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V1 ABSTRACT 

In recent years we can observe an increasing interest in using ontologies in different 
branches of science and commerce. This includes disciplines like medicine, bio-informatics, 

the semantic web, artificial intelligence, and software engineering, to name a few. 
The need to use ontologies in new and evolving applications requires ontologies to evolve. 

Typical modifications of ontologies include extending an ontology with new axioms, extract- 
ing a module (by which we mean a self-sufficient part), and merging two ontologies together. 
While performing these operations one usually wants to know whether the semantics of the 

ontologies are, in some sense, preserved. 
As the number of ontology applications grew, so did the number of formalisms for on- 

tology formulation. But this increasing number of ontology languages, while helping to 
develop ontologies and answering the various needs of users, turned out to be a potential 
source of problems as well. This becomes evident when one is working with multiple on- 
tologies. For instance, when merging two ontologies one not only has to make sure that 

unwanted consequences are not entailed as a result of this operation but one may also have 
to solve the problem of these ontologies being given in different formalisms. Even within 
one formal language, different ontologies may use different vocabularies. Again, different 

vocabularies make ontologies difficult to use together. Similar problems arise when one 
wants to compare two ontologies or use an ontology to answer a query that may be given 
in different formalisms, or that may use different vocabularies. 

In the literature, modularity of ontologies, extending, merging and comparing ontologies 
have received a lot of attention, but usually these problems are considered within one 
formalism only. On the other hand the problem of comparing and combining ontologies 
formulated in distinct formalisms has not yet been deeply analyzed. 

'In our work we consider the issues of querying, merging and comparing ontologies in a 
more general way. In particular, we investigate how one can query an ontology if the query 
and the ontology are formulated in different formalisms and possibly different vocabularies. 
We research how to compare and how to merge ontologies if they are formulated in distinct 
formalisms and vocabularies. To make this possible we start by presenting an abstract view 
on ontologies; instead of focusing on the axioms inside the ontology, in our approach we look 
at its consequences within certain query languages. Then we use the theory of institutions 
to define the consequence relation in a way that does not depend on a particular formal 
language. Thanks to that ontologies and queries do not have to be formulated in the same 

, 
formal language anymore; moreover, 'the ontology and the query may be formulated with 
the use of different vocabularies. This provides the first steps towards a formalism that 
allows us to compare and combine arbitrary ontologies. As the next step we introduce a 
structure which allows us to work with multiple ontologies, and we formulate the notions 
of entailment and inseparability of ontologies relative to a 'signature of interest in a way 
that does not depend on a particular formalism. This structure allows us to compare and 
combine arbitrary ontologies. 

Furthermore, we show how an abstract description logic can be extended to a description 
logic with individuals in a systematic and uniform way. We also investigate the relations 
between description logics and their counterparts with individuals. Thanks to that we are 
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able to use ontologies together with sets of assertion (ABoxes) to answer queries about 
individuals. Again, we provide a structure allowing for answering queries about individuals 

originally formulated in a different formal language than the ontology and the ABox, we 
assume that ABoxes and ontologies are formulated in the same language. We also present 
a formulation of entailment and inseparability of ontologies based on instance checking as 
the one based on subsumption is not strong enough if we consider ontologies together with 
ABoxes. This formulation is also presented in a way that does not depend on a particular 
formal language. 

Finally, we investigate the problem of entailment with respect to some vocabulary E 

formulated in the lightweight description logic £GSf and prove that the corresponding 
decision problem is ExPTiME-complete. This extends the result presented by Lutz and 
Wolter [611 for description logic £G. 
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Chapter 1 

Introduction 
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1.1 Ontologies 

('lf. ll'II 1; 1.1_A II; ( )l)l (1 /( ), \ 

The term ontology (from Greek ov, genitive ovvoc - of being and '\oayr(t t Iie e v, study) 

was introduced in the seventeenth century as the name of the field of philosophy which is 

the study of being. The field itself originates in ancient Greece and is it part of iuetaphy, ics. 

In philosophy ontology aims to answer questions like what entities exist or can be said to 

exist, it aims also at explaining the very nature of existence. Finally, it tries to determine 

how these entities can be grouped. 
In computer science the aim is less ambitious. In computer science we do not want, to 

study what exists and how it exists, we want to provide a model describing some aspects of 

the world. For that reason an ontology is often defined as a communicative, essentially syn- 

tactic artefact. As it was introduced in Gruber's definition 1451, all ontology is an explicit 

specification of a conceptualization', it is often elaborated to a definition capturing also 

semantic use of ontologies in sharing information. For example, Studer et al. 1751 combine 
Gruber's definition with that of Borst 1171, giving what has become a standard definition: 

`an ontology is a formal, explicit specification of a shared conceptualization'. This enipha- 

sis on sharing information is also present, for example, in Uschold and Griininger's 1831 

statement that an ontology is `used to refer to the shared understanding of some domain 

of interest'. 

In these definitions `formal' means that ontologies are supposed to be presented by 

means of a language with an unambiguous syntax and semantics. The requirement to be 

explicit means that the ontology has to define in an unequivocal way the types of concepts 

that are used, and the restrictions on their use. `Shared' in the above definition means that 

the understanding of the vocabulary used for creating an ontology, as well as the represented 
knowledge is the result of an agreement and is accepted by a group of users interested in 

the domain which is described by the ontology. On the other hand, conceptualization is an 

abstract and generalized representation of the aspects of the world that are in the scope 

of our interest. In other words, having set the vocabulary, the ontology provides its with a 

representation of the objects, concepts and other entities present in the domain of interest, 

together with the relations between then. 

From the above we can conclude that an ontology in computer science is an engineered 
creation based on a social agreement and representing a domain of interest by describing 

the concepts and relationships between these concepts. We will refer to this understanding 
of ontologies as the standard approach. 

1.1.1 Ways of presenting ontologies 

Recently, many languages have been developed for ontology specification. We present only 
a short overview on ways of ontology representation. We will present a few formal languages 

and point out how lack of expressivity in one language is overcome by providing another, 
more expressive language. Using a simple example we will also show what kinds of problems 
one may face while translating ontologies between various languages. 
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In general, an ontology may be represented in graphical or textual form. The choice 

of mode of representation usually depends on the purpose of the ontology representation. 
If we aim at presenting an ontology in a human readable form then, especially for small 

ontologies, it might be convenient to choose a graphical mode of representation (as graphs 

are easy to read and understand for humans). Nevertheless, large ontologies would be better 

presented in textual forum, due to the fact that graphs with large uuiuhers of elements and 

relations may become hard to read. Also, if we need an ontology to be machine-processable 

we will use the textual form. 

The "Handbook on Ontologies" 1731 is a good source of information about ways of rep- 

resentation of ontologies, both graphical and textual. 

We start our overview by introducing UML which is a well known language used for 

graphical representation of ontologies. 

UML 

The Unified Modeling Language (UML) is a standardized general-purpose modeling Ian- 

guage used to specify, visualize, construct and document the artifacts of an object-oriented 

software system and for object-oriented programming. UAML is also used for business mod- 

eling, system engineering and for representing organizational structures. It is commonly 

used with its graphical representation, where its elements are represented as symbols related 
to each other in diagrams. UML diagrams are commonly used for graphical representation 

of ontologies. Due to its versatility we cannot talk about one type of UML diagrams, in 

fact we have several types of diagrams (cf. [68]). 

The creators of UML aimed to present a language that is as simple as possible yet 

expressive enough to model any practical system under development, it language that, can 
be used at many different levels and stages of the software development life cycle. But, 

as is easy to predict, the requirement to be very expressive made UNIL a large and varied 
language. 

Staff 

disj 

Research Visiting Academic 
O 

cov 
Project 

f 
manages 1.. 2 ProjectManager 

Figure 1.1: An ontology represented as an UML graph 

Figure 1.1 presents an example of a simple ontology represented as a UML graph. The 
ontology uses six concepts: Staff, Research, Visiting, Academic, Project and ProjectManager 
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and two relations: manages and worksOn, together with some restrictions on their use. These 

concepts and relations form the vocabulary used in the ontology, their understanding should 
be a result of a consensus among the members of the group interested in the domain. Each 

concept describes a class of objects from the domain, i. e. in this example objects present 
in the domain are distributed between six classes. Relation `IS_A', which is also known 

as "Supertype-Subtype relationship" or "Parent-Child relationship", is an inheritance rela- 
tionship providing us with the information about inclusions between the concepts. IS_A 

relationships are the basis of the hierarchies of concepts. In this example classes Research, 
Visiting and Academic are subclasses of Staff (we also say that Staff is their superclass). 
To state that two classes have no common element, we use restriction disj (disjoint), in our 
example classes Research and Visiting are disjoint. The covering constraint (cov) used in 

this example tells us that every ProjectManager belongs to Visting or Academic. We also 
learn that at least one and at most two members of the class ProjectManager manage an 
element from the class Project. Moreover, every member of Research class works on at least 

one element from Project class, and at least one member of Research class works on an 

element from Project class. 

Entity-Relationship Diagram 

Another method used for graphical representations of ontologies is Entity-Relationship Di- 

agram. It is a graphical representation of entities and their relationships to each other. 
Entity-relationship modeling was originally developed and is still used as a database mod- 
eling method. ER-Modeling was introduced in [25], see [14,80-82] for further information. 

The graphical form of ontology representation is very convenient for humans to read. 
Psychologists have shown that human are able to grasp and remember visual information 

much faster than the same information presented in textual form [46,66]. A graphical form 

of representation is very convenient for supporting ontology planning and development, as 
well as for understanding the structure of the domain of interest. In this mode of ontology 
representation it is easy for humans to determine relations between classes and restrictions 
on their use. But the problem is that typically it is not machine-processable. To be 
machine-processable means to be expressed in a formal language, for which efficient parsers 
are available. 

To make the ontology from Figure 1.1 machine-processable we could convert it into 
textual form. One of the languages used for textual representation of ontologies is RDF. 

RDF and RDFS 

The Resource Description Framework (RDF) [47,49,63] is a member of a family of World 
Wide Web Consortium (W3C) specifications used for supporting mechanisms for meta- 
data schema representation and resource descriptions, in particular Web resources like Web 
pages. It is often deemed to be the basic representation format used for developing the 
Semantic Web [47]. 
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Objects of interest are described by simple statements of the type `subject - predi- 

cate - object' by means of vocabularies with named properties. Subjects and objects in 

these statements are entities and predicates indicate relationships between these entities. 
However, RDF cannot provide descriptions for these subjects, predicates and objects. In 

order to specify the information about the terms used in the vocabulary we have to use 
RDF Schema (RDFS) [22], which is a simple declarative language of restricted expressive 

power. It provides generic language constructors allowing for semantic characterization of 
the vocabulary. It introduces a notion of class and property to describe information in the 

domain and uses semantic relationships for structuring this information. For instance these 

notions are used for describing hierarchies of concepts using the relationship of subclass and 
hierarchies of properties using the relationship of subproperty. 

To be able to process and store RDF(S) documents we need syntax. Among early 

propositions of syntax for RDF we can distinguish N3, N-Triples and Turtle. The prob- 
lem with those was that many programming languages do not offer standard libraries for 

processing them. In contrast to that, basically every programming language provides li- 

braries for processing XML (Extensible Markup Language) code. For this reason XML is 

the syntax commonly used for creating RDF(S) documents. RDF/XML is an XML format 

for representing RDF structures. The specification of RDF/XML can be found in [15]. 

It is important to notice that contrary to many ontology languages RDFS does not sup- 

port logical concepts like equivalence, and cardinality constraints (using cardinality 

constraints we can for instance declare that every member of Research class works on at 
least one Project and at least one member of Research class works on a Project). In RDFS we 
cannot declare characteristics of properties like transitivity (like "greater than"), unique- 
ness (like "is father of") or inverse of another property (like "ancestor" and "descendant"). 
Moreover, RDFS has no notion of negation and thus no notion of contradiction and it does 

not support disjointness of classes. RDFS defines the range of a property for all classes 
and cannot express that certain property ranges apply to some classes only, i. e. we cannot 
use properties with local scope. Due to the lack of negation we cannot declare Boolean 

combination of classes. These concepts are available in OWL, which in a sense extends 
RDFS. 

From the above it is clear that we cannot represent all the information carried by the 
ontology from Figure 1.1 in RDF/XML format. To be able to present that ontology in 
XML format we have to use a more expressive language. An example of such a language is 
OWL. 

OWL 

Web Ontology Language (OWL) is another W3C recommendation. It was introduced with 
the aim to provide a language which extends the expressiveness of RDFS but still admits 
efficient reasoning. During the development of OWL it had to be taken into account that 
since RDFS modeling primitives, like Class and Property, are very strong, extending RDFS 
might lead to undecidability of reasoning. To address this issue, three different sublanguages 
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of OWL were introduced. Each sublanguage is an answer to different needs relative to the 

expressiveness of the language. Below we present a short description of the family of OWL 
languages based on [4]. It is also one of the sources which could be used for finding more 
information about OWL. 

The most expressive language is called OWL Full, it uses all the primitives available in 
OWL languages. The advantage of OWL Full is that it is fully, syntactically and semanti- 
cally, upward compatible with RDF. Thanks to that any legal RDF document is also legal 
in OWL Full, and any valid conclusion in RDF or RDFS is also valid in OWL Full. But its 

expressivity makes OWL Full undecidable. 

OWL DL (an abbreviation of OWL Description Logic) is a restriction of OWL Full. It 

aims at providing maximum expressiveness together with decidability and the availability 

of practical reasoning algorithms. To achieve that OWL DL restricts the way that OWL 

language constructors can be used, for instance, cardinality restrictionsl may not be applied 
to transitive properties. 

The advantage of OWL DL is that it has efficient reasoning support, i. e., derivations 

about class membership, equivalence of classes, consistency, classification can be made 
mechanically. The price for that is that OWL DL is not completely compatible with RDF, 

even though any legal OWL DL document is a legal RDF document, an RDF document 

usually will have to be modified to be a legal OWL DL document. 

OWL Lite is a further restriction of the language. It restricts the constructors available. 
For instance, among others, it excludes disjointness and arbitrary cardinality restrictions 
(it only permits cardinality values of 0 or 1). 

Compared with the two other languages OWL Lite is much less expressive but is easier 
to grasp. It was also expected to be easier to implement, but development of OWL Lite 
tools turned out to be not much easier than development of tools for OWL DL. 

OWL is expressive enough to present the ontology from Figure 1.1 as an XML document. 
This is shown in the following example: 

Example 1.1.1. 

In OWL, classes are defined as an owl: Class element, owl: Class is a subclass of 
rdfs: Class. For example we define a class Staff in the following way: 

<owl: Class rdf: ID-"Staff"/> 

To define classes Research,, Visiting and Academic as subclasses of Staff we use 
rdfs: subClassQf: 

1Cardinality restrictions are used for specifying how many distinct values a property may or must take. 
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<owl: Class rdf: ID="Research"> 

<rdfs: subClassOf rdf: resource="#Staff"/> 

</owl: Class> 

<owl: Class rdf: ID="Visiting"> 

<rdfs: subClassOf rdf: resource="#Staff"/> 

</owl: Class> 

<owl: Class rdf: ID="Academic"> 

<rdfs: subClassOf rdf: resource="#Staff"/> 

</owl: Class> 

In order to state that every member of class ProjectManager also belongs to class 

VistingStaff or AcademicStaff first we have to define a class which is a union of 

VistingStaff and AcademicStaff. To this end we use owl: unionOf, we also use the 

rdf : parseType attribute, which is an abbreviation of an explicit syntax used for building a 
list with tags <rdf :f irst> and <rdf : rest>. Lists of that type are required due to certain 
limitations of built-in containers of RDF, in particular, there is no way to close them. The 

reason for this is the fact that while one graph describes some of the members of a class, 

we cannot exclude the possibility that there is another graph which describes additional 

members of that class. The list syntax provides that function, but since it is lengthy, the 

rdf : parseType is a convenient abbreviation (cf. [73]). 

<owl: Class rdf: ID="ProjectManager"> 

<rdfs: subClassOf> 

<owl: Class> 

<owl: unionüf rdf: parseType="Collection"> 
<owl: Class rdf: about-"\#Visiting"/> 
<owl: Class rdf: about-"\#Academic"/> 

</owl: union0f> 
</owl: Class> 

</rdfs: subClassOf> 

</owl: Class> 

The following entry declares that the classes Visiting and Research are disjoint, this is 
done by using element owl: dis j ointWith. This element can be included in the definition 
of the class, or can be added by referring to its ID using rdf : about, which is inherited from 
RDF. 

<owl: Class rdf: about-"Visiting"> 
<owl: disjointWith rdf: resource="#Research"/> 

</owl: Class> 
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The next entry describes an object property (object properties relate objects to other objects 
and can be understood as relations) worksOn with domain in class Research and codomain 
in class Project. 

<owl: ObjectProperty rdf: ID="worksOn"> 

<rdfs: domain rdf: resource="Research"/> 
<rdfs: range rdf: resource="Project"/> 

</owl: ObjectProperty> 

Now we extend the information about Research by adding the information that every 

member of the class Research is in the relation worksOn to at least one element from class 
Project. We use owl : allValuesFrom to set the class of the possible values the property 
determined by owl : onProperty can take. In our example we state that all the values of 

property worksOn come from Project. We also require that the minimal cardinality of the 

values the property can take is 1. We have to explicitly state that the literal "1" is to be 

interpreted as a nonNegat ive Integer. We also use the xsd namespace declaration made 
in the header element to refer to the XML Schema document. 

<owl: Class rdf: about-"Research"> 
<rdfs: subClassOf> 

<owl: Restriction> 

<owl: onProperty rdf: resource-"#worksOn"/> 
<owl: allValuesFrom rdf: resource-"#Project"/> 
<owl: minCardinality rdf: datatype-"&xsd; nonNegativeInteger"> 

1 

</owl: minCardinality> 
</owl: Restriction> 

</rdfs: subClassOf> 
</owl: Class> 

OWL allows us to use inverse properties, here we use this feature to define 
isInvestigatedBy as the inverse of worksOn property. 

<owl: ObjectProperty rdf: ID-"isInvestigatedBy"> 

<rdfs: domain rdf: resource-"Project"/> 
<rdfs: range rdf: resource-"Research"/> 
<owl: inverse0f rdf: resource-"#worksOn"> 

</owl: ObjectProperty> 

Similarly as above we define property isInvestigatedBy to have owl : allValuesFrom the 
class Research and we set the minimal cardinality to be 1. In this way we are able to say 
that for every Project there is at least one researcher working on it. 
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<ovl: Class rdf: about="Project"> 

<rdfs: subClassOf> 
<owl: Restriction> 

<owl: onproperty rdf: resource="#isInvestigatedBy"/> 

<owl: allValuesFrom rdf: resource="#Research"/> 

<owl: minCardinality rdf: datatype="&xsd; nonNegativeInteger"> 
1 

</owl: minCardinality> 

</owl: Restriction> 

</rdfs: subClassOf> 

</owl: Class> 

9 

The next entry defines property manages in the same manner as was done for other prop- 

erties above. 

<owl: ObjectProperty rdf: ID="manages"> 

<rdfs: domain rdf: resource="ProjectManager"/> 

<rdfs: range rdf: resource-"Project"/> 

</owl: ObjectProperty> 

The final entry is an example of introducing at the same time both minimal and maximal 

cardinalities of the values the property can take. In this example we say that a Project is 

managed at least by one and at most by two members of ProjectManager class. 

<owl: Class rdf: about-"ProjectManager"> 

<rdfs: subClassOf> 

<owl: Restriction> 

<owl: onProperty rdf: resource="#manages"/> 
<owl: allValuesFrom rdf: resource="#Project"/> 
<owl: minCardinality rdf: datatype-"&xsd; nonNegativeInteger"> 

1 

</owl: minCardinality> 
</owl: Restriction> 

</rdfs: subClassOf> 

<rdfs: subClassOf> 

<owl: Restriction> 

<owl: onProperty rd!: resource="#manages"/> 
<owl: allValuesFrom rdi: resource-"#Project"/> 
<owl: maxCardinality rdf: datatype-"&xsd; nonNegativeInteger"> 

2 

</owl: minCardinality> 
</owl: Restriction> 

</rdfs: subClassOf> 

</owl: Class> 
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An ontology presented in a formal language like OWL is machine-processable but usually 
it requires a human to make some effort to read and understand it. The reason for developing 

this language was that XML syntax is widely used for creating web documents, this makes 
OWL one of the standards used for writing description logic ontologies for the semantic 

web as it puts description logics into XML syntax 

OWL 2 

While OWL is very successful and applied in numerous contexts, users have identified some 
deficiencies in its design. These limitations encouraged the designers to work on a successor 

of OWL called OWL 2. Development of OWL 2 was also used as an opportunity to clean the 

language and its specification, this provided a more robust platform for future development. 

Based on [44], below we discuss some of the limitations of OWL and how they were 

addressed in OWL 2. Here we discuss the following groups of problems: 

" expressivity limitations, 

" syntax issues, 

" semantics, 

" metamodeling, 

" annotations. 

Expressivity limitations. Users of OWL have found that its most expressive, but 

still decidable sublanguage OWL-DL lacks some constructors that are often needed for 

modeling complex domains. For instance, OWL does not allow for cardinality restrictions 
to be qualified with a class. That means that while one can provide a definition of a 

person with at least three children, it is impossible to define a person with at least three 

children who is male. This problem was solved by introducing qualified number restrictions, 
which had no impact on decidability and caused no problems with implementation. Another 

problem is that with OWL we are unable to describe properties in detail. For instance OWL 
does not allow for propagation along properties or introducing properties of properties. 
This was addressed in OWL 2 by allowing for complex property inclusion axioms. To 

avoid undecidability a regularity restriction is imposed on these axioms, which means that 
complex subproperty axioms should not define properties in a cyclic way. Another limitation 
is that with OWL-DL it is not possible to express key constraints on data properties, which 
are an important feature of datatype technologies. But adding keys to languages which are 
based on description logics leads to theoretical and practical problems. For that reason it 
was decided to add a restricted versions of keys (known as easy keys), which are useful but 
relatively easy to implement. 

Syntax issues. In OWL we can distinguish two normative types of syntaxes; Abstract 
Syntax and OWL RDF. The problem is that both syntaxes are difficult to parse correctly 
and the relationship between them is quite complex, which leads to some difficulties when 
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an ontology is transformed from one syntax to another. Another difficulty is that despite the 

fact that OWL is based on description logics, Abstract Syntax of OWL does not correspond 

exactly to the constructors used in DLs. This led to some confusion among developers of 

OWL APIs, who would rather follow DL structure. In addition, neither Abstract Syntax 

nor OWL RDF is fully context free, axioms containing URI often do not provide sufficient 
information to determine if they refer to a class, property, or an individual. Moreover, RDF 

syntax often proves to be difficult to use. This is because in RDF everything is represented 

with triples, but in OWL many constructors cannot be represented in that way without 

introducing new objects. As a result OWL RDF ontologies are difficult to read and process. 
In OWL 2 Abstract Syntax was replaced with Functional-Style Syntax. These two differ in 

many ways and OWL 2 Functional-Style Syntax is not backwards compatible with Abstract 

Syntax. The most important difference is that Functional-Style Syntax does not contain the 

frame-like syntactic constructors of OWL (which were causing some confusion among the 

developers), but describes ontology entities using axioms. OWL RDF, which was mainly 

used for publishing ontologies on the Web, was replaced in OWL 2 by XML Syntax. The 

main advantages of XML Syntax are its ease to parse and process, and the fact that it is a 

widely used format on the Web and is supported by a number of tools. In addition XML 

Syntax is well suited for use in protocols and APIs for accessing OWL 2 implementations. 

Semantics. When OWL was under development, it was expected to be compatible 

with Semantic Web languages like RDF, whereas OWL-DL was originally designed as a no- 
tational variant of SHOIN(D). But the differences in semantics of RDF and SfOZN(D) 

were causing some difficulties. To overcome that, two coexisting semantics were introduced 

for OWL. But this solution caused other difficulties, as both semantics had their own prob- 
lems and bringing them together was complicated as well. This was addressed in OWL 2 

by introducing model-theoretic semantics that corresponds to SIZOZQ(D). Moreover it 

was defined for ontologies in Functional-Style Syntax and, as there is a one-to-one corre- 

spondence between this syntax and XML Syntax, the semantics can be directly used in 

the latter representation. At the moment, OWL 2 does not provide RDF-style semantics 
but the design of such a semantics is in progress. In the meanwhile the transformation 

of ontologies presented in Functional-Style Syntax into RDF graphs is a purely syntactic 

process. 
Metamodeling. As practice shows the distinction between classes and individuals 

sometimes is not entirely clear. Sometimes the same concept name in one context plays the 

role of an individual and of a class in another context, this is called metamodeling. During 
the development of OWL the importance of metamodeling was not widely recognized yet 
and for that reason it is available only in OWL Full, but it was introduced in a way which 
leads to undecidability of standard reasoning problems. In the metamodeling semantics in 
OWL 2 the usage of a name as a class is unrelated to its usage as an individual (this is 
achieved by adding a prefix which tells in what context the name is used), consequently 
names of concepts and individuals do not interact even if they are the same. This type of 
metamodeling is often called punning. 

Annotations. While the annotation system (extra-logical information describing on- 
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tologies or entities) does not restrict the use of annotations, the annotation system used in 

OWL-DL has been identified as insufficient. For example, OWL-DL does not allow axioms 
to be annoted, which sometimes is necessary, for instance, if one needs to indicate the origin 

of the information (i. e. who introduced a particular axiom). Users were also dissatisfied 

with the fact that they could not define domains and ranges of annotation properties. To 

answer those issues, in OWL 2 it is possible to annotate entities, axioms and ontologies. 
Annotations in OWL 2 do not carry formal semantics, thus they do not have any impact 

on the set of consequences derived from an ontology. On the other hand, annotations do 

affect structural equivalences of ontologies, i. e., for two ontologies (and similarly axioms) to 

be structurally equivalent they need to have structurally equivalent annotations on them. 

Profiles in OWL 2. Although OWL was originally designed with three sublanguages 

in practice it is difficult to determine which sublanguage was used for ontology formulation. 

This is particularly difficult for ontologies formulated in RDF, as there is no direct mapping 
between RDF and Abstract Syntax. In addition it was found that even though OWL Lite 

is much simpler than OWL DL, the complexity was not reduced significantly, this is due to 

the fact that negation can be implicitly formulated in axioms. In OWL 2 these difficulties 

were addressed by designing sublanguages which give up some expressive power to gain 

efficiency of reasoning, these sublanguages are called OWL 2 profiles. The profiles are 
defined by placing restrictions on the Functional-Style Syntax of OWL 2 and were designed 

for different reasoning tasks. We distinguish three profiles: 

" OWL 2 EL is based on the EG++ family of description logics. This profile was 

designed to achieve efficient reasoning (which in this case usually is classification of 

concepts) with large ontologies. The profile captures the expressive power used by 

many ontologies, and will be usually used for classification. The reasoning can be 

performed in time that is polynomial with respect to the size of the ontology. 

" OWL 2 QL is based on the DL-Lite family of description logics, which was originally 
designed to provide efficient reasoning with large volumes of instance data. The profile 
is used for answering conjunctive queries, i. e., given an ontology 0 and a conjunctive 

query q, we want to compute all tuples of individuals that constitute an answer to q 

with respect to 0. With the use of a suitable reasoning technique, sound and complete 

conjunctive query answering can be done in LoGSPACE with respect to the size of the 
data. The expressive power of the profile is quite restricted, but it has most of the 

main features of conceptual models such as UML class diagrams and ER diagrams. 

" OWL 2 RL was designed to support applications that require scalable reasoning with- 
out giving up too much expressive power. The design of OWL 2 RL allows for im- 

plementing reasoning tasks as a set of rules., While OWL 2 RL uses most of the 
constructors used in OWL 2, to allow for rule-based implementations of reasoning, 
the way they are used was restricted to ensure that a reasoner needs to take into 
account only the individuals that are explicitly used in the ontology. The typical rea- 
soning problems like ontology consistency, class subsumption, instance checking, and 
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conjunctive query answering can be solved in time that is polynomial with respect to 
the size of the ontology. 

none of the profiles is a subset of another. 

First Order Logic 

In the 1970's it was suggested that First Order Logic (FOL) could be the source of precise 
semantics for knowledge representation, with unary predicates used to make assertions 
about individual objects and binary predicates denoting relations between objects. This 

approach was based on the idea that FOL is well known and could be used to express facts 

about the world in an unambiguous way. 
For instance the ontology from Figure 1.1 can be represented with the following axioms: 

Example 1.1.2. 
`dx(3y manages(x, y) = ProjectManager(x)), 

Vx(3y manages(y, x) Project(x)), 

`dx(Project(x) = 2y manages(y, x)), 

Vx, yi, y2, y3 ((manages(yi, x) A manages(y2, x) A manages(y3, x)) = (yi = ya V yi = y3 V y2 = y3)), 
Vx(3y worksOn(x, y) = Research(x)), 

Vx(3y worksOn(y, x) = Project(x)), 

Vx(Research(x) = 3y (worksOn(x, y))), 

Vx(Project(x) = 3y (worksOn(y, x))), 

Vx(Research(x) = Stafl'(x)), 

Vx(Visiting(x) = Stat x)), 

Vx(Academic(x) = Staff(x)), 

V--(-Visiting(x) V -+Research(x)) 

Vx(Visiting(x) ProjectManager(x)), 

Vx(Academic(x) ProjectManager(x)), 

Vx(ProjectManager(x) Academic(x) V Visiting(x)). 

The problem with FOL is that its high expressivity leads to undecidability of the sat- 
isfiability problem and consequence relation. 

This together with the fact that it was argued that often full expressivity of FOL is not 
needed for ontology formulation, was an incentive to take into consideration fragments of 
FOL as languages for ontology formulation. Using fragments of FOL makes the complexity 
of reasoning lower and allows for efficient use of ontologies. Of course different fragments 
of FOL differ in expressivity and complexity. Many description logics can be regarded as 
fragments of FOL. 
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Description Logics 

CHAPTER 1. INTRODUCTION 

Description Logics (DLs) are a family of knowledge representation languages, that provide 
formal foundations for ontology representation and for performing the tasks related to the 

use of ontologies [9]. The name itself points to two important aspects of DLs. First of all 
DLs use concept descriptions to describe the domain of interest. To this end expressions 
built from atomic concepts (corresponding to unary predicates in FOL) and atomic roles 
(corresponding to binary predicates in FOL and object properties in OWL) with use of 

concept and role constructors are introduced. The other important aspect of DLs is that 

they have a formal, logic-based semantics. 
Members of the DL family differ in their expressivity and complexity. In this family we 

have expressive languages like ACC, 
. 
ACCQI or RCTQ but with high complexity (at least 

ExpTmE-hard) of reasoning, and languages like EG or EG+ which are less expressive but 

in which reasoning is tractable. Interestingly, weak languages like EG and £G+ were found 

to be expressive enough to formulate large scale ontologies. In fact several ontologies used 
in medicine are formulated in lightweight description logics such as EC or mild extension 
thereof, e. g., EL with role inclusions. In particular, role inclusion axioms expressing role 
hierarchies, transitive roles, and right-identity are of practical importance, e. g. in medical 
terminologies [48,72]. 

Here we briefly discuss some typical constructors of DLs and give an overview of com- 
monly used DLs. The formal definitions of the systems of our interest will be provided in 
Section 2.2. 

All the members of the DL family share the same type of alphabet. This alphabet 
consists of two disjoint sets: one is used to denote atomic concepts, and the other one 
is used to denote atomic roles. The former are used to express classes of objects of the 

universe, whereas the latter are used to represent the relations between these objects. 
Concept expressions denote sets of all individuals satisfying a property described by 

the concept. Description logics use different types of connectives to express more complex 

concepts. For instance, intersection of concepts, denoted by Cfl D, is used to represent 
the individuals that belong both to C and D, the corresponding first order logic expression 

would be of the form C(x) A D(x). We also have complement of concept (denoted by 

'-, ')and concept disjunction (denoted by `U'). 

One of the most important aspects of description logics is their ability to describe 

relations between the concepts of the domain. This is achieved by using role names (from the 

set of atomic roles) together with constructors (role restrictions) establishing that relation. 
We distinguish four types of role restrictions: value restriction, existential restriction, 

number restriction and qualified number restrictions., 
Value restriction allows us to describe concepts like `Individuals all of whose pets are 

dogs", formally expressed as VhasPet. Dog. Existential restriction (existential quantification) 

allows us to describe concepts like "individuals having a dog as a pet", formally BhasPet. Dog. 

Number restriction enables us to express concepts like "individuals having at least 2 chil- 
dren" and "individuals having at most 3 brothers" written respectively as >2 hasChildren 
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and <3 hasBrother. Finally, qualified number restrictions are used to formulate concepts 
like "individuals having at least 2 adult children" and "individuals of whose children at 

most 3 are male", and respectively these sentences are of the form >2 hasChild. Adult and 
<3 hasChild. Male. 

Description logics allow for concept definitions A-C and general concept inclusion 

axioms (GCIs) Cl 9 C2. For instance, we can build expressions like 

Father = Malen Parent 

telling us that being Father is equivalent to being Male and Parent. An instance of a GCI 

is the following: 

Mammal C Animal 

which tells us that concept Mammal is more specific than concept Animal, i. e. every Mammal 

is also Animal. 

A collection of GCIs is called a Tbox. In the DL context we use the terms "TBox" and 
"ontology" interchangeably. 

Description logics allow also for role-forming connectives, for instance using intersec- 

tion of roles, intuitively hasChild f1 hasFemaleRelative yields the role hasDaughter. 
As we can formulate concept hierarchies in description logics, we can also express condi- 

tions on roles such as rCs, transitivity rorCr and right-identity sorCs, where r and s 
are role names. Right-identity axioms have been proven useful for expressing "propagation" 

of one property along another one. For instance, we can formulate axioms of the form: 

1. isPartOf o isPartOf C isPartOf. 

2. hasLocation o isPartOf C hasLocation 

If we use these axioms together with: 

3. Toe C 3isPartOf. Foot 

4. Foot[: 2isPartOf. Leg 

Then using (1), (3) and (4) we can infer that Toe C 3isPartOf. Leg, i. e. that a toe is 
a part of a leg. Whereas, given Injury rl 2hasLocation. Toe, we can use (2) to infer that 
Injuryfl2hasLocation. Foot i. e., if one suffers from an injury located in a toe then it also means 
that one suffers from an injury located in a foot, and further that Injury fl hasLocation. Leg, 
i. e., that it also means that one suffers from an injury located in a leg. 

Having various connectives available and allowing for different types of axioms we can 
create diverse description logics by allowing various combinations thereof. Clearly these 
logics differ in expressivity and complexity. 

As already mentioned, a very simple, yet very important, description logic is EG [8]. 
Its concept constructors are T (denoting the whole domain), conjunction and existential 
restriction. 
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As E1 has only two constructors available, we cannot use it to express the UML diagram 

from Figure 1.1. An important extension of EL in which the UML diagram from Figure 1.1 

can be expressed is AL CQI, which in addition to EL has negation, inverse roles and qualified 

number restrictions. The ontology expressing the UML diagram from Figure 1.1 is now: 

Example 1.1.3. 

3manages C ProjectManager, 

2manages C Project, 

Project C 2manages , 
> 3manages C 1, 

3worksOn r- Research, 

3worksOn C Project, 

Research r- BworksOn, 

Project C 3worksOn , 
Research C Staff, 

Visiting C Staff, 

Academic C Staff, 

Visitingrl Research[: 1, 

Visiting C ProjectManager, 

Academic C ProjectManager, 

ProjectManager C Academic U Visiting. 

Another group worth mentioning is the DL-Lite family of description logics. The DL- 

Lite logics were designed to provide efficient access to large data repositories, without giving 

up too much of expressive power. It is assumed that the data to be accessed are stored in 

a standard relational database and that the user is interested in formulating, with use of 

an ontology, queries that are more complex than asking for instances of single concepts and 

roles (instance checking), for example one could formulate conjunctive queries. DL-Lite 

family have polynomial time computational complexity with respect to standard reasoning 
tasks, and LOGSPACE data complexity with respect to complex query answering. These 

logics were first proposed by Calvanese et al. in [24]. They are also studied in [6], where DL- 

Lite is extended with full Booleans and number restrictions, resulting in DL-Litebcýol. The 

authors also introduce its two sublanguages DLLiteho,.,, and DL-Litek,,,,. Some interesting 

properties of members of DL-Lite family are also studied in [52-54). 

Here we will consider DL-Litey,, i only. As other description logics, DL-Liteýi has 

concept names and role names in the vocabulary, it has T and 1 concepts available, it also 
allows for use of existential restriction, conjunction, negation, number restriction and inverse 

role constructor. Having these constructors available, DL-Liteb, o1 is expressive enough to 
cover all the axioms of the Example 1.1.3 as they were originally formulated, but the 

reasoning now is CoNP-complete [6]. 
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1.1.2 Formal semantics and reasoning 
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When an ontology is under development typically it may not be convenient, or even possible, 
to present all the required information explicitly. But not all the information is actually 

required to be explicit (this allows to reduce the size of the ontology, which is important from 

a practical point of view, as using smaller ontologies in applications is more time effective). 
Many of the languages used to write ontologies are logics, whose semantics provide a notion 

of consequence that provides implicit information. To obtain this information, it is necessary 
to query an ontology: to deduce or infer information that is implicit in the ontology's 

statement. We may wish to obtain the induced concept hierarchy, or to access instance 

data using the ontology (e. g., as in Ontology-Based Data Access [24]). The form of the 

queries corresponds to the applications of ontologies. Important types of queries include 

three which are of interest to us: 

Classification. Classification of an ontology aims to compute all the subclasses of atomic 
classes present in the ontology. For instance, let E be a vocabulary of medicine, then the 

query 
Pse udopseudohypoparathyroid ism C Genetic Disorder 

asks if it follows from the ontology that pseudopseudohypoparathyroidism is a genetic dis- 

order. 

Answering subsumption queries. This application aims to compute subsumption be- 
tween complex concepts. Again, in a vocabulary of medicine, a query 

Cystic_Fibrosis C Fibrosis fl 9located_In. Pancreas fl has_Origin. Genetic_Origin 

asks if it is the case that Cystic Fibrosis is always a fibrosis which is located in the pancreas 
and has genetic origin. 

Answering instance data queries. Another important application of ontologies is their 
use when one is querying instance data. In this scenario we are interested in instance queries 
that are posted to a pair consisting of an ontology and an ABox, which stores instances 

of classes and relations but is not a part of an ontology. For example, if E is a medical 
vocabulary, then a query might consist of the ABox of the form: 

A= {Patient(John), 
..., Broken_Leg(John)} 

together with the conjunctive query of the form 

Treated_in_Orthopedic_Unit(John). 

This query asks if the ABox A and the ontology entail that John is treated in an orthopedic 
unit. If the ontology states for instance that every patient with a leg broken is treated in 
orthopedic unit, then the answer is yes. 
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To be able to answer any query first we need formal semantics allowing us to define 

a notion of consequence which is essential in any logical system. Defining what it means 
to be a consequence enables us to answer queries and concept classifications. As already 

mentioned we have a number of logical systems used for ontology representation that provide 

us with formal semantics. This gives us a good choice for finding one that is expressive 

enough to describe the domain of our interest. But the expressivity of the language has 

impact on its complexity. For instance, we may use FOL for formulating ontologies, but 

this leads to undecidability of some interesting problems and full expressivity of FOL is 

not always needed. For that reason often we would rather choose a fragment of FOL for 

instance one of the description logics mentioned above. The complexity of many problems 
in various DLs is well studied, unfortunately often it is high. For instance, E-entailment2 in 
AGCQIO is undecidable; while E-entailment in ACC and ACCQI is 2ExpTime-complete, 

as it was shown in [40,60). But it has been shown in [61,62] that E-entailment in EG becomes 
ExpTime-complete. For that reason choosing the language for ontology representation often 
is about finding the right balance between expressivity and complexity. In recent years we 
can observe an increasing interest in lightweight description logics. Their popularity is 

caused by the fact that reasoning is tractable even w. r. t. general sets of concept inclusions. 
As described above, we can distinguish two groups of light weight DLs, the EG [8,21,611 

family of tractable DLs and the family of DL-Lite tractable DLs. 

Having chosen the formalism, it is possible to investigate many interesting problems, 
like concept subsumption, various notions of entailment, inseparability or the related logical 
difference problem, as introduced below in this thesis. 

1.2 Problems 

In the standard approach, the function of an ontology is to state, explicitly, a conceptual- 
isation. However, as well as reading and writing ontologies, in practice one also wants to 

use existing ontologies, perhaps to browse the induced concept hierarchy, or to access in- 

stance data, or perhaps to create a new ontology that extends either an entire ontology or a 
manageably small fragment of one. Or perhaps one may want to test whether one ontology 
is in some way consistent with another, or provides the same information regarding some 
subset of concepts. 

These applications have been found to be beneficial in various fields of science and 
commerce. This includes disciplines like medicine, bio-informatics, the Semantic Web, 

artificial intelligence, software engineering and others. 
In bio-informatics, for instance, ontologies are used in order to get answers to biological 

questions. Researchers use mathematical and computational techniques to manage and 
analyze biological concepts. This is due to the fact that the experimental way of testing 
hypotheses in biology is rather expensive in time and resources. Thus it was found useful 
to compute information in order to test hypotheses of interest.. A common way to use 

2E-entailment is formally introduced in Definition 3.2.16. Roughly stated, if ontology Ol E-entails 
ontology 02 it means that every sentence over E that is a consequence of 02 is also a consequence of Ol. 
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ontologies in bio-informatics is creating a common vocabulary used for managing database 

annotation like describing, linking, sharing and querying-for instance, MGED3 (Microar- 

ray Gene Expression Data) is a project focussed on establishing standards for microarray 
data annotation and exchange in order to support the creation of microarray databases and 
implementing these standards in software. 

An example of ontology used in medicine is the Systematized Nomenclature of Medicine 

(SNOMED CT). It is used in the health systems of the US, the UK, and other countries [72]. 

It comprises -0.5 million concepts and describes many of the aspects of medicine and health 

care. Another example is the thesaurus of the US National Cancer Institute (NCI), which 

comprises -45.000 concepts and is designed to become the reference terminology for cancer 

research [74]. SNOMED CT (similarly NCI) satisfies the need for unified clinical information 

exchange between different health care providers, researchers and others. It also helps to 
deal with the problem of differences in the ways of recording the medical information and 
differences in the terminology. It is used in applications like Electronic Medical Records, 
Genetic Databases or Cancer Reporting. 

As a consequence of this interest in ontologies their number is continuously increasing. 
For that reason it is often the case that within one field there are several ontologies describing 

one domain of interest. Often they complement each other by focusing on different aspects 
of that domain, this usually happens if they were designed to satisfy diverse needs of varied 
groups of users. Alongside the growth of importance of ontologies we can observe increasing 
interest in multiple use of ontologies. But this may raise some problems. We distinguish 
different dimensions of the possible problems, but they can appear at the same time as well. 

1. Ontologies formulated in distinct formalisms. One problem originates in the 

requirement that ontologies be formal. It obviously helps to meet this requirement if 
the ontology is written in a precise language, and as already mentioned a large number 
of languages have been developed specifically for writing ontologies. Thanks to that 

variety of ontology representation languages we can find a good balance between 

expressivity and complexity of the formalism used for ontology representation. It 
is important to bear in mind that it is not the case that one language or notation 
is 'better' than all others, but one may be found more appropriate than others for 

a particular domain or application. In any case, choosing a particular notation for 

an ontology restricts the use that may be made of it. Most likely, an ontology, or 
its component parts, written in one language may be incorporated only into other 
ontologies that are written in the same language; in order to combine two or more 
existing ontologies, it may be necessary to translate at least one of them into another 
language. 

2. Different formalisms used for ontology and queries. Another problem stems 
from the requirement that ontologies be explicit. As already mentioned, it may not 
be convenient, or even possible, to present all the required information explicitly in 

3http: //mged. sourceforge. net/ontologies/index. php 
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an ontology. To obtain the desired information, it is necessary to query an ontology. 
Obviously, an answer to a query may best be obtained when the query and the 

ontology are written in the same logical language; if they are not then, again, the 

ontology or the query may need to be translated into another language. 

3. Different signatures. But even if the formal language is fixed, different ontologies 
may use different vocabularies. For instance, this may happen if groups of primary 
ontology users use different natural languages and thus concept and role names are 
from different natural languages. Again, this makes ontologies difficult to use together. 
(Similarly we may have an ontology and a query using different signatures. ) To 

overcome it we have to find a correspondence between the vocabularies, see e. g. [381. 

The problems described in points (1) and (2) are similar and require bringing distinct 

formalisms together, which in practice may be a difficult task. The problem described 

in point (3) requires signature mapping. As an example of a problem of type (3), we 

may consider SNOMED CT. Originally it was created in English, but as it describes many 

useful aspects of medicine it was found to be useful to have it available also in other 
languages. To do that it was necessary to determine mappings between different signatures 

used in particular languages to describe medical terms. To this end SNOMED CT has a 
built-in framework to manage different languages and dialects. This made it possible to 

provide SNOMED CT in US English, UK English, German, Spanish and Danish [1), and 

translations into French, Swedish, Lithuanian, and several other languages are currently 
being undertaken. To make sure that these translations are accurate, usable and safe they 

have to be concept-based (term-to-term translations may return literal expressions that are 

often meaningless). Therefore before deciding on the translation each concept has to be 

analyzed by the translator relative to its description, position in the hierarchy and relations 
to other concepts. 

Another problem that might appear is caused by synonyms and homonyms in natural 
languages, but as already mentioned, concept and role names used in ontologies are the re- 

sult of a consensus among the users and this consensus aims at preventing from introducing 

synonyms and homonyms into the signature. Nevertheless it should be taken into account 

while merging two ontologies, especially if they were developed for different groups of users 
(for instance groups working in different areas of science). This problem may also appear 
during querying ontologies if the user for some reason is not aware of that agreement. 

Of course a combination of the above problems may appear, so we may have two ontolo- 
gies (or an ontology and a query) expressed in different formalisms, with their vocabularies 
also coming from different natural languages. In some sense, those who are developing and 
using ontologies may face problems similar to those that the builders of the Tower of Babel 
had. A great amount of work has been done gathering a great amount of knowledge in 
a vast number of ontologies. But these ontologies are often formulated in different formal 
languages and use different vocabularies and thus in many cases we are unable to use them 
together. 
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As the core of our solution to these problems we propose a fresh view on what ontologies 

are. Contrary to the standard approach our primary focus is not on the way ontologies 

are built or what formalisms are used to construct them, but on the way we can use them. 

We want to identify an ontology with its function. Thus we adopt an abstract view of an 

ontology as a black box providing answers to queries about some vocabulary of interest. We 

call this the functional approach. A similar approach has been proposed for knowledge 

representation by Levesque et al. [20] and [59]. In their work the functional view of a 
knowledge base is characterized by determining what can be told or asked, without taking 

into account the structures used to represent knowledge. This was the foundation for 

designing and implementing a knowledge-representation system called Krypton. 
Identifying the function of ontologies is also important for modularity of ontologies. The 

significance of modularity may be observed in ontology development and application. In 

ontology development, it allows for reuse of existing ontologies and also for distributing 

work among independent groups of designers when developing a large scale ontology. In 

ontology application, modularity allows for reasoning over the relevant part of ontology 

only, and thus increases the efficiency of reasoning. 
To say that some part of an ontology is a module means that this part may function 

independently. Therefore we have to set the context in which the ontology (and its part) 

are to function. That is, we have to fix a language that will be used to answer queries. This 

allows us to say that two ontologies are equivalent if in a fixed language they give the same 

answers to all queries over a fixed vocabulary. For a module of an ontology, we say that 

it functions independently if in a fixed language both the module and the entire ontology 

give the same answers to all queries over a fixed vocabulary. 
These intuitions are reflected in the concept of inseparability. In the standard ap- 

proach two ontologies are indistinguishable if and only if they have the same axioms. But as 

observed in [65] computing the syntactic difference between ontologies consisting of axioms 
is hardly useful. Whereas in the functional approach two ontologies are indistinguishable 

with respect to some vocabulary E if they are inseperable with respect to the fixed query 
language over E, regardless of what the axioms are and what formalisms are used in their 
formulation. One of the benefits of this approach is that instead of a big ontology we 

can freely use a part which has the same consequences relative to the vocabulary of inter- 

est: then we say that this part of an ontology can `function independently'. Similarly, we 

can freely replace different ontologies with each other if they are indistinguishable in the 
functional approach. 

Even though this change of view on ontologies allows us to compare ontologies with each 
other and determine if they give the same answers to queries over some signature, it does 

not solve all the problems. The functional approach is just the first step towards working 
with multiple ontologies; it allows us to tell what are the consequences of an ontology 
relative to some signature in the context of some formal language. But the functional 
approach still does not tell us how to bring two arbitrary ontologies together in order to 
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compare or merge them. Moreover it does not solve the problem of different signatures, 
even if the ontologies are constructed with the use of the same formalism. For that reason 

we still need a bridge which allows us to bring together arbitrary ontologies, regardless 
of their signatures and the formalisms used for their construction. Similarly, we want it 

to allow us to bring together an ontology and a query and answer the query even if they 

use different formalisms and their signatures originate from different natural languages. In 

our work we propose a theoretical foundation of a comprehensive method which provides 
these bridges. We introduce a notion of framework that captures the situation of a 
`global' language into which both an `ontology' language and a `query' language can be 

translated, in a more general and abstract way. To do this, we use institutions, which were 
introduced by Coguen and Burstall [41,421 to treat logics with model-theoretic semantics 
in a systematic way. A great many logics can be represented as institutions [34], including 

many logics for specifying ontologies [57]. An advantage of this is that institutions also 

allow a systematic treatment of translation between languages, and recent research has 

applied this to problems such as alignment and integration [28,55,56,71,85]. Within a 
framework, it is possible to capture a general notion of consequence, whereby an ontology 

answers a query, when both are translated into the global language. This in turn gives rise 
to a language-independent notion of inseparability, i. e. we can compare two ontologies 
formulated in different formalisms (and possibly with different signatures). Figure 1.2 is a 

graphical representation of a framework having two ontologies expressed over two distinct 

languages Li and £2, which are compared in the global language 9 relative to queries 

originally formulated in a query language Q. 

µi Pý 

G, s 

Figure 1.2: A framework 

In our work we explore properties of that construct by considering various scenarios, in 

which we take into account various configurations of languages of different strength. We in- 

vestigate robustness properties of frameworks and the inheritance of the Craig interpolation 

property. 
We also investigate the problem of using ontologies together with ABoxes and deter- 

mining E-entailment and E-inseparability of ontologies in the presence of ABoxes. But this 
requires extending the signature with individuals. In other words we have to show how a 
description logic can be extended to a description logic with individuals. To do that we use 
the theory of institutions. After we show how to introduce individuals into the signature 
we investigate the relations between institutions of description logics and their counterparts 
with individuals. We also show how to extend a framework to a framework allowing for 
expressions with individuals. We also present an institution independent formulation of 

...?: _ 
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E-entailment and E-inseparability of ontologies based on instance checking which allows us 

to compare arbitrary ontologies in the presence of ABoxes. 

1.4 Novel Contributions 

The novel contributions that can be found in this thesis consist of the following. 

" Introducing the functional approach to ontologies, which gives a new, general per- 

spective on ontologies abstracting from the particular ontology language used. 

" Introducing a general notion of framework which provides a language in which both 

the ontology and the query languages are translated by means of institution comor- 

phisms. This new approach allows to combine ontologies independently of the formal 
language and signature used for their formulation. 

" Presenting institution independent formulations of notions of inseparability, conser- 

vative extension and robustness. As well as presenting in an institution independent 

way results describing how robustness under vocabulary extension, robustness un- 
der joins and robustness under replacement in a framework are related to the Craig 

interpolation property. 

" Approaching the problem of working with ontologies together with ABoxes in the same 

general manner. Showing how any description logic can be extended to a description 
logic with individuals and how a framework for description logics can be extended to 

allow for instance checking queries. This includes investigating the relations between 

institutions of description logics and their counterparts with individuals. 

. Formulating an institution independent notions of query conservativity, query expan- 
sion and concept interpolation. 

Establishing that the E-entailment problem for ontologies formulated in the descrip- 
tion logic £187i can be solved in EXPTiME. This extends the result presented in [61] 
for £G. 

1.5 Thesis Outline 

The structure of the thesis is the following. 
In Chapter 2 we shortly present description logics which are used in many examples 

of our work. This chapter introduces also the central notions of category theory and thus 
builds the foundations for introducing the theory of institutions which plays a central role 
in our research. The chapter also introduces the theory of institutions itself. As part of 
this introduction we discuss how particular logical systems can be viewed as institutions 
and how we can relate different institutions with each other. 

In Chapter 3 we discuss how, with the use of the theory of institutions, we can build a 
construct (called a framework) which allows us to query an ontology even if the query and 
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the ontology are given in different formalisms and possibly different vocabularies. We also 
show how frameworks allow us to compare and use together arbitrary ontologies. We define, 
in a way that does not depend on a particular formal language, the consequence relation 
and entailment between ontologies with respect to some vocabulary of interest (called E- 

entailment). This chapter also introduces different types of robustness and investigates 

relations between interpolation properties and robustness. 
In Chapter 4 we investigate how to build frameworks with description logics and how 

to use them for answering queries about hierarchies of concepts. This involves providing 
a definition of what a description logic is in the institutional setting. We also investigate 
the problem of answering queries with individuals (instance checking). To make this type 

of reasoning feasible in frameworks, we first show how to formally introduce individuals 
into the signatures of institutions. After showing that given an institution of description 
logic we can construct a corresponding institution of description logic with individuals, we 
investigate basic properties of this construction. We also show that given a framework 

we can generate a framework which allows for queries about individuals. We investigate 

relations between these constructs, among other aspects we investigate how E-entailment 

is inherited between both types of frameworks. 

In Chapter 5 we use a particular type of framework to investigate the problem of E- 

entailment for ontologies formulated in the description logic EGS7I obeying some additional 
restrictions. The main result states that the E-entailment problem for such ontologies can 
be solved in EXPTIME. Finally, in the appendix we present an alternative formulation of a 
framework which uses a dual concept to that used in Chapter 3. 



Chapter 2 
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2.1 Introduction 

CHAPTER 2. PRELIMINARIES 

In this chapter we introduce the logics considered in this thesis and provide a brief intro- 
duction to category theory and the theory of institutions. 

The first section formally introduces some of the logical systems that were mentioned in 
Chapter 1 as formal languages used for ontology formulation. Isere we present description 
logics EG, EG+, EGSf, 

. ACC, and first order logic. These logical systems will be used in 

many examples throughout the thesis. We also shortly mention various extensions of r4CC. 
The second part of the chapter forms a short introduction to category theory. In our 

approach category theory is important as it provides the foundations for introducing the 
theory of institutions (the notion of institution itself strongly relies on concepts from cate- 
gory theory) and provides us with tools that will be used throughout the thesis allowing us 
to treat logical systems, and investigate their properties, in a systematic and general way. 

In the final part we introduce the theory of institutions and its basic notions. We present 
the intuitions behind it, show how the logical systems introduced earlier form institutions 

and what are the relations (morphisms and comorphisms) between these institutions. The 

reason why in our work we look at the theory of institutions is the fact that it allows us 
to describe logical systems in an abstract and general way. It also allows to present and 

solve problems independently of any particular logical system. In the later chapters we 

will use the theory of institutions to construct structures allowing us to use an ontology for 

answering a query even if they are formulated in different formal languages and use different 

signatures. In the similar way we will present how these structures allow us to work with 
multiple ontologies even if they are formulated in distinct formalisms. With the use of 
the theory of institutions we will show how to introduce individuals into the signatures of 
description logics and how to construct assertions about individuals. 

2.2 Description logics and first order logic 

Even though most of our work is presented in a way that does not depend on a partic- 
ular logical system, many examples use FOL, EL, EG+, ACC, and their versions with 
individuals. Therefore we find it useful to introduce formally these systems. 

2.2.1 Description logic EG 

We begin with introducing description logic EG. Concepts in EG are build according to the 
following syntax rule: 

C:: =T IAICfDlBr. C, 

where A ranges over the concept names taken from a countably infinite set P, r ranges 
over role names taken from a countably infinite set R, and C, D over EG-concepts. An 
EL terminology (TBox) is a finite set of concept inclusions (CIs) CCD, where 
C and D are EG concepts, an ABox is a finite set of concept assertions C(a; ) and 
role assertions r(a;, as), where ati, aj range over a countably infinite set I of individual 
names. A knowledge base (KBox)1C is a pair (0, A) with 0a TBox and A an ABox. 
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The semantics of £G is defined by means of interpretations M= (Am, . M), where the 
interpretation domain OM is a non-empty set, and "M is a function mapping each concept 
name A to a subset A-'I of 0m, each role name rM to a binary relation rM C Am x OM 

and each individual name a to an element am E AM. The function M is inductively 

extended to arbitrary concepts by setting 

P": = A", 

(CnD)M: =CMnDom', 
(2r. C)M := {d E A' 13e E AM such that (d, e) E rM and eE CM }. 

An interpretation M satisfies a concept inclusion CCD (written MCC D) if 
CM C D" concept assertion C(a) (written M C(a)) if am E CM, role assertion 

r(a;, aj) (written M r(a;, a, )) if (a; 't, aM) E rM. M is a model of a TBox 0 if it 

satisfies all CIs in 0. We write 0C g-= D if every model of 0 satisfies CCD. M is a 
model of an ABox A if it satisfies all assertions in A. We write A= C(a) and A= r(a;, aj) 
if every model of A satisfies C(a) and r(a;, aj) respectively. M is a model of a knowledge 
base 1C = (0, A) if it is a model of 0 and A. For a concept inclusion or assertion V, we 
write K cp if cp is satisfied in all models of K. If empty, A is simply omitted. 

A signature E is a finite subset of P lii RWI; if empty, I is omitted. The signature 
Sig(C) (Sig(C(a)), Sig(r(a;, aj)), Sig(O), Sig(A)) of a concept C (concept assertion C(a), 

role assertion r(a;, aj), TBox 0, ABox A) is the set of concept, role and individual names 
which occur in C (C(a), r(a;, aj), 0, A). If Sig(C) 9 E, we also call Ca E-concept. 

2.2.2 Description logic EL+ 

The description logic EL+ [10,11 is an extension of EG with role inclusions (RIs). So we 
have EG+-concepts build following the syntax rule for EG together with role inclusions of 
the form rCs, where r= rl o"""or,, for n>1, is a sequence of role names and sa role 
name. ABoxes remain as defined for L. A finite set of RIs is called a role box (RBox). 
An interpretation M satisfies an RI rl o ... o r� C r, n>1, (written M rl o ... o rn C r) 
if rM o"""o rn C r'ß'1, where `o' is interpreted as the composition of binary relations (i. e., 
we consider `o' to be defined as RoS = {(d, d") I dRd', d'Sd", for some d'}). M is a model 
of an RBox R if it satisfies all RIs in R. We write 7Z rCs if every model of R satisfies 
rCs. A constraint box (CBox) C= (0,7Z) consists of a TBox 0 and an RBox R. An 
interpretation M is a model of a CBox C= (0,7Z) if M is a model of both 0 and 7Z. We 
write C= CCD if every model of C satisfies CCD. 

The signature Sig(C) of a CBox C is the set of concept and role names which occur in C. 

2.2.3 Description logic 6IS%i 

The logic 6LS1 is situated between EG and EG+. Its concepts coincide with those of EG 
and it allows for a restricted form of role boxes. Namely, a EGS? { role box TL consists of 
inclusions 

rCs, 
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where r and s are role names and transitivity axioms 

rorCr 

stating that r is transitive such that whenever there exists s with r r- sE 1Z then 

rorCr¢R. Thus, in £GS1-{ we cannot declare a role to be transitive if it is included in 

another role. The language OWL DL of the OWL standard (4) is based on the description 
logic SR-TQ that has exactly the same role boxes as £GS1{. The notation used for £GS11 

constraint boxes is exactly the same as for £G+. 

2.2.4 Description logic ACC 

The description logic AL C is an extension of EC with negation (-'). Formally, ACC-concepts 

are build according to the following syntax rule: 

C:: =T I A1-, CI CfDI 3r. C, 

where A ranges over the concept names in P, r over role names in R, and C, D over 

. 
4CC-concepts. It is clear that .. CC is propositionally complete, that is all boolean set 

operations can be expressed, . GC is strong enough to express universal quantifier along 

a role. As mentioned above we use standard abbreviations: 1 is an abbreviation of -+T, 
CUD abbreviates -(-C fl -iD) and Vr. C is short for -'(9r. -'C). ABoxes in .. 

4CC extend 
EG ABoxes with concept assertions over ACC concepts. 

. 4CC models are similar to £C models but the function "M is extended further by setting 

TM := A" 

(, C)-": = OM \ CM, 

(C n D)M := CM n DM, 

:_ {d EA -A' I Be E 0'x"1 such that (d, e) E r" and ec C} 
. 

As already discussed in Section 1.1.1, having various connectives and different types of 

axioms available, by allowing combinations thereof we can create various description logics 

extending ACC, here we shortly present these extensions. 
A simple extension of ACC is description logic S, which allows for axioms expressing 

transitive roles. Description logic S can be extended further by adding inverse roles r- 
(we indicate that by adding a letter Z to the name), role hierarchies rl C r2 (indicated 
by a letter IL). Number restrictions of the form >nr and <nr (we append a letter 
N to the name). Qualified number restrictions (represented by adding a letter Q to the 

name) are of the form >nr. C and <nr. C. Finally, nominals {i} (we append a letter 0), 

using them it is possible to construct a concept representing a singleton set {i} (a nominal 
concept) from an individual i. We can use different combinations of these extensions, 
for instance AGCO extends . AGC with nominals; SI-LIQ is a well known extension of S 

with role hierarchies, inverse roles and qualified number restrictions; and S9{OZQ uses all 
constructors and axioms presented above. We refer the reader to [91 for details. 

°a 
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2.2.5 First Order Logic (FOL) 

Signatures of FOL are pairs (F, II), where F and II are families of sets of function (F�),, E,, 
and predicate names (IIn)n, Ec, respectively, where n is an arity. The following logical symbols 

are in use in FOL: we have truth constant `T', existential quantifier IT, conjunction `A' 

and negation `-'. It is customary to introduce following abbreviations: 1 which is short 
for -, T, VxP(x) abbreviates -, 3x-+P(x), cp V cu is short for -'(, ýp A stands for 

-, vp V 1' and cp t ,O is short for (cp V)) A (0 v, ). 

The formation rules define the terms and formulae of FOL. 
The set Term of terms is inductively defined by the following rules: 

1. Any variable is a term. 

2. Any expression f (tl, ..., tn) of n arguments (where each argument t; is a term and f 
is a function symbol of valence n) is a term. 

Only expressions which can be obtained by finitely many applications of rules (1) and (2) 

are terms. For example, no expression involving a predicate symbol is a term. 
If P is an n-ary predicate and t1, ... tn are terms, then P(t3, .., tn) is an atomic formula. 

The set of formulas (also called well-formed formulas) is inductively defined by the following 

rules: 

1. If tl and t2 are terms, then tl = t2 is a formula. 

2. Every atomic formula is a well formed formula. 

3. If cp is a formula, then -V is a formula. 

4. If cp and 0 are formulas, then VA0 is a formula. 

5. If cp is a formula and x is a variable, then (2x)cp is a formula. 

Only expressions which can be obtained by finitely many applications of rules (1) to (5) 

are formulas. The formulas obtained from rules (1) and (2) are said to be atomic formulas. 
By rules (3) and (4) formulas created using remaining binary logical connectives are well 
formed. Using rule (3) and (5) we can show that (Vx)cp is a well formed formula. 

A FOL-model M is a triple M= (AM, f EF, II E11 ), where the interpretation domain 
A is not empty, for n-ary function fEF, fm : (OM )n i OM, for n-ary predicate II E IIn, 
Il-" is an n-ary relation on A, i. e., 11M C (AM)n. 

A valuation in model M is a function v: {xl, 
..., x2} -+ Am and V: Term -+ OM, such 

that for variable x, n-ary function f and terms t1, .., to the following holds: 

V(x) = v(x), 
v(f (tl, 

"", 
tn)) =f 

M(v(t1), 
.., 'U(tn))- 

Let cp be a well formed formula and Ma model. We have that M cp iff v cp for 
every v in M. A valuation v is said to satisfy ca if it can be show inductively to do so under 
following conditions: 
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(1) Vk tl - t2 iff v(tl) = v(t2), 

(2) v= II() iff v(t) E JIM, 
(3) v '? k if vK0, 
(4) v 'til A'IP2 iff v 11 and v 02, 

(5) v (2x)cp iff there is v' (same as v, except on x) and v' W. 

2.3 Introduction to Category Theory 

In this part we present some, basic concepts of category theory. We follow the outlines 
presented in [13] and [2], the latter can be treated as a textbook for beginners in category 
theory. We also fix notation to make it easier to read our results presented later. 

2.3.1 Background 

In 1945 Eilenberg and Mac Lane in their paper "General theory of natural equivalences" [37] 

first formulated what we know as Category Theory. This approach was in the spirit of 
Felix Klein's Erlanger Programm. It was designed to provide general concepts applicable 
to all branches of abstract mathematics and allowing for uniform treatment of different 
mathematical disciplines, cf. [37]. In the late 1940s it was mainly used in the fields of 
abstract algebra and algebraic topology. Later, in the 1950s, it was also applied to geometry, 
this was started by Grothendieck, who used category theory for solving classical problems of 
geometry and number theory. In the 1960s Lawvere used category theory for investigating 

properties of logical systems. In the 1970s category theory has proven to be useful in 
disciplines like computer science, cognitive science, philosophy, linguistics etc., cf. [7]. 

In mathematics category theory can be described as an abstract study of mathematical 
structures. The main idea behind category theory lies in the observation that it is possible 
to represent a number of properties of mathematical systems by means of diagrams of 
arrows. To build some intuitions behind category theory we could compare it to set theory, 
then in a diagram each arrow f. X -> Y would represent a function; that is, a set X, a 
set Y, and a rule x i-+ f (x) which assigns to each element xEX an element f (x) E Y, 

cf. [58]. Nevertheless it is important to keep in mind that sets are just an illustration and in 

category theory we talk about objects, and arrows can represent more (but also less) than 
functions. 

In our work category theory is important as it provides tools for the theory of insti- 
tutions. The theory of institutions was first introduced by Goguen and Burstall in their 
article "Introducing Institutions" [41] published in 1984. Institutions and some ideas about 
the history of the concept and intuitions behind it are presented in Section 2.4. 

2.3.2 Graphs 

We start by presenting a notion of graph, which is useful to understand the notion of 
category. Another reason for introducing graphs is that they will be useful below where we 
introduce commutative diagrams and limits. 
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Here we present directed multigraphs with loops. 
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Definition 2.3.1. A graph is a collection of objects connected by arrows. Each arrow has 

a source and a target, which do not have to be different. A graph with no arrows is called 

a discrete graph. A graph is finite if the number of objects and arrows is finite. A graph 
that has a set of objects and arrows is a small graph, otherwise, it is a large graph. 

There is no restriction on the number of arrows with given objects as source and target. 

Notation 2.3.2. We will be using notation f: a --+ b to mean that f is an arrow where 
object a is the source off and b is its target. Sometimes we find it more convenient to use 
a4b to express the same fact. 

A loop, i. e. an arrow with the same object as source and target, is called an identity 

arrow or an endoarrow. 

Now we define a homomorphism of graphs which is a transformation preserving the 

abstract shape of the graph. 

Definition 2.3.3. A homomorphism 0= (O1,02) from a graph 9 to a graph 9-l, denoted 
0: 9 -4 7-l, is a pair of functions 01 and 02, such that 01 takes objects in C and returns 
objects in It, whereas ¢2 takes arrows in 9 and returns arrows in ? -t, with the property that 
if v: m -+ n is an arrow of 9, then 02 (v) : ¢1 (m) --+ 01 (n) is an arrow of It. 

It is important to note that notation of the form f: A -+ B is overloaded, it denotes set 
theoretic functions, an arrow in a graph and a graph homomorphism. On the other hand, 

when 0: 9 -4 9i is a graph homomorphism, ¢ in fact is a pair of functions 01 and 02, which 
also overloads the notation. In practice though, it does not lead to any confusion as it is 

clear from context how the notation is used. 

2.3.3 Categories 

In general, we can say that a category is a graph with additional requirements. Namely, 
it is required that each object has an identity arrow and that this graph has a rule for 
composition of arrows. 

Definition 2.3.4. A category A consists of. - 

"a collection of A-objects, 

" for objects A, B, a collection of morphisms (arrows) f: A -4 B, 

such that following conditions are satisfied: 

9 for every A-object A there is an identity arrow lA :A --> A, 

" for A-objects A, B, C, and f: A -+ B, g: B -4 C, there is the composition arrow 
f; g A -4 C, 

" for every f: A -4 B 
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lAi f=f, 

-f; lB=f 
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" for every f: A --ý B, g: B --ý C and h: C -+ D in A the following condition is 

satisfied (f ; g); h=f; (g; h). 

As a simple and intuitive example of a category consider the following: 

Example 2.3.5. Set is the category of sets, with: 

" objects: sets 

" arrows: an arrow A4B is a triple (A, f, B) where f is a function that takes argu- 

ments from A and gives results in B. 

Example 2.3.6. Any directed graph generates a category of the same cardinality. The 

objects are the nodes of the graph, and the morphisms are the paths in the graph where 

composition of morphisms is concatenation of paths. Such a category is called the free 

category generated by the graph. Note that every category C has an underlying graph 

which has the arrows of C as edges, and objects of C as objects. 

Reversing the arrows in any categorical definition gives its dual, which often is named 
by appending the prefix `co-'. Note that reversing the arrows in the category axioms gives 
exactly these axioms back. For that reason reversing the arrows in any theorem gives a 
dual theorem. 

Using Definition 2.3.4 and the notion of duality we get that every category C has an 
opposite (or dual) category C°p. The objects of C°" are the objects of C, and the arrows of 
C°Q are the arrows of C but with reversed source and target. Thus every arrow f: C -- C 

of C appears as an arrow f °P : C' --* C of C°T. As arrows 

A4B-4C 

of C appear as arrows 

p CCB--A 

of C°P, the order of composition is reversed. Thus we define composition in C°P as 
gOP; f *P = (f ; g)°P, where f; g is a composition in C. Every category is the dual of its 
dual: C= (C°p)°P. 

As in category theory one focus on morphisms rather than objects, properties are often 
formulated in terms of arrows instead of objects. One of the important types of morphisms 
is isomorphism. 
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Definition 2.3.7. A morphism f: A -> B in a category is called an isomorphism 

provided that there exists a morphism g: B -ý A with f; g = 1A and g; f= 1B. Such a 

morphism g is called an inverse of f. 

If there is an isomorphism from A to B, we say that A is isomorphic to B and write 
A=B. There may be more than one isomorphism between two objects. 

Note that if f is an isomorphism in category C, then it is also an isomorphism in category 
COP. 

Definition 2.3.8. A category in which every arrow is an isomorphism is a groupoid. A 

category in which every arrow is an identity arrow is called discrete. 

Another important distinction between categories takes into consideration the class of 

objects of a category. This is formulated in the following definition. 

Definition 2.3.9. A category C is said to be small provided that its class of objects is a 

set, otherwise it is called large. 

The smallest category is the one with no objects nor arrows. The next smallest one 
has one object and one arrow. Category Set of example 2.3.5 is a large category, but this 
distinction is not crucial in our work and more details may be found in [581. 

2.3.4 Slice categories 

Another notion which is important for us is the notion of slice category. It allows to 
view arrows in a different way, instead of presenting them as relations between objects of a 
category, arrows are now described as objects of a category. We will use that to systematize 
description logics. 

Definition 2.3.10 (Slice categories). If `ß is a category and A is an object of 5', the slice 
category `'/A is described in the following way: 

SC-1 An object of VIA is an arrow f: C -+ A of `ß for some object C. 

SC-2 An arrow of `ß/A from f: C -4 A to f': C-4 A is an arrow h: C --* C' with the 
property that f=h; f' 

SC-3 The composite of h: f -* f' and h' : f' -+ f" is h; h'. 

We have to show that h; h', as defined in SC-2, satisfies the requirements of being an 
arrow from f to f'. Let h: f -+ f' and h' : f' -+ f". By definition this means that 
h; f' =f and h'; f" = f'. To show that h; h': f -+ f" is an arrow of `ß/A, we have to show 
that (h; h'); f" =f. But this is implied by the following calculation: 

(h; h'); f" = h; (h'; f") = h; f' = f. 

Note that the usual notation for arrows in `'/A is deficient: an arrow h can satisfy 
f=h; f' and g=h; g' with g gk f or g' # f' (or both). Then h: f -a fand h: g--> g' are 
different arrows of VIA. 
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2.3.5 Functors 

As we have homomorphisms for graphs we also have structure-preserving maps for cate- 
gories, we call them functors. We can view functors as graphs homomorphisms preserving 
identities and composition. 

Notation 2.3.11. Since any category C consists of two types of collections, we will dis- 

tinguish them by writing ICI whenever referring to the collection of objects and (C) when 

referring to the collection of arrows in category C. 

Definition 2.3.12. For any two categories A and Ba functor F: A -+ B is a pair of 
functions Fi : BAI -º18I and F2 : (A) -+ (ß) for which: 

" if f :C -- D in A, then F2 (f): F1(C)-ýF1(D) in 13, 

" for any object C in A, F2(1c) = 1F1 (C), 

" if f; g is defined in A, then F2 (f ); F2 (g) is defined in B, and F2 (f ); F2 (g) = F2 (f ; g). 

Note that both F1 and F2 are usually just written F. 

Functors can be composed in the following way: 

Definition 2.3.13 (Composition of functors). If F: A --> B and G: B -ý C are functors, 

then the composite GoF: A -- C defined by 

(Go F)(A 4 A') = G(FA) o(L G(FA') 

is a functor. 

2.3.6 Categories of categories 

As functors behave just as arrows in a category it is natural to ask if we can construct the 

"category of all categories". 

Definition 2.3.14 (The category of categories). The category Cat has all small categories 
as objects and all functors from A to B as morphisms, as identities the identity functors, 

and composition of functors in the standard way. 

In some cases we will refer to CAT, which has all small categories and ordinary large 

categories as objects and all functors between them as morphisms. 
To be able to form entities like a category of all categories the notion of a quasicategory 

was introduced, which frees the concept of category from its set-theoretical restrictions, for 

instance, it is not required that objects form a class. Such foundational issues are beyond 

the scope of this thesis, but the interested reader is referred to [21. 

Definition 2.3.15. `The quasicategory CAT (often called proper quasicategory) has as 
objects all categories (small and large) and as morphisms from A to B all functors from A 
to B, identities and composition have their usual meaning. 

ti 
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2.3.7 Natural Transformation 

35 

A natural transformation is a map between functors and often is called a morphism of 
functors. 

Definition 2.3.16. Let F, G: A -3 B be functors. A natural transformation r from F 

to G (denoted by r: F -4 C or F4 G) is a family of arrows in 13 (TA : F(A) -3 G(A)) 

indexed by objects A of A, such that for any f: A -+ A' in A the square 

F(A) TA G(A) 

F(f) 

jG(f) 

F(A') Tom, '- G(A') 

commutes, i. e., F(f); TA' = TA; G(f). 

We call TA, Tq,, ... the components of the natural transformation r. 
For functors F, G: A -+ Ba natural transformation T: F -+ G whose components rA 

are isomorphisms is called a natural isomorphism from F to G (sometimes also called 
natural equivalence), and denoted by T: FG. Then the inverses (rrA)'1 in S are the 

components of a natural natural isomorphism T1: C -4 F. 
Natural transformations compose, so given functors F, G and H from A to B, and 

natural transformations p: F -+ G and v: G -+ H, there is a natural transformation 

p; v: F -a H defined by composing components µA; VA: 

F(A) µA 
- G(A) vA 

º H(A) 

F(f) G(f) 

tH(f) 

F(A') µA G(A) 
A, 

H(AS) 

Naturality is clear and this composition is associative. There is also an identity natural 
transformation 1F :F -+ F, with components 1F(A). This gives rise to a category called 
the functor category. 

Definition 2.3.17. Given categories A and B, the functor category, denoted BA is the 

category whose objects are functors F: A -+ B and morphisms are natural transformations 
between these functors. 

2.3.8 Diagrams 

A closely related notion is that of diagrams. In fact, functors and diagrams are just different 
aspects of the very same idea; they are types of graph homomorphisms. 

In category theory a very important notion is that of commutative diagram as it is 
used for expressing equations. 
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Definition 2.3.18. Let Z and C be graphs. A diagram in 9 of shape I is a homomorphism 
D: I -+ 9 of graphs. I is called the shape graph of the diagram D. 

We could say that a diagram is just a graph homomorphism viewed from a different 

perspective. 
The following two definitions shows the close relation between functors and diagrams. 

Definition 2.3.19. If J is a category, then a diagram in category C of shape J is a functor 
D: J-*C. 

The following definition uses the fact that every directed graph generates a category 
and that every category has an underlying graph, recall Example 2.3.6. 

Definition 2.3.20. Let C be a category, UC the underlying graph of C, and C any graph. 
Then a diagram in C of shape 9 is a morphism D: 9 -4 UC of graphs. Equivalently, this 

is a functor FG -+ C, where Fg is the free category generated by g. 

In the literature it is common to refer to the category of diagrams in C of shape .7 as 
the functor category C, 7. 

2.3.9 Adjoints 

One of the most important notions of category theory is that of adjoint functors. This 

type of relation between functors is very common in mathematics, their ubiquitousness was 
expressed in 158]: "The slogan is `Adjoint functors arise everywhere'. " 

Notation 2.3.21. Here we follow notation which is standard in the literature on adjoints. 
For example, we write UF as an abbreviation of UoF which is the same as F; U. 

Definition 2.3.22. Let A and B be categories. If F: A -a B and U: 5 -+ A are functors, 

we say that F is left adjoint to U and U is right adjoint to F provided there is a natural 
transformation i: id --ý UF such that for any objects A of A and B of B and any arrow 
f: A -+ UB, there is a unique arrow g: FA -+ B such that 

UFA 

nA 9 

AfºB 

commutes. 

The property of 77 is called the universal mapping property. It is customary to 

write F -4 U to denote the situation described in the above definition. The triple (F, U, 77) 
constitutes an adjunction, the transformation 77 is called the unit of the adjunction. 

As pointed in [13] this definition is asymmetric in F and U, but it is also mentioned 
there that the following proposition is a remedy for that. 
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Proposition 2.3.23. Let F: A -+ Ci and U: 13 -3 A be functors such that F -I U. Then 

there is a natural transformation e: FU --- 13 such that for any g: FA -+ B, there is a 

unique arrow f: A -- UB such that 

FUB 

Ff B 

9-ýB 

The transformation e is called the counit of the adjunction. 
Adjoints are studied in more detail in [2,12,13,58], here we will use them to recall some 

properties of institutions. 

2.3.10 Cones, limits and products 

In this part we introduce the notion of (co)cone, which is used for defining the notion of 
(co)limit. Then we show the relation between (co)limit and (co)products. 

Definition 2.3.24. Let 9 be a graph and C be a category. Let D: C9 -- C be a diagram 

in C with shape C9. A cone with base D is an object C of C together with a family {pa} of 

arrows of C indexed by the nodes of G, such that pa :C -+ Da for each node a of G, the 

arrow pa is the component of the cone at a. 
The cone is commutative if for any arrow s: a -* b of g, the diagram 

C 

P\Pb 

Da D -ºDb 

commutes. 
A cocone is a cone in the dual graph. 

The following definition show us how we can relate with each other cones with the same 
base. 

Definition 2.3.25. If p' : C' -+ D and p: C -> D are cones, an arrow from the former 
to the latter cone is an arrow f: Cl -a C such that for each node a of C, the diagram 

C' 
f 

/p_ 

Da 

commutes. 
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Now we consider the situation where we have a cone C which is a target for all the 

arrows from the cones with the same base as C. 

Definition 2.3.26. A commutative cone over the diagram D is called universal if every 

other commutative cone over the same diagram has a unique arrow to it. If there is a 

universal cone, then it is called a limit of the diagram D. The commutative cocone is 

called a colimit if it has a unique arrow to every other commutative cocone over the same 
diagram. 

Special cases of limits and colimits are products and coproducts respectively. With 

the use of products we are able to define operations of n-ary arity. Coproducts, on the 

other hand, are used for the specification of alternatives. In Set, the products are cartesian 

products and the coproducts are disjoint unions. This is presented in the definitions below. 

Definition 2.3.27. If S and T are sets, the cartesian product SxT is the set of all 

ordered pairs with first coordinate in S and second coordinate in T, i. e. SxT= {(s, t) 

sES and tE T}. The coordinates are functions projl :S xT --* S and proj2 :S xT -+ T, 

called the coordinate projections, or simply projections. 

Definition 2.3.28. [The product of two objects] Let A and B be two objects in a category 
C. By a product of A and B, we mean an object C together with arrows projl :C --º A 

and proj2 :C --* B that satisfy the following condition: 
For any object `D,, and arrows ql D --* A and q2 D -+ B, there is a unique arrow 

q: DC: 

lqlq 

q2 

PT O)1 PTO32 (2.1) 

such that q; proji = qi and q; proj2 = q2. 

Definition 2.3.29. The sum, also called the coproduct, A+B of two objects in a category 

consists of an object called A+B together with arrows il :A -+ A+B and i2 :B --> A+B 

such that given any arrows fA -i C and gB -* C, there is a unique arrow (fig) 

A+ B -ý C for which 

ü <f kg> t2 

(2.2) 
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Products and sums of two objects, as discussed in Definition 2.3.28 and Definition 2.3.29 

are called binary products and binary sums respectively. We can define products and 

sums of more than just two objects by an obvious modification of the definition. 

Let C be a category with binary products and binary sums. Then for any objects A, B 

and C we have sum cocones 
B'4B+C11 C 

and 
AxB-4AxB+AxCF-AxC 

There is a unique arrow (lA X il 11A x i2) :AxB+AxC -4 Ax (B + C) making 

commute. 

Ax B-' z---AxB+AxCýAxC 

lA Xi l (1A x ill1A x i2) 1A x i2 

Ax( + C) (2.3) 

2.3.11 Pullbacks and Pushouts 

Another type of limits and colimits are that of pullback and pushout, which are introduced 

below. Contrary to products and coproducts the importance of pullbacks and pushouts was 

recognized only after category theory was formulated. 

Given f: A -+ C and g: B -+ C consider an object P together with arrows A4PB 

such that the diagram 

PI P A 

n2 f 

B - C 
9 

commutes. To see that this is indeed a cone think of compositions of arrows pl; f and pz; g 
as an arrow from P to C and redraw the diagram in the following way: 

A Ps 
z 

APit 

f= P2; 1 9 

f 
-1 .9 13 
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If this is a universal cone, then we say that P together with arrows pl and p2 is a 

pullback of the pair. We can also say that p2 is a pullback of f along g, and that the 

above forms a pullback diagram. 

The dual notion to the notion of pullback is pushout. More precisely, a commutative 

square 
f 

C 

9 4i 

B -- ýQ 
4z 

is called a pushout if for any object R and any pair of arrows rl :A -+ R and r2 :B -4 R, 
for which f; ri = g; r2 there is a unique arrow r: Q -a R, such that q;; r=r;, for i=1,2 

2.3.12 Distributive categories 

Categories in which products distribute over sums are called distributive categories. De- 
tailed description of the theory of distributive categories was presented in [27] and many of 
their applications can be found in [84]. 

Definition 2.3.30 (Distributive category). A distributive category is a category with 
finite sums and finite products in which for all objects A, B and C, the arrow d defined by 
the diagram 2.3 is an isomorphism. 

As an example we show that category of £G signatures is distributive. Here we introduce 

category of £G signatures only, £G is properly introduced in Example 2.4.9. 

Example 2.3.31. A category of EG-signatures is defined in the following way: 

" objects are pairs (P, R), where P is a set of `concept names' and R is a set of `role 

names', 

" arrows, signature morphisms, a: (P, R) -* (P', R') consist of two functions between 

the sets of concept names and sets of role names respectively, i. e., a= (f, g) with f: 
P -4 P and g: R -+ R'. Composition is defined pairwise (f, g); (f', g') = (f; f', g; g'). 

Example 2.3.32 (Category Sige' is distributive). To show that the category of £G sig- 
natures is distributive we have to show that for any £G-signatures (Pl, RI), (P2, R2) and 
(P3, R3) we have that ((PI, R1) x (P2, R2))+((Pi, RI) x (P3, R3)) is isomorphic to (P1, RI) x 
((P2, R2) + (Ps, R3))" 

First note that sums and products in Sit' are taken pointwise (i. e., (PI, Rl) x (P2, R2) _ 
(P1 X P2i RI X R2 and (P1, R1) + (P2, R2) (P1 + F2, Rl + R2). Then the required property 
is a straightforward calculation. 

This property can also be inferred from the fact that the category of £G signatures is the 

category of sets of pairs, and sets and tuples of sets are distributive categories. 
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In many cases it is convenient to consider simple morphisms within a category as inclusions. 

This is due to the fact that the notion of inclusion is very natural and thus very useful when 

we study the syntactical part of a logical system. In particular, even though signatures are 

not sets, it is important for us that they behave like sets, thus we prefer to use inclusions 

while considering subsignatures. For instance consider signatures of £G. An EG-signature 

is a pair of sets (P, R). Therefore we cannot strictly talk about inclusion, understood as 

set inclusion, between EG-signatures EC E', it is rather a composition of two functions 

f: P --4 P and g: R -- R', which are inclusions, i. e., we say (P, R) c (P', R') iff PC P' 

and RC R. 

It is well known that certain small categories correspond to partially ordered sets 

(posets). These categories satisfy the following conditions: they have at most one mor- 

phism between any two objects, there is a morphism from A to B if and only A<B, they 

also satisfy anti-symmetry, i. e. if there is a morphism from A to B and another from B to 

A then A=B. In what follows we will identify posets with their corresponding categories. 

Sums and products in these categories correspond to greatest lower bounds and least upper 

bounds, respectively. A poset with finite sums and products is a lattice, with the usual 

properties. Things generalize from sets to classes, which are called poclasses. We set y 

to denote the poclass morphisms (cf. [431). 

Here we present a definition of an inclusive category, which was introduced by Goguen 

and Rosu in [431. As they suggested, this notion of inclusion is similar to that of (weak) 

inclusion systems present in the literature [29,30,35,671 

Definition 2.3.33 (Inclusive category). An inclusive category C is a category with a 
broad subcategory' I which is a poclass, called its subcategory of inclusions, having finite 

products and coproducts (which we shall call intersections and unions), such that for every 

pair of objects A, B, their union in I is a pushout in C of their intersection in I. A functor 

between two inclusive categories is an inclusive functor (or preserves inclusions) if it 

takes inclusions in the source category to inclusions in the target category. 

The following lemma demonstrates one way in which inclusive categories have set-like 
properties for union and intersection. It presents a correlation of inclusion, intersection and 
union, which is also true in set theory. We use this property later to show how inclusive 

categories have properties that are similar to sets. While considering this lemma it might 
be useful to keep in mind that the category of EG signatures is an instance of an inclusive 

category. 

Notation 2.3.34. As already mentioned products and coproducts correspond to intersec- 
tions and unions in the set theory, in the remainder of the text we will write A fl B for 
AxB and AUB for A+B, where A and B are objects of an inclusive category. 

IIn the sense that it has the same objects as C. 
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Lemma 2.3.35. Let A, B, C be objects in an inclusive category C; if A"B, then AUC y 

BUC. 

Proof: The following is a pushout square for objects A and C of the form: 

AnC- P' 
ºA 

Pz 4t 

9' c C . AUC 

Since A-B and thanks to the fact that C is inclusive, we can construct the following 

diagram: 

P21 I q, 

C 92 AUC 

k 
m 

BUC 

As pl ; n; l and p2; m are both inclusions AnCyBUC, they are equal. Therefore there is 

k: AUCyBUC in I (as qj, q2 is a pushout in I). The fact that k is an inclusion follows 

from the fact that ql, q2 is a pushout in I. O 

2.4 Introduction to institutions 

In this section we focus our attention on the notion of institution [42], which is central in 

our approach to ontologies. Before introducing institutions formally we briefly present some 
intuitions behind the theory of institutions, which might be found useful by the reader. For 

a more in-depth presentation of institution theory and its philosophical background one 
might refer to [33]. 

The notion of institution was first introduced by Joseph Goguen and Rod Burstall 
in the late 1970's as an answer to the increasing number of logical systems, originally 
presented in [23] and later also in [41]. But it took many years for a very important 

paper [42[ to be eventually published, c. f. [33]. The original aim of institutions was to 
treat logics with model-theoretic semantics in a systematic way. Thanks to that it is 

possible to describe logical systems in an abstract and general way, this also allows to 

present and solve problems independently of any particular logical system. The theory 

of institutions formalizes the notion of logical system by presenting syntax (signatures, 

sentences), semantics (models) and the satisfaction relation between them. The theory of 

AnCr pi 
ºAC 

n 
ºB 

Pz 

fi 

Cc 92 
ºAU_C 

k 
m 

A. 
BUC 
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institutions appears as an important part of universal model theory and thus as a part 

of the universal logic project advocated by Beziau [16]. On the other hand, as suggested 
in [33], this abstract approach was the reason why some logicians regarded it as `weakly 

informative' and rejected it. 

In our work we use the theory of institutions to present relations between logical systems 

with particular attention to description logics and to approach some problems related with 
the use of ontologies such as entailment and inseparability. 

The notion of institution strongly relies on concepts from category theory. An institution 

consists of a category of signatures; with each signature we associate sentences, models and 

a satisfaction relation. The core of the idea of institution is that change of the signature 
(by means of a signature morphism) leads to coherent changes in sentences and models and 
thus the satisfaction relation is not affected by the change of signature. This reflects the 
intuition that the truth of a sentence does not depend on the signature used in it, which is 

expressed in the slogan `truth is invariant under change of notation'. This is made explicit 
in the definition below. It is important to note that sentences are translated in the same 
direction as the signature, whereas models are translated in the opposite direction. 

Formally, an institution is defined in the following way: 

Definition 2.4.1. An institution Z consists of. 

1. a category Sig of signatures, 

2. a functor Sen : Sig -+ Set giving, for each signature E, the set of sentences Sen(E), 

and for each signature morphism a: E -+ E', the sentence translation map Sen(a) 
Sen(E) -+ Sen(E'), 

3. a functor Mod : Sig°" -+ CAT giving, for each signature E, the category Mod(E), 

whose objects are called E-models, and whose arrows are called E-model homomor- 

phisms, and for each signature morphism a: E -+ E', the reduct functor Mod(o) 
Mod(E') -a Mod(E), 

4. a satisfaction relation SEC 1 Mod(E) Ix Sen(E) for each EE ISigI, such that for each 
a: E -+ E' E Sig the following satisfaction condition holds: 

M' =E' Sen(o)(cp) if Mod(a)(M') i--E cp 

The generality of this definition, is the key point of theory of institutions as it allows to 
treat logical systems in an abstract way and captures the essence of the notion of logical 

system. 

Before we continue we introduce some notations. First of all we simplify the notation 
for translation map for functors Sen and the reduct functor for functor Mod. 

Notation 2.4.2. For the sake of simplicity often we will write only o instead of Sen(o), 
and _r 

instead of Mod(a). The functor 
_ 

jo is called the reduct functor associated to a. 
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Using this notation the satisfaction condition is of the form: 

M' =E' a(w) iff M'ro =E W" 

Now we introduce the notation for the satisfaction relation. 

Notation 2.4.3. When working with an institution, we will use the standard logical ter- 

minology. For instance, for institution Z, signature EE Sig', a sentence cp E Senz(E), a 
finite set of sentences rc Senz(E) and a model ME IModz(E)I, we say that: 

"M satisfies cp or that ýo holds in M, whenever M J4 ýp (when clear from context we 

will omit the superscript Z), 

"M is a model of r if it satisfies all the sentences in r. 

We write r=w if every model M of r satisfies co. 

Notation 2.4.4. In many cases, given an institution Z, we find it useful to use its name 
as a supper script of its components. So we have Z= (Sig', Sent, Mod", j= ). 

This becomes very helpful when we start moving between different institutions. 
Now, following [42], we present the basic properties of theories over an arbitrary insti- 

tution. A theory consists of a signature E and a "closed" collection of E-sentences. 

Definition 2.4.5.. Let I be an institution and Ea signature. 

1. Let E Sen(E), then a pair (E, E) is a E-presentation. 

2. Let M' E IMod(E)I. ' We say that M satisfies a presentation (E, E) if it satisfies 
every sentence in E, for short MjE. 

3. Given EC Sen(E), let E° be the collection of all E-models that satisfy every sentence 
in E. 

4. Given a collection M of E-models, let M° be the collection of all E-sentences that 

are satisfied by each model in M. We call M° the theory of M. 

5. The, closure of a collection E of E-sentences is E°°, denoted E*. 

6. A collection E of E-sentences is closed if E= E*. 

7. A E-theory is a presentation (E, E) such that E is closed. We denote a category of 
theories of I by THE. 

8. The E-theory presented by a presentation (E, E) is (E, E*). 

9. Let VE Sen(E) and E Sen(E). We say that c is semantically entailed by E, for 

short E=c, if WEE*. 
.'.. 
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For description logics a presentation (E, E) is called a E-ontology, i. e. a E-ontology is 

a set of sentences over signature E. 

Many examples of institutions can be found in the literature (e. g. [3,42,79). To list only 
few examples of institutions we have: Propositional Logic (PL), unsorted First Order Logic 

(FOL), £G, £G+, ACC. Here we also consider Conceptual Hierarchy (Cf) as it may be 

considered a very simple institution allowing us to express hierarchies of concepts. Later we 
introduce its variant C77, which allows for formulation of hierarchies of roles. In Section 4.2 

we use CW to define description logics and for constructing expressions with individuals. 

Example 2.4.6. Propositional Logic (PL). Signatures and signature morphisms are 

sets of propositional variables and functions between them respectively. Given a signature E, 

the set of E-sentences is the least set of sentences finitely built over propositional variables 
in E and Boolean connectives in {-+, V}. Given a signature morphism a: E -- E', Sen"L(a) 

translates E -formulae to E'-formulae by renaming propositional variables according to o. 
Given a signature E, the category of E-models is the category of mappings v: E -- 10,1} 

(where {0,1} are the usual truth-values) with identities as morphisms, i. e. it is a discrete 

category. Given a signature morphism o: E -4 E', the reduct functor 
_j, maps a E'-model 

v' to the E-model v=o; V. Satisfaction is the usual propositional satisfaction. A model v 

satisfies a formula ip (written v W) if v(V) = 1. 

Given a signature E, signature morphism a: E -> E', a formula cp E SenPL(E) and a 
model vEI ModPL (E') I the following holds: 

vro=Ecv if vHE'a(v). 
Proof: The proof is by induction. We distinguish three cases: 

" cp = p, with pE SenPL(E), then: 

" cp = -'p, with pE Sen'' (E), then: 

vjo CEP 
if 

a; v CEP 

if 

v(a(p)) =1 
if 

v1--E'Q(p) 

výo ýE ''P 

i ff 

a; v=E-'P 
if 

v(a(p)) =0 
if 

V i--E' Q(-iP) 
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Let cp =cVd, such that c, dE Sen PL (E), then: 

vj, =EcVd 
if 

a; v=EcVd 
if 

v(a(c)) =1 or v(a(d)) =1 
if 

vý--E'v(cVd) 

0 

Example 2.4.7. FOL. A signature is a family of sets of predicate names (II�)news where 

n is an arity. 
Signature morphisms o: II -+ H' are families of arity respecting functions between sets 

of predicates, i. e. Qn : II� -* Hn. 

We assume the presence of a denumerable set of variables. Formulae are first-order 

formulae. Sentences are the first-order sentences. Sentence translation means replacement 

of the translated symbols. Given a signature II, FOL models are unsorted first-order struc- 
tures of the form (A-'I, W"WHO, with an n-ary relation rl" C (OM)" for every 7r E IIu, 

which extend to formulae. 
'Model reduct means reassembling the predicates according to the signature morphism, 

i. e. F° _ (a(a))M, the domain remains the same A, ". Satisfaction is the 

usual satisfaction of a first-order logic. 

A further example we use in subsequent sections is a very basic description logic that we 
call CH, which allows the specification of concept hierarchies. Here we present a variant of 
Cli which does not capture role inclusion axioms but is very intuitive. Later, in Section 4.2 

we present its variant C7{, which captures also role inclusion axioms. 

Example 2.4.8. Institution of Conceptual Hierarchy Cill. 
A Cl-l-signature is a set of concepts. (Later we consider institutions with institution 

morphisms to CI{, then for each such an institution 2, signature in Cl-l is a set of concepts 
formulated over signature in Z. ) 

Signature morphisms a: E --* E' are functions between the sets of concepts. 
Given a CH-signature E, we define E-sentences in the following way: 

Sei (E) :: = {c CdIc, dE E} 

Given a signature morphism o: E -ý E', we have Sencx(v) : Senc"(E) -+ Sen"(E'), 
renames concepts according to a, i. e. a(c C d) = a(c) C a(d). 

The semantics of C? { is defined by means of interpretations M= (0M, M), which are 
objects in the category of models. The interpretation domain OM is a set, and "M is a 
function mapping each concept name cEE to a subset c''t of OM. Given a signature 
morphism a: E -+ E', the reduct functor M j, maps a E'-model M' to the E-model 
M=o; 

, M' and M jo is defined by cm r- = u(c)M., 



2.4. INTRODUCTION TO INSTITUTIONS 47 

A straightforward argument shows that the satisfaction condition holds for Cl-I, i. e. given 

a signatures E, E', signature morphism o: E -4 E', cp E Sencx (E) and MEI Moth" (E') 

the following holds: 

MýoýEýP if Mý=E, a(W), 

Proof: Let cp =cCd and ME Mod(E'). 

cd 
if 

Mre c dMre 

if 

a(c)" c a(d)mit 
if 

M ý=E, o(c) C Q(d) 
if 

M [--E, a(c C d) 

11 

Example 2.4.9. Description logic L. An £G-signature is a pair (P, R), where P is a 
set of `concept names' and R is a set of `role names'. 

Signature morphisms a: (P, R) -+ (P, R') consist of two functions between the sets of 
concept names and sets of role names respectively, i. e., a= (f, g) with f: P -+ P and 
g: R -- R'. Composition is defined pairwise (f, g); (f', g') = (f ; f', g; g'). 

Given an £G-signature E= (P, R), we define E-concepts Cone (E) using the following 

syntax rule: 

Con" (E) :: = T (P I Con-o'c (E) fl con" (r, ) 3R. Con" (E) 
. 

Where P and R are considered to be syntactic categories of the BNF definition. For every 
signature E, Sen"'f-(E) is the set of General Concept Inclusions (CCI) over E, 

Sen" (E) :: = Con"(E) 9 Con" (E) 
. 

Given a signature morphism o: E -4 E', we have 

Sen"'C(Q) : Sen"(E) -+ Sen"(E') 

this is done by renaming concept and role names according to a. 
The semantics of EG is defined by means of models M= (AM, . M), which are objects 

in the category of models. The interpretation domain Aß" is a non-empty set, and M is a 
function mapping each concept name AEP to a subset Am of AM, and each role name 
rER to a binary relation rM CAM x AM. The function M is inductively extended to 
arbitrary concepts by setting 

TM ._ AM 

(CnD)": =CMnDm , 
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and 

(Jr. C)M :_ {d E OM I there is an eE 0m such that (d, e) E rM and eE CM } 

This applies to every description logic. 

When convenient we will refer to EL models as triples of the form: 

(AMi (PM)PEP, (rM)rER) 

Model reduct is defined similarly as in FOL. Satisfaction in £G is the standard sat- 
isfaction of description logics. An interpretation M satisfies a GCI CCD (written 

M CED)ifCMCDM. 

The proof that the satisfaction condition holds for £L is similar to that for C? -l. 

Example 2.4.10. Description logic £G+. Signatures of £G+ and £G are exactly the 

same. 
The description logic £G+ is an extension of £G with role inclusions. Thus Senelc is 

extended to Senec+(E) by adding role inclusions of the form rl o"""o r� Cr and rCs, 

where r, ri, """r., s are roles. We call a set of RIs an RBox. 

Signature morphisms induce adequate changes in concept and role names used for sen- 
tence formulation just as in the case for EL. 

£G+-models and £G-models are exactly the same. 
Satisfaction is the standard satisfaction of description logics. Conditions under which 

model M satisfies GCIs and ontologies are exactly the same as for E. C. In addition to 

satisfaction for £G we have the following condition for RIs. An interpretation M satisfies 

an RIrlo"""or�Cr, n>1, (written'Mýrlo"""ornCr)ifrMo"""orn 9r-", where 
°o' is interpreted as the composition of binary relations (i. e., we consider `o' to be defined 

as RoS= {(d, d") I dRd', d`Sd", for some d'}). M is a model of an RBox R if it satisfies 

all Rls in R. Model redact is the same as for £c. 

A 
'straightforward 

inductive argument shows that the satisfaction condition holds. 

Example 2.4.11. Description logic 
. 
ACC. ACC-signatures and signature morphisms 

are exactly the same as for EL., 

The description logic ACC is an extension of £G with negation 
Thus given ACC-signature E_ (PR), we define E-concepts ConACC (E) using the 

'following syntax rule: 

Condcc(E) TýPý-, ConACC(E) I ConACC(E) r1 ConACC(E) 3R. ConAf-c(E) 

It is easy to see that using negation, we can define also 1, Con-'' (E) U ConACC (E) and 
VR. Con'ýcC(E) in the standard way. 

For every signature E, Sen8C(E) is the set of GCIs over E, 

. .. 
SenacC(E) :. = Con, acc(E) CZ Con. acc(E) 

Again, P and R are considered to be syntactic categories of the BNF definition. 
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Signature morphisms induce adequate changes in concept and role names used for sen- 

tence formulation just as in the case for £G. 

ALC-models are of the same nature as £G-models, as negation is available in ACC we 
have -CM = OM \ CM . Model reduct is defined similarly as in FOL. 

Satisfaction is the standard satisfaction of description logics. Conditions under which 

model M satisfies GCIs and ontologies are exactly the same as for EG. 

The proof that the satisfaction condition holds for ACC is similar to that for 1G. 

2.4.1 Inclusive Institutions 

Inclusions are very simple and natural, yet important type of maps. As already suggested 
in [42] inclusions are very important for modularisation and with the use of institutions 

it is possible to formulate this notion in an independent way. [42] left axiomatising and 

exploiting inclusions for modularisation amongst the open problems, and the notion was first 

formalized in [35] where it was used for simplification of the semantics of module systems 

over an institution. The notion of inclusion system received attention in the literature, for 

instance [29,30,67]. This notion was also discussed in [43], here we present the formulation 

of inclusive institution presented there. 

Definition 2.4.12. An inclusive institution is an institution with its category of signa- 
tures and its Sen functor both inclusive, in other words the category of signatures is equipped 

with an inclusion system such that Ey E' implies Sen(E) C Sen(E'). An inclusive insti- 

tution is distributive if its category of signatures is distributive. 

Example 2.4.13 (£G is an inclusive institution). We have to show the following: 

1. the category of £G-signatures is inclusive, and 

2. the functor Sen is inclusive. 

For (1), it is enough to notice that category of £G-signatures has a broad subcategory I 
Us) 

such that (P, R) ý-º (P', R') is in I if Py P' and Ry R' are inclusions in category of 
Sets, i. e. PCP and RCR. As already mentioned signatures behave like sets and any £G 

signature consists of two disjoint sets P and R. Thanks to that, for arbitrary £G-signatures 
(P, R) and (P', R') we have that P" PUP t-' P is a pushout of P t- Pn P' yP and 
Ry RUR' + R' is a pushout of R RnR' -+ R'. By taking these two together we receive 
that (P, R) y (P U P', RU R') +- (P', R') is a pushout of (P, R) t-- (P n P', Rn R') 
(P', R')" 

For (2) it is enough to recall the syntax rule for £G. It tells us that given an £G- 

signature E, £G-concepts are built in the following way: Con-" (E) :: = TIPI Conec (E) n 
Con"(E) I 2R. ConE'C(E). As a signature inclusion (PR) -+ (P', R') consists of two 
inclusions (P) -+ (P') and (R) " (R'), it is easy to see that this entails concept inclusion 
Con" (P, R) -4 Con-"- (P', R'). 
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Above we have shown that £G is inclusive and distributive. In a very similar way we 

may show that all the institutions discussed above have these properties as well. 
One of the important properties of many logical systems is that of preserving finite 

colimits by the model functor. Thus given signatures El and E2 such that signature E' 

is their colimit we would expect that Mod(E') is the limit. In particular we would expect 
that a E'-model would consist of a pair, a El-model and a E2-model, in other words, we 

expect Mod(E') to be Mod(E1) x Mod(E2). Analogously for pushouts, if signature E' 

is a pushout of E -a El and E -+ E2, then we would like Mod(E') to be the pullback 

of Mod(Ei) --* Mod(E) and Mod(E2) --i Mod(E). This property is called exactness and 

originates in Tarlecki's work [70] and [76]. Meseguer in [64] introduces the term exactness, 
but it refers to the situation which we call semi-exactness here as this terminology was 

used by Diaconescu in [35] 

Definition 2.4.14. An institution is exact iff the funetor Mod : Sig P -ý CAT preserves 
finite colimits and is semi-exact if it preserves pushouts, i. e., it takes pushouts in Sig to 

pullbacks in CAT. 

As already pointed out by Diaconescu in [32] semi-exactness is a very widespread prop- 
erty, all institutions of conventional or non-conventional logics are at least semi-exact. In 
fact, in [35] Diaconescu et al. tell us that institutions of many sorted logics are exact and 
institutions of unsorted (or one-sorted) logics are semi-exact. 

Definition 2.4.15. In any institution Z, a signature morphism t: E -+ E' is liberal if and 

only if the reduct functor Mod(i) : Mod(E') -3 Mod(E) has a left adjoint. 
In other words, for each E-model M there exists a E'-model FM and a E-model homo- 

morphism 17 :M -ý (FM) r, 

(FM) r, FM 

77 

-M -f -M'r, M' 

such that for each E'-model M' and for each E-model homomorphism f: M --* M%, there 

exists a unique E'-model homomorphism f#: FM -ý M' such that 77; f#r, = f. 

An institution Z is liberal if and only if every signature morphism in I is liberal. 
A special case of this property is model extension along inclusions. This notion can be 

found in [32]. 

Definition 2.4.16. Institution I has model extension along inclusions iff for Ey E' 
in Sign every E-model M has a E'-model M', such that M[* M* 

Example 2.4.17 (EL has model extension along inclusions). To show that we simply show 
how given a signature inclusion Ey E' and a E-model M we construct a desired E'-model 
MI. 

Let M= (A', (pM)PE p, (rM), ER), we define M' in the following way:. 
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0 AM' = Am, 

" forpEP': 

- ifpEP e': =7", 

- ifPgP: pm,: =0 

" for rE R': 

- ifrER: rM': =rM, 

- ifr¢R: rM'. =O 
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Now we only have to show that M' j*E = M*. To do that we introduce the following 

lemma. 

Lemma 2.4.18. For any E, E' E Site such that E" E' and any E-concept C we have 

that CM'FE = CM. 

Proof: The proof is by induction on the structure of C. 

" In the induction base, we have that C=T or C=A with AEE. The former is 

trivial, for the latter we have: 

A'"'tE= Am'= Am . 

" The case for Ci fl c2 is trivial. 

" ForC=3r. C' 

3r. C'M'rr = {x E NM'N£ I for some y, rM'bb(x, y) Ay E C'M'FE} 

= {x E 0M I for some y, rM (x, y) AyE C'M } 

= 9r. C'M 

2.4.2 Morphisms and Comorphisms 

11 

One of the very important benefits that we get from using category theory is that transla- 
tions between institutions (logical systems) can be treated in a systematic way. Thanks to 
that we can integrate theories over different logics, which can be very useful in practice. For 
different purposes there are various kinds of translation available. Probably the two best- 
known and most basic are institution morphisms and institution comorphisms. Morphisms 

were originally introduced by Goguen and Burstall in [42]. Comorphisms were first intro- 
duced by Meseguer in [64] but then were called `plain maps', later the same structures were 
renamed by Tarlecki in [77] and called 'representations'. We prefer the name `comorphism' 

since it emphasizes the relation of this structure to morphisms. 
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Intuitively, institution morphisms are truth preserving translations from one logical 

system to another. An institution morphism shows how a `richer' institution I is built over 

a `poorer' institution V. This is done by defining a `forgetful' operation from I to Z'. A 

functor IF translates the signatures of I into the signatures of Z'. A natural transformation 

ry translates sentences of Z' over T (E) into sentences of I over E. A natural transformation 
5 translates E-models of Z into' (E)-models of V. 

Definition 2.4.19 (Institution morphism). Let I= (Sig, Sen, Mod, 

and Z' = (Sig', Sen', Mod, =') be two institutions. An institution-morphism fC = (IPA, 

I -+ i' consists of. 

"a functor'Yµ : Sig -+ Sig' 

"a natural transformation yµ : Sen' o TO = Sen 

"a natural transformation 5' : Mod = Mod' o( µ)0P 

such that the following satisfaction condition holds: 

for all EE ISigl, for all ME IMod(E)I, for all cp' E Sen'(W'(E)) 

M 1E 7E(ýP') if SE(M) 14µ(E) CP' 

Sen(E) 

a Sen'( µ(a)) Sen(o) 

E, Sen'(W'(E')) -Sen(V) 

Figure 2.1: The Sentence Natural Transformation 

E Mod'('Y"(E)) Mod(E) 

'__.. a Mod'((%1A)°P(a)) Mod(a) 

E, Mod(lµ(E, )) Mod(E') 

Figure 2.2: The Model Natural Transformation 

Note that the functor T and the natural transformation b go in the same direction, 
whereas the natural transformation -y goes in the opposite direction. " 
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Below we present possible morphisms between institutions that are of interest to us. 
Before presenting the first example, morphism fa : FOL -- ACC, we need some additional 

explanation. While discussing natural transformation ryfa we introduce counter 1-n for 

formulae using 3 and d as a way to introduce new variables, so we have the following: 

2r C= ((3x1_,, ) r) AC l ", and dr = ((Vxl_n) r) ACl-". The reason for introducing 

that counter is the fact that in case for morphism fa we are given FOL-signature 11, which 
is translated into ACC where we construct concepts that are translated back to FOL. But 

in FOL we can only express that some variable is an element of the interpretation of the 

predicate of our interest (these predicates are now concept names translated from 
. 
AGC). 

This becomes crucial when the . 
A. CC concept is of the form 3r. C or Vr. C, for simplicity 

reasons we focus here only on Br. C as the intuition for Vr. C is similar. When we deal with 

concept 2r. C translated into FOL we need two variables, one that is an element of the 
interpretation of 2r. C translated into FOL and another one which is related via r with the 

previous one as well as is an element of the interpretation of translated concept C. One 

of the problems here is that we may only talk about one variable at any time, another is 

that the concept translated from ACC may be of arbitrary depth, for instance of the form 
Br. (Bs. C) and so on, so for each role we need new variable. To solve that we introduce 

the counter 1-n which allows us to introduce new variables when needed and deals with 
the nesting problem. As a simple example consider an ACC-concept 3r. C, we translate it 
into FOL and set n=0, in other words we choose variable xo to be an element of the 
interpretation of ýr C in FOL. By the way how ACC concepts are translated into FOL 

we have that there is a variable x1, such that xo and xj are related via r and xl is an 
element of the interpretation of C, so we have Cl. Now, let C be of the form Ss. C', thus 

we get 2s 
. 
C'1, with n=1 received from the previous step. So we have that xl is in the 

interpretation of Bs. C', thus there is a variable, which is related with xl via s and is in 
the interpretation of C'. We apply our definition to introduce that variable, as at this 

point n=1 we receive that x0 is that variable. This procedure allows us to introduce new 
variables as needed. To see how this definition is working consider the following example. 

Example 2.4.20. Let C= E]r. ((2s. W) n li) n ¢. We translate this concept into FOL and 
set n=0, so we have: 

2r. ((is. ýo) n v)) n 
this gives its 

3r. ((as. w) n ip)^ A 

By definition we receive 

((2xi)r(xo, x, ) A ((s., P) n'o)') A o(xo), 

which roughly states that xo has property 0 and there is x1, such that r(xo, xi) and xl is an 
element in the interpretation of ((Bs. cp) f V)). But after applying the definition to (Bs. cp) n IP 
we receive: (Bs. cp)I A i/il, and thus 

((9xo)s(xi, xo) A (c) )A (x1), 
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which by definition is 
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((9xo)s(xi, xo) A V(xo)) A b(xi). 

This together with 
((2xi)r(xo, xi) A ((3s. cp) n ip)l) A O(xo), 

gives us: 
((9xl)r(xo, xi) A ((Jxo)s(xl, xo) A V(xo)) A ? P(x1)) A O(xo)" 

Example 2.4.21. Morphism fa : FOL --º ALC. 
Let IT be a FOL-signature, where IT is a family of sets of predicate names (fl)�Ew 

where n is an arity. A morphism fa : FOL -+ ACC consists of. 

" the functor Wfa translates an FOL-signature IT into an ACC-signature in the following 

way: VI(Il) _ (II{ý°}, II{x°ýýý}), where 

n{: °} _ {cp E SenFOL(I, )Ico contains exactly one free variable xoj 

and 

E SenFOL(II%p contains exactly two free variables xo and xl}. 

. 
In other words, unary predicates of FOL are translated into atomic concepts of ALC, 

,. whereas binary predicates of FOL are translated into roles of ALC, 

" natural transformation yn translates , 
ALC-sentences, constructed over 9/fa(II), into 

FOL-sentences with countable set of variables in the following way: 

- ?n (CCD) (Vxo)C D 

° where we fix some enumeration of the variables'and xa is the first one. Concept 

translation is defined inductively: 

C: 
p= p(xn), 

(ýil- nign 
=C AC 

, 

C1 UC2 =CV2 
3r. C = ((3x1 

-n) r) ACS-n 
`dr. C = ((Vxi-n) r) A Ci '` 

where n=1,2. For the last two clauses, we use 1- n to allow us to introduce another 
variable. 

" The natural transformation bn converts a FOL model into an . 
&CC model such that 

for any FOL II-model 
,M we have bn(M) = Jul , i. e. for (P, R) Va (IT) we have 

that every pEP is a formula with one free variable, so pM C AM. ` Similarly, every 
rER is a formula with two free variables, so rM C AM X OM. 
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Natural transformations -yn and bn satisfy the satisfaction condition: for all II E ISigFOLJ, 

for all ME IMO JOL(II)I, for all ca E Sen`-CC(Wfa(ll)), 

Min L7n(ýP)if4( )ý ýýn) W 

this can be shown by induction. 
Here we show only the base case. But first of all we need an auxiliary lemma. 

Lemma 2.4.22. For every FOL-signature II, every ACC-concept C over bf'(II) and every 
FOL-model ME IMod(II)I we have C6 (M) 

=CM 

Proof: The proof is by induction. 
Let: 

0 C=p 

plnfa 
ra (M)={xEAdn(M)lxEpan(M)}={xEAMIxEpM}=(p(x))M 

"C=-, p 

(-P)8 (M) = {x E Dan(M)Ix «Pdn(M)} = {x E Am Ix %PM} = (^ p(x))M 

.C= Cl fl C2 is trivial, 

"C= 3r. C' 

n(M) 
_ {xo E Aan(M)I(Bxi) xo r (M)xi A xl E (C')ý`n(M)} 

_ {xo E AmI(3xl) xo rMxi A xl E C'1M} 

_ (((3xi) r) AC')M 
(M 

0 
To show that the satisfaction condition holds, let II E ISigFOL1, ME IModF'OL(II)I and 

ýp =CCD be an ACC -sentence over Tf'(II). Assume that Mj FOL yn((p). Thus 

M knot yn (C D) 
if 

M f-n°L (dxo)C D 
if 

Cm C DM 
if 

Cbn(M )C D6 (M) 

if 

an (d) . 4y( 
n) CCD 



56 CHAPTER 2. PRELIMINARIES 

As it is easy to see that natural transformations in the remaining examples of 
(co)morphisms satisfy the satisfaction conditions we omit most of the proofs, in Exam- 

ple 2.4.25 we only present part of the proof where we consider the base case for BIs. 

Example 2.4.23. Morphism ae: ACC -+. 6, C. For morphism ae we let the functor'I' be 

the identity functor. For any .. ACC signature E= (P, R) we have Sen" (E) C SenACC(E), 

thus we define yE to be the inclusion Senc-C(E) -4 Sen" (E) The natural transformation 
JE` is the identity. 

Example 2.4.24. Morphism e+e : £G+ --+ £G. 
As £G and £G+ use the same signatures we let the functor a e+e be the identity functor. For 

any signature E= (P, R) we have SenE-C (E) C SenE'C+ (E), so we may take ryh ° to be the 

inclusion Sen-OG(E) y Sen"-+(E). We take R+' to be the identity natural transformation, 

as E-models in £G and £G+ are the same. 

Example 2.4.25. Morphism fe+ : FOL -+ EG+. 

We have noted above that signatures of EG, EG+ and ACC are built in the very same 

way, for that reason functor IQfe+ works exactly like 'I' for the morphism described in 
Example 2.4.21. 

Natural transformation yfe+ translates E&-sentences, constructed over 'I' (11), into 

FOL-sentences with a fixed countable set of variables. Note that for every signature II the 

set of E& CCIs built over'fe+ (II) is a subset of ACC CCIs built over ýPf+ (II). Thus 

7fe+ translates EG+ GCIs as in Example 2.4.21, with the restriction to atomic concepts and 
those using 11' and `T'. Since EL+ allows also role inclusion axioms, 'yfe+ translates them 

in the following way: 

life+(r C s) _ (Vx, x') r(x, x') s(x, x'), 

yfe+ (ri o r2 C r) _ (`dx, x', x�) ri (x, x') A r2 (x', x") = r(x, x"), 

Note that models of ACC and EG+ are the same, thus the natural transformation bfe+ 
converts a FOL model into an EC+ model in the very same way as bf' described in Exam- 

ple 2.4.21. 

Natural transformations yfe+ and bfe+ satisfy the satisfaction condition: for all II E 
ISigFOL (, for all ME I ModFOL (II)I, for all cp E Sen"+ (tPfe+ (n)), 

gyp. ý=n LYii+(ýP) z `bii+() h+(n) 

The satisfaction condition for GCIs is as in Example 2.4.21. Here we present the base 
case for RIs. But first we have to notice that by definition rdn+(M) = r'"1 

Let II E (SigFOLI, ME IModFOL(II)I and VE Sen"-+(IQ'+(II)). Let us set r, s E 112 

and cp=rCs. 
Assume that M ý=FOL 'yn+ (W). Thus 
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M LnOL , yfe+(r C s) 

if 

if 

if 

if 

M ýnýL (Vx, y) r(x, y) = s(x, y) 

rM C sM 

rSn+ Mc san+ M 

6111+ (M) t jf+(n) rs 

Role inclusion axioms of the form rl o r2 Cr are treated in a similar way. 
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Definition 2.4.26 (Composition of morphisms). Let 1,21,12 be institutions such that 

there are morphisms ul = (Vµl, yµ1, Sill) :2 --4 21 and 92 = (XFµ2, ryµ2, Sµ2) : Zl -4 Z2. 

Then we can define a morphism p= (W', ryµ, Sµ) :I -+ 12 to be the composition of mor- 

phisms µl; µ2, i. e. p is a triple defined by means of composition in the following way: the 

functor Tµ = µ'; iµ', natural transformation 79 = IµloyA2; yµl i. e., 

7E(e) = 7E'(??, l(E)(e)) and Sµ = Sµ2; q, li1°PS{14 i. e., SE (M) = S'., 
iE)(SE'()). This 

is graphically represented in Figure 2.3. 

12 
\P2 

Zl 

Figure 2.3: A composition of morphisms u= pi; 112 

In more detail, Definition 2.4.26 states that given EE ISig'l functor 91µ1 translates E 
into 11-signature ßµl (E), which is then translated by 'Yµ2 into 21-signature Wµ2 (IQ µl (E)). 
Natural transformation ryµ' is defined in the following way: 'y : SenZl (Wµ" (E)) -* Sen'(E) 

and natural transformation 'y 2 is defined in the following way: ryEU' : Senz' (ýµ' (E')) -º 
Senz' (E'), where E' E ISigzi 1. But as signatures of Zl are in fact signatures of I trans- 
lated along Tµ' we have that y%',, iEl Sent' (qµ' (%Y 1(E))) -+ Senk' (Wµ, (E)). Thus 

ry 112 iEl; -rr" : Sent' (W 2 (11,41 (E))) -+ Sen2(E). Natural transformation bµ1 is defined in 

the following way: SE' : Mod-'(E) --º ModZ" (Wµl (E)) and natural transformation 6142 is 
defined in the following way: öE, : Mod" (E') -+ Mod2' (XJJ 2 (E')), where E' E ISig" l. 
But as signatures of Zl are in fact signatures of I translated along Tµl we have that 
6A2 ýýý Mod" (TIAI (E)) -a ModT2 (, Qµ' (`pµß (E))). Thus E1';, Yµl °p6WM1(Eý Modz(E) -> 
Mod 2 (Wµ2 (`pay (E))). 
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Example 2.4.27. Morphism fe : FOL -* E. C. Definition 2.4.26 leads us to the ob- 

servation that the morphism fe = (iT, fe, ryfe, 5fe) : FOL -* EG, can be conceived as a 

composition of morphisms fa = (Iif3,. yfa, 6fa) : FOL -- ACC and ae = ('Iiae,, fae, bae) 

. 
A. CC --+ EG, or as a composition of morphisms fe+ = ('yfe+, yfe+, 5 e+) : FOL -a EC and 

e+e = (fie+e, -ye+e, 5e+e) : £G+ -3 CG. This gives us the commutative diagram shown in 

Figure 2.4. 

CL ae 
. AGC 

e+e fe fa 

GG+` 
fe 

FOL 

Figure 2.4: A commuting diagram of morphisms 

To see that fe+; e+e = fa; ae first recall that the signatures of EL, EL+ and AL C are 
the same; this also applies to the models. For that reason giae, qe+e, sae and be+e are 
identities. As noticed above Tfe+ = Wfa and thus WYfe+; ý, e+e = , I, fa; q, ae, similarly 5fe+ = bfa 

and thus bfe+; Se+e = P; P'. Therefore we only have to show that yfe+; ye+e = Yfa; yae. 
As presented in Example 2.4.25 ryfe+ translates E&-sentences over Tfe+(II) into FOL- 

sentences, where II is a FOL-signature. In a sense ryfe+ restricts our attention only to 

these FOL-sentences that were translated from EG+. Similarly rye+e further restricts our 

attention only to the sentences that were first constructed in £L. Therefore ryfe+; rye+e allows 
us to consider only these FOL-sentences that are translated from EG. In Example 2.4.21 

we showed how ryfa translates ARC-sentences over 4/fa(II) into FOL-sentences, where II is 

a FOL-signature. Again, yfa restricts our attention only to these FOL-sentences that were 
translated from ALC. Similarly yae further restricts our attention only to the sentences 
that were first constructed in £L. Therefore ryfa; y0e allows us to consider only these FOL- 

sentences that are translated from EL. To sum up, we have that iyfe+; q e+e = xpfa; was and 
5f"+; Se+e = 51a, Sae, these were immediate consequences of previously considered morphisms, 
and ryfe+; rye+e _ yfa, 

yae, which is a straight forward consequence of morphisms presented 
above. Thus we have that fe+; e+e = fa; ae. 

We let IImo,. denote the category of institutions with institution morphisms. 

A "dual' notion for institution morphism is institution comorphism. 

Definition 2.4.28 (Institution comorphism). 
Let I= (Sig, Sen, Mod, ý=) and Z' _ (Sig', Sen', Mod, =') be two institutions. An institution 
comorphism p= (4Dµ, aµ, ß! ') :I --> Z' consists of. '.. 

0a functor V: Sig --i Sig'- 
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"a natural transformation aµ : Sen = Sen' o -Vµ 

"a natural transformation ßµ : Mod' o (, Dµ)0P = Mod 

such that the following satisfaction condition holds: 

for all EEI SigI, for all M' E IModý(4µ(E))I, for all cp E Sen(E) 

ml Hil I (M') 
4ý. (r ,) 

a', (w) iff 6E 
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Intuitively, an institution comorphism shows how a `poorer' institution Z is embedded 
in a `richer' institution Z'. As for the case of institution morphism the functor translates 

the signatures of Z into the signatures of Z'. But the natural transformation a translates 

sentences of T over E into sentences of Z' over 4P (E). And the natural transformation ß 

translates (P(E)-models of Z' into E-models of Z. 

Note that the functor - and the natural transformation a go in the same direction, 

whereas the natural transformation ß goes in the opposite direction. 
Comorphisms are transformations of special interest to us, since we will use them in our 

approach to the E-entailment and the query answering problems, presented in section 3.2. 

The examples below show comorphisms between logical systems that are of interest to 

us. 

Example 2.4.29. Comorphism of : ACC -º FOL. 

In this comorphism functor oaf translates . 
ALC-signature into FOL-signature in the follow- 

ing way: 

4)'f (P, R) _ (0, H), where 
n0=0 
II1=P 
112=R 
11n=0forn>2 

Natural transformation a'f translates ACC-sentences into FOL-sentences with countable 
set of variables in the following way: 

cxaf (C C D) = (Vxo)[C]zO = [D]xo 

where we fix some enumeration of the variables and xo is the first one. Concept translation 
is defined inductively: 

C: 
Mx = XX), 

1-CI x =- [C]y, 

[C n D]x = [C]X A [D]x, 
[C U D]x = [C]' V [D]x, 

[3r. C]x = (3x') r(x, x') n [CIX', 
[`dr. C1x = (`/x') r(x, x') = [C]X'. 
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where, for the last two clauses, x' is the variable after x in the enumeration. 

For any FOL oaf (E)-model M we define natural transformation ßE to do the following 

transformation: Of (M) = M, i. e. for oaf (P, R) = (0, II) we have that for pEP we have 

pEIIi, thus pMCAM, and forrERwehave rE112, thus rM CAM xA'i'l. 
Natural transformations caaf and ßaf satisfy the following condition: 
for all EEI Sig 4ccI, for all MEI ModFOL(, Daf (E))I, for all cp E SenAcc(L) 

Mký E) aE (, ) if QE (M) ýÄCC 

This can be shown by induction. Here we show only the base case. But first of all we need 
an auxiliary lemma. 

Lemma 2.4.30. For every ACC-signature E, every ACC-concept C and every FOL-model 

ME IMod(c af(E)I we have Cß£ (M) = [C]=ý`'. 
Proof: The proof is by induction. 

Let: 

"C=p 
t pßE(M) = {x E OBE (M) Ix Ep (M) }= {x GM Ix E pM }= (p(x))M 

ýC_-, p 

-P, 
E(M) 

= {x E Oßn(M)Ix pßE(M)} = {x E AM I xpM} = (^'p(x))M, 

"C= Cl Il C2 is trivial, 

(2r. C')ßE(M) _ {x E Oßý(/ý)I(2x') x r"E(/ti)x'Ax' E (C')ßE(M)} 

;. -I, ''I = {x E 0' (2x') x rMx' Ax' E ([C'])"'i} 
((3x') xr x' A [C']x')M 
[3r. C']ZM 

To show that the satisfaction condition holds, let EE ISigACcI, ME IModFOL(, Daf(L))I 

and cp =CCD be an . 
A. CC-sentence over E. Assume that ßr (M) J--Ecc cp. Thus 

AE( ) J-ACC CI- D 
if 

Cß'(M) Dß`(M) 
iff 

[C]IOM 
'C 

[D]xoM 

iff 

M -D° O" (dxo) [C]x0 = [D] xo 
if 

M ýE aE (C C D) 

's 

°ý' -" 
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Example 2.4.31. Comorphism ea : EL -+ ACC. 

For the comorphism ea : £G -a . 
ACC we take lea to be the identity functor. We know that 

for any signature E= (PR) we have Sens-(E) C SenACC(E), thus aE is an inclusion 

Senf'C(E) -+ SenAG'(E). Natural transformation ßE is the identity. 

Example 2.4.32. Comorphism e+f : EG+ -3 FOL. 

In the case for comorphism e+f : EG+ --* FOL the functor I°+f is the same as oaf in 

Example 2.4.29. Natural transformation a°+f GCls into FOL-sentences as aaf in Exam- 

ple 2.4.29. c e+f translates role inclusion axioms just as yfe+ in Example 2.4.25. Natural 

transformation ße+f is as in Example 2.4.29. 

Example 2.4.33. Comorphism ee+ : £G -4 £G+. 

For comorphism ee+ : £G -- £G+ we define y°+ to be the identity. For any signa- 
ture E= (P, R) we have Sen" (E) C Sen"+ (E), thus a-+ is an inclusion Sen"(E) y 
SenEG+(E). Natural transformation ß'+ is the identity. 

Example 2.4.34. Comorphism of : EL -+ FOL. 

It should not be difficult to see that this comorphism is just a special case of the co- 

morphism presented in Example 2.4.29, it is also a special case of comorphism presented in 

Example 2.4.32. In both cases the only difference is that af translates only sentences built 

with atomic concepts and those using `2r. ' or `fl'. 

Figure 2.5 is a graphical representation of the above comorphisms. Note that we have 

no comorphisms between ACC and EG+, this is because each of them has expressions that 

are not available in the other one. 
In Definition 2.4.26, we presented how morphisms are composed. A similar definition 

can be formulated for comorphism. In this case it is even simpler as the directions of 4) 

and a are the same [43]. 

Definition 2.4.35 (Composition of comorphisms). Let Z, 11,12 be institutions such that 
there are comorphisms µl = (Icbl1, a"", Pul) :Z -+ 11 and P2 = ((Iµ2, aµ2,, Qµ2 ) : 11 --3 Z2. 

Then we can define a comorphism p= (Vµ, aµ, ßµ) :I -+ Z2 to be the composition of 

comorphisms AI; A2; i. e. p is a triple defined by means of composition in the following 

way: the functor Iµ = ßµl; (Dµ', natural transformation aµ = aµ'; 4Dµlaµ' i. e., ca' (e) _ 
a ?,, ýE)(al 1(e)) and ßµ = ýµI OnQµ2 ; ßaß i. e., ß (M) = ßE' (ß 1(E) (M)) 

This allows us to consider the comorphism of as a composition of comorphisms ea and 
of for the first case and a composition of comorphisms ee+ and e+f for the second case. 
This gives us a commutative diagram shown in a Figure 2.5. 

To see that ee+; e+f = ea; of again we will use the fact that the signatures and the 
models of £G, £G+ and ACC are the same. For that reason 4)ea, 1ýe+ �Qea and 6"+ are 
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EL ea ACC 

ee+ of 

jaf 

CL+ ef 'FOL 

Figure 2.5: A commuting diagram of comorphisms 

identities. As noticed above V+f = oaf and thus fee+; , Iýe+f = Dea;. (Daf, similarly ße+f = Oaf 

and thus ßee+; ße+f = ßea; ßaf. Therefore we only have to show that a`e+; ae+f = Qea ; aaf. 

But this is the same as for the composition of morphisms fe+; e+e and fa; ae above. 

A useful property of comorphisms is 

Lemma 2.4.36. For p: I --> Z', EC Sen'(E) and cp E Senz(E), if E ýF cp, then 

a' (E) �(E) o(); moreover, the converse implication holds if ßµ is surjective on mod- 

els. 

Proof: The forwards implication is a straightforward consequence of the satisfaction 

condition for µ. For the converse implication, let M be a E-model such that M ý=£ E. If 

ßµ is surjective, there is a (Dµ (E)-model M' such that ßµ (M') = M, so ß' (M') 4 E, which 

gives M' ;, 
1E) c (E), and if a£ (E) ý 

,, lE) a£(cp), then we have M' ýV�(F, ) caEM, so 

M= ßµ(M') =j cp as desired. Q 

We let IIco,,, o, denote the category of institutions with institution comorphisms. 

Arrais and Fiadeiro [5] note that adjunctions on'signatures can be lifted to adjunctions 

of theories provided that the left adjoint be associated with a comorphism and the right 

adjoint with a morphism of institutions. Their results also show the fact that in such a case 

no new theorems arise when a theory is translated from one formalism to another. - 
We have already noticed that morphisms and comorphisms basically use the same type of 

transformations - the difference is in the direction of the natural transformations, as noticed 

when we introduced Definition 2.4.19 and Definition 2.4.28. A result presented by Arrais 

and Fiadeiro confirms that there is a very strong relationship between institution morphisms 

and comorphisms. After noticing that morphisms and comorphisms correspond to the two 
directions of an adjunction it becomes much easier to grasp the difference between them. 
We can see that morphisms take the direction of the right adjoint while comorphisms take 

the direction of the left adjoint. And that in turn is consistent with the view of morphisms 
as projections of one institution into another and comorphisms as providing representations. 

Arrais and Fiadeiro showed that given an adjunction between signature categories of two 
institutions, an institution morphism gives us an institution comorphism and vice versa. 
And that it guarantees adjunctions for the functor between the corresponding categories of 
theories. 
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Theorem 2.4.37. Let I and Z' be institutions. 

63 

1. If (1, a, ß) :Z --ý Z' is a comorphism such that the functor 41 has a right adjoint', 

then: 

a) the triple (qf, 'y, S), where y is the natural transformation defined by 

yE, = Sen'(eE, ), where e is the counit of the adjunction, and b is the 

natural transformation defined by 5E, = Mod(); ß, (,, ), is an institution mor- 

phism from V to 1. 

b) the functor F THZ -+ THZ' induced by the comorphism has a right adjoint - 
the functor U: THI, -+ THz which is induced by the morphism. 

2. If (%Y, y, 5) : Z' --4 1 is a morphism such that the functor W has a left adjoint 4ý, then: 

a) the triple (', a, ß), where a is the natural transformation defined by 

aE = Sen(d); y,, (E), where rl is the unit of the adjunction, and ,6 is the natural 
transformation defined by ßE = 5. (E); Mod(em), is an institution comorphism 
from Z to Z'. 

b) the functor U: THZi -+ THZ induced by the morphism has a right adjoint - the 

functor F: THz -+ THZ, which is induced by the comorphism. 

Then Goguen and Rop in [43] showed that this result is a natural consequence of the 

fact that an adjoint between signature categories lifts contravariantly to functor categories. 

Theorem 2.4.38. For comorphism of = (ref, aef, ßef) of Example 2.4.34 and morphism 
fe = (WYfe, yfe, afe) of Example 2.4.27 we have that Vf -Il Ve 

Proof: Let (P, R) be an EG-signature and II a FOL-signature, then pef (P, R) = II, where 
fl = 0, IIl = P, 112 =R and II,, =0 for n>3 (which is also written as (0, P, R, 0,... )) 

and Tfe(II) = (II{xo}, 1T{xo, xl}). 
First note that for any EG-signature E we have that E= lJfe(4 of (E)). Thus we only 

have to show that for any arrow (f, g) : (P, R) -+ Ve(II) there is a unique arrow (f #, g#) : 
, Def (p, R) -* n, such that 

(p, R) n a- U(F(P, R)) F(P, R) 

(f, Uff #, 9#) t(f#P 9#) 

U II) II 

commutes, where Cef (P, R) = (0, P, R, 0,... ), (f #, g#) = (0 " IIo, f, 9,0 `-+ ns, ... 
) and 

77 = 1(p, R). Assume that there is another arrow h= (ho, hl, hei h3, ... 
) 1)'f (P, R) 

such that the triangle 

(P, R) 71 1U(F(P, R)) 

(f, 9) U(h) 

II) 



64 CHAPTER 2. PRELIMINARIES 

commutes. This implies that WYfe(h) = x, fe(f#, g#) and thus hl =f and h2 = g. There- 

fore h= (ho, f, g, h3i 
... 

), but since ref (P, R) = (0, P, R, 0,... ), we have that h= (0 y 

Ho, f, 9,0 `-+ n3, ... 
). But this is exactly how (f #, g#) is built, so we have h= (f #, g#) 

and therefore (f #, g#) is unique. 0 

Since signatures of EG, ACC and EG+ are identical, the following two corollaries have 

proofs similar to the proof of Theorem 2.4.38. 

Corollary 2.4.39. For morphism fa = (IYfa, ryf, bfa) FOL -+ ACC and comorphism 
(oaf, af, oaf) : ACC -4 FOL we have that oaf -i W. 

Corollary 2.4.40. For morphism fe = (iyfe, , yfe, bfe) : FOL -+ £G+ and comorphism 

( fei afe, ßfe) :£ C+ .. + FOL we have that 1fe -1 Tfe. 

Using theorem 2.4.37 we have the following: 

1. theorem 2.4.39 together with the morphism from FOL to . 
ALC, presented in exam- 

ple 2.4.21, are sufficient to give us the comorphism from ACC to FOL, presented in 

example 2.4.29, 

2. theorem 2.4.39 together with the comorphism from ACC to FOL, presented in ex- 

ample 2.4.29, are sufficient to give us the morphism from FOL to . 
ACC, presented in 

example 2.4.21, 

3. theorem 2.4.38 together with the morphism from FOL to £G, presented in exam- 

ple 2.4.27, are sufficient to give us the comorphism from £L to FOL, presented in 

example 2.4.34, 

4. theorem 2.4.38 together with the comorphism from EL to FOL, presented in ex- 

ample 2.4.34, are sufficient to give us the morphism from FOL to EC, presented in 

example 2.4.27, 

5. theorem 2.4.40 together with the morphism from FOL to £G+, presented in exam- 

ple 2.4.25, are sufficient to give us the comorphism from £G+ to FOL, presented in 

example 2.4.32, 

6. theorem 2.4.40 together with the comorphism from EG+ to FOL, presented in ex- 

ample 2.4.32, are sufficient to give us the morphism from FOL to EG+, presented in 

example 2.4.25, 

As signatures in iC, C& and ACC are identical, we can show similar relationship be- 

tween the morphism and comorphism between iG and E& described in examples 2.4.24 

and 2.4.33 and for morphism and comorphism between CC and ACC described in exam- 
ples 2.4.23 and 2.4.31. These examples show that there is a one to one correspondence 
between morphisms and comorphisms between the above pairs of institutions. 

. t_... __... ýý. ý. ýý. ý,,.. ý... ý,., ý., ý., ý ., __. -. -.. - 
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2.5 Craig Interpolation Property and Conservative comorphisms 

We have already studied institution morphisms and comorphisms. In this section first we 
introduce the notion of Craig interpolation property (CIP) and the notion of conserva- 
tive comorphism. Then following [31 we present the problem of preservation of CIP along 
institution (co)morphisms. 

The Craig interpolation property is a useful property of a logical system. Roughly 

stated, given two formulae cp and ?P such that V entails 0, we can always find a formula X, 

called the interpolant of V and ip , which uses only symbols that occur in both, cp and, 

and cp implies X and X entails O. In other words, the interpolant carries all the information 

needed for implying consequences of the original formula, so reasoning is not affected, in 

the same time it is formulated in the shared signature, so it carries relevant information 

only, which allows for simplifying reasoning. Craig interpolation property has a number of 

applications, to mention only a few of them, it is used in model checking, proofs in modular 
specifications, modular ontologies. Craig interpolation is also one of the basic properties of 
FOL. Much attention has been paid to CIP in the literature, but for us the most interesting 

are institution independent formulations of CIP [76] (which was one of the first institution 

independent formulations of CIP), other are [18,19,35,36,78]. But even these formulations 

impose additional requirements on the squares of signature morphisms. First of all, only 
squares with intersection and union of signatures are taken into consideration, moreover, 
in [18,19,36,78] it is required that these squares are pushouts and [35] requires them to 
be inclusions. In our work we follow the formulation of CIP presented in [32]. In contrast 
to previous formulations this one can capture any square of signature morphisms, the only 
requirement is that the square commutes. 

Definition 2.5.1 (Craig interpolation square). A commutative square of signature mor- 
phisms 

E' Ei 

az dl 

Es 
a, 

ºE' 

is a Craig interpolation square if and only if for every set El of El-sentences and set E2 

of E2-sentences such that Sen(a, )(Ei) ý=Ey Sen(a'2)(E2), there exists a set E of E-sentences 

such that El J--E, Sen(al)(E) and Sen(a2)(E) I=i E2. The set E is called an interpolant 

of El and E2. If this property holds for all such sets of sentences, we say the square has 
CIP. Similarly, we say an institution has CIP if all commuting squares have CIP. However, 
this is a strong requirement that is not met in many institutions. Weaker notions have been 

obtained by considering only certain classes of commuting squares. For example, classical 
CIP (which we shall call weak interpolation) has E= El fl E2 and E' = El U E2. More 
generally, 132] requires the top arrow to belong to a class L of morphisms, and the left arrow 
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to belong to a class R, giving a notion of (L, R)-CIP. Examples of such classes might be: 

inclusions, surjective morphisms, etc., and we say an institution has (L, R)-CIP if every 

square has CIP, provided the top arrow of the square is in L and the left arrow in R. 

In some cases proving that a particular institution I has CIP may be difficult or la- 
borious. But it may be the case that we can find another institution, which is related to 

.T 
by a particular (co)morphism and for which it is easier to prove CIP. Then we can use 

this (co)morphism to prove CIP for T. For this purpose here we present the notion of 
conservative comorphism which was introduced by Aiguier and Barbier in [3], where they 

also show that conservative comorphisms preserve CIP. 

Notation 2.5.2. Let I be an institution. Let a: E -i E' be a signature morphism and let 

OC Sen(E'). Let us write, = {cp IVE Sen(E) and 0=' a(cp)}. 

If we think of a as a signature inclusion E* E', then Notation 2.5.2 says that for 
OC Sen (E') we define 0, to be a set of consequences of 0 restricted along o to the 

sentences over E. Thus, defining O* to be the set of consequences of 0, then 0*[, is 0* 

restricted along a to the sentences over E, for short Do. Note that O1, = 0*. 

Definition 2.5.3. An institution comorphism p: I -+ Z' is conservative if every signa- 
ture morphism o: E -* E' and every set of sentences 0C Sen(E') in I satisfy: 

aE(0) -D' (E) (aE, (0))4 

Conservativity means that moving to a richer logic introduces no new consequences (this 

is represented in Figure 2.6). 

EVE, V-'NE') O a '(O) 

E"ý(E)O aE(Oo) (ar(ON(o) 

Figure 2.6: Conservative comorphism 

As pointed out in [3], a sufficient condition for conservative comorphism is 
(at, (0))4P(, ) C aE(0v), which is called restriction adequateness. Restriction adequate- 
ness is exactly the notion defined in [69] to obtain preservation of CIP along institution 
transformations, but this notion is more restrictive than the notion of conservativeness. 

The following observation is a consequence of the fact that 0*tl= Q* and presents a 
version of Definition 2.5.3 for the case where we take the signature morphism o to be the 
identity 1E'. 
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Observation 2.5.4. For any conservative institution comorphism /2 = (4p, a,, 6) :Z -4 Z', 

for any signature EE jSigj if we take v to be the identity, then we have that every set of 

sentences 09 Sen(E) in I satisfy: 

a, (O*) ý=" «E(O)* 

A condition for preservation of CIP that was presented in [3] uses a conservative insti- 

tution morphism. Nevertheless the authors suggest that a similar result can be presented 

using conservative institution comorphism. Since we use comorphisms rather that mor- 

phisms we present a version using conservative institution comorphism. But still the proof 

remains very similar to the one presented in [3]. 

Theorem 2.5.5. Let p= (4, a, ß) : Z' -+ I be a conservative institution comorphism such 
that for every signature E in Z', ßE is surjective. Then, if Z has CIP then so does V. 

Proof: Let 

E aý º E1 

a2 ai 

a 

be a commutative square of signature morphisms in Sigz'. Let El C Sen'(E1) and 
E2 C Sen'(E2), such that oi(Ei) ýZ; a2(E2). Let E' = El.,,, by Notation 2.5.2 we 
have El ýEl al (E'), we show that Q2(E') ý£z E2. Let M be a (E')-model such that 

(El)). By the satisfaction condition, we have: 

Mq RE'(M) ý=E' oi(E1) 
QE'(M) ýE' ßä(E2) 

qM 1= 
(E')' E'(a2(E2))" 

Thus, we have ar, (vi(E1)) ar, (Q2(E2)). Since I has CIP there exists EC 
Sen(4(E)) such that aE, (E1) ý ill -1)(al)(E) and lb(a2)(E) I= 

lE2l aEý(E2). This 
implies that EC (aE1(E1))ýloll. By conservativity of it we get that an(E') 4 E, thus 
4P (o2)(aE (E')) ý iraý arý(E2). Let M' be a E2-model, such that M' ýT C2 (E'). By 

surjectivity of ßr12' there is a ß(E2)-model M, such that ßE2(M) = M'. By satisfaction 
condition we have: 

Ml I= ci2(E') t Jul ý (E3) 
M -0(E) az, (E2) 

tý M'ý=E, E2. 

11 

Below we present examples showing that comorphisms EG -+ ACC and ACC -+ FOL 
are not conservative. 
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Example 2.5.6. EC -+ ALC. Let EG-signature be defined in the following way E_ 
{Human, Plant, Vegetable, Healty, Area, eats, grows-in} and define the ontologies: 

01: Human E Beats. T 

Plant C 3grows-in. Area 

Vegetable C Healthy 

02: Human C Beats. Food 
Food n Plant C Vegetable 

Human r- 3eats. T 
Plant r- Bgrows-in. Area 

Vegetable C Healthy. 

Then, 02 is a conservative extension of Ol w. r. t. EG. However, 02 is not a conservative 

extension of Ol w. r. t. ACC, as witnessed by 

Human nVeats. PlantC Beats. Vegetable. 

Example 2.5.7. ACC -3 FOL. Let E and E' be ACC signatures defined: E_ (0, {r}), 

E' = ({A}, {r}), such that E. E'. Let TC SenALC(E') be of the form T= {T C 
Br. A n Jr. -'A}, then To = {T C Br. T}, which is translated into FOL in the follow- 

ing way aE(TT) = {Vx By r(x, y)}. We translate T into FOL in the following way: 

a,, (T) {(`dx)((3y') r(x, y') A [A]ye) A ((3y") r(x, y") A [-, A]Y ")}. Then we can calcu- 
late (c ' (T))ýýoý _ {Vx By' By" (y' # y" A r(x, y') A r(x, y"))}. Now we can see that 
ModFOL(aE(T, )) ¢ ModFOL((c , (T))4, (o)), due to the fact that the former models tell us 
that every object has a successor in the relation r, whereas the latter models assert that 

every point has two different successors, both in the relation r. 
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3.1 Introduction 

CHAPTER 3. FRAMEWORKS 

In Section 1.1 we have already mentioned that in the standard approach, the function of 
an ontology is to state, explicitly, a conceptualisation. We have also pointed out that in 

practice one also wants to use existing ontologies, perhaps to browse the induced concept 
hierarchy, or to access instance data, or perhaps to create a new ontology that extends 
either an entire ontology or a manageably small fragment of one. Or perhaps one may want 
to test whether one ontology is in some way consistent with another, or provides the same 
information regarding some subset of concepts. 

We have also mentioned that the increasing number of ontologies available leads to the 
situation where there are several ontologies describing one domain of interest within one 
field. Often they complement each other by focusing on different aspects of that domain. 
This together with the fact that we can observe an increasing interest in multiple use of 
ontologies may raise some problems. We have identified three main issues we want to solve, 
these are: 

1. ontologies may be formulated in distinct formalisms, 

2. different formalisms may be used for ontology and query formulation, 

3. different signatures may be used for ontologies or an ontology and a query. 

As the core of our solution to these problems we adopt a functional approach to 

ontologies. In this chapter we provide a structure, a framework over a query basis, which 
works as a bridge allowing us to bring together arbitrary ontologies and queries, regardless 
of their signatures and formalisms used for their construction. The notion of framework 

captures the situation of a `global' language into which both an `ontology' language and a 
`query' language can be translated, in a more general and abstract way. Within a framework, 
it is possible to capture a general notion of consequence, whereby an ontology answers a 
query, when both are translated into the global language. This in turn gives rise to an 
institution-independent notion of entailment of ontologies with respect to some signature. 
To formulate the notion of frameworks we use comorphisms, which tell us how a `poorer' 
institution is embedded in a `richer' one. We use the fact that the relationships between 

many ontology languages are well understood, and translating between them, or embedding 
them into richer languages, is often straightforward. Of course, the details of how one 
particular language is translated into another are necessarily ad hoc. 

We also discuss three types of robustness of frameworks and present relations between 
robustness properties of frameworks and Craig interpolation properties. We also investigate 
the inheritance of robustness and interpolation properties between frameworks. 

3.2 
, 

Frameworks 

In this part we focus on the fundamental notions of description logics; E-entailment, E- 
inseparability w. r. t. a query language and E-conservative extension. This section general- 
izes the results presented by B. Konev, C. Lutz, D. Walther, and F. Wolter in [50]. Our goal 
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is to present these notions in an institutional setting, and thus independently of particular 

ontology or query languages. To achieve this we introduce the notion of a framework, which 

allows us to study entailment even if an ontology language differs from a query language, 

or even if these languages are incomparable, in the sense that there is no (co)morphism 

between them. 

Notation 3.2.1. In what follows we introduce three types of institutions: G which is called 
the ontology institution, Q which is called the query institution, and g which is called 
the global institution. 

For the sake of simplicity we introduce a convention regulating how we name components 

of particular comorphisms. 

Convention 3.2.2. For institutions and I and Z' with a comorphism a: Z -+ Z' we define 

11 = (Vµ, a", 0µ) 
" 

Definition 3.2.3. A query basis is an inclusive comorphism 77: A framework 

over a query basis 77 :2 -+ 9 is an inclusive comorphism u: G We call r- the 

ontology language, 9 the global language, and Q the query language of the framework. 

The intuition behind this construct is that given an ontology and a query represented in 

two institutions, G and Q respectively, we chose a global institution 9 such that there are 
comorphisms G4G and QiG. Using these comorphisms we can translate the ontology 
and the query into 9, then we can check whether the query is a consequence of the ontology. 
The use of comorphisms not only allows us to bring the ontology and the query together, 
but also addresses the problem of potential differences in vocabularies used for ontology 
and query formulation. This is possible as the comorphisms map these vocabularies into 

a common vocabulary in G. This mapping may involve renaming in case synonyms (or 
homonyms) are present in the vocabularies of the ontology and the query or if they are 
formulated in different natural languages. 

We allow more than one framework over a query basis. Figure 3.1 is a graphical rep- 
resentation of frameworks µl and µ2 over query basis 77. This situation would arise, for 

9 

µi 2 

. ci 

12ý 

Figure 3.1: Frameworks µl and µ2 over a query basis r7 

example, if we wanted to merge two ontologies written in different languages. 
It is easy to see that one can introduce a similar definition using morphisms (we do 

that in the Appendix). In such a case the direction of arrows will change and we will have 
morphisms pi :9 --> Gl, µ2 :9 -4 G2 and 77:! 9 -, Q. 
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One of the reasons why we use comorphisms rather than morphisms in our construct is 

the origin of the signature; for comorphism u: I -* Z' signatures originate in 2, whereas 
for morphism v: Z' -+ I signatures originate in V. So in comorphism framework case we 

start with separate signatures for each ontology and query language, whereas for morphism 
framework we have one signature, which is translated to ontology and query languages. So 

use of comorphisms in a very natural way reflects the intuition that ontologies and queries 

originate from possibly different languages. On the other hand, this fact also plays its role 

when we are investigating cases with signature inclusions. For instance, we may want to 

make explicit that we add fresh symbols to the query signature only (or to the ontology 

signature only). Or perhaps that we are given two ontologies formulated over two different 

signatures. Again, use of comorphisms allows us to express that in a very natural way. 
Also the alignment of functor (D and natural transformation a for comorphisms fits well 

with the intuition that ontologies and queries may originate from different languages and 

are brought together, in order to determine if the ontology entails the query. Whereas, for 

case with morphisms the signature is given in the global language and then translated to 

an ontology (a query) language, where we formulate our ontology (resp. query) and then 

translate it back to the global language. For all these reasons we find comorphisms more 
intuitive and appealing to use in our construct. Nevertheless, using morphisms we are still 

able to show all the properties of frameworks that are presented below. 

We start with defining the notion of an ontology in a framework. 

Definition 3.2.4. Given' a framework µ :, C -+ ß and AE ISig'cI we say that 0C Sen'c(A) 

is a A-ontology for µ. 

The consequence relation is a basic notion in our studies, it is used to solve query 

answering problems and is the base for other definitions. Therefore before continuing we 
define this notion in the framework setting. 

Definition 3.2.5. Let µ :, C -+ 9 be a framework over ti, and let 0 be a A-ontology for it 

and VE SenQ(E) be a query, with E in Sig2. We say that ýp is a consequence of 0 with 

respect to ri (written 04 cp) if 

OAV') F--4, M(A)UV? (E) aE(V)" 
This says that in a framework u, over a query basis 77, a query cp is a consequence of an 

ontology 0 if 0 translated along comorphism p into 9 entails in 9, with respect to the union 

of translations of signatures A and E, the translation of c along 77. A very similar notion 

was introduced by Schorlemmer and Kalfoglou in 1711 as the notion of ontology-based 

consequence with the difference that they fix the global institution to be FOL. 

3.2.1 Basic framework structures 

Here we present six special cases of frameworks (listed below), where entailment can be 

simplified. Each special case has its graphical representation. These frameworks differ in 
relations between institutions used in each construct. 
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1. Let C=G=Q, in this case the comorphisms are identities. Proposition 3.2.11 below 

shows that the entailment in framework 1g :C -+ G over the same query basis is the 

same as entailment in 9. 

i iß 

4ý 

2. Let G=Q, i. e. an ontology 0 and a query cp are expressed in the same language. 

Proposition 3.2.12 states that for this framework there may be entailments that arise 
from the greater power of G, and that the ontology 0 in this framework entails exactly 
the same consequences as in G only if ßµ is surjective. 

4 

P {+ 

GG 

Example 3.2.6. As an example take G=Q= EG and C= FOL, with comor- 
phism p= of from Example 2.4.34. Let A= (P, R) with P= {Toe, Foot, Leg), 
R= {isPartOf} be an SC-signature, 0C Senc'C(A) be an SC-ontology consisting of 
the following axioms: 

Toe r- 3isPartOf Foot 
Foot C aisPartOf. Leg 

Let cp E Sen"'C(A) be the EG-query Toe C 2isPartOf. Leg. We begin by translating both 
into FOL, i. e. along u. As a result we receive the FOL-ontology c (O) with axioms: 

(Vx)Toe(x) = (9y) isPartOf(x, y) A Foot(y) 
(Vx) Foot(x) (8y) isPartOf(x, y) A Leg(y) 

whereas a' (gyp) = (Vx) Toe(x) (2y) isPartOf(x, y) A Leg(y). Then we have that 

a4 (0) (`dx)Toe(x) = (2y) isPartOf(x, y) A (2z) isPartOf(y, z) A Leg(z) 
, 

but since we do not have an axiom stating that isPartOf is transitive therefore 

a' (0) K- (Vx) Toe(x) = (Bz) isPartOf(x, z) A Leg(z) 
. 

And this is as expected, since axioms of the form ror=r (or in general ros= t) 
are disallowed in EG. 



74 CHAPTER 3. FRAMEWORKS 

3. For the case where G=Q with a framework j: G -+ C over a query base c 
i. e. G is a sublanguage of g, we translate an G-ontology into a richer language G, 

and then, in 9, we check whether a query is a consequence of the ontology. Propo- 

sition 3.2.14, states that entailment in this framework is the same as entailment in 
0. 

4 

{+ lo 

Gµ ºý 

Example 3.2.7. Here we consider the case with £G as G and AEC as 9, with co- 
morphism ea from Example 2.4.31. Let 

A= {Parent, Father, Male, Mother, Female, has Child} 

be an £G-signature (note that it is also an ACC-signature), 0C Sen" (A) be an 
£G-ontology consisting of the following axioms: 

Parent 3has_Child. T, 
Father C Male fl 2has_ Child. T, 

Mother C Female n 3has Child. T, 

Let AEC-query cp be of the form Father U Mother C Parent. After transforming 0 
into AEC (in this case it is simply an inclusion) we can answer the query. In this 
particular case we have 0 4cc 

Note that in cases 3 and 2 there may be entailments that arise from the greater power 
of 9 

4. For the case where G=G and a framework lg over a query base 77: 
i. e. Q is a sublanguage of 0, we translate a Q-query into a richer language G, and then, 
in CG, we check whether the query is a consequence of the ontology. Proposition 3.2.15 
shows that entailment in this framework is the same as entailment in 0. 
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5. Consider a scenario with distinct institutions G, G and Q, together with a framework 

p: G -3 G over a query basis 77 :Q -+ 0 and a comorphism p: G -a Q. We can 

consider u: G -* 9 as a composition p=p; 77. So, in fact we are translating an 

ontology into C via Q. Properties of this framework are presented in Corollary 3.2.27 

and Proposition 3.2.28. 

in 

-p ºQ 

Example 3.2.8. In this example, again, we take G and Q to be EL and ACC re- 

spectively, and we chose FOL to be C. Take A, 0 and <p as in Example 3.2.7. We 

already know that we have comorphism of : ACC --* FOL, recall Example 2.4.29, 

we also know that there is comorphism ea : EC -4 . 
ALC, recall Example 2.4.31. By 

composition of comorphisms we receive comorphism ea ; af. As it was mentioned in 

Example 2.4.34 this comorphism is identical to comorphism of : EL -+ FOL, i. e. we 

can translate the EG-ontology 0 into FOL via ACC without any harm. Thus aý(O) 

consists of: 

(Vx) Parent(x) (ny) has_ Child(x, y), 
(Vx)Father(x) = Male(x) A (3y) has Child(x, y), 

(Vx)Mother(x) = Female(x) A (3y)has Child(x, y), 

and a£(cp) = (Vx)Father(x) V Mother(x) Parent(x). It is not difficult to see that 

01 4 (P. 
Remark 3.2.9. Note that even though structures in Examples 3.2.7 and 3.2.8 differ, 
both give exactly the same answers to the queries. This only shows that for a particular 
pair of G and Q there can be more than one framework. 

6. Let M: L -4 C be a framework over a query basis 77 :Q -+ C with incomparable G and 
Q. In this case we have to translate an ontology 0 and a query V into a language in 

which we can check whether cp is a consequence of 0, i. e. we have to find a9 such 
that there are comorphisms from C and Q to 9. 

4 

an 

GQ 

For instance, consider a situation with EG+ as L and ACC as Q. To check whether a 
query is a consequence of an ontology we translate both into FOL, i. e. FOL is 9. 
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Example 3.2.10. Let e+f : CL+ -+ FOL be a framework over query basis of 
ACC -+ FOL. Let A= (P, R) with 

P= {Grandparent, Grandfather, Grandmother, Male, Female} , 

and 
R= {has Grandchild, has Child} 

be an EG+-signature, 0C Sen" (A) be an EG+ ontology consisting the following 

axioms: 
Grandparent - 2has_Grandchild. T, 
Grandfather C Malen Shas_ Child. ahas_ Child. T, 

Grandmother C Female n 2has_ Child. 2has_ Child. T, 
has Grandchild - has_ Child o has Child. 

and let E= {Grandparent, Grandfather, Grandmother} be an ACC-signature, and 
ýp E Sene(E) be an ACC-query of the form cp = Grandfather U Grandmother C 
Grandparent. 

To answer whether 0 ý=2f V first we have translate both 0 and (p into FOL and we 

receive: 

aA f (O) 

(Vx)Grandparent(x) (By)has Grandchild(x, y), 
(Vx)Grandfather(x) = Male(x) A (3y, z)has- Child(x, y) A has- Child(y, z) 

(dx)Grandmother(x) = Female(x) A (3y, z) has Child(x, y) A has- Child(y, z) 
(Vx, y, z)has Grandchild(x, y) e* has_ Child(x, z) A has Child(z, y). 

and a4(V) = (`dx)Grandfather(x) V Grandmother(x) Grandparent(x). Now we can 

see that aA f (O) ýý (n)UVf(E) aE (cp)" 

For any institution 9, the identity 1g : --º is a query basis, and also provides a 
framework over itself, which is just the institution 9, and so the notion of consequence in 

a framework generalizes entailment in a fixed institution. 

Proposition 3.2.11. For framework 1g :g -a C over query basis 1g itself, consequence in 

the framework is just consequence in 9; i. e., 0 iffO ý AUE <p for any A-ontology 0 

and E-sentence V. 

Proof: This follows directly from Definition 3.2.5, noting that oD14 and a14 are identities. 
O 

Now we show that in certain cases there is a very close relation between entailment in 

an institution and consequence relation w. r. t. a query basis. 
First we show that for framework µ: G --º g over query basis it itself there is a very 

close relation between consequence relation in G and consequence relation w. r. t. µ. 



3.2. FRAMEWORKS 77 

Proposition 3.2.12. For any framework p: G -+ g over query basis p itself, for any 
A-ontology 0 for p, and any cp E SenC(A') we have: 

d ýnuný ýP implies O I= 
, cp . 

Moreover, if Qµ is surjective on models, then the converse implication also holds. 

Proof: The implication is a straightforward application of the satisfaction condition. 
For the converse implication, assume 0 ý=A, cp and let M be a (AUA')-model in G such 

that M [--AUA, O. By surjectivity of ßP there is a V(A U A')-model M' in C such that 
Qmm' (M') = M. By assumption, M= QnunI(M') PnunI O, so M' H g�(nunl) anunI(O)+ 

and therefore M' ý 
�(nun, ) «nun' (p), whence Al = ßýun, (M') nun, ýP as desired. Q 

Because £G and FOL-models are essentially the same (see Section 2.4), we have 

Corollary 3.2.13. As comorphism of : EG -+ FOL has surjective Qef, we have that for all 
EG-signatures A, A' and any A-ontology 0 for ef, and cp E Sen" (A'): 

0= ccP if 0= A'(P- 

In a similar way there is a close relation between entailment in the global institution 

and consequence relation w. r. t. query basis 1g. 

Proposition 3.2.14. For any framework p: C -+ 9 over query basis 1c C -4 G, for any 
A-ontology 0 for 1g, and any c' E Senq(E) we have: 

0 HE cP if C(o) I=g (A)UE V. 

Proof: This follows directly from Definition 3.2.5.0 

Also for framework 1g over query basis 77 :2 -i 9 there is a close relation between 

entailment in 9 and consequence relation w. r. t. rj. 

Proposition 3.2.15. For any framework 1g :9 -> 9 over query basis 77: Q -º C, for any 
A-ontology 0 for', and any ca E SenQ(E) we have: 

0 HE if 0 WAUVI(E) 4(ý') 

Proof: This follows directly from Definition 3.2.5, noting that (b1Q and alo are identities. 
13 

3.2.2 E-entailment in frameworks 

The notion of E-entailment is basic to many studies of description logics in the literature, for 
instance see [50,51,54,60,611. Closely related notions are inseparability and conservative 
extension. Here we present these notions in the framework setting. 

Very often we are interested in comparing ontologies written in different languages 
(frameworks) over a given query basis 77. That is, we have two frameworks ul : C1 -+ C 
and P2: G2 -* 9; we shall refer to such a situation as a binary framework, with notation 
tri = (/-11eµ2)" 
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Definition 3.2.16 (E-entailment and inseparability). For a binary framework '3 = (µ1,1. c2) 

query basis 17, Al-ontology Ol for pl and A2-ontology 02 for P2i we say that 

" 01 E-entails 02 with respect to q, and write Ol C£ 02i if for all cp E SenQ(E) we 
have: 

02 ý=E7 cp implies Ol ý, ýo. 

" 01 and 02 are E-inseparable urith respect to 77, written Ol ;4 02, iff. " 

Ol cý 02 and 02 C£ 01 . 

" 02 is a E-conservative extension of Ol with respect to 77 if 42 (02) Q a; i (0k) 

and Ol and 02 are E-inseparable with respect to i. 

" 02 is a conservative extension of Ol with respect to 77 if 02 is a E-conservative 

extension of 01 with respect to 77 for all EE (SigQI such that In(E) C (It" (A, ). 

The terminology `E-inseparability' is taken from [50], and says that two ontologies are 

equivalent in the sense that they entail exactly the same consequences with respect to 

the signature E. Indeed, for any query basis 77 and signature E in Q, the relation 4 with 

respect to 77 is an equivalence relation. 
In the situation of the previous definition, we say that V separates Ol and 02 if Ol ý= E 

and 02 ýL-E <p or, vice versa. 

Notation 3.2.17. In what follows we often leave inclusions implicit, i. e. if t: E -+ E' and 
WE Sen (E) we write a4, (V) for Sen (t)(aE 

The following lemma states that if we have a consequence relative to some signature, then 

extending the Q-signature with fresh symbols has no impact on the consequence relation in 

the framework for the queries formulated in the original signature. In addition, it tells us 
that if the square in Figure 3.2 has CIP in the global institution, then the converse holds, 

$µ(A) U c'7(E)-º V(A) U n(E) 

1i 

c°(A) U 7(E)ß--ý "(A) U °ýE') 

Figure 3.2. 

i. e. every VE SenQ(E) which is a consequence of 0, relative to E' is also a consequence of 
0, relative to E. 

Lemma 3.2.18. For any framework i: G -ý 9 over query basis 77: 2 -+ C and signatures 
E, E' in Sig", such that ECV, any A-ontology 0 for p, and any query WE SenQ(E), the 
following property holds: 

0 }= V implies 0 1=E, V. 
Moreover, if Figure 3.2 is a CIP-square, then the converse implication also holds. 
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Proof: For "W" assume 04V. Let be the inclusion: 

ßµ(A) U V7 (E) c, µ(A) U ß'1(E') 

79 

and let M be a (V' (A) U V7 (E'))-model such that M (A)UVI(E, ) aý(O). By the satis- 
faction condition we have 

MAL H0Pµ(A)u 

"7(E) an(0), and thus MjL ý0 (A)uVI(E) aE(cP) 

so M Ig,, (A)uý,, iý, ) c, () as desired. 

For the converse implication, if the diagram above is a CIP-square, then 0 ýE, cp implies 

that there is an interpolant IC Seng (V'(A)UcI (E)). Thus for every ('(Pµ(A)UV? (E))-model 

M, if M ýguýA)uý,, (E) cr (O), then M ýg�1A)uý,, 
i£) I, and therefore M 0,. 

(A)ulDn(E) 
oE(p), showing 0 ý=£ y as desired. Q 

The property described in Lemma 3.2.18 also extends to entailment: 

Proposition 3.2.19. For any binary framework 1' = (91, µ2) over query basis 17, and 
Al-ontology Ol for µl, A2-ontology 02 for µ2i and signatures EC E' in Sie, if Figure 3.2 

has CIP, then: 

0 C711 02 implies 01 CIE 02 . 

Proof: Let Al, A2, E, E', Oi and 02 be as in the statement of the proposition. 
Assume that 01 C£, 02 and 02 4 gyp, for an arbitrary cp E Sen'2(E); it follows by 

Lemma 3.2.18 that 02 E, V. From the assumption that Ol CE, 02 it follows that 
Ol ý=ý, W. As VE SenQ(E) and EC E' we get 01 ' gyp, and thus 01 g; 7 02. Q 

Note that the opposite direction does not hold because it would imply extending the sig- 

nature over which queries may be expressed. 

3.2.3 Frameworks with attached comorphisms 

Investigating frameworks gives us an insight into properties of entailment also in more 
complex situations. For instance we can consider frameworks with attached comorphisms. 
So we may have a comorphism attached on the query language side, intuitively it is a 
situation when we already have a framework with G and Q and we have a query formulated 

in a language Q', such that there is a comorphism e: Q' _+ Q, i. e. Q' is a weaker language 

than Q. We may also have a situation when we already have a framework with G and Q 

and we have an ontology formulated in a language G', such that there is a comorphism 
S. G' -+, C, i. e. G' is a weaker language than G. We also present the consequences of these 
two situations. 

First we consider a framework µ: G -+ g over query basis 77 :Q --ý C with an additional 
comorphism : Q' -+ Q, Figure 3.3 represents that situation. Using comorphisms compo- 
sition ý; 17 = r/1 we receive a framework µ: G -+ over query basis 77' G, This is 
illustrated in Figure 3.4. 



80 CHAPTER 3. FRAMEWORKS 

4 

ýn 

G Q 
O 

F 

Figure 3.3. 
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Lemma 3.2.20. Given a framework µG over query basis q: Q -3 9 with an attached 

comorphism Q' --y Q, we get a framework p: G -ý 9 over query basis 17' : Q' -} G, 

with ri' = ý; 'i, such that for any A-ontology 0 for µ, and a query co E Sen2'(E'), where 

E' E (SigQ' 1, the following holds: 

OP if 0 E(E')aE(o 

Proof. The proof is as follows: 

O EI cP 
iff aA(O) ý= 

µ(n)uý., (E, ) a. I(, P) 
iff am (0) ý= 

µ(n)umn(ýE(£')) a e(E)ýaEfýýP)) 
if 0 

0 

Note that the third line of the proof follows from the fact that t7' = £; t7. 

In other words Lemma 3.2.20 states that given a framework µ: G- CG over query basis 

il ;Q -+ g and a query formulated in Q', such that there is a comorphism Q' -+ Q then 

we can safely lift the query to Q and then translate it into 9. That gives us exactly the 

same results as creating a framework it over query basis 17' : Q' -ý Q (using composition 

of comorphisms) for answering the query. In other words, to answer a query which is 

-- 
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formulated in a sublanguage of Q we do not have to introduce new query basis over which 

we use the framework. 

Example 3.2.21. As an example consider a scenario where we have a framework e+f : 
EG+ -4 FOL over query basis of : ACC -+ FOL, and we use it to answer a query formulated 

in . 
ACC. Now, Lemma 3.2.20 tells us that if we have another query which is formulated in a 

sublanguage of ACC, for instance in EL, we can "reuse" the framework and the query base. 

To do this we can "attach" comorphism ea : EG -+ ACC, then we can lift the query to ACC 

and answer it in the framework and we will receive the same answer as in the scenario with 

query basis of : £L -+ FOL. This is illustrated by Figure 3.5. 

FOL 

e+f of 
`ý`. 

ef 

EG* ACC 

ea 

E; 

Figure 3.5. 

The next proposition extends the result of Lemma 3.2.20 to E-entailment. 

Proposition 3.2.22. For any binary framework I= (µl) µ2) over query basis rl :Q -+ g 

with an attached comorphism ý: Q' -4 Q, and the same binary framework over 17' : Q' -+ 9, 

where y' = C; 77, for signatures Al E ISig'C' I, A2 E ISig'e' I and EEj Sie' j, and ontologies 
Ol C Sen'c' (Al) and 02 C SenIC' (A2) the following implication holds: 

0C 
EDE) 

02 implies 01 CI 02 
, 

Proof. Assume 01 C Ei£ý 02 and 02 ý= E V. By Lemma 3.2.20 we have that 02 --o17 E(E) 
ap(p). By the assumption 01 gzno C (E) 02, we have 01 ý-- E(E) c4(ýp). Again by the 

Lema 3.2.20 we receive that 01 ýE cp. p 

This result further extends to inseparability of ontologies. 

Corollary 3.2.23. For any binary framework '= (µ1 
i µ2) over query basis 77: Q -+ C with 

an attached comorphism ý: Q' -+ Q, and the same binary framework over if " Q' -+ g, 
where if = t;; 'j, for signatures A, E ISij' I, A2 EI Sit' and EE ISigQ' l, and ontologies 
Ol C SenC' (A, ) and 02 C Senr-2 (A2) we have that Ol ... Elýý 02 implies Oi %. ""' 02. 
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As promised above we now consider a framework with an attached comorphism on the 

ontology language side. 
Given a framework j: GG over query basis 77 :Q -+ G, such that there is an 

attached comorphism : , 
C' -+ G, Figure 3.6 represents that situation, by composition 

of comorphisms C; 
,u= p', we can construct a framework p' : G' -+ Gj over query basis 

77 :Q -+ CJ. This is illustrated in Figure 3.7. Note that given a0C Sen'C'(A) we have that 

cr (0) has the same set of consequences in p over q as 0 in p' over 77. This is the statement 
of Lemma 3.2.24. 

9 
Y\11 

GQ 

C 

Figure 3.6. 

Figure 3.7. 

Lemma 3.2.24. For a framework pL -* 9 over query basis rl Q -i g with an attached 
comorphism G, we can create framework µ' G', -ý C over query basis rl with 
{; it = FA', such that: 

0 ý=E ýO if an(d) HE 

for any £'"signature A, ontology 0C SenC'(A), and a query cp E SenQ(E). 

Proof., The proof is as follows: 

if aý (0) 
ýµ'(A)u4n(E) a. (ýP) 

iff a0C(A)(an(0)) ý 
N(ýc(n))uý^(E) 

E(ý) 
iff ap(0) HE SP 

0 
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This is to say, that given a framework it :G -* 9 over query basis 77 :Q -+ g with 

an attached comorphism (' : £' --> G and an ontology 0C SenC'(A), we can safely lift 

0 to f- and after translating it into answer the query. That gives us exactly the same 

results as creating a framework p: G-*9 over query basis 97 :Q -+ g using composition of 

comorphisms and then answering the query in 9. 

Example 3.2.25. As an example consider a scenario where we are given a framework 

of : ACC -- FOL over query basis e+f : £G+ -i FOL and an ontology 0 for af. Assume 

that from 0 we have extracted a module 0' which is formulated in £G. Lemma 3.2.24 tells 

us that in order to use it for query answering we do not have to introduce new framework 

but we can attach comorphism ea to the framework and then we can lift 0' to . 
ACC. In 

other words we can keep using the original framework when we are using a module, which 
is formulated in a weaker language. This is illustrated by Figure 3.8. 

FOL 
7e+f 

of; 

ACC CL+ 

ea 

EG 

Figure 3.8. 

The following proposition extends the result of Lemma 3.2.24 to E-entailment of on- 
tologies. 

Proposition 3.2.26. For a binary framework _ (141, A2) over query basis t: Q -- g 

with attached comorphisms C; :V -+ Gi and a binary framework (µi, µ2) over query 
basis 77 with C; pi =p (for i=1,2), we have that: 

CYÄiC2 ) if 01 CE 02 

for any signatures EEI SigQ1, A; EI Sign" 1, and ontologies O; 9 SenC" (A j). 

Proof. For the direction "=*" assume that $ (O1) CE c (02) and 02 14 gyp, for cp E 
SenQ(E). By Lemma 3.2.24 we have c (02) and by the assumption aCA'1(01) CE 

aCz(02), we get aCi(01) 4 cp. Again by Lemma 3.2.24 we have 01 14 W. Thus 
01 C? 02 as desired. 

For" a" assume that O1 C' 02 and a%2 (02) 14 cp, for VE SenQ(E). By Lemma 3.2.24 
we have 02 14 V and by the assumption 01 C' 02, we get 01 Again by 
Lemma 3.2.24 we have aAl (01) Hý V. Thus agil (01) C1 aýý (O2) as desired. Q 
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The next corollary is a consequence of Proposition 3.2.26. It shows that for framework 

,uG -a 9 with comorphism p: G -+ Q, over query basis q: Q -4 9, and framework 

77 :Q -a g, with an attached comorphism p: G -- Q over query basis 77 itself, E-entailment 

of ontologies 01,02 C Sent (A) coincides. 

Corollary 3.2.27. Let a= (µl, p2) a binary framework over a query basis rl :Q -+ 9, 

such that there are comorphisms p; : Gi -ý Q and pi = pi; rl, for i=1,2. Let EEI Sig" I 

and ontologies Oi 9 SenC''(A; ) then: 

01 CE 02 if ail(Ol) CE aÄ2(02) 

If an ontology language can be translated directly into the query language, then entail- 
ment can be reduced to showing that each sentence in one ontology is a consequence of the 
other: 

Proposition 3.2.28. Given a framework C4G over a query basis Q3C with a comor- 

phism G4Q, such that p=p; 77, and A-ontologies 01 and 02, we have: 

01 CIP(A) 02 'ff Oi KIP(A) V, 

for all VEa (O2). 

Proof: In this proof we use the fact that {A = p; i, thus (µ(A) = F7(V(A)) there- 
fore ßµ(A) = ßµ(A) U ý'7(ýP(A)). Thus we write aý(O2) ý 

�(A) a 77 
P(A)(') 

instead of 
4(02) t4N(A)U-Vn(4>^(A)) aJP(A)(ýG) 
For assume Ol Cop(a) 02, i. e. 02 

, (A) implies 01 l 
(A) V) for any V) E 

SenQ(, (DP(A)). Note that for every VEc (02) we have V= aPA(V') with cy' E 02, thus by 

the composition of comorphisms we have that: 

an(ýv') = 47P(A)(an(ýý)) =ae(n) (ý) 
Thus for every <pEa "( 02) we have c (02) 4 

(A) a1o(A) (cp). By the assumption we have 

c (Oj) 0M(A) al-DIP (A)(W), and thus 01 

For "4=" assume 01 ='7 (ý) w, i. e., aA(Ol) a P(A)(rp) 
for all VE a" (02)- Since 

ti=P; 77, this means aA(0k) aß(02). Therefore 01 C'Dµ(A) 02, as required. 0 

Moving to a richer global language preserves consequences: 

Lemma 3.2.29. For framework µ: L -3 C over query basis 77 :Q --p G, if we have a 
comorphism a: G -º G', there is a framework µ' = u;, \ over query basis 77' = 77;, \, and we 
have: 

0 ýý ýp implies 0 ýp 

for any A-ontology for p and any query cp E SenQ(E), with EE SigQ, Moreover, if 0' is 

surjective, then the converse implication also holds. 
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Proof: Suppose 0 ý=E gyp, i. e., aoA(0) H 
�iAlUV�iEl a£(cp). By Lemma 2.4.36 it follows 

that (or is equivalent to, if ßA is surjective) 

a m(n)ucn(E)(aný0)) 
ý a(ýý(n)uý^(E)) a N(n)uýo(E)ý4ýv)) 

Since 'a distributes over unions, and as commutes with inclusions, this is equivalent to 

a (A) WA ')) ý a(ý"(A))ýýa(ýn(E)) a45'7(E)(aE«P)) 

But since u' = u;, \ and 77' = 77; A, this is QA (O) i. e., 0 ýý cp as 
desired. Q 

9' 

4 

µn 

GQ 

Figure 3.9. 

91 

71 

ý, µn; 

Figure 3.10. 

Example 3.2.30. As an example consider a scenario with framework ea : EL -+ ACC over 
query basis 1, gcc : ACC --- ACC and ontology 0 for ea. In such a case Lemma 3.2.29 tells 
us that moving to FOL, using attached comorphism af, we will preserve all the consequences 
of 0 already present in ACC. This is illustrated by Figure 3.11. 

Now we compare two frameworks presented in Figure 3.12 and in Figure 3.13. The 
former is simply the case when the ontology language is a sublanguage of the query language, 
but the query is expressed in g over a translated G-signature. Whereas the latter is the 
case when the ontology language is the same as the query language, but we translate both 



86 CHAPTER 3. FRAMEWORKS 

POL 

Iaf 
eft; ACC af 

ea 1, Z 

`, 
ýG AGC 

Figure 3.11. 

into g, which in this case is the global language. Additionally, in both cases comorphism 

,u:. 
C -+ g is conservative. We show a correlation of conservativity of comorphism µ: G -4 C 

with coincidence of Ol .. �(A) 02 and Ol ; Z: 'A 02. To do that first we need an auxiliary 
lemma. First note that it uses notation introduced in Notation 2.5.2. The statement of this 

auxiliary lemma is that given two signatures A, A' E ISig'C 1, such that there is a signature 
morphism a: A -- A' and an ontology 0C Sen'C(A') we are guaranteed that 0 itself and 
the set of consequences of 0, restricted to these sentences that were originally expressed 
in A and then translated into A' using Sen-C(a) (i. e. O, ), give us exactly the same set of 
consequences over sentences expressed in A. 

µ lq 

Gµ -º4 

Figure 3.12: Framework j. c over query basis 1 

µý. 

G 
1ý 

-ºG 

Figure 3.13: Framework µ over query basis µ 

Lemma 3.2.31. For any framework it :G --* C over query basis a: L -4 9 and all 
signatures A, A' E ISig'cl, such that A4 A' and an ontology 0C Senc(A') the follow- 
ing holds: 0 Senc(a)(O, ), i. e. for every cp E Sen4(A) we have that 0A cp if 
Sen' (a) (0. ) n co. 

Proof. Let A, A' E ISiel, such that A4 A', let 0C SenC(A') and WE Senc(A). 



3.2. FRAMEWORKS 87 

Assume aý, (O) ý 
,. inun, ) an (cp). Let MEI ModO ((PA (A U A')) I, such that 

Mý 
�tn, l a", (SenC(v)(Oc)). Thus ßnuA, (") In, Sen4(cr)(OQ), by definition, co E Oo 

and therefore Sent(a)(cp) E Sent(a)(OQ). Thus ßAun, (M) = Sen'c(a)(W), this implies 

ßnuA) ý=n W Therefore M ý=g�lnl aA(cp). 
"ý". Assume a ý, (Sen'C(o)(Oo)) =g�(nun, ) an(cp). Let MEI Modý(4)µ(AUA'))1, such 

that M ln, l c , (0). Thus ßAun, (M) k=p, 0, which implies ßA, (M) ý=n, SenC(a)(O. ). 

Thus M ýIb-(Al) aI', (SenC(o)(Ov)). By the assumption we get M IO�tnl aA((p)I as 

required. O 

Next proposition presents close correlation between the inseparability problem in two 

types of frameworks presented above and conservativity of comorphism /1:, C -+ C. 

Proposition 3.2.32. For framework µ: G -+ 9 over query basis lg :9 -* 9 and framework 

p over itself as query basis, comorphism µ is conservative if'V '(A)-inseparability w. r. t. 1g 

coincides with A-inseparability w. r. t. u, for any signature AE ISigCj. 

Note that Ol ~VA (A) 02 means that 01 and 02 are indistinguishable relative to the 

sentences from the set Seno(V'(A)), whereas 01 ýA OZ means that 01 and 02 are indis- 

tinguishable relative to the sentences from the set Sen'c(A). 

Proof. "W". Let u: G -+ 9 be a framework over query basis 1g :9 -+ 9, and let it also be a 
framework over itself as a query basis, moreover, u is conservative. Let A, A' E ISigc1, and 
01,02 C Senf- (A'). By Corollary 3.2.23 we only show OI .. l 02 implies 01 _-10 �lnl 

02. 

Assume that Ol "s? 02, i. e. for any ýp E Sen'c(A) the following holds: 

an'(Di) HgM(nun') an('G) if cA, (O2) ý 
µ(nunI) JA14 M 

We only show that 02 C4µ(A) Ol, as the opposite entailment is shown by replacing with 
each other Ol and 02. Suppose aA, (OI) 14�(AuA? 

) ? P, for some ¶1) E Seno(V'(A)). Let 
ME jModý(V(A U A'))I, such that M 

�(A, ) c , 
(02). This implies ßAO, (M) It, 02, 

since signature morphism a is the identity we get ßA, (M) ý=4A, (02)". By the assumption 
Ol s: ýý, 02 we get ßA4, (M) fin, (Oi)'. This implies Mý 

�(A, ) oß, ((01)*). By the 
conservativity of µ we have that 

ModýýanýýýQ )*) C Mode ((an, (O ))') 

and since OE (a4A, (O1))' we get that M Thus 02 C10 
' A) 01, as required. 

Assume that for any A we have 01 5ztý'A 02 if 01 --A 02. 
Suppose that µ is not conservative. Then there is a signature morphism A °º A' in L, 

such that for some ontology 09 SenC(A') we have 

Modo(a"(Q )) % Modg((an, 

i. e. there is a model ME Modý('µ(A)), such that Ml 
µ(A) al'(O, ) but M V60 

( , (O))4ý,. (o). Thus for some ýº0 0E Seno(t (A)) we have 

aýý(O) ý 
�(A, ) Senýµ(a)(ýý) but aý(Oo) ý 

�ýAý 
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02 Now, let Ol =0 and 02 = Sen'c (a)(0 ). Then by Lemma 3.2.31 we get 01 µ(A) 

but Ol 96102, which is in contradiction to our assumption. 0 

3.3 Robustness properties and Craig interpolation property 

In this section we consider how ontologies can safely be combined. If we have frameworks 

, ul and µ2 over the same query basis 77, then a A1-ontology 01 for µl can be combined 

with a A2-ontology 02 for µ2 by taking the union of aµß (Ol) and aµ2 (02) in G, even if the 

ontology languages of µl and µ2 are different. This justifies using a notation for union for 

ontologies, so we can write, for example, 01 U 02 CE 01. 

3.3.1 Robustness in frameworks 

In the previous section, we studied some properties of : E, but we are mainly interested in 

determining what robustness properties it has, i. e., how safely ontologies can be combined. 
We introduce three types of robustness properties in the framework setting. 

Definition 3.3.1. For any binary framework = (01, µ2) over query basis rl we say that 
is robust under: 

" vocabulary extension if for all signatures Al in Sign', A2 in 51t2, E, E' in SigQ, 

such that -'? (E') (1(41µl (Al) U iµ2 (A2)) C I'? (E), all ontologies Ol C Sen'C' (Al) and 
02 C SenIC2 (A2), the following holds: 

Ol C" 02 implies 019E77 , 02, 

" joins if for all signatures Al in Sigc', A2 in Sig': ' and E in SigQ, such that Vµ1(A, )n 

ßµ2(A2) C ß'7(E) and all ontologies Ol Sen' (Ai) and 02 SenIC2(A2), the fol- 
lowing holds for i=1,2: 

01 i4 02 implies 01 U 02i 

" replacement in framework µ: G --ý G if for all signatures Al in Sig"', A2 in 
Sigc', A in Slgc and E in Sig", such that ßµ(A) fl (4Pµ1(Al) U Iµ3 (A2)) C "(E), for 
all ontologies Ol C Sen4' (A1), 02 C SenIC2 (A2), 0C Senr- (A), the following holds: 

Oi CE 02 implies Oi U0 C£ 02 UO. 

We briefly discuss the intuitions behind those three types of robustness. 
Robustness under vocabulary extension assures us that we can extend signature 

E with fresh symbols, which do not occur in Ol nor 02 and this extension has no impact 
on E-inseparability of 0 and 02. 

Robustness under joins. We will use a typical example to present the importance 
of this type of robustness. First we introduce a proposition which is a consequence of 
robustness under joins: 
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Proposition 3.3.2. For binary frameworks (ac, pl), (µ, µ2), over 77, both robust under joins, 

given A-ontology 0 for p, Al-ontology Ol for µl, and A2-ontology O2 for µ2, with 

ßµ(A) n cµl (Al) 9 V7 (E) , 

and 
ßµ(A) n4 (A2) 9 V7 (E) 

9 

where EE Sie: if 0U Oi is a conservative extension of 0 (for i=1,2), then also 
0U Ol U 02 is a conservative extension of O. 

Proof: Let 0,0 and 02 be as in the statement of the proposition. Then 

OUO1ýEO'40 U02, 

and therefore by robustness under joins, 040U 01 40U Ol U 02. Q 

For example, suppose that two groups of ontology designers independently refine an 

ontology 0C Sen (A) by creating their own set of axioms, say Ol C Sen (Al) and 02 C 
Sen (A2) respectively. Both teams ensure that their ontologies are conservative extensions 

of O. Assume that these groups decide to merge their ontologies at some point, they would 
like 0U Ol U 02 to be a conservative extension of 0, but the fact that Ol and 02 are 
conservative extensions of 0 is not sufficient to guarantee that. Robustness under joins and 
the above proposition give a sufficient condition. 

Robustness under replacement. This allows modules of existing ontologies to be 

reused in new applications. For instance, assume that a group of ontology designers is 
developing an ontology which is supposed to use terminology over E. They know that 
there is another ontology 0', which already defines symbols of E, so instead of creating 
this part from scratch they would prefer to reuse 0'. However, instead of importing whole 
O', it would be more efficient to import a E-module OE of O'. If the framework '3 used 
for answering queries is robust under replacement then from OE .. O', it follows that 
0U OE ~E 0U O'. Therefore importing On instead 0' still gives the same consequences. 

3.3.2 Robustness properties and interpolation 

Now we study correlations of different types of robustness and interpolation. The follow- 
ing proposition shows that weak interpolation in 9 implies robustness under vocabulary 
extension. 

Proposition 3.3.3. Let 'a = (µl, µ2) be a binary framework over query basis rl :Q --º g, 

with rl conservative and such that for every signature E in Sie, QE is surjective. Moreover, 
let there be a comorphism p: G2 -+ Q such that µ2 = p; 77. If C has weak interpolation, then 

,I is robust under vocabulary extension. 

Proof: Let Ol be a A1-ontology for µl and 02 be a A2-ontology for A2 and let E, E' be 
SigQ signatures such that V7 (EI) n (ýP' (A1) U'µ' (A2)) 9 ß'7(E), Assume O1 C' 02. Let 
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a A2(02) 
I 

M2(A2)(Vn(E') OE'((P) 

We need to show that Ol 4, cp. 
First note that aPAz (02) ý=4), (A2)uE' cp by Proposition 3.2.12. If C9 has weak interpolation, 

then from the results of [3] we get that Q also has. Thus we can find IC SenQ (cFP3 (A2) fl 

E') C Sen 2(E) such that 

«n; (02) ý4DP2(n2) I and I ý£, cp . 

This gives us 
a, 2(A3)(anz(02)) 

M 
n(4)°2(Aa)) 01"(A3)(I) p 

P2 

,, (E, ) a", (V). The former together i. e., QA2(02) H 
,,, (A2) a411-2 (A2)(I), and also a', (I) 41 E 

with 01 C1 02 and the fact that IC SenQ(E) gives us 

1 17 (Ol) I= 
,1 (Al)u4'2 (A2) a4vp, (A2)(I) CAl 

This gives us c (01) Mg,, 
11 (Al)U017 (E, ) c, () as desired. Q 

The following can be understood as a partial converse of Proposition 3.3.3. 

Proposition 3.3.4. If framework 1c :G -4 G over query basis 1g is robust under vocabulary 

extension, then g has weak interpolation. 

Proof: Let A, A' be signatures in Sigg and set Ao =A fl A'. Let 0C Seng(A) and 
cp E Seng (A'), and assume 0 FAuA, W' 

Let 0' _ {, 0 E Seno(Ao) 10 J--9 i}, then 0"^:: "o 0' and 0 fi=g 0'. By robustness 

under vocabulary extension we get 0 ; zt: 1,0' and 0 ýl 0'. From 0 Inun' (P we get 
0' )AOuA, cp. Thus 0' is the required interpolant. 0 

Further results require institutions that have Boolean operators: 

Definition 3.3.5. Let gyp, z/i E Sen'(E) in some institution Z. A conjunction of V and 
0 is a sentence caA E Sen9(E) such that for every E-model M, 

MýEWAL' if Mý=Ecp and MI= . 

The negation of ca is a sentence -'cp E Sen'(E) such that 

MI= -if M14-Ecp. 

We say I has negation if every sentence has a negation, and is closed under Boolean 

operators if it has negation, and every pair of sentences has a conjunction. If I is closed 
under Boolean operators, and 0 is a finite subset of Ser>z(E), we write A(O) for the con- 
junction of all the sentences in O. 
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Note that, as usual, the other logical connectives can be defined in terms of negation 

and conjunction; in particular, implication V0 is -'(cp A-), and it is straightforward 
to see that a deduction theorem holds for implications: 

o ýý ýýý if 0u {V} ý=E' " 
Note also that for any comporphism µ: I --> Z', if cp AO is a conjunction in 1, then 

a" (cp AO) is a conjunction in Z' of a, '(cp) and aý (ýi). 

The following proposition shows a correlation between robustness under joins of a and 
interpolation. 

Proposition 3.3.6. For any binary framework a= (µ1,112) over query basis 17, s. t. there is 

a comorphism G2 °- Q and C9 is closed under Boolean operators, if C has weak interpolation, 

then , '' is robust under joins. 

Proof: Let Al E ISig'c'l, A2 E (Sigel, EE ISig QI and 01 be a Al-ontology for pl, 02 be 

a A2-ontology for 1-12 and cp E Sen2(E). 

Suppose that G has weak interpolation, 01 ; zýE 02 and -Pµl (Al) n oDµ2 (A2) y V7(E) 
Assume that 

c lux (/A2 g Oi) Uo (02) Igµ1(A1)U-Pµ7(A2)UD7'(E) 
aFi(T/. 

Then 
an1 9 92 

1 
(01) ýgµ1(A1)U, 

1l12(A2)Ubli (E) aA9(/ 02) 4(w) (3.1) 

Take an interpolant I for (3.1), it is straightforward to see that IC SenQ(E). Since 

institution 19 is closed under Boolean operators and 04 02i we obtain 

c 
\O2/ 

ýýM9 
(jýq)l, JýýI(F) 

1. 

This entails 
«Ä3(O2) I-'o'2(A2)Uý'7(E) aAzýA02) = aEýýý, 

e. aA2 (02) i-4ýý; 
12 (A2)UV1 (E) a" ((P) 

- E 11 

The following proposition shows how framework ', received from framework If by at- 
taching comorphisms to its ontology languages, inherits robustness properties after a. 

Proposition 3.3.7. For any binary framework 3= (µl, µ2) over query basis rl :Q -1 g 

with a comorphisms Cl : C1 -+ ICI C2 : £'2 -º GZ attached and binary framework 3' = 
(µi, µ'2) over 77, where µ; = (i; p for i=1,2 we have that robustness of any type of'a 
implies the same type of robustness of a'. 

Proof: The proof is given by case by case consideration. 
Let' p, µi and 77 be as in the theorem. 
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1. Robustness under vocabulary extension. 

Let Al E ISig4"1 1, A2 E ISie'2 I and E, E' E ISigQ 1, such that E -+ E' and (D'' (E') fl 
(4µl (-PC' (A1))U(P#2 (J 2 (A2))) 9I (E), where 01 9 Sen'c" (A1) and 02 C Sen 4'2 (A2). 

Assume that 3 is robust under vocabulary extension, and 01 CE 02. 

By Proposition 3.2.26 we get aCA' (0k) CI a' (02). Since is robust under vocabulary 

extension we get aA' (0) CE, a' (02). Again by Proposition 3.2.26 we receive 01 CE, 

02, as desired. Thus 3' is robust under vocabulary extension. 

2. Robustness under joins. 

Let Al E ISigCh' 1, A2 E ISigC'2 1 and EE ISigQ1, such that -(Iµ' (4Pt' (A1))fl-Dµ' (, PS' (AZ)) C 
ß'7(E), and 01 C SenCot(A, ) and 02 C SenC'2(A2). 

Assume that is robust under joins, and Ol . ̂sE 02. 

By Proposition 3.2.26 we get aCAi (Ol) 4C A2 (02). Since is robust under joins 

we get aC' (Oi) 4 a$'1(Ol) Uc2 (02) for i=1,2. Again by Proposition 3.2.26 we 

receive O; .,. E 01 U 02, as desired. Thus a' is robust under joins. 

3. Robustness under replacement. Let Al E Sig'c", A2 E Sig'c' 2, AE Sign' and E in 

SigQ, such that 

V(4s(A)) n (V' (-Ds' (AI)) U V2 (I C2(A2))) 94 (E) 

" for all ontologies Ol C Seng'' (A, ), 02 C SenC'2 (A2), OC Senr-'(A). 

Assume that ;' is robust under replacement, and Ol C£ 02. 

By Proposition 3.2.26 we get aß'1(01) CE aA2 (02). Since ,ý is robust under replace- 

ment we get e (Ol) U c4 (0) 97 OC2 (02) U a? (O). Again by Proposition 3.2.26 we 

receive 01 U0 C" 02 U 0, as desired, so ' is robust under replacement. 11 

Now we show how interpolation in global institution closed under Boolean operators 
implies robustness properties. 

t:.. Proposition 3.3.8. Let G be an institution closed under Boolean operators and with in- 

terpolation, then any binary framework a= (µl, µ2) over query basis lg : -ý is robust 
under vocabulary extensions, joins, and under replacement in any framework p: G -ý C 

over 1g for finite ontologies. 

Proof: Robustness under vocabulary extension is a consequence of Proposition 3.3.3 and 
the fact that g has interpolation. 

Robustness under joins is a consequence of Proposition 3.3.6 and the fact that G has 
interpolation and is closed under Boolean operators. 

To prove robustness under replacement in µ, let O; be a A; -ontology for p; (for i=1,2) 
let 0 be a A-ontology for p, and let E in Sign be such that 

V- (A) n (-Pµ' (Al) U 14>143 (A2)) 9E.., 



3.3. ROBUSTNESS PROPERTIES AND CRAIG INTERPOLATION PROPERTY 93 

Assume 01 CE 02 and let cp E Seno(E) be such that 0U 02 4 W; we need to show 

OUO1 = gyp. 
By robustness under vocabulary extension, we have Ol Cýo(A) 02 and therefore 

Ol 02. From 0U 02 ca it follows that 

02 l . (A)uE A (0)) = cc 
and therefore ®1 = (n)uE A(an(0)) = cc, giving 0U04 cp as desired. Q 

The above proposition implies the corollary stating that any framework over query basis 

1FOL : FOL -- FOL is robust under vocabulary extensions, joins, and under replacement 

for finite ontologies. 

Corollary 3.3.9. Any binary framework a= (µl, µ2) over query basis 1FOL : FOL --ý 
FOL is robust under vocabulary extensions, joins, and under replacement in any µ: L --ý 
FOL over 1FOL for finite ontologies. 

The following corollary is a direct consequence of Corollary 3.3.9 and Lemma 3.2.29. 

Corollary 3.3.10. Any binary framework '_ (µl, PZ) over query basis 77 : FOL -+ 9, 

with comorphisms pl : Ll -a FOL and p2 : L2 -+ FOL, is robust under vocabulary 

extensions, joins, and under replacement in any µ: G such that there is comorphism 

p: G -+ FOL, for finite ontologies. 

The following proposition shows a correlation between interpolation and robustness 

under joins for any framework p: L -+ G over itself as query basis, where L is an institution 

closed under Boolean operators. 

Proposition 3.3.11. Let C be an institution closed under Boolean operators, let p: L --> G 

be a framework over itself as query basis, such that µ is robust under joins for possibly 
infinite ontologies. Then L has interpolation. 

Proof: Let E, E', E1, E2 E ISig"j, such that the square 

E 
al 

f El 

x 

commutes. Let 0C Sen'C(E1) and cp E Sen'c(E2). 

Assume a£, (a, (O)) =g�(£, ) aýE, (a (gyp)). Define 

O' _ {X E Sen" (E) 1 4E, (°) ý= 
n(Ej) aE17 , 

(ai(X))} 
. 

We show that 0' is an interpolant for aý, (c (0)) a£, (a'(cp)). Suppose not. 
is satisfiable. Take a 9-model M satisfying aýý (aZ (O')) U Then 42 (u2 (O')) Uc2 ('0 

aýz(ýcp). Let Ol 9 Senr-(E) be a set of all sentences '/i E Send(E), such that M= 
,I 
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aE'('). Then both o-1(O1) U0 and 02(01) U-cp are E-conservative extensions of 0. By 

robustness under joins, o2 (02(0k)) Uo (0) Uo (-'(p) is a E-conservative extension of 0j, 

thus it is consistent. Therefore all (oi (0)) aE (o (V)), but this is in contradiction 
to our main assumption. This implies that 0' is an interpolant for c, (o (0)) 

(p)) as required. Q a E7, (o 

The following corollary is a direct consequences of Proposition 3.3.11. 

Corollary 3.3.12. Let G be an institution of any fragment of first-order logic closed under 
Boolean operators, let p: G -3 9 be a framework over itself as query basis, such that µ is 

robust under joins for possibly infinite ontologies. Then G has interpolation. 

A particular case of Corollary 3.3.12 is the case where FOL is the global institution. 
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4.1 Introduction 

CHAPTER 4. FRAMEWORKS WITH ABOXES 

In the previous chapter we introduced frameworks as constructions allowing us to use an 

ontology to answer a query, even if they are formulated in different formalisms. In this 

chapter we restrict our attention to an abstract notion of description logics and investigate 
how we can work with them within the framework setting. 

When working with description logics we can distinguish two main tasks: determining 

concept hierarchies and answering queries about individuals. For determining concept hi- 

erarchies we need an ontology only, but to answer queries about individuals we need an 

ontology and an ABox. In some sense the ontology fixes the terminology, whereas the 
ABox tells us what is known about individuals. The ontology helps us to infer new in- 
formation about individuals with the use of concept hierarchies. One of the main issues 

is the interaction between the ontology and the ABox, as combining them may lead to 

potential difficulties. In particular, one is interested whether adding the ABox introduces 

new concept inclusions. 

This chapter has two main parts. The first part of the chapter defines description 
logics in categorical setting and shows how concept hierarchies are introduced into the 
framework. We start with introducing a general definition of description logic which shows 
how any description logic is built over a variant of C'}{ (we use the notion of slice category to 
formulate that definition). This definition allows us to treat description logics in a general 
and systematic way and is used to show how queries about concept hierarchies can be 
formulated in a framework. Second part of the chapter shows how ABoxes and queries 
about individuals can be introduced into the framework setting. As the first step we show 
how any description logic extends to description logic with individuals, this is necessary for 
introducing ABoxes. But to be able to translate the ABox together with the ontology into 

the global language in the framework we also show how a comorphism between description 
logics extends to a comorphism between description logics with individuals. This fact is 

then used to show that any framework built from description logics extends to a framework 

allowing for the use of individuals. We describe the relations between both structures and 
investigate the relations between consequence relations in both types of structures as well 
as relations between E-entailment between ontologies and E-entailment between ontologies 
in the presence of ABoxes. 

-We also discuss how introducing individuals may affect the consequence relation in 

an institution of description logic. We define notions of query conservativity and query 
expansion which tell us how an institution of description logic behaves when we introduce 
ABoxes. We also define the notions of consequence of an ABox, which eventually allows 
us to define the notion of concept interpolation, which `splits' the consequence relation for 

assertions into two types of reasoning. 

4.2 Description Logics in a Categorical Setting 

To be able to talk about description logics in a general way we need to find and categorically 
present some properties shared by all of them. In our work we use C1-t (or rather a variant 
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of it as we will justify below) as a benchmark to discriminate description logics from other 
logical systems. In general, we require that description logics are built over Cl-l, this is 

based on the fact that one of the main properties of description logics is the ability to 
build hierarchies of concepts and, as mentioned in Example 2.4.8, C7{ is a basic description 

logic and the specification of concept hierarchies is its main property. More specifically, we 

will define an institution T to be a description logic if there is a morphism from. T to C1{. 

Intuitively, that morphism provides us with means to translate signatures of Z to sets of 
I-concepts in CI{, where we can build sentences which are subsumptions. These sentences 

can be translated (via the morphism) back to Z, which in turn provides us with models that 

are used for interpreting the translated Cl-l-sentences. We also know how to translate these 

models to Cl-l in order to receive interpretative structures in CII. This definition allows us 
to extract all the logics that are description logics and to treat them in a systematic way. In 

fact we are also able to systematically relate such description logics in a categorical setting. 
To this end we use the notion of a slice category introduced in Definition 2.3.10. We relate 
the notion of slice category to the definition of description logic, where we have a category 

of institutions Inst, an institution CH is the `target' of the slice category and morphisms 
to Cl-l are the objects of the slice category. In this way we say that description logics are 
objects in the slice category Inst/Cl-I. For instance consider £G with a morphism ec to C7{. 

Example 4.2.1. We show how components of morphism £G -4 CR are constructed. 

" Iec maps an £C-signature (P, R) to the set Con(P, R) of £G-concepts. 

" Natural transformation 7(P, R). By definition Senc'(II) is a set of sentences of the 
form pCq, with p, qE II, so Senc7'(Ak'(P, R)) is the set of subsumptions CCD, 

where C, DE ConeG(P, R). Therefore, we may take ryep, R) to be the identity. 

" Natural transformation 5 
, R) " For any MEI ModE'(P, R)1, we set b(epR)(M) _ M. 

This is due to the fact that (P, R)-models in CC are also interpretative structures for 
£G-concepts built over (P, R), i. e. Cons'c (P, R). 

Now we show that the satisfaction condition holds for every signature (P, R) E (Sig" 1, 

model ME I MocfC(P, R)I and concept inclusion CC-: DE Senc7'(IkK(P, R)): 

M lf(, 
R) 'Y(P, R)(C C D) ifö(eP, R)(M) (P, R) CCD. 

Proof: 
M ý=(P, 

R) I(p, R) 
(C C D) 

if 

M ý=( p, 
R) CcD 

if 
CM C DM 

if 
C6(P, R)(M) CDP, R)(M) 

if 

b(P, R)(M) 
r- (P, R) CCD 

0 
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The composition of the morphism described in Example 4.2.1 with the morphism from 
Example 2.4.24 gives a morphism e+e ; ec : £G+ -a Cl-l, which tells us how £G+ is built 

over Cl-l. As it was already mentioned £G+ extends £G with role inclusion axioms but as 
we are unable to formulate hierarchies of roles in CI-1 we can, without any harm, define 

morphism e+c : EL+ -º Cl-I to be identical to ec. 
Similarly, the composition of the morphism described in Example 4.2.1 with the mor- 

phism from Example 2.4.23 gives a morphism ae ; ec : ACC -+ Cl-l, which tells us how 
ACC is built over Cl-l: functor qlae;, maps an ACC-signature (PR) to CV-signature in 

two steps, first to EL signature (P, R) (as £G and ACC signatures are identical IQ°e is the 
identity), then this EL signature is mapped to Ci{ as presented in Example 4.2.1. So ef- 
fectively ALC-signatures get mapped to the set Con (P, R) of £G-concepts. The natural 
transformation y"; R) is also a composition of the identity from Example 4.2.1 and the 
inclusion from Example 2.4.23. As models of ACC and EL are essentially the same we have 
bPR) = tS(PR) 

The fact that Wae; allows us to build hierarchies of concepts in Cl-l with use of EC- 

concepts only clearly is not satisfactory. For that reason we formulate an alternative mor- 
phism directly from ALC to Cl-l, we call it ac. Morphism ac is built in the following way: 
functor IF" maps an ACC-signature (P, R) to the set Con'LC(P, R) of ACC-concepts. Nat- 
ural transformation y('PR) is defined to be the identity, as Senc7'(IQ"(P, R)) is the set of 
subsumptions CCD, where C, D E Con ALc(P, R). For any ME IModACc(P, R)I, we 
have that ö( 'pýR) (M) _ M. Proof that the satisfaction condition holds is similar to that for 
morphism ec. 

The composition of the morphisms described in Example 4.2.1 with the morphism from 
Example 2.4.27 gives a morphism fe ; ec : FOL -+ Cl-l. Similarly as in the case for ae ; ec 
above, we have that FOL-signature is first translated into EL and then to M. So first 
the functor 'I' translates an FOL-signature II into an EG-signature in the following way: 

(II{xo}, II{xo, xl}), where 

II{xo} = {gyp E SenFOL(II)1cp contains exactly one free variable xo} 

and 

n{""} = {' E SenFOL(II)Jcp contains exactly two free variables xo and xl}. 

Then the functor IQ' translates Wf8(II) into Con'O'C(Wf°(II)) Even though that means that 
we have only CC concepts available this is not problematic as II{-To} contains all the formulae 
with one free variable. 41f°(II) is translated into Con-r-C(Wfe(II)). In this case FOL-models 
over II are first converted into £ C-models and then into C? {-models. 

These examples illustrate our argument that any institution that is the source of a 
morphism to C1-L can be thought of as a `description logic'. Specifically, given a morphism 
µ2. CH, every signature E in 

.1 gives a set WP(E) of concepts, while every C7 -sentence 
cC c' with c, c' E %YM(E) can be translated to a E-sentence in Z, and every E-model M gives 
rise to an interpretative structure b£ (M) that interprets concepts as subsets of a domain. 
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The satisfaction condition tells us that 

M ýE y (c C c) iff c(M) C cboE(M) 

where the sentence ' 0(c E- c') states the concept cis subsumed by the concept d. 

Institution C7-l as introduced in Definition 2.4.8 has only unary concepts available for 

sentence construction. However, in practice the ability to express hierarchies of n-ary 

concepts in the target of the slice category is desired. The main reason for that is the 
fact that we will use the target of the slice category for extending description logics with 
individuals. In our approach to formulate statements about individuals we will use the 

signatures in the target of the slice category. The idea is to introduce sentences of the 
form c(i), where c is a concept and i is an individual. As in CH-signature we only have 

unary concepts available we will be able to formulate statements about individuals with use 
of unary predicates only, for instance we will be unable to state that two individuals are 
related with each other via binary concept. This also means that can only refer to unary 
properties of individuals, which can be inconvenient in practice. 

To avoid this problem we introduce an institution C? -l which extends Cl-I with n-ary 
concepts and we use C'H for defining description logics. 

Notation 4.2.2. To simplify the notation, in what follows for any model M we will denote 

the domain of M by IMI. 

Definition 4.2.3 (Institution of Conceptual Hierarchies C77). A C3{-signature is an w- 
indexed family of sets of n-ary predicates (Hn)nEw" We call such families w-sets. Signature 
morphisms a: H -+ H' consist of a family of arity respecting functions between sets of 
predicates, i. e. an Hn -a H' , for nEw. Given a UR-signature H, we define sentences 
over H in the following way: 

Senc'H (II) :: _ (IIn x IIn), 

nEcr 

in other words, Senc'(II) is a disjoint union of sets of sentences of the form pCq, where 
p, gEll , 

forsome nEw. 
Given a signature morphism o, : II -+ II', we have SenM(a) : Sencx(II) -+ Senc7W(II'), 

this is done by renaming predicates according to a. 
The semantics of C? { is defined by means of interpretations M= (IM 1, -M), which are 

objects in the category of models, where for each II E SiF" we have category Mod? (ri). 
The interpretation domain IMI is a non-empty set, and M is a function mapping each 
n-ary predicate pE IIn to a subset pm of IM In, i. e. n-tuples of IM I. Given a signature 
morphism Q: II -4 II' the reduct M jo is defined by IM jo I= IM I and by pm t- or(P)M. 

An interpretation M satisfies pCq (written MHpC q) if pß'1 C qM. 
A straightforward argument shows that the satisfaction condition holds for U7, i. e. given 

a signature II, signature morphism a: II -+ III, ip E Senc? '(II) and ME IModcx(II')I the 
following holds: 

Jet ýcýn ýP ifM ý=ýn'i` a(W). 
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4.2.1 Description logics as objects of the slice category Instl0i 

Now we provide a definition of description logics which allows us to treat them in a general 
and systematical way. This definition shows how description logics are built over MR. More 

specifically, we define an institution I to be a description logic if there is a morphism from 
Z to C? {. Intuitively, that morphism provides us with the means to translate signatures of 
Z to sets of 1-concepts in CW, where we can build sentences which are subsumptions. These 

sentences can be translated (via the morphism) back to Z, which in turn provides us with 
models that are used for interpreting the translated ei{-sentences. We also know how to 
translate these models to E7 -i in order to receive interpretative structures in UNI. The fact 

that description logics are defined with the use of morphism to U will be used to introduce 
individuals into DL-signatures, as well as to formulate sentences with individuals. 

Definition 4.2.4. A description logic is an institution 2 together with a morphism 

it :I -3 C? {. 

Categorically, description logics are the objects of the slice category Inst/C37, where 
Inst is the category of institutions and their morphisms. If µ :. T -+ C7i and v: Z' -a Cad 

are description logics, an arrow p -3 v is a morphism t; :. T -+ Z' such that µ=; v. 

Example 4.2.5. £G is a description logic. 

We show how components of morphism £G !i Cý{ are constructed. 

" Functor 4/1'e. For any EG-signature (PR) we define (W (P, R))1 = Con"(P, R) 

and (, Q'(P, R))n =0 for all other n. We sometimes use the notation W°E(P, R) _ 
(0, Con" (P, R), 0,... ). 

" Natural transformation 'y(P R) . By definition Senc (II) is a disjoint union of sets of 
sentences of the form pCq, with p, qEH., but 'I' (P, R) only has unary concepts, 

so SenZW(AF°C(P, R)) is the set of subsumptions CCD, where C, DE Con" (P, R). 
Therefore, we may take y(PR) to be the identity. 

. Natural transformation S(t'R). For any ME IMoc1' (P, R)I, we set ö (PR) (M) = M. 

This make sense because (PR)-models in CL are also interpretative structures for 
CL-concepts built over (PR), i. e. ConEC(P, R). 

Now we show that the satisfaction condition holds for all (P, R) EI Sij'c 1, MEI Mocf' (P, R) 

and CCDE Senc'(W"(P, R)): 

m I-(PR)'y(P, 
R)(Ci 

C D) if b(P, 
R)(M) I'= (P, R) 

C C D. 

Proof: 
JIA (PR) yýP, R) 

(C C D) 

if 

M[=ýR)CCD 
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iff 
CM C DM 

iff 
Ca P, R)(m) C D6(P, R)(M) 

iff 
s(p, 

R)(M) 
I= 

(p R) 
CCD 

0 

Example 4.2.6. ACC is a description logic. This follows from the fact that we can compose 

morphisms and construct a composition ae ; ec : ACC --* CWl. But in this case (similarly 

to ae ; ec) we have that ACC signature (P, R) gets mapped into Con", which is not satis- 
factory as we would be able to formulate concept inclusions using £G-concepts only. This 

means that we cannot use negation, which distinguishes ACC from £G. For that reason 

we define an alternative morphism to UK-, a morphism ac which tells us how 
. 
AGC is built 

over Ci{. Functor W is defined in the following way: ''(P, R) = (0, ConArc (P, R), 0,... ). 

Natural transformation yazR) is the identity as T'ý(P, R) only has unary concepts, and so 
Senc7'('"(P, R)) is the set of subsumptions CCD, where C, DE ConA'Cc (P, R). Nat- 

ural transformation 5'P R) is the identity, so for any MEI ModA'CC (P, R) 1, we have that 
Jac (P 

(M) = M. The proof that the satisfaction condition holds is very similar to the one 
for Example 4.2.5. 

Example 4.2.7. Now we show that FOL is a description logic, i. e. we define a morphism 
fc : FOL -a C9{. We only sketch how the components of morphism fc : FOL -+ C9-l are 
constructed. 

Functor'Pa. For any FOL-signature (II�)nEI, we define 

cpf(fl) = (FormFOL(II, n))nEw " 

where Form POL (II, n) is the set of FOL formulae over II with n free variables (x0, 
... , x�). 

Sentences in Cpl over T (II) are defined in the following way 

Sencx('''c-(n)) _ 
ý((ý (n))n x (ýY (n))n) 

nEw 

Natural transformation yn translates C7-l-sentences, constructed over Ve(rl), into FOL- 

sentences with countable set of variables in the following way: 

7 (C C D) = (VXO.... 
9 xn)ii D 

where C, DE FormFOL (n, n) 

The natural transformation bn is the identity, so for any FOL II-model M we have 
bn (M) = M. It is straightforward to see that the satisfaction condition holds for all 
II E 1SigFOLI, MEI Mocf°L(rI)I and CODE Senn (ýY (II)); 

M ý=ýýoýL ryýn) (C 9 D) i b(n) (M) = 
ri) CCD. 
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Using composition of morphisms e+e : EG+ -a EG and ec : EC -+ UR we can show that 
£G+ is a description logic, but we find it useful for further studies to distinguish different 

types of £G+ and show that each of them is a description logic. 
We distinguish different types of EG+, insofar as they allow different role inclusion 

axioms. So we distinguish the following: 

" EGO allows axioms of the form: rCs, 

" £Gi allows for £Go axioms together with axioms of the form: rorCr, 

" £C allows axioms of the form: rl o"""o r� r, with n>1, 

" £G3 allows axioms of the form: rl o""" ON C Si 0"""08, n with m, n>1. 

Example 4.2.8. £G; is a description logic, where i= 10,1,2,3}. 

We show how components of morphism e±C : £G; -+ Cii are constructed. 

" Functor 91°±C. For any EG; -signature (P, R) we define 

we `(P, R) = (0, Cont'c (P, R), R, 0, 
... 

), 

i. e. We ` translates P part of the signature into £G; -concepts over (P, R) and is the 
identity for R part of the signature. 

" Natural transformation -ye-' R). By definition Sen"(II) is a disjoint union of sets of 
sentences of the form pCq, with p, qE IIn, but since 

'Y`; +e(P, R) = (0, ConeG4 (P, R), R, 0, ... ) 

we have that 
p, qE Con-04 (P, R) or p, gER. 

Since 

SeneGt (P, R) :: = Cone4 (P, R) C Cone4 (P, R) WRR 

we have that 

ry°±e Send °+ý PC Sent (PR) (((, R))) 
- 

(P> R) for i>0 

and 
7(, j) (Sent/ W (Q* `(P, R))) = Sent (PR) for i=0. 

Natural transformation bý p R) 
. For any ME I Mocf (P, R) I, we define b(P R) (M) = 

Jul. 

Now we show that the satisfaction condition holds for every signature (PR) E ISigýL{ 1, 

model ME IMod r-, (P, R)I and sentence VE Sencx(W"+t(P, R)) 

eýz (P, R) II(P, R)(4P) ' ZÄ a(P, 
R)(M) W' 

ýP 
`; P (PAR) 
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Proof: In the proof we distinguish two cases: 

1. cp is of the form Con"t (P, R) C Cone'C (P, R), 

2. cp is of the form RCR. 

Example 4.2.5 already shows the case (1), so we only show for the case (2). 

iff (by definition) 

iff 

iff (by definition) 

iff 

M ý(p, 
R) ry(P R)(r 

C s) 

Mý(p, 
R) rC8 

rM CsM 

e+a a+t 
ra(,. -)(m) C ss(p, R)(M) 

b(P, 
R) 

('M) rCs 
V, (PR) 

0 
Example 4.2.8 shows how different variants of EG+ are description logic. The reason 

why it works for all of them is the fact that %Vft is the identity on R part of the signature. 
In this way only role inclusions of the form rCs, with r, sER, are allowed. Now we 

show a morphism e3 c, which allows for arbitrary role inclusions by translating R part of 
the signature into R' = {rl o"""o rnjrl ... rn E R}. 

Example 4.2.9. £G3 is a description logic. 

We show how components of morphism e3 c: £C3 -4C{ are constructed. 

" Functor T°3 ý. For any &C -signature (P, R) we define 

°3 ̀(P, R) = (0, Cone£9 (P, R), R*, 0,... ) 

where R* = {rl o"". o r�Irl ... r,, E R}. In other words Qe; e translates P part of 
the signature into EL -concepts over (P, R) and R part of the signature into a set of 
expressions of the form ri o"""or,,. 

" Natural transformation ry(}R). By definition Senc (II) is a disjoint union of sets of 

sentences of the form pCq, with p, qE Iln, since 

T°3 e(P, R) = (0, Cone1 (P, R), R*, 0,... ) 

we have that p, qE Cone'c9 (P, R) or p, qE R*. From this it follows that 

Seng (qf°3 ý(P, R)) = ConeL3 (P, R) x Con-r'cg (PR) W R* x R' 

Thus it is not difficult to see that yýP R) is the identity and we have 

7(P R) (Seneca (T 4 (P R))) = SeneG; (P, R) 
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. Natural transformation 5P R). For any ME IModeG3 (P, R)I, we define b(P R)(M) = 
M, with 

ej L 

(rl o ... o rn)d(p. R)(M) = rM o ... o rtt C 1M 12 

Now we show that the satisfaction condition holds for every signature (P, R) E ISigr'c I, 

model MEI Mocf (P, R) I and sentence cp E Senn (xY°3 '(P, R)): 

lVi ý=(P, 
R)'Y(PR)(P) 

'ff a(pR)(M) 
Vx 2(PR) 

Proof: In the proof we distinguish two cases: 

1. V is of the form Cones (P, R) C Con ýý3 (P, R), 

2. ýp is of the form if C if. 

As Example 4.2.5 already shows for the case (1), we only show for the case (2). Let 

V=rlo"""or� C81o"""osm 

M ý(PRý yýpR)(rl o... ornC810... osm) 

iff 

if 

M =(pR)rlo... or�Cslo... osm 

rmo"""orn smo"""os, ý;; 

if 

r1(P, 
R)(M) 

o ... o ý"6 
R>(M) 

gl(P'ß)(M) p ... p gm 
33 

') 
(M) 

iff 
b(P, 

R)(M) 
ý=C, +t(PR) rl o ... o r� C 810 ... os,,,, 

ýY 3, - 

0 

4.2.2 Description logics with individuals 

Now we show how any description logic can be extended to an institution with individuals. 

Definition 4.2.10. Given a description logic p: Z -+ U'-H, define the institution lip as 
follows. 

" SigJI = SijZxSet. That is, signatures are pairs (E, I), where E is an -T-signature 
and I is a set; similarly, signature morphisms are pairs (o, g) : (E, I) -+ (E', I') with 
a: E -+ E' in Sign and g: I -i I' a function in Set. 

" Seniµ(E, I) = Sen2(E)+1: (W' (E, a)xI^). That is, sentences are either E-sentences 
nEw 

in I, or pairs (c, i) with CE 'I'µ(E)n an n-ary concept and iE Ina tuple of individuals; - 
we use the notation c(i) to suggest the intended meaning that the tuple of individuals 
i is an instance of the concept c. 
For (a, g) (E, I) --ý (E', I'), we let Senl'(o, g') = Sen'(a) + ßµ(o) x g, which maps a 
E-sentence cp to Sen'(o)(cp), and a sentence c(i), with c Eto TO(a)(c)(g(i)). 

r. _ý 



4.2. DESCRIPTION LOGICS IN A CATEGORICAL SETTING 105 

" Mod"(E, I) has as objects pairs (M, f ), with Ma E-model in E. and f: I -1 
154(M)I a function that 'interprets' individuals as elements of the domain. Arrows 

h: (M, f) -a (M', f') are arrows h: M -ý M' in MocF(E) such that f' =f; 6E (h). 

For signature morphism (a, g) : (E, I) --ý (E', I'), Mod" (o, g) maps a (E', I')-model 

(M', f') to (MocF(a)(M'), 9; f'). 

" For cp E Sen'(E), 

(M,. f)ý=(E, J)w iff MýEýP, 

and for sentences c(i) with cE 'P(En) and iE I", 

(M, f) ýýE, ý) ý(Z) if 7(i) c ca£ýM) 

where by f we mean the extension of f to n-tuples. 

To show that Ip is an institution we still have to show that the satisfaction condition holds. 

Here we only show the satisfaction condition for the case with sentences of the form c(i). 
The case for sentences without individuals is straightforward. 

Given a signature (E, I) and a signature morphism a (E', I'), with 

or = (aE, al) where aE :E -1 E' and al :I -4 I', a sentence c(i) E Sen", (E, I) and a 

model (M', f') in Mod"' (E', I'), the following holds: 

(M', f')js ýýE, tý c(i) iff (M', f') I(Y, 
t') a(c(i)). 

Proof: 
(M', f') r., I(E, 

I) c(i) 
iff 

- (M't , f't 1) If£, 1) c(z) if 

iff 
77(aI(i)) E QE(c)8E(M') 

if 

(MI, f') I(E', r) a(c(i)) 

11 

Now we spell out the details of how to extend EG to EG with individuals in the signature. 
We show that using the morphism ec from Example 4.2.5. 

Example 4.2.11. The institution IIec has as signatures triples of sets (P, R, I) with triples 
of functions as signature morphisms. A (P, R, I) -sentence is either a CCI of the form CC 
D, where C and D are (P, R)-concepts, or is of the form C(i), where C is a (P, R) -concept 
and iEI. (P, R, I)-models are pairs (Al, f ), where M is the usual (P, R)-model in er, and 
f: I .4 (MI. (M, f) i(P, R, I) CCDi ff MI (R) CCD, and (M, f) C(i) if 
f (i) E CTM. 



106 CHAPTER 4. FRAMEWORKS WITH ABOXES 

Since limits and especially colimits of signatures are essential for modularity, it is useful 
to note that the following holds: 

Proposition 4.2.12. Si8ý` has all small (co)limits that Sigz has. 
Proof: This follows from the fact that Set is (co)complete, and (co)limits can be taken 

pointwise in Sieg = Sign x Set. 

Similarly, we have 

Proposition 4.2.13. IIµ is (semi-)exact if I is. 

Proof: We only show the case for semi-exactness, as the case for exactness considers in 

addition only finite (co)limits and therefore is simpler. 
For the direction "=" first assume that IIµ is semi-exact. Now assume that the signature 

morphisms in I shown in Figure 4.1 form a pushout. This implies that after extending 

E' ºEi 

Cl 

zC- EI 
z 

Figure 4.1: Signature morphism square in 1. 

these signatures with the empty set of individuals, as shown in Figure 4.2, the signature 
morphisms form a pushout square in Sig A'. But by the assumption we have that the model 

(os, l) (ý, 1) 

(E2,0) 
(d ýý (E', 0) 

Figure 4.2: Signature morphism square in IIµ with empty sets of individuals. 

morphisms, as shown in Figure 4.3, form a pullback square in IIp. Note that a (E, 0)-model 
in lip is of the form (M, t), where t is the inclusion 0" JOE" 

, 
(M)1,1, and is equivalent to a 

E-model M in. T. Therefore we have that the model morphisms, as shown in Figure 4.4, in 
Z form a pullback, as desired. 

For the direction ". 4=i" assume I is semi-exact. Assume we are given a pushout square 
of signature morphisms in lip (see Figure 4.5). We want to show that the model morphisms 
in lip form a pullback square (see Figure 4.6). To do that we take a commuting square of 
model morphisms in lip with category C (see Figure 4.7) and show that Figure 4.6 has the 
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Mod(E, o) 
Mod 

Mod(E1, O) 

Mod(a2 1) 
1M0dh1) 

Mod(E2, O) 
Mom d(,, 1) 

Mod(E', O) 

Figure 4.3: Model morphism square in Ili with empty sets of individuals. 

Mod(E) 
Mme') 

Mod(E1) 

Mod(al) 1M0d(ai) 
Mod(E2)' Mod(E') 

Mod(a'2) 

Figure 4.4: Model morphism square in Z. 

(0,1, gi 

(x2,92) 91) 

(E2,12) 
(d ,ý 

Figure 4.5: Signature morphism square in I p. 

Mod (E, I) 
Mod (a,, gi) Mod (El, 11) 

Mod(a2,92) 

1Mod(49) 

Mod (E2,12) "*-- Mod (V, I') 
Mod(d, g2') 

Figure 4.6: Model morphism square in iµ. 

Mod al, gl) Mod(E, I) Mod(El, l1) 

Mod(a2, g2) 

IF1 

C Mod(E2,12) 
F2 

Figure 4.7: Model morphism square in IIp with category C. 
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universal property of pullback by constructing a unique morphism F: C -+ Mod (E', I') 

such that F; Mod (a;, g; ) = F; (with i=1,2). 
Any (E, I)-model M is of the form M= (M, f ), where M is a E-model. This gives 

us a functor UE : Mod(E, I) -+ Mod(E) sending (M, F) to Al. Now if Figure 4.6 com- 

mutes, this implies that the outer square of Figure 4.8 commutes, inducing a functor 

U: C --4 Mod(E'). For c in C we write (Ali, f; ) for F; c (with i=1,2). Then we 

Mod(al) 
Mod(E)ý Mod(Ei) 

v£. 

Mod(al) Mod(a, ) Mod(EI, II) 
0 

Mod, (E2)ý-- Mod(E') 
Mod(aj) 

U 
C 

Ul\E2 

Fz 
Mod(E2, '2) 

Figure 4.8. 

have Mod(ai)(Uc) = UE, (Fic) = UE, (MI, fl) = Ml and Mod(a2)(Uc) = UE, (F2c) = 
UE, (M2, f2) = M2. Now we have to determine the mapping 1'-+ 15.1, (Uc) I. But we have 

models (Ml, fl) and (M2, f2) and so mappings fl : I3 -+ I6 E', (M1)I and f2 : I2 -a Ib£2(M2)I, 

such that Mod (a,, 91) (MI, fl) = Mod(a2,92)(M2, f2), because Figure 4.7 commutes. We 
have Mod(al, gl)(Ml, fl) = (Mod (al)(MI), gl; fl :I --i I6'(Mod (al)(MI))I) and similarly 
for Mod(a2, g2)(M2, f2); therefore Ib£(Mod(al)(Ml))I = Ibr" 

, 
(Mod(a2)(M2))I and gl; fl = 

, 
(MIM = IöE"(Mi)I g2; f2. We also have that I5E"(Mod(al)(Mj))j =. IMod(WYµ(ai))(6r" 

and similarly for I5 (Mod(a2)(M2))I, so I5 (Mod(al)(Mi))I = IbI'(Mod(a2)(M2))I. We 

also have that I5 1(Mi)I = Ib. 
l(Mod 

(ai)(Uc))I = IMod('yµ(ai))(b£, (Uc))I = IBE", (Uc)I 

and similarly for Ib"2(M2)I, this gives us that Icy , (Uc)I = 16 1(Ml)I = Ib'2(M2)I. This 

gives us that we have f, : Ii -- I b£, (Uc) I and f2 : I2 -Ib, ', (Uc) I, so we use the fact 

that if Figure 4.5 is a pushout, so too is Figure 4.9. Now, we know that gl; fl = g2; f2, 

91 
ý Il 

92 A 
ft 

-º I2 
92 

I, 

fz I5£, UcI 

Figure 4.9: Morphism square for part of Ip-signature with individuals. 

so we get u: I' -+ I&£, (Uc) 1, such that f; = g''; u (with i=1,2). We therefore set 
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Fc = (Uc, u : I' -+ I5IF, (Uc)1). This defines F on objects of C, we need to show that F 

is the unique functor such that F; Mod (o;, gi) = F; (with i=1,2). Assume it is not, 
then there is another functor F' such that F'; Mod (v;, g; ) = F; for i=1,2. We have that 

F'; Mod (v;, g, '); UE, = F;; UE, and F'; UE,; Mod (a, ) = F;; UE,, therefore F'; UE' = U. So 

we have that (F'c) _ (Uc, f: I' -+ I5 , (Uc)I). But we also have that gi; f=f; therefore 

f=u by pushout property of I. Thus we have that (F'c) = (Uc, u : I' -+ Jr', (Uc) 1). But 

this is exactly how Fc is defined, so F' = F. 0 

The construction of IIµ is functorial in p. In other words, II is a functor Inst/C7{ -- Inst, 

which means that any morphism of description logics extends to a morphism of description 
logics with individuals. 

Definition 4.2.14. Let and p': Z' i C3{, and let e: µ -1 µ' (i. e., 
Morphism IC: lip -+ IIµ' is defined as follows: 

" Define W= T{ x lSt : Sid -* Sigh 
. 

This maps a IIµ signature (E, I) to the IIµ' 

signature (V (E), I), and similarly for signature morphisms. 

" For cp E Sen"' (E), let ryl(ý r) 
(cp) = 

4(c'), and for cEWµ (W { (E)) _ ßµ (E) and iEI, 
let ry(C, l)(c(i)) = c(i). 

" býý I) : Mod'A(E, I) -+ Modµ ('I' (E), I) is defined by 6'£,, 
)(M, f) = (4(M), f ). The 

actions on model-morphisms and signature morphisms are defined similarly. 

Naturality of - IIC and 51C, as well as the satisfaction condition for i[ and preservation of 
composition and identities follow straightforwardly from: 

" 7ýý, 1) ='Y£ + lýµ(E) x lr, and 

" e( t= b£ x1 (r, la£1), where 1sýc(r, j5 l) is the identity on the function mapping 
individuals to the domain in CI-l. 

We omit the details here. 

In fact, II extends to a functor Inst/CT-l -a Inst/II(lc ) from description logics to de- 
scription logics with individuals. Because 1Z : C9i -3 UR is final in Inst/CI{, and any 
p: Z -+ UR in Inst can be seen as p: It -+ 1 in InstlU? - 

, we get IIµ J4 --+ II(1ZW) as a 
morphism in Inst, and therefore an object in Inst/I(1Uý). Similarly, any arrow £: µ -i v 
in Inst/C7d gives ][ : IM -4 Iv. This overloads the II functor, so we adopt the following: 

Notation 4.2.15. For a description logic p :. T -+ U? R, we write 2--t for the institution Bµ, 
and u+t : 1+t -i C? -l+t for the description logic with individuals (i. e., for the application 
of the functor Inst/Cf -4 Inst/C? l+t). 

For example, we refer to the institution of £G with individuals presented in Exam- 
ple 4.2.11 as £G+t. 

The final object in Inst/C? { is C9-l+t, and CW+t gives us a `minimal' description logic 
with individuals. 
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Example 4.2.16. The institution C7l+t has as signatures pairs (C, I), where C is an w-set 

and I is a set, and signature morphisms are pairs (f, g), where f is a family of functions 

(fn : C� -+ Cn)�E,,, and g: 1 -4 P. A (C, I) -sentence is either cCd, with c, dEC,,, or 
is of the form c(i), with cE Cn and iE In. (C, 1)-models are pairs (M, f ), where M is a 
C-model in C? i and f: I -4 IMI. (M, f) =(c, I) cCd if cm C dM, and (M, f) J--(c, l) c(i) 
iff 7(i) E cm, where cE Cn and iE In. 

It is natural to think of Cpl-+t as a description logic by forgetting about the individuals 

that are added to signatures, and we shall return to this idea in Definition 4.2.18 below. 

There is, however, another way of relating M and CW+t, by viewing individuals as con- 

cepts. That is, we can construct a comorphism cc : U? -{-+t -ý U77 as follows. cI maps a 
CW+c-signature (C, 1) to the CU-signature C+I, and similarly for signature morphisms. 
Given a C-sentence e (which is also a (C, I)-sentence in CR+t), aýc7c_(e) = e, and given a 
(C, I)-sentence c(i), where cE C� and iE I", OF (c(i)) =iCc. To translate MR-models to 
Ci? +t-models, we use the following notation: for a set S, we write 2S for the set of subsets 

of S and given XE 2S, we write X4. for the set of all subsets of X. Given a C-model 
M in Ci{, the (C, I)-model /3c (M) has domain 21MI, and given a concept cEC,,, we set 
AO Ml = (c! )J. and for iE In we set O'S (M) = cM. It is straightforward to check that the 

satisfaction condition holds for cý. In the later part we give comorphisms more attention, 

see Corollary 4.2.22 which shows how u: Z -+ U gives rise to comorphism µ: I -* T+t, 
Definition 4.2.25 where we introduce comorphisms between description logics or Defini- 

tion 4.2.26 where we introduce comorphisms between description logics with individuals. 
Now we return to morphisms. 

The following observation follows from the discussion above. 

Observation 4.2.17. Given a description logic u: I -- CW, the description logic with 
individuals µ+t : Z+t --> C3{ is also a description logic: we simply forget about the indi- 

viduals. This gives a morphism I+t -+ Z, defined below, which composes with It to give a 

morphism Z+c -4 Cit. 

Definition 4.2.18. Given description logic µ: Z -+ U? - 
, define the morphism µ- : 2+c -' 

I as follows. 

9 For Z+&-signature (E, I), set W' (E, I) = E, and similarly for signature morphisms. 

" Any E-sentence V is also a (E, I)-sentence, and we set ryO (E I) (cp) = cp. 

" Given a (E, I) -model (M, f), M is a E-model, and we set 5r I) (M, f) = M, and 
similarly for model-homomorphisms. 

While the existence of morphism µ- was expected, as it shows how Z+t is built over Z, 
there is also morphism µ+, going in the opposite direction. At first this may seem surprising, 
but this morphism shows how close the relation between I and Z+t is. Intuitively, a 

signature EE Sig' gets mapped to I+t-signature (E, 0). Then; from the fact that Sent+` 
is a disjoint union Sen'(E) +E (W (E,, ) xI"), together with the fact that I is empty we 

nEw 
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get that Sen'(E) = Sen"" (E, 0). We also show how to construct a (E, 0)-model in Z+t 

given a E-model in I. This is formally defined below. 

Definition 4.2.19. Given p: I -ý CW define the morphism p+ :Z -4 I+t as follows. 

" For I-signature E, %Y'+ (E) = (E, 0). 

" For any I-signature E, Sen'+`(E, 0) = Sen1E +'µ(E)x0 = Senz(E), and we set 

Y, (V) = p. So yE+ : Sent+i(Sµ+(E)) -+ Sen'(E). 

" Given a E-model M, we construct a (E, 0)-model b, + (M) = (M, 0 y IMF), where 
0y IMI is the unique inclusion. 

Particular cases of these morphisms are 1ý : C? {+t -+ Cý{ and 1c+ : C? -l -ý Ci{+c. 
The close relation between description logics and description logics with individuals is 

captured in 

Proposition 4.2.20. For any description logic p: I -ý Ci{, we have 

µ+ µ= lz 

µßl = µ+ýN+i 

1CR 

Proof: This is a straightforward calculation from the definitions. Q 

Figure 4.10 is a graphical representation of the proposition above. 

A 
ZýZ+G 

P 

µ µ+c 

C3i C7{+c 
1ý 

Figure 4.10: Morphisms between DLs and DLs with individuals 

So far we showed that description logic µ: I -+ C1-t generates a description logic 

with individuals p+t : I+t --º Ci? +t. Then we defined morphisms µ+ :I -4 I+t and 
µ' : I+c -+ Z. As µ+ and µ- have opposite directions, functors Jµ+ and 1º` have 

opposite directions as well. Now we show that the functor Tµ : (E, I) HE has left adjoint 
jw+ :EH (E, 0). This is expressed in the theorem below. 

Theorem 4.2.21. For any description logic µ: 1 -4 UN- we have that xFA+ -I VI-. 
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Proof: The unit of the adjunction i is the identity, and the proof itself is a straightforward 
calculation from the definitions. 0 

The significance of the above theorem becomes clear in the light of results of Arrais 

and Fiadeiro in [5], showed that given an adjunction between signature categories of two 
institutions, an institution morphism gives rise to an institution comorphism (This was 
already mentioned in Section 2.4 when we were discussing adjunctions on signatures). 
This result together with Theorem 4.2.21 gives us a comorphism it :Z -a I+c. This is 

made explicit in the corollary below. 

Corollary 4.2.22. For any description logic p: I -a 
UN, there is a comorphism µ= 

(, Yµ+, aµ, ßµ) :2 -4 Z+c, where aµ is the natural transformation defined by c4 = Sen (77E) ; 
y N+lEl, recall that rý is the identity so aý = ry (E ') 

and ßµ is the natural transformation 

defined by ßE Mod(rI), and as t =1E we have ß' = &U- 

Now we show that µ satisfies a condition that is even stronger than restriction ade- 
quateness [3] mentioned in Section 2.5. We will use this fact to show that Z -i U77 is 
conservative. 

Proposition 4.2.23. For any Ec :Z -+ CW and signatures E, E' E Sigh with a signature 
morphism o: E -* E' and 0C Senz(E') we have that 

c4(O, ) = (c I(O))ýz(Q) 

Proof: In the proof we will use the fact that aa(s) _V and QT(M, f) = M. 
For assume 0 a(W) and (M, 

_) 
, ä(£, 

l c4, (O), by satisfaction condition 
ßE, (M, 

_) 
I= , 0, thus ßE, (M, 

_) 
ý£, a(cp), by satisfaction condition (M, 

_) 
ýv7ýý, 

I 
aas WV)) 

For "2", assume a4 , (O) ý Rý£, 
l ýý(o)(a (gyp)) and M 4,0, by the fact that 

, 6E, 70 (M, 
_) =M we get ß£, (M, 

_) E0, by satisfaction condition 

This implies (M, _) 
ßý£) 4'(c)(aý(v')), by naturality of aµ we have 

(MI (E') aE, (a(cp)) 

and by satisfaction condition ßß, (M, 
_) 

ýE, o(cp), thus M a(cp). Q 

As for any p: Z -- Cll we have that 4µ(E) i. e. we have no individuals in 
T+t-signature, it is not difficult to see that the natural transformation ßµ is surjective. 
As mentioned before restriction adequateness is a sufficient condition for conservativity of 
comorphism, and Proposition 4.2.23 shows that µ has an even stronger property. These 
two facts are expressed in the following lemma: 

Lemma 4.2.24. For any pI -i UN the comorphism it is conservative and QJ7 is surjec- 
tive. 
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Although many institution morphisms have corresponding comorphisms that arise from 

adjoint functors on signatures and vice versa (cf. [51 and the remarks at the end of Sec- 

tion 2.4), it is not always the case. For instance, morphisms to C9-l usually do not have a 

corresponding comorphism. On the other hand, in our work we are particularly interested 

in defining comorphisms between institutions as they are used for constructing frameworks 

and query bases (in Section 3.1 of Chapter 3 we presented arguments for using comorphisms 
for constructing frameworks and query bases). But using morphisms and comorphisms at 

the same time is inconvenient, as we cannot compose them. To avoid that problem but 

still be able to use comorphisms for constructing frameworks and query bases we intro- 

duce the notion of DL-comorphism (comorphisms for description logics). To formulate 

this notion first we use a special case of the notion of an institution modification between 

institution morphisms, which was presented by Diaconescu in [31]. To be more precise, 

we use a natural transformation between functors used in morphisms and commorphism 

of our interest. So our DL-comorphisms from Fc :I -+ C9{ to v: Z' -a C? -l are therefore 

comorphisms from I to Z' as in Definition 2.4.28 in Chapter 2, together with families of 
functions r£ : ßµ(E) -3 for each signature E in Sig1. 

Definition 4.2.25. A DL-comorphism from 14 C7i to Z' 4 C? l consists of a comor- 

phism ri :I -+ Z' together with a natural transformation r7 : Tµ -> E'" ; 'I" such that for 

all E in SigZ, 

,, (E) ; Modcx(rE) = ßE bE 
" (4.1) 

For example, consider a comorphism of (it was presented in Example 2.4.34) from ec 
(£G) to f`c (FOL). In this case, T°z maps an EL signature to the set of all £L concepts built 
from that signature. The functor 4bef would map an £L signature to the FOL signature 
that had the concept names as unary relations and the roles as binary relations. 'I'm would 
then map this signature to the set of all formulae with one free variable. Clearly, these 

sets are not equal (and this is one reason not to work in Inst/CR), but the first set can 
naturally be included in the second - this is the standard translation of £G into FOL- 

and this gives the natural transformation ref. Note that each r£ :q (ref (E)) 
is actually a signature morphism in Sigcý, which means that we have the model reduct 
functor Modc (rEef) : Modcx(, Ifz(,, Def (E))) -+ Modcx(W°e(E)). This takes a 1QfC(-°f (E))- 

model M and gives aW (E) model M jT£ that has the same domain as M, and interprets 

concept 0E 4Def (E) in the way that M interprets the concept T (m)). Equation (4.1) says 
that applying this reduct functor to the fc-translation of a FOL-model gives the same 
result as applying the comorphism's translation, then the ec-translation. In practice this 
is not a serious restriction, as models for most description logics are simply interpretative 

structures. 
But Definition 4.2.25 does not capture individuals which are important in this part of 

our work. For that reason we introduce its variant, which takes individuals into account. 

Definition 4.2.26. A DL+t-comorphism from Z 2+ CH--+t to Z' 4 U? -{-+t consists of a 
comorphism t: I -+ Z' together with a natural transformation r" : 'I" -+ I'º ; 1Y" such that 
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b" Mode+` r, n. aµ (4.2) 
,b (r 

In fact both, Definition 4.2.25 and Definition 4.2.26 are just special cases of the definition 

of comorphism between objects of a slice category. 

Definition 4.2.27. For slice category Inst/C a C-comorphism from µ to v consists of a 

comorphism rl :I -+ Z' together with natural transformation T-'7 : V' -+ 410 ; IV such that 

for all E in Sign, 

5. P ., (E) ; ModP7'1(TE) = QE , JE . 
(4.3) 

The following proposition shows that any DL-comorphism can be extended to DL+c- 

comorphism, which is expected as we can extend any description logic to a description logic 

with individuals. 

Proposition 4.2.28. Any DL-comorphism 77 from 14 C7{ to T4U? -? extends to a 
DL+t-comorphism t: µ+t -+ v+t. 

Proof: 4'' = V" x 1st. That is, fin` (E, I) = (10 (E), I). 
Recall that Sen'+`(E, I) = Sen'(E) + TO(E)xI. For cp E Sen'-(E), let a(7E'I)(W) 

aE(cp); for O E'I" (E) and iEI, set a(7E=TEn(O)(i). 
(M), f ). Note that this is well- For any ('n (E), I)-model (M, f), let ß'ý Il 

(M, f) = (, 8r'7 

defined, because the codomain of f is j5 
,, (E)(M)S, which is the same as 

JModcx(rE)(JOv,, (E)(M))j, and by (4.1) in Definition 4.2.25, this is the same as 15'(fln(M))I. 

We show the satisfaction condition for the case where the I+t sentence is a predicate 

on an individual: 

971 &E, 
1) (M, 

, 
f) IZ+, '(i) 

is, by definition, ' 

(PE (M), f) F=Z+` 0W 
which is, again, by definition, 

f (i) E 106E(6E(M)) 

by (4.1) in Definition 4.2.25, this is the same as 

f (i) E T£(VG)5E(M) 

which is, by definition, 
(M, f) j="+` TE( )(i) 

and this is 
(M, I)1=r+` a? E, rl(1G(a)) 

Now we need only to define natural transformation r7' Tilt' V)` ; 'Y"+`. First 

note that W+ I_Iµx 15et, IQ"+` = W" x 'set and (PI" _ VI x 1St. So we can define 

r(E, ý) = rt x 15et and we have 

17 



4.2. DESCRIPTION LOGICS INA CATEGORICAL SETTING 115 

i. e. 

So showing 

17 

Modo7'+'( TýE t)ý =ß(ß, I) 'b(ß, 1) 

is straightforward as we have 

Modi (T(E)) = QE ; bE . 

11 

Now we show that for any description logic µ: Z -* 
E W-, comorphism µ can be treated 

as a DL-comorphism from µ to µ+i ; 1,. This theorem uses the fact that composition of 

comorphisms is a comorphism. 

Theorem 4.2.29. For any description logic u: I -+ C7i comorphism µ is a DL-comorphism 

from p to µ+/, ; 1F ZFR . 

Proof: As Corollary 4.2.22 guarantees us the existence of comorphism µ: Z-p Z+i, so 
we need only define Tµ : IPµ -+ -I)µ; such that 

ýJýß(1) 1 Modo7'(T) 

Note that from Corollary 4.2.22 it follows that I=W. From Proposition 4.2.20 it 
immediately follows that for any EE Sig' we have: 

= Iµ(E). 

So we can define 

i. e. 

_y ßiµ ßjµ+ei1 ýEýý TE = Lyµ(E) : 'Iµ(E) 

1- + zw(V, +, (TA P)) 

We now only need to show that 

Soß(El , Modý(Tý) = Qý + b£ 

We have that: 

S RS 
; Modýý(TA) = 

ß( ý= aýE, 0) 
1m 

= b- 
liv 

(E 
0) ' a( 

Note that for any Z+t-model (M, f) over (E, I) we have 

aý Eý, o>(ar£ 0)(M, f)) = be i£), a>(s'(M), f) = 6E( 

as well as 

öE(ßE, (M,. f)) = aE, (M), 
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Z µ-º Z+i 

µ µ+i 

C7{ß C? i+i 

Figure 4.11. 

I aZ+i 

µ +iýlru 

Chi 

Figure 4.12. 

thus 

, b(0) ; acs ýý, 0> = ßE ;E 
and so 

Modcx(rß) Q" 
E" öµ , ßß(E) ,=, E 

as desired. Q 

Similarly we can show that it is also a DL+t-comorphism. 

Theorem 4.2.30. For any description logic p: 1 -4 C7{ DL-comorphism µ is also a' 
DL+t-comorphism from p; 1+ :Z -a UR+t to u+t : I+t -4 C3{+t. 

Proof: We only need to define TA : IQµ'li'v -4 4; µ ; Wµ+" such that for any E in Sig', 

lzýt ößß ; Modcx+'(Tý) = PE' ,E 

Note that Iµ lT = IYµ ; 414W and 0; Vµ+` = xF"+ ; WYµ+`, where the latter follows from 
Corollary 4.2.22. So for any EE Sigz we have: 

1+ 
= (Wµ(E)+O) 

and 
(E, 0) 

_ 
(W"(E')+0) 

So we can define 
Tý. -1M: ltµ'12riT(E) -ý ýµ}6ýýý(ý)) 

+ 

i. e. 
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We now only need to show that 

b ý£ý ; Modcx+ýýTý = 13k' 

Note that we have that: 

v7(E) ; Modcx+' (T )=6 A(£) - bWµ+ýEý = b, O) 

and µ; l+ 1+ 
p ; bý =ßE' E; bý (Eý 

Note that for any I+c-model (M, f) over (E, I) we have 

&, (, E+& (M, f) = (511 (M), f) 

as well as 

E>(bý(Q (M, f))) =6 E)(bE(M)) = (SE(m), f) 
thus 

_ pß . bµ . blTW- 6µ+I, Jýjj(E) -EE' ß'µ(E) 

and so 
b ýýýý ; Moden+'(TE) = 0'E) ; b(E) , 

as desired. 13 

So far we showed that any description logic can be extended to a description logic with 
individuals, this was presented in Definition 4.2.10. This definition tells us not only how 

to construct description logics with individuals, but also shows that for description logic 

14: Z -ý Cpl with EE Sig'sentences of p+c : Z+c -+ 
U? l-Ft are SenZ(E)+E('Yµ(En)xln), 

nEw 
i. e. a disjoint union of original E-sentences in I and a set of pairs (c, i) with cE TO (E)n 

an n-ary concept and iEIa tuple of individuals. The set E (W (En) X In) provides 
nEw 

the information about individuals, this makes it exactly what we defined as an ABox in 
Section 2.2. This justifies the following notation: 

Notation 4.2.31. Because Senµ+` is a disjoint union, any set SC Senµ+` (E, 1) can be 

presented as a triple (0, R, A), where 0 consists of all the concept inclusions over E in S, 

R consists of all the role inclusion axioms over E in S, and A consists of all the sentences 

of the form c(i) with cE 'I"' (En) and iE I", where nEw; we call 0 the ontology, R the 

RBox and A the Abox of the set S. 

4.2.3 Query conservativity and query expansion. 

We now investigate the interaction between ontologies and ABoxes. Firstly, it should be 

clear that after adding an ABox to an ontology we will still be able to derive all consequences 
of the ontology. This is stated by the following result. 
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Proposition 4.2.32. For any p: 2 -+ ei{, any signature EE Sig1, any ontology 0c 
Sen'(E), cp E Sen'(E) and any ABox A, the following holds: 

O ýE cp implies (0, A) ýýý(E) gyp. 

Proof: Assume 0 t4 V. 

If (M, f) ý= ä(E) (0, A), 

then M 0, 

so ,M cp, 
SO (. M,, f) 

1: 1 

The converse does not always hold. To investigate this, we introduce the definition of 
query conservativity. 

Definition 4.2.33. A description logic p: I -+ Cý-l is query conservative if for all 
(E, I) in Sign+` and all (O, A) S Senz+i (E, 1) and cp E Sen'(E) 

(0, A) I(E, JJ) `p if 0 ýE V 

The following example shows that ACC is not query conservative. 

Example 4.2.34. For 0= {A C dr. -'A, -, A C Vr. A} and A= {r(a, a)} we receive that 
(0, A)=TC1 but0ý'- TC1. 

Now we define the notion of query expansion. Roughly speaking, if description logic 
p: Z -+ CI{ has query expansion, then for any ABox AC Senz+`(E, I) we have that for 
every E-model M in .T there is a (E, I)-model MA in Z+c, which satisfies A and its reduct 
to Z satisfies exactly the same E-sentences as M does. 

Definition 4.2.35. A description logic p: I -+ 
i? has query expansion if for all (E, I) 

in Sign+i and all AC J(W (En)xIn), for every E-model M, there is a (E, 1)-model MA 

nEw 

such that MA H+' A and ö(", j) (MA) =E M, where M=r, M means Al' and M satisfy 
exactly the same E-sentences. 

Now we show that query expansion implies query conservativity. 

Proposition 4.2.36. If it has query expansion, then p is query conservative. 
Proof: Suppose (0, A) ý=ýýýIý W, and Al 14 0, we need to show Al 14 V. If µ has 

query expansion, then there is a model MA such that MA ýý IA and býEI)(MA) 1- 7" 0, 
therefore 6' 1i(M-4) 

4 W, this implies that Al ýE cp as desired. 13 

Now we show query expansion for £G and £G3 
, 

by Proposition 4.2.36 it also proves 
query conservativity. 

First we show that e'c : £G -+ Cpl has query expansion property. 
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Theorem 4.2.37. Description logic ec : £G -4 
U has query expansion. In other words, 

every £G E-model M can be extended to an £f-+c 4)"(E)-model (fit', f), s. t. for any 

cp c SenEC(E) the following holds : 

(M, f) ý=Il` ý£) V iff .M ýE ý'. 
To prove the above theorem we need an auxiliary lemma, but first we show how M' is 

constructed, given CC-model M= (IM 1, "), we define: 

" IM'I = IMI J I, 
" for any atomic concept p, we define pJM', f) = pm w I, 

. for any role r we define: 

r(M', f ) (x, y) if rM (x, y), for any x, yc IM I or T for any x, yEI 

Lemma 4.2.38. For any EL-concept C we have C(M', f) = CM w I. 

Proof: The proof is by induction: 
Let: 

"C=p, it is immediate that p(M', 1) = pm w I, 

"C= Cl fl C2 this case is trivial, 

" for C= 2r. C' we have that: 

2r. C'(M', f) = {x EI (Ml, f) lI for some y, r(M'. f) (x, y) AyE C'(M', J) } 

= ({x E IM II (2y)rM (x, Y) AyE C'M }_ 9r. C'M ) 

W ({x EII for some y, r(M', f)(x, y) AVE C'(M', I)} = I) 
i. e., Sr. C'(M, f) = 2r. C'M UI 

Proof: Now we can prove Theorem 4.2.37. Let cp =CCD, where C, DE Con"(E). 

(M', f) ý="+` CcD 

iff 
C(M'. f) C D(M', f) 

iff 
CM ICDM WI 

iff 
CmCDM 

iff 
AEG CcD 

11 

0 
Similarly we show that e+c : EG' -* C97 has query expansion property. 
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Theorem 4.2.39. Description logic e+c : EC+ -a C'-[ has query expansion property. In 

other words every EC+ E-model M can be extended to aI (E)-model (M', f) in £G++c, 

s. t. for any cp E Sent & (E) the following holds: 

(ýýýI)ýýErjý(PifMý44 

Proof: Note that by Lemma 4.2.38 for any EG+-concept C we have C(M, 1) = CM W I. 

We distinguish two cases: 

1. V=CCD where C, DE ConE-c+(E), but this was already proven in Theorem 4.2.37. 

2. V= rl o".. o r� Cr with n>1, then we have that 

r(m, f) (xo, xi), .... rnM, f) (x,, 
-1, x,, ) and r(M, f) (xo, x,,, ) 

(%'1, f) r(E I) 
4 ri o ... on, Cr 

if 

iff 

if 

for xo, xl.... , xn E IMI 

r(M, 
f) o ... o TnM, f) C r(M,! ) 

i 
(for xo, xl, ... , xn EI it is trivial) 

rMo... orn CrM 

MH rlo"""or»Cr 

Cases (1) and (2) show that (M, f) ="(E I) `c if M ýEc+ W as required. 0 

4.2.4 Concept interpolation 

In this section we introduce the notion of concept interpolation. We could say that 

given an assertion Bp(i) about an individual, which is a consequence of a knowledge base 

(0, A), concept interpolation `splits' the consequence into two types of reasoning: determine 

whether there is ii such that Vi(i) is a consequence of A and >/i CV is a consequence of 0. 

Before we can formulate the notion of concept interpolation we have to define what does 
it mean for O(i) to be a consequence of A. 

Definition 4.2.40. Given p: I --ý 
ZT, ABox A, E TO(En)nEw and iE In, we say that 

V)(i) is a consequence of A w. r. t. p and write A ý=P(Ej) +l'(i) if for every E-model M in I 

and every f: I -+ I5E(M)I 

bE(M), f) A implies (a£(M), f) (E), I) () Op"(Er) 
Now we present the notion of concept interpolation. Recall that, intuitively, concept 

interpolation tells us that given (0, A) C Senz+`(E, I) and Bp(i) E Sent+`(E', I) such that 

Bp(i) is a consequence of (0, A) in 2+t, then we can find a finite interpolant 0E TA(E), 

such that ? i(i) is a consequence of A w. r. t. u and 0C ýp is a consequence of 0 in Z. So the 

idea behind this notion is very similar to that of Craig Interpolation. 
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Definition 4.2.41. Let p: I -+ C? { be a description logic. We say that p has concept 
interpolation if for any signatures (E, I) and (E', I) in Sigh+`, with E -+ E', and any 
(O, A) S Sera+` (E, I), cp E ('P (E'))n, and iE I", if (O, A) ý=. T ; Il <p(i), then there exists 

,0E (ßµ(E))� such that A 
,, I) 

1(i) and 0 j7, 

As already shown in [62] EG+t has concept interpolation. In a very similar way it 
is possible to show that EL +c has concept interpolation. On the other hand, many 
description logics of higher expressivity do not have this property. For instance ACC, as 
it is possible in ACC that after adding a consistent ABox to a consistent TBox we could 

receive an inconsistent KBox, this was already presented in [50]. 

Example 4.2.42. For comorphism e2 c+t as defined in Example 4.2.8 we are unable to 
find concept interpolant, as we could have the following: 0= jr, o r2 C r} and A= 

{rl (a, a'), r2(a', b)}, then 
(0, A) ý=E'c' r(a, b) 

but we cannot find an interpolant defined in Definition 4.2.41. This is due to the fact that 

using morphism e2 c we are unable to formulate expressions with complex roles like rl o r2 

as we have only role names available. 

Now we show that comorphism e3 c+c from Example 4.2.9 has concept interpolation. 
But first we will need some auxiliary notions. 

Notation 4.2.43. Let EE Sigj and (O, R) C SeneG3 (E). Let us write 

OR=OU{3rl. 3r2.... 3r�. DC3r. D1Rh££9 rlo"""or�Cr 

and rl, ... , r,,, r, DE Cone'c9 (E)} 
. 

Now we show that answering queries about individuals in EG3 -Fa reduces to answering 
queries about individuals in EG+t. 

Lemma 4.2.44. Let E, E' E Sit ý9 be such that E" E', let 
0,7R, A9 SenEC3 +`(E, I) and CE Conec4 (E'). Then: 

ýýRýA) ýEij C(i) if (0,7Z�4) h(E jý C(i) 

Proof: The direction "=" is straightforward. 
For "first we show how model M of (OR, A) extends to M' which admits RBoxes, 

we also show how these extensions interpret roles. 
For any signature (P, R, I) given (OR, A)-model M we define (P, R, I) model M' in the 

following way: 

" the domain IMI = IM'I, 

. CM = Cm' for any CEE 

9 i'" = iM' for any iEI 
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9 let (rM)r. ER be the least family C IM'I x (M'I such that: 

- rM C rMo 

- if (ij, ij+l) E r"', for 1<j<n, and rl o"""o rn CrER, then (1, i�+1) E rM' 

It is easy to see that M' is a model for (O, R, A) and CM = CMS. 

To prove assume that we have (OR, A) jký lý C(i), let M be a model such 
that M (OR, A), but M ýJ ' C(i), as presented above we can extend M to a 

model M' such that M' f£ I+ (O, R, A) but as CM = CM' and im = iM', we have 

Jul' ýý ý` C(i). Q 

Now we show the following proposition: 

Proposition 4.2.45. EG3 +t has concept interpolation. 

Proof: Let (E, I) E Sigeg +`, (O, TL, A) c SenE'cg +` (E, I) and Bp(i) E Senc'ct+`(E, I). 
Assume 

(0,7, A) I(E I) ýP(i) 

We distinguish two cases: 

(a) V (i) = C(i), 

fib) W(i) = ri o ... 0 rm (il, i2)" 

For (a), first note that in Lemma 4.2.44 we already presented that given 0, R. and A, 

the pair (0, A) in £G+c gives exactly the same answers to the queries of the form C(i) 

as the triple (0,1Z, A) in £G3 +c. From this it follows that for queries of the form C(i) the 

problem of finding the interpolant in EL3 +c reduces to £G+t. 

For (b), first we need some auxiliary lemmas. First we introduce a lemma stating that 
if in £G3 +t a triple (0, R, A) entails a role assertion then 0 does not play any role in that 

entailment and can be removed without any harm. 

Lemma 4.2.46. Let (E, I) E Sigý'Cg +` and (O, 7Z, A) C Sen" +`(E, I). Let rl o"""o 
r�(il, i2) be a role assertion, with rl, """, r� EE and il, i2 E I, then: 

(O, 1 
, 
A) ý(E 1) r1 o ... o rn(il, i2) implies (%Z, A) ý1ý ri o ... o rn(i1, i2) 

"- 

Proof: We distinguish two cases: 

(a) rl o"""o rn(i1, i2) E A, then it trivially follows from (R, A), 

(b) r1 o""" or,, (il, i2) ¢ A, but then there is a sequence of role assertions r1,1 o ---o 
rl, m. 

(i 1, i'), r2,1 0"""o r2,1 (i', i"),.. 
-, rk, 1 o"""o rkj (i, i2) in A and a role inclusion rl, l o 

o rl,, o. ""o rk, l o"""o rkj C Ti o"""o r� in R. These two facts together give us 
(%Z, A) 1(E I) r1 o ... 0 rn(i'1,12)" Q 
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This leads us to the lemma which, roughly speaking, states that if (R, A) entails some 

role assertion rl o"""o r�(il, i2) then there is a sequence of role assertions r1,1 o"""o 

rl, m(il, i'), r2,1 o"""o r2,1(i', i"), ... , rk, l o"""o rkj(i, i2) in A, such that for rI jo... o 

r1�io"""ork, 1o"""ork,, we have A= b(il, i2)and7Z. }= & r1o"""orn. 

Lemma 4.2.47. For any role assertion rl o"""o rn (il, i2) E Sen649 +`(E, I) and (R, A) C 

SenCý3 +` (E, I), such that (R, A) ýý ij rl o"""o rn (ii, i2) there exists 7P: r1,1 o"""o rl,,,, o 

o rk, l o"""o rk, j such that A ý(E Il 'ý/'(ii, i2) and R ý6ý Iý ` z/i C rl o"""or,,. 

Proof: The proof is straightforward by Lemma 4.2.46 and the way how model M' in the 

proof of Lemma 4.2.44 is constructed. 13 

But Lemma 4.2.47 shows how to find an interpolant for (b) in Proposition 4.2.45, which 

proves the Proposition. 13 

4.3 Constructing a Framework with Individuals 

In Section 3.2 we introduced the notion of framework, in order to study in an institutional 

setting the work of [50] which explored the relationship between robustness properties 

and interpolation properties. The main idea was to allow ontologies to be written in one 
language, while their consequences could be tested, or queried, in another language. This 

requires both ontologies and queries to be translated into a `global language'. 
Now we would like to apply this notion of frameworks to description logics with indi- 

viduals: given an ontology in one language, we might like to query what it tells us about 
individuals. In other words, instead of querying it through a query basis 77 :Q -- G, we 
would like to query it from the institution Q+c. However, there may be cases where a 
query basis has no corresponding morphism; to allow for such cases, in Definition 4.2.25 we 
defined DL-comorphisms between description logics. Our query bases for description logics 
Q -±+ Cpl and C9 =-* CW are therefore comorphisms as in Definition 3.2.3, together with 
natural transformations r: IV(E) 3 Tµ(-V7(E)), for each signature Ein SigQ. 

So far we have established that given a description logic p: I -º C7{, institution T 

extends to an institution I+t (cf. Definition 4.2.10). We have also shown that any DL- 

comorphism extends to DL+t-comorphism (cf. Proposition 4.2.28). Using these two facts 

we can show that any framework u over a query basis tj can be extended to a framework 

with individuals p' over a query basis with individuals 77'. Thanks to that we can use an 
ontology 0 together with an ABox A and post queries about individuals. This is presented 
in the Corollary below. 

Remark 4.3.1. In the remainder of the chapter all the comorphisms are in fact DL- 

comorphisms. 

Corollary 4.3.2. Given a framework p: G --* g over a query basis rl :Q -+ q, where 
G, Q and C are description logics, we can extend p and rl to a framework with individuals 

µ& : G+t -4! 9+t over the query basis with individuals il' : Q+t -4 g+t. 
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This is graphically presented in Figure 4.13. 

As we have that given a description logic u :. T -4 Cpl there are morphisms u+ 
and µ- :. T+t -+ I and a comorphism fl: I -a I-+i, we are able to establish what are the 

relations between frameworks µ: G -* 9 and p' : G+L -4 9+c, and query bases 77 :Q-C 
and 71` : Q+t -+ G+c. Similarly we can determine relations between their component insti- 

tutions. This is presented in Figure 4.13, it also presents the list of morphisms and comor- 

phisms used. For the sake of simplicity, for each pair of institutions I and I+a, Figure 4.13 

mentions only comorphism V :. T -+ Z+a, but as Definition 4.2.18 and Definition 4.2.19 tell 

us that there are also morphisms v- : T+t -41 and v+ :I --+ Z+t respectively. Taking 

that into account Figure 4.13 to a great extent summarizes relations between frameworks 

and frameworks with individuals (similarly for query bases) and between their components. 

1. Morphisms: 

. µ: G-RCN[ 
Q M-7 

. v: g -aCN 
" µ+t C+t e-? {-+t 

" C+t : Q+t --> Ci{+t 

" v+c 9+t E? -i+c 

2. Comorphisms: 

" A: Q--*g 
" r. ̀ : G+t -º C+c 

" A' Q+L -º G+c 

" v: C9-4C+c 

" µ: G-äG+t 

"£: Q -a Q+c 

" 1ý: Cfl-C i+L 

+L 

+L V+L +L 

ýc J1 f/ 
ii+L 

v 

� f/ 1m 

Figure 4.13: Construction of a framework with individuals. 

Proposition 4.3.3. For framework n: G -- g over query basis A: Q-+9 and framework 

rc+t : G+t --º 9+1 over query basis A+t : Q+a -+ c+c. The following holds: 

k; U = µiKL 

+v = At 

Proof: Here we just show the case for rc ; V= j; n`, as the other one is very similar. The 
proof has three parts showing composition of three components of comorphisms. 

(a) First we show that -'I ; VJ = -tµ ; -K`. Let EE Sign then we have that: 

= (v-(E), 0) 
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and 

., i, "' (. 1-'` p) I"' (E, 0) = (4 (E), 0) . 
(b) Now we show a" ;W= aµ ; a". First note that for any EE Sign and cp E SenC(E) we 

have that aa(v) = c', and for any AE Sigh and 'i E Sený(A) we have that a"(0) 

Let cp E Sen'C(E), then 
a, PR(E)(aE((P)) = aE('P) 

and 
a" (r ) (ýo) 

,) 
(a4 (v)) = a' (, ýpp ,E Aý; 7 

The last step is by the fact that cp E SenC(E), so a R(E) translates it just as ar does. 

(c) Finally, we show that /3i7 Qµ. First note that for any model (M, f) in 

G+t over (E, 1) we have ß£(M, f) = M, with M an G-model over E and similarly for 

models in 9+t and 9. 

Let (M, f) be a 9+t-model over (4"(E), I) then 

ar(I3 (E) (M, f)) = PIE (M) 
and 

(M, f)) = ßý(ßE(M), f) = ßE(M) 

0 
For the bottom rectangles in Figure 4.13 we have mixed morphisms and comorphisms, 

we can make these rectangles commute in two ways: by replacing it, and 1&- with 14-, 
ý- and 1- respectively, alternatively we can make these rectangles commute by replacing 
these comorphisms with µ+, ý+ and 1 respectively. Then by Proposition 4.2.20 we 
immediately obtain: 

µ ;µ= µ+c; l 

and 

= 

= 

Notation 4.3.4. In what follows, unless stated otherwise, we will use the names for mor- 
phisms and comorphisms that are introduced in Figure 4.13. 

Lemma 4.3.5. For framework is :G -+ G over query basis A: Q -+ G, we also have 
framework n; v: G -* G+t over query basis Al : Q+t -+ +t, and the following holds for 

all signatures AE Sig', EE Sign and (E, I) E Sig-', ontology 0C SenC(A) and query 
cp E SenQ(E): 

0 HEAP if 0H(E, J)cp. 
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Proof: The direction "=" is immediate. 
For the direction "4", assume 0 ýý 

I) rp. Let ME Modý(ý"(E) U 4; a(A)) such that 
M ý=(ý (E)u-b�(A)) aA'(O). We want to construct c+c-model (M, f) with 

By Definition 4.2.3 we know that Ibý4�(£)uýa(n))(M)l 0, 
therefore there is xE and we set f (i) =x for all iEI. Thus we have a 
model (M, f ), such that (M, f) ý=9+ ̀(ý)uýa (n), r) a'(0) and thus (M, f) ý9+ `(E)uýa(A), 

I) 
aý(cp). From this it follows that M a'(W) .Q 

Theorem 4.3.6. For framework r. :G -* 9 over query basis A: Q -+ 9 and framework 

'c ;v: G -4 9+t over query basis A' : Q+t -º G+t, signatures AE Sig'e, EE SigQ and 
(E, I) E Sig-Q+`, any ontologies 01 

i 
02 C Sen' (A), the following holds: 

Ol CA(E r) 02 implies 01 CAE 02. 

Proof uses the fact that for any institutions r: Z -4 I+c with EE Sig' we have that 
Sen'(E) C Sen'+`(4D"(E)) 
Proof: Assume Ol Cr 02, that is 02 ý(E I) cp implies Ol ýýý I) cp for V E Seng+`(E, I). 
This gives us that a"7('62) ý:, (n)uýaý(E, I) a(E, I)(cp) implies an17(C72) ý 

R,, in)uýa"iE, i) 
a(£ I) (W) for cp E Sen"(E). 

Assume c4(02) I (A)uI�(E) o (cp) then 

%il 17 
. (n)u0a(E)(an(02)) -0( R(n)uýa(E)). 

I) a0. (n)UOI(E)(aEM) 

thus 

This gives us 

Therefore 

and thus 

this gives us 

aA; 17 9+ At (dz) (A)U(O"(E), I)) a(Eýt>(a4('P)) 

aÄ`&7(02) r( 
t(A)v(ý"(E), 

I)) a(E, I)(co) 

anýýdi) ý(ý"(A)u('"(E), I)) a(E, t)(W) 

a 
il \& 

D. (A)uZA(E)(anýOr)) ý(ýR(ý)u(ý"(E), t)) a(E, I)(W) 

From this it follows that 

so by Lemma 4.3.5 

Thus 

an(0i) [-- "(A)u(4ý''(E), 
I)) aEM 

anPl) Iý4ýI(A)UOA(E)), I) a'(W) I 

c (Oi) ýýýR(A)uZ (E)) aEýýP) 

0, hl p" 

as required. I .1p 



4.3. CONSTRUCTING A FRAMEWORK WITH INDIVIDUALS 127 

4.3.1 E-entailment for knowledge bases 

As already suggested in [50] when we are using ontologies together with ABoxes, we find 

it more useful to formulate E-entailment based on instance checking rather than based on 

subsumption, which is usually too weak in this case. In addition one has to determine how 

to include the ABox into the framework. In general, an ABox can be either a part of the 

ontology or a part of the query language. Here we consider only the case when the ontology 

and the ABox are closely related and the ABox does not change significantly more often 
than the ontology. 

Above we presented how ABoxes and ontologies may interact together (recall the notion 

of query conservativity in Definition 4.2.33). Now we investigate the relations between E- 

inseparability and E-inseparability w. r. t Q+t instance checking. 

Theorem 4.3.7. For framework k: G -3 9 over query basis A: Q -+ g, with v: G 

query conservative, and framework rc` : L+t -+ G+t over query basis A: 2+t -+ c+c, 

signatures AE Sit, EE SigQ, (A, I) E Sig4+`, (E, I) E SigQ+6, any antologies 0i, 02 C 
Sen'c(A) and ABox A, such that AC ßµ(A) x I. We have that: 

(Ol, A) Cýý r) (02i A) implies Ol CE 02. 

Proof: Assume (01, A) C(E I) (02, A), we want to show that Ol CE 02. 
Assume 02 ý=ý W, i. e. a"A 4D 

(02) 
'(n)uý�(E) aE(cp). Therefore 

an(02, A) I((V~(n)u. A(E)), r) c (ýP) 

Thus 

an(Oi, A) ý=((-PK(n)uVA(E)), 1) aE(ýP) 

If v C? -l is query conservative then 

an(0k) ý 
R(n)uýa(E) aE(ýP) 

Thus Ol I4 cp, as required. 

The converse does not always hold. This was already shown in [50], where an example 
for 

, 
A. CC was presented: 

Example 4.3.8. Let IAcc be a framework over itself as a query basis. Let 01 = 0, 
02 = {A C Vr. --, A, -, A C Vr. A} be A-ontologies for 1,4cc, and let E= {r}, where A, EE 
Sig-44c. Then we have that Ol ;. ' °C 02. But if we extend framework 1AGC to 1Ace+, and 
add an ABox of the form A= {r(a, a)} to O1 and 02 we receive that (O1, A) is consistent 
but (02, A) is not. This in turn gives us that: 

(02, A) I'E r)+` 1(a) 

but 
(Oi, A) r-(E I)+' 1(a) 

Therefore (01, A) 01A i)+` (02i A), as assertion 1(a) separates (Oi, A) and (02, A). 
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The following can be understood as a partial converse of Theorem 4.3.7. 

Theorem 4.3.9. For framework is G -º G over query basis A: Q -4 G and framework 

r. ̀  : ýC+c -a G+t over query basis A& : Q+t -+ G+c, such that g+t has concept interpolation 

and v: 9 -4 
U -l has query conservativity for any signatures AE Sit, EE SigQ, (A, I) E 

SigC+`, (E, I) E SigQ+`, any ontologies Ol, 02 C Sen'(A) and ABox AC Sen'c+`(A, I). 

We have that: 

Ol QE 02 implies (01 i A) (E (02, A) . 

Proof: Suppose 01 CA 02 and (O1, A) ¢ýEýI) (02, A), so there is ýp E Seng+`(E, I), such 
that (02, A) I-- (E, 

I) cp but (01, A) (E, 
I) ca" 

. If cp E SenQ(E), then by query conservativity we have 02 HE gyp, whence Ol 4c 

and so (Ol, A) ýý 
1) c giving a contradiction. 

" If 'p is of the form X(a) with XE and aEI then by concept interpolation 
there is ?P E'Y"(I' (E)), such that A 1--fnuE, I) tp(a) and 

an(O2) ý4ý(A)uI>a(E) C X) 

and so 

If 

then 

so 

c (01) ý (A)u-Da(E) 74R(A)u0A(E)('P C X) 

(Mlf) aA(01, A), 

M ý(0"(A)U-Da(E)) ý(0"(A)Uea(E))(10 C X) 

10 
( (A)U (E))(M) C xai4�cýw4, (EýýýM) 

moreover, f (a) E Via« (A)U,, (E) (") and therefore f (a) E xo( ()U, (E) (A ), 
contra- 

dicting (01, A) P" 

In both cases, we obtain a contradiction, so we conclude (Or, A) (E 1) cp as desired. D 

The following theorem was originally introduced in [62]. Here it follows from Theo- 

rem 4.3.9 and from the facts that description logic ec : EG -+ C? l has query expansion 
property and that eG+t has concept interpolation. 

Theorem 4.3.10. For framework 1EC : EG -+ EG over itself as a query basis and framework 

lEC+, : EC+c -4 EC+i over itself as a query basis, any (E, I) E Sijc+` with EE Si/c, 

any ontologies 01 
i 
Oz 9 Sen-" (E) and ABox AC SenEc+`(E, I), the following holds: 

(OA) c1 i)` (02, A) if OI CE f- 02- lt 
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Since we know that for an institution of description logic g there is a description logic 
G+t, such that there is a conservative comorphism G -+ g+c, the following theorem is a 
direct consequence of Theorem 4.3.10 and Lemma 3.2.29. 

Theorem 4.3.11. Let 9 be an institution of a description logic and G+t its corresponding 
institution with individuals in the signature. Then for frameworks rc : EC -* ig over itself 

as a query basis, with surjective /3" and rc` : EC+t -* 9+t over itself as a query basis, 

with conservative comorphism n', any A, EE Sit' and (E, I) E Sijl+`, any ontologies 
01 

i 
02 9 Sen" (A) and ABox AC Sen"+`(A), the following holds: 

019E02 if (019A) CK(E, 1) (02, A) . 

Proof: The direction ". #" immediately follows from Theorem 4.3.7 

For first assume that 0 CE 02, by surjectivity of ßK we get that 01 CE'C 02. By 
Theorem 4.3.10 we have that 

(Oi, A) CAE iý` (02, A) . 

Assume a'(E I) 
(02, A) ýý+` a(ý I) 

(cp) and let (M, f) E Modg+`(4-K` (E, I)) such that 

B+c rc" (M 
e 

f) ý(ýRý 
(E, I)) a(E, I) 

(Ol 
r 

A) 

Then 

ý(E rj (01, A) 

as signature morphism a is the identity we have 

As 

we get 

This implies 

#K"I) (m, f) 

(019A) Clac+AE r)' 
(Oz, A) 

, 

QýE, Iý (M, f) ýýE 1'(02o-4)* 

(M, f) ar(J, I) ((o2, A)*) . 
By conservativity of rc& we get 

Modg(a(E, t)((O2, A)*)) 9 Mode((a(E, t) (02, A))') 

Since a(ý , )(v) C (a(E, 
r) 

(O2, A))* we get (M, f) ý( an, (E, r) (ýP) This gives us that ( (E, r)) 
(01, A) C(ý r) (02i A) as required. o 
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5.1 Introduction 

In the previous chapters we presented the notion of E-entailment in the institution inde- 

pendent way; now we present a particular case of that problem. In this chapter we consider 

ontologies formulated as general CBoxes (TBoxes together with RBoxes) in the description 

logic EGS? -t obeying some additional restrictions, we also allow for queries formulated in 

the same logic. As Proposition 3.2.11 suggests that in such a case employing frameworks 

does not give us any advantage, we will investigate that problem directly in EGSn. 

This chapter extends the result presented by Lutz and Wolter [61] for description logic 

EG. The main result states that the E-entailment problem for such ontologies can be solved 
in ExPTIME. Thus, this problem is no more complex than for plain EC, which was shown to 

be ExPTiME-complete [61]. For comparison, the computational complexity of this problem 
is 2ExPTIME-complete for more expressive description logics such as ACC, AGCQ, and 
AGCQI [40,60], but even in such simple formalisms as acyclic propositional Horn Logic it 

is co-NP-complete [39]. 

It was proposed in [40,601 to provide ontology designers with a tool offering automated 

reasoning support for deciding E-entailment. Thanks to that they would be able to trace if 

the modifications made in the ontology, like refining or module extraction, had no impact 

on relationships between concepts of the original ontology. 
The algorithm described in this chapter is based on and described along the lines of the 

algorithm deciding conservative extensions in EL [61]. 

5.2 Logical difference 

In Definition 3.2.16 we set what does it mean that ontology 0 E-entails another ontology 
O'. Now, for the convenience of notation, we introduce the notion of logical difference and 
define the notion of E-entailment in £GS7{ in terms of logical difference w. r. t. a signature 
E for TBoxes, RBoxes, and CBoxes. 

Definition 5.2.1 (E-difference, E-entailment). Let C= (O, R) and C' = (0', R. ') be two 
ELS3i CBoxes and Ea signature. The E-difference, DiffE(O, O'), between 0 and 0' 
is defined as 

DiffE(O, O')={C 9D1Oýl- C9D, O'ýC9D, and Sig(CCD)CE} , 

where C and D are EG-concepts. 0 CE 0', if, and only if, DiffE (0,0') = 0. The E- 
di fference, DiffE(R, R'), between 1. and 1Z' is defined as 

DiffE(R, R') _ {rCsýR. &rCs; R'ýrCs; r, sEE} 
U {rorgrl1ZV rorCr, 7'=rorCr, withrEE} . 

9Z CE R', if, and only if, DiffE(R, R') = 0. The E-difference between C and C' is 
defined as` 

DiffE(C, C') {CcDICýl-CCD, C'I--CCD, andSig(CCD)CE} 
U DiffE(R, 7Z') . 
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C CE C', if, and only if, DiffE(C, C') = 0. 

As an illustration consider the following example: 

Example 5.2.2. Let E= {A, B} be a signature C= (O, TZ) and C' = (0, ? Z) be two 

CBoxes, where 0= {A C B}, 0' = {A C Br. B', 9s. B' C B} and 7R = {r C s}. It is easy 
to see that 0 CE 0', but 0' gr O. But if we take RBox into account then CBoxes C and 
C' are E-inseparable. 

Observe that, there exist EG-ontologies 0 and 0' such that all CIs CCDE DiffE(0,0') 

have at least size doubly exponential in 0,0, where we define the size 11011 of an ontology 
0 as follows. The size 1ICII of a concept C is the number of occurrences of symbols used to 

write C down and 11011 => IICII + IIDII" 
CCDEO 

We also define the out degree of C, as the maximum cardinality of any set P of pairs of 
the form (r, C'), with ra role name and C' a concept, such that f (f, C, )EP 3r. C' E sub(C). 
We use sub(C) and sub(O) to denote the set of subconcepts of a concept C and the set of 
subconcepts occurring in the TBox 0, respectively. 

5.3 Canonical models and simulation relations 

In this section, we construct canonical models for EG+ and describe relations between 

canonical models using a simulation relation. 

Definition 5.3.1 (E-Simulation). Let M1 and M2 be interpretations and Ea signature. 
A relation SC Am' X AM2 is a E-simulation from M1 to M2 if the following holds: 

- for all concept names AEE and all (dl, d2) ES with dl E AM1 we have d2 E AM2; 

- for all role names rEE, all (dl, d2) E S, and all el E AM' with (dl, el) E rmt, 
there exists e2 E AMa such that (d2 

i e2) E rM2 and (el, e2) E S. 

If dl E AM', d2 E 0M2, and there is an E-simulation S from M1 to M2 with (dl, d2) E 
S, then (M2,4) E-simulates (M1, dl), written (M1, dl) <E (M2, d2). If E= PUR, we 
write ' <' instead of '<E'. 

Let M be an interpretation, Ea signature, and dE Am. We define the abbreviation 
dE, M := {C IdE Cm and Sig(C) C E}. The outdegree of an interpretation is the 
maximum number of role successors at any point in its domain and for any role in R. 

The following characterization of E-simulation establishes a connection between E_ 
simulation and E-concepts. 

Theorem 5.3.2 (Characterization of E-simulation). If (M1, dl) <E (M2, d2), then dEjW"' C 
d2 , M2. Conversely, if M1, M2 have finite out-degree, and dE'M' C dZ'M', then (M I, dl) <E 
(M2, d2)- 

Proof: "#": Let (M1, d1) <E (M2, d2) and CE di'm'. We show that CE d2E9M3. The 

proof is by induction on the structure of C. In the induction base, we have that C=T or 
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C=A with AEE. For the former, we trivially obtain TE d2 'M'. In the latter case, we 
have AE dl'M1. Thus, dl E A", which implies d2 E AM' by definition of : 5r,. Hence, 

AE d2, 'ß'. Consider the induction step: 

"C= Cl n C2. From Cl n C2 E di''"1, we obtain dl E (Cl n C2)M', i. e., dl E CM' 

and dl E C2 M'. Then Cl E dl'M' and C2 E di'M' By the induction hyposthesis, 

we have that Cl E d2'M2 and C2 E d2 M2 Thus, d2 ECM' and d2 E C2 ', and 
d2 e (Cl n C2)M2. Hence, C1 n C2 E d2'M'. 

"C= 3r. D'. Suppose 2r. D' E di'm'. Then, dl E (2r. D)M3, i. e., there exists a 
d, E Am' with (dl, di) E rM' and di E D'M1. Since (Mj, dl) <r. (M2id2), there 

exists adz E 0M3 with (d2i d2) E rM2 and (M1, di) <E (M2, d2). Since D' E dlr'M', 

it follows by the induction hypothesis that D' E d2E'M', i. e., d2 E D'M2. Thus, we 
have that d2 E (3r. D')M2. Hence, 2r. D' E d2 , ß'. 

"a": Define dl < d2 if dl'M' c d2 'M'. 
Claim: '<' is a E-simulation. 
Let dl s d2. First assume dl E AMA. Then by definition d2 E AM2. Now assume 

xl E1 M1, and (dl, xl) E rM'. We have to show that there exists X2 EOM' with 
(d29 x2) E rM' and xi - x2. Assume that it is not. Let D= {y EAI (d2, y) E r-"2 }. By 

assumption there is no yED, such that xl < y. Hence for every yED there is at least 
ti 

one C with xl E CM, but y¢ CM'. Choose one - C.. Thus xl E Cy 1, but y¢ Cy 2. 
Then dl E 2r. n, 

VED 
Cy, but d2 V Br. RED Cy. That gives us a contradiction. Q 

Definition 5.3.3 (Canonical model). Let C= (O, R) be a CBox in eCk, and Da concept. 
The canonical model MD, C = (OMD, c,. MD, c) is defined as follows: 

" OMD. C = {D} U {C Br. C E sub(D) U sub(O)}; 

" CEAMD, C ifCJ-- CCA, for allAEP; 

" (C, C') E rMD, c if at least one of the following holds: 

(a) C1CC 3r. C' and C' E sub(O), 

(b) CM+R C', 

where CM+RC' if there exists a sequence 2ro. Do,... , 2r,,. D,, with 2ro. Do a conjunct of C, 
ar; +1. Di+1 a conjunct of Di for 0: 5 i<n such that D� = C' and R= ro o"""or,, C r. 

The model MD, C can be constructed in polynomial time in the size of C and D as 
subsumption w. r. t. CBoxes in EL+ can be decided in polynomial time [8]. 

Example 5.3.4. For an illustration of canonical models, consider a TBox 

0= {Toe C 2isPartOf. Foot, Foot 9 3isPartOELeg} 

together with the RBox 

7Z = {hasLocationo isPartOfC hasLocation). 



5.3. CANONICAL MODELS AND SIMULATION RELATIONS 135 

Figure 5.1 shows the canonical model MD, c, where D= 3hasLocation. Toe and C= (0, R). 

Toe isPartOf Foot Leg 
" 

hasLocation 
hastocation 

hast°ca 
- 

" 
3hasLocation. Toe 

Figure 5.1: The canonical model MD, c. 

The following lemma summarizes the relevant properties of canonical models. 

Lemma 5.3.5 (Properties of canonical models). Let C= (0, R) be a EG+ CBox and Ca 

concept in EG+. Then the following holds: 

1. MC, c is a model for R. 

2. For every DE OMc, c we have that DE DMc, c. 

3. For every DE AMc, c and every CE sub(O) we have that 

CýDCC if DECMC, c . 
In particular, Mc, c is a model of C. 

¢. For all models M of C and all dE AM and all DE OMc, c, the following conditions 
are equivalent: 

(a) dEDM; 

(b) (Mc, c, D) 5 (M, d) 

5. For all DE 0Mc, c, the following conditions are equivalent: 

(a) Cý= DCC; 

(b) DE CM°, 0 

(c) (Mc, c, C) <_ (MD, C, D). 

Proof: (1) Let R be as in the lemma. To show that MC, C is a model of R, let rio.. "or, a C 
rER. We show that rm 'o... o rn c'c C rMc, e. Suppose that (Do, Di) E rMc, a 
(Dl, D2) E r2 °'c, 

... 
(Dn_1i Dn) E rn c'c By the construction of canonical model, we 

know that we have two sub-cases: 

(i) D,, E sub(O) and D. ¢ sub(C). (Note that this implies D; E sub(O) with 0: 5 i<n. ) 
Thus we have that C= Do C 3r1. D1, C= Dl C 3r2. D2 ... C D�_1 C 3r,,. D,,. 
Then from R rl o"""or,, Cr it follows that C Do C Sr. D�" Since D� E sub(O), 
by condition (a) in Definition 5.3.3 we receive (DO, D�) E rMc, c. 
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(ii) D,, ¢ sub(O), note that this implies that D; ¢ sub(O), for 0<i<n. Then by 
Definition 5.3.3: Dcr- Dl,... 

, 
Dn_1-R Dn. Then, since 1Z rl o. ". o r� r, we 

obtain D0-- T, D,,. Then, by condition (b) in Definition 5.3.3 we receive (Do, D, a) E 

rMQ, c. 

(2) We show that for every DE A"c, c we have DE D-ý I c, c . The proof is by induction on 
the construction of D. Suppose: 

(a) D=A, for a concept name A, thus we have C=ACA and by Definition 5.3.3 we 
have AE A'"c, r, as required. 

(b) D= Al n ... f1 A� fl 3r1. D1 fl ... n 3r,,,. D�,. So we have to show that DE AMc, c n 
n An °'c fl (3r1. D1)Mc, c fl ... fl (3r n. D, n)Mc, c. The part DE AMc'c with 0< 

i<n can be shown in the same way as (a), so we have to show only the part for 
DE (3rj. Dj)Mc, c for 1<j<m. But we have D-+"I Dj and so D'-D1. Hence 
(D, Dj) E rM°'c and DJ E DMc'c. Thus DE (2rj. Dj)Mc-c, as required. 

(3) For "=" assume CDCC, the proof is by induction on the construction of C. 
Suppose: 

(a) C=A, for a concept name A, then we have CDCA and by definition DE AMc, c. 

(b) C= Al n ... n An n 3r1. C1 fl ... l 3rn. Cn. For every A;, with 1<i<n, we 
can show that DE Aýc" in the same way as (a). So we only have to show that 
DE (ýr3. Cj)Mc. c, for 1<j<m. By the assumption, for every conjunct 2rr. Cj we 
have that C=DC 3rr. C3. This, together with the fact that C, E sub(O) and with 
use of point (a) of Definition 5.3.3 gives us that (D, C,, ) E rMc, c. As C= C2 C C3 

and C, E sub(O), by induction hypothesis we get that C, E CMc'c. This in turn 

gives us that DE (Br,. C, )Mc. c, as required. 

Now we show the direction "=". Assume that DE CMc-c, again, the proof is by 
induction on the construction of C. Suppose: 

(a) C=A, for a concept name A, then we have DE A'"OX and by definition CDCA 

(b) C= Al n... 'n A� n 3r1. C1 n ... n 2rm. C,,,. For every A;, with 1<z<n, we can 
show that C=DCA; in the same way as (a). So we have to show only that for 
every conjunct 2r1. C� with 1<j<m we get C=DC 3rj. Cj . As we have that 
DE (9rj. Cj)-""c, c, there is Cj' ECM c'c, such that (D, C, ') E rMc" . As C3 E sub(O) 
it follows by the induction hypothesis that C CC C C5 and C= 2r. CC C Br. Cj. 
Since (D, CC) E rMc'c we have that C=DC 2r5. CC, by transitivity of `C' we have 
that C=DC 2r3. Cj, as required. 

By (1) and the fact that Mc, c is a model of C we have that C=DCC. 
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(4) The direction (b) = (a) follows from Theorem 5.3.2 and the fact that 

DE DMc-c. For opposite direction let M be a model of C and dE DM. Define rela- 
tion SCA "c, c x AM by setting (D, e) ES iff eE DM, for all DE Amc, c. We have 

to show that S is a simulation. Assume that DE AMc, c, where A is a concept name. 
From that follows that C=DCA, and by the fact that M is a model of C together 

with eE DM we receive eE AM. Now assume that (D, D') E rMc. c. Thus we receive 
that CDC 3r. D', which implies eE 3r. D'M. Hence, there exists e' E Am such that 

el E DIM and (e, e') E rM. From that follows that (D', e') E S. From this follows that 

relation S is a simulation. By definition, we receive that (D, d) E S. 

(5) For arbitrary D, consider the following: 

" (a) implies (b). Assume that C=DCC. Then DE DMc-c. Since , MC, c is a model 
of C we have that DE C""' OX - 

" (b) implies (c). Follows from Point 4 of Lemma 5.3.5. 

" (c) implies (a). Assume (MC, c, C) < (MD, C, D). Let M be a model of C and 
dE DM. To show C=DCC, we have to show dE CM. By Point 4 of Lemma 5.3.5, 

we receive that (MD, c, D) <_ (M, d). By (Mc, c, C) < (MD, c, D) and transitivity 

of `<', we receive that (M c, c, C) < (M, d). Again by Point 4 of Lemma 5.3.5, we 
receive that dE CM. p 

5.4 Characterization of E-entailment 

In this section, we provide a characterization of E-entailment w. r. t. CBoxes in terms of 
canonical models. 

Lemma 5.4.1. Let C= (O, R) be a CBox in £G+. Suppose C=CC 2r. D. Then one of 
the following holds: 

(a) there exists a C' E sub(O) such that CHCC 3r. C' and C= C' C D; 

(b) there exists a C' such that C- C' and C [-- C' C D. 

Proof: Let C= (O, R) be as in the lemma and let C1CC 3r. D. By Point 5 of 
Lemma 5.3.5, we have CE (3r. D)Mc, c. Thus there is a C' E DMc. c such that (C, C') E 
r-"O, c. By Definition 5.3.3 of the canonical model Mc, c, it holds that: 

(i) C=CC 3r. C' and C' E sub(O), or 

(ii) C- C'. 

In both cases, it remains to show that C C' C D, which follows from C' E DMc, c by 
Point 5 of Lemma 5.3.5. 

This lemma is essential for characterizing E-entailment. Intuitively, it states that, given 
an arbitrary large concept C, we can always find a possibly shorter concept with bounded 
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outdegree that expresses the same "relevant" information. What information is considered 

relevant, is made precise by a set of consequences KK(D) of a concept D in the presence of 

a CBox C. The set Kc(D) is given as: 

Kc(D) = {E E cl(C) I C=DCE}, 

where cl(C) = sub(O) U {3r. C ICE sub(O), r a role in C}. 

Lemma 5.4.2 (Bounded outdegree). For all £G+ CBoxes C= (O, R) and concepts C in 

£G+, there is a concept D such that the following conditions are satisfied: 

1.01-- CCD; 

2. KC (C) = KC (D); 

3. IIDII 5 DDCII; 

4. the outdegree of D is bounded by IICII. 

Proof: Let C= (0, R) be a CBox and Ca concept. If the outdegree of C is bounded by 
1ICII, then C itself is the wanted concept D. Assume that this is not the case. Then there 
is a subconcept Co of C, with 

IIPII> IICII for P= {(r, E) 2r. E is a conjunct of Co} 
, 

such that there is a sequence (possibly empty) ri, ..., r,,, of roles that occur in C and a 
sequence E0,..., E,,, of subconcepts of C such that: 

- E,,, = C, Eo = Co, and 

- 3ri. Ei_1 is a conjunct of E; for all i with 1<i<m. 

Thus Co =FnU Br. E where F is a conjunction of the concept names in Co, let 
(r, E) ¬P 

Q be a minimal subset of P such that for all 9s. G E cl (C), if there is a (r, E) EP such 
that C= 2r;. """ Br. E C 2s. G, with i=0,... ' m (where by i=0 we mean that this part 
of the path is empty, so we have C=r. E C Bs. G), then there is a (r', E') EQ such that 
C= 2r;. " "_ " 3r'. E' C Ss. G. Notice that the cardinality of Q is bounded by IC!. Now, replace 
in C the subconcept Co with C1 := Fffl(r,, E, )EQ 9r'. E' and call the result C'. Obviously 
(! C'11 < 11C11. To obtain the desired concept D, it thus suffices to execute the described 

contraction procedure until the outdegree is bounded by JJC!!. Clearly, 0=CC C'. In 

what follows, we show that for all EE cI(C): 

C=CCE 'iff Cý=C'CE. 

"G". Immediate consequence of 0CC C'. 
"=". We show this direction by contraposition. Suppose C C' CH for some HE cI(C). 
We have to show that CCCH. There is a model M of C with do c C'M \ HM. For 

each (r, E) EP\Q, take a copy M,., E of the canonical model ME, C in which E= dr, E, 



5.4. CHARACTERIZATION OF E-ENTAILMENT 139 

such that all these copies have disjoint domains, and their domains are disjoint from that 

of M. We now define a model M' of C that refutes CCH. 

First, we introduce some auxiliary notion. Given xE AM, YE 1XM,. 'E and dE CM, we 

say that x and y are connected via d and induce s, if there are two sequences of roles 

rl, ..., r, i and sl, ..., s�j such that (x, d) E rM 
M'E M'g, o ... or, (dr, E, y) E so ... os and 

Rýrlo... or�oros1o... Sm Cs. 

Define the interpretation M' = (AMA, {AMA}AEp, {rM'},. ER) as follows: 

- A. "': = EM l+1 U AMS'E 

(s, E)EP\Q 

- Am': =AmU 
U A"" s, E, for all AEP 

(8, E)E'P\Q 

- rM' : =r-111u 
U r-"--su v 

'I {(x, y) E AM X AM", E (s, E) EP\Q and 3d E CM, 
(s, E)EP\Q 

such that x and y are connected via d and induce r} 

For illustration of M' see Figure 5.2. 

It is possible to prove the following: 

1. do E CM'; 

2. for all (r, E) EP\Q, all dE AM'', E, and all concepts Do, dE Dä ' iff dE Dö ''a; 

3. for all dE AM and Do E cl (C), dE Dö iff dE Dö'; 

4. we have M' R. 

Point (1) is clear by definition. 
Point (2) follows from the fact that model M,., E is a generated submodel of M', i. e. if 
(e, e') E rM' and eE 0"''"a, then (e, e') E rM*"a. 
Point (3). The proof is by the induction on the structure of Do, the only interesting case 
is that with Do = Sr. Dö. 

"W': Let dE (3r. Dö)M. Then there is a d' E Dom such that (d, d') E rM. By definition of 
M', we have (d, d') E rM'. By the induction hypothesis, d' E D' M'. Hence, dE (Sr. D' )M'. 

Let dE (Sr. Dö)M'. Then there is a d' E Dö ' such that (d, d') E r". Distinguish 

two cases: First, d' E OM. Then (d, d') E rM by definition of M'. By the induction 
hypothesis, d' E Dom and thus dE (3r. Dö)M. 
Second, d' E LMG\0M. By construction of . 

M', we have d' E OM'-a for some (s, E) E P\Q. 

It follows by Point (2) above that d' E D' M' implies d' E IM ''$. Since M,, E is a copy of 
the canonical model ME, c, we have d' = E' for some E' E AMEX and E' E Dp IM"'. By 
Point 3 of Lemma 5.3.5, we get C= E' C D. 

By definition of M', d and d' are connected via d�,, i. e., there are dm EC and d,, E E 
AM", E and sequences rl, """, r,,,, ei, """, s,, of roles with m, n>0 such that (d, dm) E 

r'o... o rmm', (dm, d,, E) E sM' and (d,, E, d) E sM' o ... o SM' 'and ?L rl o ... o r,,, 0 
30-510 """o s� C r. Thus, C Brj. """ 3r,,,. 2s. 3s1. """ 23,,. E' C Br. E'. Since d,, E = E, 
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we get C=EC 3sl.... 3s,,. E', thus Cj 2rl.... 3rm. 3s. E C 3r. E'. Since C= E' C Do, we 
receive C 3rl .... 3r,,,. 3s. E C 2r. Dä. By definition of Q, there is an (s', E") EQ such that 
C 3rl.... 3r,,,.. 3s'. E" C 3r. Dö. Since d�, E CM and 3s'. E" is a conjunct of CM, we have 
d,,, E (3s'. E")M and, thus, dE (3rl. """ 3r,,,. 3s'. E")M. And again by Lemma 5.3.5, we get 
dE (3r. Dö)-`t 
Point (4). To show that M' =R assume that ri o"""o r� CsER and (d', d") E 

rMI o ... o rn ", we show that (d', d") E s'"'. We have to consider two cases: 

1. d' c A'"''-E, this implies (d', d") E rM' o"""o rn "". Since M,., E = R, we receive 
that (d', d") E s"n E, this implies that (d', d") E sM'. 

2. dE AM, then we have to consider two further cases: 

a) d" EOM, then (d', d") E rM o"""o rn. Since M 7Z, we receive that 
(d', d") E sM, this implies that (d', d") E sMI 

b) d" E AM-, E, then d' and d" are connected via d, i. e. there are dE CM and 
d,., E E AMr''E together with sequences of roles rl,... rk and r�+, ... r, a, such that 
(d', d) E rM o ... o rk , 

(dr, E, d") E rmM ,zo... o rn ', E and r= ri with k<1<m. 

This together with the assumption induces role s such that (d', d") E5 M' 
. 

Since M and every Mr, E are models of C and by points (2), (3) and (4) above, it 
follows that M' is a model of C. Since do E CM \ HM, Point (3) implies that do ¢ HM'. 
By Point (1) we have do E CM' which implies CC9H. 11 

For the following characterization of E-entailment, we use a relation '==>I' on concepts. 
Let C1, C2 be CBoxes, Ca E-concept, and Da Sig(C2)-concept. We write C => 1D if, and 
only if, for all E-concepts E, C2 =DCE implies Ci CCE. 

Lemma 5.4.3 (Characterization of non-E-entailment). Let C1 = (O1,1Z1) and C2 = 
(02,82) be two SC CBoxes, and EC Sig(C2) a signature and assume 7Zi CE 1Z2. Then 
DiffE(C1, C2) 36 0 if, and only if, there is a E-concept C and a Sig(C2)-concept DE cl(C2) 
such that: 

(a)C2ýCD; 

(b) C X41 D; 

(c) the outdegree of C is bounded by 11C211. 

Proof: Assume that (a) to (c) are satisfied. By (b), there is a E-concept E with 
C2 =DCE and Cl CCE. From C2 =DE and (a), it follows C2 CCE, which 
implies that CCEE DiffE(Cl, C2). 

Suppose CcDE DiffE(Cl, C2). We first show (a) and (b). Note that C and D are 
E-concepts. If DE sub(C2), we are done: we have C2 =CCD and Cl KCCD, therefore 
CiD. Otherwise, assume that for all CODE ME (Cl, C2), D0 sub(C2). 

Let CCD be minimal in the sense that there is no C' C D' E DiffE(C1, C2) with D' 

shorter than D. Then D is of the form 3r. D': 
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M' 

M r1, E1 MrZ, Ey Mri. 

y111 
r 

""" 

dif+l, Ei+1 
Eit+9. 

Et+9 
Efk, 

Ek 
++ 

E{ ". dr1. E1 dr9. E9 dri, Q 

El E2 Es ....... "- '' ........... .............. 

................. 
C1 

8 

x 

C, 

Figure 5.2: The interpretation M. 

" If D=T, then C1 CCD, contradicting the fact that CCDE DiffE(Cl, C2). 

" If D is an atomic concept, then DE sub(C2), which we have assumed not be the case. 

" If D is a conjunction Dl fl D2i then C2 CCD; for all iE {1,2}, and Cl i& CC Di 
for some iE {1,2}. Thus, one of CC Dl and CC D2 is in DiffE(C1, CZ). Thus, D is 
not minimal. 

By Lemma 5.4.1, C2 =CC 2r. D' implies that one of the following holds: 

1. there is a C' such that C- 
2C' and C2 C' C D'; 

2. there is a C' E sub(02) such that C2 =CC 2r. C' and C2 = C' C D'. 

Observe that, in Case (1), we have Cl C' C D'. Suppose not, i. e., Cl 14 C' C D'. 
Together with C2 C' C D', this implies that C' C D' E DiffE(Cl, C2); contradicting the 

minimality of D. 
Now suppose that Case (1) applies. From CMºR3C' together with the fact that we 

assumed Ri CE R2, it follows C1 =CC 3r. C'. Since in Case (1) it holds Cl = C' C D', 

we get Cl Jr. C' C ar. D'. This implies C1 =CC 2r. D'. As D= 3r. D', we have 
Cl CCD, contradicting the fact that C9DE DiffE(Cl, C2). 
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Consequently, Case (2) holds. Substitute 2r. C' for concept D. We show that the 
Conditions (a) and (b) hold for the concept C and 3r. C'. Condition (a) follows from 

C2 CC Br. C' by Case (2). For Condition (b), recall that Ci CC 3r. D' since we 

assumed CC 3r. D' E DiffE(C1, C2). Note that, by (2), we also have C2 = C' C D', which 
implies C2 = Sr. C' C 2r. D' and, then, C2 =CC 2r. D'. By the fact that 2r. D' is a 
E-concept, we have C #j Jr. C'. 

It remains to show that Condition (c) is satisfied. Suppose the concepts C and D 

satisfy Conditions (a) and (b), Sig(C) C E, and D in sub(02). Take a concept C' that 

satisfies the four conditions of Lemma 5.4.2 for C2. By Condition 4, C' satisfies Point (c). 

Condition 2 implies that C' and D satisfy (a). Since C #1 D, there is a E-concept E such 
that C2 =DCE and C1 CCE. By Condition 1, it follows Cl CC C'. This implies 

Cl C' C E. Then we have that C' 76.1 D. Hence, C' and D satisfy Point (b). 0 

The next lemma characterizes the relation "=*-1" semantically in terms of E-simulation 

between canonical models. Moreover, it states that membership in "#, 1" can be decided in 

polynomial time. 

Lemma 5.4.4 (Semantic characterization). Let C1, C2 be &C CBoxes and C, D concepts 
in , 6, C+. Then we have C =ý-1 D if, and only if, (MD, c� D) <E (Mc, c� C). Hence, the 

problem CD is decidable in polynomial time in the size of C, D, Cl and C2. 

Proof: "=". Suppose C $i D. Then there is a E-concept E such that C2 DCE 

and Cl CCE. By Point 3 of Lemma 5.3.5, this yields DE EMD. c2 and C EMC, ci. 
Hence, ' by Theorem 5.3.2, we receive that (MD, c� D) ¢E (Mc, c� C)" 

"=". Let (MD, c,, D) :9E (Mc, c�C). By Theorem 5.3.2, there exists a E-concept E with 
DE EMD, Ca . By Point 2 of Lemma 5.3.5, we have C2 =DCE and Cl CCE. Hence, 
C #1 D. It is well-known that computing the largest E-simulation between two finite 

graphs can be done in polynomial time [261. Q 

5.5 Algorithm 

r. 
., 

r 

3, 

4 

F 

While previously we have presented results for CL+, in this section we present an algorithm 
for deciding E-entailment for its restriction, description logic £GS1-L. The reason for that 
is the fact that in our approach the problem for EL+ cannot be decided, as Lemma 5.5.3 
does not hold in £C+. Therefore for description logic £G+ the problem remains open. 

Before we introduce the algorithm we need some additional lemmas. 

Lemma 5.5.1. Let C= (O, 1Z) be a ECS? { CBox, then the following holds for n>2: 

C=rlo. . or�Cr if Rý=r1Cr,..., Rý=r�Crand7Zý=rorCr. 

Proof: This follows from the construction of canonical models EL as in [8]. Q 

As in this section we consider description logic EGSf, we take into account a simplified 

version of relation "-" from Definition 5.3.3. This is presented in the following lemma. 
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Lemma 5.5.2. If R is an ELSN role box, then C--+" C' ifj: 

(a) there exists a sequence 2ro. Do,... 
, 
ar,,. D,, with n>1, where 2ro. Do a conjunct of C, 

Sri+I. Di+i a conjunct of D; for 0<i<n such that Dn = C' and for every ri with 
0 <i<n we have R=riCr and7R[-- rorCr, or 

(b) there exists 3r'. C' a conjunct of C and 7Z j r' C r. 

We present an algorithm for deciding E-entailment for EL SU. For CBoxes Cl = 
(Ol, Ri) and C2 = (02, R2), to check whether Cl CE C2, the algorithm enters two stages. 
In the first stage the algorithm checks if Rl C£ 7Z2. In other words, the algorithm first 

computes sets of "relevant" role inclusions entailed by Rl and R2, defined for any R by 

91={rgsI Rý--rCsand r, sEE}U{rorr-rI rorCrER andrEE} . 

This set is computed in polynomial time. After computing sets D and 9i2 the algorithm 

computes N2 \ 911- If 912 \ 911 # 0, then IZ1 V=E 9Z2 and thus Cl E C2. In case 312 \ 911 =0 
the algorithm proceeds to the second stage. In the second stage the algorithm searches 
for a E-concept C such that for some DE sub(02), the Points (a)-(c) of Lemma 5.4.3 

are satisfied. The algorithm proceeds in rounds. In the first round, Points (a) and (b) are 

checked for all conjunctions C of concept names from E and all DE sub(02). Each check 

can be done in polynomial time by Lemma 5.4.4. In case, no suitable C is found in round 

one, the algorithm proceeds to the second round in which concepts C of role depth one are 

considered. Here C is a conjunction of concept names from E and concepts of the form 

ar. E, where r is a role from E and E is a candidate for C from the previous round, i. e., E 
is a conjunction of concept names. By Point (c) of Lemma 5.4.3, we only have to consider 
those Cs with no more than 11 Os 11 many conjuncts of the form 3r. E. For checking Points (a) 

and (b), we make use of the information we have gained about the Es in the previous round. 
If still no suitable C is found, the algorithm starts round three that checks concepts C of 
role depth two in which we reuse the Cs from the second round as role successors. If again 
no suitable concept C was found, the algorithm proceeds to the next round, etc. 

To avoid constructing doubly exponentially large concepts C, the algorithm uses a suc- 
cinct data structure that represents the relevant information about C. Which information 

about C is relevant can be read of the characterization of E-entailment in Lemma 5.4.3: 
For every C, take the quintuple 

Cl = (Qo, 2i, Q2, Q3, Q4), 

where the set Qo contains all concept names occurring in the top-level conjunction of C, 

2i = Kcl (C), 
Q2 = Kc, (C), 
Q3 = {(r, D') E (E n R) x sub(OZ) I C' =: ý1 D' and 

Cl =CC ar. C' with C' E sub(Ol) or C-41C'}, and 
LQ4 = {D E sub(02) IC =1 D}. 
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The quintuple CO is said to be determined by C. Intuitively, the components Qi and Q2 

contain concepts that are implied by C in the context of Cl and C2, respectively, and Q 

contains concepts which, while being implied by D in the context of C2, can be E-simulated 

by C in the context of C1. 

According to Lemma 5.4.3, the quintuple CO determined by a concept C contains suf- 
ficient information to decide whether C is the left-hand side of a CI witnessing the logical 

difference between two CBoxes. Moreover, the information in Ca enables the recursive 

search described above and to formulate a termination condition for the algorithm to run 
in exponential time. 

Figure 5.3 presents the algorithm for deciding E-entailment for EGS91. Observe that 
the termination condition Q2 \Q#0 corresponds to satisfaction of Points (a) and (b) in 
Lemma 5.4.3. Note that Point (a) in the definition of the set F3 uses canonical models, 
which are constructed on demand in polynomial time. 

Before we continue to show correctness of the algorithm, in Lemma 5.5.4 we explicitly 
state the concepts that determine the quintuples constructed in Step 3 of Figure 5.3. But 
first we need an auxiliary lemma. 

Lemma 5.5.3. Let C= (0, R) be a CBox in £GSU. Let the concepts C and D be given 
as 

C= Fn n 3r. E, D= Fri n 3r. (n C), 
(r, E)EQ (r, E)EQ GEKc(E) 

where F is a conjunction of concept names. Then Kc(C) = Kc(D). 

Proof: We show set-entailment in both directions. 
"fl"., This follows from C=CCD, which follows from CECnG. 

GEKc (E) 
C'. We show the contrapositive. Let HE cl (C) \ Kc (D). We show HO Kc (C). Consider 

a model M 'of Cwith do E DM \ H'o'l. We may assume that do has no predecessor (i. e., 
{d I (d, do) E rM }=0 for all r). For each (r, E) E Q, take a copy Mr, E of the canonical 
model ME, C such that all these copies have mutually disjoint domains and are disjoint with 
M. Denote the copy of E in M,, E by d,., E. Define a new interpretation M' as follows: 

(r, E)EQ 

- AMA := AMU U A'"*'lr, E, for all AEP, 
(r, E)EQ 

. 3M' := SM UU SMr'z U{ (do, dr, E) I IZr C s, (r, E) E Q} 

(r, E)EQ 

U{(do, d') 3(r, E) E Q, 3 r': (d,., E, d) E r' and 9Z ro r' C s}. 

The following can be shown by induction on the structure of Do: 

(i) for all (r, E) E Q, all dE AM°, E, and all concepts Do: dE Dom' if dE Dö 

(ii) for all dE OM and Do' E cl (C): dE Do iff dE Do'. 
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Input: CBoxes Ci = (01, RI) and C2 = (O2, R2) and signature E C- Sig (C2). 
Stage 1: 

1. Compute 911 and M2- 

2. Compute the set D12 \ 911. 

Ifýt2 \ 911 # 0, then output `Cl ZE C2', otherwise proceed to Stage 2. 
Stage 2: 

1. Compute the set No of quintuples determined by conjunctions of concept names from E. 

2. If No contains a quintuple (Qo, Qi, Q2, Q3, Qa) such that Q2 \Q#0, then output `C1 I¢E 
C2'- 

3. Generate the sequence Arl, AG, ... of sets of quintuples such that Nt+1 = N{ U Ni 
, where 

J1/, ' is the set of quintuples (Fo, Fi, F2, Fs, F4) which can be obtained from a set Fo of 
concept names from E and a set QS (E r1 R) x N; of cardinality not exceeding X1020 in 
the following way: 

-Fi= Kc1( nAnn 3r. ( n D)); 
AEFo (r, (Qo, Q1'Q2, Q3, Q4))EQ DEQ1 

- F2 = Kcz (IiAnn 3r. ( nD)); 
AEFo (r, (Qo, Q1, Q2. Qs, Q4))EQ DEQ3 

- F3={(r, D)E(Ef1R)xsub(C2) I 
(a) there is a 2r. C' E Fl such that (MD, c� D) <E (Mc,, ci*, C'); or 
(b) there is a (s, (Qo, Qi, Q2, Qa, Qa)) EQ such that: 

(i) DE Qa and 1 j= a r; or 

(ii) (t, D)EQa, Riý= sCr, Ri1= t C: r, and rorCrE1. i}; 

- F4 = {D E sub(C2) 
(a) for allAEE, AEKc, (D)implies AEFi; and 
(b) for all rEE, (D, D') E rMDIC2 implies (r, D') E F3). 

Stage 2 is repeated until N; contains a quintuple (Qo, Ql, Q2, Q3, Qa) such that Q2 \Q#0, or 
M+1= J. J. +Output `Ci ¢E C2' if the first condition applies; otherwise, output `C, CE Cz'. 

Figure 5.3: Algorithm for deciding E-entailment in EGS7{. 

Point (i) follows from the fact that model Mr, E is a generated submodel of Jet', i. e. if 
(e, e') E rMI and eE OM''-E, then (e, e') E rm-. E. 

For point (ii) the only interesting case is that with Do = 2r. Dö. 

°°=": Let dE (2r. Dö)M. Then there is a d' E Dom such that (d, d') E rM. By definition of 

. 
A41, we have (d, d') E rM'. By the induction hypothesis, d' E D' M'. Hence, dE (3r. D' )M'. 
"=": Let dE (2r. Dö)M'. Then there is a d' E Do'" such that (d, d') E rM'. Distinguish 
two cases: 

(a) First, d' E 0" 
. 

Then (d, d) E r'ß'1 by definition of M'. By the induction hypothesis, 
d' C Dä and thus dE (9r. Dö)M. 
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(b) Second, d' E A-"'\ AM. Then d= do. By construction of M', we have d' E OM., E for 

some (s, E) E Q. It follows by Point (i) above that d' E Do'" implies dE Do "E. Since 

M,, E is a copy of the canonical model ME, c, we have d' = E' for some E' E AMEX 

and E' E Do'm', '. By Point 3 of Lemma 5.3.5, we get C= E' C D. 

Now we distinguish two subcases: 

Case 1) We have that E' = d3, E, and CsCr. Then E' = E. By CEC Dog 

we have DO' E Kc(E). Since do E DM, we have do E (Bs. F1 G)M. Hence 
GEKc(E) 

do E (3s. Do)M. By CsCr we obtain do E (3r. Do)M, as required. 

Case 2) (d,, E, d') E r' and R' so r' C r. Then R= sCr, r' C r, rorc: r 

and CEC 3r'. Dö. So CEC 2r. Dö. Hence 2r. Dö E Kc(E). Hence 
do r= (]s. 3r. Dö)M. So do E (2r. Dö)M, as required. 

Since M and all Mr, E are models of C and by Points (i) and (ii), it follows that M' is a 

model of 0. We only have to show that M' = R. We consider two cases: 

Case 1) We have that (d, d,, E) E sMl and 1Z HsCr. Then by definition we receive that 
(d, d,, E) E rM'. 

Case 2) We have that (d, d,, E) E 8M', (d,, E, d) E r'M", E and 7Z =rorCr as well as 
7Z sCr and R= r' 9 r. By definition we receive (d, d') E rM'. 

By Point (ii), do 0 HMS. do c- CM is trivial. This proves H0 Kc(C). 0 

Lemma 5.5.4. Let (Fo, Fl, F2, Fs, F4) be the quintuple computed from Fo and Q in Fig- 

ure 5.3. For each (r, q) E Q, let Cr, q be the concept which determines the quintuple q. Then 
C=f AE, Fo An fl (* q)EQ 

3r. C,, q determines (Fo, Fl, F2, F3, F4). 

Proof: Let (Fo, Fl, F2i F3, F4) and C be as in the lemma, let (Co, G1, G2,03, g4) be the 
quintuple determined by C. We show that Gi = F{ for 0<i<4. 

FO = Go is trivial, Fl = G1 and F2 = C2 follow from Lemma 5.5.3. 

We now have to show that F3 = Gs. 
Let (r, D') E G3, then (r, D') E (E n1)x sub(02) and C' =*l D', where at least one 

of the following holds: 

1. Cl H0C 3r. C', and CE sub(Ol), or 

2. C- Cl. 

If (1) holds then 2r. C' E KC, (C), then by Lemma 5.4.4, (MD', c� D') <E (MC,, c� C'), 
But then by point (a) of definition of F3 we have (r, D') E F3. 

If (2) holds then, by Lemma 5.5.2, we distinguish two further cases: 
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Case 1) There exists a sequence 3ro. Co,... , 2r,,. Cn with n>1, where Bro. Co is a conjunct 

of C, 2ri+1. C; +1 a conjunct of C; for 0<i<n such that C� = C' and for every ri 

with 0<j<n we have 7Z1 rj Cr and Rl rorCr. Then 2ro. Co = Br'. Cr', q 
for some (r', q) E Q, for q the quintuple representing Cr', q. As now we have 

C, ', y^ýºýy1C' and C' =: >. 1 D', we have (r, D') E q3. As Rl r' Cr (since r' = ro 

and 7Z1 ro C r) and 1Zl =rCr and 7Zj rorCr, and so by (b)(ii), we have 

r, D'EF3. 

Case 2) There exists 3r'. C' a conjunct of C and R= r' C r. Then Br'. C' = 2r. C, ',, for 

some (r', q) E Q. Then Cr', q 1 D' and so D' E q4 for q the quintuple representing 
Cr', q. Since Rl r' Cr we obtain (r, D') E F3 by (b)(i). 

C'. Let (r, D') E F3. We distinguish two cases: 

Case 1) (a) holds, thus there is a 2r. C' E F1 such that (MD', c� D') <E (Mc', c� C'). 

Then we have C' =1 D' by Lemma 5.4.4 and Br. C' E Kul (C) by the definition of 
F1. Hence (r, D') E 93; or 

Case 2) (b) holds, thus there is a (s, (Qo, Qi, Q2, Qa, Q4)) E Q, here we distinguish two 

sub-cases: 

(1) we have that (i) holds, then there is C,, q, such that C,, q =* 1 D' and 7Zi sCr 
thus we have CM+R, C,, q, and so (r, D') E 93, 

(2) we have that (ii) holds, then there is C3, y, such that C,, q D' and C-, t 
1C,, q 

we also have that Rl sCr, R1 =tCr and RI rorCr. Thus we have 
CM+R, Cs, q, and so (r, D') E G3. 

Now we show F4 = jg4. 

"D". Let DE g4 then DE sub(02) and C =*-1 D. By Lemma 5.4.4, C =0-1 D ifr 
(MD, c� D) <_E (Mc, c� C). From this together with Definition 5.3.1 it follows that 
C=D if both of the following hold: 

1. for all concept names AEE, AE Kc, (D) implies AE Kc, (C), i. e. AE Fl; 

2. for all role names rEE and all concepts D' with (D, D') E rM r). e2, there exists a 
concept C' with (C, C') E rMc, ci and (MD, c�D') <E (Mc, c�C'). 

"C". Let DE X4. Then: 

1. for all AEE, AE Kc, (D) implies AE Y1, i. e. AE Kc, (C); and 

2. for all role names rEE and all concepts D' with (D, D') E rM1. Ca implies (r, D') E 

. 
F'3. But as shown above, this implies that (r, D') E ! 93i i. e. for all role names 
rEE and all concepts D' with (D, D') E rMD-C3, there exists a concept C' with 
(C, C') E rMQ-cl and (MD, c� D') <E (Mc, c� C'). 

By Definition 5.3.1 points (1) and (2) give us that (M D, C2, D) <_E (M CC,, C). By 
Lemma 5.4.4, (MD, C� D) <E (Mc, c,, C) if C =: ý1 D. Thus DE 94 as required. 0 
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Theorem 5.5.5 (Correctness and Complexity). The algorithm for deciding E-entailment 
for EGS1-l is sound, complete, and runs in exponential time. 

Proof: Soundness follows from Lemmas 5.4.3 and 5.5.4. For completeness, assume Rl CE 
R2 and Diffr(01i 02) yl- 0. By Lemma 5.4.3 there exists C, D, with C of outdegree bounded 
by lIC211 and DE sub(02) such that C2 =CCD and C #1 D. If C is a conjunction of 
concept names, then the algorithm outputs `Cl V=E C2' in Step 2. Suppose C has role depth 

n>1. One can show by induction on i using Lemma 5.5.4 that, for all i>0, the set JV; 

contains all quintuples determined by subconcepts C' of C of role depth smaller than i. 
Hence, after computing the set Ni for some i<n, the algorithm outputs `Cl ¢E C2'. 

For termination and time complexity consider the following. To see that Steps 1 and 2 

of the algorithm run in polynomial time notice that, by Lemma 5.4.4, the algorithm can 
compute any quintuple determined by a conjunction of concept names from E in polynomial 
time. Consider Step 3. For each quintuple (Qo, Qi, Q2, Qs, Q), we have Qo CE and 
Q; C cI(C2), for 1<i<4. That is, the total number of possible quintuples is bounded 
by 251IC211. Consequently, the algorithm terminates since Nt = Nj+1i for some j< 2511C2H 
For showing that the algorithm runs in exponential time, we now show that Nt+l can be 

computed from JVi in exponential time. The number of pairs (Fo, Q) in Figure 5.3, where 

. Fo CE f1 P and QC (E f1 R) x iV with IIQII : IIC211, is exponential in JJC211. Moreover, 

given a pair (Fo, Q), computing the quintuple (Fo, Fi, F2,. F3,. F4) in Figure 5.3 only takes 

polynomial time in JI C2 fl" 11 
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In this thesis we propose a solution to problems related to the use of multiple ontologies. 
We focused our attention on these problems due to the fact that in the recent years we 

can observe an increasing interest in using ontologies in different branches of science and 

commerce, combined with the increasing number of formal languages used for ontology 
formulation. On the other hand, we can also observe the need to use ontologies in new and 

evolving applications, and this requires ontologies to evolve. As a result, users are often 
interested in using multiple ontologies, but the variety of formal languages used for ontology 
formulation is a potential source of problems. In our work we approached that problem 

with the aim to present a construction allowing for answering queries with use of ontologies 

even if they are formulated in distinct formalisms, this construct was also intended to allow 
for comparing and combining ontologies formulated in arbitrary formal languages. 

As the base for our work we proposed a new view on ontologies, called the functional 

approach. As opposed to the standard approach to ontologies, in the functional approach 
the focus is not on the way ontologies are built or what formalisms are used to construct 
them, but on their function. In other words, we adopt an abstract view of an ontology as 

a black box providing answers to queries about some vocabulary of interest. 

The next step towards providing a construct allowing for working with ontologies in a 
logic independent way required the use of institutions [41]. The use of institutions gives 
us an abstract view of logical systems and allows to formulate the consequence relation in 

a way that does not depend on a particular formal language. This fits very well with the 
functional approach to ontologies and with the aim to work with multiple ontologies even 
if presented in distinct formalisms. In addition the theory of institutions offers us truth- 

preserving translations from one logical system to another, these are institution morphisms 
and comorphisms. Finally, the theory of institutions allowed us to formulate our results in 

an institution independent way. For reasons of convenience (presented in Chapter 3) we 
choose to use comorphisms in our constructions. After introducing the notion of institution 

we showed how logical systems can be represented as institutions, we presented examples for 
PL, FOL, £G, £G+, ACC and Cf, and investigated the relations between them (morphisms 

and comorphisms). In fact, we show that the institutions of interest are inclusive, as this 

property addresses the problem of different signatures. Using the theory of institutions we 
presented notions of query basis and framework which provides a language in which both 
the ontology and the query languages are translated by means of institution comorphisms. 
Then we proposed an institution independent formulation of the notion of consequence 
relation in a framework. This notion allows us to use an ontology for answering a query 
even if they are formulated in different formal languages and use different signatures. We 

also introduced a notion of binary framework. With the use of binary frameworks we 
presented an institution independent formulation of E-entailment and E-inseparability of 
ontologies. This allows us to compare and to combine arbitrary ontologies despite the fact 
that they may be formulated in different formal languages and signatures. Among the, 

results of that section we have that the consequence relation in framework 1Z :I -+ Z over 
itself as query basis is equivalent to the consequence relation in I. We also show that if an 

ontology language can be translated directly into the query language, then entailment can 
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be reduced to showing that each sentence in one ontology is a consequence of the other. 
We show that for framework p: G -a 9 over query basis p itself for any A-ontology 0 for 

It, and any cp E Senr-(A') if 0= uA, ep then 0=' gyp, moreover, if ß' is surjective on 

models, then the converse implication also holds. We also show that moving to a richer 
language preserves the consequence relation. These results show that frameworks behave 

in the expected way and do not affect the consequence relation. 
In our work we also investigated three types of robustness for binary frameworks, namely 

robustness under vocabulary extension, robustness under joins and robustness under re- 

placement in a framework, and investigated how these types of robustness are related to 

the Craig interpolation property and the notion of conservative extension. To a great ex- 
tent this is a generalization of results by Konev et al. presented in [501. As one of the 

results of that section we show a close relation between robustness under joins and the 

conservative extension property. Namely we show that for a binary frameworks 

(µ, µ2) over 77, both robust under joins, given a A-ontology 0 for µ, Al-ontology O1 for 

µl, and A2-ontology 02 for µ2i with signatures satisfying 4P (A) n ßµl(Al) 9 V1 (E), and 
ßµ(A) n ßµ2(A2) C Vr(E), we have that if 0UO; is a conservative extension of 0 (for 

i =1,2), then also 0U Ol U 02 is a conservative extension of O. This property is important 

for ontology refinement. Another result shows the relation between weak interpolation and 

robustness under vocabulary extension. More precisely, the result states that in a binary 

framework 'a = (µl, µ2) over query basis 71 :Q --* C, where 17 is conservative and for every 

signature E in Sig2, ß. ' is surjective and there is a comorphism p: £2 -4 Q such that 

µ2 = p; 77: if 9 has weak interpolation, then a is robust under vocabulary extension. An- 

other result of that chapter tells us that if framework ll: Z -+ I over query basis ix is 

robust under vocabulary extension, then I has weak interpolation. We also show for a 
binary framework 3= (µl, µ2) over query basis 77, with r7 conservative, and surjective ß'' 

on models, with comorphisms pi : Li -+ Q such that ii = p;; 77 for i=1,2: if Q is closed 
under Boolean operators, and 9 has weak interpolation, then a is robust under joins for 
finite ontologies. We also show that any framework over query basis 1FOL : FOL -a FOL 
is robust under vocabulary extensions, joins, and under replacement for finite ontologies. 
We also show that for G an institution of any fragment of first-order logic closed under 
Boolean operators, robustness under joins for any framework pC over itself as query 
basis implies interpolation in L. 

We also investigated the problem of using ontologies together with ABoxes and deter- 
mining E-entailment and E-inseparability of ontologies in the presence of ABoxes. But to 
make it possible first we had to introduce individuals into the signatures and present how 
assertions are built. To do that first we provided a definition of description logic, which 
is based on the notion of slice category. Namely, a description logic is an institution Z 
together with a morphism p: 14 C? l. This definition allows us to treat description logics 
in a systematic way and moreover it is used to show how to introduce individuals into the 
signature and how to construct assertions with individuals. Then we presented how an 
institution of a description logic extends to an institution of a description logic with indi- 
viduals, and similarly how morphisms and comorphisms between those description logics 
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extend to morphisms and comorphisms between description logics with individuals. We also 
investigated the relations between institutions of description logics and their counterparts 

with individuals. Among the results we include that given an institution I and Z+L there is 

a morphism p- : I+t -+ I and another one µ+ :Z -+ I+t. This is graphically represented 
in Figure 6.1. We also show that for signatures EE Sig' and (E, I) E Sign+i the 

Zý_Z+G 
V 

µ µ+c 

1 
CAL C7 +c 

1ý 

Figure 6.1. 

functor T0 : (E, I) HE has left adjoint Wµ+ : E'-r (E, 0). This, together with the results 

of Arrais and Fiadeiro presented in [5], gives rise to comorphism µ: Z -4 T+t. We also 
introduced the notions of query conservativity, query expansion and concept interpolation. 

We could say that concept interpolation `splits' the consequence relation for assertions into 

two different logics. This in turn means that determining if assertion v(i) is a consequence 

of (0, A) reduces to determining if there is -i such that ip (i) is a consequence of A and 

v/, C cp is a consequence of 0. Extending results of [62] showing that EC+t has concept 
interpolation we show that e3 c+c has concept interpolation. Which in that case means 
that two conditions are satisfied: 

" if V is a concept name C and we have (0,7Z, A) [--(E Il C(i), then we can find a 
Cc+ concept C', such that A ýýE Il C'(i) and 0 lz4 C' C C, 

" if cp is of the form ri o ... ora, and we have that pair (7Z, A) entails role assertion 

ri o"""o r�(il, i2), then there is a sequence of role assertions rl, l o" " "orl, m(i1, i'), r2,10 

"""0 r2,1(i', i"), ... 
, rk, l o ... o rk, i (i, i2) in A, such that for rl, l o ... o rl,,,, o".. 0' 

rk, lo"""ork, j, wehave A= 1(il, i2)and1?. = ' rlo"""or,,. 

We also show that if u has query expansion, then it is query conservative. This material 
allowed us to show how a framework built from description logics extends to a framework 

allowing for use of individuals. 
, 
Having this, we were able to formulate the notion of E- 

entailment and E-inseparability based on instance checking rather than based on concept 
subsumption, which is usually too weak when using ontologies together with ABoxes. In 

our work we considered the case when an ontology and an ABox are formulated in the same 
formal language. 

In the final part of our work we presented a particular application of frameworks; we 
investigated E-entailment in a framework'ECgfl : £GSR -+ £L Sf over itself as a query 
basis. This part of our research extends the result presented by Lutz and Wolter in [611 by 

k 
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considering ontologies formulated as general CBoxes (TBoxes together with RBoxes) in the 

description logic EGS? -l obeying some additional restrictions. The main result states that 

the E-entailment problem for such ontologies can be solved in ExPTiME. Thus, this problem 
is no more complex than for plain EG, which was shown to be ExPTIME-complete [61]. 

Future work 

We realize that our research does not cover the area completely, therefore below we suggest 

some of the possible directions for future work. 
In our work we show that for general CBoxes formulated in the description logic CGS? { 

the E-entailment problem can be solved in ExPTJME and is no more complex than for plain 
£E, which was shown to be ExpTlME-complete. It is also known that the computational 

complexity of this problem is 2ExPTIME-complete for more expressive description logics like 

A, CC, AICQ, and AL CQI, but even in such simple formalisms as acyclic propositional Horn 

Logic it is co-NP-complete. On the other hand, there are many logical systems for which 
the E-entailment problem has not been investigated. For instance, it was already mentioned 
in Chapter 5, the problem is still open for description logic £G+. Also investigating the 

problem for other extensions of £G could be interesting. 

Another possible area of future research is to investigate further the problem of deciding 

E-entailment for knowledge bases in the framework setting. As mentioned in Section 4.3, 

when using ontologies together with ABoxes one has to determine how to include the ABox 

into the framework. In our work we have investigated the case when the ABox is a part of 
the ontology, i. e., the ontology and the ABox are closely related, for instance, if they are 
designed and maintained together, and the ABox does not change significantly more often 
than the ontology. But the ABox can be a part of the query language or even be formulated 

in yet another language, in such a case the ontology and the ABox have a different status, 
which usually is the case (the usual situation is when an ontology designer does not know the 
ABox and that the Abox changes more often than the ontology). Of course in that scenario 
the notion of E-entailment for knowledge bases is not sufficient and we need a definition of 
E-entailment quantifying over all possible ABoxes, i. e. taking ABoxes as unknown "black 
boxes". To determine inseparability of ontologies with all possible ABoxes we will have to 
additionally assume that we can formulate the deduction theorem in g+t. But this will 
involve additional definitions. One way of assuring that we can formulate the deduction 

theorem in Cg+t is to make Boolean operators available, so we can say what the conjunct 
AA is and what "4' means in Q+t. 
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A. 1 E-entailment and inseparability in morphism frameworks 

In section 3.2 we have introduced frameworks, which were used for studying the funda- 

mental notions of description logics, E-entailment, E-inseparability w. r. t. a query language 

and E-conservative extension. For framework construction in section 3.2 we have used co- 
morphisms, while arguing for use of comorphisms we have mentioned that it is possible to 
introduce similar construct with use of morphisms. In this section we provide a formulation 

of a framework with the use of morphism, we also point what are the difficulties of that 
formulation. 

Definition A. M. A morphism query basis is an inclusive morphism 'i :G -+ Q. 

A morphism framework over a morphism query basis q: g -º Q is an inclusive 

morphism p: 9 -+ G. 

Convention A. 1.2. As in this section we talk about morphism frameworks and morphism 
query bases only, we will refer to them simply as frameworks and query bases, which should 
not cause any confusion. 

The intuition behind this construct is that given an ontology and a query represented in 

two institutions, G and Q respectively, we chose a global institution Q such that there are 

morphisms 94G and gAQ. Using these morphisms we can translate the ontology and 
the query into ! 9, then we can check whether the query is a consequence of the ontology. In 

more detail, institution 9 provides us with a signature, this signature is translated down to 
G and Q. This translated signature is then used for constructing an ontology and a query 
respectively. Then both, the ontology and the query are translated back to C where we are 
able to check if the ontology entails the query. 

As previously, we allow more than one framework over a query basis. Figure A. 1 is a 
graphical representation of frameworks pi and P2 over query basis t. 

G 

lei P2 

Gý Gs Q 

Figure A. 1: Frameworks µl and 142 over a query basis r7 

As for framework using comorphisms we define the consequence relation. 

Definition A. 1.3. Let µ: G -* G be a framework over rl, and let E be a G-signature, 0 be 

a ßµ(E)-ontology for p and cp E SenQ(WYn(E)) be a query. We say that (p is a consequence 
of 0 with respect to q (written 0f4 gyp) if 

:g 
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Just like in Definition 3.2.5 this is to say that cp is a consequence of 0 in framework /. c 
iff 0 translated along morphism u into 9 entails in g, with respect to the signature E, the 
translation of cp along 77. 

Compared to Definition 3.2.5 we can see that Definition A. 1.3 is less intuitive. Namely 
it suggests that the signature was introduced in the global language and then translated to 

ontology and query languages. In that case one could argue that homonyms and synonyms 
should have been avoided already in the global language, moreover it would be not clear 
why different natural languages should be used within one signature. Alternatively, if in the 

original signature homonyms and synonyms were not introduced and the signature was over 
one natural language only, but ontologies or queries would still use homonyms, synonyms 
or different natural languages it would mean that morphisms are responsible for that. In 

that case one could argue that the morphisms should be chosen in more careful way, and 
avoiding introducing any ambiguities in the signatures. 

Basic framework structures 

As for the case with comorphisms, we discuss six special cases of morphism frameworks. 
Here we do not repeat the examples introduced in Chapter 3. 

1. Let G=9=Q, in this case morphisms are identities. Proposition A. 1.4 below shows 
that the entailment in framework 1g :g -- C over the same query basis is the same 
as entailment in 9. 

4 

1Q la 

44 

2. Let L=Q, i. e. an ontology 0 and a query cp are expressed in the same language. 
Proposition A. 1.5 states that for this framework there may be entailments that arise 
from the greater power of 9, and that the ontology 0 in this framework entails exactly 
the same consequences as in C only if ßµ is surjective. 

µR 

GG 
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3. For the case where 9=Q with a framework it :9 -+ G over a query base 10: 9 -+ C, 

we translate an C-ontology into a richer language 9, and then, in 9, we check whether 

a query is a consequence of the ontology. Proposition A. 1.6, states that entailment in 

this framework is the same as entailment in 9. 

G 

µ lp 

G9 

4. For the case where 9=G and a framework 1g :9 -+ G over a query base 77 : 
C9 -+ Q, we translate a Q-query into C, and then, in Q, we check whether the query 
is a consequence of the ontology. Proposition A. 1.7 shows that entailment in this 
framework is the same as entailment in Q. 

G 

in 

GQ 

5. Consider a scenario with distinct institutions C, 9 and Q, together with a framework 

, u: C9 -a Lover a query basis 77: C -3 Q and a morphism p: G -+ Q. We can seep as a 

composition p; 77. So, in fact we are translating an C-ontology into g via Q. Properties 

of this framework are presented in Corollary A. 1.18 and Proposition A. 1.19. 

Pn 

Lý pQ 

6. Let µ: G -º G be a framework over a query basis t: G -º Q with incomparable r- and 
Q. In this case we have to translate an ontology 0 and a query V into a language in 
which we can check whether cp is a consequence of 0, i. e. we have to find ag such 
that there are comorphisms from C and Q to Q. 
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Now we present counterparts of properties presented in Chapter 3, this time we preset 

them using morphisms instead of comorphisms. First we present a proposition which is 

a direct consequence of how the frameworks are constructed and applies to the case 1 of 

framework. This property is a counterpart of Proposition 3.2.11 presented in Section 3.2 

Proposition A. 1.4. For framework 1G : C9 -+ C9 over query basis lg :9 -a 9, consequence 
in the framework is just consequence in 9; i. e., 0 =I ca if 04 cp for any E-ontology 0 

and E-sentence cp. 

Proof: The proof is similar to that of Proposition 3.2.11. 

Proposition A. 1.5. For any framework µ: C -+ G over query basis p itself, for any 

P'(E)-ontology 0 for p, and any cp c Sen'C(W (E)) we have: 

O ýý ýp implies O ýý cp . 

Moreover, if PA is surjective on models, then the converse implication also holds. 

The proof is similar to the proof of Proposition 3.2.12. 

Proposition A. 1.6. For any framework p: 9 -+ G over query basis lg for any 
ßµ(E)-ontology 0 for 1q, and any VE Seng(E) we have: 

0 ýE cP if 'YA14 (O) I= 
. 

Proof: This follows directly from Definition A. 1.3. 0 

Proposition A. 1.7. For any framework lg :9 -+ 9 over query basis rl : -+ Q, for any 
E-ontology 0 for rl, and any VE Sen2(V7(E)) we have: 

HE' W 

Proof: This follows directly from Definition A. 1.3. 0 

Notation A. M. In the following definition we use expressions `E-entailment', 
`E-inseparability' and E-conservative extension' as abbreviations of IXF17 (E) -entailment 1, 
`91'7(J)-inseparability' and `I" (E) -conservative extension' respectively, this abbreviation is 

set to be a notational convention in the remaining part of the text. 

As in Section 3.2, we define the notion of E-entailment and closely related notions of 
inseparability and conservative extension. 

Definition A. 1.9 (E-entailment and inseparability). For query basis 77 and frameworks 

µl, µ2 over 77, EE Sign', ßµl (E)-ontology Ol for µl and iµ3 (E)-ontology 02 for U 2Y we 
say that 

" Ol E-entails 02 wrt 77, and write Ol CE 02i if for all VE SenQ(W'? (E)) we have: 

02 1--E V implies 01 1--E? cp , 
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9 Ol and 02 are E-inseparable wrt rt, written Ol PsE' 02, if: 

01 C£02 and 02 CE O1. 

. 02 is a E-conservative extension of Ol wrt 17 if 7E'(02) D'y (O1) and Ol and 
02 are E-inseparable wrt 17. 

" 02 is a conservative extension of 0 wrt rl if 02 is a E-conservative extension of 
0 wrt rj for all EE ISi I. 

In the situation of the previous Definition, we say that V separates 01 and 02 if 
Ol 14 V and 02 K' cp or vice versa. 

For any query basis n and a signature W'7(E) E SigQ the relation E is an equivalence 
relation. 

In the situation of the previous definition, we say that V separates Ol and 02 if Ol ýý cp 
and 02 VE gyp, or vice versa. 

The following Lemma states that if the square in Figure A. 2 has CIP in the global 
institution, then the framework has a kind of conservativity property: extending the 

E 
1EE 

lE i 

Figure A. 2. 

Q-signature (i. e. the part of c-signature that is translated to Q only) with fresh symbols 
has no impact on the consequence relation in the framework for the queries formulated in 

the original signature. 
This lemma is also an example of problems related to use of morphisms for framework 

construction. 
As already mentioned in Section 3.2, for the case of frameworks and query bases with 

morphisms, signatures used for ontology and query formulation originate in the global 
language and are only translated into ontology and query languages respectively. This 
issue becomes problematic if we want to manipulate only the signature used for the query 
formulation, ' but leave the ontology signature untouched (or vice versa). For instance, in 
the case of comorphism framework 14: G -a c over a query q: Q -- given G-signature A 

and Q-signature E we can easily express that we have another signature which extends one 
of them only, for example E -* V. It is clear that this inclusion is preserved along functor 

, I)µ. But when we want to express the same fact for morphism framework is G over a 

query basis A: c -a Q we encounter some difficulties. Now we have two ! 9-signatures E, E', 

such that EC E', but as we want to have G-signatures untouched we have to introduce 
further constraints, and say that '"(E) = 41"(E') but T (E) Alternatively, we 
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could say that Cg-signature is a union r= (AUE) and add a constraint that XP' forgets about 
E-part of the signature, whereas 'Ya forgets about the A-part (in the approach described 

before it was implicit). Both we find to be non-intuitive and inconvenient if we have to deal 

with multiple signatures. 

Lemma A. 1.10. For any framework u: G -+, C over query basis 77: G -+ Q and signatures 
E, E' in Sign, such that EC E' and W (E) ='Y'(E') while ß'1(E) C Tn(E7), any 

ontology 0 for p, and any query cp E Sen2(W'1(E)), the following property holds: 

O ýý cp implies 0 ý=', cp . 

Moreover, if Figure A. 2 is a CIP-square, then the converse implication also holds. 

The proof is similar to the proof of Lemma 3.2.18. 
This lemma says that extending the part of the signature used for query formulation has 

no impact on the consequence relation in framework for queries formulated in the original 
signature. This property also extends to entailment: 

Proposition A. 1.11. For any binary framework a= (A1,142) over query basis t, signatures 
E, E' E Säge, such that ß'7(E) C W'7(E') and %P" (E) -ontology 0 forpi, q/112 (E) -ontology 
02 for p2, if Figure 3.2 has CIP, then: 

01 971,0 implies 0 CI 02 . 

Proof is similar to the proof of Proposition 3.2.19 

Note that the opposite direction does not hold because it would imply extending the sig- 
nature over which queries may be expressed. 

Investigating frameworks gives us an insight into properties of entailment also in more 
complex situations. For instance we can consider frameworks with attached morphisms. 
Example A. 1.12 represents two situations where frameworks have attached morphisms. 

So we may have a morphism attached on the query language side, intuitively it is a 
situation when we already have a framework with C and Q and we have a query formulated 
in a language Q', such that there is a morphism ý: Q -4 Q', i. e. Q' is a weaker language 
than Q. We may also have a situation when we already have a framework with G and 
Q and we have an ontology formulated in a language G', such that there is a morphism 

G --- V, i. e. G' is a weaker language than G. We also present the consequences of these 
two situations. 

Example A. 1.12. First we consider a framework It: C9 -> G over a query basis t: C9 -+ Q 

with an additional morphism ý: Q -* Q' (see Figure A. 3). Using morphisms composition 
=, q' we receive a framework p: C9 -} G over query basis 17' : C9 -- Q' (see Figure A. 4). 
Note that 0 has the same set of consequences in p over both t and q'. This is the 

statement of Lemma A. 1.13. 
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Lemma A. 1.13. Given a framework µ: 9 -º G over a query basis r' :9 -+ Q with an 

attached morphism C: Q -3 Q', we get a framework µ: Q -+ G over query basis if : --* Q', 

with if = 17; C, and an ontology 0C Sen'c(WYµ(E)), and a query cp E SenQý(ýn(ýý(E))), the 

following holds: 
'ff 0 HE 

Proof is similar to the one given for Lemma 3.2.20. 

In other words Lemma A. 1.13 states that given a framework uG over query basis 

77 9 -' Q and a query formulated in Q', such that there is a morphism Q -+ Q' then 

we can safely lift the query to Q and then translate it into C. That gives us exactly the 

same results as creating a framework p over query basis t' :q --ý Q' (using composition of 

morphisms) for answering the query. 

Next proposition shows the relation between morphisms of query languages and the 

problem of inseparability of ontologies. 

Proposition A. 1.14. For any binary framework = (µl, µz) over query basis i: 9 -* Q 

with an attached morphism l: Q -+ Q', and the same binary framework over r7' : -+ 
Q1, where rte = 77; l:, signature EE Sigh and ontologies 01 C Senjc' (W µ1(E)) and 02 C 

SenG' (Pµ' (E)) the following implication holds: 
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The proof is similar to the proof of Proposition 3.2.22 

In other words, Proposition A. 1.14 states that if two ontologies are inseparable relative 
to query cp E Sen Q'(1Y4 ('Y7(E))), translated to G along morphisms C and then 77 via Q, then 

these ontologies are inseparable relative to gyp, translated to C along morphism 7. This 

result extends to inseparability. 

Corollary A. 1.15. For any binary framework '= (P1412) over query basis 77 :Q -+ Q 

with an attached morphism C: Q --* Q', and the same binary framework over 77' C -- Q', 

where rl' = 'i; l; ', for signature EE Sigg, and ontologies Ol C Sen' (W A, (E)) and 02 C 
SenG' (qI L2 (E)), we have that Ol szýi? 02 implies Ol %rE 02. 

As promised above now we consider a framework with an attached morphism on the 
ontology language side. 

GQ 
iS 

Figure A. 5. 

µI 

GQ 

Figure A. 6. 

Lemma A. 1.16. For a framework µ: g -- L over query basis 77: 9 -+ Q with an attached 
morphism C: L -- G', we can create a framework µ' G' over query basis t with 
At = µ; C, such that: 

d HE co if '1Wµ(E)(0) ý=E v 
for any WC(W (E)) -ontology 0, and a query cp E SenQ(I'º(E)). 
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The proof is similar to the proof of Lemma 3.2.24. 

APPENDIX A. 

This is to say, that given a framework p: Q -+ L over query basis 77 :9 -+ Q and an 

ontology formulated in G', then, provided there is a morphism (: G -+ G' we can safely lift 

the ontology to G and after translating it into 9 answer the query. That gives us exactly 
the same results as creating framework µ' :9 -+ G' over query basis i using composition 

of morphisms and then answering the query. 

The following proposition shows for a framework with a morphism attached to C (see 

Figure A. 6) choosing a morphism p' or a composition of morphisms p; c has no impact on 
the inseparability result. Which is expected behavior of frameworks. 

Proposition A. 1.17. For a binary framework a= (µ1, µz) over query basis n: C -º Q 

with attached morphisms t; { : G; --º G';, and a binary framework a= (Al, µ'z) over query 
basis 77 with µ; = pi; C{ (for i =1,2), we have that: 

7, ýy,. 
(E)(0i) cE 17 c 7, &, (E)(02) 1ff Di cE 02 

for any signature EE ISigoI and ontologies Oi C Sen'" (, QC' (qlµ" (E))) the following holds: 

The proof is similar to the proof given for Proposition 3.2.26 

The next corollary is a consequence of Proposition A. 1.17, it shows that for frameworks 

r) :9 -3 Q over query basis 77, with an attached morphism p: Q -- G and framework 

µ: C -4 G over query basis q, where p= rj; p, E-entailment of Gontologies Ol, 02 over 
translated signature E coincides (see Figure A. 7). 

Corollary A. 1.18. Let p: 9 --+ C be a framework over a query basis 77 :9 -+ Q, such 
that there is morphism p: Q -- G and p='; p. Let EE ISiggI and 0 and 02 be 

'PO(E)-ontologies for p then: 

Oi CE 02 if '4, µ(E)(01) CE 7pN(E)(02)- 

Gý PQ 
01,02 '4, ýE)(02) 

Figure A. 7. 

If an ontology language can be translated directly into the query language, then entail- 
ment can be reduced to showing that each sentence in one ontology is a consequence of the 

other: 
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Proposition A. 1.19. Given a framework 94G over a query basis G -Y+ Q with a mor- 

phism Q4G, such that µ= 77; p, and Jµ (E)-ontologies 01 and 02, we have: Ol C' 

02 if Oi IE y, for all VE ryqPl(E)(02). 

The proof is similar to the proof of Proposition 3.2.28 
Moving to a richer global language preserves consequences: 

Lemma A. 1.20. For framework µ over query basis 71 : 0C -+ Q, if we have a morphism 
A: g' -3 9, there is a framework 12 = \;, u over query basis q' = A; 77, and we have: 

0" cp implies O ýE cp 

for any ßµ(E)-ontology for p and any query cp E SenQ(P7(E)), with EE Sign. Moreover, 
if Sa is surjective, then the converse implication also holds. 

The proof is similar to the proof of Lemma 3.2.29 

G 

Figure A. 8. 

t 

`ýG Q' 

Figure A. 9. 

Now we compare two frameworks presented in Figure A. 10 and in Figure A. 11. The 
former is simply the case when the ontology language is a sublanguage of the query language, 
but the query is expressed in Q over a translated G-signature. Whereas the latter is the case 
when the ontology language is the same as the query language, but we translate both into Q, 
which in this case is the global language. Additionally, in both cases morphism µ: C9 -+ G 
is conservative. We show a correlation of conservativeness of morphism p: 9 -+ G and 
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coincidence of 01 ft &,, 
(E) 02 and Ol E 02. To do that we need an auxiliary lemma. 

The statement of this auxiliary lemma is that given two signatures E, E' E Sigg, such that 

there is a signature morphism o: E -+ E' and an ontology 0C Sen'C(WY'(E')) we are 

guaranteed that 0 itself and the set of consequences of 0, restricted to these sentences 
that were originally expressed in %P(E) and then translated into "(E') using Sen-C(a) (i. e. 
0, ), give us exactly the same set of consequences over sentences expressed in'N (E). 

G 
ZN 

Figure A. 10: Framework µ over query basis lg 

G 
/IU 

µ 

GG 

Figure A. 11: Framework p over itself as a query basis 

Lemma A. 1.21. For any framework µ: 9 -+ C over itself as a query basis and all 
signatures E, E' E Sig9, s. t. there is a signature morphism o: A -+ A' and an ontology 
0C Sen'e(W (A')) the following holds: 

O stil SenC(a)(O,, ), 

i. e. for every cp E Sen'C(W'(A)) we have that 0 ý=" V if Sen'c(o)(O0) HE V. 

Proof is similar to the proof of Lemma 3.2.31. 

Next proposition presents close correlation between the inseparability problem in two 
types of frameworks presented above and conservativity of morphism µ: C9 -º G. 

Proposition A. 1.22. For framework p: 9 --º G over query basis 1g :9 -* C and frame- 

work ,u over query basis µ, morphism p is conservative if E-inseparability w. r. t. p, coincides 

with E-inseparability w. r. t. 1g for any signature EE ISiggl. 

Note that Ol 4Q 02 means that Ol and 02 are indistinguishable relative to the sen- 
tences from the set Seng(E), whereas Ol 4 02 means that Ol and 02 are indistinguishable 

relative to the sentences from the set Sen'C(W 1z(E)). 

Proof is similar to the proof of Proposition 3.2.32. 
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A. 2 Robustness properties 
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In Section 3.3 we discussed robustness properties in the comorphism framework setting. 
Now we define robustness for morphism frameworks. This formulation is also suggests that 

the use of comorphisms is more intuitive. Similarly to the above argument the fact that 

signatures originate in the global language makes the definition less intuitive. 

Definition A. 2.1. For any binary framework 'a = (µl, µ2) over query basis 77 we say that 
is robust under: 

" vocabulary extension if for all signatures Al, A2, E, E' in Sign', such that E' n (Al U 

A2) C E, all ontologies Ol C Sen 'c' (W (Al)) and 02 C SenC2 ('I' (A2)), the follow- 

ing holds: 

0l CE 02 implies 01 CI, 02, 

" joins if for all signatures Al, A2i E in Sigc', such that Al n A2 CE and all ontologies 
01 9 Sen'e' (W µ' (Al)) and 02 9 Sen C2 (XY12 (A2)), the following holds for i=1,2: 

Ol ýý 02 implies O; ; ý: iý 01 U 02, 

. replacement in framework it :G -ý 9 if for all signatures Al, A2, A, E in SigQ, such 
that An(Al UA2) C E, for all ontologies Ol C SenAC' (IPµ1(A1)), 02 C Senc2 (Yµ2 (A2)), 

0C Senc(Ti(A)), the following holds: 

O1C7O2 implies O1 UOCIE7 O2UO. 

From the above definition it is easy to see that even though expressing inclusion condi- 
tions for signatures becomes easier to read if we use morphisms, it remains less intuitive as 
all the concerns presented while discussing Definition A. 1.3 remain in power. 
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