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ABSTRACT

Multivariate modelling of cognitive function and brain structural data

Christopher P. Cheyne

Previous studies have investigated links between cognitive ability and a number of
factors including age, gender, handedness, musical ability as well as the volume and
surface area of certain brain structures. However, in these studies either the explanatory
variables are analysed independently of each other, or the investigation is based on a
separate analysis for individual cognitive outcomes (e.g. language, visuospatial, etc.)
The main objectives of this thesis are (1) to develop general multivariate models, which
include mixed-effects terms, to account for the correlation in the data, (2) to explore the
possible associations in children and adults between multiple cognitive ability test
scores and the range of factors mentioned above by simultaneously applying the
multivariate models designed in (1), and (3) to investigate the possible effects of
missing data on the results.

To meet these objectives, a range of statistical and stereological methods was
employed. Multivariate linear and linear mixed models were developed and fitted to
multiple datasets. The approach used took into account the correlation of clustered data,
the correlation between outcomes as well as the association between explanatory
variables and a linear combination of the outcomes. Stereological methods were used to
estimate the volume and surface area of a region of the brain called Broca's area, using
magnetic resonance images. Also, the latest formulae in error prediction for these
stereological estimates were described and applied to the data.

Results from the fitted multivariate linear mixed model to a dataset of l l-year old
children (n=II843) showed that children whose writing hand has less hand skill than
the opposite hand performed worse, on average, in both reading and maths scores, than
those children whose writing hand had more hand skill than the opposite hand. A
multivariate linear model fitted to a dataset of adults (n= 142) revealed that the gender
difference found in the non-musician groups for the vocabulary and arithmetic scores
was not present in the musician group. Multivariate linear models were subsequently
fitted to a subset of this cohort containing volume and surface area estimates of Broca's
area (n=39). Musicians were associated with Broca's area being less convoluted in the
right hemisphere than non-musicians. Other associations investigated were not found to
be statistically significant.

Inverse probability weighting was then used to take the missing data into account for
each of the analyses (aim (3)). The results and interpretations determined from the
fitted multivariate models were consistent with the analyses when the missing data
were accounted for. Only those results for the children dataset changed slightly, but not
enough to alter the interpretations of the results. This adds weight to the belief that the
results of the multivariate analyses gave a reasonably accurate description of the
variability that exists within the children and adult datasets.
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CHAPTER 1

Introduction

This thesis encompasses a number of specific multivariate analyses to cover the aim

of providing evidence, or identifying a lack of evidence, for associations between

multiple cognitive abilities, handedness, musical ability and measurement estimates

of a region of the brain called Broca's area. There are a number of abilities which are

defined as cognitive (e.g. language, spatial awareness, etc.) which may have

differing links to factors such as gender or musical ability. By taking multiple

cognitive abilities and factors into account in individual models, better estimates of

these links can be found.

There have been several studies where the connection between cognitive ability and

a range of factors including handedness, age, musical ability and the activation of

Broca's area was investigated (Schubotz & von Cramen 2002a,b; Salthouse, 2006;

Thilers et al., 2007; Jakobsen el al., 2008; Nicholls et al., 2010). However, the

results from these studies are far from conclusive (more details about them can be

seen in Section 1.2). It is interesting to note that most studies, while taking multiple

factors into account, have focussed mainly on the effects of individual factors on

cognitive ability without considering interactions between the factors.

Either the general cognitive ability (OCA) value, which is comprised of a number of

different cognitive ability test scores (e.g. language, mathematical, memory, etc.), or

individual cognitive abilities have been investigated as outcome variables in

independent linear regression models. Furthermore, measurements of hand skill have

been obtained by various methods (e.g. Purdue's Pegboard test, Edinburgh test, etc.)

and links considered with cognitive ability. However, the links between cognitive

ability and the handedness of a particular task (e.g. a component of the Edinburgh

test such as writing, brushing teeth, picking up an object, etc.) have not been reported

along with an estimate of hand skill in the same study.

As with most datasets, missing data may be a problem. If there are individuals with

missing data, either outcomes or explanatory variables, and if there isn't an even



spread of these individuals across groups of interest within the dataset, then this

could lead to biased results. For example, let there be a dataset with equal numbers

of people from three socio-economic groups (unemployed, manual employment and

skilled employment) and 25% of these people have missing data. If the majority of

those individuals with missing data are from anyone particular group, then the

influence on the results of any analyses performed will be greater from people in the

other two socio-economic groups than those in the group with the majority of the

missing data. However, if the missing data are spread evenly across all socio-

economic groups then, given that the missingness of the outcomes is not dependent

upon any other characteristics of interest, the missing data should not influence the

results. Therefore, missing data and their effects on the original analyses' results

should also be investigated.

The objectives of this thesis are presented and described in detail in the following

subsection. A general introduction into the background of the research area follows.

We then introduce the datasets that will be used in the multivariate analyses. Finally,

the structure of the thesis is the final component of this introductory chapter.

1.1 Objectives

The objectives of this thesis and the breakdown by chapter can be seen in Table 1.1.

Section 1.4 gives a more detailed description of the thesis structure. There are six

objectives for this thesis. They are:

1. To construct a number of statistical models which:

a. allow for the investigation of associations between explanatory

variables and a linear combination of multiple outcomes.

b. allow for the investigation of associations between explanatory

variables and multiple outcomes individually.

c. take into account correlations among clusters of data.

d. take into account correlation between outcomes.
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which when applied to specific datasets can be used to meet the objectives below.

The methodology for multivariate linear mixed and linear models can be seen in

Chapter 2. Individual models and their structures are explained within Chapters 3-5.

11. To investigate the associations between multiple cognitive ability scores

considered simultaneously in one model, and:

a. handedness

b. gender

in children, whilst at the same time taking into account any other possible

factors that may have some association with the cognitive ability test scores

(e.g. UK region). The analyses for this objective can be seen in Chapter 3,

with writing hand, superior hand and relative hand skill (see Section J. 3. J

for definitions) all linked to handedness and cognitive ability scores

represented by reading and mathematics scores.

111. To look into the possible links between multiple cognitive ability scores

considered simultaneously in one model, and:

a. musical ability

b. gender

c. age

in adults. The analyses for this objective can be seen in Chapter 4, with

cognitive ability scores represented by vocabulary, arithmetic and

visuospatial scores.

IV. To examine the possible relationships between volume estimates of Broca's

area (Broca's volume), and:

a. musical ability

b. gender

c. age

d. cognitive ability scores:

i. vocabulary scores

if. arithmetic scores

iii. visuospatial scores
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in adults. The analyses for this objective can be seen in Chapter 5. To

accountfor differences in the size of Broca's area due to total brain size, we

investigated the links described above with Broca's volume estimates relative

to total brain volume (relative Broca's volume) as opposed to raw Broca's

volume estimates.

v. To explore the possible associations between surface area estimates of

Broca's area (Broca's surface area), and:

a. musical ability

b. gender

c. age

d. cognitive ability scores:

i. vocabulary scores

ii. arithmetic scores

iii. visuospatial scores

in adults. The analyses for this objective can also be seen in Chapter 5. To

account for differences in Broca's surface area due to Broca's volume, we

investigated the associations described above with Broca's surface area

estimates relative to Broca's volume (relative Broca's surface area) as

opposed to raw Broca's surface area estimates.

vi. To investigate the effect of missing data on the analyses in Chapters 3 and 4

(see Table 1.1). Both of the datasets used in the analyses in those chapters

include participants that have missing data (either outcomes or explanatory

variables). So, in Chapter 6, a method is deployed that adjusts the analyses'

resultsfor the missing data.
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Ch. Associations Outcome Explanatory StatisticalInvestigated/#
Objectives Variables Variables Analyses

Writing hand (UR)
Handedness, (1) Reading Superior Hand (UR) Multivariate

3 gender and UK scores Relative Hand Skill linear mixed
region by (2) Mathematics Gender (M/F) model

cognitive ability scores UK region (NE&M, (MLMM)
SE, WAL, SCOT)

(1) Vocabulary
Musical ability, scores Musical Ability Multivariate

4 gender and age (2) Arithmetic (M/C) linear modelby cognitive scores Gender (M/F) (MLM)ability (3) Visuospatial Age
scores

Musical Ability
Musical ability, (1) Left relative (M/C)
gender, age, Broca's volume Gender (M/F)

cognitive ability (2) Right Age MLM
test scores by relative Broca's Vocabulary scores

Broca's volume volume Arithmetic scores

5 Visuospatial scores

Musical ability, (1) Left relative Musical Ability
(M/C)gender, age, Broca's surface Gender (M/F)cognitive ability area

test scores by (2) Right Age MLM

Broca's surface relative Broca's Vocabulary scores
Arithmetic scoresarea surface area Visuospatial scores

Handedness, Inverse
Writing hand (UR) probabilitygender and UK

region by (1) Reading Superior Hand (UR) weighting

cognitive ability scores Relative Hand Skill (IPW)

taking missing (2) Mathematics Gender (M/F)

data into scores UK region (NE&M, IPW

6 account SE, WAL, SCOT) weighted
MLMM

Musical ability, (1) Vocabulary IPW
gender and age scores Musical Ability

by cognitive (2) Arithmetic (M/C) IPW
ability adjusting scores Gender (M/F) weighted
for missing data (3) Visuospatial Age MLMscores

Table 1.1: A summary of the objectives ofthe thesis, variables involved and analyses

by chapter (Ch.).
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1.2 Background

There have been a great many investigations aiming to understand the reasons

behind the varying cognitive ability levels that people have. Cognitive ability was

defined by C. Spearman in 1904, as comprising of two types of factors (Zhang et al.,

2010):

1. A general factor

11. A number of specific factors

Each specific factor (individual ability; e.g. language, mathematical, etc.) that

improves a person's performance for a given cognitive ability task can be

summarised by the general factor. The general factor can be assessed by the use of

psychometric battery tests, is comparable between everyone, and is comprised of a

number of sub-tests (specific factors). There are a number of different cognitive

ability battery tests such as the Wechsler Adult Intelligence Scale (WAIS) and the

Differential Ability Scales (DAS). Both of these tests have a number of sub-tests,

with these scores combined giving an estimate of IQ (general factor). The WAIS is

split into two main areas which are verbal and performance abilities (Aitken, 1996).

These in tum are made up of many sub-tests including vocabulary, arithmetic, digit

span, block design and symbol search tests. The DAS similarly comprise a number

of sub-tests including verbal, performance (non-verbal) and spatial ability tests

(Elliott, 1990).

A number of possible factors have been investigated in terms of their association

with cognitive ability and reported upon, such as handedness, gender, age and

musical ability (Salthouse, 2006; Thilers et al., 2007; Jakobsen et al., 2008; Nicholls

et al., 2010). Results from some of the previous studies into these associations are

detailed below starting with the link between cognitive ability and handedness.
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1.2.1 Handedness and cognitive ability

An early investigation into the links between handedness and cognitive ability

predicted that reading disability and issues surrounding speech were more common

for participants with inconsistent cerebral asymmetry (i.e. where the participants'

brains did not conform to having a larger, more dominant left hemisphere than right

hemisphere) (Orton, 1937). This study also reported that inconsistent cerebral

asymmetry was associated with left handedness and ambidextrousness (i.e. those

people with no hand preference between their left and right hands). One issue that

has been considered after Orton's publication is how to measure handedness. The

simplest way to determine whether an individual is left- or right-handed is to simply

ask them directly. An alternative method is to ask the participant to perform a task,

such as write their name, or pick up a pencil, and the hand with which they perform

the task is assigned to be the hand they use most often. However, these methods do

not record how often individuals use their preferred hand. Some people may use a

combination of their two hands, depending upon the type of task, or even depending

upon the task itself. For example, if the pencil was to the left of the person, they may

be more likely to pick it up with their left hand, even though they would pick up the

pencil with their right hand if it was near their right hand. Some methods for being

able to differentiate the level of skill attributed to each of a participant's hands have

been constructed. Three of these methods are:

• Box ticking method

• Edinburgh Handedness Inventory test

• Purdue Pegboard test

An individual having their handedness measured by the box ticking method had to

tick as many boxes in one minute with each hand in turn (Leask & Crow, 2006). The

two scores for each hand could then be compared as a measure of hand skill. The

Edinburgh Handedness Inventory test (or otherwise known as simply the Edinburgh

test) involves the participant being asked twenty questions about which hand they

use to perform specified tasks (Oldfield, 1971). Questions include which hand the

individual uses to brush their teeth, use a hammer and swing a golf club. The Purdue
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Pegboard test was originally designed to assist industry in selecting potential

employees (Tiffin & Asher, 1948). A modified version of this test consists of the

singular timing of both hands moving pegs between positions on the board (Annett,

2002). The peg-moving tests give a continuous outcome for each hand (time), as

opposed to discrete outcomes for the other two tests (since there are only a finite

number of possible outcomes).

Comparing left-handed people to right-handed people in terms of cognitive ability

has produced some interesting results. Some studies have suggested that left-handed

individuals show a cognitive advantage over right-handed individuals (McManus,

2002). However, conflicting studies have said this supposed cognitive advantage of

left-handed participants does not exist (Resch et al., 1997). Indeed, others have

obtained results which suggest that left-handedness is associated with lower scores

across a number of cognitive ability tests (Johnston et aI., 2009).

General cognitive ability (GCA) was reported to have a quadratic relationship with

hand skill (Nicholls et al., 2010). Hand skill was estimated by counting the number

of times each participant tapped on a circle on a touch screen in 30 seconds with

each hand. GCA was estimated using the cognition battery of tests as seen in

Gordon, (2003). This result implies that people in the study with extreme handedness

(i.e. those individuals that use their left or right hand much more than their opposite

hand) were associated with lower levels of cognitive ability than those participants

with moderate handedness (i.e. those individuals that have one hand only moderately

more skilled than the other hand). A quadratic relationship was also reported

between reading test scores and the absolute difference in skill scores between

partakers' left and right hands (Annett & Manning, 1990). These results agree to a

certain extent with Crow et al., (1998) who stated that some moderate deficits in

cognitive ability (including verbal, non-verbal, reading and mathematical skills) in a

group of l l-year old children were evident for those children with extreme hand

skill. However, where they differ, is that Crow et al., (1998) suggest that lower

cognitive abilities are associated with children that are at the "point of hemispheric

indecision" (i.e. they are ambidextrous). This "point of indecision" was defined as

the zero point of a laterality index variable (see McManus, 1985, for laterality index

definition). This was also found when 1,355 participants of varying ages between 18
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and 60+ years old from a New Zealand TV show were tested for IQ, with mixed-

handedness associated with lower cognitive IQ sub-test scores than left- and right-

handedness (Corballis et al., 2008).

In 2005, a BBC online Internet survey was conducted where 255,100 participants

were given a mental rotation task to test their spatial performance, as well as a

fluency/reasoning task (Peters et al., 2006). The fluency/reasoning task involved

each subject listing as many words in 2 minutes that could be linked to something

grey. The mental rotation task, a redrawn Vandenberg and Kuse, (1978) mental

rotation task, involved 24 questions consisting of 5 images of 3-dimensional objects

in different rotations and subjects had to identify the two images which were of

identical objects (Peters et aI., 1995). The majority of those participants who

performed worst in the spatial performance task appeared to be those with no

preference for handedness. Also, participants who were either extremely left- or

right-handed tended to show deficits when compared to those who were mostly left-

or right-handed for the spatial task. The extreme handedness group performed worst

in the fluency/reasoning task, followed by those ~ith no preference for handedness.

1.2.2 Gender and cognitive ability

Differences between the sexes in a variety of cognitive abilities have long been

commented on. Girls are generally better at articulation and sentence production

when they are very young than boys and this may have further consequences later in

childhood with girls also associated with larger vocabularies, making better use of

grammar as well as better reading skills (Sommer, 2010). Females have also been

linked with higher scores than males in memory and verbal tests (Thilers et aI.,

2007). However, for some non-language skills, males have been found to have an

advantage over females. For example, a meta-analysis found that males

outperformed females in various spatial ability tests (Voyer et al., 1995). One further

interesting result is that Thilers et ai., (2007) suggested that the magnitude of the

gender differences in these cognitive ability tests was greater for right-handed

individuals than for left-handed individuals. This could indicate that future analyses

should include an interaction term between gender and handedness so that this
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possible gender by handedness variability within cognitive ability can be adjusted

for.

1.2.3 Age and cognitive ability

In terms of the effect of age on cognitive ability, it has been reported that older

people score lower on cognitive ability tests than younger people (Gunstad et aI.,

2006; Salthouse, 2006; Mitnitski & Rockwood, 2008; Mitnitski et al., 2010). When

an individual is between 20 and 40 years of age, there starts a general decline in

episodic memory, perceptual reasoning and perceptual speed ability test scores with

age (Salthouse, 2006). However, no statistically significant reduction in the scores

from a vocabulary test occurred as age increased. Other studies have focussed on

general cognitive ability both as a summary measure of different cognitive abilities

as well as individual cognitive abilities, and when comparing middle-aged and

younger-aged participants to old-age participants, the old-age participants have

shown to have significantly lower cognitive function scores than the other age

groups (Gunstad et aI., 2006; Mitnitski & Rockwood, 2008; Mitnitski et aI., 2010).

1.2.4 Musical ability and cognitive ability

Understanding the role of music on a variety of different cognitive abilities, such as

language and spatial awareness, is another area where there has been much debate

and interest in recent years. A number of studies have attempted to identify

differences in cognitive functions, as well as in brain structures, between musicians

and non-musicians. Differences have been found in a number of tasks, such as,

verbal and visual memory, visuospatial and auditory tasks (Sluming et al., 2002;

Sluming et al., 2007; Franklin et al., 2008; Jakobsen et al., 2008, Parbery-Clark et

al., 2009). In particular, Jakobsen et aI., 2008, reported that musicians have superior

verbal and visual memory than controls. Verbal memory in this study was measured

by the California Verbal Learning Test, 2nd edition (CVLT-II) whereas visual

memory was measured by the Rey Visual Design Learning Test (RVDLT). The

CVLT-II involved the immediate and delayed recall of word lists and the RVDLT is
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based around the learning, delayed recall and delayed recognition of visual designs.

Even after adjusting for the IQ of each individual, there were still differences

between musicians and controls in the delayed recall of both words and visual

designs.

Similarly, Franklin et al., (2008) highlighted that mUSICianSappear to have an

improvement in long-term verbal memory and a greater verbal working memory

span when compared to controls. In this case verbal memory was assessed using the

Rey Auditory Verbal Learning test (RAVLT) which is a very similar test to the

CVLT-II. The RAVLT also involved the delayed recall of words from a list,

although the list comprised 15 unrelated words (see Schmidt, (1996) for details)

whereas the list of words of the CVLT-II consisted of 16 words with groups of 4

words related to each other (see Delis et al., (2000) for more details). The verbal

working memory tests administered involved sentences and mathematical equations

which had to be read aloud before responded to as being correct or false. The

capitalized letter or word which followed each equation was then meant to be

repeated in the correct serial order.

In a study by Sluming et al., (2007), the Benton judgement of line orientation (JOL)

test was used to evaluate spatial ability and it was found that musicians achieved

higher scores in this test than controls. The JOL test involved a two-dimensional

(20) line being rotated such that the participants had to estimate the degree of

rotation. In addition to this result, a comparison was carried out between musicians

and controls using a three-dimensional mental rotation (3DMR) task (Sluming et al.,

2007). This 3DMR task consisted of ten pairs of cubes arranged in chiral patterns,

with one of these rotated about a given axis and participants have to decide whether

the two objects were identical or not. Once again, as for the 2D spatial ability test,

musicians attained significantly better scores than controls in the 3DMR task.

1.2.5 Broca's area and cognitive ability

Broca's area, a region of the brain named after Paul Broca who is credited with its

identification, was linked to the processing of language after those with speech
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difficulties had lesions in the area now known as Broca's area (Broca, 1861). The

two subjects of Broca's study, Leborgne and Lelong, each had only a very limited

vocabulary and both had lesions in the frontal lobe of the left hemisphere (i.e.

Broca's area) (Dronkers et al., 2007). Located in the inferior frontal gyrus, Broca's

area comprises of Pars Opercularis (PO) and Pars Triangularis (PT), which are two

distinct parts. PO and PT are denoted in Brodmann's cytoarchitectonic map as areas

44 and 45, respectively (see Figure 1.1; Brodmann, 1909).

Triangularis
(BA 45)

Pars
Opercularis
(BA 44)

Figure 1.1: Brodmann's 1909 cytoarchitectonic map with Pars Opercularis (BA 44)

and Pars Triangularis (BA 45) highlighted (modified/rom Zilles & Amunts, 2010).

Further investigations have confirmed that language, or more specifically speech

production, is strongly linked with the inferior frontal gyrus (which Broca's area is a

part of) in the left hemisphere (Stephan et al., 2003, Toga & Thompson, 2003;

Costafreda et al., 2006). More specific language related skills, such as syntactic

processing which is linked to the structure of sentences, have also been associated

with Broca's area (Caplan, 2006).
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Furthermore, Broca's area is involved in the processing of non-linguistic information

such as music, sequencing, action recognition and visuospatial cognition according

to other studies (Koelsch et al., 2002; Schubotz et al., 2002a,b; Hamzei et aI., 2003;

Sluming et aI., 2007). Links between general cognitive ability scores, such as IQ,

have been found to be correlated with certain regions of the brain (Haier et aI.,

2005). Interestingly, Haier et aI., (2005) found these links to be different between

males and females with males showing stronger correlations in the volumes of

frontal and parietal lobes, whereas females had correlations that were strongest in the

volumes of the frontal lobe and Broca's area. This result suggests that there may be,

not only a gender difference in the volume of Broca's area, but also an interaction

between gender and cognitive ability. When looking at possible gender differences in

the volume of Broca's area, it would be useful to also consider the fact that females

have smaller brain volumes than males due to their generally smaller stature

(Cosgrove et aI., 2007). Therefore, a way of adjusting the volumes of Broca's area

for this overall gender variation should be considered.

Following on from the studies linking musicians with higher cognitive ability scores

than non-musicians (in Section 1.2.4), differences in the activation of a variety of

areas of the brain have been observed between musicians and non-musicians

(Schlaug et aI., 1995; Amunts et aI., 1997; Sluming et al., 2002; Gaser & Schlaug,

2003; Lee et aI., 2003; Bengtsson et aI., 2005; Schneider et al., 2005; Bangert &

Schlaug, 2006; Stewart, 2008). Some areas have been highlighted as being active

when music is being processed (Stewart et aI., 2003; Stewart, 2005; Sluming et al.,

2007). This can be seen in Broca's area where musicians have been found to have

greater activation in Broca's area as well as having larger grey matter volume in the

left hemisphere only, than non-musicians (Sluming et al., 2002; Sluming et aI.,

2007). This result along with the fact that language skills are mainly associated with

the left hemisphere suggests that the volume estimates of Broca's area in different

hemispheres should be considered as two separate variables.

After reviewing the previous results in the areas of the objectives of this thesis, it

Was clear that more research needed to be undertaken on these topics. We wanted to

add to this knowledge-base and to do this, we needed to analyse a number of

different datasets. One of the reasons for requiring multiple datasets is that we
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wanted to analyse associations between cognitive ability and the factors listed above

for both children and adults where possible. We were, of course, limited to being

able to test for links between cognitive ability and factors which were included at the

data collection stage as well. These datasets are introduced in the following

subsection.

1.3 Introduction to the datasets

This thesis includes analyses of two different datasets, as well as the analysis of a

subset of one of the datasets. The first dataset came from the National Child

Development Study and will be described in detail in Section 1.3.1. The second

dataset was collected at the University of Liverpool in 2000 and includes data from

musicians and non-musicians (controls). This dataset is described in detail in Section

1.3.2 and will be referred to throughout the thesis as the musician-control (MC)

dataset. For the final set of analyses, a subset of the MC dataset was taken based on

near-identical group sizes of male and female, musicians and controls with the

measurement estimates of Broca's area added. An overview of this subset can be

seen in Section 1.3.3.

1.3.1 The National Child Development Study dataset

Originally the National Child Development Study (NCDS) was set up to obtain data

from all births on the UK mainland within a period of one week (3-9 March, 1958)

as a study of perinatal mortality (Shepherd, 1995; Leask & Crow, 1997; Leask &

Crow, 2006; Power & Elliott, 2006). Subsequently, a decision was taken to extend

the scope of the study to investigate the main factors that affect human development.

To do this the cohort was followed-up at various ages including at 7, 11 and 16 years

of age. The NCDS is still collecting data with follow-ups on this cohort to the

present day and beyond. These data are stored by and can be obtained from the

Centre for Longitudinal Studies. A number of different types of variables were

collected for the dataset, with different variables obtained at different sweeps. Some
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sweeps, such as the one at age 44-45 in 2002/03, were specifically targeted to gain

data which would answer certain questions about the cohort, and this particular

sweep was classed as a biomedical survey (Power & Elliott, 2006). Usually a range

of factors such as socio-economic, medical and cognitive factors were included in

various sweeps. One of the objectives of this thesis was to examine possible

associations between multiple cognitive ability test scores, handedness and gender,

in children, using a single model. Therefore, the NCDS data collected in 1969,

consisting of 18,558, II-year old children, was considered.

Cognitive ability in this dataset is comprised of two sets of test scores:

• Reading scores

• Mathematics scores

The reading test was comprised of 35 comprehension questions which involved the

children having to complete a sentence by choosing one of five given words (Crow

et al., 1998). An example of this was:

A bird lays its eggs in a (pond, stream, cloud, house, nest)

with the correct answer being 'nest'. Children were given twenty minutes to

complete the test. The mathematics test included questions based on three areas of

mathematics (arithmetic, logic and geometry). A total of 40 questions were asked

with the children having 40 minutes to answer them all.

The methods of statistical analysis that were used to address the research questions

posed in this thesis comprised of multivariate linear and linear mixed models (see

Table 1.1). These methods are explained in detail in the next chapter. One of the

assumptions of both of these types of models is that the error terms are normally

distributed and an indicator of this is the normality of the outcome variables (see

Section 2.1 for more details). In the case of these analyses, the reading and maths

scores will be the outcomes. Initial observations show that the reading scores were

approximately normally distributed but the maths scores look highly skewed (i.e. not
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normally distributed). This lack of normality of the maths scores is confirmed by the

Anderson-Darling test (p<0.001).

Variables which are not normally distributed can be transformed into new variables

that follow a normal distribution more closely. By transforming the maths scores and

using the transformed scores as an outcome in the statistical analyses the

corresponding error terms are expected to show a distribution closer to the normal

distribution. A variety of possible transformations of the maths scores were

considered including a log transformation, an exponential transformation and a

number of power transformations. The log and exponential transformations made the

variable more skewed. Increasing or decreasing the power transformation also

resulted in increasingly skewed variables. The transformation which produced a

variable which most closely followed a normal distribution was a Box-Cox

transformation. This transformation can be expressed as:

y* = ((y + 3)'" -1)/,1 (1.3.1)

where y* is the new transformed variable, y is the original, untransformed variable

and A is the transformation parameter (Box & Cox, 1964). The transformation

parameter is chosen such that the transformed variable y* is closer to a normal

distribution by using maximum likelihood estimation, and in this instance A =

0.512. The distribution of the newly transformed mathematics score variable looks

closer to the normal distribution when compared to the distribution of the original

mathematics scores (see histogram in Figure 1.2).

The mean of the transformed scores was 11.01 (sd=4.36) with median equal to

11.04. The fact that the mean and median are close together is a good indicator of a

symmetric distribution. Although the Anderson-Darling test still suggests that the

hypothesis of normality is rejected (p<0.001), when datasets are very large, as is the

case here with a sample size equal to 18,558, normality tests will highlight and

magnify small differences in the data from a normal distribution. To justify how

good the final fitted model was to the actual data, the distribution of the standardized
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residuals derived from the model fitted were analysed to check whether the

assumption of normality held (see Section 3.4.3).

Histogram of Transformed Mathematics Test Scores

o
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Figure 1.2:Histogram of the transformed NCDS mathematics scores using Equation

(1.3.1) with transformation parameter A = 0.512.
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The main factors with links to cognitive ability being investigated according to the

objective for this section are gender and handedness. Gender is a binary variable,

with males set equal to 0 and 1 representing females. There were two variables

included in the NCDS dataset that could be representative of handedness.

Handedness was recorded both as a binary variable, in terms of which hand the child

writes with, and a continuous variable, based on the number of boxes ticked in 1

minute with either hand (i.e. a measure of hand skill). The hand skill measure

obtained from the box-ticking task is more informative than simply stating whether a

person is left- or right-handed. As opposed to considering hand skill individually for

every child's left and right hand it was decided that it would be more interesting to

look at the relative hand skill between the left and right hands. Hence, two new

variables were created from these two box-ticking measures. The first is called

relative hand skill which was calculated as:

4 12 168
Transformed Mathematics Test Scores
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relative hand skill = In~RH;-ntH) X 1001n RH +n LH)
(1.3.2)

where n(RH) and n(LH) are the number of boxes ticked in 1 minute with the right

and left hands, respectively (McManus, 1985). Relative hand skill can be interpreted

as the relative superiority of the dominant hand over the non-dominant hand. This

variable will always be positive therefore, an indicator variable is required to give

information as to whether or not the left or right hand had ticked the greatest number

of boxes (i.e. had greater hand skill) for each child. The second new variable,

superior hand (SH) was created to denote which hand is the dominant one (i.e. had

the greatest hand skill). SH is set equal to 0 if the dominant hand is the right hand

(i.e. where the number of boxes ticked in 1minute is greater for the right hand than

for the left hand) and equal to 1 if the dominant hand is the left hand (i.e. more boxes

ticked in 1 minute by the left hand than by the right). In addition to these two

handedness variables, it was also deemed appropriate to include the other

handedness variable from the NCDS dataset itself, writing hand (WH). WH is a

binary variable which takes values 0 if the child writes with their right hand, and is

equal to 1 if the child is a left-hand writer.

As mentioned in Table 1.1, a further variable representing the region of the UK in

which the children attended school is also included in the NCDS analyses. In the

original dataset a region variable exists in which each child is recorded as attending a

school in one of eleven designated regions of the UK mainland (such as North-West

England, North-East England, South-West England, etc.). However, in the interest of

reducing the complexity of the analyses while attempting to still explain as much

variability as possible, it was decided to reduce the number of regions to four:

• Northern England and the Midlands

• Southern England

• Wales

• Scotland

This new variable, UK region, was then used in the analyses in Chapter 3 as a factor

with Northern England and the Midlands set as the reference region. Additionally,
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another variable, local authority, indicated which of 185 local authorities in the UK

the school attended by the child was located in. Local authority was included in the

statistical analyses as a clustering variable.

Table 1.2 shows descriptive statistics (i.e. population mean and standard deviation)

for each binary and categorical explanatory variable by each outcome variable. We

considered using both parametric tests (e.g. t-tests) and non-parametric tests (e.g.

Mann-Whitney U tests), however, because of the large sample size and the fact that

our outcome variables (reading and transformed maths scores) were approximately

normally distributed, we give the p-values for the parametric tests in Table 1.2.

When we compared the results from the t-tests to those from Mann-Whitney U tests,

the differences between the p-values for the two tests were small, and all resulting

interpretations (i.e. whether comparisons between groups were statistically

significant or not) remained the same.

We used Welch's t-test to compare the reading and transformed maths scores

between the two groups of gender, writing hand and superior hand. Welch's t-test

was used as opposed to Student's t-test because we could not assume that the

variances of the scores in each group were equal (due to the differing group sizes). In

addition, we used basic linear regression models to test the hypothesis that there

were no differences in test scores between the children who attended school in the

different regions of the UK mainland (see Table 1.2 for p-values). Confidence

intervals were constructed for the differences between the means of each group and

are shown in Table 1.2 These confidence intervals are unadjusted because they do

not take any other variables into account. Confidence intervals constructed after

statistical analyses are performed will take any variables in the model into account so

they are called adjusted confidence intervals.

There were no significant differences between males and females in either test score

nor between left- and right-hand writers in the transformed maths scores (p=O.3 and

P=O.2 for gender in the reading and transformed maths scores, respectively; p=O.05

for writing hand; Table 1.2). However, we can see that there was a difference

between left- and right-hand writers in the reading scores such that right-hand writers

had 1 extra average mark (p=O.05, Table 1.2). The t-tests for superior hand also
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show that children who had left superior hand obtained lower scores on average, in

both tests than children with right superior hand (bothp<O.OOI, see Table 1.2).

In Table 1.2, we can see that there was some justification for including UK region in

the analyses from the fact that differences exist in the mean test scores between

pupils in different regions of the UK according to the t-tests from basic linear

regression models. For example, those children from Southern England had a

statistically significantly higher mean reading score than those children in Northern

England and the Midlands (the reference region), and children from both Southern

England and Scotland were associated with a higher mean transformed maths score

than children from Northern England and the Midlands (p<0.001, p=0.008 and

p<O.OOI, respectively, Table 1.2). The descriptive statistics for the only continuous

variable, relative hand skill, are shown in Table 1.3. The Pearson correlation

coefficients in Table 1.3.suggest that there is very little correlation between relative

hand skill and both reading and transformed maths scores. However, if the

associations between these variables are non-linear as reported in previous studies

(e.g. a quadratic relationship, see Section 1.2.1) then the Pearson correlation

coefficients will not identify this.

These initial observations and hypotheses tests give a flavour into possible

associations between each explanatory variable and outcome. However, they are

unadjusted statistics, which do not account for other factors. The statistical analyses

in Chapter 3 take all the variables into account simultaneously, and therefore give

stronger evidence for any associations that are statistically significant, than from

direct observations from the dataset.
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Reading Scores Transformed
Mathematics ScoresVariable Group n Mean 95% Mean 95%p- p-

(sd) value CI (sd) value CI

Male 9596 45.5 11.1

Gender (18.7)
0.3 (-0.9, (4.5)

0.2 (-0.06,

Female 8959 45.8 0.3) 10.97 0.23)
(17.2) (4.3)

Left 1553 45.0 10.90
Writing (18.5) (0.02, (4.4) (-0.01,0.05 0.05Hand

Right 12161 46.0 2.0) 11.14 0.48)
(17.9) (4.3)

Left 1587 44.5 10.71
Superior (18.4) (1.0, (4.4) (0.29,
Hand 46.4 <0.001 3.0) 11.24 <0.001 0.77)Right 11177 (17.8) (4.3)

Northern
England

8238 45.2 Reference 10.87 Reference
& the (17.8) region (4.4) region

Midlands
UK Southern 4718 46.9 <0.001 (1.0, 11.09 0.008 (0.06,

Region England (18.6) 2.4) (4.4) 0.39)

Wales 817 43.9 0.05 (-2.7, 11.08 0.2 (-0.12,
(18.3) 0.02) (4.4) 0.53)

Scotland 1584 45.2 0.9 (-1.0, 11.43 <0.001 (0.32,
(16.5) 1.0) (4.0) 0.81)

Overall 18558 45.7 11.01
(18.0) (4.4)

Table 1.2: Population mean, standard deviation, p-values of t-tests and unadjusted

95% CIs of the difference between the means for the reading and transformed

mathematics scores with a breakdown by each discrete variable grouping in the

NCDS dataset.

Reading Scores Transformed
Variable Mean (sd) Maths Scores

Correlation I p-value Correlation p-value
Relative Hand Skill 16.32 (8.7) 0.05 I <0.001 0.07 <0.001

Table 1.3: Population mean, standard deviation and Pearson correlation

coefficients related to cognitive ability, with p-values; for relative hand skill.
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1.3.2 The musician-control dataset

The musician-control (MC) dataset was collected at the Magnetic Resonance Image

and Analysis Research Centre (MARIARC), University of Liverpool, in 2000 for the

purpose of investigating differences in brain activation between musicians and non-

musicians (controls). The musicians were from the Royal Liverpool Philharmonic

Orchestra while the controls were staff and students from the University of

Liverpool. In the full dataset there are 149 participants; 40 musicians and 109

controls. Analyses of this dataset were conducted to investigate the possible

associations between musical ability, gender and age and cognitive ability in adults

(see Table 1.1). Originally, handedness was also considered as a possible factor in

the analyses since, in this dataset, handedness was recorded using the Edinburgh

Handedness Inventory test. However, concerns were raised when the breakdown of

left- and right-handed individuals into male and female, musicians and controls were

tabulated (see Table 1.4). It can clearly be seen that since there is only one left-

handed control participant and only 5 left-handed participants altogether compared to

142 right-handers (2 individuals have missing handedness values) there is little

reward to be gained from including left-handers in the analyses. Therefore, a

decision was taken to include just the 142 right-handed individuals in the dataset.

This reduced dataset, referred to from now on as the MC dataset, consisted of 106

non-musicians (55 male and 51 female), and 36 musicians (27 male and 9 female).

The age of participants involved ranged from 19 to 94 years.

Musician Control Total

Gender Male 1 1 2
Female 3 0 3
Total 4 1 5

Table 1.4: The distribution of left-handed participants by gender and

musicianlcontrol groups.

The outcome variables, representing 'cognitive function' were taken from the

Wechsler Adult Intelligence Scale (WAIS) test (Wechsler, 1981). These were the
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WAIS vocabulary, arithmetic and block design scores, and represented vocabulary,

mathematical and visuospatial ability, respectively. The WAIS vocabulary test

involved the participant being shown a word on a card, such as 'assemble', and then

asked what the word means. Individuals were awarded up to 2 points depending on

how good their understanding of the word was. For example, 'assemble' could be

defined as 'to put together' or 'to join' which would be awarded 2 points (good

understanding), or defined as 'to make something' or 'to build' which would be

awarded 1 point (not incorrect answer but showing poverty of content), or defined as

'people' or 'work in a factory' which would be awarded no points (wrong

responses). There were 35 words, which meant that the maximum possible mark was

70.

The mathematical aspect of 'cognitive function' was represented by the WAIS

arithmetic scores. The arithmetic test consisted of the participants being asked

questions, starting off easy with 'how much is 5 pounds plus 4 pounds?' and getting

progressively more difficult, with points being awarded for correct answers. There

were 20 questions, with a maximum possible mark of 22 (the final two questions

were worth 2 marks each, with all others being worth 1 mark).

The third score (visuospatial score) was obtained for each individual using the WAIS

block design test. This test involved the participant having to replicate a two-

dimensional (2D) pattern using a range of cubes (2 faces red, 2 faces white and 2

faces half red, half white, see Figure 1.3). There were a total of nine 2D patterns with

the first two patterns worth up to 2 marks, the proceeding two worth up to 6 marks,

and the rest up to 7 marks, for a maximum mark of 51.

Figure 1.3: The six sides of a cube used in the WAfS block design test.
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The WAIS test scores are combined in such a way that the resultant outcome is an

estimate for a participant's IQ. To do this each individual WAIS component test

score (e.g. vocabulary, arithmetic, etc.) is scaled non-linearly and weighted such that

the lower scaled scores contain many more actual scores than the upper scaled

scores. For example, from the vocabulary test, the scaled scores 1 to 9 (47.4% of all

possible scaled scores) correspond to the actual scores 0 to 46 (66.2% of all possible

unsealed scores), and the scaled scores 10 to 19 (52.6% of all possible scaled scores)

represent the actual scores 47 to 70 (33.8% of all possible unsealed scores), as seen

in Table 1.5. Also, an increase in one scaled mark in the vocabulary scores could be

as large as 16 actual marks (an increase from the scaled score 6 to 7, could represent

an actual score increase from 20 to 36) or as low as 1 actual mark (an increase from

the scaled score 18 to 19, would represent an actual score increase from 69 to 70).

These non-linear transformations are applied to the raw scores so that the scaled

scores are reasonably normally distributed with a mean score roughly equal to 10

and standard deviation approximately equal to 3 (Kaufman & Lichtenberger, 1999).

The original non-scaled test scores are not normally distributed, and yet these raw

scores would be more useful in terms of interpretation of the statistical models. The

Me dataset includes only the scaled WAIS sub-test scores with the actual test scores

being unavailable. It is, therefore, most appropriate to use the scaled scores as the

outcomes of the analyses in Chapter 4. After scaling according to WAIS, the

possible range of scores was 0 to 17 for the arithmetic test and 0 to 19 for both the

vocabulary and visuospatial tests.
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Vocabulary Test Arithmetic Test Visuospatial Test
Scaled Actual Test Scaled Actual Test Scaled Actual Test

Test Score Scores Test Score Scores Test Score Scores
1 0-5 1 0 1 0
2 6-8 2 1-2 2 1
3 9-10 3 3 3 2
4 11-13 4 4 4 3-7
5 14-19 5 5 5 8-13
6 20-28 6 6-7 6 14-19
7 29-36 7 8-9 7 20-22
8 37-42 8 10 8 23-26
9 43-46 9 11 9 27-30
10 47-51 10 12 10 31-34
11 52-54 11 13-14 11 35-37
12 55-59 12 15 12 38-41
13 60-62 13 16 13 42-43
14 63-64 14 17 14 44-46
15 65 15 18 15 47-48
16 66-67 16 - 16 49
17 68 17 19 17 50
18 69 18 -
19 70 19 51

Table 1.5: The scaled and equivalent actual scores for the vocabulary, arithmetic

and visuospatial tests from the WAfS.

The explanatory variables to be tested for associations with the three cognitive

ability tests according to Table 1.1 were:

• Gender - a binary variable with 0 = 'male' and 1 = 'female'.

• Musician - defined as a binary variable indicating whether a participant was a

non-musician (control, factor musician = 0) or a musician (factor musician =

1).

• Age - set as a continuous variable (units given in years).

Descriptive statistics for the Me dataset can be seen in Tables 1.6 and 1.7 for the

discrete and continuous variables, respectively.
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Similarly as for the exploratory analyses of the NCDS dataset, we decided in favour

of parametric tests over non-parametric tests. This was because the three cognitive

ability score variables were all approximately normally distributed. Again, to check

our results we performed Mann-Whitney U tests as well as t-tests and the resultant p-

values were similar enough that we obtained the same interpretations as for the t-

tests in Table 1.6. In terms of initial observations from Table 1.6, although there was

no difference between males and females in both vocabulary and visuospatial scores

according to Welch's t-test, this may not be accurate once multiple factors are

adjusted for (p=0.6 and p=0.2, respectively). However, the difference between males

and females in the arithmetic scores (males have a mean score of 11.1 compared to

9.6 for females) was statistically significant since the p-value given by Welch's t-test

was less than 0.001.

In all three sets of test scores there does look to be a difference between musicians

and controls with musicians having much higher mean test scores (14.4, 12.1 and

12.8 for musicians in the three tests, respectively compared to 10.3, 9.8 and 10.1 for

the controls, Table 1.6). The t-tests agree with our assertions with differences found

between musicians and non-musicians in each test score (p<0.001 for all three test

scores; Table 1.6).

The mean age of these 142 subjects is approximately 48 years old (Table 1.7). We

found that each set of cognitive test scores were negatively correlated with age and

the Pearson correlation coefficients were significantly non-zero between age and

both the arithmetic and visuospatial scores (both p<O.OOI, Table 1.7). This implied

that there was fairly weak negative correlation (-0.3) between arithmetic scores and

age and fairly strong, negative correlation (-0.7) between visuospatial scores and age.
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The mean, standard deviation and test statistics for each explanatory variable and

outcome are taken directly from the sample population, and so do not take any other

factors into account. The statistical analyses applied in Chapter- 4 give coefficients

for each factor as well as standard errors and confidence intervals which are adjusted

for other factors in the model. This means that further associations which are not

able to be directly observed from the data may be found. Also, added weight is given

to any previously observed links between cognitive ability scores and gender or

musical ability already mentioned above if they are observable in the statistical

model.

1.3.3 Broca's area subset

As an extension to the analyses of the Me dataset, we decided that the relationships

between Broca's area and all factors previously mentioned (age, gender, musical

ability as well as the three cognitive ability scores) should be investigated by using a

subset of the Me dataset itself. Broca's area has historically been linked to cognitive

ability, but differences in Broca's area between males and females, musicians and

non-musicians are less certain. Measurement estimates (volume and surface area) of

Broca's area were added to this subset using stereological methodology which is

introduced in the next chapter. Itwas decided that the subset should be balanced with

10 individuals in each of the male and female, musician and non-musician groups.

There were more than 10 male and female non-musicians as well as male musicians

in the Me dataset. Therefore, to obtain 10 individuals, a random sample was taken

from each separate group. However, since there were only 9 female musicians in the

dataset, it was not possible to include 10 female musicians in the subset. The

characteristics of individuals in the subset were compared to those in the Me dataset,

and were found to be similar (i.e. not statistically significantly different) in terms of

cognitive scores and age.

The outcomes for this part of the thesis are related to the volume and surface area

estimates of Broca's area. The estimates of both volume and surface area of Broca's

area have been obtained from magnetic resonance imaging (MRI) scans, which were

acquired from a 1.5 Tesla General Electric (Milwaukee, WI) system. A proprietary
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quadrature head coil and a 3D spoiled gradient echo sequence were used to obtain a

series of 124 coronal TI-weighted images. These images comprised tissue slices of

thickness 1.6mm with the following parameters: TE, 9ms; TR, 34 ms; flip angle, 30°;

with a field of view of 20cm which contained a 256 x 256 pixel matrix. These scans

were then processed using a variety of programs including Brain Voyager, MRICro,

ImageJ and EasyMeasure as described in Chapter 2. BrainVoyager was used to

obtain surface models that are accurate geometrical reconstructions of the cortical

surface of the brain (Kriegeskorte & Goebel, 2001). MRICro and ImageJ were

subsequently used to rotate and demarcate the region of interest, in this case Broca's

area, from the cortical surface reconstructions. Finally, EasyMeasure was used to

obtain the estimates of surface area and volume of the region of interest.

The outcome variables considered were defined as a function of the volume and

surface area estimates of Broca's area, with the estimate from each hemisphere

recorded separately. It was decided to also take into account the total brain volume

for the volume estimates of Broca's area so that differences in size between

participants' brains were corrected for. This was achieved by dividing the volume of

Broca's area (BAV) by the total brain volume (TBV):

RelBAV = (BAV /TBV) x 100 (1.3.3)

where RelBAV represents the volume of Broca's area relative to the total brain

volume. It is multiplied by 100 so that the relative volume estimates of Broca's area

are representative of the percentage of the total brain volume that Broca's area

encapsulates. From this point onwards the volume of Broca's area is referred to as

Broca's volume.

For surface area, it was decided to correct for subjects having different size of

Broca's area since the interest was in the tortuosity of the structure. Let us assume

two Participants have identical shape of Broca's area, but one has a larger volume,

then the participant with the larger volume will have a larger surface area, but it is

the convolution of the area that is of primary interest in this study. Therefore, the

surface area estimates of Broca's area (BASA) were adjusted to take into account

Broca's volume by dividing the surface area estimates for the left and right
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hemispheres by their respective left and right Broca's volume estimates. Since

surface area and volume are in different units (em' and cnr', respectively), the

volume estimates are adjusted by a power of 2/3 such that:

2

RelBASA = BASA/(BAV)3" (1.3.4)

where the surface area of Broca's area relative to Broca's volume is represented by

RelBASA. This variable is regarded as a dimensionless shape factor. From this point

onwards the surface area of Broca's area is referred to as Broca's surface area.

The explanatory variables considered for the analysis of the Me dataset (see Section

1.3.2) were also considered for this investigation. Additionally, the WAIS

vocabulary, arithmetic and block design (visuospatial) scores were also considered

as explanatory variables in the analysis of the Broca's area subset. Hence, the full list

of explanatory variables for this study is:

• Gender (0 =male, 1= female)

• Age (in years)

• Musician (0 = non-musician, 1=musician)

• WAfS vocabulary scores

• WAfS arithmetic scores

• WAfS block design (visuospatial) scores

The descriptive statistics can be seen in Tables 1.8 and 1.9. Although p-values for

the parametric hypothesis tests (i.e. t-tests) are given in Table 1.8, we performed

Mann- Whitney U tests (i.e. non-parametric tests) to compare the results. The Mann-

Whitney U tests gave p-values which were close to those that we obtained from the-

tests and the interpretations were identical.

Table 1.8 suggests that there are little discernible differences between either

musicians and controls or males and females in either the RelBA V or RelBASA

variables in either hemisphere. However, we can see in Table 1.8 that there isan

indication that musicians have smaller RelBASA estimates in the right hemisphere

30



than controls (p=0.03). The only way to test whether these differences are true is to

conduct the statistical analyses. The results from these analyses give adjusted results

with other factors taken into consideration and so give a better indication as to

whether associations exist and, if so, whether they are statistically significant or not.

Table 1.9 shows that the mean age of individuals in this dataset was 38 years, with

mean scores of 12, 11.5 and 12.5 in the vocabulary, arithmetic and visuospatial tests,

respectively. The Pearson correlation coefficients were between -0.3 and 0.3

suggesting that there was, at best, weak positive or negative correlation between the

continuous variables (the three cognitive ability scores and age) and the

measurement estimates of Broca's area. Indeed, the two-sided t-tests suggested that

the only correlation that was significantly different to zero was that between

vocabulary scores and RelBASA in the right hemisphere (p=0.03, Table 1.9). This

implied that participants who obtained higher vocabulary scores had a smaller

Broca's surface area, on average, than participants who performed lower scores on

the vocabulary test. However, more information about, and evidence of, associations

will only be obtained through analysis of the data: The results for the statistical

analyses of this dataset can be viewed in Chapter 5.
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1.4 Structure of the thesis

This section expands on the thesis structure as seen in Table 1.1. The vanous

different methodologies that were applied in the thesis are introduced in Chapter 2.

There are two main areas of methodology:

• Statistical methodology

Stereological methodology•

In the statistical methodology section, a number of different statistical models are

defined. Univariate linear regression models are first described (i.e. linear models

with one outcome). An extension to this type of model, involving the inclusion of

mUltiple outcome variables in a multivariate linear model, is then discussed. These

models can be made even more complex by including clustering variables associated

with the outcome variables. These clustering variables are classed as random effects

and the methodology based around models which include them can be seen in the

sections on univariate and multivariate linear mixed models. The stereological

methodology section includes a detailed explanation of how to estimate the volume

and surface area of 3-dimensional objects. These methods were used to estimate the

volume and surface area of Broca's area, which were incorporated into the analyses

within Chapter 5. The methods of calculating the coefficient of error of the volume

and surface area estimators are also provided along with worked examples. The

coefficients of error for the estimators for Broca's area were applied to intra-rater

studies which can also be seen in Chapter 5. Finally, there is a description of how

the volume and surface area estimation methods were applied to Broca's area using

different software packages and various screenshots are shown.

The investigation into the association between cognitive ability and handedness in

children is reported in Chapter 3. Cognitive ability was defined as reading and

mathematics scores and the explanatory variables included gender, writing hand and

UK region. With the cognitive scores as the outcomes, a multivariate linear mixed

model Was fitted to the dataset. The results from this model were then compared to

two independent univariate models.
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Chapter 4 moves on to look into effects that musical ability had on cognitive ability

in adults. Cognitive ability was set as the outcome comprising of three types of test

scores; vocabulary, arithmetic and visuospatial. Similarly to the analyses in Chapter

3, gender was included as an explanatory variable. However, age was also included

as an explanatory variable since the dataset analysed in this chapter included

participants of varying ages, as well as musical ability. A multivariate linear model

was fitted to the dataset and then compared to three separate univariate linear

models.

The analyses in Chapter 5 focussed on the possible links between the volume and

surface area estimates of Broca's area and cognitive ability in adults. Also

considered were the links between Broca's area and other factors such as age and

musical ability. This was an extension from the investigation in Chapter 4 albeit

with a subset of the data including volume and surface area estimates of Broca's

area. The volume estimates of Broca's area relative to the total brain volume in the

left and right hemispheres were considered as the bivariate outcome in the

multivariate model. As for previous analyses, the results were compared to the

univariate models. The surface area estimates of Broca's area relative to the volume

estimates of Broca's area for the right and left hemispheres were then set as the

outcomes in a multivariate model fitted to the data, and compared to univariate

models. The final section in this chapter aimed to calculate the within-observer

variability for the volume and the surface area estimates.

In Chapter 6, the types of missing data, their effects on the results and ways of

dealing with them were discussed. The dataset used in Chapter 3 has quite a

substantial amount of missing data (roughly 36%) along with approximately 14% of

the participants in the musician-control dataset used in Chapter 4. Two techniques

which adjust for the missing data, namely multiple imputation and inverse

probability weighting, were considered. Inverse probability weighting was used to

adjust for the missing data, and the multivariate linear mixed and linear models were

re-fitted to the datasets. The results are given and the limitations of the method are

discussed.
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Chapter 7 brings the conclusions from the analyses in each chapter together.

Possible issues that arose are discussed and further work is suggested.
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CHAPTER 2

Methodology

To address the research questions of this thesis, a number of different statistical and

estimation methodologies will be employed. This methodology can be found in a

number of textbooks. However, there is not a definitive book which explains each of

the different types of statistical models applied in this thesis, using consistent

notation. This section will firstly introduce the statistical methodologies to be used

with consistent notation, followed in tum by the stereo logical estimation methods

used to estimate the volume and surface area of Broca's area. For the statistical

methodologies we shall consider the univariate and the multivariate cases separately.

2.1 Statistical methodology

In this section, we introduce the statistical methodology behind linear regression

models and linear mixed models for both the univariate and multivariate cases.

Firstly, we describe the simplest form of the linear regression model and gradually

explain the methodology behind more complex statistical modelling up to the

multivariate linear mixed-effects model.

2.1.1 Linear regression model (the univariate case)

Univariate analyses are those that have only one outcome (dependent) variable.

However, they can still include any number of explanatory (independent) variables.

The first model type to be introduced will be the linear regression model.

Regression analyses are primarily used to model associations between variables

(Ugarte et al., 2008). At least one variable is defined as the response variable and

other variables are called the explanatory variables. A regression analysis is then

used to model the relationship between the explanatory variables and the response

variable(s). An example of this is the relationship between a child's IQ and the age
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of the child's mother (maternal age). In this case the response variable would be IQ

and the explanatory variable, maternal age. The simplest form of regression model is

the linear regression model. This model is called 'linear' because the relationships

between the response variable(s) and the parameters of the explanatory variables are

assumed to be linear. Higher order relationships can however be considered. For

example as en extension to the example used previously, we could include maternal

age2 as another explanatory variable. The simplest expression of the linear regression

model comprises one outcome variable, y, an intercept, a, an explanatory variable,

x, and an explanatory coefficient, e (Crawley, 2005; Crawley, 2007). This takes the

form:

y = a + ex (2.1.1)

The gradient of the slope of the linear regression line is represented bye. In practice

the relationship between the dependent and independent variables will not be

perfectly linear, and therefore, some deviation will exist between the outcomes

predicted from the model and the observed outcomes. This deviation is then

InCorporated into the model as an error term, usually denoted by c. The linear

regression model, with n subjects in the dataset, can then be re-written as:

(2.1.2)

where Yi is the observed outcome for the ith subject, a and e are the intercept and

explanatory coefficient, respectively (as in Equation (2.1.1 )), Xi is the value of the

explanatory variable for the ith subject, Ci is the error term for the ith subject such that

ci'''N(O, (]"2), and 1::;i ::; n. This can also be written in vector form:

Y = a + eX + C (2.1.3)

Where r = ~] X = [J:l ~= [::1 such that ~-Nn(O,~2L), which is an n-

dimensional multivariate normal distribution, and a and e are the intercept and

explanatory coefficient, respectively.
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Following the earlier example, let it be assumed that there are 100 subjects and the

objective is to predict child IQ (the outcome variable) using maternal age as the

predictor (explanatory) variable. A simple linear regression model could be written

in the form of that in Equation (2.1.2) with Yi and Xi representing the IQ and

maternal age for the ith child, respectively. This could also be written in the form of

Equation (2.1.3) with n = 100.

There are a number of assumptions which must be made for the model to give

reliable information about the relationship between the dependent and independent

variables. These assumptions are:

(1) There are no errors in the measurements of the independent and

dependent variables in the model.

(2) The relationships between the independent and dependent variables in

the model are linear.

(3) The error terms are independent and identically distributed.

(4) The error terms follow a Normal distribution with mean O.

(5) The error terms are homoscedastic (have a constant variance) (Seber,

1977; Crawley, 2007).

If the outcome variable is normally distributed then this is an indicator that the error

terms are more likely to be normally distributed. If the outcome variable is not

normally distributed then this suggests that the error terms may not be normally

distributed. This is because it is easier for a linear model to fit normally distributed

data as opposed to non-normal data. These assumptions can be assessed further by

checking the distribution of the residuals of the model after analysis. The residual, or

error term, for the ith subject, Ci, is calculated as follows:

(2.1.4)

where Yi and Yi are the observed and expected (as predicted from the model)

outcome, respectively, for the ith subject. If the assumptions made above hold, then

the residuals should be randomly scattered about the mean (zero). If this assumption
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does not hold, then there will be a noticeable pattern in the plot of the residuals (i.e.

they are not randomly scattered). Figure 2.1 shows an example, using synthetic data

for illustration purposes only, of both a standardized residual plot which meets

assumptions (3)-(5) and a standardized residual plot for which assumptions (3)-(5)

do not hold. These standardized residual plots come from an example model with

child IQ as the outcome (these are the fitted values from the model itselt). It can

quite clearly be seen in the right hand plot of Figure 2.1 that these standardized

residuals are mostly above zero (i.e. do not have mean zero) and the deviation

appears to decrease with higher IQ's (i.e. evidence of funnelling) suggesting that the

residuals are not homoscedastic. This is in stark contrast to the plot on the left hand

side of Figure 2.1 where the standardized residuals appear to have mean 0 and

constant variance across the range of all child IQ's.

Plots of Standardized Residuals a_g_ainstChild IQ
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Figure 2.1: Example plots a/fitted child IQ values against standardized residuals

such that assumptions (3)-(5) are metfor the plot on the left hand side whereas this

is not the case for the standardized residuals in the right hand plot.

A simple linear regression model is useful if the dataset only has two variables of

interest with no further variables which could affect the relationship (which is

assumed to be linear) between them. However, this is not normally the case and there
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will be other variables which could also have a statistically significant effect on the

outcome variable. In this case, there could be confounding relationships between

these explanatory variables and the outcome. For example, two explanatory variables

when investigated separately using a simple linear regression model with the same

outcome variable may be significant, suggesting that both have an effect on the

outcome. However, if the two explanatory variables are correlated then they may be

explaining the same variability in the outcome. This can only be fully revealed by

including all biologically and statistically significant variables in one single model.

From the example mentioned earlier, let it be assumed that is now desired to include

both gestational age and maternal IQ as further explanatory variables with child IQ

as the outcome. The simple linear regression modelling approach could be repeated

for each individual explanatory variable, but this would not help to explain which of

the three explanatory variables is most strongly correlated with child IQ, or their

combined effect. To take these extra variables into account, the model in Equation

(2.1.2) must be expanded to:

where Yi represents the outcome (child IQ) of the ith subject (1 :::;i :::;100), a is the

intercept, the explanatory variables maternal age, gestational age and maternal IQ for

the ith subject are represented by XiV Xi2, Xi3, respectively with Cv C2, C3 being the

respective regression coefficients and with Ci being the error terms for the ith child.

Therefore, the effect of a change of 1 unit in maternal age on child IQ after

gestational age and maternal IQ are taken into account is explained by Cl, C2 explains

the effect of gestational age on child IQ after maternal age and maternal IQ are

accounted for, and C3 explains the effect of maternal IQ on child IQ when the other

two explanatory variables are accounted for.

The model in Equation (2.1.2) can, in fact,· be expanded to include (p - 1)

explanatory variables (p if we consider the intercept term to be an explanatory

variable) where p E {1,2,3, ... }. The expanded form of the linear regression model,

also called the multiple regression model, can be written as:
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(2.1.5)

where Yi is the outcome for the ith subject, flo is the intercept, flv ... , flp-l are the

regression coefficients for the (p - 1) explanatory variables, Xil, ... , xi(p-l) are the

values of the (p - 1) explanatory variables for the ith subject and e, is the error term

for the ith subject such that Ei-N(O, (J2) with 1 ~ i ~ n. In matrix form this can be

expressed as:

(2.1.6)

where r is the (n X 1) outcome vector such that r = C] X is an (n X p) design

matrix such that X = [! X1(P-l)]
: , fl is a (p x 1) vector of coefficients

Xn(p-l)

such that fl = [ ~: ], s is the (n X 1) error vector such that f = [:~] and

flp-l

§.-Nn(O, (J2 L) as in Equation (2.1.3) (see for example, Ugarte et aI., 2008).

Assumptions (1) - (5) mentioned above for the simple linear regression model

(Equation (2.1.2)), are still applicable here. With this model we can now explain the

variability in the dataset which can be attributed to the relationship between the

explanatory variables and the outcome variable. The error terms give an indication of

the amount of variability in the data that cannot be explained by the explanatory

variables. Obviously, the smaller the error term is, the better the model fits the data.

The models described up to this point measure the influence that the explanatory

variables have on the average of the outcome and there has only been one outcome

measurement for each subject. This means that the variability in the outcome

variable that can be explained by the fitted models is associated with the explanatory

variables and the error term left for each subject contains all the unexplained

variability associated with individual subjects. What has not been modelled here is

the between-subject variability, that is, the variation across subjects and to

differentiate this from the within-subject variability (all other unexplained variation
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associated with each individual subject). However, it is quite plausible to consider an

example where for each subject there are multiple measurements for the outcome.

One example of this is longitudinal data where a number of measurements of the

same variable are taken, for each subject, over a period of time. This type of data

allows the between-subject variability to be modelled with an extension to the linear

regression model. This more complex model is called a linear mixed model.

2.1.2 Linear mixed model (the univariate case)

Taking the example used previously with child IQ as the outcome variable and

maternal age, gestational age and maternal IQ as explanatory variables, let it now be

assumed that the data are longitudinal. That is, child IQ was measured at two time

points; at ages 6 and 12"These data can be analysed over both time points in one

model using a linear mixed modelling approach. By analysing the data with a linear

mixed model, the between-subject variability can be differentiated from the within-

subject variability. Since it is expected that child IQ is correlated across the two

time-points then it would be useful to apply a linear mixed model to the dataset such

that the unexplained variability for each subject (the within-subject variability) is

reduced.

Eisenhart, (1947) introduced a concept of two types of variable: fixed effects and

random effects. Fixed effects, as with the explanatory variables in standard linear

regression models, only have an influence on the mean of the outcome variable.

Random effects, however, have an influence on the variance of the outcome variable,

but not on the mean (Crawley, 2007). The linear mixed model incorporates both

these type of variable (fixed and random effects). This model is used primarily when

there is correlation within the data. That is, when there is some underlying

association between the data as a whole, or between groups of data. This correlation

can be viewed in the structure of the variance-covariance of the random effects and

random errors (Davis, 2003). Examples of correlated data are clustered data

(association within clusters) and longitudinal data (association within time points).

The linear mixed model allows identification of the between-subject variability

(from the random effects), separately to the within-subject variability (the random
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errors). The simplest form of linear mixed model is called the random intercept

model (Zuur et al., 2009), where the model contains one variance term representing

the between-subject variability.

In the example with child IQ data measured at two time points, the linear mixed

model can be written as:

where YivYiz represent child IQ at ages 6 and 12 (time points 1 and 2), respectively,

for the ith child (1 ::; i ::; 100), flo is the intercept and xiV XiZ, Xi3 are the explanatory

variables (also called fixed effects) maternal age, gestational age and maternal IQ for

the ith subject, respectively, with flv flz, fl3 being the respective fixed effect

coefficients. The additional term hi is called the random effect term and it takes into

account the variability which inherently belongs to the individual subject, i, and is

common across both time points 1 and 2 (ages 6 and 12). In the example, the

quantity hi is constant for each individual since it does not depend on the time point

and it is called the random intercept. The final error terms, now called random error

terms, ciV ciZ include all unexplained variation within child IQ for the ith child at

time point 1 and 2, respectively.

This model can be generalised and expanded to include 9 time points (g ;:::1) and

(p - 1) fixed effects where p E {l,Z,3, ... }. Hence, the model takes the form:

(2.1.7)

where Yij is the outcome at the /h time point of the ith subject (1 ::;j ::;g), flo is the

intercept, flv ... , flp-l are the coefficients for the (p - 1) fixed effects, XiV"" Xi(p-l)

are the values of the (p - 1) fixed effects for the ith subject, hi is the random

intercept for the ith subject such that hi-NCO, aD and Cij is the random error term
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for the r time point of the ith subject such that cW...-N(O,o}). Equation (2.1.7) can

be written in matrix form as:

(2.1.8)

ttl [Yil] [&.]where Y = ~ is the (gn x 1) outcome vector such that ~ = : ,X = ~ is a
~ ~ ~

[

1 Xil Xi(P-l)]
(gn X p) design matrix such that s. =: : : is a (g x p) matrix, fJ

1 xil Xi(p-l)

is the (p x 1) vector of coefficients (as defined for Equation (2.1.6», ~ is a (gn X n)

matrix such that ~ = [: :.] where!" = m is a (g x 1) vector, Q = [~:]

is the (n x 1) random effect vectorsuch that Q-»;(Q.G) and G = [": :J is

an (n X n) diagonal matrix, §_ is the (gn X 1) random error vector such that §_ =

0] is a diagonal
(j2

E

(gn x gn) matrix. This model assumes that the random effects, hi> are independent

[

-] [ 2
§ ~l ~
.: where §= [ : ] and §_-Ngn(Q, R) where R =
.fn Clg 0

and identically distributed and the same applies to the random errors, Cij (hence, the

zeroes in the off-diagonal elements of the variance-covariance matrices G and R). A

further assumption is that the random effects and random errors are independent

from each other. This model can be further expanded by including further random

effects but for the work involved in this thesis, this is not required (for a description

of the general, expanded linear mixed model see Laid & Ware, 1982). Similarly to

the linear regression model, the linear mixed model has the 5 assumptions, (1) to (5),

named earlier in Section 2.1.1. Furthermore, the standardized residual plots can also

be plotted for these models to assess whether or not these assumptions hold.

Previously it has been considered that there is only one outcome. However, it is quite

plausible that there could be multiple outcomes. There are two possible ways to
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analyse these multivariate data. Multivariate data consisting of d outcomes and

p - 1 explanatory variables could be analysed by simply fitting d univariate models.

However, univariate analysis of multivariate data only gives information relating to

associations between the explanatory variables and each outcome individually. We

want to be able to obtain conclusions about the overall relationships between all of

the explanatory and outcome variables simultaneously. Separate univariate analyses

of multivariate data are unsatisfactory for two main reasons (Krzanowski, 2003):

• Any dependencies or correlation between the outcomes are ignored thus

leading to possible major inference errors from the hypothesis testing of the

data.

The use of multiple univariate analyses is equivalent to having multiple

comparisons and therefore requires an adjustment of the significance level, a

(e.g. using the Bonferroni correction method).

•

In either of the situations mentioned previously, the possibility of obtaining false

positives or false negatives from hypothesis tests based on these univariate analyses

IS greater than for a multivariate analysis. A multivariate model gives information

about the associations between outcomes and explanatory variables individually (in

the models based on the marginal distributions for each outcome) as well as those

links between the explanatory variables and a linear combination of the outcomes.

The linear combination of outcomes can be written as:

y(i) + y(Z) + ...+ fed) (2.1.9)

and this is the multivariate outcome (Hair, Jr., et al., 2010). Hypothesis tests for the

multivariate outcome in Equation (2.1.9) do not need to be adjusted using the

Bonferroni correction method and dependencies between outcomes are already

accounted for in the multivariate model itself.
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2.1.3 Linear regression model (the multivariate case)

Let it be assumed that there are now 2 sub-scores of the child IQ score of interest,

verbal IQ and non-verbal IQ and that the dataset consists of only 1 measurement for

each outcome of each individual (as in Section 2.1.1). The effects of gestational age,

maternal age and maternal IQ on the two sub-score IQs of the child are now of

interest. Firstly, the correlation between the two outcomes is 0.6, suggesting that

there is reasonably strong positive correlation between verbal and non-verbal child

IQ. That is, that a child with a higher verbal IQ than another will, more than likely

have a higher non-verbal IQ score, and vice versa. A multivariate linear regression

model is then chosen as the analysis method, such that this correlation can be

accounted for in the model. This model then would take the form:

where y?), y?) represents verbal IQ and non-verbal IQ, respectively, for the ith child

(1:::; i :::;100), p~1),p~2) are the intercepts for the verbal and non-verbal IQ scores,

respectively, the explanatory variables, maternal age, gestational age and maternal

IQ for the ith subject are represented by Xii, Xi2, xi3, respectively with p?), p?), p~l)

being the respective coefficients for the verbal IQ scores, and p~2), pf), p~2)

representing the coefficients for the non-verbal IQ scores. The error terms c?), c?)
are those for the verbal and non-verbal IQ scores, respectively for the ith child, and

the correlation between the two IQ scores can be found by writing the model in

another way, which is to be discussed later in this subsection.

Generalising, the univariate linear regression model in Equation (2.1.5) can be

expanded to include d outcome variables (d;::: 1). Then the multivariate linear

regression model can be written as:

(k) _ (k) (k) (k) (k)
Yi - Po + Pl Xii + ... + Pp-l Xi(p-l) + ci (2.1.10)
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where y/k) is the kth outcome for the ith subject (1 ::; k ::; d), (3ak) is the intercept

for the kth outcome, (3~k), ... ,(3~':}1are the coefficients of the (p - 1) explanatory

variables for the kth outcome, XiV"" Xi(p-l) are the values of the (p - 1)

explanatory variables for the ith subject, E;k) is the error term for the kth outcome of

the ith subject such that E;k) - N (0, aD, 1 ::; i ::;n. In matrix form this can be re-

written as:

[* = X*(3* +~* (2.1.11)

[
[(1)1 [y{k)1

where [* is the (dn X 1) outcome vector such that [* = : and [(k) = : ,
[(d) y~k)

X' is a (dn X dp) design matrix such that X· = [:

[

(3(1)1
vector of coefficients such that (3* = -: and (3(~ =

- (d) -(3

:lr is a (dp x t)

(3ak)

(31(k) , ~* is the (dn X 1)

(3(k)p-l

[
E(1)1

error vector such that ~* = :
E(d)

Ibl

L> ~1

~1

'" bdj... bd

~d

is a (dn X dn) matrix with (n x n) matrices bk =

useful to note that all off-diagonal elements in all the bk and b
1
k2 matrices are

zero. This is because there is no correlation between the outcome measurements

from two different individual subjects (i.e. they are independent). The only

correlation is between outcomes within the same subject. The structure of the error
v .
anance-covariance matrix, 1:, in the multivariate regression model (Equations

(2.1.10) & (2.1.11)) allows for the correlation between outcomes to be measured

(lJ"klkJ. For example if ak
1
k
2
= 0, then this means that the kl th and kz th outcome
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variables are independent and the model obtained from this method would be

identical to fitting two separate univariate linear regression models to the data. In

general, the correlation between the klth and kzth outcomes, (Jk
1
k
2
, can be different

for each different pairing of outcomes 1 to d (called a general structure). There are

also a number of different possible correlation structures in between (including

autoregressive (AR(p», moving average (MA(q», and mixed autoregressive-moving

average ARMA(p,q) structures where p is the order of the AR model and q is the

number of noise terms in the moving average model (Pinheiro & Bates, 2000). In the

case with two outcome variables, only the independent and general structures can be

considered. Once again, as with the univariate linear regression models, it is assumed

that the outcome variables are normally distributed and that the error terms for the

kth outcome, Ci(k), are independent and identically normally distributed with mean 0

and variance (Jf. This means that we can again analyse the standardized residual

plots for normality to check the goodness of fit of the model to the data.

The multivariate version of the linear regression model can be expanded similar to

the univariate case of the linear mixed model in Section 2.1.2. This is relevant when

there are multiple measurements taken for each outcome variable (e.g. clustered or

longitudinal data). Now, however there are also multiple outcomes to consider,

which add complexity to the equations. This model is called the multivariate linear

mixed model.

2.1.4 Linear mixed model (the multivariate case)

From the running example, the two outcomes from Section 2.1.3 (verbal IQ and non-

verbal IQ) are considered and the longitudinal component described in Section 2.1.2

is added, such that the two outcomes are measured at two time points (age 6 and age

12). Advantages of this model are that the correlation can be taken into account

between outcomes, whilst at the same time, the between-subject variability can be

differentiated from the within-subject variability. Let it be assumed that the

explanatory variables (or fixed effects) remain the same (maternal age, gestational
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age and maternal IQ). The model used to analyse this data would then take the

following form:

Y.(l) = p(l) + p(1)x. + p(1)x. + p(l)X' + bel) + E(l)
12 0 1 u 2 12 3 13 i i2

Y.(2) = p(2) + p(2)X' + p(2)X' + p(2)X' + b(2) + /2)
11 0 1 u 2 12 3 13 i il

Y.(2) = p(2) + p(2)X' + p(2)X' + p(2)X' + b(2) + /2)
12 0 1 t1 2 12 3 13 i i2

where Yi~l),yg) represent verbal IQ at ages 6 and 12 (time points 1 and 2),

respectively, and Yi?),yg) indicate non-verbal IQ at ages 6 and 12 (time points 1

and 2), respectively, for the ith child (1 :::;i :::;100). The intercepts are pal), pa2) for

the verbal and non-verbal IQ scores, respectively. The fixed effects, maternal age,

gestational age and maternal IQ for the ith subject are represented by XiV Xi2, Xi3,

respectively with pil), p~1), p?) being the respective coefficients for the verbal IQ

scores, and p?), py), p?) representing the coefficients for the non-verbal IQ scores.

The random intercept term for the verbal IQ and non-verbal IQ for the ith subject,

take the form of b?) and b?), respectively. The error terms, Ei;), Eg), are those for

verbal IQ of the ith subject at the two time points (ages 6 and 12), respectively with

E(2) E(2) b . . b I f h -th b·
il 'i2 emg the error terms correspondmg to the non-ver a IQ 0 tel su ject

at the same two time points. Similarly as described previously in Section 2.1.3, the

correlation is not shown at this level of the model, but will be explained in the matrix

version of the general form of the multivariate linear mixed model later in this
section.

The multivariate linear mixed model, with random intercept only from the example

above, can be extended to include any number of time points for each subject. The

general form of a multivariate linear mixed model with random intercept only which
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has 9 time points (g ;:::1) for each subject i (1 :s; i :s; n; n ;:::2) and d outcome

variables (d ;:::2) can be written as:

(k) _ (k) (k) (k) (k) (k)
Yij - Po + Pl Xii + ...+ Pp-l Xi(p-l) + bi + Cij (2.1.12)

where ySk) is the kth outcome at the /h time point for the ith subject (1 :s; k :s; d; 1 :s;

j :s; g), pcik), ... , P~k}lare the p fixed effect coefficients (including the intercept) for

the kth outcome, xiV"" Xi(p-l) are the (p - 1) explanatory variables for the ith

subject, b?) is the random intercept for the kth outcome of the ith subject, such that

b[k) -N( 0, 0-Ek) and Ci~) is the error term for the kth outcome at the /h time point for

the ith subject such that Ci~) -N(O,CTtk). This model can be written in matrix form

as:

Y = Kf3* + ~.*!t+ §. (2.1.13)

G
(l)] ~(k)]

where Y = Y: is the (dgn x 1) outcome vector with f(k) = It: and £(k) =
00 ~W

[
y.(k)] IX
If ,X is the (dgn x dp) fixed effect design matrix such that X = -

,\l.(k) 0
JW -

~]
with X defined as in Equation (2.1.8), P* is the (dp x 1) fixed effect coefficient

vector as defined for Equation (2.1.11), .. ' = I: ~] is a (dgn x dn) matrix,

t(l)]Q* is the is the (dn x 1) random effect vector such that Q* = -: where Q(k) =
(d)

fld]G*
~d (a (dn x dn)

§Ad

where [
fll fl2

G* = ~l ~2 ".

§Al §A2 ...

I
2CTbk

matrix) with f.kk = 0 (both
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(n x n) matrices). The error terms are represented by the (dgn x 1) matrix £ =

[
-Ck)] [ (k)1~1 cil

with {_(k) = : and §(k) = : such that ~~Ndgn(QI R*)
-(k) (k)
~ Cig

where

[El R~z

R*= 71 !J].z

Et1 Etz

R~d1 [O'z
~d is a (dgn x dgn) matrix with Elk = Ek

R* 0
~d

(J 0 ] (both (gn x gn) matrices). One can notice that

EklEkz

the only correlation considered here is the correlation between outcomes for the

same subject. All other correlations are set to zero since the outcome of each

individual is assumed to be independent of each other. This is also the case for the

random effects where time points for different subjects are assumed to not be

correlated with each other, only time points within each individual are therefore

correlated and have correlation elements which can be non-zero. This model can be

extended to include further random effect terms. However, for the work involved in

this thesis, such generalisation is not necessary.

2.2 Stereo logical methods

2.2.1 Introduction

To obtain estimates of geometrical properties of an object (such as volume, surface

area, number of particles inside the object, etc.) a number of possible methods exist.

In the 19th century, geology was one of the main areas which was in need of fast,

reliable estimates for volume of 3-dimensional objects. In this field, it was the

mineral content of rocks that was the parameter of interest. An old method to

estimate volume consisted of the crushing of rocks into a fine powder and then

separating the minerals from each other using physical and/or chemical techniques.

However, the crushing of rocks, apart from being totally destructive and inefficient,
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becomes difficult for larger rocks. Another method was to simply infer the volume of

mineral in the rock by multiplying a physical property of the rock (weight or mass,

for example) by the known estimate of proportion in a rock of its type. In 1847, A.E.

Delesse, a French geologist and mineralogist, began the investigation into the use of

metallography, the technique of viewing under reflected light cut and polished flat

surfaces of rocks and metals, quantitatively, later to be known as Stereology. Delesse

reasoned that a plane section of a rock, once smoothed and polished, could be

representative of the whole rock (see e.g. Howard & Reed, (2005); Baddeley &

Jensen, (2005) and references therein). Under this assumption, a mineral's

percentage of the area of the plane section is then considered to be equal to the

mineral's percentage of the volume in the entire rock. That is:

(2.2.1)

where Vp is the proportion of mineral volume in the rock, and Ap is the proportion of

mineral area in a plane section of the rock. For Equation (2.2.1) to hold it is assumed

that the rock is homogeneous. That is, that the distribution of minerals throughout

the entire rock is the same. In the late 19th century another geologist, A. Rosiwal,

further simplified Delesse's theory. By superimposing a grid of equally-spaced

parallel lines onto the plane, it was shown that the proportion of the lines which lie

on the mineral in question can be approximated to the proportion of the volume of

the mineral in the entire rock. Therefore, assuming equality, the relationship can be

expressed as:

(2.2.2)

where Lp is the proportion of length of the lines that are superimposed on top of the

mineral. Furthermore, this sampling strategy can be extended by superimposing a

grid of equi-distant points. The proportion of points lying within the region of

interest (RoI) (the mineral), is then equal to the proportion of the volume of the rock

that consists of the mineral. That is:

(2.2.3)
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where Pp is the proportion of points, superimposed onto the plane, which lie on top

of the RoI (or the mineral in this case) (Cruz-Orive, 1997). Examples of volume and

surface area estimates obtained using stereological methods can be seen in a range of

recent studies (see e.g. Reed et al., 2001; Dhaliwal et al., 2002; Kannekens et al.,

2006; Sneddon et al., 2006).

2.2.2 Unbiased estimation

The name 'Stereology' was proposed by a group of scientists who were holding

discussions about common problems when attempting to estimate 3-D objects from

2-D sections (Weibel, 1987). This discussion group, formed in 1961, became the

International Society of Stereology. The term 'Stereology' is adapted from the Greek

word 'stereos' which is translated as 'solid'. The first definition of Stereology was

"the spatial interpretation of sections" (Elias, 1963). More recently, Stereology has

been defined as "a body of mathematical methods relating three-dimensional

parameters defining the structure to two-dimensional measurements obtainable on

sections of the structure" (Weibel, 1979). Note that the aim of Stereology includes

the estimation of any parameters which can describe the structure of the 3-D object

(e.g. volume and surface area). This newfound interest in the subject can be

explained by the advancement of technology in microscopy and the variety of uses

of Stereology has increased over the years. As well as in geology, there are now

applications of stereological methods in life sciences, materials science, engineering,

industry and clinical medicine (for references to a range of applied studies see

Howard & Reed, 2005; Baddeley & Jensen, 2005).

In stereology, a parameter (e.g. length, volume or surface area) is to be estimated.

The estimator proposed has to have certain properties to allow the estimates obtained

to be acceptably close to the true parameter values. One of these properties is that the

estimator must be accurate. Accuracy, in this context, can be thought of as a measure

of how close (or far apart) from the true value the estimates are. The difference

between the true value and the estimator mean is called the bias. Therefore, an

estimator is deemed biased if the difference between its expectation and the true
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value that it is estimating, is non-zero. For example, if the volume, V, of an object

was to be estimated by applying the estimator V, then the bias of the estimator would

take the form:

Bias(V) = E(V) - V (2.2.4)

where E(V) indicates the average of the estimator V and V is the true value. An

estimator is said to be unbiased when its bias is zero. Therefore, if the estimator V
was unbiased then this would mean that the expected mean of the estimator V is

equal to V, which reads:

Bias(V) = E(V) - V = 0

:. E(V) = V (2.2.5)

The terms precision and accuracy, although related, refer to different concepts.

Precision relates to the spread of estimates about their mean. For example, the

estimator, V, defined earlier, can be applied to obtain a number of estimates of the

volume V. These estimates will always gravitate towards the expected mean of the

estimator, H(V). If V has low precision, then these estimates could be spread out,

quite far away from H(V). However, the more precise V is, the closer the estimates

will be in relation to H (V). A measure of the precision of an estimator is its variance

Var(V). The measure of the accuracy of an estimator is its mean square error (MSE)

and this is calculated by summing the estimator's variance with the square of its bias:

MSE(V) = Var(V) + (Bias(V))2 (2.2.6)

This means that the variance and MSE of an estimator are equal if and only if it is

unbiased (i.e. Bias(V) = 0). This distinction between accuracy (unbiasedness) and

precision (variance) is illustrated in Figure 2.2. A precise estimator may still be

biased (inaccurate), as can be seen in the bottom left comer, where the mean of the

volume estimates (blue spot) is not equal to the true parameter mean (green spot).

The most desirable estimator is shown in the top left hand comer, which is an

accurate estimator with all estimates close to the true parameter value.
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Low va ria nce Large variance

Unbiased
Data ••••• 'IWIi7..1NWI.H'HCI'" • •

Volume (rnm") 50 50

Biased .-....~.NH,.••••Data

Volume (rnm") 35 50 35 50

Figure 2.2: Illustration of the difference between precision (variance) and bias for

synthetic 3-D estimates of a 3-D object with true value equal to 50mm3. For the

biased estimator, a systematic measurement error had occurred which resulted in a

mean value of the volume estimator of 3 5mm',

A further useful measure for an unbiased estimator iI is given by its standard error

(SE) and is calculated as the square root ofit: varianc :

SE(ff)= Jvar(v) (2.2.7)

A commonly used measure of an unbiased estimator in Stereology is neither the

estimator's variance nor standard error but its coefficient of error (CE). CE is defined

as the variance of the estimator divided by the true parameter value and it can be

expressed as follows:

CE(iI) = SE(iI)/v (2.2.8)

In practice, however, the true parameter value, V in the example above, would be

unknown, since this is what is attempting to be estimated. An estimate of the
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coefficient of error can be calculated by substituting the true parameter value with

the mean of the estimator itself. That is:

CE(i1) = SE(i1)jE(i1) (2.2.9)

In microscopy, there are principally two types of bias; sampling bias and systematic

bias (Howard & Reed, 2005). Sampling bias occurs when certain parts of the object

to be estimated have more chance of being a part of the final sample. This type of

bias can be minimised by adopting uniform random sampling at all stages of

sampling. Systematic bias is a more general form of bias which can include errors

due to equipment calibration, incorrect set-up, differing slice thickness and viewing

distortions to name but a few. This bias is very difficult to completely eradicate, but

it should be minimised wherever possible. It should be noted here that the methods

that are discussed in the next few sections are mathematically unbiased. That is, the

estimation methods are unbiased if the data are unbiased. It should also be noted that

for the volume and surface area estimators in the following sections that for the

reader's benefit, referring to an estimator would be the same as referring to the

realization of an estimator (an estimate).

2.2.3 Volume estimator

The volume of a 3-dimensional object, V, can be obtained by integrating the area of

the intersection between the object and a plane along a sampling axis. That is:

V = fb. A(x) dx
a. (2.2.10)

where A(x) is the area of the section at the abscissa x (see Figure 2.3). As indicated

earlier, the volume of a given structure could be, in principle, estimated from

Equations (2.2.1)-(2.2.3) where the structure under study (e.g. a mineral) is

homogeneously contained within a reference structure (e.g. rock). For most

biological structures however, this is not the case.
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T
Atx) -

z+T =-'-11' ... z+- T .. ,

Figure 2.3: Illustration of the Cavalieri method. A number of equidistant parallel

sections taken from a 3-D object with a distance T apart and with a uniform random

starting position (z) such that 0 ::; z ::; T (le.ft hand side) (modified from Garcia-

Fifiana et al., 2003).

One of the most common stereological methods for estimating volume is the

Cavalieri method (see e.g., Gundersen & Jensen, 1987). This method was named in

honour of the mathematician and student of Galileo in the 1ih Century, Bonaventura

Cavalieri, who was the first to consider the volume estimation of 3-D objects from a

number of arbitrary sections. The Cavalieri estimator is mathematically designed to

be unbiased. This estimator involves taking M sections with a distance T apart from

each other (see Figure 2.3). The area of each section is then calculated, and the

volume estimate is obtained by summing these section areas multiplied by the

distance T. The Cavalieri volume estimator can be written as:

(2.2.11 )

where As is the area of the object in the sth section (s = 1,2, ... ,M). For this method

to be unbiased, the distance of the first section from the front of the object should be

randomly chosen from the uniform distribution between 0 and T. The area of interest

can be estimated for each section by applying point counting (see e.g. Mathieu et al.,

1981). This involves the superimposition of a grid of points, randomly translated on

each parallel section such that the volume estimator from Equation (2.2.11) takes the
form:
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- _ 2 MV - T. u .LS=l Ps (2.2.12)

where u is the distance between consecutive points and Ps is the number of points

within the object on section (1~ s ~ M). This sampling strategy is illustrated in

Figure 2.4. We can see that points are counted as being inside the area of interest

when the area directly to the upper right of the point lies within the area. Otherwise

they are not counted (see Figure 2.4 for examples).

Point outside

+

Figure 2.4: Illustration of a grid of points applied to a Cavalieri section with area A

and distance between points u such that the area per point is u2 (figure modified

from http://www.mikepuddephat.com/PageI1599/Single-object-stereology-(part-l)

(downloaded in February 2011)).

However, although the Cavalieri method is designed to be unbiased, it is prone to

systematic bias called 'overprojection' or 'voluming' if the distance between

sections (i.e. 1) is large (Howard & Reed, 2005). If overprojection occurs then the

volume of the object will be overestimated using the Cavalieri method. As long as

the distance between Cavalieri sections, T, is set such that the number of sections, M,

is equal to 10 or more, then this bias becomes negligible.
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2.2.4 Precision of the volume estimator

In applied studies it is important to know that an estimator is unbiased as well as

how precise it is. Assuming the volume estimator V is unbiased, CE(V) can be used

as a measure of the precision of the estimator. The most popular method used to

predict the CE of the Cavalieri estimator in Stereology is based on Matheron's

transition theory (Matheron, 1971). In 1987, Gundersen & Jensen proposed a way to

estimate the CE of the volume estimator described in Equation (2.2.11). The

following calculation steps are required for the prediction of the CE:

(2.2.13)

(2.2.14)

(2.2.15)

(2.2.16)

Using Equations (2.2.13)-(2.2.16) the coefficient of error of the volume estimator V
can be estimated as (see Garcia-Fifiana & Cruz-Orive, 2004 and references therein):

(~) 1 ( )1/2CE V = LA' a(q). (3D1 + D3 - 4D2) (2.2.17)

where a(q) is as defined in Equation (2.2.22). The CE of V, the volume estimator

obtained by the Cavalieri method in combination with the point counting technique

(see Equation (2.2.12)) can be written as:

(2.2.18)

where CE2(V) is the contribution of the variability across sections and CE~c(V) is

the contribution of the mean variability due to point counting within all sections
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(Cruz-Orive 1989; Cruz-Orive, 1999; Gundersen, et al., 1999; Kieu, et al., 1999;

Garcia-Fifiana & Cruz-Orive, 2000a,b; Garcia-Fifiana et aI., 2003).

However, since the CE's are obtained from observed data, the formula in Equation

(2.2.19) is denoted in lower case:

ce(V) = ce2(V) + ceffic(v) (2.2.19)

where the contribution of the variability across sections is defined as:

ce2(V) ~ a(q). a:~)Z (3(D~ - v) + Di - 4DD (2.2.20)

such that:

(2.2.21)

is the sum of points counted across all M sections. The numerical coefficient a(q)

depends upon the fractional smoothness constant of the area function, q, as described

in Garcia-Fifiana & Cruz-Orive (2000b), and can be expressed as:

( )
_ r(2q+2).((2q+2).cos(nq)

a q - (2n)zQ+Z.(1-2zq-1) (2.2.22)

where rex) is the gamma distribution:

x ;::::1 (2.2.23)

(Abramowitz & Stegun, 1972) and ((x) is the Riemann-zeta function:

x ;::::1 (2.2.24)

(Ivic, 1985; Karatsuba & Voronin, 1992). The value of q is dependent on both the

geometrical properties of the structure and the direction in which sections are taken
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and it has been shown that q may also be dependent on the distance between

sections, T (Gundersen, et al., 1999; Garcia-Fifiana & Cruz-Orive, 2000a). The

estimator of q can be applied when there are at least 5 sections and is defined as:

A {I (3(D~-j))+D~-4D;) I}
q = max 0, 21og(2) .log 3(D~-j))+D;-4D~ -"2 (2.2.25)

(Kieu, 1997, Kieu, et aI., 1999). The estimate of q has been rounded off to the

nearest integer in the past, but q is in fact a rational number which takes values

between 0 and 1. As a rule of thumb, when the number of sections is less than 5 then

q can be set equal to 0 if the shape of the object is irregular and if the shape of the

object is regular then q = 1. In terms of the numerical coefficient a(q), when q = 0,

a(q) = 1/12, when q = 0.5, a(q) = 1/45 and when q = 1, a(q) = 1/240. In

Equations (2.2.20) and (2.2.25) the quantities Do, ... ,D; can be calculated by the

following equations:

(2.2.26)

(2.2.27)

(2.2.28)

(2.2.29)

The final unknown quantity from Equation (2.2.20) yet to be defined is v which is an

estimator of the point counting variance, also known as 'nugget' variance:

v = 0.0724. (F2/ ~). (ML p)I/2 (2.2.30)

The quantities FI and F2 in Equation (2.2.30) are related to the shape of the object of

interest. Take a section of two objects, one a rounded ellipsoid and the other an

irregular shape, with the same total area. Each section has a uniform random grid of

points superimposed on both. The irregular shaped section will have a greater

variance in number of points lying within it than the rounded ellipsoid, due to the
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positioning of the point-grid and the irregularity of the shape of the object itself. For

a more precise estimate of section area (i.e. the variance of number of points counted

is reduced), the irregular shaped section would need a more dense grid of points than

the rounded ellipsoid would. The dimensionless shape coefficient F2/ ~ from

Equation (2.2.30) takes the variability of the shape of the object of interest into

account where Fl is the mean area of the sections (also known as the mean transect

area) and the mean boundary length is given by F2• The boundary length for section

(1 ::::;s ::::;M), F2s, can be calculated, after superimposing a grid of parallel lines on

the section with a uniform random position and isotropic orientation, as:

F2s = (rc/2). (a/l). Is (2.2.31)

where a is the test area around one point on an isotropic line grid, l is the length of

the test lines per point and Is is the number of intersections between the boundary of

the shape of interest and the line grid. In the case of the volume estimation method in

Section 2.2.3, the grid of points in Figure 2.4 has distance between points equal to u.

This means that a = u2 and assuming that l = 2u, Equation (2.2.31) becomes:

F2s = (rc/4).u.Is (2.2.32)

The area of section s, Fls, can be estimated using the point counting technique as:

(2.2.33)

The shape coefficient for one section can therefore be calculated by combining

Equations (2.2.32) and (2.2.33) as follows:

(2.2.34)

The mean of FlS and F2s can be calculated as Fl = (L~=lFlS)/M and F2 =

(L~=lF2s)/M, respectively, and so the shape coefficient from Equation (2.2.30) can

be written as:
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(2.2.35)

Finally, the second term on the right hand side of Equation (2.2.19), the mean

variability due to point counting within all sections, can be written as:

2 c-) _ v
cepe V - (2: p)2 (2.2.36)

2.2.5 Worked examplefor the precision of the volume estimator

The coefficient of error (CE) of the volume estimator for Pars Opercularis in the

right hemisphere (RHPO) grey matter of an example participant (FM032) can be

calculated using the formulae in the previous subsection (Section 2.2.4). The

distance between Cavalieri sections (T) was 1mm and the size of the square grid test

system (u) was 3mm. In this particular example, the number of Cavalieri sections

(M) was equal to 17. The aim of this worked example is fourfold:

• To obtain an estimate of the volume for the RHPO grey matter of the

example subject using Equation (2.2.12).

• To estimate the coefficient of error that is representative of the variability

across sections in relation to the total volume estimate (see Equation

(2.2.20)).

• To estimate the coefficient of error due to point counting using Equation

(2.2.36).

• To estimate the total coefficient of error present in the volume estimate (see

Equation (2.2.19)).

Table 2.1 shows the number of points within the RHPO grey matter for the example

participant, along with the calculations of the quantities D~, ... I D; as described in

Equations (2.2.26)-(2.2.29), respectively. These quantities are needed for some of the

63



coefficient of error calculations. The sum of the points across sections will be used in

the estimation of the volume of the region of interest itself.

The volume estimate, V, can now be estimated from Equation (2.2.12) using the

points from each section as recorded in Table 2.1:

V = 1 . (3)2 . (19 + 22 + 26 + 37 + 34 + 40 + 37 + 39 + 41 + 34 + 35 + 27

+ 23 + 20 + 11 + 4 + 2) = 4059mm3

(2.2.37)

The nugget variance v is needed for the calculation of both the coefficient of error

due to Cavalieri sections and point counting. From Equation (2.2.30), this can be

written as:

17=0.0724 X 7.7 X "';17 X 451 ~ 48.81 (2.2.38)

where the estimate of the shape coefficient F2/.y, used for Pars Opercularis is 7.7.

The fractional smoothness constant of the area function, fj in Equation (2.2.25), is

then calculated as:

" {1 (3' (14397 - 48.81) - 4·13386 + 11195) 1}
q = max 0, 210g(2) X log 3. (14397 - 48.81) - 4 ·13974 + 13386 -"2

fj = max {O, -0.31} = 0 (2.2.39)

As was stated in Section 2.2.4, when fj = 0:

a(fj) = 1/12 (2.2.40)

Using these results, and by square rooting Equation (2.2.20), the coefficient of error

due to Cavalieri sections becomes:
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ce(V) = 2_. (3(14397 - 48 81) - 4·13974 + 13386) . ~ ~ 0.0148
12· 451

(2.2.41)

This means that the contribution to the total coefficient of error of the volume

estimator that is due to the Cavalieri sampling is approximately equal to 1.5%.The
coefficient of error due to point counting can be obtained by square rooting Equation

(2.2.36)such that:

cepc(t!) = J48.81 . 45\2 ~ 0.0155 (2.2.42)

Section s Ps pZ e, . Ps+1 Ps . Ps+z v, . Ps+4s
1 19 361 418 494 646
2 22 484 572 814 880
3 26 676 962 884 962
4 37 1369 1258 1480 1443
5 34 1156 1360 1258 1394
6 40 1600 1480 1560 1360
7 37 1369 1443 1517 1295
8 39 1521 1599 1326 1053
9 41 1681 1394 1435 943
10 34 1156 1190 918 680
11 35 1225 945 805 385
12 27 729 621 540 108
13 23 529 460 253 46
14 20 400 220 80 -
15 11 121 44 22 -
16 4 16 8 - -
17 2 4 - - -

Total 451 14397 13974 13386 11195
Do Di Di D4

Table 2.1: Table of points within the RoJ (RHPO grey matter) for each Cavalieri

section, together with the calculation of Do, D;, D;_and D; using Equations (2.2.26)-

(2.2.29), respectively.
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The contribution to CE of the volume estimator that is due to point counting can be

estimated to be 1.6%. Finally the total coefficient of error for the volume estimator in

Equation (2.2.19) can now be written as:

ce(V) = v'0.01482 + 0.01552 ~ 0.0214 (2.2.43)

meaning that the estimate of total coefficient of error of volume estimator due to

point counting and Cavalieri sections combined is equal to 2.1%.

2.2.6 Surface area estimator

One approach to estimate surface area involves the uniform random superimposition

of a grid of parallel equidistant lines in an isotropic orientation over uniform random

parallel equidistant sections in an isotropic orientation throughout a 3-D object (e.g.

Elias & Schwartz, 1969) (see Figure 2.5). The estimator of the surface area, S, can be

then expressed as a function of the intersections between the lines and the surface

boundary of the object as follows:

S = 2.I.ii. T (2.2.44)

where I is the total number of intersections across all sections, ii is the distance

between lines and T is the distance between sections.

An alternative method for the estimation of surface area was later developed in 1986

by Baddeley et al. (see also Cruz-Orive, 2006). To guarantee unbiasedness three

requirements must be met during the sampling. These three requirements are: (i) the

object to be estimated must have an identifiable directional axis or a direction should

be generated by the experimenter (referred to as the 'vertical axis'); (ii) the vertical

sections (sections parallel to the vertical axis or perpendicular to the horizontal

plane) must be randomly orientated in respect of the horizontal plane (see Figure

2.6); (iii) the test line to be superimposed on the vertical sections must be given a
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weight proportional to sinCe) where e is the angle between the vertical direction and

the test line.

Figure 2.5: Illustration of a grid of parallel equidistant lines superimposed onto a

section of the cerebral cortex of a mammal obtained with isotropic orientation (with

intersections marked with dots) (Elias & Schwartz, 1969).

Vertical
direction,

Horizontal plane

Figure 2.6: A vertical axis is chosen perpendicular to a horizontal plane

(http://www.mikepuddephat.com/PageI1600/S ingle-obj ect -stereol ogy -(part -2)

(downloaded in February 2011)).
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By defining the vertical axis, anisotropy is introduced into the sampling design.

Anisotropy is a property of being directionally dependent, which in this case is in the

direction of the vertical axis. However, the sampling design should be isotropic,

meaning that all directions should have identical properties. To compensate for this,

a numerical weighting factor would normally have to be included in the estimation

method. However, by using a grid of cycloids weighted proportional to sin (e) as the

test lines, requirement (iii) for the estimation method is fulfilled and so the numerical

weighting factor is not necessary in the estimation method (Baddeley et al., 1986).

The cycloids have an arc such that:

x(cp) = (cp - sin cp)r (2.2.45)

y(cp) = (1- coscp)r (2.2.46)

where 0 < cp < IT and r is a variable linked to the cycloid size such that r = l/16

with l equal to the cycloid length (see Figure 2.7).

Figure 2.7: Figure of the mathematical curve of the cycloid (left panel) and the

cycloid grid (right panel) (http://www.mikepuddephat.comlPageI1600/Single-object-

stereology-(part-2) (downloaded in February 2011)).
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For requirement (iii) to hold when this grid of cycloids is used as the test lines, the

minor axis of the cycloid must be parallel to the defined vertical axis. This means

that <p is the angle between the vertical direction and the test lines. The true surface

area, S, can be thought of as the integral of a function f over all angles of orientation

tp such that:

(2.2.47)

(see Cruz-Orive, 2006 for more details about the function f).

The estimation procedure itself involves three levels of sampling. Firstly, a

horizontal plane is chosen. Secondly, a random angle, ¢o, is generated between 0

and rr/w (w ;:::1), on this horizontal plane. A systematic set of w orientations are

then generated, (¢o, ..., ¢CW-l)), such that:

¢i = ¢o + (rr/w)(i - 1) (i = 1, ...,w) (2.2.48)

An example of this can be seen in Figure 2.8 with w = 3 and (J = ¢o being the

random angle generated (Figure 2.8, upper left panel). At each orientation, Cavalieri

sampling is applied to obtain a series of parallel sections at a distance T apart (see

Figure 2.8, upper right panel). A grid of cycloids is then superimposed with a

uniform, random position on each individual section and for each orientation such

that the minor axis of the cycloids is parallel to the vertical axis (see Figure 2.8,

lower panel).

The properties of the cycloids were defined earlier in this section. The number of

intersections between the cycloids and the surface of the object are then counted. Let

lij be the number of intersections on the /h section U = 1, ... , Ui; U, ;:::1) for the ith

orientation (i = 1, ... ,w). The angle between orientations is set at h = !!.. (i.e. the
W

systematic sampling period). Then the surface area estimator with w orientations,

Sw, can be estimated from the following equation:

(2.2.49)
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The function /;, can be calculated as:

(2.2.50)

where a is the cycloid test unit area, l is the cycloid test line length (see Figure 2.7)

and T is the distance between the Cavalieri sections. Combining Equations (2.2.49)

and (2.2.50), the surface area estimator s; becomes:

(2.2.51)

where Ii is the total number of intersections on the ith orientation (see Cruz-Orive,

2006).

An alternative method called the 'vertical spatial grid' method is similar to the

method described above, except that the cycloids are set to specific vertical shifts on

each Cavalieri section, as opposed to a random, uniform position (Cruz-Orive &

Howard, 1995). The vertical shifts form cycloids in the orientation direction meaning

that two systematic arrangements of cycloid chains are then contained in two

mutually perpendicular systems of parallel vertical planes. Although this method is

not used in this thesis, a comparison of these two methods on our images may be

useful to examine the differences between them.
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Figure 2.8: In this example, 3 orientations are obtained using systematic sampling

with <p being randomly generated such that 0 < <p < tt /3, Cavalieri sections are

obtained at a distance T apart, and the cycloid grid is randomly 'thrown' onto each

section (modified from van Aarde, 2006).

2.2.7 Precision of the surface area estimator

To estimate the precision of the surface area estimator is a more complex task than to

estimate the precision of the volume estimator. This additional complexity arises

because of an additional level of sampling involved in the estimation of surface area

(the volume estimation has two levels of sampling, whereas the surface area

estimation involves three levels). The variance of the surface area estimator,

Var(sw), is equal to the sum of the variance due to each of the three levels of

sampling:

(2.2.52)
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where Varcf>(Sw),Varcav(Sw) and VarCYc(Sw)are the variances due to the random

systematic sampling of w orientations (first level of sampling), the w Cavalieri series

of vertical sections (second level of sampling) and the sampling using the cycloids

system on each Cavalieri section (third level of sampling), respectively. Following

Equation (2.2.52), the CE of the surface area estimator can be expressed as:

(2.2.53)

where CE~(Sw)' CE~av(Sw) and CE~yc(Sw) are the square of the coefficients of

error due to the three levels of sampling as described above for the three components

of the variance. The estimator of the coefficient of error of the surface area estimator

is denoted using lowercase symbols as follows:

(2.2.54)

The idea is to be able to distinguish between the exact expression of CE2 (Sw) in

Equation (2.2.53) and the estimator based on the observed data in Equation (2.2.54).

(i) Estimation of Varcf>(Sw )

In order to estimate these three components of the coefficient of error, the variances

from Equation (2.2.52) due to each level of sampling must be estimated. From this

point on, the estimator of the variance of the surface area estimator (in other words,

the estimator of Var(Sw)), will be referred to as varm(Sw) to maintain consistency

with Cruz-Orive & Gual-Arnau (2002). The estimator varm (Sw) can be written as:

(2.2.55)

where varm (Sw) is the variance due to the systematic sampling on a half circle and is

based on a model that takes into account the circular sampling nature (see Cruz-

Orive & Gual-Arnau (2002) for details). The parameter m can take the form of 0 or 1
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and also comes from this 'global model'. The first term in the right hand side of

Equation (2.2.55), varm (Sw) can be calculated from:

varm(Sw)

= max {O, (1[z. BZm+z. (Co - C1 - vw) )/( (Bzm+z - Bzm+z(l/w)). wzm+3)}

(2.2.56)

where Co and C1 , can be calculated as:

(2.2.57)

Note that ~+w = t.due to the periodicity of circular systematic sampling, and when

H = 0,1, ... , [w /2], with [w /2] defined as the integer part of a real number w /2, it

can then also be stated that:

(2.2.58)

The quantity BZm+z is a Bernoulli polynomial as defined in Abramowitz & Stegun

(1972) and m, as stated above, can be either 0 or 1. To determine whether m should

be set at 0 or 1, the following should be adhered to:

m = {O iflDol:::; 11511
1 otherwise

(2.2.59)

where Do and 151 take the form:

(2.2.60)

(2.2.61)

(Cruz-Orive & Gual-Arnau, 2002). Note that the equations for Do and 151 only hold

if w ~ 4. That is, there has to be a minimum of 4 orientations so that there are

enough data for the calculations to take place. From the definitions of the Bernoulli
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polynomials and Equation (2.2.56), varm (Sw) can now be written as two equations

depending upon whether the value m equals 0 or 1, respectively:

(2.2.62)

(2.2.63)

Also note that Equations (2.2.62) and (2.2.63) hold only if w ~ 2. It is also useful to

note that the term Vw is an estimator of the variance of the local Cavalieri sections

based on the w orientations.

(ii) Estimation of VarcavCs;)

The second term in Equation (2.2.52), the variance due to the random systematic

sampling of the w Cavalieri series of vertical sections, Varcav( Sw), can be estimated

as the product of the square of the angle between the orientations (h = ntw) and the

estimator Vw (the second term on the right side of Equation (2.2.55)). That is:

(2.2.64)

such that

(2.2.65)

where

al = ((2/n). (a/l) )z. TZ. a(qi)' (3(COi - vwJ - 4Cli + CzD

+ ((2/n). (a/l) l.TZ. VWi

(2.2.66)

The values CHi (H = 0,1, ...,U, - 1) can be calculated from:

(2.2.67)

with Iij being the number of intersections on the /h section of the ith orientation. The

estimator VWt is defined as the second stage nugget component (an estimator of the

variance due to the test system (i.e. the cycloid grid)) (Cruz-Orive, 2006), and is

74



defined in Equation (2.2.71). Equation (2.2.65) only holds when w 2:: 3. By

substituting the estimator of the variance due to Cavalieri sampling for each

orientation i in Equation (2.2.66) into the previous Equation (2.2.65), varcav(Sw)
from Equation (2.2.64) becomes:

varcav(Sw) = h2I:
1
(( (2/rr). (a/l) )2. T2. a(qJ. (3( COi - VwJ - 4Cli + CZi))

+ h2I:
1
(((2/rr). (a/l))2. T2. VWi)

(2.2.68)

The first right hand term of Equation (2.2.68) is the estimator of the variance due to

the V Cavalieri sections (V = Lt:l Vi) for all w orientations. The estimator of the

variance due to the cycloid grid test system for all V Cavalieri sections takes the

form of the second right hand term of Equation (2.2.68). The term a(qi) represents

the numerical coefficient that is dependent upon the fractional smoothness constant

of the area function similar to that defined in Equation (2.2.22), such that:

(2.2.69)

where rex) is the gamma distribution as defined in Equation (2.2.23), ((x) is the

Riemann-zeta function as defined in Equation (2.2.24) and qi E [0,1]. An estimate of

qi can be obtained using Equation (2.2.70), only if the number of vertical sections,

Vi> in each orientation i is greater than or equal to 5.

[h = max {O,210~(2) .log(3( COi - vwJ + C4i - 4C2i/3( COi - vwJ + C2i - 4C1i)

-~}
(2.2.70)

(Kieu et al., 1999). The estimator VWi can be written as:

(2.2.71)
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with i = 1, ...,wand 8i} being an estimator of the vanance of the number of

intersections between the boundary of the object and cycloid grid, on the r
Cavalieri section of orientation i. Since this is a rolling cycloid probe test system, the

formula relating to the coefficient of error estimator from a single intersection count

hj cannot be directly estimated. However, the total variance estimate due to

sampling with cycloids can be calculated using the Poisson model. It can be shown

that the standard deviation of this data is equal to the square root of the mean (Cruz-

Drive & Gual-Arnau, 2002). Hence, the variance estimator, 8i}, is equal to the

number of intersections on the /h section of the ith orientation:

(2.2.72)

(iii) Estimation of varCYc(Sw)

The second term on the right hand side of Equation (2.2.68) provides the estimator of

variance of the third level of sampling from Equation (2.2.52) (sampling using the

cycloids system on each Cavalieri section), which can therefore be written as:

(2.2.73)

2.2.8 Worked examplefor the precision of the surface area estimator

A worked example for the CE of the surface area estimator for right hemisphere Pars

Opercularis (RHPO) is given below for a single subject (FM032). The number of

random, systematic orientations (w) is 4 and the angle between orientations, h, can

therefore be written as h = rr/4. The distance between Cavalieri sections on each

orientation (T) was equal to 1mm, and the ratio of test area to the cycloid test line

length (a/l) was set to 3mm. The objectives of this worked example are:

• To estimate the surface area, Sw, for the RHPO of a single subject using

Equation (2.2.51).
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• To estimate the coefficient of error of the surface area estimator that is due to

the third level of sampling using the cycloid grid test system, cecyc(Sw) (third

term on the right hand side of Equation (2.2.54)).

• To estimate the coefficient of error of the surface area estimator that is

directly related to the Cavalieri sections, cecav(Sw) (second term on the right

hand side of Equation (2.2.54).

• To estimate the coefficient of error of the surface area estimator due to the

first level of sampling (systematic sampling on a semi-circle), cecp(Sw) (first

term on the right hand side of Equation (2.2.54)).

• To calculate the total coefficient of error of the surface area estimator (due to

the contribution of the three levels of sampling mentioned above), ce( Sw) in

Equation (2.2.54).

Surface area estimate

Table 2.2 shows the intersection counts for each Cavalieri section j of each

orientation i, along with the total sum of intersections for each orientation. These are

needed for the surface area estimation.

The surface area of right hemisphere PO for this subject can then be estimated by

using the intersection counts from Table 2.2, as well as some of the parameters

specified earlier (such as T and h) and substituting them into Equation (2.2.51):

s; = 2/4 x 3 x 1 x (47 + 61 + 57 + 42) ~ 310.5mm2 (2.2.74)
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Orientation Section Ii} Lli}i j 1 2 3 4 5 6
1 5 13 10 9 11 4 0 47
2 6 16 14 13 6 9 3 61
3 6 18 13 11 10 4 1 57
4 4 2 14 15 11 0 0 42

Table 2.2: The intersection counts for each Cavalieri section of each orientation for

the RHPO of subject FM032.

Coefficient of error due to the third level of sampling

By using the Poisson model to calculate the total variation due to the sampling with

cycloid grids, the variance of the variable number of intersections between the

boundary of the object and cycloid grid on the /h section of the ith orientation is

simply equal to the number of intersections (see Equation (2.2.72)). This means that

VWi can be calculated by applying Equation (2.2.71) to the data in Table 2.2 such

that:

(2.2.75)

(2.2.76)

(2.2.77)

(2.2.78)

VWi = 47 + 61 + 57 + 42 = 207 (2.2.79)

This can now be substituted into Equation (2.2.73) to calculate the variance due to

cycloid grid sampling:
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(2.2.80)

The coefficient of error due to cycloids sampling can now be predicted by the

application of Equation (2.2.9) to Equations (2.2.80) and (2.2.74):

cecyc(Sw) = (v'465.8/310.5) x 100 = 7.0% (2.2.81)

Coefficient of error due to the second level of sampling

To be able to estimate the coefficient of error of the surface area estimator due to

Cavalieri sampling, Vw has to be calculated (see Equation (2.2.65)). To do this, al
has to be calculated for each orientation i (Equation (2.2.66)), which in tum needs

COil ... I C4i , ili and aCefi) for each orientation i (see Equations (2.2.67), (2.2.70) and

(2.2.69), respectively). The values of COil ... I C4i are products of the number of

intersections between the cycloid grid and the region of interest on Cavalieri

sections, from the same orientation (0 (see Equation (2.2.67) for details). These

products can be seen in Table 2.3 and a summary of COil ... I C4i for each orientation i

can be seen in Table 2.4.
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Orientation Section Intersections
i j lij lij.1 ij I ij.1 i,j+l lij.li,j+z lij·li,j+4

1 13 169 130 117 52
2 10 100 90 110 0

1 3 9 81 99 36 0
4 11 121 44 0 0
5 4 16 0 0 0

Total 47 487 363 263 52
1 16 256 224 208 144
2 14 196 182 84 42

2 3 13 169 78 117 0
4 6 36 54 18 0
5 9 81 27 0 0
6 3 9 0 0 0

Total 61 747 565 427 186
1 18 324 234 198 72
2 13 169 143 130 13

3 3 11 121 110 44 0
4 10 100 40 10 0
5 4 16 4 0 0
6 1 1 0 0 0

Total 57 731 531 382 85
1 2 4 28 30 0

4 2 14 196 210 154 0
3 15 225 165 0 0
4 11 121 0 0 0

Total 42 546 403 184 0

Table 2.3: Number of intersections, and their products, for each orientation i.

Orientation (i) ll ..COi Cli CZi C4i.J lJ

1 47 487 363 263 52
2 61 747 565 427 186
3 57 731 531 382 85
4 42 546 403 184 0

Table 2.4: Sum ofintersections and COil "'1 C4i/or each orientation i.

The resultsin Table 2.4 can then be used along with Equations (2.2.75)-(2.2.78)to
calculateqi , from Equation (2.2.70),foreach orientationi, such that:
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~ {1 (3.(487-47)- 4.263+52) 1}
ql = max 0, 2Iog(2) x log 3. (487 - 47) - 4·363 + 263 - 2:

tit = max{0,0.144} = 0.144 (2.2.82)

~ {1 (3. (747 - 61) - 4·427 + 186) 1}
q2 = max 0, 2Iog(2) x log 3. (747 _ 61) _ 4.565 + 427 - 2:

q2 = max{0,0.126} = 0.126 (2.2.83)

~ {1 (3. (731 - 57) - 4·382 + 85) 1}
q3 = max 0, 2Iog(2) x log 3. (731 - 57) - 4 . 531 + 382 - 2:

q3 = max{0,0.024} = 0.024 (2.2.84)

~ {1 ( 3 . (546 - 42) - 4· 184 + 0) 1}
q4 = max 0, 2Iog(2) x log 3. (546 - 42) - 4 . 403 + 184 - 2:

q4 = max{0,1.104} = 1.104 (2.2.85)

One of the stipulations for this methodology is that qiE[O,l] therefore, for this

reason, the result in Equation (2.2.85) should be modified so that:

q4 = min{1,1.104} = 1 (2.2.86)

A number of other components are necessary to be able to calculate a(qa, including

f(2qi + 2) and ((2qi + 2) where rex) is the gamma distribution as defined in

Equation (2.2.23) and ((x) is the Riemann-zeta function as defined in Equation

(2.2.24). These components can be seen in Table 2.5.
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Orientation (i) qi r(2qi + 2) {(2q: + 2) cos (1lqi)
1 0.144 1.158 1.439 0.899
2 0.126 1.134 1.459 0.923
3 0.024 1.021 1.602 0.997
4 1 6.000 1.082 -1.000

Table 2.5: Summary of the components necessary to calculate a(qafor each

orientation i.

Using the results in Table 2.5 and substituting them into Equation (2.2.69) gives:

a(q1) = [1.158 x 1.439 x 0.899]/[(2n)2.288. (1 - 2-0.712)]

a(q1) = 0.0574

a(q2) = [1.134 x 1.459 x 0.923]/[(2n)2.252. (1- 2-0.748)]

a(q2) = 0.0602

a(q3) = [1.021 x 1.602 x 0.997]/[(2n)2.048. (1 - 2-0.952)]

Now, al can be calculated for each orientation i from Equation (2.2.66):

af = (3(2/n))2 x 12 x 0.0574 x (3(487 - 47) - (4 x 363) + 263)

+ ((3(2/n))2 x 12 x 47)

af = 198.9mm4

(2.2.87)

(2.2.88)

(2.2.89)

(2.2.90)

(2.2.91)



8f = (3 (2/rr) / x 12 X 0.0602 X (3(747 - 61) - (4 X 565) + 427)

+ ((3(2/rr))2 X 12 X 61)

8f = 271.9mm4 (2.2.92)

8} = (3(2/rr))2 X 12 X 0.0783 X (3(731 - 57) - (4 X 531) + 382)

+ ((3(2/rr))2 X 12 X 57)

8} = 287.9mm4 (2.2.93)

81 = (3 (2/rr) )2 X 12 X 0.0042 X (3(546 - 42) - (4 X 403) + 184)

+ ((3(2/rr))2 X 12 X 42)

81 = 154.5mm4 (2.2.94)

Thus Vw can be calculated as in Equation (2.2.65):

Vw = 198.9 + 271.9 + 287.9 + 154.5 = 913.1mm4 (2.2.95)

and hence, the variance due to Cavalieri sampling can be estimated from Equation

(2.2.64):

(2.2.96)

Using both the variance due to Cavalieri sections in Equation (2.2.96) and the

surface area estimate in Equation (2.2.74), the coefficient of error due to Cavalieri

sections can be calculated from Equation (2.2.9):

cecav(Sw) = (vf563.3/310.5) X 100 = 7.6% (2.2.97)



Coefjicient of error due to the first level of sampling

To calculate the coefficient of error due to the first level of sampling, the variance

component of the total variance of the surface area estimator, varm(Sw) from

Equation (2.2.56) needs to be calculated. To do this Co, C1 an_<!_C2are also to be

calculated, but first the function /;" for each orientation i (see Equation (2.2.50)) are

demanded:
A 2
fl = - x 3 x 1 x 47 = 89.76

11:
(2.2.98)

A 2
f2 = - x 3 x 1 x 61 = 116.50

11:
(2.2.99)

A 2
f3 = - x 3 x 1 x 57 = 108.86

11:
(2.2.100)

A 2
f4 = - x 3 x 1 x 42 = 80.21

11:
(2.2.101)

Applying Equations (2.2.98)-(2.2.101) to Equation (2.2.57) gives:

Iw
A AA 2 2 2 2
Co= i=l/i/i = 89.76 + 116.5 + 108.86 + 80.21

Co= 39913 (2.2.102)

= (89.76 x 116.5) + (116.5 x 108.86) + (108.86 x 80.21)

+ (80.21 x 89.76)

C1= 39071 (2.2.103)

= (89.76 x 108.86) + (116.5 x 80.21) + (108.86 x 89.76)

+ (80.21 x 116.5)
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[2 = 38231 (2.2.104)

Following this, the value of m is to be determined from 150 and 151 (see Equations

(2.2.60) and (2.2.61), respectively):

150 = (39913 - 38231 - 913.1)/(39913 - 39071 - 913.1) - 4/3

150 = -12.1 (2.2.105)

151 = (39913 - 38231 - 913.1)/(39913 - 39071 - 913.1) - 16/9

151 = -12.6 (2.2.106)

Since 1150 I ~ 11511 then m = O. Therefore, the variance due to the orientations from

Equation (2.2.62) can be written as:

~ { 1[(1[/4) }varo(Sw) = max 0, 18 (39913 - 39071 - 913.1)

varo(Sw) = max{O, -9.75} = 0 (2.2.107)

Hence, the coefficient of error due to orientations can be stated to be (again from

Equation (2.2.9»:

cecp(Sw) = (0/310.5) x 100 = 0% (2.2.108)

This value shows the limitations of the error predictor formulae when applied to

particular cases, and the need for further improvement. The total variance within the

surface area estimate can now be estimated from Equation (2.2.52):

var(Sw) = 0 + 563.3 + 465.8 = 1029.1mm4 (2.2.109)
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Finally the total coefficient of error due to the three levels of sampling (orientations,

Cavalieri sections and cycloid grid sampling simultaneously) can be estimated by

substituting Equation (2.2.109) and (2.2.74) into Equation (2.2.9) giving:

ce(Sw) = ("'1029.1/310.5) x 100 = 10.3% (2.2.110)

2.3 Image analysis

The volume and surface area estimation methods described in Section 2.2, can be

applied to magnetic resonance (MR) images (e.g. Roberts et al., 2000; Barta &

Dazzan, 2003; Ronan et al., 2006; Sharpe et aI., 2009; Acer et al., 2010). In this next

section, the application of the stereo logical estimation methods to magnetic

resonance imaging (MRI) is described and the programs used are stated at each step.

This section focuses on Broca's area and starts with the pre-processing of the

images, followed by volume and then surface area estimation methods.

2.3.1 Preparation of the images

The purpose of the pre-processing of the images is to transform the images into a

format that is compatible with the program used to perform the volume and surface

area estimation. The information of the MR images taken from the scanner are stored

in two files: an image file (.img) and a header file (.hdr). The images themselves are

stored in the image file, whereas the role of the header file is to give information to a

program attempting to accessing the image data, about how to read the image file

correctly.

The first program used is called Brain Voyager QX (version 1.9). The main uses of

this program are to transform the images into the correct file format, voxel size and

orientation. The first step is to open Brain Voyager and then start a 'new project'. The

new project will be in the form of an anatomical 3-D dataset and will be saved as a

.vrnr file. The data type is also set to 'analyze'. BrainVoyager can open the header
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and image files of the raw MR image data when we set the file type to 'analyze'. The

contrast and brightness are then adjusted such that not only are the grey and white

matter distinguishable from each other, but that the boundary between the brain and

the cerebrospinal fluid (CSF) is also easily distinguishable. Since this varies from

brain to brain, and requires individual adjustment, possible bias may be introduced.

This contrast and brightness bias may add to the potential bias of overprojection in

the stereological methodology mentioned in Section 2.2.3. The bias due to

overprojection would be affected because if it is difficult to observe the edges of the

region of interest (e.g. due to poor contrast/brightness levels) then it would also be

difficult to choose a value of Cavalieri section thickness, T, which would guarantee

that the number of sections within the region of interest, M, is at least equal to 10.

Following this step will lead to being asked whether one wishes to iso-voxel the data

or not. The answer should always be 'yes' if the dimensions of the voxels in the

images obtained from the scanner are not Imm x Imm x Imm. This is because by

having voxels with differing size dimensions, the output sections and images would

be skewed and would introduce bias to estimations in favour of the dimension with

the largest length. At present, to obtain high quality MR images, the maximum true

resolution should be no more than lmrrr' (see BrainVoyager QX User's Guide -

Version 0.9.8 at http://www.brainvoyager.com/bvqx/doc/UsersGuide/WebHelp/Brai

nVoyagerQXUsersGuide.htm).

Some tools in Brain Voyager also need a resolution of 1mnr' to function without

further extensive editing of the MR images. Smaller cubed voxel sizes than Imm x

1mm x 1mm could be used, but in this case voxels of size 1mnr' are used as the

standard. The 'target voxel size' should be set to 1.0 (X), 1.0 (Y) and 1.0 (Z), to

represent this standard voxel size

The iso-voxel transformation should be completed usmg sine interpolation. Sine

interpolation for signal reconstruction is defined as:

(2.3.1)
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where xU) is the reconstructed signal, f is the sampling period used to identify the

sample Xii from the original signal and sine ((rr/f)(t - fif)) can be written as:

sine ((rr/f)(t - fif)) = sin ((rr/f)(t - fif) )/(rr/f)(t - fif) (2.3.2)

(Oppenheim & Schafer, 1975). This type of interpolation is used because it is useful

for retaining a higher proportion of data quality than the trilinear interpolation and is

faster due to requiring less working memory than the cubic spline interpolation. The

newly transformed image file should then be saved. At this stage the window shown

by BrainVoyager should look like Figure 2.9. It is useful to note that in Figure 2.9

the standard orientation is always in the upper left hand comer of the brain views in

Brain Voyager. This is the sagittal view through the images. In this case the view is

upside down, so this needs to be transformed such that the neck and spinal column

are located at the bottom of the screen. The view in both the coronal and transverse

screens also needs to be transformed. Currently, in Figure 2.9, these can be seen to

be posterior to anterior in direction, from left to right, when it should be viewed as

anterior to posterior. To perform these spatial transformations, the dialogue box

should be opened (by pressing on the 'Full Dialog»' button in the '3D Volume

Tools' window). From this box the spatial transformation tab (called 'Spatial

Transf) should be opened and beneath the 'Standardize' menu, the 'To Sag ... '

button is then pressed. This brings up the 'transform to standard orientation'

window. Any transformations referred to in this window are described for the

sagittal view, but will affect both the coronal and transversal views simultaneously.

To get the desired transformations, the images must be rotated by 90 degrees anti-

clockwise in the y-axis (+90), twice, followed by a rotation of 90 degrees clockwise

in the z-axis (-90). The resultant transformed images can be seen in Figure 2.10.
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Figure 2.9: BrainVoyager screen after iso-voxel transforming the images to lmm X

lmm X lmm.

The images in Figure 2.10 are still not ready to be used in the programs to be used

later, including the Stereology application program. This is because they have not

been anterior commissure-posterior commissure (AC-PC) corrected. That is, they

have not been corrected fOTthe positioning of the head in the scanning itself. Tilting

or slight rotating of the head, in the vertical or horizontal planes may have occurred.

In order for identification of regions of interest to be easier and for correct use of

other programs, this must be corrected to guarantee that there is a standard

positioning of all of the individual brains. The anterior commissure (AC) is a

grouping of nerve fibres that bridges between the two hemispheres just in front of the

columns of the fornix. The posterior commissure (PC) is a band of white fibres

crossing between the two hemispheres at the upper end of the cerebral aqueduct.
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These two landmarks are used to define the alignment of the brain in the Talairach

Atlas (Talairach & Tournoux, 1988).

S-,TIU'", I Jso.~)I'1... I Ttnorm.YfoF ... ' [xpo1.DCM .. , I
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Figure 2.10: Brain Voyager screen after spatial transformation of the images.

An illustration of the AC-PC line can be seen in Figure 2.11. In Brain Voyager, the

AC is needed to be identified. This is done by altering the co-ordinate values for the

three planes (x-axis, y-axis and z-axis) until the co-ordinate which corresponds to

the AC point. Figure 2.12 shows BrainVoyager with the co-ordinates of the AC point

for the example brain. The AC point is the point in the centre of the crosses in each

of the three views (sagittal, coronal and transversal).
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Figure 2.11: Illustration of the AC-PC line
(http://airto.ccn.ucla.edu/BMCweb/HowTo/AC-PC.html (downloaded in February

2011)).

~, Rr.llnVoyager QX - [FCOI7_I50_5AG.vmt]

Figure 2.12: BrainVoyager screen after the AC point has been identified and

highlighted
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The next stage is to obtain the AC-PC line. To do this the PC must be identified and

then the images rotated in each axis until the cross passes through both the AC and

PC. When this is accomplished, BrainVoyager should look as in Figure 2.13. The

green crosshairs are centred on the AC point, with the horizontal, green crosshair

line in the sagittal view being the AC-PC line.

Figure 2.13: Brainl/oyager screen after the AC-PC line has been identified and

highlighted (green, horizontal crosshair line, bottom row, left hand panel) with the

original uncorrected views on the top row and the AC-PC corrected views on the

bottom row.

At this point the original image files need to be transformed with the AC-PC

corrected rotations. Similarly as described above, a sine interpolation transformation

is used and the new image file is saved (as .vmr format). Following this step the AC-

PC corrected views are visible in Brain Voyager as can be seen in Figure 2.14.
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Subsequently, the .vmr file is exported to the file format called analyze using the

'Export To Analyze Format' option in BrainVoyager's 'File' drop-down menu. This

generates an image (.img) and header (.hdr) file, similar to the raw MRI data derived

from the scanner. This file is then opened in MRICro (version 1.40, build 1), which

is a program used, in this case, to create a 3-dimensional rendered image of the brain.

Once the file is opened, '3-D render' is chosen which creates an estimation of the 3-

D image of the entire head from the MRI images. Then, 'skull strip' is completed

which removes anything which MRICro identifies as being skin and bone, leaving

nothing but the 3-D rendered brain itself. This can then be rotated around to

highlight, for example, the left and right hemisphere as shown in Figure 2.15. These

3-D rendered images are then used to identify the region of interest. It is useful to

note here, that the AC-PC corrected images that are obtained from BrainVoyager,

and subsequently the 3-D rendered images that are given in MRICro, are mirrored

images. That is, what appears to be the left hemisphere in Brain Voyager and

MRICro is, in fact, the right hemisphere, and vice versa.

Now the region of interest can be demarcated and estimated. The next subsection

covers the identific~tion of the region of interest, which in this case is Broca's area.
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Figure 2.14: BrainVoyager screen showing the AC-PC corrected sagittal, coronal

and transversal views.
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Figure 2.15: MRICro screens showing 3-D rendered images of the (i) left

hemisphere and (ii) right hemisphere of the example brain.
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2.3.2 Identifying Broca's area

Broca's area is a region of the brain located in the cerebral cortex. It consists of two

parts: the pars opercularis (PO) and the pars triangularis (PT) and in this study they

are estimated separately. Paul Broca was the first to identify this region of the brain

being associated with language (Dronkers et al., 2007). The major sulcal contours

defining PO and PT can be seen in Figure 2.16. The pars opercularis can be

identified since it is bounded by the following sulcal contours:

1. The inferior prefrontal sulcus to the posterior.

11. The anterior ascending ramus of the Sylvian fissure to the anterior.

111. The inferior frontal sulcus to the superior.

IV. The Sylvian fissure itself to the inferior.

(see Keller et al., (2007) for a more detailed description). The pars triangularis is

bounded by:

1. The anterior ascending ramus of the Sylvian fissure to the posterior.

11. The inferior frontal sulcus to the superior and anterior.

iii. The anterior horizontal ramus of the Sylvian fissure as well as part of the

Sylvian fissure itself to the inferior.

There may exist an extra sulcus within both the PO and PT. In the PO, this sulcus is

referred to as the diagonal sulcus, whereas in the PT, this sulcus is called the

triangular sulcus. However, this is not always found in every brain.

Figure 2.16 shows an image similar to that which is obtained from MRICro. Broca's

area can be identified more clearly in this view than directly from the magnetic

resonance (MR) images in BrainVoyager. However, this viewpoint only allows the

surface of Broca's area to be identified. It is not possible to tell how deep into the

brain the region of interest (RoI) actually goes, nor does it say whether the shape of

the RoI continues exactly the same as it does at the surface, throughout the entire

depth of the region. BrainVoyager must be used then to answer these queries. Using

the MRICro 3-D rendered images and the area identified as Broca's area, this area
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can also be identified in Brain Voyager. Figure 2.17 shows the Broca's area

demarcated in the brain (one hemisphere only) and three views from BrainVoyager

(one sagittal and two coronal) as well as the MRlCro view.

Figure 2.16: The major sulcul contours defining Broca's area: Pars Opercularis

(po); Pars Triangularis (ptr) with the horizontal ramus of the Sylvian fissure (hr),

anterior ascending ramus of the Sylvianfissure (ar), the inferior frontal sulcus (lfs),

triangular sulcus (ts), diagonal sulcus (ds) and the inferior precentral sulcus split

into three segments: ventral (ipcs(v)); horizontal (icps(h)); and dorsal vertical

(icps(d)) (Keller et al., 2007).

Now that Broca's area has been identified the next step is to demarcate this region

(the RoI). This will be explained in the next two subsections along with the

estimation methods for volume and surface area (the demarcation needed is different

for each method).
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Figure 2.17: Broca's area demarcated (Pars Opercularis (blue) and Pars

Triangularis (red)) in the MRICro 3-D rendered image (top) and in three 2-D views

from BraittVoyager (a sagittal view (bottom left), and two coronal views (bottom

middle and right). The anatomy is here defined as follows: inferior precentral sulcus

(ipcs); inferior frontal sulcus (ifs); diagonal sulcus (dr); triangular sulcus (tr);

horizontal ramus of the Sylvian fissure (hr),· anterior ascending ramus of the Sylvian

fissure (ar),· and circular insula; sulcus (cis) (Keller et al., 2007).
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2.3.3 Estimation of the volume of Broca's area

For stereological estimation it is necessary to be able to clearly distinguish the region

under study. In this case the RoI, the Broca's area, needs to be demarcated such that

it can be clearly identified during the sampling process. Since one of our main aims

when estimating volume and surface area is to minimise the amount of variability

due to errors, then a precise demarcation process is needed. Broca's area was

demarcated using Brain Voyager and allowing the outlines to lie outside the region

by at least one or two voxels.

The first task is to demarcate the anterior and posterior ends of Pars Opercularis.

Pars Opercularis and Pars Triangularis are demarcated and estimated separately as

has been previously mentioned. In the segmentation option within Brain Voyager

there is an option to draw with the mouse on the images. A very large size is needed

here for the line thickness and a size of around 30mm is useful to demarcate the end

points of PO. The reason for this is so that the entire hemisphere, on one section, can

be demarcated with one click of the left-hand mouse button.

After scrolling through the images, the coronal view should be set such that the

particular coronal slice is at least one or two pixels outside of PO at the posterior

end, throughout the entire depth of the region. Then a mark is made in Brain Voyager

such that it encompasses the whole hemisphere. This is repeated for the anterior end

of PO. Now the size of the mark is reduced to around size 2mm from 30mm, and

manually, in the sagittal view on one section, PO is drawn around keeping at least

two voxels outside of the region on the superior side. The reason for this reduction in

line thickness is that since for volume estimation the region can clearly be

highlighted when demarcated on only one sagittal section, and this smaller line

thickness allows the region to be drawn around more precisely.

This is repeated for the inferior side of the region. The views from Brain Voyager

should then be as in Figure 2.18. This process is then repeated for the pars

triangularis, followed by the PO and PT of the opposite hemisphere. The output file

from Brain Voyager contains the images as a series of sagittal slices. These images

are also in the wrong orientation, with the lower part of the head at the top of the
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screen and the upper part of the head at the bottom. This can be seen when opening

the image file in Image] (see Figure 2.19).
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Figure 2.18: Brain Voyager screen showing the demarcated example brain.
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Figure 2.19: ImageJ view of the demarcated example brain once opened directly

from Brain Voyager.

ImageJ allows for the output image file of the demarcated brains from Brain Voyager

to be changed. Using the add-on plug-in 'Align Stacks', the image file can be

changed to coronal sections from sagittal sections. As it was noted earlier the image

files in Brain Voyager are mirror images of reality in terms of hemispheres. That is,

the left hemisphere in Brain Voyager is actually the subject's right hemisphere, and

vice versa. This can be corrected in ImageJ by choosing the 'sagittal (right-to-Ieft),

option in 'To CoronalTP'. While also performing the conversion from sagittal to

coronal slices, it also flips the images such that the left and right hemispheres are on

the left and right hand side of the images, respectively. Finally, in ImageJ by

selecting 'Flip Vertical' the images are flipped vertically so that the orientation is

correct with the upper part of the head at the top of the viewing screen and the lower

part of the head at the bottom. The ImageJ screen should now look as that in Figure

2.20. The file should be saved in analyze 7.5 format (this is the .hdr and .img file

combination). These steps in ImageJ are needed to be repeated for the image files

with demarcated PO and PT for each hemisphere. The output files from ImageJ are
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now ready to be used to perform the estimations III the stereological program

EasyMeasure.

Figure 2.20: ImageJ view of the demarcated example brain after editing in ImageJ

EasyMeasure is the program used to perform the stereological estimation methods

needed in order to obtain both volume and surface area estimates. To estimate

volume, the image file obtained from Image] is opened and 'Volume' is chosen from

the 'Run Stereology' menu. It is then possible to change the grid size and the

distance between consecutive sections (specified, respectively by u and T in

Equation (2.2.12)). A random starting section between 1 and T is then generated in

EasyMeasure when 'Run' is pressed and the Cavalieri set of images is selected. A

random positioning of the grid is then generated on each section. Figure 2.21 shows

an example of a section with random grid positioning in EasyMeasure. The crosses,

where the upper right hand comer lies entirely within the region of interest are then

removed by clicking on them. This is repeated for each structure as defined earlier

(e.g. white matter and grey matter). It is useful to note that once points have been

removed for one region (e.g. white matter), the points show up when a subsequent
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region is chosen as different coloured points. Normally the points are red, but after

they have been removed for one region, for the next region they become orange. This

is so that experimenters do not include the same points in multiple regions and is

especially useful for points which are difficult to identify as to which region they lie

in. This can also be seen in Figure 2.21 where the grey matter points have been

removed and the white matter points (already removed in the white matter view)

show as orange crosses. This point removal is continued for every slice that is within

the demarcated area. The number of points that have been removed for each region

on each section is automatically recorded in a Microsoft Excel compatible file, as

well as the total number removed for each region. The estimations of volume and

coefficient of error are automatically generated for each region. This process is

repeated for each PO and PT of each hemisphere for each subject.
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Figure 2.21: One slice from a demarcated brain in EasyMeasure after volume

stereo logy has been run with grid size=3 and section interval= 1. The points lying

within the grey matter of Broca's area have been removed and the points lying

within the white matter are shown as orange crosses.
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2.3.4 Estimation of the surface area of Broca's area

Following on from the volume estimation, the first thing that needs to be done for

surface area estimation is the demarcation of the region. The difference here between

the demarcation for the volume estimation and that for surface area estimation is that

after the posterior and anterior ends of the region of interest have been demarcated,

the mark size is kept at 30mm for the demarcation of the superior and inferior ends

of the RoI. The reasons for the superior and inferior sides of the region requiring the

thicker line thickness is that with surface area estimation, the orientations obtained

will be between the sagittal and coronal views and due to this, the resolution for

sections taken from these orientations will not be as high quality as the coronal or

sagittal images. This makes it far more difficult to identify the RoI and therefore, to

make the demarcation more noticeable, one large thick line just outside the edge of

all four sides of the RoI is preferable than the small, more precise outline used on the

superior and inferior edges for the estimation of volume. After scrolling through the

images, the transversal view should be set such that the particular transversal section

is at least one or two pixels outside the superior-most edge of the RoI, throughout its

entire depth. A mark is then made such that it covers the entire hemisphere in which

the region of interest is. This is repeated for the inferior-most edge of the region (see

Figure 2.22). This process is completed for each PO and PT of each hemisphere. The

images then need to be rotated, flipped and converted to a coronal view in ImageJ,

following exactly the same procedure as described in the previous subsection for

volume estimation. Then they are ready to be opened in EasyMeasure.

The first step for estimating surface area is to obtain w systematic random

orientations (the first level of sampling). In EasyMeasure this is done by choosing

'Run Reformatting' followed by changing the view from a coronal view to a

transversal one. Then exhaustive vertical sections are thrown onto the image. The

number of orientations, w, can be chosen, and it is called the 'number of series' in

EasyMeasure (this is the number of orientations between 0 and rr),
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Figure 2.22: Brain Voyager screen showing PO demarcated for surface area

estimation.

In the second level of sampling, the Cavalieri sections are generated and the distance

between sections, T, can be chosen. Once these have been randomly 'thrown' onto

the image, the transversal view can be seen in Figure 2.23. For the third sampling

level, a grid of cycloids is randomly positioned on each section and for each

orientation. The density of the grid of cycloids is determined by the radius of the

cycloids (see Figure 2.7, right panel) and this needs to be provided in multiples of

the distance between sections, T, specified earlier.
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Figure 2.23: EasyMeasure showing the two levels of systematic random sampling; 4

orientations with U, (i = 1,2,3,4) Cavalieri sections on each one.

In order to estimate the surface area, crosses are placed on the intersections between

the region of interest and the cycloids, by clicking on those points. An example of a

slice with crosses on intersections is given in Figure 2.24. This is completed for all

slices within the demarcated region for orientation 1. This is then repeated for

orientations 2, ... , w. The entire process is then repeated for PO and PT for both the

left and right hemispheres. The results obtained from EasyMeasure are the total

number of intersections for each orientation. From the known variables, and these

results, the surface area can be estimated manually.

One of the issues surrounding this technique is that there is a loss of image resolution

as a result of taking virtual sections which are not parallel to the voxel sides. Each

voxel, as mentioned earlier, can be seen to be equivalent to lmm x Irnm x lrnm

cube. However, for surface area estimation, we can see that the systematically

random sampled orientations, as seen in Figure 2.23, are not exactly perpendicular to

either the sagittal or coronal axes throughout the Rol. The result of this is that the

voxels appear to be stretched (they are no longer represented in 2D as a Imm x lmm
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square, but by a rectangular shape) which make's identifying the RoI boundaries on

each Cavalieri section (e.g. in Figure 2.24) more difficult.

One possible way of overcoming this problem would be to improve the quality of the

images obtained during the scanning process (e.g. by using a scanner which gives

higher resolution images). This would mean that voxel sizes could be reduced

thereby giving a much more precise image of the contours and boundaries of the

RoI. Another possible method for reducing this virtual section image resolution

effect would be to demarcate the region in three dimensions. However, to do this the

RoI would have to be demarcated on every slice in every view in Brain Voyager,

which could mean as many as 20 slices per RoI. With 4 RoI'sper brain, this would

be a very time consuming, and therefore, impractical approach using the currently

available programs. Although these could be considered for future studies, neither of

these methods were available, given the dataset and the numbers of individuals

within it.

IE;J fie idlt YMtW Jrraoe ~p.rinent Iools ~f'ldow U.-,
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Figure 2.24: EasyMeasure showing the cycloid grid with radius =3, with

intersections (yellow crosses) when pars opercularis is demarcated.
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CHAPTER 3

Investigation of the associations between handedness and

cognitive function in children

3.1 Introduction

Over the past two decades there has been much research into the links between

cognitive function and certain associated variables. In particular, handedness and

hand skill have been considered as explanatory variables in a number of studies of

cognitive ability (e.g., Annett & Manning, 1990; Nettle, 2003; Faurie et al., 2006;

Peters et al., 2006; Denny, 2008).

A possible association between hand skill and academic ability was investigated

using data from a group of l l-year old children (Crow et al., 1998). In this study,

academic ability was measured by the number of marks obtained from verbal, non-

verbal, reading and mathematics tests. A laterality index referred to as 'relative hand

skill' was used in Crow et al., (1998) with zero being defined as the 'point of

hemispheric indecision' (i.e. there was no difference in hand skill between the left

and right hand; see McManus, (1985) for laterality index definition). The results

suggested that children with a laterality index of zero or with extreme skill

differences between the right and left hand appeared to perform worse in the reading

test. In the maths test, it was highlighted that those children with relative hand skill

at the point of hemispheric indecision obtained the lowest scores. However, there did

appear to be a substantial decrease in maths scores as children became more

extremely right-handed.

Gender differences have also been found in verbal and memory test scores with

females performing better than males (Thilers et al., 2007). The opposite gender

effect, with males linked with higher scores in spatial ability tests has also been

reported (Voyer et al., 1995). Results of previous studies are discussed in more detail

in Chapter 1.
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The investigations discussed above gave an insight into the connection of factors,

such as gender and handedness on differing cognitive abilities. However, these

factors had not been jointly considered in a single statistical model where their

interactions were also taken into account. The aim of this chapter was to investigate

the effect of gender, relative hand skill (decomposed into two variables related to its

absolute value and direction), writing hand and region of the UK mainland on

reading and mathematics scores in children, by applying a multivariate linear mixed-

effects model to the National Child Development Study dataset (age 11). In

particular, the correlation between reading and maths test scores, and potential

interactions between the factors mentioned above, were taken into account in the

analysis. The following two subsections contain a description of the variables

considered along with the statistical methodology used.

3.2 Introduction to the data

In this chapter, a dataset collected for the National Child Development Study

(NCDS) was analysed. The NCDS is a longitudinal study for which data are still

being collected up to the present day and beyond. This includes a cohort of all births

within a one week period (3-9 March, 1958) on the United Kingdom mainland.

Follow-ups have occurred at various time points during the course of the individuals'

lives. For a more detailed description of this dataset, see Section 1.3.1.

The variables of interest for this study were reading and transformed mathematics

scores (which were considered as the outcome variables), gender, writing hand, UK

region, relative hand skill and superior hand. The reading and transformed

mathematics scores are as defined in Section 1.3.1, and the explanatory variables are

defined as follows:

• Gender: 'male' = 0 (reference value) and 'female' = 1.

• Writing hand (WH): 'right-hand writers' = 0 (reference value) and 'left-hand

writers' = 1.
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• Region was created based on the UK region variable defined earlier In

Section 1.3.1. Region was defined as a categorical variable with 4 levels:

o Northern England and the Midlands = 0 (Reference region)

o Southern England = 1.

o Wales = 2

o Scotland = 3

• Relative hand skill was decomposed into two variables:

o Relative hand skill which was calculated as:

. • In(RH)-n(LH) 1 Irelative hand skill = n(RH)+n(LH)X 00 (3.2.1)

where n(RH) and n(LH) are the number of boxes ticked in 1 minute

with the right and left hands, respectively (McManus, 1985). Relative

hand skill can be interpreted as the relative superiority of the

dominant hand over the non-dominant hand.

o Superior hand (SH) was created to denote which hand was the

dominant one. Superior hand is 0 if the dominant hand was the right

hand (i.e. where the number of boxes ticked in 1 minute was greater

for the right hand than for the left hand) and equal to 1 if the

dominant hand was the left hand (i.e. more boxes ticked in 1 minute

by the left hand than by the right).

A more specific location than simply the region of the UK mainland in which a child

attended school was given by the variable local authority. This variable recorded the

local authority which contained the school in which each child was enrolled. There

were 185 local authorities in total and we used local authority as a clustering

variable in the analyses undertaken in this chapter.

3.3 Statistical models

The statistical models here for the NCDS analysis were the univariate and

multivariate linear mixed models (LMMs) described by Equations (2.1.8) and
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(2.1.13), respectively. The intercept random effect is often used to take into account

when repeated measurements are taken over time per individual (i.e. for longitudinal

data) by assigning a specific value of a normally distributed random variable to each

individual (i.e. the same value for every time point of a given individual). In this

section, the intercept random effect terms take into account that children are

clustered by local authority. Therefore, a value of a normally distributed random

variable is assigned to each local authority in order to take into account the local

authority effect (see Section 1.3.1, for a description of the local authority variable).

The univariate linear mixed model adopts the following form:

(3.3.1)

as defined in Equation (2.1.8). However, there is a slight deviation of notation for the

analyses in this chapter from that in Chapter 2. For the univariate and multivariate

LMMs, local authority will be denoted by i such that 1 :::;i :::;9 (where 9 = 185 is

the number of local authorities), with individual j in each local authority (1 :::;j :::;

n.), where n, ~enotes the number of children in the ith local authority. The total

number of children in the dataset (n = 18558) can be expressed as n = Lf=l ni.
From Equation (3.3.1), f. is the (n x 1) vector of test scores (reading or transformed

mathematics scores) for the n children. The matrix X is the (n x p) fixed effect

design matrix with XijV ... I Xij(p-l) representing the (p - 1) fixed effects for each

child. In particular, there are 9 fixed effects which correspond to relative hand skill

(Xijl), (relative hand skill)2 (XijZ)' superior hand (Xij3), writing hand (Xij4),

superior hand and writing hand interaction (Xij5 = Xij3 x Xij4), gender (Xij6)' and

region (4-level factor: Xij7' Xij8, Xij9) such that:

(3.3.2)

is an (n x 10) matrix where &. is the (n, x 10) matrix which can be written as:
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[1 Xi,l,l X""9j&= ~
Xi,ni,l .; (3.3.3)

The vector f3 denotes the fixed effect coefficients to be estimated from the dataset

and which can be expressed as:

(3.3.4)

The random effects term ~!2. allows the variability across local authorities to be

estimated. Any further variables which are dependent upon or correlated with local

authority could be included here and therefore, the number of random effect terms

would increase. However, in the NCDS dataset there were no other variables that

were expected to be dependent upon the local authority that a child is attached to,

and hence, a random intercept model was deemed to be the most suitable structure of

mixed model in this case. In a random intercept model, the random effects matrix ~

is an (n x g) matrix such that:

(
%.1 Q)z= ".
Q !cJ

(3.3.5)

with!i being the (ni x 1) constant vector of the form:

(3.3.6)

The (g x 1) random effects coefficient vector Q explains the variability between

children due to differences between local authorities:

(3.3.7)
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The random effects coefficient vector Q also follows a g-dimensional multivariate

normal distribution such that Q-Ng(Q, G) and:

r
aE

G=
o

(3.3.8)

is a (g x g) diagonal matrix with aE representing the random intercept variance

term for the ilh local authority. This model could be made more complex, by

allowing not only the random effect intercept variances to differ between different

local authorities, but also the covariances between authorities (replacing the zeroes

with non-zeroes in the off-diagonal elements of Equation (3.3.8)) However, in the

case of the NCDS analyses, each local authority was assumed to be independent of

each other (hence, the zero off diagonal elements in the matrices in Equation

(3.3.8)). Lastly, the random error terms, represented by the (n x 1) vector E, are

defined exactly as by Equation (2.1.8). This means that both the random effects and

random errors are independent and identically distributed between subjects.

By applying the multivariate linear mixed model with random intercept only (see

Equation (2.1.13)) to the data, we get a model of the form:

y = XP* + z ' b* + E- - - - - (3.3.9)

rrCl)]where the (2n x 1) outcome vector f = l_r(2) with f(k) (k = 1,2 is an indicator

variable for the reading and transformed mathematics scores, respectively) as

= [X 0]defined for Equation (2.1.13). The fixed effect design matrix X = Q i is a

(2n x 20) matrix (note that X is a (n X 10) matrix as defined in Equation (3.3.2)).

The vector P' = ~:::lis (he (20 X 1) vector of coefficients where il(k) (k = 1,2)

is the (10 x 1) vector defined as:
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p~k)

pCk) = p?) (3.3.10)

p~k)

pCk) (k = 1,2) represents the coefficients of the 9 fixed effects, as defined with the

univariate model, for the kth set of test scores. The (2n X 2g) random effects design

[
Z 0] rQCl)]matrix s: = Q ~ where! is as defined as in Equation (3.3.5) and Q* = ~(2) is

the (2g x 1) random effects vector such that:

(3.3.11)

is the (g x 1) random effects vector for the kth set of test scores. The random effects

* [fil fi2].and where G = G* G* IS a
!!2l !!22

follow the 2g-dimensional multivariate normal distribution such that Q*-N2g(Q, G*)

[

2
(Jbk

(2g X 2g) matrix with fikk = Q

1,2; kl '* k2). The variability in the kth outcome variable due to the ith local

authority is equal to (J~k with the covariance between the two sets of test scores in

the ith local authority being equivalent to (Jbkl bkz. The multivariate LMM can be

extended so that the random intercept term differs amongst local authorities by

including the covariance between individual authorities (replacing the zeroes with

non-zeroes in the off-diagonal elements of fikk)· However, as stated earlier for the

univariate case, we assume that each local authority is independent of each other as

well as sharing a single random intercept value. The reported random effect

variances and covariance, in the analyses of this chapter, are representative of the

overall variance due to local authority across all subjects for each outcome, and the

overall covariance between the outcomes, at the local authority level.
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Finally, the (2n x 1) random error term vector, E, can be expressed as:

rf(1)]
f_ = 19:CZ) (3.3.12)

where

(3.3.13)

R* R*
such that f_-Nzn(Q, R*) where R* = [R:1 R:z] with Ek and E1kz set as (n x n)

~1 ~z

matrices as defined in Equation (2.l.13). The variability within subjects for the klh

set of test scores can then be written as a-£k (k = 1,2) with the covariance between

the two sets of test scores at the subject level represented by (JEkl Ekz. The analyses

and plots for the both the univariate and multivariate LMMs were conducted using a

combination ofMLwiN version 2.16 and R version 2.12.l.

3.4 Statistical analyses

Random intercept linear mixed models were initially applied to the National Child

Development Study (NCDS) dataset with reading and transformed maths scores as

the outcome variables. The random intercept takes into account the variability

between local authorities and the random error term explains the variation in the data

that cannot be explained by the fitted model. The final fitted model was constructed

using a stepwise model selection process. That is, at each stage of the model

selection process, not only were new variables checked to see if their inclusion

benefitted the model (,u-value <0.05), but also current variables in the model were

checked to see if they could be removed (i.e. if they became insignificant as more

variables were added; Fahrmeir & Tutz, 1994). The p-value for stepwise removal

used here was 0.1. While this process was being completed restricted maximum

likelihood (REML) was used as the estimation method for univariate LMMs. REML

was introduced by Patterson & Thompson (1971) in the context of incomplete block
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designs for estimating variance parameters. The reason that REML was used as

opposed to maximum likelihood (ML) is that REML takes into account the loss of

degrees of freedom resulting from the estimation of the fixed effects when estimating

the variance components (Harville, 1977). REML also produces estimation equations

for the variance parameters that are unbiased (Smyth & Verbyla, 1996). For the

multivariate LMMs, restricted iteratively generalized least squares (RIGLS) was

used as the estimation method. For multivariate linear models (and multivariate

LMMs) that are assumed to follow a multivariate normal distribution, the parameter

estimates obtained using a RIGLS method is equivalent to those obtained using a

REML method (Goldstein, 1989).

Issues regarding missing data are covered in detail in Chapter 6, however, in the case

of the analyses contained within this chapter, any subjects with missing data in any

of the variables entered into the model were automatically omitted. The missing data

for the three analyses (univariate and multivariate) can be seen in Table 3.1. Taking

all variables into account it can be seen that 36.1% of the subjects have at least one

missing variable value when considering reading scores as the only outcome,

whereas when considering the mathematics scores either independently or in

conjunction with the reading scores, the percentage of those subjects with at least

one variable value missing is 36.2%.

When fitting the LMMs, it was noticed that three children were associated with

much lower fitted values than the others. When investigated, these children had

values of relative hand skill, much higher than other children in the dataset. Two of

the children had relative hand skill equal to 100, and one had a relative hand skill of

96. This meant that each child had ticked a number of boxes with one hand, but had

zero or just one or two ticked with the other hand. This could be due to a number of

reasons including recording error, the reluctance of the child to co-operate or the

child only having one hand. Considering these possible reasons, the three children

with extreme values of relative hand skill were excluded from the analyses.
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Variable Missing (%) Non-missing (%)

Reading Scores
4,427 14,131

(23.9%) (76.1%)

Mathematics Scores
4,431 14,127

(23.9%) (76.1%)

Gender
3 18,555

(0.02%) (99.98%)

Local Authority
3,226 15,332

(17.4%) (82.6%)

Relative Hand Skill
5,792 12,766

(31.2%) (68.8%)

Superior Hand (SH)
5,788 12,770

(31.2%) (68.8%)

Writing Hand (WH)
4,838 13,720

(26.1%) (73.9%)

UK Region
3,201 15,357

(17.2%) (82.8%)
6,708a 11,850a

(36.1%) (63.9%)

Total *
6,711 b 11,847b

(36.2%) (63.8%)
6,712c 11,846c

(36.2%) (63.8%)
*A number of subjects have multiple missing variable values and hence, are counted as
'missing' only ~nce.
a These figures correspond to the univariate model with reading scores as the outcome.
b These figures correspond to the univariate model with transformed mathematics scores as
the outcome.
C These figures correspond to the multivariate model with both reading and transformed
mathematics scores as outcomes.

Table 3.1: Missing and non-missing data tor the> outCOI11e>. explanatory and random

effect variables of the NCDS dataset

Further evidence for this comes from plotting mean reading and transformed

mathematics scores against relative hand skill by SH and WI 1. Figure 3.1 shows the

mean reading and transformed mathematics scores against relative hand skill both

for all children in the full dataset and for all children in the reduced dataset with the

outliers removed. Of the three children with extreme relative hand skill values. one

had left WH and SH and the other two had right SH and WHo Hence. the only groups

that were affected in Figure 3.1 were the two consistent WH and SH groups which

are associated with the blue and red lines (children with right SH-right WH and left
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SH-left WH, respectively). Those children with inconsistent WH and SH took the

form of the purple and green lines (right SH-left WH and left SH-right WH,

respectively) and since these groups contain no children with extreme values of

relative hand skill, there were no differences in the distribution of reading or maths

scores across relative hand skill in the inconsistent handedness groups between the

two datasets (with and without outliers, see Figure 3.1).

For children in the full dataset with relative hand skill greater than 40, it can be seen

in Figure 3.1, by observing the almost parallel blue and red lines, that the mean

reading scores decrease at an almost constant rate for both consistent WH and SH

groups, as relative hand skill increases. However, once the three outliers are

removed, the left WH-left SH group are associated with an increased rate of decline

in terms of mean reading scores by relative hand skill, whereas the rate of decline of

mean reading scores by relative hand skill for the right WH-right SH group has

decreased (see Figure 3.1). Changes in the rate of decline of transformed maths

marks by relative hand skill also occurred once the outliers were removed for

children in both the consistent WH and SH groups with relative hand skill values

greater than 40 (see Figure 3.1).

This change in the rate of decline of transformed maths marks by relative hand skill

is most noticeable for the left WH-left SH group where the decrease in maths scores

as relative hand skill increases between values of 40 and 100 in Figure 3.1 is small

before the outliers are removed (a reduction in maths marks of around 1.75 marks),

compared to a larger reduction of around 2.25 maths marks between the relative

hand skill values of 40 to 57. Since there were only three individuals with relative

hand skill greater than 64, any confidence intervals for the curves would be

extremely large for these areas and this is the reason why the changes that occurred

in Figure 3.1 between the two' datasets were so noticeable. The information that

could therefore, be obtained about children with relative hand skill between 64 and

100 was limited even if there was no uncertainty surrounding the measurement and

recording of the children's results. Furthermore, these three individuals represented

only 0.03% of the total data after missing data was removed. After discussion and

much thought, we decided to exclude these three subjects from further analyses.
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Following this decision, the LMMs with reading and transformed mathematics test

scores as outcomes were re- fitted and the results can be seen in Section 3.4.1.

In Figure 3.1, a loess smoothing function was applied to the raw data in order to

obtain the curves. The loess smoothing function was introduced by Cleveland (1979)

and is a regression method which, similar to time series analyses, takes account of

data which are in close proximity to each individual data-point. In this type of

regression method, for example, each particular datum could be slightly modified

(weighted) to take into account a particular number of data nearest to the data-point,

or to take into account data within a certain range. The loess smoothing function uses

a weighting function, W, to account for data in close proximity to other data. This is

a function of u, where u is the proportion of the dataset closest to each data-point.

For example, if u = 0.5, then the nearest 50% of the data would be accounted for by

the weights for each data-point. The extreme values are u = 0 (i.e. when each data-

point is totally independent of each other) and u = 1(i.e. when every data-point is

dependent upon every other datapoint in the entire dataset). The weighting function

itself, W(u), can be calculated by:

(3.4.1)

such that 0 :::;u < 1 (Cleveland & Devlin, 1988). To alter the smoothing of the

regression lines the proportion of data which the weighting function is applied to can

be modified. In Figure 3.1 u was set such that the regression lines were relatively

smooth and yet still gave a reasonable indication of the relationship between relative

hand skill and the two test score variables for each SH-WH group. In this case, u

was set equal to 0.75.

Plots of relative hand skill against mean reading and transformed maths scores are

given in Figures 3.2(a) and 3.2(b), respectively. In these plots, the term 'relative

hand skill' is defined as:

I· h d kill - n(RII)-n(IJ-I) x 100re atrve an s I - n(RII)+n(LH) (3.4.2)
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where n(RH) and n(LH) are the number of boxes ticked in 1 minute with the right

and left hands, respectively. Note that the formula in Equation (3.4.2) is the same as

Equation (3.2.1) except for the modulus sign.

Plots of Relative Hand Skill v Mean Reading and Transformed Mathematics
Scores b SH and WH

Full Dataset Data with Outliers Removed

- RSH,RWH
- RSH,LWH
- LSH,RWH
- LSH,LWH

- RSH,RW
- RSH,LWH
- LSH,RWH
- LSH,LWH
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N .---------------------~.....N..... - RSH,RWH
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Relative Hand Skill

Figure 3.1: Plots of relative hand skill against mean reading test scores and mean

transformed mathematics scores by left and right superior hand (LSH and RSH,

respectively) and left and right writing hand (LWH and RWH, respectively) for both

the full dataset (left hand column) and the dataset with the outliers removed (right

hand column). The curves were obtained by using the 'Loess' smoothing function

with smoothing parameter equal to O.75.
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The crosses and dots in Figure 3.2 represent mean values of the actual data for

equidistant intervals of relative hand skill for right-hand and left-hand writers,

respectively. Some of these empirical mean values differ from the values of the loess

curve (which is weighted across the nearest three-quarters of the data to each data-

point (i.e. u = 0.75)), and this is caused by the small sample sizes that are available

for certain groups (e.g. for right-hand writers, there were 10,313 pupils with right

superior hand compared to 313 with left superior hand, and for left-hand writers

there were 1,252 pupils with left superior hand and only 103 with right superior

hand). It is interesting to note that although there are more right-hand writers with

left superior hand than left-hand writers with right superior hand, this reverses when

expressed as percentages of the total sample of right- and left-hand writers, with

2.3% of right-hand writers having left superior hand compared to 7.7% of left-hand

writers having right superior hand.

Scores for pupils that have a left supenor hand and are right-hand writers are

represented by the dashed curve where relative hand skill is less than zero. Scores for

left-hand writers with right superior hand can be identified by the solid curve where

relative hand skill is greater than zero. Scores for pupils with consistent writing hand

and superior hand are included in the solid curve when relative hand skill is less than

zero (i.e. left superior hand) for left-hand writers and in the dashed curve when

relative hand skill is greater than zero (i.e. right superior hand) for right-hand writers.

It can also be seen that there appears to be a quadratic relationship for left- and right-

hand writers between both reading and transformed maths scores, and relative hand

skill.
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(a)

Plot of Relative Hand Skill vs Mean Reading Score by Writing Hand
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Plot of Relative Hand Skill vs Mean Transformed Maths Score by Writing Hand
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Figure 3.2: Plot of relative hand skill against (a) mean reading score and (b) mean

transformed mathematics score by writing hand where pupils with left SH appear on

the left hand side of the graphic with negative relative hand skill values. The curves

were obtained by using the "Loess" smoothing function. The dots and crosses

represent the mean values for 20 equidistant intervals across the range of relative

hand skill (dots for left-hand writers, and crosses for right-hand writers).
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3.4.1 Multivariate model

Following a stepwise model selection process as described earlier in Section 3.4, the

results of the final, fitted multivariate LMM can be seen in Tables 3.2-3.5. This

model was applied to the NCDS dataset with 11,843 children included (after taking

into account those with missing outcomes and covariates and the three with extreme

handedness values, see Table 3.1 and Section 3.4 for details). The multivariate

models in this chapter were fitted using MLwiN which uses Wald tests to determine

whether the multivariate parameters equal zero or not. The Wald statistic follows a

chi-square distribution with degrees of freedom equal to the number of outcomes Cd)

(Goldstein, 2003). Therefore, the p-values presented in Table 3.2 came from the chi-

square distribution with 2 degrees of freedom Cd = 2). Furthermore, hypothesis tests

were also conducted using a Wald test with a statistic following a chi-square

distribution with degrees of freedom equal to the number of parameters being tested

(Dobson, 1999).

Multivariate models give information about both the associations between the

explanatory variables and a linear combination of the outcomes as well as those links

between the explanatory variables and each outcome individually. In this case, the

overall coefficients, standard errors, confidence intervals and p-values for the

explanatory variables with reading and transformed maths scores combined as the

outcome (i.e. fel) + fez) from Equation (3.3.9» can be seen in Table 3.2.

We found that relative hand skill and the square of relative hand skill both had

significant coefficients of 0.6 and -0.01, respectively (both p<O.OOI, Table 3.2). This

implies that when both sets of scores were considered simultaneously, there was a

quadratic relationship between relative hand skill and the cognitive ability test scores

(i.e. the reading and transformed maths scores). Since the coefficients for relative

hand skill and (relative hand skill)2 were positive and negative, respectively, then

this implies that the quadratic relationship, if plotted would form an inverted u-shape

similar to those seen in Figure 3.2. We calculated the optimum relative hand skill

(the level of relative hand skill associated with the maximum average combined

reading and transformed maths scores from the model) by differentiating and setting
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the quadratic function equal to zero after coefficients from the model were

substituted in as follows:

y = 0.6x - 0.01x2 + C

dy/dx = 0.6 - 2eO.Olx)

0= 0.6 - 0.02x

x = -0.6/-0.02 = 30

where y. and x represent the multivariate outcome (combined reading and

transformed mathematics scores) and optimum relative hand skill, respectively.

Therefore, the level of relative hand skill associated with the maximised multivariate

outcome was equal to 30.

Superior hand (SH), writing hand (WH) and the interaction term between both SH

and WH were all significant (p<0.001, p=0.003, p<O.OOl, respectively, Table 3.2).

The interaction term between SH and WH being included in the model implied that

children with different combinations of SH and WH could be tested for equality or

non-equality of the sum of reading and transformed maths scores together. We

conducted these multiple tests and the results can be seen in Table 3.3.The overall

conclusions from these hypothesis tests were that those children with inconsistent

WH and SH (i.e. those children that wrote with the hand which had least hand skill)

performed worse, on average, than those individuals with consistent WH and SH (i.e.

those that write with their hand that has the most hand skill). For right-hand writers,

we found that those with right SH performed better, on average, across both tests

simultaneously than those with left SH (p<0.001, Table 3.3). For left-hand writers,

those with left SH obtained higher test scores on average, across both test combined,

than those with right SH (p=0.01, Table 3.3). Children with left SH-Ieft WH

achieved higher scores across both tests on average, than those with left SH-right

WH, and children with right SH-rightWH obtained higher scores across both tests

on average that those with right SH-Ieft WH (p<0.001 and p=O.003, respectively,
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Table 3.3). Also, when we compared individuals with right SH-right WH to

individuals with left SH-Ieft WH in terms of the combined test scores, no difference

was found (p=0.4, Table 3.3).

Fixed Effect Coefficient St. Error 95% CI p-value
Intercept 52.2 0.7 (50.8,53.7) <0.001

Relative hand skill 0.6 0.07 (0.4,0.7) <0.001
(Relative hand skill)L -0.01 0.002 (-0.014, -0.008) <0.001
Superior hand (SH) -7.8 1.4 (-10.5, -5.0) <0.001(0: Right, I: Left)
Writing hand (WH) -6.3 2.1 (-10.5, -2.2) 0.003(O:Right, 1:Left)

SHxWH 13.2 2.6 (8.1,18.4) <0.001
Gender -0.02 0.4 (-0.8,0.7) 0.9(0: Male, 1: Female)

Northern England & Midlands Reference Region
Southern England 1.8 0.5 (0.9,2.7) <0.001

Wales -0.4 0.9 (-2.3, 1.4) 0.6
Scotland 0.2 0.7 (-1.2, 1.5) 0.8

Table 3.2: Estimates of the multivariate fixed effect coefficients for the multivariate

linear mixed model with both the reading and mathematics scores combined

(including the standard error of the corresponding estimators, the 95% confidence

intervals for the coefficients and the p-values).

WH SH Estimate Standard Error 95% CI p-value
Right Left vs Right -7.8 1.4 (-10.5, -5.0) <0.001
Left Left vs Right 5.5 2.2 (1.2,9.8) 0.01

Left vs Right Right -6.3 2.1 (-10.5, -2.2) 0.003
Left vs Right Left 6.9 1.5 (4.0,9.9) <0.001
Left vs Right Left vs Right -0.8 0.8 (-2.5, 0.8) 0.4

Table 3.3: Results of the hypothesis tests for differences between right and left

superior handed children, and between right- and Left-hand writers, in both the

reading and transformed mathematics scores combined.
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Table 3.2 suggests that there are no differences in the combined reading and

transformed maths scores between boys and girls (p=0.9). Children that attended

schools in Southern England outperformed children that attended schools in

Northern England and the Midlands when both sets of test scores were combined

(p<0.001, Table 3.2). However, we found no differences in the overall test scores

between pupils of Scottish and Welsh schools and those pupils from schools in

Northern England and the Midlands (p=0.8 and p=0.6, respectively, Table 3.2).

Information about the associations between the explanatory variables and each

individual outcome (in this case the reading and transformed mathematics scores)

was obtained from the models based on the marginal distributions of the MLMM.

These results can be seen in Tables 3.4 and 3.5. We note here that due to the

similarity of multiple models from a multivariate model to multiple comparisons, as

mentioned in Chapter 2, a p-value adjustment was needed for these marginal model

results. We used the Bonferroni correction to adjust the a-value (the critical level at

which a p-value becomes statistically significant) to account for the fact that we have

two outcomes in our multivariate model such that:

a* = a/2 (3.4.4)

where a* is the adjusted critical value (Hair, Jr., et al., 2010). In our case we wanted

a 5% significance level (i.e. a = 0.05) hence, a* was set equal to 0.025.

Using the Bonferroni-adjusted significance level for this model of 0.025 we can see

that relative hand skill had a significant effect on both the reading and mathematics

scores and that this effect was quadratic (p<0.001 for both relative hand skill and

(relative hand skilli in the models based on the marginal distribution of each set of

test scores, Table 3.4). In Figures 3.2 (a) and (b) this quadratic effect of relative hand

skill could be seen in those children with consistent SH and WH, obtained directly

from the raw data. In particular, the increase in reading test scores due to a 1 unit

increase in relative hand skill was 0.4%. However, this increase was eroded by the

quadratic term until the value of relative hand skill reached an optimum point. After

this optimum point, further increases in relative hand skill were associated with
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decreases in reading scores, in much the same way as for the multivariate outcome.

This quadratic effect of relative hand skill was very similar for the transformed

mathematics scores. We calculated the optimum relative hand skill from the model

for the multivariate outcome to be equal to 30. The optimum relative hand skill for

each individual set of test scores, according to the model, was calculated by

differentiating and setting equal to zero the following quadratic functions:

Yl = O.4x - 0.009X2 + C Y2 = O.lx - 0.002X2 + C

dyddx = 0.4 - 2(0.009x) dY2/dx = 0.1 - 2(0.002x)

o = 0.4 - 0.018x o = 0.1 - 0.004x

x = -0.4/-0.018 = 22.2 x = -0.1/-0.004 = 25

where Yl and Y2 represent the reading and transformed mathematics scores,

respectively, and in each case x is the optimum relative hand skill. Therefore, it can

be seen that the optimum relative hand skill according to our model was 22.2 for the

reading scores and 25 for the transformed mathematics scores.

We found that supenor hand, writing hand and their interaction term were all

strongly significant, even with the Bonferroni correction, for both sets of test scores

(p<0.001 for SH and WH x SH for both outcomes andp=0.005 andp=0.002 for WH

in the reading and transformed maths scores, respectively, Table 3.4). The

coefficients of SH and WH were negative for both sets of test scores and the

interaction term between SH and WH was positive. The negative coefficients of SH

suggest that for right-hand writers (reference group) those with left superior hand

perform worse in both tests than those with right superior hand. In particular, the

mean difference was 6% for the reading scores. Furthermore, for left-hand writers,

those with left superior hand performed, on average, significantly better in both tests

than those with right superior hand. To confirm this last statement, we conducted the

corresponding hypothesis test for each of the two outcomes and this difference was

found to be 5%, on average, for the reading scores (p=0.0 1 and p=0.006, for both
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tests, respectively, Table 3.5). Writing hand had a significant effect for both reading

and mathematics scores (negative coefficients; p=0.005 and p=0.002, respectively,

Table 3.4), which suggests that for pupils with right superior hand (reference group),

left-hand writers perform worse than right-hand writers (and this difference was 5%,

on average, for the reading scores, see Table 3.4). Finally, for pupils with left

superior hand, left-hand writers achieved higher scores on both tests, on average,

than right-hand writers (Table 3.5, bothp=<O.OOl). Specifically, this difference was

equal to 5.5%, on average, for the reading scores (Table 3.5).

The above results reveal that there is a discrepancy in test scores between pupils with

inconsistent writing hand and superior hand and pupils with consistent writing hand

and superior hand. Alternatively, our analysis reveals that left-hand writers with left

superior hand had, on average, no differences in either the reading or transformed

maths scores than right-hand writers with right superior hand (see Table 3.5, p=O.2

and 0.2, respectively). Although the data did not provide evidence to suggest a

difference in performance between consistent left and consistent right handed pupils,

what should be borne in mind is that the sample size of left handed pupils is

relatively small for large values of relative hand skill (for example, there are only 23

left handed pupils with absolute relative hand skill greater than 35).

No evidence was found to suggest that there was a difference between boys and girls

in either the reading or the transformed mathematics scores (p=0.8 and p=O.l,

respectively, Table 3.4). Furthermore, there was a significant difference in both

reading and maths scores between pupils attending schools in Southern England and

those pupils enrolled in schools in Northern England and the Midlands (see Table

3.4, p<O.OOl and p=0.02, respectively). In the reading tests, we observed that

children based in Southern England performed, on average, 2% better than their

counterparts from Northern England and the Midlands (Table 3.4).

Further analysis based on this fitted model showed that pupils in Southern England

also outperformed pupils in Wales and Scotland by 2%, on average, in the reading

test (p=0.003 andp=O.OOI, respectively). A further difference was also found in the

transformed mathematics scores between children that attended schools in Southern

England and Scotland and those children that attended schools in Northern England
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and the Midlands (p=0.02 and p<O.OOl, respectively, Table 3.4) such that those in

Northern England and the Midlands performed worse than the others.

In our multivariate linear mixed model, we were able to estimate the variance in the

reading and transformed maths scores, as well as the covariance and correlation

between the two sets of scores which were due to the local authority in which each

child's school was located (in the random effects, as seen in Table 3.4). The

correlation coefficient, r, between the reading and transformed maths scores at the

local authority level was 0.97 (p<0.001, Table 3.4). Therefore, a given local

authority had similar proportions of pupils performing well on both tests, and

conversely, of pupils doing badly on both tests.

Similarly, the random error variances which represent the random variation at pupil

level in the reading and transformed maths scores, along with the covariance and

correlation between the two sets of test scores at the pupil level are given in Table

3.4. The correlation was r=0.74, which suggests that there is also a strong positive

correlation between the two sets oftest scores (p<0.001, Table 3.4). Precisely, there

is enough evidence to suggest that those children that performed well on one of the

tests, also tended to do well on the other test, and conversely, those children that did

not perform well on one of the tests did not perform well on the other test.
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Fixed Effect Coeff. St. Error 95%CI p-value
Reading Test Scores

Intercept 42.2 0.6 (41.0,43.4) <0.001
Relative hand skill 0.4 0.06 (0.3,0.5) <0.001

(Relative hand skill)L -0.009 0.001 (-0.01, -0.006) <0.001
Superior hand (SH) -6.2 1.2 (-8.5, -3.9) <0.001(0: Right, 1:Left)
Writing hand (WH) -5.0 1.8 (-8.5, -1.5) 0.005(O:Right, 1:Left)

SHxWH 10.5 2.2 (6.2, 14.9) <0.001
Gender 0.1 0.3 (-0.5,0.7) 0.8(0: Male, 1:Female)

Northern England &Midlands Reference Region
Southern England 1.6 0.4 (0.9,2.4) <0.001

Wales -0.8 0.8 (-2.3,0.8) 0.3
Scotland -0.4 0.6 (-1.5,0.8) 0.5

Transformed Mathematics Test Scores
Intercept 10.0 0.1 (9.8, 10.3) <0.001

Relative hand skill 0.1 0.01 (0.09,0.2) <0.001
(Relative hand skill)L -0.002 <0.0005 (-0.003, -0.001) <0.001
Superior hand (SH) -1.6 0.3 (-2.1, -1.0) <0.001(0: Right, 1:Left)
Writing hand (WH) -1.3 0.4 (-2.2, -0.5) 0.002(O:Right, 1:Left)

SHxWH 2.7 0.5 (1.7,3.7) <0.001
Gender -0.1 0.08 (-0.3,0.03) 0.1(0: Male, 1:Female)

Northern England &Midlands Reference Region
Southern England 0.2 0.09 (0.03,0.4) 0.02

Wales 0.3 0.2 (-0.03,0.7) 0.07
Scotland 0.5 0.1 (0.2,0.8) <0.001

Random Effect Est. St. Error 95%CI p-value
Variance (Reading Scores) 23.5 3.8 (16.1, 30.9) <0.001

Variance (Transformed Maths 1.1 0.2 (0.6, 1.5) <0.001Scores)
Covariance [Correlation] 4.8 0.8 (3.3,6.4) <0.001(Reading/Trans. Maths Scores) [0.97] [0.2] [0.66, 1.00]

Random Error Est. St. Error 95%CI p-value
Variance (Reading Scores) 293.2 5.1 (283.2,303.2) <0.001

Variance (Trans. Maths Scores) , 17.3 0.3 (16.7, 17.9) <0.001
Covariance [Correlation] 52.4 1.1 (50.2, 54.5) <0.001(Reading/Trans. Maths Scores) [0.74] [0.02] [0.71,0.77]

Table 3.4: Estimates of the fixed effects coefficients and the random effect and

random error variance, covariance and correlation terms for the multivariate linear

mixed model (including the standard error of the corresponding estimators, the 95%

confidence intervals for the coefficients/terms and the p-values; NCDS dataset).
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WH SH Test Estimate Sf. Error 95% CI p-value

Left vs Reading -6.2 1.2 (-8.5, -3.9) <0.001
Right Right Transformed

Mathematics -1.6 0.3 (-2.1, -1.0) <0.001

Left vs Reading 4.3 1.8 (0.7, 7.9) 0.02
Left Right Transformed

Mathematics 1.1 0.3 (0.3,2.0) 0.009

Left vs Reading -5.0 1.8 (-8.5, -1.5) 0.005

Right Right Transformed -1.3Mathematics 0.4 (-2.2, -0.5) 0.002

Left vs Reading 5.5 1.3 (3.0,8.0) <0.001

Right Left Transformed
Mathematics 1.4 0.3 (0.8,2.0) <0.001

Left vs Left vs Reading -0.7 0.5 (-1.7,0.4) 0.2

Right Right Transformed -0.2 O.l (-0.4, 0.08) 0.2Mathematics

Table 3.5: Results of the hypothesis test for differences between right and left

superior handers, and between right and left-hand writers, in both the reading and

transformed mathematics scores.

The Pearson correlation coefficient, p, between reading and transformed

mathematics scores can be obtained directly from the dataset. Figure 3.3 shows the

reading scores plotted against the transformed mathematics scores along with a line

of best fit. The correlation was estimated to be p=0.75 (p<O.OOI).
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Plot of Reading Scores v Transformed Mathematics Scores
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Figure 3.3: Plot of reading scores against transformed mathematics scores from the

raw dataset with a line of best fit.

3.4.2 Comparison between multivariate and univariate linear mixed models

As expected, the univariate models with reading and transformed maths scores as the

outcome variables had similar results to the models based on the marginal

distributions from the multivariate linear mixed model (MLMM) in Table 3.4. The

results were not identical due to the fact that there were differences in the number of

children included for each model (see Table 3.1). These slight differences meant that

the coefficients and p-values were slightly different. However, the coefficients and

p-values did not change sufficiently to alter the interpretation from that of the

MLMM models based on the marginal distributions.

In this subsection, the question of whether the MLMM in Section 3.4.1 provided a

better representation of the associations within the NCDS dataset than two univariate

LMMs is addressed. In other words, the question is whether the complexity added by

the MLMM with the calculation of the extra parameters (the covariance and

correlation in the random effects and random errors, along with the explanatory

coefficients associated with the multivariate outcome) provides a better fit when

compared to two fitted univariate LMMs. We already stated two main reasons for
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fitting a multivariate model to multivariate data as opposed to multiple univariate

models in Chapter 2 (correlation between outcomes is ignored and multiple

comparisons mean that the critical level, a, has to be adjusted). As we have seen,

there is strong evidence to suggest that the reading and transformed maths scores are

correlated. This correlation was taken into account in the MLMM but not by the

univariate LMMs as the two sets of test scores were treated as if they were

independent.

Since the fitted univariate models are almost identical to the models based on the

marginal distributions from the MLMM, then the deviance from an MLMM with

both the random effect and random error covariances set equal to zero (i.e. with both

outcomes set as being independent of each other) is a reasonable approximation to

the combined deviance from the two univariate LMMs. Since the MLMM with

independent outcomes (model 1) is nested within the multivariate model with

correlated outcomes (model 2) (i.e. modell's parameters are all included in model

2) then the deviance test can be used to compare the models (Krzanowski, 2003).

The deviance, D, of a model is a goodness-of-fit statistic that can be calculated for

generalized linear models (including linear mixed-effects models) and is defined as:

D = -2[l(y;y) -l(/1;y)] (3.4.5)

where l (y; y) is the log-likelihood of the model if all the fitted values exactly

equalled the observed values from the dataset and l (/1; y) is the log-likelihood of the

current fitted model (Galwey, 2006). The deviance statistic is asymptotically

distributed as a X2 statistic with v degrees of freedom where v is equal to the total

number of data multiplied by the number of outcomes (i.e. dn) less the total number

of independent parameters in the model (Krzanowski, 2003). The difference in

deviance between two models (one of which is a sub-model of the other) can be

regarded as a X2 statistic, with degrees of freedom equal to the difference in degrees

of freedom between the two models (McCullagh & Nelder, 1989). The deviance

values for the MLMMs with independent and correlated outcomes are shown in

Table 3.6.
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# Model Deviance df
1 Independent~L~~ 169858.7 23662
2 Correlated ~L~~ 160070.3 23660

Table 3.6: Table showing the deviances and degrees of freedom of the two

multivariate linear mixed models with reading and transformed maths scores as

outcomes, one with independent outcomes (independent MLMM) and the other with

correlated outcomes (correlatedMLMM).

The deviance statistic between the multivariate model with independent outcomes

(independent ~L~~) and the multivariate model with correlated outcomes

(correlated ~L~~), D*, can be written as:

D* = ID; - D~I = 1169858.7 - 160070.31 = 9788.4 (3.4.6)

where D; represents the deviance of the independent ~L~~ within the 'full' model

(correlated ~L~~) which has deviance D~. D* has degrees of freedom (df) equal to

the difference in degrees of freedom between the two models (i.e. df = 23662 -

23660 = 2). Thus the test statistic (9788.4) with df equal to 2, corresponds to the

chi-square distribution with p-value <0.001. Therefore, there is strong evidence at

the 1% level of significance to suggest that there is a difference between the

goodness-of- fit of the models to the dataset. The fact that the correlated ~L~~ has

a smaller deviance implies that it is a better fit to the data than the independent

~L~~.

We have seen the evidence in favour of fitting a multivariate model as opposed to

multiple univariate models from the ~L~~. itself (the statistically significant

correlation between test scores), the information in Chapter 2 and that the deviance

statistic of the ~L~~ with correlated outcomes was significantly different to the

deviance for the ~L~~ with independent outcomes (approximate to two univariate

L~~s). Given these observations and results, the correlated ~t~~ (i.e. our fitted

multivariate linear mixed model) was therefore, regarded as the better fitting model

(i.e. the model of choice).
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3.4.3 Model diagnostics

In terms of assessing the goodness-of- fit of a model, there are a number of different

statistics and methods. The deviance, as we have defined in the previous subsection

is a measure of goodness-of-fit. However, it is really only useful for comparing two

models to check which is a more suitable fit to the data. It is not helpful 111

determining exactly how much of the variability in the outcome variables IS

explained by the model. An alternative method for analysing the fit of the model is to

inspect the residuals and standardized residuals. We obtained fitted values and

standardized for the individual models based on the marginal distributions from our

multivariate model. Firstly, the standardized residuals for each model based on the

marginal distributions of the MLMM were plotted against each other. This is an

indicator of how correlated the two outcomes are. Figure 3.4 shows two such plots,

one for the random effects and one for the random errors.

We can see in Figure 3.4(a) that there is little variability in the standardized residuals

between the two outcomes at the local authority level. We saw that the estimated

correlation in the random effects from the model was 0.97 and this very strong,

positive correlation is also visible in the standardized residuals plot. Figure 3.4 (b)

shows more variability at the pupil level (random errors) and strong, positive

correlation, albeit not as strong as for the random effects. We have seen that our

model suggested that this correlation was equal to 0.74.
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Plot of Multivariate Std Residuals
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Figure 3.4: Marginal distribution standardized residual plots for the (a) random

effects arid (b) random errors of the multivariate linear model with reading and

transformed maths scores as outcomes.

The next step was to plot a variety of diagnostic plots for the models based on the

marginal distributions of the MLMM with respect to the random error standardized

residuals (see Figure 3.5). For reading scores, the standardized residuals

approximately follow a normal distribution (Figures 3.5(c) and (e)). However, the

standardized residuals for the transformed maths scores look less normally

distributed (Figures 3.5(d) and (f)). The mean of the unstandardized residuals was

approximately zero for each set of test scores. The plots of fitted values against

standardized residuals show that the standardized residuals are reasonably

homoscedastic for both the reading and mathematics scores (Figures 3.5(a) and (b),

respectively).

In addition to these plots, similar figures were constructed for the random effect

standardized residuals. However, these were not included as they closely followed

the main assumptions (i.e. close to being normally distributed and looking more

homoscedastic for both outcomes than those for the random error terms). In

conclusion, it can be said that the overall model diagnostics point toward a

reasonably good fit to the data with a better fit to the reading scores than for the

transformed mathematics scores.
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Fitted Values v Std Residuals
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Figure 3.5: Diagnostic plots for the multivariate linear model with (a, c and e)

reading and (b, d and j) transformed mathematics scores as the outcome variables.
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3.5 Concluding remarks

In summary, the most interesting result from this chapter is that children with

inconsistent writing hand (WH) and superior hand (SH) performed worse in both the

reading and mathematics tests than children with consistent writing hand and

superior hand. However, there were not found to be any differences in test scores

between the two consistent groups of children (i.e. left WH-Ieft SH and right WH-

right SH). There was also a significant positive correlation between the two sets of

scores at both the pupil and local authority level implying that children who

performed well on one test tended to perform well on the other test, and vice versa.

No difference was found in the test scores between males and females.

Relative hand skill was found to have a statistically significant quadratic association

with both the reading and transformed maths scores. This is similar to the results in

Nicholls et al., (20 I0) which described a quadratic relationship between general

cognitive ability and hand skill, and also to the results in Annett & Manning (1990),

which included the quadratic relationship between absolute hand skill and reading

scores. The optimum relative hand skill was approximately between 22 and 30,

irrespective of superior hand and writing hand, for both tests considered individually

(from the models based on the marginal distributions) and jointly (with the

multivariate outcome). The results in Leask & Crow (2006), based on the same

group of l l-year old children from the National Child Development Study (NCDS)

dataset as our analysis, highlighted a possible optimum relative hand skill of 20 for

right-handed writers and 30 for left-handed writers irrespective of other variables

such as SH and UK region. These optimum relative hand skill values are similar to

the values that we obtained. The quadratic relationships between hand skill and

reading and transformed maths scores appear only to exist for those children with

consistent WH and SH. One reason for this could be the relatively small numbers of

individuals in the inconsistent WH and SH groups.

A difference between children who attended school in Southern England and their

counterparts in Northern England and the Midlands was detected in both sets of test

scores, with those in Southern England outperforming those in Northern England
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and the Midlands. A speculative reason for this is that, over a period of decades,

people living in the north of England have had lower incomes and lower standards of

living than those people in the south of England, and in particular the south-east

(Blackaby & Manning, 1990). Individuals who were educated in Scotland also

achieved higher marks than those individuals educated in Northern England and the

Midlands, but only in the maths test.

One of the limitations of this analysis was that the method for obtaining hand skill

scores for each hand in this dataset, the box-ticking method, may not be independent

of WHo The box-ticking method involves writing to a certain extent (ticking boxes)

and therefore, it may be that hand skill is confounded with WHoA different measure

of hand skill, such as the peg-moving task in Annett (2002) which involves only

motor skills, seems to be a better, more independent measure. However, in the

NCDS dataset, only the box-ticking method was actually applied.

Finally, a number of other factors mentioned in Chapter 1 (e.g. musical ability,

Broca's area measurements, etc.), which have been linked to certain aspects of

cognitive ability (in particular language and mathematical ability) were not able to be

investigated with the NCDS dataset since they were not available. Additionally, age

was collected for the NCDS dataset however our data only involved data from 11-

year old children.
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CHAPTER 4

Investigation of the associations between musical ability

and cognitive function in adults

The associations between handedness and cognitive ability in children (namely,

reading and mathematics scores) were investigated in Chapter 3. In this chapter, we

consider the links between cognitive ability and factors such as age, gender and

musical ability in adults. Prior to giving the results from our statistical analyses, we

introduce some past results in this particular area of research and then explain how

we constructed our statistical models (referring to methodology from Chapter 2) and

revisit the, dataset breakdown from Chapter 1.

4.1 Introduction

In adults, differences between musicians and non-musicians in a number of cognitive

function tests, including verbal, verbal memory and visuospatial tests have been

observed (Sluming et al., 2002; Sluming et al., 2007; Franklin et al., 2008; Jakobsen

et al., 2008). When musicians were compared to non-musicians in two different

verbal memory tests (California Verbal Learning test, 2nd edition (CVLT-II) and Rey

Auditory Verbal Learning test (RAVLT)), the same result occurred with musicians

performing better (Franklin et al., 2008; Jakobsen et aI., 2008). Furthermore,

Jakobsen et al., (2008) reported that in a visual memory test (Rey Visual Design

Learning test (RVDLT)) given to participants, musicians obtained higher scores, on

average, than non-musicians (controls). The Benton judgement of line orientation

(JOL) test was used to evaluate spatial ability in Sluming et al. (2007) and it was

seen that musicians achieved higher scores than controls. Evidence for this greater

spatial ability in musicians was suggested earlier in Sluming et al. (2002) after

comparing the two groups' results from a three-dimensional mental rotation (3DMR)

task. A description of the CVLT-II, RAVLT, RVDLT, JOL and 3DMR tests can be

seen in Section 1.2.4.
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In addition to the associations between musical ability and cognitive ability, there are

many other factors which are known to have an effect on cognitive ability, such as

age (see e.g. Gunstad et al., 2006; Salthouse, 2006; Mitnitski & Rockwood, 2008;

Mitnitski et al., 2010). For example, Salthouse (2006) suggested that there is a

general decline in cognitive function with age starting when subjects are between 20

and 40 years of age. This decline occurred in three cognitive function tests: episodic

memory, perceptual reasoning and perceptual speed. However, no statistically

significant reduction in the scores from a vocabulary test was observed as age

increased. When general cognitive ability scores were considered (the Modified

Mini-Mental State Examination (3MS) (for more details, see Teng & Chui, 1987)

and the Cognitive Abilities Screening Instrument), older-aged participants obtained

lower marks, on average, (i.e. more errors) than younger participants (Mitnitski &

Rockwood, 2008; Mitnitski et al., 2010). In the study by Gunstad et al., (2006)

individuals were split into three age groups (young-age, middle-age and old-age) and

scores across a range of cognitive ability tests (including attention, memory,

executive functioning, language and motor skills) were shown to be lower, in

general, for the older participants than for the young and middle-aged participants.

Further discussion of previous results can be read in Chapter I.

The objective of this chapter was to investigate the links between multiple cognitive

ability scores and factors, such as musical ability, gender and age, simultaneously in

a single statistical model. To do this we fitted multivariate linear models to a dataset

of adults, with three cognitive ability scores, representing vocabulary, arithmetic and

visuospatial abilities, as outcome variables. Interaction terms were also considered

between the explanatory variables (musical ability, gender and age) as well as

correlation between the outcomes. It is the increase in complexity of the applied

statistical model (multivariate linear model) which allows for more refined

decomposition of the variability within the dataset, and which is novel in comparison

to the past studies.
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4.2 The dataset

The dataset used in this chapter was collected at the Magnetic Resonance Image and

Analysis Research Centre (MARIARC), University of Liverpool, in 2000. From now

on we will refer to this dataset as the musician-control (MC) dataset. The MC dataset

was obtained for the purpose of investigating differences between musicians and

controls, in terms of the activation of various regions of the brain, mainly using

voxel-based morphometry (VBM) and functional magnetic resonance imaging

(fMRI) (Sluming et al., 2002; Sluming et al., 2007). The full MC dataset consisted

of 149 participants (detailed information on the dataset can be found in Section

1.3.2). The outcome variables considered here were the vocabulary, arithmetic and

block design test scores, all from the Wechsler Adult Intelligence Scale (WAIS). The

WAIS block design test can be described as a visuospatial test and so, from this

point onwards, the WAIS block design scores will be referred to as visuospatial

scores.

Since the outcome variables (vocabulary, arithmetic and visuospatial scores) are

taken directly from the WAIS, it was noted that these scores are scaled. However

they are not scaled linearly, and therefore, the meaning of a one scaled unit increase

in the actual test is difficult to interpret. This is explained in more detail in Section

1.3.2. The covariates considered were:

• Gender (0 = 'male', 1 = 'female')

• Age (in years)

• Musician (0 = 'non-musician' or 'control', 1 = 'musician')

Originally, we wanted to include handedness in this analysis as an explanatory

variable but, due to the very small number of left-handers in the dataset, only right-

handed individuals were considered. The missing data for the forthcoming analyses

can be seen in Table 4.1. When all the variables were taken into account, the

proportion of participants with at least one missing variable value was equal to

13.9% (see Table 4.1). This was also the case when only arithmetic and visuospatial

scores were taken into account. However, when we had vocabulary score as the only
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outcome, then the number of individuals with at least one missing variable value was

slightly fewer (19 or 13.2%, Table 4.1). For the analyses in this chapter, individuals

with missing data in the variables included in the statistical models were omitted.

Further information about missing data, along with the implications that omitting

participants with missing variable values has on the results of the analyses in this

chapter, can be seen in Chapter 6.

Variable Missing (%) Non-missing (%)

Vocabulary Test Scores 19 125
(13.2%) (86.8%)

Arithmetic Test Scores 20 124
(13.9%) (86.1%)

Visuospatial Test Scores 20 124
(13.9%) (86.1%)

Musician 2 142
(1.4%) (98.6%)

Gender 0 144
(0%) (100%)

Age 0 144
(0%) (100%)
19a 125a

Total* (13.2%) (86.8%)
20b 124b

(13.9%) (86.1%)
*A number of subjects have multiple mrssmg variable values and so are counted as
'missing' only once.
a These figures correspond to the univariate model with vocabulary scores as the outcome.
h These figures correspond to the univariate models with arithmetic and visuospatial scores
as the outcome, as well as the multivariate model with all three cognitive scores as
outcomes.

Table 4.1: Missing and non-missing datafor the outcome and explanatory variables

ofthe MC dataset.

4.3 Statistical models

In this chapter, we fitted a number of multivariate linear models, as described in

Section 2.1.3, to the Me dataset. Our final, fitted multivariate model followed the

structure of that in Equation (2.1.11) with the total number of participants, n = 124
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after the omission of those individuals with missing data, the number of outcomes

d = 3 (vocabulary, arithmetic and visuospatial scores) and 4 explanatory variables

(i.e. p - 1 = 4; musician (we henceforth denote the factor musician in italics to

differentiate it from a musician as a member of the group of individuals with musical

ability), gender, musician and gender interaction and age). From Equation (2.1.11)

we have that r'= rf:~:lis the (3n x 1) outcome vector with r(k) as previously
~(3)

defined, where k = 1,2,3 corresponds to the vocabulary, arithmetic and visuospatial

scores, respectively. The design matrix X· = [: :] is a (3n X 3p) matrix

with X as defined for Equation (2.1.6) where the explanatory variables were

musician (Xii), gender (Xi2), musician and gender interaction (Xi3 = Xii X Xi2) and

f

P(l)l
age (Xi4). We denoted the (3p x 1) vector of coefficients as P* = p(2) where p(k)

r»
(k = 1,2,3) is as defined for Equation (2.1.11). Finally, the random error vector

~

(1)1
f* = (2) is a (3n x 1) vector with f(k) (k = 1,2,3) as defined for Equation

(3)

(2.1.11) and such that f*-N3n(Q,r) where s = [t~t~ t:] is a (3n x 3n)
bl b2 b3

matrix with (n x n) matrices ~k and ~lk2' (1::; kv k2 s d; kl '* k2) as

previously defined (see Equation (2.1.11 ».

From Chapter 2, it can also be seen that the covariance, and therefore correlation,

can be estimated between each set of cognitive ability test scores. The analysis and

plots were conducted and constructed, respectively using MLwiN version 2.16 and R

version 2.11.1. The analyses were completed using Restricted Iteratively Generalised

Least Squares (RIGLS) which is equivalent to restricted maximum likelihood

estimation (REML) as described in Section 3.4.
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4.4 Statistical analyses

We fitted a multivariate linear model (MLM) to the Musician-Control (MC) dataset

using a similar approach to that for the analyses in Chapter 3 (i.e. using a stepwise

model selection method as defined in Section 3.4). The Wald test was again used to

test the null hypotheses that the multivariate parameters equal zero. As mentioned in

Section 3.4.1, the Wald test statistic follows a X~ distribution where d is the number

of outcomes (Goldstein, 2003). In this instance, d = 3. The results from the final,

fitted multivariate model with the three cognitive ability scores as the outcome

variables and following the omission of the individuals with missing data (124

participants left in the dataset, see Table 4.1) can be seen in Tables 4.2-4.5.

The main difference between a MLM and a univariate linear model (ULM) is that

the MLM gives additional information about the associations between the

explanatory variables and a linear combination of the outcomes. From the MLM we

can also obtain results for the links between the explanatory variables and the

individual outcomes from the models based on the marginal distributions as well as

take the correlation between each outcome into account. The overall coefficients,

standard errors, confidence intervals and p-values for the multivariate outcome (i.e. a

linear combination of the vocabulary, arithmetic and visuospatial test scores, as

shown in Equation (2.1.9)) are given in Table 4.2.

We found a positive association between musician and the combined cognitive

ability test scores (p<O.OOI, Table 4.2). The coefficient for musician was positive

which suggested that across all test scores combined, musicians outperform non-

musicians (controls). Also, there was an overall link between age and the three

cognitive ability scores combined and the coefficient was negative (p<O.OO 1, Table

4.2). This can be interpreted as the older a participant was the lower their combined

cognitive ability scores were.
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Explanatory Variable Coeff. St. Error 95%CI p-value

Intercept 37.0 1.3 (34.5, 39.4) <0.001

Musician 7.4 1.0 (5.5,9.3) <0.001(0: Control, 1: Musician)
Gender -1.0 0.6 (-2.6,0.6) 0.2(0: Male, 1: Female)

Musician X Gender 1.2 1.7 (-2.1,4.6) 0.5

Age -0.1 0.02 (-0.17, -0.08) <0.001

Table 4.2: Estimates of the multivariate explanatory variable coefficients for the

multivariate linear model with the vocabulary, arithmetic and visuospatial scores

combined (including the standard error of the corresponding estimators, the 95%

confidence intervals for the coefficients and the p-values).

Although the coefficients for gender and the interaction term between gender and

musician, were not significant (p=0.2 and p=0.5, respectively, Table 4.2), the

contingency table of comparisons between the groups male and female, musicians

and non-musicians was constructed, with the results shown in Table 4.3. There was

not any overall difference in the combined cognitive ability test scores between

males and females, in either the musician or control groups (p=0.9 and p=0.2, Table

4.3, respectively). However, there is a clear difference between the male and female

musician groups and both the male and female control groups, with the musicians

having higher cognitive ability scores than the non-musicians (all comparisons have

p<0.001, Table 4.3). These results suggest that being able to play a musical

instrument is strongly linked to the level of cognitive ability across the three defined

cognitive ability scores (vocabulary, arithmetic and visuospatial).
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Musicians Controls
Male Female Male Female

Q,j-'"
~ X

= ~~....
CJ....
'" Q,j= - 0.2~ ~

8 X
Q,j (0.9)
~

Q,j -7.4 -7.6-~ X
'" ~ «0.001) «0.001)-0
l.......= Q,j0 -U ~ -8.4 -8.6 -1.0

8 «0.001) «0.001) (0.2) X
Q,j

~

Table 4.3: Cross-tabulated results (coefficients and p-values) for the overall effects

of gender and musician on vocabulary, arithmetic and visuospatial scores combined

(taken from the multivariate linear model).

From the models based on the marginal distributions of each individual outcome, we

obtained results for the associations between each cognitive ability test score and the

explanatory variables. These results can be seen in Table 4.4.

As has been discussed in Chapters 2 and 3, due to the fact that the models based on

the marginal distributions of the MLM, or equivalently ULMs, can be considered to

be similar to multiple comparisons, then adjustments must be made to the p-values

of these results (i.e. to the results in Table 4.4). Once again, the Bonferroni

correction was used to modify the critical level at which a p-value becomes

statistically significant (i.e. the level of a) to allow for the fact that we have three

outcomes in the model. This can be shown to be:

a* = a/3 (4.4.1)

where a* is the adjusted critical value (Hair, Jr. et aI., 2010). We wanted to have a

significance level of 5% (i.e. a = 0.05), so a* was set equal to 0.017 (to 2s1).
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Interpreting the results from Table 4.4 using the Bonferroni corrected significance

level of 0.017, we can see that musician had a strong association with all three

cognitive ability scores individually (p<0.001, p=O.Ol and p=0.004, for the

vocabulary, arithmetic and visuospatial scores, respectively). The coefficient of

gender was also significant for the vocabulary and arithmetic scores (p=0.01 and

p=0.005, respectively, Table 4.4). However, we found no gender effect at the 5%

level of significance for the visuospatial scores (p=0.08, Table 4.4).

Without interaction terms in the model, these results would be interpretable directly

from Table 4.4. For example, with all three coefficients of musician being positive,

this would suggest that musicians outperform non-musicians in all three tests

regardless of gender. However, since the interaction term between musician and

gender is included in the model, this interpretation is not strictly correct and needs

further comparisons to explain the associations between musician, gender and the

three cognitive ability test scores. Given the Bonferroni adjusted a-level of 0.017,

we can also see that the interaction term between musician and gender, was not

statistically significant for any of the three test scores, with the closest p-value to

significance being for the visuospatial scores (p=0.06, Table 4.4). To interpret the

results of the associations for each test score in relation to musician and gender, we

compared the test scores for male and female, musicians and non-musicians using

the models based on the marginal distributions of the MLM and multiple hypothesis

tests (Wald tests). Table 4.5 shows the cross-tabulation of these hypotheses tests by

cognitive ability and gives coefficients andp-values for each one.
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Explanatory Variable Coefficient St. Error 95%CI p-value
Vocabulary Test Scores

Intercept 9.3 0.6 (8.2, 10.5) <0.001
Musician 4.7 0.4 (3.8,5.6) <0.001

(0: Control, 1: Musician)
Gender 1.0 0.4 (0.2, 1.7) 0.01(0: Male, 1: Female)

Musician x Gender -0.8 0.8 (-2.4,0.7) 0.3
Age 0.01 0.01 (-0.01,0.03) 0.4

Arithmetic Test Scores
Intercept 12.4 0.7 (11.0,13.8) <0.001
Musician 1.4 0.5 (0.3,2.5) 0.01(0: Control, 1: Musician)
Gender -1.3 0.5 (-2.2, -0.4) 0.005(0: Male, 1: Female)

Musician X Gender 0.6 1.0 (-1.3,2.5) 0.5
Age -0.04 0.01 (-0.06, -0.01) 0.002

Visuospatial Test Scores
Intercept 15.3 0.6 (14.2, 16.4) <0.001
Musician 1.3 0.4 (0.4,2.1) 0.004(0: Control, 1: Musician)
Gender -0.7 0.4 (-1.4, 0.07) 0.08(0: Male, 1: Female)

Musician x Gender 1.5 0.8 (-0.07,3.0) 0.06
. Age -0.1 0.01 (-0.12, -0.08) <0.001

Random Error Estimate St. Error 95%CI p-value
Variance (Vocabulary) 3.3 0.4 (2.4,4.1 ) <0.001
Variance (Arithmetic) 4.8 0.6 (3.6,6.0) <0.001
Variance (Visuospatial) 3.1 0.4 (2.3,3.8) <0.001
Covariance [Correlation] 0.6 0.4 (-0.06, 1.4)

0.07(Vocabulary/Arithmetic) [0.2] [0.1] [-0.02, 0.4]
Covariance [Correlation] 0.2 0.3 (-0.3,0.8)

0.4( Vocabulary/Visuospatial'[ [0.1] [0.1] [-0.09,0.3]
Covariance [Correlation] 0.9 0.4 (0.2, 1.6) 0.01(ArithmeticiVisu05patial) [0.2] [0.09] [0.05,0.4]

Table 4.4: Estimates of the explanatory coefficients and random error variance.

covariance and correlation terms for the multivariate linear model with vocabulary.

arithmetic and visuospatial scores as outcomes (including the standard error of the

corresponding estimators. the 95% confidence intervals for the coefficients/terms

and the p-values).

149



Our cross-tabulated hypotheses tests gave results which suggested that females

obtain a higher vocabulary score than males in the control group by 1 scaled mark on

average (p=0.01, Table 4.5). A gender difference was again found in the arithmetic

scores of the control group, although it was males that outperformed females by 1.3

scaled marks on average (p=0.005, Table 4.5). However, we found no difference

between male and female non-musicians in the visuospatial scores (p=0.08, Table

4.5). Table 4.5 does show that in all three sets of test scores, there was no difference

between males and females in the musicians group (p=0.9, p=O.4 and p=0.2, for the

vocabulary, arithmetic and visuospatial scores, respectively). If we had not kept the

musician and gender interaction term in the model, then our results from Table 4.4

would have been interpreted such that there was a gender difference in vocabulary

and arithmetic scores irrespective of whether participants were musicians or non-

musicians. However, we can clearly see from Table 4.5 that we have a gender

difference in the control group, but not in the musician group. These gender

differences between musician and non-musician groups would not have been

identifiable without the inclusion of the interaction term in the model.

In the vocabulary scores, male musicians achieved higher scores, by 4.7 and 3.8

scaled marks on average, than male and female controls, respectively (p<0.001 for

both comparisons, Table 4.5). This result was also replicated with female musicians,

since they had higher vocabulary scores than male and female controls by 4.8 and

3.9 scaled marks, respectively (bothp<O.OOI, Table 4.5). Male musicians were also

found to have higher arithmetic scores on average than male and female controls by

1.4 and 2.7 scaled marks, respectively (p=0.01 and p<O.OOI, Table 4.5). Female

musicians, however, had no significantly different arithmetic scores, on average, to

female and male controls (p=0.02 and p=O.4, Table 4.5, respectively). These non-

significant results would not have been identified without the interaction term,

musician X gender, being a covariate in the MLM. We found that in the visuospatial

scores, both male and female musicians outperformed male controls, by 1.3 and 2.1

scaled marks, respectively (p=0.004 and p=0.002, Table 4.5), and female controls by

1.9 and 2.7 scaled marks, respectively (p<0.001 in both cases, Table 4.5). Some of

these significant comparisons can be easily seen in Figure 4.1 which illustrates the

results when the 95% confidence intervals of the mean test scores of different groups

of gender and musician do not overlap for the three test scores individually
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From Table 4.4 we can also see that there is a negative association between age and

both arithmetic and visuospatial scores (p=0.002 and p<O.OO 1, respectively). For the

arithmetic scores this is interpreted such that two participants with a ten-year age

difference have a difference in arithmetic score of 0.4 scaled marks, on average, with

the older person scoring lower than the younger person. A similar interpretation can

be made for the visuospatial scores, with the older individual, by ten years, scoring,

on average, 1 scaled mark less than the younger person.

From our multivariate linear model, we were able to observe the estimated variance

in the three cognitive ability scores as well as the covariance and correlation between

the test scores. The correlation, r, between the arithmetic and visuospatial scores

was estimated by the model to be equal to 0.2 (p=0.01, Table 4.4). Although the p-

value is statistically significant at the Bonferroni-corrected 5% level of significance,

we can see that this means that there is evidence to suggest that the correlation does

not equal 0, and does not mean that the correlation is biologically significant. It is

clear that a correlation of 0.2 is a very weak, positive correlation. The other two

correlation estimates in the model, between the vocabulary and arithmetic scores and

between the vocabulary and visuospatial scores, were not significant, suggesting that

there was no evidence at the Bonferroni-corrected 5% level of significance to reject

the null hypothesis that the correlation was equal to zero (p=0.07 and p=O.4, Table

4.4, respectively).

We can compare the correlation estimates from the model to correlation estimates

obtained directly from the dataset. To do this comparison, the Pearson correlation

coefficients from the data were obtained and plots constructed of each test score

against each other (see Figure 4.2). In each plot, we also plotted a line of best fit

which gives a more visual indication of the correlation. The Pearson correlation

coefficient, p, between the arithmetic and visuospatial scores, obtained directly from

the data, was estimated to be p=0.5 (17<0.001). This is a higher estimate than we

obtained from the model (r=0.2, Table 4.4).
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A similar result for the multivariate model estimating lower correlations between test

marks than the data itself is also observed between the vocabulary and arithmetic

scores (p=O.4 (p<0.001) from the data compared to r=0.2 from the model, Table 4.4)

as well as between the vocabulary and visuospatial scores (p=0.3 (p<O.OOI) from the

data compared to r=O.1 from the model, Table 4.4). Therefore, once the multiple

factors have been adjusted for in the model, the values of r were estimated to be

between 50% and 67% less than the values of p which were observed from the data.

4.4.1 Comparison between multivariate and univariate linear models

The construction of our fitted univariate linear models (ULMs) followed a stepwise

model selection process as did the earlier fitting of the multivariate linear model

(MLM). However, there were differences between the number of explanatory

variables in the ULMs and those in the models based on the marginal distributions of

the MLM. Some explanatory variables had non-significant coefficients for individual

outcomes in the MLM (e.g. age had a p-value of 0.4 in the vocabulary scores) and

these variables were not included in the ULMs. Thus, the three ULMs did not give

identical coefficients or p-values to the equivalent models based on the marginal

distributions from the MLM. In addition, the ULM with vocabulary score as the

outcome had one less participant in the sample for the MLM because of missing data

(see Table 4.1). These slight differences in coefficients and p-values were not

sufficient to change the interpretation from those given from the MLM marginal

distributions in Section 4.4.

We subsequently addressed the question of whether the three ULMs or the MLM

gave a better fit to the data. In Section 2.1.3 we described how the MLM is more

complex than a ULM. This is because, the MLM also considers the correlation

between outcomes whereas ULMs do not. In ULMs, the outcomes are considered to

be independent of other outcomes. However, we can construct a MLM with

independent outcomes by setting:

lTl,2 = lTl,3 = lT2,3 = 0 (4.4.2)
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in Equation (2.1.11) (i.e. setting the correlation between the three outcomes equal to

zero). Since the ULMs did not include all the explanatory variables that were in the

MLM (the non-significant explanatory variables in the marginal distribution results

for the MLM in Table 4.4 were not included in the ULMs) we also had to set

coefficients for those particular explanatory variables equal to zero. The resulting

MLM with independent outcomes (independent MLM) is therefore, a reasonable

approximation to a combination of three ULMs. Itwas this independent MLM which

we then compared with the correlated MLM (i.e. the MLM with correlated outcomes

in Tables 4.2 and 4.4).

It is clear to understand that the MLM with independent outcomes (model 1) is

nested within the MLM with correlated outcomes (model 2) and, as discussed in

Section 3.4.2, this means that we were able to use a deviance test to compare the two

models. The deviance of a model is defined in Equation (3.4.5) and is a goodness-of-

fit statistic. As seen in Chapter 3, the deviance test statistic is simply the difference

between two models' deviances. In this case, one model is representative of the three

univariate models combined, and the other is the multivariate model. The deviance

test statistic also has degrees of freedom equal to the difference in the degrees of

freedom of the two models being tested. The deviances and the degrees of freedom

for the correlated and independent MLMs can be seen in Table 4.6.

The deviance statistic between the independent and correlated MLMs, D*, can then

be written as:

D* = ID; - Dil = 11527.261- 1513.8311= 13.43 (4.4.3)

where D; is the deviance of the nested model (independent MLM) within the 'full'

model (correlated MLM) which- has deviance Di. D* has degrees of freedom (dt)

equal to the difference in degree of freedom between the two models (i.e. df =

357 - 351 = 6). The test statistic (13.43 with df=6) can be regarded as a X2 statistic

and corresponds to the X2 distribution with p-value 0.04. Therefore, there is evidence

at the 5% significance level to suggest a difference between the goodness-of- fit of

the models. Since the correlated MLM has the smallest deviance, it is the better
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fitting model. When accumulating the evidence, including that there is some

correlation between the outcomes (see Figure 4.2), it can be concluded that there is

some improvement in the fit of the correlated MLM over the independent MLM and

thus also the ULMs. Therefore, the concluding remark here is that the MLM would

be the model of choice to fit to this dataset.

# Model Deviance df
1 IndependentMLM 1527.261 357
2 Correlated MLM 1513.831 351

Table 4.6: Table showing the deviances and degrees of Freedom of the independent

MLM and the correlated MLM, with vocabulary, arithmetic and visuospatial scores

as outcomes.

4.4.2 Model diagnostics

To assess the goodness-of-fit of a model a range of statistics can be used (e.g. R2,

adjusted R2, Akaike's Information Criterion (AIC), Bayesian Information Criterion

(BIC)). The deviance can also be classed as a goodness-of-fit statistic, but it is really

only useful for comparing two models to determine which is a more suitable fit to

the data. The AIC and BIC are based around the calculation of the log-likelihood of

the model (as is the deviance) and are useful for comparing models, but not for

determining a model's fit to the data (for details of AIC see Jobson, 1992; for details

of BIC see Pinheiro & Bates, 2000). The adjusted R2 statistic is also useful for

comparing models as it takes into account the number of parameters in a model, but

is not particularly helpful with the goodness-of-fit of a model to the data (see Ugarte

et al., 2008 for more details).

R2, otherwise known as the coefficient of determination, can be calculated as:

(4.4.4)
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where SSres and SStot are the residual and total sum of squares, respectively (Ugarte

et aI., 2008). The statistic R2 takes values between 0 and 1, and when multiplied by

100 represents the proportion of variability in the outcome variable which is

explained by the explanatory variables in the model, as a percentage. That is, the

closer an R2 value is to 1, the better the fit of the model to the data. The R2 statistic

was unobtainable for the MLM, but it was calculable for the three ULMs with each

cognitive ability score as the outcome. Since we already know that the MLM is a

better fit to the model, we can say that the MLM will have a higher R2 value than the

ULMs. Therefore, we can say that the proportion of variability explained by the

MLM was greater than that explained by the ULMs. The values of R2 obtained for

each of the three ULMs were:

• R2 = 0.545 (ULM with vocabulary scores as the outcome).

• R2 = 0.276 (ULM with arithmetic scores as the outcome).

• R2 = 0.585 (ULM with visuospatial scores as the outcome).

These R2 values indicate that the univariate models explained 54.5%, 27.6% and

58.5% of the total variability in the vocabulary, arithmetic and visuospatial scores,

respectively. The ULM with arithmetic score as the outcome is the poorest fitting

ULM to the data. Even the ULMs with vocabulary and visuospatial scores are not

that good at explaining the variability in the outcomes. However, what we can say is

that the MLM must explain at least the same proportion of variability in the outcome

if not a higher proportion, than we have seen with the three ULMs.

In addition to the R2 statistic, we can analyse the fit of a model by inspecting the

standardized residuals. Using the standardized residuals extracted from the models

based on the marginal distributions of the MLM in Table 4.4, we constructed plots of

the standardized residuals for each outcome against each other (see Figure 4.3).

These plots give an indication of the correlation between the outcomes as estimated

by the model. We can see that there is little correlation in all the plots of Figure 4.3.

However, this is understandable given the fact that the correlation estimates from the

MLM between the outcomes were very low (0.1 or 0.2 in all three cases).
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Figure 4.4 shows the diagnostic plots for the models based on the marginal

distributions of the MLM. Overall, the conclusion of the diagnostics is that the fit of

the model seems reasonable for the visuo spatial scores, but not as good a fit to the

vocabulary and arithmetic scores. The standardized residuals look to be normally

distributed for the visuospatial scores (Figures 4.4 (f) and (h)). However, even

though the histograms of standardized residuals look to be reasonably normally

distributed, the normal-QQ plots suggest that it is less likely that the standardized

residuals for both the vocabulary and arithmetic scores follow a normal distribution

(see Figures 4.4 (d), (e), (g) and (h) for the histograms and normal-QQ plots for the

vocabulary and arithmetic scores, respectively). When we used the Anderson-

Darling normality test to check the normality of the standardized residuals, there was

no evidence to reject the hypothesis that they were normally distributed at the 5%

level of significance (p=0.06, p=O.1 and p=0.5 for the vocabulary, arithmetic and

visuospatial scores, respectively).

Even though there may be a slight heteroscedascity of the standardized residuals of

the arithmetic and vocabulary marks, overall, the standardized residuals do appear to

be reasonably homoscedastic for all three outcomes (Figures 4.4(a), (b) and (c)).

Also, the means of the unstandardized residuals were approximately zero for each

outcome. In conclusion, it can be said that the R2 statistics and the model diagnostics

show that this model is reasonable, but not particularly good at explaining a large

proportion of the variability within the three cognitive ability scores.
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Figure 4.4: Diagnostic plots for the multivariate linear model with (a, d and g)

vocabulary, (b, e and h) arithmetic and (c, f and i) visuospatial scores as the

outcome variables.
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4.5 Concluding remarks

In this chapter, our objective was to use a multivariate linear model to establish

whether associations existed between three cognitive ability scores (vocabulary,

arithmetic and visuo spatial) and three factors (musical ability, gender and age). We

applied a multivariate linear model with the three cognitive scores as outcomes to the

Musician-Control dataset to meet our objective. To summarise the results, we found

that musicians performed better in the vocabulary, arithmetic and visuospatial tasks

than non-musicians, irrespective of gender. Furthermore, our analysis indicated a

gender difference in two of the sets of test scores for non-musicians, such that

females attained higher scores than males in the vocabulary test and males gained

higher test scores than females in the arithmetic test. We found no significant

difference between male and female musicians in any of the three tests. Age had a

negative effect on the arithmetic and visuospatial scores such that older participants

tended to perform worse in these tests than younger participants. However, there was

no effect of age on the vocabulary scores.

Differences in cognitive function between males and females are generally assumed

(e.g. females outperform males in language skills but males are better than females at

spatial awareness and mathematics tasks). These conceptions were reinforced by the

results from the analyses in this chapter for non-musicians. However, the fact that

there was no statistically significant gender difference in musicians' test scores is

interesting. This may highlight that learning to playa musical instrument has such an

important effect on cognitive function that the effect due to gender disappears.

Alternatively, this result could suggest that there may be some innate characteristic

of the musicians (such as a measurement of a region of the brain associated with

both cognitive and musical ability (e.g. Broca's area)) which has to be present,

irrespective of gender. This would mean that an individual would have a

characteristic which is linked to both a higher cognitive and musical ability,

overriding the gender effect.

Musicians outperformed non-musicians in all three tests irrespective of gender. We

previously noted that the effect of learning to play a musical instrument had a
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positive effect on spatial ability in both a 2D and 3D mental rotation task (Sluming et

al., 2002; Sluming et al., 2007). In this study, the scores from the WAIS block

design test were used to represent visuospatial ability scores. The test used here

required that 3D blocks be arranged such that a 2D pattern could be copied on the

uppermost faces of the rearranged squares. Therefore, this involved elements of both

2D and 3D, and the fact that the results agree with those previously found reinforces

the notion that musical training is beneficial in terms of visuospatial ability, as well

as vocabulary and arithmetic.

Learning to playa musical instrument usually involves learning to read music. Since

this is a symbolic language it has been suggested that this has an effect on increasing

a person's cognitive functions other than language, which would more than likely

improve if a person were to learn another spoken or written language. Another point

to consider is whether the period in a person's life when they learn to playa musical

instrument influences the benefits of musical ability on cognitive ability or not. For

instance, if a person was to learn while they are young (e.g. primary school age),

then would there be a greater effect on cognitive function than if the person was of

adult age (e.g. over 18 years old)? The study of Watanabe et al., (2007) split a

sample of musicians into two distinct groups: early trained musicians (those who

were under 7 years old at the commencement of musical instrument playing) and

late-trained musicians (those who were over 7 years old when they starting learning

to playa musical instrument). Itwas shown that early-trained musicians performed a

novel complex rhythmic sequence better than late-trained musicians. However, it is

quite feasible that musicians who learn to play an instrument earlier in life will have

been playing the instrument for a longer time period than someone who learns later

in life. This would suggest that there may be some confounding of the effect of the

number of years of experience of playing a musical instrument and the age at which

learning to play the instrument commenced.

Furthermore, we considered that the effect of playing different types of instruments

may also have a bearing on the benefits of being a musician in terms of cognitive

ability. This is because different types of instrument require different skills. Ideally

we would have liked to investigate these effects in our study, but due to limitations
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of the dataset (e.g. the number of participants, the lack of an age at the

commencement of musical instrument training, etc.), we did not do so.

The negative effect of age on the arithmetic and visuospatial scores follows the

generally accepted view that there is an age-related decline in memory, perceptual

reasoning and perceptual speed (Jacobs et al., 2001; Salthouse, 2006). However, in

our sample (age range of 19-94 years old) we found no evidence for an age-related

change in vocabulary scores, which matches with the findings of Salthouse (2006).

In the study of Salthouse (2006) a large group of participants ranging in age (in

years) from early-20's up to mid-80's, no differences were found in the average

WAIS vocabulary score between older individuals and younger individuals.

Differences between the effects of age on vocabulary scores to those for arithmetic

and visuospatial scores may be explained by the different mechanisms that govern

linguistic and non-linguistic functions. Linguistic functions appear to rely on

previous knowledge that has been gained and used comprehensively, over a long

period of time thereby becoming almost intuitive (i.e. using areas of long-term

memory) rather than rely on short-term memory. However, non-linguistic functions

require information to be processed at the time of assessment, as well as being reliant

upon both short- and long-term memory for previous methodological information.

We did not find musician by age interaction to have a statistically significant

coefficient for any of the three cognitive ability scores. Therefore, we did not have

any evidence to suggest that the age-related effects on the three scores were any

different for musicians to non-musicians. However, our group of musicians consisted

of just 36 individuals (age range 24-65 years) compared to 106 non-musicians (age

range 19-94 years). Thus, in a future study, it would be advisable to include more

musicians with a larger range of ages to have a more balanced dataset (between

musicians and non-musicians).
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CHAPTERS

Investigation of the associations between Broca's area and

cognitive function in adults

In the previous two chapters we have considered associations between cognitive

ability and a range of factors, in both children and adults. In addition to handedness,

musical ability and the other factors we considered, there are certain regions of the

brain which are linked with cognitive ability. One such region is Broca's area which

is historically linked with language. In this chapter, we consider the links between

measurements of Broca's area (volume and surface area) and factors such as

cognitive ability, age, gender and musical ability in adults. We begin this chapter by

describing some results from previous research in this area and then follow this by

explaining the methodology used on the data defined. After the results are given, a

further subsection explains the within observer variability from our volume and

surface area estimates of Broca's area.

5.1 Introduction

Broca's area is a region of the brain associated with various language functions

(Broca, 1861; Caplan, 2006; Dronkers et a!., 2007; see also Section 2.3.2). Broca's

area was first associated with language function by Paul Broca in 1861 following his

observations from the post-mortem brains of two men, named Leborgne and Lelong,

who both had a very limited vocabulary (Broca, 1861; Dronkers et al., 2007). Other

language related functions such as speech production and syntactic processing have

also been strongly linked with either the inferior frontal gyrus (in which Broca's area

resides) or Broca's area itself (Stephan et a!., 2003, Toga & Thompson, 2003;

Caplan, 2006; Costafreda et a!., 2006).

A variety of areas of the brain have been identified where differences have been

observed between musicians and non-musicians (Schlaug et aI., 1995; Amunts et a!.,

1997; Sluming et al., 2002; Gaser & Schlaug, 2003; Lee et a!., 2003; Bengtsson et
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aI., 2005; Schneider et al., 2005; Bangert & Schlaug, 2006; Stewart, 2008). Some

areas have been highlighted as being active when music is being processed (Stewart

et aI., 2003; Stewart, 2005; Sluming et al., 2007). Broca's area has also been

identified as one such region that has some interaction with music processing

(Sluming et aI., 2007). Furthermore, it has also been suggested that Broca's area is

involved in the processing of non-linguistic information including sequencing, action

recognition and visuospatial cognition, as well as music (Koelsch et al., 2002;

Schubotz et aI., 2002a,b; Hamzei et al., 2003; Sluming et al., 2007). In terms of

comparing functionality of Broca's area between musicians and controls, musicians

have been found to have greater activation in Broca's area than non-musicians

(Sluming et al., 2002; Sluming et al., 2007). More detailed descriptions of previous

results can be seen in Chapter 1.

The aim of this chapter was to examine the relationships between measurements of

Broca's area (more specifically, volume and surface area) and an array of different

variables such as cognitive ability, age, gender and musical ability, using more

complex statistical methods which take into account both the correlation between

Broca's area in each hemisphere as well as interaction terms between the explanatory

variables, where necessary. To complete this aim, we used multivariate linear models

fitted to a subset of data from the larger Musician-Control dataset used in Chapter 4.

Our outcome variables were modifications of the volume and surface area estimates

of Broca's area, as defined in Chapter 1, which took the total brain volume and the

volume of Broca's area into account, respectively. It is the complex nature of the

analysis, and the fact that interaction terms and correlation between outcomes were

considered which add novelty to our study.

To investigate the relationship between Broca's area and cognitive ability, we could

have simply extended the analysis conducted in the previous chapter considering

measurements of Broca's area (more specifically, volume and surface area) as

additional explanatory variables. However, if no significant association between the

Broca's area measurements and the cognitive ability scores are found, then this is all

the information that can be gained from that extension of analysis. By setting the

Broca's area measurements as the outcomes, then we were not only able to explore
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the possible links between Broca's area and cognitive ability, but also possible

relationships between Broca's area and gender, age and musical ability.

5.2 The dataset

We used a subset of the Musician-Control (MC) dataset in the analyses within this

chapter. The full MC dataset was not used due to volume and surface area estimates

of Broca's area being obtained for the subset only. This subset comprised of 19

musicians (9 females and 10 males) and 20 non-musicians (10 females and 10 males)

(i.e. 39 individuals in total). The full dataset contained data for just 9 female

musicians and hence, it was not possible for us to obtain a balanced dataset in terms

of male and female, musicians and non-musicians. It is useful here to point out that

there are no missing values in this dataset and further, more detailed information

about this dataset can be seen in Section 1.3.3. The covariates considered were:

• Gender (0 = male, 1 = female)

• Age (In years)

• Musician (0 = non-musician, 1 = musician)

• WAfS vocabulary scores

• WAfS arithmetic scores

• WAfS block design (visuospatial) scores

which were the outcome and explanatory variables considered in the analyses within

Chapter 4. Note that similarly to Chapter 4, we denote the factor musician in italics

so that it is easier to identify when we refer to the factor as opposed to a musician in

general.

The outcome variables considered were adjusted values of the volume and surface

area estimates of Broca's area. The volume estimates of Broca's area (henceforth

denoted by Broca's volume) were modified by dividing them by the total brain

volume of each participant and then multiplying by 100 (see Equation (1.3.3)). The

Broca's volume estimates relative to total brain volume (RelBA V) can be interpreted
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as expressing the volume of Broca's area as a percentage of the total brain volume.

We performed this adjustment because each individual's brain size may be

associated with the size of Broca's area (i.e. a scaling effect may occur). Broca's

area exists in each hemisphere of a person's brain, hence, estimates were obtained

and adjusted for each hemisphere of every participant included in the subset. To

investigate whether associations between Broca's area and the explanatory variables

existed across both hemispheres or just in one, both left and right hemisphere

RelBA V estimates were included as the two outcomes in our statistical models.

The surface area estimates of Broca's area (henceforth referred to as Broca's surface

area) were adjusted by dividing through by Broca's volume to the power of 2/3 (see

Equation (1.3.4)). We divided through by Broca's volume to the power of 2/3 to

correct for the fact that volume is a 3-dimensional measurement (in units of crrr'),

whereas surface area is only 2-dimensional (in units of em"). This new adjusted

variable, Broca's surface area relative to Broca's volume (RelBASA), was of interest

because it provides information about the convoluted nature of Broca's area, and

therefore, it can be regarded as a type of dimensionless shape factor. For similar

reasons as for including the RelBA V estimates from the left and right hemispheres,

we included the left and right RelBASA estimates as two outcomes in our models.

5.3 Statistical models

In this chapter we firstly fit a multivariate linear model to the dataset with left and

right RelBAV estimates as the outcomes. In Section 5.4 our fitted multivariate model

had a similar structure to that in Equation (2.1.11). In this multivariate model we had

n = 39 (i.e. the number of participants), d = 2 (i.e. the number of outcomes; left

and right RelBA V) and 1 explanatory variable (i.e. p - 1= 1; gender). From

Equation (2.1.11) we have that:

rr(l)]r* = lr(2) (5.3.1)
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is the (2n x 1) outcome vector with r(k) as previously defined, where k = 1,2

corresponds to the left and right RelBA V estimates, respectively. The design matrix

X* is a (2n x 2p) matrix such that:

(5.3.2)

with X as defined for Equation (2.1.6) where the explanatory variable was gender

(Xii). We denoted the (2p x 1) vector of coefficients as:

r[!_(l)]
[!_*= ll!.(2) (5.3.3)

where p(k) (k = 1,2) is as defined for Equation (2.1.11). We defined the (2n x I)

random error vector, §_*, to be:

(5.3.4)

with §_(k) (k = 1,2) as defined for Equation (2.1.11) such that §_*-N2n(Q,~) where

E = [~1 ~2] is a (2n x 2n) matrix with (n x n) matrices bk and b k ,
~1 ~2 1 2

(1 ::; kv k2 s d; k1 *- k2) also as previously defined (see Equation (2.1.11 ». The

variance for the random errors of the left and right RelBA V estimates can be written

as af and a1, respectively, with covariance between the two outcomes equal to a1,2.

In Section 5.5 we then focus on the associations between the RelBASA estimates

and the explanatory variables as named in Section 5.2. Our approach to this

investigation was, similarly to that for RelBA V as outcomes, to fit multivariate

linear models to the data structured as in Equation (2.1.11). The final, fitted

multivariate model included 2 explanatory variables (i.e. p - 1 = 2; gender and

musician), 2 outcomes (i.e. d = 2; left and right RelBASA estimates) and n = 39.

This model followed the structure in Equations (5.3.1 )-(5.3.4) apart from the

following differences:
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• k = 1,2 corresponded to the left and right RelBASA estimates, respectively.

• In Equation (5.3.2), X was defined as for Equation (2.1.6) but with

explanatory variables: gender (Xii) and musiciani xi-),

• af and af represented the left and right RelBASA random error variances,

respectively.

• al,Z was equivalent to the covariance between the two outcomes (left and

right RelBASA).

MLwiN version 2.16 was used to fit both multivariate liner models. R version 2.11.1

was the program of choice for constructing the plots for these models. Similarly to

the analyses of Chapter 4, Restricted Iteratively Generalised Least Squares was used

as the estimation method in fitting the models as described in Section 3.4.

5.4 Broca's volume estimates relative to total brain volume

In a similar approach to the investigation in Chapter 4 (i.e, using a stepwise method

of model selection), we fitted a multivariate linear model (MLM) to the subset of the

Musician-Control dataset containing Broca's area measurement estimates, as

discussed in Section 5.2. In this section, we focus on the associations between the

left and right volume estimates of Broca's area relative to the total brain volume

(RelBAV) and the explanatory variables described in Section 5.2. We used Wald

tests to determine whether the multivariate parameters were non-zero. In this section

the Wald test statistic followed a chi-square distribution with 2 degrees of freedom

(the number of outcomes, d = 2). The results from the final, fitted MLM can be seen

in Tables 5.1 and 5.2.

We can obtain information about the overall associations between explanatory

variables and the outcomes combined from a MLM which is not available from

multiple univariate linear models (ULMs). Furthermore, results from the models

based on the marginal distributions for each outcome as well as the covariances and

correlations between the outcomes were also obtained from the MLM. The overall
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multivariate coefficients, standard errors, confidence intervals and p-values for our

fitted model can be seen in Table 5.1.

No effect of gender was found, across both hemispheres combined, at the 5% level

of significance (p=0.06, Table 5.1). The p-value for gender was very close to a (i.e.

the critical significance level, 0.05) which means that at that significance level we

found no difference between males and females across both left and right RelBA V

estimates combined, on average. However, we would have found a significant

difference between males and females in RelBA V estimates if we had considered the

10% significance level as the level of a.

Fixed Effect Coefficient St. Error 95% CI p-value
Intercept 2.4 0.09 (2.2,2.5) <0.001
Gender -0.2 0.1 (-0.5, 0.005) 0.06

Table 5.1: Estimates oj the multivariate explanatory variable coefficients Jor the

multivariate linear model with left and right RelBA V estimates combined (including

the standard error of the corresponding estimators, the 95% confidence intervalsfor

the coefficients and the p-values).

The results from the models based on the marginal distribution of each outcome,

which allowed us to scrutinize possible associations between each RelBA V estimate

and explanatory variable individually, can be viewed in Table 5.2. Since we have

two outcomes, we needed to refer again to the rule of multiple comparisons from

Chapter 2, and also to obtain a Bonferroni-adjusted a-value. We used the same

modification as in Chapter 3 in Equation (3.4.4) and therefore, the new adjusted a-

value, rz", was set equal to 0.025.

Using the new Bonferroni-corrected critical significance value, we can see that the

coefficient for gender was not significant in either hemisphere (p=0.3 and p=0.04 for

the left and right hemispheres, respectively, Table 5.2). However, the gender

coefficient in the right hemisphere would have been statistically significant if we had
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set the original significance level to 10%, even after Bonferroni correction (i.e.

a* = 0.1/2 = 0.05). If we consider this gender difference between the RelBAV

estimates in the right hemisphere to be present in the dataset, then the model

suggests that females have a smaller Broca's volume relative to total brain volume

and in particular, a reduction by 0.2% on average. Although this may appear small,

the mean RelBA V for the right hemisphere was 1.2% (of the total brain volume) and

therefore, the difference in Broca's volume estimates between males and females

was around 17%.

Explanatory Variable Coefficient St. Error 95%CI _2_-value
Left Hemisp_here

Intercept 1.1 0.06 (1.0, 1.2) <0.001
Gender -0.08 0.08 (-0.2,0.08) 0.3

Right Hemisphere
Intercept 1.3 0.06 (1.2, 1.4) <0.001
Gender -0.2 0.08 (-0.3, -0.004) 0.04

Random Error Estimate St. Error 95%CI _2_-value
Variance (Left Hemisphere) 0.06 0.01 (0.04, 0.09) <0.001
Variance (Right Hemisphere) 0.06 0.01 (0.03, 0.09) <0.001

Covariance [Correlation] 0.01 0.01 (-0.006,0.03) 0.2(LeftlRight Hemispheres) [0.2] [0.2] [-0.1,0.5]

Table 5.2: Estimates of the explanatory coefficients and random error variance,

covariance and correlation terms for the multivariate linear model with left and

right relative Broca's volume estimates as outcomes (including the standard error of

the corresponding estimators, the 95% confidence intervals for the coefficients/terms

and the p-values).

Insufficient evidence was found to suggest that the correlation between the left and

right RelBA V estimates was· non-zero at the Bonferroni-adjusted 5% level of

significance (p=0.2, Table 5.2). The Pearson correlation coefficient between the left

and right RelBAV estimates were obtained directly from the raw data (see the line of

best fit in Figure 5.1). The Pearson correlation coefficient obtained from the raw data

was equal to 0.25 (p=0.1). Once again, this indicated that there was insufficient
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evidence to suggest that the correlation between the left and right RelBA V estimates

was non-zero.

Plot of Left RelBA V vs Right RelBA V
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Figure 5.1: Plot of left RelBA V against right RelBA V with a line of best fit.

5.4.1 Comparison between multivariate and univariate linear models

Since there were no significantly non-zero multivariate coefficients for any of the

explanatory variables in Table 5.1 and the correlation between the two outcomes was

also non-significant in Table 5.2, this indicates that two univariate linear models

(ULMs) with the same outcomes as the multivariate linear model (MLM) may be

sufficient to explain the variability within left and right RelBA V estimates. Table 5.2

shows the results of the models based on the marginal distributions for each

hemisphere independently and these results were almost identical to those obtained

from the ULMs. However, during the stepwise model selection process for the

ULMs, as described in Section 3.4, the coefficient for gender was not significant for

the left hemisphere and was therefore, not included in the final model for left

RelBAV.
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We discussed in both Sections 3.4.2 and 4.4.1 the approximation of a MLM with

independent outcomes to multiple ULMs. In our case we approximated the two

ULMs with left and right RelBA V estimates as outcomes by a MLM with the

covariance between the outcomes set equal to zero (i.e. 0'1,2 = 0 from Equation

(2.1.11)) and with the coefficient for gender set equal to zero in the left hemisphere.

This MLM with independent outcomes (independent MLM) was nested within the

MLM we fitted earlier in Section 5.4 (see Table 5.1 and 5.2) which had correlated

outcomes (correlated MLM), which meant that we were able to use a deviance test to

compare the fit of the models.

We have already stated that the deviance of a model is a goodness-of-fit statistic in

Section 3.4.2 and we defined it in Equation (3.4.5). For a full description of the

deviance test see Section 3.4.2. The deviances for the independent MLM (model 1)

and the correlated MLM (model 2) can be seen in Table 5.3, along with their

respective degrees of freedom.

Using the deviances for models 1 and 2 from Table 5.3, the deviance test statistic,

D*, can be written as:

D* = ID; - D~I = 11.786 - (-1.161)1 = 2.947 (5.4.1)

with D; equal to the deviance for the independent MLM and D~ representing the

deviance of the correlated MLM. The D* value of 2.947 with 2 degrees of freedom

(i.e, 73 - 71) corresponds to the X2 distribution with p=O.23. This is interpreted as

there being no evidence to suggest that the MLM explains more variability in the

data than the two ULMs, which fits well with our observations about the multivariate

explanatory coefficients and correlation mentioned earlier.
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# Model Deviance df
1 Independent MLM 1.786 73
2 Correlated MLM -1.161 71

Table 5.3: Table showing the deviances and degrees offreedom of the independent

MLM and correlated MLM with left and right RelBA V as outcomes.

5.4.2 Model diagnostics

We discussed a variety of statistics to assess the goodness-of-fit of a MLM in

Section 4.4.2. The R2 statistic was deemed to be the only one of the suggested

statistics which could give an indication of how well a model fits the data as opposed

to simply being able to compare the fit of two models. However, R2 is unobtainable

for a multivariate model. In Section 5.4.1 we showed that there was no difference

between two ULMs and our fitted MLM. Therefore, we can assess the fit of the

MLM by obtaining values of R2 for the ULMs. The R2 values for the ULMs was

found to be:

• R2 = 0.025 (ULM with left RelBAV as the outcome).

• R2 = 0.099 (ULM with right RelBA V as the outcome).

The ULMs explain just 2.5% and 9.9% of the total variability in the left and right

RelBA V estimates, respectively, according to the R2 statistics. This means that these

two ULMs are inadequate and poorly fitting to the data, and consequently the MLM

may also be a poor fit to the data, but all we can state is that the R2 statistic for the

MLM would be greater than or equal to the R2 values given above for the ULMs.

The standardized residuals can also be inspected to assess the goodness-of-fit of a

model. Firstly, we plotted the standardized residuals for each of the marginal

distributions from the MLM against each other (see Figure 5.2). This plot shows the

correlation between the outcomes as shown by the model. Our MLM in Table 5.2

gives us a non-statistically significant estimate of the correlation between the

outcomes and this is reflected in Figure 5.2 with little correlation indicated.
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Plot of Multivariate Sid Residuals
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Figure 5.2: Marginal distribution standardized residual plot for the left and right

RelBA V estimates from the multivariate linear model.

The model diagnostics for the models based on the marginal distributions of the

MLM are shown in the plots of Figure 5.3. The overall conclusion from the model

diagnostics was that there was not enough evidence to suggest that the model

assumptions stated in Section 2.1.1 were not met. The standardized residuals for the

left RelBAV estimates approximately follow a normal distribution (see Figures

5.3(c) and (e». Although there could a hint ofheteroscedascity in both Figures 5.3(a)

and (b) for the left and right RelBAV estimates, respectively, due to the small sample

size there is not enough evidence to clear state that the two sets of standardized

residuals did not meet the homoscedascity assumption. The normal-QQ plot in

Figure 5.3(f) shows that the standardized residuals for right RelBAV look

approximately normally distributed, but the histogram in Figure 5.3(d) looks

bimodal (i.e. not normally distributed). The indication of the standardized residuals

approximately following a normal distribution is also highlighted by the Anderson-

Darling normality test (for both outcomes, p=O.7) suggesting that there was

insufficient evidence to reject the assumption of normality.
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Plots of Fitted Values v Standardized Residuals
(a) Left RelBAV (b) Right RelBA V
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Figure 5.3: Diagnostic plots for the multivariate linear model with (a, c and e) left

and (b, d andf) right RelBA V as the outcomes.
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5.5 Broca's surface area estimates relative to Broca's volume

Following on from the investigation into the associations between the explanatory

variables and Broca's volume, one question which remains to be answered is

whether associations exist between the explanatory variables and Broca's surface

area. Our outcome variables for this section were the Broca's surface area estimates

relative to Broca's volume (RelBASA or relative Broca's surface area) for the left

and right hemispheres (see Section 5.2 for details). The methodology used was

identical to that for the volume estimates in Section 504. We used a stepwise model

selection process (see Section 304) and Wald tests (as defined in Section 504) to

check whether the multivariate parameters were non-zero. The fitted model can be

viewed in Tables 504 and 5.5.

The multivariate linear model allows the overall association between explanatory

variables and RelBASA across both hemispheres to be described. The results show

that there was a difference in RelBASA estimates between musicians and non-

musicians when both hemispheres are considered simultaneously (p=0.02, Table

504). Since the explanatory coefficient for musician in Table 504 was negative, then

this suggests that musicians have a smaller relative Broca's surface area (RelBASA)

than non-musicians, across both hemispheres combined. Not enough evidence was

found to reject the null hypothesis that there was no difference in the RelBASA of

both hemispheres combined between males and females (p=0.06, Table 504).

Fixed Effect Coefficient St. Error 95%CI p-value
Intercept 8.5 0.3 (7.9,9.1) <0.001
Gender -0.7 004 (-1.4,0.03) 0.06
Musician -0.9 004 (-1.6, -0.2) 0.02

Table 5.4: Estimates of the multivariate explanatory variable coefficients for the

multivariate linear model with left and right RelBASA estimates combined

(including the standard error of the corresponding estimators, the 95% confidence

intervalsfor the coefficients and thep-values).
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From the models based on the marginal distributions of the RelBASA estimates for

each hemisphere, we obtained results for the associations between each outcome and

the explanatory variables (see results in Table 5.5). We have two outcomes in our

model, hence, we need to adjust the a-value in the same way as in Section 5.4. Using

the Bonferroni correction, we obtained a new adjusted a-value, a* = 0.5/2 = 0.025

(see Equation (3.4.4)). The results show that there was a difference in the right

RelBASA between musicians and controls, but not in the left hemisphere (17=0.02

and p=0.04, respectively, Table 5.5). The coefficient for musician in the right

hemisphere was negative, suggesting that musicians have a smaller relative Broca's

surface area (RelBASA) than non-musicians in the right hemisphere. The coefficient

for gender was found to be significant, but only at the 10% Bonferroni-corrected a-

level in the left hemisphere (p=0.03, Table 5.5). There was not enough evidence at

the 5% level of significance to reject the null hypothesis that the coefficient for

gender in the RelBASA estimates of the left hemisphere was equal to zero. We

found no gender difference in the RelBASA estimates of the right hemisphere

(p=0.2, Table 5.5).

Explanatory Variable Coefficient St. Error 95%CI p-value
Left Hemisphere

Intercept 4.2 0.2 (3.9,4.5) <0.001
Gender -0.4 0.2 (-0.8, -0.04) 0.03
Musician -0.4 0.2 (-0.7, -0.03) 0.04

Right Hemisphere
Intercept 4.4 0.2 (4.0,4.7) <0.001
Gender -0.3 0.2 (-0.7,0.1) 0.2
Musician -0.5 0.2 (-0.9, -0.07) 0.02

Random Error Estimate St. Error 95% CI p-value
Variance (Left Hemisphere) 0.3 0.07 (0.2,0.5) <0.001
Variance (Right Hemisphere) 0.4 0.1 (0.2,0.6) <0.001

Covariance [Correlation] 0.3 0.07 (0.1,0.4)
(Left/Right Hemispheres) [0.7] [0.2] [0.3, 1.0] <0.001

Table 5.5: Estimates ofthe explanatory coefficients and random error variance,

covariance and correlation terms for the multivariate linear model with left and

right relative Broca's surface area estimates as outcomes (including the standard

error ofthe corresponding estimators, the 95% confidence intervals for the

coefficients/terms and the p-values).

179



We saw the correlation (r) between the left and right RelBASA estimates was

estimated by the model to be equal to 0.7 in Table 5.5 (p<0.001). This means that

there is strong evidence to reject the hypothesis that the correlation between the two

outcomes equals zero. A value of r = 0.7 is fairly strong, positive correlation. As a

comparison, we plotted the left and right RelBASA estimates against each other with

a line of best fit (see Figure 5.4). The Pearson correlation coefficient, p, can be

examined directly from the raw data and can be seen by the gradient of the line of

best fit in Figure 5.4. This plot shows that there is strong, positive correlation

between the left and right relative Broca's surface area estimates. Indeed, p was

estimated directly from the raw data and was also equal to 0.7 (p<0.001).

Plot of Left RelBASA vs Right RelBASA

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Left RelBASA

Figure 5.4: Plot of left against right, relative Broca's surface area with a line of best

fit.

5.5.1 Comparison between multivariate and univariate linear models

At this point in the investigation, the question to be answered was whether or not the

MLM is a better fit to the data than two ULMs. From the results in the previous

section, we saw that musician was statistically significant for the multivariate
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outcome (i.e. across both left and right RelBASA estimates combined; see Table 5.4)

and we had a non-zero correlation between the outcomes in Table 5.5. These two

observations suggest that a MLM may be more suitable than two ULMs since these

observations would not be able to be made from univariate models.

We discussed reasons for differences between ULMs and the models based on the

marginal distributions from the MLM in Section 4.4.1. Each ULM was fitted

independently using a stepwise model selection process (see Section 3.4).

Explanatory variables which were included in the MLM were not necessarily

included in the ULM for each outcome individually. This can be explained by the

fact that each explanatory variable in the MLM does not need to have a significantly

non-zero coefficient for each outcome. For example, it is possible for an explanatory

variable to be strongly associated with both the multivariate outcome, and one

individual outcome, but not associated with any other outcomes. In cases where

these variable coefficients were not significant for the models based on the marginal

distributions of the MLM they were not included in the ULMs (e.g. the coefficient of

gender had a p-value of 0.2 in the model based on the marginal distribution for right

RelBASA (see Table 5.5) and hence, this explanatory variable was not included in

the respective ULM).

What we expected to see was a univariate model for the right RelBASA estimates

including the intercept and musician as the only significant explanatory variables.

However, in our case, the univariate model obtained has the intercept and vocabulary

score as the statistically significant explanatory variables. The results for this

univariate model can be seen in Table 5.6. The negative coefficient of vocabulary

score meant that those participants that achieved higher vocabulary marks had

smaller estimated right relative Broca's surface area than individuals with lower

vocabulary scores (p=0.02, Table 5.6).
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Explanatory Variable Coefficient se error 95%CI p-value
Intercept 5.0 0.5 (4.1,6.0) <0.001

Vocabulary Test Score -0.08 0.04 (-0.2, -0.01) 0.02

Table 5.6: Estimates of the explanatory coefficients for the univariate linear model

with right RelBASA estimates as the outcome {including the standard error of the

corresponding estimators, the 95% confidence intervals for the coefficients and the

p-values}.

As described in Sections 3.4.2, 4.4.l and 5.4.1, a way of testing whether or not the

ULMs significantly differ from the MLM is to approximate the ULMs to a MLM

with independent outcomes and then use a deviance test. However, no direct

comparison can be made here because the multivariate model does not include the

right RelBASA univariate model from Table 5.6 as a sub-model. One of the

requirements of the deviance test is that the models are nested (McCullagh & Nelder,

1989). Consequently, a deviance test cannot be performed. However, it was noticed

that during the fitting of the ULM, both vocabulary score and musician had

significantly non-zero coefficients, but vocabulary score had the smaller p-value (the

difference in p-values between vocabulary score and musician was equal to 0.0007).

Following the inclusion of vocabulary score into the model, the factor musician then

became non-significant. However, in the multivariate model, the effect of musician

across both hemispheres was more significant than vocabulary score was. This can

be explained by musician also being significant in the left hemisphere whereas

vocabulary score was not. Thus, once musician was included in the ULM with right

RelBASA as the outcome, vocabulary score became non-significant. This suggests

that the variables musician and vocabulary score appear to be explaining some, if not

all, of the same variability within the data.

Figure 5.5 shows the vocabulary scores plotted against the right RelBASA estimates

with musician and control groups identified independently. We observed that

musicians obtained, on average, higher vocabulary scores than non-musicians, and

also that participants with higher vocabulary scores were associated with smaller
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right RelBASA than those participants with lower vocabulary scores. The

combination of these results suggest that the variability due to musicians and

vocabulary test scores in the right RelBASA estimates are confounded and are

therefore, explaining similar variability in the dataset. The almost parallel linear

regression lines for the musician and non-musician groups in Figure 5.5 shows that

there is little evidence of a significant interaction between musician and vocabulary

score in relation to right RelBASA.

Plot of Vocabulary Scores vs Right RelBASA by 'Musician'

-- Musicians
- ---x--- Non-musicians

x

---~ -- - ----- --
__ ----------.____.._~ ~x ~ - ~- --'-;------.--~---------------------.~ .----;----:------_. ----------.

N

6 8 10 12 14 16 18

Vocabulary Scores

Figure 5.5: Plot (~lWAIS vocabulary scores against right hemisphere Broca's

surface area relative to Broca's volume by musician with a line of bestfitfor

musicians and non-musicians.

In Sections 3.4.2 and 4.4.1 we discussed the approximation of a MLM with

independent outcomes (independent MLM) to a number of ULMs. In the case of the

ULMs in this section, we used the approximation to them of a MLM with correlation

between left and right RelBASA fixed as equal to zero (i.e. 0"1,2 = 0 from Equation

(2.1.11)) and with the coefficient of gender in the right hemisphere also set equal to

zero. We have explained that there is relatively little difference between the ULM

with vocabulary score as an explanatory variable in Table 5.6 and the ULM with
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musician as an explanatory variable, therefore, we included musician as an

explanatory variable for the right hemisphere in the independent MLM, and not

vocabulary score. This made it possible for us to perform a deviance test, as

described in Section 3.4.2 where the deviance of a model is defined as in Equation

(3.4.5) to check whether the MLM with correlated outcomes from Tables 5.4 and 5.5

(correlated MLM) was a better fit to the data than the independent MLM (i.e. the

ULMs). The deviances for these models, along with their respective degrees of

freedom can be seen in Table 5.7.

# Model Deviance df
1 IndependentMLM 139.960 71
2 Correlated MLM 110.952 69

Table 5.7: Table showing the deviances and degrees of freedom of the independent

MLM and correlated MLM with left and right relative Broca's surface area as

outcomes.

Using the results in Table 5.7, the deviance test statistic, D*, can therefore, be

calculated as:

D* = ID; - Dil = 1139.960 -110.9521 = 29.008 (5.5.1)

This test statistic (29.008) which has 2 degrees of freedom (the difference between

the 71 and 69 degrees of freedom of the two models), corresponds to a chi-squared

distribution with p<O.OOl. Therefore, there is evidence to suggest that the correlated

MLM is different to the independent MLM. Since the correlated MLM has the

smaller deviance then we can say that the correlated MLM is a better fitting model

than the independent MLM and thus also better than two ULMs.
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5.5.2 Model diagnostics

For the reasons given in Section 4.4.2 we were able to assess the goodness-of-fit of

the MLM by scrutinizing the R2 statistic for the two fitted ULMs with left and right

RelBASA as the respective outcomes. The value of R2 for each of the ULMs was:

• R2 = 0.198 (ULM with left RelBASA as the outcome).

• R2 = 0.162 (ULM with right RelBASA as the outcome).

These R2 are interpreted as proportions of the total variability which are explained

by the model. Therefore, we can see that 19.8% and 16.2% of the total variability in

the left and right RelBASA estimates are explained by the respective ULMs. In

Section 5.5.1 we showed that the MLM was a better fit to the data than the two

ULMs. Therefore, we know that the total variability in the outcomes explained by

the MLM will be greater than that obtained from the ULMs (i.e. greater than 19.8%

and 16.2% of the variability of left and right RelBASA, respectively, was explained

by the MLM).

We can further assess the goodness-of-fit of the MLM by exammmg the

standardized residuals to see if the model assumptions were met (see Section 2.1.1

for assumptions). Standardized residuals and fitted values for each of the models

based on the marginal distributions from the MLM were obtained. As an indicator of

the correlation between the two outcomes, we plotted the standardized residuals for

each outcome against each other (see Figure 5.6). it can clearly be seen in Figure 5.6

that the standardized residuals of each model based on the marginal distributions

from the MLM are positively correlated. The model estimates this correlation to be

equal to 0.7 (see Table 5.5).

185



Plot of Multivariate Std Residuals

<e
o 00

o
o

o
c 0

o 0 <e

-2 -1 o 2

Standardized Residuals (Left ReIBASA)

Figure 5.6: Marginal distribution standardized residual plot for the left and right

RelBASA estimates from the multivariate linear model.

A range of diagnostic plots were then constructed for the two models based on the

marginal distributions of the MLM (see Figure 5.7). The standardized residuals, for

both left and right RelBASA, approximately follow a normal distribution according

the histograms (see Figures 5.7(c) and (d) and the normal-QQ plots (see Figures

5.7(e) and (f)). The Anderson-Darling test for normality agrees with this observation

finding that there is no evidence to reject the null hypothesis that the standardized

residuals are normally distributed (p=O.7 and p=O.3 for left and right RelBASA,

respectively). Observing the standardized residuals in Figures 5.7(a) and (b), we can

see that they look to be slightly heteroscedastic. However, due to the small sample

size, this is not sufficient to state with conviction that the model does not meet the

assumption ofhomoscedasticity. Overall, the diagnostic plots suggest that the model

is a reasonably good fit to the data, and although the R2 statistics are poor, we can

only tell that the variability explained by the MLM is greater than those figures

showing the fit of the ULMs.
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Figure 5.7: Diagnostic plots lor the multivariate linear model with (a. c and e) left

and (b, d andf) right relative Broca's surface area as the outcomes,
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5.6 Within observer variability

The process by which Broca's area can be identified was explained in Section 2.3.2,

and the stereological methodology used to obtain estimates for the volume and

surface area of Broca's area was detailed in Sections 2.2.3 and 2.2.6, respectively.

The precision of these estimators, including a worked example for each case, was

also investigated in Chapter 2. Estimates of the variance of the volume estimator

applying Cavalieri sectioning and point counting were obtained for one of the sub-

structures of Broca's area in one hemisphere along with estimates for the

corresponding coefficients of error. Similarly for the surface area estimator,

estimates of the variance and coefficient of error due to the three levels of sampling

(systematic sampling of orientations, Cavalieri sectioning and cycloid grid

positioning) were obtained for a right hemisphere Pars Opercularis. Other possible

sources of variability among the volume and surface area estimates could include

variability due to:

• Observer variability

o within observer variability

o between observer variability

• Biological variation

• Other causes (measurement errors, magnetic resonance imaging (MRI)

limitations such as limited resolution, intensity inhomogeneities, partial

voluming, etc)

Some of these sources of variation could also lead to bias within the estimates.

Examples of this could be if the region of interest (RoI) is continually wrongly

demarcated to be larger than the actual RoI, or the observer continually counts too

many or too few points within the Rol. Itwould be possible to estimate any potential

bias by comparing estimates between observers. However, some of the other causes

such as measurement error and the MRI limitations could also lead to bias which

would be confounded in the actual magnetic resonance (MR) images and therefore,

extremely difficult to estimate. Multiple MR scanners and additional equipment

would he required to obtain estimates for some of these additional errors.
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In this subsection, the variability that will be extracted from the data will be the

within observer variability. Unfortunately, it was not possible to extract estimates for

the between observer and demarcation variation in this thesis. However, these are

areas for further work in an extension to the work reported in this thesis. The other

sources of variability, biological variation, measurement error and MRI limitations

are very difficult to estimate individually and for the purposes of this study they will

be grouped together as unexplained variability. To estimate the within observer

variability, varw.obs, two intra-rater studies were constructed.

The first intra-rater study involved the estimation of the volume of Pars Opercularis

(PO) and Pars Triangularis (PT) for both hemispheres of two participants by

observer CC (Chris Cheyne), repeated ten times. For each of the ten repeated

estimations, the same demarcations of the RoI and Cavalieri sectioning were used.

Only the positioning of the grid of points differed between each of the ten repeated

estimations. In each case, the grid of points was randomly placed on each Cavalieri

section. The result of this study meant that the variability between the volume

estimates, consisting of the within observer variability and the variability due to

point counting, was obtained.

For the second intra-rater study, PO and PT surface area of both the left and right

hemispheres were estimated for the same two participants investigated in the first

intra-rater study. This estimation was again obtained by observer CC, and repeated

ten times, with the same RoI demarcation, orientations and Cavalieri sectioning on

each orientation. In this study, only the positioning of the cycloid grid on each

Cavalieri section was different (randomly placed) for each of the ten repeated

observations. From this study we obtained the variability between the surface area

estimates which consisted of the within observer variability and the variability due to

cycloid grid sampling. The results for each of these two intra-rater studies can be

seen below.
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5.6.1 Intra-rater study 1- Volume

We obtained ten volume estimates (in cnr') of the two sub-structures of Broca's area

PO and PT in the left and right hemispheres of two participants which can be viewed

in Table 5.8.

Participant

1 2

LH LH RH RH LH LH RH RH

PO PT PO PT PO PT PO PT
1 6.54 7.04 5.92 7.54 3.23 4.18 6.23 2.63

2 6.43 6.52 5.95 7.36 3.16 4.37 6.09 2.68

3 6.63 6.71 5.90 7.87 3.05 4.45 6.08 2.75

==
4 6.45 7.20 5.86 8.03 3.00 4.37 6.28 2.66

e:::: 5 6.62 7.07 5.99 8.01 2.84 4.23 5.73 2.92=C 6 6.54 7.07 5.94 7.34 3.00 4.30 5.74 3.04~~..c
0 7 6.79 6.71 5.78 7.76 3.05 4.36 5.54 2.65

8 6.71 6.82 5.99 7.16 2.94 4.41 5.65 2.84

9 6.36 6.89 5.93 7.51 3.04 4.57 5.93 2.50

10 6.34 6.80 5.94 7.63 3.11 4.75 5.74 2.90

Table 5.8: Ten estimates from two participants of the volume (in em') of Pars

Opercularis and Pars Triangularis in both the left and right hemispheres.

As mentioned earlier, the variation of the volume estimates obtained from this study

consisted of two parts:

• Variation due to point counting

• Within observer variation
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Therefore, the total coefficient of error of the corresponding volume estimator can be

approximated as the square root of the sum of the square of the coefficient of error

due to point counting and the square of the within observer coefficient of error.

Denoting the estimator of the coefficient of error in lower case, ce, this reads:

(5.6.1)

where cepc(V) represents the estimator of the coefficient of error due to point

counting, and cew.obs(V) is equivalent to the within observer coefficient of error

estimator. The coefficient of error due to the within observer variability can then be

calculated by rearranging Equation (5.6.1) as long as the other two coefficients of

error are known. The unit size of the grid of points, U, used in this study is the same

as the one used in the worked example of Section 2.2.5 (i.e. u=3mm). Moreover, the

shape coefficients of PO and PT which, as discussed in Section 2.2.4, are required

for the estimation of the coefficient of error of the volume estimator due to point

counting and allow the variability of the shape of the regions of interest to be

accounted for (i.e. taking into account the irregularity of the Rolon each Cavalieri

section), were expected to be similar across individuals. Consequently, it was

assumed that the coefficient of error due to point counting will be similar to that in

the worked example (cepc(V) = 0.0155; see Equation (2.2.42)) and therefore, this

estimate was used in our calculation of the within observer coefficient of error. To

find the total coefficient of error, two components had to be derived from the

observations from the two brains. The first component was the mean of the mean

volumes across each brain:

(5.6.2)

- - - 10-
where Vi = Lt21 V1i!10 and Vz = Li=l Vzi!10 are the means for the two individual

brains for a particular sub-structure with Vii representing the volume estimate of the

ill! observation of the 1st brain (1:::; i :::;10) and VZi representing the volume

estimate of the ill! observation of the 2nd brain. We calculated the mean of mean
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volumes for PO and PT of each hemisphere by using Equation (5.6.2). The second

component is the mean variance of the volume estimator across the two brains:

(5.6.3)

where var(V1) is the variance of the volume estimator for the 1st brain, and var(Vz) is

the variance of the volume estimator for the 2nd brain. By applying Equations (5.6.2)

and (5.6.3) to Equation (2.2.9) the total coefficient of error of the volume estimator

can be written as:

(5.6.4)

For each of the four sub-structures of Broca's area, the total mean, variance and

coefficient of error of the volume estimator can be seen in Table 5.9.

Broca's Area Sub-structure E[(Vv v2)] var(V) ce(V)
LHPO 4.79 0.017 0.027
LHPT 5.64 0.036 0.034
RHPO 5.91 0.035 0.032
RHPT 5.19 0.056 0.046

Table 5.9: Mean (in em'), variance (in cm6
) and coefficient of error for the volume

estimator of each sub-structure of Broca's area in the left and right hemispheres.

The within-observer and point counting components are accounted for by both the

variance and coefficient of error. LH: Left hemisphere; RH: Right hemisphere; PO:

Pars Opercularis; PT: Pars Triangularis.

By rearranging Equation (5.6.1), the within observer coefficient of error for each

sub-structure of Broca's area in each hemisphere can be calculated by using:

(5.6.5)
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Given the results in Table 5.9 and the estimate of cepc(V) = 0.0155, from Section

2.2.5, then the coefficient of error due to the within observer variability for each sub-

structure of Broca's area were:

LHPO: cew.obS(V) = -V0.0272 - 0.01552 = 0.022 (5.6.6)

LHPT: cewoobS(V) = -V0.0342 - 0.01552 = 0.030 (5.6.7)

RHPO: cewoObS(V) = -V0.0322 - 0.01552 = 0.028 (5.6.8)

RHPT: cewoobS(V) = -V0.0462 - 0.01552 = 0.043 (5.6.9)

The within observer coefficient of error suggests that the contribution to the within

observer variability is greater in Pars Triangularis than in Pars Opercularis in both

hemispheres (3.0% and 4.3% for left and right PT, respectively, compared to 2.2%

and 2.8% for left and right PO, respectively). Equations (5.6.6)-(5.6.9) also suggest

that, given the set parameters of u and T from Equation (2.2.12) (i.e. the distance

between points on the point grid and the distance between Cavalieri sections), the CE

that is due to within observer variability is greater than the CE due to Cavalieri

sectioning and point counting combined (2.1% in Equation (2.2.43)), irrespective of

structure and hemisphere.

5.6.2 Intra-rater study 2 - Surface area

Similarly to Section 5.6.1, we obtained ten estimates, this time of the surface area (in

crrr') of the two sub-structures of Broca's area PO and PT in the left and right

hemispheres of two participants. Table 5.10 show the surface area estimates for these

two participants.
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Participant
1 2

LH LH RH RH LH LH RH RH

PO PT PO PT PO PT PO PT
1 3.50 3.56 3.11 3.95 1.85 2.15 3.11 1.71

2 3.35 4.10 3.12 3.87 1.92 2.64 3.14 1.94

3 3.53 3.99 3.56 4.35 1.85 2.58 3.30 2.07

4 3.56 3.95 3.32 3.83 2.00 2.30 3.23 1.92
1:1e:= 5 3.32 3.68 3.06 3.87 2.16 2.49 3.00 1.79=~ 6 3.41 3.26 3.14 3.80 1.95 2.40 3.14 2.13~
rIl
.Q
0 7 3.60 3.57 3.41 3.56 2.12 2.66 3.23 2.10

8 3.63 3.78 3.45 3.33 2.18 2.72 3.30 1.86

9 3.20 3.77 3.44 3.74 2.22 2.66 3.33 2.03

10 3.48 4.25 3.32 3.77 2.09 2.69 3.17 2.03

Table 5.10: Ten estimates from two participants of the surface area (in em') of Pars

Opereularis and Pars Triangularis in both the left and right hemispheres.

The variation of the surface area estimates obtained from this study comprised of

two components:

• Variation due to cycloid grid positioning

• Within observer variation

Therefore, the estimator of the total coefficient of error, ce( Sw), can also be

decomposed into two parts:

ce(Sw) = ce~yc(Sw) + ce!.obs(Sw) (5.6.10)

where cecyc(Sw) is the estimator of the coefficient of error of the surface area

estimator due to cycloid grid positioning, and the coefficient of error due to the
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within observer variability is denoted by cew.obs(Sw)' Furthermore, the calculations

necessary to obtain the estimate of the total coefficient of error for the surface area

estimator are similar to those for volume estimates in Equations (5.6.2) and (5.6.3).

Namely, the mean and variance:

(5.6.11)

(5.6.12)

- 10 - - 10 -where SWl = Li=l SWli /10 and Swz= Li=lSwzi/l0 are the means for a Broca's

area sub-structure surface area in brain 1 and 2, respectively, with SWli representing

the surface area estimate of the ilh observation of the 1st brain (1 :::;i :::;10) and SWZi

representing the surface area estimate of the ilh observation of the 2nd brain, var(SW1)

is the variance of the surface area estimator for the 151 brain and var(Swz) is the

variance of the surface area estimator for the 2nd brain. The application of Equations

(5.6.11) and (5.6.12) to Equation (2.2.9) gives the total coefficient of error for the

surface area estimator:

(5.6.13)

Table 5.11 shows the mean, variance and total coefficient of error across both brains,

for each sub-structure of Broca's area in each hemisphere. If ce( Sw) and cecyc (Sw)

are known then the coefficient of error due to the within observer variability can be

calculated by rearranging Equation (5.6.10).
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Region E[(SW1'SW2)] var(Sw) ce(Sw)
LHPO 2.74 0.019 0.050
LHPT 3.16 0.061 0.078
RHPO 3.24 0.020 0.044
RHPT 2.88 0.044 0.073

Table 5.11: Mean (in em'), variance (in em') and coefficient of errorfor the surface

area estimator of each sub-structure of Broca's area in the left and right

hemispheres. The within-observer and cycloid grid positioning components are

accounted for by both the variance and coefficient of error. LH: Left hemisphere;

RH: Right hemisphere; PO: Pars Opercularis; PT: Pars Triangularis.

The ratio of test area to the cycloid test line length (a/l), used in this intra-rater

study was the same as that used in the worked example (i.e. all = 3nun). Also, since

the total number of intersections across Cavalieri sections and orientations are

expected to be similar for all sub-structures of Broca's area across the hemispheres

of both individuals, the estimator VWi (an estimator of the variance due to the cycloid

grid test system; see Equation (2.2.71)) can be assumed to be constant across all

subjects. This means that it is assumed that the coefficient of error due to cycloid

grid positioning will be similar to that in the worked example and therefore, the

value ofcecyc(Sw) = 0.070 was used (see Equation (2.2.81)). Rearranging Equation

(5.6.10) means that the coefficient of error due to the observer can be calculated to

be:

(5.6.14)

Thus by using the values from Table 5.11 and the value of ceCYc(Sw) obtained in

Equation (2.2.81), the estimates of the within observer coefficient of error for each of

the left and right Broca's area sub-structures' surface area estimates were:

LHPO: cew.obs(Sw) = ",,0.0502 - 0.0702 = NaN (5.6.15)

LHPT: ceW.ObS(Sw)= ",,0.0782 - 0.0702 = 0.021 (5.6.16)
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RHPO: (5.6.17)

RHPT: (5.6.18)

We can clearly see that the within observer coefficient of error was 2.1% for PT in

the left hemisphere, and 3.4% for PT in the right hemisphere. These figures are

similar to those we obtained for volume (3.0% and 4.3%, for left and right PT,

respectively) suggesting that our estimates of within observer CE for surface area

were reasonable. However, we could not obtain estimates for the within observer CE

for right and left PO. This was because the estimate of CE due to cycloid sampling

was greater than the estimate of total coefficient of error. It was mentioned earlier

that the value of the CE due to cycloid sampling that we used came from the worked

example in Section 2.2.8. To estimate the variance of the cycloids system on each

Cavalieri section the Poisson model was used as described in Section 2.2.7. This

method tends to produce conservative estimates which, while reasonable as upper

limits, are not appropriate for extracting further CEs as in this intra-rater study. Other

examples of the overestimation of CEs using the Poisson approach can be seen in

Cruz-Orive & Gual-Arnau, (2002).

5.7 Concluding remarks

In this chapter we had two main objectives. The first objective was to investigate

possible links between Broca's volume estimates relative to total brain volume

(relative Broca's volume or ReIBAV) and an assortment of factors (musical ability,

cognitive ability, age and gender). Our second objective was to repeat the

investigation but using Broca's surface area estimates relative to Broca's volume

(relative Broca's surface area or ReIBASA) instead of volume estimates. To do this

we fitted two multivariate linear models with left and right hemisphere ReIBA V and

ReIBASA as outcomes, respectively. We also performed an intra-rater study to

obtain estimates of the within observer variability from our volume and surface area

estimates.
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From the multivariate model with left and right relative Broca's volume as the

outcomes we saw that none of the explanatory coefficients had an association to

either outcome. However, the closest explanatory coefficient to being statistically

significant was the coefficient of gender and particularly for the right hemisphere.

This suggests that there was some evidence (at the Bonferroni-adjusted 10%

significance level) that females had a smaller relative Broca's volume than males but

only in the right hemisphere. It is known from previous studies that the absolute

brain volume, for both white and grey matter, is larger for men than for women

(Smith et al., 2007). Although, since relative Broca's volume measurements are

adjusted for brain size differences between males and females, the associations

detected here between gender and relative Broca's volume must be influenced by

other factors.

Broca's area in the left hemisphere has previously been found to have no effect on

non-verbal tasks, but is strongly linked to the processing of language output

functions (Schaffler et al., 1993).However, other studies suggest that Broca's area is

involved in non-linguistic skills such as the processing of music, sequencing, action

recognition and visuospatial cognition (Koelsch et al., 2002; Schubotz et al.,

2002a,b; Hamzei et al., 2003; Sluming et al., 2007). Arithmetic processing requires a

combination of different types of knowledge apart from simple number processing

and calculation (e.g. reading and writing numbers in both digits and words; Zamarian

et al., 2009). Therefore, arithmetic processing comprises a number of non-linguistic

skills, which could be linked to Broca's area, specifically, in the right hemisphere.

There exists a general perception that females perform better linguistically compared

to males, and conversely that males perform better at spatial awareness and

mathematical tasks than females. If this perception is true, and if the non-linguistic

skills linked with Broca's area are associated more in the right hemisphere, then this

could be a reason as to why females have a smaller relative Broca's volume in the

right hemisphere, but not in the left hemisphere.

Our fitted multivariate linear model with left and right relative Broca's surface area

as outcomes detected that musicians had a smaller relative Broca's surface area, in

comparison to non-musicians, in the right hemisphere. Since there isn't any

difference in volume of Broca's area between musicians and non-musicians, then
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this indicates that mUSICianS have less convoluted Broca's area In the right

hemisphere, in comparison to controls.

In a similar result to that for the model with relative Broca's volume as the outcome,

we found that the coefficient for gender was not significant for RelBASA in either

hemisphere at the Bonferroni-corrected 5% significance level. However, we did find

the gender coefficient to be statistically significant at the Bonferroni-adjusted 10%

level of significance for left hemisphere relative Broca's surface area. The negative

coefficient suggested that females have a smaller relative Broca's surface area in the

left hemisphere than males. Since Broca's volume is already adjusted for then this

result indicates that Broca's area in females is less convoluted than in males, for the

left hemisphere only. In Chapter 4 it has already been pointed out that females

achieved better scores than males in the vocabulary test, and since language skills are

prominently used in the left hemispheric Broca's area, this reduction in relative

Broca's surface area might be associated with the increased ability in the cognitive

functions for which Broca's area is used.

From the intra-rater study for Broca's volume estimates, the coefficient of error due

to within observer variability was greater than both the estimated coefficient of error

due to Cavalieri sectioning and point counting combined. This result suggests that

the contribution due to the observer had a greater effect on the variability of the

volume estimates than the volume estimation techniques given the sampling

parameters in this study. We have identified that the demarcation problems may be

causing some additional within observer variability, as could a lack of experience at

identifying Broca's area from magnetic resonance images, which can only be built

up over time. Additional variability could be estimated from a future study with

multiple observers or it could be reduced by increasing the precision of the

demarcations of the Broca's area sub-structures, Pars Opercularis and Pars

Triangularis, for each participant.

The results from the intra-rater study for Broca's volume were not observed in the

intra-rater study for Broca's surface area estimates. In the surface area intra-rater

study, the within observer coefficient of error was observed to be 2.1% and 3.4% for

the left and right hemisphere PT estimates, respectively. However, for Pars
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Opercularis it was not possible to obtain an estimate due to the overestimation of the

coefficient of error due to cycloid sampling (see Cruz-Orive, 2002, for examples).

We can therefore, conclude that further work is necessary in the estimation method

of the coefficient of error of the surface area estimator due to cycloid sampling such

that less conservative values are given. This would then allow us to obtain more

reliable estimates for the within observer coefficient of error for our intra-rater and

inter-rater studies of future applications.
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CHAPTER 6

Missing Data

In the analyses described in Chapters 3 and 4, there were a number of children and

adults that were not actually included in the final results due to them having a

number of missing covariate or outcome data. In this chapter, we examine methods

for accounting for individuals with missing outcome data in statistical analyses. One

of these methods, Inverse Probability Weighting is then used to fit weighted

multivariate linear mixed and linear models to the National Child Development

Study dataset and the Musician-Control dataset used in Chapters 3 and 4,

respectively. We compared the results of the weighted models to the unweighted

models and conclude whether or not there was any evidence to suggest that missing

data had an effect on the conclusions drawn from the results in previous chapters.

6.1 Introduction

In two of our datasets we saw that a number of participants had missing covariates,

missing outcomes or both missing covariates and missing outcomes. The National

Child Development Study (NCDS) dataset contained information on 6,712 children

(36.2% of the total number of children) who had missing data (see Table 3.1). In

Table 4.1 we saw that the Musician-Control (MC) dataset included 20 adults (13.9%

of the total number of adults in the dataset) who had at least one covariate or

outcome value missing. In general, there are three categories of missing data that can

occur in a dataset (Tsiatis, 2006):

I. Missing Completely At Random (MCAR)

11. Missing At Random (MAR)

111. Not Missing At Random (NMAR)

Missing data are classified as MCAR if the probability of missingness does not

depend on any variables, irrespective of whether they are observed or unobserved

variables (Everitt & Dunn, 2001). If missing data are categorised as MAR then the
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probability of those data being missing is dependent upon at least one variable which

is included in the dataset, but is independent of all unobserved data (i.e. those

variables not included in the dataset) (Tsiatis, 2006). NMAR missing data is defined

as such when the probability of missingness is dependent upon some unobserved

data which is not included as variables in the dataset (Wayman, 2003). In both of our

datasets (the NCDS and MC datasets) we earlier assumed that the missing data was

MCAR. However, it may be the case that the data are MAR as we cannot be one

hundred percent sure that there are no underlying reasons connected to the outcome

measures why data were not collected for every individual included in both datasets.

We make the assumption that the missing data are not NMAR because, after

discussions with the investigators responsible for the data collection of the MC

dataset, and after searching the literature about the National Child Development

Study, there were no indications that the probability of participants having missing

outcomes was linked to any variables other than those already in the datasets. Also,

models which adjust for NMAR data are unverifiable (due to their dependability on

data which is unknown) and hence, their correctness is debatable (Tsiatis, 2006).

The statistical methods that we used in Chapters 3-5, multivariate linear mixed and

linear models, assumed that missing data were MCAR. These methods are called

deletion methods due to the fact that any individuals within the datasets that have at

least one missing covariate or missing outcome value are omitted from the analyses.

This type of method is reliable when the missing data are MCAR. That is, a deletion

method is most useful when the remaining data (after deletion) are representative of

the complete dataset (before deletion), otherwise bias will occur (Wayman, 2003).

If we assume the missing data to be MAR then there are a number of methods which

would adjust for the probability of missingness, of which two methods are:

• Multiple Imputation (MI)

• Inverse Probability Weighting (IPW)

Imputation procedures involve the missing variable values being replaced by

predicted values. There are a number of different types of imputation methods
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including replacement by the variable mean. We applied this approach (replacement

of missing variable values by the variable mean) to both the NCDS and MC datasets.

The results obtained by refitting the analyses from Chapters 3 and 4 were very

similar to those obtained when individuals with missing values were omitted. Indeed,

all statistical significance and interpretations were the same, with only p-values,

standard errors and coefficients changing slightly. An issue with basic imputation

methods, such as the replacement by variable mean method, is that conservative

variances within regression models can be produced. One imputation method that

overcame this issue was introduced in 1978 by DB Rubin and was called Multiple

Imputation (MI) (Schafer & Olsen, 1998). MI involves an iterative procedure to

obtain imputed values for each of the missing data, which is repeated a number of

times, resulting in a series of completed datasets (with the missing data imputed).

The completed datasets are then used simultaneously to obtain pooled regression

models. One of the advantages of MI over other imputation methods is that both the

between and within imputation variability is taken into account in the pooled data

(due to the multiple imputations and iterations obtained, respectively; Molenberghs

& Kenward, 2007). MI proves to be useful, and is efficient even when there is a

relatively high proportion (e.g. 30%) of missing data in the dataset (Schafer & Olsen,

1998). However, on closer inspection, the majority of the children with missing data

(36.2% (6,712) of the total number of children with at least one missing outcome or

covariate; Table 3.1) have multiple missing variables. This implied that the time

needed to calculate MI estimates for these missing covariates and covariates was

large.

After investigation using the Multiple Imputation by Chained Equations (MICE)

package in R it became apparent that for the estimates to converge larger numbers of

iterations and imputations were required. We also found that there was no clearly

defined way of fitting linear mixed models and multivariate models to the pooled MI

data. A method of exporting the pooled MI dataset to a text file for use in other

programs such as MLwiN or SAS was also unclear. Finally, to run the MI analyses

in R with the very large number of missing data (both outcomes and covariates)

would have taken a number of days or weeks for a computer with the computational

power available to us. Therefore, even though MI results in good estimates for the
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missing data, it was not feasible to explore the effect of MI using the Multiple

Imputation by Chained Equations (MICE) package in R at this time.

The Inverse Probability Weighting (IPW) method involves each individual with non-

missing outcomes in the dataset being given a specific weight. This weight is

associated with the probability that the participant, given his/her characteristics, does

not have a missing outcome. These weights are then included in regression analyses

performed on this dataset. The method for accounting for missing outcomes using

IPW does not use a time consuming iterative procedure like that needed for MI,

although the IPW estimates for the missing data can be inefficient relative to

likelihood-based analyses and can be sensitive to the model specification for the

probability of response (Carpenter, et al., 2006).

Given the impracticality of the MI method with the large amounts of missing data

that we had, we chose the IPW method to re-analyse the NCDS and MC datasets by

taking into account the missing outcomes.

6.2 Inverse probability weighting methodology

The methodology of inverse probability weighting (IPW) consists of several stages

which can be associated with each constituent word (i.e. inverse, probability and

weighting). The first stage, probability, involves the computation of the probability

of a participant having a non-missing outcome by constructing a logistic regression

model. In Chapter 2, the outcome variable in each model (univariate and

multivariate, linear and linear mixed model) was represented in matrix form by the

en x 1) vector r. In Section 6.1, we recalled that those individuals with missing

outcomes were omitted from the analyses reported in Chapters 3 and 4. When

referring to the complete dataset (the dataset which included all the participants with

and without missing outcomes) the outcome variable vector will be written as f such

that:

(6.2.1)
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is an (ntat x 1) vector with ntat equal to the total number of subjects in the

complete dataset and where f. is the ((ntat - n) x r) vector of missing outcomes.

Let ri be a binary variable for the ith subject (1 :::;i :::;ntat) such that it is equal to 1

when the outcome, Yi> is known and equal to 0 when the outcome is missing. This

binary variable can be written as an (ntat x 1) vector, R, where:

(6.2.2)

The variable r., since it is binary, can be described in terms of a binomial distribution

with probability of success for the ith individual (i.e. a non-missing outcome, ri = 1)

equal to Pi. Therefore, the probability of the ith individual having a missing outcome

can be written as (1 - pa. When a regression model is to be used and the outcome

variable is a binary variable (in this case, ri) then the type of regression model used

is a logistic regression model. Logistic regression does not assume that the

relationships between the outcome variable and the explanatory variables are linear.

The form of the linear model for the ith subject can be written as:

(6.2.3)

where {3o, {3l,...,!3p-l are the p explanatory coefficients and Xil, ... , Xi(p-l) are the

explanatory variables for the r" individual. Let z, = InC~~)then Equation (6.2.3)

can be written in matrix form as:

Z = X{3- - (6.2.4)

where?. is the (n" x 1) logistic outcome vector such that?. = [~lland n' is the
zn*

number of participants from the complete dataset with no missing covariates, X is an
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(n' x p) explanatory design matrix such that X = [~
Xl(p-l) 1

: and {3 is
Xn*1 Xn*(p-l) -

a (p X 1) vector of explanatory coefficients such that {3 = [ ~: j. By rearranging

{3P-l
the logistic regression model in Equation (6.2.3), the probability of the ith participant

not having a missing outcome, Pi> can be computed as:

(6.2.5)

The word inverse is included in the terminology IPW because the probabilities

computed in Equation (6.2.5) now have to be inversed. Since we know that Pi is the
probability that an individual does not have a missing outcome then individuals who

are more likely to have a non-missing outcome will have a probability Pi that is

closer to 1. Individuals who are more likely to have a missing outcome will have

probability Pi that is closer to O. However, we want to weight the data such that

participants who are more likely to have a missing outcome are given more weight

(i.e. a larger weight value), and those participants who are less likely to have a

missing value are given less weight. Therefore, the probability Pi is inversed such

that the weight for the ith individual, wi> can be calculated by:

(6.2.6)

It is also useful to note that whereas in the logistic regression model of Equation

(6.2.4) we had n* participants, we only use the weights for the n participants which

we have known outcomes for. This is because, as we will shortly show, we multiply

the outcomes by the weights in the weighted linear regression model.

The weighting part of IPW is now relevant as the weights for those subjects with

recorded outcomes, WI, ... , Wn, can be added into the multivariate analyses from

Chapters 3 and 4, such that they become weighted multivariate linear mixed and

linear models, respectively. For the multivariate linear models from Chapter 4, i
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represents subjects without a missing outcome or covariate (1 :::;i :::;n). The matrix

form for the weighted multivariate linear model (an extension of Equation (2.1.11»

can be written as (Xu & Eckstein, 1995):

r* = X*P* +~* (6.2.7)

where Y' IS the (dn x 1) outcome vector such that [
r(1)1

Y• - .- .
- y(d)

and y(k) =

X' IS a (dn x dp) design matrix such that X' = [: ~1and
IS a (dp x 1) vector of coefficients such

[
P(1)1

that P' = -: and p(k) =
- (d) -P

P6k)
a
1
(k)

I-' ,E* is the (dn x 1) error vector as defined in

a(k)
I-'p-l

Equation (2.1.11).

Since we adapted the matrix form for the multivariate linear mixed model in

Equation (2.1.13) for the analyses in Chapter 3 (see Equation (3.3.9» and because

these analyses were again performed in this chapter, the weighted multivariate linear

mixed model was expressed as an extension of Equation (3.3.9). Let i indicate the ith

local authority such that 1 :::;i :::;9 (g = 185) and j refers to the /h child for the ith

local authority where 1:::;j :::;n, and n = Lf=l ni· In this instance, the weights are

denoted as wij which can be interpreted as the weight corresponding to the t" child

of the ith local authority such that:

(6.2.8)
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where Pij represents the probability of the /h ..child for the ith local authority not

having a missing outcome. Hence, the weighted bivariate linear mixed model can be

written as:

Y = !ft* + ~* Q_*+ f (6.2.9)

~

k)1
= ~-(l)l -where the (2n x 1) outcome vector r = -:(2) with r(k) = : and y'.(k) =Y (k) ~

[

-- (k) 1WaYa
: (k = 1,2 is an indicator variable for the reading and transformed

__ (k)
WiniYini

= [X Qlmathematics test scores, respectively). The fixed effect design matrix X = Q KJ
is a (2n x 20) matrix (there are 10 explanatory variables in the model, including the

intercept) such that fi = [!l is a (n x 10) design matrix such that !t =

[

wa waxa WaXi(p-l) 1 ~(l)l
__ __ __: is an (n, x 10) matrix. The vector f3* = -(2) is
Win! WiniXa WiniXi(p-l) f3
the (20 x 1) vector of coefficients as defined for Equation (3.3.9). The random

effect terms ~* and Q_* along with the random error term f are also as defined for

Equation (3.3.9) as the weighting does not affect these terms. The IPW methodology

using different notation can be seen in Tsiatis, (2006) and Molenberghs & Kenward,

(2007).

6.3 National Child Development Study dataset

We re-analysed the National Child Development Study (NCDS) data using inverse

probability weighting (IPW) and the results are given in this subsection. Firstly, a

logistic regression model was fitted to the data, with the additional variable R as the

outcome. As stated in Section 6.1, 36.2% of the total number of children in the

NCDS dataset had at least one missing outcome or covariate (6,712 out of 18,558) as
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seen in Table 3.1. The resulting probabilities, Pij, were then obtained for each child

with complete data (i.e. no missing outcomes or covariates), using the associations

between the explanatory variables in the logistic regression model and the binary

variable R and a weighting (probability) variable Wij was calculated. These weights

were then applied to the linear regression models fitted to the data to obtain models,

which mayor may not differ to those seen in Chapter 3.

After comparing the model reported in Chapter 3 to the model in this subsection, if

they were found to be very similar, then this would suggest that the complete data

(data with no missing outcomes or covariates) provide a reasonable representation of

the total dataset (data including all subjects irrespective of whether they have

missing outcomes, missing covariates or no missing data at all; i.e. the missing data

can be assumed to be missing completely at random (MCAR)). If the models were

different, then there would have been evidence to suggest that the individuals with

missing data have similar characteristics that are not the same as those without

missing data. Therefore, the missing data should be treated as missing at random

(MAR) and require an adjustment to the standard linear regression procedure (e.g.

IPW).

The logistic regression models were considered with the variable R as the outcome

variable where:

when at least one of reading and mathematics test scores are missing
when both reading and mathematics test scores have been recorded

The explanatory variables considered were (see Chapters 1 and 3 for definitions):

• Gender

• Writing Hand (WH)

• Region

• Relative Hand Skill (ReIHS)

• Superior Hand (SH)
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Using a stepwise approach to model selection (as described in Section 3.4), five

possible logistic models were considered. While we were using the stepwise model

selection approach, we found that some explanatory variables appeared to be closely

related to each other in terms of the variability they were explaining in the variable

R. These close relationships meant that as we removed one variable which became

non-significant, another variable would become significant, which in tum would

cause another to become non-significant, and another variable would become

significant. This caused a loop in the stepwise selection process, which meant that

we had to use a different approach to selecting which model, out of the five

candidate models, best fitted the data. The explanatory variables which were

significant for each model can be seen in Table 6.1.

Our simplest model (model 1) included just one explanatory variable: region. The

most complex model (model 5) contained 11 explanatory variables including 5 first

order interaction terms and 1 second order interaction term. We decided to compare

these 5 models to investigate which model should be used to provide the weights for

the IPW method, by considering the goodness-of-fit statistics for each model (as

seen in Table 6.2). The model with the smallest AIC and BIC value is defined to be

the better fitting model, which in Table 6.2 looks to be model 5 (5810 and 5944,

respectively). However, the number of subjects omitted in models 1,2-4 and 5 differ

due to missing covariates. This means that the AIC and BIC cannot be directly

compared.

210



Model Explanatory Variables AIC BIC Residual
# Deviance

1 Region 8583 8614 8575

2 Region, ReIHS, Region x RelHS 5900 5960 5884

3 Region, ReIHS, Gender, Region x 5902 5991 5878ReIHS, Region x Gender

4 Region, ReIHS, Gender, SH, Region x 5902 6006 5874ReIHS, Region x Gender, RelHS x SH

Region, ReIHS, Gender, SH, WH,

5 Region x ReIHS, Region x Gender, 5810 5944 5774RelHS x SH, RelHS x WH, SH x WH,
RelHS x SH x WH

Table 6.1: Explanatory variables offive logistic models applied 10 the NCDS dataset

with goodness-of-fit statistics (AlC, BIC and residual deviance)for each model.

An analysis of deviance test (see Section 3.4.2 for more details) would normally be

used to test for differences between the models, but this is not possible for models 1

and 5 due to the differences in number of children included (i.e. differing numbers of

children with missing covariates). However, the deviance test can be performed for

models 2 to 4, since they have the same number of children included. The results of

these deviance tests can be seen in Table 6.2. No differences were found between the

three models (p=0.2 and p=O.l for the tests when comparing models 2 and 3 and

models 3 and 4, respectively, Table 6.2). Therefore, we can see that almost identical

information can be gathered about the logistic regression outcome variable R from

model 2 as can be obtained from models 3 and 4. Models 3 and 4 are more complex

and therefore, given the fact that they provide little extra information about R, we

can deem this added model complexity to be unnecessary. The AIC an BIC values in

Table 6.1 also add extra weight to this conclusion, since out of the three models, the

model with the smallest Ale and BIC values was model 2 (5900 and 5960,
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respectively). Even though we cannot compare models 1, 2 and 5 directly we can

observe a very simplistic comparison from Table 6.1. Model 1 is the most simplistic

model, containing only one explanatory variable and although we cannot gauge a

comparison using the deviance, AIC or BIC statistics we can suggest that this would

not be a suitable model. The unsuitability of model 1 was due to it being too

simplistic as well as model 2 being reasonable and simplistic enough to fit without

any issues. The most complex model (model 5) would be more difficult to

implement in the construction of the inverse probability weights due to the fact that it

contains eleven explanatory variables including six interaction terms. Therefore, we

decided to not use model 5, but instead opt for model 2. The results of this fitted

logistic regression model (i.e. model 2) can be seen in Table 6.3.

Test Residual Deviance df p-value
Model 2 vs Model 3 5884 - 5878 = 6.6 4 0.2
Model 3 vs Model 4 5878 - 5874 = 3.9 2 0.1

Table 6.2: The deviance test results between logistic regression models 2, 3 and 4.

Explanatory Variable Coeff. St. error 95%CI p-value
Intercept 2.7 0.1 (2.5,2.9) <0.001

Relative Hand Skill -0.006 0.005 (-0.02,0.005) 0.3
Northern England & Midlands Reference region

Southern England 0.07 0.2 (-0.3,0.4) 0.7
Wales -0.4 0.4 (-1.2,0.4) 0.3

Scotland 0.1 0.3 (-0.4,0.7) 0.7
Northern England & Midlands x Reference regionRelative Hand Skill
Southern England x Relative 0.006 0.01 (-0.01,0.02) 0.5Hand Skill
Wales x Relative Hand Skill 0.06 0.02 (0.01,0.1) 0.01

Scotland x Relative Hand Skill 0.02 0.02 (-0.009,0.06) 0.2

Table 6.3: Estimates of the explanatory coefficients for the logistic regression model

(model 2) with R as the outcome (including the standard error of the corresponding

estimators, the 95% confidence intervals for the coefficients and the p-values).
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Using the results from Table 6.3, the weights were calculated as in Equation (6.2.8).

These weights were then applied in the linear mixed effects models fitted to the

NCDS dataset. The stepwise model selection method was utilised in choosing the

models, as described in Chapter 3. The resulting model from this process can be

seen in Tables 6.4 and 6.S. The model takes the same structure as that in Chapter 3

(see Tables 3.2 and 3.4, respectively). The explanatory variable coefficients,

standard errors, 9S% CIs and p-values are also very similar, with most values very

close to those before the weighting was applied. Indeed, the interpretation of the

model is unchanged with those variables significant in Section 3.4.1 also being

significant with the IPW model in Tables 6.4 and 6.S. Associations between the

linear combination of the two outcomes (reading and transformed maths scores; i.e.

the multivariate outcome) can be seen in Table 6.4. To give an idea of how close the

results were, from the IPW weighted multivariate model the coefficient for superior

hand x writing hand interaction was 13.S (9S% CI: (8.3, 18.6), p<0.001; Table 6.4)

and for the unweighted model it was 13.2 (9S% CI: (8.1, 18.4),p<0.001; Table 3.2).

That is, the change in coefficient was approximately equal to 2.3%, and made no

difference to the interpretation of the results. Other comparisons between the

coefficients, standard errors, 9S% CIs and p-values of the two models have similar

differences which make no difference to the overall interpretations from Section

3.4.1.

Similarly to the results of the multivariate outcome, the results from the individual

models based on the marginal distributions of the weighted multivariate model were

very similar to those for the multivariate model of Section 3.4.1, with the

interpretations from Chapter 3 remaining unchanged. For example, in Table 6.S the

coefficient for writing hand in the reading scores was -S.1 (9S% CI: (-8.6, -1.6),

p=0.004) whereas from the unweighted multivariate model we obtained a coefficient

of -S.O (9S% CI: (-8.S, -1.S), p=O.OOS; Table 3.4). This change in coefficient

represented an approximate decrease of 2%, and did not affect the interpretation of

the result.
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Fixed Effect Coefficient St. Error 95%CI _£_-value
Intercept 52.3 0.7 (50.8,53.7) <0.001

Relative hand skill 0.6 0.07 (0.4,0.7) <0.001
(Relative hand skill)" -0.01 0.002 (-0.014, -0.008) <0.001
Superior hand (SH) -7.8 1.4 (-10.6, -5.1) <0.001(0: Right, 1:Left)
Writing hand (WH) -6.5 2.1 (-10.6, -2.3) 0.002(O:Right, 1:Left)

SHxWH 13.5 2.6 (8.3, 18.6) <0.001
Gender -0.02 0.4 (-0.8,0.7) 0.9(0: Male, 1:Female)

Northern England &Midlands Reference Region
Southern England 1.8 0.5 (0.9,2.8) <0.001

Wales -0.3 1.0 (-2.2, 1.6) 0.8
Scotland 0.1 0.7 (-1.2, 1.5) 0.8

Table 6.4: Estimates of the multivariate fixed effect coefficients for the IPW weighted

multivariate linear mixed model with both the reading and mathematics scores

combined (including the standard error of the corresponding estimators, the 95%

confidence intervals for the coefficients and the p-values).

When comparing the random effect and random error, variances, covariances and

correlations we also saw that the estimates were very similar between the two

multivariate models (in Tables 3.4 and 6.5). One of the slight differences was that

the correlation between the two outcomes at the local authority level (i.e. from the

random effects) was equal to 0.95 for the weighted model compared to 0.97 for the

uncorrelated model (a change of just 2.1%; bothp<O.OOI; see Tables 6.5 and 3.4,

respectively) Also, in Table 3.4 it was seen that 5.6% of the total variation not

explained by the fixed effects in the reading scores and 4.5% of the total variation

unexplained in the transformed mathematics scores were accounted by the variability

across subjects due to local authority. For the inverse probability weighted model in

Table 6.5, this variability due to local authority accounted for 5.4% and 4.8% of the

total unexplained variation in the reading and transformed mathematics scores,

respectively.
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Fixed Effect Coeff. St. Error 95%CI p-value
Reading Test Scores

Intercept 42.2 0.6 (41.0,43.4) <0.001
Relative hand skill 0.4 0.06 (0.3,0.5) <0.001

(Relative hand skill)L -0.009 0.001 (-0.012, -0.006) <0.001
Superior hand (SH)

-6.3 1.2 (-8.6, -4.0) <0.001(0: Right, 1: Le.ft)
Writing hand (WH) -5.1 1.8 (-8.6, -1.6) 0.004(OtRight, I :Left)

SHxWH 10.7 2.2 (6.4, 15.0) <0.001
Gender

0.1 0.3 (-0.6,0.7) 0.8(0: Male, I: Female)
Northern England & Midlands Reference Region

Southern England 1.7 0.4 (0.9,2.4) <0.001
Wales -0.7 0.8 (-2.3,0.9) 0.4

Scotland -0.4 0.6 (-1.5, 0.8) 0.6
Transformed Mathematics Test Scores

Intercept 10.0 0.1 (9.8, 10.3) -
Relative hand skill 0.1 0.01 (0.1,0.2) <0.001

(Relative hand skill)L -0.002 <0.0005 (-0.003, -0.001) <0.001
Superior hand (SH)

-1.6 0.3 (-2.1,-1.0) <0.001(0: Right, 1: Le.ft)
Writing hand (WH)

-1.3 0.4 (-2.2, -0.5) 0.002(O:Right, I .Left)
SHxWH 2.7 0.5 (1.7,3.8) <0.001
Gender -0.1 0.08 (-0.3,0.03) 0.1(0: Male, 1: Female)

Northern England & Midlands Reference Region
Southern England 0.2 0.09 (0.03,0.4) 0.02

Wales 0.4 0.2 (-0.009,0.8) 0.06
Scotland 0.5 0.1 (0.2,0.8) <0.001

R.andom Effect Est. St. Error 95%CI p-value
Variance (Reading Scores) 18.2 3.1 (12.1,24.3) <0.001

Variance (Trans. Maths Scores) 0.9 0.2 (0.6, 1.3) <0.001
Covariance [Correlation] 3.9 0.7 (2.6, 5.2)

<0.001(Reading/Trans. Maths Scores) [0.95] [0.2] [0.63, 1.00]
Random Error Est. St. Error 95%CI p-value

Variance (Reading Scores) 318.3 5.0 (308.4, 328.2) <0.001
Variance (Trans. Maths Scores) 18.6 0.3 (18.0,19.1) <0.001

Covariance [Correlation] 56.8 1.1 (54.7,58.9)
(Reading/Trans. Maths Scores) [0.74] [0.01] [0.71,0.77] <0.001

,
Table 6.5: Estimates of the fixed effects coefficients and the random effect and

random error variance, covariance and correlation termsfor the IPW weighted

multivariate linear mixed model with reading and transformed maths scores as

outcomes (including the standard error of the corresponding estimators, the 95%

confidence intervals for the coefficients/terms and the p-values).
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The fact that the model from Section 3.4.1, fitted using a deletion method which

omits all individuals with missing outcomes or covariates gave such similar results

to our model in this subsection, fitted using IPW which takes individuals with

missing outcomes into account, suggests that the missing outcomes may be MCAR.

That is, the missing outcomes do not depend on any variables either observed or

unobserved. One way of checking this is by using Mann-Whitney tests and chi-

square tests to test the hypothesis that there are no differences in means and

numbers, respectively, between the group with missing outcomes and the group with

non-missing outcomes. We used these non-parametric tests due to our outcome

variable (missing/non-missing) being binary. The p-values for the Mann-Whitney

and chi-squared tests can be seen in Table 6.6. Our results from these tests show that

apart from UK region, there was no evidence to suggest that there was a difference

between left and right superior handers, left- and right-hand writers, males and

females or between the mean relative hand skill value of each group (p=0.8, p=0.9,

p=0.08 and p=0.6, respectively; Table 6.6). However, there was a difference in the

numbers of individuals from each UK region between the missing and non-missing

outcome groups (p=0.005, Table 6.6).

Explanatory Variable p-value
Chi-square tests

Superior Hand 0.8
Writing Hand 0.9

Gender 0.08
UK Region 0.005
Mann- Whitney test

Relative Hand Skill 0.6

Table 6.6: Estimated p-valuesfor the Mann-Whitney and chi-square tests between

the missing and non-missing outcome groups for each explanatory variable in the

multivariate linear mixed model with reading and transformed maths scores as

outcomes.

Table 6.7 shows the numbers of individuals in each UK region by the missingness of

outcomes. Although there was a slight difference in the percentage of the total
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groups with the largest being for the Northern England and Midlands region (53.3%

of the non-missing group compared to 57.1% of the missing group; a difference of

3.8%; Table 6.7), they were not large. Therefore, an explanation as to why this

difference is being highlighted by the chi-square test as being significant is down to

the fact that the dataset is so large, and thus small differences are more likely to be

found by hypotheses tests. Considering the small differences between UK regions

and the lack of differences in the other explanatory variables, then this may be why

the effect of missing outcomes in the IPW model is very small in comparison to the

unweighted model.

UK Region
Outcome Northern England Southern Wales Scotland Total

& the Midlands England
Not 7534 4339 767 1483 14123

Missing (53.3%) (30.7%) (5.4%) (10.5%)

Missing
704 379 50 101 1234(57.1%) (30.7%) (4.1%) (8.2%)

Total 8238 4718 817 1584 15357

Table 6.7: Breakdown of the numbers in each UK region of individuals with missing

and non-missing outcomes.

We saw that the results from the IPW model were very similar to the unweighted

model. The similarity between models meant that the diagnostic plots for the IPW

multivariate model were also very similar to those in Figures 3.4 and 3.5. Therefore,

we can see that the model is a reasonable fit to the data, and that the fit was better to

the reading scores than for the transformed maths scores.

6.4 Musician-control dataset

In Chapter 4, the musician-control (MC) dataset was analysed without adjusting for

missing data. The missing data for this dataset can be seen in Table 4.1. To re-

analyse this data, taking the missing outcomes into account, the IPW method was
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utilised. A logistic regression analysis was conducted first. Similar to the definition

in Section 6.2, the variable ri was the outcome variable for the logistic regression

analysis where:

_ {O when at least one verbal, arithmetic and visuospatial test score was missing
ri - 1 when scores for the verbal, arithmetic and visuospatial tests were recorded

for the ith subject. The explanatory variables to be considered not only included those

considered for the unweighted analyses in Chapter 4, but also some other

characteristic variables related to each subject. These variables were:

• Gender (O=male; 1=female)

• Age (in years)

• Musician (O=non-musician; 1=musician)

• Height (in em)

• Weight (in kg)

Please note that from this point onwards we describe the factor musician in italics to

distinguish it from a musician (i.e. someone who plays a musical instrument). We

commenced the logistic regression analysis using a stepwise model selection method

(as described in Section 3.4). However, after considering all variables, it was found

that the only suitable logistic regression model was the model with the intercept only

(i.e. none of the variables mentioned above were statistically significant). This can

be interpreted as there being no significant associations between any of the observed

explanatory variables within the dataset and the probability of missingness in terms

of an individual's outcome. This implies that the missing outcomes should be

regarded as MCAR. Therefore, the unweighted model in Section 4.4 was identical to

the IPW model since all participants were given a constant weight.

We performed a similar check to the analyses in Section 6.3, by testing for

differences between the missing and non-missing outcome groups in terms of the

explanatory variables, using Mann-Whitney and Fisher exact tests. We used Fisher

exact tests instead of chi-square tests because at least one combination of male or

female, musician or non-musician for either the missing or non-missing groups,
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contained less than or equal to 5 individuals. The p-values from these tests can be

seen in Table 6.8. The Mann-Whitney tests that we fitted for the continuous

variables all suggested that there was no evidence to reject the null hypothesis which

was equality of means between the missing and non-missing outcome groups (p=0.3,

p=0.2 and p=0.7 for age, height and weight, respectively, Table 6.8). The Fisher

exact tests suggested that there was no difference in the proportion of males and

females between the missing and non-missing groups (p=0.2, Table 6.8). However,

Table 6.8 did show a significant result for the Fisher exact test of musician

(p=0.007). This implies that there was a difference in the proportion of musicians

and non-musicians between the participants with missing outcomes and those

participants without missing outcomes.

Explanatory Variable p-value
Fisher exact tests
Musician 0.007
Gender 0.2

Mann-Whitney tests
Age 0.3

Height 0.2
Weight 0.7

Table 6.8: Estimated p-valuesfor the Mann-Whitney and Fisher exact tests between

the missing and non-missing outcome groups for each explanatory variable

considered/or the logistic regression modelfrom the Me dataset.

Table 6.9 shows the breakdown of musician by missingness groups and we can

easily see that there are no musicians with missing outcomes. We stated previously

that there were no explanatory coefficients which were significantly non-zero in the

logistic regression model with R as the outcome and this included the coefficient for

musician. The p-values for the coefficients of musician in the models based on the

marginal distributions of the MLM ranged from less than 0.001 up to 0.01 for all

outcomes. Since musician is strongly associated with the three outcomes, it suggests

that, given the additional 18 non-musicians with missing outcomes (around 17% of

the number of non-musicians with non-missing outcomes), the change in the p-

219



values for musician would, in all likelihood; not be enough to alter the final

interpretations from the model.

Outcome Musician (Factor) TotalNon-Musicians Musicians

Not Missing 88 36 124(71.0%) (29.0%)

Missing 18 0 18(100%) (0.0%)
Total 106 36 142

Table 6.9: Breakdown of the numbers in the musician and non-musician groups of

individuals with missing and non-missing outcomes.

6.5 Concluding remarks

The aim of this chapter was to investigate the possible effect of missing data on the

results from the analyses conducted in earlier chapters of the thesis. We considered

multiple imputation (MI) and inverse probability weighting (IPW) as two methods

for adjusting for missing outcomes. MI was deemed to be too time consuming given

the amount of children with, not only missing outcomes, but missing covariates as

well. The method of IPW included the fitting of a logistic regression model to

explore which explanatory variables were associated with a binary variable stating

whether an individual had a missing outcome or not. From this logistic regression

model we obtain probabilities of missingness for each individual and weights are

calculated which are then used to fit weighted multivariate linear mixed or linear

models.

We firstly performed the IPW method on the National Child Development Study

(NCDS) dataset. From our IPW multivariate linear mixed model we obtained

coefficients, standard errors, 95% confidence intervals and p-values which were

highly similar to the unweighted model in Chapter 3, for both the multivariate

outcome and for each outcome based on the marginal distributions of the

multivariate model. Such was the similarity that although changes were
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approximately within a range of 2%, all of the interpretations for each of the fixed

effects remained the same as those for the analyses in Chapter 3. We then

investigated whether we could find any characteristics from the dataset itself in terms

of differences between the group of individuals with missing outcomes and the

group who had no missing outcomes. We performed chi-squared and Mann-Whitney

tests on the data and found that the only variable which differed between the two

groups was UK region. However, even though this difference was statistically

significant there was only a maximum difference of 3.8% in one of the regions,

between the two groups (Northern England and the Midlands). This suggested that

there was no evidence of differences between the missing and non-missing outcome

groups for the other explanatory variables (relative hand skill, superior hand, writing

hand and gender) and possibly not a biologically significant difference between the

groups in term of UK region. Therefore, we suggested that the missing outcomes

were missing completely at random (MCAR). MCAR missing data do not rely on

any variables in the dataset or any unobserved data. We can also say that the

individuals with missing outcomes had very little overall effect on the original

analyses of this dataset from Chapter 3.

We then used the IPW method to consider the effect of individuals with missing

outcomes on the analyses in Chapter 4, based on the musician-control (MC) dataset.

Our fitted logistic regression model contained the intercept as the only explanatory

variable. Therefore, the weights applied to the individuals in the data were constant,

meaning that the IPW multivariate model was identical to the unweighted

multivariate linear model fitted in Chapter 4. We investigated this result by

performing Fisher exact and Mann-Whitney tests to test for differences between the

groups with missing and non-missing outcomes for each explanatory variable (age,

height, weight, musician and gender). The only result that was significant was for

musician due to the fact that no musicians, out of 36, had missing outcomes. All 18

of the participants with missing outcomes were non-musicians. However, we

concluded that since the number of controls with missing outcomes represented

approximately 17% of the total number of controls, this is unlikely to have altered

the strongly significant p-values in the MLM for musician. Therefore, the

interpretation obtained from the MLM would not have changed. Thus, we can

assume the missing outcomes to be MCAR and say that there was no evidence to
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suggest that individuals with missing outcomes had an effect on the results of the

original analyses in Chapter 4.
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CIIAPTER 7

Discussion

In this chapter we firstly recap the pathway through the thesis before focussing on

the results obtained in detail. We discuss the interpretation of the results from each

chapter and suggest possible explanations for these results. Limitations of the

analyses that we undertook are then discussed. We consider improvements which

could have increased the reliability and increased the scope of our investigation.

These improvements could be implemented in a future study. The final section of

this chapter summarises the conclusions that we obtained from our investigations.

7.1 Introduction

We set out six main objectives in Chapter 1, which were to be investigated in this

thesis. These objectives mainly revolved around associations between cognitive

ability scores, volume and surface area estimates of Broca's area and a range of other

factors in both children and adults. One thing that all the objectives had in common

was that in each case, we wanted to determine if there were any benefits of applying

multivariate linear and linear mixed models to the datasets, as opposed to univariate

models, in obtaining results for the objectives of the study.

We assessed the possible links between two cognitive ability scores (reading and

mathematics) and handedness, gender and UK region in a dataset of II-year old

children (see Chapter 3). In Chapter 4, multivariate models were fitted to a dataset

containing adults in order to complete the objective relating to adults. The

relationships between three cognitive ability test scores (verbal, arithmetic and

visuospatial) and three explanatory variables (musical ability, gender and age) were

considered.

Chapter 5 took a slightly different approach to the previous two chapters such that

the cognitive ability scores were not included in the models as outcome variables,

but as explanatory variables. In Section 5.4, we fitted a multivariate model with
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volume estimates of Broca's area relative to the total brain volume (relative Broca's

volume) in both the left and right hemispheres as outcomes to identify possible

associations between relative Broca's volume and a variety of explanatory variables

(musical ability, gender, age and the three cognitive ability scores as defined in

Chapter 4). We investigated similar associations in Section 5.5 between surface area

estimates of Broca's area relative to the volume estimates of Broca's area (relative

Broca's surface area) and the same six explanatory variables as in Section 5.4. The

examination of the links including relative Broca's surface area involved

multivariate models fitted to the dataset which had two outcomes corresponding to

the left and right relative Broca's surface area estimates (i.e. an estimate for each

hemisphere).

Missing data were taken into account in the analyses for both children and adults in

Chapters 3 and 4, respectively (i.e. some individuals had missing outcomes, missing

covariates or both). However, when we fitted multivariate linear mixed and linear

models the individuals with missing data were omitted. In Chapter 6, we applied the

inverse probability weighting method to both datasets. The use of this method

allowed multivariate models to be fitted while adjusting for missing outcomes,

although individuals with missing covariates were still omitted. Results obtained

using the inverse probability weighting method were then compared to those stated

earlier from the analyses in Chapters 3 and 4.

7.2 Results and interpretations

The results that we obtained for each objective were described and interpreted

separately within each chapter. This section contains a number of subsections

relating to the interpretation of results for analyses based around individual

objectives. Although not explicitly stated as an objective, a theme that runs through

all the chapters and objectives was one of testing whether a multivariate model gives

a better fit to the data. We start with results from this comparison (multivariate

models versus univariate models) in Section 7.2.1.
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7.2.1 Multivariate versus univariate

Three different datasets were used in the analyses of Chapters 3-6. The mam

differences between these three datasets were that one was a dataset of children, one

comprised of adults, and the third was a dataset of adults which included volume and

surface area estimates of Broca's area of each participant (see Chapter I for more

details). In each case, multivariate linear mixed models (MLMMs) or multivariate

linear models (MLMs) were applied.

Multivariate models are applicable where there are multiple dependent outcomes

which are measured at the same time. When a dataset has multiple outcome variables

there are two approaches to the statistical analyses. One approach is to perform

multiple independent univariate analyses with each dependent variable as the

outcome. However, it can be considered equivalent to performing multiple

comparisons on the same data which reduces the power of the tests (Littell et al.,

2002). The second approach is to include all the outcomes in one multivariate model.

All the information that can be gained from the univariate models can be obtained

from the multivariate model, in addition to associations between the explanatory

variables and the outcome variables combined, and the correlation between

outcomes. However, the multivariate models are more complex, and therefore

require more computational power. It has been reported that reasons for using

univariate models as opposed to a single multivariate model when investigating

multiple outcomes include (Huberty & Morris, 1989):

1. Low correlation between outcome variables.

Small number of outcome variables.

Small number of data.

11.

Ill.

In this thesis, the datasets used ranged in size from 39 participants in the dataset

containing Broca's area volume and surface area estimates, to 18,558 children in the

National Child Development Study dataset. Also, there were either 2 or 3 outcome

variables for each set of analyses.
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In Chapter 3, we found that there was strong evidence to suggest that the reading and

mathematics test scores of l l-year old children from the National Child

Development Study (NCDS) were positively correlated at both the individual and

local authority levels (r = 0.74, P < 0.001 and r = 0.97, P < 0.001, respectively).

The strong, positive correlation at the individual level implies there was evidence

pointing toward children with high or low scores in one of the tests obtaining

equivalently high or low scores on the other test. Similarly, the strong, positive

correlation at the local authority level suggested that a given local authority had, in

general, similar proportions of pupils performing well on both tests, and conversely,

of pupils doing badly on both tests.

We approximated the two univariate models by a MLMM with independent

outcomes (independent MLMM). A deviance test was then constructed to compare

the independent MLMM against our fitted MLMM with correlated outcomes

(correlated MLMM). The correlated MLMM was shown to be significantly different

to the independent MLMM, and therefore, the univariate models as well (p <
0.001). Furthermore, we also saw that the deviance of the correlated MLMM was

smaller than the deviance of the independent MLMM, which demonstrated that our

fitted multivariate model was a better fit to the data than two independent univariate

models.

The correlation between the vocabulary, arithmetic and visuospatial scores in

Chapter 4, observed directly from the data were estimated to be equal to 0.5 between

the arithmetic and visuospatial scores, 0.4 between the vocabulary and arithmetic

scores and 0.3 between the vocabulary and visuospatial scores. The multivariate

linear model fitted gave conservative estimates of the correlation between the three

cognitive ability scores which were between 50%-67% less than those observed

directly from the data. However, we constructed a deviance test which indicated that

the multivariate model was different to the univariate models (again by comparing

the MLM with correlated outcomes (correlated MLM) to a MLM with independent

outcomes (independent MLM); p = 0.04). The fact that the deviance was smaller for

the correlated MLM than for the independent MLM suggested that the multivariate

226



model was a more suitable model in terms of describing the variability within the

outcomes and their associations with the explanatory variables.

In Chapter 5, we saw that the estimated correlation between the surface area

estimates of Broca's area relative to the volume estimates of Broca's area (relative

Broca's surface area) of the left and right hemispheres, both from the raw data and

the multivariate was equal to 0.7. This fairly strong, positive correlation suggests that

adults who have a larger relative Broca's surface area in the left or right hemisphere

are more likely to also have a larger relative Broca's surface area in the other

hemisphere, and vice versa. The deviance test for the correlated MLM and

independent MLM (equivalent to two univariate models) showed that the difference

between the two models was statistically significant (p < 0.001). The deviance

value for the correlated MLM was smaller which implied that it fitted the data better

than the independent MLM (and consequently the two univariate models) did.

When we applied the deviance test to the correlated and independent MLMs with left

and right volume estimates of Broca's area relative to total brain volume (relative

Broca's volume) as the outcomes, also in Chapter 5, we found that there was no

evidence to suggest that the two models were different (p = 0.2). The correlation

between these two outcomes (relative Broca's volume in the left and right

hemispheres) was low and there was not enough evidence to suggest that the

correlation was non-zero (r = 0.2,P = 0.1). On this occasion, we could therefore,

conclude that the two univariate models would have been sufficient to explain the

variability in the outcomes without the added complexity of a multivariate model.

Our conclusion for this objective is that the multivariate model should still be the

first step when multiple outcomes are considered from the same dataset, even where

the multivariate model explains no further variability in the outcomes than multiple

univariate models. This is due to the fact that all the information that can be obtained

from univariate models is also included in the multivariate model (i.e. associations

between the explanatory variables and individual outcomes can be assessed from the

models based on the marginal distributions of a multivariate model). Hence, to

achieve the objectives set out in Chapter 1, pertaining to associations between
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cognitive ability, handedness, gender, age and Broca's volume and surface area

estimates, in both children and adults, our focus was on the results from multivariate

linear and linear mixed models as opposed to multiple univariate linear and linear

mixed models. Interpretations of, and possible explanations for the results from these

analyses can be seen in the following subsections.

7.2.2 Associations between handedness and cognitive function in children

Investigating the associations between cognitive ability and handedness and gender

in children was one of the objectives as described in Chapter 1. These associations

were examined by performing multivariate linear mixed model analyses on a dataset

of l l-year old children from the National Child Development Study. Cognitive

ability were represented by reading and transformed mathematics scores and the

explanatory variables considered were relative hand skill (defined as the modulus of

the difference in hand skill between the left and right hands divided by the combined

left and right hand skill), superior hand (SH) (a binary variable defined as the hand

which had the greatest hand skill score), writing hand (WH), gender, and UK region

(a 4-level factor) (see Chapter 1 for further details on the outcome and explanatory

variables). A further variable, local authority, which denoted which local authority

each child attended school in was used as a clustering variable (a random effect), in

the linear mixed models that were fitted.

After taking both WH and SH into account and since the interaction term between

WH and SH was strongly significant (for both the models based on the marginal

distributions and that with the multivariate outcome), in Chapter 3 we saw that

children with inconsistent WH and SH (i.e. those children that had a different WH to

their SH) performed worse, on average, in both the reading and maths tests than

those children with consistent WH and SH (i.e. those that write with their hand with

the greatest level of hand skill), irrespective of whether they were left- or right-

handed.

The rule of multiple models meant that we had to adjust the critical a significance

level using a Bonferroni correction (a was reduced from 0.05 to 0.025). Even so, in
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the reading test, it was shown that those children with left WH and right SH

performed worse than their peers that had consistently right and left WH and SH by

5% and 4%, respectively, on average (p = 0.02, and p = 0.005, respectively). Also,

children with right WH and left SH were shown to have attained lower, on average,

reading scores than those children with consistently right and left WH and SH by 6%

and 5.5%, respectively (both p < 0.001). Since the mean reading score was 46%

(from Table 1.2), we can see that these differences between children with consistent

and inconsistent WH and SH ranged from 9% to 13% of the mean score.

For the transformed maths scores, we saw that these differences were identical in

terms of being positive or negative to those for the reading scores, giving similar

interpretations, as well as being significant (p = 0.009, and p = 0.002 for

differences between those children with left WH, right SH and those with

consistently right and left WH and SH, respectively; p < 0.001 for both differences

between those children with right WH, left SH and those with consistently right and

left WH and SH). So we can say that children with left WH and right SH obtained

lower transformed maths scores than those that had consistently right and left WH

and SH by 7% and 6% (12% and 10% relative to the mean score), respectively, on

average with right WH and left SH children also associated with lower transformed

maths scores, on average, than those children with consistently right and left WH

and SH by 8% and 7% (14% and 12.5% relative to the mean score), respectively. It

is useful to note that the percentage differences are shown here to give an idea of the

effect size, but since the transformation of the original maths scores was non-linear

these percentages do not translate to a linear relationship between the transformed

scores and the covariates.

The percentage differences in both reading and maths scores between children with

consistent WH and SH, and those with inconsistent WH and SH have been shown to

be between 4% and 8% of the maximum score as well as between 9% and 14% of

the mean score. Literacy and numeracy are both regarded as basic skills which are

assessed through both English and Mathematics subjects in the education system

(Bynner, 1997). Both reading and maths skills are related to literacy and numeracy,

respectively, and are therefore important in examinations and tests throughout the
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course of a child's time at school. Some of the most important examinations which

future employers will scrutinize are GCSEs, which children in the UK sit at age 16.

Grade boundaries in these examinations for English language and mathematics

(related to literacy and numeracy) are approximately 10% apart (Assessment and

Qualifications Alliance (AQA), 2012). Thus, for biological interpretations,

differences in the reading and transformed maths scores of 5% or more (i.e. close to

10%) should be deemed as being biologically significant, and possibly equivalent to

an increase in grade in those subject areas. We can see that the differences we

identified earlier are all biologically significant apart from that between children

with left WH and right SH and those that had left WH and SH.

It can also be seen that there was no discernable difference in reading or transformed

maths scores between the two consistent WH and SH groups (one left-handed and

one right-handed) with p = 0.2 for both comparisons. These results were consistent

with what can also be seen in the overall combination of the two cognitive ability

scores (the multivariate outcome).

In a study of 4,942 4- and 5-year old children Johnston et al., (2009) showed that

there were no differences in skills linked to language (such as in vocabulary and

writing test scores) between left- and right-handers which agrees with our result for

reading scores. However, the same study also claims that left-handed children did

appear to perform worse on non-verbal tests from the Australian Council for

Education Research's 'Who Am I?' test than right-handed children. Other studies

also claim to have noted significant differences between left- and right-handed

individuals including that of Resch et al., (1997) who found those people aged

between 16 and 30-years old (from a dataset comprising of 545 individuals) that

were left-handed obtained lower scores in both Cattell's Culture Fair intelligence test

and a spelling test than right-handers, This overall left-handed cognitive

disadvantage is still debatable (e.g. see McManus, (2002) offering the alternative

view that left-handed individuals have a cognitive advantage over right-handers).

We found that there was a quadratic relationship between relative hand skill and the

multivariate outcome such that there was an optimal level of relative hand skill

which was linked to the highest combination of the two outcomes. Since the models
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based on the marginal distributions of the multivariate model for both outcomes

included the square of relative hand skill (p < 0.001), it suggested that there is a

quadratic relationship between both reading and transformed maths scores and

relative hand skill. This implies that there was an optimum value of relative hand

skill which was linked to the highest average score in the reading and maths tests, as

well as for the multivariate outcome. In both tests, children with relative hand skill

values increasingly less or greater than this optimum level of relative hand skill had

greater disparity in average test score (lower scores) to those linked with the

optimum relative hand skill. We found the optimum value of relative hand skill to be

22, 25 and 30 for both left- and right-handed children in both the reading,

transformed maths and combined scores, respectively (i.e. the children with the

highest reading, transformed maths and combined scores had ticked 57%, 67% and

86% more boxes with one hand than the other, respectively).

The optimum relative hand skill values that we obtained from our model tally up

with the results in Leask & Crow (2006), where it was stated that a possible

optimum relative hand skill for right-handed subjects was 20 and 30 for left-handed

subjects irrespective of other variables, when using the definition of relative hand

skill from this thesis. A quadratic relationship between reading scores and the

absolute difference in hand skill of the left and right hands of subjects had also been

reported by Annett & Manning (1990). Our study has shown that this quadratic

relationship exists even after dividing the difference in left- and right-hand skill by

the total hand skill in both hands. Overall cognitive ability was also reported to have

a quadratic association with hand skill in Nicholls et al., (2010).

Another interesting point of note is that three different ways of recording hand skill

were used in the three previously highlighted studies. In the study by Leask & Crow,

(2006) as well as in this thesis a timed box-ticking task was used to record hand skill,

with children having to tick as many boxes as they could in a minute firstly with

their right hand, and then with their left hand. Annett & Manning (1990), used the

modified Purdue pegboard test as described in Annett (2002). The Purdue pegboard

test consists of a subject having to move a set number of pegs around a board with

each hand in turn. In this case, hand skill is measured in seconds with the time taken

to complete the movement of the set number of pegs being measured. In Nicholls et
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al., (2010), hand skill was measured using a circle tapping task. This task comprised

a subject having to tap inside a circle as many times as they could in 30 seconds.

Therefore, even with hand skill being measured in three different ways (tapping,

ticking and moving pegs) a quadratic relationship was still present between cognitive

ability scores and hand skill.

We also found that there was insufficient evidence to suggest that the coefficient of

gender was non-zero for either the reading or maths test scores (p = 0.8, and

p = 0.1, respectively). This implies that there was no statistically significant

difference in either reading or maths test scores between l l-year old boys and girls.

Our result contradicts the studies by Halpern et al., (1998) and Thilers et al., (2007).

Analyses of Medical College Admission Test (MCAT) scores from 152,669 adults

aged between 19 and 40 years old suggested that males outperformed females in

both the biological and physical sciences components of the MCA T (Halpern et al.,

1998). However, similarly to our study there was little discernable difference found

between males and females in the verbal reasoning or writing components of the

MCAT. An older group of adults (2,802 aged between 35 and 90 years old) were

analysed and females had significantly higher episodic memory and verbal fluency

test marks, on average, than males (Thilers et al., 2007). Notice that the studies in

Halpern et al., (1998) and Thilers et al., (2007) were on datasets comprised of adults

aged over 19 years old, whereas in this thesis the analyses were based on l l-year old

children.

The intelligence of individuals, as measured by IQ, increases until about they reach

their peak intelligence at an age between 18 and 21 years old, on average, which is

followed by a gradual decline as they grow older (McArdle et al., 2002). The age at

which this peak intelligence occurs differs from person to person. Hence, even if no

difference is found between children as they are still developing and gaining

intelligence, the differences in peak intelligence between individuals could explain

how gender differences of cognitive ability then occur in adult samples.

Furthermore, the Flynn effect shows that from generation to generation there are IQ

gains ranging from 5 to 25 points (Kanaya et al., 2003). The Flynn effect is taken

into account by the normalising of IQ test scores every 20-30 years, but this could

still mean that there are generational differences with the average rise per year of IQ,

232



obtained using the Wechsler Adult Intelligence Scale, being equal to 0.3 points per

year. This effect could also add to some of the differences between the groups of

adults which include individuals of varying ages (i.e. from different generations).

This would not be the case for the NCDS dataset as it only included children of the

same age. Differences could also be due to the type and level of test given. For

example, the MCAT is given to prospective medical school students as an entrance

examination and therefore set to challenge the most gifted individuals whereas the

maths and reading tests given to children in the NCDS were far more general and set

to encompass l l-year olds of all abilities.

The final explanatory variable that we found to be statistically significant was the 4-

level factor, UK region. This variable had Northern England and the Midlands set as

the reference region with the other regions being Southern England, Scotland and

Wales. In the reading scores, children from Southern England outperformed those

children from the rest of the UK mainland (Northern England, the Midlands, Wales

and Scotland) by 2% (4% of the mean score) on average (p < 0.001, p = 0.003,

and p = 0.001, respectively). Also, Southern England's children obtained higher

scores than subjects from Northern England and the Midlands in the mathematics

test by 1% (2% of the mean score) on average (p = 0.02). Considering both

outcomes jointly, the result of children from Southern England outperforming

children who were educated in Northern England and the Midlands is repeated

(p < 0.001). One speculative reason for this finding is the perceived north-south

divide in living standards and income. People living and working in the south of

England are thought of as having higher incomes and a higher standard of living than

their equivalents in the north of England (Blackaby & Manning, 1990). It is plausible

that these differences in incomes and standards of living has been passed on in the

form of education with people in the south having a greater amount of disposable

income, and therefore able to pay for better quality schools, than those in the north.

Furthermore, children from Scotland also achieved higher marks, on average, in the

maths test than children that attended schools in Northern England and the Midlands

by 3% (4% of the mean score) on average (p<O.OOI). Differences existed between

the education systems of England and Scotland in the 1960's at all levels of

233



education (i.e. primary, secondary, higher) (Paterson & Iannelli, 2007). Whitfield,

(1970-71), stated that not only did the organisation of schooling differ between

Scotland and the rest of the UK, but so did the school curriculums and those who set

them. These contrasting educational systems between England and Scotland could

speculatively explain our result with regard to the transformed mathematics scores.

However, both the differences observed in the reading and transformed maths scores

with regard to UK region were not biologically significant (all differences associated

with UK region were 4% or less).

This concluded the analyses on children but we wanted to know whether further

links could be identified between cognitive ability scores and other variables such as

musical ability and age. These factors, along with gender, were included in the

analysis of the musician-control dataset in Chapter 4 and the results are summarised

in the next subsection.

7.2.3 Associations between musical ability and cognitive function in adults

Following on from the results of the previous investigation we wanted to examine

the associations in adults between cognitive ability, musical ability, age and gender.

In Chapter 4, we conducted a multivariate linear model analysis of the musician-

control (MC) dataset which was introduced in Chapter 1. This data consisted of a

group of musicians from the Royal Liverpool Philharmonic Orchestra along with a

group of non-musicians (controls), including males and females of varying ages.

Cognitive ability was represented by vocabulary, arithmetic and visuospatial scores

from the Wechsler Adult Intelligence Scale (WAIS). Explanatory variables

considered were gender, age and musician (a binary variable was used to denote

whether a person was a musician or a non-musician and henceforth musician is

highlighted in italics to differentiate the variable from an individual musician). More

information about these outcome and explanatory variables can be viewed in

Chapter 1. The associations between the outcomes and the explanatory variables

were assessed by performing multivariate linear model (MLM) analyses.

234



For the multivariate outcome with all three cognitive test scores combined it was

seen that the only two statistically significant explanatory variable coefficients were

musician and age. Across all of the cognitive ability scores when taken together,

musicians outperformed non-musicians irrespective of gender (p < 0.001). Also we

found that there was a linear relationship between the cognitive ability scores and

age with older people in the study associated with lower marks, on average, than

younger people (p < 0.001). To further understand the results in terms of individual

cognitive abilities, the models based on the marginal distributions of the MLM for

each of the three cognitive ability scores were examined with the results described

below. We had three outcomes and therefore needed to use the Bonferroni correction

to account for multiple comparisons such that the significance level a was reduced

from 0.05 to 0.017.

The most interesting result from the models based on the marginal distributions of

the multivariate model revolved around the associations between the three sets of test

scores, gender and musical ability. This is due to the interaction term between

musical ability and gender being present in the model. Even though this interaction

term was not statistically significant for the multivariate outcome, or for the models

based on the marginal distributions of the individual outcomes, we included this in

the model because it allowed us to construct hypothesis tests for cognitive ability

score differences between male and female, musicians and non-musicians. The effect

of the interaction term alongside musician and gender singularly can be seen in the

interpretation of the results breakdown. Firstly, for the vocabulary test scores, we

saw that musicians obtained an average of 5 marks (25%) more than male controls,

as well as an average of 4 marks (20%) more than female controls irrespective of the

gender of the musicians (p < 0.001 for all comparisons). In terms of comparisons to

the mean score (11.5), these differences were around 41%-42% between musicians

and male controls, and around 33%-34% between musicians and female controls.

The percentage differences highlighted in this section should be used to give an idea

of the effect size, but since the scores have been transformed using a non-linear

transformation from the raw WAIS scores, they are not associated in terms of a

linear relationship with the raw scores. In terms of biological significance, a

difference of 5% or more should be considered as significant. Since the three sets of
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scores are sub-scores from an IQ assessment test, then these scores can again be

linked to academic ability and therefore the comment mentioned earlier about grade

boundaries being around 10% can justify our choice of biological significance level

of 5% or more. Our results tend to agree with previous studies which have found that

musicians have superior verbal memory, including the delayed recall of words

(Franklin et al., 2008; Jakobsen et al., 2008).

In addition to the compansons between musicians and non-musicians, we also

considered differences between males and females in both the musician and control

groups. The models based on the marginal distributions of the MLM suggested that

female controls attained 1 extra vocabulary test mark (5% of the maximum score,

10% of the mean score) than male controls, on average, out of 19 marks (p = 0.01).

Two other studies suggested that females have better scores in verbal tests, which

support the result derived from the Me dataset analyses where females performed

better than males in the vocabulary test (Halpern et al., 1998; Thilers et al., 2007).

However, no difference was found between male musicians and female musicians in

the vocabulary scores (p = 0.9). After considering the model interpretation that

musicians outperformed controls as well as the gender differences then it therefore

appears to be that the discrepancy between male and female controls' vocabulary

scores is eliminated by gaining the ability to playa musical instrument.

Our multivariate model also showed that female musicians were associated with

higher visuospatial scores than both female and male controls, by 3 and 2 marks

(14% and 11%) on average, out ofa possible 19 marks (p < 0.001 and p = 0.002,

respectively). It was also suggested that male musicians achieve, on average, 2

marks (10%) more than female controls and 1 mark (7%) more than male controls on

the visuospatial test (p < 0.001 and p = 0.004, respectively). These differences are

even more noticeable when compared to the mean score of 10.9, with the differences

ranging from 12% between male musicians and male controls, up to 25% between

female musicians and male controls. Similarly to this result, the study of Sluming et

al., (2007) reported an increased level of visuospatial ability in musicians over non-

musicians, from both the Benton judgement of line orientation test and a three-

dimensional mental rotation task.
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In contrast to the gender differences in the vocabulary scores, in the visuo spatial test

we noticed that there was no difference between the marks of males and females in

either the musician or control groups (p = 0.2 and p = 0.08, respectively). The lack

of a gender difference in the visuospatial results appears to contradict the overall

results from the meta-analysis in Voyer et al., (1995) which stated that males

outperformed females in the a variety of different types of spatial ability tests.

However, differences between males and females in the WAIS block design test (i.e.

the visuospatial test used in our dataset) were only found in a few age groups, and

not across the entire range of ages (Voyer et al., 1995).

In terms of the arithmetic marks, our results suggested that male musicians attain a

higher number of correct answers than both male and female non-musicians

(controls) by 1 and 3 marks out of a maximum of 17 marks or 8% and 16%, (p <
0.001 and p = 0.01), respectively. However, no difference was found between the

arithmetic scores of female musicians and both male and female controls (p = 0.4

and p = 0.02, respectively). When comparing males against females in the musician

and control groups separately from each other, it was noted that there was a

significant gender difference found in the control group only, with males linked to a

1 mark (8%) higher arithmetic score than females (p = 0.005 and p = 0.4 for the

control and musician groups, respectively). The mean arithmetic score was 10.4

marks, so these differences are even more prominent with the lowest difference

between male and female controls of 12.5%. These three statistically significant

results can therefore be regarded as being biologically significant. The gender

difference in the sample group of non-musicians is in line with the reported

conclusions from Halpern et al., (1998) which investigated the difference in

mathematical ability tests between males and females. An interesting point of note is

that this gender difference between males and females, similarly to the vocabulary

results, appears to become negligible when a person has the ability to playa musical

instrument. Indeed this improvement in mathematical ability can also be seen in that

there was no significant difference between female musicians' and male non-

musicians' arithmetic marks.
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Furthermore, even though the gender comparison in the vi suo spatial scores of the

musician and control group were both non-significant, Figure 4.1, showed there not

only appeared to be a slight male advantage in the visuospatial scores of the control

group, but a slight female advantage in the vi suospatial scores of the musician group.

We did not consider the type of instrument that musicians played. However, this

partial reversal of vi suo spatial skills by gender may be linked to the type of

instrument.

Age was statistically significant for the arithmetic and visuospatial scores such that

in each case, older subjects had, on average, lower scores than younger subjects. The

relationship between age and both arithmetic and visuospatial abilities was linear.

The models based on the marginal distributions from our MLM suggested that if two

subjects had a difference in age of 10 years, then the older person would have had 1

and 0.4 marks lower (5% and 2% of the maximum score; 9% and 4% of the mean

score), on average, out of 19 and 17 marks, respectively, than the younger person on

the visuospatial and arithmetic ability assessments (p < 0.001 and p = 0.002,

respectively). The association of age with visuospatial scores may be biologically

significant, but the association of age with arithmetic scores does not look to be so.

This is similar to the results of previous studies which have reported that older

subjects obtain lower scores on cognitive ability tests than younger subjects

(Gunstad et al., 2006; Salthouse, 2006; Mitnitski & Rockwood, 2008; Mitnitski et

al., 2010). However, no difference was found in the vocabulary scores which was

related to age (p = 0.4). Salthouse, (2006) stated that there was no reduction in

verbal ability between younger and older subjects, from a group with ages in years

ranging from the mid-20's to the mid-80's, which agrees with our findings.

7.2.4 Associations between relative Broca's volume and cognitive function

Due to previous studies linking Broca's area with cognitive ability and following the

results of the previous subsection we wanted to include some measurement estimates

corresponding to Broca's area in a similar type of analysis. Therefore, by using the

estimation methods described in Chapter 2, we obtained estimates for the surface

area and volume of Broca's area for 39 subjects comprising 10 male musicians, 10
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male controls, 10 female controls and 9 female musicians. Information from these

individuals came from the Me dataset as defined in Chapter 1 with the same

explanatory variables as those involved in the analyses of the previous subsection in

addition to the three cognitive ability scores (vocabulary, arithmetic and

visuospatial). The first objective of this part of the study was to identify possible

associations between the volume estimates of Broca's area relative to the total brain

volume (relative Broca's volume) and the other factors (cognitive ability, musical

ability, gender and age). We also wanted to take into account that Broca's area may

have different functions in the left and right hemispheres and so they were

considered separately. Therefore, in our analyses the left and right relative Broca's

volume estimates were set as the outcome variables in a multivariate linear model.

We saw that when both left and right relative Broca's volume estimates were

considered simultaneously as a multivariate outcome, gender was not significant

(p = 0.06). Thus, our interpretation was that there was insufficient evidence to

suggest that there was an overall difference in relative Broca's volume between

males and females in total relative Broca's area across both hemispheres combined.

Even considering the two hemisphere estimates individually from the models based

on the marginal distributions, the coefficient of gender was not biologically relevant

for either left or right relative Broca's volume at the Bonferroni-adjusted 2.5% level

of significance (p = 0.3 and p = 0.04, respectively). However, if we considered

statistical significance to be at the Bonferroni-corrected 5% level of significance,

then there would have been evidence to suggest that the coefficient of gender in the

right hemisphere was non-zero. The significant gender coefficient would have shown

us that females were associated with a smaller relative Broca's volume in the right

hemisphere than males by 0.2% on average. A difference in relative Broca's volume

of 0.2% translates as being equal to a difference in actual Broca's area volume of

around 17% due to the mean Broca's volume in the right hemisphere being

equivalent to approximately 1.2% of the total brain volume.

The study of Amunts et al., (1999) investigated the left and right hemisphere Pars

Opercularis (PO) and Pars Triangularis (PT) volumes independently. In Section 1.2.5

we stated that Broca's area is comprised of the union of PO and PT. No differences

were found in the volume of either PO or PT in either left or right hemispheres,
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between males and females (Amunts et al., 1999). However other studies have found

gender differences in Broca's area volume (e.g. Harasty et al., (1997) found that

females had larger inferior frontal gyrus (lFG) volume (of which Broca's area is a

part of) than males). Gender disparity in the volume asymmetry of PO and PT across

the hemispheres was reported in Uylings et al., (1999) with males associated with

larger asymmetry (in particular, larger volumes in the left than in the right

hemisphere). These results show that there is much debate in this area, and this may

in part be due to the small sample sizes in each study (10, 11 and 21 participants in

Amunts et al., (1999), Uylings et al., (1999) and Harasty et al., (1997), respectively).

In Section 5.6.1 we estimated the within observer coefficient of error (CE) for each

sub-structure of Broca's area (PO and PT) in each hemisphere. Our method for

obtaining' the estimate involved making ten observations of the brains of two

individuals. We found that the CEs for left and right PT were greater than those for

left and right PO (3.0% and 4.3% for left and right PT compared to 2.2% and 2.8%

for left and right PO, respectively). When comparing the within observer CE with

the CEs due to Cavalieri sectioning and point counting, it was seen that the within

observer CE was greater than the other CEs combined. This suggests that there was a

greater error in the variability of the Broca's volume estimates than the error due to

elements of the estimation method itself.

7.2.5 Associations between relative Broca's surface area and cognitive/unction

Using the same participants as in the previous subsection (39 subjects consisting of

20 non-musicians and 19 musicians) we wanted to investigate the associations

between surface area estimates of Broca's area relative to Broca's volume (relative

Broca's surface area) and the other factors identified previously (vocabulary,

arithmetic and visuospatial scores, musician, gender and age). We adjusted the

surface area estimates by Broca's volume estimates because it was the surface

convolution that was of more interest than the total surface area.. In our multivariate

linear model analyses, the two variables set as the outcomes were the relative

Broca's surface area estimates for the left and right hemispheres, with the three

cognitive ability scores, musician, age and gender fixed as the explanatory variables.
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When identifying associations across both hemispheres simultaneously the

multivariate outcome was examined and it was found that musicians had a smaller

relative Broca's surface area compared to controls across both hemispheres with

musicians having a less convoluted surface area relative to volume than non-

musicians (p = 0.02). However, this was not the case for gender which did not have

a significant effect when both hemispheres were considered jointly (p = 0.06).

We examined the models based on the marginal distributions for the relative Broca's

surface area estimates of each hemisphere separately to identify associations between

the outcomes and explanatory variables. The critical significance level (a) was

Bonferroni-corrected because we had two outcomes in the model simultaneously.

The difference in the convolution of Broca's surface area that we saw across both

hemispheres together applied for the right hemisphere only. That is, musicians have

a less convoluted surface area of Broca's area relative to Broca's volume than

controls, in just the right hemisphere (p = 0.02). Indeed, this difference was seen to

be around 12.5% of the mean of the right hemisphere relative Broca's surface area

estimates. Two explanatory coefficients were statistically significant only at the

Bonferroni-adjusted 10% level of significance: gender and musician, both in the left

hemisphere, and both at around 10.5% of the mean left hemisphere relative Broca's

surface area estimates (p = 0.03 and p = 0.04, respectively). We found that both

females and musicians were weakly linked to smaller relative Broca's surface area

than males and non-musicians in the left hemisphere.

There is not a wealth of information about associations with the surface area of

Broca's area. However, a recent study by Frye et aI., (2010) investigated links

between reading-related skills and the surface area of a few individual regions of the

brain including the inferior frontal gyrus (IFG) in two groups of participants (one

group with dyslexia and the other without). In the group without dyslexia, the results

suggested that there was a negative relationship between a sublexical decoding score

(a measurement of how well a participant can break down words into individual

sounds) and surface area of the IFG (i.e. individuals with higher scores on the

sublexical decoding test were associated with smaller IFG surface area). However,

this association with IFG surface area was not consistent across all test scores. For
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example, no links with IFG surface area were found for the 'alternative phonological

awareness' (a test of the ability to perceive and manipulate sounds which create

spoken words) scores in the group of participants without dyslexia.

Therefore, we can see that there was a link between some language related ability

scores and smaller surface area in the region which encapsulates Broca's area. We

have seen that greater cognitive abilities, including language skills, have been linked

with having the ability to playa musical instrument (Sluming et ai., 2007, Franklin

et ai., 2008, Jakobsen et ai., 2008). Also, females have been linked with having

higher verbal test scores in Thilers et ai., (2007) along with the left hemisphere being

more strongly linked with language skills (Schaffler et ai., 1993). The combination

of musicians and females being linked to better language skills than non-musicians

and males may explain the associations between these explanatory variables and the

lower relative Broca's surface area estimates.

The within observer CE for each sub-structure of Broca's area (PO and PT) in each

hemisphere was estimated in Section 5.6.2. The method for estimating the within

observer CE for Broca's surface area, similarly to the method for estimating within

observer CE for Broca's volume, involved ten observations being made of two

individuals' brains. We saw that the within observer coefficient of error was

observed to be 2.1% and 3.4% for the left and right hemisphere PT estimates. The

estimates for within observer CE for left and right PO were not possible to obtain

due to the coefficient of error due to cycloid sampling being overestimated by the

Poisson model (see Cruz-Orive & Gual-Amau, 2002, for examples). We concluded

that further work is necessary in the estimation method of the coefficient of error of

the surface area estimator due to cycloid sampling such that less conservative and

more reliable estimates can be obtained in future studies.

7.2.6 The effect of missing data

The final objective of this thesis was to investigate the effect of missing data on the

analyses that we had performed in the previous chapters to determine whether the

results obtained can be relied upon to give a reasonably accurate description of the

242



previously stated associations. The National Child Development Study (NCDS)

dataset which had been used to analyse the links between cognitive ability and a

range of factors including handedness in children (see Chapter 3) included a

substantial amount of missing data. The number of children in the study with at least

one missing outcome was 4,435 (23.9%). When the missing covariates are also taken

into account then the number of children with at least one missing covariate or

outcome was 6,712 which is equal to 36.2% of the total number of children. In the

musician-control (MC) dataset from Chapter 4's analyses the number of adults in the

study with at least one missing outcome was equal to 20 which can be expressed as

approximately 13.9% of the total number of subjects. This is equal to the number

with missing outcomes and covariates combined.

For the original multivariate linear and linear mixed models in Chapters 3 and 4 to

be unbiased, we had to assume that the missing outcomes from both datasets were

missing completely at random (MCAR). MCAR means that there are no underlying

associations between any of the variables in the dataset, any unobservable

parameters and the missingness of the outcome variables. We could not classify the

missing outcomes as MCAR if those children or adults with missing outcomes

shared some characteristics which were more common than the characteristics of

those children or adults with non-missing outcomes.

After having studied the datasets it was decided that although there do not appear to

be any confounding reasons as to why the subjects have missing outcomes, we

cannot guarantee that they are MCAR. Methods for accounting for missing at

random (MAR) data in multivariate analyses were discussed and described in

Chapter 6. We decided to use the inverse probability weighting method to adjust the

multivariate models to account for individuals with missing outcomes. This method

involved the calculation of a weight value for each person which was obtained from

a logarithmic model. These weights were then incorporated into the multivariate

linear and linear mixed models in a similar approach to those previously performed.

The results for the weighted multivariate linear mixed model fitted to the NCDS

dataset were very similar to the results we obtained in Chapter 3 with changes to the

coefficients of a approximate maximum of 2%. So similar were the results that the
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overall interpretations from the multivariate models were the same. Our weighted

model therefore suggests that the effect of accounting for those children with missing

outcomes was negligible and therefore that the missing outcomes were similar to

what would be predicted given the children with complete data. We checked this by

constructing hypothesis tests between the missing and non-missing outcome groups

of children for each explanatory variable. Thus, using chi-squared tests and Mann-

Whitney tests we were able to assess that there were no differences between the two

groups in any of the explanatory variables except UK region. However, when we

examined the numbers in each region by missing and non-missing outcomes, it was

apparent that this difference wasn't large. Indeed, the statistical significance may be

down to the large sample size and the chi-square test being over-sensitive. This

added weight to the argument that the missing outcomes were MCAR and that the

original multivariate analysis was reasonable.

The only suitable logarithmic model for the MC dataset included the intercept only.

This meant that each adult in the study had a constant weight. Therefore, the

weighted multivariate linear model fitted to the MC dataset was identical to that in

Chapter 4. We again constructed hypothesis tests to test for possible differences

between the missing and non-missing outcome groups of participants in terms of the

explanatory variables. We saw that the only hypothesis test that gave a statistically

significant result was the Fisher exact test for musician. The explanation for this

result was that there were no musicians with missing outcomes. However, the

number of non-musicians with missing outcomes totalled approximately 17% of the

non-musicians with non-missing outcomes. Hence, due to these observations and the

relatively small number of musicians compared to non-musicians, we explained that

the strongly significant p-values for the coefficients of musician in the MLM would

not have changed enough to alter the overall interpretations. This combination of

factors all suggested that the missing outcomes can be assumed to be MCAR. We

can conclude therefore that, in both cases, the missing outcomes have very little

effect on the overall message that was obtained from the non-missing data.
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7.3 Limitations

The limitations of the methodology that were used in this thesis can be associated

with the two different types of methodologies used (i.e. statistical and stereological).

The statistical limitations will be described first, followed by the stereological

limitations.

7.3.1 Statistical limitations

One of the most basic limitations of studies such as the ones undertaken in this thesis

is if the number of data is small. The NCDS dataset contained 11,843 children after

outliers and those with missing data were omitted, which is still a very large number.

However, the MC dataset, used in Chapter 4's analyses, after those with missing

covariates and outcomes were excluded comprised just 124 adults. The analyses

based on the MC dataset would have been relatively straightforward to implement on

a larger dataset. However, there are issues surrounding obtaining information on

career musicians, since they are quite a small population of individuals. Although,

we do not believe that a similar number of individuals are needed as in the NCDS

dataset, a dataset of several hundred individuals with around 50% musicians and

50% non-musicians would have been preferable.

The lack of data really becomes quite an important issue for the dataset that includes

the Broca's volume and Broca's surface area estimates. This dataset contains

information about just 39 adults. As a comparison, the datasets of ten recently

published studies based on stereological estimates of human organs ranged from just

5 up to 77 subjects (Acer et a!., 2010; Mechlenburg et a!., 2010; Abdul-Kareem et

a!., 2011; Cadnapaphornchai et a!., 20 11; Ertekin et a!., 2011; Hallahan et aI., 2011;

Keller et a!., 2011; Mazonakis et a!., 2011; Mignani et a!., 2011; Powell et aI.,

2012). One of the main reasons for studies involving stereological estimates having

such small numbers of participants is the time consuming nature of both obtaining

the images (from MRI techniques) and performing the stereological techniques.

Ideally, we would like to see datasets including several hundred individuals, as
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mentioned for the MC dataset, but with the limitations specified for stereological

studies, this would be relatively difficult to obtain given current technology and

techniques.

The power of a test is defined as the probability of a type II error not occurring (i.e.

the probability that a given null hypothesis is rejected when the null hypothesis is

false). The size of a dataset is one of the factors that effects power with smaller

datasets corresponding to smaller power values. As the power is reduced so the

likelihood of a type II error increases (i.e. the probability of the null hypothesis not

being rejected even though the null hypothesis is false). In our case when the dataset

consists of 39 individuals, this implies that it is more likely that associations between

Broca's volume, surface area and the other factors are not identified as being

statistically significant when they possibly should be. Indeed, only relatively few

explanatory variables had coefficients which were significant in the analyses with

Broca's area measurement estimates included. It can be seen that as more covariates

are considered and more complex statistical models are fitted to the data then

associations which exist may not be fully recognised and identified by the model.

Further limitations occurred due to memory limitations of individual statistical

programs. We used a variety of different statistical programs including R, MLwiN

and SAS. The most flexible one of these is R and aside from being free to download,

people are constantly developing new functions to perform different types of

analysis. However, for the NCDS dataset we found that when the data is large, and

as univariate linear (and linear mixed) models become more complex, more RAM is

needed. Under Microsoft Windows, R can use a maximum of 2GB of RAM and

despite our best efforts to increase this we could not. This 2GB limit became an

artificial ceiling, in that we could only fit models up to a certain level of complexity

before the limit was reached. A further problem with R was that it was not intuitive

to fit a multivariate model without spending much time consuming effort on

restructuring the dataset with dummy variables for each outcome. This meant that

other programs had to be considered for fitting multivariate models (i.e. MLwiN and

SAS).
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Additionally, the program that we used to conduct the multivariate analyses,

MLwiN, uses Wald tests to determine whether explanatory coefficients for the

multivariate outcome are zero or non-zero. There are other possible tests which

could have been used including the Hotelling's T2 test. Hotelling's T2 test has been

suggested to outperform the Wald test (Poh, 1984). However, the Hotelling's T2 test

was not available as an option in MLwiN.

As it has previously been mentioned, MCAR could not be guaranteed for either the

NCDS or MC datasets. Therefore, the missing outcomes should be taken into effect

in some way. We used inverse probability weighting as the method of adjusting the

multivariate analyses so that the missing outcomes were accounted for. In Chapter 6,

multiple imputation was mentioned as an alternative method to inverse probability

weighting. However, due to time constraints and the length of time needed for the

implementation of MI when analysing large datasets with large amounts of missing

data, it was deemed unsuitable to be included in this thesis. Yet, MI has been stated

to be efficient even when there is a relatively high proportion (>30%) of missing

data in the dataset (Schafer & Olsen, 1998). In the case of the NCDS there was a

relatively high proportion of missing data (36%) and hence, this method would have

also been appropriate.

A final limitation to the analyses from a statistical point of view is that only

associations involving variables in the datasets can be investigated. Links between

other variables which may be interesting cannot be examined if data were not

collected and included in the datasets. One particular point of discussion was the

measurement of relative hand skill in the NCDS. This was based on the box-ticking

method as introduced in Chapter 1,which consisted of each subject trying to tick as

many boxes in one minute with each hand (Leask & Crow, 2006). The main result of

the analyses conducted in Chapter 3, involved subjects writing hand (WH) and

superior hand (SH) (i.e. the hand which had the most skill as measured by the box-

ticking method). Since box-ticking involves something akin to writing, there could

be some confounding variability between these two variables (i.e. they may not be

independent) and therefore, another method of estimating hand skill should be used

in the future.
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Suggestions have included the modified Purdue's pegboard test (as seen in Annett,

2002). In the pegboard test, individuals are asked to move a number of pegs on a

board, with each hand, and they are timed in doing so. This test therefore relies on

hand motor skills, but it is not directly related to writing skills. The Edinburgh test,

as described by Oldfield, (1971) was also discussed. In this test a number of different

tasks are listed, such as brushing teeth or combing hair, and subjects in the study are

asked to identify whether they use their right hand, left hand or both hands to

perform the task. However, the measure of handedness obtained from the Edinburgh

test could be deemed to be discrete as there are only a limited number of values that

it can take (with just three possible outcomes per task). Certainly, another measure of

handedness would have been very useful in the NCDS dataset to be able to compare

the results with the box-ticking measurement. Yet, the data collection for the NCDS

data used' in the analyses in this thesis occurred in 1969, and additional methods for

assessing handedness were not considered necessary at the time. Thus, it is

unfortunately not possible to incorporate a second measurement of handedness. A

couple of reasons why the previous studies of the effects of handedness on academic

ability mentioned in Chapter 1 gave conflicting results could be that related to

different measurements of handedness and academic ability along with differences in

sample sizes in each study. A limitation of the MC dataset analyses in Chapter 4 was

that handedness could not be included as a factor due there being only 1 left-handed

non-musician participant. Subsequently the Broca's area dataset analyses (Chapter

5) also did not include handedness as a variable because it was a subset of the MC

dataset.

An additional variable that was collected but not included in the MC and Broca's

area analyses was related to the years of experience playing an instrument (for the

musicians). However, this was not included in the analyses due to the increasing

complexity involved (an interaction term with the musical ability variable would

have had to be included) given the reasonably small sample size. Another variable

which was collected and not considered for this study was the type of instrument that

a subject plays. Verbal and non-verbal tests were administered to the children in the

National Child Development Study and although their scores were recorded, they

were not included in this study. Similarly, each child's paternal social class, as
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defined by the General Registry Office (GRO) classification of occupations, was

included in the NCDS dataset but not included in our study.

Other variables which were not considered in any of the analyses but which we

would have liked to have examined included socio-economic status and a measure of

IQ obtained using for example the Differential Ability Scales (DAS) with the various

sub-tests used as multiple cognitive ability tests.

7.3.2 Stereological and imaging limitations

The limitations identified in terms of the stereological methods used in this thesis

revolved around the estimation of the coefficient of error of the surface area

estimator due to the systematic sampling on a semi-circle and the cycloid sampling.

In the worked example in Chapter 2, we estimated that the contribution to the total

coefficient of error of the surface area estimator due to systematic sampling on a

semi-circle was 0%. It is highly unlikely for a level of sampling to provide 0%

contribution to 'the total coefficient of error. Hence, this leads us to the conclusion

that the method of obtaining the coefficients of error for the surface area estimator is

incorrect and therefore requires further work to resolve this problem.

Our intra-rater study for the surface area estimates brought a further issue with the

coefficients of error for the surface area estimator, to the forefront. We found that for

Pars Opercularis, the coefficient of error of the surface area estimator due to cycloid

sampling was greater than the total coefficient of error of the surface area estimator.

Examples in Cruz-Orive & Gual-Arnau, (2002) suggest that the Poisson method

used to estimate the cycloid grid sampling coefficient of error gives conservative

values. Therefore, this overestimation implies that we could not acquire a reasonable

estimate of the within observer coefficient of error.

The reliability and quality of the volume and surface area estimates themselves were

limited by imaging techniques. The intra-rater study carried out on the Broca's

volume estimates and documented in Chapter 5, showed that the estimated

contribution to the error in the volume estimates due to the observer was greater than
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the contribution due to the estimation process. This was seen by the coefficient of

error of the volume estimator due to within observer variability being larger in value

than both the estimated coefficient of error of the volume estimator due to Cavalieri

sectioning and point counting combined. To improve the estimates, both the within

observer error and reliability of the estimates should be attempted to be reduced.

However, a number of factors contributed to the overall error for both the volume

and surface area estimates:

• Resolution of the magnetic resonance (MR) images

• Demarcation of the region of interest (RoI)

• Level of expertise of the observer

• Resolution of the monitor

• Observer error from the manual process

Firstly, the resolution of the MR images is correlated with both the length of time a

subject is scanned for and how powerful the magnetic resonance imaging scanner is.

In our case, the data came from a 1.5 Tesla scanner and live individuals. Obtaining

MR images from a live subject means that the scanning process has to be relatively

short (20-30 minutes) due to the exposure of the person to the magnetism in the MRI

scanner. On the other hand, post-mortem studies have been known to run scanning

processes for hours at a time, producing much better resolution of images. The

resolution of MR images of brains from live individuals can also be affected by any

movement of the head during the scanning process. This obviously does not affect

the MR imaging scans of post-mortem brains. A more powerful 3 Tesla MR imaging

scanner would have produced higher resolution images.

The demarcation of the RoI is crucial in obtaining reasonable estimates for both

volume and surface area. Any mistakes in the demarcation process can result in parts

of different regions, not belonging to the RoI, being included or parts of the RoI

being excluded from the volume and surface area. An interesting point which we

noted that can cause huge fluctuations in the volume and surface area estimates

either with the same or different observers was that the demarcation is not complete

in all three dimensions for each estimation method. We demarcate the extremities of
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the region in both the coronal and transversal planes. However, it is not possible to

demarcate the innermost edge of the region in the sagittal view because there are no

landmarks to be able to say where our region ends and where the next begins. The

decision of where the sagittal extremity is, depends on each observer. There will also

be some within observer variability even in the positioning of the endpoint. To be

able to demarcate the edge correctly we would need to demarcate the innermost edge

of each Cavalieri section in the coronal plane. When we consider that each RoI (pars

Opercularis and Pars Triangularis) contains an average of between 10 and 15

Cavalieri sections and each brain contains two of each, then the total number of

sections to be demarcated varies between 40 and 60 for each individual. Performing

these demarcations would be a far too time consuming process.

The level of expertise of the observer will obviously have an effect. An experienced

anatomist or neurologist would be far better at identifying and demarcating a region

of the brain than someone with little experience in this field. In addition to this the

resolution of the PC monitor also has an effect on the estimates. Since the manual

method of volume and surface area estimation relies on visual accuracy, then it is

obvious that a 'monitor with a higher resolution which can display more precise

images would be better to use for the estimation process using EasyMeasure. There

will always be a level of observer error due to the fact that this is a manual process.

7.4 Further work

We can extend the work that we conducted in this thesis by addressing some of the

limitations that we found. We discussed these limitations in the previous section but

in this section we reveal how each limitation could be resolved in a future study, in

addition to extending the investigation where possible. Firstly, although the NCDS

dataset was large (18,558 children), the other datasets were reasonably small (n=149

and n=39 for the MC dataset and Broca's subset, respectively). For the reasons

discussed in Section 7.3.1, it is advisable that in a future study we increase the power

of our hypotheses tests by increasing the sample size. As mentioned in Section 7.3.1,

ideally increasing the sample size of the MC and Broca's dataset to one including
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several hundred individuals with a 50%-50% split between musicians and controls

(and a further 50%-50% split in each musician and control group between males and

females). However, due to the number of professional musicians required, along with

the time consuming nature of obtaining the stereo logical estimates, this may not be

an easy task.

In Chapter 1 we stated that there were conflicting results from different studies

investigating the links between handedness and academic ability. In Section 7.3.1,

we suggested that possible reasons for this could have been due to differences

between the studies in terms of sample size, methods of measuring handedness, and

methods of estimating academic ability. A way of exploring the heterogeneity of

these results would be to conduct a systematic review and meta-analysis of all

previous studies of handedness. The variability across all studies could then be

compared to check if there were significant differences between the reported studies

which could be influencing the results, such that it appears that they are giving

conflicting conclusions.

We observed memory limitations when using R, as well as having time constraints in

fitting the multivariate models. However, we were able to fit and compare results

between MLwiN and SAS. In a future study, it would be interesting to fit a

multivariate model in R because of the program's flexibility and to compare the

results between the three programs. If we have large datasets (e.g. the NCDS dataset)

then we need to increase the amount of RAM that is available for R to use. This is

not possible on a Windows PC but it is possible to increase the RAM that R uses by

running the program on a Linux PC.

We discussed in Section 7.3.1 that the Hotelling's T2 test gives more reliable

information about whether multivariate coefficients are zero or non-zero, than the

Wald test. Since the Wald test is the only available option in MLwiN (the program

we used to fit our multivariate models), then an extension ofthe study would be to fit

the models in an alternative program, and use the Hotelling's T2test instead of the

Wald test. However, the Wald test has been stated to work well if used in

conjunction with large datasets (Poh, 1984). Therefore, how much the Hotelling's T2
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test is an improvement over the Wald test for our analyses in Chapter 3 (the NCDS

dataset including 11,843 children) is debatable.

We used inverse probability weighting as a method of accounting for individuals

with missing outcomes in our multivariate analyses. However, an alternative method

was discussed called multiple imputation (MI). We did not use MI due to problems

surrounding the implementation of the multiple imputation by chained equations

(MICE) program in R. We found that our multivariate linear and linear mixed

models were not able to be fitted to the pooled multiply imputed dataset. Also, due to

the high proportion of missing data (both outcomes and covariates), to obtain

reliable, stable imputed values required high computer processing power which we

did not have available. Running a MI program on the NCDS would have required

days or weeks to run correctly. It would have been desirable to have used MI

because if two or more missing data methods agree with each other results-wise then

it is a reasonable indicator that the initial method is taking the missing data into

account correctly. MI is efficient even when there is a relatively high proportion

(>30%) of missing data in the dataset and in the NCDS dataset this was proportion of

children with missing data was 36%. Therefore, as an extension to the work in this

thesis, it would be useful to use MI to impute values for the missing data (both

outcomes and covariates) to compare the results obtained with the IPW multivariate

models in this thesis. Thus the reliability of our results for both the NCDS and

musician-control datasets could be reviewed.

Further extensions to the analyses could involve a new dataset being compiled

including both children and adults. This would mean that we could investigate

associations between cognitive ability and a range of factors for both children and

adults in the same model. This dataset would need to be large with a number of

additional variables to those in our datasets including:

• A measure of handedness which does not depend on handwriting (e.g.

Purdue's pegboard test)

• Years of experience of playing a musical instrument

• Type of musical instrument played
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• Other cognitive abilities (e.g. verbal and non-verbal test scores)

• Socio-economic status

• IQ (including sub-test scores; e.g. DAS)

• Volume and surface area of Pars Opercularis (PO) and Pars Triangularis (PT)

(i.e. the two components of Broca's area)

• Volume of grey matter and white matter for Broca's area, PO and PT

Of course, these variables are either not available in the current datasets, or are

available but cannot be included for reasons as explained in Section 7.3 .1 (e.g. we

could not investigate handedness in the Me dataset because there were only five left-

handed participants). We did not include the breakdowns of volume by PO and PT or

by grey and white matter due to the fact that our dataset was not large enough for us

to have enough power to perform multivariate analyses. The lack of power also

meant that we also could not investigate associations involving the breakdowns of

PO and PT surface area estimates. However, these could be rectified if we obtained a

larger dataset.

A number of improvements could be made in a future study by obtaining new, more

reliable estimates for Broca's volume and surface area. Possible ways to make the

estimates more reliable were discussed in the previous section. Firstly, if we were to

obtain a new, larger dataset, then we could obtain MR images from a more advanced

scanner. Our images were obtained from a 1.5 Tesla scanner, but currently 3 Tesla

scanners are available. A more powerful scanner would mean that the MR images

would have a better resolution meaning that more precise estimation would be

possible. The resolution of the monitor viewed when obtaining the volume and

surface area estimates also has an effect on the quality of the estimates. When

applying stereological methods to obtain new estimates, we should use a relatively

new monitor (to avoid dust build-up) with a good resolution. Larger monitors would

also allow for more precise point and intersection marking in EasyMeasure (the

program we used to implement the stereological methods from Chapter 2).

To improve the reliability of the estimates in a future study, we will require a

reduction in the overall variability. We identified that the demarcation of the RoI, in
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our case Broca's area, was a contributor to this variability. This is due to the border

of the region with other sections of the brain (i.e. not bordered by sulci or by the

outer brain surface) being very difficult to identify, as well as the demarcation itself

being time consuming. As an extension to this study, it would be interesting to get an

estimation of the contribution to the total variability due to demarcation. This could

be achieved by having an experienced anatomist identify and demarcate Broca's area

for each participant and then the observer from this study repeating the estimations

from the newly demarcated images.

An alternative, automated method for obtaining volume and surface area estimates

for individual regions of the brain can be found in Brain Voyager (a program we used

to demarcate Broca's area). This method independently identifies the region of

choice by standardizing each individual brain to a template. Measurement estimates

(e.g. volume and surface area) are then given. In a new study it would be very

interesting to compare estimates from the automated method with those obtained

from the manual method using EasyMeasure.

7.5 Conclusions

The associations between handedness and a variety of cognitive abilities have been

reported upon in a large number of studies. However, the literature has been

inconsistent in describing whether left- or right-handers have a cognitive advantage.

Other investigations have focussed on individual links between cognitive abilities

and factors such as age, gender and musical ability. Furthermore, Broca's area is a

region which has been historically connected to language skills in the left

hemisphere, although skills linked to Broca's area in the right hemisphere have not

been fully explained. The objectives expressed in this thesis revolved around using

multivariate analyses to investigate associations between different cognitive abilities

and factors such as handedness, musical ability, age, gender and Broca's area

measurement estimates (i.e. volume and surface area) in both children and adults

where possible. Multivariate analyses were used so that all associations were

adjusted for other factors, including correlations between the multiple outcomes.
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Finally, we wanted to check whether the individuals with missing outcomes had an

effect on the results of these multivariate analyses.

One of the main, novel results of this thesis was that in Chapter 3, from the National

Child Development Study data, we concluded that those children with inconsistent

writing and superior hand (i.e. the children who wrote with the opposite hand to their

superior hand) performed worse in both a reading and maths test, than those children

with consistent writing and superior hand. This result was found to be true

irrespective of whether the children were left-or right-handed. Handedness was

measured using a box-ticking method such that the hand skill for a hand (left or

right) of a child was recorded by the number of boxes the child ticked in one minute

with that hand. Superior hand was then defined as the hand which ticked the most

number of boxes. This result was biologically significant even taking into account

the correlation between outcomes, the region of the UK in which the children

attended school, the quadratic relationships between relative hand skill and each

cognitive ability and the gender of each child.

The second novel result that we found was that gender differences that were present

in vocabulary and arithmetic tests in a group of non-musicians (controls) aged

between 19 and 94 years old, were not present in a group of musicians. The literature

contains many references to the perception that females perform better in language

tasks and males perform better in mathematical tasks, which are both reflected by

our results for the control group. Musicians were associated with higher scores in a

vocabulary, arithmetic and visuospatial test than non-musicians which again agree

with the literature. However, the combination of these results suggests that either the

ability of being able to play a musical instrument cancels the gender effect for the

vocabulary and arithmetic test scores or there is some innate characteristic within

musicians (e.g. linked to Broca's area in the brain) which must be present in

individuals to allow them to attain both a high cognitive ability and musical ability.

Indeed, although no differences between males and females was found for the

visuospatial scores in either the musician or control groups, we can see in Figure 4.1

that the slight male advantage in controls becomes a slight female advantage in

musicians. We also discussed whether or not this may be related to the type of

instruments that musicians playas opposed to just the effect of being a musician.
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Our missing data analyses concluded that the results from the multivariate analyses

stated above were consistent after accounting for individuals with missing outcomes.

This added weight to our novel results.

To our knowledge, the study involving the links between relative Broca's surface

area (Broca's surface area relative to Broca's volume) and musical ability and gender

have not been previously reported. In the literature at least one study has discussed

associations between the surface area of the inferior frontal gyrus, of which Broca's

area is a component, and reading-related test scores, but not specifically Broca's area

itself. We found that musicians were associated with a less convoluted Broca's

surface than non-musicians across both hemispheres combined, but mainly in the

right hemisphere. However, we did not find any significant links between relative

Broca's volume (Broca's volume relative to total brain volume) and musical ability,

gender, age or cognitive ability (defined as vocabulary, arithmetic and visuospatial

scores).

The overall conclusions from this thesis can be related directly to the objectives in

Chapter J. We 'constructed statistical models which accounted for multiple outcomes

as both a combination and individually (multivariate linear model) and models which

also took correlation between clustered data into account (multivariate linear mixed

models). We showed that it was beneficial to fit multivariate models when we have

multiple outcomes if either we know the outcomes are correlated or we do not know

whether they are correlated. If outcomes are not correlated then there is no advantage

to fitting multivariate models over multiple univariate models.

We saw that there a number of different factors which are associated with different

cognitive abilities. Some of these associations were seen to be more complex with

interaction terms necessary to represent them in the statistical models. We used three

different datasets and our results showed that possible associations between the

explanatory variables and outcomes are less likely to be shown to be statistically

significant when the sample size is small. This was especially true for the dataset

containing Broca's volume and surface area estimates which included information

about 39 participants. Previous studies have highlighted links between Broca's area

and cognitive ability, but we did not find the relevant associations to be significant.
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In future studies, we recommend that the sample size is increased with volume and

surface area measurements of Broca's area. A larger study would allow us to fully

understand whether the volume and surface area of Broca's area effects cognitive

ability or whether it is another characteristic (e.g. the functional activation of Broca's

area).
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APPENDIX A

R Codes

DATASETS

datal - Full NCDS dataset (n=18551) excluding outliers
data Ia - Full NCDS dataset (n= 18558) including outliers
data Ib - Reduced NCDS dataset (n= 11843) (i.e. all children with missing outcomes or covariates
omitted)
data2 - Full MC dataset (n=149)
data2a - Full MC dataset (/1=142) right-handed participants only
data3 - Broca's subset (n=39)
intra I - Intra-observer volume estimates for participant FM032
intra2 - Intra-observer volume estimates for participant FCO17
intra3 - Intra-observer surface area estimates for participant FM032
intra4 - Intra-observer surface area estimates for participant FCO17

OUTPUT FROM MLwiN

STANDARDIZED RESIDUALS & FITTED VALUES FOR THE MULTIVARIATE LINEAR
MIXED MODEL IN CHAPTER 3

stdres I - Standardized residuals for the reading scores (random errors)
stdres Ia - Standardized residuals for the reading scores (random effects)
stdres2 - Standardized residuals for the transformed maths scores (random errors)
stdres2a - Standardized residuals for the transformed maths scores (random effects)
fitted I - Fitted values for the reading test scores
fitted2 - Fitted values for the transformed maths test scores

STANDARDIZED RESIDUALS & FITTED VALUES FOR THE MULTIVARIATE LINEAR
MODEL IN CHAPTER 4

stdres3 - Standardized residuals for the vocabulary scores
stdres4 - Standardized residuals for the arithmetic scores
stdres5 - Standardized residuals for the visuospatial scores
fitted3 - Fitted values for the vocabulary test scores
fitted4 - Fitted values for the arithmetic test scores
fitted5 - Fitted values for the visuospatial test scores

STANDARDIZED RESIDUALS & FITTED VALUES FOR THE MULTIVARIATE LINEAR
MODELS IN CHAPTER 5

stdres6 - Standardized residuals for the left and right relative Broca's volume estimates
fitted6 - Fitted values for the left and right relative Broca's volume estimates
stdres7 - Standardized residuals for the left and right relative Broca's surface area estimates
fitted7 -- Fitted values for the left and right relative Broca's surface area estimates

CHAPTER 1

NORMALITY TEST OF MATHS VARIABLE (NCDS DATASET)

library(nortest)
aa'<-data I$maths _raw
ad. test( aa)

277



TRANSFORMATIONS
loga<-Iog(aa+ I)
ad.test(loga)
hist(loga)

# log(x) tpa<-(aa)"O.1
ad.test(tpa)
hist(tpa)

expa<-exp(aa)
ad.test( expa)
hist(expa)

# exp(x) sqpa<-(aa)"2
ad.test( sqpa)
hist(sqpa)

halfpa<-( aa)"O.S
ad.test(halfpa)
hist(halfpa)

halfpa<-( aa)"O.8
ad.test(halfpa)
hist(halfpa)

BOX-COX TRANSFORMATION
library(MASS)
maths l l <-(datal$maths_raw)+3
boxcox(maths 11-1 ,lambda=seq( -2,2,0.1»
boxcox(mathsll-I,lambda=seq(0,1,0.02»
boxcox(mathsll-l,lambda=seq(OA,0.6,0.01»
boxcox(mathsll-I,lambda=seq(0.5,0.S7,0.001»
library( car)
transfmathsll<-bcPower(mathsll,0.SI2)
ad.test(transfmaths II)

FIGURE 1.2
hist( datal $maths _trans,cex.main=2,cex.lab= I.S,cex.axis= I.S,main=list("Histogram of Transformed
Mathematics Test Scores",font=3),xlab="Transformed Mathematics Test Scores",ylab="Frequency",
axes=F ALSE)
axis(2,at=seq(0, ISOO,by=2S0),cex.axis= I.S)
axis(1 ,at=seq(0,20,by=4),cex.axis= I.S)
box(lty=I)

TABLE 1.2
TTESTS

SH
dataSHright<-subset( datal a,data Ia$SH==O)
dataSHleft<-subset( data Ia,data Ia$SH== 1)
t.test( dataSHright$read _pc,dataSHleft$read _pc,paired= FALSE,na.action=na.omit)
ttest( dataSHright$maths _trans,dataSHleft$ maths _trans,paired=F ALSE,na.action=na.omit)

WH
dataWHright<-subset( data Ia,data Ia$WH=O)
dataWHleft<-subset(datala,datala$WH==I)
ttest( dataWHright$read _pc,data WHleft$read _pc,paired=F ALSE,na.action=na.omit)
ttest( dataWHright$maths _trans, dataWHleft$maths _trans,paired=F ALSE,na.action=na.omit)

GENDER
dataMale<-subset( data Ia,data Ia$gender=-O)
dataFemale<-subset( data Ia,data I a$gender== I)
t.test( dataMale$read _pc,dataF emale$read _pc,paired=F ALSE,na.action=na.omit)
t.test( dataMale$maths _trans,dataF emale$maths _trans,paired= FALSE,na.action=na.omit)

UK REGION
summary(lm(read _pc-factor(UK _region ),data=data Ia»
confint(lm(read _pc-factor(UK _region),data=data Ia»
summary(lm( maths _trans-factor(UK _region ),data=data Ia»
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confint(lm( maths _ trans- factor(U K_region ),data=data Ia»

TABLE 1.3

PEARSON CORRELATION COEFFICIENTS

RELATIVE HAND SKILL
dataReIHScomp<-subset(data I a,is.na(data I a$DOH)==F ALSE)
dataRel HSreadcomp<-subset( dataRe IHScomp, is.na( data ReI HScomp$read _pc )==F ALSE)
dataRe IHSmathscomp<-subset( dataRe IHScomp, is.na( dataRel HScomp$maths _trans )==F A LSE)
cor.test( dataRelH Sreadcomp$read _pc,dataRel HSreadcomp$DO H)
cor.test( dataRel H Smathscomp$maths _ trans,dataRel HSmathscomp$DO H)

TABLE 1.6

WELCH'S T TESTS

MUSICIAN
dataContro I<-subset( data2a,data2a$m us ic==O)
dataMusician<-subset( data2a,data2a$music== I)
t.teste dataContro I$vocab, dataM us ic ian$ vocab, pa ired= FA LS E,na.action =na. om it)
t.teste dataContro l$arith,dataM usic ian$arith, pa ired =FA LS E, na.action=na. om it)
t. teste dataContro I$b Iock,dataM us ic ian$b lock, paired= FALSE,na.acti on=na. om it)

GENDER
dataMale<-subset(data2a,data2a$gender==O)
dataFemale<-subset( data2a,data2a$gender== I)
t.teste dataMal e$ vocab,dataF emale$vocab, paired= FALS E,na.action=na.om it)
t.teste dataMale$ari th,dataF emale$arith, paired= FA LSE, na.action=na. om it)
t.teste dataMale$b lock.dataf emale$b lock, pai red =FALS E, na.acti on=na. om it)

TABLE 1.7

PEARSONCORRELATION COEFFICIENTS

AGE
dataAgecomp<-subset( data2a, is.na( data2a$age )== FALSE)
dataAgevocabcomp<-subset( dataAgecomp,is. na( dataAgecomp$vocab )==F ALSE)
dataAgearithcomp<-subset( dataAgecomp, is.na( dataAgecomp$arith )== FALSE)
dataAgeblockcomp<-subset( dataAgecomp, is.na( dataAgecomp$block)==F A LSE)
cor. teste dataAgevocabcomp$vocab, dataAgevoca bcomp$age )
cor. teste dataAgearithcom p$ari th,dataAgearithcomp$age )
cor.test( dataAgeblockcomp$b lock.data.AgeblockcompSage)

TABLE 1.8

WELCH'S T TESTS

MUSICIAN
dataContro I<-subset( data3 ,data3 $m usic==O)
dataMusician<-subset( data3,data3$music== I)
t.teste dataContro 1$leftre Iba vo Ipc, dataM us ic ian$leftre Iba vo Ipc, paired= FA LSE, na.act ion=na. om it)
t.teste dataContro I$rightre Ibavo Ipc,dataM us ic ian$ri ghtre Iba vo Ipc, paired= FA LS E, na. action =na. om it)
t.teste dataContro 1$lhbasare Ibalhvo 1203 ,dataM us ician$1 hbasare Iba Ihvo 1203, pa ired= FA LSE,na.acti on =
na.omit)
t. teste dataContro I$rhbasare Ibarhvo 1203 ,dataM us ic ian$rh basare Ibarhvo 1203, paired =FA LS E,na.act ion=
na.omit)

GENDER
dataMale<-subset( data3 ,data3 $gender==O)
dataFemale<-subset( data3,data3$gender== I)
t.teste dataMale$leftre Iba vo Ipc,dataF emale$1 eftre Ibavo Ipc, pa ired= FA LS E, na. act ion =na. om it)
t.teste data M aIe$righ tre Iba vo Ipc, dataF emale$rightre Ibavo Ipc, paired =FA LS E,na.action =na.om it)
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t.testedataMale$lhbasarelbalh vo1203,dataF emaleslhbasarelbathvolzos ,paired=F ALSE,na.action=na.o
mit)
t.testedatalvlalekrhbasarelbarhvolzo.I ,dataF emalesrhbasarelbarhvolzo'l ,paired= FALSE,na.action=na.o
mit)

TABLE 1.9

PEARSON CORRELATION COEFFICIENTS

AGE
cor.test(data3$leftrelbavolpc,data3$age)
cor. testedata3$rightrelbavolpc,data3$age )
cor.test( data3$lhbasarelbalhvoI203,data3$age)
cor. testedata3 Srhbasarelbarhvolzo.I ,data3 $age)

VOCABULARY SCORES
cor .test( data3$leftrelbavolpc,data3$vocab )
cor.test( data3$rightrelbavolpc,data3$vocab)
cor.test(data3$lhbasarelbalhvoI203,data3$vocab)
cor.test( data3$rhbasarelbarhvoI203,data3$vocab)

ARITHMETIC SCORES
cor. testedata3$leftrelbavolpc,data3 $arith)
cor.test(data3$rightrelbavolpc,data3$arith)
cor.test(data3$IhbasarelbalhvoI203,data3$arith)
cor. testedata3 Srhbasarelbarhvolzos ,data3 $arith)

VISUOSPATIAL SCORES
cor.test(data3$leftrelbavolpc,data3$block)
cor. testedata3$rightrelbavolpc,data3 $block)
cor.test(data3$lhbasarelbalhvoI203,data3$block)
cor.test(data3$rhbasarelbarhvoI203,data3$block)

CHAPTER 2

FIGURE 2. 1 (a)
a<-morm( 100,0, I)
b<-runif( 100,60, 140)
plot(b,a,cex.main=2,cex.lab= 1.5,cex.axis= I.S,yIim=c( -3,3 j.main=Hsu'" ,font=3 ),xlab="" ,ylab="")

FIGURE 2.1(b)
a<-morm(30, 1,0.7S)
c<-morm(20,0.S,0.S)
d<-morm(30,0.S,0.2)
b<-morm(30,8S, 10)
e<-morm(20, lOS,10)
f<-morm(30, 120, 10)
gl <-miructa.c.d)
g2<-max( cra.c.d)
hI <-mim c(b,e,f)
h2<-max(c(b,e,f)
plot(b,a,cex.main=2,cex.lab= 1.5,cex.axis= I.S,xIim=c(h I ,h2),yIim=c(-
3,3 ),main=Iist("" ,font=3),xlab="" .ylab=?")
Iines( e,c,type="p")
Iines(f,d,type="p")
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CHAPTER 3

FIGURE 3.]

hl<-subset(datala, datala$SH==I) # Left SH
hm<-subset(datala, data Ia$SH==O) # Right SH
hlg<-subset(hl,hl$WH== I) # Left WH + Left SH
hlh<-subset(hl,hl$WH==O) # Right WH + Left SH
hmg<-subset(hm,hm$WH==I) # Left WH + Right SH
hmh<-subset(hm,hm$WH==O) # Right WH + Right SH
plot(loess.smooth(hlg$OOH,hlg$read ~pe,span=O. 7S),xlim=e(3.8, IOO),ylim=e(30,SO),eex.main= 1.8,ee
x.lab= 1.5,eex.axis= I.S,type="I" ,lwd=3,eol="red" ,main=list("" ,font=3 ),xlab="" ,ylab="")
Iines(loess.smooth(h Ih$OO H,hlh$read ~pe,span=O. 7S),type=" III,lwd=3 ,COI="green ")
Iines(loess.smooth(hmg$OO H,hmg$read ~pc,span=O. 7S),type="1 ", Iwd=3,col="purple")
Iines(loess.smooth(hmh$OOH,hmh$read ~pc,span=O. 75),type="1 ", Iwd=3 ,col="blue")
legend(71,51,cex=l.l,c("RSH, RWH","RSH, LWH","LSH, RWH", "LSH,
LWH"),lty=c(l, 1,1, I ),lwd=c(3,3,3,3),col=c("blue","purple","green","red"),bty="n")

hl<-subset( data I a, data Ia$SH== I) # Left SH
hm<-subset(datala, datala$SH==O) # Right SH
hlg<-subset(hl,hl$WH== I) # Left WH + Left SH
hlh<-subset(hl,hl$WH==O) # Right WH + Left SH
hmg<-subset(hm,hm$WH==l) # Left WH + Right SH
hmh<-subset(hm,hm$WH==O) # Right WH + Right SH
plot(loess.smooth(hlg$OOH,hlg$maths ~trans,span=O.75),xlim=c(3.8, IOO),ylim=c(8, 12),cex.main= 1.8
.cex.lab= 1.S,cex.axis= I.S,type="I" ,lwd=3,col="red" ,main=list("" ,font=3),xlab="",ylab="")
lines(loess.smooth(hlh$OO H,hlh$maths ~trans,span=O. 7S),type="1 II,lwd=3 ,COI="green ")
Iines(loess.smooth(hmg$OOH,hmg$maths ~ trans,span=O. 7S),type="1 ", Iwd=3 ,col="purple ")
Iines(loess.smooth(hmh$OOH,hmh$maths ~trans.span=O. 75),type=" I''. Iwd=3 ,col="blue")
legend(71, 12.2,cex=l.l,c("RSH, RWH","RSH, LWH","LSH, RWH", "LSH,
LWH"),lty=c( I, I, I ,.I ),lwd=c(3,3,3,3),col=c("blue","purple","green","red"),bty="n")

hl<-subset( data Ib,data Ib$SH== I) # Left SH
hm<-subset(data I b, data Ib$SH==O) # Right SH
hlg<-subset(hl,hl$WH==l) # Left WH + Left SH
hlh<-subset(hl,hl$WH==O) # Right WH + Left SH
hmg<-subset(hm,hm$WH== I) # Left WH + Right SH
hmh<-subset(hm,hm$WH==O) # Right WH + Right SH
plot(loess.smooth(hlg$00H,hlg$read~pc,span=O.7S),xlim=c(3.8,6S),ylim=c(30,SO),
cex.main= 1.8,cex.lab= I.S,cex.axis= 1.5,type="I",lwd=3,col="red",main=list(,"',font=3),
xlab="",ylab="")
Iines(loess.smooth(h Ih$OO H,hlh$read _pc,span=O. 75),type=" I", Iwd=3 .co 1="green ")
Iines(loess.smooth(hmg$OOH ,hmg$read ~pc,span=O. 75),type="I", Iwd=3 ,col="purple")
Iines(loess.smooth(hmh$OOH,hmh$read ~pc,span=O. 75),type="1 ", Iwd=3 ,col="blue")
legend(47,SI,cex=l.l,c("RSH, RWH","RSH, LWH","LSH, RWH","LSH,
LWH"),lty=c( I, I, I, I ),lwd=e(3,3,3,3),col=c("blue","purple","green","red"),bty="n")

hl<-subset(data I b, data I b$SH== I) # Left SH
hm<-subset(datalb, datalb$SH==O) # Right SH
hlg<-subset(hl,hl$WH== I) # Left WH + Left SH
hlh<-subset(hl,hl$WH==O) # Right WH + Left SH
hmg<-subset(hm,hm$WH== I) # Left WH + Right SH
hmh<-subset(hm,hm$WH==O) # Right WH + Right SH
plot(loess.smooth(hlg$OOH,hlg$maths ~trans.span=O. 75),xlim=c(3.8,6S),ylim=c(8, 12),cex.main= 1.8,
cex.lab= 1.5,cex.axis= 1.5,type="I" ,lwd=3,col="red" ,main=list("" ,font=3),xlab="" ,ylab="")
Iines(loess.smooth(hlh$OO H,h Ih$maths ~trans,span=O. 7S), type="1 ", Iwd=3 ,col =" green ")
Iines(loess.smooth(hmg$OO H,hmg$maths ~trans.span=O. 7S),type="1 II,lwd=3 ,col="purple")
Iines(loess.smooth(hmh$OOH,hmh$maths ~trans.span=O. 75),type=" III,lwd=3 ,col="blue")
legend(47, 12.2,cex=1. l,c("RSH, RWH","RSH, LWH","LSH, RWH","LSH,
LWH"),lty=c( I, I, I, I ),lwd=c(3,3,3,3),col=c("blue","purple","green","red"),bty="n")
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FIGURE 3.2
paa<-subset(datal,datal$WH==l) #LEFT HANDWRITERS
paa$doh<-«paa$RH_squares_1min-
paa$LH _squares _lmin)/(paa$RH _squares _1min+paa$LH _squares_I min)* 100)
pab<-subset(datal,data1$WH==0) #RIGHT HANDWRITERS
pab$doh<-«pab$RH _squares_I min-
pab$LH _squares _1min)/(pab$RH _squares _1min+pab$LH _squares _1min)* 100)
pac<-subset(paa,paa$SH==l) #LEFT HW, LEFT HD
pad<-subset(paa,paa$SH==O) #LEFT HW, RIGHT HD
pae<-subset(pab,pab$SH==I) #RIGHT HW, LEFT HD
paf<-subset(pab,pab$SH==O) #RIGHT HW, RIGHT HD
pag<-c(O,O)
pah<-c(O, 100)
pas<-loess.smooth(paa$doh,paa$read _pc,span=0.7 5)[[ 1]]
pas<-subset(pas,pas<=O)
lengthpas<-length(pas)
pall<-loess.smooth(paa$doh,paa$read _pc,span=O. 75)[[2]]
pall<-pall[l :lengthpas]
pat<-loess.smooth(paa$doh,paa$read _pc,span=O .075)[[ 1]]
pat<-subset(pat,pat>O)
lengthpat<-length(pat)
palr<_loess.smooth(paa$doh,paa$read_pc,span=0.075)[[2]]
aaac-lengthpas+ 1
bbb<-lengthpas+lengthpat
palr<-palr[ aaa:bbb ]
pav<-loess.smooth(pab$doh,pab$read _pc,span=0.075)[[ 1]]
pav<-subset(pav,pav<=O)
lengthpav<-length(pav)
parl<_loess.smooth(pab$doh,pab$read_pc,span=0.075)[[2]]
parl<-parl[1 :lengthpav]
paya<-loess.smooth(paa$doh,paa$read _pc,span=0.075)[[ 1]]
payb<-loess. smooth(pab$doh,pab$read _pc,span=O. 075)[[ 1]]
pau<-loess.smooth(pab$doh,pab$read _pc,span=O. 75)[[ 1]]
pau<-subset(pau,pau>O)
lengthpau<-length(pau)
parr<-loess.smooth(pab$doh,pab$read _pc,span=O. 75)[[2]]
aab<-lengthpav+ 1
bba<-lengthpav+lengthpau
parr<-parr[aab:bba]
parhw<-c(parl,parr)
palhw<-c(pall,paJr)
readpaa<-subset(paa,paa$read _pc>=O)
readpab<-subset(pab,pab$read _pc>=O)
mathtpaa<-subset(paa,paa$maths _trans>=O)
mathtpab<-subset(pab,pab$maths _trans>=O)

(a)
start<--60
end<-60
n<-20
space<-( end-start )/n
outputlx<-matrix(O,ncol= 1,nrow=n)
outputrx<-matrix(O,ncol= 1,nrow=n)
outputy<-matrix(O,ncol= 1,nrow=n)
outputnumdataleft<-matrix(O,ncol= 1,nrow=n)
outputnumdataright<-matrix(O,ncol= 1,nrow=n)
for(i in 1:n){
setl<-O
set2<-0
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set3<-0
set4<-0
a-c-start+ui-I )*space)
b<-start+( i*space)
set I<-subset(readpaa,readpaa$doh>=a)
set2<-subset(set I,set I$doh<=b)
set3 <-s ubset( readpab,readpab$doh>=a)
set4<-subset(set3,set3$doh<=b)
c<-length(set2$number)
d<-length(set4$number)
if(c>=1 ){
outputlx[i]<-mean(set2$read _pc)}
else{
outputlx[ i]<-NA}
if(d>=l ){
outputrx[i]<-mean(set4$read _pc)}
else{
outputrx[i]<-NA}
outputy[ i]<-(b+a )/2
outputn umdataleft[ i]<-c
outputnumdataright[ i]<-d}
plot(paya,palhw .xl im=c( -65 ,65),yl im=c(30,50), type=" I",Iwd=2,co I="black" ,cex.main=2,cex.lab= 1.5,
cex.axis= 1.5,main=list("Plot of Relative Hand Skill vs Mean Reading Score by Writing
Hand",font=3),
xlab="Relative Hand Skill",ylab="Mean Reading Score")
lines(payb,parhw,type="I",col="black",lty=2,lwd=2)
lines(pag,pah,type="I",col="black",lty=3)
lines( outputy,outputlx,type="p" .pch= 19,col="black" ,lwd=2)
Iines( outputy ,outputrx,type="p" ,pch=3 ,col="black" ,lwd=2)
legend( -65,51 ,cex=l.3,c("Right WH","Left WH"),lty=c(2, I),lwd=c(2,2),pch=c(3, 19),merge=TRUE,
col=c("black", "black."),bty="n ")

(b)
start<--60
end<-60
n<-20
space<-( end-start )/n
outputlx<-matrix(O,ncol= I,nrow=n)
outputrx<-matrix(O,ncol= I.nrow=n)
outputy<-matrix(O,ncol= I.nrow=n)
outputnumdataleft<-matrix(O,ncol= 1 ,nrow=n)
outputnumdataright<-matrix(O,ncol= I.nrow=n)
for(i in I :n){
set! <-0
set2<-0
set3<-0
set4<-0
a<-start+( (i-I )*space)
b<-start+( i*space)
set I<-subset(mathtpaa,mathtpaa$doh>=a)
set2<-subset(set I .set I$doh<=b)
set3<-subset(mathtpab,mathtpab$doh>=a)
set4<-subset( set3 ,set3 $doh<=b)
c<-Iength( set2$n umber)
d<-length(set4$number)
if(c>=I){
outputlx] i]<-mean(set2$maths _trans)}
else{
outputlx[i]<-NA}
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if(d>=I){
outputrx[i]<-mean(set4$maths _trans)}
else{
outputrx[i]<-NA}
outputy[ i]<-(b+a )/2
outputnumdataleft[i]<-c
outputnumdataright[i]<-d}
paklx<-c( -57.14285714,-55.29640428,-53.44995141 ,-51.60349854,-49.75704568,-47.9 I05928 I,
-46.06413994,-44.21768707,-42.37123421 ,-40.52478134,-38.67832847,-36.83187561,
-34.98542274,-33.13896987,-31.29251701,-29.44606414,-27.59961127,-25.75315841,
-23.90670554,-22.06025267,-20.21379981,-18.36734694,- I6.52089407,-14.67444121,
-12.82798834,-1 0.98153547,-9.13508260,-7.28862974,-5.44217687,-3.59572400,-1.74927114,
0.09718173, 1.94363460,3.79008746,5.63654033, 7.48299320,9.32944606,11.17589893,
13.02235180,14.86880466,16.71525753, 18.56171040,20.40816327,22.25461613,24.10 I06900,
25.94752187,27.79397473,29.64042760,3 I.48688047,33.33333333)
pakly<-c(9.3420 I0,9.466312,9.604976,9.755075,9.913683, I0.077875, 10.244723, I0.411303,
10.574686,10.731948,10.880162,11.016402, 11.137742, 11.241255, 11.324015, 11.383096,11.415572,
11.418517,11.407586,11.421365,11.382263,11.308168,11.228681, 11.164528, 11.136784,11.116992,
11.015821, I0.907313, 10.754625, I0.605019, I0.480288,9.651971 ,9.661456,9.680489,9.660583,
9.571854,9.247934,9.146494,9.121150,9.186432,9.269206,9.314575,9.376069,9.424457,9.465378,
9.502656,9.538024,9.573220,9.609980,9.650039)
pakrx<-c( -32. 7433628,-30.8506411 ,-28.9579195,-27.0651978,-25.1724761 ,-23.2797544,-
21.3870327,-19.4943110,-17.6015893,-15.7088676,-13.8161459,-11.9234242,-10.0307025,-
8.1379809,-6.2452592,-4.3525375,-2.4598158,-0.5670941,1.3256276,3.2183493,5.1110710,
7.0037927,8.8965144, I0.7892360,12.6819577,14.5746794,16.46740 11,18.3601228,20.2528445,
22.1455662,24.0382879,25.9310096,27.8237313,29.7164530,31.6091746,33.5018963,35.3946180,
37 .2873397,39.1800614,41.0727831 ,42.9655048,44.8582265,46.7509482,48.6436699,50.5363915,
52.4291132,54.3218349,56.2145566,58.1072783,60.0000000)
pakry<-c(9.1 07922,9 .062213,8.992268,8.905046,8.807505,8. 706604,8.609302,8.522557 ,8.453327,
8.408572,8.395249,8.420317,8.490736,8.613462,8. 793931,8.899995,9.077718,9.370907, I0.137287,
10.339965,10.542102,10.745183,10.970011, 11.158430, 11.321409, 11.460538, 11.564133, 11.637914,
11.697844,11.748119,11.741991,11.717695,11.717773,11.706137,11.682854,11.649083,11.605982,
11.554711,11.496428,11.432292,11.363462,11.291096, 11.216355, 11.140397, 11.064380, 10.989463,
10.916806,10.847567,10.782906,10.723980)
plot(paklx,pakly,xlim=c( -65,65),ylim=c(6, 13),type="I" ,lwd=2,col="black",cex.main=2,cex.lab= 1.5,
cex.axis= 1.5,main=list("Plot of Relative Hand Skill vs Mean Transformed Maths Score by Writing
Hand",
font=3),xlab="Relative Hand Skill",ylab="Mean Transformed Maths Score")
Iines(pakrx,pakry,type="I",col="black",lty=2,lwd=2)
lines(pag,pah,type="I",col="black",lty=3)
Iines( outputy ,outputlx,type="p" ,pch= 19,col="black" ,lwd=2)
Iines( outputy ,outputrx,type="p" ,pch=3,col="black" ,lwd=2)
legend( -65, 13.3,cex=I.3,c("Right WH", "Left WH"),lty=c(2, I ),lwd=c(2,2),pch=c(3, 19),merge=TRUE,
col=c("black", "black"),bty="n ")

FIGURE 3.3
model I<-Im(maths _trans-read _pc,data=data Ib)
summary(modell)
blank<-c( -50,150)
read I<-c(2.62 1226+0. I83766*(-50),2.813972+0. 181267* 150)
plot( data I$read _pc,data I$maths _trans,cex.axis= 1.5,cex.lab= 1.5,cex.main=2,ylim=c(-
2.5,22.5),xlim=c(-10,110),
main=list("Plot of Reading Scores v Transformed Mathematics Scores",font=3),xlab="Reading
Scores (%)",
ylab="Transformed Mathematics Scores")
Iines(blank,read I)

CORRELATION

cor. test( data I$read _pc, data I$maths _trans)
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IMPORT STANDARDIZED RESIDUALS & FITTED VALUES FROM MLwiN

Random Errors Random Effects

stdresreadla<-matrix(O,nrow= II I66,ncol= I)
for(i in I: 11166){
stdresreadla[i, 1]<-stdres Iali, I]}
for(i in I: 11166){
if(stdresreadla[i, I ]==-9.9990e+29){
stdresreadla[i, 1]<-NA}}

stdresread<-matrix(O,nrow= 18551 ,ncol= I)
for(i in I: 18551){
stdresread[i,1 ]<- stdres 1[i, I]}
for(i in I: 18551){
if(stdresread[i, I]==-9. 9990e+ 29){
stdresread[i, I]<-NA} }

stdresmatht<-matrix(O,nrow= 18551 ,ncol= I)
for(i in 1:18551){
stdresmatht[i, 1]<- stdres2[i, I]}
for(i in 1:18551){
if(stdresmatht[i, I ]==-9.9990e+29){
stdresmatht[i, 1]<-NA} }

stdresmathtla<-matrix(O,nrow= I 1166,ncol= I)
for(i in I: 11166){
stdresmathtla[i, 1]<- stdres2a[i,I]}
for(i in I: 11166){
if(stdresmathtla[i, 1]==-9. 9990e+ 29) {
stdresmathtla[i, 1]<-NA} }

Fitted Values

fittedread<-matrix(O,nrow= 18551 ,ncol= I)
count<-I
for(i in 1:18551){
fittedread[i, I]<-fitted 1[count, I]
count<-count+ 2}
for(i in I: 18551){
ifrfittedread[i, 1]==-9. 9990e+ 29){
fittedread[i, 1]<-NA}}

fittedmatht<-matrix(O,nrow=18551 ,ncol= I)
count<-2
for(i in 1:18551){
fittedmatht[i, 1]<- fitted2[ count, I]
count<-count+ 2}
for(i in I: 18551){
if(fittedmatht[i, 1]==-9.9990e+ 29) {
fittedmatht[i, 1]<-NA} }

FIGURE 3.4

(a)

plot(stdresmatht,stdresread,cex.axis=I.5,cex.lab= 1.5,cex.main=2,main=list("Plot of Multivariate Std
Residuals", font=3 ),xlab="Standardized Residuals (Transformed Maths)" ,ylab="Standard ized
Residuals (Reading)")

(b)

plot(stdresmathtla,stdresreadla,cex.axis= 1.5,cex.lab= 1.5,cex.main=2,main=list("Plot of Multivariate
Std Residuals" ,font=3 ),xlab="Standardized Residuals (Transformed Maths)" ,ylab="Standardized
Residuals (Reading)")

FIGURE 3.5

(a) and (b) FITTED VALUES v STANDARDIZED RESIDUALS

plot(fittedread,stdresread,cex.axis= 1.5,cex.lab= 1.5,cex.main=2,ylim=c( -3.1,3.1 ),main=list("Fitted
Values v Std Residuals",font=3),xlab="Fitted Values",ylab="Standardized Residuals")

plot(fittedmatht,stdresmatht,cex.axis= 1.5,cex.lab= 1.5,cex.main=2,ylim=c(-3.1 ,3.1 ),main=list("Fitted
Values v Std Residuals",font=3),xlab="Fitted Values",ylab="Standardized Residuals")

(c) and (d) HISTOGRAMS OF STANDARDIZED RESIDUALS
hist(stdresread,cex.axis=I.5,cex.lab= 1.5,cex.main=2,ylim=c(O,2250),main=list("Histogram of
Standard ized Residuals", font=3 ),x lab="Standard ized Residuals" ,ylab=" Frequency")
box(lty=l)

hist(stdresmatht,cex.axis= 1.5,cex.lab= 1.5,cex.main=2,ylim=c(O,2250),main=list("H istogram of
Standard ized Residuals", font=3 ),xlab="Standardized Residuals" ,ylab=" Frequency")
box(lty=l)

285



(e) and (f) QQ-PLOTS OF STANDARDIZED RESIDUALS
qqnonn(stdresread,cex.axis= 1.5,cex.lab= 1.5,cex.main=2,ylim=c( -3,3 ),main=list("Nonnal QQ-
Plot" ,font=3),xlab="Theoretical Quantiles" ,ylab="Sample Quantiles")
qq line( stdresread)

qqnonn(stdresmatht,cex.axis= 1.5,cex.lab= 1.5,cex.main=2,ylim=c(-3,3 ),main=list("Nonnal QQ-
Plot" ,font=3),xlab="Theoretical Quantiles" ,ylab="Sample Quantiles")
qq line( stdresmatht)

CHAPTER 4

FIGURE 4.1
hl<-subset( data2a, data2a$music== I)
hm<-subset( data2a, data2a$music==O)
hlg<-subset(hl,hl$gender== I)
hlh<-subset(hl,hl$gender==O)
hmg<-subset(hm,hm$gender== I)
hmh<-subset(hm,hm$gender==O)
binary I<-c(5, I0)
binary2<-c(15,20)
binary3<-c(25,30)
binary4<-c(35,40)
binary5<-c( 45,50)
binary6<-c(55,60)
zz<-hlg$vocab
zz<-sort(zz)
zy<-hlh$vocab
zy<-sort( zy)
zx<-hmg$vocab
zx<-sort( zx)
zw<-hmh$vocab
zw<-sort(zw)
zv<-hlg$arith
zv<-sort( zv)
zu<-hlh$arith
zu<-sort(zu)
zt<-hmg$arith
zt<-sort( zt)
zs<-hmh$arith
zs<-sort( zs)
zr<-hlg$block
zr<-sort( zr)
zq<-hlh$block
zq<-sort(zq)
zp<-hmg$block
zp<-sort( zp)
zo<-hmh$block
zo<-sort(zo)
da<-mean(zz)
db<-mean(zy)
dc<-mean(zx)
dd<-mean(zw)
de<-mean(zv)
df<-mean(zu)
dg<-mean(zt)
dh<-mean(zs)
di<-mean(zr)
dj<-mean(zq)
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dk<-mean(zp)
dl<-mean(zo)
dm<-Iength(zz)
dn<-Iength(zy)
do<-Iength(zx)
dp<-Iength(zw)
dq<-Iength( zv)
dr<-Iength(zu)
ds<-Iength(zt)
dt<-Iength( zs)
du<-Iength(zr)
dv<-Iength(zq)
dw<-Iength(zp)
dx<-Iength(zo)
malemusicianvocab<-matrix(5,ncol= 1,nrow=27)
femalemusicianvocab<-matrix( 1O,ncol= 1,nrow=9)
malecontrolvocab<-matrix( 15,ncol= 1,nrow=43)
femalecontrolvocab<-matrix(20,ncol= 1,nrow=46)
malemusicianarith<-matrix(25,ncol= 1,nrow=2 7)
femalemusicianarith<-matrix(30,ncol= 1,nrow=9)
malecontrolarith<-matrix(35,ncol= 1,nrow=42)
femalecontrolarith<-matrix( 40,ncol= 1,nrow=46)
malemusicianblock<-matrix( 45,ncol= 1,nrow=27)
femalem usicianblock<-matrix( 50,nco 1=1,nrow=9)
malecontrolblock<-matrix(55,ncol= 1,nrow=42)
femalecontrolblock<-matrix( 60,ncol= 1,nrow=46)
ea<-sd(zy)
eb<-sd(zz)
ec<-sd(zw)
ed<-sd(zx)
ee<-sd(zu)
ef<-sd(zv)
eg<-sd(zs)
eh<-sd(zt)
ei<-sd(zq)
ej<-sd(zr)
ek<-sd(zo)
el<-sd(zp)
em<-sqrt(dm)
en<-sqrt(dn)
eo<-sqrt( do)
ep<-sqrt( dp)
eq<-sqrt( dq)
er<-sqrt(dr)
es<-sqrt( ds)
et<-sqrt( dt)
eu<-sqrt(du)
ev<-sqrt(dv)
ew<-sqrt(dw)
ex<-sqrt( dx)
fa<-db+( 1.96*(ea/en»
fb<-db-( 1.96*(ealen»
fc<-da+( 1.96*( eb/ern)
fd<-da-(1.96*(eb/em»
fe<-dd+( 1.96*(ec/ep»
ff<-dd-( 1.96*(ec/ep»
fg<-dc+( 1.96*( ed/eo)
fh<-dc-( 1.96*(ed/eo»
fi<-df+( 1.96*(ee/er»
fj<-df-( 1.96*( ee/er)
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tk<-de+(l.96*(ef/eq»
fl<-de-(1.96*( ef/eq)
fm<-dh+(1.96*( eg/et)
fu<-dh-(l.96*(eglet»
fo<-dg+(1.96*(eh/es»
fp<-dg-( 1.96*( eh/es)
fq<-dj+(1.96*( ei/ev)
fr<-dj-(1.96*(eilev»
fs<-di+( 1.96*( ej/eu)
ft<-di-( 1.96*(ej/eu»
fu<-dl+(1.96*( ek/ex)
fv<-dl-( 1.96*( ek/ex)
fw<-dk+(l.96*( el/ew)
fx<-dk-(1.96*( el/ew)
ga<-c(fa,fa)
gb<-c( fb.fb )
gc<-c(fc,fc)
gd<-c(fd,fd)
ge<-c( fe,fe)
gf<-c( ff,ff)
gg<-c(fg,fg)
gh<-c(th,fu)
gi<-c(fi,fi)
gj<-c(fj,fj)
gk<-c(tk,tk)
gl<-c(fl,fl)
gm<-c(fm,fm)
gn<-c(fu,fu)
go<-c(fo,fo)
gp<-c(fp,fp)
gq<-c(fq,fq)
gr<-c(fr,fr)
gs<-c(fs,fs)
gt<-c(ft,ft)
gu<-c(fu,fu)
gv<-c(fv,fv)
gw<-c(fw,fw)
gx<-c(fx,fx)
ha<-c(da,da)
hb<-c( db,db)
hc<-c(dc,dc)
hd<-c( dd,dd)
he<-c(de,de)
hf<-c( df,df)
hg<-c(dg,dg)
hh<-c(dh,dh)
hi<-c(di,di)
hj<-c(dj,dj)
hk<-c(dk,dk)
hl<-c( dl,dl)
binary I I<-c(4,6)
binaryI2<-c(9, 11)
binary21 <-c( 14,16)
binary22<-c(19,21 )
binary31 <-c(24,26)
binary32<-c(29,31)
binary41 <-c(34,36)
binary42<-c(39,41 )
binary51 <-c( 44,46)
binary52<-c(49,51)
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binary61 <-c(S4,S6)
binary62<-c(S9,61)
plot(ll1alell1usicianvocab,zy,ylill1=c(4, 19),xlill1=c(4,61 ),type="p",col="black" .cex.main=z.cex.lab= I.S
.main=IistfPlot of Male & Female, Musicians & Controls vs Mean Cognitive Ability
Scores" ,font=3 ),xlab="" ,ylab="Mean Vocabulary/ ArithmeticlVisuospatial Score" ,axes=F ALSE)
Iines( femalernusicianvocab.zz, type="p" ,col="black ")
lines(malecontrolvocab,zw,type="p",col="black")
Iines( femalecontrolvocab.zx, type="p" ,col="black ")
lines(malemusicianarith,zu,type="p",col="black")
lines(femalemusicianarith,zv,type="p",col="black")
Iines(malecontrolarith.zs.type=t'p'' ,col="black ")
Iines( femalecontro larith,zt,type="p" ,col="black ")
lines(malemusicianblock,zq,type="p",col="black")
lines(femalemusicianblock,zr,type="p",col="black")
lines(malecontrolblock,zo,type="p",col="black")
Iines( femalecontrolblock,zp,type="p" ,co I="b lack ")
lines(binaryll,hb,type="I",col="black")
lines(binaryll,ga,type="I",lty=2,col="black")
lines(binary II ,gb,type="I",lty=2,col="black")
lines(binary 12,ha,type="I" ,col="black")
Iines(binary 12,gc,type="I", Ity=2,col="black ")
lines(binary 12,gd,type="I" ,lty=2,col="black")
lines(binary21,hd,type="I",col="black")
lines(binary21 ,ge,type="I" ,lty=2,col="black")
lines(binary21,gf,type="I",lty=2,col="black")
lines(binary22,hc,type="I",col="black")
lines(binary22,gg,type="I",lty=2,col="black")
lines(binary22,gh,type="I",lty=2,col="black")
lines(binary31,hf,type="I",col="black")
lines(binary31 .gi.type="l" ,lty=2,col="black")
lines(binary31 .gj.type="!" ,lty=2,col="black")
lines(binary32,he,type="I",col="black")
Iines(binary32,gk,type=" I",lty=2,col="black ")
lines(binary32,gl,type="I",lty=2,col="black")
lines(binary41,hh,type="I",col="black")
lines(binary41 ,gm,type="I" ,lty=2,col="black")
lines(binary41 ,gn,type="I" ,lty=2,col="black")
lines(binary42,hg,type="I",col="black")
lines(binary42,go,type="I",lty=2,col="black")
lines(binary42,gp,type="I",lty=2,col="black")
lines(binarySI,hj,type="I",col="black")
Iines(binarySI,gq,type="I",lty=2,col="black")
lines(binarySI,gr,type="I",lty=2,col="black")
lines(binaryS2,hi,type="I",col="black")
lines(binaryS2,gs,type="I",lty=2,col="black")
Iines(binaryS2,gt,type=" I",Ity=2,col="b lack ")
lines(binary61,hl,type="I",col="black")
lines(binary61 .gu.type="!" ,lty=2,col="black")
lines(binary61,gv,type="I",lty=2,col="black")
lines(binary62,hk,type="I",col="black")
lines(binary62,gw,type="I",lty=2,col="black")
lines(binary62,gx,type="I",lty=2,col="black")
legend(2,20,cex= I.S, "Vocabulary Test" ,bty="n")
legend(22 .6,20,cex= I.S, "Arithmetic Test" ,bty="n")
legend(42,20,cex=I.S,"Visuospatial Test",bty="n")
legend(O,6,cex= 1.3,c("Mean","9S% Confidence Interval"),lty=c( I ,2),bty="n")
b I<-c(22.S,22.S)
c I<-c(O,2S)
lines(b I,c I ,type="I",lty=3,col="black")
b2<-c( 42.S,42.S)
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c2<-c(0,25)
lines(b2,c2,type="I",lty=3,col="black")
axis(1 ,at=c(5, 1O),cex.axis= 1.5,labels=c("Male" ,"Female"),line= I)
axis(l,at=c(15,20),cex.axis=I.5,labels=c("Male","Female"),line=l)
axis( 1,at=c(25,30),cex.axis= 1.5,labels=c("Male", "Female"),line= I)
axis( 1,at=c(35,40),cex.axis= 1.5,labels=c("Male" ,"Female"),line= I)
axis( 1,at=c( 45,50),cex.axis= 1.5,labels=c("Male", "Female"),line= I)
axis(l,at=c(55,60),cex.axis=I.5,labels=c("Male","Female"),line=l)
axis( I ,at=c(7.5, 17.5),cex.axis=I .5,labels=c("Musicians", "Controls"),line=2,1ty="blank")
axis( I ,at=c(27 .5,37 .5),cex.axis= 1.5,labels=c("Musicians", "Controls"),line=2,1ty="blank")
axis(l,at=c(47.5,57.5),cex.axis=I.5,labels=c("Musicians","Controls"),line=2,1ty="blank")
axis(2,at=seq( 4,20,by=2),cex.axis= 1.5)
box(lty=l)

FIGURE 4.2
modell <-lm(vocab-arith,data=data2a)
summary(model I)
za<--IO
zb<-IOO
blank<-c(za,zb)
vocab I<-c(7. 76052+0.35812*za, 7.76052+0.358 I2*zb)
plot( data2$arith,data2$vocab,cex.axis= 1.5,yIim=c(0,20 ),xlim=c( 4,20),main=list("", font=3 ),xlab="" ,
ylab='''')
Iines(blank, vocab I)

modeI2<-lm( vocab-block.data=dataza)
summary(modeI2)
za<--IO
zb<-IOO
blank<-c(za,zb)
vocab2<-c(8.015 I I+0.3 I935*za,8.01511 +0.31935*zb)
plot( data2$block,data2$vocab,cex.axis= I. 5,yl im=c(2,20 ),xlim=c( 4,20),main=list("" ,font=3 ),xlab="",
ylab="")
Iines(blank, vocab2)

modeI3<-lm(arith-block,data= data2a)
summary(modeI3)
za<--IO
zb<-IOO
blank<-c(za,zb)
arith2 <-c( 5.45206+0 .45626*za,5 .45206+0 .45626 *zb)
plot( data2$block,data2$arith,cex.axis= 1.5,ylim=c(2,20),xlim=c(0,20),main= Iist("" ,font=3 ),xlab="",
ylab="")
Iines(blank,arith2)

CORRELATION

cor. test( data2a$arith,data2a$vocab )
cor. test( data2a$block,data2a$vocab )
cor. test( data2a$block,data2a$arith)

CALCULATION OF R2 FOR EACH UNIVARIATE MODEL

model I<-lm(vocab-music*gender+age,data=data2a)
summary(model I)
modeI2<-lm(arith-music*gender+age,data= data2a)
summary(modeI2)
modeI3<-lm(block-music*gender+age,data= data2a)
summary(model3 )
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IMPORT STANDARDIZED RESIDUALS & FITTED VALUES FROM MLwiN

Fitted Values

multivocabfitted<-matrix(O,nrow= 142,ncol= I)
count<-1
for(i in I: 142){
multivocabfitted[i, I ]<-fitted3 [count, I]
count<-count+ 3}
for(i in I: 142){
if(multivocabfitted[i, I]==-9.9990e+29){
multivocabfitted[i, I]<-NA} }

multiarithfitted<-matrix(O,nrow= 142,ncol= I)
count<-2
for(i in 1:142){
multiarithfitted[i, I ]<-fitted4[ count, I]
count<-count+ 3}
for(i in I: 142){
itrmultiarithfitted[i, I]==-9. 9990e+ 29) {
multiarithfitted[i, I]<-NA}}

mu Itiblockfitted<-matrix(O,nrow= 142,ncol= I)
count<-3
for(i in I: 142){
multiblockfitted[i, I]<-fitted5[ count, I]
count<-count+ 3}
for(i in 1:142){
if(multiblockfitted[i, I]==-9. 9990e+ 29) {
multiblockfitted[i, I]<-NA} }

FIGURE 4.3

(a)

Standardized Residuals

mu Itivocabstdres<-
matrix(O,nrow= 142,ncol= I)
for(i in I: 142){
multivocabstdres[i, I]<-stdres3[i, I]}
for(i in I: 142){
if(multivocabstdres[i, I]==-9. 9990e+ 29) {
multivocabstdres[i, I]<-NA}}

multiarithstdres<-matrix(O,nrow= 142,ncoI= I)
for(i in I: 142){
multiarithstdres[i, I]<- stdres4[i, I]}
for(i in I: 142){
if(multiarithstdres[i, I]==-9.9990e+ 29){
multiarithstdres[i, I]<-NA}}

multi bIockstdres <-
matrix(O,nrow= 142,ncol= I)
for(i in I: 142){
multiblockstdres[i, I ]<- stdres5[i, I]}
for(i in I: 142){
if(multiblockstdres[i, I]==-9.9990e+29){
multiblockstdres[i, I ]<-NA}}

plot(multiarithstdres,multivocabstdres,cex.axis= 1.5,cex.lab= 1.5,cex.main=2,main=list("Plot of
Multivariate Std Residuals",font=3),xlab="Standardized Residuals (Arithmetic
Scores)",ylab="Standardized Residuals (Vocabulary Scores)")

(b)
plot(multiblockstdres,multivocabstdres,cex.axis= 1.5,cex.lab= 1.5,cex.main=2,main=list("Plot of
Multivariate Std Residuals",font=3),xlab="Standardized Residuals (Visuospatial
Scores)",ylab="Standardized Residuals (Vocabulary Scores)")

(c)
plot(multiblockstdres,multiarithstdres,cex.axis= 1.5,cex.lab= 1.5,cex.main=2,main=list("Plot of
Multivariate Std Residuals",font=3),xlab="Standardized Residuals (Visuospatial
Scores)" ,ylab="Standardized Residuals (Arithmetic Scores)")

FIGURE 4.4

(a), (b) and (c) FITTED VALUES v STANDARDIZED RESIDUALS
Plot(multi vocabfitted, multi vocabstdres,cex.ax is=2, rna in= Iist("" ,font=3 ),x lab="" ,ylab="")

plot(multiarithfitted,multiarithstdres,cex.axis=2,main=list("",font=3),xlab="",ylab="")

p lot(muItiblockfi tted, multi bIockstdres.cex .axi s=2, ma in=Iist("", font= 3),xlab="" ,yIab="")
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(d), (e) and (f)HISTOGRAMS OF STANDARDIZED RESIDUALS
hist(muItivocabstdres,cex.axis=2,main=list("",font=3),xlab="",ylab="")
box(lty=I)

hist(multiarithstdres,cex.axis=2,main=list("",font=3),xlab="",ylab="")
box(lty=I)

hist( muItib lockstdres,cex.axis=2,main= list(" ",font=3 ),xlab="" ,ylab="")
box(lty=l)

(g), (h) and (i) QQ-PLOTS OF STANDARDIZED RESIDUALS
qqnorm( multivocabstdres,cex.axis=2,main= Iist(" II,font=3 ),xlab="" ,ylab=" ")
qqline(multivocabstdres)

qqnorm(multiarithstdres,cex.axis=2,main=list("",font=3),xlab="",ylab="")
qqline( muItiarithstdres)

qqnorm(multiblockstdres,cex.axis=2,main=list("",font=3),xlab="",ylab="")
qq line(multiblockstdres)

CHAPTERS

FIGURE 5.1
summary(lm( rightrelbavolpo-leftrelbavolpc.datasj)
cc<--1000
cd<-1000000
ce<-0.9175+0.2665*cc
cf<-0.9175+0.2665*cd
ca<-c(cc,cd)
cb<-c( ce,ct)
plot( data3$leftrelbavolpc,data3$rightrelbavolpc,y lim=c(0.5 ,2.1 ),xlim=c(O .25,1. 9),cex.main=2,
cex.axis=I.5,cex.lab=I.5,main=list("Plot of Left RelBAV vs Right ReIBAV",font=3),xlab="Left
RelBA V",ylab="Right RelBA V")
Iines( ca,cb)

CORRELATION

cor. test( data3 $leftrelbavolpc,data3 $rightrelbavolpc )

CALCULATION OF Rl FOR UNIVARIATE MODELS
summary(lm(leftrelbavolpc-gender,data3))
summary(lm(rightrelbavolpc-gender,data3))

IMPORT STANDARDIZED RESIDUALS AND FITTED VALUES FROM

MLwiN
Standardized Residuals

modeldiagnosticsleft<-
matrix(0,nrow=39,ncol=2)
modeldiagnosticsright<-
matrix(0,nrow=39,ncol=2)
modeldiagnosticsleft[, 1]<-stdres6[, 1]
modeldiagnosticsright[, 1]<-stdres6 [,2]

Fitted Values

count<-1
count 1<-2
for(i in 1:39){
modeldiagnosticsleft[ i,2]<- fitted6 [count, 1]
modeldiagnosticsright[i,2]<-fitted6[ count 1,2]
count<-count+ 2
count 1<-countl+2}
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FIGURE 5.2
plot(modeldiagnosticsleft[, I],modeldiagnosticsright[, I],cex.axis= I.S,cex.lab= I.S,cex.main=2,
main=list("Plot of Multivariate Std Residuals",font=3),xlab="Standardized Residuals (Left
RelBA V)",ylab="Standardized Residuals (Right RelBA V)")

FIGURE 5.3

(a) and (b) FITTED VALUES v STANDARDIZED RESIDUALS

plot(modeldiagnosticsleft[ ,2],modeldiagnosticsleft[, I],cex.axis= I.S,main=list('''', font=3 ),xlab="",
ylab="")

plot(modeldiagnosticsright[ ,2],modeldiagnosticsright[, I[.cex.axis= I.S,main=list("" ,font=3 ),xlab="",
ylab="")

(c) and (d) HISTOGRAMS OF STANDARDIZED RESIDUALS

hist(modeldiagnosticsleft[, I [.cex.axis= I.S,main=list('''' ,font=3 ),xlab="" ,ylab="")
box(lty=l)

hist(modeldiagnosticsright[, I],cex.axis= I.S,main=list("",font=3 ),xlab="" ,ylab="")
box(lty=l)

(e) and (f) QQ-PLOTS OF STANDARDIZED RESIDUALS

qqnorm(modeldiagnosticsleft[, I ],cex.axis= I.S,main=list("" ,font=3 ),xlab="" ,ylab='''')
qqline(modeldiagnosticsleft[, I])

qqnorm(modeldiagnosticsright[, I],cex.axis= I.S,main=list("", font=3 ),xlab="",ylab="")
qq Iine(modeld iagnosticsright], I])

FIGURE 5.4
summary(lm(rhbasarelbarhvoI203-lhbasarelbalhvoI203,data3»
cc<-O
cd<-IOOOOOO
ce<-0.764 I+0.84S3*cc
cf<-0.764I +0.84S3*cd
ca<-c( cc.cd)
cb<-c( ce,cf)
plot( data3 $Ihbasare Ibalhvolzo.I ,data3 $rhbasare Ibarhvo 1203,cex.main=2,cex.lab= I. S,cex.axis= I.S,
ylim=c(2,6),xlim=c(2,S.S),main=list("Plot of Left RelBASA vs Right ReIBASA",font=3),xlab="Left
ReIBASA",ylab="Right ReIBASA")
lines(ca,cb)

CORRELATION

cor. testedata3$lhbasarelbalhvo 1203,data3$rhbasare Ibarhvo 1203)

FIGURE 5.5
bamusic<-subset( data3, data3$music== I)
banm<-subset(data3, data3$music==0)
summary(lm(rhbasarelbarhvoI203-vocab,bamusic»
summary(lm(rhbasarelbarhvoI203-vocab,banm»
cc<-O
cd<-IOO
ce<-4.46968-0.0S027*cc
cf<-4.46968-0.0S027*cd
ca<-c( cc,cd)
cb<-c( ce,ct)
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plot(bamusic$vocab, bamusic$rhbasarelbarhvol203 ,cex.main=2,cex.lab= 1.5,cex.axis= I. 5,yIim=c(2,6),
xlim=c(6, 19),type=lpl,pch=19,col=lblack",cex.axis=I.5,cex.lab=I.5,cex.main=2,main=list("Plot of
Vocabulary Scores vs Right RelBASA by 'Musician'v.font=Jj.xlab=vvocabulary Scores't.ylab=vkight
ReIBASA")
points(banm$vocab, banmsrhbasarelbarhvolzos ,type="p II,pch= 120,col="b lack")
Iines(ca,cb,type="l",col="black",lty=l)
cc<-O
cd<-IOO
ce<-4.69118-0.04672*cc
cf<-4.69118-0.04672*cd
ca<-c( cc,cd)
cb<-c( ce,ct)
Iines( ca.cb.type="l" ,col="black" ,1ty=2)
legend(l6,6.15,cex=I.3,c(IMusiciansl,"Non-
musicians"),pch=c( 19,120),lty=c( I ,2),col=c(lblack", "black"),bty="n")

CALCULATION OF Rl FOR THE UNIVARIATE LINEAR MODELS
summary(lm(lhbasarelbalhvoI203-gender+music,data3))
summary(lm(rhbasarelbarhvoI203-gender+music,data3) )

IMPORT STANDARDIZED RESIDUALS AND FITTED VALUES FROM

MLwiN
Standardized Residuals

modeldiagnosticsleft<-
matrix(O,nrow=39,ncol=2)
modeldiagnosticsright<-
matrix(O,nrow=39,ncol=2)
modeldiagnosticsleft[, I]<-stdres7[, I]
modeldiagnosticsright[, I]<-stdres7[,2]

Fitted Values

count<-I
count I<-2
for(i in I :39){
modeldiagnosticsleft[i,2]<- fitted7[ count, I]
modeldiagnosticsright[i,2]<-fitted7[ count 1,2]
count<-count+ 2
count I<-count I+2}

FIGURE 5.6
plot(modeldiagnosticsleft[, 1],modeldiagnosticsright[, 1],cex.axis= 1.5,cex.lab= 1.5,cex.main=2,
main=list("Plot of Multivariate Std Residualsl,font=3),xlab="Standardized Residuals (Left
ReIBASA)I,ylab="Standardized Residuals (Right ReIBASA)")

FIGURE 5.7

(a) and (b) FITTED VALUES v STANDARDIZED RESIDUALS
plot( modeldiagnosticsleft[,2 ],modeldiagnosticsleft[, 1],cex.axis= 1.5,main=list("", font=3 ),xlab="" ,
ylab="")

plot(modeldiagnosticsright[,2],modeldiagnosticsright[, 1],cex.axis= 1.5,main=list("1 .font=Jj.xlab=?",
ylab="")

(c) and (d) HISTOGRAMS OF STANDARDIZED RESIDUALS
hist(modeldiagnosticsleft[, 1],cex.axis= I. 5,main=list("" ,font=3 ),xlab="" ,ylab="")
box(lty=I)

hist(modeldiagnosticsright[, I ],cex.axis= 1.5,main=list("1 .font=Jj.xlab=?" ,ylab="")
box(lty=I)

(e) and (f) QQ-PLOTS OF STANDARDIZED RESIDUALS
qqnorm( modeldiagnosticsleft[, I ],cex.axis= 1.5,main= Iist("" ,font=3 ),xlab="" ,ylab="")
qqline(modeldiagnosticsleft[, I])
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qqnorm(modeldiagnosticsright[, I],cex.axis= 1.5,lllain=list(ltlt,font=3 ),xlab=Itlt .ylab=?")
qq 1ine(modeld iagnosticsright[, I])

WITHIN OBSERVER CE CALCULATIONS - VOLUME

FM032

llleanLHPObrl <-Illean(intra I$LH_PO)
varLHPObrl <-var(intra I$LH_PO)
meanl.Hl'Tbr l <-meanfintra I$LH_PT)
varLHPTbrl <-var(intra I$LH_PT)
llleanRHPObrl <-mean(intral $RH_PO)
varRHPObrl <-var(intra I$RH_PO)
llleanRHPTbr I<-mean( intra I$RH_PT)
varRHPTbrl <-var(intra I$RH_PT)

FCOl7

meanLHPObr2<-mean(intra2$LH _PO)
varLHPObr2<-var(intra2$LH ]0)
meanLHPTbr2<-mean(intra2$LH _PT)
varLHPTbr2<-var(intra2$LH _PT)
meanRHPObr2<-mean(intra2$RH _PO)
varRHPObr2<-var(intra2$RH ]0)
meanRHPTbr2<-mean(intra2$RH ]T)
varRHPTbr2<-var(intra2$RH_PT)

overallmeanl.H P02brVol<-(meanLHPObr I+meanLHPObr2)/2
overallmeanl.Hl'O'ZbrVol
varLHP02brVol<-(varLHPObr I+varLHPObr2)/2
varLHP02brVoI
ceLHP02brVol<-sqrt( varLHP02brVoI )/overallllleanLH P02brV 01
ceLHP02brVoI
overallmeanLHPT2brVol<-(meanLHPTbr 1+meanLHPTbr2)/2
overallmeanLHPT2brVoI
varLHPT2brVol<-(varLHPTbrl +varLHPTbr2)/2
varLHPT2brVoI
ceLHPT2brVol<-sqrt( varLH PT2brVol)/overallmeanLH PT2brV 01
ceLHPT2brVoI
overallmeanRHP02brVol<-(meanRH PObr 1+mean RHPObr2)/2
overallmeanRHP02brVoI
varRHP02brVol<-(varRHPObr) +varRHPObr2)/2
varRHP02brVoI .
ceRHP02brVol<-sqrt( varRH P02brVol)/overallmeanRH P02brV 01
ceRHP02brVoI
overallmeanRHPT2brVol<-(meanRHPTbr 1+meanRHPTbr2)/2
overallmeanRHPT2brVoI
var RHPT2brVol <-(varR HPTbr I+varR HPTbr2 )/2
varRHPT2brVoI
ceRHPT2brVol<-sqrt( varRH PT2brVol)/overallllleanRH PT2brVoI
ceRHPT2brVol

WITHIN OBSERVER CE CALCULATIONS -SURFACE AREA

FM032

meanLHPObrl <-mean(intra3$LH _PO)
varLHPObrl<-var(intra3$LH]0)
mean LHPTbr 1<-mean(intra3$ LH_PT)
varLHPTbrl <-var(intra3$LH_PT)
meanRHPObr I<-mean(intra3$RH _PO)
varRHPObr I<-var(intra3$RH ]0)
meanRHPTbrl <-mean(intra3$RH]T)
varRHPTbr 1<-var(intra3$RH _PT)

FCOl7

llleanLHPObr2<-mean(intra4$LH PO)
varLHPObr2<-var(intra4$LH PO)
llleanLHPTbr2<-mean(intra4$LH PT)
varLHPTbr2<-var(intra4$LH PTf
meanRHPObr2<-mean(intra4$RH _PO)
varRHPObr2<-var(intra4$RH PO)
meanRHPTbr2<-mean(intra4$RH PT)
varRHPTbr2<-var(intra4$RH PTf

overallmean LHP02brVol<-(meanLH PObr I+mean LHPObr2 )/2
overallmeanLHP02brVoI
varLHP02brVol<-(varLHPObrl +varLHPObr2)/2
varLHP02brVoI
ceLHP02brVol<-sqrt(varLHP02brVo)/overallmeanLHP02brVol
ceLHP02brVoI
overallmeanLHPT2brVol<-(meanLHPTbrl +meanLHPTbr2)/2
overallmeanLHPT2brVoI
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varLHPT2brVol<-( varLHPTbr I+varLHPTbr2)/2
varLHPT2brVol
ceLHPT2brVol<-sqrt( varLHPT2brVol)/overallmeanLHPT2brVol
ceLHPT2brVoi
overallmeanRHP02brVol<-(meanRHPObr I+meanRHPObr2)/2
overallmeanRHP02brVoi
varRHP02brVol<-( varRHPObr I+varRHPObr2)/2
varRHP02brVoi
ceRHP02brVol<-sqrt(varRHP02brVol)/overallmeanRHP02brVol
ceRHP02brVoi
overallmeanRHPT2brVol<-(meanRHPTbr I+meanRHPTbr2)/2
overallmeanRHPT2brVoi
varRHPT2brVol<-( varRHPTbr I+varRHPTbr2)/2
varRHPT2brVoi
ceRHPT2brVol<-sqrt(varRHPT2brVol)/overallmeanRHPT2brVol
ceRHPT2brVoi

CHAPTER 6

MISSING DATA ANALYSIS -NCDS DATASET

FIVE LOGISTIC REGRESSION MODELS

model 1<-glm(Complete~factor(UK _region),data=data I ,family=binomial)
summary(modell)
modelz-c-glm/Complete-factortt.K _region)*DOH,data=data 1,family=binomial)
summary(modeI2)
modeI3<-glm(Complete~factor(UK_region)*DOH+gender+gender:factor(UK_region),data=datal,
family=binomial)
summary(modeI3)
modeI4<-glm(Complete~factor(UK_region)*DOH+gender+gender:factor(UK_region)+SH+
SH:DOH,data=data 1,family=binomiai)
summary(model4 )
modeI5<-glm(Complete~factor(UK_region)*DOH+gender+gender:factor(UK_region)+SH+
SH:DOH+WH+WH:SH+WH:DOH+WH:SH:DOH,data=datal,family=binomial)
summary(modeI5)
anova(modeI2,modeI3)
anova(modeI2,modeI4 )
anova(modeI3,modeI4)
AIC(modell,k=log(15357))
AIC(modeI2,k=log(12760))
AIC(modeI3,k=log(12760))
AIC(modeI4,k=log(12760))
AIC(modeI5,k=log(126 17))

CALCULATING THE WEIGHTS FOR LOGISTIC REGRESSION MODEL 2

data 1c<-subset( data 1,is.na( data 1$read _pc )==F ALSE)
datal c<-subset(datal c,is.na( datal c$maths_pc)==F ALSE)
data InomissingUK _region I<-subset( data Ib,data Ib$UK _region== I)
data InomissingUK _region2<-subset( data Ib,data Ib$UK _region==2)
data InomissingUK _region3<-subset( data Ib,data lb$UK _region==3)
data InomissingUK _region4<-subset( data Ib,data Ib$UK _region==4)
length( data InomissingUK _region I$number)
length( data InomissingUK _region2$number)
length( data InomissingUK _region3$number)
length( data InomissingUK _region4$number)
outputUK _region Idoh<-O
for(i in I :630 I){
ba<-data InomissingUK _region I$DOH
a=exp(2.69240 I+( -0.005726*ba[iD)
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b<-a/(a+ I)
outputUK _region Idoh[i]= IIb}
data InomissingUK _region I$weightInc<-outputUK _region Idoh
outputUK _region2doh<-0
for(i in I :3578){
ba<-data InomissingUK _region2$DOH
a=exp(2.69240 I+0.070651 +( -0.005726*ba[i])+(0.006078*ba[i]))
b<-a/(a+l)
outputUK _region2doh[ i]= IIb}
data InomissingUK _region2$weightInc<-outputUK _region2doh
outputUK _region3doh<-0
for(i in I :654){
ba<-data InomissingUK _region3$DOH
a=exp(2.69240 1-0.443885+( -0.005726*ba[i])+(0.060624 *ba[i]))
b<-a/(a+ I)
outputUK _region3doh[i]= lib}
data InomissingUK _region3$weightlnc<-outputUK _region3doh
outputUK _region4doh<-0
for(i in I: 131O){
ba<-data InomissingUK _region4$DOH
a=exp(2.69240 I+0.135837+( -0.005726*ba[i])+(0.02382*ba[i]))
b<-a/(a+ I)
outputUK _region4doh[ i]= lib}
data InomissingUK _region4$weightInc<-outputUK _region4doh
nomissingdata 1<-
rbind( data InomissingUK _region I ,data InomissingUK _region2,data InomissingUK region3,
data InomissingUK _region4) _
data Imissing I<-subset(data Ic,is.na(data Ic$UK _region)==TRUE)
data Imissing2<-subset(data Ic,is.na(data Ic$DOH)==TRUE)
meanDOH<-O
for(i in I :2154){
ca<-data Imissing2$UK _region[i]
cb<-data Imissing2$read_pc[i]
cc<-data Imissing2$maths _pc[i]
da<-sllbset(nomissingdata I ,nomissingdata I$UK _region==ca)
db<-sllbset( da,da$read _pc==cb)
dc<-subset( db,db$maths _pc==cc)
ea<-Iength( dc$number)
if(ea>=I){
meanDOH[i]<-mean( dc$DOH)}
else{
meanDOH[i]<-NA} }
meanl.Ol!
data Imissing2$DOH<-meanDOH
data Imissing2NA<-subset( data lmissingz.is.natdata Imissing2$DOH)==TRUE)
meanDOHv2<-0
for(i in J:J04){
ca<-data Imissing2NA$UK _region[i]
cb<-data Imissing2NA$read_pc[i]
da<-sllbset(nomissingdata I .nornissingdata I$UK _region==ca)
db<-subset( da,da$read _pc==cb)
ea<-Iength( db$number)
if(ea>=I){
llleanDOH v2[i]<-lllean( db$DOH)}
eJse{
llleanDOHv2[i]<-NA} }
llleanDOHv2
data Imissing2NA$DOH<-llleanDOHv2
data Imissing2NA2<-subset(data Imissing2NA,is.na(data Imissing2NA$DOH)==TRUE)
Jength( data Im issing2NA2$nulllber)
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fa<-subset( data Imissing2,data Imissing2$UK _region== I)
tb<-subset( data Imissing2,data Imissing2$UK _region==2)
fc<-subset( data Imissing2,data Imissing2$UK _region==3)
fd<-subset( data Imissing2,data Imissing2$UK _region==4)
fe<-subset( data Imissing2NA,data Imissing2NA$UK _region== I)
ff<-subset( data Imissing2NA,data 1missing2NA$UK _region==2)
fg<-subset( data 1missing2NA,data 1missing2NA$UK _region==3)
fh<-subset( data 1missing2NA,data 1missing2NA$UK _region==4)
outputfa<-O
for(i in 1:1174){
ba<-fa$DOH
a=exp(2.69240 1+(-0.005726*ba[i]))
b<-a/(a+l)
outputfa[ i]= lib}
fa$weightInc<-outputfa
outputtb<-O
for(i in 1:705){
ba<-tb$DOH
a=exp(2.69240 1+0.070651 +(-0.005726*ba[i])+(0.006078*ba[i]))
b<-a/(a+l)
outputtb[i]=I/b}
tb$weightInc<-outputtb
outputfc<-O
for(i in 1:107){ ,
ba<-fc$DOH
a=exp(2.69240 1+0.070651 +(-0.005726*ba[i])+(0.006078*ba[i]))
b<-a/(a+l)
outputfc[i]=l/b}
fc$weightInc<-outputfc
outputfd<-O
for(i in 1:168){
ba<-fd$DOH
a=exp(2.69240 1+0.135837+( -0.005726*ba[i])+(0.02382 *ba[i]))
b<-a/(a+l)
outputfd[ i]= lib}
fd$weightInc<-outputfd
outputfe<-O
for(i in 1:18){
ba<-fe$DOH
a=exp(2.69240 1+(-0.005726*ba[i]))
b<-a/(a+l)
outputfe[i]=I/b}
fe$weightInc<-outputfe
outputff<-O
for(i in 1:26){
ba<-ff$DOH
a=exp(2.69240 1+0.070651 +(-0.005726*ba[i])+(0.006078*ba[i]))
b<-a/(a+l)
outputffl i]= lib}
ff$weightlnc<-outputff
outputfg<-O
for(i in 1:36){
ba<-fg$DOH
a=exp(2.69240 1+0.070651 +(-0.005726*ba[i])+(0.006078*ba[i]))
b<-a/(a+l)
outputfg[i]= lib}
fg$weightInc<-outputfg
outputfh<-O
for(i in 1:24){
ba<-fh$DOH
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a=exp(2.69240 1+0.135837+( -0.005726*ba[i])+(0.02382*ba[i]))
b<-a/(a+ I)
outputfh[i]= lib}
fh$weightIne<-outputfh
data 1d<-rbind( nom issingdata 1,fa, fb, fe, fd, fe, ff, fg, fh)
write. table( data3 f,"M:\\NCDSModel2 WeightedData. txt" ,sep="\t" ,eol.names=T ,row. names= F)

DIFFERENCES BETWEEN MISSING AND NON-MISSING GROUPS

datatotmiss<-subset( data 1,data 1$Complete==O)
datatotseen<-subset( data 1,data 1$Complete== I)

MEAN & STANDARD DEVIATION OF RELATIVE HAND SKILL

datatotmissDOHnoNA<-subset(datatotmiss,is.na(datatotmiss$DOH)==FALSE)
datatotseenDO HnoNA<-subset( datatotseen, is.na( datatotseen$DOH)== FALSE)
mean(datatotmissDOHnoNA$DOH)
sd(datatotmissDOHnoNA$DOH)
mean(datatotseenDOHnoNA$DOH)
sd(datatotseenDOHnoNA$DOH)

GROUP NUMBERS FOR DISCRETE VARIABLES

SH
datatotmiss 1<-subset( datatotmiss,datatotmiss$SH==O)
datatotmiss2<-subset( datatotmiss,datatotmiss$SH== I)
length(datatotmiss 1$number)
length( datatotmiss2$num ber)
datatotseen 1<-subset( datatotseen,datatotseen$SH==O)
datatotseen2<-subset( datatotseen,datatotseen$S H== 1)
length( datatotseen 1$number)
length( datatotseen2$number)

WH
datatotmiss 1<-subset(datatotmiss,datatotmiss$WH==O)
datatotm iss2<-subset( datatotm iss,datatotm iss$WH== 1)
length(datatotmiss 1$number)
length( datatotm iss2$number)
datatotseen 1<-subset( datatotseen,datatotseen$WH==O)
datatotseen2<-subset( datatotseen,datatotseen$ WH== 1)
length( datatotseen 1$number)
length( datatotseen2$number)

GENDER
datatotmiss 1<-subset( datatotm iss,datatotmiss$gender==O)
datatotm iss2<-subset( datatotm iss,datatotmiss$gender== 1)
length( datatotmiss 1$number)
length( datatotm iss2$number)
datatotseen 1<-subset( datatotseen,datatotseen$gender==O)
datatotseen2 <-subset( datatotseen,datatotseen$gender== 1)
length( datatotseen 1$number)
length( datatotseen2$number)

UK REGION
datatotmiss 1<-subset(datatotmiss,datatotmiss$UK _region== I)
datatotmiss2<-subset( datatotm iss,datatotmiss$ UK_region==2)
datatotm iss3<-subset( datatotm iss,datatotmiss$ UK_region==3)
datatotmiss4<-subset( datatotm iss,datatotm iss$U K_region==4)
length( datatotm iss 1$number)
length( datatotm iss2$number)
length( datatotm iss3$number)
length( datatotm iss4$nul11ber)
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datatotseen 1<-subset( datatotseen,datatotseen$UK _region= 1)
datatotseen2 <-subset( datatotseen,datatotseen$UK _region==2)
datatotseen3<-subset( datatotseen,datatotseen$UK _region==3)
datatotseen4<-subset( datatotseen,datatotseen$UK _region==4)
length( datatotseen 1$number)
length( datatotseen2$number)
length( datatotseen3 $number)
length( datatotseen4$number)

CHI-SQUARE & MANN-WHITNEY U TESTS

RELATIVE HAND SKILL
wilcox.test( datatotseen$DOH,datatotmiss$DOH,paired=F ALSE,na.action=na.omit)

SH
aa<-table( data 1$Complete,data 1$SH)
chisq.test(aa)

WH
aa<-table( datal $Complete,datal $WH)
chisq.test(aa)

GENDER
aa<-table( data 1$Complete,data 1$gender)
chisq.test(aa)

UKREGION
aa<-table( data 1$Complete,data 1$UK_region)
chisq.test(aa)

MISSING DATA ANALYSIS - Me DATASET

LOGISTIC REGRESSION MODELS

model I<-glm( complete-age,data=data2a,family=binomial)
summary(modell)
modeI2<-glm(complete-gender,data=data2a,family=binomial)
summary(model2)
mode13<-glm(complete-music,data=data2a,family=binomial)
summary(model3)
modeI4<-glm(complete-handedness,data=data2a,family=binomial)
summary(model4 )
modeI5<-glm(complete-height,data=data2a,family=binomial)
summary(model5)
modeI6<-glm( complete-weight,data=data2a,family=binomial)
summary(model6)
finalmodel<-glm( complete--I ,data=data2a,family=binomial)
summary(finalmodel)

DIFFERENCES BETWEEN MISSING AND NON-MISSING GROUPS

datatotmiss<-subset(data2a,data2a$complete==O)
datatotseen<-subset( data2a,data2a$complete== 1) .

MEAN & STANDARD DEVIATION OF AGE

datatotmissagenoN A<-subset( datatotmiss,is.na( datatotmiss$age )=F ALSE)
datatotseenagenoNA <-subset( datatotseen,is.na( datatotseen$age )==FALSE)
mean( datatotmissagenoNA$age)
sd(datatotmissagenoNA$age)
mean( datatotseenagenoN A$age)
sd(datatotseenagenoN A$age )

300



MEAN & STANDARD DEVIATION OF HEIGHT

datatotmissheightno NA<-subset( datatotmiss, is.na( datatotm iss$height )== FALSE)
datatotseenheightno NA<-subset( datatotseen, is.na( datatotseen$height )== FALSE)
mean( datatotm issheightnoN A$height)
sd( datatotmissheightnoN A$height)
mean( datatotseenheightno NA$height)
sd( datatotseenheightnoN A$height)

MEAN & STANDARD DEVIATION OF WEIGHT

datatotmissweightnoN A<-subset( datatotmiss, is.na( datatotmiss$weight )== FALSE)
datatotseenweightno NA<-subset( datatotseen, is.na( datatotseen$weight )==F ALSE)
mean( datatotm issweightnoN A$weight)
sd(datatotm issweightnoN A$weight)
mean( datatotseenweightnoN A$weight)
sd(datatotseenweightnoN A$weight)

GROUP NUMBERS FOR DISCRETE VARIABLES

MUSICIAN
datatotmiss I<-subset( datatotmiss,datatotmiss$musie==O)
datatotmiss2<-subset( datatotmiss,datatotmiss$musie== I)
length( datatotmiss I$id)
length( datatotmiss2$id)
datatotseen I<-subset( datatotseen,datatotseen$music==O)
datatotseen2<-subset( datatotseen,datatotseen$musie== I)
length( datatotseen I$id)
length( datatotseen2$id)

GENDER
datatotmiss I<-subset(rlatatotmiss,datatotmiss$gender==O)
datatotmiss2<-subset( datatotmiss,datatotmiss$gender== I)
length( datatotmiss I$id)
length( datatotmiss2$id)
datatotseen I<-subset( datatotseen,datatotseen$gender==O)
datatotseen2<-subset( datatotseen,datatotseen$gender== I)
length( datatotseen I$id)
length( datatotseen2$id)

FISHER EXACT & MANN-WHITNEY U TESTS

AGE
wi leox.testedatatotseen$age,datatotm iss$age,pa ired= FALSE,na.aetion=na.omit)

HEIGHT
wi leox.testedatatotseen$height,datatotm iss$height, paired =FALSE,na.aetion =na. om it)

WEIGHT
wi Icox.testedatatotseen$ weight,datatotm iss$we ight, pai red= FALSE,na.aetion =na. om it)

MUSICIAN
aa<-table( data2a$eomplete,data2a$musie)
fisher.test(aa)

GENDER
aa<-tab le(data2a$eomp lete,data2a$gender)
fisher.test(aa)
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model. A data sample based on 11,847 II-year-old pupils across the UK from the
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that pupils who write with one hand while having better skill with their other hand
(i.e., inconsistent writing hand and superior hand) obtained lower test scores in
both reading and mathematics than pupils with consistent writing hand and
superior hand. Furthermore, we confirm previous findings that degree of relative
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association is not linear. We also found higher scores of reading in children from the
south of England, and of mathematics in children from the south of England and
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The effect of handedness and hand skill on academic ability has been a
subject of discussion in the last few years (Annett & Manning, 1990; Crow,
Crow, Done, & Leask, 1998; Denny, 2008; Faurie, Vianey-Liaud, &
Raymond, 2006; Nettle, 2003; Peters, Reimers, & Manning, 2006). For
example, a possible association between hand skill and academic ability was
investigated by analysing data from a group of ll-year-old children (Crow
et aI., 1998). A laterality index variable, referred to as relative hand skill, was
used, and the value zero was defined as the "point of hemispheric indecision";
that is, the point at which there is no difference in hand skill between the right
and left hand; (see McManus, 1985, for laterality index definition). The
results suggested that pupils with laterality index zero performed worst in the
reading test, with a negligible decrease from the peak score for right-hand
extreme values (which involved 10% of pupils with the highest relative hand
skill). Also, for maths scores, pupils with relative hand skill at the point of
hemispheric indecision achieved the lowest test scores, and there was also a
substantial decrease from the peak score for right-hand extreme values.
Furthermore, the relationship between reading test scores and hand skill
(defined as the absolute difference in skill scores between the right and left
hand) has been described as being quadratic (Annett & Manning, 1990).

The significance of handedness and academic ability to predict mental
illness has also been investigated (Crow, 2000; Crow, Done, & Sacker, 1995;
Elias, Saucier, & Guylee, 2001; Grace, 1987; Klar, 1999; Merrin, 1984;
Sommer, Ramsey, Kahn, Aleman, & Bouma, 2001). Crow (2000) suggests
that pupils with relative hand skill close to zero (i.e., ambidextrous) are more
likely to develop schizophrenia or psychosis at a later stage in their life,
irrespective of whether they are left- or right-handed. In particular, of those
pupils diagnosed with schizophrenia or psychosis later in their life, the
percentage of ambidextrous pupils was approximately 22.4-25.8%, while in
the control group the percentage was reduced to approximately 6.9%.
Furthermore, pupils diagnosed with schizophrenia later in their life had
performed worse in reading and mathematics tests at ages 7 and 11 than
those pupils who were not diagnosed with schizophrenia (Crow et aI., 1995).
Also, pre-psychotic pupils performed worse than pupils from the control
group, but only at age 7 for both reading and mathematics.

In 2005, a BBC online Internet survey was conducted where 255,100
participants were given a mental rotation task to test their spatial performance,
as well as a fluency/reasoning task which involved listing a number of words
linked to a given word (Peters et aI., 2006). The majority of those participants
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who performed worst in the spatial performance task appeared to be those with
no preference for handedness. Also, participants who were either extremely
left- or right -handcd tended to show deficits when compared to those who were
mostly left- or right-handed for the spatial task. The extreme handedness
group performed worst in the tluencylreasoning task, folIowed by those with
no preference for handedness.

The studies mentioned above give an insight into the connection of factors,
such as age, gender, and handedness on academic ability. However, these
factors have not been jointly considered in a unique statistical model, but
instead the effect of each factor has been investigated individualIy. In this
paper we aim to analyse the effect of gender, relative hand skill, superior hand
(defined as the most skilful hand), writing hand, and region of the UK
mainland on reading and mathematics test scores by applying a multivariate
linear mixed-effects model to the National Child Development Study dataset
(age II), the same dataset as used in the aforementioned studies. In particular,
the correlation between reading and maths scores, and potential interactions
between the factors mentioned above, are taken into account in the analysis.

METHOD
The National Child Development Study (NCOS) was set up to investigate the
main factors that affect human development based on longitudinal data on
children born on the UK mainland in one particular week in 1958 (3-9
March). The NCOS then involved folIowing up the cohort at various ages
over the course of their lifetime, including at ages 7, ] I, and 16, and it is stilI
continuing at present. These data arc stored by and can be obtained from the
Centre for Longitudinal Studies. In this study we considered data taken from
11,847 l l-ycar-old children (i.e., the data were collected in 1969). In
particular, the outcomes considered arc reading and mathematics test scores.
The reading test comprised 35 comprehension questions, which the child had
to answer in 20 minutes (Crow et al., 1998). These questions consisted of
choosing the correct word from five alternatives, which completed the
sentence given. The mathematics test consisted of 40 questions involving
geometry, arithmetic, and logic to be answered in 40 minutes. For case of
interpretation, both reading and maths scores were converted into percen-
tages. Pupils' confidentiality is paramount in the study, so in the dataset each
pupil had an ]0 number assigned and alI identifiable data removed.

The mathematics test scores do not appear to be normalIy distributed.
For the assumption of normality to hold in the model, the mathematics test
scores were transformed. The chosen transformation was a Box-Cox
transformation of the form:
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• «y + 3)'< - 1)
y =

A
(1)

(Box & Cox, 1964) where A. = 0.512 and y* and yare the transformed and
original mathematics test scores, respectively.

A multivariate linear mixed model (LMM) approach was applied to the
dataset (for a detailed description of the theory behind this approach, see
Laird & Ware, 1982; Samme1, Lin, & Ryan, 1999). In particular, the model
chosen took the following form:

(2)
where i denotes the test type (i = 1 and i = 2 refer to the reading and maths
scores, respectively). The array 11:) represents the test scores for the klh local
authority of the il" test, and it can be expressed as:

(3)

where nk represents the number of pupils within the e" local authority
(k= 1, 2, ... ,185).

The fixed effect design matrix for the kl" local authority is:

(4)

where X'J represents the /" fixed effect value for the 11h pupil (I= 1, 2, ... , ni;
j = 1,2, ... , 10). In particular, the fixed effects refer to the intercept (X".),
relative hand skill (X,,2), (relative hand skill)2 (X,,3), superior hand
(X,,4), writing hand (X"s), superior hand and writing hand interaction
(X,,6 = X,,4* X"s), gender (X,,7), and region (4-level factor: X"S X,,9 X"to). The
array p(l) represents the fixed effect coefficients for the il" test, which will be
estimated from the dataset (i = 1,2) and it can be expressed as:

(5)

Gender was a binary variable with value 0 for male and 1 for female. Writing
hand (WH) was also binary with value 0 for right writing hand, and 1 for left
writing hand. The region variable consisted of northern England and the
Midlands (Region 1), southern England (Region 2), Wales (Region 3), and
Scotland (Region 4). This region, variable was entered as a factor with
Region 1 as the reference region. Relative hand skill was calculated as:
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Relative Hand Skill = /n(RH) - n(LH) x 100/ (6)
n(RH) + n(LH)

where n(RH) and n(LH) denote the number of boxes ticked with the right
and left hand in a I-minute marking task, respectively (McManus, 1985).
Relative hand skill can be interpreted as the relative superiority of the
dominant hand over the non-dominant hand. Superior hand (SH) is a binary
variable calculated from the hand skill variable. If the dominant hand is the
left hand (i.c., the number of boxes marked by the left hand is greater than
the number of boxes marked by the right hand), SH is equal to I, and
otherwise, SH is equal to O.

The random effects term :k is the random intercept (I, I) T. The random
effects vector hk is assumed to follow a bivariate normal distribution, which
takes into account the variability between local authorities. We have:

(7)

where (J2 is the random effect variance for the /l! test and (J is the
'Iii '([)'('I

random effect covariance between the two tests. Finally, the random errors
are assumed to follow the bivariate normal distribution:

(8)

where (J;(I) is the ra.ndom error variance of the ill! test and (JI""I'", is the
random error covariance between the two tests. The LMM analysis was
conducted using MLwiN version 2.02 and the plots using R version 2.6.2.

RESULTS

Results of the multivariate analysis are given in Tables 1 and 2. We found no
evidence to suggest that there is a difference between boys and girls in either
the reading or the mathematics test scores (I' = .77 and I' = .12, respectively).
Alternatively, relative hand skill has a statistically significant effect on both
the reading and mathematics test scores (p < .001 in both cases). This effect is
quadratic, as can be appreciated in Figure I and Table I. The interaction
terms between superior hand and writing hand are also significant (I' < .001).
The effect of superior hand is statistically significant for both reading and
mathematics test scores (negative coefficients, I' < .001), which suggests that
for right-hand writers (reference group) those with left superior hand
performed worse than those with right superior hand. In particular, the
mean difference was 6.2'10 for the reading test scores. Furthermore, for Ieft-
hand writers, those with left superior hand performed on average significantly



456 CHEYNE ET AL.

TABLE 1
Results of the multivariate linear mixed model with fixed effects coefficients

Fixed effect Coefficient St. error Lower 95% CI Upper 95% CI p-value

Reading test scores
Relative hand skill 0.423 0.058 0.308 0.538 <.001
(Relative hand skill)2 -0.009 0.001 -0.012 -0.006 <.001
Superior hand (SH) -6.213 1.175 -8.516 -3.910 <.001
(0: Right, I: Left)

Writing hand (WH) -5.011 1.773 -8.485 -1.537 .005
(0: Right, I: Left)

SHxWH 10.553 2.202 6.238 14.868 <.001
Gender (0: Male, 0.097 0.326 -0.542 0.736 .766

I: Female)
Northern England Reference region
& Midlands

Southern England 1.620 0.389 0.857 2.383 <.001
Wales -0.771 0.791 -2.322 0.780 .330
Scotland -0.354 0.576 -1.482 0.774 .538

Transformed mathematics test scores
Relative hand skill 0.123 0.014 0.095 0.151 <.001
(Relative hand skill)2 -0.002 <0.0005 -0.003 -0.001 <.001
Superior hand (SH) -1.556 0.283 -2.111 -1.001 <.001
(0: Right, I: Left)

Writing hand (WH) -1.316 0.427 -2.153 -0.479 .002
(O:Right, I :Left)

SHxWH 2.703 0.531 1.663 3.743 <.001
Gender (0: Male, -0.121 0.079 -0.275 0.033 .122

J: Female)
Northern England Reference region
& Midlands

Southern England 0.210 0.093 0.Q28 0.392 .023
Wales 0.338 0.187 -0.029 0.705 .072
Scotland 0.502 0.137 0.234 0.770 .001

p-values refer to t-values that are based on the square roots of the F-values.

better than those with right superior hand. To confirm this last statement, the
corresponding hypothesis test was conducted for each of the two test scores
(see Table 3, p = .018 and p = .009, respectively).

Furthermore, the effect of writing hand is statistically significant for both
reading and mathematics test scores (negative coefficients; p = .005 and
p = .002, respectively), which suggests that for pupils with right superior
hand (reference group) left-hand writers performed worse than right-hand
writers (and this difference was 5.0%, on average, for the reading test scores;
see Table 1). Finally, for pupils with left superior hand, left-hand writers
achieved higher scores on average than right-hand writers (Table 3, both
p =< .001). The above results reveal that there is a discrepancy in test scores
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TABLE 2
Random effects and random error coefficients from the multivariate linear

mixed model

Random effect
Intercept (Reading Scores)
Intercept (Transformed Maths Scores)
Covariance (Reading/Transformed Maths Scores)

Estimate Sf. error

24.005 3.799
1.078 0.211
4.933 0.806

292.043 5.073
17.241 0.295
52.125 1.079

1'-\'(//11('

<.001
<.001
<.001

Random error
Intercept (Reading Scores)
Intercept (Transformed Maths Scores)
Covariance (Reading/Transformed Maths Scores) <.001

between pupils with inconsistent writing hand and superior hand and pupils
with consistent writing hand and superior hand.

Alternatively, our analysis reveals that left-hand writers with left superior
hand have mean test scores, in both reading and mathematics, that are
no different from those of right-hand writers with right superior hand (see
Table 4, p= .21 and .19, respectively). Although our data did not provide
evidence to suggest a difference in performance between consistent left- and
consistent right-handed pupils for large values of relative hand skill, we
should bear in mind that the sample size of left-handed pupils is relatively
small (for example, there are only 23 left-handed pupils with absolute relative
hand skill greater than 35). Furthermore, there is a significant difference in
both reading and maths scores between pupils in southern England and
pupils in northern England and the Midlands (see Table 1; P < .001 and P =
.023, respectively). In the reading tests pupils from southern England
performed, on average, 1.6'1., better than their counterparts in northern
England and the Midlands, and 2.4% and 2.0% better than pupils from
Wales and Scotland, respectively. Furthermore it is interesting to note that
pupils in Scotland and southern England achieved higher maths scores, on
average, than those pupils in northern England and the Midlands (see Table
I; P = .001 and p = .023, respectively).

The random effect intercepts represent the random variation at local
authority level in both the reading and transformed maths scores (see Table
2). The Pearson correlation coefficient between the reading and transformed
maths scores at the local authority level was 0.971. Therefore local
authorities, in general, had similar proportions of pupils performing well
on both tests and, conversely, of pupils doing badly on both tests. Similarly,
the random error intercepts, which are the random variation at pupil level in
the reading and transformed maths scores, are given in Table 2. The Pearson
correlation coefficient here was 0.735, which suggests that there is also a
strong positive correlation between the two test scores. Precisely, there is
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(a) Plot of Relative Hand Skill vs Mean Reading Score
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Figure 1. Plot of relative hand skill against (a) mean reading score and (b) mean transformed
mathematics score by writing hand, where pupils with left SH appear on the left-hand side of the
graphic with negative relative hand skill values. The curves were obtained by using the "Loess"
smoothing function. The dots and crosses represent the mean values for 20 equidistant intervals across
the range of relative hand skill (dots for left-hand writers, and crosses for right-hand writers).

evidence to suggest that pupils who performed well on one of the tests also
tended to do well on the other test, and conversely, those pupils who did not
perform well on one of the tests did 'not perform well on the other test. Plots
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TABLE 4
Results of the hypothesis test for differences between right superior, right-hand
writers and left superior, left-hand writers, in both the reading and transformed

mathematics test scores

Test scores Estimate Standard error Lower 95% CI Upper 95% CI p-value

Reading
Transformed

Mathematics

-0.671 0.536 -1.721 0.379 .211
-0.169 0.129 -0.422 0.084 .191

of relative hand skill against mean reading and transformed maths scores are
given in Figure l(a) and l(b), respectively. The crosses and dots represent
mean values for equidistant intervals of relative hand skill for right-hand and
left-hand writers, respectively. Some of these empirical mean values differ
from the values of the predicted curve, and this is caused by the small sample
sizes that are available for those regions (e.g., for right-hand writers, there
were 10,313 pupils with right superior hand compared to 313 with left
superior hand, and for left-hand writers there were 1252 pupils with left
superior hand and only 103 with right superior hand). Therefore, in the
regions where there are more data, the curve provides a better fit to the data
than in the regions where there are relatively few data. It is interesting to
note here that although there are more right-hand writers with left superior
hand than left-hand writers with right superior hand, this reverses when
expressed as percentages of the total sample of right- and left-hand writers,
with 2.3% of right-hand writers having left superior hand compared to 7.7%
of left-hand writers having right superior hand. Scores for pupils who have a
left superior hand but are right-hand writers are represented by the dashed
curve where relative hand skill is less than zero. Scores for left-hand writers
with right superior hand can be identified by the solid curve where relative
hand skill is greater than zero. Scores for pupils with consistent writing hand
and superior hand are included in the solid curve when relative hand skill is
less than zero (i.e., left superior hand) for left-hand writers and in the dashed
curve when relative hand skill is greater than zero (i.e., right superior hand)
for right-hand writers.

We have observed that, for individuals with congruent hand performance
and writing hand and with absolute values of relative hand skill greater than
10, the discrepancy in score between the hands seems to be caused by the
skill of the non-writing hand. In particular the non-writing hand performed
worse than the writing hand, and this difference becomes more pronounced
as the relative hand skill increases, while the writing hand seems to maintain
a skill level close to the average for the writing hand, irrespective of whether
the pupil is right- or left-hand writer. Meanwhile, as relative hand skill
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decreases from 10 towards 0 for right-hand writers, the number of boxes
ticked by the writing hand decreases so that it is below the average, whereas
the non-writing hand increases slightly and it is above the average at all
values of relative hand skill in this range. A similar behaviour is detected
with left-hand writers although there arc some fluctuations. In particular, for
relative hand skill equal to zero, right-hand writers ticked on average 68.91
boxes per minute with each hand. This is slightly above the average for the
non-writing hand (66.67), but much lower than the average for the writing
hand (92.53). Left-hand writers with relative hand skill equal to zero ticked,
on average, 61.31 with each hand, which is below the average for both the
writing and non-writing hand (92.59 and 67.85 respectively).

DISCUSSION
In summary, our study suggests that pupils with inconsistent writing hand
and superior hand performed worse in both reading and maths tests than
pupils with consistent writing hand and superior hand. There is a strong,
positive correlation between the two test scores, suggesting that pupils who
achieved a high score or a low score in one test were more likely to achieve
an equivalent high or low score, respectively, in the other test. We found no
difference in test scores attributed to gender differences.

As the relative hand skill increases (decreases) from 0 (ambidexterity)
towards a peak at around 25 to 35 (- 25 to - 35) in pupils with consistent
writing and superior hand, both reading and mathematics mean test
scores increase, but as the relative hand skill increases from about 35 to 60
(- 35 to - 60), both scores decrease (Figure I). A previous study, where all
pupils irrespective of writing hand were included, suggested that the
optimum relative hand skill for verbal test scores was approximately 20 for
right-handed pupils and approximately - 30 for left-handed pupils (Leask &
Crow, 2006). The fact that our results regarding the optimum hand skill for
the consistent group arc similar to these results can be explained since there
arc relatively few pupils with inconsistent writing hand and superior hand
compared to those with consistent writing hand and superior hand.
However, a similar trend cannot be identified for the pupils with inconsistent
superior hand and writing hand in either test (sec Figure I). Further work is
needed in this area to investigate whether there is some underlying factor
that influences the distribution of these scores. Also, the biological andlor
environmental predictors for which pupils in the consistent group with
relative hand skill in the intervals (- 60, - 35), (- 20, 20), and (35, 60)
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obtained lower scores on both tests than pupils with relative hand skill in the
intervals (- 35, - 20) and (20, 35) remain unclear.

We found a significant difference between pupils from southern England
and those from northern England and the Midlands in both reading and
maths scores, with those from southern England performing better.
Speculative reasons for this include the perceived north-south divide in
the UK. For many decades people living in the north have had lower
incomes and lower standards of living than those living in the south of
England, particularly the south-east (Blackaby & Manning, 1990). This has
been passed on in the form of education since people with greater
disposable income could afford better quality schools. Pupils in Scotland
also outperformed their counterparts from northern England and the
Midlands in the mathematics test, and this could have been caused by
subtle differences in the education system between England and Scotland
in the 1960s. Nevertheless, the differences observed between regions,
although statistically significant, might not be large enough to be regarded
as important in academic terms.

Questions have arisen as to whether a task such as box-marking, which is
related to writing, can be used as a sufficiently independent measure of hand
skill. An alternative for this could have been the peg-moving task (Annett,
2002) or another such task, which does not involve the pupil writing in any
way. Purdue's peg test consists of timing how quickly a person can move a
quantity of pegs from one hole to another, and therefore, the variable relative
hand skill used in this paper (and which is based on the box-marking task) is
not strictly comparable to another investigation where hand skill is defined
based on the pegboard task. Unfortunately, for this particular dataset no
alternative tasks for the purpose of obtaining an individual pupil's hand skill
were conducted in 1969.

Several studies have reported an association between handedness and
brain asymmetry (Amunts et aI., 1996; Annett, 2002). In particular, Broca's
area, which is linked to language processing, may be affected or have an
effect on handedness (Corballis, 2003; Liegeois et aI., 2004; Tzourio,
Crivello, Mellet, Nkanga-Ngila, & Mazoyer, 1998). It is also possible that
this change in asymmetry is a function of gender (e.g., Annett, 2002).
Further investigation based on a different cohort, where volume asymmetry
of brain structures is added into the model, is currently being considered. A
recent study has investigated the influence of family income and parent's
education levels on the maths and reading test scores from the NCDS
(Michael, 2008). These factors could be used to extend this model further.
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