P V t/J iff rot Fa i.p or rot Fa t/J 
rot Fa 'P II t/J iff rot Fa i.p and rot Fa t/J 
rot Fa i.p ~ t/J iff rot Fa ""i.p or rot Fa t/J 
rot Fa 'P # t/J iff rot Fa 'P ~ t/J and rot Fa t/J ~ 'P 
rot Fa 3xi.p iff rot FI! i.p for some assignment b that may differ 

from a only in x 
rot Fa 'rIxi.p iff rot FI! 'P for every assignment b that may differ 

from a only in x 

Figure 2.2: Truth-Relation for First-Order Logic 

temporal operators 0 ('always in the future'), 0 ('eventually in the future'), 0 ('at the 

next moment'), U ('until') and W ('weak until'). 

The set of FOTL formulae is defined as follows: T and .l are FOTL formulae; if P is an 

n-ary predicate symbol and tl, ... , tn are variables or constants, then P(tl, ... , tn) is an 

atomic FOTL formula; if i.p and t/J are FOTL formulae, then so are 

An occurrence of a variable x in a FOTL formula i.p is bound if and only if it occurs within a 

subformula t/J of'P such that 3xt/J or 'rIxt/J is also a subformula of 'P; otherwise, the occurrence 

is free. A FOTL formula 'P is said to be open if and only if it contains at least one free 

variable, and it is closed otherwise. For a given formula i.p, we write i.p(Xl' ... ,xn) to indicate 

that all the free variables of i.p are among Xl, ... , Xn . The set of variables contained in a 

term t E TcsuFs(X) or FOTL formula i.p (Le. bound and free variables) is denoted by var(t) 

and var( i.p), respectively; for the set of constants contained in the term t or FOTL formula i.p, 

we write const(t) and const(i.p), respectively. A term t E TcsuFs(X) or FOTL formula 'P is 

said to be gr01Jnd if and only if var(t) = 0 or var('P) = 0 holds, respectively. 

Formulae of this logic are interpreted over structures rot = (Dn, In)nEN that associate with 

each element n of N, representing a moment in time, a first-order structure rotn = (Dn, In) 

with its own non-empty domain Dn and interpretation In. An assignment a is a function 

from the set of variables X to UnEN Dn. The interpretation of terms I! induced by an 

interpretation In for an assignment a is defined analogously to the first-order case. 

The definition of the truth-relation rotn Fa 'P (only for those a such that a(x) E Dn for 

every variable x) is given in Figure 2.3. 

In this thelis we make the expanding domain assumption, that is, Dn ~ Dm if n < m, 

and we assume that the interpretation of constants is rigid, that is, In(c) = Im{c) for all 

n, mEN and constants c E CS. 

A structure rot = (Dn,In)nEN is said to be a model for a formula 'P if and only if for 

every assignment a with a(x) E Do for every variable x it holds that roto Fa 'P. A formula 
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!.mnFIlT 
!.mn l>f Il .1 
rotn Fil P(tl,.'" tm ) iff (l~(td,··· ,I~(tm)) E In(P) 
rotn Fil -''P 
!.mn Fil 'P V 1p 

rotn Fil f'/\ 1/J 
!.mn F Il 'P :::} 'I/J 
rotn Fil 'P ¢:} tj,. 

rotn Fil 3x'P 

rotnFIlO'P 
rotn Fil Of' 
!.mnFIlD'P 
!.mn Fil 'P U 1/J 

iff not !.mn Fil 'P 
iff!.mn Fil 'P or !.mn Fil w 
iff!.mn Fil 'P and !.mn Fil '1/1 
iff!.mn Fil -''P or !.mn FIl w 
iff !.mn Fil 'P :::} 1/; and !.mn FIl W :::} 'P 
iff!.mn Fb 'P for some assignment b that may differ 

from a only in x and such that b(x) E Dn 
iff!.mn F b 'P for every assignment b that may differ 

from a only in x and such that b(x) E Dn 
iff !.mn+1 FIl 'P 
iff there exists m ~ TI such that !.mm Fil 'P 
iff for all m ~ n, !.mm Fil 'P 
iff there exists m ~ n such that !.mm Fil 1/J and 

!.mi Fil 'P for every i, TI ~ i < m 
iff!.mn Fil 'P U 1jJ or !.mn Fil D'P 

Figure 2.3: Truth-Relation for First-Order Temporal Logic 
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is satisfiable if and only there exists a model for p. A formula 'P is valid if and only if every 

temporal structure!.m = (Dn,In)nEN is a model for 'P. 

2.3.1 The Monodic Fragment 

We can now define the notion of monodic FOTL formulae. 

Definition 2.3.2. A formula 'P of FOTL is calle.d monodic if and only if any subformula of 

'P that is of the form O'I/J, D tj,., Ow, 1/;1 U '1/12, or 1/;1 W 1/;2 contai,ns at rrwst one free variable. 

For example, the formulae 3xD'v'yP(x, y) and 'v'xDP(c, x) are monodic, whereas the 

formula 'v'x3y(Q(x, y) :::} DQ(x. y)) is not monodic. 

The set of valid formulae of FOTL is not recursively enumerable [87,881. However, the 

set of valid monodic formulae is known to be finitely axiomatisable [94]. 

2.4 Additional Notions 

We now introduce some important notions that are used in the subsequent sections and 

chapters. First of all, we define the concept of substitutions and some associated terminology 

like the domain and co-domain of substitutions. 

Definition 2.4.1. Let E ~ CS u FS. A substitution u: X -+ TdX) is a fu.nction from 

variables to t.erms such that there are only finitely many variables x E X with u( x) i' x. 

By id we denote the identity substitution. which is defined as id(x) = x for every variable 

xE X. 
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The set of all the substitutions over the variable set X and signature ~ is denoted by 

SubstE(X). 

Definition 2.4.2. Let ~ ~ CS u FS and let u: X ...... TECX) be a substitution. 

(i) The domain dom(a) of the substitution u is defined as follows: 

dom ( a) = {x E X I a ( x) f; x } 

If dom(a) = {Xl, ... ,xn}, then the substitution a will also be represented as 

(ii) The co-domain codom(u) of the substitution a is defined in the following way: 

codom(a) = {u(x) I X E dom(a)} 

Then, the application of substitutions on terms, atoms, literals and formulae is defined 

as follows. 

Definition 2.4.3 (Application of Substitutions on Terms). Let ~ ~ cs u FS, let u: X ...... 

T1;(X) be a substitution and let t E TECX) be a term. Then, we inductively define a term 

ta E TdX), which is the result of the application of the substitution a on the term t, in 

the following way: 

• For t = X EX: 

ta = xu = u(x) 

Two substitutions can be composed in the following way. 

Definition 2.4.4 (Composition of Substitutions). Let a, T: X ...... TdX) be substitutions. 

Then the composition aT: X ...... TdX) of the two substitutions u and T is a substitution 

defined as follows. For x EX, let 

(aT)(X) = (xa)T. 

Then, the application of substitutions to atoms, literals and clauses is defined as follows. 

Definition 2.4.5 (Application of Substitutions on Formulae). Let ~ ~ CS u FS, let 

a: X ...... TdX) be a substitution and let F be a FOTL formula built over ~ and PS. Then, 

we inductively define a FOTL formula Fa built over E and PS, which is the result of the 

application of the substitution a on the formula F, in the follOwing way: 

• true (T = true 
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• false a = false 

• For PEPS and terms fl.·.· .fn E T~(X): 

• For FOTL formulae G and H built over E and PS such that: 

- Fa = (...,G)a = ...,(Ga) 

- Fa = (G /I. H)a = Ga /I. Ha 

- Fa = (G V H)a = Ga V Ha 

- Fa = (G =? H)a = Ga =? Ha 

- Fa = (3xG)a = 3y(G([x ....... y]a)) 

- Fa = (VxG)a = Vy(G([x ....... y]a)) 

- Fa = (OG)a = O(Ga) 

- Fa = (::JG)a = O(Ga) 

- Fa = (OG)a = O(Ga) 

- Fa = (GUH)a = (Ga)U(Ha) 

- Fa = (GW H)a = (Ga)W(Ha) 

where y is a fresh variable such that y ¢ var(G), y ¢ dom(a) and y ¢ var(codom(a)). 

As a first simple observation, we note that the composition of substitutions is associative. 

Lemma 2.4.6. Let E ~ CS u FS, let a,T,V: X - TdX) be substitutions, let t E TdX) 

be a term and let F be a FOTL formula built over E and PS. 

Then it holds tlUll (aT)v = a(Tv), t((aT)v) = t(a(Tv)) and F((aT)v) = F(a(Tv)). 

Finally, we define certain properties of substitutions. 

Definition 2.4.7. We say tlUlt a sub.qti.tution a: X - TE(X) is 

(i) a variable renaming if and only dom(a) = codom(a); 

(ii) invertible if and only if there exists a s'ubstit'ution a- 1 : X - TdX) such that aa- 1 = 

id; 

(iii) idempotent if and only if aa = a .. 

(iv) ground if and only if for every van.able x E dom(a): a(x) E TE (0) .. 

(v) grounding for a sct N of tcrm..q or FOTL formulae if and only if for ellery term or 
FOTL formula '-P E N, the term or FOTL formula cpa is ground. 



20 CHAPTER 2. LINEAR-TIME TEMPORAL LOGICS 

Definition 2.4.8. Let (T and T be two substitutions. We say that the substitution (T is more 

general than the substitution T, written (T S T, if and only if there is a substitution (J with 

(T(J=T. 

We now introduce the normal form that we are considering for PLTL and monodic FOTL 

formulae. 

2.5 Divided Separated Normal Form 

Every monodic temporal formula can be transformed into an equi-satisfiable normal form, 

called divided separated normal form (DSNF) [58]. 

Definition 2.5.1. A monodic temporal problem P in divided separated normal form (DSNF) 

is a quadruple (U, I, S, £), where 

• the universal part U and the initial part I are finite sets of first-order formulae; 

• the step part S is a finite set of formulae of the form p ~ Oq, where p and q are 

propositions, and P(x) ~ OQ(x), where P and Q are unary predicate symbols and x 

is a variable; 

• the eventuality part £ is a finite set of formulae of the form OL(x) (a non-ground 

eventuality clause) and Ol (a ground eventuality clause), where L(x) is a unary non

ground literal with the variable x as its only argument, and l is either a proposition or 

a unary ground literal. 

We associate with each monodic temporal problem P = (U, I, S, £) the monodic FOTL 

formula II\ DU 1\ D'v'xS 1\ D'v'x£. When we talk about particular properties of a temporal 

problem (e.g., satisfiability, validity, logical consequences, etc.) we refer to properties of this 

associated fornnula. 
The transfornnation to DSNF is based on a renaming and unwinding technique which 

substitutes non-atomic subfornnulae by atomic fornnulae with new predicate symbols and 

replaces temporal operators by their fixed-point definitions as described, for example, in [37]. 

In a first step, the formula for which the divided separated normal form is to be 

computed is transformed into negation normal form (preserving formulae equivalence), i.e. 

negations are pushed "inwards" as far as possible until they only precede atomic formulae. 

Double negations are removed. For example, negations applied on temporal operators are 

transformed as follows: 

-'D'P(x) - O-''P(x) 

-'Ocp(x) - D-'cp(x) 

-, 0 cp(x) - O-'cp(x) 

-,( cp(x) U t/J(x» - -,t/J(x) W (-''P(x) 1\ -,t/J(x» 

-'('P(x) Wt/J(x» - -,t/J(x) U (-,cp(x) 1\ -,t/J(x» 
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In order to avoid an exponential increase in the formula size, it can be necessary to rename 

the formula -,t/J(x) after having transformed the formulae 'P(x) U t/J(x) and 'P(x) W t/J(x) into 

negation normal form (also see e.g. [721). 
After the transformation into negation normal form, each innermost open subformula 

~(x), whose main connective is a temporal operator, is recursively renamed by Pe(x), where 

Pe(:c) is a new unary predicate, and each innermost closed subformula (, whose main 

connective is a temporal operator, is renamed by p(, where p( is a new propositional symbol. 

In the terminology of [471, Pe(x) and p( are called the surrogates of ~(x) and (, respectively. 

Renaming introduces formulae defining Pe(x) and p( of the following form (since we are 

only interested in satisfiability, we use implications instead of equivalences for renaming 

positive occurrences of subformulae, see also [72]): 

(a) i'v'x(p{(x) =* O<p(x)) 

(b) O'v'x(Pe(x) =* C</I(x)) 

(c) C'v'x(p{(x) =* ¢(x) U t/J(x)) 

(d) O'v'x(p{(x) =* ¢(x)Wt/J(x)) 

(e) [J'v'x(P€(x) =* O<p(x)) 

The renamings introduced for closed sub formulae ( are of a similar form. 

A formula of type (a) is already in the required form after the potentially complex 

formula occurring under the 0 operator has been renamed by a fresh symbol U that is 

defined by the formula O'v'x(U(x) =* </I(x)), which is th~n added to the set of universal 

formulae. 

Formulae of type (b) are reduced in a satisfiability preserving way as follows: 

O'v'x(Pe(x) => R(x)) 1\ [J'v'x(R(x) =* OR(x)) 1\ O'v'x(R(x) =* 'P(x)) 

where R is a fresh unary predicate. Then, formulae of type (c) are satisfiability equivalent 

to: 

C'v'x(Pe(x) =* 01l-'(x)) 1\ D'v'x(P€(x) =* (cP(x) V w(x))) 1\ D'v'x(Pe(x) =* (S(x) V 1j1(x))) 

1\ O'v'x(S(x) =* O(cP(x) V 1j1(x))) 

1\ D'v'x(S(x) =* O(S(x) V 1j1(x))) 

where S is a fresh unary predicate. Finally, formulae oftype (d) can be transformed in a 

satisfiability equivalent way into: 

[]'v'x(Pe(x) => (¢(x) V l/.,(x))) 1\ D'v'x(Pe(x) =* (T(x) V t/J(x))) 

1\ D'v'x(T(x) =* O(cP(x) V w(x))) 

1\ D'v'x(T(x) =* O(T(x) V 1/J(x))) 
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where T is a fresh unary predicate. One has to note that new formulae of type (e) are 

introduced during the transformation of type (c) formulae. In a final step then, formulae of 

type (e) are first simplified to D'v'x(P~(x) '* OL(x)), by renaming complex formulae under 

the 0 operator through fresh unary predicates L, and are then transformed in a satisfiability 

preserving way as follows: 

D'v'x((P~(x) 1\ -,L(x)) '* waitForL(x)) 

II D'v'x(waitForL(x) '* O(waitForL(x) V L(x))) 

II D'v'xO-,waitForL(x) 

where waitForL is a fresh unary predicate. After renaming complex subformulae under 

o operators for newly introduced formulae of type (a), the transformation is complete. We 

hence obtain the following theorem: 

Theorem 2.5.2 (see 123J, Theorem 3.4). Any monodic fonnula in first-order temporal logic 

can be transfonned into an equi-satisfiable monodic temporal problem in DSNF with at most 

a linear increase in the size of the problem. 

We now illustrate how the following monodic FOTL formula :F can be transformed into 

DSNF. Let 

:F = Dlfx3y'v'v'v'w(Q(y, x) II (P(x, tl) '* P(y, w))) 

II D'v'x(F(x) '* -,-, 0 D(G(x) V H(x))) 

II Dlfx(F(x) '* -,(K(x) W F(x))) 

II F(c). 

We can observe that the formulae D'v'x3y'v'v'v'w(Q(y, x) II (P(x, v) '* P(y, w))) and F(c) 

are already in DSNF, being universal and initial formulae, respectively. The computation of 

the negation normal form for the formula D'v'x(F(x) '* -,-, 0 D(G(x) V H(x))) yields 

D'v'x(F(x) => OD(G(x) V H(x))), 

and the negation normal form of the formula Dlfx(F(x) '* -,(K(x) W F(x))) is 

D'v'x(F(x) '* (-,F(x) U (-,K(x) II -,F(x)))). 

We then rename the subformula 0 (G(x) V H(x)) of the formula D'v'x(F(x) '* OD(G(x) V 

H (x) )) by a fresh unary predicate U 1. Consequently, we obtain the formulae 

D'v'x(F(x) '* OU1(x)) 

and 
D'v'x(U1 (x) '* D(G(x) V H(x))). 

We can thus observe that the former formula is already in DSNF, whereas the latter formula 

is of type (b). 
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As all the considered formulae are now of the types (a) - (e), we can apply the reductions 

described above. The formula C\ix(U1(x):::} O(C(x) V H(x))) is transformed into 

LVx(U1(x) :::} R(x)) 1\ CVx(R(x) :::} OR(x)) 1\ O\ix(R(x):::} (C(x) V H(x))). 

And the formula C\ix(F(x):::} (-,F(x) U (-,K(x) 1\ -,F(x)))) becomes 

. 'Vx(F(x):::} O(-,K(x) 1\ -,F(x))) 

1\ ~\ix(F(x):::} (-,F(x) V (-,K(x) 1\ -,F(x)))) 

1\ [JVx(F(x) :::} (S(x) V (-,K(x) 1\ -,F(x)))) 

1\ OVx(S(x) :::} O(-,F(x) V (-,K(x) 1\ -,F(x)))) 

I\! l\ix(S(x):::} O(S(x) V (-,K(x) 1\ -,F(x)))). 

In a final step formulae of type (e) have to be transformed, which only concerns the formula 

n\ix(F(x) :::} O(-,K(x) 1\ -,F(x))) ill our example. The transformation results in the 

formula: 

CVx(F(x)::} OL(x)) 1\ o (\ix(L(x) ::} (-,K(x) 1\ -,F(x)))) 

The first subformulae under the conjunction is then transformed in the following way: 

~Vx«F(x) 1\ -,L(x)) :::} waitForL(x)) 

1\ =Vx(waitForL(x):::} O(waitForL(x) V L(x))) 

1\ u\ixO-,waitForL(x) 

Now, complex subformulae under 0 operators remain to be renamed. We obtain the 

following formulae: 

O\ix(S(x) ::} OU2 (x)) 

1\ D\ix(U2(x) ::} (-,F(x) V (-,K(x) 1\ -,F(x)))), 

O\ix(S(x) ::} OU3(x)) 

1\ Q\ix(U3(x) ::} (S(x) V (-,K(x) 1\ -,F(x)))), 

O\ix(waitForL(x) :::} OU4 (x)) 

1\ C\ix(U4 (x):::} (waitForL(x) V L(x))) 

Thus, the DS:,\F obtained for the formula F is the monodic temporal problem 

P,- = ({Vx3y\il'Vw(Q(y. x) 1\ (P(x, v) ::} P(y, w))), 

\iX(Ul(X) ::} R(x)), 

\ix(R(x) ::} (C(x) V H(x))), 

Vx(F(x)::} (-,F(x) V (-,K(x) 1\ -,F(x)))), 

\ix(F(x) ::} (S(x) V (-,K(x) 1\ -,F(x)))), 

\ix(L(x):::} (-,K(x) 1\ -,F(x))), 
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V'x«F(x) 1\ ...,L(x» :::} waitForL(x», 

V'x(U2 (x) :::} (...,F(x) v (...,K(x) 1\ ...,F(x»», 

V'x(U3 (x) :::} (S(x) v (...,K(x) 1\ ...,F(x»», 

V'x(U4 (x):::} (waitForL(x) V L(x»)}, 

{F(c)}, 

{F(x) :::} OU1(x), 

R(x) :::} OR(x), 

S(x) :::} OU2 (x), 

S(x) :::} OU3 (x), 

waitForL(x) :::} OU4 (x)}, 

{O...,waitForL(x)} ) 

The main purpose of the divided separated normal form is to cleanly separate different 

temporal aspects of a FOTL formula from each other. Sometimes we additionally require 

the left-hand sides of step clauses in a temporal problem to be unique. 

Definition 2.5.3. A temporal problem P = (U,I, S,t:) is said to have unique left-hand 

sides in step clauses if and only if there are no two step clauses F :::} OC, F' :::} OG' E S 

with (F:::} OG) # (F' :::} OC') and F = F'. 

Remark 2.5.4. For example, if a temporal problem P = (U, I, S, £) contains step clauses 

P(x) :::} OQ(x), P(x) :::} OQ'(x) E S with Q(x) =f. Q'(x), then their left-hand sides can be 

rendered unique by replacing the two step clauses by a new step clause P(x):::} OU(x) and 

a universal formulae OV'x(U(x) :::} (Q(x) 1\ Q'(x») for a fresh unary predicate symbol U. 

For the resolution calculi in this thesis we will need to go one step further by transforming 

the universal and initial part of a monodic temporal problem into clause normal form. In 

the next section we show how monodic temporal problems in DSNF can be clausified. 

2.6 Clausiftcation of Temporal Problems 

For first-order formulae the clausification of a closed formula g can be briefly described as 

follows (see e.g. [63J for more details). 

First of all, the prenex normal form of g, PrenexW), has to be computed, i.e. equivalences 

are replaced by conjunctions of implications, and quantifiers are moved outside of the formula. 

This transformation is performed by applying the following rewrite rules on innermost 

subformulae until the required form is obtained: 

F ~ G - (F:::} G) 1\ (C:::} F) 

~xF-Qx...,F 

(QxF) 1\ C - Qy(F[x ~ yJ 1\ C) 
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(QxF) V G -> Qy(F [x 1--+ y] V G) 

(QxF) :::} G -> Qy(F [x 1--+ y] :::} G) 

F /\ QxG -> Qy(F /\ G Ix 1--+ y]) 

F V QxG -> Qy(F V G Ix 1--+ y]) 

F :::} QxG -> Qy(F :::} G Ix 1--+ y]), 
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where F, G are arbitrary first-order formulae, Q E {V,3}, 3 = V, "9 = 3, and y is a fresh 

variable. The transformation results in a formula 

where G is quantifier-free and Qi E {V,3} for every i, 1 :::; i :::; m. In the second step, 

also called Skolemization step, the existential quantifiers 3 are removed, starting from the 

left-most quantifier in the prenex normal form. The variables bound by existential quantifiers 

are replaced by fresh constants or function symbols. The arity of the newly created constants 

or function symbols is determined by the number of universal quantifiers that precede the 

considered existential quantifier in the prenex normal form. The arguments of the fresh 

function s)1l1bols will be exactly the variables bound by the preceding universal quantifiers 

in the prenex normal form. After the Skolemization step, we have obtained the form 

9 "'" VX1 ... VXn: H. 

One has to observe that Skolemization usually does not preserve formulae equivalence but 

only satisfiability, which is sufficient for our purposes. We still have to note that there exist 

other variants of Skolemization, which can be found, for example, in 1721. 
Finally, the formula H has to be brought into conjunctive normal form (CNF). The 

transformation can be performed by applying the following rewrite rules recursively on the 

formula H. 

F ~ G -> (F:::} G) /\ (G:::} F) 

F => G -> -,F V G 

-,(F /\ G) -> -,F V ...,G 

...,(F V G) -> -,F /\-,G 

(F /\ G) V H --+ (F V G) /\ (F V H) 

where F, G and H are quantifier-free first-order formulae. H is then brought in the form 

m n, 

H"", A V L~ 
i=l j=l 

where Li , is a positive or negative atom, or literal, for every ij , 1 :::; i:::; m, 1 :::; j:::; nj. In 

order to avoid an exponential increase in the size of the formula obtained by transformation 
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to CNF, subformulae might have to be renamed during the CNF transformation process [72]. 

The set 

{Lj I 1 5 i 5 m, 1 5 j 5 nj } 

will be called the clause nonnal fonn of the first-order formula g. 

Definition 2.6.1. We define that 

• a literal is either a positive or negative atom, t.e. P(tl,oo.,tn ) or ...,P(tl,oo.,tn), 

respectively, where Pin E PS and tt, ... , tn E T!;{X); 

• a clause is a multiset of litemls, written as Ll V ... V Ln, where Ll"'" Ln are litemls. 

The empty clause is denoted by 1.. 

• a clause is said to be positive/negative if and only if it only contains positive/negative 

litemls. 

Now, the c1ausification of a monodic temporal problem P is defined as follows. Note that 

the usual first-order c1ausification process is performed for initial and universal formulae. 

Definition 2.6.2. Let P = (U, 1, S, C) be a monodic tempoml problem. The c1ausification 

Cls( P) of P is a quadruple (U', I', S', £') such that 

• U' is a set of clauses, called universal clauses, obtained by clausification of U; 

• I' is a set of clauses, called initial clauses, obtained by clausification of I; 

• S' is the smallest set of step clauses such that all step clauses from S are in S' and 

for every non-ground step clause P{x) ~ OL(x) in S and every constant c occurring 

in P, the clause P(c) ~ OL(c) is in S'; 

• £' is the smallest set of eventuality clauses such that all eventuality clauses from £ are 

in C' and for every non-gr01Jnd eventuality clause OL(x) in £ and every constant c 

occurring in P, the eventuality clause OL(c) is in £'. 

One has to note that new constants and, especially, function symbols of an arbitrary 

arity can be introduced during the Skolemization process1
. As a consequence it is not 

generally possible to instantiate every variable that occurs in the original problem with 

all the constants and function symbols. On the other hand, the variables occurring in the 

step and eventuality clauses have to be instantiated with the constants that are present 

in the original problem (before Skolemization) in order to ensure the completeness of the 

resolution-based calculus presented in Chapter 3. 

The notion of step clause can be generalised as follows. 

IThe definition of term interpretations and first-order interpretations has to be extended in the usual 
way for FOL in order to be able to handle function symbols. 
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Definition 2.6.3 (Arbitrary Step Clause). A (arbitrary) step clause is a formula of the 

form 
m n 

AAi:::;'O V L j 

i=1 j=1 

where AI, .... Am are at m.ost unary predicates and L1, ... , Ln are literals. For m = 0 we 

define 1\7~ I Ai = true, and for n = 0 we set V;= 1 L j = false. 

Step clauses of the latter form can be derived by the calculus defined in Chapter 3. 

The c1ausification of the monodic temporal problem PF of Section 2.5 yields the following 

clausified temporal problem 

CIS(PF) = ({Q(f(x),x), 

-.P(X,ll) V P(f(x),'UJ), 

-.UI(x) V R(x), 

-.R(x) V G(x) V H(x), 

-.F(x) V -.K(x), -.F(x), 

-.F(x) V S(x) V ...,K(x), 

...,F(x) V S(x), 

...,L(x) v...,K(x), 

...,L(x) v...,F(x), 

...,F(x) V L(x) V waitForL(x), 

...,U2 (x) V -.F(x) V -.K(x), 

-.U2 (x) V -.F(x), 

-.U3 (x) V S(x) V -.K(x), 

...,lh(x) V S(x) V -.F(x), 

-.U4 (x) V waitForL(x) V L(x)}, 

{F(c)}, 

{F(x) :::;. OUI(x), 

R(x) :::;. OR(x), 

S(x) :::;. OU2 (x), 

S(x) :::;. OU3 (x), 

waitForL(x) :::;. OU4 (x), 

F(c) => OUI (c), 

R(c) => OR(c), 

S(c) :::;. OU2(c), 

S(c) => OU3(c), 

waitForL(c) :::;. OU4 (c)}, 
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{O-,waitForL(x)} ), 

where f is a fresh unary function symbol. 

Finally, we introduce the notions of clause equality, clause set inclusion, and clause set 

equality up to variable renaming. 

Definition 2.6.4. We say that two clauses C and V are equal up to renaming, written 

C = x V, if and only if there exists a variable renaming a such that Ca = V. 

Definition 2.6.5. Let C be a clause and Nand M be sets of clauses. Then we say 

• that the clause C is contained in the set M, written C Ex M, if and only if there 

exists a variable renaming a such that Ca EM, and 

• that the set M is included in the set N up to variable renaming, written M S;x N, if 

and only if for every clause C EMit holds that C Ex N, and 

• that the sets M and N are equal up to variable renaming, written M = x N, if and 

only if M S;x N and N S;x M holds. 

2.1 Summary 

In this chapter we gave a formal definition of the syntax and semantics for the two formal 

languages we are considering in this thesis: propositional linear-time temporal logic and 

monodic first-order temporal logic. Both of these logics are interpreted over a model of time 

that is isomorphic to the natural numbers. 

First, we presented the syntax and semantics of propositional linear-time temporal logic. 

We then defined the syntax and semantics of first-order temporal logic, and we gave a formal 

definition of the monodic fragment. We also introduced some notions that are essential for 

the following parts of this thesis. Subsequently, we described the normal form for PL TL 

and monodic FOTL formulae that we consider in this thesis. Finally, we illustrated how the 

formulae that are in normal form can be c1ausified for the resolution-based calculus that is 

introduced in Chapter 3. 



Chapter 3 

Ordered Fine-Grained Resolution with 

Selection 

3.1 Introduction 

For monodic first-order temporal logic a first resolution-based calculus, called monodic 

tempoml resolution, was introduced in [231. The calculus operates on temporal problems in 

DSNF and uses special inference rules to handle eventuality formulae and resolution-like 

inference rules for the remaining DSNF formulae types. 

However, as most inference rules of monodic temporal resolution have applicability 

conditions that are computationally too complex to be implemented efficiently, a more 

machine-oriented resolution-based calculus, the fine-grained (temporal) resolution calculus, 

has been introduced in [58]' which accepts problems in DSNF that have been clausified. 

The computationally complex inference rules of monodic temporal resolution have been 

replaced by resolution-based inference rules that operate on the different temporal clause 

types of clausified DSNF. In this regard fine-grained resolution can be seen as being more 

fine-grained than monodic temporal resolution as it performs "smaller" inference steps by 

manipulating temporal clauses. Moreover, a special algorithm called FG-BFS has been 

developed which allows to exhaustively search for the premises of the eventuality resolution 

rules. As a refinement, the ordered fine-gmined (tempoml) resolution -with selection calculus 

has been presented in [511. It extends fine-grained resolution with ordering restrictions 

and selection functions. In this chapter we prove the refutational completeness of ordered 

fine-grained resolution with selection. 

This chapter is structured as follows. We first recall the inference rules of monodic 

temporal resolution. We then introduce the ordered fine-grained temporal resolution 

with selection calculus before we focus on its proof of refutational completeness. For the 

completeness proof we define a refined version of monodic temporal resolution, for which we 

also prove that it is refutationally complete. Finally, we show that derivations of refined 

monodic temporal resolution can be simulated by ordered fine-grained resolution with 

selection, which obviously implies its refutational completeness. 

29 
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3.2 Monodic Temporal Resolution 

We begin by defining some notions that are necESsary for prESenting the inference rule; 

of monodic temporal rESolution. More specifically, we introduce the concepts of constant 

flooding and of derived, merged derived and full merged step clauses. 

Definition 3.2.1. Let P = (U, I, S, £) be a monodic temporal problem. Then, we say that 

the temporal problem ~ = (U, I, S, £C) where 

£C = £ u {OL(c) I OL(x) E £, c is a constant in P} 

is the constant flooded form of P. Evidently, ~ is satisfiability equivalent to P. 

Definition 3.2.2. Let P = (U, I, S, £) be a monodic temporal problem. 

(i) Let 

(3.1) 

with k ~ 0 be a subset of step clauses contained in the set S. Then formulae of the 

form 

and (3.2) 

where c is a constant in P and j = 1, ... , k, are called derived step clausesl built from 

the temporal problem P. 

(ii) Let {4>l ~ 0'11 1, •.• , ~n ~ O'l1n } be a set of derived step clauses or ground step 

clauses in P. Then U\~=l ~;) ~ 0(1\~=1 .;) is called a merged derived step clause 

built from the temporal problem P. 

(iii) Let A ~ OB be a merged derived step clause, let P1(x) ~ OMl(x), ... , Pk(X) ~ 

OMk(X) with k ~ 0 be a subset of the original step clauses in P, and let 

k k 

A(x) ~f .A A A J{(x) and B(x) ~f B A A Mi(X). 
i=1 i= 1 

Then 'tx(.A(x) ~ OB(x)) is called a full merged step clause built from the temporal 

problem P. 

Note that formulae of the form (3.2) are logical consequence; of (3.1). In what follows, 

A ~ OB and A ~ OBi denote merged derived step clause;, 'tx(.A(x) ~ OB(x)) and 

'tx(A;(x) ~ OBi(X)) denote fuJI merged step clauses. 

We also define relations c and !;;; on full merged and merged derived step clauses as 

follows. 

lIn /231 derived step clauses are called e-derived step clauses. 
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Definition 3.2.3. Let P = (U, I. S. £) be a monodic temporal problem. We then define 

relations C and ~ on the right-hand si.des of the merged derived and full merged step clauses 

built from the temporal problem P as follows. 

(i) For every full merged or merged derived step clause V'x(A(x) => OB(x)) with B(x) -=t

true, we set true C B(x) and true ~ B(x). 

(ii) Add'i.tionally, for two full merged or merged derived step clauses V'xo(A(xo) => OB(xo)), 

V'x~(A'(x~) => OB'(x~)) and variable renami.ngs 7]1, 7]2 such that 

• Prener(B(xo)) = 3XI.···, xp 1\~=1 L i , Prenex(B'(xo)) = 3x~, ... , x~ /\';=1 Lj, 

• {xoT7I.XI171.··· ,xp T7d n {xo1J2,X;1J2 ... ,x~rn} = 0, and 

• {LIT7ICT, ... , Ln1]lCT} s:;; {L;1J2, ... , L~1J2} as multisets, where CT is a variable re

nam·tng, 

we define that B(xo) C B'(x~). 

{ii.i} Finally, for two full merged or merged derived step clauses V'xo(A(xo) => OB(xo)) and 

V'x~(A'(xo) => OB'(xo)) such that B(xo) C B'(x~) or such that there exist variable 

renamings 171, 172 w·dh. 

• Prenex(B(xo)) = 3XI,···, xp 1\~=1 L i , Prenex(B'(xo)) = 3x;, ... , x~ /\7=1 Lj, 

• {X0T71,XI1]I, ... ,xp7]d n {xo1J2,X;rn··· ,x~rn} = 0, and 

• {LIT7ICT, .... Ln1]lC1} = {L'I172, ... , L~rn} as multisets, where CT is a variable re

naming, 

we set B(xo) ~ B'(x~). 

Remark 3.2.4. We extend the previous definition on formulae that are of the same form 

as the ri.ght-hand sides of full merged (or m.erged derived) step clauses but do not necessarily 

result from full merged (or merged derived) step clauses. 

Finally, for every temporal problem P we define a set M(P) of full merged step clauses 

which do not contain duplicate subformulae. 

Definition 3.2.5. Let P = (U, I. S, £) be a monodic temporal problem. Then we denote 

by M (P) t.he set of all merged derived step clauses A => OB and full merged step clauses 

V'x(A(x) => OB(x)) built from the temporal problem. P such that 

(i) every step clause from the set S is used at most once in the construction of a derived 

step clause, and 

(ii) every deriveil step clause and every ground step clause from the set S i.s used at most 

once in the con.~truction of a merged derived step clause, and 

(iii) no merged derived step clau.~e contains multiple occurrences of the same ground step 

clause, and 
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(iv) every non-ground step clause from the set S is used at most once in the construction 

of a full-merged step clause, and 

(v) for each two derived step clauses 3x Fl(X) :::} 03xG1(x) and 3x F2(X):::} 03xG2(X) 

that occur in a full-merged step clause 'v'x(A(x) :::} 08(x» or in a merged derived step 

clause A ~ 08, it does not hold that 

• Fl(X) ~ F2(x) and G 1(x) ~ G2(X), or 

• F2(X) ~ Fdx) and G2(X) ~ Gdx). 

Note that case (iii) ensures that derived step clauses P(c) ~ OQ(c) which are already 

contained in the set S do not occur twice in merged derived step clauses. 

Remark 3.2.6. As every tempoml problem P only contains finitely many step clauses, it is 

easy to see that every set of full merged and merged derived clauses M(P) is finite. 

For example, the full merged step clause 

'v'x(!P(x) 1\ 3yR(y) 1\ 3z(R(z) 1\ T(z»] ~ OIQ(x) 1\ 3yS(y) 1\ 3z(S(z) 1\ V(z»)]) 

does not satisfy the condition (v) of Definition 3.2.5 as {R(x)} ~ {R(x), T(x)} and {S(x)} ~ 

{S(x), V(x)}, but condition (v) is satisfied for the full merged step clause 

'v'x([P(x) 1\ 3yR(y) 1\ 3zR(z)] ~ O[Q(x) 1\ 3yS(y) 1\ 3zV(z)]). 

We can now define the monodic temporal resolution calculus, Je , for the expanding 

domain case. The inference rules of Je are the following . 

• Step resolution rule w. r. t. U: 

A~08 (Ou ) ...,A rea , if Uu {8} ~.L 

• Termination rule w. r. t. U and I: 

• Eventuality resolution rule w. r. t. U: 

_'v'X-...:(_A..;...1 (.,;...x.:....) ~_0=--8..;...1 (x_)_) _--,--:::-'v'_x(_A..._( x_) _::::}--.;;.O_B_n _( x_) ) __ O_L_(--,-x) (O~ .. ), 
'v'x 1\:=1 -,A(x) 

where 'v'x(A (x) ~ OBi (x» are full merged step clauses such that for every i, 1 $ i $ n, 

the loop side conditions 'v'x(U 1\ Bi(X) ~ -,L(x» and 'v'x{U 1\ B.{x) ~ V.;=I(Aj (x») 

are valid. 2 

The set of full merged step clauses, satisfying the loop side conditions, is called a loop 

in OL(x) and the formula V;=l A,(x) is called a loop formula. 

:lIn the case U 1= Vx...,L(x). the /kgenerote clawe. true => Qtrue. can be considered as a premise of 
this rule; the conclusion of the rule is then -.true == false. 
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• Ground eventuality resolution rule w. r. t. U: 

whereAt ::::} OBi are merged derived step clauses such that for every i, 1 ~ i ~ n, 

the loop side conditions U 1\ Bi F= -.[ and U 1\ Bi F= v;= 1 Aj are valid. The notions of 

ground loop and ground loop formula are defined similarly to the case above. 

The notion of a derivation in the calculus J e is defined next. 

Definition 3.2.7 (Derivation). Let P = (Uo,I,S,c) be a monodic temporal problem. 

A derivation from P is a sequence of universal parts. ~ = Uo ~ U1 ~ U2 ~ "', such 

that Ui+ 1 is obtained from Ui by applying an inference rule to (Ui, 1, S, £) and adding its 

concluswn to Ui . The initial. step and eventuality part of the temporal problem are not 

change.d during a deri:lIat1on. 

A derivation terminates if and only if either a contradiction is derived, in which case 

we say that the derivation terminates successfully, or if no new formulae ron be derived by 

further inference steps. 

A derivation ~ = Uo ~ U1 ~ U2 ~ ... ~ Un from (Uo, 1, S, £) is called fair (we adopt 

terminology from /1 OJ) if and only if for every i ~ 0 and for every formula cp which can 

be der'ive.d by the inference rules ofJe from premises in (Ui ,I,S,£C), there exists an index 

j ~ i such th.at 't' E Uj . 

Note that any derivation can be continued, yielding a terminating derivation. Note 

further that since there exist only finitely many non-equivalent merged derived or full merged 

step clauses, the number of non-equivalent conclusions of the inference rules of monodic 

temporal resolution is finite. Therefore, every derivation is finite. However, it is important 

to note that this does not imply the decidability of monodic first-order temporal logic as 

the applicability of the inference rules is not decidable. 

Soundness and completeness of J e is stated in the following theorem. 

Theorem 3.2.8 (see 123, Theorem 10.5]). The rules of Je preseroe satisfiability over 

expanding domains. A monodic temporal problem P with unique left-hand sides in step 

clauses is unsatisfiable over expanding domains if and only if any fair derivation in Je 

from pc: terminates successfully. 

We now give an example refutation under Je . Let P be the following temporal problem 

P = (f'ix(T(x) ::::} (Q(x) 1\ -.L(x))), 'v'x(S(x)::::} Q(x))}, 

{3xP(x)}, 

{P(x)::::} OS(x),Q(x)::::} OT(x)}, 

{OL(x)}) 
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Function BFS 
Input: A temporal problem P = (U, I, S, E) and an eventuality clause OL(x) E E. 
Output: A formula H(x) with at most one free variable. 
Method: (1) Let Ho(x) = true; No = 0; i = 0 

(2) Let Ni+l = {Vx(Aji+l)(x) ~ O BJi+l)(x»}j=l be the set of 
all full merged step clauses such that for every j E {l, ... , k}, 
Vx(UI\Bji+l)(X) ~ (-,L(x) 1\ Hj(x») is valid. (The set M+l possibly 
includes the degenerated step clause true =* Otrue in the case 
U 1= Vx(-,L(x) 1\ Hj(x».) 

(3) If M+l = 0, return false; else let Hi+l(X) = V~=l A;i+l)(x) 
(4) IfVx(Hj(x) =* Hi+l(X», return Hi+l(X). 
(5) i = i + 1; goto 2. 

Figure 3.1: Breadth-First Search Algorithm 

First of all, we can observe that the temporal problem P is already constant-flooded, i.e. 

pc = P. Then, for the full merged step clause Vx(Q(x) =* OT(x» it holds that the loop side 

conditions Vx[«Vy(T(y) ~ (Q(y) 1\ -,L(y»» 1\ T(x» =* (Q(x) 1\ -,L(x»] are valid, i.e. we 

can apply the eventuality resolution rule for the eventuality OL(x) and derive the universal 

formula Vx-,Q(x). Now, for the (merged) derived step clause 3x(P(x) =* OS(x» it holds 

that {Vx(S(x) =* Q(x», Vx--,Q(x), 3xS(x)} 1= .L. We can therefore apply the step resolution 

rule and obtain the universal fonnula Vx-,P(x). Finally, as {3xP(x), Vx-,P(x)} 1= .l, an 

application of the termination rule allows us to derive .L. 

The task of finding suitable full merged step clauses (or merged derived clauses) for 

applications of the eventuality resolution rules can be delegated to the Breadth-First Search 

(BFS) algorithm depicted in Figure 3.1. It returns all the possible loop formulae for a given 

eventuality and sets of universal and step clauses as input. 

Monodic temporal resolution remains sound and refutationally complete if the eventuality 

resolution rules are restricted to loops found by the BFS algorithm. 

Theorem 3.2.9 (see [23, Theorem 9.5 and 10.5]). A monodic temporal problem P with 

unique left-hand sides in step clauses is unsatisfiable over expanding domains if and only 

if any fair derivation in J e from P: with applications of the eventuality resolution rules 

restricted to loops found by the BFS algorithm terminates successfully. 

This concludes the description of monodic temporal resolution. In the next section we 

present the ordered fine-grained resolution with selection calculus. 

3.3 Inference Rules 

In this section we introduce the inference rules of ordered fine-grained resolution with 

selection. First, we present the core deduction rules, and subsequently, we introduce the 

FG-BFS algorithm, which can be used to find premises for the eventuality resolution rules. 



3.3. INFERENCE RULES 35 

The FG-BFS algorithm can be seen as a resolution-based variant of the BFS algorithm 

depicted in Figure 3.1. 

3.3.1 Fine-Grained Step Resolution and Eventuality Resolution 

Before we can give the definitions of the inference rules, we still have to introduce some 

auxiliary concepts. We begin by introducing the notion of most general unifier briefly. 

Definition 3.3.1. Let E ~ CS u FS. Furthermore, let E = {SI :b tl, ... , Sn :b in} be a 

muitisei of terms equations over Tr.{X). 

(1) A substdution a: X - T~(X) is a unifier of the equation multiset E if and only if 

The set of all the unifiers of the equation multi.set E is denoted by Unif( E). 

(ii) A substi.tution a is called a most general unifier of the e.quation multiset E if and only 

·if 

'r/ T E SubsiE(X): T E Unif(E) =:;. a ~ T 

{iii} The equation multisel E = {Sl :b i l , ... , sn :b in} is said to be in solved form if and 

only if 

• 'r/ i. 1 ~ i ~ n: .'J;. EX, and 

(ivY Let A = p(SI .... ,sn), B = P(tl,·.· ,tn) be two atoms. A substitution a is said to be a 

most general unifier of the atoms A and B if and only if the substitution a is a most 

general unifier of the equation muitiset {s I :b t I, ... , Sn :b t n }. 

Then, we assume that we are given an admissible atom ordering >-, that is, a strict total 

ordering on ground atoms which is well-founded, and a selection function S which maps 

any first-order clause C to a (possibly empty) subset of its negative literals. For proving 

the refutational completeness of ordered fine-grained resolution with selection, we require 

selection functions to be instance compatible: 

Definition 3.3.2. We say that a selection function S ·is instance compatible if and only if 

for every clause C. for every substitution a and for every literall E CO" it holds that 

1 E S(Ca) {::::::::} 3/' E S(C): l'a = l. 

The atom ordering >- is extended to ground literals by ...,A >- A and (...,)A >- (...,)8 if and 

only if A >- B. The ordering is extended on the non-ground level as follows: for two arbitrary 

literal .. Land L', L >- L' if and only if La >- L'a for every grounding substitution a. A 

literal Lis c-B.lled (strictly) maximal w.r.t. a clause C if and only if there is no literal L' E C 
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with L' ~ L (£' t L). A literal L is eligible in a clause Lv C for a substitution 0' if either it 

is selected in £ V C, or otherwise no literal is selected in £ V C and £0' is maximal w.r.t. Cu. 

The atom ordering ~ and the instance compatible selection function S are used to 

restrict the applicability of the deduction rules of fine-grained resolution as follows. We also 

assume that the clauses used as premises for the different resolution-based inference rules 

are made variable disjoint beforehand. 

(1) First-order ordered resolution with selection between two universal clauses 

C l V A ...,BVC2 
(Cl V C2 )0' 

if 0' is a most general unifier of A and B, A is eligible in (Cl V A) for 0', and...,B is 

eligible in (...,B V C2 ) for 0'. The result is a universal clause. 

(2) First-order ordered positive factoring with selection 

C l V A vB 
(Cl V A)O' 

if 0' is a m~t general unifier of A and B, and A is eligible in (Cl V A V B) for 0'. The 

result is again a universal clause. 

(3) First-order ordered resolution with selection between an initial and a universal clause, 

between two initial clauses, and ordered positive factoring with selection on an initial 

clause. These are defined in analogy to the two deduction rules above with the only 

difference that the result is an initial clause. 

(4) Ordered fine-gmined step resolution with selection. 

Cl => O(D l V A) C2 => O(D2 V...,B) 

(Cl 1\ C2)0' => O(Dl V D2)0' 

where C l => O(Dl V A) and C2 => O(D2 v...,B) are step clauses, 0' is a most general 

unifier of the atoms A and B such that 0' does not map variables from C l or C2 into 

a constant or a functional term, A is eligible in (Dl VA) for 0', and...,B is eligible in 

(D2 V ...,B) lor 0'. 

C l => O(Dl V A) D2 V ...,B 
C,O' => O(D l V D2 )(1 

where C, => O(D, V A) is a step clause, D2 v...,B is a universal clause, and 0' is a m~t 

general unifier of the atoms A and B such that 0' does not map variables from C l into 

a constant or a functional term, A is eligible in (Dl V A) for 0', and...,B is eligible in 

(D2 V ...,B) lor 0'. There also exists a similar rule where the positive literal A is contained 

in a universal clause and the negative literal ...,B in a step clause. 
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(5) OrdereA fine-grained positive step factoring with selection. 

C ~ O{DV Av B) 
Co ~ O(DV A)o 

37 

where (1 is a most general unifier of the atoms A and B such that (1 does not map 

variables from C into a constant or a functional term, and A is eligible in (D V A V B) 

for (1. 

(6) Clause conversion. A step clause of the form C ~ 0.1 is rewritten to the universal 

clause ...,C. 

Step clauses of the form C ~ 0.1 will also be called terminating or final step clauses. 

(7) Dupli.cate literal elimination in left-hand sides of termi.nating step clauses. A clause of 

the form (C /\ A /\ A) ~ 0.1 yields the clause (C /\ A) ~ 0.1. 

(8) Eventuality resolution rule w.r.t. U: 

\:I_X~{_A_l (~x~) ~_O;;....B_l_( x_)_) _--:-;;-\:I_x_{_An-:-{_x-:-) _~_O_Bn_(_x )_) __ O_L_(x--,-) (O~s), 
\:Ix /\~=1 ...,At(x) 

where \:Ix (At (x) ~ OBi(X)) are formulae computed from the set of step clauses such 

that for every i, 1 $ i $ n, the loop side conditions \:Ix(U /\ Bi(X) ~ ...,L(x)) and 

\:Ix(U /\ Bi(X) :::;> V]=l Aj(x)) are valid.3 

(9) GrounA eventual'i.ty resoluti.on rule w.r.t. U: 

_A....:..l_:::;>--==O:.....B-=l_--=-_An...:..:.....-:::;>----=O::....B-=n~_O_1 (O~.), 
/\~=l...,At 

where At ~ OBi are ground formulae computed from the set of step clauses such that 

for every i, 1 $ i $ TI, the loop side conditions U /\ Bi F ...,1 and U /\ Bi F V]=l Aj are 

valid. The notions of gmund loop and ground loop formula are defined similarly to the 

case above. 

Rules (1) to (7), also called rules of fine-grained step resolution, are either identical or 

closely related to the deduction rules of ordered first-order resolution with selection; a fact 

that we exploit in our implementation of the calculus. 

Let ordere.d fine-graine.d resolution M.th selection be the calculus consisting of the rules 

(1) to (7) above, toget her with the ground and non-ground eventuality resolution rules 

described above, i.e. rules (8) and (9). We denote this calculus by J~~. 

Just as in the regular first-order case, selection functions are used as a control mechanism 

for handling the non-determinism that arises from inferences on negative literals. The 

proof of refutational completeness for regular first-order ordered resolution with selection 

lin the cue U ~ V:r...,L(:r). the degenerate dause. true ~ Otrue. can be considered 88 a premise of 
this rule; t he conclusion of the rule is then ...,true == false. 
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given in [10/ does not put restrictions on which negative literals have to be chosen for 

inferences. They can hence be selected in a "don't-care", non-deterministic way. In practical 

implementations different strategies for selecting negative literals are employed. For example, 

the theorem prover SPASS 3.0 allows to define a list of predicates that become candidates 

for selection. Additionally, SPASS offers, for instance, the following selection strategies [92): 
the selection of one negative literal in any clause with more than one maximal literal, or the 

selection of one negative literal in a clause if it contains at least one negative literal. In these 

cases if no negative literal from the given list of selection predicates is present in a clause, 

a negative literal of maximal weight is selected. Other theorem provers like Vampire also 

allow a multitude of different selection strategies together with the selection of both positive 

and negative literals [78/. The available selection strategies are also often goal-oriented. 

Next we define the concept of derivations in the context of ordered fine-grained resolution 

with selection. 

Definition 3.3.3 (Derivation). A (linear) derivation ~ (in J~ci) from the clausification 

Cls( P) of a monodic temporal problem P is a sequence of tuples 

such that each tuple at an index i + 1 is obtained from the tuple at the index i by adding 

the conclusion of an application of one of the inference rules of J~ci to premises from the 

sets Ui , Ii, Si to that set, with the other sets as well as e remaining unchangtxf. The 

derivation ~ will also be denoted by a sequence of clauses C1, C2, . .. where each clause C. is 

either contained in the problem (Uo, 'Lo, So, e) or is newly obtained in the inference step that 

derived the problem (~, Ii, Si, e). 
A derivation ~ such that the empty clause is an element of a Ui U Ii is called a 

(J~ci -)refutation of (Uo, Io, So, e). 
A derivation ~ is fair if and only if for every i ~ 0 and for every clause C which can be 

derived by the inference rules of J~ci from premises in (U., Ii, Si, e), there exists an index 

j ~ i such that C occurs in (Uj , I j , Sj' e) . 
A set of temporal clauses N is said to be saturated under ordered fine-grained resolution 

with selection if and only if the resulting clauses from all the possible inferences under the 

rules of ordered fine-grained resolution with selection are already contained in the set N. 

3.3.2 Resolution-Based Loop Search Algorithm 

Loop formulae, which are required for applications of the eventuality resolution rules (8) 

and (9), can be computed by the fine-grained breadth-first search algorithm (FG-BFS), 

depicted in Figure 3.2. The process of running the FG-BFS algorithm is called loop search. 

The algorithm takes as input a set of universal clauses U and a set of step clauses S 

saturated by ordered fine-grained resolution with selection, and an eventuality clause 

"In an application of ground eventuality or eventuality resolution rule, the set U in the definition of the 
rule refefB to U •. 
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Function FG-BFS 
Input: A set of universal clauses U and a set of step clauses S, saturated under 

the fine-grained step resolution inference rules of ordered fine-grained 
resolution with selection, and an eventuality clause OL(x) E E, where 
L( x) is unary literal. 

Output: A formula H(x) with at most one free variable. 
Method: (1) Let Ho(x) = true; Mo = 0; i = 0 
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(2) Let M+I = U U {P(cl ) => OM(cl ) I original P(x) => OM(x) E S} U 
{true => O( ...,Hi ( cl ) V L( d))}. Apply the fine-grained step resolution 
rules of ordered fine-grained resolution with selection except the clause 
conversion rule to NiT I. If we obtain a contradiction, then return the 
loop true (in this case 'Vx...,L(x) is implied by the universal part). 
Otherwise let Mi+1 = {Cj => 0l.}j=1 be the set of all new tenninating 
step clauses in the saturation of M+ I. 

(3) If MiTl = 0, return false; else let Hi+I(x) = V;=1(3Cj ){cl 
-+ x} 

(4) If 'Vx(H;(x) => Hi+I(X)), return Hi-t-I(x). 
( 5 ) i = i + 1; goto 2. 

Note: The constant cl is a fresh constant used for loop search only 

Figure 3.2: Breadth-first Search Algorithm Using Fine-grained Step Resolution. 

OL(x) E E. It computes sequences of disjunctions Ha, HI, H2, ... such that for every i > 0 

the formula 'Vx(H;(x) => (H;_I(x) 1\ ...,L(x))) is valid. A loop in OL(x) has been found 

whenever the formula 'Vx(H;(x) => Hi+I(x)) is valid as well (step 4). 

For the proof of refutational completeness we do not consider the FG-BFS algorithm, but 

we use its refined variant Restricted-FG-BFS, shown in Figure 3.3, instead. The operation 

LT(S) performs constant-flooding with the loop search constant cl in original step clauses 

contained in the set S, i.e. 

LT(S) = {P(cl
) => OM(cl

) I original P(x) => OM(x) E S}. 

The refined algorithm imposes an additional filtering step on the computed terminating 

step clauses. The set of terminating step clauses is not allowed to contain clauses C => Ol. 

and D => Ol. such that (3C){d -+ x}!; (3D){d -+ x}. 

We show that ordered fine-grained resolution with selection remains refutationally 

complete if applications of the eventuality resolution rules are restricted to loops found by 

the Restricted-FG-BFS algorithm. 

We conclude this section by providing an example refutation under )~c;- of the temporal 

problem P that was introduced in Section 3.2. The clausification Cls(PC) of pc yields the 

following 

Cls(PC
) = ({...,T(x) vQ(x), 

...,T(x) v...,L(x). 

...,S(x) V Q(x)}, 

{P(c)}, 
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{P(x) :::} OS(x), 

Q(x) :::} OT(x)}, 

{OL(x)}) 

where c is a fresh constant introduced during Skolemization. We consider the atom 

ordering >- defined by 

L(c) >- P(c) >- Q(c) >- S(c) >- T(c) 

and a selection function S which does not select any literals. We can first of all apply 

the FG-BFS algorithm on Cls(PC). For the first iteration we have Ho(x) = true and 

we obtain the terminating step clauses Q(x) ~ 0.1., i.e. Ht(x) = Q(x). As the formula 

'v'x(Ho(x) ~ Ht(x» is not valid, we have to continue with the next iteration, where 

we can derive the terminating step clauses Q(x) ~ 0.1. and P(x) /\ Q(x) ~ 0.1., i.e. 

H 2(x) = Q(x) V (P(x) /\ Q(x». Now, as the formula 'v'x(Ht(x) ~ H 2 (x» is valid, the 

FG-BFS algorithm returns the loop formula H2(X), which results in the two universal clauses 

..... Q(x) and ..... P(x) V ..... Q(x) after applying the eventuality resolution rule. 

By resolving the universal clause ..... Q(x) with the universal clause ..... S(x)vQ(x), we obtain 

the universal clause ..... S(x), which can be resolved with the step clause P(x) ~ OS(x), 

resulting in the terminating step clause P(x) ~ 0.1.. An application of the clause conversion 

rule yields the universal clause ..... P(x). Finally, the universal clause ...,P(x) can be resolved 

with the initial clause P(c) and we obtain the empty clause. 

In the following section we provide the full proof of refutational completeness for ordered 

fine-grained resolution with selection. 

3.4 Refutational Completeness 

The proof of refutational completeness for ordered fine-grained resolution with selection is 

organised as follows. First, we define a refined version of the monodic temporal resolution 

calculus and show its refutational completeness. Then, we prove that for every refutation 

of a monodic temporal problem under refined monodic temporal resolution there exists a 

"similar" refutation under ordered fine-grained resolution with selection. In order to be able to 

show this result we also have to prove the lifting theorem for ordered fine-grained resolution 

with selection (without the eventuality resolution and the duplicate literal elimination in 

terminating step clauses rules). 

3.4.1 Refined Monodic Temporal Resolution 

As the step resolution rule of monodic temporal resolution can be applied on arbitrary 

merged derived clauses and as the BFS algorithm returns all possible longer combinations 

of full merged step clauses once a shorter loop formula has been detected, one can see that 

not all the full merged step clauses and merged derived clauses that occur in a je-derivation 

can also be derived by ordered fine-grained resolution with selection. 
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Function Restricted-FG-BFS 
Input: 

Output: 
Method: 

A set of universal clauses U and a set of step clauses S, saturated under 
the fine-grained step resolution inference rules of ordered fine-grained 
resolution with selection, and an eventuality clause OL(x} E C. 
A formula R(x} with at most one free variable. 
(I) Let Ro(x) = true; Mo = 0; i = 0 
(2) Let M+I = U U LT(S) U {true :::} O(-,~(d) V L(d))}. Apply the 

fine-grained step resolution rules of ordered fine-grained resolution 
with selection except the clause conversion rule to M+ I. If we obtain 
a contradiction, then return the loop true (in this case Vx-,L(x) is 
implied by the universal part). 
Otherwise let ~+ 1 = {Cj :::} OJ.. }j=1 be the set of all new terminating 
step clauses in the saturation of M+I which is free of step clauses 
C :::} OJ.. and D :::} OJ.. with Cu = D, where u is a variable 
renaming. Additionally, let MHI = {D j :::} 0J..}j=1 ~ 1;+1 be the 
set of all the minimal terminating step clauses w.r.t. the relation !; 
and the set (3~ + 1 ){ C' -+ x}. 

(3) If )\1i+! = 0, return false; else let ~+I(X) = V;=1(3Dj ){d -+ x} 
(4) If Vx(Rj(x):::} RHdx)), return RH1 (X}. 
(5) i=i+l;got02. 

Figure 3.3: Restricted Breadth-First Search Using Ordered Fine-Grained Step Resolution 
with Selection 

Hence, in order for our completeness proof for ordered fine-grained resolution with 

selection to succeed, the premises of some inference rules of monodic temporal resolution 

have to be restricted. 

First of all, we have to restrict the step resolution rule by imposing an additional 

constraint on the merged derived step clauses that are used as premises. The refined 

inference rule is defined as follows. 

Refined Step Resolution Rule w.r.t. U: 

if 8 is minimal (w.r.t. the relation c) such that 

UU{8}FJ.. 

Furthermore. we do not run the BFS algorithm (Figure 3.1) to compute premises for the 

eventuality resolution rules. but instead we use the refined breadth-first search (Ref-BFS) 

algorithm depicted in Figure 3.4. 

The Ref-BFS algorithm can be seen as a refined version of the BFS algorithm. A 

comparison with the BFS algorithm shows that the selection constraints on full merged 

clauses in the Ref-BFS algorithm have been refined in a similar way as the refined step 

resolution rule mentioned above. Thffie additional constraints in the selection process of full 

merged step clauses ensure that exactly the same full merged step clauses can also obtained 

during J~;; -derivations. 
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Function Ref-BFS 
Input: A temporal problem P = (U,I,S, £) and an eventuality clause OL(x) E £. 
Output: A formula H'(x) with at most one free variable. 
Method: (1) Let H6(x) = true; No = 0; i = 0 

(2) Let N:+l = {V'x(AY+l)(x) ::::} OBji+l)(x»}J=l ~ M(P) be the set 
of all fuJI merged step clauses such that for every j E {I, ... , k}, the 
formula V'x(U A Bji+l)(x) ::::} (-,L(x) A Hj(x») is valid and such that 

for every j E {I, ... , k} and every B'(x) C Bji+l)(x), the formula 
3x(U AB'(x)A -,( -,L(x)AHj(x») is satisfiable. (The set N:+l possibly 
includes the degenerated clause true ::::} Otrue in the case U F 
V'x(-,L(x) A Hj(x».) 

(3) If N:+l = 0, return false; else let H:+1(x) = V;=l(A;i+l)(x» 
(4) IfV'x(HI(x)::::} H:+1(x», return H:+1(x). 
(5) i=i+l;goto2. 

Figure 3.4: Refined Breadth-First Search Algorithm 

The refutational completeness of the calculus derived as described above from monodic 

temporal resolution will be proved in the subsequent section. The refined calculus will be 

called refined monodic temporal resolution in the following, and denoted by J~. 

3.4.2 Properties of the Ref-BFS algorithm 

Before we can show the refutational completeness of refined monodic temporal resolution, 

we have to prove some properties of the Ref-BFS algorithm. 

First, we introduce the notion of upward closure under the relation r;: of a set of full 

merged (and merged derived) step clauses. 

Definition 3.4.1. Let P = (U, I, S, £) be a monodic temporal problem and let N ~ M(P) 

be a set 01 full merged or merged derived step clauses. Then we define a set of full merged 

or merged derived step clauses MfN(P) as follows: 

MfN(P) = {V'x(A'(x) ::::} OB'(x» E M(P) 13V'x(A(x) ::::} OBex»~ EN: 8(x) r;: B'(x)} 

We now show a couple of properties related to sets of full-merged step clauses N: that 

have been constructed in a run of the Ref-BFS algorithm. 

Lemma 3.4.2. Let P = (U,I,S,£) be a monodic temporal problem and let OL(x) E £ 
be an eventuality clause. Furthermore, let No, N{, . .. be the sequence of sets and let 

Ho(x), H~ (x), ... be the sequence of formulae constructed by a run of the Ref-BFS algorithm 

applied on the temporal problem P lor the eventuality OL(x). 

Then it holds lor all i ~ 1 that N:+l ~ MfN:(P) and that the formula V'x(HI+l(x) ::::} 

H:(x» is valid. 

Proof By induction on i. We first of all observe that the formula V'x(Hi(x) ::::} true) is 

valid. 
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Now, let i ~ 1. We may assume that N:+l =f. 0 as otherwise N:+ 1 = 0 and H:+ 1(x) = 
false. Then, 0 ~ N: would clearly hold and the formula V'x(false ::::} H:(x)) would be 

valid. Without 10&> of generality, let V'x(Ai+l(x)::::} OBi+l(X)) E N:+l (the case for true::::} 

Otrue E N:+l is similar). Then it holds that the formula V'x(U A. B(i+l)(x) ::::} (....,L(x) A. 

HI(x))) is valid and that for every B'(x) c B(i+l)(X), the formula 3x(U A. B'(x) A. ....,(....,L(x) A. 

HI(x))) is satisfiable. From the induction hypothesis (and the validity ofV'x(H1(x) ::::} true)) 

it follows that the formula Vx(H:(x) ::::} HI-l (x)) is valid, which implies that the formula 

Vx(U A B(i+l)(X) ::::} (....,L(x) A. H:_ 1(x))) is valid as well. Hence, there exists a formula 

Vx(A(x) ::::} OB(x)) EN: such that A(x) ~ Ai+l(X) and B(x) ~ Bi+l(x) (and thus, the 

formula VX(Ai+l(X) ::::} A(x)) is valid). We can conclude that N:+l ~ MIN:(P), which 

implies that the formula Vx(H:+ 1(x)::::} HI(x)) is valid. 0 

Corollary 3.4.3. Let P = (U, I, S, £) be a monodic temporal problem and let 0 L(x) E £ be 

an eventuality clause. Furthermore, let No, N{, . .. be the sequence of sets constructed by a 

run of the Ref-BFS algorithm applie.d on the temporal problem P for the eventuality OL(x). 

Then it holds for all i ~ 1 that MiN:+1 (P) ~ MiN:(P). 

Proof. Let i ~ 1 and let VX(A"(X) ::::} OB"(x)) E MiN:+1 (P), that is, there exists a full 

merged step clause Vx(A'(x) ::::} OB'(x)) E N:H with B'(x) ~ B"(x). By Lemma 3.4.2 there 

exists a full merged step clause Vx(A(x) ::::} OB(x)) EN: with B(x) ~ B'(x). Therefore, it 

is easy to see that B(x) ~ B"(x) holds. 0 

Lemma 3.4.4. Let P = (U, I, S, £) be a monodic temporal problem and let OL(x) E £ be an 

eventuali.ty cIa·use. Then the Ref-BFS algorithm applied on the problem P for the eventuality 

o L( x) will re.quire only finitely many iterations. 

Proof. Let No,N{, . .. be the sequence of sets and Hb(x), HHx), ... be the sequence of 

formulae constructed by the run of the Ref-BFS algorithm. By Corollary 3.4.3 it holds 

for all i ~ 1 that M!N:+1 (P) ~ MiN:(P)' As every set MiN:+1 (P) is finite, it either holds 

that thpre exists an index j ~ 1 with MiN;+l (P) = MiN;(P) or there exists an index k ~ 1 

with N~ ~ .\If iN~ (P) = 0, which immediately implies that the algorithm Ref-BFS stops at 

the k-th iteration. If Nj ~ MIN;(P) = MiN;+l (P) ;2 Nj+l' then it is easy to see that the 

formula Vx(Hj(x) ::::} Hj+ l(x)) is valid and the algorithm Ref-BFS stops at the (j + 1)-th 

iteration. 0 

Lemma 3.4.5. Let P = (U, I, S, £) be a monodic temporal problem and let OL(x) E £ be 

an eventuality clause. Furthermore, let No, Nt, ... ,N:, N:H , N:+2 be a sequence of sets and 

let HMx), H~ (x), . .. ,H:(x), HI+ 1 (x), H:+ 2(x) be a sequence of formulae constructed by a 

run of the Ref-BFS algorithm appli.ed on the temporal problem P for the eventual-i.ty OL(x). 

Additionally, we assume that the formula Vx(HI{x) ¢} H:+ 1(x)) is valid. 

Then it holds that N:+ 1 = N:+ 2 · 
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Proof. First of all, we can observe that if H/(x) = false or HI+l (x) = false, it must hold 

that HI(x) = false = HI+l (x). It then follows from Lemma 3.4.2 that N/+l = 0 = Nt+2' 

Hence, we may now assume that HI(x) -I false -I HI+l(x). 

Next, we show that N!+l ~ N!+2' The inclusion N/+2 ~ N!+l can be shown analogously. 

Without loss of generality, let 'cfx(A(x) :::} OBex»~ E N:+ 1 (the remaining case for true:::} 

Otrue E N:+ 1 is similar). Then it holds that the formula 'cfx(U 1\ B(x) :::} (-.L(x) 1\ HI(x») 

is valid and that for every B'(x) C B(x), the formula 3x(U 1\ B' 1\ -.(-.L(x) 1\ HI(x») is 

satisfiable. Hence, as the formula 'cfx(HI(x) <=> H/+1(x» is valid, it follows that the formula 

'cfx(U 1\ B(x):::} (-.L(x) 1\ H:+1(x») is valid and that for every B'(x) C B(x), the formula 

3x(U 1\ B' 1\ --,(-..,L(x) 1\ HI"f"l (x») is satisfiable. We can conclude that 'cfx(A(x) :::} OBex»~ E 

N:+ 2· 0 

Corollary 3.4.6. Let P= (U,I,S,£) be a monodic temporal problem and let OL(x) E £ be 

an eventuality clause. Furthermore, let No, N{, ... ,Nt, N!+ 1 ,N!+2' . .. be a sequence of sets 

and let H6(x), Hf(x), ... , H:(x), H:+1(x), HI+2(x), ... be a sequence of formulae constructed 

by a run of the Ref-BFS algorithm applied on the temporal problem P for the eventuality 

OL(x). Additionally, we assume that the formula 'cfx(HI(x) <=> H/+l (x» is valid. 

Then it holds for all j ~ 1 that N:+ j = N/-;-j+l and that the formula 'cfx(H:+j(x) <=> 

HI+j+l(X» is valid. 

Proof. Follows from Lemma 3.4.5 and from the fact that for all j E N the set equality 

N:"f"j = N:+ j+ 1 implies that the formula 'cfx(HI+j(x) <=> H:+ j+1 (x» is valid. 0 

The next lemma establishes a correctness result for the Ref-BFS algorithm. 

Lemma 3.4.7. Let P = (U,I,S, £) be a monodic temporal problem and let OL(x) E £ be 

an eventuality clause. Additionally, let H(x) denote the formula computed by the Ref-BFS 

algorithm applied on the problem P for the eventuality OL(x). 

Then the formula 'cfx(U 1\ H(x) :::} OD-.L(x» is valid. 

Proof. Similarly to the proof given in [23J. o 

The subsequent lemma shows that if a monodic temporal problem admits a loop formula 

V;=l A,;(x) for an eventuality OL(x), then the Ref-BFS algorithm computes a loop formula 

V';=l Ak(x) such that the formula 'cfX(V;=l Aj(x) :::} V';=l Ak(X» is valid. 

Lemma 3.4.8. Let P = (U, I, S, £) be a monodic temporal problem such that the set U is 

satisfiable, let 'cfx(Aj(x) :::} OBj(x» for j E {I, ... , n} be full merged step clauses and let 

OL(x) E £ be an eventuality clause soch that the loop side conditions 'cfx(U 1\ Bj(x) :::} -.L(x» 

and 'cfx(U 1\ Bj(x) :::} V;=l A,;(x» are valid for all j, 1 ~ j ~ n. 

Then the Ref-BFS algorithm applied on the temporal problem P for the eventual

ity OL(x) returns a formula H(x) = V';=l Ak(x) such that for all 'cfx(Aj(x) :::} OBj(x», 

j E {I, ... , n}, there exists a full merged step clause 'cfx(Ak(x) :::} OBk(x» E M(P) 
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with 1 ~ k ~ m, A~(x) !; Adx) and Bk(x) !; Bdx), which implies that the formula 

'iX(V~=1 Aj(x) =} V;~I A~(x)) is valid. 

Proof. Let N~,N{, ... ,N:, ... be the sequence of sets and Ho(x),H1(x), ... ,HI(x), ... 

be the sequence of formulae constructed by a run of the algorithm Ref-BFS applied on 

the temporal problem P for the eventuality OL(x). We show by induction on i with 

i ~ 1 that for all 'ix(Aj(x) =} OBj(x)), j E {1, ... ,n}, there exists a full merged step 

clause 'ix(Aj(x) => OBj(x)) E N: such that the formula 'ix(Aj(x) =} Aj(x)) is valid. 

By Lemma 3.4.4 the algorithm Ref-BFS then returns a formula H(x) with the required 

properties. 

For i = 1, we first of all observe for all j, 1 ~ j ~ n, that the formulae 'ix(U /\ Bj(x) =} 

..,L(x)) == 'ix(U /\ Bj(x) => ..,L(x) /\ true) are valid. It follows for every j, 1 ~ j ~ n, that 

there exists a full merged step clause 'ix(Aj(x) => OBj(x)) E N{ such that Aj(x) !; Aj(x) 

and Bj(x) !; Bj(x), which implies that the formula 'ix(Aj(x) =} Aj(x)) is valid for all j, 

1 ~ j ~ n. 

If i > 1. then it follows from the induction hypothesis for all j, 1 ~ j ~ n, that 

there exists a full merged step clause 'ix(Aj(x) =} OBj'(x)) E N:_ I such that the formula 

'ix(AJ(x) => Aj(x)) is valid. Hence, H:- I (x) == H:'-I (x)VV;=1 Aj(x) for a formula H:'_l(x). 

We obtain for all j, 1 ~ j ~ n, from the formula 'ix(U /\ Bj(x) =} V~=l Aj{x)) that the 

formula 'ix(U /\ Bj (x) =} V~= 1 Aj (x)) is valid and thus, we can conclude for all j, 1 ~ j ~ n, 

that the following formulae are valid: 

n 

'ix(U/\Bj(x) =} ..,L(x)/\(H:'-I(x)V V Aj(x))) == 'ix (U/\ Bj(x) =} ..,L(x)/\H:_1(x)) 
j=1 

Thus, it is easy to see that for every j, 1 ~ j ~ n, there exists a full merged step clause 

'ix(Aj(x) => OBj(x)) E N: such that Aj(x) !; Aj(x) and Bj(x) !; Bj(x). Clearly, the 

formula 'ix(Aj(x) => Aj(x)) is valid for all j, 1 ~ j ::; n. 0 

Finally, we show that the Ref-BFS algorithm computes the same loop formulae if it is 

applied for the same eventuality OL(x) on two sets U, U' with U ~ U' and U' ~ U. 

Lemma 3.4.9. Let P = (U,I,S.£) and P' = (U',I,S,£) be monodic temporal problems 

such that U ~ U' and U' ~ U, and let OL(x) E £ be an eventuality clause. Additionally, 

let No,N1, ... be a sequence of sets and let Ho(x), H1{x), ... be a sequence of formulae 

c-Onstructed by a run of the Ref-BFS algorithm applied on the temporal problem P for the 

eventuality OL(x). Finally, let N~.N{, ... be a sequence of sets and let Hb(x), HHx), ... 

be a sequence of formulae constructed by a run of the Ref-BPS algorithm applied for the 

eventuality 0 L( x) E £ on the tempoml problem P'. 
Then it hold.~ for all j EN that N j = Nj and Hj(x) = Hj(x). 

Proof. By induction on j. For j = 0 we have No = 0 = No and Ho{x) = true = Ho(x). 

If j > 0, then it follows from the induction hypothesis that N j _1 = Nj-l and Hj-l{x) = 
Hj_dx). We now show that N J ~ Nj. Let 'ix(A(x) =} OB(x)) E N j . Then, it follows 
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that the formula Irtx(U 1\ B(x) ~ (-.L(x) 1\ Hi(X») is valid and that for every B'(x) c B(x), 

the formula 3x(U 1\ B'(x) 1\ -.(-.L(x) 1\ Hi(X») is satisfiable. Hence, as U F U' and U' F U, 

the formula Irtx(U'1\ B(x) ~ (-.L(x) 1\ Hi(X») is valid and for every B'(x) c B(x), the 

formula 3x(U' 1\ B'(x) 1\ -.(-.L(x) 1\ Hi(X») is satisfiable. We can conclude that Irtx(A(x) ~ 

OB(x» E NJ. Analogously, one can show that NJ ~ Nj. Finally, we also observe that 

Hj(x) = Hj(x) as Nj = NJ. 0 

We have now established all the required results to prove the refutational completeness 

of refined monodic temporal resolution. 

3.4.2.1 Proof of Refutational Completeness 

The proof of completeness for refined monodic temporal resolution proceeds by simulating 

a derivation of (regular) monodic temporal resolution :Ie by refined monodic temporal 

resolution :I;. For every deduction step U U {j,}, where F is the newly derived formula by 

(regular) monodic temporal resolution, and every set of universal clauses U with U F U, we 

show that there exists a derivation step U U {F} by refined monodic temporal resolution 

such that U U {F} F U U {F}. Thus, if the set U U {F} is unsatisfiable, it must also hold 

that the set U U {F} is unsatisfiable. 

We begin by simulating the step resolution rule. 

Lemma 3.4.10. Let P = (U, I, S, £) be a monodic temporal problem and let U be a set of 

universal formulae such that U F U. Additionally, let A ~ 08 be a merged derived clause 

such that U U {8} F .L 

Then there exists a merged derived step clause A ~ OB such that B !;;; B, U U {B} F 1. 

and B is minimal with respect to U. Furthermore, it holds that: 

Proof It is clear that a merged derived clause A ~ OB exists such that A !;;; A, B !;;; 8, 
U U {B} F 1. and B is minimal with respect to U exists. Thus, -.A F -.A and we obtain 

Uu {-.A} F UU {-.A}. 0 

Now, we show that the eventuality resolution rule of (regular) monodic temporal resolu

tion can be simulated in the refined calculus. 

Lemma 3.4.11. Let P= (U,I,S,E) be a monodic temporal problem such that the setU 

is satisfiable and let U be a set of universal formulae such that U F U. Additionally, let 

Irtx(Aj(x) ~ OBj(x» for j E {I, ... , n} be full merged step clauses and let OL(x) E £ 

be an eventuality clause such that the loop side conditions Irtx(U 1\ Bj(x) ~ -.L(x» and 

Irtx(U 1\ Bj(x) ~ V;=l Aj(x» are valid for all j, 1 ~ j ~ n. 

Then there exists a loop formula H(x) = V';=l A~(x) computed by the Ref-BFS algorithm 

applied on the temporal problem P = (U,I,S,£) for the eventuality OL(x) such that the 
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formula 'rjX(V;=1 Aj(x) => V7:=1 A~(x)) is valid. Moreover, it holds that: 

m n 

U u r-v'x( 1\ -'A~(x))} F U u {'rjx( 1\ -,Aj(x))} 
k=1 j=1 

Proof. First of all, as U F U holds, it follows that the formulae "'ix(U 1\ Bj(x) => -,L(x)) and 

'rjx(U 1\ Bj(x) => V;=l Aj(x)) are valid for all j, 1 $ j $ n. Thus, by Lemma 3.4.8 the Ref

BFS algorithm applied for the eventuality OL(x) on the temporal problem P = (U,I,S,£) 

computes a formula H(x) = V 7:= I A~(x) such that "'ix(V';=1 Aj(x) => V7:=1 A~(x)) is valid. 

Furthermore, we obtain that the formula 'rjx(I\7:=1 -,Ak(x) => /\';=1 -,Aj(x)) is valid 

as well. Hence, we can infer that {"'ix(I\7:=1 -'A~(x))} F {"'ix(I\';=1 -,Aj(x))} , and finally 

U U {'rjx(I\~1 -'A~(x))} F U u {'rjX(I\;=1 -,Aj(x))} as U F U. 0 

The next proposition then regroups the previous results. 

Lemma 3.4.12. Let P = (Uo.I,S,t:) be a monodic temporal problem and let ~ = Uo ~ 

UI ~ ... ~ Urn be a den'vation in Je · Then there exists a derivation ~ = Uo ~ U1 ~ ... ~ Un 

(m ~ n) in J~ from P where Uo = Uo and such that Ui F Ui for all i, 1 $ i $ n, and for 

all i. 1 $ i $ n, either the set Ui t.s unsatisfiable or it i.s obtained through an appli.catwn of 

the samei.nference rule as the one used to derive the set l1i , except that 

• every application of the (regular) step resolution rule is replaced by an application 

of the refine.d step resolution rule on a step clause A' => 013' with 13' !;;; 13, where 

A=> 013 is the premise of the (regular) step resolution rule, 

• the appl-icat'i.on of the eventuality resoluti.on rules is only performed on satisfiable sets 

of univer,qal formulae and it is restricted to loops found by the Ref-BFS algorithm. 

Proof. By induction on the length n of the derivation employing Lemmata 3.4.10 and 3.4.11 

and by using the observation that for every two sets of universal clauses U, 11 with U 1= 11 
and a set of initial clauses I, U u I F U u I holds. 0 

Finally. we can establish the refutational completeness of refined monodic temporal 

resolution for monodic temporal problems with unique left-hand sides in step clauses. 

Lemma 3.4.13. Let P = (Uo. I, S, £) be an unsatisfiable monodic temporal problem with 

unique left-hand sides in step clauses and let P' be its constant-flooded form.. Then there 

e:ri~ .. ts u successfully terminating derivation ~ in J~ from P' which restricts the application 

of the e·ventualit·y resolution rules to loops found by the Ref-BFS algorithm. Furthermore, the 

refined step resolution rule and the e'ventuality resolution rules are only applied on satisfiable 

sets of univer,qal formulae in the derivation 6. 

Proof. By Theorem 3.2.8 there exists a successfully terminating derivation ~' = 110 ~ 111 ~ 
... ~ Urn in Je from pc such that 1. in lim and 1. ft Uj for all 1 $ j < m. 
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Then, by Lemma 3.4.12 there exists a J~-derivation ~ = Uo ~ U1 ~ ... ~ Un (m ~ n) 

such that either .1. E Un or the set Un is unsat isfi able. fUrthermore, the eventuality resolution 

rules are only applied on satisfiable sets of universal formulae in the derivation A. Moreover, 

if the set Un is unsatisfiable but .1. ¢ Un, we can apply the termination rule and extend the 

derivation ~ with the set Un+1 = Un U {.l}. 

Finally, if in the derivation ~ the refined step resolution rule is applied on an unsatisfiable 

set of universal formulae, then the first such application can be replaced by an application 

of the termination rule in order to obtain the desired result. o 

Note that the condition which states that the step resolution rule and the Ref-BFS 

algorithm are only applied on satisfiable sets of universal formulae is again necessary for 

ensuring the correspondence between specific full merged or merged derived clauses and 

those step clauses found by resolution-based methods. 

3.4.3 Proof of the Lifting Theorem 

Before we can show the refutational completeness of ordered fine-grained resolution with 

selection, we have to prove the lifting theorem for J~t without considering the eventuality 

resolution and the duplicate literal elimination in terminating step clauses rules. 

But as the inference rules of fine-grained step resolution that involve step clauses require 

special restrictions on most general unifiers, we need to analyse the notions of substitutions 

and most general unifiers in greater detail before we can prove the lifting theorem. For 

example, for the instantiation pee) =* Oq(e) of the step clause p(x) =* Oq(x) using the 

substitution u = [x t-+ el, there exists a resolution inference between the step clause 

pee) =* Oq(e) and the universal clause -,q(e). But due to the restrictions imposed on most 

general unifiers for variables occurring in left-hand sides of step clauses, no inference is 

possible between the uninstantiated step clause p(x) =* Oq(x) and the universal clause 

-,q(e). Consequently, in order to obtain a result that is similar to the "traditional" lifting 

theorem (see, e.g., [101), one can, for instance, allow specific instances of clauses only. A 

"traditional" result can be shown for ordered fine-grained resolution with selection if the 

substitutions that link the non-instantiation to the instantiation level only map variables 

into constants that do not occur on the un instantiated level, which is also sufficient for 

proving the refutational completeness of the J~t -calculus. Additionally, as arbitrary function 

symbols can be introduced during the Skolemization process, we have to prove some results 

involving arbitrary terms and not only constants, which complicates the required proof steps 

considerably. 
First of all, we show some properties of substitutions and most general unifiers. Unless 

noted otherwise, we assume in this section that E is a set of constants or function symbols, 

i.e. E ~ CS u FS, and that atoms are built over the term set TdX). 

Lemma 3.4.14. Let u: X - TdX) be a substitution. Then u is idempotent if and only if 

it holds that dom(u) n var(codom(u» = 0. 
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Proof. Can be found in [62]. o 

Lemma 3.4.15. Let a: X --+ Tr;(X) be. a substitution. Then a is a variable renaming if 

and only if a 1.s invertible. 

Proof. Can be found in [62]. o 

Lemma 3.4.16. Let a: X --+ Tr;(X) be a variable renaming. Then a is injective. 

Proof. By Lemma 3.4.15 the substitution a is invertible with inverse a-I such that aa- 1 = id. 

If we assume that there are variables x, y E X with x '" y and a(x) = a(y), then it follows 

that x = xaa- I = yaa- 1 = y, which contradicts the fact that x '" y. 0 

Lemma 3.4.17. Leta: X --+ TdX) be an inverti.ble substitution and leta-I: X --+ Tr;(X) 

be a substitutionW'i.th aa -1 = id. Then a-I is invertible. 

Proof. First of all, as the substitution a is invertible, we can infer that dom(a) = codom(a) by 

Lemma 3.4.15. Additionally, codom(a) ~ X and codom(a- 1 ) ~ X must hold. Furthermore, 

it is easy to verify that dom(a- 1 ) = codom(a) and codom(a- 1 ) = dom(a), which implies 

that dom(a- 1) = codom(a- 1 ). Hence, we can conclude that a-I is invertible by applying 

Lemma 3.4.15 again. 0 

Lemma 3.4.18. Let a, T: X --+ Tr;(X) be variable renamings. Then it holds that aT is a 

vari.able renaming. 

Proof. It follows from Lemma 3.4.15 that there are substitutions a-I, T- 1 with aa- 1 = 
i.d = rr-l. Thus, (aT)(T-la- l ) = id and aT is invertible, which implies that aT is a 

variable renaming by Lemma 3.4.15. o 

Lemma 3.4.19. Let a, T: X --+ TI;(X) be most general unifiers of two atoms A and B such 

that a is idempotent. Then it holds that T = aT. 

Proof. As the substitution T is a unifier of the atoms A and B, there exists a substitution f3 

with T = a/3. Additionally, as a is idempotent, it holds that T = (aa)f3 = a(af3) = aT. 0 

The following proposition can also be found in [62]. 

Lemma 3.4.20. Let a, T: X --+ TI;(X) be most general unifiers of two atoms A and B such 

that a is idempotent. Then there exists a variable renaming 'P with a'P = T. 

Proof. First of ali, we define a substitution 0 as follows. For x EX, let 

{ 
r(x) 

o(x) = x 
if x E dom(T) and x ¢ dom(a) 

otherwise 

As a is idempotent, it holds by Lemmata 3.4.14 and 3.4.19 that T = aT = ao. Moreover, as 

the substitution a is a unifier of the two atoms A and B, there exists a substitution f3 with 
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u = T(3. Thus, we obtain u = T(3 = uo.(3. Now, for x E dom(o.) it holds that x rt dom(u), 

which implies that x = xo.(3. As o.(x) f. x, it follows that codom(o.) ~ dom((3) ~ X and 

that o.ldom(a) is injective as for any two variables x, y E dom(o.) with xo. = yo. it holds that 

x = xo.j3 = yo.j3 = y. 

Let -y: codom(o.) \ dom(o.) - dom(o.) \ codom(o.) now be a bijection. We then define a 

substitution 0.' = 0. U -y. The substitution 0.' is well-defined and it is a variable renaming as 

dom(o.') = dom(o.)U(codom(o.)\dom(o.» = codom(o.)U(dom(o.)\codom(o.» = codom(o.') 

Furthermore, we show that codom(o.) \ dom(o.) ~ dom(u). Let therefore x E codom(o.) \ 

dom(o.). If we assume that x rt dom(u), then it follows that x = x(3 as u = uo.(3. Thus, 

x rt dom(j3), which contradicts the fact that codom(o.) ~ dom((3). 

Finally, we can conclude that T = uo. = uo.' as dom(u) n var(codom(u» = 0. 0 

Lemma 3.4.21. Let u: X - n:;(X) be a most general unifier of two atoms A and B. 

Additionally, let ( be a variable renaming. Then it holds that u( is a most general unifier 0/ 
A and B. 

Proof Let T be a unifier of A and B. We need to show that there is a substitution 'P with 

u('P = T. 

As u is a most general unifier of A and B, it follows that there is a substitution 1jJ 

such that u1jJ = T. Moreover, by Lemma 3.4.15 there exists a substitution (-1 such that 

((-1 = id, which implies that 

Hence, by choosing 'P = (-11jJ, we obtain the desired result. o 

The next major result in this section will be established by Lemma 3.4.32, which can 

be seen as a lifting lemma for most general unifiers. It states that for a set of constants 

C ~ CS and atoms A,..4, B, fJ such that the substitution u: X - TI;(X) is a most general 

unifier of ..4, fJ and such that there is a substitution 1/: X - TI;(X) with A1/ = ..4, B1/ = 8, 
and codom(1/) ~ C, there exists a most general unifier T: X - TI;(X) of A and B, and a 

substitution 'P: X - TI;(X) with T'P = 1/u and codom('P) ~ c. 
The proof of the following lemmata relies on derivations produced by the rule-based 

unification algorithm U shown in Figure 3.5, which computes a most general unifier. The 

algorithm has been introduced in [7]. We prove the existence of most general unifiers with 

certain properties by analysing derivations produced by the algorithm U. 

We first of all define the following notions that are related to the algorithm U. 

Definition 3.4.22. In the context of the rule-based unification algorithm U we define that: 

(i) A system A is either 1.. (the failure system) or a pair P; S consisting of a multiset P 

of unifirotion problems and a set of equations S in solved form. 
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Trivial: 
{s ~ s} U pi; S :::;. pi; S 

Decomposition: 

U(Sl, ... ,Sn) ~f(tl, ... ,tn)}UPI;S:::;. {SI ~tl, ... ,Sn ~tn}Upl;S 

for n 2: 0 

Symbol Clash: 

U(SI, ... , sn) ~ g(tl, ... , t m )} U pi; S:::;..l 

if f =I g 

Orient: 

{t ~ x} U pi; S :::;. {x ~ t} U pi; S 

if t is not a variable 

Occurrence Check: 

if x E var(t) and x =I t 

Variable Elimination: 

{x ~ t} U pi; S :::;..1 

{x ~ t} U pi; S :::;. pi {x ......... t}; S {x ......... t} U {x ~ t} 

if x fi. var(t) 

Figure 3.5: Rule-Based Unification Algorithm U 

(ii) A derivati.on V produced by the algorithm U is a sequence of systems 
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where n > 1 and for every i with 1 < i 5 n, the system Ai results from the system A i - l 
through an application of one of the inference rules depicted in Figure 3.5. The length 

of the derivation V is denoted by lVI, i.e. IVI = n. 

(iii) A derivation V = AI, ... , An is said to be maximal if and only if An = ..1. or An = 0; 8 

for a set of equations S in solved form. 

(iv) For a set S = {Xl ~ tl, ... ,Xn ~ tn} of equations in solved form, we write Us to 

denote the substitution [Xl ......... fl,··· ,xn ......... tnJ that is induced by the set of equations S. 

Thus, the algorithm U deriVe> new systems from given systems through its ded uction 

rule>. When started on a system {A ~ B}; 0 with two unifiable atoms A and B, it eventually 

computes a most general unifier of the atoms A and B as stated in the following correctne>S 

result for the algorithm U. 

Theorem 3.4.23 (see [7]). Let A and B be two unifiable atoms. 

Then any maximal derivation computed by the algorithm U shown in Figure 3.5 starting 

from the system P; S = {A ~ B}; 0 results in a system 0; S such that Us is an idempotent 
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most general unifier of A and B, (dom(O's) U (codom(O's) n X)) ~ var(A) U var(B) and 

const(codom(O's)) ~ const(A) U const(B). 

The proofs of the next two lemmata rely on Theorem 3.4.23. 

Lemma 3.4.24. Let A, B be two unifiable atoms and 0': X -+ TdX) be a most general 

unifier of A and B. Then it holds that const(codom(O')) ~ const(A) U const(B). 

Proof First of all, it follows from Theorem 3.4.23 that the unification algorithm shown 

in Figure 3.5 computes a most general unifier A of A and B such that const(codom(A)) ~ 

const(A) U const(B). Moreover, as a is a most general unifier of A and B, there is a 

substitution ep such that O'ep = A. If we now assume that there is a variable x and a constant 

c E const(O'(x)) such that c ¢. const(A) U const(B) , then it follows that c E const((O'(x))ep) 

as cep = c. Thus, c E const(codom(A)) ~ const(A) U const(B), which is obviously a 

contradiction. 0 

Lemma 3.4.25. Let a, T: X -+ TdX) be most general unifiers of two atoms A and B. 

Then there exists a variable renaming ep with O'ep = T. 

Proof By using, for instance, the algorithm U depicted in Figure 3.5, we obtain from 

Theorem 3.4.23 that there exists an idempotent most general unifier (J of the atoms A and B. 

Moreover, it follows from Lemma 3.4.20 that there are variable renamings ep,t/J with (Jep = a 

and Ot/J = T. Lemma 3.4.15 implies that there is a substitution c.p-l with epep-l = id. Thus, 

0= O'ep-l and O'(ep-lt/J) = (O'ep-l)t/J = (Jt/J = T. Finally, it follows from Lemmata 3.4.15, 

3.4.17 and 3.4.18 that c.p-lt/J is a variable renaming. 0 

The next major result in this section will be established by Lemma 3.4.32. For a 

set C ~ CS of constants and atoms A, A, B, E such that the substitution 0': X -+ TdX) 

is a most general unifier of A and E and such that there is a substitution 'f/: X -+ TdX) 

with A'f/ = A, B'f/ = E, and codom('f/) ~ C, the existence of the most general unifier 

T: X -+ TdX) of A and B, and of the substitution ep: X -+ TdX) with Tep = 'flO' and 

codom(c.p) ~ C will be shown by analysing a special kind of derivations of the algorithm U. 

We will only consider liftable derivations produced by the unification algorithm U depicted 

in Figure 3.5: 

Definition 3.4.26. Let V = PI; 8 1 => P2; 82 => ... => Pn ; 8 n be a derivation produced by 

the algorithm U. We say that the derivation V is liftable if and only if the following three 

conditions are satisfied: 

(i) the trivial rule is only applied to pairs of variables x 1: x or to pairs of constants c 1: c, 

and 

(ii) the decomposition rule i8 only applied to pairs of terms f ( 81, ... , 8n ) 1: f (t 1, ... , tn ) 

with n > 0, and finally 
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(i.ii) every application of the orient rule is immediately followed by an application of the 

occurrence check or variable elimination rule. 

The next lemma then proves some simple properties of derivations produced by the 

algorithm U. 

Lemma 3.4.27. Let V = P1; Sl => ... => Pn; Sn (n ~ 2) be a derivation produced by the 

algorithm U such that 8 1 = 0. 
Then it holds that for every i with 1 ~ i ~ 11 that 

• dom(O"sJ ~ dom(O"sHI) for i < 11, 

• {x ~ t} E Pi implies that x ft dom(O"sJ, 

• const(codom(asJ) ~ const(Pi-d U const(8i -d for i > 1, and 

• dom(as,) ~ var(Pt}. 

Proof. Follows straightforwardly from the definition of the algorithm U shown in Figure 3.5. 

o 

The follOWing two lemmata prove some results that are needed for Lemma 3.4.30. 

Lemma 3.4.28. Let C ~ CS be a set of constants. Additionally, let P; S => P'; fj' be 

a transformation step performed by the algorithm U in a liftable derivation that has been 

initially started on an empty set of solved equations such that the orient rule is not applied 

and such that there is a substituti.on '\: X - TdX), a multiset of equations P and a set of 

equations in solved form 8 wi.th 

(a) codom('\) ~ C, 

(b) P'\ = P, 

(c) T/x E dom(as): xas'\ = xa§, and 

(d) T/ x E dom(as}: x ~ dom(as} => xO"s'\ = x'\. 

Then there exists a multiset of equations P", a set of equations 8", a derivation P; 8 =>. 
P"; 8" produced by the algorithm U and a substitution 'P: X - TdX) such that 

(i) dom('\) £; dom('P), 

(ii) dom('P) \ dom('\) £; dom(a§,), 

{iii} T/ x E dom(,\): 'P(x) = '\(x), 

(iv) codom('P) £; C, 

{v} P''P = P', 
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(vii) 'V x E dom(O's'): x ¢. dom(O'ii') => XO's'<P = X<p, and 

(viii) 'Vx E dom(O's') \ dom(O's): x¢. dom(O's') => x E dom(A). 

Proof. We have to distinguish between the different rules that could have been used to 

obtain the derivation step F; S => Pi; [P. Since Pi; S' is not the failure system .1, neither 

the occurrence check, nor the symbol clash rule could have been applied in the derivation 

of Pi; S'. 
For the trivial rule, we obtain P = {s -l::. s} U Q, in = Q and S = S'. As the considered 

derivation is liftable, we can conclude that s is either a variable or a constant. Let now 

s -l::. t E P such that SA = sand O. = S. If s = t, then the trivial rule can be applied on 

P; S = {s -l::. s }uQ; S. The result of the application is the system P"; S" = Q; s, i.e. S" = S, 

and as QA = Q, the properties (i) to (viii) are obviously satisfied for the substitution A. 

Otherwise, s -=I- t holds, and as codom(A) ~ C, there are the following possibilities: sEC 

and t EX, or sEX and tEe, or sEX and t EX. 

If sEX and t = c E C, we can infer that A(S) = c -= t = S. Thus, the variable 

elimination rule can be applied on the system P; S = {s 1::. c} U Q; s, which results in the 

system P"; S" = Q{ S 1--4 c}; S{ S 1--4 c}u{ S ~ c}. It is then easy to see that O's" = O's{ s 1--4 c}. 

Now, let <p := A. The properties(i), (ii), (iii) and (iv) are then trivially satisfied. As QA = Q, 
A(S) = c, and therefore, {s 1--4 c}A = A, it holds that P"<p = P"A = Q{s 1--4 c},x = Q = Pi, 
i.e. property (v) is satisfied. For property (vi), let Z E dom( 0' s") = dom( 0' s). Hence, 

ZO's<P = ZO'SA = zO'§ = zO's' and as again {s 1--4 c}<p = <p, we obtain ZO's"<p = zO's';, i.e. 

property (vi) holds. Now for property (vii), it first of all holds that SO's"<p = c = Sip. We 

still have to consider the case when Z E dom(O'sll) such that Z ¢. dom(O's') and Z -=I- x. It 

follows that Z E dom(O's) and Z ¢. dom(O's)' which implies ZO's<P = zO's,x = zA = zip. And 

therefore, as {s 1-+ c}<p = <p, it holds that ZO's"<p = zip. Finally, we note that s E dom(A) 

and thus, property (viii) is satisfied. 

If s = dEC and t E X with A(t) = d = s, we can apply the orient rule rule on the system 

P; S = {d 1::. t} U Q; s. The result of its application is the system pi; S' = {t 1::. d} U Q; S. 

It is now possible to apply the variable elimination rule on the system pi; S', resulting in 

the system P"; S" = Q{t 1-+ d}; S{t 1--4 d} U {t ~ d}. Again, note that O's" = O's{t 1--4 d}, 

and for the substitution <p := A it holds that {t 1--4 d}A = A. Similarly to the previous case 

one can show that the properties (i) to (viii) are satisfied. 

Finally, if s = x E X and t = Y EX, we can apply the variable elimination rule on 

the system P;S = {x 1::. y} UQ;S, which derives the system P";S" = Q{x 1--4 y};S{x 1--4 

y} U {x ~ y}. It is again easy to see that O's" = O's{x 1--4 y}. Let now <p := A, for which it 

holds that {x 1--4 y}<p = 'P as <p(x) = <p(y). Again, it can be shown similarly to the case of 

sEX and tEe that the properties (i) to (viii) are satisfied. 

For the decomposition rule we obtain P = {f(s}, ... , sn) 1::. l(i1, •.• ,in)} U Q, Pi = 

{Sl -l::. i1, .. • , Sn 1::. in}uQ and S = S'. As the considered derivation is liftable, we have n > O. 
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Additionally, as codom(A) ~ C, it follows that there is I(Sl, ... , sn} :b l(t1, ... , tn) E P such 

that (/(Sl,"" Sn))A = 1(81,"" 8n ) and also (/(t1"'" tn))A = l(i1, ... , in). Consequently, 

we can apply the decomposition rule to P; S = {f(Sl"'" sn) :b 1(t1, . .. , tn)} U Q; s, which 

yields the system P"; S" = {Sl :b t1, ... , Sn :b tn} U Q; s. As QA = Q and thus P" A = P', 
it obviously holds that the properties (i) to (viii) are satisfied for the substitution A. 

For the variable elimination rule, we have P = {x :b l} U Q, in = Q{x 1-+ i}, f" = 

Six 1-+ f} U {x :b i} and x ~ var(i). Let x:b t E P such that XA = x and tA = i. Thus, as 

x E X, it must hold that A(X) = x = X. FUrthennore, we obtain x fi var(t) as otherwise 

x E var( i). So, we can apply the variable elimination rule on P; S = {x :b t} U Q; S, and 

the result of its application is the system P"; S" = Q{x 1-+ t}; Six 1-+ t} U {x :b t}. Let now 

'P := A. The properties (i), (ii), (iii) and (iv) are trivially satisfied. Additionally, as A(X) = x 

and codom('P) = codom(A) ~ C, we get: 

{x 1-+ t}'P = 'P{x 1-+ t'P} = 'P{x 1-+ i} 

And hence, as Q'P = Q>. = Q: 

P"'P = (Q{x 1-+ t})'P = Q( {x 1-+ t}'P} = Q('P{x 1-+ l}) = (Q'P){x 1-+ i} 

= Q{x 1-+ i} 

= in 

Property (v) is thus satisfied. Moreover, it follows from the properties of the algorithm U 

(see Lemma 3.4.27) that x fi dom(l1s} and that x = x fi dom(l1s)' Thus, we obtain 

l1s" = l1s{x 1-+ t} and l1s' = l1.six 1-+ f}. For property (vi), it first of all holds that 

Xl1s"'P = t'P = i = Xl1s" Then, let Z E dom(l1s') such that Z -=I- x, which implies that 

Z E dom(l1s ) and thus Zl1s'P = Zl1s>' = Zl1s' Applying the substitution {x 1-+ i} on both 

sides of the equality yields the following result: 

Then, for property (vii), let Z E dom(l1s") such that Z fi dom(l1s'), which implies thnt 

Z -=I- x. Thus, Z E dom(l1s) and as dom(l1§) ~ dom(l1s'} (see Lemma 3.4.27), it holds that 

Z ~ dom(l1s)' We can conclude from the assumptions then that Zl1s'P = Zl1sA = ZA = z<p. 

Thus, as codom('P) ~ C, it holds that either Zl1S'P E X or Zl1s'P E C. Consequently, we 

obtain that Zl1s E X or Zl1s E C. Furthermore, if we assume Zl1s = x, then it would follow 

that x = x<p = Zl1s'P = Z'P, which contradicts property (iv). Hence, Zl1s -=I- x and: 

Zl1s"<P = Zl1s{x 1-+ t}'P = Zl1s<P = z<p 

Finally, it holds that x = x E dom(l1s') and thus, property (viii) is satisfied. o 

Lemma 3.4.29. Let C ~ CS be a set of constants. Additionally, let P; S => PI; S' => P"; S" 

be two consecutive tronsformation steps performed by the algorithm U in a liftable derivation 

that has been initi.ally started on an empty set of solved equations such that the system PI; 8' 
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is obtained through the orient rule and such that there is a substitution'x: X - Tr;(X), a 

multiset of equations P and a set of equations in solved form S with 

(a) codom('x) ~ C, 

(b) p,x = P, 

(c) Vx E dom(u§): xus'x = xu§, and 

(d) V x E dom(us): x f. dom(u§) ~ xus'x = x'x. 

Then there exists a multiset of equations P", a set of equations 8", a derivation P; S ~. 

P"; 5" produced by the algorithm U and a substitution rp: X - T E (X) such that 

(i) dom('x) ~ dom(rp), 

(ii) dom('P) \ dom('x) ~ dom(u§,), 

(iii) VXE dom('x): 'P(x) = ,X(x), 

(iv) codom('P) ~ C, 

(v) plI'P = pll, 

(vi) VxE dom(u§,,):xus"'P=xus", 

(vii) Vx E dom(us"): x f. dom(us") ~ xUs"'P = xrp, and 

(viii) V x E dom(us") \ dom(us): x f. dom(u s") ~ x E domp). 

Proof. Let P = {i .:b x} U Q and Pi = {x .:b i} U Q such that i is not a variable and 

hence, x f. i. Additionally, 8 = S' holds and as the derivation Pi; S' ~ pll; fj" is liftable 

but not failing, it must have been obtained through the variable elimination rule. Hence, 

pll = Q{x ...... i} and 8" = 8{x ...... i} U {x .:b i} such that x f. var(i). Let t .:b x E P such 

that t'x = i and x'x = x. Thus, as x E X, it must hold that 'x(x) = x = x. Furthermore, we 

obtain x f. var( t) as otherwise x E var( i). 
Then, if t is not a variable, we can apply the orient rule to the system P; 5 = {t .:b 

x} U Q; 8 and we obtain the system pi; 5' = {x .:b t} U Q; 5. An application of the variable 

elimination rule yields the system P"; 5" = Q{x ...... t}; 5{x 1-+ t} U {x .:b t}. Similar 

arguments to the ones used in the proof of Lemma 3.4.28 show that the properties (i) to (viii) 

hold for the substitution ,x. 
It remains to consider the case when t is a variable y EX. It cannot be that x = y as 

otherwise x E var(y) = var(t). So, x f. y and we can apply the variable elimination rule to 

the system P; 8 = {y .:b x} U Q; 5 and we obtain the system p lI ; 5" = Q{y 1-+ x}; 5{y 1-+ 

x} U {y.:b x}. We now define a substitution 'P as follows. For Z E X, let 

'P(Z) = { i 
'x{z) 

if z = x 

otherwise 



3.4. REFUT.4TIONAL COMPLETENESS 57 

r.p is well-defined and as x ¢ dom(>.), we get dom(>.) ~ dom('P) and hence, property (i) holds. 

Moreover, property (ii) is satisfied as well as dom( r.p) \ dom(>.) = {x} and x = x E dom(a s')' 

Then, for property (iii) we simply observe again that x ¢ dom(>'). Furthermore, as 

i = >.(y) E codom(>.) and codom(>.) ~ C, it obviously follows that codom('P) ~ C, i.e. 

property (iv) is satisfied. Additionally, as >.(x) = x, we obtain 'P = >'{x ....... i}, and it holds 

that: 

>.{ x ....... i} = >.{ x ....... >.(y)} = {y ....... x}( >'{ x ....... >.(y)} ) = {y ....... x}r.p 

Thus, we get: 

P"r.p = (Q{y ....... x})r.p = Q({y ....... x}r.p) = Q(>.{x ....... i}) = (Q>.){x ....... i} 

= Q{ x ....... i} = P" 

Hence, property (v) holds. Similar arguments to the ones used in the proof of Lemma 3.4.28 

show that as" = as{y ....... x} and as" = as{x ....... i}. For property (vi), we observe that 

x ¢ dom(as") ;:2 dom(as) as otherwise the equation y ~ x would not be an element of P, 

which implies that: 

xas"r.p = xr.p = I = xa S" = xa S" 

Now, let z E dom(as") such that z =f x, from which it follows that z E dom(as )' Hence, by 

using the assumptions we obtain zas>' = za S, which implies that: 

zas"r.p = z(as{y ....... x})'P = zas({y ....... x}'P) = zas(>.{x ....... i}) 

= (zas>.){x ....... i} 

= (zas){x ....... i} 

= z(as{x ....... i}) = zas" 

Then, for property (vii) it first of all holds that yas"'P = X'P = i = y>. = Y'P. Now, 

let z E dom(as") such that z ¢ dom(as") and z # y, which implies that z E dom(as) 

and z ¢ dom(as ) as dom(as ) ~ dom(as"). Hence, it follows from the assumptions that 

zas>' = z>. and therefore: 

zas"r.p = z(as{y ....... x})'P = zas({y ....... x}r.p) = zas(>.{x ....... i}) 

= (zas>'){x ....... i} 

= (z>.){x ....... i} 

= z(>'{x ....... i}) = zr.p 

Finally, we note that y E dom(>.) as >.(y) = i ¢ X and thus, property (viii) is satisfied. 0 

The next lemma regroups the results established by the two previous propositions. 

Lemma 3.4.30. Let C ~ CS be a set of constants. Additionally, let jj = P; 0 ::::} + Pi; 8' 
be a liftable derivation of the algorithm U such that there is a substitution T/: X -+ TI;(X) 

and a multiset of equations P wi.th 
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(a) codom(1J) ~ C, and 

(b) P1J = P. 

Then there exists a multiset of equations pi, a set of equations S', a derivation P; 0 ~. 
pi; S' produced by the algorithm U and a substitution r.p: X _ TE(X) such that 

(i) dom(1J) ~ dom(r.p), 

(ii) codom(r.p) ~ C, 

(iii) "Ix E dom(1J): r.p(x) = 1J(x), 

(iv) dom(r.p) \ dom(1J) ~ dom(us '), 

(v) plr.p = Pi, 

(vi) "Ix E dom(us '): xUs'r.p = xus', and 

(vii) "Ix E dom(us'): x ¢ dom(us') ~ xus,r.p = x1J/\ x E dom(1J). 

Proof By induction on the length IVI of the derivation V. If IVI = 1 and the orient rule 

is not applied, or IVI = 2 and the orient rule is applied as first inference step, then the 

properties (i) to (vii) follow immediately from Lemmata 3.4.28 and 3.4.29. 

For the case where IVI > 1 and which is not covered above, we can split the derivation V 
into a derivation i = P; S ~. Q; R and into a double rule application Q; R ~ PI; SI ~ 
Pi; S' if the system has been obtained through the orient rule or into a single rule application 

Q; R ~ Pi; S', otherwise. By applying the induction hypothesis, we can conclude that 

there is a derivation £ = P; S ~. Q; R and a substitution ,X such that the properties (i) 

to (vii) hold for the derivation £ and the substitution 'x. It now follows from Lemmata 3.4.28 

and 3.4.29 that there exists If. derivation Q; R ~ + pi; S' and If. substitution r.p such that 

• dom('x) ~ dom(r.p), 

• codom(r.p) ~ C, 

• "Ix E dom('x): r.p(x) = 'x(x), 

• dom(r.p) \ dom('x) ~ dom(us'), 

• plr.p = Pi, 

• \f x E dom(us'): x ¢ dom(u s') ~ xus,r.p = xr.p, and 
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Thus, as dom(T]) ~ dom(-X), we obtain dom(T]) ~ dom(<p), i.e. property (i) is satisfied. 

Moreover, the properties (ii), (v), and (vi) hold as well. 

For statement (iii), let x E dom(17), which implies that x E dom(-X) and 17(X) = -X(x) 

(through the induction hypothesis). Finally, as hence -X(x) = <p(x), it holds that T](x) = <p(x). 

In order to prove property (iv), we first of all note that dom(aRJ ~ dom(a.s,). Let now 

x E dom('f') \ dom(T]). If x E dom(-X) , then it follows (from the induction hypothesis) that 

x E dom(ail), from which we conclude that x E dom(a.s,). Otherwise, x ¢ dom(-X) and we 

immediately obtain x E dom(a.s,). 

For the remaining property (vii), let x E dom(as') such that x ¢ dom(a s'). It follows 

first of all that xas''f' = X'f'. Moreover, as dom(ailJ ~ dom(as '), it holds that x ¢ dom(ailJ 

We need to distinguish between the following two cases now. If x E dom(aR}, then we 

can conclude from the induction hypothesis that x E dom(17). Hence, by property (iii) we 

have T](x) = if'(x) and thus, xas,<p = x17. Finally, for the case where x ¢ dom(aR), we 

immediately obtain x E dom(-X) ~ dom(<p). Furthermore, by property (iv) x E dom(17) must 

hold as otherwise x E dom(a.s,). Hence, by property (iii) we have T](x) = <p(x) again, which 

implies in conclusion that xas,'P = XT]. 0 

We still need to prove one property related to the derivation and the substitution obtained 

through the previous lemma. 

Lemma 3.4.31. Let C ~ CS be a set of constants. Add'itionally, let jj = P; 8 :::;,. P'; 8' be 

a liftable derivation of the algorithm U such that there is a substitution 17: X -+ TE(X) with 

PT] = P, asT] = as and codom(T]) ~ C for a multiset of equations P and a set of equations 

1n solved form S, Additionally, let V = P; S :::;,* P'; S' be the derivation and <p: X -+ TE(X) 

be the substi.t'ution obta1ned through Lemma 3.4.30. Then it holds that: 

'if x E dom(as'): x E dom(as') V x E var( codom(as')) 

Proof. Let x E dom(as') for which we assume that x ¢ dom(as'). As x E dom(as'), it 

follows from the properties of algorithm U that there is exactly one application of the 

variable elimination rule contained in the derivation jj which has added the variable x to 

the domain of the substitution as" By considering how the derivation V has been obtained, 

one can see that there is a corresponding application of the variable elimination rule in 

the derivation V, which adds a variable y to the domain of an intermediate substitution (1 

such that x E var( codom( (1)) (as x ¢ dom( as, ), none of the other possible cases for 

obtaining a corresponding application of the variable elimination rule can apply). Finally, 

as x ¢ dom((1s'), the variable elimination rule is not applied on the variable x in the 

derivation V and hence, the variable x is not replaced by another term in the derivation V. 

Thus, x E var(codom(as'))· 0 

Now we can state the result that links most general unifiers to substitutions 17 with 

codom(17) ~ C. 
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Lemma 3.4.32. Let C ~ CS be a set of constants. Additionally, let A, A, B, 8 be atoms 

such that the substitution a: X - TdX) is a most general unifier of A and 8 and such 

that there is a substitution TJ: X - TdX) with ATJ = A, BTJ = 8, and codom(TJ) ~ C. 
Then there exists a most geneml unifier T: X - Tr;(X) of A and B, and a substitution 

i.p: X - TdX) with Ti.p = TJa and codom(i.p) ~ C. 

Proof Let A = p(Sl, .. . , sn) and B = P(tl, .. . , tn ) for a predicate symbol p of arity n 

and terms SI, ... , Sn, tl,···, tn· Additionally, let P = {Sl ~ tl, ... , Sn ~ t n} and F = PTJ. 

As the atoms A and 8 are unifiable, it follows from Theorem 3.4.23 that any maximal 

derivation by the algorithm U which starts from the system F; 0 ends in a system 0; 8 
such that the substitution as is an idempotent most general unifier of A and 8, and 

dom(as') ~ var(A) u var(iJ). Moreover, it is easy to see that a liftable derivation of U 

which starts from F; 0 and ends in 0; 8' exists. Let f = as, be the resulting most general 

unifier of A and 8. Then, as 0TJ = 0, it follows from Lemma 3.4.30 that there exists a 

derivation produced by the algorithm U which starts in the system P; 0 and ends in the 

system P'; 8', together with a substitution i.p such that 

(i) dom(TJ) ~ dom(i.p), 

(ii) codom(i.p) ~ C, 

(iii) 'Vx E dom(TJ): i.p(x) = TJ(x), 

(iv) dom(i.p) \ dom(TJ) ~ dom(as'), 

(v) P'i.p = 0, 

(vi) 'Vx E dom(as'): xas'i.p = xas', and 

Obviously, P' = 0 and the derivation is maximal, which implies that T := as' is an 

idempotent most general unifier of A and B by Theorem 3.4.23. We now define a new 

substitution t/; as follows. For Z EX, let 

t/;(z) = { TJ(z) 
i.p( z) 

if z ¢ var(codom(T» 

otherwise 

It is clear that codom(t/;) ~ C. We still need to show that Tt/; = .,.,r. For that purpose, let 

x E X be a variable . 

• Assume x E dom(f). It follows then from property (vi) that XTi.p = xf. Additionally, 

we have x ¢ dom(TJ) as otherwise x ¢ dom(f) ~ var(F) would hold. Consequently, 

TJ( x) = x and XTi.p = x.,.,r. 

- If x E dom(T), then XTt/; = XTi.p holds and therefore, XTt/; = xTJf. 
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- If x fI. dom(r), then we obtain x E var(codom(r)) by Lemma 3.4.31 and thus, 

xr1t' = x1t· = X'P = xr'P = xrrf· 

• Assume x fI. dom(f). 

- If x E dom( r), then it follows first of all that xr1/J = xr'P holds. FUrthermore, by 

property (vii) we have xr'P = X"l, which implies that xr1/J = X"l. 

* If x fI. dom(TJ), then "I(x) = x and thus, xr1/J = X"l = x = xf = x"lf. 

* If x E dom(TJ), then as codom(TJ) ~ C, we obtain XTJ = xTJf and hence, 

xr1b = xTJf. 

- For x fI. dom(r), we need to distinguish between the following cases: 

* If x E var(codom(r)) 

If x ft dom(TJ), then it follows from property (iv) that x ft dom('P), which 

implies that X'P = x = XTJ. Thus, we obtain: 

xr1/J = x1/J = X'P = X"l = x = xf = xTJf 

If x E dom( TJ), then by property (iii) X'P = XTJ holds. Additionally, as 

codom(TJ) ~ C, it follows that XTJ = x"If, and therefore: 

xr1/J = x1/J = X'P = XTJ = xrrf 

* If x ~ var( codom( r)), then it first of all holds that xr1/J = x1/J = XTJ . 

. If x ft dom(TJ), then "I(x) = x and thus, xr1/J = XTJ = x = xf = xrrf. 

If x E dom(1]), then as codom(TJ) ~ C, we obtain XTJ = xTJf and hence, 

xr1jJ = xrrf. 

Finally, as f and (7 are most general unifiers of the atoms A and B, it follows from 

Corollary 3.4.25 that there exists a variable renaming ( with f( = (7 and codom(() ~ X. 

We now define a substitution v as follows. For z EX, let 

{ 

1b(1') 
v(z) = 

Z 

if 3v E X: ((v) = z Av E dom(1/J) 

otherwise 

The substitution v is well defined as the substitution ( is injective by Lemma 3.4.16, and 

we have codom(v) ~ C. We now show that (v = 1/J(. For that purpose, let z E X. We 

need to distinguish between then following two cases then. If z E dom(1/J), then it holds 

that z(v = z1/J = z1b( as codom(1jJ) ~ C (and as codom(() ~ X). For the remaining case in 

which z ~ dom(1/J), we obtain z(v = z( = z1/J(. Hence, it holds that: 

(r()v = r((v) = r(1/JO = (r1/J)( = ("If )( = "I{TO = "1(7 

Finally, by using Lemma 3.4.21, we obtain that r( is a most general unifier of the atoms A 

and B. 0 
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Before we can prove the lifting lemmata for the different inference rules, we still have to 

show one additional proposition. 

Lemma 3.4.33. Let C ~ CS be a set of constants. Additionally, let A, B, ..4, H be ato'fflS 

such there is a substitution 7]: X - TE(X) with A7] = ..4, B7] = H, codom(7]) ~ C and such 

that (const(A) n C) U (const(B) n C) = 0. Moreover, let u: X - TE(X) be a most geneml 

unifier of..4 and B and let Y ~ X be an arbitmry variable set with 'V x E var(Y7]): u(x) EX. 

Finally, let T: X - Tr;(X) be a most geneml unifier of A and B and let t.p be a substitution 

with Ti.p = 7]U. 

Then it holds for all x E Y that r( x) EX. 

Proof Let x E Y. First of all, if follows from Lemma 3.4.24 that const(codom(T» n C = 0. 
We now need to distinguish between the following two cases. 

If x E dom(7]), then it holds that XTt.p = X7]ff = X7] E C. Thus, it must hold that T(X) is 

either a variable or a constant. But if we assume that T(X) is a constant, then it follows 

that XTC.p = XT ¢ C as const( codom( T» n C = 0, which is obviously a contradiction. 

Finally, for the case that x ¢ dom(7]), we obtain x E var(Y7]), and hence, XTt.p = X7]ff = 

Xff E X. It is now easy to see that T(X) E X must hold. 0 

We can now prove the first lifting lemma for the step resolution rule between two step 

clauses. 

Lemma 3.4.34 (Lifting Lemma 1). Let C ~ CS be a set of constants. Additionally, let C, 
1), C, V be step clauses such that there are substitutions A1, A2: X - TE(X) with CAl = C, 
1)A2 = V, codom().IJ U codom(A2) ~ C, (const(C) n C) U (const(V) n C) = 0 and such that 

the step clause t is a binary resolvent by fine-gmined step-resolution from C and jj. 

Then there exists a binary resolvent & by fine-gmined step resolution from C and 1) such 

that const(&) n C = 0 and such that there exists a substitution t.p: X - Tr;(X) with &t.p = t 
and codom(i.p) ~ C. 

Proof Let C be i\ ~ 0(C2 V..4), V be D1 ~ 0(D2 V...,H). Additionally, let ii and iI be the 

variable renamings used such that Cii and Dil are variable disjoint. Then, the resolvent tis 

of the following form: 
(C1ii" D1i1)U ~ 0(C2ii V D2i1)U 

where ff is a most general unifier of the literals ..4ii and Hil such that ff does not map 

variables from C 1ii or D1i1 into a constant or a functional term, ..4ii is eligible in C2ii V ..4ii 

for U and ...,HiI is eligible in D2i1 V ...,BiI for ff. Additionally, let S denote the instance 

compatible selection function that has been used in the inference. 

Now, let C be C 1 ~ 0(C2 V A) and 1) be D1 ~ 0(D2 V ...,B) such that C1A1 = C\, 
C 2).1 = 62 , AA1 = ..4 and D 1).2 = Db D2A2 = D2, B).2 = H. Moreover, due to the instance 

compatibility of the selection function we can assume that the literal B is selected in the 

clause D2 V B if the literal B).2i1 is selected in the clause (D2 V B»).2i1. As codom(At) ~ C 

and codom().2) ~ C, there are substitutions I' and l/ respectively such that the clauses CI' 
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and Vv are variable disjoint. Hence, it is easy to see that there exists a substitution .,., 

with codom(.,.,) ~ C, CI1.,., = CiL and Vv.,., = Vii, which implies that the substitution .,.,U is a 

unifier of the two literals All and Bv. Obviously, it holds that const(CJ.L) = const(C) and 

const(Dv) = const(D); thus, by Lemma 3.4.32 there exists a most general unifier T of AJ.L 

and Bv, and a substitution <p with T<P = .,.,U and codom( <p) ~ C. Additionally, by applying 

Lemma 3.4.33 on the set var(Ctv) U var(Dt l1), we can see that T does not map variables of 

Ctvor Dtl1 into a constant or functional term. 

Furthermore, if the literal -,Bii = -,BA2ii has been selected in the clause D2ii V -,Bii, 

then it follows from the instance compatibility of the selection function that there exists 

a literal B such that the literal -,Bv is selected in the clause D2v V ....,Bv. Otherwise, no 

literal is selected in D2ii and the literal -,Biiu is maximal w.r.t. D2iiu. Consequently, 

as (D2V V ...,Bv).,., = D2ii V -,Bii, we obtain again from the instance compatibility of the 

selection function that no literal is selected in D2V, and as ....,Biiu = -,Bv.,.,u = -,(BVT)<p 

and {hiiu = D2V.,.,U = (D2VT)<p, it follows from properties of the ordering >- on literals that 

...,BVT is maximal w.r.t. D2vT. Hence, -,Bv is eligible in D2V for T. Similarly, one can show 

that All is eligible in C2J.L for T, i.e. there exists a resolvent £ by fine-grained step resolution 

from CI1 and Dv, which is of the following form: 

Additionally, it holds that: 

£'f' = (C111/\ DtV)T'f' ::::} O(C2J.L V D2v)T'f' 

= (Gt l1/\ Dtv).,.,u ::::} O(C2J.L V D2V).,.,u 

= (Gtft /\ Dtii)u ::::} O(G2ft V D2ii)u 

=f 

Finally, Lemma 3.4.24 implies that const(£) n C = 0. o 

We now state the lifting lemma for the resolution inference rule between step and 

universal clauses. 

Lemma 3.4.35 (Lifting Lemma 2). Let C ~ CS be a set of constants. Additionally, 

let C, C be step clauses and V, i> be universal clauses such that there are substitutions 

At, A2: X -+ TdX) with CAt = C, VA2 = i>, codom(At) U codom(A2) ~ C, (const(C) nC) U 

(const(D) n C) = 0, and such that the step clause f is a binary resolvent by fine-grained 

step-resolution from C and i>. 
Then there exists a binary resolvent £ by fine-grained step resolution from C and V such 

that const(£) n C = 0 and such that there exists a substitution <p: X -+ TdX) with £<p = f 
and coelom('f') ~ C. 

Proof. Analogously to the proof of the Lemma 3.4.34. o 



64 CHAPTER 3. ORDERED FINE-GRAINED RESOLUTION WITH SELECTION 

Now we prove the lifting lemma for the factoring in right-hand sides of step clauses 

inference rule. 

Lemma 3.4.36 (Lifting Lemma 3). Let C ~ CS be a set of constants. Additionally, letC, C 
be step clauses such that there is a substitution A: X - Tr;(X) with CA = C, codom(A) ~ C, 

const(C) n C = 0, and such that the clause i is the conclusion of the ordered fine-grained 

positive step factoring with selection rule applied to C. 
Then there exists a step clause £ which is the conclusion of the ordered fine-grained 

positive step factoring with selection rule applied to C such that const(£) n C = 0 and such 

that there exists a substitution ep: X - Tr;(X) with £ep = i and codom(ep) ~ C. 

Proof Let C be C't ~ 0(C2 V A V iJ). Then, the clause i is of they following form: 

where U is a most general unifier of the atoms A and iJ such that U does not map variables 

from C1 into a constant or a functional term and such that the literal A is eligible in 

C2 V A V iJ for u. Additionally, let S denote the instance compatible selection function that 

has been used in the inference. 

Now, let C be C1 ~ O(C2 V A V B) such that CIA = 61, C2A = C2, AA = A and 

BA = E. Then, by Lemma 3.4.32 there exists a most general unifier T of A and B, and a 

substitution ep with Tep = AU and codom( ep) ~ C. Additionally, it follows from Lemma 3.4.33 

that T does not map variables from C 1 into a constant or functional term. 

Since the literal A is eligible in C2 V A V iJ for u and A is positive, it follows that no 

literal is selected in C = C2 V A V E and Au is maximal w.r.t. ihu. Thus, as CA = C, we 

obtain from the instance compatibility of the selection function that no literal is selected in 

the clause C2 V A V B. Additionally, as (AT)ep = AAU = Au and (C2T)ep = C2AU = (:2U, 

we can infer from the properties of the literal ordering >- that the literal AT is maximal 

w.r.t. C2 T. Thus, the literal A is eligible in the clause C2 V A V B for T, i.e. we can apply the 

ordered fine-grained positive step factoring with selection rule on the step clause C together 

with the substitution T. The result of its application is the following step clause £: 

Moreover, it holds that: 

£ep = C1Tep ~ O(C2 V A)Tep 

= C1AU ~ O(C:? V A)AU 

= C1u ~ 0(C2 V A)u 

=i 

Finally, Lemma 3.4.24 implies that const(£) n C = 0. 

Next, we prove the lifting lemma for the clause conversion rule. 

o 
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Lemma 3.4.37 (Lifting Lemma 4). Let C ~ CS be a set of constants. Additionally, let C, C 
be step clauses such that there 108 a substitution A: X - TI;(X) with CA = C, codom{A) ~ C, 

const(C) n C = 0. and such that the universal clause t is the conclusion of the clause 

conversion rule applied to C. 
Then there exists a universal clause £ which is the conclusion of the clause conversion 

rule applied to C such that const(£) n C = 0 and £A = t. 

Proof. Let C be C\ ::;. 0.1 and C be C l ::;. 0.1. Then, we obtain t = ..,61 . By applying the 

clause conversion rule on the clause C, we get a clause £ = ..,Cl . Clearly, const(£) n C = 0, 
and as CA = C, it holds that £A = t. 0 

We conclude by stating the lifting theorem for ordered fine-grained temporal resolution 

with selection without the eventuality resolution and the duplicate literal elimination in 

terminating step clauses rules. 

Theorem 3.4.38 (Lifting Theorem). Let C ~ CS be a set of constants. Additionally, 

let N be a set of constant-flooded temporal clauses with const(N) n C = 0, and let .iii 
be a set of instances of clauses in N such that there is a substitution A: X - TI;(X) 

with codom(A) ~ C and NA =.IiI. Additionally, let ~ = Cl,'" ,Cn be a :J';~-derivation 
from N which does not contain an applicati.on of an eventuality resolution or duplicate literal 

elimination in terminating step clauses rule. 

Then there exists a Ji~ -derivation a = Cl, ... , Cn from N such that for every i, 

1 ~ i ~ n, there exists a substitution Ai: X - T~(X) with CiAi = Ci and codom(Ai) ~ C, 

which is denoted by a ~s.c ~ . It also holds that const(a) n C = 0. 

Proof. By induction on the length I~I of the derivation ~ using Lemmata 3.4.34, 3.4.35, 

3.4.36, 3.4.37 and the lifting lemmata for ordered first-order resolution with selection (see, 

e.g., [10]). 0 

3.4.4 Proof of Refutational Completeness 

The proof of completeness for ordered fine-grained resolution with selection consists in a 

simulation of a derivation produced by refined monodic temporal resolution J; by ordered 

fine-grained resolution with selection. We show that in each derivation step both calculi can 

derive formulae which have the same clausification result. 

The next three lemmata are the key propositions for the completeness proof. They 

establish that particular merged derived and full merged step clauses can also be obtained 

by resolution, and vice versa, that some refutations by step resolution correspond to merged 

derived and full merged step clauses. Similar (but more concisely written) proofs can be 

found in [58]. 

Unless noted otherwise, we assume in this section that we are given an admissible atom 

ordering >- and an instance compatible selection function S. Also, the equality relation 

on formulae is interpreted w.r.t. commutativity of the disjunctions and the conjunctions 
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present in the formulae and w.r.t. consistent renamings of bound variables occurring in the 

formulae. 

The next two lemmata show that merged derived and full merged step clauses which are 

of a special form can also be derived by ordered fine-grained resolution with selection. 

Lemma 3.4.39. Let P = (U, I, S, f) be a monodic temporal problem with unique left-hand 

sides in step clauses such that the set U is satisfiable and let P = (U', I', S',£) be a 

temporal problem such that the set I' is the clausification of the set I, the set S' is the 

clausification of the constant-flooded set S (with respect to the temporal problem P) and 

such that Cls(U) ~ U'. Moreover, let A ~ OB be a merged derived step clause such that 

U U {B} F false and for every B' c B the set U U {B'} is satisfiable. 

Then there exists a step clause P ~ 0.1 obtained by ordered fine-grained resolution with 

selection from P such that Prenex(A) = 3P. 

Proof. As the set U is satisfiable and U U {B} F false, it holds that A ~ OB is different 

from true ~ Otrue. The merged derived clause A ~ OB is thus built from some (derived) 

step clauses Pi ~ Oqi, 1:5i:5m1' Pj(Cj) ~ OQj(Cj), 1:5J:5m2' and M/k(x) ~ ON/k(x), 

1:5k:5m3, l:5l:5nk in P, i.e. 

ml m2 ms nk 

A == 1\ Pi 1\ 1\ Pj ( Cj ) 1\ 1\ (3x 1\ M/k (x) ) 
;=1 j=1 k=1 /=1 

and 
ml rn2 rn3 • nk 

B == 1\ qi 1\ 1\ Q j (Cj) 1\ 1\ (3x 1\ N/k (x) ) 
i=1 j=1 k=1 /=1 

Furthermore, by definition of the step resolution rule, it holds that U U {B} F false, which 

implies that 
rnl rn2 rn3 nk 

U U { 1\ qi 1\ 1\ Q j (cj) 1\ 1\ 1\ N/k (dk )} F false 
i=1 j=1 k=1/=1 

holds, where dk, 1 :5 k :5 m3, are fresh Skolem constants. Let now 

be the clausification of B, consisting solely of positive unit clauses. As U U {B}, and hence, 

LC uU is unsatisfiable, it follows from refutational completeness of ordered resolution with 

selection (without the duplicate literal elimination rule) that there is a refutation A of 

LC U U. Moreover, as U is satisfiable and U U {B} is unsatisfiable, the set LC cannot be 

empty. Additionally, it is important to note that every unit clause contained in the set 

£C is involved in the refutation A as otherwise there would exist a formula B' c B such 

that A is a refutation of U U {B'}, which contradicts the fact that the set U U {B'} is 

satisfiable. Similarly, it is easy to see that the literals Pi, 1~i~m1, Pj(Cj), 1:5J~m2, and 

M/(x), l~l:5nk are pairwise different. 
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Let SC be the following set of step clauses that correspond to the literals in L c, 

sc = {pi => Oqi I 1 $ i $ m 1 } U { Pj (Cj) => OQ j (Cj) I 1 $ j $ m2 } 

U {M/,(dk) => ON1(dk) 11 $ k $ m3, 1 $1 $ nk} 

As every step clause in SC is ground, it is possible to redo the derivation A as a derivation r' 
on the level of universal and step clauses in the calculus J~~. The result of the derivation r' 
is a step clause pc => 0.1., where 

ml m2 m3 nk 

pc == 1\ Pi 1\ 1\ Pj(Cj) 1\ 1\ 1\ M1k(dk ). 
i=l j=l k=lI=l 

By setting C = {dk 11 $ k $ ma}, it follows from the Lifting Theorem (Theorem 3.4.38) 

that there exists a derivation r such that r $s,c r' and such that r is a proof of the clause 

p => 0.1. with 
ml ffi2 m3 nk 

p == 1\ Pi 1\ 1\ Pj(Cj) 1\ 1\ 1\ M1k(Xk). 
i=l j=l k=ll=l 

As the set of clausified step clauses S' is constant-flooded, the derivation r only uses 

clauses from the temporal problem P'. Finally, through applications of the duplicate literal 

elimination rule on the step clause P => 0.1., we can obtain a step clause P' => 0.1. such 

that Prenex(A) = 3P'. 0 

Lemma 3.4.40. Let P = (U, 1, S, f) be a monodic temporal problem with unique left-hand 

sides in step clauses such that the setU is satisfiable and let P' = (U',I',S'uLT(S'),f) be 

a temporal problem such that the set I' is the clausification of the set I, the set S' is the 

clausification of the constant-flooded set S (with respect to the temporal problem P) with 

Cls(true => O...,4>(d)) ~ P' and such that Cls(U) ~ U'. Moreover, let 'v'x(A(x) => OB(x)) 

be a full merged step such that the formula 'v'x(U 1\ B(x) => 4>(x)) is valid and such that for 

every B'(x) C B(x) the formula 3x(U 1\ B'(x) 1\ ...,4>(x)) is satisfiable. 

Then there exists a step clause P => 0.1. obtained by ordered fine-grained resolution with 

selection without the clause conversion rule from P' such that Prenex(A(x)) = (3PH d -+ x}. 

Proof. The proof is similar to the proof of Lemma 3.4.39. 

First of all, if the full merged step clause 'v'x(A(x) => OB(x)) is equal to the step 

clause true => Otrue, then it follows from the assumption that the formula U 1\ ...,4>(d) 

is unsatisfiable. Thus, there exists a refutation A of the set U U {...,4>(d)} by ordered 

first-order resolution with selection. By replacing the clauses resulting from clausifying the 

formula ...,4>( d) by step clauses resulting from the clausification of true => 0...,4>( d), it is 

easy to see that the derivation A can in fact be identified with a derivation of the final clause 

true => 0.1. by ordered fine-grained step resolution without applying the clause conversion 

rule. 

Otherwise, the full merged step clause 'v'x(A(x) => OB(x)) is different from the clause 

true => Otrue. We have that the formula U 1\ B(d) 1\ ...,4>(cl ) is unsatisfiable and that 
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for all B' c B the fonnula U 1\ B'(c' ) 1\ ...,~(cl) is satisfiable. Analogously to the proof of 

Lemma 3.4.39, by lifting all the constants except d we obtain a step clause P => 01. 
obtained by ordered fine-grained resolution with selection without applying the the clause 

conversion rule from P' such that Prenex(A(d» = (3P). We can thus conclude that 

Prenex(A(x» = (3P){cl ~ x}. 0 

We now show the converse statement, i.e. we prove that some derivations of terminating 

step clauses correspond to full merged step clauses with some special properties. 

First of all, we have to define the operations Res(U) and Resoo(U) which are applied on 

sets of first-order clauses U. 

Definition 3.4.41. Let U be a set of first-order clauses. Then we denote by Res(U) the set 

of all the clauses resulting from applying the ordered resolution with selection and ordered 

positive factoring with selection rules on clauses from the set U . We also define that 

Reso(U) = U, Resi(U) = Res(Resi-1(U» for i > 0 and 

00 

Resoo(U) = U(Resi(U» 
i=O 

The next proposition is a direct adaptation of an analogous proof found in [581. 

Lemma 3.4.42. Let P = (U, I, S, £) be a monodic temporal problem with unique left-hand 

.~ides in step clauses such that the set U is satisfiable and let P = (U', I', S', £) be a temporal 

problem such that the set I' is the clausification of the set I, the set S' is the clausification of 

the constant-flooded set S (with respect to the temporal problem P) and such that Cls(U) ~ U' 

and ResOO(U') = Resoo(Cls(U». Additionally, let ~ be a proof of a final clause C => 01. by 

the step and universal clause deduction rules of ordered fine-grained resolution with selection 

except the clause conversion role from the set of universal clauses U' and the set of step 

clauses LT(S') U Cls({true => O...,~(cl)}). Moreover, we assume that at least one of the 

clauses that originate from the formula true => O...,~( d) is involved in the proof of the 

terminating step clause C => Ol.. 
Then there exists a full-merged clause 'v'x(A(x) => OBex»~ built from P such that the 

formula 'v'x(U 1\ B(x) => ~(x» is valid and Prenex(A(x» = (3C){d ~ x}. 

Proof. First of all, we assume that the derivation ~ is tree-like, i.e. it may contain multiple 

copies of some clauses. Let Pi => Oqi, l~i~ml' and Mj(xj) => ONj(xj), 1$j~m2' be all 

the step clauSES contained in the set LT(S') that are involved in the derivation ~, where 

Pi => Oqj either denotes an original ground step clause or a ground step clause that has 

been added by constant-flooding. If ml = 0 and m2 = 0, then it follows that C = true. 

We can also infer that the set of clauses U U Cls(-,~(d» is unsatisfiable, which implies 

that the set of fonnulae U U {3x""~(x)} is also unsatisfiable, and thus, we obtain that 

the fonnula U => 'v'x ~(x) is valid. The full-merged step clause true => Otrue fulfils the 

required properties. We may now assume that ml f 0 or m2 f O. 
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By accumulating the variable renamings and most general unifiers that have been applied 

on the step clauses in the derivation d, it is possible to construct a derivation d' from a 

finite set of instances of the step clauses Pi '* Oqi (1 $ i $ mt) and Mj(xj) '* ONj(xj) 

(1 $ j $ m2) (and some universal clauses) such that the most general unifiers are identity 

substitutions on the variables occurring in the left-hand sides of step clauses5 . Thus, there 

exist substitutions {1i,j for 1 $ i $ m2 and 1 $ j $ Si such that: 

ml m2 Sj 

C = APi 1\ A A M j (Xj){1j,k 

i=l j=l k=l 

Due to the restrictions on most general unifiers for the step resolution rules, one can see (by 

induction) that every substitution {1j,k for 1 $ j $ m2 and 1 $ k $ Sj maps the variable Xj 

into a variable. 

In order to construct the full-merged step clause, we need to classify the step clause 

instances according to the values of the substitutions {1j,k. We define an equivalence 

relation E on the step clauses as follows. For every j, j', 1 $ j, j' $ m2, and every k, k' with 

1 $ k $ Sj and 1 $ k' $ Sj' we have: 

( M(x){1' k '* ON·(x .)(1. k M·,(x ',){1" k' '* ON·,(x ',){1" k') E E J J J, J J J,' J J J, J J J , 

if and only if Xj{1j,k = Xj,{1j',k', Furthermore, let N be the number of equivalence classes 

of E and let II for 1 $ I $ N be the sets of index pairs corresponding to the step clauses 

contained in the l-th equivalence class. Hence, we get: 

A M'(X'){1'k J J J, 
i=l 1=1 (j,k)EI, 

Now, let D = 1\:\ qi 1\ l\~ll\(j,k)EII N j (Xj){1j,k be built of the right-hand sides of 

the considered step clauses. Then, it follows from the assumptions that there exists a 

refutation of the set {'~'D} uU' U {....,<P(cl )} by (regular) first-order resolution such that the 

most general unifiers used are just identity substitutions on the variables Xj{1j,k (1 $ j $ m2, 

1 $ k $ S j). Consequently, as Resoo (U' ) = Resoo (Cls(U)), there exists a refutation of the 

set {VD} U Cls(U) U {""'<P(cl )}, which implies that VD I\U 1\ ....,4>(c/ ) F false. Furthermore, 

by replacing the variables {Xj{1j,k 11 $ j $ m2, 1 $ k $ 8j } in the first-order derivation by 

fresh constants d1, ... , d N, it is easy to see that: 

m) N 

1\ qi 1\ 1\ 1\ (Nj (Xj){1j,k){Xj{1j,k -+ dl} I\U 1\ ""'4>(c
/
) F false 

i= 1 1= 1 (j,k)EII 

Hence, it follows that: 

m) N 

1\ qi 1\ A 3Y( 1\ (Nj (Xj){1j,k){Xj{1j,k -+ y}) 1\ U 1\ ""'4>(c
/
) F false 

i= 1 1= 1 (j,k )EII 

5We assume that the non-ground binary resolution rule can be applied on premises that are not 
variable-disjoint, which maintains the soundness of the derivation. 
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Finally, as cl ¢ U and cl ¢ const(Nj(xj» for all j, 1 :5 j :5 m2, we obtain: 

ml N 

3X(f\ qdcl 
-+ x} /\ /\ 3Y( /\ (Nj(Xj)O"j,k){XjO"j,k -+ y}) /\ U /\ -.4>(x») 1= false 

1=1 1=1 (j,k)EI, 

Thus, it holds that Vx(U /\ B(x) => 4>(x» is valid and Prenex(A(x» = (3C){d -+ x}, 

where the full-merged step clause Vx(A(x) => OBex)) results from the following full-merged 

step clause built from the temporal problem P, after potentially adjusting the number of 

duplicate occurrences of some predicates: 

o 

We can now show the simulation invariant for the eventuality resolution rules, first on 

the level of the Ref-BFS and the Restricted-FG-BFS algorithms. 

Lemma 3.4.43. Let P = (U, I, S, E) be a monodic tempoml problem with unique left-hand 

sides in step clauses such that the set U is satisfiable and let P = (U' , I', S', E) be a tempoml 

problem such that the set I' is the clausification of the set I, the set S' is the clausification of 

the constant-flooded set S (with respect to the tempoml problem P) and such that Cls(U) ~ U' 
and Resoo (U' ) = Resoo (Cls(U». Additionally, let No, N{, . .. be the sets of merged derived 

clauses and HQ(x), H~ (x), . .. be the sequence of formulae constructed in a run of the Ref

BFS algorithm applied on the tempoml problem P for an eventuality OL(x) E E. Finally, let 

Mo, M 1, . .. be the sets of terminating step clauses and Ro(x), Rl (x), ... be the sequence of 

formulae constructed in a run of the Restricted-FG-BFS algorithm applied on the tempoml 

problem P for the same eventuality OL(x) E E. 

Then it holds for all i ~ 0 that Prenex(HI{x» = Prenex(Ri{x» and: 

{Prenex(A(x» I Vx(A(x) => OBex»~ E Nfl = {(3D){cl 
-+ x} I D => 0.1 E Mi} 

Proof By induction on i. In the case of i = 0 we have HQ(x) = true = Ro{x) and 

No = 0 = Mo. For i + 1 with i ~ 0, we can first of all assume that Nf =f 0 =f Mi 

and it it follows from the induction hypothesis that Prenex(HI(x» = Prenex(~(x», 

which implies that H:<x) == Ri(X). Now let N:+l = {VX(A)i+l)(X) => OBY+l)(x»}J=l' 

1i+1 = {Cj => O.1}.i=l and Mi+l = {Dj => O.1}j=l be the sets respectively computed by 

the Ref-BFS and Restricted-FG-BFS algorithms. We show that 

- 1 
{Prenex(A(x» I Vx(A(x) => OBex»~ E N:+l } = {(3D){c -+ x} I D => 0.1 E Mi+l}. 

For Vx(A(x) => OBex»~ E N/+ 1, we obtain by Lemma 3.4.40 (for ~(x) = -.L(x) /\ ~(x» 

that there exists a step clause P => 0.1 obtained by ordered fine-grained resolution with 
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selection without the clause conversion rule from (U', I', S' U Cls(true ~ O-'<)(cl)), E) such 

that Prenex(A(x)) = (3P){d - x}. If we assume that there is a Cj ~ 0.1 E'Ii+! for 1 $ 

j $ m such that (3P){ d - x} ::J (3Cj ){ cl 
- x}, then it would follow from Lemma 3.4.42 

that there exists a full merged clause 'v'x(A'(x) ~ OB'(x)) built from P such that the 

formula 'v'x(U 1\ B'(x) ~ ..,Li(x) 1\ H:(x)) is valid and Prenex(A'(x)) = (3Cj ){d - x}. 

Thus, it would hold that B'(x) c: B(x) and that the formula 3x(U 1\ B'(x) 1\..,( -,L(x) 1\ Hi (x ))) 

is unsatisfiable, which contradicts the fact that 'v'x(A(x) ~ OB(x)) E N/+ 1 . We can hence 

conclude that P ~ 0.1 E Mi+l' 

Let now Dj ~ 0.1 E Mi+ 1 for 1 $ j $ n. Then it follows from Lemma 3.4.42 that 

there exists a full merged clause 'v'x(A(x) ~ OB(x)) built from P such that the formula 

'v'x(U 1\ B(x) ~ ..,Li(x) 1\ H:(x)) is valid and Prenex(A(x)) = (3Dj){c l 
- x}. If we 

assume that there is a full merged step clause 'v'x(A'(x) ~ OB'(x)) built from P such that 

8'(x) c: B(x) and the formula 3x(U I\B'(x)I\-,(-,L(x) 1\ Hi (x))) is unsatisfiable, then it would 

follow from Lemma 3.4.40 for the minimal such full merged step clause 'v'x(A"(x) ~ OB"(x)) 

that there exists a step clause C ~ 0.1 obtained by ordered fine-grained resolution with 

selection without the clause conversion rule from (U',I',S' U Cls(true ~ O-'<I>(cl)),E) 

such that Prenex(A"(x)) = (3C){c l 
- x}. Hence, it would hold that C ~ 0.1 E 1;+1 

(or potentially a variable-renamed version) and (3C){d - x} c: (3Dj ){d - x}, which 

contradicts the fact Dj ~ 0.1 E Mi+l' Thus, we obtain 'v'x(A(x) ~ OB(x)) E N/+ 1 . 

Finally, we observe that .1 ¢ ResOO(U') as ResOO(U') = ResOO(Cls(U)) and U is satisfiable. 

Hence, Prenex(H:+ 1(x)) = Prenex(~+t{x)) holds. 0 

In a second step we prove the simulation invariant for the eventuality resolution rules 

w.r.t. the formulae computed by Ref-BFS and the Restricted-FG-BFS algorithms. 

Lemma 3.4.44. Let P = (U, I, S, E) be a monodic tempoml problem with unique left-hand 

sides in step clauses such that the set U is satisfiable and let P = (U', I', S', £) be a 

temporal problem such that the set I' is the clausification of the set I, the set S' is the 

clausification of the constant-flooded set S (with respect to the tempoml problem P) and such 

that Cls(U) ~ U' and ResOO(U') = ResOO(Cls(U)). Additionally, let H'(x) be the result of 

applying the Ref-BFS algorithm on the temporal problem P and let R(x) be the result of 

applying the Restricted-FG-BFS algorithm on the sets U' and S', both for an eventuality 

OL(x) E E. 
Then it holds that Prenex(H'(x)) = Prenex(R(x)). 

Proof. By Lemma 3.4.43 we obtain Prenex(HI(x)) = Prenex(Ri(x)) for all i ~ O. Thus, it 

holds that either H'(x) = false and R(x) = false, or Prenex(H'(x)) = Prenex(Hj(x)) = 
Prenex(Rj(x)) = Prenex(R(x)) for a j ~ 1. 0 

Finally, we can establish the refutational completeness of ordered fine-grained resolution 

with selection. First, we prove the result for monodic temporal problems with unique 

left-hand sides in step clauses. 
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Theorem 3.4.45. Let P = (Uo, I, S, £) be an unsatisfiable monodic temporal problem 

with unique left-hand sides in step clauses, let pc be its constant-flooded form and let 

P' = Cls(P") = (Uo, I', 8', £C) be the clausification of PC. Additionally, let)- be an admissible 

atom ordering and S be an instance compatible selection function. 

Then there exists a refutation of P' by ordered fine-grained resolution with selection (J:;; ) 
such that the premises for the eventuality resolution rules are found by the Restricted-FG-BFS 

algorithm, which is only applied on the set of step clauses 8'. 

Proof. The proof of completeness proceeds along the lines of the completeness proof of JrG 

presented in [58]. 

By Lemma 3.4.13 there exists a successfully terminating derivation A = Uo, ... ,Un 

from pc in J~ (i.e . .1. E Un) which uses the refined step resolution rule instead of the regular 

step resolution rule and which restricts the application of the eventuality resolution rules to 

loops found by the Ref-BFS algorithm. Furthermore, the refined step resolution rule and the 

eventuality resolution rules are only applied on satisfiable sets of universal formulae in the 

derivation A. By induction on the length of the derivation we show that this derivation can 

be simulated by J:;;-. We construct a refutation A~ = CJ, ... , C[;O, ... , C~, ... , C:" of p' 

where each step in ~ will correspond to one or more steps in A~. At the start ~ just consists 

of Uo and the corresponding derivation Ao consists of all the clauses CJ, ... , Coo in P'. Let 

J(AD, U(~~), SeA:) denote the set of all initial, universal and step clauses in A~ (1 $ i $ n), 

respectively. By the fact that clausification preserves satisfiability, Uo is satisfiable if and 

only if U(Ao) is satisfiable and Uo uI is satisfiable if and only if U(Ao) u J(Ao) is satisfiable. 

Furthermore, if Uo would contain .1., then Ao would contain the empty clause. It is clear 

that Cls(Uo) ~ U(Ao) and ResOO(U(Ao» = ResOO(Cls(Uo». 

Now, in each step of ~ a first-order formula ut, 1 $ i $ n, is added to Ui - 1 to obtain U;, 

where Ui is the conclusion of one the deduction rules of J~ applied to (Ui - 1,I, S, E). We 

show that using J;;;- we can derive a formula C;n' from the clauses in the derivation ~~-1 

constructed so far such that Cls(C;n') = Cls(ui). We then add CJs(C;n') and all intermediate 

clauses Cl, ... , C;n' -1 used in its derivation to A~_I' It obviously holds then that Cls(U.) ~ 

U(AD and Resoo(U(A~» = ResOO(Cls(Ui ». To show the existence and derivabiIity of Ci
m

" 

we consider which deduction rule of J~ has been used to derive Ui with i 2: 1. As 

i > 0, it follows from the induction hypothesis that there exists a derivation A~_1 = 

CJ, ... ,Coo,,,,,Cjl_l,,,,,C~'11 such that Cls(Ui-d ~ U(A~_I) and ResOO(U(A~_d) = 
Resoo (ClS(Uo-l ». 

Suppose Ui has been derived by an application of the (initial) termination rule (which 

implies that Ui is .1.). Then the set Ui - 1 U I of first-order formulae is unsatisfiable. By 

completeness of first-order ordered resolution with selection (see, e.g., [10]), we will be able 

to derive the empty clause in a derivation cl, ... ,C;n', i.e. C;n' = .1., from the clauses in 

Cls(Ui-t} U CJs(I). Thus, as Cls(Ui-t} ~ U(A~_I) and Cis (I) ~ J(A:_1), it is possible to 

derive the clauses cl, ... ,C;n- (identified as universal or initial clauses) also from U(A~_I) U 

J(A:_1) using the resolution and factoring rules of J~;;- for universal and initial clauses, 
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that is, rules 1 to 3. We extend ~~-1 by cl, ... , C;n'. 
Suppose Ui has been derived by an application of the refined step resolution rule 

on a satisfiable set of universal fonnulae Ui - 1 . Then, we have Ui = -,04, where A ~ 

OB is a merged derived step clause built from (Ui _ 1,I,S,£C). By Lemma 3.4.39 there 

exists a step clause P ~ 0.1 obtained by ordered fine-grained resolution with selection 

from (U(~~_I),I',S',£C) such that Prenex(04) = 3P. An application of rule 6 for clause 

conversion allows us to derive the universal clause -,P. It is easy to see that Cls( -,04) = 

cls6'-'p), We add all the clauses in the derivation of P ~ 0.1 to~' as Cl, ... , C;n,-I for 

some mi, and also add Cls(V-'P) as Cr'. 
Suppose Ui has been derived by an application of the non-ground eventuality resolution 

rule on a loop formula H'(x) = V~=I o4j(x) found by the Ref-BFS algorithm which has been 

applied on a satisfiable set of universal formulae ~-1 for an eventuality OL(x) E £ and 

where Vx(AI(x) ~ OBI (x)), ... , VX(Ak(X) ~ OBk(X)) are full merged step clauses built 

from (Ui - I , I, S, £C). Then, it holds that Ui = Vx -,H'(x) = Vx t\~=1 -,Aj(x). It follows 

from Lemma 3.4.44 that the algorithm Ref-BFS applied on the sets U(~~_d and 8' for the 

eventuality OL(x) will compute a formula R(x) such that Prenex(H'(x)) = Prenex(R(x)). 

It is easy to see that Cls(Vx -,H'(x)) = Cls(Vx -,R(x)). We add Cls(V'x -,H'(x)) to ~~_I' 

Finally, the remaining case where the clause Ui has been derived by an application of 

the ground eventuality resolution rule follows in analogy to the non-ground eventuality 

resolution case. o 

In a final step we prove the refutational completeness of ordered fine-grained resolution 

with selection for arbitrary monodic temporal problems. 

Theorem 3.4.46 (Refutational Completeness). Let P = (Uo, I, S, £) be an unsatisfiable 

monodic temporal problem, let pc be its constant-flooded form and let P' = Cls(PC) = 

(Ub, I', S', £C) be the clausification of PC. Additionally, let >- be an admissible atom ordering 

and S be an instance compatible selecti.on function. 

Then there exists a refutation of P' by ordered fine-grained resolution with selection J~ci 

such that the premises for the eventuality resolution rules are found by Restricted-FG-BFS 

algorithm, which is only applied on the set of step clauses S'. 

Proof. Let 

ml m2 

S' = U{ Pi(X) ~ OQ;(x) 11 '5. j '5. n;} U U{Pi ~ Oq; 11 '5. j '5. n;} U T, 
i=1 i=1 

where T only contains step clauses with unique left-hand sides and T is maximal with that 
-I - -

property. Now, let P = (Ub,I',S',£C) be a temporal problem with 

ml m2 

Ub = Ub u U{ -,Ri(X) V Qj(x) 11 '5. j '5. nIl U U{ -,ri V q; 11 '5. j '5. n;} 
;=1 ;=1 
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and 

S' = Tu U {Pi(C) ~ ORi(C) 11:5 i:5 ml} 
cE const(P) 

where R, 1 :5 i :5 ml, and Pi, 1 :5 i :5 m2, are fresh unary predicate symbols and fresh 
- I 

propositions, respectively. It is easy to see that the temporal problem P is satisfiable if and 

only if the temporal problem pI is satisfiable. Moreover, the step clauses in the temporal 
- I _ 

problem P have unique left-hand sides. By Theorem 3.4.45 there hence exists a refutation ~ 
-I 

of the temporal problem P by ordered fine-grained resolution with selection J:~ such that 

the premises for the eventuality resolution rules are found by Restricted-FG-BFS algorithm, 

which is only applied on the set of step clauses S'. We can assume without loss of generality 

that the derivation .6. does not contain any clauses that do not contribute to the derivation 

of the empty clause. 

As the literals Ri(X) (1 :5 i :5 mt) and Ti (1 :5 i :5 m2) occur positively only in the 

set S' and negatively only in the set U~, one can infer that in the derivation ~ those positive 

occurrences of a literal R(x) (1 :5 i :5 mt> or Ti (1 :5 i :5 m2) not removed by factoring 

inferences are eventually resolved with their corresponding negative occurrences, and vice 

versa. Additionally, the literals R(x) (1 :5 i :5 md and ri (1 :5 i :5 m2) are only directly 

involved in derivations of terminating step clauses C ~ 0.1. Furthermore, as the positive 

occurrences of ~(x) (1 :5 i :5 ml) and ri (1 :5 i :5 m2) are essentially unit clauses in 

the derivation .6., it is therefore easy to see that th~ literals R(x) (1 :5 i :5 mJ) and ri 

(1 :5 i :5 m2) add an additional resolution inference in comparison to applying ordered 

fine-grained resolution with selection on the original temporal problem pI directly. We can 

thus infer that for every derivation of a terminating step clause C ~ 0.1 from the temporal 

problem p' by J:~ there exists a corresponding derivation by J:~ from the original temporal 

problem pI, which results in the same terminating step clause C => 0.1 (up to variable 

renaming). 
Thus, we can conclude that a refutation ~ can be obtained from the temporal problem p' 

by ordered fine-grained resolution with selection such that the premises for the eventuality 

resolution rules are found by Restricted-FG-BFS algorithm, which is only applied on the set 

of step clauses S'. 0 

3.5 Summary 

The aim of this chapter was to prove the refutational completeness of ordered fine-grained 

temporal resolution with selection. 

After having briefly recalled the inference rules of monodic temporal resolution and 

ordered fine-grained temporal resolution with selection, we focused on the proof of refutational 

completeness for ordered fine-grained resolution with selection. First, we defined a refined 

version of monodic temporal resolution, for which we also proved that it is refutationally 
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complete. We then showed the lifting theorem for ordered fine-grained resolution with 

selection without the eventuality resolution rules and the arbitrary factoring in left-hand 

sides of terminating step clauses rule. Subsequently, we proved that derivations of refined 

monodic temporal resolution can be simulated by ordered fine-grained resolution with 

selection. As refined monodic temporal resolution was shown to be refutationally complete 

for temporal problems that only contain step clauses with unique left-hand sides, we obtained 

a completeness result for ordered fine-grained resolution with selection restricted to those 

temporal problems. In a final step we then extended this completeness result to arbitrary 

temporal problems. 





Chapter 4 

Redundancy Elimination in Monodic 

Temporal Reasoning 

4.1 Introduction 

In this chapter we focus on another aspect of ordered fine-grained temporal resolution 

with selection, namely, redundancy elimination. In order to decrease the time required for 

finding proofs in practice, one would ideally like to identify clauses that do not contribute 

to refutations or lead to longer derivations. The use of an ordering and a selection function 

which restricts inferences to literals which are selected or, in the absence of selected literals, 

to (strictly) maximal literals, already reduces the number of possible inferences considerably. 

However, it cannot prevent the derivation of redundant clauses, e.g. tautological clauses or 

clauses which are subsumed by other, simpler, clauses. Redundancy elimination is therefore 

an important ingredient for practical resolution calculi and for theorem provers based on 

such calculi. In fact, it is common that state-of-the-art resolution-based theorem provers 

spend more time with reducing the clause sets used for inference computations than with 

deriving new clauses. 

The question arises whether tautological and subsumed clauses can be eliminated without 

losing refutational completeness in the context of the J~;;- -calculus. The answer is not as 

straightforward as it may appear. For example, lock resolution is not compatible with the 

removal of tautologies [lOJ. So, there is at least the theoretical possibility that our calculus 

could become incomplete if tautologies were to be removed from derivations. However, this 

will turn out not to be the case. Regarding the elimination of subsumed clauses, we will 

show in Section 4.2.2 that the notion of a subsumed clause needs to be defined carefully in 

our context otherwise refutational completeness will indeed be lost. 

The chapter is organised as follows. Section 4.2 focuses on redundancy elimination in 

combination with the resolution-based inference rules of ordered fine-grained resolution with 

selection. We first show which temporal clauses are in fact tautologies. Then we define 

a subsumption relation on temporal clauses and we illustrate how the calculus has to be 

extended to remain compatible with the removal of subsumed clauses and of tautologies. 

77 
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The extended calculus will be called subsumption-compatible ordered fine-grained resolution 

with selection. We also prove the subsumption lemmata for the sUbsumption-compatible 

calculus. 

In Section 4.3 we analyse the problem of combining the loop search process with 

redundancy elimination: it is not clear at first sight whether the FG-BFS and the Restricted 

FG-BFS algorithms still compute loops correctly if, for example, subsumed clauses are 

removed. For this purpose, we introduce a resolution-based loop search algorithm called 

Subsumption-RestrictedrFG-BFS. After proving some of its properties, we conclude with 

showing the refutational completeness of sUbsumption-compatible ordered fine-grained 

resolution with selection where applications of the eventuality resolution rules are restricted 

to loops found by the Subsumption-Restricted-FG-BFS algorithm. 

4.2 Adding Redundancy Elimination 

Given that our calculus uses an ordering refinement, it seems natural to establish that the 

calculus admits redundancy elimination by using the approach in [10, Section 4.2J. To do so, 

we would first need to define a model functor I that maps any (not necessarily satisfiable) 

temporal problem P not containing the empty clause to an interpretation rotp and then 

show that ':0>" has the reduction property for counterexamples with respect to the model 

functor I and an ordering )-, that is, for every temporal problem P and minimal clause C in 

P which is false in rotp, there exists an inference with (main) premise C and conclusion V 
that is also false in P but smaller than C w.r.t. )-. We could then define a clause C to be 

redundant w.r.t. P if there exists clauses CI , ... , Ck in P such that CI , ... ,Ck F C and C)- Ci 

for all i, 1 ~ i ~ k, and it would be straightforward to show that '~t remains complete if 

redundant clauses are eliminated from derivations. 

First of all, we can observe that the notion of reducing counterexamples does not 

really fit well with the eventuality resolution rules and moreover, due to the presence 

of eventualities in temporal problems, defining an appropriate model functor is a non

trivial and open problem. For example, consider the satisfiable propositional temporal 

problem P = ({p V q}, 0, {p ::::} O...,l}, {Ol}) and an ordering )- such that p)- q. Applying 

the standard model functor defined in [lOJ to the clause p V q results in a model in which p 

is true. Given that p V q is a universal clause, it would be natural to define rotp in such way 

that p is true at every moment of time. However, due to the step clause p::::} 0...,1, DOL is 

not true in rotp which means that rotp is not a model of P. Thus, this simplistic approach 

to defining a model functor is not correct for temporal problems containing eventualities. 

In Chapter 7 we introduce a model functor I for propositional temporal problems, which 

is able to associate a model rot of P with every satisfiable temporal problem P, but ,~o>" is 

not reductive w.r.t. I. Thus, this model functor is not suitable for establishing that ':t 
admits redundancy elimination. 

Consequently, we have to follow a different approach in order to show that ordered 

fine-grained resolution with selection can be extended with redundancy elimination rules. 
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In the following we will define the notions of a tautological clause and of a subsumed clause. 

For proving that J~~ is still complete if such clauses are eliminated during a derivation, 

we need to show that for every refutation without redundancy elimination there exists a 

refutation with redundancy elimination. It turns out that in order to be able to do so, we 

need to add two inference rules to our calculus. 

4.2.1 Tautological Temporal Clauses 

First of all, we consider tautological clauses. As a tautological clause is defined to be a 

clause that is true in every structure rot = (Dn, In)nEN' we obtain the following lemma: 

Lemma 4.2.1. Let P = (U, I, S, f) be a temporal problem, and let C be a initial, universal 

or step clause. Then: 

(i) If C is an initial or universal clause, then C is a tautology if and only if C = -,L V L V C' , 

for some possibly empty disjunction of literals C'. 

(ii) If C = C1 ~ OC2 is a step clause, then C is a tautology if and only if C2 = -,L V L V C2, 
for some possibly empty disjunction of literals C2. 

Proof. Follows straightforwardly from the fact that if a clause does not contain complemen

tary literals, then one can construct an interpretation which falsifies it. 0 

Note that for point (ii) of the lemma above C1 is assumed to be true or a non-empty 

conjunction of atoms. 

Thus, just as in the non-temporal first-order case, there is again a syntactic criterion 

for characterising tautologies, namely the presence of complementary literals. For a set of 

clauses N or a temporal problem P, we denote by taut(N) or taut(P) the set of all the 

tautological clauses contained in the set N or the temporal problem P, respectively. 

4.2.2 A Subsumption Relation on Temporal Clauses 

The subsumption relation on initial, universal and step clauses is now defined as follows. 

Definition 4.2.2. Let P = (U, I, S,£) be a temporal problem. We define a subsumption 

relation ~8 on initial, universal and step clauses as follows: 

(i) For two initial clauses C and V, two universal clauses C and V, or a universal clause C 
and an initi,al clause V we define 

C ~s V if and only if there exists a substitution (1 with C(1 ~ V. 

(ii) For two step clauses C = C1 ~ OC2 and V = D1 ~ OD2 we define 

C ~8 V if and only if there exists a substitution (1 with C1 (1 ~ D1, C2(1 ~ D2 and 

for every x E var( C1) n var( C2 ): (1(x) E X. 
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(iii) For a universal clause C and a step clause V = D1 :::} OD2 we define 

c ~s V if and only if there exists a substitution (1 with C(1 ~ ...,D1 or C(1 ~ D2 . 

For two sets of clauses Nand N' we denote by N ~s N' that all clauses in N' are subsumed 

by clauses in N. 

Remark 4.2.3. For two formulae C and D with 

m) n) I) m2 n2 12 

C = /\ Af(x1,i) " /\ A;(cj) " /\ Pk and D = /\ BI(x2,d" /\ B;(dj ) " /\ qk, 
i=1 j=1 k=1 i=1 j=1 k=1 

where Ai, Al' BI, B] are monadic predicates, x1,i, x2,i are variables, Cj' dj , are constants 

and Pk, qk, are propositions, we write C ~8 D if and only if there exists a substitution (1 with 

C(1 ~ D, i.e . ...,C ~s ...,D holds, where ...,C and ...,D are considered to be negative universal 

clauses. 

Thus, subsumption between two initial, two universal or an initial and a universal clause 

is defined analogously to the subsumption on regular first-order clauses. However, we can 

only allow a universal clause to subsume an initial clause, but not conversely, as an initial 

clause only holds in the initial moment of time while a universal clause is true at every 

moment of time. We also allow subsumption betwee'! a universal and a step clause if and 

only if the universal clause either subsumes the negated left-hand side or the right-hand 

side of the step clause. 

For subsumption between two step clauses C1 :::} OC2 and D1 :::} OD2 , we have to 

impose an additional constraint on the substitution that is used for the multiset inclusion: 

in analogy to the inference rules of the calculus that involve step clauses (rules 4 and 5 of 

ordered fine-grained resolution with selection), it has to be ensured that variables occurring 

both in the left-hand side C1 and in the right-hand side C2 are only mapped to variables. 

While for the inference rules themselves this restriction is imposed to ensure soundness, here 

the motivation is completeness. 

To see that, consider a temporal problem P with universal clauses P(x) and ...,Q(c) and 

a step clause P(x) :::} OQ(x). The clausification of P will then also contain a step clause 

P(c) :::} OQ(c). This additional step clause can be resolved with ...,Q(c) using rule 4 of ordered 

fine-grained resolution with selection together with the identity substitution as unifier to 

obtain P(c) :::} 0.1, which, using the conversion rules, gives us a new universal clause ...,P(c). 

Another inference step with P(x) results in a contradiction. Now, without a restriction 

on the substitution that can be used in subsumption, P(x) :::} OQ(x) would subsume 

P(c) :::} OQ(c). We could then try to derive a contradiction by resolving P(x) :::} OQ(x) 

with ...,Q(c). However, the unifier of Q(x) and Q(c) maps the variable x, which also occurs 

in the left-hand side of the step clause to the constant c. Thus, an inference by rule 4 using 

these two premises is not possible and a contradiction can no longer be derived. 
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Definition 4.2.4. Let C and V be initial, step or universal clauses. Then we say that C 

properly subsumes V. written C <s V, if and only ifC subsumes V but not vice-versa, i.e. 

C <8 V if and only ifC ~s V and V 'is c. 

Remark 4.2.5. For two formulae C and D with 

ffil nl II m2 n2 12 

C = 1\ A;(X1,i) 1\ 1\ A;(Cj) 1\ 1\ Pk and D = 1\ Bi(X2,d 1\ 1\ BJ(dj ) 1\ 1\ qk, 
i=1 j=1 k=1 i=1 j=1 k=l 

where Ai, AJ' BI, BJ are monadic predicates, XI,i, X2,i are variables, Cj, dj , are constants 

and Pk. qk. are propositions, we write C <8 D if and only if...,C <s ...,D holds, where ...,C 

and ...,D are considered to be negative universal clauses. 

We can now show the following two lemmata. 

Lemma 4.2.6. The relation <s is well-founded. 

Proof. Follows from the fact that the inclusion relation on multisets is well-founded. 0 

Lemma 4.2.7. Let C and V be initial, step or universal clauses such that C ~s V. Then 

it holds for an initial clause 'D that the formula [( 0 riC) ::::} [-;-V) is valid, and for a step 

or universal clause V that the formula [D-;-C] ::::} [D~) is valid, where -;-C denotes the 

universal closure ofC. 

Proof. Follows from the definition of t.he truth-relation given in Figure 2.3. o 

Having defined criteria for identifying tautological and subsumed clauses, we could 

now try to prove that for every refutation without redundancy elimination there exists a 

refutation with redundancy elimination. However, it turns out that such a correspondence is 

difficult to establish if the refutation contains applications of the duplicate literal elimination 

rule whose premise is subsumed. 

For example, consider the step clause V 1 = P(x) 1\ P(x) ::::} 01. which is subsumed by 

C1 = P(x) 1\ P(y) ::::} 01.. From V1 we can derive V2 = P(x) ::::} 01. using the duplicate 

literal elimination rule. But our calculus does not contain a rule which allows us to derive a 

clause C2 from C1 that subsumes 'D2 nor does C1 itself subsume 'D2. Similarly, the universal 

clause C3 = ...,P(x) V ...,P(y) would also subsume VI. But again, C3 does not subsume V2 

nor can we derive a clause from C3 which subsumes V 2 using the rules of our calculus. 

4.2.3 Subsumption-Compatible Ordered Fine-Grained Resolution 

with Selection 

In order to deal with these two cases, we need additional factoring rules. One of these rules 

has be applied on (at most) monadic negative universal clauses: 
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Definition 4.2.8. A clause C is said to be a (at most) monadic negative universal clause 

il and only il the clause C is a negative universal clause -.Al V ... V -.An such that every 

atom Ai (1 SiS n) is 01 arity equal to or less than 1. 

For example, the universal clauses -'pv-.q and -.P(x) v-.Q(y) Vp are (at most) monadic 

negative universal clauses. Next, we extend our calculus by the following two rules: 

• (Arbitrary) Factoring in left-hand sides of terminating step clauses: 

C A A A B ::} 0.1 
(C A A)(T ::} 0.1 

where (T is a most general unifier of the atoms A and B . 

• (Arbitrary) Factoring in (at most) monadic negative universal clauses: 

-.Al V ... V ...,An V ...,An+! 
(-.Al V ... V -.An)(T 

where -.A1 V ... V -.An V -.An+ 1 is a (at most) monadic negative universal clause and 

(T is a most general unifier of the atoms An and An+!. 

The calculus ordered fine-grained resolution with selection extended by the two rules 

introduced above will be called subsumption-compatible ordered fine-grained resolution with 

selection and will be denoted by )~;i,Sub' The fine-grained step resolution inference rules 

of J~crSub encompass the fine-grained step resolution inference rules of ordered fine-grained 

resolution with selection and are extended by the rules of (arbitrary) factoring in left-hand 

sides of terminating step clauses and (arbitrary) factoring in (at most) monadic negative 

universal clauses. 

As we will see, the arbitrary factoring in left-hand sides of terminating step clauses rule 

will also play an important role in our completeness proof for the fair inference procedure 

that will be introduced in Chapter 5. 

We still have to note that in contrast to the propositions stated in [66] we no longer 

require additional restrictions on the selection functions. 

4.2.4 Subsumption Lemmata 

We now have everything in place to show that subsumption-compatible ordered fine-grained 

resolution with selection allows the elimination of tautological and subsumed clauses. 

First of all, we prove that tautologies either do not contribute or only prolong derivations 

of the empty clause. 

Lemma 4.2.9. Let C1, C2 be initial, universal or step clauses such that Cl is a tautology. 

Then it holds that every resolvent C 01 C 1 and C2 is either a tautology or subsumed by C2. II 
both Cl and C2 are tautologies, then C is also a tautology. 



4.2. ADDING REDUNDANCY ELIMINATION 83 

Proof. Let Cl = (Cl ~ O)Dl (i.e. Cl = Gl => ODI if Cl is a step clause, and C1 = D1 

otherwise), C2 = (C2 ~ O)D2 and Dl = El V L V ~L. Additionally, let Ill, 112 be variable 

renamings such that var(Cllld n var(C2112) = 0 and let u be the most general unifier used 

in the resolution inference, which is such that variables from var(G1l1d U var(G2112) are 

mapped into variables if Cl or C2 is a step clause. It is easy to see that if the literal 

which is resolved upon is different from LIIl and ~LII1, then the clause C is again a 

tautology as it contains the two complementary literals Lilla and ~LIIla. We may therefore 

assume without loss of generality that the literal LVl in the clause C1111 will be resolved 

with a literal ~L'1I2 in the clause C2112 (the remaining other case is similar). Thus, let 

D2 = E2 V ~L' and C = ((GlIIl 1\ C2112)a ~ O)(E1II1 V ~LIIl V E2112)a. As a is a 

most general unifier of the atoms LIIl and 1'112, it holds that Lll1U = L'II2a and hence, 

D2112U = (E2 V ~L')1I2a ~ (E1111 V ~Lll1 V E2112)a. 

If C2 is an initial clause, we can infer that C is also an initial clause, and consequently, 

C2 ~. C holds. Then, if C2 is a universal clause and the clause C1 is an initial or universal 

clause, the clause C is also an initial or universal clause, respectively. We can conclude that 

C2 ~. C holds again. In the case where C2 is an universal clause and the clause C1 is a step 

clause, we have that C is a step clause, and also that C2 ~8 C holds. Finally, if C2 is a step 

clause, then it follows that the clause C is a step clause and we obtain for every variable 

x E var(C2) n var(D2) that XII2a is a variable. We can thus infer that C2 ~. C holds as well. 

We still have to analyse the case where C1 and C2 are tautologies. One can then infer 

that the clause C contains a pair of complementary literals, even if C2 is a universal clause 

and C a step clause as tautological universal clauses cannot subsume the left-hand sides of 

step clauses. 0 

Lemma 4.2.10. Let Cl be a tautology. Then it holds that every factor C of C1 is a tautology. 

Proof. Let Cl = (C1 ~ O)D l and Dl = D V L V ~L. Additionally, let A, BE Dl be the 

atoms which are factored upon and let a be a most general unifier ofthe atoms A and B. 
Additionally, if Au -I La -I Ba holds, we obtain again that C contains two complementary 

literals La, ~Lu and C is therefore a tautology. Finally, in the case where Au = Lu = Bu, 

we can conclude that C contains a pair of complementary literals Aa and ~Aa as factoring 

only removes positive occurrences of literals, which also implies that C is a tautology. 0 

The next propositions establish the sUbsumption lemmata for the step resolution inference 

rules of )~;:Sub' i.e. for every inference rule of )~;:Sub' except the eventuality resolution rules, 

and clausesCl , Cl , C2, C2 with Cl ~. Cl , C2 $. C2 and clause C obtained through an inference 

between Cl and C2, we show that either 

(i) C1 $. C or 

(ii) C2 $. C holds, or 

(iii) there exists an inference between Cl and C2 resUlting in a clause C with C ~. C. 
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Lemmata 4.2.22 and 4.2.23 will regroup the results established by the following proposi
tions. 

Lemma 4.2.11. Let CI, C2, CI, C2 be universal clauses such that CI $8 CI and C2 $" C2. 
Furthermore, let C be a resolvent of CI and C2 by ordered resolution with selection between 

two universal clauses. Then one of the following statements holds: 

(a) CI $8 C, or 

(b) C2 $" C, or 

(c) there exists a resolvent C of CI and C2 by ordered resolution with selection such that 

C $8 C. 

Proof Similar to the first-order case. o 

Lemma 4.2.12. Let C and C be universal clauses such that C $8 C. Furthermore, let b be 

the result of applying the ordered positive factoring with selection rule on C. Then one of 

the following statements holds: 

(a) C $8 b, or 

(b) there exists a universal clause V obtained through an application of the ordered positive 

factoring with selection rule on C such that V $8 iJ. 

Proof Similar to the first-order case. o 

Lemma 4.2.13. Let CI, C2 be initial clauses and CI, C2 be initial or universal clauses such 

that CI $ .. CI and C2 $ .. C2. Furthermore, let C be a resolvent of CI and C2 by ordered 

resolution with selection between two initial clauses. Then one of the following statements 

holds: 

(a) CI $8 C, or 

(c) there exists a resolvent C of C1 and C2 by ordered resolution with selection such that 

C $8 C. 

Proof Similar to the first-order case by considering that initial and universal clauses can be 

identified with first-order clauses. The only difference is that if we resolve an initial clause 

with a universal clause or an initial clause, then we obtain an initial clause. A resolution 

inference between two universal clauses yields a universal clause again. o 

Lemma 4.2.14. Let C1 be an initial, C1 be an initial or universal and C2 , C2 be univer.~al 

clauses such that C1 $" C1 and C2 $" C2. Furthermore, let C be a resolvent of Cl and C2 by 

ordered resolution with selection between an initial and a universal clause. Then one of the 

following statements holds: 
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(a) C1 S. C, or 

(b) C2 Ss C, or 
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(c) there exists a resolvent C of C1 and C2 by ordered resolution with selection such that 

C S. C. 

Proof. Similar to the first-order case. o 

Lemma 4.2.15. Let C and C be i.nitial or universal clauses such that C S. C. Furthermore, 

let V be the result of applying the ordered positive factoring with selection rule on C. Then 

one of the following statements holds: 

(a) C S. V, or 

(b) there exists an initial. or universal clause V obtained through an application of the 

ordered positive factoring with selection rule on C such that V S. V. 

Proof. Similar to the first-order case. o 

Lemma 4.2.16. Let C1, C2 be step clauses and let Cb C2 be universal or step clauses such 

that C1 S. C1 and C2 S. C2. Furthermore, let C be a resolvent of C1 and C2 by ordered 

fine-grained step resolution with selection. Then one of the following statements holds: 

(a) C1 S. C, or 

(c) there exists a resolvent C of C1 and C2 by ordered fine-grained step resolution with 

selection such that C S. C. 

Proof. First of all, we assume without loss of generality that var(Cdnvar(C2) = 0 (otherwise, 

variable renamings need to be applied accordingly). Let C1 = 61 =? OD1, C2 = 62 =? OD2 

D1 = E1 V A, D2 = E2 v -,8 and let C = (61 " 6 2)0- =? 0(E1 v E2)0-, where 0- is a 

most general unifier of the atoms A and 8 such that variables from var(6t) U var(62) 

are mapped into variables. We first of all observe that if C1 or C2 are universal clauses 

such that C1 S. -,61 or C2 S. -,02 holds, then we can infer that C1 S. -,(61 /\ 62 )0- or 

C2 S. -,(01 ,,62 )0- holds, and thus C1 S. C or C2 Sa C. Without loss of generality we 

may hence assume that C1 Sa D1 holds if C1 is a universal clause and C2 S. D2 if C2 is a 

universal clause. 

Now, let C1 = (C1 =? 0)D1, C2 = (C2 =? 0)D2 and 711,712 be substitutions with 

Cl711 ~ C\, Dl711 ~ D 1, C2712 ~ 62 and D2712 ~ 152 such that 711 maps variables from 

var( C 1) n var( D 1) into variables if C 1 is a step clause and 1]2 maps variables from var( C2) n 
var(D2} into variables if C2 is a step clause. Then, if all the literals A with A711 = A occur 

together less often in D1 than the literal A in ih, we can infer that Dl711 ~ E1 and thus, 

C 11]10- ~ (61 /\ 62)0- and D 11]10- ~ (E1 V E2)0-. Additionally, if C1 is a step clause, then it 
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holds for a variable x E var(CI) n var(Dl ) that XTllo- = yO- = z for variables y, z E X as 

y E var(C\). We can consequently infer that Cl ~s C holds. 

Similarly, if all the literals -,B with -,BT/2 = iJ occur together less often in D2 than the 

literal -,iJ in V2 , we obtain C2 :Ss C. 
Otherwise, we consider the case where Cl TJl S;;; Cl , Dl = El V A, ElTll S;;; E l , ATll = A and 

C2T/2 S;;; C2, D2 = E2 V -'B, E2T/2 S;;; E2, -,BT/2 = -,i3. Let 1I1 and 1I2 be variable renamings 

such that var(Cllld n var(C2112) = 0. We need to show that CIlIl can be resolved with C2112. 

Due to the instance compatibility of the selection function, we can assume that the literal -,B 

is selected in the clause D2 if the literal -,iJ is selected in the clause D2. It also follows that 

AlIl1l1lTllo- = ATllo- = Au = Bu = BT/2o- = B1I211ilT/2u, i.e. the atoms AliI and BlI2 are 

unifiable by a most general unifier a with dom(a) U (codom(a) n X) S;;; var(AlIt} U var(B1I2) 

(see Theorem 3.4.23). For the substitution Tl = lII l TJl U lIilTl2 we have CllllTl S;;; Cl , 

Dllli = Ellli V AliI, ElIIlTl S;;; El, AlIlTl = A and C2112Tl S;;; C2, D2112 = E2112 V -,B1I2, 

E2112Tl S;;; E2, BlI2TJ = B. Moreover, it holds that TJ maps variables from var(CIlIt}nvar(Dlllt} 

into variables if Cl is a step clause, and that Tl maps variables from var(C2112) n var(D2112) 

into variables if C2 is a step clause (see Lemma 3.4.16). 

Then, as AlIlTJo- = Ao- = Bo- = BlI2TJu holds, the substitution TJU is a unifier of the atoms 

AliI and B1I2. Thus, let cp be a substitution such that acp = TJu. Now, if CI is a step clause, 

let x E var(Cllld. If x ¢ var(DlII1), then we have x ¢ dom(a) as also x ¢ var(D2112) holds, 

i.e. o-(x) = x. Otherwise, x E var(Dlllt} and we obtain TJ(x) E var(Ct} , which implies that 

xacp = xTJU E X and hence, a(x) EX. Analogously,.one can show that a maps variables 

from var(C2112) into variables if C2 is a step clause. 

It follows from the properties of the selection function and of the atom ordering that 

the literal AliI is eligible in Dllli for a and the literal -,BlI2 is eligible in D2112 for a. 

Consequently, there exists a resolvent C = ((CWI "C2112)a ~ O)(Ellll V Fh1l2)a such that 

(Cl llt"C2112)acp S;;; (Cl ,,(2)u and (Ellli V E2112)acp S;;; (El V E2)o-. We still have to show that 

C ~ .. C holds. If Cl and C2 are universal clauses, we can immediately conclude that C :S .. C 
holds. In the case where Cl or C2 is a step clause, let x E var((C1IIl "C2112)a) n var((EllIl V 

E2112)o-). Thus, there exists variables y E var(Cllld U var(C2112), Z E var(Elllt} U var(FhIl2) 

with a(y) = x = a(z). 

If x =I y, we can infer that y E var(Dlllt}Uvar(D2112) as y E dom(a). Hence, it holds that 

y E (var(Ctlll)nvar(Dtllt})U(var(C2112)nvar(D2112» and cp(x) = yacp = y",o-. FUrthermore, 

as TJ(Y) EX, we have TJ(Y) E var( Ct} U var( ( 2 ), which implies that cp(x) = YTJo- EX. 

In the case where x = Y = z, we obtain that x E (var(Cllld n var(Dllld) U (var(C2112) n 
var(D2112», and thus similarly, cp(x) = xacp = xTJo- E X. Finally, if x = y and x =I z, we 

get x E var(Clllt} U var(C2112) and x E (codom(o-) n X) S;;; var(Dlllt} U var(D2112). Again, 

it holds that cp(x) = xacp = x",o- EX. 

We can conclude that C ~ .. C holds. o 

Lemma 4.2.17. Let Cl = 61 ~ ODI be a step clause, let Cl be a universal or a step 

clause and let C2, C2 be universal clauses such that Cl ~ .. Cl and C2 ~ .. C2. Furthermore, 
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let C be a resolvent of C1 and C2 by ordered fine-grained step resolution with selection. Then 

one of the following statements holds: 

(a) C1 ~s C, or 

(b) C2 ~s C, or 

(c) there exists a resolvent C of C1 and C2 by ordered fine-grained step resolution with 

selection such that C ~s C. 

Additionally, if C2 = C2 , then the statement (a) or (c) holds. 

Proof. Similar to the proof of Lemma 4.2.16. If C2 = C2, then one can show that the 

statement (a) or (c) holds (in addition to statement (b) being potentially satisfied). 0 

Lemma 4.2.18. Let C1 = c\ :::} Oih be a step clause and C1 be a universal or a step clause 

such that C1 ~s C1 . Furthermore, let C be the result of applying the ordered fine-grained 

positive step factoring rule on C 1. Then one of the follOwing statements holds: 

(a) C1 ~s C, or 

(b) there exists a universal or step clause C obtained through an application of the ordered 

fine-grai.ned positive factori.ng rule on C1 such that C ~s C. 

Proof. Let C1 = (C1 :::} O)Dl, ih = DV Av 8 and U be a most general unifier of the atoms 

A and 8 such that a does not map variables from C\ into a constant or a functional term 

and such that A is eligible in D V A V 8 for U. Hence, we obtain C = G1u :::} O(iJ V A)u. 
First of all, if C1 is a universal clause and C1 ~8 G 1, then as G1 ~8 G1u clearly holds, we 

obtain C1 ~s Cia and thus, C1 ~8 C. We may now assume that C1 ~8 iYt holds if C1 is a 

universal clause. Let 17 be the substitution such that C l 17 ~ (\, Dl17 ~ D1 and such that 17 

maps variables from var(Ct) n var(Dt} into variables if C1 is a step clause. 

Then, if the clause D1 does not contain a pair of atoms A and B with A17 = A and 

B17 = 8, we obtain that Cl17a S; G1a and D1rJU ~ (D V A)a. If C1 is a universal clause, we 

have C1 ~s C. Otherwise, C1 is a step clause, and let x E var(Ct} n var(Dd. We obtain 

7J(x) E X, i.e. 7J(x) E var(Gt} and thus, X17a E X, which implies that C1 ~s C holds. 

Otherwise, let A and B be atoms in the clause D1 with A17 = A, B17 = Band 

D1 = D V A vB. We need to show that a factoring step on C1 is possible. We can first 

of all infer that A17U = Au = Bu = B17U. Thus, there exists a most general unifier of 

the atoms A and B with dom(u) U (codom(u) n X) S; var(A) U var(B) ~ var(Dt} (see 

Theorem 3.4.23). Let 'fJ be a substitution with U'fJ = 17u, which implies that C1U'fJ S; G1u 
and D 1u'fJ ~ DIU. It then follows from the properties of the atom ordering that the literal 

A is eligible in D V A V B for 0". If C1 is a universal clause, we can infer that there exists 

a universal clause C = (D V A)u obtained through an application of the ordered positive 

factoring with selection rule on C1. As D1u'fJ ~ iYtu holds, we have C ~s C. 
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Then, in the case where Cl is a step clause, let x E var(Ct} such that x E dom(u). It 

follows that x E var(Dd and xur.p = X7]o- E X, which implies that r.p(x) E X. We can infer 

there exists a step clause C = C 1u => oeD V A)u obtained through an application of the 

ordered positive factoring with selection rule on C1 . 

Now, let x E var(C1u) n var((D V A)u). Thus, there exists variables Y E var(Ct} and 

Z E var(D V A) with u(y) = x = u(z). If x f. y, we can infer that y E var(D V A V B) = 

var(Dd as y E dom(u). Furthermore, it holds that r.p(x) = yur.p = Y7]o-. Hence, as 7](Y) E X, 

we have 1](Y) E var(C\), which implies that r.p(x) = x7]o- E X. 

In the case where x = Y = z, we obtain that x E var(C1) n var(Dd, and thus similarly, 

r.p(x) = xur.p = X1]o- E X. Finally, if x = Y and x f. z, we have that x E var(Ct} and 

x E (codom(u) n X) ~ var(Dd. Again, it holds that r.p(x) = xur.p = X7]o- E X. 

Finally, we can conclude that C :5" C holds. o 

Lemma 4.2.19. Let C1 be a step clause and C1 be a universal or a step clause such that 

Cl :5" C1 . Furthermore, let C be the result of applying the clause conversion rule on Cl. 
Then one of the following statements holds: 

(a) C1 :5" C, or 

(b) there exists a universal clause C obtained through an application of the clause conversion 

rule on Cl such that C :5" C. 

Proof Let C = C => 0.1, C1 = (-,)C(=> 0.1) and C::: -,C. HC1 is a universal clause and 

Cl = .1, then C1 :5" C clearly holds. Otherwise, we have Cl = -,C :5" -,6 and thus, C1 :5" C. 
Finally, in the case where C 1 is a step clause, we also obtain -,C :5a -,6. An application of 

the clause conversion rule on the step clause C1 then yields the clause C = -,C, i.e. C :58 C 
holds. o 

Lemma 4.2.20. Let C1 = 61 => 0.1 be a terminating step clause and C1 be a universal or 

a step clause such that C 1 :5a Cl. Furthermore, let C be the result of applying the factoring in 

left-hand sides of terminating step clauses rule on Cl. Then one of the following statements 

holds: 

(a) C1 :5" C, or 

(b) there exists a universal or a step clause C obtained through an application of the factoring 

in at most monadic negative universal clauses or in left-hand sides of terminating step 

clauses rule on Cl such that C :5a C. 

Proof Let i\ = 6" A" E, Cl = (-,)C1(=> 0.1) and C = (6" A)o- => 0.1, where 0-

is a most general unifier of the atoms A and E. Moreover, let 1] be a substitution with 

CI1J ~ (-,)C1• 

If C 1 does not contain a pair of literals AI, A2 with A 17] = A and A27] = E, we obtain 

CI7] ~ (-,)(6" A). Hence, C1 :5" C holds. 
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Otherwise, Gl contains a pair of literals AI, A2 with Al7J = A and A27J 8, i.e. 

G l = G 1\ Al 1\ A2. Thus, as the atoms Al and A2 are unifiable with Al7JU = A27]U, there 

exists a most general unifier a of Al and A2, together with a substitution ifJ such that 

aifJ = 7Ju. If C 1 is a universal clause, we observe that it only contains negative literals with 

at most one free variable as C1 ~ -,(\ holds. We can thus apply the factoring in at most 

monadic negative universal clause rule on Cl and obtain the universal clause C = -,c V -,A l . 

As CaifJ ~ -,(<71\ A)u, we obtain C ~8 C. 
Finally, if C 1 is a step clause, we can apply the factoring in left-hand sides of terminating 

step clauses rule and derive the terminating step clause C = (C 1\ Ada::::} 0.1. We obtain 

(C 1\ AtlaifJ ~ (61\ A)u and we can infer that C ~8 C holds. 0 

Lemma 4.2.21. Let Cl = ...,A l V ... V -'An V -,An+ l be an at most monadic negative 

universal clause and Cl be a universal clause such that Cl ~s Cl. Furthermore, let C be the 

result of applying the factoring in at most monadic negative universal clauses rule on C 1. 

Then one of the following statements holds: 

(a) Cl ~8 C, or 

(b) there exists a universal clause C obtained through an application of the factoring in at 

most monadic negat'ive universal clauses rule on Cl such that C ~s C. 

Proof. Let C1 = ...,A1 V ... V ...,An V ...,An+l and C = (...,A l V ... V ...,An)u, where 0' is a most 

general unifier of the atoms An and An+ 1· Additionally, let 7J be a substitution with Cl7J ~ Cl. 

If Cl does not contain a pair of literals An, An+l with An7J = An and An+l 7J = An+l , we 

can infer that C17J ~ -,Al V ... V -,An. Thus, Cl7JU S;;; C, i.e. Cl ~s C holds. 

Otherwise, Cl contains a pair of literals An, An+1 with An7J = An and An+17J = An+1, 

i.e. Cl = G V -,An V -,An+1 for an at most monadic negative universal clause C. Then, as 

An7Ju = Anu = An+1u = An+l7]U, there exists a most general unifier a of the atoms An 

and An +1 . We can thus apply the factoring in at most monadic negative universal clauses 

rule on C 1 and obtain the universal clause C = (C V ...,An)a. Let ifJ be a substitution with 

aifJ = 7Ju. Then, it is easy to see that CifJ S;;; C holds, i.e. we have C ~B C. 0 

The next two lemmata regroup the previous results. First, we show that if subsumption 

is limited to step clauses in the derivation of a step clause C which does not contain an 

application of the clause conversion rule, then one can derive a step clause C from the 

subsuming step clauses and the same universal clauses such that C ~s C. 

Lemma 4.2.22. Let U be a set of universal clauses and let N, N be sets of step clauses 

such that N ~s N. Additionally, let A be a derivation of a step clause C from clauses 

in U u.N by the fine-grained step resolution inference rules of either ordered fine-grained 

resolution with selection or subsumption-compatible ordered fine-grained resolution with 

selection, but without applying the clause conversion rule. 

Then there exists a derivation ~ of a step clause C by subsumption-compatible ordered 

fine-gmined resolution with selection from clauses in U uN such that C ~s C. 
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Proof Lemma 4.2.22 is shown by induction on the length of the derivation A. For the base 

case we assume that C is a step clause in N. Then there exists a step clause C in N with 

C:::;~ C. 
For the induction step we consider a step clause C that is derived by one of the rules 

of (subsumption-compatible) ordered fine-grained step resolution excluding the clause 

conversion rule from premises C1 and C2, which are either elements of U U N or previously 

derived clauses. It follows that either C1 or C2 (or both) are step clauses. By the induction 

hypothesis there are clauses C1 and C2 with C1 :::;8 C1 and C2 :::;8 C2 which are either elements 

of U uN or previously derived such that Cl is a step clause if C1 is a step clause, and C2 is a 

step clause if C2 is a step clause. Thus, by using Lemmata 4.2.16,4.2.17,4.2.18, and 4.2.20, 

either C1 :::;~ C, C2 :::;~ C or we can derive a step clause C with C :::;8 C from C1 and C2. 0 

The next proposition is a more general version of Lemma 4.2.22. It allows for arbitrary 

sUbsumption and it considers all the fine-grained step resolution inference rules of )~;i,Sul>. 

Lemma 4.2.23. Let Nand N be sets of initial, universal clauses or step clauses such 

that N :::;8 N. Additionally, let ~ be a derivation of a clause C from clauses in N by the 

fine-grained step resolution inference rules of either ordered fine-grained resolution with 

selection or subsumption-compatible ordered fine-grained resolution with selection. 

Then there exists a derivation ~ of a clause C by subsumption-compatible ordered fine

grained resolution with selection from clauses in N such that C :::;8 C. It also holds that the 

clause conversion rule is only applied in the derivation ~ if it has been applied in order to 

obtain the derivation A. 
The previous statement still holds if N :::;8 N \ taut(N) and C is not a tautology. 

Proof Let ~ = Vb ... , Vn-1,C(= Vn). If N:::;8 N, then one can show the existence of the 

derivation ~ by induction on the length of the derivation ~ in analogy to Lemma 4.2.22 by 

using Lemmata 4.2.11,4.2.12,4.2.13,4.2.14,4.2.15,4.2.16, 4.2.17, 4.2.18, 4.2.19,4.2.20, and 

4.2.21. 
In the case where N :::;8 R \ tauteR) holds, it can be shown inductively for every 

clause Vi (1 :5 i :5 n) which is not a tautology that there exists a derivation ~ of a clause Vi 

with Vi :58 Vi by subsumption-compatible ordered fine-grained resolution with selection 

from clauses in N\ tauteR) by using using Lemmata 4.2.9,4.2.10,4.2.11,4.2.12,4.2.13, 

4.2.14,4.2.15,4.2.16,4.2.17,4.2.18,4.2.19,4.2.20, and 4.2.21. 0 

4.3 Subsumption and Loop Search 

Lemma 4.2.23 shows that we can eliminate tautologies and subsumed clauses during the 

construction of a derivation at the level of inference rule applications of the )~;j,Sul> calculus. 

However, the rules of the calculus are also applied within the fine-grained breadth-first 

search algorithm FG-BFS (and its more restricted version Restricted-FG-BFS) which is 
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Function Subsumption-Restricted-FG-BFS 

Input: A set of universal clauses U and a set of step clauses S, saturated under 
the fine-grained step resolution inference rules of sUbsumption-compatible 
ordered fine-grained resolution with selection, and an eventuality clause 
OL(x) E£-. 

Output: A formula R(x) with at most one free variable. 

Method: (1) Let Ro(x) = true; Mo = 0; i = 0 
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(2) Let N:+l = U u LT(S) u {true ~ O(-.~(cl) V L(cl ))}. Apply the 
fine-grained step resolution rules of sUbsumption-compatible ordered 
fine-grained resolution with selection except the clause conversion 
rule to N:+ 1, together with the removal of tautological and subsumed 
clauses. If we obtain a contradiction, then return the loop true (in 
this case \:fx-.L(x) is implied by the universal part). 
Otherwise let M~+l = {Dj ~ O..1.}j=l be the set of all new termi
nati.ng step clauses in the saturation of N:+ 1 . 

(3) If M~+l = 0, return false; else let ~+l(X) = V;=1(3D j ){cl 
-4 x} 

(4) If \:fX(Ri(X) ~ Ri+l(X)), return Ri+l(X). 

(5) i=i+1;got02. 

Figure 4.1: Breadth-First Search using SUbsumption-Compatible Ordered Fine-Grained 
Step Resolution with Selection together with Redundancy Elimination 

used to find loop formulae for the application of the eventuality resolution rules. Naturally, 

the question arises whether tautological and subsumed clauses can also be eliminated within 

FG-BFS and Restricted-FG-BFS. 

4.3.1 Subsumption-Restricted Loop Search Algorithm 

The answer to that is positive. Figure 4.1 shows the so-called subsumption-restricted breadth

first search algorithm using ordered fine-grained step resolution with selection, a modification 

of FG-BFS which removes tautological and subsumed clauses during the saturation process 

by sUbsumption-compatible ordered fine-grained resolution with selection in step (2) of the 

algorithm. In the way in which the algorithm shown in Figure 4.1 is defined the constructed 

sets M~ will not contain terminating step clauses C ~ 0..1. and D ~ 0..1. such that C ~8 D. 
Due to the removal of tautolOgIcal and subsumed clauses it is not clear at first sight that 

the Subsumption-Restriction-FG-BFS algorithm still finds all the possible loop formulae 

as the equivalence of two formulae ~(x) and RH1(X) might no longer be achieved. We 

will show in the subsequent sections that the Subsumption-Restricted-FG-BFS algorithm 

indeed remains correct and computes all the possible loop formulae for a given temporal 

problem. We also prove the refutational completene;s of J~tSul> where applications of the 

eventuality resolution rules are restricted to loops found by the Subsumption-Restricted

FG-BFS algorithm. 
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4.3.2 Properties of the Loop Search Algorithm 

We begin by showing some properties of the Restricted-FG-BFS algorithm. First of all, we 

introduce a couple of notions that are important for the remaining proofs. 

For a set of clauses N we denote the set of all the clauses resulting from inferences 

by the resolution-based and factoring rules of sUbsumption-complete ordered fine-grained 

resolution with selection (Le. without the clause conversion or the eventuality resolution 

rules) on clauses from the set N by Ressub(N). Additionally, we define that Re~ub(N) = N, 
Res~ub(N) = Ressub(Res~-;;~(N» for i > 0 and 

00 

ResSub(N) = U ResLb(N) 
i=O 

For a set of clauses N we denote the set of all the clauses resulting from inferences by the 

fine-grained step resolution inference rules of sUbsumption-compatible ordered fine-grained 

resolution with selection from clauses in the set N by ReSsub,Conv(N). The notions of 

Res~ub,Conv(N), ResLb,Conv(N) for i > 0 and ResSub,Conv(N) are defined analogously to 

the sets Res~ub(N), ResLb(N) for i > 0 and ResSub(N) introduced above. 

The following two definitions are necessary for showing that the Subsumption-Restricted

FG-BFS algorithm only requires finitely many iterations on any clausified monodic temporal 

problem in order to compute all the possible loop formulae. 

Definition 4.3.1. Let P = (U',I',S',e) be a clausified monodic temporal problem and 

let 0 = {Pl (x), ... , Pn (x)} be the set of all the non-ground atoms occurring in the left-hand 

sides of the step clauses contained in the set S'. Then we denote by T(P) the set of all the 

terminating step clauses built from the symbols occurring in the left-hand sides of the step 

clauses contained in the set S' which are instantiated by constants from const(P) u {d}, 

free of duplicate atoms and such that each subset of the set 0 occurs at most once in a given 

terminating step clause (after renaming the variable used for the considered subset instance 

in the terminating step clause to xp. We also assume that the set T(P) contains exactly 

one representative for each equivalence class under the relation = X . 

Remark 4.3.2. As the sets 8' and const(P) are finite, it follows that the set T(P) is finite 

as well. 

Definition 4.3.3. Let P = (U', I', 8', e) be a clausified monodic temporal problem and let 

N ~ T(P) be a set of terminating step clauses. Then we define a set of terminating step 

clauses TiN(P) as follows: 

The following proposition establishes a basic result about the terminating step clauses 

that are constructed during runs of the Subsumption-Restricted-FG-BFS algorithm. 

1 For this definition free variables are not considered to be existentially quantified and the loop search 
constant d is not replaced by a fresb variable. 
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Lemma 4.3.4. Let P' = (U', I', S', e) be a clausijied monodic temporal problem. Addi

tionally, let No. N{, . .. be the initial sets of universal and step clauses in each iteration 

and M~. M;, . .. be the sets of terminating step clauses constructed as in a run of the 

Subsumption-Restricted-FG-BFS algorithm applied on the temporal problem P for an even

tuality OL(x) E e (without considering potential derivations of the empty clause). 

Then it holds that: 

(i) for every i and for every terminating 'step clause C ~ 0.1 E M~ there exists a variable 

renaming 0 such that true ~ O(-.Co V L(c')) E N!+I; and conversely, 

(ii) for every i and for every newly added step clause true ~ O( -.C V L(cl )) E N!+1 there 

exists a vari.able renaming 0 such that Co ~ 0.1 E M~. 

Proo/. Follows for every i from the construction of the set N!+I. o 

In the next lemma we prove that for every terminating step clause C ~ 0.1 constructed 

in an iteration i + 1 there exists a terminating step clause D ~ 0.1 obtained in the iteration i 

such that D $8 C. 

Lemma 4.3.5. Let P' = (U',I',S',e) be a clausijied monodic temporal problem. Addi

tionally, let Mo, M;, . .. be the sets of terminating step clauses constructed as in a run of 

the Subsumption-Restricted-FG-BFS algorithm applied on the tempoml problem P' for an 

eventuality OL(x) E e (without considering potential derivations of the empty clause). 

Then it holds for all i ~ 1 and for every terminating step clause C ~ 0.1 E M~+I that 

there exists a terminating step clause D ~ 0.1 E M~ with D $8 C. 

Proo/. Let No, N{, . .. be the initial sets of universal and step clauses in each iteration. We 

now show the statement of the lemma by induction on i. 

For i = 1, let C ~ 0.1 E M2 be a terminating step clause. Additionally, let true ~ 

0(-,C1 V L(d)), ... , true ~ O(-,Cn V L(cl
)) for n ~ 1 be all the loop search step clauses 

from the set N2 that occur in the derivation of the step clause C ~ 0.1. Then, as 

N{ = U' u LT(S') u {true ~ OL(c')} and true ~ OL(d) $8 true ~ O(-,Ci V L(cl )) 

for every i, 1 $ i $ n, it follows from Lemma 4.2.22 that there exists a terminating step 

clause D ~ 0.1 E M; with D $8 C. We still have to note that there cannot be a clause 

C E Res~b(U'ULT(S')) which subsumes one of the clauses that participates in the derivation 

of the terminating step clause D ~ 0.1 and leads to the derivation of a clause V' with 

V' <8 D ~ 0.1 as this would imply that C ~ 0.1 ¢ M~+ 1. 

If i > 1, let C ~ 0.1 E M~+ 1 be a tenninating step clause. Furthermore, let true ~ 

0(-'C1 V L(cl )), ... , true ~ o (-,Cn V L(c')) for n ~ 1 be all the loop search step clauses from 

the set N!+1 that occur in the derivation of the step clause C ~ 0.1. Then, by Lemma 4.3.4 

there exist variable renamings 0), ... , On such that C 10 1 ~ 0.1, ... , Cnon ~ 0.1 E M~. 

It follows from the induction hypothesis that there are terminating step clauses Dl ~ 

0.1, ... , Dn ~ 0.1 E M~_1 such that Di $s Ci for every i, 1 $ i $ n. By Lemma 4.3.4 
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there exist variable renamings 0"1, ... ,O"~ such that true::::} O( ...,D1 0"1 v L( d», ... , true ::::} 

O(...,DnO"~ v L(d» EN;' Hence, as true::::} O(""DiO"~ V L(d» :$ .. true::::} O(""Ci V L(d» 

holds for every i, 1 :$ i :$ n, we obtain from Lemma 4.2.22 that there exists a terminating 

step clause D ::::} 01. E M~ with D :$., C. Again, we have to note that there cannot be a 

clause C E Res~b(U' U LT(S'» that subsumes one of the clauses that participates in the 

derivation of the terminating step clause D ::::} 01. and leads to the derivation of a clause 'V' 

with 'V' < .. D ::::} 01. as this would imply that C::::} 01. ¢ M~+l' 0 

The following three lemmata establish that the Subsumption-Restricted-FG-BFS algo

rithm only requires finitely many iterations when it is applied on any c1ausified monodic 

temporal problem. 

Corollary 4.3.6. Let P' = (U', I', S', £) be a clausified monodic temporal problem. Addi

tionally, let Mil, M 1, . .. be the sets of terminating step clauses constructed as in a run 

of the Subsumption-Restricted-FG-BFS algorithm applied on the temporal problem P' for 

an eventuality OL(x) E £ (without considering potential derivations of the empty clause). 

Finally, let for all i, 1 :$ i :$ n, M~' ~ T(P) be the representatives of the equivalence classes 

w. r. t. the equivalence relation = X that correspond to the terminating step clauses contained 

in the set M~. 

Then it holds for all i ~ 1 that: 

Proof. Follows from Lemma 4.3.5. o 

Lemma 4.3.7. Let P' = (U', I', S', £) be a clausified monodic temporal problem and let 

OL(x) E £ be an eventuality. Additionally, letMo,Mi,.·· be the sets of terminating step 

clauses constructed as in a run of the Subsumption-Restricted-FG-BFS algorithm applied on 

the temporal problem P' for the eventuality 0 L( x) E £. 

Then there exists an index i ~ 1 with either M ~ = 0 or 0 f:. M~ = X M:+ 1 . 

Proof. Follows from Corollary 4.3.6 and from the fact that the set T(P') is finite. 0 

Corollary 4.3.8. Let p= (U,I,S,£) be a monodic temporal problem and let OL(x) E £ 

be an eventuality clause. Then the Subsumption-Restricted-FG-BFS algorithm applied on 

the problem P for the eventuality 0 L( x) will rt:',QUire only finitely many iterations. 

The subsequent proposition still establishes a basic result about the terminating step 

clauses constructed in an iteration of the algorithm. 

Lemma 4.3.9. Let P' = (U', I', S', £) be a clausified monodic temporal problem and let 

OL(x) E £ be an eventuality. Additionally, let M o,M1,.·· be the sets of terminating step 

clauses constructed as in a run of the Subsumption-Restricted-FG-BFS algorithm applied 

on the temporal problem P' for the eventuality OL(x) E £ (without considering potential 

derivations of the empty clause). 
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Then it holds for every i E N and for every step clause D ::::} 0.1 E M~ tlUJt there does 

not exist a step clause C ::::} 0.1 E M~ with C <. D. 

Proof. Follows immediately from the construction of the different clause sets M~ as subsumed 

clauses are removed. 0 

The next four lemmata are crucial for proving Lemmata 4.3.15 and 4.3.18. They show 

that the loop condition, i.e. the logical equivalence of the formulae ~(x) and R;+l(X) 

computed in two subsequent iterations, is in fact equivalent to the equality of the sets 

containing the minimal terminating step clauses with respect to the subsumption relation 58 
constructed in the iterations i and i + 1. 

Lemma 4.3.10. Let p' = (U',I', S',£) be a clausified monodic temporal problem. Addition

ally, let C ::::} 0.1 and D ::::} 0.1 be two terminating step clauses derived by subsumption

compatible ordered fine-grained resolution with selection from P' U LT(S) u Cls( true ::::} 

O~(cl» such tlUJt C 5. D. 

Then it holds that the formula 'ix( (3D){ d ........ x} ::::} (3C){ d ........ x}) is valid. 

Proof. First of all, let D == A"Evar(D) A';';1 P!(y) 1\ A~!1 Qj(Cj) 1\ A~!1 Rj(cl
) 1\ A~!, qj, 

where c" ... , Cn ) are constants such that {Cl,' .. , Cn ) } n { cl
} = 0 and ql, ... , qn 3 are nullary 

predicate symbols. Additionally, let a be the substitution with Ca ~ D. Hence, we have 

" m~ 

C== /\ /\ P!(y) 1\ 1\ 1\ PJ(y) 1\ /\ Qj(Cj) 
"E var(C)\dom(u) jE'L~ "Evar(C)ndom(u)j=' jE'L1 

1\ /\ R j ( cl
) 1\ /\ qj 

jE'L2 jE'L3 

with I" ~ {l, ... ,m,,} for every variable y E var(C) \dom(a), II ~ {l, ... ,nt}, I2 ~ 

{ 1, ... , n2} and I3 ~ {I, ... , n3}' 

Moreover, let v.n = (V, I) be a first-order interpretation over the signature of the 

formulae C and D. Additionally, let a: X -+ V be a variable assignment. We also assume 

that v.n pCl (3D){ cl ........ x} holds. 

We can thus infer that v.n pO 3y AjE'L~ PJ (y) for every variable y E var( C) \ dom( a), 

v.n pCl Qj(Cj) for every j E II, v.n I=CI Rj(x) for every j E I2 and v.n pCl qj for every j E I 3 . 

Finally, for a variable y E var(C) n dom(a) we distinguish between the following cases. 

For a(y) = z E X, it holds that v.n pCl 3zA';:1 Pl(z), which implies that v.n pCl 
" m' 

3y A7.;, PJ(y). If a(y) = cl , then we have v.n pCl Aj.;, PJ(x), from which it follows that 

v.n pCl 3y A;'], PJ(y). For a(y) = c and c # cl
, we obtain v.n pO A7i, PJ(c), from which 

mil _ 

we can infer that v.n pO 3y Aj .; 1 PJ (y). 
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We can hence conclude that: 

rot FCI 1\ (3Y 1\ PJ(Y)) /\ 1\ (3Y A PJ(y)) 
yEvar(C)\dom(<7) jETv yEvar(C)ndom(<7) j=1 

/\ 1\ Qj(Cj) /\ 1\ Rj(x) /\ 1\ qj 
JET. jET2 JETs 

And finally, we can infer that rot FCI (3C){ d 1--+ X} holds. o 

Definition 4.3.11. For two first-order clauses C and V, we write C 1-, V if and only the 

clause V results from the clause C through an arbitrary factoring inference on a pair of 

positive or negative literals. The reflexive and transitive closure of the relation 1-, will be 

denoted by I-j . 

Lemma 4.3.12. Let C ~ 01. and Dl ~ 01., ... , Dn ~ 01. be terminating step clauses 

derived by subsumption-compatible ordered fine-grained resolution with selection from P U 

LT(S) U Cls(true ~ 0~1(d)) U Cls(true ~ 0~2(d)). We also assume that the formula 

n 

Vx((3C){cl ...... x} ~ V (3Dj ){cl l--+ x}) 
j=1 

is valid. Then there exists an index j with 1 :5 j :5 n and a negative clause V such that 

Vj I-j V and V :58 -,C. 

Proof Let F:= Vx((3C){d 1--+ x} ~ V;=1 (3Dj ){d 1--+ x}), and let 

mil nl n2 ns 

C = 1\ 1\ PJ(y) /\ 1\ Qj(Cj) /\ 1\ Rj(cl
) /\ 1\ qj, 

yEvar(C)j=1 j=1 j=1 j=1 

where C1, .. " Cn! are constants such that {Cl, ... , Cn!} n {d} = 0 and q1,···, qns are 

nullary predicate symbols. The clausification of the fonnula -,F == 3x( (3C) {d 1--+ x} /\ 

A; = 1 (V-,D j) {d 1--+ x}) yields the following set of clauses N: 

mv n! n2 n3 

N = U U{PJ(skyH U U{Qj(Cj)} U U{Rj(skH u U{qj} 
yEvar(C)j=1 j=1 j=1 j=1 

n 

U U{-,Dj{d 1--+ sk}} 
j=1 

where {sk} U {sky lyE var( C)} are fresh Skolem constants. As the formula -,F is 

unsatisfiable, it follows from refutational completeness of (regular) resolution that there 

exists a derivation R of the empty clause from the clause set N. Additionally, as the 

clauses -,Dj {d 1--+ sk} for 1 :5 j :5 n only contain negative literals, we can observe that the 

derivation R essentially consists in variable-free unit clauses resulting from the clausification 

of the formula (3C){ d 1--+ sk} being resolved together with a single clause -,Dj {d 1--+ sk} 

for a j, 1 :5 j :5 n. 
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Let a denote the accumulation of the different substitutions used in the derivation 'R2. 
Then, the substitution a maps every variable from its domain into a constant. We now 

exhaustively apply the (negative) factoring rule on every pair of literals ...,P(x) and ...,P(y) 

with a(x) = a(y) or -,P(x) and ...,P(c) with a(x) = c (for arbitrary predicate symbols P 

and constants c). After performing some additional elimination of duplicate literals we 

obtain a negative clause V such that Dj r-j V holds. We can also infer that there exists 

a new refutation R' which involves the clause V and which results from the derivation 'R. 
Additionally, as every literal in the clause Va occurs at most once and as variables occurring 

in the clause V are consistently replaced by the same constants in the derivation 'R', which 

implies that every unit clause is used at most once, it is easy to see that there exists a 

substitution a' with Va' ~ ...,C, i.e. V S;s ...,C holds. o 

Lemma 4.3.13. Let P' = (U', I', S', £) be a clausified monodic temporal problem. Fur

thermore, let C 1 ~ 0.1, ... ,Cm ~ 0.1 and Dl ~ 0.1,· .. ,Dn => 0.1 be terminating 

step clauses derived by subsumption-compatible ordered fine-gmined resolution with selection 

from P' U LT(S) u Cls(true ~ O~dd)) U Cls(true => 0~2(d)). We also assume that the 

formula 
m n 

VX(VC3Ci){C
I ~ x} ~ V (3Dj ){cl ~ x}) 

i= 1 j=1 

'is valid. Then it holds that for every i, 1 S; i S; m there exists an index j, 1 S; j S; n and a 

clause V with Dj r-i V and V S;s ...,Ci . 

Proof. First of all, we can infer that the following formula is valid as well: 

m n 

VX(/\ [(3Cd{cl ~ x} => V (3D j ){cl ~ x}]) 
i=1 j=1 

Consequently, we obtain that the subsequent formula is also valid: 

m n 

/\ Vx(( 3Cd{cl ~ x} ~ V (3Dj ){cl ~ x}) 
i= 1 j= 1 

We can conclude that for every i, 1 S; i S; m the formula 

n 

Vx((3Ci ){C
I ~ x} ~ V (3Dj ){cl ~ x}) 

j=1 

is valid and thus, by Lemma 4.3.12 for every i, 1 S; i S; m, there exists an index j, 1 S; j S; n, 

and a clause V with Dj r-j V and V S;s ...,Ci . 0 

Lemma 4.3.14. Let M and M' be sets of terminating step clauses derived by subsumption

compatible ordered fine-grained resolution with selection from P U LT(S) U Cls( true ~ 

O~l(d))UCls(true ~ 0~2(d)). We also assume that the sets M and M' are closed under 

2 As the unit clauses do not contain free variables, there is no need to rename variables. 
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the application of the (unordered) factoring rule. Finally, let N = {Cl ~ OJ., ... , Cm ~ 

OJ.} ~ M and N' = {Dl ~ OJ., ... , Dn ~ OJ.} ~ M' be the sets of all the minimal step 

clauses tvith respect to the relation $ .. contained in the sets M and M', respectively. 

Then the follotving statements are equivalent: 

(i) N=xN' 

(ii) the formula 'Vx(V:1 (3Ci ){d 1-+ x} {:::} V;=l (3Dj ){d 1-+ x}) is valid 

(iii) 'V i, 1 $ i $ m 3j, 1 $ j $ n: D j $ .. Ci and 'V j, 1 $ i $ n 3 i, 1 $ j $ m: Ci $ .. Dj 

Proof The implication (i) ~ (ii) is obvious. By Lemma 4.3.13 and by closedness under 

factoring inferences the implication (ii) ~ (iii) holds. For the remaining implication 

(iii) ~ (i) let C ~ OJ. EN. It then follows from the assumptions that there exists a step 

clause D ~ OJ. EN' such that D :58 C. We obtain again from the assumptions that there 

exists a step clause C' ~ 0 EN with C' $ .. D. Thus, we can conclude that there exists a 

variable renaming 0' with CO' = D and CO' ~ OJ. EN' as otherwise there would exist a 

step clause C' => OJ. E N ~ M with C' <8 C, which would contradict the minimality of 

the step clause C ~ OJ.. 
The inclusion N' ~x N can be shown analogously. o 

We now show that the sets of minimal clauses with respect to the subsumption relation 

remain unchanged in subsequent iterations (up to vm-iable names) once the loop search 

condition has been fulfilled and the algorithm has been kept iterating. 

Lemma 4.3.15. Let P = (U',I',S',£) be a clausified monodic temporal problem. Addi

tionally, let Mo, M1, . .. be the sets of terminating step clauses constructed as in a run 

of the Subsumption-Restricted-FG-BFS algorithm applied on the temporal problem P' for 

an eventuality 0 L (x) E £ (without considering potential derivations of the empty clause). 

Finally, let i E N be an iteration index such that the formula 'Vx(V C*O.lEM~ (3C){ d 1-+ 

x} {:::} V D*O.lEM:+
1 
(3D){ d 1-+ x}) is valid. 

Then it holds for every j ~ 0 that M: = X M:+ j . 

Proof First of all, let No, Nt, .. , be the initial sets of universal and step clauses in each 

iteration and let To, T{, ... be the sets of all the terminating step clauses that can be 

derived from the sets No,N{, . .. , respectively. Then, by Lemma 4.3.14 it follows from the 

validity of the formula 'Vx(V C*O.lEM/3CH d 1-+ x} {:::} V D*O.lEM:+
1 
(3DH d 1-+ x}) that 

M: =x M:+ 1· 

We now show by induction on j that M:+ j = x M:+J+ 1 for every j ~ O. For j = 0 there 

remains nothing to be shown. If j > 0, then it follows from the induction hypothesis that 

M:+j - l =x M~+j' 
Let C => OJ. E M:+ j and let true => O(-,Dl V L(d)), ... , true ~ O(-,Dn V L(d)) be 

all the newly added step clauses to the set N/+ j which are involved in the derivation of the 

terminating step clause C => OJ.. By Lemma 4.3.4, there exist variable renamings 0'1, ..• ,O'n 
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such that DkOk ~ OJ. E M~+j-l for every k, 15k 5 n. Thus, it follows from the induction 

hypothesis that there exist variable renamings 01, ... , o~ with Dko~ ~ OJ. E M~+j for 

every k, 15k 5 TI. Consequently, by Lemma 4.3.4 there exist variables renamings or, ... , o~ 
such that true ~ O( ...,Dkok V L(cl

)) E N:+j +1 for every k, 15k 5 TI. It is hence easy to 

see that there exists a variable renaming a with Co ~ OJ. E ~~ j+ l' If we now assume that 

the step clause Co :::} OJ. E ~~j+l is not minimal in the set ~~j+l with respect to the 

relation 58' then let G' :::} OJ. E ~~j+ 1 be a minimal terminating step clause with C' <8 Co 

(there cannot be a universal clause V E Ressub(U) with V <8 Co :::} OJ. as this would 

imply that C:::} OJ. ¢ M~+j)' Let true:::} 0(...,E1 V L(cl )), ... , true ~ O(...,Em V L(cl )) 

be all the newly added step clauses to the set N:+j+ 1 which are involved in the derivation of 

the terminating step clause C' ~ OJ.. Thus, it follows again from Lemma 4.3.4 that there 

are variable renamings 01"", Om such that E101 :::} OJ.,· .. , EmOm :::} OJ. E M~+j = X 

M~+j-l' Hence, by Lemma 4.3.4 again there exist variable renamings 01, ... ,0:'" with 

true ~ 0(...,E101 V L(cl )), ... , true:::} O(...,EmO:'" V L(cl )) E N:+ j . We can infer that there 

is a variable renaming 0 with C'O ~ OJ. E ~~j and C'O <8 C, which contradicts the 

minimality of the step clause C ~ OJ.. We can conclude that Co:::} OJ. E M~+j+l' 

The inclusion M~+j+ 1 ~x M~+j can be shown analogously using M~+j ~x M~+j+l' 0 

We now prove a lemma that links together two runs of the Subsumption-Restricted-FG

BFS algorithm for the same eventuality OL(x) on two sets of universal clauses U and U 
with Res~b(U) 5s U \ taut(U). 

Lemma 4.3.16. Let P= (U,I,S,£) be a clausijied monodic temporal problem. Addition

ally, let Mo,M1, ... be the sets of terminating step clauses constructed as in a run of the 

Subsumpti.on-Rcstmted-FG-BFS algorithm applied on the temporal problem P for an eventu

ality OL(x) E f (without considering potential derivations of the empty clause). Furthermore, 

let P= (U,I,S,£) be a clausified monodic temporal problem with Res~b(U) 58 U\ taut(U) 

and let Mo, M 1, . .. be the sets of terminating step clauses constructed as in a run of 

the Subsumption-Restricted-FG-BFS algorithm applied on the temporal problem P for the 

eventuality OL(x) E f (without considering potential derivati.ons of the empty clause). 

Then it holds JOT every i that M~ u Res~b(U U S) 58 M~. 

Proof. By induction on i using Lemmata 4.2.23 and 4.3.4. o 

Before we can prove Lemma 4.3.18, we have to establish the following result. It states 

that a set of universal clauses U logically implies the formula V'x...,( 3D){ d 1-+ x}, where D is 

the left-hand side of the terminating step clause D:::} OJ. constructed by the loop search 

algorithm, if a clause C with C 58 -,D can be derived by resolution inferences from clauses 

contained in U. 

Lemma 4.3.17. Let P = (U', I', S', f) be a clausified monodic temporal problem. Addition

ally, let C E ReSg~b(U) be a universal clause and D = 1\;= 1 L j , where for every j, 1 5 j 5 TI, 

Lj is an at most monadic literal with const(Lj ) ~ const(P) U {d}, and such that C 58 -,D. 
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Then it holds thatU F 'v'x-,(3D){cl ...... x}. 

Proo/. First of all, it follows from the definition of the subsumption relation :5" on temporal 

clauses that there exists a substitution a with Ca ~ -,D. As cl ¢ const(P'), it is easy to see 

that there also exists a substitution a' with Ca' ~ -,D{ cl ...... x} for a fresh variable x, which 

implies that the formula YC ::} Y( -,D{ cl ...... x}) is valid. We can thus conclude that the 

formula YC ::} 'v'x-,(3D){ d ...... x}) is also valid, and it follows from soundness of sUbsumption

compatible ordered fine-grained resolution with selection that U F 'v'x-,(3D){d ...... x}. 0 

Finally, we show that for a loop formula V7=1 Aj(x) w.r.t. a satisfiable set of universal 

clauses U and an eventuality OL(x), where Prenex(Aj(x» = (3D j ){d ...... x} for 1 :5 j :5 m, 

the Subsumption-Restricted-FG-BFS algorithm applied on the clausified monodic temporal 

problem (saturated under the fine-grained step resolution inference rules of subsumption

compatible ordered fine-grained resolution with selection) involving the set U for the 

eventuality OL(x) computes a formula R(x) = V:=1(3Ci ){c' ...... x}, n ~ 0, such that for 

every j E {I, ... , m} there either exists a universal clause C E U with C :5" -,Dj or there 

exists i E {I, ... , n} such that Ci :58 Dj . 

Lemma 4.3.18. Let P = (U,I,S,e) be a clausified monodic temporal problem saturated 

under the fine-grained step resolution inference rules of J~tsuh such that the set U is 

satisfiable, let 'v'x(Aj(x) ::} OBj(x» for j E {I, ... ,m} and m ~ I be full merged step 

clauses with Prenex(Aj(x» = (3Dj ){d ...... x} for every j E {I, ... , m} and let OL(x) E e 

be an eventuality clause such that the loop side conditions 'v'x(U A Bj(x) ::} -,L(x» and 

'v'x(U A Bj(x) ::} V7=l Aj(x» are valid for all j, 1 :5 j :5 m. 

Then the Subsumption-Restricted-BFS algorithm applied on the temporal problem P for 

the eventuality OL(x) returns a formula R(x) = V~=l (3Ci ){d ...... x}, n ~ 0, such that for 

every j E {I, ... , m} there either exists a universal clause C E U with C :5" -,Dj or there 

exists i E {I, ... , n} such that Ci :5s D j • 

Proo/. First of all, for every full merged step clause 'v'x(Aj(x) ::} OBj(x», j E {I, ... , m}, 

such that Prenex(Aj(x» = (3Dj ){d ...... x} and such that there exists a universal clause C E 

U with C :5" -,Dj, it follows from Lemma 4.3.17 that U F 'v'x-,Aj(x). We can thus infer that 

for every j' E {I, ... , m} with j' f j, the formula 'v'x(U A Bj,(x) ::} Vj"E{l, ... ,m}\{j} Aj"(x» 

is valid. Consequently, we may assume without loss of generality that for every full merged 

step clause 'v'x(Aj(x) ::} OBj(x», j E {I, ... , m}, with Prenex(Aj(x» = (3Dj ){d ...... x} 

there does not exist a universal clause C E U with C :58 -,Dj . 

Now, let Mo, M I, ... , M, be the sequence of sets and Ro(x), Rl(X), ... , R,(x) be the 

sequence of formulae constructed by a run of the Subsumption-Restricted-BFS algorithm 

applied on the temporal problem P for the eventuality OL(x). We show by induction 

on i with i ~ 1 that for all 'v'x(A.7(x) ::} OBj(x», j E {I, ... , m}, with Prenex(Aj(x» = 
(3Dj ){d ...... x} there exists a terminating step clause C; ::} 0.1 E M~ such that C; :5" Dj . 

For i = 1, we first of all observe for all j, 1:5 j :5 m, that the formula 'r/x(U A Bj(x) ::} 

-,L(x» is valid. By Lemma 3.4.40 it follows for every j, 1 :5 j :5 m, that there exists a 
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derivation of a terminating step clause E ~ 0.1 from P U LT(S) U Cls(true ~ OL(cl )) 

by ordered fine-grained resolution with selection without the clause conversion rule such 

that E :Ss Dj . Then, by Lemma 4.2.23 there exists a clause C E ResSub(U U S U LT(S) U 

Cls(true ~ OL(d)) with C :Ss E ~ O.l. If we assume that there exists a clause C with 

C :Ss .1, i.e. C = .1, then it would follow that C = .1 E ResSub(U) = U as in saturations 

computed by the Subsumption-Restricted FG-BFS algorithm universal clauses can only be 

derived through universal clauses. Consequently, it would hold that the set U is unsatisfiable, 

which contradicts our assumptions. We can thus infer from our assumptions that there 

exists a terminating step clause CJ ~ 0.1 E Ml with CJ S;s E S;s Dj . 

If i > 1, then it follows from the induction hypothesis for all Vx(Aj(x) ~ OBj(x)), 

j E {I, ... , m }, with Prenex (A( x)) = (3D j){ cl 
1-+ x} that there exists a terminating step 

clause C;-l ~ 0.1 E M:- 1 such that C;-l :Ss Dj . By Lemma 4.3.10 we can then infer 

that the formulae Vx(Aj(x) ~ (3C;~I){d 1-+ x})) and Vx(Aj(x) ~ 14~l(X)) are valid for 

every j, 1 :s j :s m. We obtain for all j, 1 :s j :s m, from the validity of the formula 

Vx(U 1\ Bj(x) ~ V;=l Aj(x)) that the formula Vx(U 1\ Bj(x) ~ (Ri~l(X) 1\ -,L(x))) is also 

valid. By Lemma 3.4.40 it follows again for every j, 1 :s j :s m, that there exists a derivation 

of a terminating step clause E ~ 0.1 from P U LT(S) U Cls(true ~ O(-,Ri(cl ) V L(d))) 

by ordered fine-grained resolution with selection without the clause conversion rule such 

that E :S. Dj . Similarly, to the previous case one can infer that there exists a terminating 

step clause C; ~ 0.1 E M: with q :Sa E :Sa Dj . 0 

4.3.3 Refutational Completeness 

In this section we prove the refutational completeness of subsumption-compatible ordered 

fine-grained resolution with selection where applications of the eventuality resolution rules 

are restricted to loops found by the Subsumption-Restricted-FG-BFS algorithm. The proof 

of refutational completeness is based on simulating a J~;;- -derivation in J~t::s.J>' 

First, we analyse the formulae computed by the Restricted-FG-BFS and Subsumption

Restricted-FG-BFS algorithms applied for the same eventuality OL(x) on two clausified 

temporal problems P = (U,i,S,E) and P = (U,I,S,E), respectively, where I :Sa i\taut(i), 

U :Ss U \ taut(U), and S :Ss S \ taut(S). 

Lemma 4.3.19. Let P = (U, i, S, E) be a clausified monodic tempoml problem. Additionally, 

let H(x) of false be the formula computed by the Restricted-FC-BFS algorithm applied on 

the temporal problem P for an eventuality OL(x) E E. Furthermore, let P = (U,I,S,E) 

be a clausified monodic temporal problem saturated under the fine-grained step resolution 

inference rules of subsumption-compatible ordered fine-gmined resolution with selection and 

such that 1 :SO! i \ taut(i), U :SO! U \ taut(U), S :Sa S \ taut(S). Finally, let H(x) be the 

loop formula computed constructed by the Subsumption-Restricted-FC-BFS algorithm applied 

on the tempoml problem P for the eventuality 0 L( x) E E. 

Then it holds that Cls(Vx-,H(x)) uU:Sa CIs(Vx-,H(x)). 
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Proof First of all, if U ~ 'ltx-,L(x), we can infer that H(x) = true. Furthermore, we obtain 

Cls('ltx-,H(x» = {1.} $5 Cls('ltx-,H(x». 

Otherwise, U 11 'ltx-,L(x) holds. We can assume that the set U is satisfiable and that 

H(x) =I- true. If H(x) = true, we would have U ~ U ~ 'ltx-,L(x) by Lemma 4.2.7. Thus, 

let H(x) = V:l(3Dj){cl 
1-+ x} and H(x) = V~=1(3Ci){d 1-+ x}. Then it follows from 

Lemma 4.3.18 for all j E {I, ... , m} that there either exists a universal clause C E U 

with C $5 -,Dj or there exists i E {I, ... , n} such that Ci $ .. Dj . As d ¢ const(P) U 

const(P) , Cls('ltx-,iI(x» = {-,Ddd 1-+ z}, ... ,-,Dm{d 1-+ z}} and Cls('ltx-,H(x» = 
{-,C1 {d 1-+ y}, ... ,-,Cn {d 1-+ y}}, where y, z are fresh variables, it is easy to see that 

for all j E {I, ... ,m} there either exists a universal clause C E U with C $" -,Dj { d 1-+ z} 

or there exists i E {I, ... ,n} such that -,Ci { d 1-+ y} $ .. -,Dj { d 1-+ z}. 0 

We can now prove the refutational completeness of subsumption-compatible ordered 

fine-grained resolution with selection where applications of the eventuality resolution rules 

are restricted to loop formulae found by the Subsumption-Restricted-FG-BFS algorithm. 

Theorem 4.3.20. Let P be a monodic temporal problem and let pc be its constant-flooded 

form. Let ~ be an admissible atom ordering and S be a subsumption compatible selection 

function. Then P is un satisfiable if and only if there exists a J:t.suJ. -refutation of Cls( PC) 

with applications of the eventuality resolution rule restricted to loop formulae found by the 

Subsumption-Restricted-FG-BFS algorithm. Moreover,. Pis unsatisfiable if and only if any 

fair J~t.suJ. -derivation with applications of the eventuality resolution rules restricted to loop 

formulae f01Jnd by the Subsumption-Restricted-FG-BFS algorithm is a refutation of Cls( PC). 

Proof Soundness of subsumption-compatible ordered fine-grained resolution with selection 

follows from soundness of ordered fine-grained resolution with selection and soundness of 

the inference rules for arbitrary factoring in left-hand sides of terminating step clauses and 

for arbitrary factoring in (at most) monadic negative universal clauses. 

We may now assume that the temporal problem P is unsatisfiable, which implies that 

the constant-flooded and clausified temporal problem Cls(PC) is also unsatisfiable. It then 

follows from Theorem 3.4.46 that there exists a refutation a = C1, C2, ... , Cm = 1. by J~t 
from Cls( PC). 

In the following we show by induction on the length of the derivation a that for every 

clause C, (1 $ i $ m) which is not a tautology that there exists a clause C, E .1 which can 

be derived by subsumption-compatible ordered fine-grained resolution with selection from 

the temporal problem Cls(PC) such that Ct $ .. Ci , which implies that Cm = .1. 

If a clause Ci (1 $ i $ m) is contained in the temporal problem Cls(PC) but not a 

tautology, then we simply define q = Ct. 
In the case where a non-tautological clause Ci (1 $ i $ m) is not contained in the 

temporal problem CIs(PC) and has not been derived by the eventuality resolution rules, 

we consider the following cases. First of all, we can infer that not both parents C1,. and 

C2,i of the clause Ci in the derivation a are tautologies as this would imply that Ct is a 
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tautology by Lemmata 4.2.9 and 4.2.10. If one of them is a tautology, i.e. without loss of 

generality the clause C2•i is not a tautology, we obtain that C2 •i ~8 Ci holds by Lemma 4.2.9. 

Thus, by using the induction hypothesis we obtain a clause C2,; derived by subsumption

compatible ordered fine-grained resolution with selection from the temporal problem Cls(PC) 

such that C2•i ~8 C2.; ~8 Ci holds. Otherwise, neither the clause C1,; nor the clause C2,i 

are tautologies and we can derive a clause C; with C; ~8 Ci by sUbsumption-compatible 

ordered fine-grained resolution with selection from the temporal problem Cls(PC) by using 

the induction hypothesis and Lemma 4.2.23. 

Finally, if a clause Ci (1 ~ i ~ m) is not contained in the temporal problem Cls(PC) and 

has been derived by one of the eventuality resolution rules applied on a loop formula H(x), we 

first of all compute the saturation under the fine-grained step resolution rules of sUbsumption

compatible ordered fine-grained resolution with selection. If we obtain a contradiction, then 

we can extend the derivation D. accordingly and define Ci = 1.. Otherwise, we can first of 

all infer that H(x) i false (as this would imply that Ci is a tautology), and we add all the 

clauses computed during the saturation to the derivation D.. We finally obtain the required 

clause Ci with C i ~s C; by applying Lemma 4.3.19. 0 

4.4 Summary 

The aim of this chapter was to provide a formal analysis of combining redundancy elimination 

with ordered fine-grained resolution with selection. 

First, we focused on redundancy elimination in combination with the resolution-based 

inference rules of ordered fine-grained resolution with selection. We presented syntactic 

criteria for identifying tautologies among temporal clauses and we defined a subsumption 

relation on temporal clauses. We then described how the calculus had to be extended 

in order to remain compatible with the removal of subsumed clauses, resulting in the 

subsumption-compatible ordered fine-grained resolution with selection calculus. We also 

proved the subsumption lemmata for the subsumption-compatible calculus. 

In the second part of the chapter we analysed the problem of combining redundancy 

elimination with the loop search process. We introduced a resolution-based loop search 

algorithm called Subsumption-Restricted-FG-BFS which eliminates subsumed clauses and 

tautologies during loop search computations. After having proved some of its properties, 

we showed the refutational completeness of sUbsumption-compatible ordered fine-grained 

resolution with selection where applications of the eventuality resolution rules are restricted 

to loops found by the Subsumption-Restricted-FG-BFS algorithm. 





Chapter 5 

Fair Derivations in Monodic Temporal 

Reasoning 

5.1 Introduction 

Having focused on theoretical aspects of the Jit - and Jic':sub -calculi until now, this chapter 

is more geared towards analysing the behaviour of subsumption-compatible ordered fine

grained resolution with selection in practice. It has turned out that some obstacles can 

be encountered when it comes to constructing fair derivations for the J;;'-sub-calculus in 

practice, i.e. in an automated theorem prover, for example. 

Broadly speaking, the inference rules of (subsumption-compatible) ordered fine-grained 

resolution with selection can be classified into two different categories. The majority of 

the rules are based on standard first-order resolution between different types of temporal 

clauses. The remaining inference rules reflect the induction principle that holds for monodic 

temporal logic over a flow of time isomorphic to the natural numbers. The applicability 

of the rules in this second category is only semi-decidable. Consequently, fair derivations, 

i.e. derivations in which every non-redundant clause that is derivable from a given clause 

set is eventually derived, cannot be guaranteed in practice as the applicability check for an 

inference rule of the second category might not terminate. But as the ability to construct 

fair derivations is an essential requirement for maintaining the refutational completeness of 

an automated theorem prover, we have to look for ways t.o overcome the fairness problems 

of the J;;'-Sub-calculus if we want to develop a fair prover for monodic first-order t.emporal 

logic which is based on J;;,-Sub' 

In this chapter we therefore present an inference procedure t.hat. can const.ruct fair 

derivations for reasoning in monodic first-order temporal logic, and we prove its refutational 

completeness. The new inference mechanism is based on sUbsumption-compat.ible ordered 

fine-grained resolution with selection. We also show that the new inference mechanism can 

also be used as a decision procedure for some specific classes of temporal problems. 

We proceed as follows: after having illustrated the fairness problems related to the 

J;c':sub-calculus in the beginning of Section 5.2, we introduce the new inference procedure 
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which can guarantee fair derivations in practice. We conclude the chapter by proving the 

refutational completeness of the fair inference mechanism in Section 5.3 and we show that 

it can be used as a decision procedure for some specific monodic temporal problems in 

Section 5.4. 

5.2 Constructing Fair Derivations 

We start by examining the fairness problems of the J:C;:Suh -calculus. 

5.2.1 Fairness Problems 

As stated in Theorem 4.3.20, any fair derivation by subsumption-compatible ordered fine

grained resolution with selection from an unsatisfiable clausified monodic temporal problem 

will eventually include a monodic temporal problem containing the empty clause. However, 

due to the presence of the ground and non-ground eventuality resolution rules in our calculus, 

constructing a fair derivation is a non-trivial problem. The validity of the side conditions 

of loop formulae, i.e. Vx(U A Bi(X) => -.L(x)) and Vx(U /I. Bi(X) => V;=l Aj(x)) in the non

ground case, is only semi-decidable. Thus, the construction of a derivation could potentially 

'get stuck' while checking these side conditions. For example, if we clausify the unsatisfiable 

problem 

p = ({P(c, c), 

Vx3yVvVw(Q(y, x) A (P(x, v) => P(y, w)))}, 

{R(c)}, 

{R(x) => OR(x), R(x) => O-.L(x)}, 

{OL(x)}) 

in DSNF, then we obtain the following clausified temporal problem: 

Cls(P) = ({P(c,c),Q(f(x),x), 

-.P(x, v) V P(f(x), w)}, 

{R(c)}, 

{R(x) => OR(x), R(x) => O-.L(x), 

R(c) => OR(c), R(c) => O-.L(c)}, 

{OL(x)}), 

where f is a unary function symbol introduced during Skolemization. But the temporal 

problem Cls(P) possesses an infinite saturation on universal clauses as universal unit clauses 

of the form p(fk(x), v) can be derived for any kEN. Thus, an attempt at detennining 

whether the formula Vx(U A R(x) => -.L(x)) is valid, where U is the set of universal clauses 

and R(x) the right-hand side of the step clause R(x) => OR(x), might not terminate. 
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Function Subsumption-Restricted-FG-BFS 

Input: 

Output: 

Method: 

A set of universal clauses U and a set of step clauses S, saturated under 
the fine-grained step resolution inference rules of sUbsumption-compatible 
ordered fine-grained resolution with selection, and an eventuality clause 
OL(x) E f. 

A formula R(x) with at most one free variable. 

(1) Let Ro(x) = true; Mo = 0; i = 0 

(2) Let N:+1 = U U LT(S) U {true '* O(-.~(cl) V L(cl ))}. Apply the 
fine-grained step resolution rules of subsumption-compatible ordered 
fine-grained resolution with selection except the clause conversion 
rule to N:+ l' together with the removal of tautological and subsumed 
clauses. If we obtain a contradiction, then return the loop true (in 
this case 'ix-.L(x) is implied by the universal part). 
Otherwise let M~+l = {D j '* OJ..}j=l be the set of all new termi
nating step clauses in the saturation of N:+ 1 . 

(3) If M~+1 = 0, return false; else let ~+1(X) = V;=l(~lDj){d - x} 

(4) If 'iX(Ri(X) '* Ri+l(X)), return Ri+l(X). 

(5) i = i + 1; goto 2. 

Figure 5.1: Breadth-First Search using Subsumption-Compatible Ordered Fine-Grained 
Step Resolution with Selection together with Redundancy Elimination 

One might try to overcome this problem based on the following observation. While 

additional step clauses can be inferred in a derivation, these need not be used as premises 

for the ground and the non-ground eventuality resolution rule. Instead it is sufficient to only 

use step clauses in the original monodic temporal problem for the construction of merged 

derived step clauses and full-merged step clauses. Thus, there is actually a finite and static 

set of potential premises for any application of the ground and the non-ground eventuality 

resolution rule during a derivation. Hypothetically, the validity of the side conditions of 

each of these applications could be checked in parallel, allowing us to proceed with those 

applications where the side conditions hold. In the following we refer to this approach as 

parollel exhaustive loop test. What makes this approach impractical is the fact that while 

the set of premises is static and finite, the set of universal clauses U involved in the side 

conditions of the rules in questions is not. In particular, applications of the clause conversion, 

ground and non-ground eventuality rules may extend U in such a way that a previously 

invalid side condition becomes valid. Thus, each time the set U is extended we have to 

re-check the applicability of the ground and non-ground eventuality resolution rules to each 

potential set of premises. 

The use of the Subsumption-Restricted-FG-BFS algorithm to systematically search for 

(ground) loop formulae does not solve the problem related to the semi-decidability of the 

side conditions used in the eventuality resolution rules. In step (2) of the algorithm we need 

to saturate the set of universal and step clauses N:+ 1 using the fine-grained step resolution 

rules except the clause conversion rule. This saturation process may not terminate even if 
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no loop formula exists for a given eventuality clause OL(x) E E or 01 E E and the set of 

current universal and step clauses. Thus, the Subsumption-Restricted-FG-BFS algorithm 

also cannot guarantee fairness. 

If one tries to solve the fairness problem by delaying the application of the eventuality 

resolution rules as long as possible, then one faces the problem that the saturation process 

under the rules of fine-grained step resolution may not terminate even if the original monodic 

temporal problem is unsatisfiable. Consequently, the strategy of executing the SUbsumption

Restricted-FG-BFS algorithm only after the original temporal problem has been saturated 

under fine-grained resolution may still lead to unfairness. 

5.2.2 The Fair Inference Procedure F 

We can thus see that achieving fairness in derivations is not a trivial task and that it can 

only be accomplished if the two potentially non-terminating types of saturations, which are 

the regular saturation under sUbsumption-compatible ordered fine-grained step resolution 

with selection on one hand, and the saturations required for loop search on the other hand, 

are not executed sequentially. We hence propose a way of combining these two types of 

saturations into one 'global' saturation process. 

The first step towards a procedure which guarantees the construction of a fair derivation is 

based on an idea introduced in [411 for improving the efficiency of loop search in propositional 

linear-time temporal logic. It suggests a minor modification of the Subsumption-Restricted

FG-BFS algorithm. In step (2) of the modified algorithm we now add the clauses which 

result from clausification of the formula chi = Sf+l ::::} O(-.Hi(e) V L(e» to N!H' where 

sfH is a proposition uniquely associated with index i + 1 and the eventuality clause OL(x) 

for which we search for a loop. The proposition Sf+l acts as a marker for these clauses 

which are generated purely as a means to conduct the search. As there are only occurrences 

of sh 1 in left-hand sides of step clauses, the application of inference rules to these clauses 

will 'propagate' the literal sf+ 1 to all clauses we derive from ch l' This also means that 

M~+l can now be defined as the set of all clauses of the form Sf+l /\ Cj ::::} 0.1. While this 

makes the construction of M~+l operationally easier compared to the original version of 

Subsumption-Restricted-FG-BFS, it does not fundamentally mange the algorithm. However, 

this small change allows us to take advantage of the following observations. Within iterations 

of the steps (2)-(5) of the modified algorithm, the clauses in the various sets N!+l are now 

separated by the 'marker' sf+ l' Thus, instead of using different sets N!+ 1 we can use a 

single set T which is simply extended in each iteration of the steps (2)-(5). Furthermore, 

we can keep the set T between separate calls of the modified Subsumption-Restricted-FG

BFS procedure for different eventualities but also between repeated calls of the modified 

Subsumption-Restricted-FG-BFS algorithm for the same eventuality clause OL(x) E E. 

Finally, if we restrict the clause conversion rule so that it cannot be applied to any clause 

containing a 'marker' sf, then there is no reason to separate the clauses in T from those in 

the current monodic temporal problem in clausified form stored by the prover. Figure 5.2 
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Initialization 
(U, I, S, £) ===> AI' 1010 where 

AI' = U U IuS U {P(c l
) :::} OM(cl

) I P(x) :::} OM(x) E S} 

U {s~ :::} OL(cl
) I OL(x) E £} 

Tautology Deletion 
Al'u {C} IPIO ===>AI'IPIO 

Forward Subsumption 
Al'u {C} IPIO ===>AI'IPIO 

Backward Subsumption 
Al'IPu {C} 10 ===>AI'IPIO 
Al'IPIOu {C} ===>AI'IPIO 

Clause Processing 

if C is a tautology 

if some clause in P U 0 subsumes C 

if some clause in AI' properly subsumes C 

Al'u {C} IP 10 ===> Al'IPu {C} 10 if none of the previous rules applies 

Loop Search Contradiction 
01 P U {sf:::} O.1} 10 ===> {.1} I PI 0 U {sf:::} O.1} for some i, L 

Next Loop Search Iteration 
01 P U {sf /\ C :::} O.1} I 0 ===> 

109 

{sf+l :::} O-,C v L(d)} I P IOu {sf /\ C :::} O.1} for some i, Land C -:f. 0 

Clause Conversion 
01 P U {C :::} O.1} 10 ===> {D -,C} I P IOu {C :::} O.1} where no sf E C 

Regular Inference Computation 
01 P U {C} I 0 ===> Al'1 P IOu {C} if none of the previous rule applies and 

where AI' = ResSub(C, O) 

Loop Testing 
o I P I 0 ===> AI' I P I 0 where 

AI' = {DVx-,Hl+1(x) I for all i, L with 1= Vx(Hf(x) <=? Hl+1(x))} 

and Hf(x) := V{(3Cj ){d ---. x} I sf /\ Cj :::} 0.1 E P U O} for all i, L 

Figure 5.2: Fair Inference Procedure F 

depicts the inference procedure F based on these considerations in the presentation style 

of [10]. The inference procedure operates on states (Al'l P I 0) that are constructed from an 

initial temporal problem P = (U, I, S, £) . 

A state (Al'l P I 0) consists of three sets of clauses AI' (the set of new clauses), P (the 

set of clauses that still have to be processed) and 0 (the set of old clauses). The set AI' 
collects the newly-derived clauses and the set 0 contains all the clauses that have already 

been used as premises in inference steps (or can never be used as premises). Finally, the 

set P contains all the clauses that still need to be considered as premises. In the initial state 
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(No 1010) constructed by the 'initialization' rule, the sets P, 0 are empty and the set No 

contains all the clauses contained in a temporal problem P = (U,I, S, £). Additionally, as 

motivated above, all the clauses required for loop search are added to No. Subsequent states 

are obtained by applying one of the other inference rules depicted in Figure 5.2 on a given 

state. 

The rules 'tautology deletion', 'forward subsumption' and 'backward subsumption' 

perform reductions on the clause sets. 'Tautology deletion' removes tautological clauses 

from set of newly-derived clauses N. 'Forward subsumption' and 'backward subsumption' 

eliminate clauses that have been subsumed by other clauses. Finally, the 'clause processing' 

rule is responsible for moving a clause that has survived the previous reduction steps to the 

set P. Once no further reductions are possible, additional clauses can be derived by the 

following inference rules. 

For the 'loop search contradiction' rule note that the presence of sf =* O.L in P indicates 

that we can apply the non-ground eventuality resolution rule, resulting in the conclusion 

OVx-, T, which is contradictory. The empty clause is then added as set N and the clause 

sf =* O.L is moved to the set of old clauses O. If the set P contains a clause sf A C =* O.L 
for some i, Land C =f 0, then such a clause would be part of the set Ni in the SUbsumption

Restricted-FG-BFS procedure, which is used to define the formula HH1(X), which in turn 

is used to define the clauses in M~+1' Here, we directly define the one clause from M:+1 
which derives from sf A C =* O.L and add it as newly-derived clause set. Finally, if a clause 

C =* O.L (without a marker sf) is contained in the set P, then such a clause is a suitable 

premise for the application of the clause conversion rule and we add the universal clause 

O-,C as newly-derived clause set. The clause C =* O.L is moved to the set O. 

In the case where the set P contains a clause C that is not handled by one of the previous 

rules, we compute the set Ressub(C,O), which consists of all the conclusions derivable from 

the clause C with itself and with the clauses in 0 by the step resolution inference rules of 

)5.>- except the clause conversion rule. The computed clauses are then added to the next 
FG.s.J. 

state as set N and the clause C is moved to the set of old clauses O. The remaining rule 

'loop testing' is responsible for checking the loop side condition. First, the formulae Hl 

are computed for all eventuality clauses OL(x) E £ and all indices i used to create some 

marker sf in the set puO. We then check whether the loop condition Vx(Hl(x) <=> Hft1 (x)) 

holds for every i and every L. If so, an application of the non-ground eventuality resolution 

rule is possible. We compute the conclusion of the application and add it to the set N. This 

concludes the description of the fair inference procedure. 

There are three important observations to be made about the 'loop testing' rule. First, 

we can observe that Hl(x) and Hl+1 (x) are monadic first-order formulae. Thus, the validity 

of the loop condition is a decidable problem. Second, in Subsumption-Restricted-FG-BFS, 

in order to establish whether Vx{ Hl( x) <=> Hlt-l (x)) is valid we only need to test whether 

Vx(Hl(x) =* Hft1(X)) holds as the implication Vx(H/+1(x) =* Hhx)) is always valid by 

the construction of Hl(x) and Hl+ 1(x) in these procedures. However, in the context of 

the inference procedure F this is no longer the case and we need to test both implications. 
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Finally, whenever the loop condition holds, we have indeed found a loop formula, although 

it may not be equivalent to a fonnula returned by Subsumption-Restricted-FG-BFS. We 

will see that eventually an analogous fonnula (w.r.t. to the negation of the loop formula) 

will be computed by the procedure F. 

5.3 Refutational Completeness 

We now prove the refutational completeness of the fair inference procedure. Before we can 

state the completeness theorem, we have to prove several auxiliary lemmata. 

First of all, we define the notion of a fair derivation produced by the inference procedure F. 

For the purpose of the completeness proof we assume that the inference procedure does not 

necessarily terminate whenever the empty clause has been derived but continues to derive 

clauses instead. 

Definition 5.3.1 (Derivation). A derivation ~ produced by the inference procedure F 

shoum in Figure 5.2 from a temporal problem P = (U,I,S,£) is a sequence of states 

(U,I,S,£) ~ NolPolOo ~ N1IPliOl ~ N21P2102 ~ ... where each state 

(Ni I Pi 10i), i ~ 0, results from an application of an inference rule shown in Figure 5.2 on 

the state (M-1IPi-110i-l) if and only iii> 0 or on (U,I,S,£) ifi = O. 

If M = 0 and Pi = 0 for an index i E N, we define (M I Pi 10i) = (Nj I P j I OJ) for 

every j ~ i. 

A derivation ~ is sai.d to be fair 1 if and only if U:o nQi P j = 0 and, whenever possible, 

every application of the 'regular inference computation' rule is eventually followed by an 

application of the 'loop testing' rule. 

We now prove for every clause V contained in a set Pi U Oi for i ~ 0 that there exists 

an index kEN and a clause C such that C $" V and C E OJ for every j ~ k. 

Lemma 5.3.2. Let ~ = (M I Pi 10i)iEN be a fair derivation produced by the inference 

procedure F shown in Figure 5.2. Furthermore, let V be a initial, universal or step clause 

such that V E Pi U Oi for i ~ O. Then there exists a clause C and an index j E N such that 

j ~ i, C E nk~jOk andC $8 V. 

Proof If V E Pi, then as the derivation ~ is fair, it follows that the clause V will eventually 

be extracted from a set PI for l ~ i. Thus, there either exists a clause V E.M with V <" V 

or the clause V is moved to the set 0
" 

As there are only finitely many clauses V' with 

V' < .. V, there exists a clause V' E PI' with V' <8 V for an index I' E N that is not removed 

by backward subsumption in the derivation~. As the derivation A is fair, there hence exists 

a clause iY' EO,,, with V" < .. V for an index I" E N. We may therefore assume without 

loss of generality that V E Oi (otherwise we consider the clause V E 0, or V" E 0 1,,), 

1 Despite its more complex appearance, the definition of fairness for the inference procedure IF follows 
the same lines as the Definitions 3.2.7 and 3.3.3, Le. every inference that is possible at a given index will be 
performed eventually. 
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Let N = {C E U~i Oi I C ::; .. V}. By Lemma 4.2.6, the relation < .. is well-founded. 

Thus, 88 N =I 0, there exists a minimal clause C E N with respect to the relation < ... Hence, 

let C E OJ for an index j ~ i. We now prove by induction that C E nk~j Ok. For k = j there 

remains nothing to be shown. If k > j, then it follows from the induction hypothesis that 

C E Ok-l. If we now assume that C rt Ok, then it would follow that the clause C has been 

deleted by backward subsumption, i.e. it can be shown that there exists a clause C' E Ok' 

with C' < .. C for a k' ~ k. We can conclude that C' < .. V by transitivity of the relation < ... 
Thus, C' EN and C' < .. C, which contradicts the minimality of the clause C. 0 

The proof of refutational completeness for the fair inference architecture F is based on 

showing that for every non-tautological clause V that is contained in a refutation ~ by 

)~tSvl> there exists a clause C derived by the fair inference procedure such that C ::; .. V holds. 

Unsurprisingly, it will be most difficult to show that clauses resulting from applications of the 

Subsumption-Restricted-FG-BFS algorithm are subsumed by the fair inference procedure. 

The next lemma shows that non-tautological clauses which do not originate from loop 

search are subsumed by clauses derived by the fair inference procedure. 

Lemma 5.S.S. Let P = (U, I, S, £) be a clausified monodic temporal problem and let 

~ = (M I Pi 10diEN be a fair derivation produced by the inference procedure F shown in 

Figure 5.2 from the temporal problem P. Let~' = V l , ... , Vn be a derivation produced 

by subsumption-compatible ordered fine-grained resol!-'tion with selection from a temporal 

problem fY = (U', I', S', £) without applying the eventuality resolution rules and such that 

for every clause C2 E U' u I' u S' with C2 ¢ taut( fY) there exists a clause Cl E U:o 0; with 

Cl ::; .. C2' 
Then it holds for every i with 1 ::; i ::; n that 

Proof By induction on i using the fairness of the derivation ~ and Lemma 4.2.23. 0 

Essentially, the remaining lemmata are concerned with proving that clauses derived 

by the eventuality resolution rules will eventuality be subsumed by clauses derived by the 

fair inference procedure. The main difficulty lies in the fact that the order in which the 

terminating step clauses for the loop search process are derived is no longer guaranteed to 

be the same as for the Subsumption-Restricted-FG-BFS algorithm. 

We now prove that for any derivation of the fair inference procedure there exists an 

iteration index which contains all the universal clauses that can ever be derived by either 

loop search or the clause conversion rule. The underlying reason behind this observation is 

again the finite number of step clauses that are contained in the original temporal problem. 

First, we define some auxiliary notation. 

Definition 5.S.4. Let N be a set of initial, universal or step clauses. Then we denote by 

Univ(N) the set of all the universal clauses contained in the set N, and by Step(N) the set 

of all the step clauses from the set N which do not contain a loop search marker. 



5.3. REFUTATIONAL COMPLETENESS 113 

Lemma 5.3.5. Let P = (Uo, I', S', £) be a clausified monodic temporal problem. Addition

ally, let ~ = (N; I Pi I Oi )iEN be a derivation produced by the inference procedure F shown in 

Figure 5.2 from the temporal problem P. Then there exists an index lEN such that: 

00 

VC E Univ(U (Pj UOj)): C E Res~b(PI UOI) 
j=I 

Proof. The only universal clauses (different from the empty clause) which are added to a set 

Pk U Ok (k E N \ {O}) and which are possibly not contained in the set Res~b(Pk-l U Ok-d 

result from loop formulae or from applications of the clause conversion rule. Each of these 

formulae stems from combining the left-hand sides of some step clauses in S'. As there are 

only finitely many non-equivalent such combinations w.r.t. the relation =x that are free of 

duplicate atoms and which are such that each subset of the non-ground atoms occurring in 

the left-hand sides of the step clauses contained in the set S' occurs at most once in them 

(see also Definition 4.3.1) and as subsumed clauses are removed, it is easy to see that there 

exists an index lEN such that every universal clause C E Pj U OJ with j ~ i has been 

derived by the resolution or factoring-based rules from clauses contained in PI U 0/. 0 

Remark 5.3.6. The index lEN obtained through Lemma 5.3.5 will be called the universal 

clause termination index. 

The next two lemmata link terminating step clauses together that have been derived by 

the fair inference procedure and the Subsumption-Restricted-FG-BFS algorithm. 

Lemma 5.3.7. Let fI = (Uo,I',S',£C) be a clausified temporal problem. Additionally, let 

~ = (N; I Pi IOi)iEN be a fair derivation produced by the inference procedure F shown in 

Figure 5.2 from the temporal problem fl. Furthermore, let 0 L( x) E £ be an eventuality 

and let .Aib, M;, . .. be the sets of (all the) terminating step clauses constructed as in a 

run of the Subsumption-Restricted-FG-BFS algorithm applied for the eventuality OL(x) E £ 
on the temporal problem (U', I', S', £C), where U' is a finite set of universal clauses with 

U' ::;8 Uo \ taut(Uo) and U;:oOj ::;8 U' \ taut(U'). 

Then it holds for every iteration index i E N that: 

v c =:} 0.1 E M~ 3 kEN 3 D E Ok: D ::;8 sf 1\ C =:} 0.1 

Proof. Similar to the proof of Lemma 5.3.3 and by using the properties of the loop search 

literals sf (for i E Nand OL(x) E E). 0 

Lemma 5.3.S. Let P' = (Un, I' , S' ,£C) be a clausified monodic temporal problem. Addition

ally, let ~ = (N; I Pi I Oi )iEN be a fair derivation produced by the inference procedure F shown 

in Figure 5.2 from the temporal problem fI and let I be its universal clause termination 

index. Furthermore, let OL(x) E £ be an eventuality and let Ma,M1, ... ,M~,M~+l'" be 

the sets of (all the) terminating step clauses constructed as in a run of the Subsumption

Restricted-FG-BFS algorithm applied for the eventuality OL(x) E £ on the temporal problem 

(Univ(P[ UOI),I',S',£C). 
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Then it holds for every i E N and for every derivation index kEN that: 

'V sf A C ~ 0.1 E Nk U Pk U Ok 3 DE ResSub(Univ(P[ U O[) U 8') U M~: 

D:53 C ~ 0.1 

Proof By induction on i using Lemmata 4.2.23, 5.3.2 and by using the fact that every 

universal clause that is contained in Univ(Pk UOk) with k 2: I can be derived from universal 

clauses in Univ(P[ U O[) without using the clause conversion rule. o 

The next lemma establishes that there exists an index J in any derivation of the fair 

inference procedure after which no new terminating loop search clauses are derived for a 

given eventuality and a given loop search iteration. More specifically, every terminating step 

loop search clause for a given eventuality and a given loop search iteration which appears 

at some index k 2: J (with Nk = 0) in a derivation of the fair inference procedure F has 

already been derived at the index J. Additionally, each considered terminating loop search 

clause that appears at the index J is not removed at a later index k' 2: J (with N k , = 0). 

The underlying reason for the existence of these indices lies again in the finite number of 

step clauses that are contained in a temporal problem. 

Lemma 5.3.9. Let P' = (U~,I',S',eC) be a clausi/ied temporal problem. Additionally, let 

d = (M I Pi IOi)iEN be a fair derivation produced "'!I the inference procedure F shown in 

Figure 5.2 from the temporal problem P', let OL(x) E e be an eventuality and i E N be a 

loop search iteration index. 

Then there exists an index J E N such that NJ = 0 and 

(i) for all kEN with k 2: J and Nk = 0, and for every terminating step clause sf A C ~ 

0.1 E Pk U Ok it holds that sf A C ~ 0.1 Ex PJ U OJ; and 

(ii) for every terminating step clause sf A C ~ 0.1 E PJ U OJ it holds that sf A C ~ 
0.1 Ex Pk U Ok for every k 2: J with Nk = 0. 

Proof First of all, we note that for a terminating step clause of the form 

ml ml 

sf A 1\ Pi(X) /\ 1\ Rj(y) A E ~ 0.1 
i=1 j=1 

where J{(x) ~ OQi(X) Ex 8' for every i, 1 :5 i ::; ml, and Rj(y) ~ 08j (y) Ex 8' 

foreveryj,l::; j::; m2, such that var(E)n{x,y} = o and {P1(X), ... ,Pm1 (x)} ~ 

{R1(x), ... ,Rml (x)}, an arbitrary factoring inference on two atoms Pi(X) (1::; i::; m1) 

and Rj(x) (1 ::; j ::; m2) from its left-hand side with a substitution (T = Ix f-+ y] yields the 

terminating step clause (after eliminating duplicate atoms) 

n 

sf A 1\ Rj(y) A E ~ 0.1, 
j=1 

which subsumes the former terminating step clause. 
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Then, as the number of (ground and non-ground) step clauses contained in the set S' is 

finite, there only exist finitely many (maximal) subformulae of the form 1\!=1 Pi(X) that do 

not contain duplicate atoms in the left-hand sides of step clauses. Additionally, as subsumed 

clauses are removed in the derivation ~ and as the removal of duplicate literals derives 

clauses that subsume their parent clauses, we can infer that there only exist finitely many 

different terminating step clauses of the form sf 1\ C :::} OJ. in the set U:l (Pi U 0;). Let 

now I E N be the index of the derivation ~ in which all such terminating step clauses have 

been derived and which is such that NI = 0. It is now easy to see that property (i) holds 

already for the index I due to the following observation. Let sf 1\ C :::} OJ. E Nk U Pk U Ok 

(i E N) with k < I such that sf 1\ C :::} OJ. ¢x PI U 0 I. Hence, it must hold that there 

exists a clause V E NI U PI U 01 = PI U 0 1 with V <8 sf 1\ C :::} OJ. as the step clause 

sf 1\ C :::} OJ. is not a tautology. Thus, we obtain sf 1\ C :::} OJ. ¢x PI' U 01' for every 

I' 2: I with NI' = 0. 
Then, let {sf 1\ C j :::} OJ. I 1 ~ j ~ n} be all the terminating step clauses for the 

eventuality OL(x) and the iteration index i that occur in the set U:o (Pi U Oil. For 

every terminating step clause sf 1\ Cj :::} OJ., 1 ~ j ~ n, such that sf 1\ C j :::} OJ. ¢x 

n:/,N".=0 (Pi U Oil, let k j 2: I be the minimal index such that sf I\Cj :::} OJ. ¢x Pkj UOkj 

and N kj = 0. If sf 1\ Cj :::} OJ. Ex n:I,N".=0 (Pi U Oil for 1 ~ j ~ n, we define k j = I. 

Finally, we set J = max( {kj 11 ~ j ~ n}). 

Now, let k > J such that Nk = 0 and let sf 1\ C :::} OJ. E Pk U Ok. As k > I, it holds 

that sf 1\ C :::} OJ. Ex PI U 0 I· If we assume that sf 1\ C :::} OJ. ¢x P J U () J, then it would 

follow that there exists a clause V' E NJ U P J U OJ = P J U OJ with V' <8 sf 1\ C :::} OJ. 
as the step clause sf 1\ C :::} OJ. is not a tautology and sf 1\ C :::} OJ. Ex PI U 0 1 , 

Consequently, it would hold that sf 1\ C :::} OJ. ¢ Pk U Ok, which is a contradiction. We 

can infer that property (i) holds for the index J. 

Finally, let sf 1\ C :::} OJ. E P J U OJ and kEN be an index with k > J and 

Nk = 0. Note that then sf 1\ Cj :::} OJ. Ex n{=I,N.=0 (Pi U Oil. If we assume that 

sf 1\ C :::} OJ. ¢x Pk U Ok holds, then let k' E N be the minimal such index among the 

indices with k' > J and Nk , = 0. Hence, J 2: k' > J must hold, which is a contradiction. 

We can therefore conclude that sf 1\ C :::} OJ. Ex Pk U Ok and that property (ii) holds for 

the index J. 0 

Remark 5.3.10. The index J E N obtained through Lemma 5.9.9 will be called the i-th 

iteration termination index for the eventuality OL(x). 

Now, we establish a closer link between the terminating step clauses derived by the 

Subsumption-Restricted-FG-BFS algorithm and the loop search process performed by the 

fair inference procedure. For any execution of the loop search algorithm (for an arbitrary 

eventuality) and for any iteration it can be shown that there exists an iteration index in 

a run of the inference procedure F after which the same terminating step clauses (up to 

variable names and an extension with loop search markers) have been derived and remain 

present in any later derivation index k with Nk = 0. 
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Lemma 5.3.11. Let fI = (Uo,I',S',£C) be a clausified monodic temporal problem. Addi

tionally, let a = (M I Pi 10diEN be a fair derivation produced by the inference procedure F 

shown in Figure 5.2 from the temporal problem fI and let I be its universal clause termination 

index. Furthermore, let OL(x) E £ be an eventuality and let Mo, M~, ... , M~, M~+l ... be 

the sets of (all the) terminating step clauses constructed as in a run of the Subsumption

Restricted-FO-BFS algorithm applied for the eventuality OL(x) E £ on the temporal problem 

(Univ(PI U 01), I', S', £C). Finally, let i E N and let Li be the i-th iteration termination 

index of the derivation a for the eventuality OL(x). Then it holds for every kEN with 

k ~ max(l, Ld and Nk = 0 that: 

Proof First of all, let kEN such that k ~ max(l, Li ) and Nk = 0. 

Then, let C ~ 01. E M~. It follows from Lemmata 5.3.2 and 5.3.7 that there exists an 

index k' ~ k such that N k, = 0 and a clause C' E P k, U Ok' with C' ~3 sf A C ~ 01.. If we 

assume that C' <3 sf A C ~ 01. holds, then we have to distinguish between the following 

two cases. If C' is a universal clause or a step clause without the loop search marker sf, 
it follows that C' E Ressub(Univ(PI U 01) U S'), which would imply that C ~ 01. ¢ M~, 

contradicting the assumptions. Otherwise, we have that C' is a step clause which contains 

the loop search marker sf, for which it follows from Lemma 5.3.8 that C ~ 01. ¢ M~ 

holds again. Thus, we have sf A C ~ 01. Ex Pk' U Ok'. By definition of the i-th iteration 

termination index, we can conclude that sf A C ~ 01. Ex Pk U Ok. 

Now, let sf A e ~ 01. E Pk U Ok. Then, we have by Lemma 5.3.8 that there exists 

a clause V E ResSub(Univ(PI U 0 1 ) US') U M~ such that V ~8 e ~ 01., which implies 

that V ~ taut(P). If we assume that V E Ress~b(Univ(PI U 01) US'), we can infer by 

Lemmata 5.3.2 and 5.3.3 that there exists an index k' ~ k such that N k , = 0 and also 

a clause V' E Pk' U Ok' with V' $s V $8 sf A C ~ 01.· As V' is either a universal 

clause or a step clause without the loop search marker sf, we obtain V' <s sf A C ~ 01.. 
Thus, by definition of the i-th iteration termination index, we can conclude that sf A C ~ 

01. ~x Pk U Ok, which contradicts our assumptions. Therefore, V = D ~ 01. E M~ 

such that D ~3 e holds. If we now assume that D <3 C holds, then it would first of all 

follow from Lemmata 5.3.2 and 5.3.7 that there exists an index k" ~ k with Nk" = 0 and a 

clause V" E Pk" UOk" such that V" $8 sf AD ~ 01. <3 sf Ae ~ 01.. Again, by definition 

of the i-th iteration termination index, we can conclude that sf A e ~ 01. ¢x Pk U Ok, 

contradicting the assumptions. We can conclude that e = x D and e ~ 01. E M~. 0 

We can now prove the analogous proposition to Lemma 5.3.3 for clauses derived by 

the Subsumption-Restricted-FG-BFS algorithm, i.e. we show that any non-trivial loop 

formula computed by the Subsumption-Restricted-FG-BFS algorithm there exist subsuming 

clauses for the different negated subformulae of the loop formula that are derived by the 

fair inference procedure. 
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Lemma 5.3.12. Let P' = (UO,I',S',fC
) be a clausified monodic temporal problem. Addi

tionally, let ~ = (.vi I Pi 10i)iEN be a fair derivation produced by the inference procedure F 

shown in Figure 5.2 from the temporal problem P'. Let OL(x) E f be an eventuality and 

true f- H (x) = V; = 1 (3Cj ){ d ~ x} with n ~ 1 be a loop formula computed by an applica

tion of the Subsumption-Restricted-FG-BFS algorithm on the clausified temporal problem 

(U', II, S', f C
), where UI is a finite set of universal formulae with U' $s Uo \ taut(Uo) and 

U;10j $s U' \ taut(U I
). Finally, let ""Cdc'l-+ y}, ... , ...,Cn{d 1-+ y} be the clausification 

of the formula '<Iy...,H(y), where y is a fresh variable. 

Then there exists a index N E !'Ii such that for every j with 1 $ j $ n there exists a 

universal clause Vj E PN U ON with Vj $s ...,Cj{c' 1-+ y}. 

Proof. Let I be the universal clause termination index for the derivation ~ (see Lemma 5.3.5). 

Additionally, let M~, M~, . .. be the sets of terminating step clauses computed by the 

Subsumption-Restricted-FG-BFS algorithm applied on the temporal problem (U',I',S',fC
). 

Let j1 E !'Ii be the minimal index such that Mil + 1 = { Ci "* 0.1 11 $ i :s n} and the 

formula '<Ix(V D~O.lEM;1 (3D){d 1-+ x} ¢} V:=1(3Cd{cl 1-+ x}) is valid. Then it follows 

from Lemma 4.3.15 that Mil =x M~ for every k ~ )1, and in particular it holds that 

M~ f- 0 for every k ~ )1· 

Furthermore, let Mo, M~, ... be the sets of terminating step clauses computed by the 

Subsumption-Restricted-FG-BFS algorithm applied on the temporal problem (Univ(US [ U 

0 1), II, S' , fC). By Lemma 4.3.7 there exists an index)2 E !'Ii \ {O} such that either M i2 = 0 

or 0 f- Mi2 =x MidI' 
If we now assume that Mi2 f- 0 and Mi2 =x Mi2+1' then let L12 and Lj2+1 be the 

h-th and h + I-th iteration termination indexes of the derivation ~. By Lemma 5.3.11 it 

would hold for every index K E !'Ii with K ~ max (1, L12 , Lh+d and NK = 0 that 

and 

Mi2+1 =x {C "* 0.1.1 812+ 1 /\ C "* 0.1. E PK U OK} f- 0. 

As Mi2 = X Mid l' we could infer the following set equality for every index K E !'Ii with 

K ~ max (1, L12 , Lh + tl and NK = 0: 

{C,,* 0.1. I 812 /\ C "* 0.1. E PK U OK} 

=x {C "* 0.1.1 812+ 1 /\ C "* 0.1. E PK U OK} 

By Lemma 5.3.2 and through an application of the 'Loop Testing' rule using the fairness 

of the derivation ~, we can conclude that there would exist an index KI ~ max (1, Lh , Lh + 1) 

with NK' = 0 such that for every 812 /\ C "* 0.1. E PI U 0 1, where I is the minimal index 

with I ~ max (1, L j2 , Li2 +d and Nt = 0, there would exist a universal clause V E OK' with 

V :S8 ...,C {cl 
1-+ y} <s 812 /\ C "* 0.1. as y is a fresh variable, i.e. 
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We have obtained a contradiction. 

Consequently, we have Mj2 = 0, and it follows that M~ = 0 for every k ~ h. Hence, 

there exists an index J E N with Mj1+ 1 = Mj and Mj = 0. Thus, as ResSub(Univ(USJ U 

OJ)) ~3 U' \ taut(U') it follows from Lemma 4.3.16 that ResSub(Univ(USJ U OJ) U 8') ~ .. 

Ntj1 +1· By Lemma 5.3.3 we can infer for every i, 1 ~ i ~ n, that there exists an index ji E N 

and a universal clause Vi E OJ. with Vi S8 ...,Ci . It is easy to see for every i, 1 ~ i ~ n, 

that Vi ~s ...,Cdd 1-+ y} as d rt. const(Vi ). Finally, the required index N E N is obtained 

through Lemma 5.3.2. 0 

We now have all the prerequisites in place to prove the refutational completeness of the 

inference procedure F. 

Theorem 5.S.1S. Let P = (U, I, S, £C) be a clausified and constant-flooded monodic tem

poral problem. Let)- be an atom ordering and S an instance compatible selection function. 

Additionally, let ~ = (M I 'Pi I OdiEN be a fair derivation produced by the inference proce

dure F shown in Figure 5.2 from the temporal problem P using the atom ordering )- and 

selection function S. Then it holds that: 

00 

Pis unsatisfiable if and only if 1. E U OJ 
j=O 

Proof The implication "-¢:" follows from the soundness of subsumption-compatible ordered 

fine-grained resolution with selection. For the remaining implication "~" we first of all 

obtain from Theorem 4.3.20 that there exists a derivation .& = VI, ... , Vn where Vn = 1. 

such that applications of the eventuality resolution rules are restricted to loops found by the 

Subsumption-Restricted-FG-BFS algorithm. We now inductively show for every i, 1 S i ::5 n, 

for which the clause Vi is not a tautology that there exists a clause Ci and an index j E N 

with Ci ~ .. Vi and Ci E Pj U OJ. 

Now, let i E N with 1 ::5 i ::5 n such that the clause Vi is not a tautology and has not 

been derived by a run of the Subsumption-Restricted-FG-BFS algorithm. It follows then 

from Lemma 5.3.3 that there exists a clause Ci and an index j E N with Ci ::53 Vi and 

Ci E Pj UOj. 

Otherwise, if a clause Vi for 1 ::5 i ::5 n that is not a tautology has been obtained through 

the c1ausification of a formula 'r/x...,H(x), where the formula H(x) has been computed by the 

Subsumption-Restricted-FG-BFS algorithm for an eventuality OL(x) E £c, we distinguish 

between the following cases. 

For H(x) = true (and hence, Vi = 1.), the run of the Subsumption-Restricted-FG-BFS 

algorithm just consisted of a single iteration in which either the empty clause has been 

derived from universal clauses Univ(Vo, ... , Vi-d, or there exists a derivation of a step 

clause true ~ 01.. If the empty clause was derived in the single iteration of the algorithm, 

then by Lemma 5.3.3 there exists an index j E N such that Vi = 1. E Pj U OJ. In the 

situation where the Subsumption-Restricted-FG-BFS derived the step clause true ~ 01., 



5.4. F AS A DECISION PROCEDURE 119 

we can apply Lemma 5.3.7 and obtain an index j E N such that there exists a clause 

Vi E 'Pj U OJ with Vi ~s sf :::;. 0.1, which implies that Vi = .1 E OJ for an index J 2: j. 
Finally, in the case where H(x) -:J true, we can apply Lemma 5.3.12 and obtain an index 

J E N such that there exists a clause Cj E 'P J U OJ with Ci ~s Vi. 0 

5.4 IF as a Decision Procedure 

In this section we examine the possibility of the fair inference procedure to be used as a 

decision procedure. 

Just as with subsumption-compatible ordered fine-grained resolution with selection, we 

will see that when the "first-order" reasoning that is necessary for constructing derivations 

with the fair inference algorithm becoma. decidable, then derivations produced by the 

fair inference procedure are also guaranteed to terminate. Consequently, the inference 

algorithm F can act as a decision procedure for the unsatisfiability of suitably rallricted 

monodic temporal problems. 

We now state and prove the corresponding theorem. 

Theorem 5.4.1. Let C be a fragment of first-order logic without equality or (non-constant) 

function symbols for which the validity problem is decidable by ordered resolution with 

selection, and let P = (U, 1, S, £C) be a constant-flooded monodic tempoml problem such that 

(i) the sets 1 and U (without consideTi.ng the preceding 0 -operator) only contain formulae 

from the fragment C, and 

(ii) the sets U U {VC1, ... , VCrn} are still containe.d in the fragment C, where for every i, 

1 ~ i ~ m, Ci is a negative clause that contains at most monadic litemls with predicate 

symbols stemming from the left-hand sides of step clauses contained in the set S and 

such that const(C;) ~ const(P), and 

(iii) for every eventuality OL(x) E £ and for full-merged step dall.'1es 'v'x(A(x) :::;. OBi(x)), 

1 ~ i ~ n, built from the tempoml problem P and a set of formulae U U {VC1, ... , VCrn} 

defined as in the previ.ous point, the formulae 

and 

n 

'v'x(U U Bi(X) U {VC1, ... , VCrn} :::;. V Aj(X)) 
j=l 

are contained in the fragment C for every i with i ~ i ~ n, and 

(iv) the previous point also holds for merged derived step clauses and ground eventualities. 

Then the inference procedure F shown in Figure 5.2 is a decision procedure for the 

satisfiability of the temporal problem P. 
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Proof. Let Cls(P) = (U' , I', S', £e), let ~ = (M I Pi IOi)iEN be a fair derivation produced 

by the inference procedure F shown in Figure 5.2 from the temporal problem CIs(P) and 

let I be its universal clause termination index. 

We can first of all observe that under the conditions (i) to (iv) described above the 

validity of the loop side conditions becomes decidable for any eventuality from the set [e 

and the set of universal clauses U', potentially extended with new universal clauses obtained 

through applications of the clause conversion or eventuality resolution rules. It is also easy 

to see that the computation of saturations involving initial, universal or step clauses from the 

temporal problem Cls(P), potentially extended with new universal clauses obtained through 

applications of the clause conversion or eventuality resolution rules, always terminates. 

Then, if the temporal problem P is unsatisfiable, it follows from Theorem 5.3.13 that 

there exists an index J E N with .1 E PJ U OJ. Otherwise, the temporal problem P is 

satisfiable, and we have to show that there exists an index J with NJ = P J = 0. An 

inspection of the inference rules depicted in Figure 5.2 reveals that the only problematic 

rule for ensuring termination is the 'Next Loop Search Iteration' rule because it might 

potentially generate an infinite number of loop search clauses sf+ 1 ~ OD for i E N if there 

is an eventuality contained in the temporal problem Cls(P). We now distinguish between 

the following two cases. 

If there does not exist a loop formula for the temporal problem P' = (Univ(PJ U 

OJ),I',S',£e) and eventuality OL(x) E [e, then the Subsumption-Restricted-FG-BFS 

algorithm applied on the temporal problem pi terminates after k iterations because no new 

terminating step clauses can be derived and it returns false. It is thus easy to see that there 

exists a index i E N such that the set M U Pi does not contain a loop search step clause 

sf ~ OD. We can infer that there exists an index J E N such that NJ = PJ = 0. 
Finally, if a loop formula true I- H(x) = V;=1(3Cj ){d - x} computed by the 

Su!:Jsumption-Restricted-FG-BFS algorithm exists for the temporal problem P' and eventual

ity OL(x) E £e (the case H(x) = true cannot occur as the temporal problem P is assumed 

to be satisfiable), then it follows from Lemma 5.3.12 that there exists a index N E N 

such that for every j with 1 ~ j ~ n there exists a universal clause Vj E PN U ON with 

Vj ~8 ...,cj{d 1-+ y}, where y is a fresh variable. Consequently, if a clause V j , 1 ~ j ~ n, 

is obtained through the terminating step clause sf 1\ Vj{y 1-+ d} ~ 0.1, we can see that 

Vj ~" sf 1\ Vj{y 1-+ d} ~ 0.1 holds, i.e. all such terminating loop search step clauses will be 

removed for the eventuality OL(x). Thus, there exists an index M in the derivation ~ such 

that the 'Next Loop Search Iteration' rule cannot be applied any longer for the eventuality 

OL(x) on Pk with k ~ M. Now, it is easy to see that there exists an index J E N such 

that NJ = PJ = 0. 0 

We can now state the following corollary. 

Corollary 5.4.2. Let P = (U, I, S, £) be a temporal problem in Pl TL. Then the inference 

procedure F shown in Figure 5.2 is a decision procedure lor the satisfiability 01 the temporal 

problem P. 
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5.5 Summary 

In this chapter we analysed some theoretical aspects of subsumption-compatible ordered 

fine-grained resolution with selection which can lead to problems when fair J~O>:sul>-derivations 

should be constructed in practice. 

Due to the fact that the applicability of the eventuality resolution rules is only semi

decidable, it becomes impossible to guarantee the construction of fair derivations, i.e. 

derivations in which every non-redundant clause that is derivable from a given clause set is 

eventually derived, as the applicability check for those inference rules might not terminate. 

As the ability to construct fair derivations is an essential requirement for maintaining the 

refutational completeness of an automated theorem, we presented an inference procedure 

that can construct fair derivations for reasoning in monodic first-order temporal logic based 

on the J~;;:s ... -calculus and we proved its refutational completeness. The design of the new 

inference mechanism is based on integrating the saturation steps related to loop search, which 

may not terminate in general, into the main saturation process. The proof of refutational 

completeness proceeded by showing that for every non-tautological clause contained in a 

J;O>:s ... -refutation for an unsatisfiable clausified monodic temporal problem there exists a 

subsuming clause computed in a fair derivation of the new inference procedure. 

We also showed that the new inference mechanism can be used as a decision procedure 

for temporal problems in which the first-order formulae are restricted appropriately. 





Chapter 6 

TSP ASS - a Fair Monodic Temporal 

Logic Prover 

6.1 Introd uction 

As explained in Chapter 1, one advantage of using clausal resolution and the normal form 

DSNF is that the temporal clauses in clausified DSNF can be translated into first-order 

logic. For temporal reasoning it is then possible to use state-of-the-art theorem provers for 

first-order logic as most temporal inference rules of the subsumption-compatible ordered 

fine-grained resolution with selection calculus can be mapped onto first-order resolution and 

factoring rules. A special treatment of eventualities remains necessary, though. 

Several automated theorem provers based on resolution have been developed for PLTL 

and monodic FOTL. TRP [52,531 and TRP++ [491 are theorem provers for PLTL that 

implement the resolution-based calculus introduced in [37], which is similar to ordered fine

grained resolution with selection. TRP is written in Prolog, whereas a C++ implementation 

is available in TRP++. For monodic FOTL then, the theorem prover TeMP has been 

developed [50]. It is based on ordered fine-grained resolution with selection, and uses the 

first-order prover Vampire as inference kernel. 

Now, an important part in the architecture of automated theorem provers consists in 

the selection of the clauses which are considered for computing inferences. The order in 

which clauses are selected can contribute significantly t.o the amount of time needed to 

solve a given problem. But most importantly, one has to ensure that clause selection is fair, 

i.e. every clause should eventually be selected for performing inferences in order to maintain 

the refutational completeness of the theorem prover. 

As described in Chapter 5, the calculus of (subsumption-compatible) ordered fine-grained 

resolution with selection contains inference rules that only have semi-decidable applicability 

conditions. Consequently, fair derivations cannot be easily obtained in practice as the 

applicability check for these inference rules might not terminate. In this chapter we show 

that there indeed exist fairness problems with the architecture of TeMP which cannot be 

overcome by simply defining a more appropriate clause selection function. We also describe 

123 
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the implementation of the fair inference architecture described in Chapter 5 in the monodic 

first-order temporal logic prover TSPASS, which is based on the first-order theorem prover 

SPASS [92J. Additionally, we analyse the effectiveness of redundancy elimination and the 

proof search performance of TSPASS on several examples. Binaries for the TSPASS system 

and its source code are available at: 

http://www.csc.liv.ac.uk/-michel/software/tspass/ 

The chapter is organised as follows. In Section 6.2 we describe the connection between 

ordered fine-grained step resolution and regular first-order resolution, i.e. we show how first

order resolution can be used to simulate fine grained-step resolution. Then, in Section 6.3 

we first of all describe the architecture of TeMP, before we outline its fairness problems 

and discuss how the fair inference procedure F depicted in Figure 5.2 can be implemented 

in practice. Subsequently, the implementation of TSPASS is described in Section 6.4 in 

greater detail. We conclude this chapter in Section 6.5 with an analysis of some experimental 

results which demonstrate the effectiveness of redundancy elimination in TSPASS and which 

illustrate its proof search performance on PL TL and monodic FOTL problems. 

6.2 Fine-Grained Step Resolution and First-Order Logic 

The deduction rules of (subsumption-compatible) ordered fine-grained step resolution with 

selection are close enough to the rules of classical first-order resolution for allowing us to 

use state-of-the-art first-order resolution provers as a basis for the implementation of our 

calculus. 
Let S be a temporal problem in clausal form. For every k-ary predicate, P, occurring in S, 

we introduce a new (k+ l)-ary predicate P. We will also use the constant 0 (representing the 

initial moment in time), and unary function symbols s (representing the successor function 

on time) and h, which we assume not to occur in S. Let <.p be a first-order formula in the 

vocabulary of S. We denote by [<.pJT the result of replacing all occurrences of predicates 

in <.p by their "tilded" counterparts with T as the first argument (e.g. P(x, y) is replaced 

with peT, x, y)). The term T will either be the constant 0 or the variable t (intuitively, t 
represents a moment in time). The variable t is assumed to be universally quantified. 

Now, in order to realise fine-grained step resolution by means of classical first-order 

resolution, we define a set of first-order clauses FO(S) as follows. 

• For every initial clause C from S, the clause [C]o is in FO(S). 

• For every universal clause D from S, the clause [DJt is in FO(S). 

• For every step clause p =* Oq from S, the clause ~p(t) V q(s(t)) is in FO(S), and for 
- - 1 every step clause P(x) =* OQ(x), the clause ....,P(t, x} V Q(s(t), hex)) is in FO(S}. 

IThe purpose of the function symbol h will be explained on page 126. 
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The key insight is that fine-grained step resolution on S, including (implicitly) the clause 

conversion rule, can be realised using classical ordered first-order resolution with selection 

(see, e.g. [10]) on FO(S). For universal and initial resolution and factoring rules of )~a>-, 

rules 1 to 3 and 7 (see page 36), this is obvious. For step resolution and (step) factoring, 

rules 4 and 5, we observe that if a clause contains a next-state literal, i.e. a literal whose 

first argument starts with the function symbol s, a factoring or resolution inference can only 

be performed on such a literal. This requirement can be enforced by an appropriate atom 

ordering. 

The restrictions on the literal orderings required to realise resolution inferences with 

step clauses on the first-order level can be obtained for example with the Knuth-Bendix 

ordering (KBO) [6,26,561. The definition of the KBO is given below for two terms or atoms 

sand t: s ~KBO t if and only if 

(KB01) 'V x: Islx 2: Itlx and w(s) > w(t) 

or 

(KB02) 'V x: Islx 2: Iflx' w(s) = w(t) and one of the following cases occurs: 

(KB02a) s = r(x) and t = x (for n > 0) 

(KB02b) s = f(s), .. . , sm), t = 9(t l , ... , tn) with f > 9 

(KB02c) s = f(Sl,,,,,Sm), t=f(tl, ... ,tm ) with SI = tl, ... ,Si-l = ti-l, and 

Si ~KBO ti (for m > 0) 

The function w computes the weights of variables, terms, and predicates after weights 

(i.e. natural numbers) have been assigned to specific constants, functional and predicate 

symbols. A global weight for variables is generally used. The computation of the weights for 

terms and atoms is based on summing up the weights of the individual signature symbols 

and variables occurring in the term or atom. The symbol> denotes a strict partial ordering 

on signature symbols, and by Itlx we represent the number of occurrences of the variable x 

in the term or atom t. 
It is easy to see that from 8 ~KBO t it follows that w(s) 2: w(t) holds for any two terms 

or atoms 8 and t. Thus, by choosing the weight of the temporal successor function such 

that it is greater than the weight of every literal occurring in the left-hand side of a step 

clause (increased by one), we can ensure that every literal occurring in the right-hand side 

of a translated step clause is not smaller w.r.t. the KBO than any literal occurring in the 

left-hand side. 

Now, during resolution inferences the variables present in the right-hand sides of step 

clauses can change. For example, if the step clause -,p(t,x) V ij(8(t),X) is resolved with the 

universal clause -,ij(t', z) V i(t', y), the step clause -,p(t, x) V i(8(t), y) is obtained as a result. 

The variable x does not occur in the literal r( 8( t), y), whereas the variable y does not occur 

in the atom p(t, x). Consequently, the condition on variables imposed by the KBO cannot 

be fulfilled; the literals -,p(t, x) and f(s(t), y) become thus incomparable w.r.t. the KBO. As 
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a consequence both literals are maximal in the step clause -,p(t, x) V reset), y) and resolution 

inference; are possible on the literal -,p(t,x). Hence, special care needs to be taken when 

computing the maximal literals in a clause in order to prevent left-hand side literals from 

becoming maximal (see Section 6.4.9 for more details). Note that for propositional temporal 

problems the use of the KBO would be sufficient to re;trict inferences to the right-hand 

sides of step clause; only as in PL TL clauSal every predicate contains the same free variable, 

namely the temporal variable. 

Additionally, note that all rule; performing inference; on (non-terminating) step clauSal 

impose the re;triction on most general unifiers q that q does not map variable; occurring in 

the left-hand side of a step clause into a constant or a functional term. On first-order clause;, 

this reltriction is enforced by the function symbol h introduced by FO: Each temporal 

literal OQ(x) is mapped by FO to Q(s(t), hex»~, and the function symbol h "shields" the 

variable x from being instantiated by a constant or functional term. 

No explicit clause conversion rule, rule 6, is required for the translated clauses. 

Moreover, our translation ensure; that the first-order clause -,P(t, x) V Q(s(t), hex»~, 
stemming from P(x)::::} OQ(x), doe; not subsume the clause -,P(t,c) VQ(s(t), e), stemming 

from Pee) ::::} OQ(c), which is important for the implementation of the calculus to be 

complete (see Section 4.2.2). 

Finally, we still observe that the Skolemization process is not performed after the 

transformation to first-order logic but on the level of DSNF problems already. For example, 

for the monodic FOTL formula OV'x3yp(x,y) we obtain the translated clause p(t,x, f(x» 

and not the clause pet, x,J(x, t» although the domain element that is assigned to the 

variable y can potentially vary in the different time points of a model. This requirement for 

Skolem constants and function symbols is already handled at the level of the )~t -calculus 

as most general unifiers are only allowed to map variable; which occur in the left-hand side; 

of step clauses into variable;. In this way one can prevent that the interpretations of Skolem 

constants or function symbols are fixed to the same domain elements across different time 

points as the interpretations of constants (and implicitly function symbols) are assumed to 

be rigid. 

6.3 Implementing a Fair Architecture for Monodic Temporal 

Reasoning 

6.3.1 The Architecture of TeMP 

In this section we describe the design principle; behind the automated theorem prover TeMP, 

which is based on the )~t -calculus. As we have seen in the previous section, the fine-grained 

step resolution inference rule; of J~t can be easily implemented in an automated theorem 

prover that is based on ordered first-order re;olution with selection. However, the ground 

and non-ground eventuality resolution rules 8 and 9 of )~ cannot simply be mapped onto 

the inference rules of first-order resolution as suitable premises have to be determined first 
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before those rules can be applied. 

Instead, in TeMP the (Subsumption-Restricted)-FG-BFS algorithm shown in the Fig

ures 3.2 and 4.1 is implemented in order to find the full merged step clauses (or merged 

derived step clauses, respectively) required for the application of the eventuality resolution 

rules. The only difficulty related to an implementation of the (Subsumption-Restricted)-FG

BFS algorithm using first-order ordered resolution with selection is that in step (2) of the 

algorithm, the rules of fine-grained step resolution are applied with the exception of the 

clause conversion rule, rule 6. As no explicit clause conversion rule is required on FO(S), 

this restriction cannot be enforced by disabling one of the deduction rules. Instead one can 

use a variant FOBFS of FO which has the desired effect. Let SHl be a monodic temporal 

problem in clausified form as defined in step (2) of the (Subsumption-Restricted)-FG-BFS 

algorithm. Then FOBFS(SHd is defined as follows: 

• For every universal clause D in SH1, the clause [DJt is in FOBFS(SHt} . 

• For every ground step clause p =* 01 in SH1, the clause -,p(O) V l(s(t)) is in 

FOBFS(SHd, and for every non-ground step clause P(x) =* OM(x) in SH1, the 

clause -'P(O, x) V M(s(t), h(x)) is in FOBFS(SHt}. 

Recall that initial clauses do not contribute to loop search, so we do not include their 

translation into FOBFS(SHd· Again, the motivation for FOBFS is that saturation of SHl 

under the rules 1 to 5 and 7 corresponds to the saturation of FOBFS(SHd under ordered 

first-order resolution as described above. In particular, clauses consisting only of literals 

whose first argument is '0' in the saturation of FOBFS(SHd correspond to final clauses (up 

to negation). Using this criterion it is straightforward to extract those clauses from the 

saturation of FOBFS(SHd to form the set MHl which is the outcome of step (2) of the 

(Subsumption-Restricted)-FG-BFS algorithm and to proceed with step (3). 

The logical consequence check in step (4) of the (Subsumption-Restricted)-FG-BFS 

algorithm is again delegated to a first-order prover: for every Ci(x) E Hi(X) we form a new 

clause set Ci(x) 1\ -,HHdx); if all the resulting sets are unsatisfiable, VX(Hi(X) =* HH1(X)) 

is valid. 

Note that it is straightforward to see whether a clause in FO(S) is the result of translating 

an initial, a universal, or a (non-) ground step clause. This makes it possible to compute 

FOBFS(S) from FO(S) instead of from S. Also, the conclusion of an application of one of 

the eventuality resolution rules can directly be computed as a set of first-order clauses of 

the appropriate form. Thus, there is no need. to ever translate clauses in FO(S) back to 

DSNF clauses. Instead, after translating the input monodic temporal problem once using 

FO, we can continue to operate with first-order clauses. 

The considerations presented above and in the previous section give rise to the main 

procedure for a monodic temporal logic theorem prover. The architecture depicted in 

Figure 6.1 has been implemented in the prover TeMP [50J. It consists of a loop where in each 

iteration (i) the set of temporal clauses is saturated under fine-grained step resolution, more 
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Figure 6.1: Main Procedure of TeMP (Using Breadth-First Search Strategy) 

precisely, rules 1 to 7, and (ii) then for every eventuality clause in the clause set, an attempt 

is made to find a set of premises for an application of the (ground) eventuality resolution 

rule. If we find such a set, the set of clauses representing the conclusion of the application 

of the rule is added to the current set of clauses and the resulting set is saturated under 

application of the step resolution rules (this helps to identify whether the conclusion of the 

eventuality resolution rule is redundant or not). There are two control strategies concerning 

how to explore eventualities in loop search: either they are traversed one by one regardless 

of whether a loop is found and an application of the (ground) eventuality resolution rule 

derives new non-redundant clauses (a sort of breadth-first strategy) or the next iteration 

of the main loop is entered as soon as a loop is found for which an application of the 

(ground) eventuality resolution rule results in new non-redundant clauses (a sort of depth

first strategy). Figure 6.1 illustrates the breadth-first strategy. The main loop terminates if 

the empty clause is derived, indicating that the initial set of clauses is unsatisfiable, or if no 

new non-redundant clauses have been derived during the last iteration of the main loop, 

which in the absence of the empty clause indicates that the initial set of clauses is satisfiable. 

In TeMP the task of saturating clause sets with classical resolution simulating fine-grained 

step resolution is delegated to the kernel of Vampire [78J, which is linked to the whole 

system as a C++ library. TeMP communicates with the Vampire kernel in a direct way via 

the kernel API, thus avoiding expensive textual communication. Internally TeMP uses its 

own data structures, and there is a special module in TeMP which rewrites TeMP's data 
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structures to, and from, Vampire's data structures. Note that minor adjustments have been 

made in the functionality of Vampire to accommodate step resolution: a special mode for 

literal eligibility has been introduced such that in a clause containing a next-state literal 

only next-state literals can become eligible. 

6.3.2 Fairness Problems of TeMP 

As we have seen in Chapter 5, the presence of the ground and non-ground eventuality 

resolution rules in the J~; -calculus turns the construction of fair derivations into a non

trivial problem. Both these rules have side conditions which are only semi-decidable. Thus, 

the construction of a derivation could potentially 'get stuck' while checking these side 

conditions. Take, for example, an attempt to apply the ground eventuality resolution rule to 

premises Al ::::} OBI, ... , An ::::} OBn such that for some i, 1 :5 i ::; n, either the condition 

U 1\ Bi F -,[ or the condition U A Bi F= V;=l Aj does not hold. Assume U A Bi F -,[ 
does not hold. Then, an attempt to establish whether in first-order logic -,[ follows from 

U 1\ Bi may not terminate. Thus, executions of the FC-BFS algorithm in TeMP are a first 

source of unfairness as those executions are not guaranteed to terminate in general, with the 

consequence that the construction of a derivation by the theorem prover might not proceed 

beyond this point 

Another problem is that in the main procedure of TeMP, the FC-BFS algorithm will 

only be executed once the original monodic temporal problem has been saturated using the 

rules of fine-grained step resolution. Again, this saturation process may not terminate even 

if the original monodic temporal problem is unsatisfiable. 

6.3.3 Implementation of the Fair Inference Procedure 

The representation of the fair inference procedure F allowed us to prove its refutational 

completeness. However, Figure 5.2 does not provide a basis yet for implementing the fair 

architecture as, for example, it is not immediately obvious in which order that the inference 

rules should be applied in practice. Moreover, the presentation style of Figure 5.2 conceals 

the problem of selecting clauses for inference computation in such a way that fair derivations 

are obtained. Despite having solved the fairness problems related to the J;;;:Suh -calculus, the 

fairness of derivations can still be lost if the clause selection is performed in an inappropriate 

way. As we will see in Section 6.4.10, a clause selection function that is fair in the context 

of regular first-order resolution does not necessarily guarantee the fairness of derivations 

constructed by the fair architecture. 

Figure 6.2, then, depicts the main procedure of a monodic temporal logic prover based on 

the fair inference procedure in a way that is more amenable for a practical implementation. 

After reading the initial clause set S we add to S all clauses required for loop search 

right from the start. This is done in step (1). The remainder of the procedure is mostly 

identical to the main procedure of a resolution-based theorem prover, confer e.g., [78,81,91\ 

and Section 6.4.1. This part of the main procedure operates on two sets of clauses, US (the 
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Figure 6.2: Saturation Architecture of TSPASS 
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set of usable clauses) and WO (the set of worked-off clauses). The set WO contains all the 

clauses that have already been used as premises in inference steps (or can never be used as 

premises) and the set US contains all the clauses that still need to be considered as premises. 

Initially, as set in step (2) of the procedure, the set WO is empty, while US contains all 

clauses of S. Next the procedure enters the main inference loop in which it remains as long 

as no contradiction has been derived and the set US is not empty. Note that the presence 

of sf => 01. in US indicates that we can apply the non-ground eventuality resolution rule 

resulting in the conclusion D'v'x...,true, which is contradictory. In the main loop, in step (3), 

we use the function choose to select and remove a clause, called the given clause from US. 

The given clause is added to WOo We then check whether the given clause is equal to 

sf 1\ C => 01. for some i and L. In the (Subsurnption-Restricted)-FG-BFS algorithm, such 

a clause would be part of the set Mi+l which is used to define the formula Hi+l(X), which 

in turn is used to define the clauses in M+l. Here, in step (6), we directly define the one 

clause of M+ 1 which derives from sf 1\ C => 01.. If there is no such clause, but a clause of 

the form C => 01. (without a 'marker' sf), then such a clause is a suitable premise for the 

application of the clause conversion rule and we compute the conclusion of that application 

in step (5). Otherwise, the given clause is not subject to any special treatment. Instead, in 

step (4), we use the function in! to compute all conclusions derivable from the given clause 

and clauses in WO by the rules 1 to 5 and rule 7 of J~~ and the arbitrary factoring in 

left-hand sides of terminating step clauses and in at most monadic negative universal clauses 

rules, i.e. the fine-grained step resolution rules of J~t.S.b except the clause conversion rule. 

In step (7) redundancy elimination, through backward (BS) and forward (FS) subsumption 

deletion, and the removal of tautologies (TAUT) is performed. The newly derived clauses 

that were not deleted in the previous step are added to US in step (8). We also prepare the 

loop condition test by computing the formulae Hf for all eventuality clauses OL(x) E £ and 

all indices i used to create some marker sf in the clause set. We then check whether the 

loop condition "tx(Hl{x) {::} Hhl(X)) holds for every i and every L. If this is indeed the 

case, an application of the non-ground eventuality resolution rule is possible. We compute 

the conclusion of the application and add it to a set N£W. In step (9) the set N£W is 
used in reductions again, and finally the remaining clauses are added to the set of usable 

clauses in step (10). This completes the main inference loop of the procedure. 

Similarly to the inference procedure F depicted in Figure 5.2, there are several important 

observations to be made about step (8), which have already been partly described in 

Section 5.2.2. 

First, we can observe that Hl{x) and H!+l(X) are monadic first-order formulae. Thus, 

the validity of the loop condition is a decidable problem. 

Second, in the (Subsumption-Restricted-)FG-BFS algorithm, in order to establish whether 

"tx(Hl{x) {::} Hl+ 1(x)) is valid we only need to test whether 'v'x(Hl{x) => Hf+1(x)) holds 

as the implication "tX(H!+l(X) => Hl{x)) is always valid by the construction of Hl{x) and 

H!+l(X) in these procedures. However, in the context of the procedure in Figure 6.2 this is 

no longer the case and we need to test both implications. 
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Third, by Lemma 4.3.14 the validity of the loop search formula 'rIx(Hl(x) {::} H!+l(X)) 

is equivalent to the existence of mutual subsumptions for all the disjuncts that are found in 

the formulae 
m n 

Hl(x) = V (3Cj ){cl 
-+ x} and Hl+l (x) = V (3Dj ){cl 

-+ x}, 
j=l j=l 

respectively (if unordered factoring has been exhaustively applied on the sets {Cl , ... , Cm} 

and {D1, ..• , Dn}). Additionally, by Lemma 4.3.10 it follows for two clauses sf 1\ C => 01., 
sf 1\ D => 01. with C ~ .. D which have been derived during a run of the prover architecture 

shown in Figure 6.2 that the formula 

is valid. We can thus infer that testing for subsumption on disjuncts of the formulae 

Hf (x) and Hlt-l (x) is sufficient to find loop formulae in runs of the fair architecture. The 

subsumption test can lead to a significantly reduced number of derived clauses in contrast 

to using a logical validity test for testing loop search conditions. 

Finally, whenever the loop condition holds, we have indeed found a loop formula, although 

it may not be equivalent to a formula returned by (Subsumption-Restricted)-FG-BFS as a 

loop formula. However, eventually, for each (negated) formula returned by the (Subsumption

Restricted)-FG-BFS algorithm as a loop formula the algorithm in Figure 6.2 will compute 

an analogous one. 

In the context of Figure 6.2 a derivation is said to be fair if no clause remains indefinitely 

in the set of usable clauses US. Consequently, provided that the function choose selects 

given clauses in a fair way using, for example, clause weight combined with clause age, 

the procedure in Figure 6.2 constructs a fair derivation. Thus, a derivation from an 

unsatisfiable monodic temporal problem in clausified form is guaranteed to eventually derive 

a contradiction. It is worthwhile to note that due to the introduction of new propositions 

during the derivation, some simpler clause selection functions which are fair for a fixed 

and finite signature may not be fair in the context of the algorithm in Figure 6.2 (see 

Section 6.4.10 for more details). 

We conclude this section by stating the completeness of the fair architecture. 

Theorem 6.3.1 (see Theorem 5.3.13). Let pc be a constant flooded and clausified monodic 

temporal problem. Let >- be an admissible atom ordering and S be an instance compatible 

selection function. 

Then pc is unsatisfiable if and only if any fair run of the architecture depicted in 

Figure 6.2 using the atom ordering >- and selection function S returns "Unsatisfiable". 

6.4 Implementation of TSPASS 

The architecture depicted in Figure 6.2 has been implemented in the theorem prover TSPASS 

by modifying and extending the first-order prover SPASS 3.0 [92J. The transformation into 
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Algorithm 1 General Architecture of SPASS 

1: procedure SATURATION(N) 
2: US:= N 
3: WO :=0 
4: while US i= 0 and .L ¢ US do 
5: (Given, US) := choose(US) 
6: WO:= WOU {Given} 
7: NEW := inf(Given, WO) 
8: NEW := red(NEW,US, WO) 
9: US :=USUNEW 

10: end while 
11: if .L E US then 
12: print "Proof found." 
13: else 
14: print "Completion found." 
15: end if 
16: end procedure 

the normal form DSNF is performed by a separate program, whose output can be parsed by 

TSPASS. 

We first recall the general architecture of SPASS (see [91]). Then, in Section 6.4.2 we 

present some basic considerations behind the implementation of TSPASS, before we describe 

TSPASS's general architecture in Section 6.4.3. In the subsequent section we briefly outline 

the implementation of the transformation into DSNF. The clausification and translation 

into first-order logic is dfficribed in Section 6.4.5, and efficient ways to acCffiS loop search 

clauses are presented in Section 6.4.6. The main inference method of TSPASS is explained 

in Section 6.4.7. Two ways to implement loop search tffitS are presented in the subsequent 

section. Finally, peculiaritiffi related to the implementation of TSPASS are discussed in 

Section 6.4.9 and fairness problems regarding the clause selection function are analysed in 

Section 6.4.10. 

6.4.1 Saturation Architecture of SPASS 

The general architecture of the first-order prover SPASS is shown in Algorithm 1. Essentially, 

the prover operates on two sets of clauSe> US and WOo The set WO of worked off clauses 

contains all the clauSe> on which all possible inferences (potentially with other clauses from 

the set WO) have already been performed, whereas the set US of usable clauses contains 

clauSe> that still need to be considered for inferences with themselves or with clauSe> from 

the set WOo We assume in the following that the sets of worked off and usable clauses are 

additionally represented by term index structures (see e.g. [77]). 

In line 2 of Algorithm 1 the set of usable clauses US is initialised with the set of input 

clauses N. Lines 4 to 10 describe the saturation loop, which is executed as long as the set of 

usable clauses is not empty and the empty clause has not been derived. A clause is selected 

as "given clause" for inferences to be performed with through the "choose" function. The 
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given clause is removed from the set of usable clauses and inserted into the set of worked-off 

clauses in lines 5 and 6. Then, inferences with the given clause are computed with respect 

to the set of worked-off clauses in line 7, and the resulting clauses from these inferences are 

stored in a set NEW of new clauses. In line 8 the new clauses are reduced with respect to 

the set of usable and worked-off clauses. Finally, the reduced set of new clauses is inserted 

into the set of usable clauses in line 9. 

When the saturation loop terminates, the following two possibilities can therefore occur: 

either the set of usable clauses contains the empty clause, which implies that there exists a 

derivation of the empty clause from the initial set of clauses N. One can hence conclude 

that the set N is unsatisfiable. Alternatively, the set of usable clauses has become empty, 

from which we can infer that all possible non-redundant inferences have been computed. As 

the empty clause has not been derived, we can conclude that the initial set of clauses N is 

satisfiable. 

6.4.2 Implementation Basics 

We now start by describing some basic aspects regarding the implementation of TSPASS. 

Upon inspection of the temporal saturation architecture shown in Figure 6.2 one can see 

that different tasks are performed depending on the ''type'' of the given clause. In order to 

speed up the saturation process, a type field has been added to the clause data structure 

initially present in SPASS. The purpose of the type field is to store the temporal type of the 

clause. We distinguish between the following types: 

• The initial clause type, representing clauses in which every literal contains the con

stant 0 as temporal argument, e.g. p(O) V .q(O, x, y). 

• The universal clause type, which characterizes clauses that only contain literals with 

one and the same variable as temporal argument, e.g. p(t, x) V q(t) V .;:(t, c). 

• The loop search clause type identifies clauses that are used in the loop search process, 

Le. they must contain exactly one loop search marker and at least one literal with 

a temporal successor term as temporal argument. Moreover, every literal with a 

variable as temporal argument must be negative and contain at most one term as 

argument (Le. its arity must be less than or equal to 1). Finally, every literal must 

use the same temporal variable. An example of a loop search clause is the clause 

'8~(z) V .p(t,x) V (j(s(t), h(x)). 

• The terminating loop search clause type is similar to the loop search clause type, 

except that literals with successor terms as temporal arguments must not occur, e.g. 

the clause .s~(z) V .p(t, x) V q(t) is a terminating loop search clause. One can observe 

that terminating loop search clauses are in fact universal clauses which contain a loop 

search marker. 
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• The step clause type represents clauses which contain at least one literal with a 

temporal successor term as temporal argument. Additionally, every literal with a 

variable as temporal argument must be negative and contain at most one argument. 

Finally, every literal must share the same temporal variable. An example for the step 

clause type is the clause -,]3(t, x) V q(s(t), h(x)). 

The type of a clause is initialised whenever a clause is created, and updated whenever 

the clause is modified. Moreover, clauses are classified into the most restrictive type that 

applies. 

The second important part of a problem in DSNF that needs to be implemented efficiently 

are eventualities. Firstly, in order to reduce the required implementation effort the different 

eventuality formulae '</xOL(x), OL(c) or 01 are simply represented by unit clauses that 

contain the eventuality terms L(x), L(c) or I, respectively. The sometime operator 0 does 

not occur in the eventuality clauses. Moreover, these eventuality clauses are kept separately 

from the other clauses in the implementation. 

For the loop search process it is important that additional information is recorded for 

each of the eventuality clauses. In particular, if the validity of the loop search side conditions 

for a given eventuality OL(x) is to be checked, the number of loop search markers that have 

been created so far has to be known. Additionally, the marker symbol for a given loop 

search iteration has to be easily retrievable so that the clauses of the form s~(x) /\ C ::::} 0.1 
can be found for every i E N. Hence, in order to link eventualities with information about 

their loop search markers, we use the data structure depicted in Figure 6.3. The fields 

"map" and "mapSize" of the structure "Eventuality.lnr' describe an array of (loop search) 

marker symbols, which is required for quickly accessing a specific loop search marker symbol 

s~(x) given an eventuality predicate L(x) and a loop search index i. The remaining field 

"markerCount" represents the number of markers that have been created so far for a given 

eventuality. 

As every eventuality term is of the form L(x), L(c) or I, we use hash maps iteratively to 

provide fast access to the "Eventuality.lnr' objects for given eventuality clauses. On the first 

level two separate hash maps help distinguish between positive and negative eventualities. 

The hash map for negative eventualities and the hash table for positive eventualities map 

the top-level predicate symbol of unsigned eventuality terms to a second hash table. The 

two first level hash maps are accessed depending on the polarity of the given eventuality 

typedef struct { 
SYMBOL. map; 
NAT mapSize; 
NAT markerCount; 

} EVENTUALITY_INF; 

Figure 6.3: Data Structure Used to Link Eventualities with Loop Search Markers 
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term. Each of the entries in the two first level hash tables contains another hash table that 

maps the argument of the given unsigned eventuality term to an "Eventuality_Inf" object. 

In the case where the eventuality term does not contain an argument or the argument is a 

variable, we use the unique null symbol as entry key in the second hash table. 

The initialisation of eventuality information objects for given eventualities is described 

in Algorithm 2 in greater detail. The input parameter of the procedure only consists of 

a set of eventuality clauses. An array of eventuality information objects is created in 

line 2 containing an entry for every considered eventuality, and the two top-level hashes 

are created in the lines 3 and 4. Then, a counter variable i is initialised (line 5) and 

an iteration is performed through all the eventualities in the lines 6 to 10. For every 

eventuality an eventuality information object is allocated, initialised and stored at position i 

in the array (line 7). The newly created eventuality information object is added to the 

two-level hash maps for the literal representing the considered eventuality by the procedure 

"AddEventualityInformation", which also handles the creation of second-level hash maps. 

Finally, the iteration counter is incremented in line 9. 

The procedure for retrieving an eventuality information object given the literal represent

ing an eventuality is shown in Algorithm 3. If the considered eventuality literal is negative, 

the variable "Root Hash" is initialised with (a pointer to) the hash map representing negative 

eventualities (line 3), otherwise the hash map for positive eventualities is used (line 6). 

Additionally, the variable "EventualityLit" is made to point to the (positive) literal atom in 

the case where the eventuality literal is negative (line 4). The key for the hash map on the 

first-level is initialised in line 8 with the predicate symbol of the unsigned eventuality and 

the corresponding hash map is extracted in line 9. Then, in the case where the eventuality 

literal is propositional or the non-temporal argument of the literal predicate is a variable, the 

null symbol is used as key for the second-level hash map (line 11); otherwise, the constant 

(symbol) of the non-temporal literal argument is taken (line 13). Finally, the eventuality 

information object is extracted from the second-level hash map in line 15. 

In the next section we present the general architecture of TSPASS. 

Algorithm 2 Initialisation of Eventuality Information Objects 
I: procedure INITEvENTUALITYINFORMATION(EventualityClauses) 
2: EventualityInfArray:= new EventualitylnqLength(EventualityClauses)] 
3: Create( Positi veEventuali tyHash) 
4: Create( N egativeEventualityHash) 
5: i:= 0 
6: for all Eventuality E EventualityClauses do 
1: InitEventuali tylnformationStruct(EventualityInfArray[i I, Eventuality) 
8: AddEventualitylnformation( GetEventualityLiteral( Clause), 

EventualitylnfArray[i] ) 
9: i := i + 1 

10: end for 
11: end procedure 
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Algorithm 3 Retrieval of Eventuality Information Objects 
1: procedure GETEvENTUALITyINFORMATION(EventualityLit) 
2: if TopSymbol(EventualityLit) = Not then 
3: RootHash := NegativeEventualityHash 
4: EventualityLit := FirstArgument(EventualityLit) 
5: else 
6: RootHash := PositiveEventualityHash 
7: end if 
8: RootKey := TopSymbol(EventualityLit) 
9: SecondHash := GetValue(RootHash, RootKey) 

10: if NrOfArguments(EventualityLit) = 1 or IsVariable(SecondArg(EventualityLit)) 
then 

11: SecondKey := NullSymbol 
12: else 
13: SecondKey := TopSymbol(SecondArg(EventualityLit)) 
14: end if 
15: return Get Value(SecondHash, SecondKey) 
16: end procedure 

6.4.3 General Architecture of TSPASS 

The main method of TSPASS is described in Algorithm 4. The arguments of the main 

method are a set of formulae N in DSNF and a threshold parameter for loop search. In 

line 2 the set N is clausified and the resulting initial, universal or step clauses are translated 

into first-order logic by adding a temporal parameter to each literal. Additionally, four 

clause sets representing the different clause types in DSNF are returned, and in line 3 the set 

"InputClauses" is created, which will eventually contain the clauses on which the resolution 

and factoring inferences are performed. Lines 4 and 5 compute the set of constants that 

are initially contained in the problem; Skolem constants, which may be created during the 

clausification process, have to be removed from this set as step clauses and eventuality 

clauses do not need to be constant-flooded with Skolem constants. Then, the lines 6 to 9 

perform the constant flooding using the set of clauses that was previously computed. The 

set of eventuality clauses is constant-flooded first and in a second step the loop search 

constant c' is used in addition for performing the constant flooding on step clauses if there 

are eventualities contained in the problem. The newly obtained eventuality and step clauses 

are then added to the original sets of eventuality and step clauses, respectively (lines 10 

to 12). The ordering on predicate and functional symbols that is necessary to maintain 

some restrictions imposed by the inference rules of the J~;;-:sub-ca1culus on the first-order 

level is computed in line 13 (a more detailed description is available in Section 6.4.5). In 

line 14 the eventuality information objects are initialised for the obtained eventuality clauses. 

The lines 15 to 19 then create a first loop search marker of iteration index 0 for each 

eventuality, which is then used in the construction of a first loop search clause for each 

eventuality. The second parameter of the "CreateLoopSearchStepClause" method specifies 

the iteration index for which the loop search clause will be built and the step literals that 
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Algorithm 4 Main Method 
1: procedure MONODICPROVER(N, LoopSearchThreshold) 
2: (InitiaiClauses, UniversaiClauses, StepClauses, EventualityClauses) 

= TemporaIClausify(N) 
3: InputClauses := InitialClauses U UniversalClauses U StepClauses 
4: Constants := ListOfConstants(InputClauses) U 

ListOfConstants(EventuaiityClauses) 
5: Constants := RemoveSkolemConstants(Constants) 
6: NewEventualityClauses := PerformConstantFlooding(EventualityClauses, 

Constants) 
7: if length (EventualityClauses ) > ° then 
8: Constants := Constants U {LoopSearchConstant} 
9: end if 

10: NewStepClauses := PerformConstantFlooding(StepClauses, Constants) 
11: EventualityClauses := EventuaiityClauses U NewEventualityClauses 
12: InputClauses := InputClauses U NewStepClauses 
13: ComputeTemporaIOrdering(StepClauses) 
14: InitEvent uaiityInformation(EventuaiityClauses) 
15: for all Eventuality E EventuaiityClauses do 
16: CreateLoopSearchMarker(Eventuality, 0) 
17: InitLoopSearchClause := CreateLoopSearchStepClause(Eventuality, 0, Nil) 
18: InputClauses := InputClauses U {InitLoopSearchClause} 
19: end for 
20: TemporaISaturation(InputClauses, EventualityClauses, LoopSearchThreshold) 
21: end procedure 

should be contained in the loop search clause are given as third parameter. More precisely, 

"CreateLoopSearchStepClause(Eventuality, i, Literals)" creates and returns the loop search 

step clause ...,sf(t) V L(s(t), d) VV;'=l ...,Aj(s(t), tf) V V;=l ...,Aj(s(t)) if Eventuality = OL(x) 

and Literals = {-.Al(t, t f), ... , ...,Am(t,tf), -.A~(t), ... , ...,A~(t)}. The loop search clauses are 

also added to the input clauses in line 18. Finally, in line 20 the temporal saturation method 

is invoked on the input and eventuality clauses (together with the loop search threshold), 

which then performs the main inference and reduction steps. 

In the next section we describe the DSNF transformation. 

6.4.4 Translation Into DSNF 

For the implementation of the DSNF translation tool we have used some ideas originally 

introduced for the A-calculus. Variables in formulae are represented by so-called de Bruijn 

indices (see, e.g., [54J for more details). A variable is represented by the number of 

quantifiers that need to be skipped in order to reach its binding quantifier in the formula's 

tree representation. For example, in de Bruijn notation the formula Yx03yp(x,y) is 

represented by Y03p(0, 1). The use of de Bruijn indices simplifies the comparison of 

formulae in the implementation. 

An important part of the DSNF transformation consists in the verification of whether a 
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Algorithm 5 Verification of DSNF Format 
1: procedure IsINDSNF(Formula) 
2: if ...,ContainsTemporalOperator(Formula) then 
3: return true 
4: end if 
5: if GetTopOperator(Formula) i 0 then 
6: return false 
7: end if 
8: SubFormula := GetFirstSubformula(Formula) 
9: if ...,ContainsTemporalOperator(SubFormula) then 

10: return true 
11: end if 
12: if GetTopOperator(SubFormula) = V then 
13: SubFormula := GetSecondSubformula(SubFormula) 
14: IsQuantified := true 
15: else 
16: IsQuantified := false 
17: end if 
18: if ...,IsQuantified and ContainsFreeVariables(SubFormula) then 
19: return false 
20: end if 
21: if GetTopOperator(SubFormula) = =} then 
22: LeftSubFormula := GetFirstSubformula(SubFormula) 
23: if GetTopOperator(GetSecondSubformula(SubFormula)) i 0 then 
24: return false 
25: end if 
26: RightSubFormula := GetFirstSubformula( GetSecondSubformula(SubFormula)) 
27: if ...,IsPositiveLiteral(LeftSubFormula) or ...,IsLiteral(RightSubFormula) then 
28: return false 
29: end if 
30: if IsQuantified 

and (...,ContainsAtM08tTheFree VariableZero(LeftSubFormula) 
or ...,ContainsAtM08tTheFree VariableZero( RightSubFormula) then 

31: return false 
32: end if 
33: return true 
34: else if GetTopOperator(SubFormula) = 0 then 
35: SubFormula := GetFirstSubformula(SubFormula) 
36: if ...,IsLiteral(SubFormula) then 
37: return false 
38: end if 
39: if IsQuantified and ...,ContainsAtM08tOneFreeVariable(SubFormula) then 
40: return false 
41: end if 
42: return true 
43: end if 
44: ret urn false 
45: end procedure 
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Algorithm 6 Clausification and Translation to First-Order Logic 
1: procedure TEMPORALCLAUSIFY(N) 
2: InitialClauses := 0 
3: UniversalClauses := 0 
4: StepClauses := 0 
5: EventualityClauses := 0 
6: for all Formula E N do 
7: if IsInitiaIFormula(N) then 
8: NewClauses := FOClausify(Formula) 
9: InitialClauses := InitialClauses U 

{TranslateInitiaIClausesToFO( NewClauses)} 
10: else if IsVniversaIFormula(Formula) then 
11: NewClauses := FOClausify(RemoveAlways(Formula» 
12: VniversalClauses := VniversalClauses U 

{TranslateU niversalClausesToFO( NewClauses)} 
13: else if IsStepFormula(Formula) then 
14: NewClause:= TranslateStepFormulaToFO(Formula) 
15: StepClauses := StepClauses U {NewClause} 
16: else if IsEventualityFormula(Formula) then 
17: NewClause := TranslateEventualityFormulaToFO(Formula) 
18: EventualityClauses := EventualityClauses U {NewClause} 
19: end if 
20: end for 
21: return (InitiaIClauses, UniversalClauses, StepClauses, EventualityClauses) 
22: end procedure 

formula is already in DSNF format. The procedure described in Algorithm 5 is used for this 

purpose. The only input parameter is a formula and the value "true" is returned if and only 

if the input formula is in DSNF format. 

If the input formula does not contain a temporal operator (line 2), then the given 

fonnula is an initial formula and "true" can be returned in line 3. Otherwise, the input 

must contain at least one temporal operator. If the fonnula does not start with an 0 
operator (line 5), it cannot be in DSNF format and the value "false" can safely be returned 

(line 6). In line 8 we can assume that the formula starts with an 0 operator. The variable 

"SubFormula" is initialised with the subformula of the 0 operator. Then, if the subformula 

does not contain a temporal operator (line 9), the input formula is of the type O<p and 

we can return ''true'' (line 10). It is now also possible that "SubFormula" starts with a 

universal quantifier (line 12), in which case we assign the fonnula that is quantified over 

to "SubFormula" in line 13 as the remaining checks do not need to consider the universal 

quantifier. Additionally, the variable "IsQuantified" is set accordingly (lines 14 and 16). In 

the case where "SubFormula" does not start with a universal quantifier but contains free 

variables, we can return "false" (lines 18 to 20) as the input fonnula hence contains free 

variables. 
If the tOJrm08t operator of "SubFormula" is an implication (line 21), the input formula 

could potentially be a step clause. The variable "LeftSubFormula" is initialised in line 22 
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with the left-hand side of the implication. Then, if the right-hand side of the implication 

does not start with a 0 operator (line 23), we can return "false" in line 24 as the input 

formula cannot be in DSNF format. Otherwise, the right-hand side of the implication 

is a formula starting with a 0 operator and the formula underneath the 0 operator is 

assigned to the variable 'RightSubFormula" (line 26). If the left-hand side of the considered 

implication is not an atom (Le. a positive literal) or the immediate subformula of the 0 
operator is not a literal (line 27), the input formula is not a step clause and the value "false" 

can be returned (line 28). The two remaining checks shown in the line 30 still verify that 

"LeftSubFormula" and "RightSubFormula" contain at most the free variable with index 0 if 

a preceding universal quantifier has been found in the input formula. 

In the case where the immediate subformula of the D operator (or universal quantifier) 

starts with an eventuality operator 0 (line 34), the immediate subformula of the eventuality 

operator is assigned to the variable "Sub Formula" . If the immediate subformula is not a 

literal (line 36), we can return the value "false" (line 37). And similarly as in the case of 

step clauses, it is verified in the lines 39 to 41 that "SubFormula" only contains at most the 

variable with index 0 if a preceding quantifier has been detected in the input formula. 

Finally, the value "false" is returned in line 44 if the immediate subformula of the 

D operator (or universal quantifier) is not a formula that has an implication or an eventuality 

as tOJrmost operator. 

The implementation of the transformation into DSNF is based on the algorithm described 

in [581 and in Section 2.5. First of all, the input formula is brought into negation normal form. 

Then, innermost complex subformulae Oif'(x), Oif'(x), Dif'{x), if'{x) U tjI{x), if'(x) WtjI{x) 

are successively renamed by new unary predicate symbols P(x), introducing new defining 

formulae, called pre-step clauses, 

D'v'x(P(x) => ~(x)) 

where ~(x) is a formula starting with a temporal operator and every proper subformula 

of ~(x) does not contain a temporal operator. In a final step the pre-step clauses that are 

not already in DSNF are transformed by using the fixed-point definitions of the temporal 

operators 'always' D, 'eventually' 0, 'until' U and 'unless' W. In-between the different 

transformation steps the procedure depicted in Algorithm 5 is used to identify formulae that 

are already in DSNF, which are then excluded from future transformation steps. 

In the next section we describe the procedures responsible for the clausification and 

translation into first-order logic of temporal formulae in DSNF. 

6.4.5 Clausification and Translation to FOL 

Algorithm 6 depicts the ''TemporalClausify'' method which is responsible for the clausification 

and the translation into first-order logic of a set of input formulae N in DSNF. 

In the lines 2 to 5 the set of clauses that will contain the result of the clausification and 

temporal translation are initialised. Then, the temporal type of every formula contained 
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Algorithm 1 Computation of the Necessary Weight for the Temporal Successor Function 
1: procedure COMPUTETEMPORALORDERINc(Clauses) 
2: LeftHandAtoms := Nil 
3: MaxWeight:= 0 
4: for all Clause E Clauses do 
5: if IsStepClause( Clause) then 
6: LeftHandAtoms:= LeftHandAtoms U ExtractUniversaIAtoms(Clause) 
7: end if 
8: end for 
9: for all Atom E LeftHandAtoms do 

10: Weight := ComputeAtomWeight(Atom) 
11: MaxWeight := max(MaxWeight, Weight) 
12: end for 
13: SetAtomWeight(TemporaISuccessorFunction, MaxWeight + 1) 
14: end procedure 

in the set of input formulae N is determined in the lines 6 to 20 and the corresponding 

transformation method is invoked. In a last step the resulting clause is added to the 

appropriate output clause set in the lines 9, 12, 15 and 18. 

The clausification process of an initial formula is straightforward and proceeds exactly 

as in the first-order case through the "FOClausify" method just as if no temporal operators 

are present. During the translation into first-order logic the arity of every predicate is 

increased by one argument and the temporal constant 0 is added as first argument to every 

literal contained in the initial clause. The clausification and translation into first-order logic 

of universal clauses is similar after the leading temporal operator 0 has been removed, 

but instead of the temporal constant 0 a fresh variable (per clause) is added as temporal 

argument to the literals. 
For a step clause P(x) =* OQ(x) the clausification is trivial: it suffices to copy the 

literals and additionally negate the literal P(x). Again, the arities of the predicates are 

increased by one unit and the literal P(x) receives a variable fresh t as temporal argument, 

whereas the temporal argument of the literal Q(x) will be the temporal successor term set). 

Finally, the clausification of eventualities is also straightforward. After having copied 

the literal to the clause, we still have to increase its arity by one and add a fresh variable as 

temporal argument. 
The procedure for computing the symbol weight of the temporal successor function is 

shown in algorithm 7 (see Section 6.2 for more details). The algorithm only has one single 

input parameter, namely the set of (temporal) clauses that should be considered for the 

computation of the symbol weight. After the variables "LeftHandAtoms" and "Max Weight" 

have been initialised in the lines 2 and 3, an iteration is then performed through all the input 

clauses (lines 4 to 8). If an input clause is identified to be a step clause, all its universal 

atoms, i.e. the atoms from its left-hand side, are added to the set "LeftHandAtoms" (lines 5 

to 7). The weight of every left-hand atom is then computed and the maximum of these 

weights is calculated by consecutively adjusting the "MaxWeight" variable (lines 9 to 12). 
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Algorithm 8 Efficient Retrieval of Loop Search Clauses 
1: procedure GETTERMINATINCLooPSEARCHSTEPCLAUsEs(Eventuality, i, 

WOIndex,USIndex) 
2: Clauses: = Get TerminatingLoopSearchStepClausesFromIndex(Eventuality, i, 

USIndex) 
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3: return Clauses U GetTerminatingLoopSearchStepClausesFromIndex(Eventuality, i, 
WOlndex) 

4: end procedure 

Algorithm 9 Efficient Retrieval of Loop Search Clauses from an Index 
1: procedure GETTERMINATINCLooPSEARCHSTEPCLAUSESFROMINDEx(Eventuality, i, 

Index) 
2: Clauses := Nil 
3: EventualityInf:= GetEventualityInformation(Eventuality) 
4: LoopSearchMarker := GetLoopSearchMarker(EventualityInf, i) 
5: Terms := GetUnifiers(Index, LoopSearchMarker) 
6: for all Term E Terms do 
7: if IsVariable(Term) then 
8: continue 
9: end if 

10: for all Literal E GetAssociatedLiterals(Term) do 
ll: Clause := LiteraIOwningClause(Literal) 
12: if IsTerminatingStepClause( Clause) then 
13: Clauses := Clauses U {Clause } 
14: end if 
15: end for 
16: end for 
17: return Clauses 
18: end procedure 

Finally, the weight of the temporal successor function is set to be the maximum of the 

left-hand side atom weights, increased by one unit (line 13). 

6.4.6 Efficient Access to Loop Search Clauses 

The temporal saturation procedure which is described in Section 6.4.7 requires fast access to 

the terminating loop search step clauses that are present in the sets of usable and worked-off 

clauses for a given eventuality and loop search iteration index. As the sets of usable and 

worked-off clauses can become quite large and as the terminating loop search step clauses 

need to be accessed frequently, it is, performance-wise, not feasible to iterate through the 

sets of usable and worked-off clauses every time the terminating loop search clauses need to 

be accessed. 

In order to keep the retrieval performance at an acceptable level, it turns out that the 

same clause retrieval procedure that is responsible for finding unifiable literals during the 

computation of resolution inferences can be used for the retrieval of terminating loop search 

clauses. More concretely, given an eventuality 0 L(x) and a loop search iteration index i the 



144 CHAPTER 6. TSPASS - A FAIR MONODIC TEMPORAL LOGIC PROVER 

terminating loop search step clauses for the eventuality OL(x) and the iteration index i can 

be found by searching for all the clauses which contain a literal that is unifiable with the 

loop search marker s;(x). As loop search markers do not possess any arguments and as they 

only occur in left-hand sides of loop search clauses, the aforementioned retrieval operation 

returns all the terminating and non-terminating loop search clauses related to the marker 

s;(x). An additional filtering step is required in order to only obtain the terminating loop 

search clauses. 

The procedures depicted in Algorithms 8 and 9 show how the retrieval of terminating loop 

search clauses has been implemented. The method "GetTerminatingLoopSearchStepClauses" 

shown in Algorithm 8 uses the procedure described in Algorithm 9 to retrieve the terminating 

loop search clauses from the sets of usable and worked-off clauses given an eventuality and 

a loop search iteration index. 

The main method for retrieving terminating loop search clauses is shown in Algorithm 9. 

Its input parameters are the eventuality and loop search iteration index in question, together 

with the indexing structure that should be used for the retrieval operations. The set 

"Clauses", which will contain the resulting clauses, is initialised in line 2 and the appropriate 

loop search marker is retrieved in line 4 through an eventuality information object, which 

is accessed in line 3 by the "GetEventualityInformation" procedure shown in Algorithm 3. 

The method "GetLoopSearchMarker" retrieves the loop search marker symbol for a given 

loop search iteration from a "EventualityJnf' object. Then, a set "Terms" is constructed 

in line 5, which contains all the atom (or variable) occurrences that can be unified with the 

considered loop search marker. In lines 6 to 16 an iteration is performed through the "Terms" 

set. Variables contained in the term set are discarded (lines 7 to 9) and for every non-variable 

the clauses associated to the atom in question are retrieved (lines 10 and 11). The procedure 

"GetAssociatedLiterals" first retrieves all the literal instances that contain a given atom, and 

then the method "LiteralOwningClause" fetches the clause that is associated with the literal 

instance in question. Finally, if a considered clause is a terminating step clause, it is added 

to the set of returned clauses (line 13). 

In the subsequent section we describe the main inference and reduction procedure of 

TSPASS. 

6.4.7 Temporal Saturation 

The main inference and reduction method of TSPASS is depicted in Algorithm 10. Similarly 

to the saturation method of SPASS (see Algorithm 1), TSPASS also uses sets of worked off 

and usable clauses. The input parameters of TSPASS' saturation procedure are a set of 

first-order input clauses, a set of first-order eventuality clauses and a threshold parameter 

for performing loop search tests. 

In line 2 the set of usable clauses is initialised with the set of input clauses, and the 

set of worked off clauses is set to be empty (line 3). The main saturation loop extends 

from line 5 to line 33; in line 4 a variable i is initialised which counts the iterations of the 
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Algorithm 10 
1: procedure TEMPORALSATURATION(N, Eventualities, LoopSearchThreshold) 
2: US:= N 
3: WO:= 0 
4: i:= 0 
5: while US #- 0 and .1 ¢ US do 
6: (Given, US) := choose(US) 
7: WO:= WO U {Given} 
8: if IsTerminatingStepClause(Given) 

and ContainsExactlyOneLoopSearchMarker(Given) then 
9: if length(Given) = 1 then 

10: NEW := {.l} 
11: else 
12: NEW := {CreateNextLoopSearchStepClause(Given)} 
13: end if 
14: else 
15: NEW := inf(Given, WO) 
16: end if 
17: if NEW #- 0 then 
18: NEW: = DeleteDifferentMarkerLoopSearchClauses(N EW) 
19: US := US U NEW 
20: (US, WO) := red (US , WO) 
21: end if 
22: if US = 0 or i = LoopSearchThreshold then 
23: NEW:= 0 
24: for all Eventuality E Eventualities do 
25: NEW := NEW U PerformLoopSearchTest(Eventuality) 
26: end for 
27: if NEW =I 0 then 
28: US := US U NEW 
29: (US, WO) := red(US, WO) 
30: end if 
31: i := 0 
32: end if 
33: i := i + 1 
34: end while 
35: if .1 E US then 
36: return U nsatisfiable 
37: else 
38: return Satisfiable 
39: end if 
40: end procedure 
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saturation loop. A clause is selected as "given clause" in line 6 and it is removed from the 

set of usable clauses, i.e. a new set US is returned from which the given clause has been 

removed. In line 7 the given clause is already added to the set of worked off clauses. Then, 

it is checked in line 8 whether the given clause is a terminating step clause and contains a 

loop search marker. Additionally, if the given clause only contains a single literal (line 9), 

we can conclude that the given clause is of the form sf ~ 0.1 (for an eventuality Land 

an iteration index i). We can thus infer that the initial temporal problem is unsatisfiable 

and we assign a singleton set which only contains the empty clause to the set of derivable 

clauses NEW. This step replaces the test for the presence of the clause sf ~ 0.1 in the set 

of usable clauses US depicted in the case distinction following step 2 in Figure 6.2, which 

would lead to a poor performance of the prover architecture in practice. Then, if the given 

clause contains more than one literal, a new loop search clause based on the literals contained 

in the given clause is created in line 12 for the subsequent loop search iteration by the 

method "CreateNextLoopSearchStepClause". It is given a terminating loop search clause 

-,sf{t) VV~l -,Ai(t, t') VV;=l ...,A~(t) as its only argument (for an eventuality OL(x)) and it 

returns the loop search step clause ""Shl (t) V L(s(t), d) vVj=l ...,Ai(s(t), t') VV;=l ...,Ai(s(t)) 

created through the "CreateLoopSearchStepClause" method. In line 12 the set NEW of 

derivable clauses then just consists of the new loop search clause. Otherwise, if the given 

clause is not a terminating step clause which contains a loop search marker, the given clause 

is used in line 15 to compute all the possible inferences with the set of worked off clauses. 

The newly obtained clauses are stored in the set of derivable clauses NEW. 
In the case where the set of derived clauses NEW is not empty, we have to perform 

reduction inferences in order to keep the sets of usable and worked off clauses fully reduced. 

An important reduction step consists in deleting clauses that contain at least two different 

loop search markers (see line 18) as they are not necessary for the overall saturation process. 

This deletion is performed by the method "DeleteDifferentMarkerLoopSearchClauses". 

Moreover, the removal of loop search clauses that contain at least two different loop search 

markers contributes to the possible termination of the saturation process for a satisfiable 

(first-order) temporal problem. After having added the set of newly derived clauses to the 

set of usable clauses (line 19), the sets of usable and worked off clauses are inter-reduced 

(line 20) and the reduced sets are returned by the reduction procedure. 

Loop search tests are performed in the lines 22 to 31 whenever the set of usable clauses 

is empty or the iteration counter has reached the loop search threshold. Note that it is 

important to perform loop search tests when the set of usable clauses has become empty in 

order to avoid the situation where additional universal clauses could be derived through loop 

search but the loop search is not started due to the iteration counter not having reached the 

loop search threshold. Then, in the lines 23 to 26 loop search tests are performed for every 

eventuality and the possibly resulting universal clauses are collected in a set NEW of newly 

derived clauses. If new clauses have been obtained, they are added to the set of usable 

clauses in the lines 27 to 30, and the sets of usable and worked off clauses are inter-reduced 

again. Finally, the loop search iteration counter is reset in line 31. 
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Algorithm 11 Subsumption-based Loop Search Testing Procedure 
1: procedure PERFORMSUBSUMPTIONLooPSEARCHTEsT(Eventuality,US, WO) 
2: LoopSearchClauses := 0 
3: LastIterationIndex := RetrieveLastlterationIndex(Eventuaiity) 
4: if LastlterationIndex ~ 1 then 
5: Clauses := GetTerminatingLoopSearchStepClauses(EventualityClause, O,US, 

WO) 
6: end if 
7: for i = 0, ... , LastlterationIndex - 1 do 
8: l"extClauses := GetTerminatingLoopSearchStepClauses(EventualityClause, 

i + I,US, WO) 
9: if Clauses -I- 0 and NextClauses -I- 0 then 

10: if SetSubsumes( Clauses, N extClauses) 
and SetSubsumes(NextClauses, Clauses) then 

11: LoopSearchClauses := LoopSearchClauses u 
ComputeLoopSearchResult( N extClauses) 

12: 

13: 

14: 

end if 
end if 
Clauses := Nt'xtClauses 

15: end for 
16: return LoopSearchClauses 
17: end procedure 

Similarly to the saturation procedure of SPASS, if the empty clause is contained in the 

set of usable clauses, the set of input clauses N is unsatisfiable (lines 35 and 36). Otherwise, 

the set of usable clauses is empty, which implies that the set N is satisfiable (line 38). 

In the next section we describe the implementation of the subsumption-based and logical 

loop search test that can be performed by TSPASS. 

6.4.8 Loop Search Testing 

The subsumption-based loop search test is depicted in Algorithm 11. The input parameters 

of the procedure are the eventuality for which the loop search tests have to be performed 

and (indexes for the) sets of usable and worked off clauses. In the lines 2 and 3 the set 

"LoopSearchClauses" of newly derived universal clauses (through an application of the 

eventuality resolution rule) is initialised and the last loop search iteration index for the given 

eventuality is retrieved. The remainder of the procedure works with two sets of clauses, 

"Clauses" and "NextClauses", which contain the terminating step clauses that have been 

derived for two consecutive loop search iterations i and i + 1, respectively. In line 5 the set 

"Clauses" is initialised with the terminating loop search clauses contained in the sets of usable 

and worked off clauses for the iteration index O. Then, in the lines 7 to 15, the terminating 

loop search clauses are first of all retrieved for the subsequent loop search iteration index 

and are stored in the "NextClauses" set. If both the "Clauses" and "NextClauses" set are 

not empty (line 9), a loop search test can be performed for those two loop search iteration 

indexes. The procedure "SetSubsumes", which is invoked twice in line 10, checks whether 
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Algorithm 12 Loop Search Testing Procedure Based on Logical Equivalence 
1: procedure PERFORMLOGICALLooPSEARCHTEST(Eventuality, US, WO) 
2: LoopSearchClauses := 0 
3: LastlterationIndex := RetrieveLastlterationIndex(Eventuality) 
4: Hi := Nil 
5: Hi+l := Nil 
6: if Lastlterationlndex >= 1 then 
7: Clauses := GetTerminatingLoopSearchStepClauses(EventualityClause, 0, US, 

WO) 
8: Hi := BuildlntermediateLoopSearchResult(Clauses) 
9: end if 

10: for i = 0, ... , Lastlterationlndex - 1 do 
11: NextClauses := GetTerminatingLoopSearchStepClauses(EventualityClause, 

i+ I,US, WO) 
12: Hi+l := BuildIntermediateLoopSearchResult(NextClauses) 
13: UnifyVariables(Hi , Hi+l) 
14: if Hi =I- Nil and Hi+l =I- Nil then 
15: Xt := TemporaIVariable(Hi ) 

16: x := FreeVariable(Hi , HHd 
17: H:= "tXt "Ix: Hi(xt,x) <* H i +1 (Xt,X) 
18: if TemporaISaturation(Clausify(...,H), 0, -I) = Unsatisfiable then 
19: LoopSearchClauses := LoopSearchClauses U 

ComputeLoopSearchResult(NextClauses ) 
20: end if 
21: end if 
22: Clauses := NextClauses 
23: Hi := Hi+i 
24: end for 
25: return LoopSearchClauses 
26: end procedure 

every clause contained in the set given as first argument subsumes at least one of the clauses 

contained in the set given as second argument, disregarding the loop search marker included 

in each clause. If every clause from the "Clauses" set subsumes at least one clause from the 

"NextClauses" set and vice versa, a loop has been found. The resulting universal clauses are 

computed in line 11 through the "ComputeLoopSearchResult" method. It is given a list of 

terminating loop search clauses as input and it computes the resulting universal clauses by 

copying the corresponding literals except the the loop search marker literal to a new clause 

and by replacing the loop search constant d by a fresh variable, i.e. for the terminating 

loop search clause ...,sf(t) V V'; 1 ...,Aj(t, d) V V;=l ...,Aj(t, Xj) V V~=l ...,Aj'(t) the method 

"ComputeLoopSearchResult" returns the universal clause Vj=l ...,Aj(t, X)VV;=l ...,Aj(t, Xj) V 
V~=l ...,Aj'(t), where x is a fresh variable. The resulting universal clauses are added to the 

set "LoopSearchClauses", which holds all the universal clauses that are obtained through 

successful loop search tests. Finally, in line 14 the set "NextClauses" is assigned to the set 

"Clauses" so that the set "Next Clauses" can contain the terminating loop search clauses for 

the subsequent iteration index. 
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The procedure for logical loop search testing is shown in Algorithm 12. It is organised 

similarly to the subsumption-based loop search testing method. In addition to collecting 

clauses for consecutive loop search iterations in the two sets of clauses "Clauses" and 

"NextClauses", two formulae Hi and HHl are constructed that represent the disjunctions 

of the existentially closed (and freed of the loop search constant c') left-hand sides of the 

terminating step clauses obtained for two consecutive loop search iterations (see Figure 6.2 

for details). The two formulae, or ''terms'' in the terminology of SPASS, are initialised in 

the lines 4 and 5. After having obtained the set of terminating step clauses for the loop 

search iteration that is currently being analysed (line 11) the corresponding formula Hi+l is 

constructed in line 12. The free variables, i.e. the temporal variable and the free variable 

resulting from replacing the loop search constant c' , of the formulae Hi and HH 1 are unified 

in line 13, and if both formulae are defined, a loop search test can be performed (lines 14 

to 21). In order to construct the equivalence formulae necessary for the loop search test, the 

temporal variable Xt and the free variable2 x of the formulae Hi (and Hi+l) still have to be 

determined (lines 15 and 16). Then, in line 17 a formula H is defined which is valid if and 

only if the loop search test is successful for the terminating loop search clauses contained in 

the sets "Clauses" and "Next Clauses" (after having removed the loop search markers). Note 

that the loop search equivalence formula shown in Figure 6.2 only quantifies universally over 

the free variable x, but the formula H also quantifies over the temporal variable Xt, which 

avoids the creation of new predicates only for the loop search test. It can be shown that 

the formula H is valid if and only if the formula shown in Figure 6.2, which uses the same 

predicates, but with reduced arities, is valid. 

In order to test for validity the negation of the formula H is clausified in line 18 

and the resulting set of clauses is saturated by the "TemporaISaturation" procedure (see 

Algorithm to). As t.he value "-I" will be be passed to the"TemporaISaturation" procedure 

as loop search threshold (and the empty set for the parameter handling eventualities), the 

saturation which is performed is in fact equivalent to a regular first-order saturation. Then, 

if the "Temporal Saturation" procedure returns "Unsatisfiable", the formula H is valid and 

the loop search test has succeeded. Finally, the resulting universal clauses are computed 

in line 19 and added to the set "LoopSearchClauses", which collects the newly obtained 

universal clauses. 

6.4.9 Implementation Peculiarities 

In this section we describe some additional modifications that had to be carried out on the 

source code of SPASS in order to support ordered fine-grained resolution with selection. 

First of all, the implementation of the (ordered) factoring inference rule had to be 

modified in order to accommodate the factoring in the (at most) monadic negative universal 

clauses rule. The modifications simply consist in switching to unordered factoring when 

2 Hi and HHl can have at most one free variable, but it is theoretically possible that at least one of the 
two formulae is closed. 
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factoring inferences on a (at most) monadic negative universal clause are to be performed. 

Another peculiarity of implementing ordered fine-grained resolution with selection and 

the fair inference architecture is related to the missing distinction between terminating 

step clauses of the form C :::} 01. and universal clauses on the first-order level. For 

example, if a terminating loop search clause s~(x) A P(x) :::} 01. has been derived (for 

a unary predicate P(x), a loop search iteration i and an eventuality <)L(x», the only 

possible inference on this clause in the original calculus would be an application of the 

clause conversion rule. However, such inferences are not allowed on loop search clauses 

in the fair architecture. On the other hand, on the first-order level the terminating step 

clause s~(x) A P(x) :::} 01. is represented as the clause ....,s~(x) V ....,p(t, x), where t is a 

temporal variable. For instance, it would now be allowed to perform a resolution inference 

on the literal ....,p(t, x) with the unit clause Pet, x), which would derive the terminating loop 

search clause s~(x) :::} Ol.. The presence of the terminating step clause s~(x) :::} 01. would 

immediately result in the prover architecture shown in Figure 6.2 to Qualify the currently 

considered problem as unsatisfiable, which could potentially lead to a loss of soundness. To 

avoid this, the implementation of the (ordered) resolution inference rule has been modified 

in such a way that inferences are not performed on terminating loop search clauses. 

Finally, the problems mentioned in Section 6.2 related to the special ordering used for 

performing resolution with step clauses on the first-order level also had to be considered in 

the implementation. After a clause has been modified, a reinitialisation function is called 

in the original SPASS prover which ensures that the clause data structure remains in a 

well-defined state. This reinitialisation procedure has been extended in order to remove the 

maximal literal flag in left-hand sides of step clauses. The properties of the literal ordering 

used guarantee that at least one literal remains maximal in the right-hand side of a step 

clause even after the maximal literal flags have been cleared in the left-hand side. 

6.4.10 Fairness Problems Related to the Regular Clause Selection 

Function 

While conducting experiments with an earlier prototype of TSPASS it became apparent 

that the regular clause selection function of SPASS is not sufficient to guarantee the fairness 

of the architecture depicted in Figure 6.2. 
In fact, TeMP's architecture (Figure 6.1) can be emulated by alternating between loop 

search and non-loop search clauses in the clause selection function whenever no clause of 

the currently considered type (Le. either loop search or non-loop search) is contained in the 

set of usable clauses anymore. 
Consequently, it must be ensured that non-loop search clauses are not continuously 

selected as "given" clauses as such a behaviour could lead to a loss of fairness. 

On the other hand, special care needs to be taken when loop search clauses are to be 

chosen as "given" clauses. The main criterion that SPASS 3.0 considers when selecting a 

"given" clause is the size of clauses: smaller clauses are preferred over clauses with a larger 
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number of literals. Now, in the situation when the selection strategy only consists in choosing 

a loop search clause as "given" clause after a certain amount of non-loop search clauses have 

been chosen, it could happen that the smallest clause contained in the set of usable clauses is 

a terminating loop search clause C = s! /\C =* 0..1. (in high-level notation). If we additionally 

assume that a loop for the eventuality Ol exists and that the equally small terminating loop 

search clause S!+l /\ C =* 0..1. can easily be derived once the loop search clause C has been 

selected, the architecture shown in Figure 6.2 (page 130) can get "stuck" in the loop process. 

Due to the introduction of new clauses S!+l =* -,C V l once a terminating loop search clause 

s! /\ C ::::} 0..1. has been found, it might happen that the architecture continuously derives 

new terminating loop search clauses S!+2/\ C ::::} 0..1., S!+3/\ C ::::} 0..1., .... Other loop search 

clauses, which would lead to a loop being found, will not be considered by the architecture. 

As a remedy a special way of choosing loop search clauses as "given" clauses has been 

implemented in TSPASS. The implemented loop search selection strategy only tends to 

consider inferences with a clause s! /\ C ::::} OD when the set of usable clauses does not 

contain a clause s~ /\ E ::::} OF with j < i. In order to guarantee fairness a free selection of 

loop search clauses is performed after a certain number of these "sequential" loop search 

clause selections. 

Finally, in order to ensure that neither loop search clauses nor non-loop search clauses 

are continuously selected, and, for example, more and more marker symbols are introduced 

without considering non-loop search clauses, a mechanism which alternates between loop 

search and non-loop search clauses during the selection process has been implemented in 

TSPASS. The refined loop search clause selection strategy described above together with 

an alternation between loop search and non-loop search clause selections has proven to be 

quite effective in practice so far. 

6.5 Experimental Results 

In this section we describe the experiments that we have performed in order to evaluate the 

practical performance of TSPASS. 

6.5.1 Considered Temporal Problems 

For analysing the performance of TSPASS on PLTL problems, we have applied TSPASS on 

the benchmark classes for PLTL formulae that were introduced in [531. There, the authors 

design two benchmark classes C:an and C;an which can be used to compare resolution and 

tableaux-based PL TL provers. Both benchmark classes consist of formulae which partly 

follow a pre-defined struct ure. The remaining part of those formulae is composed of randomly 

generated clauses. The classes are parametric with four parameters, l, n, k, and p. Regarding 

the randomly generated part of a formula, the parameter l determines the number of clauses, 

the parameter n specifies the number of propositions, the parameter k defines the number 

of literals per clause, and the parameter p determines the probability with which a literal 
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is assigned negative polarity. The pre-defined part of a fonnula is only influenced by the 
parameter n. 

Formulae of the class C;an are of the form 

D(OLi V ... v OLl) /\ ... /\ D(OL~ v ... v OLi) 

/\ o (--'PI V Op2) 

/\ D(--,P2 V 01'3) 

where for every i with 1 :$ i :$ I the literals L1, ... ,Li are determined by choosing k distinct 

propositional variables randomly from the set {PI, ... ,Pn} of n propositional variables and 

by assigning negative polarity to each literal with probability p. 

Fonnulae of the class C;"n are constructed as follows: 

(rl V L~ V ... V Lk) /\ ... /\ (rl V Li V ... V Li) 

/\ o (-,rn VOrl) 

/\ D(--,rn-l V Orn) 

/\D(-,rl VOr2) 

/\ o (-,rn V O--,qn) /\ ... /\ D(--,rl V O--,qn) 

/\ (-,rl V qt) /\ (-,rl V -,qn) 

/\ D( --'ql V 082) /\ 0(-'82 V q2 V Oqn V ... V Oq3) 

where, again, for every i with 1 :$ i :$ I the literals L1, ... , Li are determined by choosing k 

pairwise different propositional variables randomly from the set {PI, ... ,Pn} of n proposi

tional variables and by assigning negative polarity to each literal with probability p. In the 

experiments cOIlRidered here, the values for k and P were set to 3 and 0.5, respectively, for 

both classes. For the parameter n we chose the two values 5 and 12. 

The benchmark classes, C~n (n = 5) and C~n (n = 12) are designed in such a way that 

fonnulae contained in those classes can be theoretically solved more easily by resolution

based decision procedures, whereas the second set of benchmark classes, C;an (n = 5) and 

C;"n (n = 12), ace designed so that the formulae in them can be theoretically solved more 

easily by tableaux-based systems. 

Then, in order to evaluate the performance of TSPASS on its main input language, the 

monodic fragment of FOTL, we consider several types of problems, some of which result 

from translating problem specifications expressed in the temporal logic of knowledge KL(n) 
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into monodic FOTL. The logic KL(n) is the fusion of PLTL with the multi-modal S5 logic 

(see, e.g., [35] for more details); a description of the translation into monodic FOTL that we 

used can be found in [36]. 

In [27,28] a specification of the board game Cluedo [I] in KL(n) is given. The specification 

describes an example Cluedo game, for which one can formally prove that the different 

players can deduce additional knowledge over the course of the game. We have applied 

TeMP and TSPASS on six valid assertions that can be made in this example Cluedo game, 

after having transformed the KL(n) formulae into monodic FOTL. 

Another application of the KL(n) logic for formal verification purposes can be found 

in [30,31]. There, a formal specification of the Needham-Schroeder protocol is given, which 

is designed to authenticate two communicating agents A and B against each other. In order 

to do so, several encrypted messages containing values private to A and B are exchanged 

between the two agents using public-key cryptography. We have used TeMP and TSPASS 

to prove several properties of the Needham-Schroeder algorithm using the translation into 

monodic FOTL of the KL(n) specification. 

Additionally, we have considered other classes of problems that do not result from 

translations of KL(n) formulae. A formal model based on parameterised finite state machines 

which is suitable for specifying and verifying a range of communication protocols is given 

in [25]. Following the approach described in [39]' the formal model can be used to express 

the behaviour of various cache coherence protocols in monodic FOTL. Such protocols are 

useful for ensuring cache data consistency in shared-memory multi-processor systems. We 

have applied TeMP and TSPASS on the specification of the MSI and Synapse N+l cache 

coherence protocols (see, for example, [44]) and we have verified one correctness property. 

Finally, in the last class of monodic FOTL problems that we consider temporal logic is 

primarily used as a formal language for specifying abstractions of foraging robot behaviour, 

which are then extended to the presence of multiple robots. The expressivity of first-order 

temporal logic (in particular the monodic fragment of FOTL) allows it to consider an 

arbitrary number of robots acting simultaneously in these problems, which then results in 

an analysis of swarm behaviour. TeMP and TSPASS have been employed to prove numerous 

properties of an example transition system that specifies foraging behaviour involving an 

arbitrary (potentially infinite) number of robots. More details about the specification can 

be found in [13]. 

All the experiments that we describe in the following were run on a PC with an Intel 

Core 2 Duo E6400 CPU and 2 GiB of main memory. We have conducted our experiments 

with version 0.92-0.16 of TSPASS. 

6.5.2 Performance on Propositional Temporal Problems 

In addition to the regular resolution and factoring inference rules, SPASS possesses additional 

inference and reduction rules that should increase the performance of the theorem prover. 

Before such an additional rule can be used in the context of temporal reasoning, one has to 
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analyse its compatibility with the fair architecture in order to ensure that its refutational 

completeness is maintained. However, as the proof of refutational completeness is based 

on simulating J;C>:s,J,-derivations, proving the refutational completeness of a such extended 

architecture is not a trivial task. It has turned out, though, that one can show fairly easily 

that one such rule, the matching replacement resolution rule, restricted to PL TL problems 

does not destroy the refutational completeness of the fair inference architecture. 

The matching replacement resolution reduction rule implemented in SPASS is defined as 

follows: 
C 1 V A C2 v...,B 

C1 V A,C2 

if there exists a substitution u such that 

(i) Au = B, and 

(ii) C1u ~ C2 · 

The effect of this rule is to remove the literal ...,B from the clause C2 V ...,B if there exists a 

clause C1 V A and a substitution u which fulfils the conditions (i) and (ii) described above. 

Regarding soundness of the inference rule, one can observe that a resolution inference on the 

literals A and ...,B of the two premises using the substitution u leads to the clause C1u V C2. 

Thus, one obtains the clause C2 after having eliminated duplicate literals, which obviously 

suhsumes the clause C2 v...,B. 
For propositional clauses C1 V A and C2 v...,B, the applicability conditions for the matching 

replacement rule reduce to the conditions A = Band C 1 ~ C2 . Consequently, an application 

of matching replacement resolution in the propositional case corresponds to an unordered 

resolution inference, which is followed by an elimination of duplicate literals and the removal 

of the subsumed clause C2 v...,B. It is therefore easy to see that the refutationai completeness 

of the fair inference procedure F is maintained if matching replacement resolution is added as 

an additional reduction rule. On the first-order level, then, one has to ensure that matching 

replacement resolution is not applied on literals that occur in terminating loop search clauses 

(as this would alter the results of loop search computations) and on literals contained in the 

left-hand sides of step clauses. In TSPASS the implementation of the matching replacement 

resolution rule has been modified accordingly. Moreover, conditions (i) and (ii) ensure that 

the clause C2 v...,B cannot be a translated universal clause if the clause C 1 V A is a translated 

initial or step clause. Thus, the refutational completeness of TSPASS is preserved if the 

matching replacement resolution rule is activated on propositional temporal problems. 

We now analyse the performance of TSPASS on PLTL problems. For every value of l 

between 1 and 8n, 100 random formulae from the classes C~an and C;an for n = 5 and n = 12 

were generated and first tested for satisfiability (using TSPASS). The results obtained are 

depicted in the topmost graphs of Figures 6.4, 6.5, 6.6, and 6.7. We can observe that the 

probability of a formula from either the class C~an or C;an being unsatisfiable increases with 

the value of the quotient "*' eventually culminating in all formulae being unsatisfiable for 

C~an (n = 5) or (n = 12) and C;an (n = 12). 
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Figure 6.9: Experimental Results Obtained for Different Inference Options of TSPAS on 
the Class C;'an with n = 5 and n = 12 
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For comparing the proof search performance, we have run TeMP, TSPASS with matching 

replacement resolution (MRR), TRP++, the Logics Workbench 1.1 using the 'model' and the 

'satisfiable' function, and the Tableau Workbench on the generated formulae for the classes 

C;an and C;an with 71 = 5 and n = 12. TSPASS was instructed to perform subsumption-based 

loop search tests. The required median CPU execution time and the median number of 

derived clauses (for the resolution-based systems) on each problem set are shown in the 

middle and lowermost graphs, respectively, in the Figures 6.4,6.5,6.6, and 6.7. A time limit 

of 1000 CPU seconds was imposed on each problem. 

For the class C;an with n = 5, we can observe that the the Tableau Workbench shows 

the worst median CPU execution time. For the majority of the systems the execution time 

was negligible, and even below O.Ols. Regarding the number of derived clauses, one can 

see that TSPASS derives slightly more clauses than TeMP or TRP++, especially on the 

problems which are more likely to be satisfiable. 

Then, for the class C~n with n = 5, we first of all note that the 'satisfiable' function 

of the LWB cannot solve all the problems within the given time limit and that TRP++ 

requires the least execution time. Furthermore, TSPASS requires less execution time than 

TeMP on the problems that are more likely to be satisfiable. For the number of derived 

clauses, one can observe that TSPASS derives less clauses than TeMP or TRP++. 

The results for the class C;an with n = 12 show that the Tableau Workbench cannot 

solve all the problems within the given time limit. Furthermore, TSPASS requires more 

execution time than TeMP or TRP++, which needs less than 0.008s on all the problems, 

but the execution time of TSPASS is still negligible. Again, TSPASS derives slightly more 

clauses than TeMP or TRP++, in particular on the problems that are more likely to be 

satisfiable. 

Finally, for the class C;'an with n = 12, the Tableau Workbench cannot solve all the 

problems within the given time limit. Moreover, the execution times of TSPASS are 

comparable with those of TRP++ on the problems that are more likely to be satisfiable. 

TRP++ requires slightly less execution time than TSPASS on the problems that are more 

likely to be unsatisfiable. Overall, we can observe that TeMP requires more time than 

TSPASS. Concerning the number of derived clauses, one can see that TSPASS derives less 

clauses than TeMP and TRP++. 

In conclusion one can say that the performance of TSPASS is comparable with the 

performance of TeMP on PLTL problems. TRP++ is an optimised prover for PLTL, and 

consequently, it is natural that it performs slightly better than TeMP or TSPASS on PLTL 

problems. We still have to note that TSPASS does not exhibit the drop in execution time 

and in the number of derived clauses when the problems tend to be unsatisfiable. We 

attribute this observation to the design of the fair inference architecture which does not 

give any preference to either the loop search process or the main saturation at different 

instants of the proof search process. It might therefore take longer to derive the empty 

clause from the set of universal and initial clauses as the main saturation inferences are 

regularly "interrupted" by loop search computations. At the same time the fair architecture 
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derives significantly less clauses on the problems that are harder to solve for resolution-based 

methods, Le. on the class C~an' which is due to the fact that the fair architecture does not 

have to compute different types of saturations in the proof search process. 

In order to evaluate the effectiveness of the matching replacement resolution rule and also 

of different rewrite possibilities for the DSNF transformation, we have executed TSPASS 

with different inference and rewrite options on the classes C;an and C~an for n = 5 and 

n = 12. The median number of derived clauses for the class C;an are depicted in Figure 6.8, 

whereas Figure 6.9 shows the median number of derived clauses for the class C~an' The 

rewrite options for the DSNF transformation are 

• a regrouping of formulae (O'P) E9 (01/J) into O( 'P E9 'IjJ) for E9 E {I\, v} called regrouping 

of next-state opemtors (RGN), and 

• an extension of the definition of step clauses in DSNF format in such a way that 

extended step clauses (ESC) are allowed, Le. step clauses which contain more than one 

literal in their left-hand or right-hand sides. This extension of the definition ideally 

leads to fewer renaming operations in the DSNF transformation process. 

First of all, we have to note that the DSNF transformation options result in performance 

improvements in the proof search process for formulae of the class C;"n. On the class C;an' 

however, these options cause a performance loss for n = 12. 

We can finally observe that the use of matching replacement resolution reduces the 

number of derived clauses in both problem classes. An even greater reduction is obtained 

trough the use of the DSNF transformation options on the class C~n' 

6.5.3 Effectiveness of Redundancy Elimination 

In order to show the effectiveness of tautology elimination, forward subsumption, and 

backward subsumption for the subsumption-compatible ordered fine-grained resolution with 

selection calculus, we have applied TSPASS on the Cluedo specification examples, which 

are composed of six valid assertions that can be made about an example Cluedo game. 

Assertion 4 is the only specification that contains eventuality formulae. A timeout (TO) of 

1 CPU hour was imposed on each problem. 

The results that we obtained are shown in Table 6.1. Here, '+B', '+F', and '+T' indicate 

that backward subsumption, forward subsumption, and tautology elimination, respectively, 

have been enabled while '-B', '-F', and '-T' indicate that they have been disabled. Given 

that all six assertions are valid, proofs can theoretically be found by a complete reasoner 

without the need for redundancy elimination. As the experiments indicate this is clearly 

not the case within a reasonable amount of time. On the other hand with all options for 

redundancy elimination enabled even the most difficult problem can be solved in little 

more than one second. As one might expect, forward subsumption is the most effective of 

the three options, followed by tautology elimination, while backward subsumption can on 

occasion slow down the process of finding a proof rather than speeding it up. Overall, the 
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experiments confirm that redundancy elimination is crucial for effective resolution-based 

theorem proving in monodic first-order temporal logic. 

6.5.4 Performance on Monodic Temporal Problems 

For analysing the performance of TSPASS on monodic FOTL problems, we compared it 

against TeMP. Unless mentioned otherwise, a timeout of 12 minutes was imposed on each 

problem. For TeMP the input problems were first transformed into its clausal input form 

and then TeMP was started on this clausal input without any additional settings. TSPASS 

was instructed to perform subsumption-based loop search testing. Every prover run that 

terminated without triggering a timeout was repeated three times, and the median value 

of the process CPU time for the different runs is reproduced in the tables below. We also 

print the number of clauses that were derived by the provers for the different problems. An 

entry 'TO' for a time value or '-' as clause count indicates that the prover did not terminate 

within the imposed time limit. 

The results for the Cluedo verification examples are shown in Table 6.2. Problem 4 is 

the only specification that contains eventuality formulae. We observe that TSPASS derives 

fewer clauses than TeMP on every problem. TSPASS especially seems to perform well on 

problem 4, which demonstrates the effectiveness of the fair architecture. The fact that 

TSPASS derives significantly less clauses than TeMP can be explained by the design of its 

architecture: the fair architecture does not require the computation of saturations under 

fine-grained step resolution in the loop search process and in the subsequent main saturation 

steps. Surprisingly, TeMP does not terminate within the time limit on problem 3 although 

no eventuality is contained in the problem specification. 

The results obtained for the Needham-Schroeder protocol verification examples are 

-F/-B/-T -F/+B/-T -F/-B/+T -F/+B/+T 
Clauses Time Clauses Time Clauses Time Clau8es Time 

1 - TO - TO 239202 328.9388 17664 0.1938 

2 - TO - TO - TO 694574 10.959s 

3 - TO - TO - TO - TO 

4 - TO - TO - TO 529244 12.566s 

5 - TO - TO - TO - TO 

6 - TO - TO - TO - TO 

+F/-B/-T +F/+B/-T +F/-B/+T +F/+B/+T 
Clauses Time Clauses Time Clauses Time Clauses Time 

1 481 0.035s 480 0.039s 445 0.033s 444 0.038s 

2 2354 0.130s 2262 0.1298 1926 0.1158 1892 0.124s 

3 11065 1.3758 9912 1.3108 10102 1.3508 9170 1.2788 

4 1460 0.0878 1559 0.0978 1125 0.0748 1343 0.093s 

5 594 0.0518 594 0.0528 488 0.0448 488 0.0498 

6 765 0.0598 765 0.0558 645 0.050s 645 0.0548 

Table 6.1: Effectiveness of Redundancy Elimination Performed by TSPASS on the Cluedo 
Examples 
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Problem 
Clauses Generated Time 

Result 
TeMP TSPASS TeMP TSPASS 

1 1105 444 0.101s 0.056s U nsatisfiable 
2 4282 1892 0.423s 0.139s U nsatisfiable 
3 - 9170 TO 1.318s U nsatisfiable 
4 192640 1343 16.733s 0.116s U nsatisfiable 
5 3740 488 0.318s 0.069s U nsatisfiable 
6 4380 645 0.397s 0.079s U nsatisfiable 

Table 6.2: Results Obtained for the Cluedo Examples 

Problem 
Clauses Generated Time 

Result 
TeMP TSPASS TeMP TSPASS 

0 571822 10744 48.655s 0.884s Satisfiable 
1 651599 4849 55.343s 0.520s U nsatisfiable 
2 891616 10665 77.646s 1.094s U nsatisfiable 
3 636257 2946 54.213s 0.324s U nsatisfiable 
4 616989 1274 52.625s 0.218s U nsatisfiable 

Table 6.3: Results Obtained for the Needham-Schroeder Protocol Verification Examples 

shown in Table 6.3. Problem 0 represents the protocol specification itself and the remaining 

problems verify different properties of the protocol. All the problems contain eventuality 

formulae. On average TSPASS derives significantly less clauses and it requires less execution 

time on all the problems. For problem 0, TSPASS seems to be able to find loop formulae 

earlier, which then leads to a higher number of subsumed clauses. The performance 

improvements in TSPASS for the remaining problems again seem to be due to the fact that 

TSPASS does not have to compute saturations under fine-grained step resolution in the 

loop search process and in the main saturation steps for initial and universal clauses. 

Then, the experimental results for the verification of the cache coherence protocols 

MSI and Synapse N+l can be found in the Tables 6.4 and 6.5, respectively. Again, the 

problems 0 contain the protocol specifications, which do not contain eventualities. The 

Clauses Generated Time 
Result Problem 

TeMP TSPASS TeMP TSPASS 

0 - 1340237 - 327.578s Satisfiable 

1 - 85651 - 4.384s U nsatisfiable 

Table 6.4: Results Obtained for the MSI Protocol Verification Examples 

Clauses Generated Time 
Result Problem 

TeMP TSPASS TeMP TSPASS 

0 11159 13613 0.263s 0.35s Satisfiable 

1 22556 2101 0.438s 0.07s U nsatisfiable 

Table 6.5: Results Obtained for the Synapse N + 1 Protocol Verification Examples 
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problems 1 each contain one single eventuality and represent the 'non co-occurrence of 

states' property. For the MSI protocol, TeMP does not terminate within 12 hours on 

both problems. On the other hand, TeMP solves both problems successfully in the case of 

the Synapse N+ 1 protocol. Also, TeMP derives fewer clauses than TSPASS and requires 

less execution time for establishing the satisfiability of the protocol specification. The 

performance improvements of TSPASS over TeMP again seem to be caused by the fact 

that TSPASS does not have to compute saturations of clause sets separately for loop search 

and the regular fine-grained resolution inferences. Note that an automated reduction from 

constant to expanding domains was performed for the verification examples that involve 

cache coherence protocols using the approach described in [58]' which adds an exponential 

number of new clauses to the considered temporal problems. 

Finally, Table 6.6 regroups the results obtained for the specification of some examples on 

simple foraging robots and associated properties. Each of these problems contains at least 

seven eventualities. TeMP and TSPASS both terminate on the satisfiable problems, but 

TeMP cannot solve 15 of the unsatisfiable problems within the given time limit. Additionally, 

on average TeMP derives more clauses than TSPASS. Again, we attribute this observation 

to the fact that inferences in TSPASS which have been computed once for a loop search 

instance do not have to be computed again for further loop search saturations. Additionally, 

the design principles of TeMP to compute saturations under fine-grained step resolution for 

the loop search and main saturation steps contribute to deriving more clauses than TSPASS. 

Also, the problems on which TeMP does not terminate within the given time limit seem 

to exhibit its fairness problems as it remains 'stuck' whilst saturating a set of temporal 

clauses under ordered fine-grained resolution with selection. 

6.6 Summary 

The first goal of this chapter was to describe the implementation of the fair inference 

procedure F, which resulted in the automated theorem prover TSPASS. The second aim 

was to provide an experimental analysis of the effectiveness of redundancy elimination and 

of TSPASS's proof search performance on PLTL and monodic FOTL problems. 

We first explained the connection between ordered fine-grained step resolution with 

selection and regular first-order resolution. Then, we continued by describing the architecture 

of TeMP, before we outlined its problems related to guaranteeing fair derivations. Moreover, 

we analysed how the fair inference procedure F can be implemented in practice. In the 

following, the implementation of TSPASS was described in greater detail. 

We recalled the general architecture of SPASS before we explained some basic consid

erations behind the implementation of TSPASS. Next, we presented TSPASS's general 

architecture and we continued with a detailed description of its internals, like the clausifica

tion and translation into first-order logic, efficient techniques to access loop search clauses, 

the main inference procedure, and ways to implement loop search tests. We then discussed 

several peculiarities related to the implementation of TSPASS w.r.t. SPASS and we analysed 
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some fairness problems regarding the regular clause selection function. 

Finally, we examined the effectiveness of redundancy elimination in TSPASS and we 

evaluated its proof search performance on PL TL and monodic FOTL problems against 

TRP++, the Logics Workbench, the Tableau Workbench, and TeMP. 
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Problem 
Clauses Generated Time (s) 

Result TeMP TSPASS TeMP TSPASS 
0 19611 5707 0.498 0.407 Satisfiable 
1 21812 833 0.538 0.094 U nsatisfiabl e 
2 - 4834 TO 0.383 Unsatisfiable 
3 - 15707 TO 1.223 Unsatisfiable 
4 - 10722 TO 0.781 Unsatisfiable 
5 - 10687 TO 0.807 U nsatisfiable 
6 20019 6124 0.505 0.424 Satisfiable 
7 23670 7230 0.585 0.508 Satisfiable 
8 - 10083 TO 0.717 Unsatisfiable 
9 - 9786 TO 0.694 Unsatisfiable 
10 - 9064 TO 0.600 Unsatisfiable 
11 3676 2075 0.111 0.184 U nsatisfiable 
12 689 793 0.045 0.091 U nsatisfiable 
13 4872 1072 0.138 0.116 Unsatisfiable 
14 4799 2009 0.138 0.179 U nsatisfiable 
15 4862 2062 0.142 0.190 U nsatisfiabl e 
16 9030 6037 0.233 0.432 Unsatisfiable 
17 746 549 0.044 0.076 U nsatisfiabl e 
18 32395 5262 0.984 0.399 U nsatisfiable 
19 590 839 0.041 0.096 U nsatisfiable 
20 19716 6560 0.493 0.436 Satisfiable 
21 22226 9522 0.554 0.590 Satisfiable 
22 22796 8403 0.567 0.530 Satisfiable 
23 23365 9363 0.579 0.558 Satisfiable 
24 24043 10312 0.593 0.611 Satisfiable 
25 23268 8791 0.577 0.533 Satisfiable 
26 19716 7060 0.492 0.468 Satisfiable 
27 24344 9467 0.604 0.619 Satisfiable 
28 19716 7630 0.490 0.517 Satisfiable 
29 - 8128 TO 0.608 U nsatisfiable 
30 - 31484 TO 2.366 U nsatisfiable 
31 - 24168 TO 1.752 Unsatisfiable 
32 - 26708 TO 2.012 U nsatisfiable 
33 21349 6188 0.531 0.440 Satisfiable 
34 24603 7675 0.611 0.547 Satisfiable 
35 - 27054 TO 1.935 U nsatisfiabl e 
36 - 25437 TO 1.743 U nsatisfiabl e 
37 - 23366 TO 1.702 U nsatisfiable 
38 - 31313 TO 2.354 U nsatisfiable 

Table 6.6: Results Obtained for the Robot Specification Examples 





Chapter 7 

Resolution-Based Model Construction 

for PLTL 

7.1 Introduction 

Besides clausal resolution-based methods like the J~;;- -calculus, there are a variety of 

other proof methods for PLTL including, for instance, tableaux-based approaches [93J. 

An implementation of a one-pass tableau calculus [83J exists, for example, in the Logics 

Workbench [46J. In order to prove the validity of a formula r.p both proof methods operate on 

the negated formula -'r.p. In the case of tableaux reasoning one essentially tries to construct 

a model for the formula -'r.p. If no model can be found, then one can conclude that the 

formula -'r.p is unsatisfiable, which is equivalent to r.p being valid. For resolution-based proof 

methods on the other hand the proof goal consists in deriving a contradiction from the 

formula -'r.p, from which one can conclude again that r.p is valid. 

It is therefore easy to see that formal verification by using tableaux-based systems bears 

the advantage that in case of a failure to prove the validity of a specific property a counter 

example demonstrating the erroneous behaviour has already been constructed. For clausal 

resolution-based reasoning a set of clauses on which every application of an inference rule 

will only derive redundant clauses, a so-called saturated set (up to redundancy), will have 

typically been constructed in that case. If the empty clause is not contained in this saturated 

set, one can conclude that the formula -'r.p is satisfiable, which implies that r.p is not valid. 

Thus, only the knowledge that the specification does not satisfy the required property is 

generally available for clausal resolution-based verification. 

A way of constructing a model satisfying a saturated set (under ordered resolution) both 

for propositional and first-order logic has been devised in [10J. The model construction 

algorithm involves ordering the clauses by using an extension of the ordering on propositional 

symbols that has been used in the saturation of the clause set. One positive (maximal) 

literal is then satisfied per clause, whenever necessary, starting from the smallest clause 

w.r.t. the considered ordering. A term model, or so-called Herbrand model, representing the 

satisfied literals will be constructed in this way. 

169 
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In this chapter we are trying to fill the gap in functionality that resolution-based 

techniques admit over tableaux-based reasoning for formal verification purposes based on 

PL TL. We present a method that allows us to construct a model for a satisfiable PL TL 

formula. Our approach is based on analysing the saturated clause set that has been computed 

under (subsumption-compatible) ordered fine-grained resolution with selection. A temporal 

model is then obtained by constructing models for sets of (non-temporal) propositional 

clauses at the different time points. The sets of clauses considered for the individual points 

in the time line will be constructed dynamically during the model construction process by 

taking those clauses into account that allow to express constraints among different time 

points. The whole model construction procedure is designed in such a way that it can be 

easily incorporated into existing resolution-based theorem provers for PLTL. 

This chapter is organised as follows. We first recall the propositional model construction 

procedure in Section 7.2. Then, in Section 7.3 we introduce the resolution-based temporal 

model construction algorithm for PL TL and prove its correctness. We then consider practical 

aspects of the algorithm and its complexity in Section 7.4. We provide a brief overview 

of its implementation in the theorem prover TSPASS in Section 7.5 and we present some 

experimental results in Section 7.6. Subsequently, in Section 7.7 we describe alternative 

systems and approaches towards PL TL model construction, and we conclude with a short 

discussion of finding minimal models in Section 7.8. 

1.2 Propositional Model Construction 

In this section we briefly recall the model construction procedure for satisfiable sets of 

(non-temporal) propositional clauses as it was introduced in [lOJ. This model construction 

procedure uses an admissible ordering >- on propositional symbols (see Section 3.3.1), which 

is extended on literals by ...,A >- A and (-,)A >- (...,B) if and only if A >- B. This ordering 

on literals is then extended on propositional clauses as its multiset extension >-mul. For 

two propositional clauses C and V, we define C >-mul V if and only if C f; V and for every 

literal L such that C(L) < Vel), it holds that there exists a literal L' with L' >- Land 

C(L') > Vel'), where C(L), Vel), C(L'), Vel') represent the number of occurrences of the 

literals Land L' in the clauses C and V, respectively. The multiset extension >-mul of the 

ordering>- on literals is also simply denoted by >- when its intended meaning is clear from 

the context. 
The propositional model is then constructed by considering which literals have to be 

satisfied in a given clause, starting from the smallest clause w.r.t. the clause ordering. 

Definition 7.2.1 (Propositional Model Construction). Let>- be an admissible ordering 

and S be a selection function. Additionally, let N be a set of propositional clauses. 

For a propositional clause C EN we inductively define a propositional modelI>-.s(C) 

and a set EC as follows. 

Let C E N be a propositional clause. Then, we define I>-.s(C) = Uc>-v EV, and if the 

clause C 
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(i) is of the form C' V A, where A is the maximal literal in C, 

(ii) is false in I~,s(C), and 

(iii) if no negative literal is selected in C, 

we define EC = {A}; otherwise we set EC = 0. Finally, we define I-r,s(N) = UCENeC. 

In line with the definition of the semantics for PL TL given in Section 2.2 propositional 

symbols not contained in a propositional model I~,s(N) are false in the modeP. 

It can be shown that for an arbitrary admissible ordering, an arbitrary selection function 

and for an arbitrary set of propositional clauses saturated under ordered propositional 

resolution with selection (w.r.t. to the given ordering) which does not contain the empty 

clause, the propositional model construction indeed constructs a model. 

Theorem 7.2.2 (see [10], Theorem 3.16). Let ~ be an admissible ordering and S be a 

selection function. Moreover, let N be a set of propositional clauses that is saturated under 

inferences by the rules of ordered (propositional) resolution with selection and let N not 

contain the empty clause. Then it holds that I~,s(N) ~ N. 

7.3 Temporal Model Construction 

First of all, we have to note that in this chapter we assume that propositional temporal 

problems in DSNF contain at most one single eventuality. This is not a limiting assumption 

as every propositional problem can be transformed in such a way that it contains at most 

one eventuality up to a linear increase in the size of the problem (see [22], Lemma 7). 

Now, before we define the model construction formally, we present two examples that 

should illustrate the basic ideas behind the model construction procedure. Let us first 

consider the construction of a temporal model M 1 for the following satisfiable temporal 

problem P1: 

P 1 = ({ d V e}, {a}, {a =* Ob, b =* Oc, c =* Oa}, 0). 

We observe that P1 does not contain an eventuality and that it is already saturated under 

(subsumption-compatible) ordered fine-grained resolution w.r.t. any admissible ordering (and 

selection function). Additionally, for M 1 to be a model of P 1, M 1 has to fulfil the initial 

(unit) clause a and the universal clause d V e at the initial point in time. Thus, if we apply 

the standard propositional model construction on the propositional clause set {a, d V e} with 

an ordering ~ given by a ~ b ~ c ~ d ~ e, we obtain the propositional model Ho = {a, d}. 
Then, for constructing the propositional model in the time point 1 we have to consider the 

universal clause d V e again together with the right-hand sides of those (merged) step clauses 

whose left-hand sides were triggered at the initial time point. In this case only the step 

clause a =* Ob was triggered by the model Ho. Consequently, we construct a propositional 

1 More specifically, the terminology of "don't care" literals from SAT solvers does not apply here. 
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model for the clause set {dYe, b} by using the ordering ~ and obtain HI = {b, d}. Similarly, 

we can build the propositional model H2 = {e, d} for the time point 2. Now, we have to 

consider the clause set {d V e, a} again for the time point 3, which results in the propositional 

model H3 = {a, d} = Ho through the standard propositional model construction with the 

ordering~. Hence, we can see that MI = (Ho,Ht,H2,H3,Ho,HI,H2,H3,Ho, ... ) is a 

temporal model for Pl. 

In the previous example one single ordering on propositional symbols was sufficient for 

constructing a temporal model. But as we will see in the follOWing example, it can be 

necessary to change the ordering used for the propositional model construction. Let us 

consider the construction of a temporal model M2 for the following satisfiable temporal 

problem P2 : 

a Vp, 

-,1 V b, 

-,d V -,[ V e, 

Iv g}, 

{a}, 

{a => 0-'[, 

b => Od, 

e => O-,e}, 

{O/}}. 

Here, the saturation of P2 under (subsumption-compatible) ordered fine-grained resolution 

w.r.t. the ordering ~o given by a ~o b ~o c ~o d ~o e ~o I ~o 9 ~o I ~o p (and an empty 

selection function) will derive the merged step clauses b => 0(-,[ Ve) and (b/\ e) => 0-,[. 

There is no loop formula derivable from the problem P2 · We can see that the two (merged) 

step clauses a => 0-,/ and (b /\ e) => 0-,1 imply the negation of the eventuality literal 1 at 

the next time point whenever their left-hand sides are fulfilled at the currently considered 

point of the time line. Now, if one wants to construct a model for a temporal problem that 

contains exactly one eventuality, then one has to ensure that the eventuality is satisfied 

infinitely often. The approach that we take here consists in fulfilling the eventuality at a 

given time point whenever the clauses that have to be considered for this point in the time 

line do not imply the negated eventuality. In this way we can add the eventuality unit 

clause 1 to the clause set and saturate the enlarged clause set under propo:;itional ordered 

resolution with selection without deriving the empty clause. 

Now, for the temporal problem P2 we have to consider the clause set 

{J V g, -,d V -,1 V e, -,1 V b, a, a V p, -,1 Va} 

for the initial time point. As this clause set does not imply the negated eventuality -,[, 
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we add the unit clause I and obtain the propositional model Ho = {I, f, b, a} by using the 

ordering >-0. Then, as the model Ho triggers the merged step clauses a => 0...,1, b => Od and 

b => O(e V ...,/), we have to additionally consider their right-hand sides for the propositional 

model construction in the time point 1, i.e. the clauses ...,1, d and e V ...,1. Consequently, as 

the clause set 

{...,I, f V g, e V ...,1, d,...,d V ...,1 V e,...,f V b, a V p,...,f Va} 

implies the negated eventuality ...,1, we do not add the unit clause I to the clause set. The 

propositional model construction with the ordering >-0 yields the model Hl = {J,d,b,a}. 

We can see that the model Hl again triggers the left-hand side of the step clause 

a=> 0...,1. Additionally, due to the universal clause a V p, the ordering >-0 will enforce that 

the symbol a is fulfilled (and thus I cannot be satisfied at the next time point) whenever 

the propositional model construction is performed with the ordering >-0 (the symbol a 

does not occur negatively in the temporal problem). Thus, if we want the temporal model 

construction to succeed we have to use a different ordering for constructing propositional 

models in some points of the time line. As the model H 1 also triggers the step clauses 

b => Od and b => (e V ...,1), we have to consider the clause set 

{d,...,f Va,...,f V b, f V g, ...,1, e V ...,I,...,d v...,1 V e, a V p} 

for the time point 2. If we now use the ordering >-1 given by p >-1 1 >-1 9 >-1 f >-1 e >-1 d >-1 
C >-1 b >-1 a for the propositional model construction, we first of all observe that the set is 

already saturated under ordered propositional resolution w.r.t. the ordering >-1. We hence 

obtain the model H2 = {p, g, d}. 
Finally, as H2 does not trigger any of the step clauses, we only have to consider the 

clause set 

{/,fV g,...,dv...,1 Ve,""f V b,a V p,...,f Va}, 

which contains the eventuality unit clause I, for the propositional model construction. By 

using the ordering >-0 again we obtain the model H3 = {I, f, b, a} = Ho. We can thus 

conclude that M2 = (Ho, H 1, H2, H3 , Ho, Hl , H2, H3 , Ho, ... ) is a temporal model for P2. 
As illustrated by these examples, the temporal model construction for a temporal 

problem P = (U, I, S, £) is based on using the regular propositional model construction 

for the different time points of a temporal model. For the initial time point 0 the regular 

propositional model construction will be performed over the set of universal clauses together 

with the set of initial clauses. For time points different from the initial point in time, the 

(merged) step clauses C => OD whose left-hand sides C were fulfilled at the previous 

moment in time have to be considered in addition to the set of universal clauses. 

If the temporal problem P contains a single eventuality, i.e. £ = {O/}, special care has 

to be taken for allowing it to be satisfied infinitely often. We add the eventuality to the 

set of clauses used for the model construction in a specific time point if the newly-added 

eventuality unit clause does not lead to a contradiction. As a result, the constructed model 

will satisfy the eventuality in every time point in which the set of universal clauses and 



174 CHAPTER 7. RESOLUTION-BASED MODEL CONSTRUCTION FOR PLTL 

the right-hand sides of the step clauses whose left-hand sides were fulfilled at the previous 

time point do not imply the negated eventuality. The situations in which we might not 

be able to satisfy an eventuality in the next moment of time can be characterised by the 

presence of 'critical' merged step clauses A ::} OB such that U U {B} F -.l and U 17" ...,A. 

In particular one has to avoid that the left-hand side of one of these 'critical' merged step 

clauses is constantly fulfilled from any given time point onwards. One way of ensuring 

this requirement consists in varying the ordering on propositional symbols that is used to 

construct the models for the different time points, which is also the approach that we take 

here. 

For example, if we were to construct a temporal model as described above for the temporal 

problem P3 = ({P V q},0, {p ::} O-.l}, {Ol}), we have to ensure that the propositional 

symbol p is not satisfied at every time point as otherwise we would obtain the sequence of 

propositional models {p, l}, {p}, {p}, ... which obviously does not satisfy the formula ~Ol. 

In the next subsection we describe the model construction procedure in a formal way 

and give an example for the construction of a model, while we prove the correctness of the 

procedure in the subsequent subsection. 

1.3.1 Construction Principle 

Before we can introduce the model construction procedure, we still need to give a couple of 

auxiliary definitions. 

First of all, for a temporal problem P we associate with every set of merged step clauses C 

(and with the power set 9(C» a set Oc of strict total orderings on the set Symbols(P) of 

propositional symbols occurring in P. 

Definition 1.3.1. Let P be a propositional temporal problem in DSNF and let 

be a set of merged step clauses built from the temporal problem P, where A = 1\'; 1 a~ for 

1 :5 i :5 n and a1, ... , a:n. are propositional symbols for 1 :5 i :5 n. 
We define ON to be the smallest set of admissible orderings on Symbols(P) which 

contains for every tuple (i 1, ... , in) E {I, ... , md X •.. X {1, ... , mn} exactly one ordering 

~ E ON with Symbols(P) \ {all"'" af,,} ~ all"'" af,,· 
For the power set 9(N) of N we define that Ogl(N) = USEgI(N) Os, where 00 = O. 

The next definition introduces the set JlS(rot) which contains the right-hand sides of step 

clauses contained in a set S whose left-hand sides are triggered by a propositional model rot. 

Definition 1.3.2. Let P = (U,I,S,£) be a propositional temporal problem such that £ = ° 
or £ = {Ol}. Additionally, let S' be a set of step clauses derived by )~t (or )~C>:S",.J from P 
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and let rot be a propositional model over Symbols(P). Then we define: 

~' (rot) = {l1 V ... V 1m I (P1 /\ ... /\ Pm) ::::} 0(11 V ... V 1m) E S' 

and rot P P1/\" ·/\Pm} 

Next, we define the set Ll (N), which adds to a set N the unit clause 1 if £ = {Ol} and 

N Fj -,l. 

Definition 7.3.3. Let P = (U, I, S, £) be a propositional temporal problem such that £ = 0 
or £ = {Ol}. Furthermore, let N be a set of propositional clauses over Symbols ( P). Then 

we define: 

Ll(N) = {NU{l} if£= {Ol} andNFj-,l 

N otherwise 

Finally, for a set of propositional clauses N we denote by Res)-,s(N) the set of all 

the clauses obtained by an application of the ordered resolution with selection or the 

ordered factoring rule using the ordering ~ and the selection function S to premises in N. 
We also define that Res~,s(N) = N, Res~,s(N) = Res)-,s(Res~~1(N)) for i > 0 and 

Res~s(N) = UiEN Res~,s(N). 
We can now give the definition of the temporal model construction procedure. 

Definition 7.3.4 (Temporal Model Construction). Let P = (U,I, S,£) be a propositional 

temporal problem in DSN F such that .1 ¢ U U I, and £ = 0 or £ = {O/}. Additionally, 

let S be a selection junction, and if £ = {Ol}, let N = {A1 ::::} OB1, .. . , An ::::} OBn} be the 

set of all the merged step clauses built from the temporal problem P and freed of duplicate 

propositional symbols such that for every i, 1 ~ i ~ n: 

(i) U U {B;} ~ -,1, and 

(ii) U Fj -'A. 

The merged step clauses from the set N will also be called critical merged step clauses for 

the temporal problem P. 

We then define a sequence of propositional models Ho, H1, ... as follows: 

and for i 2: 1: 

where h (i E N) are admissible orderings on Symbols ( P) such that for every j, j 2: 1, with 

H j P V~=1 Ak and such that H j occurs infinitely often, 

Additionally, for every H j , j 2: 1 with Hj ~ V~=1 Ak we have ~j+1 = ~o. 

Let 'H. = (Ho, H 1, . .. ) denote the temporal model obtained in this way. 



176 CHAPTER 7. RESOLUTION-BASED MODEL CONSTRUCTION FOR PLTL 

Remark 1.3.5. For i ~ 0, the propositional model HH1 is called a successor model for the 

propositional model Hi built with ordering >-H 1. 

One can observe that the process of ensuring that every ordering is used infinitely often 

is related to the notion of fairness, which is employed in the field of model checking [401. 
As explained above, the sets of initial and universal clauses are considered for the model 

construction in the time point O. Additionally, the eventuality is added to the clause set used 

for model construction if its presence does not lead to a contradiction. The propositional 

model construction is then performed through an initial ordering >-0 on Symbols(P) after 

the model construction clause set has been saturated under regular ordered resolution with 

selection using the ordering >-0. This saturation process is necessary in order to ensure the 

correctness of the propositional model construction. 

For any time point other than the initial point of the time line, the universal clauses 

together with the right-hand side of any step clause whose left-hand was satisfied at the 

previous time point are used for the propositional model construction. Again, the eventuality 

is added to the considered set if it does not lead to a contradiction. As noted before, the 

ordering on propositional symbols under which the propositional resolution and model 

construction is performed has to be varied for the temporal model construction to succeed. 

The variation of the orderings on propositional symbols ensures that a propositional model 

is found eventually for a time point which does not trigger the left-hand side of any critical 

step clause. 

For example, for the temporal problem P3 = ({p V q},0, {p ~ O...,/}, {O/}) again, we 

cannot use the ordering I >- p >- q at every time point as it would not lead to a correct 

temporal model. We have to use an ordering >-' with q >-' p at some time points instead. 

We conclude this section by applying the temporal model construction procedure on 

a concrete example. We consider the temporal problem P4 = ({pv q}, {p}, {p ~ Oq,q ~ 

Op}, {O-.p}). Saturating the problem P4 under (subsumption-compatible) ordered fine

grained resolution (with an empty selection function) using the ordering p >- q derives the 

universal clause ""p V""q (through loop search), the initial clause ""q, and the step clause 

q ~ O...,q. The step clause q ~ OP is a critical step clause for the set of universal clauses 

as {p V q, -.p V -.q,p} 1= """"p. 
For the initial time point we hence consider the set of propositional clauses {...,q, p, p V 

q,""P V -,q} for the propositional model construction procedure. With the symbol ordering 

p>- q, we obtain the model Ho = {Pl· 
Then, as the step clause p ~ Oq has been triggered at the initial time point, we have 

to add the unit clause q to the considered clause set. As {q, p V q, ""P V -.q} 11-'-.p, we add 

the unit clause ""p and obtain the set {q,p V q, ""'p,""'P V ....,q}, which is to be used for the 

propositional model construction. After saturation with the ordering p >- q, the propositional 

model construction yields the propositional model H1 = {q} in the time point 1. 

Finally, as the step clauses q ~ Op, q => O...,q have been triggered in time point 1, 

the unit clauses p and -.q have to be added to the clause set used for the propositional 
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model construction. Additionally, as the set {--,q, p, p V q, --'p, --'p V --,q} is unsatisfiable, the 

set {--,q, p, p V q, --'p V --,q} has be to be considered for the propositional model construction, 

which results in the model H2 = {p} with the ordering p >- q. 

As Ho = H2 the temporal model construction procedure will now construct models for 

the remaining time points analogously to ones shown above. 

7.3.2 Proof of Correctness 

In this section we prove the correctness of the construction procedure introduced in Defini

tion 7.3.4, i.e. we show that the constructed sequence of propositional models is indeed a 

model for the considered temporal problem. 

First of all, we introduce three lemmata that will be required for the subsequent 

correctness theorem. 

Lemma 7.3.6. Let N be a set of propositional clauses such that every clause contains at 

least one ne1}ative literal. Let >- be an arbitrary admissible ordering on Symbols(N) and 

let S be an arbitrary selection function. 

Then it holds that I'r,s(N) = 0. 

Proof. We show by induction on N with respect to the well-founded (and total) multiset 

extension of the ordering >- on clauses that for every clause C E N it holds that £c = 0. 

For the minimal clauses C we have I'r,s(C) = 0. As C contains a negative literal, C is 

true in I'r,s(C), and therefore, EC = 0. The proof for remaining clauses proceeds along the 

same line. o 

Lemma 7.3.7. Let N be a satisfiable set of propositional clauses. Moreover, let al, ... ,an 

be propositional symbols and let >- be an admissible ordering on propositional symbols such 

that Symbols(N) \ {at, ... , an} >- al, ... ,an· Finally, let S be a selection function. Then it 

holds that: 

Proof. The implication "~" follows from Theorem 7.2.2. For the remaining implication 

"::::;.", we assume that I'r,s(Res~,s(N)) 1= al V ... Van. As clauses which contain a literal p 

or --'p with p >- al >- ... >- an cannot produce an atom ~ (1 ~ i ~ n) in the interpretation 

I'r,s(Res~,s(N)), it follows that there exist clauses in the set Res~,s(N) that only contain 

atom symbols from {al, ... ,an }. Let C1, ... ,Cm E Res~s(N) be all such clauses, i.e. 

for every i, 1 ~ i ~ m, there exists an index j, 1 ~ j ~ n, such that Ci = C' V aj, 

Symbols(C') ~ {ak 11 ~ k ~ n} U {--,ak 11 ~ k ~ n} and I'r,s(Res~s(N)) 1= aj. (Note 

that the index j could be the same for every i, 1 ~ i ~ m.) 

Then, if we assume that every clause Ci for 1 ~ i ~ m contains at least one negative literal, 

it would follow from Lemma 7.3.6 that I)o-,s( {Cl. ... , Cm }) = 0 and thus, I)o-,s(Res~,s(N)) Ir' 
al V ... Van, which contradicts with our assumptions. Thus, there exists a clause Ci E 
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Res~s(N) (I ~ i ~ m) such that Ci is positive and Symbols(Cd ~ {a1' ... ' an}. We can 
infer that N F a1 V ... V an· 0 

Lemma 1.3.S. Let P be a propositional temporal problem and let N be a satisfiable set 

of propositional clauses which only uses propositional symbols from P. Additionally, let 

N = {AI "* 081, •.. ,An "* 08n } be a set of merged step clause built from the temporal 

problem P, and let S be a selection function. Then it holds that: 

Proof The implication ",,*" is obvious. For the implication "~", let A = 1\';:.1 a; for 

I ~ i ~ n and propositional symbols al, ... , a:n. for I ~ i ~ n. Then we have: 

(afl V ... VafJ 
i=l (il •...• i n )E{l •...• ml}x ... x{I •...• m n } 

Furthermore, it follows from the assumptions that: 

v ~ E ON V (i l , ... , in) E {I, ... , md x ... X {I, ... , mn }: I~.s(Res~s(N» F afl V ... Va::' 

Thus, as for every tuple (it, ... , in) E {I, ... , md X ... X {I, ... , mn} there exists an order

ing ~ E ON with Symbols(N) \ {afl"'" afJ ~ afl"'" afn' we obtain from Lemma 7.3.7: 

V ( iI, ... , in) E {I, ... , m I} X ... X {I, ... , m n} : N Fa! V ... V aT! 
"1 In 

We can therefore conclude that N F V~=l A. o 

We can now state and prove the correctness theorem for the model construction procedure. 

Theorem 1.3.9. Let P = (U,I,S,£) be a propositional temporal problem with £ = 0 or 

£ = {Ol} which is saturated under (subsumption-compatible) ordered fine-grained resolution 

with selection and does not contain the empty clause. Additionally, let'H = (Ho, HI, ... ) 

be the corresponding sequence of propositional models obtained through temporal model 

construction. Then it holds that: 

'Ho F II\ DU 1\ OS 1\ D£ 

Proof Let S be the selection function used in the saturation. Then, first of aU, as the set 

UuI does not contain the empty clause, it is easy to see that J. ¢ Res~o.s(L£(UUI». We 

can thus conclude that2 'Ho F I and 'Ho F U. 
We now show by induction on t that 'Ht F S and 'Ht +1 F U for every tEN. For t = 0, 

we already have 'Ho F U, and if we assume that J. E Res~I.S(L£(U U W(Ho»), then it 

would follow that J. E Res~.s(U U W(Ho». Thus, as J. ¢ Res~.s(U) there would exist a 

derivation of a step clause A "* OJ. with 'Ho F A. Then, as the temporal problem P is 

2The notation 11.0 was introduced in the definition of the truth-relation for PL TL given in Figure 2.1 on 
page 14 
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saturated, we would have U F ...,A and hence, 1to V= A, which is a contradiction. We can 

infer that 1. ¢ Res~l,s(LE(U U W(Ho))), 1to F S and 1t1 F U. 

1ft > 0, then it follows from the induction hypothesis that 1tt- 1 F Sand 1tt F U. Again, 

if we assume that 1. E Res~t+l ,s(LE (U U RS(Ht ))), then there would exist a derivation of 

a clause A ~ 01. with 1t t F A. Additionally, as the temporal problem P is saturated, 

we would again have U F ...,A and 1t t V= A, which is a contradiction. Thus, we obtain 

.1 ¢ Res~+l,S(LE(UU RS(Htl)), 1tt F Sand 1tHI FU. 

Finally, if £ = {Ol}, let tEN. We still have to show that 1tt F Ol. If we assume 

for all t' E N with t' ~ t that 1tt , V= l, then for every t' ~ t with t' ~ 1 it holds that 

U U RS(Ht'_l) F ...,l. It also holds that U l1...,l as otherwise we could apply the eventuality 

resolution rule and have .1 E U. Additionally, for every t' ~ t with t' ~ 1 there exists 

a merged clause At' ~ OBt' E N with U U RS(Ht'_I) == U U {Bt'}, 1tt'-1 F At' and 

U U {Bt'} F ...,l, where N is the set of merged step clauses from Definition 7.3.4. Then, as 

there are only finitely many valuations Hi (i E N), it follows that there exists an index 

T ~ max(t,1) such that every valuation Hi with i ~ T occurs infinitely often in the 

sequence Hi, Hi+l, Hi+2, .... Furthermore, as there are only finitely many merged step 

clauses which have been freed of duplicate propositional symbols, there exist merged step 

clauses A~ ~ OB1, ... ,~ ~ OB~ E N such that 

{ ' OB' A' OB'} {t' t', Al ~ l' ... '''''Tn ~ m = A ~ OB I t ~ T}. 

By Lemma 7.3.8 it holds for every t' ~ T that there exists a subset {il ... , ik} ~ {1, ... , m} 

such that U U {Bt'} F V~=IA~j' from which we can infer that Uu {Bt'} F V::l~' 
Consequently, we obtain for every i with 1 $ i $ m that UU{Ba F V:1 ~ and UU{Ba F ...,l. 

We could hence apply the eventuality resolution rule and derive the set of universal clauses 

1\';=I...,Aj. Thus, as the temporal problem P is saturated under (subsumption-compatible) 

ordered fine-grained resolution with selection, we can infer that 1tT-l 11 AT holds, which it. 

a contradiction. 0 

7.4 Practical Considerations and Complexity 

The temporal model construction as described in the previous section constructs an infinite 

sequence of propositional models, as suggested by the definition of the semantics for PL TL 
given in Section 2.2. However, for practical applications, a finite representation of a temporal 

structure, as given by an ultimately periodic model is more useful. 

Definition 1.4.1 (Ultimately Periodic Model). Let P = (U,I,S,£) be a propositional 

temporal problem such that either £ = 0 or £ = {Ol}, and let 1t = (Ho, HI, H2, ... ) be an 

infinite sequence of propositional models over Symbols(P). FUrthermore, let I, J, LEN be 

indices such that 1$ L < J, HI = HJ and HL F l if £ = {Ol}, 1= L otherwise. 

We then define a sequence of propositional models 1t' = (Hb, H~, ... ) as follows: 

(i) HI = Hi for every 0 $ i $ J 
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(ii) HI = H1+«i-1) mod (J-I) for every i ~ J + 1 

It can be shown that if the sequence 'H is a model for P, then the sequence 'H' is also a 

model for P [84J. 

More concretely, in an implementation of the temporal model construction procedure 

one has to keep track of the ordering that has been used for the saturations used in the 

different time points. Whenever a previously considered set of clauses is encountered again, 

the symbol ordering used for the model construction in the considered time point has to be 

changed cyclically. Finally, the construction procedure can terminate whenever a previously 

encountered valuation has been computed again and the possibly present eventuality has 

been satisfied in between those two time points. 

Moreover, it is easy to see that for a set N = {AI::::} 081, ... , An :::} 08n } of critical 

merged step clauses for a temporal problem P the set 0 £JI'(N) can be constructed from 

9(U~=1 Symbols(Aj)), the power set of all the propositional symbols occurring in left

hand sides of critical step clauses. Every ordering >- E 0 £JI'(N) is characterised by the 

subset P ~ U~=1 Symbols(Aj) such that Symbols(P) \ P >- p for every pEP. Thus, in an 

implementation it is sufficient to consider all the subsets of U~=l Symbols(Ad in order to 

construct the required orderings. 

Furthermore, it is also possible to eliminate redundant cycles in constructed temporal 

models. For example, if one has built a model for a temporal problem P with a single 

eventuality 01 and the constructed model contains a sequence of valuations Hi, Hi+l, ... , Hj 

such that Hi = H j and Hk ~ I for every i ~ k ~ j, then the sequence Hi"'" Hj - 1 can be 

removed from the final model as it does not contribute to satisfying the eventuality. 

It is important to note that the model construction procedure is completely deterministic, 

that is, neither the basic building blocks given by I~.s and Res~s, nor the construction 

of the sequence of propositional models that form the ultimately periodic model involves 

any non-deterministic operation that in an implementation would force us to use a form of 

backtracking-search to find a model. On the other hand, just as for standard tableaux-based 

model generation procedures for PL TL, there is no guarantee that we will produce a minimal, 

that is, shortest possible, ultimately periodic model for a temporal problem or PL TL formula. 

In particular, different choices of orderings can lead to different temporal models, which 

can greatly vary in size. However, it is not possible to construct every model of a temporal 

problem P though the model construction method introduced in this chapter. For example, 

the model {p}, {P}, . .. cannot be obtained for the temporal problem ({ ..... p V ..... q}, 0, 0, 0}. 
The computational complexity of the temporal model construction procedure is deter

mined mainly by the time required to compute the saturation Res~s(N) of a set N of 

clauses under ordered resolution with selection, which is exponential in the size of N, the 

size of the Res~s(N), which is also exponential in the size of N, and the maximal length 

of the sequence of propositional models in an ultimately periodic model 'H' for a satisfiable 

temporal problem P = (U,I,S,£), which is again exponential in the size of P. Overall, we 

obtain the following result. 
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Time 

LWB'Model' TSPASS TSPASS 
Model Construction 

C;an (n=5) 0.06s 0.03s 0.05s (O.Ols) 
C;an (n=5) 0.06s 0.06s O.71s (0.03s) 
C;an (n=12) 1.5s 0.04s 0.89s (0.57s) 
C;an (n=12) 0.06s 1.13s 65.08s (0.608) 

LWB'Model' 
TSPASS Model Properties 

Length Model Length Constructed Minimal Critical Merged 
Time Points Step Clauses 

C;an (n=5) 7 2 (1) 2 0 
C;an (n=5) 2 2 (1) 2 0 
C;an (n=12) 39 17 (8) 17 17 
C;an (n=12) 2 2 (1) 2 0 

Table 7.1: Median Results (per Class) for the TSPASS and LWB Model Construction 
Procedures Applied on the Benchmark Classes C;an and C;an 

Theorem 7.4.2. Let P= (U,I,S,£:) be a satisfiable propositional temporal problem with 

£: = 0 or £: = {O/}. Then an ultimately periodic model 'H. for P can be constructed by the 

temporal model construction procedure in time exponential in the size of P. 

Since for a given PL TL formula 'P an equi-satisfiable propositional problem P in DSNF 

can be computed in polynomial time and space, this result also implies the we can construct 

an ultimately periodic model for 'P in time exponential in the size of 'P. 

It is important to remember that while the satisfiability problem of PLTL is PSPACE
complete, given that ultimately periodic models can be of exponential size in the worst cruw. 

we cannot hope for a model construction procedure of better complexity. 

7.5 Implementation 

The temporal model construction has been implemented as an extension of the theorem prover 

TSPASS. The implementation takes advantage of the fact that while the temporal problem is 

saturated by TSPASS, the minimal critical merged step clauses for the considered temporal 

problem are also computed as part of the overall loop search process (the terminating loop 

search clauses s~ /\ C ~ 0.1 for a given eventuality OL(x». Consequently, no further 

computation is required to obtain these step clauses. 

7.6 Experimental Results 

We have compared the resolution-based model construction implemented in TSPASS 0.94-

0.16 with the one-pass tableau calculus described in [831, which is implemented in the Logics 
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Workbench (LWB) version 1.1 [46J. We have applied both systems to numerous satisfiable 

PL TL fonnulae from the benchmark classes introduced in [53J. As described already in 

Section 6.5.1, two of the benchmark classes, C~an (n = 5) and C~n (n = 12), where n indicates 

the number of propositional symbols over which the formulae are constructed, are designed 

in such a way that they can be theoretically solved easily by resolution-based decision 

procedures, whereas the two other benchmark classes, C;an (n = 5) and C~n (n = 12), are 

designed so that the satisfiable formulae in them can be theoretically solved more easily by 

tableaux-based systems. In particular, in [53J the implementation of the one-pass tableau 

calculus in the LWB was indeed performing best on these formulae. 

The experiments were run on a PC equipped with an Intel Core 2 Duo E6400 CPU 

and 3 GiB of main memory and an execution timeout of 5 minutes was imposed on each 

problem. 

For TSPASS an empty selection function was used. The scheduling of the orderings on 

propositional symbols was done w.r.t. an increasing subset size and in such a way that a 

maximal number of different orderings were tried out: whenever a set of propositional clauses 

was encountered for the first time the next possible ordering was used for the propositional 

model construction instead of starting again from the initial ordering w.r.t. the critical 

symbols. Additionally, subsets that only involve propositional symbols occurring in left-hand 

sides of minimal critical merged step clauses were considered first for constructing the 

required orderings. Currently, TSPASS builds the remaining orderings which are necessary 

for the model construction to succeed with all the yet unused propositional symbols that 

occur in the left-hand sides of step clauses, i.e. no special processing is performed to exactly 

identify the symbols occurring in left-hand sides of critical merged step clauses that are not 

minimal. For the C~n classes TSPASS was instructed to perfonn matching replacement 

resolution and formulae O( tP) V O( t/J) were rewritten to O( tP V t/J) in order to reduce the 

number of required renamings; for the C~n classes no special input rewriting was performed 

and no additional inference or reduction rules were activated. 

The median results for all the satisfiable formulae of each class are shown in Table 7.1, 

with time values in the table being the average CPU time of three identical runs. We 

can observe that the number of generated clauses and the execution times increase for the 

model construction run of TSPASS, whidl is due to the transformation to single-eventuality 

problems and, as a result, an increased number of step clauses. Such a transformation is not 

performed if no model construction is required. Additionally, one can observe that the time 

spent on the transformation to DSNF is negligible. The numbers in brackets in the model 

construction time column indicate the amount of time actually spent on model construction 

w.r.t. the global execution time, and the numbers in brackets in the model length column 

represent the length of the periodic part. Finally, the median total number of constructed 

time points during the model construction in TSPASS is reproduced in the second last 

column, some of which are discarded during the elimination of redundant cycles. 

The problem set for class C~n (n=5) that we considered contains 2400 formulae in total 

of whidl 1217 formulae are satisfiable. On these satisfiable formulae, the model construction 
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of TSPASS could solve all the problems, whereas the 'Model' function of the LWB did not 

finish on 26 problems within the given time limit. The set of problems for class C~n (n=5) 

contains 1400 formulae in total of which 955 are satisfiable. All the models constructed by 

TSPASS and the LWB for this class were at most of length 2. No timeouts were incurred 

either in the TSPASS or the LWB runs. The collection of problems for class C;"n (n=I2), 

then, contains 4000 formulae in total of which 2264 are satisfiable. The model construction of 

TSPASS did not finish on 30 satisfiable formulae in this class, whereas the 'Model' function 

of the LWB did not terminate within the given time limit on 284 of the satisfiable formulae. 

Finally, the problem set for class C~n (n=12) contains 1900 formulae in total of which 1184 

formulae are satisfiable. Again, no timeouts were incurred in either the TSPASS or LWB 

run, and all the models constructed by TSPASS and the LWB for this class were at most of 

length 2 

As one might expect, the Logics Workbench can maintain its execution time advantage 

on C;an (n = 5) and C;an (n = 12). On the other hand, the model construction of TSPASS 

proves quite successful on C;"n (n = 5) and C;"n (n = 12), computing models of smaller 

median length than the LWB. 

7.7 Alternative Model Construction Approaches 

In this section we briefly discuss other relevant approaches and systems for the construction 

of models for satisfiable Pl Tl formulae. 

First of all, we note that the Stanford Temporal Prover, STeP, [14,69] can also be used 

for model construction purposes. STeP is foremost a tool which supports the verification of 

Pl Tl properties for reactive systems. It combines model checking and deductive verification 

approaches. Temporal properties are verified through verification rules and verification 

diagrams. For this purpose, STeP provides features like automatic invariant generation 

and decision procedures for Pl Tl and for large classes of first-order formulae. A theorem 

prover based on non-clausal resolution and on paramodulation is also available in STeP. 

Pl Tl model construction is therefore possible in STeP either through model checking or 

the tableaux-based decision algorithm for Pl Tl given in [55], which is implemented in 

STeP. However, according to [53] the tableaux-based decision procedure of STeP for PlTl 
is outperformed on the benchmarking examples by the model 'function' of the LWB. 

Additionally, one can easily see that a particularly close connection is present between 

the model construction mechanism described in this section and MetateM [11,12], which 

is a framework for using temporal logics, in particular Pl Tl, as an executable imperative 

language. Similarly to the model construction approach presented here, MetateM obtains 

a Pl Tl model for a clausified DSNF problem by sequentially executing all the temporal 

formulae present in the problem for the different time points. In this way the constraints 

that are expressed by the formulae contained in a temporal problem are satisfied in the 

different time points of a model. For instance, in MetateM terminology a step clause p => Oq 

represents the "executable statement" that the atom q has to be executed at the next time 
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point once the atom p is satisfied at the current time point. Different strategies are available 

in MetateM to handle the possible choices that can occur when disjunctions, i.e. initial or 

universal clauses, or multiple eventualities have to be fulfilled during the execution of a 

MetateM program. In particular, in order to recover from choices that do not lead to a 

correct model MetateM employs backtracking during the execution of temporal formulae. 

Note however that MetateM does not require temporal problems to be saturated under the 

inference rules of the J~t -calculus before they can be executed. A Java-based interpreter 

for a first-order variant of MetateM is currently being developed [38J. 

1.8 Minimal Models 

A natural question that arises when models for satisfiable formulae need to be constructed 

concerns the computation of "minimal" models. In contrast to the non-temporal case it turns 

out that it is no longer obvious how one can define a partial ordering on models that would 

lead to a formal notion whidl is intuitively perceived to represent minimal models for a Pl Tl 

problem. For instance, the characteristics of models that one can take into consideration for 

defining a partial ordering on Pl Tl models are the number of different propositional models 

in the infinite chain of the temporal model or the number of propositional variables assigned 

to "true" at a given time point. Both properties could be compared lexicographically, for 

example. 
If we assume that the characterisation for a model to be considered as minimal refers to 

(at least) one of the two examples described above, then it is easy to see that the model 

construction presented here cannot guarantee the construction of minimal models. The 

number of time points that are present in a constructed model and the number of satisfied 

propositional variables heavily depend on the choice of the orderings that have been used 

for the construction, even for temporal problems without eventualities. For example, for 

the temporal problem (0, {p V q}, {p :::} Or, r :::} OP}, 0) the model construction procedure 

presented here constructs the model {P}, {r}, {p}, {r }, . .. for an ordering ~ 1 with p ~ 1 q, 

whereas one obtains the model {q}, 0, 0, 0, ... for an ordering h with q ~2 p. 

Thus, in order to construct minimal models, one would have to explore the different 

successor models that one can obtain for a given time point by constructing the successor 

models with different orderings. As such, the search for minimal models would result 

in having to find a suitable path in a graph structure representing the different possible 

successors for every time point (see also, e.g., the notion of behaviour graph in [37]). One has 

to note, though, that not every propositional model can be obtained through an application 

of the propositional model construction on a clause set. For example, the model {p, q} for 

the clause p V q cannot be obtained through propositional model construction. Consequently, 

it remains unclear whether a suitable minimal model can indeed be found if the propositional 

successor models in the graph structure are constructed by propositional model construction. 
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7.9 Summary 

The aim of this chapter was to present a fully-automatic procedure for constructing models 

for satisfiable PLTL fonnula, which contributes to closing the gap in functionality that 

separates resolution-based calculi from tableaux-based reasoning approaches for formal 

verification purposes. The procedure is based on computing saturations under ordered 

fine-grained resolution with selection while using the standard model construction for 

propositional clauses to construct models for the different time points. It is important 

to observe that the temporal model construction procedure is not based on performing a 

search with backtracking but the construction is guaranteed to succeed once the appropriate 

symbol orderings have been considered, and that it can always produce finite, ultimately 

periodic models. We also proved the correctness of the model construction algorithm and 

analysed some of its practical aspects. We then briefly introduced our implementation of the 

algorithm and provided an experimental analysis of the model construction procedure on the 

benchmarking classes for PLTL formulae. Sub3equently, we described alternative approaches 

and systems for PLTL model construction, and we concluded with a short discussion of the 

problems related to finding minimal models. 





Chapter 8 

Conclusion 

We conclude this thesis by summarising the results that we have described in the previous 

chapters and by giving an outlook on future research possibilities. 

8.1 Summary of the Results 

The general area in which the work presented in the previous chapters is situated is that of 

formal verification. Chapter 1 gave a brief overview of this field and summarised the main 

novel contributions of the thesis. 

In Chapter 2 we formally introduced the syntax and semantics of the two formal languages 

we are considering in this thesis: propositional linear-time temporal logic and monodic 

first-order temporal logic. Both of these logics are interpreted over a model of time that is 

isomorphic to the natural numbers. We also defined some notions that were essential for the 

following parts of this thesis. Subsequently, we described the normal form for formulae of 

the two temporal logics we are considering. Finally, we demonstrated how the formulae that 

are in normal form can be clausified for the resolution-based calculus that was introduced 

in the subsequent chapter. 

We then focused on the proof of refutational completeness for ordered fine-grained 

temporal resolution with selection in Chapter 3. First, we briefly recalled the inference 

rules of monodic temporal resolution and ordered fine-grained temporal resolution with 

selection. Subsequently, we defined a refined version of monodic temporal resolution, for 

which we also proved that it is refutationally complete. We then showed the Lifting Theorem 

for ordered fine-grained resolution with selection without the eventuality resolution rules 

and the arbitrary factoring in left-hand sides of terminating step clauses rule. Next, we 

proved that derivations of refined monodic temporal resolution can be simulated by ordered 

fine-grained resolution with selection. As refined monodic temporal resolution was shown 

to be refutationally complete for temporal problems that only contain step clauses with 

unique left-hand sides, we obtained a completeness result for ordered fine-grained resolution 

with selection restricted to th<X'ie temporal problems. In a final step we then extended this 

completeness result to arbitrary temporal problems. 
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188 CHAPTER 8. CONCLUSION 

In Chapter 4 we provided a formal analysis of combining redundancy elimination with 

ordered fine-grained resolution with selection. We first focused on redundancy elimination 

in combination with the resolution-based inference rules of ordered fine-grained resolution 

with selection. We presented syntactic criteria for identifying tautologies among temporal 

clauses and we defined a subsumption relation on temporal clauses. We then described 

how the calculus had to be extended in order to remain compatible with the removal of 

subsumed clauses, resulting in the sUbsumption-compatible ordered fine-grained resolution 

with selection calculus (J~C;:Sub)' We also proved subsumption lemmata for the subsumption

compatible calculus. 

In the second part of Chapter 4 we analysed the problem of combining redundancy 

elimination with the loop search process. We introduced a resolution-based loop search 

algorithm called Subsumption-Restricted-FG-BFS which eliminates subsumed clauses and 

tautologies during loop search computations. After having proved some of its properties, 

we proved the refutational completeness of subsumption-compatible ordered fine-grained 

resolution with selection where applications of the eventuality resolution rules are restricted 

to loops found by the Subsumption-Restricted-FG-BFS algorithm. 

In Chapter 5 we analysed some theoretical aspects of sUbsumption-compatible ordered 

fine-grained resolution with selection that can lead to problems when fair J~;tsub-derivations 

should be constructed in practice. Due to the fact that the applicability of the eventuality 

resolution rules is only semi-decidable, it becomes impossible to guarantee the construction 

of fair derivations, i.e. derivations in which every non-redundant clause that is derivable 

from a given clause set is eventually derived, as the applicability check for those inference 

rules might not terminate. 

As the ability to construct fair derivations is an essential requirement for maintaining the 

refutational completeness of an automated theorem, we presented an inference procedure 

that can construct fair derivations for reasoning in monodic first-order temporal logic based 

on the J~C;:sub-calculu8 and we proved its refutational completeness. The design of the new 

inference mechanism is based on integrating the saturation steps related to loop search, 

which may not terminate, into the main saturation process. The proof of refutational 

completeness proceeded by showing that for every non-tautological clause contained in a 

J:C;:Sub -refutation for an unsatisfiable clausified monodic temporal problem there exists a 

subsuming clause computed in a fair derivation of the new inference procedure. 

We also showed that the new inference mechanism can also be used as a decision procedure 

for temporal problems in which the first-order formulae are restricted appropriately. 

Then, in Chapter 6 we described the implementation of the fair inference procedure that 

had been introduced in Chapter 5, resulting in the automated theorem prover TSPASS. We 

also analysed the performance of TSPASS in practice. First, we discussed the connection 

between ordered fine-grained step resolution with selection and regular first-order resolution. 

We continued by describing the architecture of TeMP, before we outlined its problems 

related to guaranteeing fair derivations. We also analysed how the fair inference procedure 

described in Chapter 5 can be implemented in practice. In the following, the implementation 



8.2. FURTHER RESEARCH POSSIBILITIES 189 

of TSPASS was described in detail. 

We recalled the general architecture of SPASS before we explained some basic considera

tions behind the implementation of TSPASS. Next, we presented the general architecture of 

TSPASS and we continued with a detailed description of its internals, like the the clausifica

tion and translation into first-order logic, efficient techniques to access loop search clauses, 

the main inference procedure, and ways to implement loop search tests. We then discussed 

several peculiarities related to the implementation of TSPASS w.r.t. SPASS and we analysed 

some fairness problems regarding the regular clause selection function. 

Subsequently, we examined the effectiveness of redundancy elimination in TSPASS and 

we evaluated its proof search performance on PL TL and monodic FOTL problems against 

TRP++, the Logics Workbench, the Tableau Workbench, and TeMP. 

Finally, in Chapter 7 we presented a fully-automatic procedure for constructing models 

for satisfiable PL TL formula. This automated construction procedure contributes to closing 

the gap in functionality that separates resolution-based calculi from tableaux-based reasoning 

approaches for formal verification purposes. The model construction procedure was based on 

computing saturations under ordered fine-grained resolution with selection while using the 

standard model construction for propositional clauses to construct models for the different 

time points. It is important to observe that the temporal model construction procedure 

is not based on performing a search with backtracking but the construction is guaranteed 

to succeed once the appropriate symbol orderings have been considered, and that it can 

always produce finite, ultimately periodic models. We proved the correctness of the model 

construction algorithm and analysed some of its practical aspects. We then briefly introduced 

our implementation of the algorithm and provided an experimental analysis of the model 

construction procedure on the benchmarking classes for PLTL formulae. We concluded 

the chapter with a description of alternative systems and approaches towards PLTL model 

construction, and we shortly discussed some of the problems related to finding minimal 

models. 

8.2 Further Research Possibilities 

We now briefly present some ideas for further research possibilities based on the results 

presented in this thesis. Regarding the fair inference procedure introduced in Chapter 5 and 

its implementation in the automated theorem prover TSPASS, it would be worthwhile to 

• investigate whether several restrictions that had to be introduced for proving the 

refutational completeness of the different calculi in the previous chapters are necessary 

or only appear as a consequence of the chosen proof techniques. For example, the 

proof of refutational completeness for the J~;;- -calculus given in Chapter 3 requires 

that selection function are instance compatible. However, such constraints on selection 

functions are not present in the setting of regular first-order resolution. Additionally, for 

proving the refutational completeness of the J~~Svl> -calculus in Chapter 4 two additional 
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inference rules, namely (arbitrary) factoring in left-hand sides of terminating step 

clauses and (arbitrary) factoring in at most monadic negative universal clauses, had 

to be introduced. Thus, one could try to find examples which demonstrate that these 

additional restrictions are in fact necessary for the completeness of the considered 

calculi. If such examples cannot be found, one could explore possibilities for alternative 

proofs that do not require additional restrictions. Furthermore, one could 

• analyse the compatibility of the fair inference procedure with additional (first-order) 

inference and reduction rules, which are, for example, already available in the theorem 

prover SPASS. The reduction rule of matching replacement resolution in the general 

first-order case and the introduction of splitting rules are here of particular interest [91]. 

As the proof of refutational completeness for the fair inference procedure F is based on 

showing that for every clause derived by the J~;;:Sub -calculus there exists a subsuming 

clause computed by the procedure F, one can see that additional efforts would be 

required to show that an extended inference procedure remains refutationally complete 

if the newly added inference or reduction rule cannot be simulated by resolution 

inferences and subsequent subsumption steps (as it is indeed the case for propositional 

matching replacement resolution, for example). In particular, it would probably be 

most difficult to prove that new inference or reduction rules are compatible with the 

loop search algorithm, i.e. one has to guarantee that the conditions for finding loops 

can still be achieved. Also, one would have to to ensure that new inference or reduction 

rules do not cause undesired side effects such as interfering with the translation of 

temporal clauses into first-order logic and allowing inferences or reductions in this way 

which would not have been possible on the level of monodic FOTl. Along the same 

lines, 

• one could analyse the possibilities of extending the fair architecture with inference 

rules capable of handling equality. A first attempt to include the handling of equality 

mainly into the monodic temporal resolution calculus was presented in [59]. For 

fine-grained temporal resolution a fine-grained superposition calculus is also briefly 

described in [59], which could form the starting point for an extension of the fair 

inference procedure with equality handling capabilities. Presumably, one could prove 

the refutational completeness of the fine-grained superposition calculus in analogy 

to proof of refutational completeness of the J~~ -calculus contained in Chapter 3, 

and consequently the subsumption lemmata could be proved for the fine-grained 

superposition calculus. In a final step the refutational completeness of the fair 

architecture extended with superposition rules could be established by linking the 

extended fair architecture with the fine-grained superposition calculus as it was 

described in Chapter 5. The implementation of TSPASS would also have to be modified 

in order to take the superposition inference rules of the fine-grained superposition 

calculus into account. Note, however, that even the monadic monodic two-variable 
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fragment of FOTL with equality (but without function symbols) is not recursively 

enumerable [24], which brings us to the following point: 

• another interesting application area of ordered fine-grained resolution with selection 

and the fair inference procedure consists in the full language of first-order temporal 

logic with or without equality. Despite not being refutationally complete, the extended 

inference rules for full FOTL would still be sound. One would have to extend the 

normal form DSNF in such a way that step clauses and eventuality clauses which 

involve predicates of arbitrary arity are allowed to occur. The implementation of the 

transformation to DSNF would also have to be modified. Additionally, one would have 

to change the implementation of the fair architecture in order to be able to handle 

eventuality clauses of arbitrary arity. However, TSPASS could hence be turned into a 

sound but not refutationally complete automated theorem prover for full FOTl. 

Then, regarding the automated model construction procedure for satisfiable PLTL 

formulae described in Chapter 7, it would, for instance, be interesting to 

• investigate the influence that the choice of orderings has on the constructed models. 

Hopefully, it would then be possible to guarantee the construction of small models, 

and ideally obtain minimal models (in specific cases). Also, one could try to 

• reduce the number of renamings necessary for the transformation to single-eventuality 

problems. As a consequence, the number of propositional symbols that have to be 

considered during the construction of models will be reduced, which should result 

in shorter construction times required to build models for satisfiable PL TL formulae. 

Another interesting extension would be 

• the answering of queries over models, i.e. given a satisfiable PL TL formula F and a 

PL TL query formula cp, one would like to know whether there exists a model 'H. of the 

formula F such that 'H. F cp holds. Initially, one could limit the expressivity of the 

formula cp by not allowing it to contain eventualities, for example. Moreover, if one 

is not interested in the (full) model 'H. itself, but only in the question whether such 

a model can exist, it is sufficient to construct time points for the model 'H. until the 

formula cp is satisfied, which can potentially reduce the required construction efforts. 

Lastly, on a more technical side, 

• one could also investigate in which cases an even stronger elimination of redundant 

cycles is possible. After the propositional symbols which have been introduced during 

the transformation to DSNF have been removed from a constructed model, experiments 

have shown that is possible to remove redundant cycles present in the reduced model 

in some cases while preserving correctness, Le. the reduced model which has now been 

freed of redundant cycles remains a model for the original formula. A formal study of 

this problem could potentially identify criteria for when such an extended elimination 

of redundant cycles can be performed. Additionally, 
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• in the case where the validity of a formula !.p ~ 'I/J cannot be proved as the formula 

'P " -,'I/J is satisfiable, the constructed model 'H for the formula !.p" -,'I/J shows why the 
formula -,'I/J holds in the context of the formula!.p. However, it would be worthwhile for 

the user to visualise how the model 'H satisfies the formula -,'I/J alone by disregarding 

any propositional symbols that only occur in the formula !.p, for instance. In this way 

one can avoid some potential clutter in the representation of the model 'H that can 

be caused by the formula 'P. The user should thus be able to understand erroneous 

behaviour more easily. 

Finally, we believe that it is feasible to extend the automated model construction method 

to CTL formulae, but an extension to first-order temporal logic will require greater efforts 

as the reduction to single-eventuality problems is not even generally possible for arbitrary 

monodic FOTL problems. 
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