
A Query-Based Approach to Ontologies

Using the Theory of Institutions

Thesis submitted in accordance with the requirements of the University of Liverpool
for the degree of Doctor in Philosophy by

Daniel Pokrywczynski

August 2010

Department of Computer Science
University of Liverpool

iii

Primary Supervisor: Professor Frank Wolter

Department of Computer Science
University of Liverpool

Secondary Supervisor: Doctor Grant Malcolm

Department of Computer Science

University of Liverpool

Adviser: Doctor Boris Konev
Department of Computer Science
University of Liverpool

Internal Examiner: Doctor Boris Konev

Department of Computer Science

University of Liverpool

External Examiner: Professor Carlos Caleiro

Departamento de Matemätica
Instituto Superior Tecnico

Lisboa

A

Abstract

V1 ABSTRACT

In recent years we can observe an increasing interest in using ontologies in different
branches of science and commerce. This includes disciplines like medicine, bio-informatics,

the semantic web, artificial intelligence, and software engineering, to name a few.
The need to use ontologies in new and evolving applications requires ontologies to evolve.

Typical modifications of ontologies include extending an ontology with new axioms, extract-
ing a module (by which we mean a self-sufficient part), and merging two ontologies together.
While performing these operations one usually wants to know whether the semantics of the

ontologies are, in some sense, preserved.
As the number of ontology applications grew, so did the number of formalisms for on-

tology formulation. But this increasing number of ontology languages, while helping to
develop ontologies and answering the various needs of users, turned out to be a potential
source of problems as well. This becomes evident when one is working with multiple on-
tologies. For instance, when merging two ontologies one not only has to make sure that

unwanted consequences are not entailed as a result of this operation but one may also have
to solve the problem of these ontologies being given in different formalisms. Even within
one formal language, different ontologies may use different vocabularies. Again, different

vocabularies make ontologies difficult to use together. Similar problems arise when one
wants to compare two ontologies or use an ontology to answer a query that may be given
in different formalisms, or that may use different vocabularies.

In the literature, modularity of ontologies, extending, merging and comparing ontologies
have received a lot of attention, but usually these problems are considered within one
formalism only. On the other hand the problem of comparing and combining ontologies
formulated in distinct formalisms has not yet been deeply analyzed.

'In our work we consider the issues of querying, merging and comparing ontologies in a
more general way. In particular, we investigate how one can query an ontology if the query
and the ontology are formulated in different formalisms and possibly different vocabularies.
We research how to compare and how to merge ontologies if they are formulated in distinct
formalisms and vocabularies. To make this possible we start by presenting an abstract view
on ontologies; instead of focusing on the axioms inside the ontology, in our approach we look
at its consequences within certain query languages. Then we use the theory of institutions
to define the consequence relation in a way that does not depend on a particular formal
language. Thanks to that ontologies and queries do not have to be formulated in the same

,
formal language anymore; moreover, 'the ontology and the query may be formulated with
the use of different vocabularies. This provides the first steps towards a formalism that
allows us to compare and combine arbitrary ontologies. As the next step we introduce a
structure which allows us to work with multiple ontologies, and we formulate the notions
of entailment and inseparability of ontologies relative to a 'signature of interest in a way
that does not depend on a particular formalism. This structure allows us to compare and
combine arbitrary ontologies.

Furthermore, we show how an abstract description logic can be extended to a description
logic with individuals in a systematic and uniform way. We also investigate the relations
between description logics and their counterparts with individuals. Thanks to that we are

vi'

able to use ontologies together with sets of assertion (ABoxes) to answer queries about
individuals. Again, we provide a structure allowing for answering queries about individuals

originally formulated in a different formal language than the ontology and the ABox, we
assume that ABoxes and ontologies are formulated in the same language. We also present
a formulation of entailment and inseparability of ontologies based on instance checking as
the one based on subsumption is not strong enough if we consider ontologies together with
ABoxes. This formulation is also presented in a way that does not depend on a particular
formal language.

Finally, we investigate the problem of entailment with respect to some vocabulary E

formulated in the lightweight description logic £GSf and prove that the corresponding
decision problem is ExPTiME-complete. This extends the result presented by Lutz and
Wolter [611 for description logic £G.

Acknowledgements

ix

x ACKNOWLEDGEMENTS

When I was about to start my PhD, I knew that it is a lot of effort, what I did not
know was that it is a lot of effort to many people. I would like to express my gratitude to

all of them.
First and foremost, I would like to thank Frank Wolter and Grant Malcolm. I find no

words to express how grateful I am for their great supervision and invaluable support during

my PhD studies. When I first came here, I hardly knew anything about description logics

or category theory, but Frank and Grant patiently explained me everything. And whenever
I confused something they explained it again, and again... During the course of my studies
I was lost on many occasions, but Frank and Grant always helped me to get back on track.
With their wisdom and experience they could foretell and avoid difficulties that were on the

way to the final point. I would like to thank them for their constructive criticism, it helped

me a lot, and what is very important it was always presented in a gentle way. Frank and
Grant always kept their doors open for me and always did support me. They kept their

trust in me, even when I had doubts myself. I cannot imagine better supervisors. Thank

you.
I would like to thank Boris Konev, my thesis adviser, for all the invaluable feedback and

the encouragement over all these years. His great attitude, friendliness and all the good
words I heard from him helped me a lot to keep going.

I would like to thank my family and friends for their support, and finally the mem-
bers of staff and my fellow PhD colleagues at the Department of Computer Science, who
contributed to creating an enjoyable working place.

Thank you all,
Daniel

Contents

Abstract v

Acknowledgements ix

Contents xi

1 Introduction 1

1.1 Ontologies
2

1.1.1 Ways of presenting ontologies
2

1.1.2 Formal semantics and reasoning 17

1.2 Problems
18

1.3 Solution
21

1.4 Novel Contributions
.....

23

1.5 Thesis Outline
23

2 Preliminaries: Description Logics, Category Theory and Theory of In-

stitutions 25

2.1 Introduction
............ 26

2.2 Description logics and first order logic 26
2.2.1 Description logic EG 26
2.2.2 Description logic EG+

....
27

2.2.3 Description logic ELS1-{ 27
2.2.4 Description logic ACC 28
2.2.5 First Order Logic (FOL)

........................ 29
2.3 Introd uction to Category Theory 30

2.3.1 Background 30
2.3.2 Graphs 30
2.3.3 Categories 31
2.3.4 Slice categories 33
2.3.5 Functors 34
2.3.6 Categories of categories 34
2.3.7 Natural Transformation 35
2.3.8 Diagrams 35

xi

xii CONTENTS

2.3.9 Adjoints 36
2.3.10 Cones, limits and products 37
2.3.11 Pullbacks and Pushouts 39
2.3.12 Distributive categories 40
2.3.13 Inclusions and Inclusive Categories

...... 41

2.4 Introduction to institutions 42
2.4.1 Inclusive Institutions

...... 49

2.4.2 Morphisms and Comorphisms
...................... 51

2.5 Craig Interpolation Property and Conservative comorphisms 65

3 Frameworks 69

3.1 Introduction 70
3.2 Frameworks 70

3.2.1 Basic framework structures 72
3.2.2 E-entailment in frameworks

.......... 77

3.2.3 Frameworks with attached comorphisms 79

3.3 Robustness properties and Craig interpolation property 88
3.3.1 Robustness in frameworks

........................ 88
3.3.2 Robustness properties and interpolation 89

4 Institutions with Individuals and Frameworks with ABoxes 95
4.1 Introduction 96
4.2 Description Logics in a Categorical Setting

.................. 96
4.2.1 Description logics as objects of the slice category Inst/C11 100
4.2.2 Description logics with individuals 104
4.2.3 Query conservativity and query expansion 117
4.2.4 Concept interpolation 120

4.3 Constructing a Framework with Individuals 123
4.3.1 E-entailment for knowledge bases

.................... 127

5 Deciding the E-entailment Problem for EGSI-l 131
5.1 Introduction 132
5.2 Logical difference

................................. 132
5.3 Canonical models and simulation relations ý 133
5.4 Characterization of E-entailment

............. 137
5.5 Algorithm

...................................... 142

6 Conclusion 149

Appendix 155
A. 1 E-entailment and inseparability in morphism frameworks 156
A. 2 Robustness properties 167

Bibliography 169

Chapter 1

Introduction

ýý

1.1 Ontologies

('lf. ll'II 1; 1.1_A II; ()l)l (1 /(), \

The term ontology (from Greek ov, genitive ovvoc - of being and '\oayr(t t Iie e v, study)

was introduced in the seventeenth century as the name of the field of philosophy which is

the study of being. The field itself originates in ancient Greece and is it part of iuetaphy, ics.

In philosophy ontology aims to answer questions like what entities exist or can be said to

exist, it aims also at explaining the very nature of existence. Finally, it tries to determine

how these entities can be grouped.
In computer science the aim is less ambitious. In computer science we do not want, to

study what exists and how it exists, we want to provide a model describing some aspects of

the world. For that reason an ontology is often defined as a communicative, essentially syn-

tactic artefact. As it was introduced in Gruber's definition 1451, all ontology is an explicit

specification of a conceptualization', it is often elaborated to a definition capturing also

semantic use of ontologies in sharing information. For example, Studer et al. 1751 combine
Gruber's definition with that of Borst 1171, giving what has become a standard definition:

`an ontology is a formal, explicit specification of a shared conceptualization'. This enipha-

sis on sharing information is also present, for example, in Uschold and Griininger's 1831

statement that an ontology is `used to refer to the shared understanding of some domain

of interest'.

In these definitions `formal' means that ontologies are supposed to be presented by

means of a language with an unambiguous syntax and semantics. The requirement to be

explicit means that the ontology has to define in an unequivocal way the types of concepts

that are used, and the restrictions on their use. `Shared' in the above definition means that

the understanding of the vocabulary used for creating an ontology, as well as the represented
knowledge is the result of an agreement and is accepted by a group of users interested in

the domain which is described by the ontology. On the other hand, conceptualization is an

abstract and generalized representation of the aspects of the world that are in the scope

of our interest. In other words, having set the vocabulary, the ontology provides its with a

representation of the objects, concepts and other entities present in the domain of interest,

together with the relations between then.

From the above we can conclude that an ontology in computer science is an engineered
creation based on a social agreement and representing a domain of interest by describing

the concepts and relationships between these concepts. We will refer to this understanding
of ontologies as the standard approach.

1.1.1 Ways of presenting ontologies

Recently, many languages have been developed for ontology specification. We present only
a short overview on ways of ontology representation. We will present a few formal languages

and point out how lack of expressivity in one language is overcome by providing another,
more expressive language. Using a simple example we will also show what kinds of problems
one may face while translating ontologies between various languages.

1.1. OX"I OLOGIES

In general, an ontology may be represented in graphical or textual form. The choice

of mode of representation usually depends on the purpose of the ontology representation.
If we aim at presenting an ontology in a human readable form then, especially for small

ontologies, it might be convenient to choose a graphical mode of representation (as graphs

are easy to read and understand for humans). Nevertheless, large ontologies would be better

presented in textual forum, due to the fact that graphs with large uuiuhers of elements and

relations may become hard to read. Also, if we need an ontology to be machine-processable

we will use the textual form.

The "Handbook on Ontologies" 1731 is a good source of information about ways of rep-

resentation of ontologies, both graphical and textual.

We start our overview by introducing UML which is a well known language used for

graphical representation of ontologies.

UML

The Unified Modeling Language (UML) is a standardized general-purpose modeling Ian-

guage used to specify, visualize, construct and document the artifacts of an object-oriented

software system and for object-oriented programming. UAML is also used for business mod-

eling, system engineering and for representing organizational structures. It is commonly

used with its graphical representation, where its elements are represented as symbols related
to each other in diagrams. UML diagrams are commonly used for graphical representation

of ontologies. Due to its versatility we cannot talk about one type of UML diagrams, in

fact we have several types of diagrams (cf. [68]).

The creators of UML aimed to present a language that is as simple as possible yet

expressive enough to model any practical system under development, it language that, can
be used at many different levels and stages of the software development life cycle. But,

as is easy to predict, the requirement to be very expressive made UNIL a large and varied
language.

Staff

disj

Research Visiting Academic
O

cov
Project

f
manages 1.. 2 ProjectManager

Figure 1.1: An ontology represented as an UML graph

Figure 1.1 presents an example of a simple ontology represented as a UML graph. The
ontology uses six concepts: Staff, Research, Visiting, Academic, Project and ProjectManager

CHAPTER 1. INTRODUCTION

and two relations: manages and worksOn, together with some restrictions on their use. These

concepts and relations form the vocabulary used in the ontology, their understanding should
be a result of a consensus among the members of the group interested in the domain. Each

concept describes a class of objects from the domain, i. e. in this example objects present
in the domain are distributed between six classes. Relation `IS_A', which is also known

as "Supertype-Subtype relationship" or "Parent-Child relationship", is an inheritance rela-
tionship providing us with the information about inclusions between the concepts. IS_A

relationships are the basis of the hierarchies of concepts. In this example classes Research,
Visiting and Academic are subclasses of Staff (we also say that Staff is their superclass).
To state that two classes have no common element, we use restriction disj (disjoint), in our
example classes Research and Visiting are disjoint. The covering constraint (cov) used in

this example tells us that every ProjectManager belongs to Visting or Academic. We also
learn that at least one and at most two members of the class ProjectManager manage an
element from the class Project. Moreover, every member of Research class works on at least

one element from Project class, and at least one member of Research class works on an

element from Project class.

Entity-Relationship Diagram

Another method used for graphical representations of ontologies is Entity-Relationship Di-

agram. It is a graphical representation of entities and their relationships to each other.
Entity-relationship modeling was originally developed and is still used as a database mod-
eling method. ER-Modeling was introduced in [25], see [14,80-82] for further information.

The graphical form of ontology representation is very convenient for humans to read.
Psychologists have shown that human are able to grasp and remember visual information

much faster than the same information presented in textual form [46,66]. A graphical form

of representation is very convenient for supporting ontology planning and development, as
well as for understanding the structure of the domain of interest. In this mode of ontology
representation it is easy for humans to determine relations between classes and restrictions
on their use. But the problem is that typically it is not machine-processable. To be
machine-processable means to be expressed in a formal language, for which efficient parsers
are available.

To make the ontology from Figure 1.1 machine-processable we could convert it into
textual form. One of the languages used for textual representation of ontologies is RDF.

RDF and RDFS

The Resource Description Framework (RDF) [47,49,63] is a member of a family of World
Wide Web Consortium (W3C) specifications used for supporting mechanisms for meta-
data schema representation and resource descriptions, in particular Web resources like Web
pages. It is often deemed to be the basic representation format used for developing the
Semantic Web [47].

I. I. ONTOLOGIES

Objects of interest are described by simple statements of the type `subject - predi-

cate - object' by means of vocabularies with named properties. Subjects and objects in

these statements are entities and predicates indicate relationships between these entities.
However, RDF cannot provide descriptions for these subjects, predicates and objects. In

order to specify the information about the terms used in the vocabulary we have to use
RDF Schema (RDFS) [22], which is a simple declarative language of restricted expressive

power. It provides generic language constructors allowing for semantic characterization of
the vocabulary. It introduces a notion of class and property to describe information in the

domain and uses semantic relationships for structuring this information. For instance these

notions are used for describing hierarchies of concepts using the relationship of subclass and
hierarchies of properties using the relationship of subproperty.

To be able to process and store RDF(S) documents we need syntax. Among early

propositions of syntax for RDF we can distinguish N3, N-Triples and Turtle. The prob-
lem with those was that many programming languages do not offer standard libraries for

processing them. In contrast to that, basically every programming language provides li-

braries for processing XML (Extensible Markup Language) code. For this reason XML is

the syntax commonly used for creating RDF(S) documents. RDF/XML is an XML format

for representing RDF structures. The specification of RDF/XML can be found in [15].

It is important to notice that contrary to many ontology languages RDFS does not sup-

port logical concepts like equivalence, and cardinality constraints (using cardinality

constraints we can for instance declare that every member of Research class works on at
least one Project and at least one member of Research class works on a Project). In RDFS we
cannot declare characteristics of properties like transitivity (like "greater than"), unique-
ness (like "is father of") or inverse of another property (like "ancestor" and "descendant").
Moreover, RDFS has no notion of negation and thus no notion of contradiction and it does

not support disjointness of classes. RDFS defines the range of a property for all classes
and cannot express that certain property ranges apply to some classes only, i. e. we cannot
use properties with local scope. Due to the lack of negation we cannot declare Boolean

combination of classes. These concepts are available in OWL, which in a sense extends
RDFS.

From the above it is clear that we cannot represent all the information carried by the
ontology from Figure 1.1 in RDF/XML format. To be able to present that ontology in
XML format we have to use a more expressive language. An example of such a language is
OWL.

OWL

Web Ontology Language (OWL) is another W3C recommendation. It was introduced with
the aim to provide a language which extends the expressiveness of RDFS but still admits
efficient reasoning. During the development of OWL it had to be taken into account that
since RDFS modeling primitives, like Class and Property, are very strong, extending RDFS
might lead to undecidability of reasoning. To address this issue, three different sublanguages

6 CHAPTER 1. INTRODUCTION

of OWL were introduced. Each sublanguage is an answer to different needs relative to the

expressiveness of the language. Below we present a short description of the family of OWL
languages based on [4]. It is also one of the sources which could be used for finding more
information about OWL.

The most expressive language is called OWL Full, it uses all the primitives available in
OWL languages. The advantage of OWL Full is that it is fully, syntactically and semanti-
cally, upward compatible with RDF. Thanks to that any legal RDF document is also legal
in OWL Full, and any valid conclusion in RDF or RDFS is also valid in OWL Full. But its

expressivity makes OWL Full undecidable.

OWL DL (an abbreviation of OWL Description Logic) is a restriction of OWL Full. It

aims at providing maximum expressiveness together with decidability and the availability

of practical reasoning algorithms. To achieve that OWL DL restricts the way that OWL

language constructors can be used, for instance, cardinality restrictionsl may not be applied
to transitive properties.

The advantage of OWL DL is that it has efficient reasoning support, i. e., derivations

about class membership, equivalence of classes, consistency, classification can be made
mechanically. The price for that is that OWL DL is not completely compatible with RDF,

even though any legal OWL DL document is a legal RDF document, an RDF document

usually will have to be modified to be a legal OWL DL document.

OWL Lite is a further restriction of the language. It restricts the constructors available.
For instance, among others, it excludes disjointness and arbitrary cardinality restrictions
(it only permits cardinality values of 0 or 1).

Compared with the two other languages OWL Lite is much less expressive but is easier
to grasp. It was also expected to be easier to implement, but development of OWL Lite
tools turned out to be not much easier than development of tools for OWL DL.

OWL is expressive enough to present the ontology from Figure 1.1 as an XML document.
This is shown in the following example:

Example 1.1.1.

In OWL, classes are defined as an owl: Class element, owl: Class is a subclass of
rdfs: Class. For example we define a class Staff in the following way:

<owl: Class rdf: ID-"Staff"/>

To define classes Research,, Visiting and Academic as subclasses of Staff we use
rdfs: subClassQf:

1Cardinality restrictions are used for specifying how many distinct values a property may or must take.

1.1. ONTOLOGIES 7

<owl: Class rdf: ID="Research">

<rdfs: subClassOf rdf: resource="#Staff"/>

</owl: Class>

<owl: Class rdf: ID="Visiting">

<rdfs: subClassOf rdf: resource="#Staff"/>

</owl: Class>

<owl: Class rdf: ID="Academic">

<rdfs: subClassOf rdf: resource="#Staff"/>

</owl: Class>

In order to state that every member of class ProjectManager also belongs to class

VistingStaff or AcademicStaff first we have to define a class which is a union of

VistingStaff and AcademicStaff. To this end we use owl: unionOf, we also use the

rdf : parseType attribute, which is an abbreviation of an explicit syntax used for building a
list with tags <rdf :f irst> and <rdf : rest>. Lists of that type are required due to certain
limitations of built-in containers of RDF, in particular, there is no way to close them. The

reason for this is the fact that while one graph describes some of the members of a class,

we cannot exclude the possibility that there is another graph which describes additional

members of that class. The list syntax provides that function, but since it is lengthy, the

rdf : parseType is a convenient abbreviation (cf. [73]).

<owl: Class rdf: ID="ProjectManager">

<rdfs: subClassOf>

<owl: Class>

<owl: unionüf rdf: parseType="Collection">
<owl: Class rdf: about-"\#Visiting"/>
<owl: Class rdf: about-"\#Academic"/>

</owl: union0f>
</owl: Class>

</rdfs: subClassOf>

</owl: Class>

The following entry declares that the classes Visiting and Research are disjoint, this is
done by using element owl: dis j ointWith. This element can be included in the definition
of the class, or can be added by referring to its ID using rdf : about, which is inherited from
RDF.

<owl: Class rdf: about-"Visiting">
<owl: disjointWith rdf: resource="#Research"/>

</owl: Class>

8 CHAPTER 1. INTRODUCTION

The next entry describes an object property (object properties relate objects to other objects
and can be understood as relations) worksOn with domain in class Research and codomain
in class Project.

<owl: ObjectProperty rdf: ID="worksOn">

<rdfs: domain rdf: resource="Research"/>
<rdfs: range rdf: resource="Project"/>

</owl: ObjectProperty>

Now we extend the information about Research by adding the information that every

member of the class Research is in the relation worksOn to at least one element from class
Project. We use owl : allValuesFrom to set the class of the possible values the property
determined by owl : onProperty can take. In our example we state that all the values of

property worksOn come from Project. We also require that the minimal cardinality of the

values the property can take is 1. We have to explicitly state that the literal "1" is to be

interpreted as a nonNegat ive Integer. We also use the xsd namespace declaration made
in the header element to refer to the XML Schema document.

<owl: Class rdf: about-"Research">
<rdfs: subClassOf>

<owl: Restriction>

<owl: onProperty rdf: resource-"#worksOn"/>
<owl: allValuesFrom rdf: resource-"#Project"/>
<owl: minCardinality rdf: datatype-"&xsd; nonNegativeInteger">

1

</owl: minCardinality>
</owl: Restriction>

</rdfs: subClassOf>
</owl: Class>

OWL allows us to use inverse properties, here we use this feature to define
isInvestigatedBy as the inverse of worksOn property.

<owl: ObjectProperty rdf: ID-"isInvestigatedBy">

<rdfs: domain rdf: resource-"Project"/>
<rdfs: range rdf: resource-"Research"/>
<owl: inverse0f rdf: resource-"#worksOn">

</owl: ObjectProperty>

Similarly as above we define property isInvestigatedBy to have owl : allValuesFrom the
class Research and we set the minimal cardinality to be 1. In this way we are able to say
that for every Project there is at least one researcher working on it.

I. I. ONTOLOGIES

<ovl: Class rdf: about="Project">

<rdfs: subClassOf>
<owl: Restriction>

<owl: onproperty rdf: resource="#isInvestigatedBy"/>

<owl: allValuesFrom rdf: resource="#Research"/>

<owl: minCardinality rdf: datatype="&xsd; nonNegativeInteger">
1

</owl: minCardinality>

</owl: Restriction>

</rdfs: subClassOf>

</owl: Class>

9

The next entry defines property manages in the same manner as was done for other prop-

erties above.

<owl: ObjectProperty rdf: ID="manages">

<rdfs: domain rdf: resource="ProjectManager"/>

<rdfs: range rdf: resource-"Project"/>

</owl: ObjectProperty>

The final entry is an example of introducing at the same time both minimal and maximal

cardinalities of the values the property can take. In this example we say that a Project is

managed at least by one and at most by two members of ProjectManager class.

<owl: Class rdf: about-"ProjectManager">

<rdfs: subClassOf>

<owl: Restriction>

<owl: onProperty rdf: resource="#manages"/>
<owl: allValuesFrom rdf: resource="#Project"/>
<owl: minCardinality rdf: datatype-"&xsd; nonNegativeInteger">

1

</owl: minCardinality>
</owl: Restriction>

</rdfs: subClassOf>

<rdfs: subClassOf>

<owl: Restriction>

<owl: onProperty rd!: resource="#manages"/>
<owl: allValuesFrom rdi: resource-"#Project"/>
<owl: maxCardinality rdf: datatype-"&xsd; nonNegativeInteger">

2

</owl: minCardinality>
</owl: Restriction>

</rdfs: subClassOf>

</owl: Class>

10 CIIA13TER 1. INTRODUCTION

An ontology presented in a formal language like OWL is machine-processable but usually
it requires a human to make some effort to read and understand it. The reason for developing

this language was that XML syntax is widely used for creating web documents, this makes
OWL one of the standards used for writing description logic ontologies for the semantic

web as it puts description logics into XML syntax

OWL 2

While OWL is very successful and applied in numerous contexts, users have identified some
deficiencies in its design. These limitations encouraged the designers to work on a successor

of OWL called OWL 2. Development of OWL 2 was also used as an opportunity to clean the

language and its specification, this provided a more robust platform for future development.

Based on [44], below we discuss some of the limitations of OWL and how they were

addressed in OWL 2. Here we discuss the following groups of problems:

" expressivity limitations,

" syntax issues,

" semantics,

" metamodeling,

" annotations.

Expressivity limitations. Users of OWL have found that its most expressive, but

still decidable sublanguage OWL-DL lacks some constructors that are often needed for

modeling complex domains. For instance, OWL does not allow for cardinality restrictions
to be qualified with a class. That means that while one can provide a definition of a

person with at least three children, it is impossible to define a person with at least three

children who is male. This problem was solved by introducing qualified number restrictions,
which had no impact on decidability and caused no problems with implementation. Another

problem is that with OWL we are unable to describe properties in detail. For instance OWL
does not allow for propagation along properties or introducing properties of properties.
This was addressed in OWL 2 by allowing for complex property inclusion axioms. To

avoid undecidability a regularity restriction is imposed on these axioms, which means that
complex subproperty axioms should not define properties in a cyclic way. Another limitation
is that with OWL-DL it is not possible to express key constraints on data properties, which
are an important feature of datatype technologies. But adding keys to languages which are
based on description logics leads to theoretical and practical problems. For that reason it
was decided to add a restricted versions of keys (known as easy keys), which are useful but
relatively easy to implement.

Syntax issues. In OWL we can distinguish two normative types of syntaxes; Abstract
Syntax and OWL RDF. The problem is that both syntaxes are difficult to parse correctly
and the relationship between them is quite complex, which leads to some difficulties when

1.1. ONTOLOGIES 11

an ontology is transformed from one syntax to another. Another difficulty is that despite the

fact that OWL is based on description logics, Abstract Syntax of OWL does not correspond

exactly to the constructors used in DLs. This led to some confusion among developers of

OWL APIs, who would rather follow DL structure. In addition, neither Abstract Syntax

nor OWL RDF is fully context free, axioms containing URI often do not provide sufficient
information to determine if they refer to a class, property, or an individual. Moreover, RDF

syntax often proves to be difficult to use. This is because in RDF everything is represented

with triples, but in OWL many constructors cannot be represented in that way without

introducing new objects. As a result OWL RDF ontologies are difficult to read and process.
In OWL 2 Abstract Syntax was replaced with Functional-Style Syntax. These two differ in

many ways and OWL 2 Functional-Style Syntax is not backwards compatible with Abstract

Syntax. The most important difference is that Functional-Style Syntax does not contain the

frame-like syntactic constructors of OWL (which were causing some confusion among the

developers), but describes ontology entities using axioms. OWL RDF, which was mainly

used for publishing ontologies on the Web, was replaced in OWL 2 by XML Syntax. The

main advantages of XML Syntax are its ease to parse and process, and the fact that it is a

widely used format on the Web and is supported by a number of tools. In addition XML

Syntax is well suited for use in protocols and APIs for accessing OWL 2 implementations.

Semantics. When OWL was under development, it was expected to be compatible

with Semantic Web languages like RDF, whereas OWL-DL was originally designed as a no-
tational variant of SHOIN(D). But the differences in semantics of RDF and SfOZN(D)

were causing some difficulties. To overcome that, two coexisting semantics were introduced

for OWL. But this solution caused other difficulties, as both semantics had their own prob-
lems and bringing them together was complicated as well. This was addressed in OWL 2

by introducing model-theoretic semantics that corresponds to SIZOZQ(D). Moreover it

was defined for ontologies in Functional-Style Syntax and, as there is a one-to-one corre-

spondence between this syntax and XML Syntax, the semantics can be directly used in

the latter representation. At the moment, OWL 2 does not provide RDF-style semantics
but the design of such a semantics is in progress. In the meanwhile the transformation

of ontologies presented in Functional-Style Syntax into RDF graphs is a purely syntactic

process.
Metamodeling. As practice shows the distinction between classes and individuals

sometimes is not entirely clear. Sometimes the same concept name in one context plays the

role of an individual and of a class in another context, this is called metamodeling. During
the development of OWL the importance of metamodeling was not widely recognized yet
and for that reason it is available only in OWL Full, but it was introduced in a way which
leads to undecidability of standard reasoning problems. In the metamodeling semantics in
OWL 2 the usage of a name as a class is unrelated to its usage as an individual (this is
achieved by adding a prefix which tells in what context the name is used), consequently
names of concepts and individuals do not interact even if they are the same. This type of
metamodeling is often called punning.

Annotations. While the annotation system (extra-logical information describing on-

12 CHAPTER 1. INTRODUCTION

tologies or entities) does not restrict the use of annotations, the annotation system used in

OWL-DL has been identified as insufficient. For example, OWL-DL does not allow axioms
to be annoted, which sometimes is necessary, for instance, if one needs to indicate the origin

of the information (i. e. who introduced a particular axiom). Users were also dissatisfied

with the fact that they could not define domains and ranges of annotation properties. To

answer those issues, in OWL 2 it is possible to annotate entities, axioms and ontologies.
Annotations in OWL 2 do not carry formal semantics, thus they do not have any impact

on the set of consequences derived from an ontology. On the other hand, annotations do

affect structural equivalences of ontologies, i. e., for two ontologies (and similarly axioms) to

be structurally equivalent they need to have structurally equivalent annotations on them.

Profiles in OWL 2. Although OWL was originally designed with three sublanguages

in practice it is difficult to determine which sublanguage was used for ontology formulation.

This is particularly difficult for ontologies formulated in RDF, as there is no direct mapping
between RDF and Abstract Syntax. In addition it was found that even though OWL Lite

is much simpler than OWL DL, the complexity was not reduced significantly, this is due to

the fact that negation can be implicitly formulated in axioms. In OWL 2 these difficulties

were addressed by designing sublanguages which give up some expressive power to gain

efficiency of reasoning, these sublanguages are called OWL 2 profiles. The profiles are
defined by placing restrictions on the Functional-Style Syntax of OWL 2 and were designed

for different reasoning tasks. We distinguish three profiles:

" OWL 2 EL is based on the EG++ family of description logics. This profile was

designed to achieve efficient reasoning (which in this case usually is classification of

concepts) with large ontologies. The profile captures the expressive power used by

many ontologies, and will be usually used for classification. The reasoning can be

performed in time that is polynomial with respect to the size of the ontology.

" OWL 2 QL is based on the DL-Lite family of description logics, which was originally
designed to provide efficient reasoning with large volumes of instance data. The profile
is used for answering conjunctive queries, i. e., given an ontology 0 and a conjunctive

query q, we want to compute all tuples of individuals that constitute an answer to q

with respect to 0. With the use of a suitable reasoning technique, sound and complete

conjunctive query answering can be done in LoGSPACE with respect to the size of the
data. The expressive power of the profile is quite restricted, but it has most of the

main features of conceptual models such as UML class diagrams and ER diagrams.

" OWL 2 RL was designed to support applications that require scalable reasoning with-
out giving up too much expressive power. The design of OWL 2 RL allows for im-

plementing reasoning tasks as a set of rules., While OWL 2 RL uses most of the
constructors used in OWL 2, to allow for rule-based implementations of reasoning,
the way they are used was restricted to ensure that a reasoner needs to take into
account only the individuals that are explicitly used in the ontology. The typical rea-
soning problems like ontology consistency, class subsumption, instance checking, and

1.1. ONTOLOGIES 13

conjunctive query answering can be solved in time that is polynomial with respect to
the size of the ontology.

none of the profiles is a subset of another.

First Order Logic

In the 1970's it was suggested that First Order Logic (FOL) could be the source of precise
semantics for knowledge representation, with unary predicates used to make assertions
about individual objects and binary predicates denoting relations between objects. This

approach was based on the idea that FOL is well known and could be used to express facts

about the world in an unambiguous way.
For instance the ontology from Figure 1.1 can be represented with the following axioms:

Example 1.1.2.
`dx(3y manages(x, y) = ProjectManager(x)),

Vx(3y manages(y, x) Project(x)),

`dx(Project(x) = 2y manages(y, x)),

Vx, yi, y2, y3 ((manages(yi, x) A manages(y2, x) A manages(y3, x)) = (yi = ya V yi = y3 V y2 = y3)),
Vx(3y worksOn(x, y) = Research(x)),

Vx(3y worksOn(y, x) = Project(x)),

Vx(Research(x) = 3y (worksOn(x, y))),

Vx(Project(x) = 3y (worksOn(y, x))),

Vx(Research(x) = Stafl'(x)),

Vx(Visiting(x) = Stat x)),

Vx(Academic(x) = Staff(x)),

V--(-Visiting(x) V -+Research(x))

Vx(Visiting(x) ProjectManager(x)),

Vx(Academic(x) ProjectManager(x)),

Vx(ProjectManager(x) Academic(x) V Visiting(x)).

The problem with FOL is that its high expressivity leads to undecidability of the sat-
isfiability problem and consequence relation.

This together with the fact that it was argued that often full expressivity of FOL is not
needed for ontology formulation, was an incentive to take into consideration fragments of
FOL as languages for ontology formulation. Using fragments of FOL makes the complexity
of reasoning lower and allows for efficient use of ontologies. Of course different fragments
of FOL differ in expressivity and complexity. Many description logics can be regarded as
fragments of FOL.

14

Description Logics

CHAPTER 1. INTRODUCTION

Description Logics (DLs) are a family of knowledge representation languages, that provide
formal foundations for ontology representation and for performing the tasks related to the

use of ontologies [9]. The name itself points to two important aspects of DLs. First of all
DLs use concept descriptions to describe the domain of interest. To this end expressions
built from atomic concepts (corresponding to unary predicates in FOL) and atomic roles
(corresponding to binary predicates in FOL and object properties in OWL) with use of

concept and role constructors are introduced. The other important aspect of DLs is that

they have a formal, logic-based semantics.
Members of the DL family differ in their expressivity and complexity. In this family we

have expressive languages like ACC,
.
ACCQI or RCTQ but with high complexity (at least

ExpTmE-hard) of reasoning, and languages like EG or EG+ which are less expressive but

in which reasoning is tractable. Interestingly, weak languages like EG and £G+ were found

to be expressive enough to formulate large scale ontologies. In fact several ontologies used
in medicine are formulated in lightweight description logics such as EC or mild extension
thereof, e. g., EL with role inclusions. In particular, role inclusion axioms expressing role
hierarchies, transitive roles, and right-identity are of practical importance, e. g. in medical
terminologies [48,72].

Here we briefly discuss some typical constructors of DLs and give an overview of com-
monly used DLs. The formal definitions of the systems of our interest will be provided in
Section 2.2.

All the members of the DL family share the same type of alphabet. This alphabet
consists of two disjoint sets: one is used to denote atomic concepts, and the other one
is used to denote atomic roles. The former are used to express classes of objects of the

universe, whereas the latter are used to represent the relations between these objects.
Concept expressions denote sets of all individuals satisfying a property described by

the concept. Description logics use different types of connectives to express more complex

concepts. For instance, intersection of concepts, denoted by Cfl D, is used to represent
the individuals that belong both to C and D, the corresponding first order logic expression

would be of the form C(x) A D(x). We also have complement of concept (denoted by

'-, ')and concept disjunction (denoted by `U').

One of the most important aspects of description logics is their ability to describe

relations between the concepts of the domain. This is achieved by using role names (from the

set of atomic roles) together with constructors (role restrictions) establishing that relation.
We distinguish four types of role restrictions: value restriction, existential restriction,

number restriction and qualified number restrictions.,
Value restriction allows us to describe concepts like `Individuals all of whose pets are

dogs", formally expressed as VhasPet. Dog. Existential restriction (existential quantification)

allows us to describe concepts like "individuals having a dog as a pet", formally BhasPet. Dog.

Number restriction enables us to express concepts like "individuals having at least 2 chil-
dren" and "individuals having at most 3 brothers" written respectively as >2 hasChildren

1.1. ONTOLOGIES 15

and <3 hasBrother. Finally, qualified number restrictions are used to formulate concepts
like "individuals having at least 2 adult children" and "individuals of whose children at

most 3 are male", and respectively these sentences are of the form >2 hasChild. Adult and
<3 hasChild. Male.

Description logics allow for concept definitions A-C and general concept inclusion

axioms (GCIs) Cl 9 C2. For instance, we can build expressions like

Father = Malen Parent

telling us that being Father is equivalent to being Male and Parent. An instance of a GCI

is the following:

Mammal C Animal

which tells us that concept Mammal is more specific than concept Animal, i. e. every Mammal

is also Animal.

A collection of GCIs is called a Tbox. In the DL context we use the terms "TBox" and
"ontology" interchangeably.

Description logics allow also for role-forming connectives, for instance using intersec-

tion of roles, intuitively hasChild f1 hasFemaleRelative yields the role hasDaughter.
As we can formulate concept hierarchies in description logics, we can also express condi-

tions on roles such as rCs, transitivity rorCr and right-identity sorCs, where r and s
are role names. Right-identity axioms have been proven useful for expressing "propagation"

of one property along another one. For instance, we can formulate axioms of the form:

1. isPartOf o isPartOf C isPartOf.

2. hasLocation o isPartOf C hasLocation

If we use these axioms together with:

3. Toe C 3isPartOf. Foot

4. Foot[: 2isPartOf. Leg

Then using (1), (3) and (4) we can infer that Toe C 3isPartOf. Leg, i. e. that a toe is
a part of a leg. Whereas, given Injury rl 2hasLocation. Toe, we can use (2) to infer that
Injuryfl2hasLocation. Foot i. e., if one suffers from an injury located in a toe then it also means
that one suffers from an injury located in a foot, and further that Injury fl hasLocation. Leg,
i. e., that it also means that one suffers from an injury located in a leg.

Having various connectives available and allowing for different types of axioms we can
create diverse description logics by allowing various combinations thereof. Clearly these
logics differ in expressivity and complexity.

As already mentioned, a very simple, yet very important, description logic is EG [8].
Its concept constructors are T (denoting the whole domain), conjunction and existential
restriction.

16 CHAPTER 1. INTRODUCTION

As E1 has only two constructors available, we cannot use it to express the UML diagram

from Figure 1.1. An important extension of EL in which the UML diagram from Figure 1.1

can be expressed is AL CQI, which in addition to EL has negation, inverse roles and qualified

number restrictions. The ontology expressing the UML diagram from Figure 1.1 is now:

Example 1.1.3.

3manages C ProjectManager,

2manages C Project,

Project C 2manages ,
> 3manages C 1,

3worksOn r- Research,

3worksOn C Project,

Research r- BworksOn,

Project C 3worksOn ,
Research C Staff,

Visiting C Staff,

Academic C Staff,

Visitingrl Research[: 1,

Visiting C ProjectManager,

Academic C ProjectManager,

ProjectManager C Academic U Visiting.

Another group worth mentioning is the DL-Lite family of description logics. The DL-

Lite logics were designed to provide efficient access to large data repositories, without giving

up too much of expressive power. It is assumed that the data to be accessed are stored in

a standard relational database and that the user is interested in formulating, with use of

an ontology, queries that are more complex than asking for instances of single concepts and

roles (instance checking), for example one could formulate conjunctive queries. DL-Lite

family have polynomial time computational complexity with respect to standard reasoning
tasks, and LOGSPACE data complexity with respect to complex query answering. These

logics were first proposed by Calvanese et al. in [24]. They are also studied in [6], where DL-

Lite is extended with full Booleans and number restrictions, resulting in DL-Litebcýol. The

authors also introduce its two sublanguages DLLiteho,.,, and DL-Litek,,,,. Some interesting

properties of members of DL-Lite family are also studied in [52-54).

Here we will consider DL-Litey,, i only. As other description logics, DL-Liteýi has

concept names and role names in the vocabulary, it has T and 1 concepts available, it also
allows for use of existential restriction, conjunction, negation, number restriction and inverse

role constructor. Having these constructors available, DL-Liteb, o1 is expressive enough to
cover all the axioms of the Example 1.1.3 as they were originally formulated, but the

reasoning now is CoNP-complete [6].

1.1. ONTOLOGIES

1.1.2 Formal semantics and reasoning

17

When an ontology is under development typically it may not be convenient, or even possible,
to present all the required information explicitly. But not all the information is actually

required to be explicit (this allows to reduce the size of the ontology, which is important from

a practical point of view, as using smaller ontologies in applications is more time effective).
Many of the languages used to write ontologies are logics, whose semantics provide a notion

of consequence that provides implicit information. To obtain this information, it is necessary
to query an ontology: to deduce or infer information that is implicit in the ontology's

statement. We may wish to obtain the induced concept hierarchy, or to access instance

data using the ontology (e. g., as in Ontology-Based Data Access [24]). The form of the

queries corresponds to the applications of ontologies. Important types of queries include

three which are of interest to us:

Classification. Classification of an ontology aims to compute all the subclasses of atomic
classes present in the ontology. For instance, let E be a vocabulary of medicine, then the

query
Pse udopseudohypoparathyroid ism C Genetic Disorder

asks if it follows from the ontology that pseudopseudohypoparathyroidism is a genetic dis-

order.

Answering subsumption queries. This application aims to compute subsumption be-
tween complex concepts. Again, in a vocabulary of medicine, a query

Cystic_Fibrosis C Fibrosis fl 9located_In. Pancreas fl has_Origin. Genetic_Origin

asks if it is the case that Cystic Fibrosis is always a fibrosis which is located in the pancreas
and has genetic origin.

Answering instance data queries. Another important application of ontologies is their
use when one is querying instance data. In this scenario we are interested in instance queries
that are posted to a pair consisting of an ontology and an ABox, which stores instances

of classes and relations but is not a part of an ontology. For example, if E is a medical
vocabulary, then a query might consist of the ABox of the form:

A= {Patient(John),
..., Broken_Leg(John)}

together with the conjunctive query of the form

Treated_in_Orthopedic_Unit(John).

This query asks if the ABox A and the ontology entail that John is treated in an orthopedic
unit. If the ontology states for instance that every patient with a leg broken is treated in
orthopedic unit, then the answer is yes.

is CHAPTER 1. INTRODUCTION

To be able to answer any query first we need formal semantics allowing us to define

a notion of consequence which is essential in any logical system. Defining what it means
to be a consequence enables us to answer queries and concept classifications. As already

mentioned we have a number of logical systems used for ontology representation that provide

us with formal semantics. This gives us a good choice for finding one that is expressive

enough to describe the domain of our interest. But the expressivity of the language has

impact on its complexity. For instance, we may use FOL for formulating ontologies, but

this leads to undecidability of some interesting problems and full expressivity of FOL is

not always needed. For that reason often we would rather choose a fragment of FOL for

instance one of the description logics mentioned above. The complexity of many problems
in various DLs is well studied, unfortunately often it is high. For instance, E-entailment2 in
AGCQIO is undecidable; while E-entailment in ACC and ACCQI is 2ExpTime-complete,

as it was shown in [40,60). But it has been shown in [61,62] that E-entailment in EG becomes
ExpTime-complete. For that reason choosing the language for ontology representation often
is about finding the right balance between expressivity and complexity. In recent years we
can observe an increasing interest in lightweight description logics. Their popularity is

caused by the fact that reasoning is tractable even w. r. t. general sets of concept inclusions.
As described above, we can distinguish two groups of light weight DLs, the EG [8,21,611

family of tractable DLs and the family of DL-Lite tractable DLs.

Having chosen the formalism, it is possible to investigate many interesting problems,
like concept subsumption, various notions of entailment, inseparability or the related logical
difference problem, as introduced below in this thesis.

1.2 Problems

In the standard approach, the function of an ontology is to state, explicitly, a conceptual-
isation. However, as well as reading and writing ontologies, in practice one also wants to

use existing ontologies, perhaps to browse the induced concept hierarchy, or to access in-

stance data, or perhaps to create a new ontology that extends either an entire ontology or a
manageably small fragment of one. Or perhaps one may want to test whether one ontology
is in some way consistent with another, or provides the same information regarding some
subset of concepts.

These applications have been found to be beneficial in various fields of science and
commerce. This includes disciplines like medicine, bio-informatics, the Semantic Web,

artificial intelligence, software engineering and others.
In bio-informatics, for instance, ontologies are used in order to get answers to biological

questions. Researchers use mathematical and computational techniques to manage and
analyze biological concepts. This is due to the fact that the experimental way of testing
hypotheses in biology is rather expensive in time and resources. Thus it was found useful
to compute information in order to test hypotheses of interest.. A common way to use

2E-entailment is formally introduced in Definition 3.2.16. Roughly stated, if ontology Ol E-entails
ontology 02 it means that every sentence over E that is a consequence of 02 is also a consequence of Ol.

1.2. PROBLEMS 19

ontologies in bio-informatics is creating a common vocabulary used for managing database

annotation like describing, linking, sharing and querying-for instance, MGED3 (Microar-

ray Gene Expression Data) is a project focussed on establishing standards for microarray
data annotation and exchange in order to support the creation of microarray databases and
implementing these standards in software.

An example of ontology used in medicine is the Systematized Nomenclature of Medicine

(SNOMED CT). It is used in the health systems of the US, the UK, and other countries [72].

It comprises -0.5 million concepts and describes many of the aspects of medicine and health

care. Another example is the thesaurus of the US National Cancer Institute (NCI), which

comprises -45.000 concepts and is designed to become the reference terminology for cancer

research [74]. SNOMED CT (similarly NCI) satisfies the need for unified clinical information

exchange between different health care providers, researchers and others. It also helps to
deal with the problem of differences in the ways of recording the medical information and
differences in the terminology. It is used in applications like Electronic Medical Records,
Genetic Databases or Cancer Reporting.

As a consequence of this interest in ontologies their number is continuously increasing.
For that reason it is often the case that within one field there are several ontologies describing

one domain of interest. Often they complement each other by focusing on different aspects
of that domain, this usually happens if they were designed to satisfy diverse needs of varied
groups of users. Alongside the growth of importance of ontologies we can observe increasing
interest in multiple use of ontologies. But this may raise some problems. We distinguish
different dimensions of the possible problems, but they can appear at the same time as well.

1. Ontologies formulated in distinct formalisms. One problem originates in the

requirement that ontologies be formal. It obviously helps to meet this requirement if
the ontology is written in a precise language, and as already mentioned a large number
of languages have been developed specifically for writing ontologies. Thanks to that

variety of ontology representation languages we can find a good balance between

expressivity and complexity of the formalism used for ontology representation. It
is important to bear in mind that it is not the case that one language or notation
is 'better' than all others, but one may be found more appropriate than others for

a particular domain or application. In any case, choosing a particular notation for

an ontology restricts the use that may be made of it. Most likely, an ontology, or
its component parts, written in one language may be incorporated only into other
ontologies that are written in the same language; in order to combine two or more
existing ontologies, it may be necessary to translate at least one of them into another
language.

2. Different formalisms used for ontology and queries. Another problem stems
from the requirement that ontologies be explicit. As already mentioned, it may not
be convenient, or even possible, to present all the required information explicitly in

3http: //mged. sourceforge. net/ontologies/index. php

20 CHAPTER 1. INTRODUCTION

an ontology. To obtain the desired information, it is necessary to query an ontology.
Obviously, an answer to a query may best be obtained when the query and the

ontology are written in the same logical language; if they are not then, again, the

ontology or the query may need to be translated into another language.

3. Different signatures. But even if the formal language is fixed, different ontologies
may use different vocabularies. For instance, this may happen if groups of primary
ontology users use different natural languages and thus concept and role names are
from different natural languages. Again, this makes ontologies difficult to use together.
(Similarly we may have an ontology and a query using different signatures.) To

overcome it we have to find a correspondence between the vocabularies, see e. g. [381.

The problems described in points (1) and (2) are similar and require bringing distinct

formalisms together, which in practice may be a difficult task. The problem described

in point (3) requires signature mapping. As an example of a problem of type (3), we

may consider SNOMED CT. Originally it was created in English, but as it describes many

useful aspects of medicine it was found to be useful to have it available also in other
languages. To do that it was necessary to determine mappings between different signatures

used in particular languages to describe medical terms. To this end SNOMED CT has a
built-in framework to manage different languages and dialects. This made it possible to

provide SNOMED CT in US English, UK English, German, Spanish and Danish [1), and

translations into French, Swedish, Lithuanian, and several other languages are currently
being undertaken. To make sure that these translations are accurate, usable and safe they

have to be concept-based (term-to-term translations may return literal expressions that are

often meaningless). Therefore before deciding on the translation each concept has to be

analyzed by the translator relative to its description, position in the hierarchy and relations
to other concepts.

Another problem that might appear is caused by synonyms and homonyms in natural
languages, but as already mentioned, concept and role names used in ontologies are the re-

sult of a consensus among the users and this consensus aims at preventing from introducing

synonyms and homonyms into the signature. Nevertheless it should be taken into account

while merging two ontologies, especially if they were developed for different groups of users
(for instance groups working in different areas of science). This problem may also appear
during querying ontologies if the user for some reason is not aware of that agreement.

Of course a combination of the above problems may appear, so we may have two ontolo-
gies (or an ontology and a query) expressed in different formalisms, with their vocabularies
also coming from different natural languages. In some sense, those who are developing and
using ontologies may face problems similar to those that the builders of the Tower of Babel
had. A great amount of work has been done gathering a great amount of knowledge in
a vast number of ontologies. But these ontologies are often formulated in different formal
languages and use different vocabularies and thus in many cases we are unable to use them
together.

1.3. SOLUTION

1.3 Solution

21

As the core of our solution to these problems we propose a fresh view on what ontologies

are. Contrary to the standard approach our primary focus is not on the way ontologies

are built or what formalisms are used to construct them, but on the way we can use them.

We want to identify an ontology with its function. Thus we adopt an abstract view of an

ontology as a black box providing answers to queries about some vocabulary of interest. We

call this the functional approach. A similar approach has been proposed for knowledge

representation by Levesque et al. [20] and [59]. In their work the functional view of a
knowledge base is characterized by determining what can be told or asked, without taking

into account the structures used to represent knowledge. This was the foundation for

designing and implementing a knowledge-representation system called Krypton.
Identifying the function of ontologies is also important for modularity of ontologies. The

significance of modularity may be observed in ontology development and application. In

ontology development, it allows for reuse of existing ontologies and also for distributing

work among independent groups of designers when developing a large scale ontology. In

ontology application, modularity allows for reasoning over the relevant part of ontology

only, and thus increases the efficiency of reasoning.
To say that some part of an ontology is a module means that this part may function

independently. Therefore we have to set the context in which the ontology (and its part)

are to function. That is, we have to fix a language that will be used to answer queries. This

allows us to say that two ontologies are equivalent if in a fixed language they give the same

answers to all queries over a fixed vocabulary. For a module of an ontology, we say that

it functions independently if in a fixed language both the module and the entire ontology

give the same answers to all queries over a fixed vocabulary.
These intuitions are reflected in the concept of inseparability. In the standard ap-

proach two ontologies are indistinguishable if and only if they have the same axioms. But as

observed in [65] computing the syntactic difference between ontologies consisting of axioms
is hardly useful. Whereas in the functional approach two ontologies are indistinguishable

with respect to some vocabulary E if they are inseperable with respect to the fixed query
language over E, regardless of what the axioms are and what formalisms are used in their
formulation. One of the benefits of this approach is that instead of a big ontology we

can freely use a part which has the same consequences relative to the vocabulary of inter-

est: then we say that this part of an ontology can `function independently'. Similarly, we

can freely replace different ontologies with each other if they are indistinguishable in the
functional approach.

Even though this change of view on ontologies allows us to compare ontologies with each
other and determine if they give the same answers to queries over some signature, it does

not solve all the problems. The functional approach is just the first step towards working
with multiple ontologies; it allows us to tell what are the consequences of an ontology
relative to some signature in the context of some formal language. But the functional
approach still does not tell us how to bring two arbitrary ontologies together in order to

22 CHAPTER 1. INTRODUCTION

compare or merge them. Moreover it does not solve the problem of different signatures,
even if the ontologies are constructed with the use of the same formalism. For that reason

we still need a bridge which allows us to bring together arbitrary ontologies, regardless
of their signatures and the formalisms used for their construction. Similarly, we want it

to allow us to bring together an ontology and a query and answer the query even if they

use different formalisms and their signatures originate from different natural languages. In

our work we propose a theoretical foundation of a comprehensive method which provides
these bridges. We introduce a notion of framework that captures the situation of a
`global' language into which both an `ontology' language and a `query' language can be

translated, in a more general and abstract way. To do this, we use institutions, which were
introduced by Coguen and Burstall [41,421 to treat logics with model-theoretic semantics
in a systematic way. A great many logics can be represented as institutions [34], including

many logics for specifying ontologies [57]. An advantage of this is that institutions also

allow a systematic treatment of translation between languages, and recent research has

applied this to problems such as alignment and integration [28,55,56,71,85]. Within a
framework, it is possible to capture a general notion of consequence, whereby an ontology

answers a query, when both are translated into the global language. This in turn gives rise
to a language-independent notion of inseparability, i. e. we can compare two ontologies
formulated in different formalisms (and possibly with different signatures). Figure 1.2 is a

graphical representation of a framework having two ontologies expressed over two distinct

languages Li and £2, which are compared in the global language 9 relative to queries

originally formulated in a query language Q.

µi Pý

G, s

Figure 1.2: A framework

In our work we explore properties of that construct by considering various scenarios, in

which we take into account various configurations of languages of different strength. We in-

vestigate robustness properties of frameworks and the inheritance of the Craig interpolation

property.
We also investigate the problem of using ontologies together with ABoxes and deter-

mining E-entailment and E-inseparability of ontologies in the presence of ABoxes. But this
requires extending the signature with individuals. In other words we have to show how a
description logic can be extended to a description logic with individuals. To do that we use
the theory of institutions. After we show how to introduce individuals into the signature
we investigate the relations between institutions of description logics and their counterparts
with individuals. We also show how to extend a framework to a framework allowing for
expressions with individuals. We also present an institution independent formulation of

...?: _

1.4. NOVEL CONTRIBUTIONS 23

E-entailment and E-inseparability of ontologies based on instance checking which allows us

to compare arbitrary ontologies in the presence of ABoxes.

1.4 Novel Contributions

The novel contributions that can be found in this thesis consist of the following.

" Introducing the functional approach to ontologies, which gives a new, general per-

spective on ontologies abstracting from the particular ontology language used.

" Introducing a general notion of framework which provides a language in which both

the ontology and the query languages are translated by means of institution comor-

phisms. This new approach allows to combine ontologies independently of the formal
language and signature used for their formulation.

" Presenting institution independent formulations of notions of inseparability, conser-

vative extension and robustness. As well as presenting in an institution independent

way results describing how robustness under vocabulary extension, robustness un-
der joins and robustness under replacement in a framework are related to the Craig

interpolation property.

" Approaching the problem of working with ontologies together with ABoxes in the same

general manner. Showing how any description logic can be extended to a description
logic with individuals and how a framework for description logics can be extended to

allow for instance checking queries. This includes investigating the relations between

institutions of description logics and their counterparts with individuals.

. Formulating an institution independent notions of query conservativity, query expan-
sion and concept interpolation.

Establishing that the E-entailment problem for ontologies formulated in the descrip-
tion logic £187i can be solved in EXPTiME. This extends the result presented in [61]
for £G.

1.5 Thesis Outline

The structure of the thesis is the following.
In Chapter 2 we shortly present description logics which are used in many examples

of our work. This chapter introduces also the central notions of category theory and thus
builds the foundations for introducing the theory of institutions which plays a central role
in our research. The chapter also introduces the theory of institutions itself. As part of
this introduction we discuss how particular logical systems can be viewed as institutions
and how we can relate different institutions with each other.

In Chapter 3 we discuss how, with the use of the theory of institutions, we can build a
construct (called a framework) which allows us to query an ontology even if the query and

24 CHAPTER 1. INTRODUCTION

the ontology are given in different formalisms and possibly different vocabularies. We also
show how frameworks allow us to compare and use together arbitrary ontologies. We define,
in a way that does not depend on a particular formal language, the consequence relation
and entailment between ontologies with respect to some vocabulary of interest (called E-

entailment). This chapter also introduces different types of robustness and investigates

relations between interpolation properties and robustness.
In Chapter 4 we investigate how to build frameworks with description logics and how

to use them for answering queries about hierarchies of concepts. This involves providing
a definition of what a description logic is in the institutional setting. We also investigate
the problem of answering queries with individuals (instance checking). To make this type

of reasoning feasible in frameworks, we first show how to formally introduce individuals
into the signatures of institutions. After showing that given an institution of description
logic we can construct a corresponding institution of description logic with individuals, we
investigate basic properties of this construction. We also show that given a framework

we can generate a framework which allows for queries about individuals. We investigate

relations between these constructs, among other aspects we investigate how E-entailment

is inherited between both types of frameworks.

In Chapter 5 we use a particular type of framework to investigate the problem of E-

entailment for ontologies formulated in the description logic EGS7I obeying some additional
restrictions. The main result states that the E-entailment problem for such ontologies can
be solved in EXPTIME. Finally, in the appendix we present an alternative formulation of a
framework which uses a dual concept to that used in Chapter 3.

Chapter 2

Preliminaries: Description Logics,
Category Theory and Theory of
Institutions

25

26

2.1 Introduction

CHAPTER 2. PRELIMINARIES

In this chapter we introduce the logics considered in this thesis and provide a brief intro-
duction to category theory and the theory of institutions.

The first section formally introduces some of the logical systems that were mentioned in
Chapter 1 as formal languages used for ontology formulation. Isere we present description
logics EG, EG+, EGSf,

. ACC, and first order logic. These logical systems will be used in

many examples throughout the thesis. We also shortly mention various extensions of r4CC.
The second part of the chapter forms a short introduction to category theory. In our

approach category theory is important as it provides the foundations for introducing the
theory of institutions (the notion of institution itself strongly relies on concepts from cate-
gory theory) and provides us with tools that will be used throughout the thesis allowing us
to treat logical systems, and investigate their properties, in a systematic and general way.

In the final part we introduce the theory of institutions and its basic notions. We present
the intuitions behind it, show how the logical systems introduced earlier form institutions

and what are the relations (morphisms and comorphisms) between these institutions. The

reason why in our work we look at the theory of institutions is the fact that it allows us
to describe logical systems in an abstract and general way. It also allows to present and

solve problems independently of any particular logical system. In the later chapters we

will use the theory of institutions to construct structures allowing us to use an ontology for

answering a query even if they are formulated in different formal languages and use different

signatures. In the similar way we will present how these structures allow us to work with
multiple ontologies even if they are formulated in distinct formalisms. With the use of
the theory of institutions we will show how to introduce individuals into the signatures of
description logics and how to construct assertions about individuals.

2.2 Description logics and first order logic

Even though most of our work is presented in a way that does not depend on a partic-
ular logical system, many examples use FOL, EL, EG+, ACC, and their versions with
individuals. Therefore we find it useful to introduce formally these systems.

2.2.1 Description logic EG

We begin with introducing description logic EG. Concepts in EG are build according to the
following syntax rule:

C:: =T IAICfDlBr. C,

where A ranges over the concept names taken from a countably infinite set P, r ranges
over role names taken from a countably infinite set R, and C, D over EG-concepts. An
EL terminology (TBox) is a finite set of concept inclusions (CIs) CCD, where
C and D are EG concepts, an ABox is a finite set of concept assertions C(a;) and
role assertions r(a;, as), where ati, aj range over a countably infinite set I of individual
names. A knowledge base (KBox)1C is a pair (0, A) with 0a TBox and A an ABox.

2.2. DESCRIPTION LOGICS AND FIRST ORDER LOGIC 27

The semantics of £G is defined by means of interpretations M= (Am, . M), where the
interpretation domain OM is a non-empty set, and "M is a function mapping each concept
name A to a subset A-'I of 0m, each role name rM to a binary relation rM C Am x OM

and each individual name a to an element am E AM. The function M is inductively

extended to arbitrary concepts by setting

P": = A",

(CnD)M: =CMnDom',
(2r. C)M := {d E A' 13e E AM such that (d, e) E rM and eE CM }.

An interpretation M satisfies a concept inclusion CCD (written MCC D) if
CM C D" concept assertion C(a) (written M C(a)) if am E CM, role assertion

r(a;, aj) (written M r(a;, a,)) if (a; 't, aM) E rM. M is a model of a TBox 0 if it

satisfies all CIs in 0. We write 0C g-= D if every model of 0 satisfies CCD. M is a
model of an ABox A if it satisfies all assertions in A. We write A= C(a) and A= r(a;, aj)
if every model of A satisfies C(a) and r(a;, aj) respectively. M is a model of a knowledge
base 1C = (0, A) if it is a model of 0 and A. For a concept inclusion or assertion V, we
write K cp if cp is satisfied in all models of K. If empty, A is simply omitted.

A signature E is a finite subset of P lii RWI; if empty, I is omitted. The signature
Sig(C) (Sig(C(a)), Sig(r(a;, aj)), Sig(O), Sig(A)) of a concept C (concept assertion C(a),

role assertion r(a;, aj), TBox 0, ABox A) is the set of concept, role and individual names
which occur in C (C(a), r(a;, aj), 0, A). If Sig(C) 9 E, we also call Ca E-concept.

2.2.2 Description logic EL+

The description logic EL+ [10,11 is an extension of EG with role inclusions (RIs). So we
have EG+-concepts build following the syntax rule for EG together with role inclusions of
the form rCs, where r= rl o"""or,, for n>1, is a sequence of role names and sa role
name. ABoxes remain as defined for L. A finite set of RIs is called a role box (RBox).
An interpretation M satisfies an RI rl o ... o r� C r, n>1, (written M rl o ... o rn C r)
if rM o"""o rn C r'ß'1, where `o' is interpreted as the composition of binary relations (i. e.,
we consider `o' to be defined as RoS = {(d, d") I dRd', d'Sd", for some d'}). M is a model
of an RBox R if it satisfies all RIs in R. We write 7Z rCs if every model of R satisfies
rCs. A constraint box (CBox) C= (0,7Z) consists of a TBox 0 and an RBox R. An
interpretation M is a model of a CBox C= (0,7Z) if M is a model of both 0 and 7Z. We
write C= CCD if every model of C satisfies CCD.

The signature Sig(C) of a CBox C is the set of concept and role names which occur in C.

2.2.3 Description logic 6IS%i

The logic 6LS1 is situated between EG and EG+. Its concepts coincide with those of EG
and it allows for a restricted form of role boxes. Namely, a EGS? { role box TL consists of
inclusions

rCs,

28 CHAPTER 2. PRELIMINARIES

where r and s are role names and transitivity axioms

rorCr

stating that r is transitive such that whenever there exists s with r r- sE 1Z then

rorCr¢R. Thus, in £GS1-{ we cannot declare a role to be transitive if it is included in

another role. The language OWL DL of the OWL standard (4) is based on the description
logic SR-TQ that has exactly the same role boxes as £GS1{. The notation used for £GS11

constraint boxes is exactly the same as for £G+.

2.2.4 Description logic ACC

The description logic AL C is an extension of EC with negation (-'). Formally, ACC-concepts

are build according to the following syntax rule:

C:: =T I A1-, CI CfDI 3r. C,

where A ranges over the concept names in P, r over role names in R, and C, D over

.
4CC-concepts. It is clear that .. CC is propositionally complete, that is all boolean set

operations can be expressed, . GC is strong enough to express universal quantifier along

a role. As mentioned above we use standard abbreviations: 1 is an abbreviation of -+T,
CUD abbreviates -(-C fl -iD) and Vr. C is short for -'(9r. -'C). ABoxes in ..

4CC extend
EG ABoxes with concept assertions over ACC concepts.

. 4CC models are similar to £C models but the function "M is extended further by setting

TM := A"

(, C)-": = OM \ CM,

(C n D)M := CM n DM,

:_ {d EA -A' I Be E 0'x"1 such that (d, e) E r" and ec C}
.

As already discussed in Section 1.1.1, having various connectives and different types of

axioms available, by allowing combinations thereof we can create various description logics

extending ACC, here we shortly present these extensions.
A simple extension of ACC is description logic S, which allows for axioms expressing

transitive roles. Description logic S can be extended further by adding inverse roles r-
(we indicate that by adding a letter Z to the name), role hierarchies rl C r2 (indicated
by a letter IL). Number restrictions of the form >nr and <nr (we append a letter
N to the name). Qualified number restrictions (represented by adding a letter Q to the

name) are of the form >nr. C and <nr. C. Finally, nominals {i} (we append a letter 0),

using them it is possible to construct a concept representing a singleton set {i} (a nominal
concept) from an individual i. We can use different combinations of these extensions,
for instance AGCO extends . AGC with nominals; SI-LIQ is a well known extension of S

with role hierarchies, inverse roles and qualified number restrictions; and S9{OZQ uses all
constructors and axioms presented above. We refer the reader to [91 for details.

°a

2.2. DESCRIPTION LOGICS AND FIRST ORDER LOGIC 29

2.2.5 First Order Logic (FOL)

Signatures of FOL are pairs (F, II), where F and II are families of sets of function (F�),, E,,
and predicate names (IIn)n, Ec, respectively, where n is an arity. The following logical symbols

are in use in FOL: we have truth constant `T', existential quantifier IT, conjunction `A'

and negation `-'. It is customary to introduce following abbreviations: 1 which is short
for -, T, VxP(x) abbreviates -, 3x-+P(x), cp V cu is short for -'(, ýp A stands for

-, vp V 1' and cp t ,O is short for (cp V)) A (0 v,).

The formation rules define the terms and formulae of FOL.
The set Term of terms is inductively defined by the following rules:

1. Any variable is a term.

2. Any expression f (tl, ..., tn) of n arguments (where each argument t; is a term and f
is a function symbol of valence n) is a term.

Only expressions which can be obtained by finitely many applications of rules (1) and (2)

are terms. For example, no expression involving a predicate symbol is a term.
If P is an n-ary predicate and t1, ... tn are terms, then P(t3, .., tn) is an atomic formula.

The set of formulas (also called well-formed formulas) is inductively defined by the following

rules:

1. If tl and t2 are terms, then tl = t2 is a formula.

2. Every atomic formula is a well formed formula.

3. If cp is a formula, then -V is a formula.

4. If cp and 0 are formulas, then VA0 is a formula.

5. If cp is a formula and x is a variable, then (2x)cp is a formula.

Only expressions which can be obtained by finitely many applications of rules (1) to (5)

are formulas. The formulas obtained from rules (1) and (2) are said to be atomic formulas.
By rules (3) and (4) formulas created using remaining binary logical connectives are well
formed. Using rule (3) and (5) we can show that (Vx)cp is a well formed formula.

A FOL-model M is a triple M= (AM, f EF, II E11), where the interpretation domain
A is not empty, for n-ary function fEF, fm : (OM)n i OM, for n-ary predicate II E IIn,
Il-" is an n-ary relation on A, i. e., 11M C (AM)n.

A valuation in model M is a function v: {xl,
..., x2} -+ Am and V: Term -+ OM, such

that for variable x, n-ary function f and terms t1, .., to the following holds:

V(x) = v(x),
v(f (tl,

"",
tn)) =f

M(v(t1),
.., 'U(tn))-

Let cp be a well formed formula and Ma model. We have that M cp iff v cp for
every v in M. A valuation v is said to satisfy ca if it can be show inductively to do so under
following conditions:

30 CHAPTER 2. PRELIMINARIES

(1) Vk tl - t2 iff v(tl) = v(t2),

(2) v= II() iff v(t) E JIM,
(3) v '? k if vK0,
(4) v 'til A'IP2 iff v 11 and v 02,

(5) v (2x)cp iff there is v' (same as v, except on x) and v' W.

2.3 Introduction to Category Theory

In this part we present some, basic concepts of category theory. We follow the outlines
presented in [13] and [2], the latter can be treated as a textbook for beginners in category
theory. We also fix notation to make it easier to read our results presented later.

2.3.1 Background

In 1945 Eilenberg and Mac Lane in their paper "General theory of natural equivalences" [37]

first formulated what we know as Category Theory. This approach was in the spirit of
Felix Klein's Erlanger Programm. It was designed to provide general concepts applicable
to all branches of abstract mathematics and allowing for uniform treatment of different
mathematical disciplines, cf. [37]. In the late 1940s it was mainly used in the fields of
abstract algebra and algebraic topology. Later, in the 1950s, it was also applied to geometry,
this was started by Grothendieck, who used category theory for solving classical problems of
geometry and number theory. In the 1960s Lawvere used category theory for investigating

properties of logical systems. In the 1970s category theory has proven to be useful in
disciplines like computer science, cognitive science, philosophy, linguistics etc., cf. [7].

In mathematics category theory can be described as an abstract study of mathematical
structures. The main idea behind category theory lies in the observation that it is possible
to represent a number of properties of mathematical systems by means of diagrams of
arrows. To build some intuitions behind category theory we could compare it to set theory,
then in a diagram each arrow f. X -> Y would represent a function; that is, a set X, a
set Y, and a rule x i-+ f (x) which assigns to each element xEX an element f (x) E Y,

cf. [58]. Nevertheless it is important to keep in mind that sets are just an illustration and in

category theory we talk about objects, and arrows can represent more (but also less) than
functions.

In our work category theory is important as it provides tools for the theory of insti-
tutions. The theory of institutions was first introduced by Goguen and Burstall in their
article "Introducing Institutions" [41] published in 1984. Institutions and some ideas about
the history of the concept and intuitions behind it are presented in Section 2.4.

2.3.2 Graphs

We start by presenting a notion of graph, which is useful to understand the notion of
category. Another reason for introducing graphs is that they will be useful below where we
introduce commutative diagrams and limits.

2.3. INTRODUCTION TO CATEGORY THEORY

Here we present directed multigraphs with loops.

31

Definition 2.3.1. A graph is a collection of objects connected by arrows. Each arrow has

a source and a target, which do not have to be different. A graph with no arrows is called

a discrete graph. A graph is finite if the number of objects and arrows is finite. A graph
that has a set of objects and arrows is a small graph, otherwise, it is a large graph.

There is no restriction on the number of arrows with given objects as source and target.

Notation 2.3.2. We will be using notation f: a --+ b to mean that f is an arrow where
object a is the source off and b is its target. Sometimes we find it more convenient to use
a4b to express the same fact.

A loop, i. e. an arrow with the same object as source and target, is called an identity

arrow or an endoarrow.

Now we define a homomorphism of graphs which is a transformation preserving the

abstract shape of the graph.

Definition 2.3.3. A homomorphism 0= (O1,02) from a graph 9 to a graph 9-l, denoted
0: 9 -4 7-l, is a pair of functions 01 and 02, such that 01 takes objects in C and returns
objects in It, whereas ¢2 takes arrows in 9 and returns arrows in ? -t, with the property that
if v: m -+ n is an arrow of 9, then 02 (v) : ¢1 (m) --+ 01 (n) is an arrow of It.

It is important to note that notation of the form f: A -+ B is overloaded, it denotes set
theoretic functions, an arrow in a graph and a graph homomorphism. On the other hand,

when 0: 9 -4 9i is a graph homomorphism, ¢ in fact is a pair of functions 01 and 02, which
also overloads the notation. In practice though, it does not lead to any confusion as it is

clear from context how the notation is used.

2.3.3 Categories

In general, we can say that a category is a graph with additional requirements. Namely,
it is required that each object has an identity arrow and that this graph has a rule for
composition of arrows.

Definition 2.3.4. A category A consists of. -

"a collection of A-objects,

" for objects A, B, a collection of morphisms (arrows) f: A -4 B,

such that following conditions are satisfied:

9 for every A-object A there is an identity arrow lA :A --> A,

" for A-objects A, B, C, and f: A -+ B, g: B -4 C, there is the composition arrow
f; g A -4 C,

" for every f: A -4 B

32

lAi f=f,

-f; lB=f

CHAPTER 2. PRELIMINARIES

" for every f: A --ý B, g: B --ý C and h: C -+ D in A the following condition is

satisfied (f ; g); h=f; (g; h).

As a simple and intuitive example of a category consider the following:

Example 2.3.5. Set is the category of sets, with:

" objects: sets

" arrows: an arrow A4B is a triple (A, f, B) where f is a function that takes argu-

ments from A and gives results in B.

Example 2.3.6. Any directed graph generates a category of the same cardinality. The

objects are the nodes of the graph, and the morphisms are the paths in the graph where

composition of morphisms is concatenation of paths. Such a category is called the free

category generated by the graph. Note that every category C has an underlying graph

which has the arrows of C as edges, and objects of C as objects.

Reversing the arrows in any categorical definition gives its dual, which often is named
by appending the prefix `co-'. Note that reversing the arrows in the category axioms gives
exactly these axioms back. For that reason reversing the arrows in any theorem gives a
dual theorem.

Using Definition 2.3.4 and the notion of duality we get that every category C has an
opposite (or dual) category C°p. The objects of C°" are the objects of C, and the arrows of
C°Q are the arrows of C but with reversed source and target. Thus every arrow f: C -- C

of C appears as an arrow f °P : C' --* C of C°T. As arrows

A4B-4C

of C appear as arrows

p CCB--A

of C°P, the order of composition is reversed. Thus we define composition in C°P as
gOP; f *P = (f ; g)°P, where f; g is a composition in C. Every category is the dual of its
dual: C= (C°p)°P.

As in category theory one focus on morphisms rather than objects, properties are often
formulated in terms of arrows instead of objects. One of the important types of morphisms
is isomorphism.

2.3. INTRODUCTION TO CATEGORY THEORY 33

Definition 2.3.7. A morphism f: A -> B in a category is called an isomorphism

provided that there exists a morphism g: B -ý A with f; g = 1A and g; f= 1B. Such a

morphism g is called an inverse of f.

If there is an isomorphism from A to B, we say that A is isomorphic to B and write
A=B. There may be more than one isomorphism between two objects.

Note that if f is an isomorphism in category C, then it is also an isomorphism in category
COP.

Definition 2.3.8. A category in which every arrow is an isomorphism is a groupoid. A

category in which every arrow is an identity arrow is called discrete.

Another important distinction between categories takes into consideration the class of

objects of a category. This is formulated in the following definition.

Definition 2.3.9. A category C is said to be small provided that its class of objects is a

set, otherwise it is called large.

The smallest category is the one with no objects nor arrows. The next smallest one
has one object and one arrow. Category Set of example 2.3.5 is a large category, but this
distinction is not crucial in our work and more details may be found in [581.

2.3.4 Slice categories

Another notion which is important for us is the notion of slice category. It allows to
view arrows in a different way, instead of presenting them as relations between objects of a
category, arrows are now described as objects of a category. We will use that to systematize
description logics.

Definition 2.3.10 (Slice categories). If `ß is a category and A is an object of 5', the slice
category `'/A is described in the following way:

SC-1 An object of VIA is an arrow f: C -+ A of `ß for some object C.

SC-2 An arrow of `ß/A from f: C -4 A to f': C-4 A is an arrow h: C --* C' with the
property that f=h; f'

SC-3 The composite of h: f -* f' and h' : f' -+ f" is h; h'.

We have to show that h; h', as defined in SC-2, satisfies the requirements of being an
arrow from f to f'. Let h: f -+ f' and h' : f' -+ f". By definition this means that
h; f' =f and h'; f" = f'. To show that h; h': f -+ f" is an arrow of `ß/A, we have to show
that (h; h'); f" =f. But this is implied by the following calculation:

(h; h'); f" = h; (h'; f") = h; f' = f.

Note that the usual notation for arrows in `'/A is deficient: an arrow h can satisfy
f=h; f' and g=h; g' with g gk f or g' # f' (or both). Then h: f -a fand h: g--> g' are
different arrows of VIA.

34 CHAPTER 2. PRELIMINARIES

2.3.5 Functors

As we have homomorphisms for graphs we also have structure-preserving maps for cate-
gories, we call them functors. We can view functors as graphs homomorphisms preserving
identities and composition.

Notation 2.3.11. Since any category C consists of two types of collections, we will dis-

tinguish them by writing ICI whenever referring to the collection of objects and (C) when

referring to the collection of arrows in category C.

Definition 2.3.12. For any two categories A and Ba functor F: A -+ B is a pair of
functions Fi : BAI -º18I and F2 : (A) -+ (ß) for which:

" if f :C -- D in A, then F2 (f): F1(C)-ýF1(D) in 13,

" for any object C in A, F2(1c) = 1F1 (C),

" if f; g is defined in A, then F2 (f); F2 (g) is defined in B, and F2 (f); F2 (g) = F2 (f ; g).

Note that both F1 and F2 are usually just written F.

Functors can be composed in the following way:

Definition 2.3.13 (Composition of functors). If F: A --> B and G: B -ý C are functors,

then the composite GoF: A -- C defined by

(Go F)(A 4 A') = G(FA) o(L G(FA')

is a functor.

2.3.6 Categories of categories

As functors behave just as arrows in a category it is natural to ask if we can construct the

"category of all categories".

Definition 2.3.14 (The category of categories). The category Cat has all small categories
as objects and all functors from A to B as morphisms, as identities the identity functors,

and composition of functors in the standard way.

In some cases we will refer to CAT, which has all small categories and ordinary large

categories as objects and all functors between them as morphisms.
To be able to form entities like a category of all categories the notion of a quasicategory

was introduced, which frees the concept of category from its set-theoretical restrictions, for

instance, it is not required that objects form a class. Such foundational issues are beyond

the scope of this thesis, but the interested reader is referred to [21.

Definition 2.3.15. `The quasicategory CAT (often called proper quasicategory) has as
objects all categories (small and large) and as morphisms from A to B all functors from A
to B, identities and composition have their usual meaning.

ti

2.3. INTRODUCTION TO CATEGORY THEORY

2.3.7 Natural Transformation

35

A natural transformation is a map between functors and often is called a morphism of
functors.

Definition 2.3.16. Let F, G: A -3 B be functors. A natural transformation r from F

to G (denoted by r: F -4 C or F4 G) is a family of arrows in 13 (TA : F(A) -3 G(A))

indexed by objects A of A, such that for any f: A -+ A' in A the square

F(A) TA G(A)

F(f)

jG(f)

F(A') Tom, '- G(A')

commutes, i. e., F(f); TA' = TA; G(f).

We call TA, Tq,, ... the components of the natural transformation r.
For functors F, G: A -+ Ba natural transformation T: F -+ G whose components rA

are isomorphisms is called a natural isomorphism from F to G (sometimes also called
natural equivalence), and denoted by T: FG. Then the inverses (rrA)'1 in S are the

components of a natural natural isomorphism T1: C -4 F.
Natural transformations compose, so given functors F, G and H from A to B, and

natural transformations p: F -+ G and v: G -+ H, there is a natural transformation

p; v: F -a H defined by composing components µA; VA:

F(A) µA
- G(A) vA

º H(A)

F(f) G(f)

tH(f)

F(A') µA G(A)
A,

H(AS)

Naturality is clear and this composition is associative. There is also an identity natural
transformation 1F :F -+ F, with components 1F(A). This gives rise to a category called
the functor category.

Definition 2.3.17. Given categories A and B, the functor category, denoted BA is the

category whose objects are functors F: A -+ B and morphisms are natural transformations
between these functors.

2.3.8 Diagrams

A closely related notion is that of diagrams. In fact, functors and diagrams are just different
aspects of the very same idea; they are types of graph homomorphisms.

In category theory a very important notion is that of commutative diagram as it is
used for expressing equations.

36 CIIAPTEIR 2. PRELIMINARIES

Definition 2.3.18. Let Z and C be graphs. A diagram in 9 of shape I is a homomorphism
D: I -+ 9 of graphs. I is called the shape graph of the diagram D.

We could say that a diagram is just a graph homomorphism viewed from a different

perspective.
The following two definitions shows the close relation between functors and diagrams.

Definition 2.3.19. If J is a category, then a diagram in category C of shape J is a functor
D: J-*C.

The following definition uses the fact that every directed graph generates a category
and that every category has an underlying graph, recall Example 2.3.6.

Definition 2.3.20. Let C be a category, UC the underlying graph of C, and C any graph.
Then a diagram in C of shape 9 is a morphism D: 9 -4 UC of graphs. Equivalently, this

is a functor FG -+ C, where Fg is the free category generated by g.

In the literature it is common to refer to the category of diagrams in C of shape .7 as
the functor category C, 7.

2.3.9 Adjoints

One of the most important notions of category theory is that of adjoint functors. This

type of relation between functors is very common in mathematics, their ubiquitousness was
expressed in 158]: "The slogan is `Adjoint functors arise everywhere'. "

Notation 2.3.21. Here we follow notation which is standard in the literature on adjoints.
For example, we write UF as an abbreviation of UoF which is the same as F; U.

Definition 2.3.22. Let A and B be categories. If F: A -a B and U: 5 -+ A are functors,

we say that F is left adjoint to U and U is right adjoint to F provided there is a natural
transformation i: id --ý UF such that for any objects A of A and B of B and any arrow
f: A -+ UB, there is a unique arrow g: FA -+ B such that

UFA

nA 9

AfºB

commutes.

The property of 77 is called the universal mapping property. It is customary to

write F -4 U to denote the situation described in the above definition. The triple (F, U, 77)
constitutes an adjunction, the transformation 77 is called the unit of the adjunction.

As pointed in [13] this definition is asymmetric in F and U, but it is also mentioned
there that the following proposition is a remedy for that.

2.3. INTRODUCTION TO CATEGORY THEORY 37

Proposition 2.3.23. Let F: A -+ Ci and U: 13 -3 A be functors such that F -I U. Then

there is a natural transformation e: FU --- 13 such that for any g: FA -+ B, there is a

unique arrow f: A -- UB such that

FUB

Ff B

9-ýB

The transformation e is called the counit of the adjunction.
Adjoints are studied in more detail in [2,12,13,58], here we will use them to recall some

properties of institutions.

2.3.10 Cones, limits and products

In this part we introduce the notion of (co)cone, which is used for defining the notion of
(co)limit. Then we show the relation between (co)limit and (co)products.

Definition 2.3.24. Let 9 be a graph and C be a category. Let D: C9 -- C be a diagram

in C with shape C9. A cone with base D is an object C of C together with a family {pa} of

arrows of C indexed by the nodes of G, such that pa :C -+ Da for each node a of G, the

arrow pa is the component of the cone at a.
The cone is commutative if for any arrow s: a -* b of g, the diagram

C

P\Pb

Da D -ºDb

commutes.
A cocone is a cone in the dual graph.

The following definition show us how we can relate with each other cones with the same
base.

Definition 2.3.25. If p' : C' -+ D and p: C -> D are cones, an arrow from the former
to the latter cone is an arrow f: Cl -a C such that for each node a of C, the diagram

C'
f

/p_

Da

commutes.

38 CHAPTER 2. PRELIMINARIES

Now we consider the situation where we have a cone C which is a target for all the

arrows from the cones with the same base as C.

Definition 2.3.26. A commutative cone over the diagram D is called universal if every

other commutative cone over the same diagram has a unique arrow to it. If there is a

universal cone, then it is called a limit of the diagram D. The commutative cocone is

called a colimit if it has a unique arrow to every other commutative cocone over the same
diagram.

Special cases of limits and colimits are products and coproducts respectively. With

the use of products we are able to define operations of n-ary arity. Coproducts, on the

other hand, are used for the specification of alternatives. In Set, the products are cartesian

products and the coproducts are disjoint unions. This is presented in the definitions below.

Definition 2.3.27. If S and T are sets, the cartesian product SxT is the set of all

ordered pairs with first coordinate in S and second coordinate in T, i. e. SxT= {(s, t)

sES and tE T}. The coordinates are functions projl :S xT --* S and proj2 :S xT -+ T,

called the coordinate projections, or simply projections.

Definition 2.3.28. [The product of two objects] Let A and B be two objects in a category
C. By a product of A and B, we mean an object C together with arrows projl :C --º A

and proj2 :C --* B that satisfy the following condition:
For any object `D,, and arrows ql D --* A and q2 D -+ B, there is a unique arrow

q: DC:

lqlq

q2

PT O)1 PTO32 (2.1)

such that q; proji = qi and q; proj2 = q2.

Definition 2.3.29. The sum, also called the coproduct, A+B of two objects in a category

consists of an object called A+B together with arrows il :A -+ A+B and i2 :B --> A+B

such that given any arrows fA -i C and gB -* C, there is a unique arrow (fig)

A+ B -ý C for which

ü <f kg> t2

(2.2)

2.3. INTRODUCTION TO CATEGORY THEORY 39

Products and sums of two objects, as discussed in Definition 2.3.28 and Definition 2.3.29

are called binary products and binary sums respectively. We can define products and

sums of more than just two objects by an obvious modification of the definition.

Let C be a category with binary products and binary sums. Then for any objects A, B

and C we have sum cocones
B'4B+C11 C

and
AxB-4AxB+AxCF-AxC

There is a unique arrow (lA X il 11A x i2) :AxB+AxC -4 Ax (B + C) making

commute.

Ax B-' z---AxB+AxCýAxC

lA Xi l (1A x ill1A x i2) 1A x i2

Ax(+ C) (2.3)

2.3.11 Pullbacks and Pushouts

Another type of limits and colimits are that of pullback and pushout, which are introduced

below. Contrary to products and coproducts the importance of pullbacks and pushouts was

recognized only after category theory was formulated.

Given f: A -+ C and g: B -+ C consider an object P together with arrows A4PB

such that the diagram

PI P A

n2 f

B - C
9

commutes. To see that this is indeed a cone think of compositions of arrows pl; f and pz; g
as an arrow from P to C and redraw the diagram in the following way:

A Ps
z

APit

f= P2; 1 9

f
-1 .9 13

40 CHAPTER 2. PRELIMINARIES

If this is a universal cone, then we say that P together with arrows pl and p2 is a

pullback of the pair. We can also say that p2 is a pullback of f along g, and that the

above forms a pullback diagram.

The dual notion to the notion of pullback is pushout. More precisely, a commutative

square
f

C

9 4i

B -- ýQ
4z

is called a pushout if for any object R and any pair of arrows rl :A -+ R and r2 :B -4 R,
for which f; ri = g; r2 there is a unique arrow r: Q -a R, such that q;; r=r;, for i=1,2

2.3.12 Distributive categories

Categories in which products distribute over sums are called distributive categories. De-
tailed description of the theory of distributive categories was presented in [27] and many of
their applications can be found in [84].

Definition 2.3.30 (Distributive category). A distributive category is a category with
finite sums and finite products in which for all objects A, B and C, the arrow d defined by
the diagram 2.3 is an isomorphism.

As an example we show that category of £G signatures is distributive. Here we introduce

category of £G signatures only, £G is properly introduced in Example 2.4.9.

Example 2.3.31. A category of EG-signatures is defined in the following way:

" objects are pairs (P, R), where P is a set of `concept names' and R is a set of `role

names',

" arrows, signature morphisms, a: (P, R) -* (P', R') consist of two functions between

the sets of concept names and sets of role names respectively, i. e., a= (f, g) with f:
P -4 P and g: R -+ R'. Composition is defined pairwise (f, g); (f', g') = (f; f', g; g').

Example 2.3.32 (Category Sige' is distributive). To show that the category of £G sig-
natures is distributive we have to show that for any £G-signatures (Pl, RI), (P2, R2) and
(P3, R3) we have that ((PI, R1) x (P2, R2))+((Pi, RI) x (P3, R3)) is isomorphic to (P1, RI) x
((P2, R2) + (Ps, R3))"

First note that sums and products in Sit' are taken pointwise (i. e., (PI, Rl) x (P2, R2) _
(P1 X P2i RI X R2 and (P1, R1) + (P2, R2) (P1 + F2, Rl + R2). Then the required property
is a straightforward calculation.

This property can also be inferred from the fact that the category of £G signatures is the

category of sets of pairs, and sets and tuples of sets are distributive categories.

2.3. INTRODUCTION TO CATEGORY THEORY

2.3.13 Inclusions and Inclusive Categories

41

In many cases it is convenient to consider simple morphisms within a category as inclusions.

This is due to the fact that the notion of inclusion is very natural and thus very useful when

we study the syntactical part of a logical system. In particular, even though signatures are

not sets, it is important for us that they behave like sets, thus we prefer to use inclusions

while considering subsignatures. For instance consider signatures of £G. An EG-signature

is a pair of sets (P, R). Therefore we cannot strictly talk about inclusion, understood as

set inclusion, between EG-signatures EC E', it is rather a composition of two functions

f: P --4 P and g: R -- R', which are inclusions, i. e., we say (P, R) c (P', R') iff PC P'

and RC R.

It is well known that certain small categories correspond to partially ordered sets

(posets). These categories satisfy the following conditions: they have at most one mor-

phism between any two objects, there is a morphism from A to B if and only A<B, they

also satisfy anti-symmetry, i. e. if there is a morphism from A to B and another from B to

A then A=B. In what follows we will identify posets with their corresponding categories.

Sums and products in these categories correspond to greatest lower bounds and least upper

bounds, respectively. A poset with finite sums and products is a lattice, with the usual

properties. Things generalize from sets to classes, which are called poclasses. We set y

to denote the poclass morphisms (cf. [431).

Here we present a definition of an inclusive category, which was introduced by Goguen

and Rosu in [431. As they suggested, this notion of inclusion is similar to that of (weak)

inclusion systems present in the literature [29,30,35,671

Definition 2.3.33 (Inclusive category). An inclusive category C is a category with a
broad subcategory' I which is a poclass, called its subcategory of inclusions, having finite

products and coproducts (which we shall call intersections and unions), such that for every

pair of objects A, B, their union in I is a pushout in C of their intersection in I. A functor

between two inclusive categories is an inclusive functor (or preserves inclusions) if it

takes inclusions in the source category to inclusions in the target category.

The following lemma demonstrates one way in which inclusive categories have set-like
properties for union and intersection. It presents a correlation of inclusion, intersection and
union, which is also true in set theory. We use this property later to show how inclusive

categories have properties that are similar to sets. While considering this lemma it might
be useful to keep in mind that the category of EG signatures is an instance of an inclusive

category.

Notation 2.3.34. As already mentioned products and coproducts correspond to intersec-
tions and unions in the set theory, in the remainder of the text we will write A fl B for
AxB and AUB for A+B, where A and B are objects of an inclusive category.

IIn the sense that it has the same objects as C.

42 CHAPTER 2. PRELIMINARIES

Lemma 2.3.35. Let A, B, C be objects in an inclusive category C; if A"B, then AUC y

BUC.

Proof: The following is a pushout square for objects A and C of the form:

AnC- P'
ºA

Pz 4t

9' c C . AUC

Since A-B and thanks to the fact that C is inclusive, we can construct the following

diagram:

P21 I q,

C 92 AUC

k
m

BUC

As pl ; n; l and p2; m are both inclusions AnCyBUC, they are equal. Therefore there is

k: AUCyBUC in I (as qj, q2 is a pushout in I). The fact that k is an inclusion follows

from the fact that ql, q2 is a pushout in I. O

2.4 Introduction to institutions

In this section we focus our attention on the notion of institution [42], which is central in

our approach to ontologies. Before introducing institutions formally we briefly present some
intuitions behind the theory of institutions, which might be found useful by the reader. For

a more in-depth presentation of institution theory and its philosophical background one
might refer to [33].

The notion of institution was first introduced by Joseph Goguen and Rod Burstall
in the late 1970's as an answer to the increasing number of logical systems, originally
presented in [23] and later also in [41]. But it took many years for a very important

paper [42[to be eventually published, c. f. [33]. The original aim of institutions was to
treat logics with model-theoretic semantics in a systematic way. Thanks to that it is

possible to describe logical systems in an abstract and general way, this also allows to

present and solve problems independently of any particular logical system. The theory

of institutions formalizes the notion of logical system by presenting syntax (signatures,

sentences), semantics (models) and the satisfaction relation between them. The theory of

AnCr pi
ºAC

n
ºB

Pz

fi

Cc 92
ºAU_C

k
m

A.
BUC

2.4. INTRODUCTION TO INSTITUTIONS 43

institutions appears as an important part of universal model theory and thus as a part

of the universal logic project advocated by Beziau [16]. On the other hand, as suggested
in [33], this abstract approach was the reason why some logicians regarded it as `weakly

informative' and rejected it.

In our work we use the theory of institutions to present relations between logical systems

with particular attention to description logics and to approach some problems related with
the use of ontologies such as entailment and inseparability.

The notion of institution strongly relies on concepts from category theory. An institution

consists of a category of signatures; with each signature we associate sentences, models and

a satisfaction relation. The core of the idea of institution is that change of the signature
(by means of a signature morphism) leads to coherent changes in sentences and models and
thus the satisfaction relation is not affected by the change of signature. This reflects the
intuition that the truth of a sentence does not depend on the signature used in it, which is

expressed in the slogan `truth is invariant under change of notation'. This is made explicit
in the definition below. It is important to note that sentences are translated in the same
direction as the signature, whereas models are translated in the opposite direction.

Formally, an institution is defined in the following way:

Definition 2.4.1. An institution Z consists of.

1. a category Sig of signatures,

2. a functor Sen : Sig -+ Set giving, for each signature E, the set of sentences Sen(E),

and for each signature morphism a: E -+ E', the sentence translation map Sen(a)
Sen(E) -+ Sen(E'),

3. a functor Mod : Sig°" -+ CAT giving, for each signature E, the category Mod(E),

whose objects are called E-models, and whose arrows are called E-model homomor-

phisms, and for each signature morphism a: E -+ E', the reduct functor Mod(o)
Mod(E') -a Mod(E),

4. a satisfaction relation SEC 1 Mod(E) Ix Sen(E) for each EE ISigI, such that for each
a: E -+ E' E Sig the following satisfaction condition holds:

M' =E' Sen(o)(cp) if Mod(a)(M') i--E cp

The generality of this definition, is the key point of theory of institutions as it allows to
treat logical systems in an abstract way and captures the essence of the notion of logical

system.

Before we continue we introduce some notations. First of all we simplify the notation
for translation map for functors Sen and the reduct functor for functor Mod.

Notation 2.4.2. For the sake of simplicity often we will write only o instead of Sen(o),
and _r

instead of Mod(a). The functor
_

jo is called the reduct functor associated to a.

44 CHAPTER 2. PRELIMINARIES

Using this notation the satisfaction condition is of the form:

M' =E' a(w) iff M'ro =E W"

Now we introduce the notation for the satisfaction relation.

Notation 2.4.3. When working with an institution, we will use the standard logical ter-

minology. For instance, for institution Z, signature EE Sig', a sentence cp E Senz(E), a
finite set of sentences rc Senz(E) and a model ME IModz(E)I, we say that:

"M satisfies cp or that ýo holds in M, whenever M J4 ýp (when clear from context we

will omit the superscript Z),

"M is a model of r if it satisfies all the sentences in r.

We write r=w if every model M of r satisfies co.

Notation 2.4.4. In many cases, given an institution Z, we find it useful to use its name
as a supper script of its components. So we have Z= (Sig', Sent, Mod", j=).

This becomes very helpful when we start moving between different institutions.
Now, following [42], we present the basic properties of theories over an arbitrary insti-

tution. A theory consists of a signature E and a "closed" collection of E-sentences.

Definition 2.4.5.. Let I be an institution and Ea signature.

1. Let E Sen(E), then a pair (E, E) is a E-presentation.

2. Let M' E IMod(E)I. ' We say that M satisfies a presentation (E, E) if it satisfies
every sentence in E, for short MjE.

3. Given EC Sen(E), let E° be the collection of all E-models that satisfy every sentence
in E.

4. Given a collection M of E-models, let M° be the collection of all E-sentences that

are satisfied by each model in M. We call M° the theory of M.

5. The, closure of a collection E of E-sentences is E°°, denoted E*.

6. A collection E of E-sentences is closed if E= E*.

7. A E-theory is a presentation (E, E) such that E is closed. We denote a category of
theories of I by THE.

8. The E-theory presented by a presentation (E, E) is (E, E*).

9. Let VE Sen(E) and E Sen(E). We say that c is semantically entailed by E, for

short E=c, if WEE*.
.'..

2.4. INTRODUCTION TO INSTITUTIONS 45

For description logics a presentation (E, E) is called a E-ontology, i. e. a E-ontology is

a set of sentences over signature E.

Many examples of institutions can be found in the literature (e. g. [3,42,79). To list only
few examples of institutions we have: Propositional Logic (PL), unsorted First Order Logic

(FOL), £G, £G+, ACC. Here we also consider Conceptual Hierarchy (Cf) as it may be

considered a very simple institution allowing us to express hierarchies of concepts. Later we
introduce its variant C77, which allows for formulation of hierarchies of roles. In Section 4.2

we use CW to define description logics and for constructing expressions with individuals.

Example 2.4.6. Propositional Logic (PL). Signatures and signature morphisms are

sets of propositional variables and functions between them respectively. Given a signature E,

the set of E-sentences is the least set of sentences finitely built over propositional variables
in E and Boolean connectives in {-+, V}. Given a signature morphism a: E -- E', Sen"L(a)

translates E -formulae to E'-formulae by renaming propositional variables according to o.
Given a signature E, the category of E-models is the category of mappings v: E -- 10,1}

(where {0,1} are the usual truth-values) with identities as morphisms, i. e. it is a discrete

category. Given a signature morphism o: E -4 E', the reduct functor
_j, maps a E'-model

v' to the E-model v=o; V. Satisfaction is the usual propositional satisfaction. A model v

satisfies a formula ip (written v W) if v(V) = 1.

Given a signature E, signature morphism a: E -> E', a formula cp E SenPL(E) and a
model vEI ModPL (E') I the following holds:

vro=Ecv if vHE'a(v).
Proof: The proof is by induction. We distinguish three cases:

" cp = p, with pE SenPL(E), then:

" cp = -'p, with pE Sen'' (E), then:

vjo CEP
if

a; v CEP

if

v(a(p)) =1
if

v1--E'Q(p)

výo ýE ''P

i ff

a; v=E-'P
if

v(a(p)) =0
if

V i--E' Q(-iP)

46 CHAPTER 2. PRELIMINARIES

Let cp =cVd, such that c, dE Sen PL (E), then:

vj, =EcVd
if

a; v=EcVd
if

v(a(c)) =1 or v(a(d)) =1
if

vý--E'v(cVd)

0

Example 2.4.7. FOL. A signature is a family of sets of predicate names (II�)news where

n is an arity.
Signature morphisms o: II -+ H' are families of arity respecting functions between sets

of predicates, i. e. Qn : II� -* Hn.

We assume the presence of a denumerable set of variables. Formulae are first-order

formulae. Sentences are the first-order sentences. Sentence translation means replacement

of the translated symbols. Given a signature II, FOL models are unsorted first-order struc-
tures of the form (A-'I, W"WHO, with an n-ary relation rl" C (OM)" for every 7r E IIu,

which extend to formulae.
'Model reduct means reassembling the predicates according to the signature morphism,

i. e. F° _ (a(a))M, the domain remains the same A, ". Satisfaction is the

usual satisfaction of a first-order logic.

A further example we use in subsequent sections is a very basic description logic that we
call CH, which allows the specification of concept hierarchies. Here we present a variant of
Cli which does not capture role inclusion axioms but is very intuitive. Later, in Section 4.2

we present its variant C7{, which captures also role inclusion axioms.

Example 2.4.8. Institution of Conceptual Hierarchy Cill.
A Cl-l-signature is a set of concepts. (Later we consider institutions with institution

morphisms to CI{, then for each such an institution 2, signature in Cl-l is a set of concepts
formulated over signature in Z.)

Signature morphisms a: E --* E' are functions between the sets of concepts.
Given a CH-signature E, we define E-sentences in the following way:

Sei (E) :: = {c CdIc, dE E}

Given a signature morphism o: E -ý E', we have Sencx(v) : Senc"(E) -+ Sen"(E'),
renames concepts according to a, i. e. a(c C d) = a(c) C a(d).

The semantics of C? { is defined by means of interpretations M= (0M, M), which are
objects in the category of models. The interpretation domain OM is a set, and "M is a
function mapping each concept name cEE to a subset c''t of OM. Given a signature
morphism a: E -+ E', the reduct functor M j, maps a E'-model M' to the E-model
M=o;

, M' and M jo is defined by cm r- = u(c)M.,

2.4. INTRODUCTION TO INSTITUTIONS 47

A straightforward argument shows that the satisfaction condition holds for Cl-I, i. e. given

a signatures E, E', signature morphism o: E -4 E', cp E Sencx (E) and MEI Moth" (E')

the following holds:

MýoýEýP if Mý=E, a(W),

Proof: Let cp =cCd and ME Mod(E').

cd
if

Mre c dMre

if

a(c)" c a(d)mit
if

M ý=E, o(c) C Q(d)
if

M [--E, a(c C d)

11

Example 2.4.9. Description logic L. An £G-signature is a pair (P, R), where P is a
set of `concept names' and R is a set of `role names'.

Signature morphisms a: (P, R) -+ (P, R') consist of two functions between the sets of
concept names and sets of role names respectively, i. e., a= (f, g) with f: P -+ P and
g: R -- R'. Composition is defined pairwise (f, g); (f', g') = (f ; f', g; g').

Given an £G-signature E= (P, R), we define E-concepts Cone (E) using the following

syntax rule:

Con" (E) :: = T (P I Con-o'c (E) fl con" (r,) 3R. Con" (E)
.

Where P and R are considered to be syntactic categories of the BNF definition. For every
signature E, Sen"'f-(E) is the set of General Concept Inclusions (CCI) over E,

Sen" (E) :: = Con"(E) 9 Con" (E)
.

Given a signature morphism o: E -4 E', we have

Sen"'C(Q) : Sen"(E) -+ Sen"(E')

this is done by renaming concept and role names according to a.
The semantics of EG is defined by means of models M= (AM, . M), which are objects

in the category of models. The interpretation domain Aß" is a non-empty set, and M is a
function mapping each concept name AEP to a subset Am of AM, and each role name
rER to a binary relation rM CAM x AM. The function M is inductively extended to
arbitrary concepts by setting

TM ._ AM

(CnD)": =CMnDm ,

48 CHAPTER 2. PRELIMINARIES

and

(Jr. C)M :_ {d E OM I there is an eE 0m such that (d, e) E rM and eE CM }

This applies to every description logic.

When convenient we will refer to EL models as triples of the form:

(AMi (PM)PEP, (rM)rER)

Model reduct is defined similarly as in FOL. Satisfaction in £G is the standard sat-
isfaction of description logics. An interpretation M satisfies a GCI CCD (written

M CED)ifCMCDM.

The proof that the satisfaction condition holds for £L is similar to that for C? -l.

Example 2.4.10. Description logic £G+. Signatures of £G+ and £G are exactly the

same.
The description logic £G+ is an extension of £G with role inclusions. Thus Senelc is

extended to Senec+(E) by adding role inclusions of the form rl o"""o r� Cr and rCs,

where r, ri, """r., s are roles. We call a set of RIs an RBox.

Signature morphisms induce adequate changes in concept and role names used for sen-
tence formulation just as in the case for EL.

£G+-models and £G-models are exactly the same.
Satisfaction is the standard satisfaction of description logics. Conditions under which

model M satisfies GCIs and ontologies are exactly the same as for E. C. In addition to

satisfaction for £G we have the following condition for RIs. An interpretation M satisfies

an RIrlo"""or�Cr, n>1, (written'Mýrlo"""ornCr)ifrMo"""orn 9r-", where
°o' is interpreted as the composition of binary relations (i. e., we consider `o' to be defined

as RoS= {(d, d") I dRd', d`Sd", for some d'}). M is a model of an RBox R if it satisfies

all Rls in R. Model redact is the same as for £c.

A
'straightforward

inductive argument shows that the satisfaction condition holds.

Example 2.4.11. Description logic
.
ACC. ACC-signatures and signature morphisms

are exactly the same as for EL.,

The description logic ACC is an extension of £G with negation
Thus given ACC-signature E_ (PR), we define E-concepts ConACC (E) using the

'following syntax rule:

Condcc(E) TýPý-, ConACC(E) I ConACC(E) r1 ConACC(E) 3R. ConAf-c(E)

It is easy to see that using negation, we can define also 1, Con-'' (E) U ConACC (E) and
VR. Con'ýcC(E) in the standard way.

For every signature E, Sen8C(E) is the set of GCIs over E,

. ..
SenacC(E) :. = Con, acc(E) CZ Con. acc(E)

Again, P and R are considered to be syntactic categories of the BNF definition.

2.4. INTRODUCTION TO INSTITUTIONS 49

Signature morphisms induce adequate changes in concept and role names used for sen-

tence formulation just as in the case for £G.

ALC-models are of the same nature as £G-models, as negation is available in ACC we
have -CM = OM \ CM . Model reduct is defined similarly as in FOL.

Satisfaction is the standard satisfaction of description logics. Conditions under which

model M satisfies GCIs and ontologies are exactly the same as for EG.

The proof that the satisfaction condition holds for ACC is similar to that for 1G.

2.4.1 Inclusive Institutions

Inclusions are very simple and natural, yet important type of maps. As already suggested
in [42] inclusions are very important for modularisation and with the use of institutions

it is possible to formulate this notion in an independent way. [42] left axiomatising and

exploiting inclusions for modularisation amongst the open problems, and the notion was first

formalized in [35] where it was used for simplification of the semantics of module systems

over an institution. The notion of inclusion system received attention in the literature, for

instance [29,30,67]. This notion was also discussed in [43], here we present the formulation

of inclusive institution presented there.

Definition 2.4.12. An inclusive institution is an institution with its category of signa-
tures and its Sen functor both inclusive, in other words the category of signatures is equipped

with an inclusion system such that Ey E' implies Sen(E) C Sen(E'). An inclusive insti-

tution is distributive if its category of signatures is distributive.

Example 2.4.13 (£G is an inclusive institution). We have to show the following:

1. the category of £G-signatures is inclusive, and

2. the functor Sen is inclusive.

For (1), it is enough to notice that category of £G-signatures has a broad subcategory I
Us)

such that (P, R) ý-º (P', R') is in I if Py P' and Ry R' are inclusions in category of
Sets, i. e. PCP and RCR. As already mentioned signatures behave like sets and any £G

signature consists of two disjoint sets P and R. Thanks to that, for arbitrary £G-signatures
(P, R) and (P', R') we have that P" PUP t-' P is a pushout of P t- Pn P' yP and
Ry RUR' + R' is a pushout of R RnR' -+ R'. By taking these two together we receive
that (P, R) y (P U P', RU R') +- (P', R') is a pushout of (P, R) t-- (P n P', Rn R')
(P', R')"

For (2) it is enough to recall the syntax rule for £G. It tells us that given an £G-

signature E, £G-concepts are built in the following way: Con-" (E) :: = TIPI Conec (E) n
Con"(E) I 2R. ConE'C(E). As a signature inclusion (PR) -+ (P', R') consists of two
inclusions (P) -+ (P') and (R) " (R'), it is easy to see that this entails concept inclusion
Con" (P, R) -4 Con-"- (P', R').

50 CHAPTER 2. PRELIMINARIES

Above we have shown that £G is inclusive and distributive. In a very similar way we

may show that all the institutions discussed above have these properties as well.
One of the important properties of many logical systems is that of preserving finite

colimits by the model functor. Thus given signatures El and E2 such that signature E'

is their colimit we would expect that Mod(E') is the limit. In particular we would expect
that a E'-model would consist of a pair, a El-model and a E2-model, in other words, we

expect Mod(E') to be Mod(E1) x Mod(E2). Analogously for pushouts, if signature E'

is a pushout of E -a El and E -+ E2, then we would like Mod(E') to be the pullback

of Mod(Ei) --* Mod(E) and Mod(E2) --i Mod(E). This property is called exactness and

originates in Tarlecki's work [70] and [76]. Meseguer in [64] introduces the term exactness,
but it refers to the situation which we call semi-exactness here as this terminology was

used by Diaconescu in [35]

Definition 2.4.14. An institution is exact iff the funetor Mod : Sig P -ý CAT preserves
finite colimits and is semi-exact if it preserves pushouts, i. e., it takes pushouts in Sig to

pullbacks in CAT.

As already pointed out by Diaconescu in [32] semi-exactness is a very widespread prop-
erty, all institutions of conventional or non-conventional logics are at least semi-exact. In
fact, in [35] Diaconescu et al. tell us that institutions of many sorted logics are exact and
institutions of unsorted (or one-sorted) logics are semi-exact.

Definition 2.4.15. In any institution Z, a signature morphism t: E -+ E' is liberal if and

only if the reduct functor Mod(i) : Mod(E') -3 Mod(E) has a left adjoint.
In other words, for each E-model M there exists a E'-model FM and a E-model homo-

morphism 17 :M -ý (FM) r,

(FM) r, FM

77

-M -f -M'r, M'

such that for each E'-model M' and for each E-model homomorphism f: M --* M%, there

exists a unique E'-model homomorphism f#: FM -ý M' such that 77; f#r, = f.

An institution Z is liberal if and only if every signature morphism in I is liberal.
A special case of this property is model extension along inclusions. This notion can be

found in [32].

Definition 2.4.16. Institution I has model extension along inclusions iff for Ey E'
in Sign every E-model M has a E'-model M', such that M[* M*

Example 2.4.17 (EL has model extension along inclusions). To show that we simply show
how given a signature inclusion Ey E' and a E-model M we construct a desired E'-model
MI.

Let M= (A', (pM)PE p, (rM), ER), we define M' in the following way:.

2.4. INTRODUCTION TO INSTITUTIONS

0 AM' = Am,

" forpEP':

- ifpEP e': =7",

- ifPgP: pm,: =0

" for rE R':

- ifrER: rM': =rM,

- ifr¢R: rM'. =O

51

Now we only have to show that M' j*E = M*. To do that we introduce the following

lemma.

Lemma 2.4.18. For any E, E' E Site such that E" E' and any E-concept C we have

that CM'FE = CM.

Proof: The proof is by induction on the structure of C.

" In the induction base, we have that C=T or C=A with AEE. The former is

trivial, for the latter we have:

A'"'tE= Am'= Am .

" The case for Ci fl c2 is trivial.

" ForC=3r. C'

3r. C'M'rr = {x E NM'N£ I for some y, rM'bb(x, y) Ay E C'M'FE}

= {x E 0M I for some y, rM (x, y) AyE C'M }

= 9r. C'M

2.4.2 Morphisms and Comorphisms

11

One of the very important benefits that we get from using category theory is that transla-
tions between institutions (logical systems) can be treated in a systematic way. Thanks to
that we can integrate theories over different logics, which can be very useful in practice. For
different purposes there are various kinds of translation available. Probably the two best-
known and most basic are institution morphisms and institution comorphisms. Morphisms

were originally introduced by Goguen and Burstall in [42]. Comorphisms were first intro-
duced by Meseguer in [64] but then were called `plain maps', later the same structures were
renamed by Tarlecki in [77] and called 'representations'. We prefer the name `comorphism'

since it emphasizes the relation of this structure to morphisms.

52 CHAPTER 2. PRELIMINARIES

Intuitively, institution morphisms are truth preserving translations from one logical

system to another. An institution morphism shows how a `richer' institution I is built over

a `poorer' institution V. This is done by defining a `forgetful' operation from I to Z'. A

functor IF translates the signatures of I into the signatures of Z'. A natural transformation

ry translates sentences of Z' over T (E) into sentences of I over E. A natural transformation
5 translates E-models of Z into' (E)-models of V.

Definition 2.4.19 (Institution morphism). Let I= (Sig, Sen, Mod,

and Z' = (Sig', Sen', Mod, =') be two institutions. An institution-morphism fC = (IPA,

I -+ i' consists of.

"a functor'Yµ : Sig -+ Sig'

"a natural transformation yµ : Sen' o TO = Sen

"a natural transformation 5' : Mod = Mod' o(µ)0P

such that the following satisfaction condition holds:

for all EE ISigl, for all ME IMod(E)I, for all cp' E Sen'(W'(E))

M 1E 7E(ýP') if SE(M) 14µ(E) CP'

Sen(E)

a Sen'(µ(a)) Sen(o)

E, Sen'(W'(E')) -Sen(V)

Figure 2.1: The Sentence Natural Transformation

E Mod'('Y"(E)) Mod(E)

'__.. a Mod'((%1A)°P(a)) Mod(a)

E, Mod(lµ(E,)) Mod(E')

Figure 2.2: The Model Natural Transformation

Note that the functor T and the natural transformation b go in the same direction,
whereas the natural transformation -y goes in the opposite direction. "

2.4. INTRODUCTION TO INSTITUTIONS 53

Below we present possible morphisms between institutions that are of interest to us.
Before presenting the first example, morphism fa : FOL -- ACC, we need some additional

explanation. While discussing natural transformation ryfa we introduce counter 1-n for

formulae using 3 and d as a way to introduce new variables, so we have the following:

2r C= ((3x1_,,) r) AC l ", and dr = ((Vxl_n) r) ACl-". The reason for introducing

that counter is the fact that in case for morphism fa we are given FOL-signature 11, which
is translated into ACC where we construct concepts that are translated back to FOL. But

in FOL we can only express that some variable is an element of the interpretation of the

predicate of our interest (these predicates are now concept names translated from
.
AGC).

This becomes crucial when the .
A. CC concept is of the form 3r. C or Vr. C, for simplicity

reasons we focus here only on Br. C as the intuition for Vr. C is similar. When we deal with

concept 2r. C translated into FOL we need two variables, one that is an element of the
interpretation of 2r. C translated into FOL and another one which is related via r with the

previous one as well as is an element of the interpretation of translated concept C. One

of the problems here is that we may only talk about one variable at any time, another is

that the concept translated from ACC may be of arbitrary depth, for instance of the form
Br. (Bs. C) and so on, so for each role we need new variable. To solve that we introduce

the counter 1-n which allows us to introduce new variables when needed and deals with
the nesting problem. As a simple example consider an ACC-concept 3r. C, we translate it
into FOL and set n=0, in other words we choose variable xo to be an element of the
interpretation of ýr C in FOL. By the way how ACC concepts are translated into FOL

we have that there is a variable x1, such that xo and xj are related via r and xl is an
element of the interpretation of C, so we have Cl. Now, let C be of the form Ss. C', thus

we get 2s
.
C'1, with n=1 received from the previous step. So we have that xl is in the

interpretation of Bs. C', thus there is a variable, which is related with xl via s and is in
the interpretation of C'. We apply our definition to introduce that variable, as at this

point n=1 we receive that x0 is that variable. This procedure allows us to introduce new
variables as needed. To see how this definition is working consider the following example.

Example 2.4.20. Let C= E]r. ((2s. W) n li) n ¢. We translate this concept into FOL and
set n=0, so we have:

2r. ((is. ýo) n v)) n
this gives its

3r. ((as. w) n ip)^ A

By definition we receive

((2xi)r(xo, x,) A ((s., P) n'o)') A o(xo),

which roughly states that xo has property 0 and there is x1, such that r(xo, xi) and xl is an
element in the interpretation of ((Bs. cp) f V)). But after applying the definition to (Bs. cp) n IP
we receive: (Bs. cp)I A i/il, and thus

((9xo)s(xi, xo) A (c))A (x1),

54

which by definition is

CHAPTER 2. PRELIMINARIES

((9xo)s(xi, xo) A V(xo)) A b(xi).

This together with
((2xi)r(xo, xi) A ((3s. cp) n ip)l) A O(xo),

gives us:
((9xl)r(xo, xi) A ((Jxo)s(xl, xo) A V(xo)) A ? P(x1)) A O(xo)"

Example 2.4.21. Morphism fa : FOL --º ALC.
Let IT be a FOL-signature, where IT is a family of sets of predicate names (fl)�Ew

where n is an arity. A morphism fa : FOL -+ ACC consists of.

" the functor Wfa translates an FOL-signature IT into an ACC-signature in the following

way: VI(Il) _ (II{ý°}, II{x°ýýý}), where

n{: °} _ {cp E SenFOL(I,)Ico contains exactly one free variable xoj

and

E SenFOL(II%p contains exactly two free variables xo and xl}.

.
In other words, unary predicates of FOL are translated into atomic concepts of ALC,

,. whereas binary predicates of FOL are translated into roles of ALC,

" natural transformation yn translates ,
ALC-sentences, constructed over 9/fa(II), into

FOL-sentences with countable set of variables in the following way:

- ?n (CCD) (Vxo)C D

° where we fix some enumeration of the variables'and xa is the first one. Concept

translation is defined inductively:

C:
p= p(xn),

(ýil- nign
=C AC

,

C1 UC2 =CV2
3r. C = ((3x1

-n) r) ACS-n
`dr. C = ((Vxi-n) r) A Ci '`

where n=1,2. For the last two clauses, we use 1- n to allow us to introduce another
variable.

" The natural transformation bn converts a FOL model into an .
&CC model such that

for any FOL II-model
,M we have bn(M) = Jul , i. e. for (P, R) Va (IT) we have

that every pEP is a formula with one free variable, so pM C AM. ` Similarly, every
rER is a formula with two free variables, so rM C AM X OM.

2.4. INTRODUCTION TO INSTITUTIONS 55

Natural transformations -yn and bn satisfy the satisfaction condition: for all II E ISigFOLJ,

for all ME IMO JOL(II)I, for all ca E Sen`-CC(Wfa(ll)),

Min L7n(ýP)if4()ý ýýn) W

this can be shown by induction.
Here we show only the base case. But first of all we need an auxiliary lemma.

Lemma 2.4.22. For every FOL-signature II, every ACC-concept C over bf'(II) and every
FOL-model ME IMod(II)I we have C6 (M)

=CM

Proof: The proof is by induction.
Let:

0 C=p

plnfa
ra (M)={xEAdn(M)lxEpan(M)}={xEAMIxEpM}=(p(x))M

"C=-, p

(-P)8 (M) = {x E Dan(M)Ix «Pdn(M)} = {x E Am Ix %PM} = (^ p(x))M

.C= Cl fl C2 is trivial,

"C= 3r. C'

n(M)
_ {xo E Aan(M)I(Bxi) xo r (M)xi A xl E (C')ý`n(M)}

_ {xo E AmI(3xl) xo rMxi A xl E C'1M}

_ (((3xi) r) AC')M
(M

0
To show that the satisfaction condition holds, let II E ISigFOL1, ME IModF'OL(II)I and

ýp =CCD be an ACC -sentence over Tf'(II). Assume that Mj FOL yn((p). Thus

M knot yn (C D)
if

M f-n°L (dxo)C D
if

Cm C DM
if

Cbn(M)C D6 (M)

if

an (d) . 4y(
n) CCD

56 CHAPTER 2. PRELIMINARIES

As it is easy to see that natural transformations in the remaining examples of
(co)morphisms satisfy the satisfaction conditions we omit most of the proofs, in Exam-

ple 2.4.25 we only present part of the proof where we consider the base case for BIs.

Example 2.4.23. Morphism ae: ACC -+. 6, C. For morphism ae we let the functor'I' be

the identity functor. For any .. ACC signature E= (P, R) we have Sen" (E) C SenACC(E),

thus we define yE to be the inclusion Senc-C(E) -4 Sen" (E) The natural transformation
JE` is the identity.

Example 2.4.24. Morphism e+e : £G+ --+ £G.
As £G and £G+ use the same signatures we let the functor a e+e be the identity functor. For

any signature E= (P, R) we have SenE-C (E) C SenE'C+ (E), so we may take ryh ° to be the

inclusion Sen-OG(E) y Sen"-+(E). We take R+' to be the identity natural transformation,

as E-models in £G and £G+ are the same.

Example 2.4.25. Morphism fe+ : FOL -+ EG+.

We have noted above that signatures of EG, EG+ and ACC are built in the very same

way, for that reason functor IQfe+ works exactly like 'I' for the morphism described in
Example 2.4.21.

Natural transformation yfe+ translates E&-sentences, constructed over 'I' (11), into

FOL-sentences with a fixed countable set of variables. Note that for every signature II the

set of E& CCIs built over'fe+ (II) is a subset of ACC CCIs built over ýPf+ (II). Thus

7fe+ translates EG+ GCIs as in Example 2.4.21, with the restriction to atomic concepts and
those using 11' and `T'. Since EL+ allows also role inclusion axioms, 'yfe+ translates them

in the following way:

life+(r C s) _ (Vx, x') r(x, x') s(x, x'),

yfe+ (ri o r2 C r) _ (`dx, x', x�) ri (x, x') A r2 (x', x") = r(x, x"),

Note that models of ACC and EG+ are the same, thus the natural transformation bfe+
converts a FOL model into an EC+ model in the very same way as bf' described in Exam-

ple 2.4.21.

Natural transformations yfe+ and bfe+ satisfy the satisfaction condition: for all II E
ISigFOL (, for all ME I ModFOL (II)I, for all cp E Sen"+ (tPfe+ (n)),

gyp. ý=n LYii+(ýP) z `bii+() h+(n)

The satisfaction condition for GCIs is as in Example 2.4.21. Here we present the base
case for RIs. But first we have to notice that by definition rdn+(M) = r'"1

Let II E (SigFOLI, ME IModFOL(II)I and VE Sen"-+(IQ'+(II)). Let us set r, s E 112

and cp=rCs.
Assume that M ý=FOL 'yn+ (W). Thus

2.4. INTRODUCTION TO INSTITUTIONS

M LnOL , yfe+(r C s)

if

if

if

if

M ýnýL (Vx, y) r(x, y) = s(x, y)

rM C sM

rSn+ Mc san+ M

6111+ (M) t jf+(n) rs

Role inclusion axioms of the form rl o r2 Cr are treated in a similar way.

57

Definition 2.4.26 (Composition of morphisms). Let 1,21,12 be institutions such that

there are morphisms ul = (Vµl, yµ1, Sill) :2 --4 21 and 92 = (XFµ2, ryµ2, Sµ2) : Zl -4 Z2.

Then we can define a morphism p= (W', ryµ, Sµ) :I -+ 12 to be the composition of mor-

phisms µl; µ2, i. e. p is a triple defined by means of composition in the following way: the

functor Tµ = µ'; iµ', natural transformation 79 = IµloyA2; yµl i. e.,

7E(e) = 7E'(??, l(E)(e)) and Sµ = Sµ2; q, li1°PS{14 i. e., SE (M) = S'.,
iE)(SE'()). This

is graphically represented in Figure 2.3.

12
\P2

Zl

Figure 2.3: A composition of morphisms u= pi; 112

In more detail, Definition 2.4.26 states that given EE ISig'l functor 91µ1 translates E
into 11-signature ßµl (E), which is then translated by 'Yµ2 into 21-signature Wµ2 (IQ µl (E)).
Natural transformation ryµ' is defined in the following way: 'y : SenZl (Wµ" (E)) -* Sen'(E)

and natural transformation 'y 2 is defined in the following way: ryEU' : Senz' (ýµ' (E')) -º
Senz' (E'), where E' E ISigzi 1. But as signatures of Zl are in fact signatures of I trans-
lated along Tµ' we have that y%',, iEl Sent' (qµ' (%Y 1(E))) -+ Senk' (Wµ, (E)). Thus

ry 112 iEl; -rr" : Sent' (W 2 (11,41 (E))) -+ Sen2(E). Natural transformation bµ1 is defined in

the following way: SE' : Mod-'(E) --º ModZ" (Wµl (E)) and natural transformation 6142 is
defined in the following way: öE, : Mod" (E') -+ Mod2' (XJJ 2 (E')), where E' E ISig" l.
But as signatures of Zl are in fact signatures of I translated along Tµl we have that
6A2 ýýý Mod" (TIAI (E)) -a ModT2 (, Qµ' (`pµß (E))). Thus E1';, Yµl °p6WM1(Eý Modz(E) ->
Mod 2 (Wµ2 (`pay (E))).

58 CHAPTER 2. PRELIMINARIES

Example 2.4.27. Morphism fe : FOL -* E. C. Definition 2.4.26 leads us to the ob-

servation that the morphism fe = (iT, fe, ryfe, 5fe) : FOL -* EG, can be conceived as a

composition of morphisms fa = (Iif3,. yfa, 6fa) : FOL -- ACC and ae = ('Iiae,, fae, bae)

.
A. CC --+ EG, or as a composition of morphisms fe+ = ('yfe+, yfe+, 5 e+) : FOL -a EC and

e+e = (fie+e, -ye+e, 5e+e) : £G+ -3 CG. This gives us the commutative diagram shown in

Figure 2.4.

CL ae
. AGC

e+e fe fa

GG+`
fe

FOL

Figure 2.4: A commuting diagram of morphisms

To see that fe+; e+e = fa; ae first recall that the signatures of EL, EL+ and AL C are
the same; this also applies to the models. For that reason giae, qe+e, sae and be+e are
identities. As noticed above Tfe+ = Wfa and thus WYfe+; ý, e+e = , I, fa; q, ae, similarly 5fe+ = bfa

and thus bfe+; Se+e = P; P'. Therefore we only have to show that yfe+; ye+e = Yfa; yae.
As presented in Example 2.4.25 ryfe+ translates E&-sentences over Tfe+(II) into FOL-

sentences, where II is a FOL-signature. In a sense ryfe+ restricts our attention only to

these FOL-sentences that were translated from EG+. Similarly rye+e further restricts our

attention only to the sentences that were first constructed in £L. Therefore ryfe+; rye+e allows
us to consider only these FOL-sentences that are translated from EG. In Example 2.4.21

we showed how ryfa translates ARC-sentences over 4/fa(II) into FOL-sentences, where II is

a FOL-signature. Again, yfa restricts our attention only to these FOL-sentences that were
translated from ALC. Similarly yae further restricts our attention only to the sentences
that were first constructed in £L. Therefore ryfa; y0e allows us to consider only these FOL-

sentences that are translated from EL. To sum up, we have that iyfe+; q e+e = xpfa; was and
5f"+; Se+e = 51a, Sae, these were immediate consequences of previously considered morphisms,
and ryfe+; rye+e _ yfa,

yae, which is a straight forward consequence of morphisms presented
above. Thus we have that fe+; e+e = fa; ae.

We let IImo,. denote the category of institutions with institution morphisms.

A "dual' notion for institution morphism is institution comorphism.

Definition 2.4.28 (Institution comorphism).
Let I= (Sig, Sen, Mod, ý=) and Z' _ (Sig', Sen', Mod, =') be two institutions. An institution
comorphism p= (4Dµ, aµ, ß! ') :I --> Z' consists of. '..

0a functor V: Sig --i Sig'-

2.4. INTRODUCTION TO INSTITUTIONS

"a natural transformation aµ : Sen = Sen' o -Vµ

"a natural transformation ßµ : Mod' o (, Dµ)0P = Mod

such that the following satisfaction condition holds:

for all EEI SigI, for all M' E IModý(4µ(E))I, for all cp E Sen(E)

ml Hil I (M')
4ý. (r ,)

a', (w) iff 6E

59

Intuitively, an institution comorphism shows how a `poorer' institution Z is embedded
in a `richer' institution Z'. As for the case of institution morphism the functor translates

the signatures of Z into the signatures of Z'. But the natural transformation a translates

sentences of T over E into sentences of Z' over 4P (E). And the natural transformation ß

translates (P(E)-models of Z' into E-models of Z.

Note that the functor - and the natural transformation a go in the same direction,

whereas the natural transformation ß goes in the opposite direction.
Comorphisms are transformations of special interest to us, since we will use them in our

approach to the E-entailment and the query answering problems, presented in section 3.2.

The examples below show comorphisms between logical systems that are of interest to

us.

Example 2.4.29. Comorphism of : ACC -º FOL.

In this comorphism functor oaf translates .
ALC-signature into FOL-signature in the follow-

ing way:

4)'f (P, R) _ (0, H), where
n0=0
II1=P
112=R
11n=0forn>2

Natural transformation a'f translates ACC-sentences into FOL-sentences with countable
set of variables in the following way:

cxaf (C C D) = (Vxo)[C]zO = [D]xo

where we fix some enumeration of the variables and xo is the first one. Concept translation
is defined inductively:

C:
Mx = XX),

1-CI x =- [C]y,

[C n D]x = [C]X A [D]x,
[C U D]x = [C]' V [D]x,

[3r. C]x = (3x') r(x, x') n [CIX',
[`dr. C1x = (`/x') r(x, x') = [C]X'.

60 CHAPTER 2. PRELIMINARIES

where, for the last two clauses, x' is the variable after x in the enumeration.

For any FOL oaf (E)-model M we define natural transformation ßE to do the following

transformation: Of (M) = M, i. e. for oaf (P, R) = (0, II) we have that for pEP we have

pEIIi, thus pMCAM, and forrERwehave rE112, thus rM CAM xA'i'l.
Natural transformations caaf and ßaf satisfy the following condition:
for all EEI Sig 4ccI, for all MEI ModFOL(, Daf (E))I, for all cp E SenAcc(L)

Mký E) aE (,) if QE (M) ýÄCC

This can be shown by induction. Here we show only the base case. But first of all we need
an auxiliary lemma.

Lemma 2.4.30. For every ACC-signature E, every ACC-concept C and every FOL-model

ME IMod(c af(E)I we have Cß£ (M) = [C]=ý`'.
Proof: The proof is by induction.

Let:

"C=p
t pßE(M) = {x E OBE (M) Ix Ep (M) }= {x GM Ix E pM }= (p(x))M

ýC_-, p

-P,
E(M)

= {x E Oßn(M)Ix pßE(M)} = {x E AM I xpM} = (^'p(x))M,

"C= Cl Il C2 is trivial,

(2r. C')ßE(M) _ {x E Oßý(/ý)I(2x') x r"E(/ti)x'Ax' E (C')ßE(M)}

;. -I, ''I = {x E 0' (2x') x rMx' Ax' E ([C'])"'i}
((3x') xr x' A [C']x')M
[3r. C']ZM

To show that the satisfaction condition holds, let EE ISigACcI, ME IModFOL(, Daf(L))I

and cp =CCD be an .
A. CC-sentence over E. Assume that ßr (M) J--Ecc cp. Thus

AE() J-ACC CI- D
if

Cß'(M) Dß`(M)
iff

[C]IOM
'C

[D]xoM

iff

M -D° O" (dxo) [C]x0 = [D] xo
if

M ýE aE (C C D)

's

°ý' -"

2.4. INTRODUCTION TO INSTITUTIONS 61

Example 2.4.31. Comorphism ea : EL -+ ACC.

For the comorphism ea : £G -a .
ACC we take lea to be the identity functor. We know that

for any signature E= (PR) we have Sens-(E) C SenACC(E), thus aE is an inclusion

Senf'C(E) -+ SenAG'(E). Natural transformation ßE is the identity.

Example 2.4.32. Comorphism e+f : EG+ -3 FOL.

In the case for comorphism e+f : EG+ --* FOL the functor I°+f is the same as oaf in

Example 2.4.29. Natural transformation a°+f GCls into FOL-sentences as aaf in Exam-

ple 2.4.29. c e+f translates role inclusion axioms just as yfe+ in Example 2.4.25. Natural

transformation ße+f is as in Example 2.4.29.

Example 2.4.33. Comorphism ee+ : £G -4 £G+.

For comorphism ee+ : £G -- £G+ we define y°+ to be the identity. For any signa-
ture E= (P, R) we have Sen" (E) C Sen"+ (E), thus a-+ is an inclusion Sen"(E) y
SenEG+(E). Natural transformation ß'+ is the identity.

Example 2.4.34. Comorphism of : EL -+ FOL.

It should not be difficult to see that this comorphism is just a special case of the co-

morphism presented in Example 2.4.29, it is also a special case of comorphism presented in

Example 2.4.32. In both cases the only difference is that af translates only sentences built

with atomic concepts and those using `2r. ' or `fl'.

Figure 2.5 is a graphical representation of the above comorphisms. Note that we have

no comorphisms between ACC and EG+, this is because each of them has expressions that

are not available in the other one.
In Definition 2.4.26, we presented how morphisms are composed. A similar definition

can be formulated for comorphism. In this case it is even simpler as the directions of 4)

and a are the same [43].

Definition 2.4.35 (Composition of comorphisms). Let Z, 11,12 be institutions such that
there are comorphisms µl = (Icbl1, a"", Pul) :Z -+ 11 and P2 = ((Iµ2, aµ2,, Qµ2) : 11 --3 Z2.

Then we can define a comorphism p= (Vµ, aµ, ßµ) :I -+ Z2 to be the composition of

comorphisms AI; A2; i. e. p is a triple defined by means of composition in the following

way: the functor Iµ = ßµl; (Dµ', natural transformation aµ = aµ'; 4Dµlaµ' i. e., ca' (e) _
a ?,, ýE)(al 1(e)) and ßµ = ýµI OnQµ2 ; ßaß i. e., ß (M) = ßE' (ß 1(E) (M))

This allows us to consider the comorphism of as a composition of comorphisms ea and
of for the first case and a composition of comorphisms ee+ and e+f for the second case.
This gives us a commutative diagram shown in a Figure 2.5.

To see that ee+; e+f = ea; of again we will use the fact that the signatures and the
models of £G, £G+ and ACC are the same. For that reason 4)ea, 1ýe+ �Qea and 6"+ are

62 CHAPTER 2. PRELIMINARIES

EL ea ACC

ee+ of

jaf

CL+ ef 'FOL

Figure 2.5: A commuting diagram of comorphisms

identities. As noticed above V+f = oaf and thus fee+; , Iýe+f = Dea;. (Daf, similarly ße+f = Oaf

and thus ßee+; ße+f = ßea; ßaf. Therefore we only have to show that a`e+; ae+f = Qea ; aaf.

But this is the same as for the composition of morphisms fe+; e+e and fa; ae above.

A useful property of comorphisms is

Lemma 2.4.36. For p: I --> Z', EC Sen'(E) and cp E Senz(E), if E ýF cp, then

a' (E) �(E) o(); moreover, the converse implication holds if ßµ is surjective on mod-

els.

Proof: The forwards implication is a straightforward consequence of the satisfaction

condition for µ. For the converse implication, let M be a E-model such that M ý=£ E. If

ßµ is surjective, there is a (Dµ (E)-model M' such that ßµ (M') = M, so ß' (M') 4 E, which

gives M' ;,
1E) c (E), and if a£ (E) ý

,, lE) a£(cp), then we have M' ýV�(F,) caEM, so

M= ßµ(M') =j cp as desired. Q

We let IIco,,, o, denote the category of institutions with institution comorphisms.

Arrais and Fiadeiro [5] note that adjunctions on'signatures can be lifted to adjunctions

of theories provided that the left adjoint be associated with a comorphism and the right

adjoint with a morphism of institutions. Their results also show the fact that in such a case

no new theorems arise when a theory is translated from one formalism to another. -
We have already noticed that morphisms and comorphisms basically use the same type of

transformations - the difference is in the direction of the natural transformations, as noticed

when we introduced Definition 2.4.19 and Definition 2.4.28. A result presented by Arrais

and Fiadeiro confirms that there is a very strong relationship between institution morphisms

and comorphisms. After noticing that morphisms and comorphisms correspond to the two
directions of an adjunction it becomes much easier to grasp the difference between them.
We can see that morphisms take the direction of the right adjoint while comorphisms take

the direction of the left adjoint. And that in turn is consistent with the view of morphisms
as projections of one institution into another and comorphisms as providing representations.

Arrais and Fiadeiro showed that given an adjunction between signature categories of two
institutions, an institution morphism gives us an institution comorphism and vice versa.
And that it guarantees adjunctions for the functor between the corresponding categories of
theories.

2.4. INTRODUCTION TO INSTITUTIONS

Theorem 2.4.37. Let I and Z' be institutions.

63

1. If (1, a, ß) :Z --ý Z' is a comorphism such that the functor 41 has a right adjoint',

then:

a) the triple (qf, 'y, S), where y is the natural transformation defined by

yE, = Sen'(eE,), where e is the counit of the adjunction, and b is the

natural transformation defined by 5E, = Mod(); ß, (,,), is an institution mor-

phism from V to 1.

b) the functor F THZ -+ THZ' induced by the comorphism has a right adjoint -
the functor U: THI, -+ THz which is induced by the morphism.

2. If (%Y, y, 5) : Z' --4 1 is a morphism such that the functor W has a left adjoint 4ý, then:

a) the triple (', a, ß), where a is the natural transformation defined by

aE = Sen(d); y,, (E), where rl is the unit of the adjunction, and ,6 is the natural
transformation defined by ßE = 5. (E); Mod(em), is an institution comorphism
from Z to Z'.

b) the functor U: THZi -+ THZ induced by the morphism has a right adjoint - the

functor F: THz -+ THZ, which is induced by the comorphism.

Then Goguen and Rop in [43] showed that this result is a natural consequence of the

fact that an adjoint between signature categories lifts contravariantly to functor categories.

Theorem 2.4.38. For comorphism of = (ref, aef, ßef) of Example 2.4.34 and morphism
fe = (WYfe, yfe, afe) of Example 2.4.27 we have that Vf -Il Ve

Proof: Let (P, R) be an EG-signature and II a FOL-signature, then pef (P, R) = II, where
fl = 0, IIl = P, 112 =R and II,, =0 for n>3 (which is also written as (0, P, R, 0,...))

and Tfe(II) = (II{xo}, 1T{xo, xl}).
First note that for any EG-signature E we have that E= lJfe(4 of (E)). Thus we only

have to show that for any arrow (f, g) : (P, R) -+ Ve(II) there is a unique arrow (f #, g#) :
, Def (p, R) -* n, such that

(p, R) n a- U(F(P, R)) F(P, R)

(f, Uff #, 9#) t(f#P 9#)

U II) II

commutes, where Cef (P, R) = (0, P, R, 0,...), (f #, g#) = (0 " IIo, f, 9,0 `-+ ns, ...
) and

77 = 1(p, R). Assume that there is another arrow h= (ho, hl, hei h3, ...
) 1)'f (P, R)

such that the triangle

(P, R) 71 1U(F(P, R))

(f, 9) U(h)

II)

64 CHAPTER 2. PRELIMINARIES

commutes. This implies that WYfe(h) = x, fe(f#, g#) and thus hl =f and h2 = g. There-

fore h= (ho, f, g, h3i
...

), but since ref (P, R) = (0, P, R, 0,...), we have that h= (0 y

Ho, f, 9,0 `-+ n3, ...
). But this is exactly how (f #, g#) is built, so we have h= (f #, g#)

and therefore (f #, g#) is unique. 0

Since signatures of EG, ACC and EG+ are identical, the following two corollaries have

proofs similar to the proof of Theorem 2.4.38.

Corollary 2.4.39. For morphism fa = (IYfa, ryf, bfa) FOL -+ ACC and comorphism
(oaf, af, oaf) : ACC -4 FOL we have that oaf -i W.

Corollary 2.4.40. For morphism fe = (iyfe, , yfe, bfe) : FOL -+ £G+ and comorphism

(fei afe, ßfe) :£ C+ .. + FOL we have that 1fe -1 Tfe.

Using theorem 2.4.37 we have the following:

1. theorem 2.4.39 together with the morphism from FOL to .
ALC, presented in exam-

ple 2.4.21, are sufficient to give us the comorphism from ACC to FOL, presented in

example 2.4.29,

2. theorem 2.4.39 together with the comorphism from ACC to FOL, presented in ex-

ample 2.4.29, are sufficient to give us the morphism from FOL to .
ACC, presented in

example 2.4.21,

3. theorem 2.4.38 together with the morphism from FOL to £G, presented in exam-

ple 2.4.27, are sufficient to give us the comorphism from £L to FOL, presented in

example 2.4.34,

4. theorem 2.4.38 together with the comorphism from EL to FOL, presented in ex-

ample 2.4.34, are sufficient to give us the morphism from FOL to EC, presented in

example 2.4.27,

5. theorem 2.4.40 together with the morphism from FOL to £G+, presented in exam-

ple 2.4.25, are sufficient to give us the comorphism from £G+ to FOL, presented in

example 2.4.32,

6. theorem 2.4.40 together with the comorphism from EG+ to FOL, presented in ex-

ample 2.4.32, are sufficient to give us the morphism from FOL to EG+, presented in

example 2.4.25,

As signatures in iC, C& and ACC are identical, we can show similar relationship be-

tween the morphism and comorphism between iG and E& described in examples 2.4.24

and 2.4.33 and for morphism and comorphism between CC and ACC described in exam-
ples 2.4.23 and 2.4.31. These examples show that there is a one to one correspondence
between morphisms and comorphisms between the above pairs of institutions.

. t_... __... ýý. ý. ýý. ý,,.. ý... ý,., ý., ý., ý ., __. -. -.. -

2.5. CRAIG INTERPOLATION AND CONSERVATIVE COMORPHISMS 65

2.5 Craig Interpolation Property and Conservative comorphisms

We have already studied institution morphisms and comorphisms. In this section first we
introduce the notion of Craig interpolation property (CIP) and the notion of conserva-
tive comorphism. Then following [31 we present the problem of preservation of CIP along
institution (co)morphisms.

The Craig interpolation property is a useful property of a logical system. Roughly

stated, given two formulae cp and ?P such that V entails 0, we can always find a formula X,

called the interpolant of V and ip , which uses only symbols that occur in both, cp and,

and cp implies X and X entails O. In other words, the interpolant carries all the information

needed for implying consequences of the original formula, so reasoning is not affected, in

the same time it is formulated in the shared signature, so it carries relevant information

only, which allows for simplifying reasoning. Craig interpolation property has a number of

applications, to mention only a few of them, it is used in model checking, proofs in modular
specifications, modular ontologies. Craig interpolation is also one of the basic properties of
FOL. Much attention has been paid to CIP in the literature, but for us the most interesting

are institution independent formulations of CIP [76] (which was one of the first institution

independent formulations of CIP), other are [18,19,35,36,78]. But even these formulations

impose additional requirements on the squares of signature morphisms. First of all, only
squares with intersection and union of signatures are taken into consideration, moreover,
in [18,19,36,78] it is required that these squares are pushouts and [35] requires them to
be inclusions. In our work we follow the formulation of CIP presented in [32]. In contrast
to previous formulations this one can capture any square of signature morphisms, the only
requirement is that the square commutes.

Definition 2.5.1 (Craig interpolation square). A commutative square of signature mor-
phisms

E' Ei

az dl

Es
a,

ºE'

is a Craig interpolation square if and only if for every set El of El-sentences and set E2

of E2-sentences such that Sen(a,)(Ei) ý=Ey Sen(a'2)(E2), there exists a set E of E-sentences

such that El J--E, Sen(al)(E) and Sen(a2)(E) I=i E2. The set E is called an interpolant

of El and E2. If this property holds for all such sets of sentences, we say the square has
CIP. Similarly, we say an institution has CIP if all commuting squares have CIP. However,
this is a strong requirement that is not met in many institutions. Weaker notions have been

obtained by considering only certain classes of commuting squares. For example, classical
CIP (which we shall call weak interpolation) has E= El fl E2 and E' = El U E2. More
generally, 132] requires the top arrow to belong to a class L of morphisms, and the left arrow

66 CHAPTER 2. PRELIMINARIES

to belong to a class R, giving a notion of (L, R)-CIP. Examples of such classes might be:

inclusions, surjective morphisms, etc., and we say an institution has (L, R)-CIP if every

square has CIP, provided the top arrow of the square is in L and the left arrow in R.

In some cases proving that a particular institution I has CIP may be difficult or la-
borious. But it may be the case that we can find another institution, which is related to

.T
by a particular (co)morphism and for which it is easier to prove CIP. Then we can use

this (co)morphism to prove CIP for T. For this purpose here we present the notion of
conservative comorphism which was introduced by Aiguier and Barbier in [3], where they

also show that conservative comorphisms preserve CIP.

Notation 2.5.2. Let I be an institution. Let a: E -i E' be a signature morphism and let

OC Sen(E'). Let us write, = {cp IVE Sen(E) and 0=' a(cp)}.

If we think of a as a signature inclusion E* E', then Notation 2.5.2 says that for
OC Sen (E') we define 0, to be a set of consequences of 0 restricted along o to the

sentences over E. Thus, defining O* to be the set of consequences of 0, then 0*[, is 0*

restricted along a to the sentences over E, for short Do. Note that O1, = 0*.

Definition 2.5.3. An institution comorphism p: I -+ Z' is conservative if every signa-
ture morphism o: E -* E' and every set of sentences 0C Sen(E') in I satisfy:

aE(0) -D' (E) (aE, (0))4

Conservativity means that moving to a richer logic introduces no new consequences (this

is represented in Figure 2.6).

EVE, V-'NE') O a '(O)

E"ý(E)O aE(Oo) (ar(ON(o)

Figure 2.6: Conservative comorphism

As pointed out in [3], a sufficient condition for conservative comorphism is
(at, (0))4P(,) C aE(0v), which is called restriction adequateness. Restriction adequate-
ness is exactly the notion defined in [69] to obtain preservation of CIP along institution
transformations, but this notion is more restrictive than the notion of conservativeness.

The following observation is a consequence of the fact that 0*tl= Q* and presents a
version of Definition 2.5.3 for the case where we take the signature morphism o to be the
identity 1E'.

2.5. CRAIG INTERPOLATION AND CONSERVATIVE COMORPHISMS 67

Observation 2.5.4. For any conservative institution comorphism /2 = (4p, a,, 6) :Z -4 Z',

for any signature EE jSigj if we take v to be the identity, then we have that every set of

sentences 09 Sen(E) in I satisfy:

a, (O*) ý=" «E(O)*

A condition for preservation of CIP that was presented in [3] uses a conservative insti-

tution morphism. Nevertheless the authors suggest that a similar result can be presented

using conservative institution comorphism. Since we use comorphisms rather that mor-

phisms we present a version using conservative institution comorphism. But still the proof

remains very similar to the one presented in [3].

Theorem 2.5.5. Let p= (4, a, ß) : Z' -+ I be a conservative institution comorphism such
that for every signature E in Z', ßE is surjective. Then, if Z has CIP then so does V.

Proof: Let

E aý º E1

a2 ai

a

be a commutative square of signature morphisms in Sigz'. Let El C Sen'(E1) and
E2 C Sen'(E2), such that oi(Ei) ýZ; a2(E2). Let E' = El.,,, by Notation 2.5.2 we
have El ýEl al (E'), we show that Q2(E') ý£z E2. Let M be a (E')-model such that

(El)). By the satisfaction condition, we have:

Mq RE'(M) ý=E' oi(E1)
QE'(M) ýE' ßä(E2)

qM 1=
(E')' E'(a2(E2))"

Thus, we have ar, (vi(E1)) ar, (Q2(E2)). Since I has CIP there exists EC
Sen(4(E)) such that aE, (E1) ý ill -1)(al)(E) and lb(a2)(E) I=

lE2l aEý(E2). This
implies that EC (aE1(E1))ýloll. By conservativity of it we get that an(E') 4 E, thus
4P (o2)(aE (E')) ý iraý arý(E2). Let M' be a E2-model, such that M' ýT C2 (E'). By

surjectivity of ßr12' there is a ß(E2)-model M, such that ßE2(M) = M'. By satisfaction
condition we have:

Ml I= ci2(E') t Jul ý (E3)
M -0(E) az, (E2)

tý M'ý=E, E2.

11

Below we present examples showing that comorphisms EG -+ ACC and ACC -+ FOL
are not conservative.

68 CHAPTER 2. PRELIMINARIES

Example 2.5.6. EC -+ ALC. Let EG-signature be defined in the following way E_
{Human, Plant, Vegetable, Healty, Area, eats, grows-in} and define the ontologies:

01: Human E Beats. T

Plant C 3grows-in. Area

Vegetable C Healthy

02: Human C Beats. Food
Food n Plant C Vegetable

Human r- 3eats. T
Plant r- Bgrows-in. Area

Vegetable C Healthy.

Then, 02 is a conservative extension of Ol w. r. t. EG. However, 02 is not a conservative

extension of Ol w. r. t. ACC, as witnessed by

Human nVeats. PlantC Beats. Vegetable.

Example 2.5.7. ACC -3 FOL. Let E and E' be ACC signatures defined: E_ (0, {r}),

E' = ({A}, {r}), such that E. E'. Let TC SenALC(E') be of the form T= {T C
Br. A n Jr. -'A}, then To = {T C Br. T}, which is translated into FOL in the follow-

ing way aE(TT) = {Vx By r(x, y)}. We translate T into FOL in the following way:

a,, (T) {(`dx)((3y') r(x, y') A [A]ye) A ((3y") r(x, y") A [-, A]Y ")}. Then we can calcu-
late (c ' (T))ýýoý _ {Vx By' By" (y' # y" A r(x, y') A r(x, y"))}. Now we can see that
ModFOL(aE(T,)) ¢ ModFOL((c , (T))4, (o)), due to the fact that the former models tell us
that every object has a successor in the relation r, whereas the latter models assert that

every point has two different successors, both in the relation r.

Chapter 3

Frameworks

69

70

3.1 Introduction

CHAPTER 3. FRAMEWORKS

In Section 1.1 we have already mentioned that in the standard approach, the function of
an ontology is to state, explicitly, a conceptualisation. We have also pointed out that in

practice one also wants to use existing ontologies, perhaps to browse the induced concept
hierarchy, or to access instance data, or perhaps to create a new ontology that extends
either an entire ontology or a manageably small fragment of one. Or perhaps one may want
to test whether one ontology is in some way consistent with another, or provides the same
information regarding some subset of concepts.

We have also mentioned that the increasing number of ontologies available leads to the
situation where there are several ontologies describing one domain of interest within one
field. Often they complement each other by focusing on different aspects of that domain.
This together with the fact that we can observe an increasing interest in multiple use of
ontologies may raise some problems. We have identified three main issues we want to solve,
these are:

1. ontologies may be formulated in distinct formalisms,

2. different formalisms may be used for ontology and query formulation,

3. different signatures may be used for ontologies or an ontology and a query.

As the core of our solution to these problems we adopt a functional approach to

ontologies. In this chapter we provide a structure, a framework over a query basis, which
works as a bridge allowing us to bring together arbitrary ontologies and queries, regardless
of their signatures and formalisms used for their construction. The notion of framework

captures the situation of a `global' language into which both an `ontology' language and a
`query' language can be translated, in a more general and abstract way. Within a framework,
it is possible to capture a general notion of consequence, whereby an ontology answers a
query, when both are translated into the global language. This in turn gives rise to an
institution-independent notion of entailment of ontologies with respect to some signature.
To formulate the notion of frameworks we use comorphisms, which tell us how a `poorer'
institution is embedded in a `richer' one. We use the fact that the relationships between

many ontology languages are well understood, and translating between them, or embedding
them into richer languages, is often straightforward. Of course, the details of how one
particular language is translated into another are necessarily ad hoc.

We also discuss three types of robustness of frameworks and present relations between
robustness properties of frameworks and Craig interpolation properties. We also investigate
the inheritance of robustness and interpolation properties between frameworks.

3.2
,

Frameworks

In this part we focus on the fundamental notions of description logics; E-entailment, E-
inseparability w. r. t. a query language and E-conservative extension. This section general-
izes the results presented by B. Konev, C. Lutz, D. Walther, and F. Wolter in [50]. Our goal

3.2. FRAMEWORKS 71

is to present these notions in an institutional setting, and thus independently of particular

ontology or query languages. To achieve this we introduce the notion of a framework, which

allows us to study entailment even if an ontology language differs from a query language,

or even if these languages are incomparable, in the sense that there is no (co)morphism

between them.

Notation 3.2.1. In what follows we introduce three types of institutions: G which is called
the ontology institution, Q which is called the query institution, and g which is called
the global institution.

For the sake of simplicity we introduce a convention regulating how we name components

of particular comorphisms.

Convention 3.2.2. For institutions and I and Z' with a comorphism a: Z -+ Z' we define

11 = (Vµ, a", 0µ)
"

Definition 3.2.3. A query basis is an inclusive comorphism 77: A framework

over a query basis 77 :2 -+ 9 is an inclusive comorphism u: G We call r- the

ontology language, 9 the global language, and Q the query language of the framework.

The intuition behind this construct is that given an ontology and a query represented in

two institutions, G and Q respectively, we chose a global institution 9 such that there are
comorphisms G4G and QiG. Using these comorphisms we can translate the ontology
and the query into 9, then we can check whether the query is a consequence of the ontology.
The use of comorphisms not only allows us to bring the ontology and the query together,
but also addresses the problem of potential differences in vocabularies used for ontology
and query formulation. This is possible as the comorphisms map these vocabularies into

a common vocabulary in G. This mapping may involve renaming in case synonyms (or
homonyms) are present in the vocabularies of the ontology and the query or if they are
formulated in different natural languages.

We allow more than one framework over a query basis. Figure 3.1 is a graphical rep-
resentation of frameworks µl and µ2 over query basis 77. This situation would arise, for

9

µi 2

. ci

12ý

Figure 3.1: Frameworks µl and µ2 over a query basis r7

example, if we wanted to merge two ontologies written in different languages.
It is easy to see that one can introduce a similar definition using morphisms (we do

that in the Appendix). In such a case the direction of arrows will change and we will have
morphisms pi :9 --> Gl, µ2 :9 -4 G2 and 77:! 9 -, Q.

72 CHAPTER 3. FRAMEWORKS

One of the reasons why we use comorphisms rather than morphisms in our construct is

the origin of the signature; for comorphism u: I -* Z' signatures originate in 2, whereas
for morphism v: Z' -+ I signatures originate in V. So in comorphism framework case we

start with separate signatures for each ontology and query language, whereas for morphism
framework we have one signature, which is translated to ontology and query languages. So

use of comorphisms in a very natural way reflects the intuition that ontologies and queries

originate from possibly different languages. On the other hand, this fact also plays its role

when we are investigating cases with signature inclusions. For instance, we may want to

make explicit that we add fresh symbols to the query signature only (or to the ontology

signature only). Or perhaps that we are given two ontologies formulated over two different

signatures. Again, use of comorphisms allows us to express that in a very natural way.
Also the alignment of functor (D and natural transformation a for comorphisms fits well

with the intuition that ontologies and queries may originate from different languages and

are brought together, in order to determine if the ontology entails the query. Whereas, for

case with morphisms the signature is given in the global language and then translated to

an ontology (a query) language, where we formulate our ontology (resp. query) and then

translate it back to the global language. For all these reasons we find comorphisms more
intuitive and appealing to use in our construct. Nevertheless, using morphisms we are still

able to show all the properties of frameworks that are presented below.

We start with defining the notion of an ontology in a framework.

Definition 3.2.4. Given' a framework µ :, C -+ ß and AE ISig'cI we say that 0C Sen'c(A)

is a A-ontology for µ.

The consequence relation is a basic notion in our studies, it is used to solve query

answering problems and is the base for other definitions. Therefore before continuing we
define this notion in the framework setting.

Definition 3.2.5. Let µ :, C -+ 9 be a framework over ti, and let 0 be a A-ontology for it

and VE SenQ(E) be a query, with E in Sig2. We say that ýp is a consequence of 0 with

respect to ri (written 04 cp) if

OAV') F--4, M(A)UV? (E) aE(V)"
This says that in a framework u, over a query basis 77, a query cp is a consequence of an

ontology 0 if 0 translated along comorphism p into 9 entails in 9, with respect to the union

of translations of signatures A and E, the translation of c along 77. A very similar notion

was introduced by Schorlemmer and Kalfoglou in 1711 as the notion of ontology-based

consequence with the difference that they fix the global institution to be FOL.

3.2.1 Basic framework structures

Here we present six special cases of frameworks (listed below), where entailment can be

simplified. Each special case has its graphical representation. These frameworks differ in
relations between institutions used in each construct.

3.2. FRAMEWORKS 73

1. Let C=G=Q, in this case the comorphisms are identities. Proposition 3.2.11 below

shows that the entailment in framework 1g :C -+ G over the same query basis is the

same as entailment in 9.

i iß

4ý

2. Let G=Q, i. e. an ontology 0 and a query cp are expressed in the same language.

Proposition 3.2.12 states that for this framework there may be entailments that arise
from the greater power of G, and that the ontology 0 in this framework entails exactly
the same consequences as in G only if ßµ is surjective.

4

P {+

GG

Example 3.2.6. As an example take G=Q= EG and C= FOL, with comor-
phism p= of from Example 2.4.34. Let A= (P, R) with P= {Toe, Foot, Leg),
R= {isPartOf} be an SC-signature, 0C Senc'C(A) be an SC-ontology consisting of
the following axioms:

Toe r- 3isPartOf Foot
Foot C aisPartOf. Leg

Let cp E Sen"'C(A) be the EG-query Toe C 2isPartOf. Leg. We begin by translating both
into FOL, i. e. along u. As a result we receive the FOL-ontology c (O) with axioms:

(Vx)Toe(x) = (9y) isPartOf(x, y) A Foot(y)
(Vx) Foot(x) (8y) isPartOf(x, y) A Leg(y)

whereas a' (gyp) = (Vx) Toe(x) (2y) isPartOf(x, y) A Leg(y). Then we have that

a4 (0) (`dx)Toe(x) = (2y) isPartOf(x, y) A (2z) isPartOf(y, z) A Leg(z)
,

but since we do not have an axiom stating that isPartOf is transitive therefore

a' (0) K- (Vx) Toe(x) = (Bz) isPartOf(x, z) A Leg(z)
.

And this is as expected, since axioms of the form ror=r (or in general ros= t)
are disallowed in EG.

74 CHAPTER 3. FRAMEWORKS

3. For the case where G=Q with a framework j: G -+ C over a query base c
i. e. G is a sublanguage of g, we translate an G-ontology into a richer language G,

and then, in 9, we check whether a query is a consequence of the ontology. Propo-

sition 3.2.14, states that entailment in this framework is the same as entailment in
0.

4

{+ lo

Gµ ºý

Example 3.2.7. Here we consider the case with £G as G and AEC as 9, with co-
morphism ea from Example 2.4.31. Let

A= {Parent, Father, Male, Mother, Female, has Child}

be an £G-signature (note that it is also an ACC-signature), 0C Sen" (A) be an
£G-ontology consisting of the following axioms:

Parent 3has_Child. T,
Father C Male fl 2has_ Child. T,

Mother C Female n 3has Child. T,

Let AEC-query cp be of the form Father U Mother C Parent. After transforming 0
into AEC (in this case it is simply an inclusion) we can answer the query. In this
particular case we have 0 4cc

Note that in cases 3 and 2 there may be entailments that arise from the greater power
of 9

4. For the case where G=G and a framework lg over a query base 77:
i. e. Q is a sublanguage of 0, we translate a Q-query into a richer language G, and then,
in CG, we check whether the query is a consequence of the ontology. Proposition 3.2.15
shows that entailment in this framework is the same as entailment in 0.

3.2. FRAMEWORKS 75

5. Consider a scenario with distinct institutions G, G and Q, together with a framework

p: G -3 G over a query basis 77 :Q -+ 0 and a comorphism p: G -a Q. We can

consider u: G -* 9 as a composition p=p; 77. So, in fact we are translating an

ontology into C via Q. Properties of this framework are presented in Corollary 3.2.27

and Proposition 3.2.28.

in

-p ºQ

Example 3.2.8. In this example, again, we take G and Q to be EL and ACC re-

spectively, and we chose FOL to be C. Take A, 0 and <p as in Example 3.2.7. We

already know that we have comorphism of : ACC --* FOL, recall Example 2.4.29,

we also know that there is comorphism ea : EC -4 .
ALC, recall Example 2.4.31. By

composition of comorphisms we receive comorphism ea ; af. As it was mentioned in

Example 2.4.34 this comorphism is identical to comorphism of : EL -+ FOL, i. e. we

can translate the EG-ontology 0 into FOL via ACC without any harm. Thus aý(O)

consists of:

(Vx) Parent(x) (ny) has_ Child(x, y),
(Vx)Father(x) = Male(x) A (3y) has Child(x, y),

(Vx)Mother(x) = Female(x) A (3y)has Child(x, y),

and a£(cp) = (Vx)Father(x) V Mother(x) Parent(x). It is not difficult to see that

01 4 (P.
Remark 3.2.9. Note that even though structures in Examples 3.2.7 and 3.2.8 differ,
both give exactly the same answers to the queries. This only shows that for a particular
pair of G and Q there can be more than one framework.

6. Let M: L -4 C be a framework over a query basis 77 :Q -+ C with incomparable G and
Q. In this case we have to translate an ontology 0 and a query V into a language in

which we can check whether cp is a consequence of 0, i. e. we have to find a9 such
that there are comorphisms from C and Q to 9.

4

an

GQ

For instance, consider a situation with EG+ as L and ACC as Q. To check whether a
query is a consequence of an ontology we translate both into FOL, i. e. FOL is 9.

76 CHAPTER 3. FRAMEWORKS

Example 3.2.10. Let e+f : CL+ -+ FOL be a framework over query basis of
ACC -+ FOL. Let A= (P, R) with

P= {Grandparent, Grandfather, Grandmother, Male, Female} ,

and
R= {has Grandchild, has Child}

be an EG+-signature, 0C Sen" (A) be an EG+ ontology consisting the following

axioms:
Grandparent - 2has_Grandchild. T,
Grandfather C Malen Shas_ Child. ahas_ Child. T,

Grandmother C Female n 2has_ Child. 2has_ Child. T,
has Grandchild - has_ Child o has Child.

and let E= {Grandparent, Grandfather, Grandmother} be an ACC-signature, and
ýp E Sene(E) be an ACC-query of the form cp = Grandfather U Grandmother C
Grandparent.

To answer whether 0 ý=2f V first we have translate both 0 and (p into FOL and we

receive:

aA f (O)

(Vx)Grandparent(x) (By)has Grandchild(x, y),
(Vx)Grandfather(x) = Male(x) A (3y, z)has- Child(x, y) A has- Child(y, z)

(dx)Grandmother(x) = Female(x) A (3y, z) has Child(x, y) A has- Child(y, z)
(Vx, y, z)has Grandchild(x, y) e* has_ Child(x, z) A has Child(z, y).

and a4(V) = (`dx)Grandfather(x) V Grandmother(x) Grandparent(x). Now we can

see that aA f (O) ýý (n)UVf(E) aE (cp)"

For any institution 9, the identity 1g : --º is a query basis, and also provides a
framework over itself, which is just the institution 9, and so the notion of consequence in

a framework generalizes entailment in a fixed institution.

Proposition 3.2.11. For framework 1g :g -a C over query basis 1g itself, consequence in

the framework is just consequence in 9; i. e., 0 iffO ý AUE <p for any A-ontology 0

and E-sentence V.

Proof: This follows directly from Definition 3.2.5, noting that oD14 and a14 are identities.
O

Now we show that in certain cases there is a very close relation between entailment in

an institution and consequence relation w. r. t. a query basis.
First we show that for framework µ: G --º g over query basis it itself there is a very

close relation between consequence relation in G and consequence relation w. r. t. µ.

3.2. FRAMEWORKS 77

Proposition 3.2.12. For any framework p: G -+ g over query basis p itself, for any
A-ontology 0 for p, and any cp E SenC(A') we have:

d ýnuný ýP implies O I=
, cp .

Moreover, if Qµ is surjective on models, then the converse implication also holds.

Proof: The implication is a straightforward application of the satisfaction condition.
For the converse implication, assume 0 ý=A, cp and let M be a (AUA')-model in G such

that M [--AUA, O. By surjectivity of ßP there is a V(A U A')-model M' in C such that
Qmm' (M') = M. By assumption, M= QnunI(M') PnunI O, so M' H g�(nunl) anunI(O)+

and therefore M' ý
�(nun,) «nun' (p), whence Al = ßýun, (M') nun, ýP as desired. Q

Because £G and FOL-models are essentially the same (see Section 2.4), we have

Corollary 3.2.13. As comorphism of : EG -+ FOL has surjective Qef, we have that for all
EG-signatures A, A' and any A-ontology 0 for ef, and cp E Sen" (A'):

0= ccP if 0= A'(P-

In a similar way there is a close relation between entailment in the global institution

and consequence relation w. r. t. query basis 1g.

Proposition 3.2.14. For any framework p: C -+ 9 over query basis 1c C -4 G, for any
A-ontology 0 for 1g, and any c' E Senq(E) we have:

0 HE cP if C(o) I=g (A)UE V.

Proof: This follows directly from Definition 3.2.5.0

Also for framework 1g over query basis 77 :2 -i 9 there is a close relation between

entailment in 9 and consequence relation w. r. t. rj.

Proposition 3.2.15. For any framework 1g :9 -> 9 over query basis 77: Q -º C, for any
A-ontology 0 for', and any ca E SenQ(E) we have:

0 HE if 0 WAUVI(E) 4(ý')

Proof: This follows directly from Definition 3.2.5, noting that (b1Q and alo are identities.
13

3.2.2 E-entailment in frameworks

The notion of E-entailment is basic to many studies of description logics in the literature, for
instance see [50,51,54,60,611. Closely related notions are inseparability and conservative
extension. Here we present these notions in the framework setting.

Very often we are interested in comparing ontologies written in different languages
(frameworks) over a given query basis 77. That is, we have two frameworks ul : C1 -+ C
and P2: G2 -* 9; we shall refer to such a situation as a binary framework, with notation
tri = (/-11eµ2)"

78 CHAPTER 3. FRAMEWORKS

Definition 3.2.16 (E-entailment and inseparability). For a binary framework '3 = (µ1,1. c2)

query basis 17, Al-ontology Ol for pl and A2-ontology 02 for P2i we say that

" 01 E-entails 02 with respect to q, and write Ol C£ 02i if for all cp E SenQ(E) we
have:

02 ý=E7 cp implies Ol ý, ýo.

" 01 and 02 are E-inseparable urith respect to 77, written Ol ;4 02, iff. "

Ol cý 02 and 02 C£ 01 .

" 02 is a E-conservative extension of Ol with respect to 77 if 42 (02) Q a; i (0k)

and Ol and 02 are E-inseparable with respect to i.

" 02 is a conservative extension of Ol with respect to 77 if 02 is a E-conservative

extension of 01 with respect to 77 for all EE (SigQI such that In(E) C (It" (A,).

The terminology `E-inseparability' is taken from [50], and says that two ontologies are

equivalent in the sense that they entail exactly the same consequences with respect to

the signature E. Indeed, for any query basis 77 and signature E in Q, the relation 4 with

respect to 77 is an equivalence relation.
In the situation of the previous definition, we say that V separates Ol and 02 if Ol ý= E

and 02 ýL-E <p or, vice versa.

Notation 3.2.17. In what follows we often leave inclusions implicit, i. e. if t: E -+ E' and
WE Sen (E) we write a4, (V) for Sen (t)(aE

The following lemma states that if we have a consequence relative to some signature, then

extending the Q-signature with fresh symbols has no impact on the consequence relation in

the framework for the queries formulated in the original signature. In addition, it tells us
that if the square in Figure 3.2 has CIP in the global institution, then the converse holds,

$µ(A) U c'7(E)-º V(A) U n(E)

1i

c°(A) U 7(E)ß--ý "(A) U °ýE')

Figure 3.2.

i. e. every VE SenQ(E) which is a consequence of 0, relative to E' is also a consequence of
0, relative to E.

Lemma 3.2.18. For any framework i: G -ý 9 over query basis 77: 2 -+ C and signatures
E, E' in Sig", such that ECV, any A-ontology 0 for p, and any query WE SenQ(E), the
following property holds:

0 }= V implies 0 1=E, V.
Moreover, if Figure 3.2 is a CIP-square, then the converse implication also holds.

3.2. FRAMEWORKS

Proof: For "W" assume 04V. Let be the inclusion:

ßµ(A) U V7 (E) c, µ(A) U ß'1(E')

79

and let M be a (V' (A) U V7 (E'))-model such that M (A)UVI(E,) aý(O). By the satis-
faction condition we have

MAL H0Pµ(A)u

"7(E) an(0), and thus MjL ý0 (A)uVI(E) aE(cP)

so M Ig,, (A)uý,, iý,) c, () as desired.

For the converse implication, if the diagram above is a CIP-square, then 0 ýE, cp implies

that there is an interpolant IC Seng (V'(A)UcI (E)). Thus for every ('(Pµ(A)UV? (E))-model

M, if M ýguýA)uý,, (E) cr (O), then M ýg�1A)uý,,
i£) I, and therefore M 0,.

(A)ulDn(E)
oE(p), showing 0 ý=£ y as desired. Q

The property described in Lemma 3.2.18 also extends to entailment:

Proposition 3.2.19. For any binary framework 1' = (91, µ2) over query basis 17, and
Al-ontology Ol for µl, A2-ontology 02 for µ2i and signatures EC E' in Sie, if Figure 3.2

has CIP, then:

0 C711 02 implies 01 CIE 02 .

Proof: Let Al, A2, E, E', Oi and 02 be as in the statement of the proposition.
Assume that 01 C£, 02 and 02 4 gyp, for an arbitrary cp E Sen'2(E); it follows by

Lemma 3.2.18 that 02 E, V. From the assumption that Ol CE, 02 it follows that
Ol ý=ý, W. As VE SenQ(E) and EC E' we get 01 ' gyp, and thus 01 g; 7 02. Q

Note that the opposite direction does not hold because it would imply extending the sig-

nature over which queries may be expressed.

3.2.3 Frameworks with attached comorphisms

Investigating frameworks gives us an insight into properties of entailment also in more
complex situations. For instance we can consider frameworks with attached comorphisms.
So we may have a comorphism attached on the query language side, intuitively it is a
situation when we already have a framework with G and Q and we have a query formulated

in a language Q', such that there is a comorphism e: Q' _+ Q, i. e. Q' is a weaker language

than Q. We may also have a situation when we already have a framework with G and Q

and we have an ontology formulated in a language G', such that there is a comorphism
S. G' -+, C, i. e. G' is a weaker language than G. We also present the consequences of these
two situations.

First we consider a framework µ: G -+ g over query basis 77 :Q --ý C with an additional
comorphism : Q' -+ Q, Figure 3.3 represents that situation. Using comorphisms compo-
sition ý; 17 = r/1 we receive a framework µ: G -+ over query basis 77' G, This is
illustrated in Figure 3.4.

80 CHAPTER 3. FRAMEWORKS

4

ýn

G Q
O

F

Figure 3.3.

c
S

i ?r

r
r

/\s

0r r

'r

ýo

Figure 3.4.

Lemma 3.2.20. Given a framework µG over query basis q: Q -3 9 with an attached

comorphism Q' --y Q, we get a framework p: G -ý 9 over query basis 17' : Q' -} G,

with ri' = ý; 'i, such that for any A-ontology 0 for µ, and a query co E Sen2'(E'), where

E' E (SigQ' 1, the following holds:

OP if 0 E(E')aE(o

Proof. The proof is as follows:

O EI cP
iff aA(O) ý=

µ(n)uý., (E,) a. I(, P)
iff am (0) ý=

µ(n)umn(ýE(£')) a e(E)ýaEfýýP))
if 0

0

Note that the third line of the proof follows from the fact that t7' = £; t7.

In other words Lemma 3.2.20 states that given a framework µ: G- CG over query basis

il ;Q -+ g and a query formulated in Q', such that there is a comorphism Q' -+ Q then

we can safely lift the query to Q and then translate it into 9. That gives us exactly the

same results as creating a framework it over query basis 17' : Q' -ý Q (using composition

of comorphisms) for answering the query. In other words, to answer a query which is

--

3.2. FRAMEWORKS 81

formulated in a sublanguage of Q we do not have to introduce new query basis over which

we use the framework.

Example 3.2.21. As an example consider a scenario where we have a framework e+f :
EG+ -4 FOL over query basis of : ACC -+ FOL, and we use it to answer a query formulated

in .
ACC. Now, Lemma 3.2.20 tells us that if we have another query which is formulated in a

sublanguage of ACC, for instance in EL, we can "reuse" the framework and the query base.

To do this we can "attach" comorphism ea : EG -+ ACC, then we can lift the query to ACC

and answer it in the framework and we will receive the same answer as in the scenario with

query basis of : £L -+ FOL. This is illustrated by Figure 3.5.

FOL

e+f of
`ý`.

ef

EG* ACC

ea

E;

Figure 3.5.

The next proposition extends the result of Lemma 3.2.20 to E-entailment.

Proposition 3.2.22. For any binary framework I= (µl) µ2) over query basis rl :Q -+ g

with an attached comorphism ý: Q' -4 Q, and the same binary framework over 17' : Q' -+ 9,

where y' = C; 77, for signatures Al E ISig'C' I, A2 E ISig'e' I and EEj Sie' j, and ontologies
Ol C Sen'c' (Al) and 02 C SenIC' (A2) the following implication holds:

0C
EDE)

02 implies 01 CI 02
,

Proof. Assume 01 C Ei£ý 02 and 02 ý= E V. By Lemma 3.2.20 we have that 02 --o17 E(E)
ap(p). By the assumption 01 gzno C (E) 02, we have 01 ý-- E(E) c4(ýp). Again by the

Lema 3.2.20 we receive that 01 ýE cp. p

This result further extends to inseparability of ontologies.

Corollary 3.2.23. For any binary framework '= (µ1
i µ2) over query basis 77: Q -+ C with

an attached comorphism ý: Q' -+ Q, and the same binary framework over if " Q' -+ g,
where if = t;; 'j, for signatures A, E ISij' I, A2 EI Sit' and EE ISigQ' l, and ontologies
Ol C SenC' (A,) and 02 C Senr-2 (A2) we have that Ol ... Elýý 02 implies Oi %. ""' 02.

82 CHAPTER 3. FRAMEWORKS

As promised above we now consider a framework with an attached comorphism on the

ontology language side.
Given a framework j: GG over query basis 77 :Q -+ G, such that there is an

attached comorphism : ,
C' -+ G, Figure 3.6 represents that situation, by composition

of comorphisms C;
,u= p', we can construct a framework p' : G' -+ Gj over query basis

77 :Q -+ CJ. This is illustrated in Figure 3.7. Note that given a0C Sen'C'(A) we have that

cr (0) has the same set of consequences in p over q as 0 in p' over 77. This is the statement
of Lemma 3.2.24.

9
Y\11

GQ

C

Figure 3.6.

Figure 3.7.

Lemma 3.2.24. For a framework pL -* 9 over query basis rl Q -i g with an attached
comorphism G, we can create framework µ' G', -ý C over query basis rl with
{; it = FA', such that:

0 ý=E ýO if an(d) HE

for any £'"signature A, ontology 0C SenC'(A), and a query cp E SenQ(E).

Proof., The proof is as follows:

if aý (0)
ýµ'(A)u4n(E) a. (ýP)

iff a0C(A)(an(0)) ý
N(ýc(n))uý^(E)

E(ý)
iff ap(0) HE SP

0

3.2. FRAMEWORKS 83

This is to say, that given a framework it :G -* 9 over query basis 77 :Q -+ g with

an attached comorphism (' : £' --> G and an ontology 0C SenC'(A), we can safely lift

0 to f- and after translating it into answer the query. That gives us exactly the same

results as creating a framework p: G-*9 over query basis 97 :Q -+ g using composition of

comorphisms and then answering the query in 9.

Example 3.2.25. As an example consider a scenario where we are given a framework

of : ACC -- FOL over query basis e+f : £G+ -i FOL and an ontology 0 for af. Assume

that from 0 we have extracted a module 0' which is formulated in £G. Lemma 3.2.24 tells

us that in order to use it for query answering we do not have to introduce new framework

but we can attach comorphism ea to the framework and then we can lift 0' to .
ACC. In

other words we can keep using the original framework when we are using a module, which
is formulated in a weaker language. This is illustrated by Figure 3.8.

FOL
7e+f

of;

ACC CL+

ea

EG

Figure 3.8.

The following proposition extends the result of Lemma 3.2.24 to E-entailment of on-
tologies.

Proposition 3.2.26. For a binary framework _ (141, A2) over query basis t: Q -- g

with attached comorphisms C; :V -+ Gi and a binary framework (µi, µ2) over query
basis 77 with C; pi =p (for i=1,2), we have that:

CYÄiC2) if 01 CE 02

for any signatures EEI SigQ1, A; EI Sign" 1, and ontologies O; 9 SenC" (A j).

Proof. For the direction "=*" assume that $ (O1) CE c (02) and 02 14 gyp, for cp E
SenQ(E). By Lemma 3.2.24 we have c (02) and by the assumption aCA'1(01) CE

aCz(02), we get aCi(01) 4 cp. Again by Lemma 3.2.24 we have 01 14 W. Thus
01 C? 02 as desired.

For" a" assume that O1 C' 02 and a%2 (02) 14 cp, for VE SenQ(E). By Lemma 3.2.24
we have 02 14 V and by the assumption 01 C' 02, we get 01 Again by
Lemma 3.2.24 we have aAl (01) Hý V. Thus agil (01) C1 aýý (O2) as desired. Q

84 CHAPTER 3. FRAMEWORKS

The next corollary is a consequence of Proposition 3.2.26. It shows that for framework

,uG -a 9 with comorphism p: G -+ Q, over query basis q: Q -4 9, and framework

77 :Q -a g, with an attached comorphism p: G -- Q over query basis 77 itself, E-entailment

of ontologies 01,02 C Sent (A) coincides.

Corollary 3.2.27. Let a= (µl, p2) a binary framework over a query basis rl :Q -+ 9,

such that there are comorphisms p; : Gi -ý Q and pi = pi; rl, for i=1,2. Let EEI Sig" I

and ontologies Oi 9 SenC''(A;) then:

01 CE 02 if ail(Ol) CE aÄ2(02)

If an ontology language can be translated directly into the query language, then entail-
ment can be reduced to showing that each sentence in one ontology is a consequence of the
other:

Proposition 3.2.28. Given a framework C4G over a query basis Q3C with a comor-

phism G4Q, such that p=p; 77, and A-ontologies 01 and 02, we have:

01 CIP(A) 02 'ff Oi KIP(A) V,

for all VEa (O2).

Proof: In this proof we use the fact that {A = p; i, thus (µ(A) = F7(V(A)) there-
fore ßµ(A) = ßµ(A) U ý'7(ýP(A)). Thus we write aý(O2) ý

�(A) a 77
P(A)(')

instead of
4(02) t4N(A)U-Vn(4>^(A)) aJP(A)(ýG)
For assume Ol Cop(a) 02, i. e. 02

, (A) implies 01 l
(A) V) for any V) E

SenQ(, (DP(A)). Note that for every VEc (02) we have V= aPA(V') with cy' E 02, thus by

the composition of comorphisms we have that:

an(ýv') = 47P(A)(an(ýý)) =ae(n) (ý)
Thus for every <pEa "(02) we have c (02) 4

(A) a1o(A) (cp). By the assumption we have

c (Oj) 0M(A) al-DIP (A)(W), and thus 01

For "4=" assume 01 ='7 (ý) w, i. e., aA(Ol) a P(A)(rp)
for all VE a" (02)- Since

ti=P; 77, this means aA(0k) aß(02). Therefore 01 C'Dµ(A) 02, as required. 0

Moving to a richer global language preserves consequences:

Lemma 3.2.29. For framework µ: L -3 C over query basis 77 :Q --p G, if we have a
comorphism a: G -º G', there is a framework µ' = u;, \ over query basis 77' = 77;, \, and we
have:

0 ýý ýp implies 0 ýp

for any A-ontology for p and any query cp E SenQ(E), with EE SigQ, Moreover, if 0' is

surjective, then the converse implication also holds.

3.2. FRAMEWORKS 85

Proof: Suppose 0 ý=E gyp, i. e., aoA(0) H
�iAlUV�iEl a£(cp). By Lemma 2.4.36 it follows

that (or is equivalent to, if ßA is surjective)

a m(n)ucn(E)(aný0))
ý a(ýý(n)uý^(E)) a N(n)uýo(E)ý4ýv))

Since 'a distributes over unions, and as commutes with inclusions, this is equivalent to

a (A) WA ')) ý a(ý"(A))ýýa(ýn(E)) a45'7(E)(aE«P))

But since u' = u;, \ and 77' = 77; A, this is QA (O) i. e., 0 ýý cp as
desired. Q

9'

4

µn

GQ

Figure 3.9.

91

71

ý, µn;

Figure 3.10.

Example 3.2.30. As an example consider a scenario with framework ea : EL -+ ACC over
query basis 1, gcc : ACC --- ACC and ontology 0 for ea. In such a case Lemma 3.2.29 tells
us that moving to FOL, using attached comorphism af, we will preserve all the consequences
of 0 already present in ACC. This is illustrated by Figure 3.11.

Now we compare two frameworks presented in Figure 3.12 and in Figure 3.13. The
former is simply the case when the ontology language is a sublanguage of the query language,
but the query is expressed in g over a translated G-signature. Whereas the latter is the
case when the ontology language is the same as the query language, but we translate both

86 CHAPTER 3. FRAMEWORKS

POL

Iaf
eft; ACC af

ea 1, Z

`,
ýG AGC

Figure 3.11.

into g, which in this case is the global language. Additionally, in both cases comorphism

,u:.
C -+ g is conservative. We show a correlation of conservativity of comorphism µ: G -4 C

with coincidence of Ol .. �(A) 02 and Ol ; Z: 'A 02. To do that first we need an auxiliary
lemma. First note that it uses notation introduced in Notation 2.5.2. The statement of this

auxiliary lemma is that given two signatures A, A' E ISig'C 1, such that there is a signature
morphism a: A -- A' and an ontology 0C Sen'C(A') we are guaranteed that 0 itself and
the set of consequences of 0, restricted to these sentences that were originally expressed
in A and then translated into A' using Sen-C(a) (i. e. O,), give us exactly the same set of
consequences over sentences expressed in A.

µ lq

Gµ -º4

Figure 3.12: Framework j. c over query basis 1

µý.

G
1ý

-ºG

Figure 3.13: Framework µ over query basis µ

Lemma 3.2.31. For any framework it :G --* C over query basis a: L -4 9 and all
signatures A, A' E ISig'cl, such that A4 A' and an ontology 0C Senc(A') the follow-
ing holds: 0 Senc(a)(O,), i. e. for every cp E Sen4(A) we have that 0A cp if
Sen' (a) (0.) n co.

Proof. Let A, A' E ISiel, such that A4 A', let 0C SenC(A') and WE Senc(A).

3.2. FRAMEWORKS 87

Assume aý, (O) ý
,. inun,) an (cp). Let MEI ModO ((PA (A U A')) I, such that

Mý
�tn, l a", (SenC(v)(Oc)). Thus ßnuA, (") In, Sen4(cr)(OQ), by definition, co E Oo

and therefore Sent(a)(cp) E Sent(a)(OQ). Thus ßAun, (M) = Sen'c(a)(W), this implies

ßnuA) ý=n W Therefore M ý=g�lnl aA(cp).
"ý". Assume a ý, (Sen'C(o)(Oo)) =g�(nun,) an(cp). Let MEI Modý(4)µ(AUA'))1, such

that M ln, l c , (0). Thus ßAun, (M) k=p, 0, which implies ßA, (M) ý=n, SenC(a)(O.).

Thus M ýIb-(Al) aI', (SenC(o)(Ov)). By the assumption we get M IO�tnl aA((p)I as

required. O

Next proposition presents close correlation between the inseparability problem in two

types of frameworks presented above and conservativity of comorphism /1:, C -+ C.

Proposition 3.2.32. For framework µ: G -+ 9 over query basis lg :9 -* 9 and framework

p over itself as query basis, comorphism µ is conservative if'V '(A)-inseparability w. r. t. 1g

coincides with A-inseparability w. r. t. u, for any signature AE ISigCj.

Note that Ol ~VA (A) 02 means that 01 and 02 are indistinguishable relative to the

sentences from the set Seno(V'(A)), whereas 01 ýA OZ means that 01 and 02 are indis-

tinguishable relative to the sentences from the set Sen'c(A).

Proof. "W". Let u: G -+ 9 be a framework over query basis 1g :9 -+ 9, and let it also be a
framework over itself as a query basis, moreover, u is conservative. Let A, A' E ISigc1, and
01,02 C Senf- (A'). By Corollary 3.2.23 we only show OI .. l 02 implies 01 _-10 �lnl

02.

Assume that Ol "s? 02, i. e. for any ýp E Sen'c(A) the following holds:

an'(Di) HgM(nun') an('G) if cA, (O2) ý
µ(nunI) JA14 M

We only show that 02 C4µ(A) Ol, as the opposite entailment is shown by replacing with
each other Ol and 02. Suppose aA, (OI) 14�(AuA?

) ? P, for some ¶1) E Seno(V'(A)). Let
ME jModý(V(A U A'))I, such that M

�(A,) c ,
(02). This implies ßAO, (M) It, 02,

since signature morphism a is the identity we get ßA, (M) ý=4A, (02)". By the assumption
Ol s: ýý, 02 we get ßA4, (M) fin, (Oi)'. This implies Mý

�(A,) oß, ((01)*). By the
conservativity of µ we have that

ModýýanýýýQ)*) C Mode ((an, (O))')

and since OE (a4A, (O1))' we get that M Thus 02 C10
' A) 01, as required.

Assume that for any A we have 01 5ztý'A 02 if 01 --A 02.
Suppose that µ is not conservative. Then there is a signature morphism A °º A' in L,

such that for some ontology 09 SenC(A') we have

Modo(a"(Q)) % Modg((an,

i. e. there is a model ME Modý('µ(A)), such that Ml
µ(A) al'(O,) but M V60

(, (O))4ý,. (o). Thus for some ýº0 0E Seno(t (A)) we have

aýý(O) ý
�(A,) Senýµ(a)(ýý) but aý(Oo) ý

�ýAý

88 CHAPTER 3. FRAMEWORKS

02 Now, let Ol =0 and 02 = Sen'c (a)(0). Then by Lemma 3.2.31 we get 01 µ(A)

but Ol 96102, which is in contradiction to our assumption. 0

3.3 Robustness properties and Craig interpolation property

In this section we consider how ontologies can safely be combined. If we have frameworks

, ul and µ2 over the same query basis 77, then a A1-ontology 01 for µl can be combined

with a A2-ontology 02 for µ2 by taking the union of aµß (Ol) and aµ2 (02) in G, even if the

ontology languages of µl and µ2 are different. This justifies using a notation for union for

ontologies, so we can write, for example, 01 U 02 CE 01.

3.3.1 Robustness in frameworks

In the previous section, we studied some properties of : E, but we are mainly interested in

determining what robustness properties it has, i. e., how safely ontologies can be combined.
We introduce three types of robustness properties in the framework setting.

Definition 3.3.1. For any binary framework = (01, µ2) over query basis rl we say that
is robust under:

" vocabulary extension if for all signatures Al in Sign', A2 in 51t2, E, E' in SigQ,

such that -'? (E') (1(41µl (Al) U iµ2 (A2)) C I'? (E), all ontologies Ol C Sen'C' (Al) and
02 C SenIC2 (A2), the following holds:

Ol C" 02 implies 019E77 , 02,

" joins if for all signatures Al in Sigc', A2 in Sig': ' and E in SigQ, such that Vµ1(A,)n

ßµ2(A2) C ß'7(E) and all ontologies Ol Sen' (Ai) and 02 SenIC2(A2), the fol-
lowing holds for i=1,2:

01 i4 02 implies 01 U 02i

" replacement in framework µ: G --ý G if for all signatures Al in Sig"', A2 in
Sigc', A in Slgc and E in Sig", such that ßµ(A) fl (4Pµ1(Al) U Iµ3 (A2)) C "(E), for
all ontologies Ol C Sen4' (A1), 02 C SenIC2 (A2), 0C Senr- (A), the following holds:

Oi CE 02 implies Oi U0 C£ 02 UO.

We briefly discuss the intuitions behind those three types of robustness.
Robustness under vocabulary extension assures us that we can extend signature

E with fresh symbols, which do not occur in Ol nor 02 and this extension has no impact
on E-inseparability of 0 and 02.

Robustness under joins. We will use a typical example to present the importance
of this type of robustness. First we introduce a proposition which is a consequence of
robustness under joins:

3.3. ROBUSTNESS PROPERTIES AND CRAIG INTERPOLATION PROPERTY 89

Proposition 3.3.2. For binary frameworks (ac, pl), (µ, µ2), over 77, both robust under joins,

given A-ontology 0 for p, Al-ontology Ol for µl, and A2-ontology O2 for µ2, with

ßµ(A) n cµl (Al) 9 V7 (E) ,

and
ßµ(A) n4 (A2) 9 V7 (E)

9

where EE Sie: if 0U Oi is a conservative extension of 0 (for i=1,2), then also
0U Ol U 02 is a conservative extension of O.

Proof: Let 0,0 and 02 be as in the statement of the proposition. Then

OUO1ýEO'40 U02,

and therefore by robustness under joins, 040U 01 40U Ol U 02. Q

For example, suppose that two groups of ontology designers independently refine an

ontology 0C Sen (A) by creating their own set of axioms, say Ol C Sen (Al) and 02 C
Sen (A2) respectively. Both teams ensure that their ontologies are conservative extensions

of O. Assume that these groups decide to merge their ontologies at some point, they would
like 0U Ol U 02 to be a conservative extension of 0, but the fact that Ol and 02 are
conservative extensions of 0 is not sufficient to guarantee that. Robustness under joins and
the above proposition give a sufficient condition.

Robustness under replacement. This allows modules of existing ontologies to be

reused in new applications. For instance, assume that a group of ontology designers is
developing an ontology which is supposed to use terminology over E. They know that
there is another ontology 0', which already defines symbols of E, so instead of creating
this part from scratch they would prefer to reuse 0'. However, instead of importing whole
O', it would be more efficient to import a E-module OE of O'. If the framework '3 used
for answering queries is robust under replacement then from OE .. O', it follows that
0U OE ~E 0U O'. Therefore importing On instead 0' still gives the same consequences.

3.3.2 Robustness properties and interpolation

Now we study correlations of different types of robustness and interpolation. The follow-
ing proposition shows that weak interpolation in 9 implies robustness under vocabulary
extension.

Proposition 3.3.3. Let 'a = (µl, µ2) be a binary framework over query basis rl :Q --º g,

with rl conservative and such that for every signature E in Sie, QE is surjective. Moreover,
let there be a comorphism p: G2 -+ Q such that µ2 = p; 77. If C has weak interpolation, then

,I is robust under vocabulary extension.

Proof: Let Ol be a A1-ontology for µl and 02 be a A2-ontology for A2 and let E, E' be
SigQ signatures such that V7 (EI) n (ýP' (A1) U'µ' (A2)) 9 ß'7(E), Assume O1 C' 02. Let

90

E SenQ(E') and suppose 02

CHAPTER 3. FRAMEWORKS

a A2(02)
I

M2(A2)(Vn(E') OE'((P)

We need to show that Ol 4, cp.
First note that aPAz (02) ý=4), (A2)uE' cp by Proposition 3.2.12. If C9 has weak interpolation,

then from the results of [3] we get that Q also has. Thus we can find IC SenQ (cFP3 (A2) fl

E') C Sen 2(E) such that

«n; (02) ý4DP2(n2) I and I ý£, cp .

This gives us
a, 2(A3)(anz(02))

M
n(4)°2(Aa)) 01"(A3)(I) p

P2

,, (E,) a", (V). The former together i. e., QA2(02) H
,,, (A2) a411-2 (A2)(I), and also a', (I) 41 E

with 01 C1 02 and the fact that IC SenQ(E) gives us

1 17 (Ol) I=
,1 (Al)u4'2 (A2) a4vp, (A2)(I) CAl

This gives us c (01) Mg,,
11 (Al)U017 (E,) c, () as desired. Q

The following can be understood as a partial converse of Proposition 3.3.3.

Proposition 3.3.4. If framework 1c :G -4 G over query basis 1g is robust under vocabulary

extension, then g has weak interpolation.

Proof: Let A, A' be signatures in Sigg and set Ao =A fl A'. Let 0C Seng(A) and
cp E Seng (A'), and assume 0 FAuA, W'

Let 0' _ {, 0 E Seno(Ao) 10 J--9 i}, then 0"^:: "o 0' and 0 fi=g 0'. By robustness

under vocabulary extension we get 0 ; zt: 1,0' and 0 ýl 0'. From 0 Inun' (P we get
0')AOuA, cp. Thus 0' is the required interpolant. 0

Further results require institutions that have Boolean operators:

Definition 3.3.5. Let gyp, z/i E Sen'(E) in some institution Z. A conjunction of V and
0 is a sentence caA E Sen9(E) such that for every E-model M,

MýEWAL' if Mý=Ecp and MI= .

The negation of ca is a sentence -'cp E Sen'(E) such that

MI= -if M14-Ecp.

We say I has negation if every sentence has a negation, and is closed under Boolean

operators if it has negation, and every pair of sentences has a conjunction. If I is closed
under Boolean operators, and 0 is a finite subset of Ser>z(E), we write A(O) for the con-
junction of all the sentences in O.

3.3. ROBUSTNESS PROPERTIES AND CRAIG INTERPOLATION PROPERTY 91

Note that, as usual, the other logical connectives can be defined in terms of negation

and conjunction; in particular, implication V0 is -'(cp A-), and it is straightforward
to see that a deduction theorem holds for implications:

o ýý ýýý if 0u {V} ý=E' "
Note also that for any comporphism µ: I --> Z', if cp AO is a conjunction in 1, then

a" (cp AO) is a conjunction in Z' of a, '(cp) and aý (ýi).

The following proposition shows a correlation between robustness under joins of a and
interpolation.

Proposition 3.3.6. For any binary framework a= (µ1,112) over query basis 17, s. t. there is

a comorphism G2 °- Q and C9 is closed under Boolean operators, if C has weak interpolation,

then , '' is robust under joins.

Proof: Let Al E ISig'c'l, A2 E (Sigel, EE ISig QI and 01 be a Al-ontology for pl, 02 be

a A2-ontology for 1-12 and cp E Sen2(E).

Suppose that G has weak interpolation, 01 ; zýE 02 and -Pµl (Al) n oDµ2 (A2) y V7(E)
Assume that

c lux (/A2 g Oi) Uo (02) Igµ1(A1)U-Pµ7(A2)UD7'(E)
aFi(T/.

Then
an1 9 92

1
(01) ýgµ1(A1)U,

1l12(A2)Ubli (E) aA9(/ 02) 4(w) (3.1)

Take an interpolant I for (3.1), it is straightforward to see that IC SenQ(E). Since

institution 19 is closed under Boolean operators and 04 02i we obtain

c
\O2/

ýýM9
(jýq)l, JýýI(F)

1.

This entails
«Ä3(O2) I-'o'2(A2)Uý'7(E) aAzýA02) = aEýýý,

e. aA2 (02) i-4ýý;
12 (A2)UV1 (E) a" ((P)

- E 11

The following proposition shows how framework ', received from framework If by at-
taching comorphisms to its ontology languages, inherits robustness properties after a.

Proposition 3.3.7. For any binary framework 3= (µl, µ2) over query basis rl :Q -1 g

with a comorphisms Cl : C1 -+ ICI C2 : £'2 -º GZ attached and binary framework 3' =
(µi, µ'2) over 77, where µ; = (i; p for i=1,2 we have that robustness of any type of'a
implies the same type of robustness of a'.

Proof: The proof is given by case by case consideration.
Let' p, µi and 77 be as in the theorem.

92 CHAPTER 3. FRAMEWORKS

1. Robustness under vocabulary extension.

Let Al E ISig4"1 1, A2 E ISie'2 I and E, E' E ISigQ 1, such that E -+ E' and (D'' (E') fl
(4µl (-PC' (A1))U(P#2 (J 2 (A2))) 9I (E), where 01 9 Sen'c" (A1) and 02 C Sen 4'2 (A2).

Assume that 3 is robust under vocabulary extension, and 01 CE 02.

By Proposition 3.2.26 we get aCA' (0k) CI a' (02). Since is robust under vocabulary

extension we get aA' (0) CE, a' (02). Again by Proposition 3.2.26 we receive 01 CE,

02, as desired. Thus 3' is robust under vocabulary extension.

2. Robustness under joins.

Let Al E ISigCh' 1, A2 E ISigC'2 1 and EE ISigQ1, such that -(Iµ' (4Pt' (A1))fl-Dµ' (, PS' (AZ)) C
ß'7(E), and 01 C SenCot(A,) and 02 C SenC'2(A2).

Assume that is robust under joins, and Ol . ̂sE 02.

By Proposition 3.2.26 we get aCAi (Ol) 4C A2 (02). Since is robust under joins

we get aC' (Oi) 4 a$'1(Ol) Uc2 (02) for i=1,2. Again by Proposition 3.2.26 we

receive O; .,. E 01 U 02, as desired. Thus a' is robust under joins.

3. Robustness under replacement. Let Al E Sig'c", A2 E Sig'c' 2, AE Sign' and E in

SigQ, such that

V(4s(A)) n (V' (-Ds' (AI)) U V2 (I C2(A2))) 94 (E)

" for all ontologies Ol C Seng'' (A,), 02 C SenC'2 (A2), OC Senr-'(A).

Assume that ;' is robust under replacement, and Ol C£ 02.

By Proposition 3.2.26 we get aß'1(01) CE aA2 (02). Since ,ý is robust under replace-

ment we get e (Ol) U c4 (0) 97 OC2 (02) U a? (O). Again by Proposition 3.2.26 we

receive 01 U0 C" 02 U 0, as desired, so ' is robust under replacement. 11

Now we show how interpolation in global institution closed under Boolean operators
implies robustness properties.

t:.. Proposition 3.3.8. Let G be an institution closed under Boolean operators and with in-

terpolation, then any binary framework a= (µl, µ2) over query basis lg : -ý is robust
under vocabulary extensions, joins, and under replacement in any framework p: G -ý C

over 1g for finite ontologies.

Proof: Robustness under vocabulary extension is a consequence of Proposition 3.3.3 and
the fact that g has interpolation.

Robustness under joins is a consequence of Proposition 3.3.6 and the fact that G has
interpolation and is closed under Boolean operators.

To prove robustness under replacement in µ, let O; be a A; -ontology for p; (for i=1,2)
let 0 be a A-ontology for p, and let E in Sign be such that

V- (A) n (-Pµ' (Al) U 14>143 (A2)) 9E..,

3.3. ROBUSTNESS PROPERTIES AND CRAIG INTERPOLATION PROPERTY 93

Assume 01 CE 02 and let cp E Seno(E) be such that 0U 02 4 W; we need to show

OUO1 = gyp.
By robustness under vocabulary extension, we have Ol Cýo(A) 02 and therefore

Ol 02. From 0U 02 ca it follows that

02 l . (A)uE A (0)) = cc
and therefore ®1 = (n)uE A(an(0)) = cc, giving 0U04 cp as desired. Q

The above proposition implies the corollary stating that any framework over query basis

1FOL : FOL -- FOL is robust under vocabulary extensions, joins, and under replacement

for finite ontologies.

Corollary 3.3.9. Any binary framework a= (µl, µ2) over query basis 1FOL : FOL --ý
FOL is robust under vocabulary extensions, joins, and under replacement in any µ: L --ý
FOL over 1FOL for finite ontologies.

The following corollary is a direct consequence of Corollary 3.3.9 and Lemma 3.2.29.

Corollary 3.3.10. Any binary framework '_ (µl, PZ) over query basis 77 : FOL -+ 9,

with comorphisms pl : Ll -a FOL and p2 : L2 -+ FOL, is robust under vocabulary

extensions, joins, and under replacement in any µ: G such that there is comorphism

p: G -+ FOL, for finite ontologies.

The following proposition shows a correlation between interpolation and robustness

under joins for any framework p: L -+ G over itself as query basis, where L is an institution

closed under Boolean operators.

Proposition 3.3.11. Let C be an institution closed under Boolean operators, let p: L --> G

be a framework over itself as query basis, such that µ is robust under joins for possibly
infinite ontologies. Then L has interpolation.

Proof: Let E, E', E1, E2 E ISig"j, such that the square

E
al

f El

x

commutes. Let 0C Sen'C(E1) and cp E Sen'c(E2).

Assume a£, (a, (O)) =g�(£,) aýE, (a (gyp)). Define

O' _ {X E Sen" (E) 1 4E, (°) ý=
n(Ej) aE17 ,

(ai(X))}
.

We show that 0' is an interpolant for aý, (c (0)) a£, (a'(cp)). Suppose not.
is satisfiable. Take a 9-model M satisfying aýý (aZ (O')) U Then 42 (u2 (O')) Uc2 ('0

aýz(ýcp). Let Ol 9 Senr-(E) be a set of all sentences '/i E Send(E), such that M=
,I

94 CHAPTER 3. FRAMEWORKS

aE'('). Then both o-1(O1) U0 and 02(01) U-cp are E-conservative extensions of 0. By

robustness under joins, o2 (02(0k)) Uo (0) Uo (-'(p) is a E-conservative extension of 0j,

thus it is consistent. Therefore all (oi (0)) aE (o (V)), but this is in contradiction
to our main assumption. This implies that 0' is an interpolant for c, (o (0))

(p)) as required. Q a E7, (o

The following corollary is a direct consequences of Proposition 3.3.11.

Corollary 3.3.12. Let G be an institution of any fragment of first-order logic closed under
Boolean operators, let p: G -3 9 be a framework over itself as query basis, such that µ is

robust under joins for possibly infinite ontologies. Then G has interpolation.

A particular case of Corollary 3.3.12 is the case where FOL is the global institution.

Chapter 4

Institutions with Individuals and
Frameworks with ABoxes

95

96

4.1 Introduction

CHAPTER 4. FRAMEWORKS WITH ABOXES

In the previous chapter we introduced frameworks as constructions allowing us to use an

ontology to answer a query, even if they are formulated in different formalisms. In this

chapter we restrict our attention to an abstract notion of description logics and investigate
how we can work with them within the framework setting.

When working with description logics we can distinguish two main tasks: determining

concept hierarchies and answering queries about individuals. For determining concept hi-

erarchies we need an ontology only, but to answer queries about individuals we need an

ontology and an ABox. In some sense the ontology fixes the terminology, whereas the
ABox tells us what is known about individuals. The ontology helps us to infer new in-
formation about individuals with the use of concept hierarchies. One of the main issues

is the interaction between the ontology and the ABox, as combining them may lead to

potential difficulties. In particular, one is interested whether adding the ABox introduces

new concept inclusions.

This chapter has two main parts. The first part of the chapter defines description
logics in categorical setting and shows how concept hierarchies are introduced into the
framework. We start with introducing a general definition of description logic which shows
how any description logic is built over a variant of C'}{ (we use the notion of slice category to
formulate that definition). This definition allows us to treat description logics in a general
and systematic way and is used to show how queries about concept hierarchies can be
formulated in a framework. Second part of the chapter shows how ABoxes and queries
about individuals can be introduced into the framework setting. As the first step we show
how any description logic extends to description logic with individuals, this is necessary for
introducing ABoxes. But to be able to translate the ABox together with the ontology into

the global language in the framework we also show how a comorphism between description
logics extends to a comorphism between description logics with individuals. This fact is

then used to show that any framework built from description logics extends to a framework

allowing for the use of individuals. We describe the relations between both structures and
investigate the relations between consequence relations in both types of structures as well
as relations between E-entailment between ontologies and E-entailment between ontologies
in the presence of ABoxes.

-We also discuss how introducing individuals may affect the consequence relation in

an institution of description logic. We define notions of query conservativity and query
expansion which tell us how an institution of description logic behaves when we introduce
ABoxes. We also define the notions of consequence of an ABox, which eventually allows
us to define the notion of concept interpolation, which `splits' the consequence relation for

assertions into two types of reasoning.

4.2 Description Logics in a Categorical Setting

To be able to talk about description logics in a general way we need to find and categorically
present some properties shared by all of them. In our work we use C1-t (or rather a variant

4.2. DESCRIPTION LOGICS IN A CATEGORICAL SETTING 97

of it as we will justify below) as a benchmark to discriminate description logics from other
logical systems. In general, we require that description logics are built over Cl-l, this is

based on the fact that one of the main properties of description logics is the ability to
build hierarchies of concepts and, as mentioned in Example 2.4.8, C7{ is a basic description

logic and the specification of concept hierarchies is its main property. More specifically, we

will define an institution T to be a description logic if there is a morphism from. T to C1{.

Intuitively, that morphism provides us with means to translate signatures of Z to sets of
I-concepts in CI{, where we can build sentences which are subsumptions. These sentences

can be translated (via the morphism) back to Z, which in turn provides us with models that

are used for interpreting the translated Cl-l-sentences. We also know how to translate these

models to Cl-l in order to receive interpretative structures in CII. This definition allows us
to extract all the logics that are description logics and to treat them in a systematic way. In

fact we are also able to systematically relate such description logics in a categorical setting.
To this end we use the notion of a slice category introduced in Definition 2.3.10. We relate
the notion of slice category to the definition of description logic, where we have a category

of institutions Inst, an institution CH is the `target' of the slice category and morphisms
to Cl-l are the objects of the slice category. In this way we say that description logics are
objects in the slice category Inst/Cl-I. For instance consider £G with a morphism ec to C7{.

Example 4.2.1. We show how components of morphism £G -4 CR are constructed.

" Iec maps an £C-signature (P, R) to the set Con(P, R) of £G-concepts.

" Natural transformation 7(P, R). By definition Senc'(II) is a set of sentences of the
form pCq, with p, qE II, so Senc7'(Ak'(P, R)) is the set of subsumptions CCD,

where C, DE ConeG(P, R). Therefore, we may take ryep, R) to be the identity.

" Natural transformation 5
, R) " For any MEI ModE'(P, R)1, we set b(epR)(M) _ M.

This is due to the fact that (P, R)-models in CC are also interpretative structures for
£G-concepts built over (P, R), i. e. Cons'c (P, R).

Now we show that the satisfaction condition holds for every signature (P, R) E (Sig" 1,

model ME I MocfC(P, R)I and concept inclusion CC-: DE Senc7'(IkK(P, R)):

M lf(,
R) 'Y(P, R)(C C D) ifö(eP, R)(M) (P, R) CCD.

Proof:
M ý=(P,

R) I(p, R)
(C C D)

if

M ý=(p,
R) CcD

if
CM C DM

if
C6(P, R)(M) CDP, R)(M)

if

b(P, R)(M)
r- (P, R) CCD

0

98 CHAPTER 4. FRAMEWORKS WITH ABOXES

The composition of the morphism described in Example 4.2.1 with the morphism from
Example 2.4.24 gives a morphism e+e ; ec : £G+ -a Cl-l, which tells us how £G+ is built

over Cl-l. As it was already mentioned £G+ extends £G with role inclusion axioms but as
we are unable to formulate hierarchies of roles in CI-1 we can, without any harm, define

morphism e+c : EL+ -º Cl-I to be identical to ec.
Similarly, the composition of the morphism described in Example 4.2.1 with the mor-

phism from Example 2.4.23 gives a morphism ae ; ec : ACC -+ Cl-l, which tells us how
ACC is built over Cl-l: functor qlae;, maps an ACC-signature (PR) to CV-signature in

two steps, first to EL signature (P, R) (as £G and ACC signatures are identical IQ°e is the
identity), then this EL signature is mapped to Ci{ as presented in Example 4.2.1. So ef-
fectively ALC-signatures get mapped to the set Con (P, R) of £G-concepts. The natural
transformation y"; R) is also a composition of the identity from Example 4.2.1 and the
inclusion from Example 2.4.23. As models of ACC and EL are essentially the same we have
bPR) = tS(PR)

The fact that Wae; allows us to build hierarchies of concepts in Cl-l with use of EC-

concepts only clearly is not satisfactory. For that reason we formulate an alternative mor-
phism directly from ALC to Cl-l, we call it ac. Morphism ac is built in the following way:
functor IF" maps an ACC-signature (P, R) to the set Con'LC(P, R) of ACC-concepts. Nat-
ural transformation y('PR) is defined to be the identity, as Senc7'(IQ"(P, R)) is the set of
subsumptions CCD, where C, D E Con ALc(P, R). For any ME IModACc(P, R)I, we
have that ö('pýR) (M) _ M. Proof that the satisfaction condition holds is similar to that for
morphism ec.

The composition of the morphisms described in Example 4.2.1 with the morphism from
Example 2.4.27 gives a morphism fe ; ec : FOL -+ Cl-l. Similarly as in the case for ae ; ec
above, we have that FOL-signature is first translated into EL and then to M. So first
the functor 'I' translates an FOL-signature II into an EG-signature in the following way:

(II{xo}, II{xo, xl}), where

II{xo} = {gyp E SenFOL(II)1cp contains exactly one free variable xo}

and

n{""} = {' E SenFOL(II)Jcp contains exactly two free variables xo and xl}.

Then the functor IQ' translates Wf8(II) into Con'O'C(Wf°(II)) Even though that means that
we have only CC concepts available this is not problematic as II{-To} contains all the formulae
with one free variable. 41f°(II) is translated into Con-r-C(Wfe(II)). In this case FOL-models
over II are first converted into £ C-models and then into C? {-models.

These examples illustrate our argument that any institution that is the source of a
morphism to C1-L can be thought of as a `description logic'. Specifically, given a morphism
µ2. CH, every signature E in

.1 gives a set WP(E) of concepts, while every C7 -sentence
cC c' with c, c' E %YM(E) can be translated to a E-sentence in Z, and every E-model M gives
rise to an interpretative structure b£ (M) that interprets concepts as subsets of a domain.

4.2. DESCRIPTION LOGICS IN A CATEGORICAL SETTING 99

The satisfaction condition tells us that

M ýE y (c C c) iff c(M) C cboE(M)

where the sentence ' 0(c E- c') states the concept cis subsumed by the concept d.

Institution C7-l as introduced in Definition 2.4.8 has only unary concepts available for

sentence construction. However, in practice the ability to express hierarchies of n-ary

concepts in the target of the slice category is desired. The main reason for that is the
fact that we will use the target of the slice category for extending description logics with
individuals. In our approach to formulate statements about individuals we will use the

signatures in the target of the slice category. The idea is to introduce sentences of the
form c(i), where c is a concept and i is an individual. As in CH-signature we only have

unary concepts available we will be able to formulate statements about individuals with use
of unary predicates only, for instance we will be unable to state that two individuals are
related with each other via binary concept. This also means that can only refer to unary
properties of individuals, which can be inconvenient in practice.

To avoid this problem we introduce an institution C? -l which extends Cl-I with n-ary
concepts and we use C'H for defining description logics.

Notation 4.2.2. To simplify the notation, in what follows for any model M we will denote

the domain of M by IMI.

Definition 4.2.3 (Institution of Conceptual Hierarchies C77). A C3{-signature is an w-
indexed family of sets of n-ary predicates (Hn)nEw" We call such families w-sets. Signature
morphisms a: H -+ H' consist of a family of arity respecting functions between sets of
predicates, i. e. an Hn -a H' , for nEw. Given a UR-signature H, we define sentences
over H in the following way:

Senc'H (II) :: _ (IIn x IIn),

nEcr

in other words, Senc'(II) is a disjoint union of sets of sentences of the form pCq, where
p, gEll ,

forsome nEw.
Given a signature morphism o, : II -+ II', we have SenM(a) : Sencx(II) -+ Senc7W(II'),

this is done by renaming predicates according to a.
The semantics of C? { is defined by means of interpretations M= (IM 1, -M), which are

objects in the category of models, where for each II E SiF" we have category Mod? (ri).
The interpretation domain IMI is a non-empty set, and M is a function mapping each
n-ary predicate pE IIn to a subset pm of IM In, i. e. n-tuples of IM I. Given a signature
morphism Q: II -4 II' the reduct M jo is defined by IM jo I= IM I and by pm t- or(P)M.

An interpretation M satisfies pCq (written MHpC q) if pß'1 C qM.
A straightforward argument shows that the satisfaction condition holds for U7, i. e. given

a signature II, signature morphism a: II -+ III, ip E Senc? '(II) and ME IModcx(II')I the
following holds:

Jet ýcýn ýP ifM ý=ýn'i` a(W).

100 CHAPTER 4. FRAMEWORKS WITH ABOXES

4.2.1 Description logics as objects of the slice category Instl0i

Now we provide a definition of description logics which allows us to treat them in a general
and systematical way. This definition shows how description logics are built over MR. More

specifically, we define an institution I to be a description logic if there is a morphism from
Z to C? {. Intuitively, that morphism provides us with the means to translate signatures of
Z to sets of 1-concepts in CW, where we can build sentences which are subsumptions. These

sentences can be translated (via the morphism) back to Z, which in turn provides us with
models that are used for interpreting the translated ei{-sentences. We also know how to
translate these models to E7 -i in order to receive interpretative structures in UNI. The fact

that description logics are defined with the use of morphism to U will be used to introduce
individuals into DL-signatures, as well as to formulate sentences with individuals.

Definition 4.2.4. A description logic is an institution 2 together with a morphism

it :I -3 C? {.

Categorically, description logics are the objects of the slice category Inst/C37, where
Inst is the category of institutions and their morphisms. If µ :. T -+ C7i and v: Z' -a Cad

are description logics, an arrow p -3 v is a morphism t; :. T -+ Z' such that µ=; v.

Example 4.2.5. £G is a description logic.

We show how components of morphism £G !i Cý{ are constructed.

" Functor 4/1'e. For any EG-signature (PR) we define (W (P, R))1 = Con"(P, R)

and (, Q'(P, R))n =0 for all other n. We sometimes use the notation W°E(P, R) _
(0, Con" (P, R), 0,...).

" Natural transformation 'y(P R) . By definition Senc (II) is a disjoint union of sets of
sentences of the form pCq, with p, qEH., but 'I' (P, R) only has unary concepts,

so SenZW(AF°C(P, R)) is the set of subsumptions CCD, where C, DE Con" (P, R).
Therefore, we may take y(PR) to be the identity.

. Natural transformation S(t'R). For any ME IMoc1' (P, R)I, we set ö (PR) (M) = M.

This make sense because (PR)-models in CL are also interpretative structures for
CL-concepts built over (PR), i. e. ConEC(P, R).

Now we show that the satisfaction condition holds for all (P, R) EI Sij'c 1, MEI Mocf' (P, R)

and CCDE Senc'(W"(P, R)):

m I-(PR)'y(P,
R)(Ci

C D) if b(P,
R)(M) I'= (P, R)

C C D.

Proof:
JIA (PR) yýP, R)

(C C D)

if

M[=ýR)CCD

4.2. DESCRIPTION LOGICS IN A CATEGORICAL SETTING 101

iff
CM C DM

iff
Ca P, R)(m) C D6(P, R)(M)

iff
s(p,

R)(M)
I=

(p R)
CCD

0

Example 4.2.6. ACC is a description logic. This follows from the fact that we can compose

morphisms and construct a composition ae ; ec : ACC --* CWl. But in this case (similarly

to ae ; ec) we have that ACC signature (P, R) gets mapped into Con", which is not satis-
factory as we would be able to formulate concept inclusions using £G-concepts only. This

means that we cannot use negation, which distinguishes ACC from £G. For that reason

we define an alternative morphism to UK-, a morphism ac which tells us how
.
AGC is built

over Ci{. Functor W is defined in the following way: ''(P, R) = (0, ConArc (P, R), 0,...).

Natural transformation yazR) is the identity as T'ý(P, R) only has unary concepts, and so
Senc7'('"(P, R)) is the set of subsumptions CCD, where C, DE ConA'Cc (P, R). Nat-

ural transformation 5'P R) is the identity, so for any MEI ModA'CC (P, R) 1, we have that
Jac (P

(M) = M. The proof that the satisfaction condition holds is very similar to the one
for Example 4.2.5.

Example 4.2.7. Now we show that FOL is a description logic, i. e. we define a morphism
fc : FOL -a C9{. We only sketch how the components of morphism fc : FOL -+ C9-l are
constructed.

Functor'Pa. For any FOL-signature (II�)nEI, we define

cpf(fl) = (FormFOL(II, n))nEw "

where Form POL (II, n) is the set of FOL formulae over II with n free variables (x0,
... , x�).

Sentences in Cpl over T (II) are defined in the following way

Sencx('''c-(n)) _
ý((ý (n))n x (ýY (n))n)

nEw

Natural transformation yn translates C7-l-sentences, constructed over Ve(rl), into FOL-

sentences with countable set of variables in the following way:

7 (C C D) = (VXO....
9 xn)ii D

where C, DE FormFOL (n, n)

The natural transformation bn is the identity, so for any FOL II-model M we have
bn (M) = M. It is straightforward to see that the satisfaction condition holds for all
II E 1SigFOLI, MEI Mocf°L(rI)I and CODE Senn (ýY (II));

M ý=ýýoýL ryýn) (C 9 D) i b(n) (M) =
ri) CCD.

102 CHAPTER 4. FRAMEWORKS WITH ABOXES

Using composition of morphisms e+e : EG+ -a EG and ec : EC -+ UR we can show that
£G+ is a description logic, but we find it useful for further studies to distinguish different

types of £G+ and show that each of them is a description logic.
We distinguish different types of EG+, insofar as they allow different role inclusion

axioms. So we distinguish the following:

" EGO allows axioms of the form: rCs,

" £Gi allows for £Go axioms together with axioms of the form: rorCr,

" £C allows axioms of the form: rl o"""o r� r, with n>1,

" £G3 allows axioms of the form: rl o""" ON C Si 0"""08, n with m, n>1.

Example 4.2.8. £G; is a description logic, where i= 10,1,2,3}.

We show how components of morphism e±C : £G; -+ Cii are constructed.

" Functor 91°±C. For any EG; -signature (P, R) we define

we `(P, R) = (0, Cont'c (P, R), R, 0,
...

),

i. e. We ` translates P part of the signature into £G; -concepts over (P, R) and is the
identity for R part of the signature.

" Natural transformation -ye-' R). By definition Sen"(II) is a disjoint union of sets of
sentences of the form pCq, with p, qE IIn, but since

'Y`; +e(P, R) = (0, ConeG4 (P, R), R, 0, ...)

we have that
p, qE Con-04 (P, R) or p, gER.

Since

SeneGt (P, R) :: = Cone4 (P, R) C Cone4 (P, R) WRR

we have that

ry°±e Send °+ý PC Sent (PR) (((, R)))
-

(P> R) for i>0

and
7(, j) (Sent/ W (Q* `(P, R))) = Sent (PR) for i=0.

Natural transformation bý p R)
. For any ME I Mocf (P, R) I, we define b(P R) (M) =

Jul.

Now we show that the satisfaction condition holds for every signature (PR) E ISigýL{ 1,

model ME IMod r-, (P, R)I and sentence VE Sencx(W"+t(P, R))

eýz (P, R) II(P, R)(4P) ' ZÄ a(P,
R)(M) W'

ýP
`; P (PAR)

4.2. DESCRIPTION LOGICS IN A CATEGORICAL SETTING 103

Proof: In the proof we distinguish two cases:

1. cp is of the form Con"t (P, R) C Cone'C (P, R),

2. cp is of the form RCR.

Example 4.2.5 already shows the case (1), so we only show for the case (2).

iff (by definition)

iff

iff (by definition)

iff

M ý(p,
R) ry(P R)(r

C s)

Mý(p,
R) rC8

rM CsM

e+a a+t
ra(,. -)(m) C ss(p, R)(M)

b(P,
R)

('M) rCs
V, (PR)

0
Example 4.2.8 shows how different variants of EG+ are description logic. The reason

why it works for all of them is the fact that %Vft is the identity on R part of the signature.
In this way only role inclusions of the form rCs, with r, sER, are allowed. Now we

show a morphism e3 c, which allows for arbitrary role inclusions by translating R part of
the signature into R' = {rl o"""o rnjrl ... rn E R}.

Example 4.2.9. £G3 is a description logic.

We show how components of morphism e3 c: £C3 -4C{ are constructed.

" Functor T°3 ý. For any &C -signature (P, R) we define

°3 ̀(P, R) = (0, Cone£9 (P, R), R*, 0,...)

where R* = {rl o"". o r�Irl ... r,, E R}. In other words Qe; e translates P part of
the signature into EL -concepts over (P, R) and R part of the signature into a set of
expressions of the form ri o"""or,,.

" Natural transformation ry(}R). By definition Senc (II) is a disjoint union of sets of

sentences of the form pCq, with p, qE Iln, since

T°3 e(P, R) = (0, Cone1 (P, R), R*, 0,...)

we have that p, qE Cone'c9 (P, R) or p, qE R*. From this it follows that

Seng (qf°3 ý(P, R)) = ConeL3 (P, R) x Con-r'cg (PR) W R* x R'

Thus it is not difficult to see that yýP R) is the identity and we have

7(P R) (Seneca (T 4 (P R))) = SeneG; (P, R)

104 CHAPTER 4. FRAMEWORKS WITH ABOXES

. Natural transformation 5P R). For any ME IModeG3 (P, R)I, we define b(P R)(M) =
M, with

ej L

(rl o ... o rn)d(p. R)(M) = rM o ... o rtt C 1M 12

Now we show that the satisfaction condition holds for every signature (P, R) E ISigr'c I,

model MEI Mocf (P, R) I and sentence cp E Senn (xY°3 '(P, R)):

lVi ý=(P,
R)'Y(PR)(P)

'ff a(pR)(M)
Vx 2(PR)

Proof: In the proof we distinguish two cases:

1. V is of the form Cones (P, R) C Con ýý3 (P, R),

2. ýp is of the form if C if.

As Example 4.2.5 already shows for the case (1), we only show for the case (2). Let

V=rlo"""or� C81o"""osm

M ý(PRý yýpR)(rl o... ornC810... osm)

iff

if

M =(pR)rlo... or�Cslo... osm

rmo"""orn smo"""os, ý;;

if

r1(P,
R)(M)

o ... o ý"6
R>(M)

gl(P'ß)(M) p ... p gm
33

')
(M)

iff
b(P,

R)(M)
ý=C, +t(PR) rl o ... o r� C 810 ... os,,,,

ýY 3, -

0

4.2.2 Description logics with individuals

Now we show how any description logic can be extended to an institution with individuals.

Definition 4.2.10. Given a description logic p: Z -+ U'-H, define the institution lip as
follows.

" SigJI = SijZxSet. That is, signatures are pairs (E, I), where E is an -T-signature
and I is a set; similarly, signature morphisms are pairs (o, g) : (E, I) -+ (E', I') with
a: E -+ E' in Sign and g: I -i I' a function in Set.

" Seniµ(E, I) = Sen2(E)+1: (W' (E, a)xI^). That is, sentences are either E-sentences
nEw

in I, or pairs (c, i) with CE 'I'µ(E)n an n-ary concept and iE Ina tuple of individuals; -
we use the notation c(i) to suggest the intended meaning that the tuple of individuals
i is an instance of the concept c.
For (a, g) (E, I) --ý (E', I'), we let Senl'(o, g') = Sen'(a) + ßµ(o) x g, which maps a
E-sentence cp to Sen'(o)(cp), and a sentence c(i), with c Eto TO(a)(c)(g(i)).

r. _ý

4.2. DESCRIPTION LOGICS IN A CATEGORICAL SETTING 105

" Mod"(E, I) has as objects pairs (M, f), with Ma E-model in E. and f: I -1
154(M)I a function that 'interprets' individuals as elements of the domain. Arrows

h: (M, f) -a (M', f') are arrows h: M -ý M' in MocF(E) such that f' =f; 6E (h).

For signature morphism (a, g) : (E, I) --ý (E', I'), Mod" (o, g) maps a (E', I')-model

(M', f') to (MocF(a)(M'), 9; f').

" For cp E Sen'(E),

(M,. f)ý=(E, J)w iff MýEýP,

and for sentences c(i) with cE 'P(En) and iE I",

(M, f) ýýE, ý) ý(Z) if 7(i) c ca£ýM)

where by f we mean the extension of f to n-tuples.

To show that Ip is an institution we still have to show that the satisfaction condition holds.

Here we only show the satisfaction condition for the case with sentences of the form c(i).
The case for sentences without individuals is straightforward.

Given a signature (E, I) and a signature morphism a (E', I'), with

or = (aE, al) where aE :E -1 E' and al :I -4 I', a sentence c(i) E Sen", (E, I) and a

model (M', f') in Mod"' (E', I'), the following holds:

(M', f')js ýýE, tý c(i) iff (M', f') I(Y,
t') a(c(i)).

Proof:
(M', f') r., I(E,

I) c(i)
iff

- (M't , f't 1) If£, 1) c(z) if

iff
77(aI(i)) E QE(c)8E(M')

if

(MI, f') I(E', r) a(c(i))

11

Now we spell out the details of how to extend EG to EG with individuals in the signature.
We show that using the morphism ec from Example 4.2.5.

Example 4.2.11. The institution IIec has as signatures triples of sets (P, R, I) with triples
of functions as signature morphisms. A (P, R, I) -sentence is either a CCI of the form CC
D, where C and D are (P, R)-concepts, or is of the form C(i), where C is a (P, R) -concept
and iEI. (P, R, I)-models are pairs (Al, f), where M is the usual (P, R)-model in er, and
f: I .4 (MI. (M, f) i(P, R, I) CCDi ff MI (R) CCD, and (M, f) C(i) if
f (i) E CTM.

106 CHAPTER 4. FRAMEWORKS WITH ABOXES

Since limits and especially colimits of signatures are essential for modularity, it is useful
to note that the following holds:

Proposition 4.2.12. Si8ý` has all small (co)limits that Sigz has.
Proof: This follows from the fact that Set is (co)complete, and (co)limits can be taken

pointwise in Sieg = Sign x Set.

Similarly, we have

Proposition 4.2.13. IIµ is (semi-)exact if I is.

Proof: We only show the case for semi-exactness, as the case for exactness considers in

addition only finite (co)limits and therefore is simpler.
For the direction "=" first assume that IIµ is semi-exact. Now assume that the signature

morphisms in I shown in Figure 4.1 form a pushout. This implies that after extending

E' ºEi

Cl

zC- EI
z

Figure 4.1: Signature morphism square in 1.

these signatures with the empty set of individuals, as shown in Figure 4.2, the signature
morphisms form a pushout square in Sig A'. But by the assumption we have that the model

(os, l) (ý, 1)

(E2,0)
(d ýý (E', 0)

Figure 4.2: Signature morphism square in IIµ with empty sets of individuals.

morphisms, as shown in Figure 4.3, form a pullback square in IIp. Note that a (E, 0)-model
in lip is of the form (M, t), where t is the inclusion 0" JOE"

,
(M)1,1, and is equivalent to a

E-model M in. T. Therefore we have that the model morphisms, as shown in Figure 4.4, in
Z form a pullback, as desired.

For the direction ". 4=i" assume I is semi-exact. Assume we are given a pushout square
of signature morphisms in lip (see Figure 4.5). We want to show that the model morphisms
in lip form a pullback square (see Figure 4.6). To do that we take a commuting square of
model morphisms in lip with category C (see Figure 4.7) and show that Figure 4.6 has the

4.2. DESCRIPTION LOGICS IN A CATEGORICAL SETTING 107

Mod(E, o)
Mod

Mod(E1, O)

Mod(a2 1)
1M0dh1)

Mod(E2, O)
Mom d(,, 1)

Mod(E', O)

Figure 4.3: Model morphism square in Ili with empty sets of individuals.

Mod(E)
Mme')

Mod(E1)

Mod(al) 1M0d(ai)
Mod(E2)' Mod(E')

Mod(a'2)

Figure 4.4: Model morphism square in Z.

(0,1, gi

(x2,92) 91)

(E2,12)
(d ,ý

Figure 4.5: Signature morphism square in I p.

Mod (E, I)
Mod (a,, gi) Mod (El, 11)

Mod(a2,92)

1Mod(49)

Mod (E2,12) "*-- Mod (V, I')
Mod(d, g2')

Figure 4.6: Model morphism square in iµ.

Mod al, gl) Mod(E, I) Mod(El, l1)

Mod(a2, g2)

IF1

C Mod(E2,12)
F2

Figure 4.7: Model morphism square in IIp with category C.

108 CHAPTER 4. FRAMEWORKS WITH ABOXES

universal property of pullback by constructing a unique morphism F: C -+ Mod (E', I')

such that F; Mod (a;, g;) = F; (with i=1,2).
Any (E, I)-model M is of the form M= (M, f), where M is a E-model. This gives

us a functor UE : Mod(E, I) -+ Mod(E) sending (M, F) to Al. Now if Figure 4.6 com-

mutes, this implies that the outer square of Figure 4.8 commutes, inducing a functor

U: C --4 Mod(E'). For c in C we write (Ali, f;) for F; c (with i=1,2). Then we

Mod(al)
Mod(E)ý Mod(Ei)

v£.

Mod(al) Mod(a,) Mod(EI, II)
0

Mod, (E2)ý-- Mod(E')
Mod(aj)

U
C

Ul\E2

Fz
Mod(E2, '2)

Figure 4.8.

have Mod(ai)(Uc) = UE, (Fic) = UE, (MI, fl) = Ml and Mod(a2)(Uc) = UE, (F2c) =
UE, (M2, f2) = M2. Now we have to determine the mapping 1'-+ 15.1, (Uc) I. But we have

models (Ml, fl) and (M2, f2) and so mappings fl : I3 -+ I6 E', (M1)I and f2 : I2 -a Ib£2(M2)I,

such that Mod (a,, 91) (MI, fl) = Mod(a2,92)(M2, f2), because Figure 4.7 commutes. We
have Mod(al, gl)(Ml, fl) = (Mod (al)(MI), gl; fl :I --i I6'(Mod (al)(MI))I) and similarly
for Mod(a2, g2)(M2, f2); therefore Ib£(Mod(al)(Ml))I = Ibr"

,
(Mod(a2)(M2))I and gl; fl =

,
(MIM = IöE"(Mi)I g2; f2. We also have that I5E"(Mod(al)(Mj))j =. IMod(WYµ(ai))(6r"

and similarly for I5 (Mod(a2)(M2))I, so I5 (Mod(al)(Mi))I = IbI'(Mod(a2)(M2))I. We

also have that I5 1(Mi)I = Ib.
l(Mod

(ai)(Uc))I = IMod('yµ(ai))(b£, (Uc))I = IBE", (Uc)I

and similarly for Ib"2(M2)I, this gives us that Icy , (Uc)I = 16 1(Ml)I = Ib'2(M2)I. This

gives us that we have f, : Ii -- I b£, (Uc) I and f2 : I2 -Ib, ', (Uc) I, so we use the fact

that if Figure 4.5 is a pushout, so too is Figure 4.9. Now, we know that gl; fl = g2; f2,

91
ý Il

92 A
ft

-º I2
92

I,

fz I5£, UcI

Figure 4.9: Morphism square for part of Ip-signature with individuals.

so we get u: I' -+ I&£, (Uc) 1, such that f; = g''; u (with i=1,2). We therefore set

4.2. DESCRIPTION LOGICS IN A CATEGORICAL SETTING 109

Fc = (Uc, u : I' -+ I5IF, (Uc)1). This defines F on objects of C, we need to show that F

is the unique functor such that F; Mod (o;, gi) = F; (with i=1,2). Assume it is not,
then there is another functor F' such that F'; Mod (v;, g;) = F; for i=1,2. We have that

F'; Mod (v;, g, '); UE, = F;; UE, and F'; UE,; Mod (a,) = F;; UE,, therefore F'; UE' = U. So

we have that (F'c) _ (Uc, f: I' -+ I5 , (Uc)I). But we also have that gi; f=f; therefore

f=u by pushout property of I. Thus we have that (F'c) = (Uc, u : I' -+ Jr', (Uc) 1). But

this is exactly how Fc is defined, so F' = F. 0

The construction of IIµ is functorial in p. In other words, II is a functor Inst/C7{ -- Inst,

which means that any morphism of description logics extends to a morphism of description
logics with individuals.

Definition 4.2.14. Let and p': Z' i C3{, and let e: µ -1 µ' (i. e.,
Morphism IC: lip -+ IIµ' is defined as follows:

" Define W= T{ x lSt : Sid -* Sigh
.

This maps a IIµ signature (E, I) to the IIµ'

signature (V (E), I), and similarly for signature morphisms.

" For cp E Sen"' (E), let ryl(ý r)
(cp) =

4(c'), and for cEWµ (W { (E)) _ ßµ (E) and iEI,
let ry(C, l)(c(i)) = c(i).

" býý I) : Mod'A(E, I) -+ Modµ ('I' (E), I) is defined by 6'£,,
)(M, f) = (4(M), f). The

actions on model-morphisms and signature morphisms are defined similarly.

Naturality of - IIC and 51C, as well as the satisfaction condition for i[and preservation of
composition and identities follow straightforwardly from:

" 7ýý, 1) ='Y£ + lýµ(E) x lr, and

" e(t= b£ x1 (r, la£1), where 1sýc(r, j5 l) is the identity on the function mapping
individuals to the domain in CI-l.

We omit the details here.

In fact, II extends to a functor Inst/CT-l -a Inst/II(lc) from description logics to de-
scription logics with individuals. Because 1Z : C9i -3 UR is final in Inst/CI{, and any
p: Z -+ UR in Inst can be seen as p: It -+ 1 in InstlU? -

, we get IIµ J4 --+ II(1ZW) as a
morphism in Inst, and therefore an object in Inst/I(1Uý). Similarly, any arrow £: µ -i v
in Inst/C7d gives][: IM -4 Iv. This overloads the II functor, so we adopt the following:

Notation 4.2.15. For a description logic p :. T -+ U? R, we write 2--t for the institution Bµ,
and u+t : 1+t -i C? -l+t for the description logic with individuals (i. e., for the application
of the functor Inst/Cf -4 Inst/C? l+t).

For example, we refer to the institution of £G with individuals presented in Exam-
ple 4.2.11 as £G+t.

The final object in Inst/C? { is C9-l+t, and CW+t gives us a `minimal' description logic
with individuals.

110 CHAPTER 4. FRAMEWORKS WITH ABOXES

Example 4.2.16. The institution C7l+t has as signatures pairs (C, I), where C is an w-set

and I is a set, and signature morphisms are pairs (f, g), where f is a family of functions

(fn : C� -+ Cn)�E,,, and g: 1 -4 P. A (C, I) -sentence is either cCd, with c, dEC,,, or
is of the form c(i), with cE Cn and iE In. (C, 1)-models are pairs (M, f), where M is a
C-model in C? i and f: I -4 IMI. (M, f) =(c, I) cCd if cm C dM, and (M, f) J--(c, l) c(i)
iff 7(i) E cm, where cE Cn and iE In.

It is natural to think of Cpl-+t as a description logic by forgetting about the individuals

that are added to signatures, and we shall return to this idea in Definition 4.2.18 below.

There is, however, another way of relating M and CW+t, by viewing individuals as con-

cepts. That is, we can construct a comorphism cc : U? -{-+t -ý U77 as follows. cI maps a
CW+c-signature (C, 1) to the CU-signature C+I, and similarly for signature morphisms.
Given a C-sentence e (which is also a (C, I)-sentence in CR+t), aýc7c_(e) = e, and given a
(C, I)-sentence c(i), where cE C� and iE I", OF (c(i)) =iCc. To translate MR-models to
Ci? +t-models, we use the following notation: for a set S, we write 2S for the set of subsets

of S and given XE 2S, we write X4. for the set of all subsets of X. Given a C-model
M in Ci{, the (C, I)-model /3c (M) has domain 21MI, and given a concept cEC,,, we set
AO Ml = (c!)J. and for iE In we set O'S (M) = cM. It is straightforward to check that the

satisfaction condition holds for cý. In the later part we give comorphisms more attention,

see Corollary 4.2.22 which shows how u: Z -+ U gives rise to comorphism µ: I -* T+t,
Definition 4.2.25 where we introduce comorphisms between description logics or Defini-

tion 4.2.26 where we introduce comorphisms between description logics with individuals.
Now we return to morphisms.

The following observation follows from the discussion above.

Observation 4.2.17. Given a description logic u: I -- CW, the description logic with
individuals µ+t : Z+t --> C3{ is also a description logic: we simply forget about the indi-

viduals. This gives a morphism I+t -+ Z, defined below, which composes with It to give a

morphism Z+c -4 Cit.

Definition 4.2.18. Given description logic µ: Z -+ U? -
, define the morphism µ- : 2+c -'

I as follows.

9 For Z+&-signature (E, I), set W' (E, I) = E, and similarly for signature morphisms.

" Any E-sentence V is also a (E, I)-sentence, and we set ryO (E I) (cp) = cp.

" Given a (E, I) -model (M, f), M is a E-model, and we set 5r I) (M, f) = M, and
similarly for model-homomorphisms.

While the existence of morphism µ- was expected, as it shows how Z+t is built over Z,
there is also morphism µ+, going in the opposite direction. At first this may seem surprising,
but this morphism shows how close the relation between I and Z+t is. Intuitively, a

signature EE Sig' gets mapped to I+t-signature (E, 0). Then; from the fact that Sent+`
is a disjoint union Sen'(E) +E (W (E,,) xI"), together with the fact that I is empty we

nEw

4.2. DESCRIPTION LOGICS IN A CATEGORICAL SETTING 111

get that Sen'(E) = Sen"" (E, 0). We also show how to construct a (E, 0)-model in Z+t

given a E-model in I. This is formally defined below.

Definition 4.2.19. Given p: I -ý CW define the morphism p+ :Z -4 I+t as follows.

" For I-signature E, %Y'+ (E) = (E, 0).

" For any I-signature E, Sen'+`(E, 0) = Sen1E +'µ(E)x0 = Senz(E), and we set

Y, (V) = p. So yE+ : Sent+i(Sµ+(E)) -+ Sen'(E).

" Given a E-model M, we construct a (E, 0)-model b, + (M) = (M, 0 y IMF), where
0y IMI is the unique inclusion.

Particular cases of these morphisms are 1ý : C? {+t -+ Cý{ and 1c+ : C? -l -ý Ci{+c.
The close relation between description logics and description logics with individuals is

captured in

Proposition 4.2.20. For any description logic p: I -ý Ci{, we have

µ+ µ= lz

µßl = µ+ýN+i

1CR

Proof: This is a straightforward calculation from the definitions. Q

Figure 4.10 is a graphical representation of the proposition above.

A
ZýZ+G

P

µ µ+c

C3i C7{+c
1ý

Figure 4.10: Morphisms between DLs and DLs with individuals

So far we showed that description logic µ: I -+ C1-t generates a description logic

with individuals p+t : I+t --º Ci? +t. Then we defined morphisms µ+ :I -4 I+t and
µ' : I+c -+ Z. As µ+ and µ- have opposite directions, functors Jµ+ and 1º` have

opposite directions as well. Now we show that the functor Tµ : (E, I) HE has left adjoint
jw+ :EH (E, 0). This is expressed in the theorem below.

Theorem 4.2.21. For any description logic µ: 1 -4 UN- we have that xFA+ -I VI-.

112 CHAPTER 4. FRAMEWORKS WITH ABOXES

Proof: The unit of the adjunction i is the identity, and the proof itself is a straightforward
calculation from the definitions. 0

The significance of the above theorem becomes clear in the light of results of Arrais

and Fiadeiro in [5], showed that given an adjunction between signature categories of two
institutions, an institution morphism gives rise to an institution comorphism (This was
already mentioned in Section 2.4 when we were discussing adjunctions on signatures).
This result together with Theorem 4.2.21 gives us a comorphism it :Z -a I+c. This is

made explicit in the corollary below.

Corollary 4.2.22. For any description logic p: I -a
UN, there is a comorphism µ=

(, Yµ+, aµ, ßµ) :2 -4 Z+c, where aµ is the natural transformation defined by c4 = Sen (77E) ;
y N+lEl, recall that rý is the identity so aý = ry (E ')

and ßµ is the natural transformation

defined by ßE Mod(rI), and as t =1E we have ß' = &U-

Now we show that µ satisfies a condition that is even stronger than restriction ade-
quateness [3] mentioned in Section 2.5. We will use this fact to show that Z -i U77 is
conservative.

Proposition 4.2.23. For any Ec :Z -+ CW and signatures E, E' E Sigh with a signature
morphism o: E -* E' and 0C Senz(E') we have that

c4(O,) = (c I(O))ýz(Q)

Proof: In the proof we will use the fact that aa(s) _V and QT(M, f) = M.
For assume 0 a(W) and (M,

_)
, ä(£,

l c4, (O), by satisfaction condition
ßE, (M,

_)
I= , 0, thus ßE, (M,

_)
ý£, a(cp), by satisfaction condition (M,

_)
ýv7ýý,

I
aas WV))

For "2", assume a4 , (O) ý Rý£,
l ýý(o)(a (gyp)) and M 4,0, by the fact that

, 6E, 70 (M,
_) =M we get ß£, (M,

_) E0, by satisfaction condition

This implies (M, _)
ßý£) 4'(c)(aý(v')), by naturality of aµ we have

(MI (E') aE, (a(cp))

and by satisfaction condition ßß, (M,
_)

ýE, o(cp), thus M a(cp). Q

As for any p: Z -- Cll we have that 4µ(E) i. e. we have no individuals in
T+t-signature, it is not difficult to see that the natural transformation ßµ is surjective.
As mentioned before restriction adequateness is a sufficient condition for conservativity of
comorphism, and Proposition 4.2.23 shows that µ has an even stronger property. These
two facts are expressed in the following lemma:

Lemma 4.2.24. For any pI -i UN the comorphism it is conservative and QJ7 is surjec-
tive.

4.2. DESCRIPTION LOGICS IN A CATEGORICAL SETTING 113

Although many institution morphisms have corresponding comorphisms that arise from

adjoint functors on signatures and vice versa (cf. [51 and the remarks at the end of Sec-

tion 2.4), it is not always the case. For instance, morphisms to C9-l usually do not have a

corresponding comorphism. On the other hand, in our work we are particularly interested

in defining comorphisms between institutions as they are used for constructing frameworks

and query bases (in Section 3.1 of Chapter 3 we presented arguments for using comorphisms
for constructing frameworks and query bases). But using morphisms and comorphisms at

the same time is inconvenient, as we cannot compose them. To avoid that problem but

still be able to use comorphisms for constructing frameworks and query bases we intro-

duce the notion of DL-comorphism (comorphisms for description logics). To formulate

this notion first we use a special case of the notion of an institution modification between

institution morphisms, which was presented by Diaconescu in [31]. To be more precise,

we use a natural transformation between functors used in morphisms and commorphism

of our interest. So our DL-comorphisms from Fc :I -+ C9{ to v: Z' -a C? -l are therefore

comorphisms from I to Z' as in Definition 2.4.28 in Chapter 2, together with families of
functions r£ : ßµ(E) -3 for each signature E in Sig1.

Definition 4.2.25. A DL-comorphism from 14 C7i to Z' 4 C? l consists of a comor-

phism ri :I -+ Z' together with a natural transformation r7 : Tµ -> E'" ; 'I" such that for

all E in SigZ,

,, (E) ; Modcx(rE) = ßE bE
" (4.1)

For example, consider a comorphism of (it was presented in Example 2.4.34) from ec
(£G) to f`c (FOL). In this case, T°z maps an EL signature to the set of all £L concepts built
from that signature. The functor 4bef would map an £L signature to the FOL signature
that had the concept names as unary relations and the roles as binary relations. 'I'm would
then map this signature to the set of all formulae with one free variable. Clearly, these

sets are not equal (and this is one reason not to work in Inst/CR), but the first set can
naturally be included in the second - this is the standard translation of £G into FOL-

and this gives the natural transformation ref. Note that each r£ :q (ref (E))
is actually a signature morphism in Sigcý, which means that we have the model reduct
functor Modc (rEef) : Modcx(, Ifz(,, Def (E))) -+ Modcx(W°e(E)). This takes a 1QfC(-°f (E))-

model M and gives aW (E) model M jT£ that has the same domain as M, and interprets

concept 0E 4Def (E) in the way that M interprets the concept T (m)). Equation (4.1) says
that applying this reduct functor to the fc-translation of a FOL-model gives the same
result as applying the comorphism's translation, then the ec-translation. In practice this
is not a serious restriction, as models for most description logics are simply interpretative

structures.
But Definition 4.2.25 does not capture individuals which are important in this part of

our work. For that reason we introduce its variant, which takes individuals into account.

Definition 4.2.26. A DL+t-comorphism from Z 2+ CH--+t to Z' 4 U? -{-+t consists of a
comorphism t: I -+ Z' together with a natural transformation r" : 'I" -+ I'º ; 1Y" such that

114

for any E in Sigh,

CHAPTER 4. FRAMEWORKS WITH ABOXES

b" Mode+` r, n. aµ (4.2)
,b (r

In fact both, Definition 4.2.25 and Definition 4.2.26 are just special cases of the definition

of comorphism between objects of a slice category.

Definition 4.2.27. For slice category Inst/C a C-comorphism from µ to v consists of a

comorphism rl :I -+ Z' together with natural transformation T-'7 : V' -+ 410 ; IV such that

for all E in Sign,

5. P ., (E) ; ModP7'1(TE) = QE , JE .
(4.3)

The following proposition shows that any DL-comorphism can be extended to DL+c-

comorphism, which is expected as we can extend any description logic to a description logic

with individuals.

Proposition 4.2.28. Any DL-comorphism 77 from 14 C7{ to T4U? -? extends to a
DL+t-comorphism t: µ+t -+ v+t.

Proof: 4'' = V" x 1st. That is, fin` (E, I) = (10 (E), I).
Recall that Sen'+`(E, I) = Sen'(E) + TO(E)xI. For cp E Sen'-(E), let a(7E'I)(W)

aE(cp); for O E'I" (E) and iEI, set a(7E=TEn(O)(i).
(M), f). Note that this is well- For any ('n (E), I)-model (M, f), let ß'ý Il

(M, f) = (, 8r'7

defined, because the codomain of f is j5
,, (E)(M)S, which is the same as

JModcx(rE)(JOv,, (E)(M))j, and by (4.1) in Definition 4.2.25, this is the same as 15'(fln(M))I.

We show the satisfaction condition for the case where the I+t sentence is a predicate

on an individual:

971 &E,
1) (M,

,
f) IZ+, '(i)

is, by definition, '

(PE (M), f) F=Z+` 0W
which is, again, by definition,

f (i) E 106E(6E(M))

by (4.1) in Definition 4.2.25, this is the same as

f (i) E T£(VG)5E(M)

which is, by definition,
(M, f) j="+` TE()(i)

and this is
(M, I)1=r+` a? E, rl(1G(a))

Now we need only to define natural transformation r7' Tilt' V)` ; 'Y"+`. First

note that W+ I_Iµx 15et, IQ"+` = W" x 'set and (PI" _ VI x 1St. So we can define

r(E, ý) = rt x 15et and we have

17

4.2. DESCRIPTION LOGICS INA CATEGORICAL SETTING 115

i. e.

So showing

17

Modo7'+'(TýE t)ý =ß(ß, I) 'b(ß, 1)

is straightforward as we have

Modi (T(E)) = QE ; bE .

11

Now we show that for any description logic µ: Z -*
E W-, comorphism µ can be treated

as a DL-comorphism from µ to µ+i ; 1,. This theorem uses the fact that composition of

comorphisms is a comorphism.

Theorem 4.2.29. For any description logic u: I -+ C7i comorphism µ is a DL-comorphism

from p to µ+/, ; 1F ZFR .

Proof: As Corollary 4.2.22 guarantees us the existence of comorphism µ: Z-p Z+i, so
we need only define Tµ : IPµ -+ -I)µ; such that

ýJýß(1) 1 Modo7'(T)

Note that from Corollary 4.2.22 it follows that I=W. From Proposition 4.2.20 it
immediately follows that for any EE Sig' we have:

= Iµ(E).

So we can define

i. e.

_y ßiµ ßjµ+ei1 ýEýý TE = Lyµ(E) : 'Iµ(E)

1- + zw(V, +, (TA P))

We now only need to show that

Soß(El , Modý(Tý) = Qý + b£

We have that:

S RS
; Modýý(TA) =

ß(ý= aýE, 0)
1m

= b-
liv

(E
0) ' a(

Note that for any Z+t-model (M, f) over (E, I) we have

aý Eý, o>(ar£ 0)(M, f)) = be i£), a>(s'(M), f) = 6E(

as well as

öE(ßE, (M,. f)) = aE, (M),

116 CHAPTER 4. FRAMEWORKS WITH ABOXES

Z µ-º Z+i

µ µ+i

C7{ß C? i+i

Figure 4.11.

I aZ+i

µ +iýlru

Chi

Figure 4.12.

thus

, b(0) ; acs ýý, 0> = ßE ;E
and so

Modcx(rß) Q"
E" öµ , ßß(E) ,=, E

as desired. Q

Similarly we can show that it is also a DL+t-comorphism.

Theorem 4.2.30. For any description logic p: 1 -4 C7{ DL-comorphism µ is also a'
DL+t-comorphism from p; 1+ :Z -a UR+t to u+t : I+t -4 C3{+t.

Proof: We only need to define TA : IQµ'li'v -4 4; µ ; Wµ+" such that for any E in Sig',

lzýt ößß ; Modcx+'(Tý) = PE' ,E

Note that Iµ lT = IYµ ; 414W and 0; Vµ+` = xF"+ ; WYµ+`, where the latter follows from
Corollary 4.2.22. So for any EE Sigz we have:

1+
= (Wµ(E)+O)

and
(E, 0)

_
(W"(E')+0)

So we can define
Tý. -1M: ltµ'12riT(E) -ý ýµ}6ýýý(ý))

+

i. e.

4.2. DESCRIPTION LOGICS IN A CATEGORICAL SETTING 117

We now only need to show that

b ý£ý ; Modcx+ýýTý = 13k'

Note that we have that:

v7(E) ; Modcx+' (T)=6 A(£) - bWµ+ýEý = b, O)

and µ; l+ 1+
p ; bý =ßE' E; bý (Eý

Note that for any I+c-model (M, f) over (E, I) we have

&, (, E+& (M, f) = (511 (M), f)

as well as

E>(bý(Q (M, f))) =6 E)(bE(M)) = (SE(m), f)
thus

_ pß . bµ . blTW- 6µ+I, Jýjj(E) -EE' ß'µ(E)

and so
b ýýýý ; Moden+'(TE) = 0'E) ; b(E) ,

as desired. 13

So far we showed that any description logic can be extended to a description logic with
individuals, this was presented in Definition 4.2.10. This definition tells us not only how

to construct description logics with individuals, but also shows that for description logic

14: Z -ý Cpl with EE Sig'sentences of p+c : Z+c -+
U? l-Ft are SenZ(E)+E('Yµ(En)xln),

nEw
i. e. a disjoint union of original E-sentences in I and a set of pairs (c, i) with cE TO (E)n

an n-ary concept and iEIa tuple of individuals. The set E (W (En) X In) provides
nEw

the information about individuals, this makes it exactly what we defined as an ABox in
Section 2.2. This justifies the following notation:

Notation 4.2.31. Because Senµ+` is a disjoint union, any set SC Senµ+` (E, 1) can be

presented as a triple (0, R, A), where 0 consists of all the concept inclusions over E in S,

R consists of all the role inclusion axioms over E in S, and A consists of all the sentences

of the form c(i) with cE 'I"' (En) and iE I", where nEw; we call 0 the ontology, R the

RBox and A the Abox of the set S.

4.2.3 Query conservativity and query expansion.

We now investigate the interaction between ontologies and ABoxes. Firstly, it should be

clear that after adding an ABox to an ontology we will still be able to derive all consequences
of the ontology. This is stated by the following result.

118 CHAPTER 4. FRAMEWORKS WITH ABOXES

Proposition 4.2.32. For any p: 2 -+ ei{, any signature EE Sig1, any ontology 0c
Sen'(E), cp E Sen'(E) and any ABox A, the following holds:

O ýE cp implies (0, A) ýýý(E) gyp.

Proof: Assume 0 t4 V.

If (M, f) ý= ä(E) (0, A),

then M 0,

so ,M cp,
SO (. M,, f)

1: 1

The converse does not always hold. To investigate this, we introduce the definition of
query conservativity.

Definition 4.2.33. A description logic p: I -+ Cý-l is query conservative if for all
(E, I) in Sign+` and all (O, A) S Senz+i (E, 1) and cp E Sen'(E)

(0, A) I(E, JJ) `p if 0 ýE V

The following example shows that ACC is not query conservative.

Example 4.2.34. For 0= {A C dr. -'A, -, A C Vr. A} and A= {r(a, a)} we receive that
(0, A)=TC1 but0ý'- TC1.

Now we define the notion of query expansion. Roughly speaking, if description logic
p: Z -+ CI{ has query expansion, then for any ABox AC Senz+`(E, I) we have that for
every E-model M in .T there is a (E, I)-model MA in Z+c, which satisfies A and its reduct
to Z satisfies exactly the same E-sentences as M does.

Definition 4.2.35. A description logic p: I -+
i? has query expansion if for all (E, I)

in Sign+i and all AC J(W (En)xIn), for every E-model M, there is a (E, 1)-model MA

nEw

such that MA H+' A and ö(", j) (MA) =E M, where M=r, M means Al' and M satisfy
exactly the same E-sentences.

Now we show that query expansion implies query conservativity.

Proposition 4.2.36. If it has query expansion, then p is query conservative.
Proof: Suppose (0, A) ý=ýýýIý W, and Al 14 0, we need to show Al 14 V. If µ has

query expansion, then there is a model MA such that MA ýý IA and býEI)(MA) 1- 7" 0,
therefore 6' 1i(M-4)

4 W, this implies that Al ýE cp as desired. 13

Now we show query expansion for £G and £G3
,

by Proposition 4.2.36 it also proves
query conservativity.

First we show that e'c : £G -+ Cpl has query expansion property.

4.2. DESCRIPTION LOGICS IN A CATEGORICAL SETTING 119

Theorem 4.2.37. Description logic ec : £G -4
U has query expansion. In other words,

every £G E-model M can be extended to an £f-+c 4)"(E)-model (fit', f), s. t. for any

cp c SenEC(E) the following holds :

(M, f) ý=Il` ý£) V iff .M ýE ý'.
To prove the above theorem we need an auxiliary lemma, but first we show how M' is

constructed, given CC-model M= (IM 1, "), we define:

" IM'I = IMI J I,
" for any atomic concept p, we define pJM', f) = pm w I,

. for any role r we define:

r(M', f) (x, y) if rM (x, y), for any x, yc IM I or T for any x, yEI

Lemma 4.2.38. For any EL-concept C we have C(M', f) = CM w I.

Proof: The proof is by induction:
Let:

"C=p, it is immediate that p(M', 1) = pm w I,

"C= Cl fl C2 this case is trivial,

" for C= 2r. C' we have that:

2r. C'(M', f) = {x EI (Ml, f) lI for some y, r(M'. f) (x, y) AyE C'(M', J) }

= ({x E IM II (2y)rM (x, Y) AyE C'M }_ 9r. C'M)

W ({x EII for some y, r(M', f)(x, y) AVE C'(M', I)} = I)
i. e., Sr. C'(M, f) = 2r. C'M UI

Proof: Now we can prove Theorem 4.2.37. Let cp =CCD, where C, DE Con"(E).

(M', f) ý="+` CcD

iff
C(M'. f) C D(M', f)

iff
CM ICDM WI

iff
CmCDM

iff
AEG CcD

11

0
Similarly we show that e+c : EG' -* C97 has query expansion property.

120 CHAPTER 4. FRAMEWORKS WITH ABOXES

Theorem 4.2.39. Description logic e+c : EC+ -a C'-[has query expansion property. In

other words every EC+ E-model M can be extended to aI (E)-model (M', f) in £G++c,

s. t. for any cp E Sent & (E) the following holds:

(ýýýI)ýýErjý(PifMý44

Proof: Note that by Lemma 4.2.38 for any EG+-concept C we have C(M, 1) = CM W I.

We distinguish two cases:

1. V=CCD where C, DE ConE-c+(E), but this was already proven in Theorem 4.2.37.

2. V= rl o".. o r� Cr with n>1, then we have that

r(m, f) (xo, xi), rnM, f) (x,,
-1, x,,) and r(M, f) (xo, x,,,)

(%'1, f) r(E I)
4 ri o ... on, Cr

if

iff

if

for xo, xl.... , xn E IMI

r(M,
f) o ... o TnM, f) C r(M,!)

i
(for xo, xl, ... , xn EI it is trivial)

rMo... orn CrM

MH rlo"""or»Cr

Cases (1) and (2) show that (M, f) ="(E I) `c if M ýEc+ W as required. 0

4.2.4 Concept interpolation

In this section we introduce the notion of concept interpolation. We could say that

given an assertion Bp(i) about an individual, which is a consequence of a knowledge base

(0, A), concept interpolation `splits' the consequence into two types of reasoning: determine

whether there is ii such that Vi(i) is a consequence of A and >/i CV is a consequence of 0.

Before we can formulate the notion of concept interpolation we have to define what does
it mean for O(i) to be a consequence of A.

Definition 4.2.40. Given p: I --ý
ZT, ABox A, E TO(En)nEw and iE In, we say that

V)(i) is a consequence of A w. r. t. p and write A ý=P(Ej) +l'(i) if for every E-model M in I

and every f: I -+ I5E(M)I

bE(M), f) A implies (a£(M), f) (E), I) () Op"(Er)
Now we present the notion of concept interpolation. Recall that, intuitively, concept

interpolation tells us that given (0, A) C Senz+`(E, I) and Bp(i) E Sent+`(E', I) such that

Bp(i) is a consequence of (0, A) in 2+t, then we can find a finite interpolant 0E TA(E),

such that ? i(i) is a consequence of A w. r. t. u and 0C ýp is a consequence of 0 in Z. So the

idea behind this notion is very similar to that of Craig Interpolation.

4.2. DESCRIPTION LOGICS IN A CATEGORICAL SETTING 121

Definition 4.2.41. Let p: I -+ C? { be a description logic. We say that p has concept
interpolation if for any signatures (E, I) and (E', I) in Sigh+`, with E -+ E', and any
(O, A) S Sera+` (E, I), cp E ('P (E'))n, and iE I", if (O, A) ý=. T ; Il <p(i), then there exists

,0E (ßµ(E))� such that A
,, I)

1(i) and 0 j7,

As already shown in [62] EG+t has concept interpolation. In a very similar way it
is possible to show that EL +c has concept interpolation. On the other hand, many
description logics of higher expressivity do not have this property. For instance ACC, as
it is possible in ACC that after adding a consistent ABox to a consistent TBox we could

receive an inconsistent KBox, this was already presented in [50].

Example 4.2.42. For comorphism e2 c+t as defined in Example 4.2.8 we are unable to
find concept interpolant, as we could have the following: 0= jr, o r2 C r} and A=

{rl (a, a'), r2(a', b)}, then
(0, A) ý=E'c' r(a, b)

but we cannot find an interpolant defined in Definition 4.2.41. This is due to the fact that

using morphism e2 c we are unable to formulate expressions with complex roles like rl o r2

as we have only role names available.

Now we show that comorphism e3 c+c from Example 4.2.9 has concept interpolation.
But first we will need some auxiliary notions.

Notation 4.2.43. Let EE Sigj and (O, R) C SeneG3 (E). Let us write

OR=OU{3rl. 3r2.... 3r�. DC3r. D1Rh££9 rlo"""or�Cr

and rl, ... , r,,, r, DE Cone'c9 (E)}
.

Now we show that answering queries about individuals in EG3 -Fa reduces to answering
queries about individuals in EG+t.

Lemma 4.2.44. Let E, E' E Sit ý9 be such that E" E', let
0,7R, A9 SenEC3 +`(E, I) and CE Conec4 (E'). Then:

ýýRýA) ýEij C(i) if (0,7Z�4) h(E jý C(i)

Proof: The direction "=" is straightforward.
For "first we show how model M of (OR, A) extends to M' which admits RBoxes,

we also show how these extensions interpret roles.
For any signature (P, R, I) given (OR, A)-model M we define (P, R, I) model M' in the

following way:

" the domain IMI = IM'I,

. CM = Cm' for any CEE

9 i'" = iM' for any iEI

122 CHAPTER 4. FRAMEWORKS WITH ABOXES

9 let (rM)r. ER be the least family C IM'I x (M'I such that:

- rM C rMo

- if (ij, ij+l) E r"', for 1<j<n, and rl o"""o rn CrER, then (1, i�+1) E rM'

It is easy to see that M' is a model for (O, R, A) and CM = CMS.

To prove assume that we have (OR, A) jký lý C(i), let M be a model such
that M (OR, A), but M ýJ ' C(i), as presented above we can extend M to a

model M' such that M' f£ I+ (O, R, A) but as CM = CM' and im = iM', we have

Jul' ýý ý` C(i). Q

Now we show the following proposition:

Proposition 4.2.45. EG3 +t has concept interpolation.

Proof: Let (E, I) E Sigeg +`, (O, TL, A) c SenE'cg +` (E, I) and Bp(i) E Senc'ct+`(E, I).
Assume

(0,7, A) I(E I) ýP(i)

We distinguish two cases:

(a) V (i) = C(i),

fib) W(i) = ri o ... 0 rm (il, i2)"

For (a), first note that in Lemma 4.2.44 we already presented that given 0, R. and A,

the pair (0, A) in £G+c gives exactly the same answers to the queries of the form C(i)

as the triple (0,1Z, A) in £G3 +c. From this it follows that for queries of the form C(i) the

problem of finding the interpolant in EL3 +c reduces to £G+t.

For (b), first we need some auxiliary lemmas. First we introduce a lemma stating that
if in £G3 +t a triple (0, R, A) entails a role assertion then 0 does not play any role in that

entailment and can be removed without any harm.

Lemma 4.2.46. Let (E, I) E Sigý'Cg +` and (O, 7Z, A) C Sen" +`(E, I). Let rl o"""o
r�(il, i2) be a role assertion, with rl, """, r� EE and il, i2 E I, then:

(O, 1
,
A) ý(E 1) r1 o ... o rn(il, i2) implies (%Z, A) ý1ý ri o ... o rn(i1, i2)

"-

Proof: We distinguish two cases:

(a) rl o"""o rn(i1, i2) E A, then it trivially follows from (R, A),

(b) r1 o""" or,, (il, i2) ¢ A, but then there is a sequence of role assertions r1,1 o ---o
rl, m.

(i 1, i'), r2,1 0"""o r2,1 (i', i"),..
-, rk, 1 o"""o rkj (i, i2) in A and a role inclusion rl, l o

o rl,, o. ""o rk, l o"""o rkj C Ti o"""o r� in R. These two facts together give us
(%Z, A) 1(E I) r1 o ... 0 rn(i'1,12)" Q

4.3. CONSTRUCTING A FRAMEWORK WITH INDIVIDUALS 123

This leads us to the lemma which, roughly speaking, states that if (R, A) entails some

role assertion rl o"""o r�(il, i2) then there is a sequence of role assertions r1,1 o"""o

rl, m(il, i'), r2,1 o"""o r2,1(i', i"), ... , rk, l o"""o rkj(i, i2) in A, such that for rI jo... o

r1�io"""ork, 1o"""ork,, we have A= b(il, i2)and7Z. }= & r1o"""orn.

Lemma 4.2.47. For any role assertion rl o"""o rn (il, i2) E Sen649 +`(E, I) and (R, A) C

SenCý3 +` (E, I), such that (R, A) ýý ij rl o"""o rn (ii, i2) there exists 7P: r1,1 o"""o rl,,,, o

o rk, l o"""o rk, j such that A ý(E Il 'ý/'(ii, i2) and R ý6ý Iý ` z/i C rl o"""or,,.

Proof: The proof is straightforward by Lemma 4.2.46 and the way how model M' in the

proof of Lemma 4.2.44 is constructed. 13

But Lemma 4.2.47 shows how to find an interpolant for (b) in Proposition 4.2.45, which

proves the Proposition. 13

4.3 Constructing a Framework with Individuals

In Section 3.2 we introduced the notion of framework, in order to study in an institutional

setting the work of [50] which explored the relationship between robustness properties

and interpolation properties. The main idea was to allow ontologies to be written in one
language, while their consequences could be tested, or queried, in another language. This

requires both ontologies and queries to be translated into a `global language'.
Now we would like to apply this notion of frameworks to description logics with indi-

viduals: given an ontology in one language, we might like to query what it tells us about
individuals. In other words, instead of querying it through a query basis 77 :Q -- G, we
would like to query it from the institution Q+c. However, there may be cases where a
query basis has no corresponding morphism; to allow for such cases, in Definition 4.2.25 we
defined DL-comorphisms between description logics. Our query bases for description logics
Q -±+ Cpl and C9 =-* CW are therefore comorphisms as in Definition 3.2.3, together with
natural transformations r: IV(E) 3 Tµ(-V7(E)), for each signature Ein SigQ.

So far we have established that given a description logic p: I -º C7{, institution T

extends to an institution I+t (cf. Definition 4.2.10). We have also shown that any DL-

comorphism extends to DL+t-comorphism (cf. Proposition 4.2.28). Using these two facts

we can show that any framework u over a query basis tj can be extended to a framework

with individuals p' over a query basis with individuals 77'. Thanks to that we can use an
ontology 0 together with an ABox A and post queries about individuals. This is presented
in the Corollary below.

Remark 4.3.1. In the remainder of the chapter all the comorphisms are in fact DL-

comorphisms.

Corollary 4.3.2. Given a framework p: G --* g over a query basis rl :Q -+ q, where
G, Q and C are description logics, we can extend p and rl to a framework with individuals

µ& : G+t -4! 9+t over the query basis with individuals il' : Q+t -4 g+t.

124 CHAPTER 4. FRAMEWORKS WITH ABOXES

This is graphically presented in Figure 4.13.

As we have that given a description logic u :. T -4 Cpl there are morphisms u+
and µ- :. T+t -+ I and a comorphism fl: I -a I-+i, we are able to establish what are the

relations between frameworks µ: G -* 9 and p' : G+L -4 9+c, and query bases 77 :Q-C
and 71` : Q+t -+ G+c. Similarly we can determine relations between their component insti-

tutions. This is presented in Figure 4.13, it also presents the list of morphisms and comor-

phisms used. For the sake of simplicity, for each pair of institutions I and I+a, Figure 4.13

mentions only comorphism V :. T -+ Z+a, but as Definition 4.2.18 and Definition 4.2.19 tell

us that there are also morphisms v- : T+t -41 and v+ :I --+ Z+t respectively. Taking

that into account Figure 4.13 to a great extent summarizes relations between frameworks

and frameworks with individuals (similarly for query bases) and between their components.

1. Morphisms:

. µ: G-RCN[
Q M-7

. v: g -aCN
" µ+t C+t e-? {-+t

" C+t : Q+t --> Ci{+t

" v+c 9+t E? -i+c

2. Comorphisms:

" A: Q--*g
" r. ̀ : G+t -º C+c

" A' Q+L -º G+c

" v: C9-4C+c

" µ: G-äG+t

"£: Q -a Q+c

" 1ý: Cfl-C i+L

+L

+L V+L +L

ýc J1 f/
ii+L

v

� f/ 1m

Figure 4.13: Construction of a framework with individuals.

Proposition 4.3.3. For framework n: G -- g over query basis A: Q-+9 and framework

rc+t : G+t --º 9+1 over query basis A+t : Q+a -+ c+c. The following holds:

k; U = µiKL

+v = At

Proof: Here we just show the case for rc ; V= j; n`, as the other one is very similar. The
proof has three parts showing composition of three components of comorphisms.

(a) First we show that -'I ; VJ = -tµ ; -K`. Let EE Sign then we have that:

= (v-(E), 0)

4.3. CONSTRUCTING A FRAMEWORK WITH INDIVIDUALS 125

and

., i, "' (. 1-'` p) I"' (E, 0) = (4 (E), 0) .
(b) Now we show a" ;W= aµ ; a". First note that for any EE Sign and cp E SenC(E) we

have that aa(v) = c', and for any AE Sigh and 'i E Sený(A) we have that a"(0)

Let cp E Sen'C(E), then
a, PR(E)(aE((P)) = aE('P)

and
a" (r) (ýo)

,)
(a4 (v)) = a' (, ýpp ,E Aý; 7

The last step is by the fact that cp E SenC(E), so a R(E) translates it just as ar does.

(c) Finally, we show that /3i7 Qµ. First note that for any model (M, f) in

G+t over (E, 1) we have ß£(M, f) = M, with M an G-model over E and similarly for

models in 9+t and 9.

Let (M, f) be a 9+t-model over (4"(E), I) then

ar(I3 (E) (M, f)) = PIE (M)
and

(M, f)) = ßý(ßE(M), f) = ßE(M)

0
For the bottom rectangles in Figure 4.13 we have mixed morphisms and comorphisms,

we can make these rectangles commute in two ways: by replacing it, and 1&- with 14-,
ý- and 1- respectively, alternatively we can make these rectangles commute by replacing
these comorphisms with µ+, ý+ and 1 respectively. Then by Proposition 4.2.20 we
immediately obtain:

µ ;µ= µ+c; l

and

=

=

Notation 4.3.4. In what follows, unless stated otherwise, we will use the names for mor-
phisms and comorphisms that are introduced in Figure 4.13.

Lemma 4.3.5. For framework is :G -+ G over query basis A: Q -+ G, we also have
framework n; v: G -* G+t over query basis Al : Q+t -+ +t, and the following holds for

all signatures AE Sig', EE Sign and (E, I) E Sig-', ontology 0C SenC(A) and query
cp E SenQ(E):

0 HEAP if 0H(E, J)cp.

126 CHAPTER 4. FRAMEWORKS WITH ABOXES

Proof: The direction "=" is immediate.
For the direction "4", assume 0 ýý

I) rp. Let ME Modý(ý"(E) U 4; a(A)) such that
M ý=(ý (E)u-b�(A)) aA'(O). We want to construct c+c-model (M, f) with

By Definition 4.2.3 we know that Ibý4�(£)uýa(n))(M)l 0,
therefore there is xE and we set f (i) =x for all iEI. Thus we have a
model (M, f), such that (M, f) ý=9+ ̀(ý)uýa (n), r) a'(0) and thus (M, f) ý9+ `(E)uýa(A),

I)
aý(cp). From this it follows that M a'(W) .Q

Theorem 4.3.6. For framework r. :G -* 9 over query basis A: Q -+ 9 and framework

'c ;v: G -4 9+t over query basis A' : Q+t -º G+t, signatures AE Sig'e, EE SigQ and
(E, I) E Sig-Q+`, any ontologies 01

i
02 C Sen' (A), the following holds:

Ol CA(E r) 02 implies 01 CAE 02.

Proof uses the fact that for any institutions r: Z -4 I+c with EE Sig' we have that
Sen'(E) C Sen'+`(4D"(E))
Proof: Assume Ol Cr 02, that is 02 ý(E I) cp implies Ol ýýý I) cp for V E Seng+`(E, I).
This gives us that a"7('62) ý:, (n)uýaý(E, I) a(E, I)(cp) implies an17(C72) ý

R,, in)uýa"iE, i)
a(£ I) (W) for cp E Sen"(E).

Assume c4(02) I (A)uI�(E) o (cp) then

%il 17
. (n)u0a(E)(an(02)) -0(R(n)uýa(E)).

I) a0. (n)UOI(E)(aEM)

thus

This gives us

Therefore

and thus

this gives us

aA; 17 9+ At (dz) (A)U(O"(E), I)) a(Eýt>(a4('P))

aÄ`&7(02) r(
t(A)v(ý"(E),

I)) a(E, I)(co)

anýýdi) ý(ý"(A)u('"(E), I)) a(E, t)(W)

a
il \&

D. (A)uZA(E)(anýOr)) ý(ýR(ý)u(ý"(E), t)) a(E, I)(W)

From this it follows that

so by Lemma 4.3.5

Thus

an(0i) [-- "(A)u(4ý''(E),
I)) aEM

anPl) Iý4ýI(A)UOA(E)), I) a'(W) I

c (Oi) ýýýR(A)uZ (E)) aEýýP)

0, hl p"

as required. I .1p

4.3. CONSTRUCTING A FRAMEWORK WITH INDIVIDUALS 127

4.3.1 E-entailment for knowledge bases

As already suggested in [50] when we are using ontologies together with ABoxes, we find

it more useful to formulate E-entailment based on instance checking rather than based on

subsumption, which is usually too weak in this case. In addition one has to determine how

to include the ABox into the framework. In general, an ABox can be either a part of the

ontology or a part of the query language. Here we consider only the case when the ontology

and the ABox are closely related and the ABox does not change significantly more often
than the ontology.

Above we presented how ABoxes and ontologies may interact together (recall the notion

of query conservativity in Definition 4.2.33). Now we investigate the relations between E-

inseparability and E-inseparability w. r. t Q+t instance checking.

Theorem 4.3.7. For framework k: G -3 9 over query basis A: Q -+ g, with v: G

query conservative, and framework rc` : L+t -+ G+t over query basis A: 2+t -+ c+c,

signatures AE Sit, EE SigQ, (A, I) E Sig4+`, (E, I) E SigQ+6, any antologies 0i, 02 C
Sen'c(A) and ABox A, such that AC ßµ(A) x I. We have that:

(Ol, A) Cýý r) (02i A) implies Ol CE 02.

Proof: Assume (01, A) C(E I) (02, A), we want to show that Ol CE 02.
Assume 02 ý=ý W, i. e. a"A 4D

(02)
'(n)uý�(E) aE(cp). Therefore

an(02, A) I((V~(n)u. A(E)), r) c (ýP)

Thus

an(Oi, A) ý=((-PK(n)uVA(E)), 1) aE(ýP)

If v C? -l is query conservative then

an(0k) ý
R(n)uýa(E) aE(ýP)

Thus Ol I4 cp, as required.

The converse does not always hold. This was already shown in [50], where an example
for

,
A. CC was presented:

Example 4.3.8. Let IAcc be a framework over itself as a query basis. Let 01 = 0,
02 = {A C Vr. --, A, -, A C Vr. A} be A-ontologies for 1,4cc, and let E= {r}, where A, EE
Sig-44c. Then we have that Ol ;. ' °C 02. But if we extend framework 1AGC to 1Ace+, and
add an ABox of the form A= {r(a, a)} to O1 and 02 we receive that (O1, A) is consistent
but (02, A) is not. This in turn gives us that:

(02, A) I'E r)+` 1(a)

but
(Oi, A) r-(E I)+' 1(a)

Therefore (01, A) 01A i)+` (02i A), as assertion 1(a) separates (Oi, A) and (02, A).

128 CHAPTER 4. FRAMEWORKS WITH ABOXES

The following can be understood as a partial converse of Theorem 4.3.7.

Theorem 4.3.9. For framework is G -º G over query basis A: Q -4 G and framework

r. ̀ : ýC+c -a G+t over query basis A& : Q+t -+ G+c, such that g+t has concept interpolation

and v: 9 -4
U -l has query conservativity for any signatures AE Sit, EE SigQ, (A, I) E

SigC+`, (E, I) E SigQ+`, any ontologies Ol, 02 C Sen'(A) and ABox AC Sen'c+`(A, I).

We have that:

Ol QE 02 implies (01 i A) (E (02, A) .

Proof: Suppose 01 CA 02 and (O1, A) ¢ýEýI) (02, A), so there is ýp E Seng+`(E, I), such
that (02, A) I-- (E,

I) cp but (01, A) (E,
I) ca"

. If cp E SenQ(E), then by query conservativity we have 02 HE gyp, whence Ol 4c

and so (Ol, A) ýý
1) c giving a contradiction.

" If 'p is of the form X(a) with XE and aEI then by concept interpolation
there is ?P E'Y"(I' (E)), such that A 1--fnuE, I) tp(a) and

an(O2) ý4ý(A)uI>a(E) C X)

and so

If

then

so

c (01) ý (A)u-Da(E) 74R(A)u0A(E)('P C X)

(Mlf) aA(01, A),

M ý(0"(A)U-Da(E)) ý(0"(A)Uea(E))(10 C X)

10
((A)U (E))(M) C xai4�cýw4, (EýýýM)

moreover, f (a) E Via« (A)U,, (E) (") and therefore f (a) E xo(()U, (E) (A),
contra-

dicting (01, A) P"

In both cases, we obtain a contradiction, so we conclude (Or, A) (E 1) cp as desired. D

The following theorem was originally introduced in [62]. Here it follows from Theo-

rem 4.3.9 and from the facts that description logic ec : EG -+ C? l has query expansion
property and that eG+t has concept interpolation.

Theorem 4.3.10. For framework 1EC : EG -+ EG over itself as a query basis and framework

lEC+, : EC+c -4 EC+i over itself as a query basis, any (E, I) E Sijc+` with EE Si/c,

any ontologies 01
i
Oz 9 Sen-" (E) and ABox AC SenEc+`(E, I), the following holds:

(OA) c1 i)` (02, A) if OI CE f- 02- lt

4.3. CONSTRUCTING A FRAMEWORK WITH INDIVIDUALS 129

Since we know that for an institution of description logic g there is a description logic
G+t, such that there is a conservative comorphism G -+ g+c, the following theorem is a
direct consequence of Theorem 4.3.10 and Lemma 3.2.29.

Theorem 4.3.11. Let 9 be an institution of a description logic and G+t its corresponding
institution with individuals in the signature. Then for frameworks rc : EC -* ig over itself

as a query basis, with surjective /3" and rc` : EC+t -* 9+t over itself as a query basis,

with conservative comorphism n', any A, EE Sit' and (E, I) E Sijl+`, any ontologies
01

i
02 9 Sen" (A) and ABox AC Sen"+`(A), the following holds:

019E02 if (019A) CK(E, 1) (02, A) .

Proof: The direction ". #" immediately follows from Theorem 4.3.7

For first assume that 0 CE 02, by surjectivity of ßK we get that 01 CE'C 02. By
Theorem 4.3.10 we have that

(Oi, A) CAE iý` (02, A) .

Assume a'(E I)
(02, A) ýý+` a(ý I)

(cp) and let (M, f) E Modg+`(4-K` (E, I)) such that

B+c rc" (M
e

f) ý(ýRý
(E, I)) a(E, I)

(Ol
r

A)

Then

ý(E rj (01, A)

as signature morphism a is the identity we have

As

we get

This implies

#K"I) (m, f)

(019A) Clac+AE r)'
(Oz, A)

,

QýE, Iý (M, f) ýýE 1'(02o-4)*

(M, f) ar(J, I) ((o2, A)*) .
By conservativity of rc& we get

Modg(a(E, t)((O2, A)*)) 9 Mode((a(E, t) (02, A))')

Since a(ý ,)(v) C (a(E,
r)

(O2, A))* we get (M, f) ý(an, (E, r) (ýP) This gives us that ((E, r))
(01, A) C(ý r) (02i A) as required. o

Chapter 5

Deciding the >-entailment Problem for

EL SW

131

132 CHAPTER 5. DECIDING THE E-ENTAILMENT PROBLEM FOR ELSI{

5.1 Introduction

In the previous chapters we presented the notion of E-entailment in the institution inde-

pendent way; now we present a particular case of that problem. In this chapter we consider

ontologies formulated as general CBoxes (TBoxes together with RBoxes) in the description

logic EGS? -t obeying some additional restrictions, we also allow for queries formulated in

the same logic. As Proposition 3.2.11 suggests that in such a case employing frameworks

does not give us any advantage, we will investigate that problem directly in EGSn.

This chapter extends the result presented by Lutz and Wolter [61] for description logic

EG. The main result states that the E-entailment problem for such ontologies can be solved
in ExPTIME. Thus, this problem is no more complex than for plain EC, which was shown to

be ExPTiME-complete [61]. For comparison, the computational complexity of this problem
is 2ExPTIME-complete for more expressive description logics such as ACC, AGCQ, and
AGCQI [40,60], but even in such simple formalisms as acyclic propositional Horn Logic it

is co-NP-complete [39].

It was proposed in [40,601 to provide ontology designers with a tool offering automated

reasoning support for deciding E-entailment. Thanks to that they would be able to trace if

the modifications made in the ontology, like refining or module extraction, had no impact

on relationships between concepts of the original ontology.
The algorithm described in this chapter is based on and described along the lines of the

algorithm deciding conservative extensions in EL [61].

5.2 Logical difference

In Definition 3.2.16 we set what does it mean that ontology 0 E-entails another ontology
O'. Now, for the convenience of notation, we introduce the notion of logical difference and
define the notion of E-entailment in £GS7{ in terms of logical difference w. r. t. a signature
E for TBoxes, RBoxes, and CBoxes.

Definition 5.2.1 (E-difference, E-entailment). Let C= (O, R) and C' = (0', R. ') be two
ELS3i CBoxes and Ea signature. The E-difference, DiffE(O, O'), between 0 and 0'
is defined as

DiffE(O, O')={C 9D1Oýl- C9D, O'ýC9D, and Sig(CCD)CE} ,

where C and D are EG-concepts. 0 CE 0', if, and only if, DiffE (0,0') = 0. The E-
di fference, DiffE(R, R'), between 1. and 1Z' is defined as

DiffE(R, R') _ {rCsýR. &rCs; R'ýrCs; r, sEE}
U {rorgrl1ZV rorCr, 7'=rorCr, withrEE} .

9Z CE R', if, and only if, DiffE(R, R') = 0. The E-difference between C and C' is
defined as`

DiffE(C, C') {CcDICýl-CCD, C'I--CCD, andSig(CCD)CE}
U DiffE(R, 7Z') .

5.3. CANONICAL MODELS AND SIMULATION RELATIONS 133

C CE C', if, and only if, DiffE(C, C') = 0.

As an illustration consider the following example:

Example 5.2.2. Let E= {A, B} be a signature C= (O, TZ) and C' = (0, ? Z) be two

CBoxes, where 0= {A C B}, 0' = {A C Br. B', 9s. B' C B} and 7R = {r C s}. It is easy
to see that 0 CE 0', but 0' gr O. But if we take RBox into account then CBoxes C and
C' are E-inseparable.

Observe that, there exist EG-ontologies 0 and 0' such that all CIs CCDE DiffE(0,0')

have at least size doubly exponential in 0,0, where we define the size 11011 of an ontology
0 as follows. The size 1ICII of a concept C is the number of occurrences of symbols used to

write C down and 11011 => IICII + IIDII"
CCDEO

We also define the out degree of C, as the maximum cardinality of any set P of pairs of
the form (r, C'), with ra role name and C' a concept, such that f (f, C,)EP 3r. C' E sub(C).
We use sub(C) and sub(O) to denote the set of subconcepts of a concept C and the set of
subconcepts occurring in the TBox 0, respectively.

5.3 Canonical models and simulation relations

In this section, we construct canonical models for EG+ and describe relations between

canonical models using a simulation relation.

Definition 5.3.1 (E-Simulation). Let M1 and M2 be interpretations and Ea signature.
A relation SC Am' X AM2 is a E-simulation from M1 to M2 if the following holds:

- for all concept names AEE and all (dl, d2) ES with dl E AM1 we have d2 E AM2;

- for all role names rEE, all (dl, d2) E S, and all el E AM' with (dl, el) E rmt,
there exists e2 E AMa such that (d2

i e2) E rM2 and (el, e2) E S.

If dl E AM', d2 E 0M2, and there is an E-simulation S from M1 to M2 with (dl, d2) E
S, then (M2,4) E-simulates (M1, dl), written (M1, dl) <E (M2, d2). If E= PUR, we
write ' <' instead of '<E'.

Let M be an interpretation, Ea signature, and dE Am. We define the abbreviation
dE, M := {C IdE Cm and Sig(C) C E}. The outdegree of an interpretation is the
maximum number of role successors at any point in its domain and for any role in R.

The following characterization of E-simulation establishes a connection between E_
simulation and E-concepts.

Theorem 5.3.2 (Characterization of E-simulation). If (M1, dl) <E (M2, d2), then dEjW"' C
d2 , M2. Conversely, if M1, M2 have finite out-degree, and dE'M' C dZ'M', then (M I, dl) <E
(M2, d2)-

Proof: "#": Let (M1, d1) <E (M2, d2) and CE di'm'. We show that CE d2E9M3. The

proof is by induction on the structure of C. In the induction base, we have that C=T or

134 CHAPTER 5. DECIDING THE E-ENTAILMENT PROBLEM FOR EGSn

C=A with AEE. For the former, we trivially obtain TE d2 'M'. In the latter case, we
have AE dl'M1. Thus, dl E A", which implies d2 E AM' by definition of : 5r,. Hence,

AE d2, 'ß'. Consider the induction step:

"C= Cl n C2. From Cl n C2 E di''"1, we obtain dl E (Cl n C2)M', i. e., dl E CM'

and dl E C2 M'. Then Cl E dl'M' and C2 E di'M' By the induction hyposthesis,

we have that Cl E d2'M2 and C2 E d2 M2 Thus, d2 ECM' and d2 E C2 ', and
d2 e (Cl n C2)M2. Hence, C1 n C2 E d2'M'.

"C= 3r. D'. Suppose 2r. D' E di'm'. Then, dl E (2r. D)M3, i. e., there exists a
d, E Am' with (dl, di) E rM' and di E D'M1. Since (Mj, dl) <r. (M2id2), there

exists adz E 0M3 with (d2i d2) E rM2 and (M1, di) <E (M2, d2). Since D' E dlr'M',

it follows by the induction hypothesis that D' E d2E'M', i. e., d2 E D'M2. Thus, we
have that d2 E (3r. D')M2. Hence, 2r. D' E d2 , ß'.

"a": Define dl < d2 if dl'M' c d2 'M'.
Claim: '<' is a E-simulation.
Let dl s d2. First assume dl E AMA. Then by definition d2 E AM2. Now assume

xl E1 M1, and (dl, xl) E rM'. We have to show that there exists X2 EOM' with
(d29 x2) E rM' and xi - x2. Assume that it is not. Let D= {y EAI (d2, y) E r-"2 }. By

assumption there is no yED, such that xl < y. Hence for every yED there is at least
ti

one C with xl E CM, but y¢ CM'. Choose one - C.. Thus xl E Cy 1, but y¢ Cy 2.
Then dl E 2r. n,

VED
Cy, but d2 V Br. RED Cy. That gives us a contradiction. Q

Definition 5.3.3 (Canonical model). Let C= (O, R) be a CBox in eCk, and Da concept.
The canonical model MD, C = (OMD, c,. MD, c) is defined as follows:

" OMD. C = {D} U {C Br. C E sub(D) U sub(O)};

" CEAMD, C ifCJ-- CCA, for allAEP;

" (C, C') E rMD, c if at least one of the following holds:

(a) C1CC 3r. C' and C' E sub(O),

(b) CM+R C',

where CM+RC' if there exists a sequence 2ro. Do,... , 2r,,. D,, with 2ro. Do a conjunct of C,
ar; +1. Di+1 a conjunct of Di for 0: 5 i<n such that D� = C' and R= ro o"""or,, C r.

The model MD, C can be constructed in polynomial time in the size of C and D as
subsumption w. r. t. CBoxes in EL+ can be decided in polynomial time [8].

Example 5.3.4. For an illustration of canonical models, consider a TBox

0= {Toe C 2isPartOf. Foot, Foot 9 3isPartOELeg}

together with the RBox

7Z = {hasLocationo isPartOfC hasLocation).

5.3. CANONICAL MODELS AND SIMULATION RELATIONS 135

Figure 5.1 shows the canonical model MD, c, where D= 3hasLocation. Toe and C= (0, R).

Toe isPartOf Foot Leg
"

hasLocation
hastocation

hast°ca
-

"
3hasLocation. Toe

Figure 5.1: The canonical model MD, c.

The following lemma summarizes the relevant properties of canonical models.

Lemma 5.3.5 (Properties of canonical models). Let C= (0, R) be a EG+ CBox and Ca

concept in EG+. Then the following holds:

1. MC, c is a model for R.

2. For every DE OMc, c we have that DE DMc, c.

3. For every DE AMc, c and every CE sub(O) we have that

CýDCC if DECMC, c .
In particular, Mc, c is a model of C.

¢. For all models M of C and all dE AM and all DE OMc, c, the following conditions
are equivalent:

(a) dEDM;

(b) (Mc, c, D) 5 (M, d)

5. For all DE 0Mc, c, the following conditions are equivalent:

(a) Cý= DCC;

(b) DE CM°, 0

(c) (Mc, c, C) <_ (MD, C, D).

Proof: (1) Let R be as in the lemma. To show that MC, C is a model of R, let rio.. "or, a C
rER. We show that rm 'o... o rn c'c C rMc, e. Suppose that (Do, Di) E rMc, a
(Dl, D2) E r2 °'c,

...
(Dn_1i Dn) E rn c'c By the construction of canonical model, we

know that we have two sub-cases:

(i) D,, E sub(O) and D. ¢ sub(C). (Note that this implies D; E sub(O) with 0: 5 i<n.)
Thus we have that C= Do C 3r1. D1, C= Dl C 3r2. D2 ... C D�_1 C 3r,,. D,,.
Then from R rl o"""or,, Cr it follows that C Do C Sr. D�" Since D� E sub(O),
by condition (a) in Definition 5.3.3 we receive (DO, D�) E rMc, c.

136 CHAPTER 5. DECIDING THE E-ENTAILMENT PROBLEM FOR EGS7{

(ii) D,, ¢ sub(O), note that this implies that D; ¢ sub(O), for 0<i<n. Then by
Definition 5.3.3: Dcr- Dl,...

,
Dn_1-R Dn. Then, since 1Z rl o. ". o r� r, we

obtain D0-- T, D,,. Then, by condition (b) in Definition 5.3.3 we receive (Do, D, a) E

rMQ, c.

(2) We show that for every DE A"c, c we have DE D-ý I c, c . The proof is by induction on
the construction of D. Suppose:

(a) D=A, for a concept name A, thus we have C=ACA and by Definition 5.3.3 we
have AE A'"c, r, as required.

(b) D= Al n ... f1 A� fl 3r1. D1 fl ... n 3r,,,. D�,. So we have to show that DE AMc, c n
n An °'c fl (3r1. D1)Mc, c fl ... fl (3r n. D, n)Mc, c. The part DE AMc'c with 0<

i<n can be shown in the same way as (a), so we have to show only the part for
DE (3rj. Dj)Mc, c for 1<j<m. But we have D-+"I Dj and so D'-D1. Hence
(D, Dj) E rM°'c and DJ E DMc'c. Thus DE (2rj. Dj)Mc-c, as required.

(3) For "=" assume CDCC, the proof is by induction on the construction of C.
Suppose:

(a) C=A, for a concept name A, then we have CDCA and by definition DE AMc, c.

(b) C= Al n ... n An n 3r1. C1 fl ... l 3rn. Cn. For every A;, with 1<i<n, we
can show that DE Aýc" in the same way as (a). So we only have to show that
DE (ýr3. Cj)Mc. c, for 1<j<m. By the assumption, for every conjunct 2rr. Cj we
have that C=DC 3rr. C3. This, together with the fact that C, E sub(O) and with
use of point (a) of Definition 5.3.3 gives us that (D, C,,) E rMc, c. As C= C2 C C3

and C, E sub(O), by induction hypothesis we get that C, E CMc'c. This in turn

gives us that DE (Br,. C,)Mc. c, as required.

Now we show the direction "=". Assume that DE CMc-c, again, the proof is by
induction on the construction of C. Suppose:

(a) C=A, for a concept name A, then we have DE A'"OX and by definition CDCA

(b) C= Al n... 'n A� n 3r1. C1 n ... n 2rm. C,,,. For every A;, with 1<z<n, we can
show that C=DCA; in the same way as (a). So we have to show only that for
every conjunct 2r1. C� with 1<j<m we get C=DC 3rj. Cj . As we have that
DE (9rj. Cj)-""c, c, there is Cj' ECM c'c, such that (D, C, ') E rMc" . As C3 E sub(O)
it follows by the induction hypothesis that C CC C C5 and C= 2r. CC C Br. Cj.
Since (D, CC) E rMc'c we have that C=DC 2r5. CC, by transitivity of `C' we have
that C=DC 2r3. Cj, as required.

By (1) and the fact that Mc, c is a model of C we have that C=DCC.

5.4. CHARACTERIZATION OF E-ENTAILMENT 137

(4) The direction (b) = (a) follows from Theorem 5.3.2 and the fact that

DE DMc-c. For opposite direction let M be a model of C and dE DM. Define rela-
tion SCA "c, c x AM by setting (D, e) ES iff eE DM, for all DE Amc, c. We have

to show that S is a simulation. Assume that DE AMc, c, where A is a concept name.
From that follows that C=DCA, and by the fact that M is a model of C together

with eE DM we receive eE AM. Now assume that (D, D') E rMc. c. Thus we receive
that CDC 3r. D', which implies eE 3r. D'M. Hence, there exists e' E Am such that

el E DIM and (e, e') E rM. From that follows that (D', e') E S. From this follows that

relation S is a simulation. By definition, we receive that (D, d) E S.

(5) For arbitrary D, consider the following:

" (a) implies (b). Assume that C=DCC. Then DE DMc-c. Since , MC, c is a model
of C we have that DE C""' OX -

" (b) implies (c). Follows from Point 4 of Lemma 5.3.5.

" (c) implies (a). Assume (MC, c, C) < (MD, C, D). Let M be a model of C and
dE DM. To show C=DCC, we have to show dE CM. By Point 4 of Lemma 5.3.5,

we receive that (MD, c, D) <_ (M, d). By (Mc, c, C) < (MD, c, D) and transitivity

of `<', we receive that (M c, c, C) < (M, d). Again by Point 4 of Lemma 5.3.5, we
receive that dE CM. p

5.4 Characterization of E-entailment

In this section, we provide a characterization of E-entailment w. r. t. CBoxes in terms of
canonical models.

Lemma 5.4.1. Let C= (O, R) be a CBox in £G+. Suppose C=CC 2r. D. Then one of
the following holds:

(a) there exists a C' E sub(O) such that CHCC 3r. C' and C= C' C D;

(b) there exists a C' such that C- C' and C [-- C' C D.

Proof: Let C= (O, R) be as in the lemma and let C1CC 3r. D. By Point 5 of
Lemma 5.3.5, we have CE (3r. D)Mc, c. Thus there is a C' E DMc. c such that (C, C') E
r-"O, c. By Definition 5.3.3 of the canonical model Mc, c, it holds that:

(i) C=CC 3r. C' and C' E sub(O), or

(ii) C- C'.

In both cases, it remains to show that C C' C D, which follows from C' E DMc, c by
Point 5 of Lemma 5.3.5.

This lemma is essential for characterizing E-entailment. Intuitively, it states that, given
an arbitrary large concept C, we can always find a possibly shorter concept with bounded

138 CHAPTER 5. DECIDING THE E-ENTAILMENT PROBLEM FOR £CSH

outdegree that expresses the same "relevant" information. What information is considered

relevant, is made precise by a set of consequences KK(D) of a concept D in the presence of

a CBox C. The set Kc(D) is given as:

Kc(D) = {E E cl(C) I C=DCE},

where cl(C) = sub(O) U {3r. C ICE sub(O), r a role in C}.

Lemma 5.4.2 (Bounded outdegree). For all £G+ CBoxes C= (O, R) and concepts C in

£G+, there is a concept D such that the following conditions are satisfied:

1.01-- CCD;

2. KC (C) = KC (D);

3. IIDII 5 DDCII;

4. the outdegree of D is bounded by IICII.

Proof: Let C= (0, R) be a CBox and Ca concept. If the outdegree of C is bounded by
1ICII, then C itself is the wanted concept D. Assume that this is not the case. Then there
is a subconcept Co of C, with

IIPII> IICII for P= {(r, E) 2r. E is a conjunct of Co}
,

such that there is a sequence (possibly empty) ri, ..., r,,, of roles that occur in C and a
sequence E0,..., E,,, of subconcepts of C such that:

- E,,, = C, Eo = Co, and

- 3ri. Ei_1 is a conjunct of E; for all i with 1<i<m.

Thus Co =FnU Br. E where F is a conjunction of the concept names in Co, let
(r, E) ¬P

Q be a minimal subset of P such that for all 9s. G E cl (C), if there is a (r, E) EP such
that C= 2r;. """ Br. E C 2s. G, with i=0,... ' m (where by i=0 we mean that this part
of the path is empty, so we have C=r. E C Bs. G), then there is a (r', E') EQ such that
C= 2r;. " "_ " 3r'. E' C Ss. G. Notice that the cardinality of Q is bounded by IC!. Now, replace
in C the subconcept Co with C1 := Fffl(r,, E,)EQ 9r'. E' and call the result C'. Obviously
(! C'11 < 11C11. To obtain the desired concept D, it thus suffices to execute the described

contraction procedure until the outdegree is bounded by JJC!!. Clearly, 0=CC C'. In

what follows, we show that for all EE cI(C):

C=CCE 'iff Cý=C'CE.

"G". Immediate consequence of 0CC C'.
"=". We show this direction by contraposition. Suppose C C' CH for some HE cI(C).
We have to show that CCCH. There is a model M of C with do c C'M \ HM. For

each (r, E) EP\Q, take a copy M,., E of the canonical model ME, C in which E= dr, E,

5.4. CHARACTERIZATION OF E-ENTAILMENT 139

such that all these copies have disjoint domains, and their domains are disjoint from that

of M. We now define a model M' of C that refutes CCH.

First, we introduce some auxiliary notion. Given xE AM, YE 1XM,. 'E and dE CM, we

say that x and y are connected via d and induce s, if there are two sequences of roles

rl, ..., r, i and sl, ..., s�j such that (x, d) E rM
M'E M'g, o ... or, (dr, E, y) E so ... os and

Rýrlo... or�oros1o... Sm Cs.

Define the interpretation M' = (AMA, {AMA}AEp, {rM'},. ER) as follows:

- A. "': = EM l+1 U AMS'E

(s, E)EP\Q

- Am': =AmU
U A"" s, E, for all AEP

(8, E)E'P\Q

- rM' : =r-111u
U r-"--su v

'I {(x, y) E AM X AM", E (s, E) EP\Q and 3d E CM,
(s, E)EP\Q

such that x and y are connected via d and induce r}

For illustration of M' see Figure 5.2.

It is possible to prove the following:

1. do E CM';

2. for all (r, E) EP\Q, all dE AM'', E, and all concepts Do, dE Dä ' iff dE Dö ''a;

3. for all dE AM and Do E cl (C), dE Dö iff dE Dö';

4. we have M' R.

Point (1) is clear by definition.
Point (2) follows from the fact that model M,., E is a generated submodel of M', i. e. if
(e, e') E rM' and eE 0"''"a, then (e, e') E rM*"a.
Point (3). The proof is by the induction on the structure of Do, the only interesting case
is that with Do = Sr. Dö.

"W': Let dE (3r. Dö)M. Then there is a d' E Dom such that (d, d') E rM. By definition of
M', we have (d, d') E rM'. By the induction hypothesis, d' E D' M'. Hence, dE (Sr. D')M'.

Let dE (Sr. Dö)M'. Then there is a d' E Dö ' such that (d, d') E r". Distinguish

two cases: First, d' E OM. Then (d, d') E rM by definition of M'. By the induction
hypothesis, d' E Dom and thus dE (3r. Dö)M.
Second, d' E LMG\0M. By construction of .

M', we have d' E OM'-a for some (s, E) E P\Q.

It follows by Point (2) above that d' E D' M' implies d' E IM ''$. Since M,, E is a copy of
the canonical model ME, c, we have d' = E' for some E' E AMEX and E' E Dp IM"'. By
Point 3 of Lemma 5.3.5, we get C= E' C D.

By definition of M', d and d' are connected via d�,, i. e., there are dm EC and d,, E E
AM", E and sequences rl, """, r,,,, ei, """, s,, of roles with m, n>0 such that (d, dm) E

r'o... o rmm', (dm, d,, E) E sM' and (d,, E, d) E sM' o ... o SM' 'and ?L rl o ... o r,,, 0
30-510 """o s� C r. Thus, C Brj. """ 3r,,,. 2s. 3s1. """ 23,,. E' C Br. E'. Since d,, E = E,

140 CHAPTER 5. DECIDING THE E-ENTAILMENT PROBLEM FOR £f-SW

we get C=EC 3sl.... 3s,,. E', thus Cj 2rl.... 3rm. 3s. E C 3r. E'. Since C= E' C Do, we
receive C 3rl 3r,,,. 3s. E C 2r. Dä. By definition of Q, there is an (s', E") EQ such that
C 3rl.... 3r,,,.. 3s'. E" C 3r. Dö. Since d�, E CM and 3s'. E" is a conjunct of CM, we have
d,,, E (3s'. E")M and, thus, dE (3rl. """ 3r,,,. 3s'. E")M. And again by Lemma 5.3.5, we get
dE (3r. Dö)-`t
Point (4). To show that M' =R assume that ri o"""o r� CsER and (d', d") E

rMI o ... o rn ", we show that (d', d") E s'"'. We have to consider two cases:

1. d' c A'"''-E, this implies (d', d") E rM' o"""o rn "". Since M,., E = R, we receive
that (d', d") E s"n E, this implies that (d', d") E sM'.

2. dE AM, then we have to consider two further cases:

a) d" EOM, then (d', d") E rM o"""o rn. Since M 7Z, we receive that
(d', d") E sM, this implies that (d', d") E sMI

b) d" E AM-, E, then d' and d" are connected via d, i. e. there are dE CM and
d,., E E AMr''E together with sequences of roles rl,... rk and r�+, ... r, a, such that
(d', d) E rM o ... o rk ,

(dr, E, d") E rmM ,zo... o rn ', E and r= ri with k<1<m.

This together with the assumption induces role s such that (d', d") E5 M'
.

Since M and every Mr, E are models of C and by points (2), (3) and (4) above, it
follows that M' is a model of C. Since do E CM \ HM, Point (3) implies that do ¢ HM'.
By Point (1) we have do E CM' which implies CC9H. 11

For the following characterization of E-entailment, we use a relation '==>I' on concepts.
Let C1, C2 be CBoxes, Ca E-concept, and Da Sig(C2)-concept. We write C => 1D if, and
only if, for all E-concepts E, C2 =DCE implies Ci CCE.

Lemma 5.4.3 (Characterization of non-E-entailment). Let C1 = (O1,1Z1) and C2 =
(02,82) be two SC CBoxes, and EC Sig(C2) a signature and assume 7Zi CE 1Z2. Then
DiffE(C1, C2) 36 0 if, and only if, there is a E-concept C and a Sig(C2)-concept DE cl(C2)
such that:

(a)C2ýCD;

(b) C X41 D;

(c) the outdegree of C is bounded by 11C211.

Proof: Assume that (a) to (c) are satisfied. By (b), there is a E-concept E with
C2 =DCE and Cl CCE. From C2 =DE and (a), it follows C2 CCE, which
implies that CCEE DiffE(Cl, C2).

Suppose CcDE DiffE(Cl, C2). We first show (a) and (b). Note that C and D are
E-concepts. If DE sub(C2), we are done: we have C2 =CCD and Cl KCCD, therefore
CiD. Otherwise, assume that for all CODE ME (Cl, C2), D0 sub(C2).

Let CCD be minimal in the sense that there is no C' C D' E DiffE(C1, C2) with D'

shorter than D. Then D is of the form 3r. D':

5.4. CHARACTERIZATION OF E-ENTAILMENT 141

M'

M r1, E1 MrZ, Ey Mri.

y111
r

"""

dif+l, Ei+1
Eit+9.

Et+9
Efk,

Ek
++

E{ ". dr1. E1 dr9. E9 dri, Q

El E2 Es "- ''

.................
C1

8

x

C,

Figure 5.2: The interpretation M.

" If D=T, then C1 CCD, contradicting the fact that CCDE DiffE(Cl, C2).

" If D is an atomic concept, then DE sub(C2), which we have assumed not be the case.

" If D is a conjunction Dl fl D2i then C2 CCD; for all iE {1,2}, and Cl i& CC Di
for some iE {1,2}. Thus, one of CC Dl and CC D2 is in DiffE(C1, CZ). Thus, D is
not minimal.

By Lemma 5.4.1, C2 =CC 2r. D' implies that one of the following holds:

1. there is a C' such that C-
2C' and C2 C' C D';

2. there is a C' E sub(02) such that C2 =CC 2r. C' and C2 = C' C D'.

Observe that, in Case (1), we have Cl C' C D'. Suppose not, i. e., Cl 14 C' C D'.
Together with C2 C' C D', this implies that C' C D' E DiffE(Cl, C2); contradicting the

minimality of D.
Now suppose that Case (1) applies. From CMºR3C' together with the fact that we

assumed Ri CE R2, it follows C1 =CC 3r. C'. Since in Case (1) it holds Cl = C' C D',

we get Cl Jr. C' C ar. D'. This implies C1 =CC 2r. D'. As D= 3r. D', we have
Cl CCD, contradicting the fact that C9DE DiffE(Cl, C2).

142 CHAPTER 5. DECIDING THE E-ENTAILMENT PROBLEM FOR EGS7-L

Consequently, Case (2) holds. Substitute 2r. C' for concept D. We show that the
Conditions (a) and (b) hold for the concept C and 3r. C'. Condition (a) follows from

C2 CC Br. C' by Case (2). For Condition (b), recall that Ci CC 3r. D' since we

assumed CC 3r. D' E DiffE(C1, C2). Note that, by (2), we also have C2 = C' C D', which
implies C2 = Sr. C' C 2r. D' and, then, C2 =CC 2r. D'. By the fact that 2r. D' is a
E-concept, we have C #j Jr. C'.

It remains to show that Condition (c) is satisfied. Suppose the concepts C and D

satisfy Conditions (a) and (b), Sig(C) C E, and D in sub(02). Take a concept C' that

satisfies the four conditions of Lemma 5.4.2 for C2. By Condition 4, C' satisfies Point (c).

Condition 2 implies that C' and D satisfy (a). Since C #1 D, there is a E-concept E such
that C2 =DCE and C1 CCE. By Condition 1, it follows Cl CC C'. This implies

Cl C' C E. Then we have that C' 76.1 D. Hence, C' and D satisfy Point (b). 0

The next lemma characterizes the relation "=*-1" semantically in terms of E-simulation

between canonical models. Moreover, it states that membership in "#, 1" can be decided in

polynomial time.

Lemma 5.4.4 (Semantic characterization). Let C1, C2 be &C CBoxes and C, D concepts
in , 6, C+. Then we have C =ý-1 D if, and only if, (MD, c� D) <E (Mc, c� C). Hence, the

problem CD is decidable in polynomial time in the size of C, D, Cl and C2.

Proof: "=". Suppose C $i D. Then there is a E-concept E such that C2 DCE

and Cl CCE. By Point 3 of Lemma 5.3.5, this yields DE EMD. c2 and C EMC, ci.
Hence, ' by Theorem 5.3.2, we receive that (MD, c� D) ¢E (Mc, c� C)"

"=". Let (MD, c,, D) :9E (Mc, c�C). By Theorem 5.3.2, there exists a E-concept E with
DE EMD, Ca . By Point 2 of Lemma 5.3.5, we have C2 =DCE and Cl CCE. Hence,
C #1 D. It is well-known that computing the largest E-simulation between two finite

graphs can be done in polynomial time [261. Q

5.5 Algorithm

r.
.,

r

3,

4

F

While previously we have presented results for CL+, in this section we present an algorithm
for deciding E-entailment for its restriction, description logic £GS1-L. The reason for that
is the fact that in our approach the problem for EL+ cannot be decided, as Lemma 5.5.3
does not hold in £C+. Therefore for description logic £G+ the problem remains open.

Before we introduce the algorithm we need some additional lemmas.

Lemma 5.5.1. Let C= (O, 1Z) be a ECS? { CBox, then the following holds for n>2:

C=rlo. . or�Cr if Rý=r1Cr,..., Rý=r�Crand7Zý=rorCr.

Proof: This follows from the construction of canonical models EL as in [8]. Q

As in this section we consider description logic EGSf, we take into account a simplified

version of relation "-" from Definition 5.3.3. This is presented in the following lemma.

5.5. ALGORITHM 143

Lemma 5.5.2. If R is an ELSN role box, then C--+" C' ifj:

(a) there exists a sequence 2ro. Do,...
,
ar,,. D,, with n>1, where 2ro. Do a conjunct of C,

Sri+I. Di+i a conjunct of D; for 0<i<n such that Dn = C' and for every ri with
0 <i<n we have R=riCr and7R[-- rorCr, or

(b) there exists 3r'. C' a conjunct of C and 7Z j r' C r.

We present an algorithm for deciding E-entailment for EL SU. For CBoxes Cl =
(Ol, Ri) and C2 = (02, R2), to check whether Cl CE C2, the algorithm enters two stages.
In the first stage the algorithm checks if Rl C£ 7Z2. In other words, the algorithm first

computes sets of "relevant" role inclusions entailed by Rl and R2, defined for any R by

91={rgsI Rý--rCsand r, sEE}U{rorr-rI rorCrER andrEE} .

This set is computed in polynomial time. After computing sets D and 9i2 the algorithm

computes N2 \ 911- If 912 \ 911 # 0, then IZ1 V=E 9Z2 and thus Cl E C2. In case 312 \ 911 =0
the algorithm proceeds to the second stage. In the second stage the algorithm searches
for a E-concept C such that for some DE sub(02), the Points (a)-(c) of Lemma 5.4.3

are satisfied. The algorithm proceeds in rounds. In the first round, Points (a) and (b) are

checked for all conjunctions C of concept names from E and all DE sub(02). Each check

can be done in polynomial time by Lemma 5.4.4. In case, no suitable C is found in round

one, the algorithm proceeds to the second round in which concepts C of role depth one are

considered. Here C is a conjunction of concept names from E and concepts of the form

ar. E, where r is a role from E and E is a candidate for C from the previous round, i. e., E
is a conjunction of concept names. By Point (c) of Lemma 5.4.3, we only have to consider
those Cs with no more than 11 Os 11 many conjuncts of the form 3r. E. For checking Points (a)

and (b), we make use of the information we have gained about the Es in the previous round.
If still no suitable C is found, the algorithm starts round three that checks concepts C of
role depth two in which we reuse the Cs from the second round as role successors. If again
no suitable concept C was found, the algorithm proceeds to the next round, etc.

To avoid constructing doubly exponentially large concepts C, the algorithm uses a suc-
cinct data structure that represents the relevant information about C. Which information

about C is relevant can be read of the characterization of E-entailment in Lemma 5.4.3:
For every C, take the quintuple

Cl = (Qo, 2i, Q2, Q3, Q4),

where the set Qo contains all concept names occurring in the top-level conjunction of C,

2i = Kcl (C),
Q2 = Kc, (C),
Q3 = {(r, D') E (E n R) x sub(OZ) I C' =: ý1 D' and

Cl =CC ar. C' with C' E sub(Ol) or C-41C'}, and
LQ4 = {D E sub(02) IC =1 D}.

144 CHAPTER 5. DECIDING THE E-ENTAILMENT PROBLEM FOR EGSH

The quintuple CO is said to be determined by C. Intuitively, the components Qi and Q2

contain concepts that are implied by C in the context of Cl and C2, respectively, and Q

contains concepts which, while being implied by D in the context of C2, can be E-simulated

by C in the context of C1.

According to Lemma 5.4.3, the quintuple CO determined by a concept C contains suf-
ficient information to decide whether C is the left-hand side of a CI witnessing the logical

difference between two CBoxes. Moreover, the information in Ca enables the recursive

search described above and to formulate a termination condition for the algorithm to run
in exponential time.

Figure 5.3 presents the algorithm for deciding E-entailment for EGS91. Observe that
the termination condition Q2 \Q#0 corresponds to satisfaction of Points (a) and (b) in
Lemma 5.4.3. Note that Point (a) in the definition of the set F3 uses canonical models,
which are constructed on demand in polynomial time.

Before we continue to show correctness of the algorithm, in Lemma 5.5.4 we explicitly
state the concepts that determine the quintuples constructed in Step 3 of Figure 5.3. But
first we need an auxiliary lemma.

Lemma 5.5.3. Let C= (0, R) be a CBox in £GSU. Let the concepts C and D be given
as

C= Fn n 3r. E, D= Fri n 3r. (n C),
(r, E)EQ (r, E)EQ GEKc(E)

where F is a conjunction of concept names. Then Kc(C) = Kc(D).

Proof: We show set-entailment in both directions.
"fl"., This follows from C=CCD, which follows from CECnG.

GEKc (E)
C'. We show the contrapositive. Let HE cl (C) \ Kc (D). We show HO Kc (C). Consider

a model M 'of Cwith do E DM \ H'o'l. We may assume that do has no predecessor (i. e.,
{d I (d, do) E rM }=0 for all r). For each (r, E) E Q, take a copy Mr, E of the canonical
model ME, C such that all these copies have mutually disjoint domains and are disjoint with
M. Denote the copy of E in M,, E by d,., E. Define a new interpretation M' as follows:

(r, E)EQ

- AMA := AMU U A'"*'lr, E, for all AEP,
(r, E)EQ

. 3M' := SM UU SMr'z U{ (do, dr, E) I IZr C s, (r, E) E Q}

(r, E)EQ

U{(do, d') 3(r, E) E Q, 3 r': (d,., E, d) E r' and 9Z ro r' C s}.

The following can be shown by induction on the structure of Do:

(i) for all (r, E) E Q, all dE AM°, E, and all concepts Do: dE Dom' if dE Dö

(ii) for all dE OM and Do' E cl (C): dE Do iff dE Do'.

5.5. ALGORITHM 145

Input: CBoxes Ci = (01, RI) and C2 = (O2, R2) and signature E C- Sig (C2).
Stage 1:

1. Compute 911 and M2-

2. Compute the set D12 \ 911.

Ifýt2 \ 911 # 0, then output `Cl ZE C2', otherwise proceed to Stage 2.
Stage 2:

1. Compute the set No of quintuples determined by conjunctions of concept names from E.

2. If No contains a quintuple (Qo, Qi, Q2, Q3, Qa) such that Q2 \Q#0, then output `C1 I¢E
C2'-

3. Generate the sequence Arl, AG, ... of sets of quintuples such that Nt+1 = N{ U Ni
, where

J1/, ' is the set of quintuples (Fo, Fi, F2, Fs, F4) which can be obtained from a set Fo of
concept names from E and a set QS (E r1 R) x N; of cardinality not exceeding X1020 in
the following way:

-Fi= Kc1(nAnn 3r. (n D));
AEFo (r, (Qo, Q1'Q2, Q3, Q4))EQ DEQ1

- F2 = Kcz (IiAnn 3r. (nD));
AEFo (r, (Qo, Q1, Q2. Qs, Q4))EQ DEQ3

- F3={(r, D)E(Ef1R)xsub(C2) I
(a) there is a 2r. C' E Fl such that (MD, c� D) <E (Mc,, ci*, C'); or
(b) there is a (s, (Qo, Qi, Q2, Qa, Qa)) EQ such that:

(i) DE Qa and 1 j= a r; or

(ii) (t, D)EQa, Riý= sCr, Ri1= t C: r, and rorCrE1. i};

- F4 = {D E sub(C2)
(a) for allAEE, AEKc, (D)implies AEFi; and
(b) for all rEE, (D, D') E rMDIC2 implies (r, D') E F3).

Stage 2 is repeated until N; contains a quintuple (Qo, Ql, Q2, Q3, Qa) such that Q2 \Q#0, or
M+1= J. J. +Output `Ci ¢E C2' if the first condition applies; otherwise, output `C, CE Cz'.

Figure 5.3: Algorithm for deciding E-entailment in EGS7{.

Point (i) follows from the fact that model Mr, E is a generated submodel of Jet', i. e. if
(e, e') E rMI and eE OM''-E, then (e, e') E rm-. E.

For point (ii) the only interesting case is that with Do = 2r. Dö.

°°=": Let dE (2r. Dö)M. Then there is a d' E Dom such that (d, d') E rM. By definition of

.
A41, we have (d, d') E rM'. By the induction hypothesis, d' E D' M'. Hence, dE (3r. D')M'.
"=": Let dE (2r. Dö)M'. Then there is a d' E Do'" such that (d, d') E rM'. Distinguish
two cases:

(a) First, d' E 0"
.

Then (d, d) E r'ß'1 by definition of M'. By the induction hypothesis,
d' C Dä and thus dE (9r. Dö)M.

146 CHAPTER 5. DECIDING THE E-ENTAILMENT PROBLEM FOR, 6LSH{

(b) Second, d' E A-"'\ AM. Then d= do. By construction of M', we have d' E OM., E for

some (s, E) E Q. It follows by Point (i) above that d' E Do'" implies dE Do "E. Since

M,, E is a copy of the canonical model ME, c, we have d' = E' for some E' E AMEX

and E' E Do'm', '. By Point 3 of Lemma 5.3.5, we get C= E' C D.

Now we distinguish two subcases:

Case 1) We have that E' = d3, E, and CsCr. Then E' = E. By CEC Dog

we have DO' E Kc(E). Since do E DM, we have do E (Bs. F1 G)M. Hence
GEKc(E)

do E (3s. Do)M. By CsCr we obtain do E (3r. Do)M, as required.

Case 2) (d,, E, d') E r' and R' so r' C r. Then R= sCr, r' C r, rorc: r

and CEC 3r'. Dö. So CEC 2r. Dö. Hence 2r. Dö E Kc(E). Hence
do r= (]s. 3r. Dö)M. So do E (2r. Dö)M, as required.

Since M and all Mr, E are models of C and by Points (i) and (ii), it follows that M' is a

model of 0. We only have to show that M' = R. We consider two cases:

Case 1) We have that (d, d,, E) E sMl and 1Z HsCr. Then by definition we receive that
(d, d,, E) E rM'.

Case 2) We have that (d, d,, E) E 8M', (d,, E, d) E r'M", E and 7Z =rorCr as well as
7Z sCr and R= r' 9 r. By definition we receive (d, d') E rM'.

By Point (ii), do 0 HMS. do c- CM is trivial. This proves H0 Kc(C). 0

Lemma 5.5.4. Let (Fo, Fl, F2, Fs, F4) be the quintuple computed from Fo and Q in Fig-

ure 5.3. For each (r, q) E Q, let Cr, q be the concept which determines the quintuple q. Then
C=f AE, Fo An fl (* q)EQ

3r. C,, q determines (Fo, Fl, F2, F3, F4).

Proof: Let (Fo, Fl, F2i F3, F4) and C be as in the lemma, let (Co, G1, G2,03, g4) be the
quintuple determined by C. We show that Gi = F{ for 0<i<4.

FO = Go is trivial, Fl = G1 and F2 = C2 follow from Lemma 5.5.3.

We now have to show that F3 = Gs.
Let (r, D') E G3, then (r, D') E (E n1)x sub(02) and C' =*l D', where at least one

of the following holds:

1. Cl H0C 3r. C', and CE sub(Ol), or

2. C- Cl.

If (1) holds then 2r. C' E KC, (C), then by Lemma 5.4.4, (MD', c� D') <E (MC,, c� C'),
But then by point (a) of definition of F3 we have (r, D') E F3.

If (2) holds then, by Lemma 5.5.2, we distinguish two further cases:

5.5. ALGORITHM 147

Case 1) There exists a sequence 3ro. Co,... , 2r,,. Cn with n>1, where Bro. Co is a conjunct

of C, 2ri+1. C; +1 a conjunct of C; for 0<i<n such that C� = C' and for every ri

with 0<j<n we have 7Z1 rj Cr and Rl rorCr. Then 2ro. Co = Br'. Cr', q
for some (r', q) E Q, for q the quintuple representing Cr', q. As now we have

C, ', y^ýºýy1C' and C' =: >. 1 D', we have (r, D') E q3. As Rl r' Cr (since r' = ro

and 7Z1 ro C r) and 1Zl =rCr and 7Zj rorCr, and so by (b)(ii), we have

r, D'EF3.

Case 2) There exists 3r'. C' a conjunct of C and R= r' C r. Then Br'. C' = 2r. C, ',, for

some (r', q) E Q. Then Cr', q 1 D' and so D' E q4 for q the quintuple representing
Cr', q. Since Rl r' Cr we obtain (r, D') E F3 by (b)(i).

C'. Let (r, D') E F3. We distinguish two cases:

Case 1) (a) holds, thus there is a 2r. C' E F1 such that (MD', c� D') <E (Mc', c� C').

Then we have C' =1 D' by Lemma 5.4.4 and Br. C' E Kul (C) by the definition of
F1. Hence (r, D') E 93; or

Case 2) (b) holds, thus there is a (s, (Qo, Qi, Q2, Qa, Q4)) E Q, here we distinguish two

sub-cases:

(1) we have that (i) holds, then there is C,, q, such that C,, q =* 1 D' and 7Zi sCr
thus we have CM+R, C,, q, and so (r, D') E 93,

(2) we have that (ii) holds, then there is C3, y, such that C,, q D' and C-, t
1C,, q

we also have that Rl sCr, R1 =tCr and RI rorCr. Thus we have
CM+R, Cs, q, and so (r, D') E G3.

Now we show F4 = jg4.

"D". Let DE g4 then DE sub(02) and C =*-1 D. By Lemma 5.4.4, C =0-1 D ifr
(MD, c� D) <_E (Mc, c� C). From this together with Definition 5.3.1 it follows that
C=D if both of the following hold:

1. for all concept names AEE, AE Kc, (D) implies AE Kc, (C), i. e. AE Fl;

2. for all role names rEE and all concepts D' with (D, D') E rM r). e2, there exists a
concept C' with (C, C') E rMc, ci and (MD, c�D') <E (Mc, c�C').

"C". Let DE X4. Then:

1. for all AEE, AE Kc, (D) implies AE Y1, i. e. AE Kc, (C); and

2. for all role names rEE and all concepts D' with (D, D') E rM1. Ca implies (r, D') E

.
F'3. But as shown above, this implies that (r, D') E ! 93i i. e. for all role names
rEE and all concepts D' with (D, D') E rMD-C3, there exists a concept C' with
(C, C') E rMQ-cl and (MD, c� D') <E (Mc, c� C').

By Definition 5.3.1 points (1) and (2) give us that (M D, C2, D) <_E (M CC,, C). By
Lemma 5.4.4, (MD, C� D) <E (Mc, c,, C) if C =: ý1 D. Thus DE 94 as required. 0

148 CHAPTER 5. DECIDING THE E-ENTAILMENT PROBLEM FOR £CSf

Theorem 5.5.5 (Correctness and Complexity). The algorithm for deciding E-entailment
for EGS1-l is sound, complete, and runs in exponential time.

Proof: Soundness follows from Lemmas 5.4.3 and 5.5.4. For completeness, assume Rl CE
R2 and Diffr(01i 02) yl- 0. By Lemma 5.4.3 there exists C, D, with C of outdegree bounded
by lIC211 and DE sub(02) such that C2 =CCD and C #1 D. If C is a conjunction of
concept names, then the algorithm outputs `Cl V=E C2' in Step 2. Suppose C has role depth

n>1. One can show by induction on i using Lemma 5.5.4 that, for all i>0, the set JV;

contains all quintuples determined by subconcepts C' of C of role depth smaller than i.
Hence, after computing the set Ni for some i<n, the algorithm outputs `Cl ¢E C2'.

For termination and time complexity consider the following. To see that Steps 1 and 2

of the algorithm run in polynomial time notice that, by Lemma 5.4.4, the algorithm can
compute any quintuple determined by a conjunction of concept names from E in polynomial
time. Consider Step 3. For each quintuple (Qo, Qi, Q2, Qs, Q), we have Qo CE and
Q; C cI(C2), for 1<i<4. That is, the total number of possible quintuples is bounded
by 251IC211. Consequently, the algorithm terminates since Nt = Nj+1i for some j< 2511C2H
For showing that the algorithm runs in exponential time, we now show that Nt+l can be

computed from JVi in exponential time. The number of pairs (Fo, Q) in Figure 5.3, where

. Fo CE f1 P and QC (E f1 R) x iV with IIQII : IIC211, is exponential in JJC211. Moreover,

given a pair (Fo, Q), computing the quintuple (Fo, Fi, F2,. F3,. F4) in Figure 5.3 only takes

polynomial time in JI C2 fl" 11

Chapter 6

Conclusion

149

150 CHAPTER 6. CONCLUSION

In this thesis we propose a solution to problems related to the use of multiple ontologies.
We focused our attention on these problems due to the fact that in the recent years we

can observe an increasing interest in using ontologies in different branches of science and

commerce, combined with the increasing number of formal languages used for ontology
formulation. On the other hand, we can also observe the need to use ontologies in new and

evolving applications, and this requires ontologies to evolve. As a result, users are often
interested in using multiple ontologies, but the variety of formal languages used for ontology
formulation is a potential source of problems. In our work we approached that problem

with the aim to present a construction allowing for answering queries with use of ontologies

even if they are formulated in distinct formalisms, this construct was also intended to allow
for comparing and combining ontologies formulated in arbitrary formal languages.

As the base for our work we proposed a new view on ontologies, called the functional

approach. As opposed to the standard approach to ontologies, in the functional approach
the focus is not on the way ontologies are built or what formalisms are used to construct
them, but on their function. In other words, we adopt an abstract view of an ontology as

a black box providing answers to queries about some vocabulary of interest.

The next step towards providing a construct allowing for working with ontologies in a
logic independent way required the use of institutions [41]. The use of institutions gives
us an abstract view of logical systems and allows to formulate the consequence relation in

a way that does not depend on a particular formal language. This fits very well with the
functional approach to ontologies and with the aim to work with multiple ontologies even
if presented in distinct formalisms. In addition the theory of institutions offers us truth-

preserving translations from one logical system to another, these are institution morphisms
and comorphisms. Finally, the theory of institutions allowed us to formulate our results in

an institution independent way. For reasons of convenience (presented in Chapter 3) we
choose to use comorphisms in our constructions. After introducing the notion of institution

we showed how logical systems can be represented as institutions, we presented examples for
PL, FOL, £G, £G+, ACC and Cf, and investigated the relations between them (morphisms

and comorphisms). In fact, we show that the institutions of interest are inclusive, as this

property addresses the problem of different signatures. Using the theory of institutions we
presented notions of query basis and framework which provides a language in which both
the ontology and the query languages are translated by means of institution comorphisms.
Then we proposed an institution independent formulation of the notion of consequence
relation in a framework. This notion allows us to use an ontology for answering a query
even if they are formulated in different formal languages and use different signatures. We

also introduced a notion of binary framework. With the use of binary frameworks we
presented an institution independent formulation of E-entailment and E-inseparability of
ontologies. This allows us to compare and to combine arbitrary ontologies despite the fact
that they may be formulated in different formal languages and signatures. Among the,

results of that section we have that the consequence relation in framework 1Z :I -+ Z over
itself as query basis is equivalent to the consequence relation in I. We also show that if an

ontology language can be translated directly into the query language, then entailment can

151

be reduced to showing that each sentence in one ontology is a consequence of the other.
We show that for framework p: G -a 9 over query basis p itself for any A-ontology 0 for

It, and any cp E Senr-(A') if 0= uA, ep then 0=' gyp, moreover, if ß' is surjective on

models, then the converse implication also holds. We also show that moving to a richer
language preserves the consequence relation. These results show that frameworks behave

in the expected way and do not affect the consequence relation.
In our work we also investigated three types of robustness for binary frameworks, namely

robustness under vocabulary extension, robustness under joins and robustness under re-

placement in a framework, and investigated how these types of robustness are related to

the Craig interpolation property and the notion of conservative extension. To a great ex-
tent this is a generalization of results by Konev et al. presented in [501. As one of the

results of that section we show a close relation between robustness under joins and the

conservative extension property. Namely we show that for a binary frameworks

(µ, µ2) over 77, both robust under joins, given a A-ontology 0 for µ, Al-ontology O1 for

µl, and A2-ontology 02 for µ2i with signatures satisfying 4P (A) n ßµl(Al) 9 V1 (E), and
ßµ(A) n ßµ2(A2) C Vr(E), we have that if 0UO; is a conservative extension of 0 (for

i =1,2), then also 0U Ol U 02 is a conservative extension of O. This property is important

for ontology refinement. Another result shows the relation between weak interpolation and

robustness under vocabulary extension. More precisely, the result states that in a binary

framework 'a = (µl, µ2) over query basis 71 :Q --* C, where 17 is conservative and for every

signature E in Sig2, ß. ' is surjective and there is a comorphism p: £2 -4 Q such that

µ2 = p; 77: if 9 has weak interpolation, then a is robust under vocabulary extension. An-

other result of that chapter tells us that if framework ll: Z -+ I over query basis ix is

robust under vocabulary extension, then I has weak interpolation. We also show for a
binary framework 3= (µl, µ2) over query basis 77, with r7 conservative, and surjective ß''

on models, with comorphisms pi : Li -+ Q such that ii = p;; 77 for i=1,2: if Q is closed
under Boolean operators, and 9 has weak interpolation, then a is robust under joins for
finite ontologies. We also show that any framework over query basis 1FOL : FOL -a FOL
is robust under vocabulary extensions, joins, and under replacement for finite ontologies.
We also show that for G an institution of any fragment of first-order logic closed under
Boolean operators, robustness under joins for any framework pC over itself as query
basis implies interpolation in L.

We also investigated the problem of using ontologies together with ABoxes and deter-
mining E-entailment and E-inseparability of ontologies in the presence of ABoxes. But to
make it possible first we had to introduce individuals into the signatures and present how
assertions are built. To do that first we provided a definition of description logic, which
is based on the notion of slice category. Namely, a description logic is an institution Z
together with a morphism p: 14 C? l. This definition allows us to treat description logics
in a systematic way and moreover it is used to show how to introduce individuals into the
signature and how to construct assertions with individuals. Then we presented how an
institution of a description logic extends to an institution of a description logic with indi-
viduals, and similarly how morphisms and comorphisms between those description logics

152 CHAPTER 6. CONCLUSION

extend to morphisms and comorphisms between description logics with individuals. We also
investigated the relations between institutions of description logics and their counterparts

with individuals. Among the results we include that given an institution I and Z+L there is

a morphism p- : I+t -+ I and another one µ+ :Z -+ I+t. This is graphically represented
in Figure 6.1. We also show that for signatures EE Sig' and (E, I) E Sign+i the

Zý_Z+G
V

µ µ+c

1
CAL C7 +c

1ý

Figure 6.1.

functor T0 : (E, I) HE has left adjoint Wµ+ : E'-r (E, 0). This, together with the results

of Arrais and Fiadeiro presented in [5], gives rise to comorphism µ: Z -4 T+t. We also
introduced the notions of query conservativity, query expansion and concept interpolation.

We could say that concept interpolation `splits' the consequence relation for assertions into

two different logics. This in turn means that determining if assertion v(i) is a consequence

of (0, A) reduces to determining if there is -i such that ip (i) is a consequence of A and

v/, C cp is a consequence of 0. Extending results of [62] showing that EC+t has concept
interpolation we show that e3 c+c has concept interpolation. Which in that case means
that two conditions are satisfied:

" if V is a concept name C and we have (0,7Z, A) [--(E Il C(i), then we can find a
Cc+ concept C', such that A ýýE Il C'(i) and 0 lz4 C' C C,

" if cp is of the form ri o ... ora, and we have that pair (7Z, A) entails role assertion

ri o"""o r�(il, i2), then there is a sequence of role assertions rl, l o" " "orl, m(i1, i'), r2,10

"""0 r2,1(i', i"), ...
, rk, l o ... o rk, i (i, i2) in A, such that for rl, l o ... o rl,,,, o".. 0'

rk, lo"""ork, j, wehave A= 1(il, i2)and1?. = ' rlo"""or,,.

We also show that if u has query expansion, then it is query conservative. This material
allowed us to show how a framework built from description logics extends to a framework

allowing for use of individuals.
,
Having this, we were able to formulate the notion of E-

entailment and E-inseparability based on instance checking rather than based on concept
subsumption, which is usually too weak when using ontologies together with ABoxes. In

our work we considered the case when an ontology and an ABox are formulated in the same
formal language.

In the final part of our work we presented a particular application of frameworks; we
investigated E-entailment in a framework'ECgfl : £GSR -+ £L Sf over itself as a query
basis. This part of our research extends the result presented by Lutz and Wolter in [611 by

k

153

considering ontologies formulated as general CBoxes (TBoxes together with RBoxes) in the

description logic EGS? -l obeying some additional restrictions. The main result states that

the E-entailment problem for such ontologies can be solved in ExPTiME. Thus, this problem
is no more complex than for plain EG, which was shown to be ExPTIME-complete [61].

Future work

We realize that our research does not cover the area completely, therefore below we suggest

some of the possible directions for future work.
In our work we show that for general CBoxes formulated in the description logic CGS? {

the E-entailment problem can be solved in ExPTJME and is no more complex than for plain
£E, which was shown to be ExpTlME-complete. It is also known that the computational

complexity of this problem is 2ExPTIME-complete for more expressive description logics like

A, CC, AICQ, and AL CQI, but even in such simple formalisms as acyclic propositional Horn

Logic it is co-NP-complete. On the other hand, there are many logical systems for which
the E-entailment problem has not been investigated. For instance, it was already mentioned
in Chapter 5, the problem is still open for description logic £G+. Also investigating the

problem for other extensions of £G could be interesting.

Another possible area of future research is to investigate further the problem of deciding

E-entailment for knowledge bases in the framework setting. As mentioned in Section 4.3,

when using ontologies together with ABoxes one has to determine how to include the ABox

into the framework. In our work we have investigated the case when the ABox is a part of
the ontology, i. e., the ontology and the ABox are closely related, for instance, if they are
designed and maintained together, and the ABox does not change significantly more often
than the ontology. But the ABox can be a part of the query language or even be formulated

in yet another language, in such a case the ontology and the ABox have a different status,
which usually is the case (the usual situation is when an ontology designer does not know the
ABox and that the Abox changes more often than the ontology). Of course in that scenario
the notion of E-entailment for knowledge bases is not sufficient and we need a definition of
E-entailment quantifying over all possible ABoxes, i. e. taking ABoxes as unknown "black
boxes". To determine inseparability of ontologies with all possible ABoxes we will have to
additionally assume that we can formulate the deduction theorem in g+t. But this will
involve additional definitions. One way of assuring that we can formulate the deduction

theorem in Cg+t is to make Boolean operators available, so we can say what the conjunct
AA is and what "4' means in Q+t.

ýý

Appendix A

155

156 APPENDIX A.

A. 1 E-entailment and inseparability in morphism frameworks

In section 3.2 we have introduced frameworks, which were used for studying the funda-

mental notions of description logics, E-entailment, E-inseparability w. r. t. a query language

and E-conservative extension. For framework construction in section 3.2 we have used co-
morphisms, while arguing for use of comorphisms we have mentioned that it is possible to
introduce similar construct with use of morphisms. In this section we provide a formulation

of a framework with the use of morphism, we also point what are the difficulties of that
formulation.

Definition A. M. A morphism query basis is an inclusive morphism 'i :G -+ Q.

A morphism framework over a morphism query basis q: g -º Q is an inclusive

morphism p: 9 -+ G.

Convention A. 1.2. As in this section we talk about morphism frameworks and morphism
query bases only, we will refer to them simply as frameworks and query bases, which should
not cause any confusion.

The intuition behind this construct is that given an ontology and a query represented in

two institutions, G and Q respectively, we chose a global institution Q such that there are

morphisms 94G and gAQ. Using these morphisms we can translate the ontology and
the query into ! 9, then we can check whether the query is a consequence of the ontology. In

more detail, institution 9 provides us with a signature, this signature is translated down to
G and Q. This translated signature is then used for constructing an ontology and a query
respectively. Then both, the ontology and the query are translated back to C where we are
able to check if the ontology entails the query.

As previously, we allow more than one framework over a query basis. Figure A. 1 is a
graphical representation of frameworks pi and P2 over query basis t.

G

lei P2

Gý Gs Q

Figure A. 1: Frameworks µl and 142 over a query basis r7

As for framework using comorphisms we define the consequence relation.

Definition A. 1.3. Let µ: G -* G be a framework over rl, and let E be a G-signature, 0 be

a ßµ(E)-ontology for p and cp E SenQ(WYn(E)) be a query. We say that (p is a consequence
of 0 with respect to q (written 0f4 gyp) if

:g

A. I. MORPIIISM FRAMEWORKS 157

Just like in Definition 3.2.5 this is to say that cp is a consequence of 0 in framework /. c
iff 0 translated along morphism u into 9 entails in g, with respect to the signature E, the
translation of cp along 77.

Compared to Definition 3.2.5 we can see that Definition A. 1.3 is less intuitive. Namely
it suggests that the signature was introduced in the global language and then translated to

ontology and query languages. In that case one could argue that homonyms and synonyms
should have been avoided already in the global language, moreover it would be not clear
why different natural languages should be used within one signature. Alternatively, if in the

original signature homonyms and synonyms were not introduced and the signature was over
one natural language only, but ontologies or queries would still use homonyms, synonyms
or different natural languages it would mean that morphisms are responsible for that. In

that case one could argue that the morphisms should be chosen in more careful way, and
avoiding introducing any ambiguities in the signatures.

Basic framework structures

As for the case with comorphisms, we discuss six special cases of morphism frameworks.
Here we do not repeat the examples introduced in Chapter 3.

1. Let G=9=Q, in this case morphisms are identities. Proposition A. 1.4 below shows
that the entailment in framework 1g :g -- C over the same query basis is the same
as entailment in 9.

4

1Q la

44

2. Let L=Q, i. e. an ontology 0 and a query cp are expressed in the same language.
Proposition A. 1.5 states that for this framework there may be entailments that arise
from the greater power of 9, and that the ontology 0 in this framework entails exactly
the same consequences as in C only if ßµ is surjective.

µR

GG

158 APPENDIX A.

3. For the case where 9=Q with a framework it :9 -+ G over a query base 10: 9 -+ C,

we translate an C-ontology into a richer language 9, and then, in 9, we check whether

a query is a consequence of the ontology. Proposition A. 1.6, states that entailment in

this framework is the same as entailment in 9.

G

µ lp

G9

4. For the case where 9=G and a framework 1g :9 -+ G over a query base 77 :
C9 -+ Q, we translate a Q-query into C, and then, in Q, we check whether the query
is a consequence of the ontology. Proposition A. 1.7 shows that entailment in this
framework is the same as entailment in Q.

G

in

GQ

5. Consider a scenario with distinct institutions C, 9 and Q, together with a framework

, u: C9 -a Lover a query basis 77: C -3 Q and a morphism p: G -+ Q. We can seep as a

composition p; 77. So, in fact we are translating an C-ontology into g via Q. Properties

of this framework are presented in Corollary A. 1.18 and Proposition A. 1.19.

Pn

Lý pQ

6. Let µ: G -º G be a framework over a query basis t: G -º Q with incomparable r- and
Q. In this case we have to translate an ontology 0 and a query V into a language in
which we can check whether cp is a consequence of 0, i. e. we have to find ag such
that there are comorphisms from C and Q to Q.

A. I. MORPHISM FRAMEWORKS 159

Now we present counterparts of properties presented in Chapter 3, this time we preset

them using morphisms instead of comorphisms. First we present a proposition which is

a direct consequence of how the frameworks are constructed and applies to the case 1 of

framework. This property is a counterpart of Proposition 3.2.11 presented in Section 3.2

Proposition A. 1.4. For framework 1G : C9 -+ C9 over query basis lg :9 -a 9, consequence
in the framework is just consequence in 9; i. e., 0 =I ca if 04 cp for any E-ontology 0

and E-sentence cp.

Proof: The proof is similar to that of Proposition 3.2.11.

Proposition A. 1.5. For any framework µ: C -+ G over query basis p itself, for any

P'(E)-ontology 0 for p, and any cp c Sen'C(W (E)) we have:

O ýý ýp implies O ýý cp .

Moreover, if PA is surjective on models, then the converse implication also holds.

The proof is similar to the proof of Proposition 3.2.12.

Proposition A. 1.6. For any framework p: 9 -+ G over query basis lg for any
ßµ(E)-ontology 0 for 1q, and any VE Seng(E) we have:

0 ýE cP if 'YA14 (O) I=
.

Proof: This follows directly from Definition A. 1.3. 0

Proposition A. 1.7. For any framework lg :9 -+ 9 over query basis rl : -+ Q, for any
E-ontology 0 for rl, and any VE Sen2(V7(E)) we have:

HE' W

Proof: This follows directly from Definition A. 1.3. 0

Notation A. M. In the following definition we use expressions `E-entailment',
`E-inseparability' and E-conservative extension' as abbreviations of IXF17 (E) -entailment 1,
`91'7(J)-inseparability' and `I" (E) -conservative extension' respectively, this abbreviation is

set to be a notational convention in the remaining part of the text.

As in Section 3.2, we define the notion of E-entailment and closely related notions of
inseparability and conservative extension.

Definition A. 1.9 (E-entailment and inseparability). For query basis 77 and frameworks

µl, µ2 over 77, EE Sign', ßµl (E)-ontology Ol for µl and iµ3 (E)-ontology 02 for U 2Y we
say that

" Ol E-entails 02 wrt 77, and write Ol CE 02i if for all VE SenQ(W'? (E)) we have:

02 1--E V implies 01 1--E? cp ,

160 APPENDIX A.

9 Ol and 02 are E-inseparable wrt rt, written Ol PsE' 02, if:

01 C£02 and 02 CE O1.

. 02 is a E-conservative extension of Ol wrt 17 if 7E'(02) D'y (O1) and Ol and
02 are E-inseparable wrt 17.

" 02 is a conservative extension of 0 wrt rl if 02 is a E-conservative extension of
0 wrt rj for all EE ISi I.

In the situation of the previous Definition, we say that V separates 01 and 02 if
Ol 14 V and 02 K' cp or vice versa.

For any query basis n and a signature W'7(E) E SigQ the relation E is an equivalence
relation.

In the situation of the previous definition, we say that V separates Ol and 02 if Ol ýý cp
and 02 VE gyp, or vice versa.

The following Lemma states that if the square in Figure A. 2 has CIP in the global
institution, then the framework has a kind of conservativity property: extending the

E
1EE

lE i

Figure A. 2.

Q-signature (i. e. the part of c-signature that is translated to Q only) with fresh symbols
has no impact on the consequence relation in the framework for the queries formulated in

the original signature.
This lemma is also an example of problems related to use of morphisms for framework

construction.
As already mentioned in Section 3.2, for the case of frameworks and query bases with

morphisms, signatures used for ontology and query formulation originate in the global
language and are only translated into ontology and query languages respectively. This
issue becomes problematic if we want to manipulate only the signature used for the query
formulation, ' but leave the ontology signature untouched (or vice versa). For instance, in
the case of comorphism framework 14: G -a c over a query q: Q -- given G-signature A

and Q-signature E we can easily express that we have another signature which extends one
of them only, for example E -* V. It is clear that this inclusion is preserved along functor

, I)µ. But when we want to express the same fact for morphism framework is G over a

query basis A: c -a Q we encounter some difficulties. Now we have two ! 9-signatures E, E',

such that EC E', but as we want to have G-signatures untouched we have to introduce
further constraints, and say that '"(E) = 41"(E') but T (E) Alternatively, we

A. I. b1ORP111Sb7 FRAMEWORKS 161

could say that Cg-signature is a union r= (AUE) and add a constraint that XP' forgets about
E-part of the signature, whereas 'Ya forgets about the A-part (in the approach described

before it was implicit). Both we find to be non-intuitive and inconvenient if we have to deal

with multiple signatures.

Lemma A. 1.10. For any framework u: G -+, C over query basis 77: G -+ Q and signatures
E, E' in Sign, such that EC E' and W (E) ='Y'(E') while ß'1(E) C Tn(E7), any

ontology 0 for p, and any query cp E Sen2(W'1(E)), the following property holds:

O ýý cp implies 0 ý=', cp .

Moreover, if Figure A. 2 is a CIP-square, then the converse implication also holds.

The proof is similar to the proof of Lemma 3.2.18.
This lemma says that extending the part of the signature used for query formulation has

no impact on the consequence relation in framework for queries formulated in the original
signature. This property also extends to entailment:

Proposition A. 1.11. For any binary framework a= (A1,142) over query basis t, signatures
E, E' E Säge, such that ß'7(E) C W'7(E') and %P" (E) -ontology 0 forpi, q/112 (E) -ontology
02 for p2, if Figure 3.2 has CIP, then:

01 971,0 implies 0 CI 02 .

Proof is similar to the proof of Proposition 3.2.19

Note that the opposite direction does not hold because it would imply extending the sig-
nature over which queries may be expressed.

Investigating frameworks gives us an insight into properties of entailment also in more
complex situations. For instance we can consider frameworks with attached morphisms.
Example A. 1.12 represents two situations where frameworks have attached morphisms.

So we may have a morphism attached on the query language side, intuitively it is a
situation when we already have a framework with C and Q and we have a query formulated
in a language Q', such that there is a morphism ý: Q -4 Q', i. e. Q' is a weaker language
than Q. We may also have a situation when we already have a framework with G and
Q and we have an ontology formulated in a language G', such that there is a morphism

G --- V, i. e. G' is a weaker language than G. We also present the consequences of these
two situations.

Example A. 1.12. First we consider a framework It: C9 -> G over a query basis t: C9 -+ Q

with an additional morphism ý: Q -* Q' (see Figure A. 3). Using morphisms composition
=, q' we receive a framework p: C9 -} G over query basis 17' : C9 -- Q' (see Figure A. 4).
Note that 0 has the same set of consequences in p over both t and q'. This is the

statement of Lemma A. 1.13.

162

c /IU

G
O

1Q'

Figure A. 3.

4

/+ n ý""

GQ'
OI ,

ji
f

, c

Figure A. 4.

APPENDIX A.

Lemma A. 1.13. Given a framework µ: 9 -º G over a query basis r' :9 -+ Q with an

attached morphism C: Q -3 Q', we get a framework µ: Q -+ G over query basis if : --* Q',

with if = 17; C, and an ontology 0C Sen'c(WYµ(E)), and a query cp E SenQý(ýn(ýý(E))), the

following holds:
'ff 0 HE

Proof is similar to the one given for Lemma 3.2.20.

In other words Lemma A. 1.13 states that given a framework uG over query basis

77 9 -' Q and a query formulated in Q', such that there is a morphism Q -+ Q' then

we can safely lift the query to Q and then translate it into C. That gives us exactly the

same results as creating a framework p over query basis t' :q --ý Q' (using composition of

morphisms) for answering the query.

Next proposition shows the relation between morphisms of query languages and the

problem of inseparability of ontologies.

Proposition A. 1.14. For any binary framework = (µl, µz) over query basis i: 9 -* Q

with an attached morphism l: Q -+ Q', and the same binary framework over r7' : -+
Q1, where rte = 77; l:, signature EE Sigh and ontologies 01 C Senjc' (W µ1(E)) and 02 C

SenG' (Pµ' (E)) the following implication holds:

A. 1. MORPIIISM FRAMEWORKS 163

The proof is similar to the proof of Proposition 3.2.22

In other words, Proposition A. 1.14 states that if two ontologies are inseparable relative
to query cp E Sen Q'(1Y4 ('Y7(E))), translated to G along morphisms C and then 77 via Q, then

these ontologies are inseparable relative to gyp, translated to C along morphism 7. This

result extends to inseparability.

Corollary A. 1.15. For any binary framework '= (P1412) over query basis 77 :Q -+ Q

with an attached morphism C: Q --* Q', and the same binary framework over 77' C -- Q',

where rl' = 'i; l; ', for signature EE Sigg, and ontologies Ol C Sen' (W A, (E)) and 02 C
SenG' (qI L2 (E)), we have that Ol szýi? 02 implies Ol %rE 02.

As promised above now we consider a framework with an attached morphism on the
ontology language side.

GQ
iS

Figure A. 5.

µI

GQ

Figure A. 6.

Lemma A. 1.16. For a framework µ: g -- L over query basis 77: 9 -+ Q with an attached
morphism C: L -- G', we can create a framework µ' G' over query basis t with
At = µ; C, such that:

d HE co if '1Wµ(E)(0) ý=E v
for any WC(W (E)) -ontology 0, and a query cp E SenQ(I'º(E)).

164

The proof is similar to the proof of Lemma 3.2.24.

APPENDIX A.

This is to say, that given a framework p: Q -+ L over query basis 77 :9 -+ Q and an

ontology formulated in G', then, provided there is a morphism (: G -+ G' we can safely lift

the ontology to G and after translating it into 9 answer the query. That gives us exactly
the same results as creating framework µ' :9 -+ G' over query basis i using composition

of morphisms and then answering the query.

The following proposition shows for a framework with a morphism attached to C (see

Figure A. 6) choosing a morphism p' or a composition of morphisms p; c has no impact on
the inseparability result. Which is expected behavior of frameworks.

Proposition A. 1.17. For a binary framework a= (µ1, µz) over query basis n: C -º Q

with attached morphisms t; { : G; --º G';, and a binary framework a= (Al, µ'z) over query
basis 77 with µ; = pi; C{ (for i =1,2), we have that:

7, ýy,.
(E)(0i) cE 17 c 7, &, (E)(02) 1ff Di cE 02

for any signature EE ISigoI and ontologies Oi C Sen'" (, QC' (qlµ" (E))) the following holds:

The proof is similar to the proof given for Proposition 3.2.26

The next corollary is a consequence of Proposition A. 1.17, it shows that for frameworks

r) :9 -3 Q over query basis 77, with an attached morphism p: Q -- G and framework

µ: C -4 G over query basis q, where p= rj; p, E-entailment of Gontologies Ol, 02 over
translated signature E coincides (see Figure A. 7).

Corollary A. 1.18. Let p: 9 --+ C be a framework over a query basis 77 :9 -+ Q, such
that there is morphism p: Q -- G and p='; p. Let EE ISiggI and 0 and 02 be

'PO(E)-ontologies for p then:

Oi CE 02 if '4, µ(E)(01) CE 7pN(E)(02)-

Gý PQ
01,02 '4, ýE)(02)

Figure A. 7.

If an ontology language can be translated directly into the query language, then entail-
ment can be reduced to showing that each sentence in one ontology is a consequence of the

other:

A. I. MORPIIISM FRAMEWORKS 165

Proposition A. 1.19. Given a framework 94G over a query basis G -Y+ Q with a mor-

phism Q4G, such that µ= 77; p, and Jµ (E)-ontologies 01 and 02, we have: Ol C'

02 if Oi IE y, for all VE ryqPl(E)(02).

The proof is similar to the proof of Proposition 3.2.28
Moving to a richer global language preserves consequences:

Lemma A. 1.20. For framework µ over query basis 71 : 0C -+ Q, if we have a morphism
A: g' -3 9, there is a framework 12 = \;, u over query basis q' = A; 77, and we have:

0" cp implies O ýE cp

for any ßµ(E)-ontology for p and any query cp E SenQ(P7(E)), with EE Sign. Moreover,
if Sa is surjective, then the converse implication also holds.

The proof is similar to the proof of Lemma 3.2.29

G

Figure A. 8.

t

`ýG Q'

Figure A. 9.

Now we compare two frameworks presented in Figure A. 10 and in Figure A. 11. The
former is simply the case when the ontology language is a sublanguage of the query language,
but the query is expressed in Q over a translated G-signature. Whereas the latter is the case
when the ontology language is the same as the query language, but we translate both into Q,
which in this case is the global language. Additionally, in both cases morphism µ: C9 -+ G
is conservative. We show a correlation of conservativeness of morphism p: 9 -+ G and

166 APPENDIX A.

coincidence of 01 ft &,,
(E) 02 and Ol E 02. To do that we need an auxiliary lemma.

The statement of this auxiliary lemma is that given two signatures E, E' E Sigg, such that

there is a signature morphism o: E -+ E' and an ontology 0C Sen'C(WY'(E')) we are

guaranteed that 0 itself and the set of consequences of 0, restricted to these sentences
that were originally expressed in %P(E) and then translated into "(E') using Sen-C(a) (i. e.
0,), give us exactly the same set of consequences over sentences expressed in'N (E).

G
ZN

Figure A. 10: Framework µ over query basis lg

G
/IU

µ

GG

Figure A. 11: Framework p over itself as a query basis

Lemma A. 1.21. For any framework µ: 9 -+ C over itself as a query basis and all
signatures E, E' E Sig9, s. t. there is a signature morphism o: A -+ A' and an ontology
0C Sen'e(W (A')) the following holds:

O stil SenC(a)(O,,),

i. e. for every cp E Sen'C(W'(A)) we have that 0 ý=" V if Sen'c(o)(O0) HE V.

Proof is similar to the proof of Lemma 3.2.31.

Next proposition presents close correlation between the inseparability problem in two
types of frameworks presented above and conservativity of morphism µ: C9 -º G.

Proposition A. 1.22. For framework p: 9 --º G over query basis 1g :9 -* C and frame-

work ,u over query basis µ, morphism p is conservative if E-inseparability w. r. t. p, coincides

with E-inseparability w. r. t. 1g for any signature EE ISiggl.

Note that Ol 4Q 02 means that Ol and 02 are indistinguishable relative to the sen-
tences from the set Seng(E), whereas Ol 4 02 means that Ol and 02 are indistinguishable

relative to the sentences from the set Sen'C(W 1z(E)).

Proof is similar to the proof of Proposition 3.2.32.

A. 2. ROBUSTNESS PROPERTIES

A. 2 Robustness properties

167

In Section 3.3 we discussed robustness properties in the comorphism framework setting.
Now we define robustness for morphism frameworks. This formulation is also suggests that

the use of comorphisms is more intuitive. Similarly to the above argument the fact that

signatures originate in the global language makes the definition less intuitive.

Definition A. 2.1. For any binary framework 'a = (µl, µ2) over query basis 77 we say that
is robust under:

" vocabulary extension if for all signatures Al, A2, E, E' in Sign', such that E' n (Al U

A2) C E, all ontologies Ol C Sen 'c' (W (Al)) and 02 C SenC2 ('I' (A2)), the follow-

ing holds:

0l CE 02 implies 01 CI, 02,

" joins if for all signatures Al, A2i E in Sigc', such that Al n A2 CE and all ontologies
01 9 Sen'e' (W µ' (Al)) and 02 9 Sen C2 (XY12 (A2)), the following holds for i=1,2:

Ol ýý 02 implies O; ; ý: iý 01 U 02,

. replacement in framework it :G -ý 9 if for all signatures Al, A2, A, E in SigQ, such
that An(Al UA2) C E, for all ontologies Ol C SenAC' (IPµ1(A1)), 02 C Senc2 (Yµ2 (A2)),

0C Senc(Ti(A)), the following holds:

O1C7O2 implies O1 UOCIE7 O2UO.

From the above definition it is easy to see that even though expressing inclusion condi-
tions for signatures becomes easier to read if we use morphisms, it remains less intuitive as
all the concerns presented while discussing Definition A. 1.3 remain in power.

\(.

Bibliography

[1] SNOMEDClinical Terms® Reference Sets - Technical specification. http: //www.

ihtsdo. org/fileadmin/user_upload/Docs_O1/Technical_Docs/reference_sets.

pdf, 2006.

[21 J. Adamek, H. Herrlich, and G. Strecker. Abstract and concrete categories: The joy of
cats. John Wiley and Sons, New York, 1990.

[31 M. Aiguier and F. Barbier. An Institution-independent Proof of the Beth Definability
Theorem. Studia Logica, 85(3): 333-359,2007.

[4] G. Antoniou, , and F. V. Harmelen. Web ontology language: OWL. In S. Staab and
R. Studer, editors, Handbook on Ontologies, pages 67-92. Springer, 2003.

[5] M. Arrais and J. L. Fiadeiro. Unifying theories in different institutions. In M. Hav-

eraaen, 0. Owe, and O: J. Dahl, editors, Recent Trends in Data Type Specifications.

11th Workshop on Specification of Abstract Data Types, volume 1130 of Lecture Notes
in Computer Science, pages 81-101. Springer Verlag, 1996.

[6] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. DL-lite in the light of
first-order logic. In AAAI'07: Proceedings of the 22nd national conference on Artificial
intelligence, pages 361-366. AAAI Press, 2007.

[7] S. Awodey. Category Theory. Oxford University Press, Oxford, 2006.

[8] F. Baader, S. Brandt, and C. Lutz. Pushing the EG envelope. In L. P. Kaelbling and
A. Saffiotti, editors, Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence (IJCAI'05), pages 364-369. Professional Book Center, 2005.

[9] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,

editors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[10] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL-a polynomial-time reasoner for
life science ontologies. In U. Furbach and N. Shankar, editors, Proceedings of the 3rd
International Joint Conference on Automated Reasoning (IJCAR'06), volume 4130 of
Lecture Notes in Artificial Intelligence, pages 287-291. Springer-Verlag, 2006.

169

170 BIBLIOGRAPHY

[11] F. Baader, R. Penaloza, and B. Suntisrivaraporn. Pinpointing in the description

logic £G+. In Proceedings of the 30th German Conference on Artificial Intelligence

(KI2007), LNAI, Osnabrück, Germany, 2007. Springer.

[12] M. Barr and C. Wells. Toposes, Triples, and Theories. Number 278 in Grundlehren

der mathematischen Wissenschaften. Springer-Verlag, 1985.

[13] M. Barr and C. Wells. Category theory for computing science. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1990.

[14] C. Batini, S. Ceri, and S. B. Navathe. Conceptual Database Design: An Entity-
Relationship Approach. Benjamin/Cummings, 1992.

[15] D. Beckett. RDF/xml syntax specification (revised). Technical report, W3C, 2004.

http: //www. w3. org/TR/rdf-syntax-grammar/.

[16] J: Y. Beziau. 13 Questions About Universal Logic. Bulletin of the Section of Logic,

35: 133-150,2006.

[17] W. N. Borst. Construction of Engineering Ontologies for Knowledge Sharing and
Reuse. PhD thesis, Universiteit'Iwente, Enschede, September 1997.

[18] T. Borzyszkowski. Generalized interpolation in casl. In Information Processing Letter,

volume 76, page 19I£j24,2001.

[19] T. Borzyszkowski. Logical systems for structured specifications. Theoretical Computer

Science, 286: 197-245,2002.

[20] R. Brachman, R. Fikes, and H. Levesque. KRYPTON: A functional approach to
knowledge representation. IEEE Computer, 16(10): 67-73,1983.

[211 S. Brandt. Polynomial time reasoning in a description logic with existential restrictions,
GCI axioms, and-what else? In R. L. de Mantäras and L. Saitta, editors, Proceedings

of the 16th European Conference on Artificial Intelligence (ECAI-2004), pages 298-

302. IOS Press, 2004.

[22] D. Brickley and G. R. V. RDF Vocabulary Description Language 1.0: RDF Schema.
Technical report, W3C, 2004. http: //www. w3. org/TR/rdf-schema/.

[23] R. Burstall and J. Goguen. The semantics of Clear, a specification language. In Lecture
Notes in Computer Science, volume 86, pages 292-332. Springer, 1980.

[24] D. Calvanese, D. Lembo, M. Lenzerini, and R. Rosati. DL-lite: Tractable description
logics for ontologies. In Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI
2005), pages 602-607,2005.

[25] P. P. Chen. The entity-relationship model - toward a unified view of data. ACM 7}-ans.
Database Syst., 1(1): 9-36,1976.

BIBLIOGRAPHY 171

[26] E. Clarke and H. Schlingloff. Model checking. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume II, chapter 24, pages 1635-1790. Elsevier
Science, 2001.

[27] J. R. B. Cockett. Introduction to distributive categories. Mathematical Structures in
Computer Science, 3(3): 277-307,1993.

[28] M. Codescu and T. Mossakowski. Heterogeneous colimits. In ICSTW '08: Proceed-

ings of the 2008 IEEE International Conference on Software Testing Verification and
Validation Workshop, pages 131-140, Washington, DC, USA, 2008. IEEE Computer

Society.

[29] V. E. Cäzänescu and G. Ro§u. Weak inclusion systems. Mathematical. Structures in
Comp. Sci., 7(2): 195-206,1997.

[30] V. E. Cäzänescu and G. Roýu. Weak inclusion systems: Part two. Journal of Universal
Computer Science, 6(1): 5-21,2000.

[31] R. Diaconescu. Grothendieck institutions. Applied Categorical Structures, 10(4): 383-
402,2002. Preliminary version appeared as IMAR Preprint 2-2000, ISSN 250-3638,
February 2000.

[32] R. Diaconescu. An Institution-independent Proof of Craig Interpolation Theorem.
Studia Logica, 77(1): 59-79,2004.

[33] R. Diaconescu. Institutions, Madhyamaka and universal model theory. In J: Y. B6ziau

and A. Costa-Leite, editors, Perspectives on Universal Logic, pages 41-65. Polimetrica,
2007.

[34] R. Diaconescu. Institution-independent Model Theory. Birkhäuser Basel, 2008.

[35] R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for modularisation. In
G. Huet and G. Plotkin, editors, Logical Environments, pages 83-130. Cambridge,
1993. Proceedings of a Workshop held in Edinburgh, Scotland, May 1991.

[36] T. Dimitrakos and T. Maibaum. On a generalised modularisation theorem, 2000.

[37] S. Eilenberg and S. Mac Lane. General Theory of Natural Equivalences. Transactions
of American Mathematical Society, 58(2): 231-294,1945.

[38] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, Heidelberg (DE),
2007.

[39] A. Flögel, H. K. Mining, and T. Lettmann. On the restricted equivalence of subclasses
of propositional logic. ITA, 27(4): 327-340,1993.

[40] S. Ghilardi, C. Lutz, and F. Wolter. Did I Damage my Ontology? A Case for Conser-
vative Extensions in Description Logics. In P. Doherty, J. Mylopoulos, and C. Welty,
editors, Proceedings of the Tenth International Conference on Principles of Knowledge
Representation and Reasoning (KR'06), pages 187-197. AAAI Press, 2006.

172 BIBLIOGRAPHY

[41] J. Goguen and R. Burstall. Introducing institutions. In Proceedings, Logics of Pro-

gramming Workshop, volume 164, pages 221-256. Springer, 1984.

[42] J. A. Goguen and R. M. Burstall. Institutions: abstract model theory for specification
and programming. J. ACM, 39(1): 95-146,1992.

[43] J. A. Goguen and G. Ro§u. Institution morphisms. Formal Asp. Comput., 13(3-5): 274-

307,2002.

[44] B. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler. OWL 2:
The next step for OWL. Web Semantics: Science, Services and Agents on the World
Wide Web, 6(4): 309-322,2008.

[45] T. It Gruber. A Translation Approach to Portable Ontology Specifications. Knowl.

Acquis., 5(2): 199-220, June 1993.

[46] I. Helene. Presentation rate and the representation of briefly glimpsed pictures in mem-
ory. In Journal of Experimental Psychology [Human Learning and Memory], volume 6,

pages 1-12.1980.

[47] P. Hitzler, It. Sebastian, and M. Krötzsch. Foundations of Semantic Web Technologies.

Chapman & Hall/CRC, London, 2009.

[48] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From S?
. TQ and RDF to

OWL: The Making of a Web Ontology Language. Journal of Web Semantics, 1(1): 7-26,
2003.

[49] G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts and Ab-

stract Syntax; Technical report, W3C, 2004. http: //www. w3. org/TR/rdf-concepts/.

[50] B. Konev, C. Lutz, D. Walther, and F. Wolter. Formal properties of modularisation. In

C. Parent, S. Spaccapietra, and H. Stuckenschmidt, editors, Ontology Modularisation,

LNCS. Springer, 2008.

[51] B. Konev, D. Walther, and F. Wolter. The logical difference problem for description

logic terminologies. In IJCAR '08: Proceedings of the 4th international joint conference

on Automated Reasoning, pages 259-274. Springer, 2008.

[52] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. Combined FO

Rewritability for Conjunctive Query Answering in DL-Lite. In Proceedings of the 22nd

International Workshop on Description Logics (DL2009), volume 477 of CEUR-WS,

2009.

[53] R. Kontchakov, F. Wolter, and M. Zakharyaschev. Modularity in DL-lite. In D. Cal-

vanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik, A. -Y. - Turhan, and S. Tes-

saris, editors, Description Logics, volume 250 of CEUR Workshop Proceedings. CEUR-
WS. org, 2007.

BIBLIOGRAPHY 173

[54] R. Kontchakov, F. Wolter, and M. Zakharyaschev. Can you tell the difference between

DL-lite ontologies? In KR, pages 285-295,2008.

[55] 0. Kutz, D. Lücke, and T. Mossakowski. Heterogeneously structured ontologies - inte-

gration, connection, and refinement. In T. Meyer and M. A. Orgun, editors, Knowledge

Representation Ontology Workshop (KROW 2008), volume 90 of CRPIT, pages 41-50,

Sydney, Australia, 2008. ACS.

[56] 0. Kutz and T. Mossakowski. Modules in transition - conservativity, composition,

and colimits. In B. C. Grau, V. Honavar, A. Schlicht, and F. Wolter, editors, WoMO,

volume 315 of CEUR Workshop Proceedings. CEUR-WS. org, 2007.

[57] 0. Kutz and T. Mossakowski. Conservativity in structured ontologies. In M. Ghallab,

C. D. Spyropoulos, N. Fakotakis, and N. M. Avouris, editors, ECAI, volume 178 of
Frontiers in Artificial Intelligence and Applications, pages 89-93. IOS Press, 2008.

[58] S. M. Lane. Categories for the Working Mathematician. Springer-Verlag, New York,

1971. Graduate Texts in Mathematics, Vol. 5.

[59] H. J. Levesque. Foundations of a functional approach to knowledge representation.
Artif. Intell., 23(2): 155-212,1984.

[60] C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive descrip-
tion logics. In M. Veloso, editor, Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI'07), pages 453-458. AAAI Press, 2007.

[61] C. Lutz and F. Wolter. Conservative extensions in the lightweight description logic EG.
In F. Pfenning, editor, Proceedings of the 21th Conference on Automated Deduction
(CADS-21), Lecture Notes in Artificial Intelligence, pages 84-99. Springer, 2007.

[62] C. Lutz and F. Wolter. Deciding inseparability and conservative extensions in the
description logic EG. Journal of Symbolic Computation, 2009 (To appear).

[63] F. Manola and E. Miller. RDF primer. Technical report, W3C, 2004.
http: //www. w3. org/TR/rdf-primer/.

[64] J. Meseguer. General logics. In H. D. Ebbinghaus, F. J. Prida, M. Garrido, D. Lascar,
and R. M. Artalejo, editors, Logic Colloquium, pages 275 - 329. NorthHolland, 1989.

[65] N. F. Noy and M. Musen. Promptdiff: A fixed-point algorithm for comparing ontology
versions. In Proceedings of AAAI, pages 744-750,2002.

[66] S. R. N. Recognition memory for words sentences and pictures. In Journal of Verbal
Learning and Verbal Behavior, volume 6, pages 156-163.1967.

[67] G. Ro§u. Axiomatizability in inclusive equational logic. Mathematical Structures in
Computer Science, To appear. Submitted January 1997.

174 BIBLIOGRAPHY

[68] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference

Manual. Addsion Wesley, 2006.

[69] A. Salibra and G. Scollo. Interpolation and compactness in categories of pre-
institutions. Mathematical Structures in Computer Science, 6(3): 261-286,1996.

[70] D. Sannella and A. Tarlecki. Specifications in an arbitrary institution. Information

and Contorol, 76(2/3): 165-210,1988.

[71] M. Schorlemmer and Y. Kalfoglou. Institutionalising ontology-based semantic integra-

tion. Appl. Ontol., 3(3): 131-150,2008.

[72] K. A. Spackman. Managing clinical terminology hierarchies using algorithmic calcula-
tion of subsumption: Experience with SNOMED-RT. Journal of the American Medical

Informatics Association, Fall Symposium Special Issue, 2000.

[73] S. Staab and R. Studer, editors. Handbook on Ontologies. International Handbooks on
Information Systems. Springer, 2004.

[74] L. J. Stockmeyer and A. K. Chandra. Provably difficult combinatorial games. SIAM
Journal on Computing, 8(2): 151-174,1979.

[75] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engineering: Principles and

methods. Data Knowl. Eng., 25(1-2): 161-197,1998.

[76] A. Tarlecki. On the existence of free models in abstract algebraic institutuons. Theo-

retical Computer Science, 37: 269-304,1986.

[771 A. Tarlecki. Moving between logical systems. In M. Haveraaen, 0. Owe, and O: J. Dahl,

editors, Recent Trends in Data Type Specifications. 11th Workshop on Specification of
Abstract Data Types, volume 1130 of Lecture Notes in Computer Science, pages 478-

502. Springer Verlag, 1996.

[78] A. Tarlecki. Towards heterogeneous specifications. In In Frontiers of Combining Sys-
tems FroCoS'98, Applied Logic Series, pages 337-360. Kluwer Academic Publishers,
1998.

[791 A. Tarlecki. Institutions: An Abstract Framework for Formal Specifications. In Alge-
braic Foundations of Systems Specification, pages 105-130. Springer-Verlag New York,
Inc., 1999.

[80] T. J. Teorey. Database modeling and design: the entity-relationship approach. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[81] B. Thalheim. Foundations of entity - relationship modeling. Ann. Math. Artif. Intell.,
7(1-4): 197-256,1993. -

[821 B. Thalheim. Entity-Relationship Modeling: Foundations of Database Technology.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2000.

BIBLIOGRAPHY 175

[83] M. Uschold and M. Grüninger. Ontologies: Principles, methods and applications.
Knowledge Engineering Review, 11: 93-136,1996.

[84] R. F. C. Walters. Categories and Computer Science. Cambridge University Press,
1991.

[851 A. Zimmermann, M. Krötzsch, J. Euzenat, and P. Hitzler. Formalizing ontology align-

ment and its operations with category theory. In Proceeding of the 2006 conference

on Formal Ontology in Information Systems, pages 277-288, Amsterdam, The Nether-

lands, The Netherlands, 2006. IOS Press.

