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Abstract

Recent developments in the theory of grain boundaries have been
largely concerned with the development of sophisticated geometrical
methods for describing the structure of (primarily) large-angle bound-
aries. This is necessary since the atomic structure and properties of
a grain boundary depend, in general, on a large number of parameters.

In the simplest case of a planar b;undary nine parameters are required
to characterize the boundary: The relative orientation of the crystals
and the interface can be specified by 6 parameters while three are
required to define the location of the boundary.

It is, therefore, evident that the investigation of the atomic
structure and properties of a grain boundary is, generaily, more compli-
cated than that of a single crystal. It is the aim of this thesis to
point out an approach facilitating this task. The proposed approach is
based on symmetry considerations of grain boundaries. Such considerations
can be employed for simplifying calculations of tensor analysis or
quantum mechanics. However, in order to do this a comprehensive frame-
work of symmetry classes is required.

In chapters 1 and 2 of this thesis the proposed approach and sym-
metry theory are outlined. The crystallographic model of a grain bound-
ary is then developed in chapter 3. The discussion in this chapter
indicates that the structure of a bicrystal requires a description not
only of the arrangement of the atoms, but also of the inter-relation
of the two crystals. The most complete description of the bicrystal
symmetry can be given on the basis of the theory of two-coloured sym=-

metry within the framework of the Shubnikov groups.



According to the crystallographic model the symmetry of a bicrystal
can be obtained by superimposing the geometrical figures representing
the symmetry groups of the two adjacent crystals. This examined in
detail in chapter 4 where a group-theoretical method is derived for
deternining the symmetry resulting by the suverposition of two point
groups. The method is subsequently used (chapter 5) for the determina-
tion of the permissible symmetry groups of interfaces.

In the next two chapters the variation of the bicrystal symmetry
with relative displacement of the adjacent crystals and the location of
the interface is investigated. The extension of the symmetry consider-
ations to interphase boundaries and to other planar crystal defects is
exarined in chapter 8, 1In the same chapter the applicafion of symmetry
to the study of atomic structure and properties of interfaces is examined.

The final part of the thesis is concerned with the experimental
investization of the structure of twins in silicon using a special
imaging technique in the transmission electron microscope. This tech=
nique allows rigid-body translations at twin boundaries to be revealed
as stacking-fault-like fringes. Thus, the structure of the Y =3, coherent

and incoherent, twins is determined,
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Chapter 1

INTRODUCTION

1.1 Objectives of the theoretical part

Grain boundaries play an important role in controlling physical
properties of polycrystalline solids. On account of this, the stru-
cture of grain boundaries has been studied extensively in recent years
(Chadwick & Smith, 1976). Most of the work carried out has been based
on sophisticated experimental procedures as well as making use of
powerful tools of modern physics to investigate the structure and/or
the properties of interfaces. The present work is intended to sup-
plement rather than compete with the physically based literature.

The approach is phenomenological and the questions which are asked are:
how are different causes/effects inter-related; and, what mathematical
similarities are there in the formulation and manipulation of dif-
ferent grain-boundary properties?

The relationship between cause and effect can be studied on the
basis of Neumann's (1885) principle. This principle states that 'tﬁe
symmetry elements of any (macroscopic) physical property of a crystal
must include all the symmetry elements of the point group of the crys4
tal'. This implies that any given physical property may possess a
higher symmetry than that possessed by the crystal. What is mandatory
is that it can not be of a lower symmetry than that of the crystal.

Neumann's prihciple has been extensively used for the study of
single crystals. But its validity is more general; recently Pond &
Bollmann (1979) pointed out that Neumann's principle holds equally
well for bicrystals. An immediate implication is that the symmetry
of the class to which a particular bicrystal belongs determines the ty-
pe and extent of anisotrory exhibited by & given bicrystal in regard

to the (macroscopic) physical properties.



A given symmetry has the same effect on different physical proper-
ties represented by the same tensor irrespectively of their physical
nature. In a bierystal belonging to a particular class all physical
properties represented by a tensor of the same kind and rank possess the
same scheme of non-~vanishing coefficients. Once the effect of various
symmetries on the tensors of different ranks and types is worked out,
all that is necessary to determine the effect of symmetry on a parti-
cular physical property is to establish‘the kind and rank of the tensor
by which it is represented. The usefulness and convenience of such a
broad classification and general treatment are thus apparent. In order
to use tensor calculus, however, a comprehensive crystallographic

framework is required. This is the aim of the theoretical part of

this thesis.

1.1.1 Earlier work on interfacial symmetry

The symmetry of bicrystals * has been studied by employing
concepts from two-coloured symmetry (Mokievskii & Shafranovskii, 1957;
Curien & Le Corre, 1958; Curien & Donnay, 1959), the theory of repre-
sentations (Indenbom, 1960), the theory of two-sided infinite plane
groups (Holser, 1958a) and the general study of crystal shapes (Mokiev-
skii, Shafranovskii & Afanas'ev, 1965; Shafranovskii & Pis'mennyi, 1961;
Shafranovskii, 1960; Mokievskii, 1968). The last three approaches,
although using different concepts, are based on the same principle.

The derivation of the symmetry classes is based on successive considera-
tion of the crystal faces of simple form and the combination of them.
However, this approach does not give the symmetry group of the bicrystal

but only the symmetry of the interface; the atomic configuration along-

* all footnotes are contained in the text and appear directly following

the section on which they are mentioned.



side the boundary plane is neglected.

Curien & Le Corre (1953), on the other hand, have proposed that in
twinning by merohedry or by reticular rnerohedry2 the symbolism of ‘black-
=white! Shubnikov groups can be used to designate the various twin laws
(see also Mokievskii, Shafranovskii, Vovk & Afanas'ev, 1966). Thus every
twin law gives the geometrical relationship between two crystals, a
'black' one and a ‘white' one. It corresponds, therefore, to a colour-
-reversing symmetry operation (see section 3.3). Although generalized
extensions of this approach have been proposed (Curien & Donnay, 1959;
Takeda, Donnay & Appleman, 1967) its use has been restricted to twins
only.

It was only recently that the symmetry of a gener#l grain bounda-
ry was considered by Pond & Bollmann (1979). They proposed, independently,
the employment of the two-coloured symmetry classes for the classifica-
tion of a general bicrystal. Moreover, they showed that a complete
crystallographic framework can be established for the classification
of the interfacial symmetry. Such a framework is determined in this

thesis.

1.1.2 The present approach

The study of the interfacial symmetry is necessarily based on the
already established theory of symmetry (see e.g. Weyl, 1952;Neuman,
1956; Coxeter, 1969). The latter provides schemes for the classification
of the symmetry of any object; the various schemes are discussed in
chapter 2. In order to establish which of these schemes are consistent
with the interfacial symmetry a geometrical model is required. Such
a model as well as the associated crystallographic concepts are developed
in chapter 3.

An important conéept introduced in connection with the geometrical

modelling of a interface is the 'dichromatic complex'. This is the



configuration of two interpenetrating lattice-complexes, i.e. sets of
rints describing the space symmetry of the adjacent crystalss. The di-
chromatic complex, although a purely mathematicel concept, permits:

(a) a comprehensive description of the interfacial symmetry in
terms of the component crystals, and,

(b) it can bé used for the determination of the various interfa-
cial symmetries created by two given crystals in a given
misorientation.

Having established the geometrical model attention is focused on
the symmetry groups which are consistent with the geometry of either
the dichromatic complex or the bicrystal. The point groups of the former
can be established by bearing in mind that they correspénd to symmetries
created by the superposition of the point symmetries of the associated
lattice-complexes. Thus, the determination of the point groups is carried
out by employing the group-theoretical method given in chapter 4. This

.

method enables the point symmetry created by the superpositipn of two
point groups to be studied in terms of the misorientation of the two
components. The application of this method shows that the point groups
of the dichromatic complexes are isomorphic to the antisymmetry point
groups and a list of all permissible point groups is given in section
4.3. Furthermore, the method permits the determination of the point
groups of the dichromatic patternsA.

The conclusions reached in chapters 3 and 4 are subsequently
used for the determination of the symmetry classes of dichromatic com-
plexes and bicrystals. Tables covering all the possible cases as well
as examples of particular cases are given in chapter S. These tables
are derived by assuming that the components of the dichromatic complex

or bicrystal have a common origin. Pond & Bollmann (1879) have shown,



however, that the symmetry of dichromatic patterns or bicrystals can be
changed if their components are displaced relative to each other. This
is discussed in chapter 6 where an analytical procedure is developed
for the systemaéic study of such variations of the symmetry.

The remaining of the theoretical part deals with the symmetry of
bicrystals created for a given dichromatic complex. Thus, it is shown
in chapter 7 that both the point and/or the translational bicrystal
symmetry can be determined in a systematic way. Also, it is proved
that group-theoretical considerations can be used in a comprehensive
manner for predicting some interesting features of the interfacial
symmetry. The most important of these is the occurence of bicrystals
with symmetry related structures (Pond & Bollmann, 1979). The impli-
cation of such cases is aparent (see e.g. Pond, 1977) and indicates that
considerations of the interfacial symmetry may yield a model of grain
boundary structure. This is of considerable importance on the grounds
that all the current grain boundary structural models are basically of

geometrical nature as is discussed in the next section.
Footnotes 1: In effect, the treatment in the mentional papers
refer to twin related crystals, a rather special

case of bicrystals.

2: Twinning by ‘'merohedry' or by 'reticular merohedry'
are terms introduced by Friedel (1926) but since
his work is in French the English-speaking reader
may find easier to refer to Cahn (1954) for a
contemporary account of the development of the ideas

involved.

3: For a detailed definition of the latticg-complex



and dichromatic complex see section 3.1.

4: A dichromatic pattern has been defined by Pond &
Bollmann (1979) as the configuration of two inter-
penetrating lattices.

1.2 Outline of grain boundary models

The development of grain boundary theories (i.e. models tending
to explain the structure and/or the properties of grain boundaries) was
necessarily parallel to advances in the understanding of the crystalline
state. Thus, it was not until the crystalline nature of metals was
accepted that the first grain boundary theory was put forward (Ewing &
Rosenhain, 1901; Rosenhain, 1925; see also King & Chalmers, 1949 for a
review). The main disadvantage of the Rosenhain's ‘amorphous cement'
model was that it necessitated a thick grain boundary layer (see e.g.
Desch, 1912; Ke, 1947; MclLean, 1957).

Gough (1928) then suggested that a defined atomic arrangement at
the grain boundary layer should provide a means of accommodating the
change in orientation between the two crystals. This was extented by
Hargreaves & Hills (1929) who formulated @ough's idea into the first
theory of grain boundary structure related to the crystal lattice geo-
metry ('transition-lattice' model). Burgers (1940) and Bragg (1940)
subsequently described the boundary in terms of an array of dislocation
lines accommodating the misorientation between the two crystals. Their
proposals were confirmed by the observations of Lomer & Nye (1952) and
Vogel, Pfann, Corey & Thomas (1953).

Around the same time several theories (Mott, 1948; K&, 1949; Smo-
luchowski, 1953; Friedel, Cullity & Crussard, 1953) were put forward
but none was completely successful. Each was put forward to explain

particular properties and, while having some quantitative success with



properties which it was put forward to explain, did not explain other
properties. Thus, the majority of recent theories have been based on

the suggestions of Bragg (1940) and Burgers (1940). The development of
this model for low-angle boundaries was due to Frank (1950) who presented
a formulae relating the angular misorientation of the two crystals to

the Burgers vectors and spacings of dislocations required to produce

that misorientation. Read & Shockley (1950) used Frank's formula for

the calculation of the energy of low-angle boundaries and their results
showed good agreement with experimental results (Dunn, Daniels & Bolton,
1950).

Brandon, Ralph, Ranganathan & Wald (1964) and Brandon (1966)
combined the dislocation array idea with the coincidencé-site lattice
(CSL) model of Friedel (1926) and Ellis & Treuting (1951)1 in order to
describe the structure of high-angle boundaries. Experimental evidence
(see e.g. Kronberg & Wilson, 1949) indicated that the CSL model provi-
des a reasonable explanation of certain interfaces. However, more sy-
stematic experiments by Aust & Rutter (1959) and Aust, Ferran & Cizeron
(1963) showed that not all the boundaries had the exact CSL misorienta-
tion, but that angular deviations up to 150 from exact coincidence could
be observed. It became, therefore, necessary to find a more general
mathematical framework for expressing the concept of coincidence, and
generalizing the ideas to include all possible misorientations. One
way in which this problem may be approached has been developed by
Bollmann (1970) and is the O-lattice theory.

Bollmann's model generalized the concept of coincidence to consi-
der not just coincidence of lattice sites between crystals, but coinci-
dence of eguivalent points within two misorientated crystals. The

O-lattice model enables a grain boundary dislocation structure to be



constructed for any boundary (see e.g. Warrington & Bollmann, 1972;
Christian, 1975; Smith & Pond, 1976) and also enables the possible
Burgers vectors of grain boundary dislocations to be obtained (Grimmer,
Bollmann & Warrington, 1974). However, the optimum structure as predicted
by the O-lattice is calculated from a purely geometrical consideration
of the crystals making up the interface, and takes no account of the
possibility of different interatomic interactions occuring in different
materials with the same lattice type.

Relatively recently a number of paper52 were published concerned
with computer simulation of the structure (and properties) of grain
boundaries in an attempt to account for the influence of the interatomic
interactions. These calculations show, to a greater ornlesser extent,
that coincidence boundaries display minima in the energy vs. misorienta-
tion curve.

Another feature obtained by preliminary c;mputer simulation of
grain boundary structures was revealed about 1967-1970 by Chalmers and
co~workers whose work developed an alternative concept of coincidence.
On the basis of these calculations, and subsequent work (see e.g. Pond,
Smith & Clark, 1974; Pond, 1975,1976; Pond, Smith & Vitek, 1976), a new
model of the structure of coincidence-related boundaries was proposed,
in which the maintenance of a periodic structure in the interface is
central, rather than the occupation of coincidence sites. It is still
true, however, that coincidence misorientations produce lower energy
interfaces than random ones, the misorientation being unaffected by
the presence of a translation. Thus, it was proposed that the periodi-

city of boundaries between crystals in a CSL orientation remains of

fundamental importance in defining the nature of grain boundary dislo-

cations and the location of minima in the energy of grain boundary.

Footnotes 1: The identity between the two approaches was pointed



out by Whitwhan, Mouflard & Lacombe (1951).

2: See Hasson and co-workers (1970-1972c); Weins and
co-workers (1969-1972b); Dahl and co-workers (1970
-=1972b); Pond and co-workers (1976, 1979); Smith
et al. (1977); Pond & Vitek (1977); Bristowe &
Crocker (1975), and, Geary & Bacon (1976).

1.3 Objectives of the experimental work

The aim of the experimental part of this thesis was to use trans-
mission electron microscopy for analysing the structure of grain boun-
daries formed by CSL related crystals. This involved the determination
of rigid-body translations at grain boundaries by using an imaging mode
which allows them to be revealed as stacking-fault like fringes. This
technique has been used for investigating the structure‘of twin bounda-
ries in aluminium (Pond & Smith, 1974), stainless steel (Pond, Smith &
Clark, 1974) and copper (Pond & Smith, 1976). There are several reasons,
such as easy specimen preparation, relatively simple structure, compari-
son with computer simulated grain boundary structure, which have contri-
buted, at least in the initial stage, towards the application of the
method to metals.

In this thesis, because of its technological importance, the mate-
rial chosen was silicon. The significance of the grain boundary struc~-
ture studies in this material can be unterstood by the following consi-
derations. During the last years there has been an impact on terrestial
use of solar cells. These are photovoltaic devices designed to convert
sunlight into electric power. The advantages of solar cells lie in their
ability to provide significant quantities of electrical energy from an
inexhaustible resource without the problems of pollution or physical

danger. However, the technology for photovoltaic conversion must
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be further developed to make it economical viable for terrestial appli-
cations. The efforts in photovoltaic research are mainly concentrated
on polycrystalline silicon cells. The primarily goal is the development
and fabrication of low cost silicon base materials.

One of the key factors controlling the cost of terrestial silicon
solar cell production is the process of growing silicon sheet. It is
well recognized by now (Hovel, 1975; Palz, 1979) that the cost of sili-
con sheet has to be substantially reduced to meet the requirements'of
low~-cost photovoltaic arrays. The current process of producing silicon
sheet is entirely based on the conventional Czochralski ingot growth
and wafering as practiced by the semiconductor industry. The order of
magnitude reduction in cost required by low-cost silicoﬁ sheet can not
be met by this current technology (Koliwan, Daud & Liu, 1979). Clearly,
alternative sheet growth processes are needed.

The prospects for significant cost reduction seem very good; parti-
cularly with the ribbon or polycrystalline silicon growth processes.
The silicon obtained by these growth methods differs from that produced

for semiconductor intergrated circuit applications. The low~-cost sili-

con sheet is structurally and chemically less perfect; these imperfections

are the direct result of the growth processes. Such imperfections may
influence the electrical and/or mechanical properties of the material
with immediate consequences in the solar celliperformance. Grain
boundary effects are probably the most important since can short circuit
the junction or barrier, and often recombination velocities in the
boundary are very high.. The first contributes a low resistance and the
second yields a low qQuantum efficiency. Potential barriers often exist
at grain boundaries and these can add to the series resistance if the

grains do not extend through the film.
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The above considerations indicate the great importance of the
study of the grain boundary structure in silicon. Most of the sheet
methods produce a polycrystalline sheet where the majority of the
boundaries are twins (Helmreich & Seiter, 1979; Johan et al. 1979).
Thus, the significance of knowing the structure of the twins is aparent.
These considerations indicate the background in which the experimental
work of this thesis lies. In chapter 10 the structure of the coherent
and the Y¥=3, {211} twins is determined. The obtained structure is
interpreted in terms of atomic bonding as well as in connection to results
obtained by measurements of the electrical properties of appropriate

specimens reported by other workers.
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Chapter 2

SYMMETRY OF OBJECTS

2.1 Classical symmetgyl

Symmetry groups are sets of geometrical transformations (symmetry
operations) which operating on an object leave it in a condition indis-
tinguishable from its original condition. The classical theory of sym-
metry was originally developed in the publications of Fedorov (1949) and
Schénflies (1891). Subsequently, numerous works (see e.g. Bravais,
1866; Niggli, 1919; Speiser, 1924) have been carried out leading to the
establishment of a complete framework for the symmetry theory. This
framework serves to classify any 1=, 2- or 3-dimensional object since
any given object can possess one and only one combination of symmetry
operations. These ideas were soon applied in fields such as geometrical
crystallography, physical theory of crystal structures, the dynamical
theory of crystal lattice and the theory of electron structure.

The conventional treatment for deriving the various symmetry
classes is to consider initially the point groups (in 1-, 2= or 3=dimen-
sions) and then to combine these symmetry operations with the appropriate
translational symmetry. The symmetry of the obtained configuration of
single points can be described by considering the concept of 'lattice-
—complex' (Gitterkomplex) introduced by Niggli (1913, 1924). A lattice-
—complex is the totallity of all points which can be derived from a
given point, xyz, by the employment of all the péint symmetry operations
of a given spatial groupz. The translation group is then applied to
this point configuration so that an identical lattice is generated for
all points equivalent to xyz3.

A lattice-complex is, by definition, different from a lattice which

ic a periodic array of (mathematical) roints specifying the translational
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(but not the point) symmetry of the crystal. Thus, to each lattice-
~complex corresponds a lattice (which can be found if the translational
group of the particular spatial group is considered); but the inverse
is not always true. The lattice—complex and the lattice can be identi-
cal4 only for the cases where the particular spatial symmetry group
belongs to the holosymmetric class of the crystal system.

The classification scheme of the theory of symmetry is based
on the following principles. Firstly, the dimensions of the space ‘'in!
wvhich the object is considered restrict the kind of symmetry operations
being consistent with the geometry of the object. For example, a
one-~dimensional object can not have any symmetry operation besides the
transformations which leave the one-dimensional space in&ariant. Se=-
condly, owing to the particular features of the object, particular
geometric elements (point, line, plane, cell or some combination of
them) are required to remain invariant under all operations5 of the
symmetry groups in a class; the well-known distinction between point and
space groups is an example.,

The two principles mentioned above constitute the basis for a
comprehensive classification of symmetry classes, namely, the ‘'dimen-
sional' description of symmetry groups (Neronova & Belov, 1951; Holser,
1961). This is an expression of the dimensions of space remaining
invariant for each symmetry class. This is examined in appendix 2,
whereas the classification of (classical) symmetry groups according to
their dimensional description is given in table 2.1.1.

It is perhaps appropriate to give the full definitions of some
of the classes appearing in table 2.1.1. The class of rod groups, G;,l ’
for example, is associated with figures without singular points and

planes but with a singular translation axis. On the other hand, the



TABLE 2.1.1

Dimensional description of (classical) symmetry classes for

1-, 2- and 3-dimensional systems

Invariance Symbol E:; of Comments
ups
1l
0 G, 1 (1)
0,1 Gi.o 2 l-dimensional point groups (2)
0,1,2 6l 5 (2)
' 2,1,0
1
G
0,1,2,3 3,2,1,0 16 strip groups (3)
0,1,3 Gl
4) 31,0 15 i
1 two-sided, one-coloured
0,2,3 G rosette groups (5)
3,2,0 |
0,2 G; 0 10 2-dimensional point groups (6)
1
0,3 Gé 0 32 3-dimensional point groups (7)
1 Gi 2 1-dimensional space groups (7)
1,2 G; 1 7 line groups in 2-dimensions (7)
?
1,2,3 G; 2.1 31 two-sided, one=-coloured
it band groups (8)
1,3 G; 1 75 rod groups (line groups in
’ 3-dimensions) (9)
2 Gé 17 2-dimensional space groups (7)
2,3 G; , |#0 layer groups (10)
]
3 G; space groups (Fedorov groups)

(7)

(1) Neronova & Belov (1961); Niggli (1959)
(2) Niggli (1959)
(3) Nowacki (1960); Holser (1960)




TABLE 2.1.1-=continued

(4) the equivalence of classes 0,1,3 and 0,2,3 is discussed
by Holser (1961)

(5) Alexander & Herrmann (1929); Weber (1929); Hermann (1929a);
Heesch (1929)

(6) Niggli (1959); Mackay (1957)

(7) International Tables of X-ray Crystallography (1969)

(8) Speiser (1924); Belov (1956)

(9) Hermann (1929a); see also in International Tables of X-ray
Crystallography (1969)

(10) Hermann (1929a); Alexander & Herrmann (1929); Weber (1929)
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symmetry of figures without singular points but with a singular plane
(on which two non-parallel translation axes are present) is described
by the layer class G1 .
3,2
1 1 1l .
Th
e classes G3,2.0 and G3,2,1 (together with the G3'2) are special
cases of symmetry consistent with objects containing a singular plane.
The former class corresponds to rosettes, i.e. to figures with a singu-
lar point and a singular plane. The other class mentioned above is the

class of bands where a singular translation axis is considered in addi-

tion to the singular point and singular plane. It is of interest to

notice that the class G1 bears the same relationship to G1 as
3,2'1 3,2.0
the class G; 1 to Gg 0 This can be seen in figure 2.1.1 which indicates
1 ] H

the relationships between the symmetry classes mentioned above.
Footnotes 1: The nomenclature used in this thesis for denoting
symmetry groups, elements and operations is outlined
in appendix 1.

2: The term 'spatial symmetry groups' denotes symmetry
groups where l-, 2- or 3-dimensional translation
symmetry is included in addition to point symmetry.
Spatial symmetry groups should be distinguished from
space symmetry groups since the latter involve combi-
nations of point symmetry operations with 3-dimen-~
sional translation symmetry.

3: Obviously, it is possible to work in the converse
sense and operate first with the translation group
and then with all symmetry operations apart from
those of the translational group.

4: Provided that an appropriate 'starding' point is
considered for the lattice-complex.

5: This includes translations as well as operations of

rotation and reflection.



Figure 2.1.1

Schematic representation of the relationships among some sym-

metry groups,
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2.2 Antisymmetry

Comparetively recently generalizetions of symmetry have been de-
veloped. The most straightforward of these generalizations is the con-
cept of antisymmetry (or two-coloured or Shubnikov symmetry) groups.

This concept is now briefly examined.

2.2.1 Introduction of antisymmetry

The cocept of two-coloured symmetry is based on the ideas devel-
oped by Heesch (1930) and Shubnikov (1945, 1951). They worked out a
theory of symmetry groups in which an operation interchanging black and
white colours is considered in addition to the usual geometrical opera-
tions. In this respect, antisymmetry is the correspondence of faces,
points or other crystallographic objects having some property denoted
by a colour or sign, to other faces, points or objects symmetrically
related in position, but having the same property with the opposite
colour or sign.

Operations of antisymmetry transfer the object to a symmetrically
related position and change its colour or sign. These are called
colour-reversing operations (or antioperations) in contrast to the
ordinary symmetry operations of the classical crystallographyl. Thus,
the antiidentity operation, for example, corresponds to the operation
of changing the colour while keeping the object in its original position.
Operations of reflection in a plane and colour-exchange or of inversion
in an abritrary point and colour—exchange (successively performed) will
be termed colour-reversing reflection (antireflection) or colour-reversing
inversion (antiinversion) respectively.

Some of the antisymmetry operations are schematically represented
in figure 2.2.1 with reference to (geometrical) transformations of

oblique tetrahedra coloured either black or white. The tetrahedra can



Figure 2.2.1

Schematic representation of some antioperations are shown by
using oblique tetrahedra which may point either upwards (a) or
downwards (b). The antioperations shown are: colour-reversing
mirror plane (c), two-fold colour-reversing rotation axis
placed perpendicular to the plane of the diagram (d), two-fold
colour-reversing rotation axis in the plane of the diagram (e),
colour-reversing centre of symmetry (f), and a four-fold roto-

inversion colour-reversing axis (g).
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point either upwards (figure 2.2.la) or downwards (figure 2.2.1b).

2.2.2 Groups of antisymmetry of finite objects

The consideration of colour exchanging operations in addition to
the classical symmetry operations implies an increase in the number of
permissible operations. Consequently, the number of antisymmetry point
groupsfis also increased; it is appropriate to classify these groups
into:

(1) the classical (or one-coloured) groups, i.e. groups where
no colour-reversing operations are present,

(2) the grey (or neutral) groups obtained by additing the anti-
identity operation to the generators of the classical
groups, and, |

(3) the black-white groups obtained by replacing some (but not
all) of the ordinary operations present in the classical
groups by the corresponding colour-reversing operations.
These groups are isomorphic with the symmetry groups of
polyhedra with two-coloured faces (Shubnikov, 1951).

The term 'two-coloured' groupé is used in this thesis to denote
the set of all (classical, grey and black-white) groups‘with a given
dimensional description Gi,s,t'

In the grey groups equal and opposite black and white objects are
exactly superposed (see figure 2.2.2a and ¢), whereas in the black-white
groups white objects are interchanged with black ones (figure 2.2.2b
and d).

From the group-theoretical point of view to every classical point
group2 G there corresponds a grey point group M, given by (see Koptsik,

1966; Bertaut, 1963; Boyle, 1969; Krishnamurti & Gopalakrishnamurti,

1969; Schelkens, 1970; Sumberg et al. 1972):



Figure 2.2.2

Examples of transformation of classical (one=coloured) point

groups into grey (a,c) or black-white (b,d) point groups.
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M=G+CG (2.2.1)
where C is the operation of antiidentity and the summation is to be
understood in the Galois (1897) sense, i.e. as a juxt?position of elements.

Black-white groups, on the other hand, are defined by:

M(H)=H+C(G-H) (2.2.2)
where H is a halving subgroup of G, and G-H means the set of elements
of G that do not belong to H. A halving subgroup is defined as a sub-
group of index 2 (i.e. it has half as many elements as G) and is, there-
fore, an invariant subgroup (Higman, 1955).

The two-coloured point groups, Gg’o. often called Heesch groups,
were first derived by Heesch (1930) and later by Shubnikov (1951). 1In
1960 to 1965 two-coloured groups keeping as special (invériant) elements
certain points, lines or planes (i.e. subgroups of Gg'o) were derived.,

To the known 158 Heesch groups were added the two-dimensional, two-co-

2

(Shubnikov, 1962a=-c) groups. The

(Nowacki, 1960; Palistrant, 1965), the G

2
3,2,1,0

dimensional description of the two-coloured classes of symmetry groups

loured point groups, G2
2,0

(Palistrant, 1965) and the G

is given in table 2.2.1.

2.2.3 Groups of antisymmetry of infinite figures

By passing from finite to infinite figures the possibility of
translational symmetry must be considered in addition to the point
symmetry operations. The combination of translations and colour exchange
implies the occurence of colour-reversing translations (or antitransla-
tions). An immediate consequence is that the number of lattices (i.e.
the number of non—equivalent ways of arranging black and white points
in the space) increases.

The derivation of the two-coloured lattices is based on the fun-

damental property of the colour translation; two consecutive colour



TABLE 2.2.1
Dimensional description of two-coloured symmetry classes for

1-, 2~ and 3-dimensional systems

No. of

I
nvariance Symbol groups Comments
2
0 G, 2 (1)
0,1 Gi o 5 two~coloured, l-dimensional
’ ’ point groups
0,1,2 G2 (2)
2,1,0
0 G2
»1,2,3 3,2,1,0 two-coloured strip groups (3)

0,1,3 %3,1,0
}(4) { 2' ! 125 |two-sided, two-coloured
3

0,2,3 G rosette groups (5)
»2,0
0,2 Gg 0 two=coloured, 2-dimensional
point groups (6)
0,3 ’“Gg 0 122 |two~coloured, 3-dimensional
’ point (Heesch) groups (7)
1 Gi 7 two-coloured, l=dimensional
space groups (1)
1,2 G: 1 two=coloured line groups in
! 2-dimensions (8)
1,2,3 Gg 5.1 179 |two-sided, two-coloured
149 band groups (9)
1,3 Gg 1 394 |two-sided, two-coloured
’ rod groups (10)
2 Gg 80 |two—coloured pattern

groups (11)




TABLE 2,2.l-continued

No. of
Invariance Symbol g:ou;s Comments
2,3 62 , | 530 | two-sided, two-coloured
3, layer groups (12)
3 Gg 1651 two—coloured space groups

in 3-dimensions (Shubnikov
groups) (13)

(1) Neronova & Belov (1961)
(2) Palistrant (1965)
(3) Shubnikov (1962a,b)
(4) the equivalence is discussed by Holser (1961)

(5) see appendix 3
(6) Nowacki (1960); Palistrant (1965)

(7) Heesch (1929); Shubnikov (1951); Koptsik (1966)
(8) Belov (1956)
(9) see appendix 4

(10) Neronova & Belov (1961); Galyarskii & Zamorzaev (1965);

Shubnikov (1959)
(11) Heesch (1929); Cochran (1952); see also Shubnikov &
Koptsik (1974)

(12) Neronova & Belov (1961); Palistrant & Zamorzaev (1963)

(13) Heesch (1929); Zamorzaev (1953, 1957, 1962); Belov,
Neronova & Smirnova (1955, 1957); Koptsik (1966)




18

translations in one direction are equivalent to one uncoloured transla-
tion in the same direction. The two-coloured lattices are classified
into:

(1) the classical, and,

(2) the black-white (or antitranslation) lattices.

Belov, Neronova & Smirnova (1955) shown that in three dimensions
there are 36 two-coloured Bravais lattices including the 14 classical
but excluding a further 14 grey lattices.

The 1651 two-coloured space groups, Gg, were first derived by-
Zamorzaev (1953, 1962) and it was he who introduced the term 'Shubnikov
groups'. The remaining classes of two-coloured symmetry groups were
derived between 1929 and 1963; references for these grouﬁs are given

in table 2.2.1.

Footnotes 1: Subsequently, the terms 'element of symmetry' or
'symmetry operation' will be understood to include
elements or operations of antisymmetry respectively
(unless specifically is stated to be otherwise).

2: G is not necessarily one of the 32 classical point
groups, but it can be any one-coloured point group
(Koptsik, 1966; Boyle, 1969).
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Chapter 3

CRYSTALLOGRAPHIC TREATMENT OF INTERFACES

3.1 A model of bicrystals

An interface is considered to be the surface separating two
(semi~infinite) crystals differing in chemical composition and/or the
orientation of their respective lattices. The geometrical relationships
existing between the two crystals define the interfacial symmetry. This

can be expressed by referring to the 'ideal bicrystal'.

3.1.1 The ideal bicrystal

An ideal bicrystal is defined as the assembly of two semi-infinite
crystals (differing in chemical composition and/or the orientation of
their lattices) separated by a geometrical plane, the interface. One
of the two semi-infinite crystals is designated 'white' and the other
'black'; this designation is, however, quite abritary and there is no
difference between a white and a black point except that they belong
to different crystals.

The term 'ideal bicrystal' (or simply bicrystal) is used in this
work to denote a strictly mathematical configurationl. This definition
implies that:

(1) the interface is considered to be a unique plane in the
bicrystal as it represents a surface of a two-dimensional
mathematical discontinuity which may be associated with
a sharp change in physical properties, and,

(2) an ideal bicrystal extends to infinity.

For symmetry considerations it is often advantageous to disregard
the atomic structure of the adjacent crystals. The interface is, then,
considered as the unique plane separating the black and white semi-infi-

nite lattice—complexes2 (see section 2.1 for the definition of a lattice

—complex).
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3.1.2 Dichromatic complex

Furthermore, in some cases, depending on what is studied, the
requirement of the uﬁique plane can be relaxed. This is equivalent
to allowing the black and white lattice-complexes to interpenetrate
each other. The configuration so obtained consists of two differently
orientated and/or different lattice-complexes and is called a ‘'dichro-
matic complex'. The introduction of this concept involves a significant
simplification as far as the symmetry studies of bicrystals are concerned
since their symmetry can be studied in direct relation to the symmetry
of the component structure(s). Moreover, in this case the symmetry of
a bicrystal corresponds directly to the correlative part of the dichro-
matic complex symmetry, i.e. a section of the spatial group taken at

the iriterface position (this is examined in section 7.1).

3.1.3 Dichromatic pattern

It must be mentioned that the term 'dichromatic complex' is to be
distinguished from the concept of the ‘'dichromatic pattern' introduced
by Pond & Bollmann (1979). They defined the dichromatic pattern as
consisting of two interpenetrating3 lattices. In the remaining of the
thesis the term dichromatic complex is considered to include the dichro-
matic pattern concept as well, unless it is specifically stated to be
othervise.

The dichromatic pattern provides a comprehensive skeleton for the
construction of an ideal bicrystal. This is because, once the boundary
Plane is fixed in the dichromatic pattern the appropriate bases may be
filled at the sides of the white lattice on the one side of the boundary
and at the sides of the black lattice on the other side. As soon as the
interface is realized the remainer of the lattices lose their meaning.

The difference between dichromatic patterns and dichromatic
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complexes is illustrated in figure 3.1.1. This shows (figure 3.1.1la)
the dichromatic complex formed between two diamond-structure-type
‘lattice-complexes (they are related by the CSL rotation [001]/36.99).
In this particular case the associated dichromatic pattern is formed
by two f.c.c. lattices (figure 3.1.1b) in the same misorientation
relationship.

The above example indicates an alternative procedure for obtaining
the dichromatic complex. Thus, it is obtained by locating appropriate
sets of points to eacH lattice position of the dichromatic pattern (in
the correct orientation). It is, therefore, clear that the dichromatic

complex has the same periodicity as the associated dichromatic pattern.

3.1.4 Degrees of freedom of an interface

The relative position of the two crystals acrosé an interface
is fully described, without any particular reference to an interfacial
structure model, by determining:
(1) the misorientation relationshipd,
(2) the relative translational position of the two crystals,and,
(3) the orientation of the interface plane.
The white lattice-complex is considered fixed in space and is
used as reference. Any misorientation present is considered5 to arise
from the appropriate movement and/or rotation of the black lattice-com=-
plex. Following Seitz (1936)6 the symbol‘{R'/§}={([hk1]/9)'/§} is
introduced for describing the relative position and misorientation
of the two components. The R'=([hk1]/6)' means that a lattice-complex
" originally coincident with the white lattice-complex and with the same
colour is rotated by an angle O about [hkl] (using the coordinate system
of the white lattice-complex) and subsequently undergoes colour reversal

from white to black7 and a shift characterized by a vector t (which is



Figure 3.1.1

Schematic representation showing the difference between a dichro-
matic complex and a dichromatic pattern:
(a) (001) projection of a dichromatic complex formed
by two lattice=complexes of the diamond-structure
~cwm--- type in [001]/36.9° misorientation
(b) (001) projection of a dichromatic pattern formed
by two f.c.c. lattices in [001]/36.9° misorientation

Key: Open symbols: positions of the white
lattice/lattice-complex
Filled symbols: positions of the black
lattice/lattice-complex
Large circles: in the plane of the paper
Small circles: +a/2 out of the paper
Large squares: +a/4 out of the paper
Small squares: +3a/4 out of the paper



(a)

(b)
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the displacement of the black lattice-complex away from the neutral
origin position).

For dichromatic complexes constructed by a given lattice—complex
six geometrical degrees of freedom are required for specifying the
misorientation relationship between the black and white components.
Three degrees of freedom are associated with the specification of the
axis, [hkl], and angle, 6, of rotation; the other three degrees are
required for the specification of t. Two additional degrees of geo-
metriecal freedom are assocliated with the specification of the interface

plane, u=[par), vhen a bicrystal is constructed.

3.1.5 Manufacture of an ideal bicrystal

To manufacture an ideal bicrystal it is, therefore, necessary
(Pond & Bollmann, 1979):
(1) to obtain the appropriate dichromatic pattern,

(2) to specify the orientation of the boundary plane, and,
(3) to locate the appropriate bases (atomic motifs) at the

sites of the white lattice on the one side of the boundary
and at the sites of the black lattice on the other.

The above developed model was derived by bearing in mind a general
(grain or interphase) boundary. The considerations in the remaining of
this work, however, are restricted to grain boundaries (unless specifi-
cally is stated to be otherwise). This means that the two lattice-com-
plexes are considered to be identical and the grain boundary is consi-
dered as the planar surface separating them. Interphase boundaries

will be considered separately in section 8.2.

Footnotes 1: This means that imperfections such as dislocations
on the interface or in either of the crystals, ato=
mic relaxation or stress movements are not conside-

red. This immediztely yields that symmetry changes
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introduced by such deviations from the normal
configuration are not included in the considerations
of this thesis.

2: It is hoped that the advantages of this formulation
will become apparent in due course.

3: The fact that a lattice is, by definition, infinite
does not necessarily involves that the two lattices
are interpenetrating, since they can be considered
to be 'in' different metric spaces.

4: The misalignment between the two components of &
bicrystal (or a dichromatic complex) will be called
its misorientation relationship (or simply misorien-
tation).

5: This treatment refers, obviously, to grain bounda-
ries only; for the case of interphase boundaries
a similar procedure can be devised (see section 8.2).

6: The original paper is written in German; for an
English translation see Cracknell (1968).

7: Obviously, it is possible to work in the converse
sense and operate first the colour reversal and
then the rotation [hkl]/6.

3.2 Crystallographic definitions for interfaces

Dichromatic complexes and bicrystals are ‘'objects'! in the sense
of the theory of symmetry. This means that they possess spatial and/or
point symmetry. The function of this section is to deduce the symmetry

terminology relevant to the study of interfaces.

3.2.1 Dichromatic point groups

A dichromatic point group1 is a group in the mathematical sense
containing symmetry operations (being consistent with each other and
with the dichromatic complex geometry) which leave one point of the
dichromatic complex unmoved.

The dichromatic point groups can be established in a way similar
to that used in classical crystallography for deriving the 32 point

groups. This procedure is based on the determination of the set of
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symmetry operations being consistent with the dichromatic complex geo-
metry. This imposes limitations upon the permissible symmetry elements.
The point groups are then:determined by considering esombinations amongst
the symmetry elements so obtained,

Alternatively, the dichromatic point groups can be determined
directly in a far more elegant and comprehensive way. The deviation
method is based on the fact that a dichromatic complex is, by definition,
the configuration of two interpenetrating lattice-complexes (section 3.1).
Accordingly, the dichromatic point symmetry is expressed by the point
group obtained by the superposition of two identical point groups (in
the appropriate misorientation). In this respect the dichromatic point
groups can be determined by applying the group-theoretiéal method which

is developed in chapter 4.

3.2.2 Bicrystal point groups

A bicrystal point group is a group in the mathematical sense
containing symmetry operations (being consistent with each other and
with the bicrystal geometry) which leave one point of the bicrystal
unmoved.

The bicrystal point groups can be determined by either establishing
the permissible symmetry operations and then investigating combinations
between them or by considering the relationship between dichromatic
complexes and bicrystals. The former procedure is preferable since the
existing crystallographic framework can be directly used for establishing
the combinations of symmetry elements.

The alternative procedure is based on the considerations given
in section 7.1 where it is showvn that the bierystal point groups are
obtained by considering each one of the dichromatic point groups. For

the particular point group a sectional plane (corresponding to the
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interface plane) is employed and the resulting symmetry is investigated
by varing the orientation of the sectional plane. This method, although
not very useful for a general study of the bicrystal point groups, can
be used for determining the groups associated to a particular dichro-

matic complex.

Footnote 1: The term 'dichromatic point group' is not to be
confused with the 'two-coloured group' term referred
to in section 2.2 (note that Belov, Neronova & Smir-
nova (1955, 1957) used the term 'dichromatic groups'
wvhen referring to the antisymmetry groups).

3.3 Crystallographic framework

As Pond & Bollmann (1979) pointed out the symmetry of both the
dichromatic complexes and bicrystals can be classified according to the
established frameﬁork of the theory of symmetry (see chapter 2). This
is examined here by using the dimensional description of symmetry classes.
But before doing so, the significance of employing antisymmetry classes

is briefly considered.

3.3.1 Antisymmetry classes of interfacial symmetry

Dichromatic complexes and bicrystals were introduced as sets of
white and black points. The designation of white and black is quite
abritrary and there is no difference between a white and a black point
except that they belong to differént lattice—-complexes. As far as the
symmetry is considered, the question arises of the possible symmetry
types (groups) of the white/black point distribution.

Let g be the transformation reversing the colours of points. The
problem of determining the possible types of dichromatic complex or

bicrystal symmetry is the construction of all possible groups containing
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besides the usual (geometrical) transformations the symmetry operations
obtained by combining the latter with the transformation C. This prob-
lem has been extensively considered by Shubnikov and co-workers who have

shown that these groups form the antisymmetry classes (see section 2.2).

3.3.2 Classes of dichromatic complexes

Dichromatic complexes are three-dimensional objects and, hence,
their symmetry classes are considered 'in' the three-dimensional space.
This means that all the symmetry classes of dichromatic complexes must
have three-dimensional highest invariance, i.e. only classes with dimen-
sional description G;,t must be taken into account.

In order to establish further the symmetry classes of dichromatic
complexes, the dimension of the lowest invariance, which each symmetry
class must possess, has to be determined., This is, in fact, equivalent
to establish the number, n, of non-paraller translational axes present
in the dichromatic complex. In practical terms, the determination of
the number n fixes the index t in the symbol Gg,t‘

Pond & Bollmann (1979) have shown that dichromatic patterns can
have translational symmetry in zero-, one-, two~ or three~dimensions,
The same holds for dichromatic complexes (see section 3.1). Non-perio-
dic dichromatic complexes are obtained by rotations of the black

lattice-complex about a singular point, the common origin. The symmetry

2
class, G

3.0 ? of dichromatic complexes with singular points contains the
?

two-coloured point groups (see table 2.2.1). these groups are often
called Heesch groups and a complete list is given by Shubnikov & Koptsik
(1974).

Dichromatic complexes containing a singular line and, hence,
exhibiting one-dimensional periodicity are formed only when the rotation

axis [hkl] is rational. On the other hand, dichromatic complexes with
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two-dimensional translational symmetry contain a singular plane and
occur only for non-cubic lattices (or where the component lattices have
different lattice parameters or Bravgis classes). The symmetry groups
of dichromatic complexes with one~ or two-dimensional translations while
transforming the three-dimensional space into itself keep a singular
line or plane respectively invariant. Thus, the symmetry classes for
dichromatic complexes with one or two (non-parallel) translation axes
are those of two~-coloured rod groups, Gg,l s Or layer groups, Gg'a R
respectively. Complete lists of two-coloured, two-sided rod and layer
groups have been published by Neronova & Belov (1961).

Finally, three-dimensional periodic dichromatic complexes arise
from rotations [hkl] /6 leading to coincidence site lattices. The symmetry
of the dichromatic complexes with singular lattices correspond to the
two-coloured class Gg , and, hence, these complexes are classified by
using the two-coloured space groups. These groups are also called Shub-
nikov groups and a complete enumeration was published by Belov, Neronova
& Smirnova (1955). This list, however, contains a number of misprints
and errors. Corrections pointed out by Donnay, Belov, Neronova &
Smirnova (1958) and a consistent table was published by Belov, Neronova
& Smirnova (1957).

The discussion above has been tactically confirmed to crystallogra-
phic groups only. Attention is now directed briefly to non-crystallo=-
graphic classes. Aé mentioned by Pond & Bollmann (1979) 8~ anc 12-fold
axes can be created by appropriate rotations [hkl]/e 1. Therefore, 8-
and 12-fold rotation or rotoinversion axes have to be considered in
addition to crystallographic axes in the case of one~dimensional perio-
dic dichromatic complexes (see section 4.3). Moreover, the associated

non-crystallographic point groups are also included in the considera-
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tions since they describe the point symmetry of dichromatic complexes

with one-dimensional translational symmetryz.

3.3.3 Symmetry classes of bicrystals

Bicrystals are three-dimensional objects containing a singular
plane, the interface. The presence of the singular plane introduces
further restrictions as far as the symmetry classes of bicrystals are
concerned since this plane must be invariant under any operation of the
bicrystal symmetry group. Consequently, except for the three-dimensional
highest invariance, the bicrystal classes must possess a two-dimensional
invariance as well. Thus, the bicrystal classes have a dimensional
description of the form G2

The singular plane of the bicrystal classes need not be polars.

j.e. the 'front' and ‘back' sides of the plane need not be different.
Examples of non-polar boundary planes are growth twins in Ge, Si or
deformation twins observed in various metals. On the other hand, in the
(110) twin in aragonite as illustrated by Bragg & Claringbull (1965)
(see also section 5.4) the boundary plane is not the same on both sides;
it contains a glide plane first noted by Donnay (1954) .

The polar character of interface planes was first treaded theo-
retically for the case of twins by Schaacke (1938) at about the same
time that the first case (Baveno twin in fieldspar) was recognized by
Brage (1937) (see also section 5.4). Therefore, it is necessary to
consider symmetry groups known as two-sided groups (Shubnikov & Koptsik,
1974). The two-sided character of the groups involves that transforma-
tions making the two sides coincide with each another are permitted;

and, hence, the two-sided groups include the polar as well as the none

-polar plane classes.

The boundary plane might exhitit zero-, one-, or two-dimensional
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translational symmetry (Pond & Bollmann, 1979). 1In the ;ase of non-perio-
dic bicrystals the symmetry group transforms both the three-dimensional
space and the unique plane into themselves and at the same time keeps

the singular point invariant. Thus, non=periodic bicrystals belongz to

the symmetry class G2

3.2.0 which is the two-sided, two-coloured rosette
t Bt

class. A complete-list of the two-sided, two-coloured rosette groups
is derived in appendix 3.

If one-dimensional periodicity is present on the interface the
symmetry group must leave a singular line as well as the two- and
three-dimensional spaces invariant. Consegquently, bicrystals with
one-dimensional periodicity are classifified in terms of two-sided,
two-coloured band groups, Gg,Z,l . The complete list of these groups
is derived in appendix 4. Finally, bierystals with two-~dimensional
translational symmetry are described by the symmetry class of two-sided,

two-coloured layers, (Neronova & Belov, 1961).

In concluding it should be noticed that in this section the devia-
tion of the symmetry classes for dichromatic complexes and bicrystals
is based on the dimensional description of the various symmetry classes,
However, not all the groups of the symmetry classes mentioned above are
permissible for dichromatic complexes and bicrystals. This is because
of the special features possessed by both dichromatic complexes and
Licrystals. This is the subject of chapter 5.

Footnotes 1: The formation of non-=crystallographic symmetry
eYements is examined from the group-theoretical
point of view in section 4.3.

2: It should be noticed that non-periodic dichromatic

complexes (i.e. complexes obtained by rotations of

the black component about a non-rational direction)
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can not possess an 8- or 12-fold axis.
3: A plane is called polar if its two surfaces are not
(physically) equal to one another; in other terms,

a polar plane has a 'front' and a 'back' side.
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Chapter 4
SUPERPOSITION OF SYMMETRIES

Introduction

As was mentioned earlier the dichromatic point group can be
determined by considering the superposition of two (classical) point
groups in the correct misorientation. The symmetry created by such a
superposition can be investigated by the group-theoretical method pre-~
sented in this chapter.

The basis of the method is the geometrical interpretation of the
Neumann—Curie principle outlined in section 4.1. The discussion in this
section indicates the qualitative approach for studying the superposition
of two point groups. The conclusions reached are subsequently used
(section 4.2) for a formulation of the principle in terms of the group
theory postulates.

The quantitative approach has been developed having in mind the
particular connection with the dichromatic point groups. In view of
this the group theoretical expressions yield a procedure enabling the
study of the symmetry of the superposed point groups as a function of
the misorientation relationship. Consequently, the method developed
allows a systematic study of all the permissible dichromatic point
groups. The method is applied in chapter 5 where tables containing all
the permissible point groups for the dichromatic complexes are determi-

ned.

4.1 The principle of composite systems

The aim of this section is to analyze the relationship between the

point symmetries of a composite and its components. Such a relationship

is governed by the 'principle of the superposition of the symmetry groups?
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(Neumann, 1885; Curie, 1894, 1908) which states that the symmetry group
of two (or more) objects, regarded as a whole, is the highest common
subgroup or the lowest common supergroup of the symmetry groups of the
components.,

This principle extented to physical properties constitutes the
fundamental concept in the field of physical applications of the symme-
try theory. For the purposes of the present work, however, a simple

geometrical interpretation of the principle is adequate.

4,1.1 The geometrical interpretation of the Neumann-Curie principle

Consider the simple case of superposition of the symmetries of a
cube (group m3m) and a tetragonal prism (group 4/mmm), where their centres
of gravity and four-~fold axes coincide. 1In this particular example the
composite symmetry will be either 4/mmm (if the planes of symmetry of
the two figures coincide) or 4/m. This result can be expressed in the
general way by stating that the combination of two (or more) geometri-
cally different figures1 into a composite will comprise only those sym=-
metry elements which are common to all components. The symmetry group
of the cémposite is in this case the common subgroup (including the
trivial cases) of the symmetry groups of the components.

A composite with symmetry higher than that of the components can
be formed if identical components are considered. In the case of a
regular hexagon composed of equlateral triangles, for example, the sym-
metry of the whole (6mm) is higher than the symmetry of the components
(3m). Thus, if the components are identical then the symmetry group of

the composite may be a supergroup of the symmetry group of the components.,
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4.1.2 Kinds of symmetry operations created by superposition of point

groups

A necessary condition imposed by the Neumann-Curie principle is
that the relative position of the components must be taken into account
in order to determine the symmetry operations of the composite. A im-
mediate consequence of this condition is illustrated by the following
example.

Consider figure 4.l1l.la which shows separately two components with
symmetry 4 in mirror orientation. When they are superposed (figure
‘4,1,1b), so that they have the same origin, the 4-fold axes of the sepa-
rate individuals coincide, and, hence, the composite has also a 4-fold
axis. But when superposed, there is further symmetry in‘the composite:
any part on the left.'say. of one component is related to a similar point
on the right of the other component by the symmetry operation which re-
lates the two components. Therefore, the composite has the common sym-
metry of the individuals augmented by the operation of the mirror reflec-
tion.

The above example indicates that it is possiple for the composite
to contain a symmetry element created not by the coincidence but by the
appropriate orientation of symmetry elements of the components. Thus,
the requirement to account for the relative position of the symmetry
operation of the components leads to the above mentioned important aspect
of the composite symmetry. This is of great importance in the case of
dichromatic point éroups.

Referring to dichromatic complexes rotation of the black lattice
~complex relative to the white one creates a dichromatic complex with
symmetry generally different to that of the white or black lattice-com-

plex. This is because:



Figure 4.1.1

Superposition of two equivalent components. In (a) the components,
each exhibiting symmetry 4, are shown in a mirror orientation.

The composite obtained by their superposition (b) exhibits symmetry

4mm.



(a)

Lmm

(b)
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(a) symmetry elements parallel, after rotation, to one another,

in both the white and black lattice—complexes, are conserved

(b) symmetry elements of the lattice—complexes not parallel
after rotation are suppressed; ye? they can give rise to
colour-reversing operations present in the dichromatic -
complex.

According to the above discussion it is straightforward to predict
the symmetry of the dichromatic complex when the white and black lattice
-complexes are given and the misorientation between them is known (see
appendix 5). However, for a systematic study of the dichromatic classes
an analytical method simplifies the task a great deal. This method al-
lowing the study of the symmetry variation with the misorientation rela-
tionship and/or the component symmetry is particularly useful for compo-

nents with high symmetry (for example cubic groups).

Footnote 1: Two figures are geometrically different if they can
not be converted into one another by transformations
of motion and/or similarity. They are also called
non-equivalent objects.

4.2 Group=theoretical formulation of the superposition of symmetries

In the previous section a qualitative approach of the Neumann-=Curie
principle was discussed. For the systematic study of the dichromatic
point groﬁps it is, however, necessary to have a quantitative expression
and this is the subject of the present section.

The following notation is introduced. Let both the white and black
lattice-complexes exhibit a symmetry described by a point group Go of
order T, and elements g The group of the white gnd black lattice-
-complexes are designated Gw and Gb respectively and they have the same

order and elements as Go 1. Operation of the symmetry transformations
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g; on a general point gives all the general points gf the point group
Go (see appendix 5). Therefore, before rotation the general points
expressed relative to the white system are given by 515. where X is the
position vector of the 'starting' point.

When the black lattice is rotated by [hkl]/Q, two sets of points
are present, namely, the sets of white and black points. Thus, the num-
ber of points is doubled and their positions (relative to the white
coordinate system) are g,X (white points) and 5§1§ (black points), where

R 2 is the matrix describing the vector transformation of the black

lattice-complex. Moreover, while the symmetry operations of Gw are g,,
those of Gb are expressed relative to the white coordinate system by

_R_gig"l (see e.g. Eisenhart, 1933).

4.2.1 Ordinary symmetry operations

Any ordinary symmetry operation in the dichromatic point group
relates two points of the same colour; this operation must relate pairs
of white as well as black points. Moreover, this symmetry operation must
be common in the white and black point groups, since none of the black
and white configurations are altered but only their orientation is changed
during the rotation. Therefore, the necessary and sufficient condition
that an ordinary symmetry operation is present in the dichromatic point
group is that identical elements of Gw and Gb are coincidents.

Consequently, the ordinary symmetry operations in the dichromatic
point group are those elements of Go which satisfy the relation:

g, =Re 5'1 (4.2.1)

where & and §j are expressed relative to the coordinate system of the

white lattice-complex.

Now, let Do be the set of elements of G° for which relation (4.2.1)
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holds. In appendix 6 the following theorem is proved:

Theorem 4,2.1: The ordinary symmetry operations of the dichro-
matic point group form a subgroup (including
the trivial ones) of the point group of the
white (and black) lattice-complex.

The elements of the subgroup D° are denoted by 21. This theorem
immediately yields (see appendix 6):

Theorem 4.2.2: The order of the dichromatic point growp (r)
is equal to 2/k times the order of the white
point group (rw). where k is an integer.

A consequence of the last theorem is that only symmetry operations
of order equal to or less than twice the order of the péint group G° can
be present in a dichromatic point group. The equality, however, holds
only when the dichromatic point group is a cyclic one (see e.g. Cornwell,

1969).

4.2.2 Colour-reversing symmetry operations

Attention is now focused on the colour-reversing symmetry operations.
Theorem 4.2.1 propounds that the general points of the dichromatic point
group are as follows:

white points: {21!, 22!. ese 3 Erdg

black pOints: {2 B. h b. XY h b }

1= =2= =r,-
where w and b are the white and black ‘starting' points respestively,
and 21 (i¥1.2.....r°; r, being the order of Do) are the elements of the
grou? Do.

The relation between w and b can be found if it is born in mind

that the black points are obtained by a rotation of the white ones.
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Thus, b = ggk w, where & is a symmetry operation of Go (gk could be
an element of Do or not). Therefore, the above sets can be written as:

white points: {h,w, h.w, «cc , h ¥

1 ar =
o
black points: {21 ggk w, 22 gﬁk Wy ese Erosﬁk w }
Any colour-reversing symmetry element of the dichromatic point

group must relate a white and a black point of the above sets. Therefore,

the colour-reversing operations are given by:

-1 -1 -1 -1 -1 _=1
Cn=Di & B By =h, g h"R

(in view of the fact that the relation (4.2.1) can be written as
e e U
Co =By G By B - 4e22)

The set of the colour-reversing operations gm is denoted by Dc'
The conditions under which the set of symmetry operations D = D°+Dc 4
forms a group are examined in appendix 7. ' For reasons that will be made
clear immediately below two cases were considered in appendix 7, mainly,
the 'doubled symmetry' and the 'single symmetry' cases.

In the former case the colour-reversing elements are given by

c, = h, 5’1 and the proof given in appendix 7 immediately yields:

Theorem 4.2.3: A dichromatic point group of order aro is
-1

formed by any rotation R such that (a) §§1 R =g,
for any two elements 51'52 of Go’ and,
(b) BRR = g, (g.€G ).
Also, for any 5 satisfying the above theorem it follows that:
Theorem 4.2.4: In the doubled symmetry case the ordinary

elements of the dichromatic point group are
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all the operations of the group Go. whereas the
colour-reversing symmetry operations are given
-1 -1 -1 -1
by GE ={hE s g s e
For the single symmetry case, where the colour-reversing elements
-] 5
are given by a relation of the form C_ = gR = with gbe{co-noi the
fulfilment of the group postulates (see appendix 7) gives the following:
Theorem 4.2.5: In the single symmetry case a dichromatic point
group is formed for any rotation 5 which satis-
fies the relation g, = Rg, R for all the elements
=1 1=
of D2 (where D2 is a factor 2 supergroup of D°
and at the same time a subgroup of Go). The
ordinary elements of the dichroﬁatic point
group are the elements of the group Do and the

colour-reversing operations are given by ékg-l

with ék‘-{Da'TDo] 6,

4,2.3 Group-theoretical expression of the dichromatic point groups

If the rotation R (obtained from either theorem 4.2.3 or 4.2.5)
is equal to a symmetry operation of the white point group, i.e. Rwg,,
then the relation 551 54= g, holds for all the elements of the white
point group. Consequently, this case corresponds to complete coincidence
of the white and black point groupe and, hence, the dichromatic point
group is a grey point group isomorphic to the white point group (see
section 2.2). This is expressed as follows:
Theorem 4.2,6: Rotations R being equal to a symmetry operation
of the white point group yield a dichromatic

complex with symmetry of the grey point group
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D = D°+1'Do (where 1' is the antiidentity ope-

ration.

For other rotations obtained according to theorem 4.2.3 or 4.2.5
the dichromatic point group is isomorphic to a two-coloured point group
(see below). Any other rotation yields a dichromatic point group being
isomorphic to Go or to the point group 1:

Theorem 4.2.7: For all the rotations R which satisfy theorem
4.2.3 or 4.2.5 and are not symmetry operations
of G° the dichromatic point group formed is
given by D = D°+1'(D2-Do) where Do is equal to
G (doubled symmetry case) or a subgroup of G,
(single symmetry case). |

For the doubled symmetry case the rotation R is determined from
the equation 55 =g, Therefore, it can easily be shown that:

Theorem 4.2.8: If the point group Go contains a symmetry rota-
tion © about a direction [hkl], then the rota-
tion 6/2 (and its symmetrical equivalent) about
the direction [hkl] give rise to a dichromatic
point group of order twice the order of Goo

A special case of this theorem is the following rule given by Pond
& Bollmann (1979): “colour-reversing rotation axes, U', arise when two
ordinary U/2=-fold rotation axes are coincident and 6 is 2n/U".

Until now the rotation 5 has been assumed to be a proper rotation.
However, this is the case for a (centrosymmetrical) lattice. If no centre
of symmetry is present in the lattice—complex then improper rotations
must be considered as ve117. The rotation is, then, expressed as

5&, where i is the (ordinary) inversion operation and the colour-reversing



symmetry operations are given by 215-12 (double case) or 515.12 (single
case).
Footnotes 1: The elements of Go have the same orientation as those
of Gw.
2: R is to be considered as a rotation and a colour-
-reversing operation consequentively applied.
3: This implies, of course, that the elements of Gw
and Gb are expressed relative to the same coordinate
system.
4: The summation is to be understood in the Galois (1897)
sense, i.e. as a juxtaposition of elements,
5: {GO-DO} is the set of elements of G_ which do not
belong to Do. ‘
6: {DZ-DQ} denotes the set of elements of D
not belong to Do.

> which dg

7: This obviously refers to dichromatic complexes but
not dichromatic patterns.

4.3 Point groups obtained by the superposition of two identical point

groups

The group theoretical conasiderations given in the previous section
allow the determination of all possible dichromatic point groups obtained
by the superposition of two identical point groups. The main function

of this section is to outline the procedure for this determination.

4.3.1 The procedure

For a given white group G with elements & (i=1.2,...,rw) both
the doubled and the single symmetry cases have to be considered. In the
former case the conditions for forming a dichromatic point group are
given by theorems 4.2.3 and 4.2.4. Consequently, for every element gi

a rotation 51 is determined by solving the equation



41

Bli=&
(in fact 51 is obtained by applying theorem 4.2.8). However, not all
of these rotations correspond to a dichromatic point group. This is
because, according to theorem 4.2.3, gi must additionally leave the Go
invariant, i.e. 21 must satisfy the equations gigdgz'z §J,~j=1,2,....r'
and i£j. The number of 51.8 fulfilling the later requirement can be
further reduced by rejecting rotations 51 being equivalent to a symmetry

operation of Gw (theorem 4.2.6). The remaining 5 ‘s yield a dichromatic

i
point group of order 2r with colour-reversing elements (expressed rela-
tive to the white coordinate system) given by 535;1 or gjg.li for proper
or improper rotations respectively.

For dichromatic point groups corresponding to the Qingle symmetry
case the subgroups Do of the white group Gw must be determined. Moreover,
for each subgroup, Do. its invariant supergroups which at the same time
are subgroups of Gw must be found. The tables given in International
Tables of X-ray Crystallography (1969) or the figure A9.2 simplify the
task for the determination of the subgroups Do and their supergroups D2.

For each supergroup D2 the solution satisfying simultaneously the
equations g§i§=§i (i=1,2,¢..) where g; are the elements of the set
{DQ—D;} is determined. Rotations corresponding to a solution so obtained
are rejected if: (a) the are equivalent to a symmetry operation of Gw,

{b) they conserve the Gw (i.e. they leave the point group G' invariant).

The latter condition is obvious, since such a rotation corresponds to

the doubled symmetry case and therefore it has been considered previously.

4.3.2 Rules
The application of the above procedure is demonstrated in appendix 8

where particular cases are considered. The superposition of any two
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identical point groups can be treated in a similar fashion. In this way
table 4.3.1 giving the black—white1 groups created by the superposition
of white and black groups is derived. The point groups of the dichro-
matic patterns corresponding to the superposition of holosymmetric (black
and white) symmetry groups are marked by an ‘'asterisk' in table 4.3.1.

A number of interesting conclusions can be obtained from table
4.3.1. These are expressed in the following rules:

Rule 4.3.1: In the cases of 2«, 4= and 6-fold ordinary rota-
tional axes rotation about a direction perpendicu~-
lar to these axes results in a 2-fold colour-rever-
sing rotational axis (or to a colour-reversing
mirror plane in the case of improp?r rotations)
except for some special rotation angles (for which
higher symmetry results due to the particular sym-
metry).

Rule 4.3.2: For all the primitive symmetry classes rotation
©=n2n/u about a u/2-fold ordinary axis results
in a colour-reversing rotation axis u' (or a u'
axis for improper rotations).

Rule 4.3.3: For a mirror plane any rotation 64180° along a
direction on the plane results in a colour-rever-
sing mirror plane (or, in the case of improper
rotation, in a two-fold colour-reversing rotational
axis), except for 6=180° where a mm'2' symmetry

is created.

4.3.3 Non-—crystallographic dichromatic point groups

Rule 4,3.2 implies that in the particular case of a 4= or 6-fold

ordinary axis special rotations (i.e. 6=n2n/u, u=8 or 12 respectively)



TABLE 4.3.1
Black=white point groups obtained by the superposition of
two identical point groups (grey groups are not included)

White point group Black-white point group

(a) primitive symmetry classes

i+ 2' m

2/m* 3' 4' 22'2' 2m'm' 2' m'
3+ & 6' 32' am'

4/m* 8B' 8' 42'2' 4m'm' 2' m'
6/m* 12' 12' 62'2' 6m'm' 2' m'

O h W N M

(b) planar symmetry classes

m 2'/m 2'mm* 2' m'

2mm mum' 4'2'm 4'mm' 22'2' 2m'm'
2'mm* 2' mn'

3m 3'm &'2'm 6'mm' 32' 3m' 2'mm'

4mm 4/m'mm 8'2'm 8'mm' 42'2' 4m'm'

2'mm' 2' m'
6mm 6/m'mm 32'2'm 12'mm' 62'2' 6m'm’

2'mm' 2' !

(c) axial symmetry classes

222 m'm'm' 3'2m' 4'22' 22'2' 2m'm'
2' m!

32 3'm* &'2m' 6'22' 3' 4' 32
3m' 22'2' 2m'm' 2' m'

422 4/m'm'm' E'2m' 8'22' F'2m' 4'22'
42'2' 4m'm' 22'2' 2n'm' 2' m'

622 6/m'm'm' 12'2m' 12'22' Z'2n' 4'22!

62'2' 6m'm' 22'2' 2m'm' 2' m'

(d) central symmetry classes

« 1 2'/m®

* 2/m 4'/m mm'm' 2'/m®
3 6'/m* 3m* 2'/m'
4/m 8'/m 4/mm'm' 2'/m?®

6/m 12'/m 6/mm'm* 2'/m'



TABLE 4.3.1=-continued

White point group Black=white point group

*

*

*

*

(e) planar-axial symmetry classes

mmm - ‘ 4'/mmm' mm'm*' 2'/m®

3m 6'/m'mm' 4'/m 3m' om'm' 2'/m'

4 /mmm 8'/mmm* 4'/mmm' 4/mm'm' mm'm' 2'/m'
6 /mmm 12'/mmm* 6°'/mmm' 6/mm‘m*

mm'm* 2'/m*
(f) inversion-primitive symmetry classes
4'/m* 32'm' 2' nm'
6'/m* &2'm* 2' nm'

ol it

(g) inversion-plenar symmetry classes

42m 4'/m'mm' 3'2m' 4'22' 22'm' 2m'm'
2'mm* 222V 2' g
62m 6'/mmm' 22'm 4'mm' &2'm' 2m'm'

2'mm* 22'2' 2' m'

(h) classes of 23; 432

23 m'3' 3'3m' 4'32' 6' 6' 32' 3m'
2' m' 22'2' om'm!
432 m'3'm' 6'22' &'2m' Z'2m' 822!

8'om' 32' 42'2' 22'2' 3p' 4m'm'
2n'm' 2' !

(i) classes of 43m; m3; m3m

43m m'3'm &§'2'm 6'mm' 32' 3m' 242'm'
2'mm' 2' m'

m3 m3m' 6'/m' 3m' mm'm* 2'/m!

m3m 6'/m'mm' 4'/mmm' 8'/mmm' 3m'

4/mm'm* mm'm' 2'/m'




43

create an 8'~ or 12'=fold (or.§'- or 12'-fold) colour-reversing rotational
axis respectively. The consideration of the non~crystallographic rota-
tion or rotoinvérsion axes in dichromatic point groups is now investigated.

Referring to th; conventional crystallography, restrictions on the
order of a rotation axis are imposed by the simultaneous occurence of
repetition due to the rotational and 2- or 3-dimensional periodicity.
These restrictions imply that nets and lattices can be consisted with
the symmetry of 1l-, 2-, 3=, 4-~ and 6-=fold rotation and rotoinversion
axes only.

In the case of one-dimensional periodic objects, however, non-cry-
stallographic axes lying along the periodic direction are consistent
with the symmetry of the object. Moreover, non-crystallographic symmetry
is permissible for finite (i.e. non-periodic) objects.

According to the above discussion point groups containing 8- and
12-fold axes are permissible dichromatic point groups only in the case
of dichromatic complexes with one-dimensional periodicity. Since no
complete list of these groups is available in the literature, the enume-
ration of the 8- and 12~fold two=coloured point and rod groups is given

in appendices 9 and 10 respectively.

Footnote 1: Grey groups created by the superposition are not
included in this table.



Chapter 5
SYMMETRY GROUPS OF DICHROMATIC COMPLEXES AND BICRYSTALS

5.1 Permissible symmetry groups for dichromatic complexes

As was mentioned in section 3.3 the symmetry of dichromatic complexes
can be classified according to the classes of two-coloured point, rod,
layer or space groups. However, the restrictions imposed on the permitted
symmetry operations mean that a number of two-coloured groups must be
excluded, For example, restrictions arise due to the fact that dichro-
matic complexes are formed by two lattice~complexes which are not in
complete coincidence (see section 3.1). Thus, not all points in a dichro-
matic complex can be neutral and, consequently, dichroma#ic point groups
can not be grey point groups.

As far as dichromatic patterns are concerned they are formed by
two interpenetrating (identical) Bravais lattices. Thus, their point
groups correspond to symmetries created by the superposition of holosym-
metric point groups. Referring to table 4.3.1 (where the holosymmetric
point groups are marked by an asterisk) it is clear that the permissible
two-coloured point groups of dichromatic patterns are those shown in
table 5.1.1.

The periodicity occuring in dichromatic complexes arises by the
existence of a superlattice1 being common for the two components (see
e.g. Santoro, 1974). The occurence of this common superlattice.implies
that antitranslations are not permissible, or stated alternatively, the -
black-white lattices are excludedz. In fact, this restriction is the
only one imposed on the permissible spatial symmetry of dichromatic com-

plexes. Consequently, the only spatial groups which have to be excluded



TABLE 5.1.1

Permissible two=coloured point groups of

dichromatic patterns with grey origin

Crystal system {White point | Point group of dichromatic
of white lattice group pattern
triclinic 1 ir 2 m
monoclinic 2/m 4'/m mm'm' 2'/m'
orthorhombic mmm 4'/mmm* mm'm* 2'/m!
hexagonal 6/mmm 12'/mmm' 6'/mmm* 6/mm'm'
mm'm* 2'/m'

trigonal 3m 6'/m'mn' 4'/m 55'

(rhombohedral)
' ‘mm'm' 2'/m'

tetragonal 4 /mrm 8'/mmm* 4'/mmm' 4/mm'm®
mm'm*' 2'/m'

cubic m3m 6'/m'mm' 4'/mmm* 8'/mmm’
3m' 4/mm'm' mm'm' 2'/m'
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are those corresponding to either a black-white lattice or to a grey
point group.

As far as the spatial symmetry of dichromatic patterns is concerned,
it can be determined by bearing in mind that the possible point groups
are those in table 5.1.1. The spatial groups are then enumerated by
selecting the spatial groups which are isomorphous with the point groups
in this table. Thus, the tables of two-coloﬁred rod and layer groups
published by Neronova & Belov (1961) are considered> and the lists of
the permissible groups for dichromatic patterns with one- and two-dimen-
sional periodicity are established (tables 5.1.2 and 5.1.3 respectively).
Similarly, the table of the two-coloured space groups given by Belov,
Neronova & Smirnova (1957)4 is used for determining the permissible
dichromatic space groups (table 5.1.4).

It should emphasized, however, that the given tables correspond
to dichromatic patterns where the origin is a neutral point. If this
is not the case the number of symmetry classes of dichromatic patterns
is greater (see chapter 6) but the listing of the spatial groups for
such cases is a very large task (an example serving to indicate the
manner of derivation is presented in chapter 6),

Footnotes 1: The term 'superlattice' used here indicates a lattice
obtained from the original lattice by m;ans of a
transformation matrix having integral elements and
determinant larger than unity (Santoro & Mighell,
1972). In some publications (see e.g. Bucksch, 1971,
1972) the superlattice, as defined here, is called
‘sublattice’.

2: Because of this the term 'black-white spatial group'
is used, hereafter, to denote black-white symmetry
groups with classical lattices.



TABLE 5.1.2

Permissible two-coloured rod groups of

dichromatic patterns with grey origin

Number Rod group I Number Rod group
1 pl I 11 Pm'm'm
2 pll2! 12 p4'/mmm*
3 p2'11 13 pA/mm*m®
a4 pi' 14 P6/mm*m* |
5 f£llm' 15 96'/mmm*
6 pm'll 16 P6'/m'mm*
7 9112'/m' 17 p3m'*

8 p2'/m'11 18 p8'/mmm'
9 pa'/m 19 pl2'/mmm"
10 pmm*m'




TABLE 5.1.3

Permissible two-coloured layer groups of

dichromatic patterns with grey origin

Number |layer group Number {Layer group
1 pl 14 cm'm'm
2 p1’ 15 cmm'm*
3 pli2¢ 16 pa'/m
a4 pl2'l 17 p4'/mm'm
5 cl2'l 18 p4'/mmm'
6 plim' 19 p4/mm*m
7 pim'l 20 p31m’

8 cim'l 21 p3m'1
9 pl112'/m' 22 p6'/mm'm
10 pl2'/m'1 23 p6'/mmm*
11 cl2'/m'1 24 p6'/m'm'm
12 pm'm'm 25 p6/mm'm!
13 pmm'm!? 26 p6'/m'mm’




TABLE 5.1.4

Permissible two-coloured space groups of
dichromatic patterns with grey origin

Number | Space group Number | Space group
1 P1 16 I4'/m
2 P1* 17 P4'/mm'm
3 p2! 18 P4' /mmm*
4 ce' 19 P4/mm'm*
5 Pm' 20 I4'/mm*m
6 Cm! 21 I4'/mmm*
7 P2'/m* 22 I4/mm'm®
8 c2'/m* 23 P31m’

9 Pm'm'm 24 P3m'1
10 Cm'm'm 25 R3m'

11 Cmm'm* 26 P6'/mm*'m
12 Fn'm'm 27 P6'/mmm"'
13 Im'mm* 28 P6'/m'm'm
14 In'‘m'm 29 P6'/m'mm’
15 P4'/m 30 P6/mm*m*
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3: In the case of rod groups, however, the groups con-
taining 8- or 12-fold rotation axes must also be
considered (see appendix 10).

4: This table contains the two-coloured space groups
first enumerated by Zamorzaev (1953). The 1957
table, however, lists the space groups with nomen-
clature and arrangement concordant with the notation
layed out in International Tables of X-ray Crystal-
lography (1969). Also, the latter table contains
the corrections to the list published by Belov, Nero-
nova & Smirnova (1955) pointed out by Donnay et al.
(1958). The only other difference in the two lists
is that in the 1957 table the two-coloured space
groups are classified according to the isomorphous
Fedorov groups.

5.2 Examples of symmetry classification of dichromatic complexes

The primary aim of this section is to refer to particular dichro-
matic complexes and to demonstrate certain aspects of their symmetry.
In the first example the possibility of a non-crystallographic point
groups is illustrated. Then, attention is given to coincidence-site
lattices formed by cubic or hexagonal (c/a=1.6311) lattices. Finally,
the (110) twin in pyrite is referred to as an example of dichromatic

pattern with 2=1.

5.2.1 Non—crystallographic dichromatic point group

As was already mentioned (section 4.3) a non-crystallographic group
is created only if the white point group contains a 4~ or 6-fold axis
and the rotation axis is along this direction.

To demonstrate this, let the white and black lattices be simple

cubic (symmetry group Pm3m). The dichromatic pattern shown in figure
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5.2.1 is obtained by a rotation [001]/45° of the black lattice. The
point symmetry of this pattern is determined by employing the analytical
method given in chapter 4.

The ;hite point group contains 48 symmetry operations which are
given in table Al.3. The ordinary symmetry elements of the dichromatic
point group are these elements of the white point group which satisfy

the relation (see section 4.2):

where

cos(45°) cos(45°) 0
R = cos(135°) cos(45°) 0
0 0 1

The above relation is employed for each one of the elements of the
point group m3m and the results are listed in table 5.2.1. According
to this table, only 16 elements of the white group are also elements of
the dichromatic point group. These elements form the group Do§4/mmm
which is, of course, a subgroup of the white group (theorem 4.2.1).

The order of the group D° is 16 and according to theorem 4.2.2 the order
of the dichromatic point group must be equal to 32. In other words, the
dichromatic point group must be one of the invariant supergroups of DO;
reference to figure A9.2 shows that the dichromatic point group is the
black-white group 8'/mm'm'.

This is easily verified if it is recalled that the dichromatic
point group D is given by D = D°+§D°. Thus, the colour-reversing sym-
metry operations are given by 551’ where 51 are the elements of DO;
these operations are also listed in table 5.2.1. Comparing the elements
of the dichromatic point group to those given in table A9.l1la it is

evident <that the former is isomorphous to the group 8'/mm'm‘.



Figure 5.2.1

Projection along [001] of a dichromatic pattern formed by simple
cubic lattices with misorientation [0011/45°, The white lattice
is indicated by open circles while the black one by filled circles.
The dichromatic pattern exhibits 8'/mm'm symmetry.
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TABLE 5.2.1

Determination of the dichromatic point group formed by the

superposition of two cubic lattices (point group m3m) with
misorientation [001] /48°

+1 -1 -4 -1 -4 -1 -4 -1
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In order to determine the spatial symmetry group of the dichromatic
pattern in figure 5.2.1 its periodicity must also be established. The
pattern contains coincidence sites along the [001] (i.e. the rotafion
axis) and this is the only periodicity axis. Thus, the spatial symmetry

of the pattern is described by the rod group p8'/mm'm'.

5.2.2 CSL dichromatic symmetry groups in cubic and hexagonal crystal

systems
Dichromatic patterns with three-dimensional translational sym-

metry are associated with CSL misorientation relationships. These rota-
tions have been extensively studied for cubic materials (see e.g. Warrin-
gton & Bufalini, 1971).

Figure 5.2.2 shows the projections along [hkl] of some CSL based
dichromatic patterns between cubic lattices; the [hkl] direction is a
symmetry axis of the lattice. For each pattern the main symmetry ‘elements
are indicated in the figure but colouh—reversing mirror glide planes,
etc. generated in centred CSL cells have been omitted for clarity. For
each of these patterns the space group is also shown in the figure.

In systems other than the cubic a CSL is only possible if axial
ratios and interaxial angles happen to have particular values (Donnay
& Donnay, 1954). Warrington (1975) considered the possibility of CSL
formation in the hexagonal system for the ideal ratio c/a=V8/3 and pub~
lished a list of axis/angle pairs leading to CSL.

Figure 5.2.3 is a schematic representation of such CSL cells obtained
by rotations along the [00.1] axis. Open and filled circles represent,
as usual, the sites of the white and black lattice respectively. The
main symmetry elements as well as the three~dimensional space group are

indicated in the figure.



Figure 5.2.2

Projections along [hkl] of CSL dichromatic patterns formed by
face-centred or body-centred cubic lattices. The component
lattices, [hk1]/8 and I are as follows:

(a)
(b)
(c)
(d)
(e)
(£)
(g)
(h)

fee/fec,
bec/bec,
fee/fec,
bee/bee,
fee/fee,
bee/bec,
fee/fec,
bee/bee,

[111] /60°,.3=3 (*)
[111) /60°, I=3

[001] /36.9°, =5 (*)
[001] /36.9°, I=5

[011] /38.9°, E=9 (*)
[o11] /38.9°, I=9

l011) /50.47°, T=11 (*)
[011] /50.47°, I=11

The size of symbols represents the ...ABABA... stacking along
[001] and [011] and ...ABCABCAB... along [111]. Open and filled
circles indicate the white and black lattices respectively.

(*

after Pond & Bollmann, 1979)



(b) £=3,P6/m'm’'m

(@) £=3, P6/m'm'm
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Figure 5.2.3

Projections along [00.1] of CSL dichromatic patterns formed by
hexagonal lattices (c/a=1.633). The white and black lattices are
represented by open and filled circles:

(a) [00.1]/21.79°%, =7

(b) [00.1]/27.8°%, z=13



13, P6/mm’n’

H

(b) L=

(a) =7, P6/mm'm’
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5.2.3 Twinning in pyrite

Twinned crystals of pyrite (Fesz) are typical examples of twinning
by merohedry. The unit cell of Fe82 is cubic; its structure can be com-
pared with the NaCl structure if it is supposed that Fe replaces Na and
a S, group replaces Cl (figure 5.2.4). The dumb-bell shaped 82 groups
are so orientated that each of the eight small cubes into which the unit
cube is divided has only one group pointing towards its centre.

Pyrite is cubic but bélongs to the class m3 while its lattice which
always possess the highest symmetry possible for the corresponding cry-
stal system, has the symmetry m3m. The lattice, therefore, possess a
plane of symmetry parallel to (110), but the structure does not. Pyri-
te is often found twinned with respect to a (110) symmetry plane. Figure
5.2.5 shows the atomic configuration of the (110) twin in pyrite; this
can be described by a reflection on the (110) plane.

Figure 5.2.6 shows the dichromatic complex corresponding to the
(110) twin in pyrite; it is obtained by a reflection in (110). 1In this
figure the atom positions are shown as either open or filled symbols
depending on whether they belong to the white or black lattice-complex.
The space group of the dichromatic complex in figure 5.2.6 is C2'/m!
where the colour-reversing mirror plane is normal to the [110] axis of
the white lattice complex.

By choosing the twin plane perpenticular to (110]w and locating
the appropriate atoms at the positions of the black lattice~complex on
one side of the twin plane and of the white lattice~complex on the other
side the configuration of figure 5.2.5 is obtained, The symmetry of the

bicrystal is described by the two-coloured layer group C2/m'.



Figure 5.2.4
The structure of pyrite, Fesz. The distance between the two
sulphur atoms is 2.102; however, their nearness has been over-
emphasized in the figure in order to make the correspondence
with the NaCl structure more obvious
(after Bragg & Claringbull, 1965)






Figure 5.2.5
Structure of a (110) twin in pyrite projected on (001)

Key

(after Cahn, 1954)

Open symbols: positions of the white lattice-

=complex

Filled symbols: positions of the black lattice~

Large
Small
Large
Small
Large
Small

~complex
circles: Fe atoms in the plane of the paper
circles: Fe atoms +a/2 out of the paper
squares: S atoms x out of the paper
squares: S atoms 1-x out of the paper
triangles: S atoms 1/2-x out of the paper
triangles: S atoms 1/2+x out of the paper



O > . D
O> on O» .‘ ®
= OD OD\G’ -0



Figure 5.2.6

Dichromatic complex corresponding to the (110) twin in pyrite

projected on (001)

Key: Open symbols: positions of the white lattice-

-complex

Filled symbols: positions of the black lattice-

Large
Small
Large
Small
Large
Small

~complex
circles: Fe atoms in the plane of the paper
circles: Fe atoms +a/2 out of the paper
squares: S atoms x out of the paper
squares: S atoms 1l=x out of the paper
triangles: S atoms 1/2-x out of the paper
triangles: S atoms 1/2+% out of the paper
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5.3 Permigsible symmetry groups of bierystals
As in the case of dichromatic complexes, the misorientation between

the two bicrystal components implies that grey point groups are not per-
missible. A bicrystal, however, possesses an additional feature, the
interface. Any permissible symmetry elements must transform this plane
‘4rnito itself and moreover it must not interchange the two sides. This

is carried out by considering each one of the possible symmetry opera-

tions.

5.3.1 Centrosymmetric and centroantisymmetric bicrystal groups

Let the side of the unique plane towards the white crystal be
called the white side and the opposite side be the black side. Any
permissible symmetry element transform the unique plane into itself
and also it must not interchange the black and white sides.

This implies that no ordinary centre of symmetry is consistent
with a bicrystal class. The presence of an ordinary symmetry centre
involves that both the sides of the unique plane must be neutral (i.e.
white and black coloured at the same time). Therefore, centrosymmetri-
cal1 rosette groups are not permissible bicerystal groups.

Secondly, the possibility of centroantisymmetrical bicrystal groups
is considered. At first sight it appears that the colowr-reversing in-
version centre is also not a permissible symmetry operation. The
presence of a colour-reversing inversion centre on the boundary plane
involves that the black lattice is identical to the white one and that
the black lattice points assume positions which satisfy the white lattice
(if the latter is considered to extent over the whole space). Thus, the

colour-reversing inversion centre leaves the unique plane invariant and
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at the same time does not interchange its two sides; additionally it
implies that the white and black lattices are in complete coincidence.
In this case the two-dimensional discontinuity is conserved only
when the structure of the grains is not centrosymmetrical and their
mutual orientation corresponds to a colour-reversing inversion operation.
This is possible, however, only when each component crystal has lower
than holosymmetric symmetry (an example of centroantisymmetric bicrystal

group is given in section 5.4).

5.3.2 Restrictions on the other point symmetry operations

In order to investigate the consistency of the rest of the point
symmetry operations, it must be born in mind that symmetry operations
of two kinds might be present in a bicrystal group, i.e. ordinary and
colour-reversing operations.

The condition of colour invariance of the unique plane imposes
restrictions on the orientation of both the ordinary and colour-reversing
symmetry operations. This is because the white side of the unique plane
is transformed into the black one only when the colour-reversing symmetry
element is located 'in' the boundary plane. On the other hand, ordinary
symmetry operations permitting a transformation of each side of the plane
into itself must be perpendicular to the boundary plene. The only
exceptions to the above rules are the cases of 3-, 4~ and 6-~fold colour-
reversing rotoinversion axes2 which must be orientated perpendicular to
the plane. This is easily explained since these axes arise by the
succesive operation of a colour-reversing inversion and an ordinary
proper rotation; the exception being the tetrad inversion axis a,

As far as the order of the symmetry operations is concerned, this

is determined by the presence of the unique plane through the restrictions
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imposed on the operations by the nature of the associated symmetry
groups as derived in section 3.3. Thus, three-, four- and six-fold
axes serve as-bicrystal symmetry operations equally well as two-fold
axes. However, the three-, four- and six-fold axes may lie either
perpendicular to the plane or within it. Mirror planes can also be
orientated either parallel or perpendicular to the boundary plane.
Accordingly the following restrictions are imposed on the kind and/or
order of the symmetry operations present in a bicrystal. Three-, four-
and six-fold rotation and rotoinversion axes must be ordinary and
colour-reversing respectively and must be perpendicular to the boundary
plane. Two-fold rotation axes and mirror planes can be either ordinary,
in which case they are perpendicular to the boundary plane, or colour-
=reversing operations parallel to it.

Additional conditions are imposed on the combinations of the sym-
metry operations in a bic;ystal group. It has been established (section
3.3) that the symmetry classes for bicrystals are the two-sided, two-
-coloured rosette, rod, and layer groups. It is evident from the con-
struction of these groups that only certain relations are allowed between
a pair (or among a set) of symmetry operations. For example, two-fold
_ colour-reversing axes may lie at only 90° (or 1200)'to another, Further-
more, an ordinary and a colour-reversing element necessitate their
product as a second colour-reversing element. The relations between
a pair (or among a set) of symmetry operations in a bicrystal. are governed

by the theorems given by Loeb (1971).

5.3.3 Symmetry classes of bicrystals
Using the above conditions the permissible point groups for a

bicrystal have been determined and are given in table 5.3.1. It would



TABLE 5.3.1

Permissible bicrystal point groups

. Number Bicrystal Bicrystal groups
system Classical |Black=white

1 triclinic 1

2 i

3 monoclinic 211

4 m'll
5 2/m'11
6 12'1
7 iml

8 12'/m1
9 orthorhombic 22'2
10 2mm

11 m'2'm
12 mmm
13 tetragonal .|

14 ri

15 4/m*
16 42+ 2¢
17 A4mm

18 4'2'm
19 4/m*mm
20 trigonal 3
21 3
22 32¢
23 3m

24 3'm
25 hexagonal 6

26 &
27 6/m*
28 6212°
29 6mn

30 6'm2!
31 6/m*mm
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be of interest to notice that just one point group appears in this

table for each of the 31 classes of rosettes. Thus, the point symmetry
of bicrystals is classified according to the groups given in table 5.3.1
which can be regarded as the 31 bicrystal classes in an analogous

manner to the 32 single crystal classes. Further inspection of table
5.3.1 indicates that the 31 bicrystal classes can be distributed amongst
six 'bicrystal systems' which, in fact, are the systems for three-dimen-
sional objects containing a singular point and a singular plane.

The characteristic symmetry for each of the six bicrystal systems
is summarized in table 5.3.2 while figure 5.3.1 shows the stereographic
representation of the 31 bicrystal classes. The following conventions
are introduced for drawing these stereograms. The norm;1 to the drawing
plane is taken as the direction perpendicular to the interface. White
and black points are considered above and below the page respectively;
thus, so0lid circles and open squares are used to indicate the white and

black point respectively.

5.3.4 Sbatial symmetry groups of bicrystals

The discussion above was restricted to the point symmetry only;
bicrystals can, however, exhibit translational symmetry as well. The
latter arises by the existence of a superlattice being common for the
two bicrystal components (see e.g. Santoro & Mighell, 1972). A conse-
quence of the presence of the common superlattice is that antitransla-
tions are not permissible, or stated alternatively, the black-white
lattices are excludeda. Consequently, the spatial groups of bicrystals
are determined by combining (classical) translations with (two-coloured)
point symmetry.

The determination of the spatial groups of bicrystals is based on

table 5.3.1 where the permissible point groups are listed. The procedure



TABLE 5.3.2

CHARACTERISTIC SYMMETRY OF BICRYSTAL CLASSES

TRICLINIC

MONOCLINIC

ORTHORHOMBIC:

TETRAGONAL ¢

TRIGONAL

HEXAGONAL @

1-fold (ordinary identity or colour-reversing
inversion) symmetry only

2-fold ordinary or colour-reversing (rotation
or rotoinversion) axis

2~-fold ordinary and two 2-fold colour-reversing
rotation axes or 2-fold colour-reversing and
two 2-fold ordinary rotoinversion axes in three
mutually perpendicular directions

4-fold (ordinary rotation or colour-reversing
rotoinversion) axis

3-fold (ordinary rotation or colour-reversing
rotoinversion) axis

6~fold (ordinary rotation or colour-reversing

rotoinversion) axis



Figure 5.3.1

Stereograms of the bicrystal point groups. The normal to the
page of the drawing is taken as the direction perpendicular to
the interface. Solid circles and open squares represent points
above and below the interface respectively.
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for establishing the spatial symmetry of bicrystals is, therefore, to
consider the lists of the two-sided, two-coloured band or layer groups
and to delete those groups which are not isomorphous to a bicrystal
rosette group (table 5.3.1). In selecting the spatial groups the possi-
bilitw”of glide mirror planes or screw axes must also be considered.

As it was noted in section 3.3 a glide mirror plane may serve just as
well as a colour-reversing operation in bicrystals (this is the case for
twins in aragonite and feldspars; see section 5.4). The only screw axes
congistent with the bicrystal symmetry are the two=fold colour-reversing
ones (which, obviously, must be on the interface).

A complete list of the two-sided, two-coloured ban@ groups is given
in appendix 4 - (table A4.2). The permissible biérystal band groups are
then obtained (table 5.3.3) by following the procedure mentioned above.
Similarly, the table of two-coloured layer groups given by Neronova &
Belov (1961) is considered for deriving the list of the permissible bi-
crystal layer groups (table 5.3.4).

The periodicity of bicrystals is expressed by the one one-dimen-
sional (P) or fhe five two-dimensional (P or e¢) iatticea (see e.g.

International Tables for X-ray Crystallography, 1969).

Footnotes -1: The term-centrosymmetrical denotes a symmetry group
containing an ordinary inversion centre. If a
colour-reversing inversion centre is present the group
i{s called centroantisymmetric.

2: Although only examples of 1' (which by themselves
. are rather special cases) have come to the author's
notice, all the inversion axes are considered for the
sake of generality.
3: Because of this, the term 'black-white spatial groups'
is used, hereafter, to denote black-white symmetry
groups with classical lattices.



TABLE 5,3.3
Permissible bicrystal band groups

Bicrystal groups

Bicrystal groups

Number I assical | Black-white | NU"P®% [Classical |Black-white
1 plll 16 P112'/m
2 Pi'll 17 p112'/b
3 °| pau1 18 p22'2"
4 p12'1 19 p22;2!
5 p12)1 20 p2mm
6 pl12' 21 p2mb
” pm'1l 22 pm'2'm
8 pb'il 23 pba'd
9 piml 24 pbi2m

10 pllm 25 pm*2;b
11 pllb 26 prin2!
12 p2/m'11 27 pb'm2!
13 _p2/b'11 28 PR
14 p12*/m 29 pb ‘mm
15 p12}/m1 30 pm'mb

31 pb'mb




TABLE 5,3.4

Permissible bicrystal layer groups

Bierystal groups

Bicrystal groups

Number Number
Classical | Black-white Classicel | Black=white
1 rl 21 p22i2 ¢
2 plt 22 c22'2!
3 p211 23 p2mm
4 pl12* 24 pm'm2°*
5 p112i 25 Pc 'mai
6 cli2!’ 26 pc'c2!
7 pm'll 27 pc'2'm
8 piim 28 p2mb
9 plic 29 Pm 'c2i
10 pc'll 30 pc'! Zib
11 clim 31 pn'ec2!
12 p2/m*11 32 Pn'm2)
13 P112'/m 33 p2cb
14 p112:/m 34 c2mm
15 ¢112'/m 35 cm'm2!
16 p2/c'il 36 cb'm2'
17 pli2t'/b 37 pm'mm
18 p112i/ b 38 pc'cm
19 p22°'2! 39 pn'cb
20 p22r2! 40 pm*mb

171




TABLE 5.3.4-continued

Bicrystal groups Bicrystal groups
Number [ o sTcal |Black—white || V""P° [Classicail| Black—white
41 pc'mm 61 p4/m*mm
42 pn'mb 62 p4/n‘cm
43 pc'cb 63 p4/m'em
44 pm'cb 64 p4/n'mm
45 | pc'mb 65 P3
46 pn ‘mm 66 p3'
47 cm*mm 67 p312!
48 cb*mm 68 p32'1
49 p4 69 p3ml
50 | pa' 70 p31lm
51 : pa/m' 71 p3'lm
52 . p4/n' 72 _ p3*m1
53 pa2'2! 73 pé
54 pa2;2" 74 p6!
85 p4mm 75 p6/m?
56 p4cm 76 p62'2!
57 pa'2'm 77 p6mm
58 pa'2!m 78 p8'm2!
59 | pa'm2! 79 p6'2'm
60 pa'c2" 80 p6/m*mm
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5.4 Examples of symmetry classification of bicrystals

This section deals with bicrystals where the interface is a twin
boundary. Only twins in non-isometric materials are discussed here.
In these cases a (perfect) CSL is formed only for appropriate values of
the axial ratios and the interaxial angles (Donnay & Donnay, 1954). But,

there are cases where a coincidence-site net is formed.

5.4.1 Twinning in the hexagonal system

Much experimental work has been carried out on the deformation
twinning elements for the hexagonal metals (see e.g. Clark & Craing,
1953). A survey (Rapperport & Hartley, 1960) of the deformation modes
in h.c.p. metals reveals that those with c/a)1.633 twin only on {1032}
planes while those with c/a(1.633 on {1151& planes as well as on {IOEZ}
planes.

The low=-temperature phase of zirconium is typical of the metals
with c/a¢1.633. It has a close-packed hexagonal structure with a=3,223
and c=5.123% (c/a=1.583). Figure 5.4.1 shows the configuration resulting
from (1012) twinning in zirconium according to Westlake (1961). This
configuration results by purely geometrical considerations and no local
relaxation of the atoms on or near to the boundary was taken into account.
In this diagram the atom positions are shown as either open or filled
symbols depending on whether they belong to the matrix or the twin.
Circles are in the plane of the paper, whereas squares are a/2 above
or below the page. The two components are related by a rotation approx-
imately 85° along the [TZiO] direction.

In the structure of zirconium the angle between the vectors (1011]
and [1011] is equal to 85.09°. Consequently, a rotation [1270]/85.09°

leads to a coincidence net on the (1012). 'The corresponding dichromatic



Figure 5.4.1

Twinning on (1012) planes in zirconium; projection on the (1210)
plane. Circles and squares are atomic positions in the plane of
the paper and +a/2 out of the paper respectively.

(after Westlake, 1961)
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complex shown in figure 5.4.2 exhibits, therefore, a two-dimensional
periodicity. ‘

~~" The layer éroup of the dicﬁfomatic complex is pmm'2', The ordi-
nary mirror is parallel to the (1210) which is common to both the white
and black lattices. The colour-reversing mirror plane and the 2-fold
axis lie on'(ioiz); and“[idll]&"reSDectively (the subscript denotes the
coordinate system used for expressing the directions and planes).

vIn order to create the (101I2) twin in zirconium the procedure out-
lined in section 3.1 is employed. Thus, by locating the composition
plane of the twin parallel to the (1012) in such a way so it passes
through the coincidence sites the configuration shown in figure 5.4.1
is obtained. The spatial symmetry of the bicrystal is d?scribed by the
layer group pmm'2',
The structure of the (1012) twin in zirconium as shown in figure

5.4.1 corresponds to -a high energy configuration because.of the over-
lapping of atoms alongside the twin plane (i.e. atoms A and B). Rapper-
port & Hartley (1960) studied the deformation twins in zirconium? and
they proposed that the motion of individual atoms leads to a lower
energy configuration. According to them half the atoms in the twin
plane assume compromising positions which do not satisfy the lattices
of the twinned or the untwinned material. One can not, however, be

certain of the motion of these atoms.

5.4,2 Twinning in the orthorhombic system

Twin boundaries in a-uranium can also be described in terms of a
coincidence-site net. The twinning elements of uranium have been deter-
mined by Cahn (1953). Uranium belongs to the orthorhombic crystal class

and it is found that twins of types I and II appear in addition to the



e

Figure 5.4.2

Dichromatic complex obtained by two lattice-~complexes of the
zirconium~structure type with misorientation [1210]/85.09°.
White and black points are represented, as usual, by open and

full symbols. Circles are in the plane of the paper, whereas

.~ squares are +a/2 out of the page.
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more usual compound twins. Cahn identified four families, of which two
were of type I, one of type II and one compound (for definitions of
“type I and II or'qompoun&"twtns see, for example, Klassen-Neklyudova,
1964).

The structure of a—-uranium is illustrated in figure 5.4.3. - From
the lack of coincidence between the lattice points and the atomic posi-
tions, it would be expected that the atom movements are very irregular.
This leads to doubt about the exact position of the twinning plane, and
Cahn (1953) has settled its position subject to one of the following
conditions: (a) the main adjustments of the atoms are minimized,

(b) all atoms should move roughly the same distance (c) a proportion
of the atoms should already be in coincidence points.

By imposing these conditions Cahn gave the structure of the (130)
twin in a~uranium; the (001) projection is shown in figure 5.4.4. The
broken lines indicate the distortion of the region of contact according
to Cahn.

Figure 5.4.4 shows that the black lattice-complex is rotated along
(001) by an angle 101° aprroximately. Refering to the structure of
a-uranium a number of points can be found with an angular separation
approximately equal to 101°, The angle between the points [250] and
[2B0] is equal to 101.12°. Therefore, the rotation [001]/101.12° results
in a coincidence site net on the (130)w pPlane. Nearly coincidence sites
are to be found by moving perpendicular to this plane. The (130) twin
in a-uranium corresponds, therefore, to a [001]/101.12° rotation; the
layer group of the bicrystal is cmm'2',

An second example of twinning in orthorhombic system refers to the

aragonite. The structure of aragonite (CaCOa) is described by the



Figure 5.4.3

The stucture of x=uranium






Figure 5.4.4

Twinning on (130) planes in'awuranium; projection on (001). The
fillen and open circles indicate atoms at ¢/4 and 3c/4 respectively.
The broken lines indicate the distortion at the region of contact.

(after Cahn, 1953)
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orthorhombic space group Pmcn (a=4.94, b=7,94, c=5.722) (Bragg, 1924)

and the unit cell contains 4 CaCO3 groups (figure 5.4.5). This structure
- is pseudohexagonal, with the ¢ axis as the pseudohexagonal axis. The

calcium atoms are arranged in a hexagonal array, but the arrangement

of the CO3 groups lowvers the symmetry to orthorhombic.
- - ' Single crystals of aragonite are rare; twinning about {110] is
nearly always present. The atomic configuration of the (110) twin in
aragonite is shown in figure 5.4.6. The two individuals of the twin
- are related by the coldur-reversing glide plane which coincides with

the twin plane.

5.4.3 Twinning in the tetragonal system

| The last example of twins in metals is the twinning of tin. The
twin plane of white tin was first determined by Migge (1917, 1927) and
by Tanaka & Kamio (1931) as the (331) plane. Chalmers (1953), on the
other hand, considered it as the (301) Plane. A re-investigation by
Clark, Craig & Chalmers (1950) has confirmed the latter indices, and
also shown that the confusion arose from an improper choice of the unit
cell in the earlier references.

The lattice of p-tin is body-centred tetragonal, with four atoms
per unit cell at the points 000, %0%, 0%% and ¥%%, as shown in figure
5.4.7. The pattern of atomic positions alongside the twin boundary is
shown in figure 5.4.8. Open and filled symbols represent the atomic
positions in the matrix and twin respectively. Circles are atomic posi-
tions on the plane of the page and triangles are a/2 above or below the

page. The layer group of this configuration is cmm'2',

544 Twinning in the monoclinic system

The first example of twinning in the monoclinic system refers to

the family of the feldspars. These minerals fall into two main groups,



Firure 5.4.5

The structure of aragonite, CaCOS; superimposed oxygen atoms

have been made visible by symmetrical displacemnts. The heights
of the atoms are measured above the face of the unit cell along
the axis of projection in hundredths of the projected unit cell

edge.
(after Bragg, 1924)
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Figure 5.4.6
(110) twinning in aragonite; projection on (001) plane. _
(after Bragg & Claringbull, 1965)

Key: Filled circles: Ca atoms in the plane of the page
Open circles: Ca atoms at +0.50c out of the page
Crossed circles: C atoms at 0.33¢c and 0.83¢ or

0.17c and 0.67¢c out of the page
Large filled squares: O atoms at 0.17c¢ out of the
Page
Large open squares: O atoms at 0.33c out of the page
Small filled squares: O atoms at 0.83c¢c out of the
bage
Small open squares: O atoms at 0.67c¢ out of the page
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Figure 5.4.7
The structure of white tin

-






Figure 5.4,8
(103) twinning in p-tin, projected on (010) plane.

Key: Open symbols: positions of the white lattice-complex
Filled symbols: positions of the black lattice-
-complex
Circles: positions on the plane of the paper
Triangles: +b/2 out of the page
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one with monoclinic or very nearly monoclinic symmetry, the other defin-
itely triclinic. One of the most remarkable features of the feldspars

is the number of ways in which the crystals twin. The five common methods
of twinning have simple and direct interpretations (Bragg & Claringbull,
1965). In this section, however, only the Baveno twin in orthoclase
(KAlSisoe) is considered; orthoclase belongs to the monoclinic system
with space group C2/m and unit cell constants a=8.562, b=12,996, c=7.1932,
B=116.01° (Cc;le, S6rum & Kennard, 1949; Jones & Taylor, 1961).

The structure of the Baveno twin according to Bragg & Claringbull
(1965) is shown in figure 5.4.9; the twin plane is (021). The two indi-
viduals (one in full line, the other in dotted line) have to be filled
together after a relative displacement along the twin plane (021),
which thus becomes a glide mir;or plane. This is permissible for a growth
twin but must cause severe stresses in the interface of a mechanical
(deformation) twin.

The last example considered in this section is the twinning in
serpierite, Ca(Cu,Zn)4(OH)6(SO4)2.3H20. This material crystallizes in
the monoclinic system with space group C2/c, a=22.186, b=6.250, c=21.8533.
P=113.36° and 7=8 (Faraone, Sabelli & Zanazzi, 1967).

Figure 5.4.10 illustrates the arrangement of representative points
in a serpierite twin according to Sabelli & Zanazzi (1968). The boundary,
with the symmetry operations relating the two individuals of the twin,
is outlined by a dashed line. At the boundary there is the formation
of the two-fold screw axes parallel to [010] and inversion centres at
% and ¥. These symmetry operations are colour-reversing ones, since
they relate the two individuals of the twin.

Twinning in serpierite is an example of bicrystals where a colour-



Figure 5.4.9

Baveno twin; oﬁe individual is drawn in full line, the other dotted.
The heights of the atoms are measured above the face of the unit
cell along the axis of projection in hundredths of the projected
unit cell edge.

(after Bragg & Claringbull, 1965)






Figure 5.4.10
The arrangement of representative points in a serpierite twin,
The boundary, with the twin symmetry operations, is outlined
by a dashed line.

(after Sabelli & Zanazzi, 1968)
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=reversing inversion centre or a colour-reversing two-fold screw axis

is present on the boundary plane. The colour-reversing inversion centre
implies that the lattice is continuous across the boundary. Indeed,

the additional (colour-reversing) elements of the twin do not affect
the symmetry of the lattice, being of the same kind as those still

present in the structure, even if in positions not stated by the space

group.
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Chapter 6
VARIATION OF SYMMETRY WITH RELATIVE DISPLACEMENT

Introduction

The symmetry of dichromatic complexes or bicrystals depends on the
misorientation and the relative position of their components. In the
previous chapters the two components were assumed to have a common ori-
gin, and, hence the symmetry of dichromatic complexes and bicrystals was
studied in relation to changes in the misorientation.

It remains, therefore, to consider symmetry variations due to re-
lative displacements. Such variation is governed by general principles
which are epplied in the same way for both dichromatic complexes or bi-
crystals. Thus, in the cases where no distinction is required reference
is made to a ‘'composite' which can equally well be a dichromatic complex
or a bicrystal.

The study of the symmetry variation is carried out separately for
finite and periodic composites. In section 6.1 the variation of the
point symmetry is investigated and an analytical procedure is derived;
the latter enables the determination of the conditions under which parti-
cular operations of symmetry are conserved. The application of this
procedure is demonstrated for a particular example in section 6.2.

Next, the case of periodic composites is considered and a method for
determining the spatial symmetry variation is given in section 6.3. This
method is used in the last section for studying the symmetry variation

of a three~dimensional dichromatic pattern. .

6.1 Poiht symmetry variation

In order to study the point symmetry variation of a composite its

white component will be considered fixed in space and any displacement
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will result by the relative translation of the black component. If the
latter is displaced away from its original position the geometrical
relationships (i.e. the symmetry) between the two components changes.
Some of the symmetry operations of the original composite might be de-~
stroyed after the displacement, while others are conservedl.

For example consider the composite in figure 6.1.1a obtained by
the exact superposition of two (identical) components, The point symmetry
of the components is 4mm, and that of the composite 4mml' (grey point
group). If the black component is, now, displaced by £=(x,0,0)2 the
symmetry of the composite so obtained is reduced to m'm2' (figure 6.1.1b).

This displacement conserves the symmetry operations 1, 2; ' s;, sy of

the original composite but destroys all the remaining ones.

6.1.1 Subgroup relations in the point symmetry variation
‘ It is seen by comparing the composites in figures 6.l.1a and 6.1.1b
that the shifting of the components relative to each another results in
a composite with lower symmetry. This holds, however, only for the cases
of holosymmetric composites, i.e. composites exhibiting the highest pos-
sible symmetry which can be created by the superposition of two given
components in a given misorientation relationship. For two given compo-
nents and for a given misorientation there exists a unique translational
position of the two components leading to the holosymmetric composite.
The symmetry group of the latter is isomorphous to either the point
group of the compoments or to a subgroup/supergroup of it (depending on
the misorientation of the two components) and this c;n be found by
applying the procedure in section 4.3.

In the following text the composite with t=0 (see section 3.1) is

taken to be always the holosymmetric one, unless specifically stated to



Figure 6.1.1

It shows the variation of the point symmetry with displacement.
The original composite is shown in (a); its symmetry is 4mml'.
When the black component is displaced by t the symmetry is reduced
to m'm2' (b). Note the shift of the mirror plane m;. The
coordinate system for expressing the symmetry operations and
displacements is shown in (a); the z-axis is out of the plane of
the paper.
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be otherwise. In this case the point symmetry of the composite after
displacement is a subgroup of the point group of the holosymmetric com-
posite. First of all, it is a group by virtue of the restrictions placed
upon the conservation of its elements. No product of elements in the
set can be unrelated to the particular geometric relationship of the

two components, and all elements of the initial composite related to
this relationship are included in the set. Secondly, it is a subgroup
because in displacing the black component symmetry elements are removed,
but not added (as long as the initial composite is the holosymmetric
one).

The consideration of a holosymmetric composite for t=0 provides
a way to check that all the symmetries of 'displaced' composites have
been found. This is because only certain symmetries, which are amongst
the subgroups of the particular point group, can be created by displacing
the black component.

Having established the relationship between the point groups of
the composites before and after displacement the analytical approach for
studying the point symmetry variation can be derived. For this the
colour-reversing and ordinary symmetry operations are considered

separately.

6.1.2 Conservation of colour-reversing symmetry oﬁerations

Colour-reversing symmetry operations arise by the geometrical rela-
tionships existing between the white and black components. Thus, any
displacement t which does not alter the particular relationship conserves
the respective operation which, however, is shifted by t/2. Referring
to figure 6.1.1b, for an example, the mirror plane s: has been shifted

after the displacement t=(x,0,0), by (x/2,0,0) relative to its original



64

position.

When the black component is displaced by t the origin of the co-
ordinate system has, therefore, to be displaced by t/2 in order to retain
the form of the symmetry operation matrix representations (this coordi-
nate system is called the 'displaced coordinate system'). Alternatively
stated, it can be considered that the black component is displaced by
t/2 and at the same time the white component by -t/2. In this case the
conserved symmetry elements remain in their initial positions and, hence,
they are expressed relative to the original coordinate_system.

Let 2 be a colour-reversing symmetry operation which is conserved
after displacement t. Since 2 is present in the initial composite there
is at least a pair of points belonging to the white and black components
=their positions in the original composite are denoted by x, and X re-
spectively- for which: ‘

s, = 5

If the black and white compoments are displaced by t/2 and -t/2
the positions of the above points (relative to the original coordinate
system) are gwfg/z and !bt§/2 respectively. The symmetry relationship
between the two points is now expressed by:

S(x ~t/2) = x +t/2

Consequently, a colour-reversing éymmetry operation is conserved

only if:
S(-t/2) = £/2 (6.1.1)
where the displacement t/2 is expressed relative to the coordinate system

of the original composite.

6.1.3 Conservation of ordinary symmetry operations

Ordinary symmetry operations result by the coincidence of identical

operations in the two components (see section 4.1). Thus, a displacement
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X conserves an ordinary symmetry operation only when it leaves these
symmetry elements in coincidence. If the original composite contains,
say, a u-fold rotation axis, obtained by the superposition of two u=fold
axes of the components, then this axis is conserved only for displace=~
ments along its direction.

Let §o an ordinary symmetry operation which is conserved when the
two components are displaced relative to each other. In the initial
composite there is at least a pair of white points, X, and 5&. as well
as a pair of black points, X, and ;ﬁ, for which:
o_)sv"s

x
X,
[ ]
and 205 = %

0. in

After displacement the positions of the points in.the white com-
ponent become x ~t/2 and x'~t/2 and those in the black component §bf§/2
and §£f§/2 respectively. Therefore, the symmetry relationships of the
two pairs of points are given by:

S/2) = x 2
and go(ggfsla) ='5bf§/2

Consequently, an ordinary symmetry operation is conserved by a
displacement only if:

s (£/2) = t/2 (6.1.2)

A displacement, therefore, conserves only these ordinary symmetry
elements which satisfy relation (6.1.2); for the same displacement the
colour-reversing elements present in the composite are given by relation

(6.1.1).

6.1.4 Conservation of (ordinary or colour-reversing) symmetry elements

Relations (6.1.1) and (6.1.2) give the conditions under which

symmetry operations of the composite are conserved by displacements of



66

the black component. For determining the displacements conserving a
symmetry element all the symmetry operations associated to it must be
considered. The displacement conserving a particular symmetry element
is then the one for which all the associated symmetry operations are
invariant. In other words, in the case of a symmetry element, of order

n 3, the displacement conserving it is determined by the solution of

the system:

5, [(-2)%¢/2] = t/2 (6.1.3)
where 21 ti=1;2,..s;n) are the matrices of the symmetry operations asso-~
ciated to the symmetry element and k=1 for colour-reversing or k=2 for
ordinary symmetry operations. Under this convention equations (6.1.1)
and (6.1.2) allow the determination of displacements conéerving the sym-
metry elements of the original composite.

Concluding this section it is of interest to give the general rules
of symmetry element conservation with displacement:

Rule 6.1.1: The ordinary identity operation is conserved by
any displacement whereas no translation conserves
the antisymmetry operation.

Rule 6.1.2: An ordinary rotation axis or mirror plane is con-
served only by displacements parallel to this axis
or plane of symmetry.

Rule 6.1.3: u=fold (ud2) colour-reversing rotation axes are
destroyed by any displacement. However, colour-
-reversing axes 2' or planes m' are conserved by
displacements which are perpendicular to these
rotation axes and symmetry planes.

Rule 6.1.4: The ordinary inversion centre is destroyed by
any displacement whereas the colour-reversing one

is always conserved.



67

The displacement associated with the identity operation is rather
obvious; there is no displacement destroying the symmetrical relation
of a point to itself. In contrast, the colour-reversing centre of sym-
metry is destroyed by any displacement because the inversion centres in
the two components are brought out of coincidence. The way of deriving

the remaining of the above rules is demonstrated in the next section.
Footnotes 1: No new symmetry operations can be created by a dis-
placement (see section 6.1.1).

2: The symbol t=(x,0,0) denotes the vector t=xi+0j+Ok
with i, j, k the unit vectors along the x-, y- and
z-axes of the coordinate system Oxyz indicated in
figure 6.1.1la. _

3: Order of a symmetry element is the number of sym=-
metry operations associated with this particular
element; for example, the order of the 4-fold rota-
tion axis is equal to 4.

6.2 Eiample of point symmetry variation

The application of the method outlined in section 6.1 is now demon-
strated with reference to a particular example. For this a bicoloured
composite is considered and its point symmetry variation is studied by
allowing the two components to be displaced relative to one another

Let both the white and black components be non-periodic1 with
symmetry 4/mmm and let these be superposed so the obtained composite has
the symmetry 4/mm'm'. This point group contains the fbllow;ng symmetry

operations (see table Al.3):

1 3 .1

1l =
1 4, 2, 3

i, iz. 42, 8
1l 1' 1!
colour-reversing operations: 2x ’ 2y y 24

ordinary operations: 1, 4 2

1'
' 25 s;, s&, 83y Bge

The z-axis of the orthogonal coordinate system used for expressing
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the matrix representations of the symmetry operations (and the displace-
ments) is along the 4-fold axis. The x- and y-axes, on the other hand,
coincide with two mutually orthogonal 2-fold axes of the point group.

The considered composite exhibits the highest possible symmetry
created by the given components in the given misorientation, i.e. it is
the holosymmetric composite. Consequently, only certain symmetries can
be created by displacing the black component. These symmetries are among
the subgroups of the point group 4/mm'm' given in table 6.2.1 (note that
all the crystallographically non-—equivalent subgroups of 4/mm'm' are

included in this table).

6.2.1 Conservation of symmetry elements

The next stage in the procedure is to determine the displacement(s)
for which each of the symmetry operations of 4/mm'm' is invariant. Col-
our-reversing operations are conserved by the displacements obtained
as solutions of the equation (6.1.1); these are given in table 6.2.2,

On the other hand, the displacements conserving ordinary operations are,
according to equation (6.1.2), these in table 6.2.3.

In applying the results of tables 6.2.2 and 6.2.3 it must be born
in mind that they correspond to symmetry operations. The translation(s)
conserving a particular symmetry element is(are) the displacement(s) for
which all the symmetry operations associated to this element are
invariant (see section 6.1.4). The ordinary 4-fold axis, for example,
involves the presence of the four symmetry operations: 1, 4;, 2;, 4:.
All these operations are conserved for displacements parallel to the
z~axis and, hence, the 4~fold ordinary exis is conserved for t=(0,0,z).

As far as the ordinary axis 4 is conserned, it contains the symmetry

operations: 1, Z;, 2:, i: and, therefore, it is destroyed by any displa-

cement (table 6.2.3).
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TABLE 6.

Subgroups of the black-white point group 4imm‘m’

XIX|X|X

X

X|X|X|X

X

X

X

X

X

XXQ(.X'XXXXXXXXXXXIX

XiXIX|X|X|X
X| XXX
XIXiXIX

XI1X|X|X

X|X|X|X

X

X

X
X
X
X

o/mm'm’

&2

L2’

4m'm’

L7 IX|X|X|X|X]|X|X[X

&im

m'mm | X

m'min | X

mm? | X

m'm2’

mm? | X

mm? | X

2‘,'“1

2''m’

2’

2im’

2/m

m'm’2

m'm'2

27

227

1

3

5

9
10

"

12
13
14
15
16
17
18
19
20
21

22
23

24

25
26
27

28

29

30
3

32
33

35

hofe: of the Subgroups are given;
crysioliographically non-equi

from the fotal 35 subgroups only 8 are

valent



TABLE 6.2.2
Solutions of the equation S(-t/2)=t/2 for the colour-reversing
symmetry operations of the black-white point group 4/mm'm'

Symmetry Matrix
element equation Solution
1 0 O —t /2 t /2 tx=0
2i' 0-1 0| -t /2 =t /2 ty: no condition
0 0 <-1/\=t /2 t /2 tz: no condition
-1 0 -tx/2 t / tx: no condition
1t
-t /2 =] t. /2 =0
2y 0 1 y/ / ty
0O 0 -1 -tz/2 t /2 tz: no condition
0 1 0\/=t / t, /2
2, || 10 ot /2] = t/2 temty ()
0 0 -1 -t /2 " /2 tz: no condition
0O-1 0 -tx/2 t, /2
21' -1 0 ol -t/2]=|¢ /2 te=t, (%)
0 0 -1 —tz/2 + /2 tz: no condition
-1 0 O / t, /2 tx: no condition
M 0 1 0| =t /2 =| t /2 tygo
0O 0 1 -t /2 t /2 tzgo
10 -t /2 t, /2 tx=o
s} 0 -1 -t /2 = t /2 ty: no condition
0O 0 -t /2 t /2 tz=0
0 1 -t /2 t /2
8y 10 "ty/z =| t, /2 te=t, (*%)
o o -t /2 \t /z =0
0-1 O -tkla tx/ t et (%)
8! -1 0 O} =t ./2|={t /2 x Yy
B y | y t =0
0O 01 -tz/2 tz/ z
(*) tx=_ty means a displacement perpendicular to the xy-direction

(##) txzty denotes a displacement perpendicular to the xy-direction




TABLE 6.2,3
Solutions of the equation §(§/2);§/2 for the ordinary
symmetry operations of the black-white point group 4/mm'm'

Matrix

Symmetry
element equation Solution
1 0O tx/Z tx/2 tx: no condition
1 010 gy/Z = ty/2 ty: no condition
0 0 1 tz/2 tz/2 tz: no condition
. 0-1 O tx/Z tx/2 tx=0
‘ 4z oo 1 0 O ty/2 = ty/2 tyao
0 0 1 tz/2 tz/2 tz: no condition
. 0 o ;x/z tx/2 t, =0
- 2 1l= 2 =
4z 1 0 O ty/ ty/ ty 0
0 1 tz/2 tz/2 tz: no condition
. -1 0 O txla tx/z tx‘o
2z 0-1 O ty/2 = ty/ 2 tyeo
0 0 1/\t /2 t /2 t,: no condition
~1 0 O tx/z tx/2 t, =0
- (6] t /2 t /2 =0
i 0 =1 y/ = y/ ty ‘
0 0 -1 tz/2 tz/2 tzso
X 0«1 O tx/2 tx/2 tx=0
a t /2 |=
4z 1 00 y/ ty/2 tyao
0 0 -1 tz/2 tz/ 2 tzco
. 010 tx/2 tx/2 txso
a - t /2 |=| £t /2 t =0
a, 100 y/ y/ ¥
0 0 -1 tz/2 tz/2 | tzgo
100 tx/2 tx/2 t_: no condition
2 2 H
s, 010 ty/ = ty/ ty no condition
0 0 =1 tz/2 | tz/2 t =0
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The colour-reversing mirrors s; and s;, on the other hand, are
invariant for displacements which do not change the respective mirror
relationships of the two components, that is, for displacements (x,x,0)
and (-x,x,0) respectively (rule 6.1.3). These considerations indicate

the way by which the rules in the previous section were derived,

6.2.2 Conservation of sets of symmetry operations

Attention is now focused on displacements which conserve sets of
symmetry elements. In other words, the displacements leading to a
composite with symmetry described by any one of the subgroups of the
point group 4/mm'm' are determined. For this, each one of the subgroups
given in table 6.2.1 is considered (starting with those of higher sym-
metry). For each subgroup a displacement conserving all the group ele-
ments can be established. This is, in fact, equivalent to solving the
system of r equations: gi(fg/z);glz (i=1,25040,r/2) and §J(§/2)q§/2
(J=1,24+0+0,r/2) where 5 and gj are respectively the matrix representa-
tions of the colour-reversing and ordinary elements of the particular

subgroup of order r.

For example consider the subgroup 42'2'= {1 4 2 4 2 ' 2 '
' ' T2 T2 T2 x? Y '
1!

o ?

]
2% }. The 4~fold axis is conserved by a displacement (0,0,z),

! ] L ]
vwhereas the axes 2i ’ 2; ’ 2& ’ 21 are conserved by the displacements

2

(0,¥,z), (%x,0,2), (-x,x,2), (x,X,2) respectively. Therefore, the only
displacement conserving all the elements of 42'2' are of the form (0,0,z).
Similar considerations give the displacements which conserve each of the
remaining subgroups in table 6.2.1. These displacements and the asso-
ciated point groups are given in table 6.2.42. Since the point group

of the composite for t#£0 is restricted to be a subgroup of the point

group 4/mm'm' and since all the subgroups were considered it is clear



TABLE 6.2.4

Point symmetry variation of a composite
with symmetry 4/mm'm*

Fractional Point group
coordinates
of displacement | Number#* Symbol

| 000 1 | 4/mm'm'
00z 5 422!
OyO0 11 m'm2'
x00 12 m'm2'
xx0 13 m'm2'
xx0 14 m'm2’
x0z 29 2"
Oyz 30 2!
xXZ 31 2!
xxz 32 2¢
xyO a3 m
xXyz 35 1

(*) see table 6.2.1
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that table 6.2.4 covers all the possible composites obtained from the
original holosymmetric one.
When the displacements conserving the elements of a subgroup are
determined, the following must be kept in mind:
1) Since the ordinary identity operation is conserved by any
displacement, there is no need to account for this operation.
" 2) Certain subgroups are not invariant by displacements t#0.
The subgroup 42'm', for example, is conserved by the
displacement t=(0,0,0) only.
3) Certain subgroups are formed by displacements which at the
same time conserve another subgroup of higher symmetry.
The latter is a consequence of the conservation of various symmetry
elements by the same displacement. For example, both subgroups 42'2!
and 4 are formed by a displacement of the form (0,0,z). This happens
when the two groups contain common elements, or, in other words, when
the group of lower symmetry is a subgroup of the one of higher symmetry.
In such cases, however, the symmetry of the dichromatic complex or
bicrystal is described by the highest order subgroup (highest symmetry).
This explains why the subgroup list must be considered in a sequence of

decreasing group order,

6.2.3 Equivalent composites

Table 6.2.4 shows that certain subgroups can be created by more
than one crystallographically equivalent displacements. This occurs in
the cases where a subgroup adopts more than one crystallographically
equivalent orientation in the point group of the composite with t=0.
The subgroup m', for example, adopts two different, but equivalent,

orientations in 4/mm'm'; the two orientations are related by symmetry
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operatiéns of the initial composite. As it can be seen from table 6.2.4

the displacements leading to the corresponding composites are also

" related by symmetry operations of the initial composite.

Pond & Bollmann (1979) have shown that whenever a composite with

%=0 contains point symmetry higher than 1, there exists a set of dichro-

matic patterns or bBicrystals, obtained from the original composite by

displacements of the

black component, which are related by the symmetry

of the initial composite. They called the composites of such sets equi-

valent dichromatic patterns and equivalent bicrystals. Similar consi-

derations indicate that the same holds for dichromatic complexes,” and,

following Pond & Bollmann (1979), such sets are called here 'equivalent

dichromatic complexes'.

The symmetry relationships between the sets of equivalent dichro-

matic complexes and bicrystals will be further examined in section 7.3.

Footnotes 1:

6.3 Variation of the

The consideration of non-periodic components (and,
hence, non-periodic composites) has no significance
except that it implies that point symmetry only is
taken into account. The method is, however, identi-
cally applied for studying the point symmetry varia-
tion of periodic composites.

In table 6.2.4 only displacements t#0 (and the asso-
ciated subgroups) are included.

It is possible that composites with identical sym—
metry can be created by crystallographic non-equi-
valent displacements. These cases, however, must

be treated separately; this is a situation where

the need to distinguish between crystallographically

non-equivalent subgroups arises.

gpatial symmetry

The discussion

in the previous sections was confined to non-periodic

components. This allowed the effect of the relative displacement on the
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point symmetry to be analysed. Dichromatic complexes and bicrystals
can, however, be periodic. Thus, attention is now focused on infinite

components and the variation of their symmetry is studied.

6.3.1 Displacements conserving a perlodic composite

The consideration of periodicity implies that there are displace-
ments which conserve the original composite. These are due to the trans-
lational symmetry of the components, but for a periodic composite addi-
tional displacements exist as well. Thus, two categories of displacements
are distinguished.

The first contains displacements for which the obtained composite
differs in no way from the original one; they recreate the composite at
the original position. Displacements of this category are equal to the
translation vectors of the respective component. In the case of CSL
based dichromatic complexes and bicrystals, where the two components
have a common superlattice, the vectors of this superlattice represent
displacements of either component which conserve the original cdmposite.
Thus, the displacements of the first category can further classified
into:

(a) displacements which can applied to the respective component
in order to recreate the initial composite, and,
(b) vectors which represent shifting of either component.

For displacements of the second category the composite is conserved
as far as the configuration of points is concerned but it ié displaced
relative to its original position. The displacements of the secpnd
category are, in fact, equal to the DSC lattice vectors (Bollmann, 1970).
Bollmann has shown that these vectors form a sublattice of the composite

lattice and, in fact, it is this sublattice which represents the periodic
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variation of the composite symmetry.

6.3.2 Displﬁcement vector set for dichromatic complexes and bicrystals

The displacements of the above two categories can be represented
in an integrated way by means of the vector space, a concept introduced
by Buerger (1950a,b) in connection with the solution of the Patterson
function in X-ray crystallography. For the purposes of the symmetry
variation studies the vector space is considered as the space containing
the displacement vector set of the associated dichromatic complex or
bicrystal.

The vector space is formed by drawing vectors between all points
in the dichromatic complex or bicrystal (disregarding the different
colours). These vectors are then assembled at common origin and the
unit cell of the periodic vector is established. The unit-translations
of the vector set correspond to the displacements which recreate the
original compositel. In other words, the translation symmetry of the
vector set represents the periodicity of the spatial symmetry variation.
Consequently, it is adequate to investigate the spatial symmetry varia-
tion due to displacements which fall within the Wigner—Seitz cell of the
associated vector set.

It is evident, érom the construction of the vector set, that the
fundamental set and the vector set have the same number of translation
axes. In the case of dichromatic complexes or bicrystals with no trans-
lational symmetry the Wigner-Seitz cell has zero volume. F;f complexes
or bicrystals with one- or two-dimensional periodicity the unit cell of
the vector set is linear or planar respectively. 1In the case of dichro-

matic complexes based in CSL the Wigner-Seitz cell is three-dimensional

and has a volume that decreases as X increases,
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6.3.3 General and special displacements

An implication of the periodic variation of the spatial symmetry
of dichrmatic complexes and bicrystals is the possibility of displacements
for which rotation axes and/or mirror planes of the original composite
become screw axes and/or glide mirror planes (or vice versus). Consider,
for example, figure 6.3.1. An infinitely small displacement of the
black component away from the reference position destroys the mirror
Plane m& present originally in the composite. Thus, all the composites
corresponding to displacements t#0 do not possess this mirfbr Plane.

The displacement t=a/2, however, brings the white and black components
in a glide-reflection relationship (figure 6.3.1b). Such displacements
correspond, usually, to vectors with end-points lying midway two lattice
points of the DSC lattice.

The periodicity of the spatial symmetry variation, therefore,
implies that there are displacements resulting in spatial symmetry groups
which have the same point symmetry but where some (if not all) of the
translation~free rotation axes or mirror planes have been changed to
screw axes or glide mirror planes (or vice versus). Displacements with
this property or displacements which conserve the composite will be called
'‘special displacements' while the remaining are designated ‘'general
displacements'.

Special displacements correspond to dichromatic complexes or bicry-
stals whose symmetry is uniquely determined by the displacement vector.
Any infinitely small deviation away from the special position results
in a change in the symmetry of the composite. The displacement of the
black component does not alter the configuration of either the black or

the white component but it changes their relative position only. There-



Figure 6.3.1

(a) It shows an composite with one-~dimensional periodicity; the
unit translation is indicated by the vector a. Open and
filled circles represent points of the white and black
(one-dimensional) components‘respectively. The composite
exhibits a symmetry emm'2’.

(b) The composite obtained by displacing the black component
by t=a/2. The symmetry of this composite is Pma'z'. The

"axes of the orthogonal coordinate system are: x-axis along
the translation axis, y-axis on the plane of the paper and
z-axis out of the page.
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fore, only colour-reversing axes and/or mirror planes can be transformed
to their associated translation-coupled counterparts (or vice versus)
by a special displacement.

General displacements, on the other hand, are associated with dichro-
matic complexes or bicrystals whose symmetry remains unchanged over wide
limits of -displacement. Examples of general displacements are the vectors
0<t<a/2 in figure 6.3.1.

Both general and special displacements change the spatial and/or
point-symmetry of the dichromatic complex or of the bicrystal. The .
variation of the point symmetry has been investigated in section 6.1;
it remains, therefore, to give the procedure for the determination of
the spatial "synmetry variation. The method is based on fhe fact that
a displament can never modify the periodicity of the dichromatic complex
or bicrystal. This means that the spatial symmetry group of the compo-
site with t#0 must be a subgroup2 of that corresponding to t=0; but

the two groups must have the same translations.,

6.3.4 Determination of the spatial groups for general displacements

The spatial symmetry of a composite obtained by a general displa-
cement is described by a group which exhibits:
(a) point symmetry which is a subgroup of the original compo-
site (section 6.1), and,
(b) the same translational symmetry as the original composite.
General displacements correspond, therefore, to spatial subgroups
in which the descent in symmetry has only affected the rotations and
reflections but not the accompanying translations in the unit cell.
Hermann (1929b) designated such groups .'zellengleichen subgroups' (an

analysis of Hermann's approach is given in appendix 11 since no full
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exposition in the English language exists).

6.3.5 Determination of the spatial groups for special displacements

The spatial symmetry obtained by a special displacement corresponds
to a spatial group which:

(a) has a point group belonging to the same class as a subgroup
(including the trivial ones) of the reference composite,

(b) has the same set of translation vectors as the reference
composite, and,

(c) may contain translation-coupled symmetry elements corre-
sponding to translation-free elements in the original
composite (or vice versus).

Consequently, special displacements correspond to spatial subgroups
where the translations and not the types of symmetry are affected. These
subgroups are the 'klassengleichen subgroups' in Hermann's (1929b)
terminologys.

As was mentioned above special displacements correspond to vectors
connecting the origin to 'special' points in the unit cell of the DSC
lattice. Such 'special'! points are usually the vertices, centres of
faces or edges and points lying midway between them. The foliowing
rules facilitate the determination of the special displacements:

Rule 6.3.1: The special displacements follow the rules of sym-

metry element conservation given in section 6.1.
Rule 6.3.2: A special displacement creates a tranélation-

=coupled symmetry operation from a translation=-free

one (or vice versus). The latter is present in

the initial composite but is not conserved by the
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particular displacement. Moreover, it is always
a colour-reversing operation.

Rule 6.3.3: From all the operations of the initial composite
which may create a translation-coupled/translation-
-~free symmetry element only those which are compa~

tible with the special displacement form such an

element.

For example, if the original composite contains a 4-fold colour-

-reversing axis and the special displacement is equal to the half-period

along the axis direction, then a 42 axis can be created but not a 41 or

a 43 one,

Footnotes 1: It is possible that such displacements recreate the
original composite in a new position, but this is
not important as far as its symmetry is concerned.

2: .A subgroup of a given spatial group is a group of
lower symmetry obtained by the removal of certain
symmetry operations from the given spatial group
(see appendix 11).

3: This does not include the special displacements for
which the original composite is reformed. The spatial
group of these composites is, obviously, identical
to that of the original composite, or, according to
Hermann's (1929b) approach it is the trivial zellen-
gleiche subgroup. The vectors of such displacements, .
however, 'end' outside the Wigner~-Seitz cell of the
DSC lattice.

6.4 Example of spatial symmetry variation

In this section the procedure for studying the spatial symmetry

1
variation of dichromatic complexes™ is demonstrated by giving an example.

For this the dichromatic pattern formed by two f.c.c. lattices rotated
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relative to each another by [001]/36.9o (2=5) is used as an illustra-
tion. The space group of this holosymmetric dichromatic pattern is
T4/mm'm* (figure 5.2.2c).

The point symmetry variation has already been considered in section
6.2 and, hence, table 6.2.4 gives the general displacements and the point
groups of the associated patterns.

As far as the space groups of the dichromatic patterns associated
to general displacements are concerned they can be found by applying

the principles outlined in section 6.3. For this the 1list of the zellen-
gleichen subgroups of the space group I4/mm'm' (table A11.1) is conside-

red. For each of the general displacements the point symmetry of the
obtained pattern is given in table 6.2.4; the corresponding space group
is then the one in table All.l which belongs to the particular symmetry
class. For example consider the dichromatic pattern obtained by a dis-
placement t=(0,0,z); its point group is 42'2'. Referring to table All.1
it is seen that the zellengleiche subgroup of the class 42'2' is 142°'2';
this is the space group of the dichromatic pattern with t=(0,0,z).

When this procedure is applied regard must be given for the cases
where the point group adopts more than one crystallographically non-
—equivalent orientation in the point group of the original pattern. In
this case different zgllengleichen subgroups might correspond to the
non-equivalent subgroups. The ambiguity can be resolved by considering
which symmetry operations of the original pattern are conserved by the
particular general displacement. Thus, it is possible to establish the
point subgroups corresponding to these dichromatic patterns and thus
the appropriate zellengleichen subgroups are determined,

Let, for example, the dichromatic patterns obtained by t=(x,0,0)



and t=(x,x,0). It is shown in section 6.2 that a displacement of the
form t=(x,0,0) conserves the subgroup m'm2'={1, 2;'. L 8;:} and
‘according to the table All.1 the respective space group is Im'm2'.

If the displacement t=(x,x,0) is, however, considered the conserved
symnetry operations form the subgroup m'm2'={1,2:', sz, s.:} and, hence,
the space group of the dichromatic pattern with t=(x,x,0) is Fm'm2°.
In a similar manner the space symmetry of the dichromatic patterns

for the other general displacements is determined.

The special displacements can be found by applying the rules given
in section 6.3. Thus, the displacement t=(%,0,0), for example, conserves
the subgroup m'2'm.-.{1, 5, s"‘. 2;.} while destroying the rest of the
symmetry operations in the initial pattern, i.e. the operations of the
set 42, 23, 43, 21", 2 3, %, 8 8l 8

[ ]
the elements Zi and s§ satisfy the conditions given in section 6.3

’ 2:.. i, In this set only
and, hence, a displacement of the black component by t=(%,0,0) creates
a glide-mirror plane normal to the y-axis and a 2-fold screw axis along
the x~direction.

In order to determine the special displacements it is necessary
to determine, first of all, the possible space groups associated with
such displacements. These are klassengleichen subgroups of either the
space group of the dichromatic pattern with t=0, or of a zellengleiche
subgroup of it. Moreover, these klassengleichen subgroups must have
translational vectors identical to that of the original dichromatic
pattern; these groups are listed in the first coloumn of table 6.4.1.
In fact, this table gives the klassengleichen subgroups of the (classi-
cal) space group I4/mmm instead of the two—coloured I4/mm'm'. This is

because the procedure for the determination of the klassengleichen



TABLE 6.4.1
- --Klassengleichen subgroups of I4/mm m which correspond to
gpecial displacements for the Z«5 dichromatic pattern
formed by two f.c.c. lattices

Space group Comments
I4/mem
Idllamd 41 and a-plane are ordinary elements
Idllacd 4, and a-plane are ordinary elements
14122 41 is an ordinary element
1422 zellengleiche subgroup
Idlcd 41 is an ordinary element
I41md 41 is an ordinary element
I4cm
I4mm zellengleiche subgroup
1424 4 is an ordinary axis
142m zellengleiche subgroup
I4c2 4 is an ordinary element
14m2 zellengleiche subgroup
141/a 4, and a-plane are ordinary elements
14/m zellengleiche subgroup
141 41 is an ordinary axis
I4 zellengleiche subgroup
14 zellengleiche subgroup
Imma
Ibca m, is an ordinary mirror plane
*  Ibam b~ and a-plane are normal to the x- and y-axis respec-

tively and there is no displacement creating simulta-
neously the a- and b=planes

Immm zellengleiche subgroup

Fmmm zellengleiche subgroup

12,2,2, 2, exis is an ordinary element

1222 zellengleiche subgroup

F222 zellengleiche subgroup

Ima2

Iba21 . see the comment for Ibam

Imm2 zellengleiche subgroup

Fdd2 there is no displacement creating simultaneously

the two d-planes
Fmm2 zellengleiche subgroup
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subgroups is fairly complicated and the only available listing of such
subgroups (Boyle & Lawrenson, 1972b) deals with the classical space
groups.

Some of the groups given in table 6.4.1 must be excluded from fur-
ther considerations because, as it was mentioned in section 6.3, the
only symmetry operations present to the initial pattern which can be
changed to translation-coupled/translation-free are the colour-reversing
operations. Thus, since the initial point group contains an ordinary
4-fold axis klassengleichen subgroups containing 41, 3 or 21 axes (the
latter if it is parallel to the 4-fold axis) must be excluded. Similar
considerations (see table 6.4.1) for the remaihing subgroups indicate
that the only subgroups which must be taken into accoﬁn£ are the I4/mc'm',
I4c'm', Imm'a' and Ima'2'. But, I4c'm' and Ima'2' are zellengleichen
gsubgroups of the space groups I4/mc'm' and Imm'a' respectively. There-
fore, special displacements give patterns with space groups I4/mc'm' or
Imm'a' (this is further examined below).

The next step in the procedure is the determination of the special
displacements. This is based on the rule given by Pond & Bollmann (1979)
(see also section 7.3) concerning the conservation of symmetry of dichro-
matic patterns (and bicrystals). According to them the variation of the
symmetry obeys the following conservation rule: "the product ndrj is
invariant with relative displacement, where nJ is the order of the point
symmetry for the pattern created by a given relative displacement away
from the holosymmetric pattern and rj is the number of crydtallographi-
cally equivalent patterns obtained by symmetry related displacements".

According to this rule, the rank of a special displacement is equal to

nh/nk where n, and n, are the orders of the point groups of the dichro-
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matic patterns before and after displacement respectively.

For example, the rank of the displacement leading to a dichromatic
pgtternvith symmetry I4/mc'm! v(nk'='16) must be equal to 1 since nh=16.
Inspection of the holosymmetric dichromatic pattern shows that the only
displacement with rank 1 is the t=(0,0,X%) (or its translation-equivalent
- twi(%,%,0)). ““This méans that-a dichrdmatic pattern with symmetry I4/mc'm'
is formed by the special displacement t=(%,%,0). Similarly, the rank
of the displacement leading to a dichromatic pattern with symmetry Imm'a'
is equal to nh/nk=16/8-=2 and the special displacement associated with
this group is (%,0,0).

The above rule enables, additionally, to decide whether a particular
klassengleichen subgroup corresponds to a special displgcemnt or not.
This is the case for the group I4c'm' which as mentioned above must be
excluded. If a special displacement creates a dichromatic pattern with
space symmetry I4c'm' then its rank has to be equal to 2. But the only
displacement of rank 2 is the t=(%,0,0) and it can not correspond to the
above group since it does not conserve the 4-fold axis.

Table 6.4.2 summarizes the variation of the space symmetry of the

Z =5 dichromatic pattern formed by two f.c.c. lattices.

Footnote 1: -The.procedure for bicrystals is identical.



TABLE 6.4.2
Spatial symmetry variation of the dichromatic pattern
3 =5 formed by two f.c.c. lattices

Fractional
coordinates Rank
of displacements

Point Space
group group

000 1 |4/mn'm* |I4/mm'm®
540 1 |4/mm'm* |I4/mc'm!
%00 0X%0 2 mm'm® | Imm'a’
00z 00z 2 | 42'2' | 142'2°

x00 Ox0 4 m'm2? In'm2*
X00 Ox0
xx0 xx0 4 m'm2°* Fm'm2!

xx0 xx0

\ x0z Oxz 8 Y ca
X0z Oxz
x0z Oxz
X0z Oxz
XXZ XX2Z 8 20 ca2¢
XXZ XX2
XXz XXz
XXZ XXz

xy0 yxO
Xyo yx0

Xy0 yxO
Xyz Xyz 16 1 Pl
Xyz XYz
yXz ¥yXz
yXz ¥Yxz
XYz Xyz
xyz Xyz

yxXz JYxz
yxz yXz
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Chapter 7
GENERAL RELATIONS OF DICHROMATIC SYMMETRY AND BICRYSTAL SYMMETRY

Iﬁtroduction

The symmetry of a bicrystal depends on: (a) the misorientation and
the translational position of its components (see chapters 3-6), and,

(b) the orientation of the interface. The effect of the latter on the
interfacial symmetry can be understood in terms of the procedure used

for manufacturing a bicrystal (see section 3.1). The selection of the
boundary plane and the location of the appropriate motifs (atom complexes)
on each side of this plane imply fhat some of the symmetry elements pre-
sent in the respective dichromatic complex may be eliminated. Such
changes in the symmetry are considered in this chapter.

In section 7.1 a procedure is given for the determination of the
point and/or spatial symmetry of all possible bicrystals manufactured
from a given dichromatic complex. The procedure is, subsequently,
applied in section 7.2 for deriving some geometrical features of the
interfacial symmetry.

An important conclusion reached by employing the above method is
that sets of bicrystals with boundary planes related by the symmetry of
the corresponding dichromatic complex have symmetry related (i.e. energe-
tically degenerate) structures. This is similar to the occurence of
equivalent dichromatic complexes or bicrystals (Pond & Bollmann, 1979).

As it is explained in section 7.3 these cases can be described in terms

of group~theoretical conciderations.

7.1 Bicrystal symmetry for a given misorientation

“eous -epe determination of the (point and/or spatial) bicrystal symmetry

is based on the fhct that it corresponds to a section of the (point and/or
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spatial) symmetry group of the dichromatic complex taken in the boundary
position. This section must be taken through the group (point and/or
spatial) of the respective dichromatic complex in a position corresponding
to that of the boundary plane in both orientation and translation.

In tﬁking this section only those symmetry elements which transform
the geometrical section intoe itself are retained. These include (as has
been mentioned in section 5.3):

(1) perpendicular to the plane: non-translation-coupled ordi-

P rovmr ARCTY OVASUTY AN nmpelementsx ;(mm.ly QX(:eption be*ng' th. colo\mve!‘sim

rotoinversion axes),

(2) parallel to the plane: only two-fold colour-reversing
elements, and, .

(3) inclined to the plane: no elements.

The set of symmetry elements in the section is a group by virtue

" of the restrictions placed upon the selection of its elements. Thus,

no product of elements in the set can be unrelated to the plane, and,
all elements related to the plane, in the dichromatic group, were inclu-
ded in the sectional set. In addition, symmetry elements were removed,

but not added, in taking the section of the dichromatic group. Hence,

‘the set of symmetry elements in the section is a subgroup of the dichro-

matic group.

7.1.1 Determination of the point symmetry

The determination of the bicrystal point groups for a given dichro-
matic complex is based on the subgroup relation just mentioned; the point
group of the section (bicrystal point group) is a subgroup of the dichro-

matic point group. Consequently, the procedure for finding the bicrystal

point group is as follows.
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First of all, the subgroups® of the dichromatic point group ere
determined (subgroup tables of the two-coloured point groups have been
published by Aschér & Lammer, 1965). However, not all of these sub=-
groups correspond to bicrystal symmetry. This is so because of the
restrictions imposed on the symmetry elements of a bicrystal (see section
5.,3). Therefore, using table 5.3.1, the subgroups which are not permis-
sible bicrystal groups must be rejected. For each of the remaining
subgroups a boundary plane can be established in order to have colour-
-reversing symmetry elements on this plane and ordinary symmetry elements
perpendicular to the plane (except for colour-reversing rotoinversion
axes; see above). This is, in fact, equivalent to the requirement of
plane invariance as it has been discussed in section ‘5.3.

After the elimination of the non-;permiss:lble subgroups, it is
advisable to consider the subgroup list in a sequence of decreasing
group order. The reason for this is that for a given orientation of
the boundary plane some lower order subgroups will give different bicry-
stal symmetry than higher order subgroups. This is because the boundary
plane does not separate elements of symmetry arbitrarily, but only by
considering the defining plane. The lower order bicrystal class would
correspond to either the same or to a different translational position
of the interface in the dichromatic complex. In the former case the
lower symmetry group is a subgroup of the section group of the dichroma-
tic grouwp. As was explained in sections 6.1 and 6.3, however, the - -
higher symmetry subgroup corresponds to the holosymmetric bicrystal
(for the given translational position of the components) from which the
remaining bicrystal symmetries for the given boundary plane orientation

can be determined by the method presented in chapter 6.
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An example will serve to outline the matter of derivation of the
bicrystal point symmetry. Consider the dichromatic pattern formed by
£wo f.c.c. lattices 'and corresponding to the Z=5, [001]/36.9° misorien—
tation relationship (figure 5.2.2c); the space group of this pattern is
I4/mm'm'. In table 7.1.1 the investigation of the point symmetry of
‘bicrystals associated with this dfcéhrématic pattern is given. The first
column in this table lists the subgroups of the point group 4/mm'm®
according to the tables by Ascher & Lammer (1965). The second and third
columns give the number and the elements of symmetry equivalent groups
corresponding to each subgroup in the first column. The next column
gives the boudary plane for each of the subgroups which are permissible
bicrystal classes. The next, fifth, column is reserved.fbr comments.

It is seen from table 7.1.1 that for a boundary plane parallel to
(001)_ 2 say, bicrystals with point symmetries 42'2', 4, 22'2' can be
created. It is evident that since 22'2' is a subgroup of the 42'2' con-
taining the same symmetry elements perpendicular to the section plane
these two groups correspond to the same location of the interface but
to different relative displacements of the components (see below). On
the other hand, the bicrystal with point symmetry 4 is obtained when
the interface plane does not pass through the origin. This is, however,

explained in a more comprehensive way in terms of the sectional plane.

7.1.2 Sectional-plane method

As was already mentioned the symmetry elements conserved after
locating the boundary plane form a group. For n-dimensional periodic
dichromatic complexes (n{3) this group is an infinite group of an
n-dimensional periodic discontinum (where m=0,1,2), and ies designated

a 'sectional group' (Holser, 1958a). The possible sectional groups



TABLE 7.1.1

Holosymmetric bicrystal symmetry based on the X=5 dichromatic
pattern formed by two f.c.c. lattices

No of sym.

Symmetry elements Boundary
Subgroup | equivalent Comments
b ;
ups (+) in the subgroup (+) plane(++)
1 3.1 .1* _1* _1°* _1¢
4/mm'm!* 1 1,42,42,22,2x ’2y 22, 22, (*)
=1 =3
1,42,4z,sz,s§,s§,q;,s;
i .,3,.1 .1 .1
32 1 1,42,42,22,2x ’2y +8.+5, (*)
17 .3 .1 .1* _1°
zz'm' 1 1142942’ 202“ ’2' vs;os§ (*)
- : 1,31
4m'm? 1 1,42,42.22,8;,85,8;,8; (*)
1 .3.1.,.1" .31*.,.1* _1¢
42'2' 1 1,42.42.22. x .2y ’2“ '25 (001)c
1 3.1 -] =3
4/m 1 1v4zo4zozzoio4zn4zosz (’)
1 3.1
4 1 1.42042022 (Ool)c
1.1 .1
mlm'm 1 1'2z'2x ,Zy ’1,82'8;.85 ('l')
1 .1' .1t
a'n'm 1 1v22s2 22 oiasth;osé (")
m'm2°* 2 1,8 ,8’' 21' (100)
15,0 y! X c
1'
lloszos;‘ozy (010)0
1'
m'm2' 2 1t8203;02k (110)c
1 ', ot (110)
oszos," e e
1 '
2'/m' 2 1.2x .i,sx (*)
1'
1,2y ,i,s} (*)
1! '
2'/m* 2 1,2, .i,8, ()
1'
1.2b 'i’s; (*)
. 1. . .
2/m 1 1022 ’i’sz ()




TABLE 7.1.l-—continued

No of sym.
Symmetry elements Boundary
b,
Subgroup :g:i;:%:?t in the subgroup (+) plane(++) Comments
n'm'2 1 1 21 s',s! » (*)
15,0 x? y
n'm'2 1 1,2%,8',8" (*)
z’ “, ’
.1 .1 1
22'2' 1 1,2,02, 2, (001)
1,1 .1°
2202 | 1 1,2,,2, .2p (001)c
1 1 1,1 (%)
m' 2 1,8} (100)c
1,s§ (010)c
m* 2 1,8! (110)
1,s£ (110)c
] 1! 0
2 2 1,2x ( kl)c
o1 (ho1)
1, - c
1!
2! 2 1,2, (hhl)'=
1,2t (Fhl)
? ) c
m 1 lgsz (hko)c
2 1 1 21 (001)
<2 c
1 1 1 (hkl)c

(+) When considering the subgroups of the bléck-white poiﬁt group, it
is advisable to distinguish not only the crystallographically non-
—equivalent groups but also the different orientations that may

_occur with respect to the given group
.-(++) Refered to the CSL coordinate system
(*) Non-permiésible bicrystal point group
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depend on the dichromatic complex group, the orientation of the plane
and its location. The procedure for the determination of the sectional

© v ‘gF6ups as well as their ugE&™in the study of the bicrystal symmetry are
demonstrated by the following example.

Consider the above mentioned dichromatic pattern with symmetry
14/mn'm?. The Planés of possiblé interest have directions of say (001) , -
(010)0, (1oo)c. (110)0. (101)0. (Oll)c and so on. However, for a given
plane orientation, say (OOl)c, only certain locations give distinct
sectional groups. Thus, at the edge of the unit cell of the dichromatic
pattern the sectional plane (OOl)c contains the symmetry p42'2', where
the first part of the symbol indicates the lattice type, the second part,
4, indicates the symmetry in a direction normal to the piane, the third
and fourth parts indicate the symmetry in two directions (in this case
the x- and y-axes) lying in (001)c. At z=a/2 the plane (001)c has the
same symmetry as just described for (001)c. On the other hand, at z=a/4
or gz=3a/4 it has symmetry p42i2. All other planes in this orientation
do not intersect any symmetry elements except the ordinary 4-fold axis
am; thus these planes have symmetry p4. The sectional groups for various
orientations and positions in the space group I4/mm'm' are listed in
table 7.1.2.

Symmetry elements are lost as one moves from special to more general
sectional orientations, as in the sequence (001)c, (011)°, etc.; this
is particularly true in space groups of low symmetry. The special posi-~
tions of the sectional plane in the space group lie in not more than
four elevations for a giv.en orientation of the section; in many cases
the 0 and ¥ elevations as well as the % and ¥ elevations are equivalent

pairs. Any other elevation is general and can contain only a few



TABLE 7.1.2
Sectional plane groups in the space group I4/mm'm*

*
Location .
0,% %% lothers
Direction+

‘(001)c pa2'2" pnziz" pa
(010)c pmm'2' |pmm'2'| pm
(100)c pmm*'2' |pmm'2'| pm
(110)c pmm'2' |pmm'2'| pm

(ilo)c pmm'2' |pmm'2']| pm

(011) c2! pl pl
(201)_ c2' p1 p1
(Okl)c p2' pl pl
(no1) p2' Pl 31
7(hh1)c p2! pl pl
(hh1) p2' Pl Pl
(hOl)c p2 pl pl
(0k1) p2 pl pl
(hk0) pm Pl pl
(hkl)c rl Pl rl

# Location is given in terms of fractional distance between
the planes with listed indices (origin at mm'm' intersection)

+ The subscript denotes that the directions refer to the CSL
coordinate system
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* particular symmetry elements. This explains why, in cases where a

CASTNE 1 7 2N

particular interface orientation corresponds to more than one group

~having common ‘elements perpendicular to the sectional plane, the one

with the highest symmetry must be considered.

The above considerations fully determine the symmetry of bicrystals

created from the -Z=5; foem]fs&:s“ dichromatic pattern formed by two ~- -~ ..

f.c.co lattices (table 7.1.3). The results in this table are in complete

agreement with the table given by Pond & Bollmann (1979). The terms in

‘the last column are explained in the next section.

Footnotes 1: This includes the crystallographically equivalent,
as well as the trivial, subgroups.
2: The subscript means that the coordinate system of
the CSL unit is used.

7.2 Characteristic features of bicrystals

The discussion in 7.1 indicates that the use of the sectional group
concept provides the most comprehensive method for studying bicrystal
symmetry for a given dichromatic complex. The spatial symmetry of a
bicrystal can, in most cases, be predicted without relying on the
sectional plane provided that the boundary plane and the associated bi-
crystal point group are known. This method, although not very useful
for a general study of the bicrystal symmetry, can be used for demon-

strating a very important feature of the interfacial symmetry.

7.2.1 Rigid and non-rigid interfaces

The translational symmetry of a bicrystal is restricted by the
orientation of the interface and for a dichromatic complex exhibiting
n=dimensional periodicity the interface must contain m<n 1 non-parallel
translation axes. Hence, in the case of bicrystals manufactured from
one-dimensional dichromatic complexes there will be no translational

symmetry in the bicrystal unless the interface contains the periodicity

-
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TABLE 7.1.3

Holosymmetric bicrystal symmetry based on the Z=5

dichromatic pattern with t=0 (the component lattices

are f.c.¢.; plane indices refer to the coordinate
system of the CSL)

N ¥ TR s L

Layer group of

. IQ;;:EEF° Rank :~hot;zi;:::§ic Order _I:::::§;;
(001)c 1 p42;2' 8 rigid

(160)c (oio)c 2 pmm'2! 4 rigid

(110) (110)c | 2 pnm*2* 4 rigid

(hk())c (Eico)c 4 pmll 2 no;m-rigid

(xh0) (k‘ﬁO)c

(ho1) (hoi><= 4 pl2'1 2 | non-rigid

(onl) (ohl)e

(nh1) (Hm)c’ 4 p12'1 2 | non-rigid

(hnl)  (RhI),

(nk1) (h’l-?l)c 8 pl 1 | non-rigid

(Hkl)c (hic1)
(x'chl)c (kh1)

(khl)c (k"hl)c




axis. For bicrystals manufactured from CSL based dichromatic complexes

crystallographic planes must contain two non-parallel translation axes.

T For threeé-dimensional dichromatie complexes, therefore, if the

subgroup implies that the interface is a rational plane2 then the trans-
lational symmetry of the bicrystal is two-dimensional. For example, the
‘subgroup pmm*2* in the-above rentioned ctase restricts the interface to - -
be parallel to the (010)c plane. Therefore, the associated bicrystal
exhibits a two~dimensional periodicity. On the other hand, if the sub-
group necessitates the definition of a crystallographic direction, or
when the dichromatic complex has one-dimensional periodicity, a one-
dimensional periodic bicrystal could be created (the axis of translation
is, in this case, the defined crystallographic directioﬁ). Hence, the
interfaces can be divided into the following two categories.

The first category comprises the interfaces whose planes are
uniquely determined by the bicrystal group. Boundary planes perpendi-
cular to a well-defined orientation, say (001)c or (120)6’ are chara-
cteristic of such interfaces. The second category comprises those
interfaces with planes being not uniquely determined by the bicrystal
group. An example of this category is an interface required by the
bicrystal symmetry to contain a giQen crystallographic direction [hkl].
In this case the interface is any plane in the zone of [hkl].

If the orientation of the interface in the dichromatic complex is
given by three (two) crystallographic directions, then the interface
will belong to the first category. These interfaces will be arbitrarily
called ‘rigid' since when the plane is rotated by an arbitrarilly small
angle about any direction the symmetry of the bicrystal changes. If
the orientation of the interface is given by a single direction in the

dichromatic pattefn or in the general case is not connected with any
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direction (bicrystal groups 1 and 1') then rotation about a given direc-
tion by an arbitrarilly small angle does not change the bicrystal sym-

‘ ‘'Metry. Such interfaces bélong' to the second category and will be called
‘non-rigid*., Thus, in table 7.1.3 the designation non-rigid for an inter-
face means that the boundary can have lower translﬁtional (but the same

“point symmetry) if the bouridary plére is irrational. In contrast, for
the rigid interfaces both the periodicity and point symmetry are changed

simultaneously.

7.2.2 Parity-related interfaces

The most important conclusion reached by investigating the bicry-
stal symmetry in terms of the sectional plane is, perhaps, the discovery
that bicrystals with degenerate structures due to the appropriate orien-
tation of the interface can exist.

Let, for example, the case of the Z=5 f.c.c./f.c.c dichromatic’
pattern considered in section 7.1. It can be seen from table 7.1.2
that for (100)c and (010)c the sectional groups are identical (pmm'2'),
Furthermore, it is possible to show that the two sectional planes as
well as the bicrystals with interfaces (100)c and (010)c are related by
the point symmetry of the dichromatic pattern (see figure 7.3.1). This
means that the rank>, r, of the sectional group pmm'2' ie equal to 2,
and since the order, n, of the sectional point group is equal to 4,
N.r=8, The same is true for any other sectional group. Consider:
the set of planes (h01)_, (Ok1)_, (RO1)_ and (OK1) . These planes corre-
spond to the sectional group p2 and hence this group has rank r=4 and

its order is n=2, i.e. again n.r=8.
Consequently, the symmetry of the sectional plane (or equivalently

of the bicrystal) changes according to the conservation rule: nirisnjrj.
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This is investigated in detail in section 7.3. Here it is sufficient
to notice that whenever a dichromatic pattern contains point symmetry
higher than 1 there exists a set of bicrystals, obtained by a proper
choise of the boundary plane, which are related by the symmetry of the
associated dichromatic complex. Bicrystals with this property will be
- called ‘parity-related bicrystals'; their existence is due to the sym-
metry of the dichromatic complex and the restrictions imposed upon the

symmetry elements of the bicrystal.
Footnotes 1: The equality does not hold for n=3.
2: Expressed relative to the coordinate system of the
CSL unit cell.,
'8¢ Rank..is the number of crystallographically equiva-
lent groups (in this case of the sectional groups).

7.3 Groﬁp-theoretical considerations concerning equivalent dichromatic

' ~°“°”‘eumpiexes'ﬁnd“énerggtically degenerate bicrystals -

As was mentioned in section 7.2 the occurence of parity-related
bicrystals can be formulated in group=theoretical terms. Here, this
is further examined and it is shown that not only the formation of
parityqrelat;d bicrystals but also that of the equivalent dichromatic
complexes as well as equivalent bicrystals can be expressed by these

principles.

7.3.1 bf;gihétiﬁg éonfigprations and variant sets

The set of the equivalent dichromatic complexes or equivalent bi-
crystals or parity-related bicrystals willvbe termed the set of variants
and its elements simply variants. In all these cases there exists an
initial configuration generating the variants. This c;nfiguration will

be called the 'reference' or 'originating' configuration.
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The following notations will be introduced: the point group of the
‘reference configuration will be represented by G, of order p with elements
31. It has been shown that the process of creating a variant is accom-
panied by a decrease in symmetry in such a way that the point group H
of the variant of order q is a subgroup of G.

"It will be assumed that (a) all the symmetry operations relating - -
the variants are contained in the point group of the originating confi-
guration, (b) any element of the point group of the originating confi-
guration is to be a symmetry operation for the variant or, speaking
more exactly, when f is an element of the point group of the origi-
nating configuration and V is a variable formed by operating of f on
V', V is always to be a possible variant as V' (this se.cond item prevents
the originating configuration having superfluous symmetry elements not
connected with the formation of variants and, on the other hand, defines
a complete set of orientation states).

The structure of the different variants will be denoted by V 3 and
their point groups by H J; the H 3 can only differ in the orientation of
their elements. It is also clear that the structures as well as the
point groups are related by operations of G vhich are not elements of
H. Consider, for example, figure 7.3.1 showing the variants obtained
by locating the boundary plane parallel to {1oo}c in the dichromatic
pattern =5 formed by two f.c.c. lattices. The variants v1 and V2,

on one hand, are related by the mirror so" of the reference pattern,

while the 2: axis, on the other hand, relates the variants V:l and Va.

7e3.2 Grogttheoretical approach

When H, is a variant and g is a symmetry operation the result

from the performance of g upon Hj_ is expressed as zHi. The notation



Figure 7.3.1

‘Thé rour variarits~with symmetry mm'2' obtained by locating the
boundary plane parallel to {100}c in the dichromatic pattern

Za5 formed by two f.c.c. lattices in the [001]/36.90 misorienta-
tion. The insert shows the symmetry operations of the dichromatic
pattern which transforms each variant to the remaining ones.
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Hi'ﬂj is to denote that a variant Hi is identical with the variant HJ’
The following theorems hold (see e.g. Aizu, 1970; Tendeloo, van &
Amelinckx, 1974a,b):
Theorem 7.3.1: If H, and HJ are the point groups of two
variants Vi and VJ. and g is an element of the
point group of the originating configuration

such that it transforms V, to V, (i.e. gV

g oV i=Vy)e
then the set of operations transforming Vi to
V& is‘given by gv1 or ng.

Theorem 7.3.2: When H1 is the point group of a variant v1 and

g is an operation of G relating Vi to another

variant VJ the point group HJ of VJ is equal
to gHig-l, i.e. the point groups of all the
variants are conjugate in G.
If for all geG, Hi-Hj the subgroup H is invariant in G. This is
often not the case; moreover, the configuration of the elements of H
generally adopt different orientations with respect to the elements of
G (as in the case of figure 7.3.1).

Theorem 7.3.3: The number of variants equals the order p of
the point group G of the originating configu-
ration divided by the order q of the point
group H of the variant.

Symbolically this can be expressed by:
G = 31H+g2ﬂ+ ese +ng
In group theory this is called the resolution of G into left cosets
with respect to H (see e.g. Higman, 1955). This conforms to the well-
~known theorem of Lagrange (Janseen, 1973), and hence the number of - .
variants, n, is given by n=p/q. Moreover, the above relation indicates

that the set of operations that generates all variants can be obtained
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by taking one operation from each coset in the development of G into

cosets of H.

7.3.3 §imﬁ§try.degenerate configurations

The example given in section 6.2 is now worked out according to
the above group-theoretical considerations. This example concerns the
equivalent patterns associated with the 3=5 dichromatic pattern formed
by two f.c.c. lattices. The point group of this pattern is 4/mm'm'

and it contains 16 elements in ten classes:
(1), {22' 23’} {2Ls 2')s g sy} {ou0 s3]0 {2 42}.

(% 2} {4 e}, {2
Let ‘the ‘subgroup H be mm2'; it contains four eleﬁents in four

classes:

(1} fo.)- {=5)- {2

Since H contains classes of G, H is an invariant subgroup of G
(see e.g. Higman, 1955). The group H adopt four different orientations
in G differing over an angle 45° about the 4-fold axis; two of these
orientations are not crystallographically equivalent and they are shown
in figure 7.3.2. Only the first orientation is considered in detail,
since the second case can be treated in exactly the same way.

The ratios of the order of the groups G and H is equal to 4 and,
therefore, four equivalent dichromatic patterns with point symmetry
mm'2' can be formed. It should be unterstood that these variants corre-
spond to the first orientation of the point group mm'2' and that further
variants might be obtained by considering the crystallographically non-
—equivalent orientation (see below). However, the sets of variants
arising by non-equivalent subgroups are not related by symmetry elements

of the originating configuration and hence each of the non-equivalent



Figure 7.3.2

. -Stereograms illustrating- the two orientations of H=mm'2' within. .
Gud4/mm'm'. They differ by a rotation over 45° along the four-
=fold axis. '
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subgroups must be considered separately.

The symmetry relations between the variants of the first orienta-

"~ tion are determined by decomposing the group G in the following mamner

(this is indicated explicitly in table 7.3.1):
G = 1.H+q;.ﬁ+s;.ﬂ+2:.ﬂ

“T * Thépefére; the variants are réImted by the symmetry operations of

the group m'm'a={1, s;, s;, 2;]. A dichromatic pattern with point sym-

metry mm'Z'-{l, 8, s!, 2;.} is created by a displacement t=(x,0,0)

x
(see table 6.2.4), the displacements leading to the remaining dichromatic

patterns can be found by operating the elements of the group [1, s.:, s;, ai}

on the displacement t=(x,0,0). Thus, the four equivalent dichromatic
patterns are associated to the displacements (x,0,0), (0,x,0), (X,0,0),
(0,%,0). It is easy to find that the corresponding patterns are also

related by the symmetry operations of the group m'm'a-{l, q:, s;, 21};
1 . - 1o et Ve :
Considering, now, the second orientation of the .group mm'2' (figure
7.3.2) it can be seen from table 6.2.4 that a variant with this point
symmetry is obtained by a displacement (x,x,0). In this case

1 h |
H-{l, 8,9 s;, 2, } and, hence, G=1.H+s;.H+s§.H+22.H. Therefore, the
displacements (x,x,0), (X,x,0), (x,Xx,0) and (x,X,0) give rise to another

set of equivalent dichromatic patterns with point symmetry mm'2'. The

1

variants of this set are related by the symmetry elements 1, 89 s;, 2, .

wrares rRootnote  ©13 «The  subsoripts -indicate the displacements associated .

to each variant. Thus, ono denotes the variant

obtained by the displacement t=(x,0,0).



-

TABLE 7.3.1

The decomposition of G=4/mm*'m*
into left cosets with respect

to H=nm'2!
H 1
1 s s! 2
&y z x x
1!
]
1l 1 sz sx 2x
1 1
[ ] ]
8 s! 2, 4, Z:
1 3 -l
L} t
sp 8 2“ 42 4z
]
21 2t |4 gt | 2%
Zz 2 Yy h 4
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Chapter 8

CONCLUDING REMARKS CONCERNING THE INTERFACIAL SYMMETRY

8.1 Crystallography of grain boundaries

In the previous chapters the interfacial symmetry {(and associated
concepts) was studied. This involved the investigation of the symmetry
of bicrystals while taking into account the eight degrees of geometrical
freedom associated with them (section 3.1). Alternatively stated, given
two identical crystals separated by the grain boundary it was sought to
determine the symmetry of the whole for various relative orientations
and positions of the two crystals as well as orientations and positions
of the interface.

Thus, the bicrystal symmetry was initially studied in terms of the
misorientation relationship between the two crystals; secondly, the
variation of the symmetry so obtained was examined with respect to the
position of the components and. finally, changes in the interfacial sym-
metry due to the orientation of the boundary plane were accounted for.
In order to investigate the effect of these factors on the bicrystal
symmetry a geometrical model was developed (chapter 3) without any
particular reference to a grain boundary structure theory. This model
permits the study of the bicrystal symmetry by considering each one of
the above factors in turn.

An important feature of the just mentioned model is the concept
of the 'dichromatic complex' (section 3.1). This was defined as the
configuration of two interpenetrating lattice-complexes and as such it
permits to study the bicrystal symmetry in a direct correlation to the
symmetry of the single-crystal structure. MHoreover, it is immediately

clear that the dichromatic complex can be used for expressing the sym-
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metry in terms of the orientation and position of the two components
(chapters 4,5 and 7).

The concept of the dichromatic complex is, by definition, more
general than that of the dichromatic pattern (Pond & Bollmann, 1979).
Such a generalization was necessary in order to account for the symmetry
of bicrystals in structures with symmetry lower than that of the respective
lattice. If the approach of Pond & Bollmann (1979) is to be used for
determining the symmetry of the configuration in figure 3.1.la, for
example, the appropriate dichromatic pattern (figure 3.1.1b) must be
initially obtained, Then the appropriate bases are to be filled (in the
appropriate misorientation) and the symmetry of the obtained configura-
tion to be determined. This procedure is simplified, however, by con-
sidering the corresponding dichromatic complexl(figure 3.1.1a); in this
case the decrease in symmetry due to the atomic basis is already taken
into account in the lattice—complex. Thus, the advantages of the pro-
posed approach are apparent. It should be noticed, however, that the
dichromatic complex is a purely mathematical concept and that no physi-
cal meaning is to be assigned to it at this stage.

Another aspect introduced in connection with the crystallographic
treatment of the interfacial symmetry is the employment of antisymmetry
groups. The introduction of these groups, first proposed by Pond &
Bollmann (1979) was due to the fact that dichromatic complexes and bicry-
stals were described as sets of white and black points. The white/black
designation, used for distiguishing between points belonging to diffe-
rent components, is quite abritrary, but as was proved in this thesis
the epproach yields a comprehensive way for studying various aspects of

symmetry. Although this was considered in conjuction with grain boundaries
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the white/black approach can be shown to be useful in several other
situations as well. First of all, it facilites the determination of the
symmetry classes of interphase boundaries; this is examined in the next
section. More significantly, however, the use of two-coloured symmetry
simplifies the study of the variation of the symmetry of a figure consisting
of two components; in this respect most of the considerations in chapter

6 hold., As an example the {111} planar defects in L12 structures are

now considered.,

8.1.1 Symmetry considerations of planar defects in superlattices

In binary alloys the ordered distribution of the atoms can lead to
superlatticesl; atoms of one kind occupy one or more sets of sites, and
atoms of another kind occupy different sets of sites. In the case of

f.c.c. structure the superlattices derived are known as L1_. (composition

0
AB) and L12 (composition A3B) in the Strukturbericht notation. The unit
cell of each contains the four atoms found in the cubic unit cell of the
disordered structure, but L1O has tetragonal symmetry.

The L12 structure corresponds to the ideal composition A3B. The
B atoms are in the 000 (and translational equivalent) positions, and A
atoms in the remaining positions of the conventional unit cell of the
f.c.c. Btructure. The atomic arrangement on the (111) plane in an A3B
alloy with the L12 structure is shown in figure 8.1.1, where circles and
squares represent A and B atoms respectively. The layers normal to [111]
are composed of large, medium and small symbols.

On the basis of a hard sphere model and geometrical considerations
three possible planar faults on {111} have been considered in the lite-

rature. These are the antiphase domain boundary (APB), superlattice

intrinsic stacking fault (SISF) and complex stacking fault (CSF) consisting



Figure 8.,1.1
The three (111) planes of an A3

and squares represent B atoms. Large, medium and small symbols

B alloy. Circles represent A atoms

represent the ...ABCABCAB... stacking along [111]. The vectors
21' 32, 93 represent the displacements corresponding to the
antiphase domain boundary, superlattice intrinsic stacking fault

and complex stacking fault respectively.
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of the APB and the SISF. 1In the case of the (111) plane the displacement
vectors characterizing these faults are, for example, 1/2[110], 1/3[I217,
and 1/6[511] respectively (see figure 8.1.1). Yamaguchi, Vitek & Pope
(1980) studied the dependence of fault energy on displacement in L12
structures by means of computer simulation. They found that the SISF
is always stable while the APB and CSF can be unstable.

Here the symmetry variation of the Ll2 structure with displacements
on the {111} plane is investigated by means of the method given in
chapter 6. For this the structure is considered to consist of two
L12 structures, one white and the other black, in complete coincidence.
Thus, the symmetry of the ASB structure is Pm3ml' (grey group). The
isomorphous point group contains 96 elements, half of them are ordinary
while the remaining are their colour-reversing counterparts. By applying
the procedure given in section 6.1 the displacements which conserve any
one of the subgroups of m3ml' are determinedz. Then, the spatial sym-
metry is considered (table 8.1.1).

The study of symmetry variation for planar defects is different
from that for bicrystals or dichromatic complexes in a rather important
aspect. This is because the concept of the DSC lattice is not applicable
and therefore it is not clear, at first sight, that the symmetry of the
composite changes periodically with the displacement. It is this situation
in which the employment of the vector set can be useful. If the foun-
damental set is a lattice (as in the particular case) then the vector
set and the lattice are identical. Hence, the vector set associated to
a lattice represents all the displacements which create an identical
foundamental set. Any other displacement corresponds to a foundamental

set which is different to the original. Therefore, the composite sym=-



TABLE 8.1.1

Symmetry variation of the A_B structure with relative

3
displacenent

(the coordinate system for specifying the displacements has

axes along the edges of the unit cell of the A_B structure)

3

Fractional coordinates Point Point s
of symmetry equivalent Rank - group oi:ﬁ;

displacements group order

000 1 m3ml* | 96 | Pm3mi1‘
1/6(211] 1/6[211] 1/6[211] | 8 3m | 12 R3'm
1/6[211] 1/6[211] 1/6 [211]
1/6 [211] 1/6[211]
XXX XXX XXX XXX 8 3'm 12 R3'm
RX XXX XXX XXX
%00 OxO 00x X00 0XO 00X 6 4/m'mal 16 | P4/m'mm
Oxx x0x XxXO OxX XOx xXO 12 mmm * 8 Pmmm*
Oxx XOX Xx0 Oxx xOx xx0
Oyz 2Oy yz0 Ozy yOz zyO 24 2'/m 4 P2'/m
Oyz zOy yzO Ozy YOz zy0
OyZ in yEO Oz§ yOZ z§0
Oyz zOy yzO Ozy yOz zyO

XXZ 2ZXX XZX XXZ 2XX XZX 24 2'/m 4 P2'/m

XYz 2ZXYy YZX XzZY ¥yXz 2Z¥X 43 I 2 P!

Xyz ZXy YzX XzY yXz 2yX
Ryz ZXy yzX X2J YXZ Zyx
Xz zXy yzX XzZY ¥YXZ Z¥X

Xyz ZXy YzX XZY¥ ¥YXZ 2Z¥%
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metry changes periodically and thus displacements in the Wigner=Seitz
cell have to be considered only. The Wigner-Seitz cell in this parti-
cular case is a two-dimensional cell on the (111) plane. Table 8.1.2
gives the symmetry variation with displacements within this cell; in this
case, since only displacement on the (111) plane are considered, the
point group of the initial configuration can be taken to be P3ml'.

It can be seen from table 8.1.1 and 8.1.2 that the conservation
rule 'rank.order=constant' holds in this case as well. This can be
treated in terms of the group-theoretical considerations given in section
7.3. A crystallographic space or point group may be decomposed into
non-intersecting (except for the identity operator) subgroups, called
direct factors, whose product is the original group (Kufosh, 1955).

In this context, a product is unterstood as the sum of all products of
elements of the subgroups one by one. The decomposition generally is

not unique, a decomposable group can be represented as the product of
only two subgroups. Let the initial group G be‘decomposed into two
factors, one of the subgroups is chosen to be the group H of the compo-
site with t#0 and designate the other as Gg. Even thig decomposition

is not unique, however, so that for a given G and H, Gg may be chosen

in a Aumber of ways Gg,i' Each such Gg,i represents a set of operations,
all independent of H, which relate composites created by symmetry related
displacements.

In the particular case the point group of the originating configu-
ration is 3ml1' (order 24), thus: G=K+1'.K, where

1, 1

2 1 1 - =2
Kg{l, 3;, 32. 2x’ 2A’ 239 i, 323 szo Sx. SA. SB}.

- 1.2 ,1' 1 1t ., =1' =2
Let the subgroup H<3'm={1, 3, 32, 2,4 2, 20", 1%, 5, 32, 8, 5, 8,

(order 12); H adopts one orientation. Then: G=1.H+i.H.



TABLE 8.1.2

Symmetry variation of the A3B structure with relative
displacements on the (111) plane

(the coordinate system for specifying the general
displacements has x— y- and z-aXes along the [ilO],
(112] and [111] directions)

Fractional coordinates Point Point s
of symmetry equivalent Rank up group pace
displacements gro order |8TOUYP
000 1 | 3mat 24 |P3ml1'
1/6[211] 1/6 [211] 2 | 3'm 12 |R3'm
x, 2%, 0; X, 2X,0; X,X,0; 6 2'/m 4 |c2'/m
© X,%,03 2%,%,0; 2X,X%,0
x,0,0; X,0,0; 0,X%,0; 6 | 2/m 4 |c2/m
0,%,0; X,X,0; X,X,0
X,¥505 ¥oX=¥,0; ¥-X,X,0; 12 1" 2 | P!
¥»X,0; X,y=X,0; x-¥,¥,0;
;Eo;ooi Yo Y=X,0; x-¥,x,0;
¥,X,0; x,%x-y,0; y-x, ¥,0
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Therefore, the variants are related by the symmetry operations of
the group T={1,i}. Hence, the symmetry related displacements are: 1/6[311]
and 1/6 [211] (rank 2).

Let, now, the subgroup H=2'/m={1, zi', S i'} (order 4); H adopts
three orientations, but these orientations are crystallographically
equivalent (i.e. they are related to each another by symmetry elements
g, of the group G with g;fH). Then:

G = 1H+1'H+3iH+3:.H+3iH+3:'H

Therefore, the variants are related by the symmetry operations of

2

T [ ]
the group 31'={1, 1!, 3;. 3; . 32, 3: }; the symmetry related displacements

are those given in the table 8.1.2.
Similarly, the symmetry displacements for the subgroups H1=2/m'

and H2=T' can be found by taking into account that:

1 2"
G = 1H1+1'H1+3:H1+3:H1+32 H1+3z H1
»
and
G = 1H,+1'H, +31H +3 'H +32H +3 " +21H +2 'H -»211{2+2A H2+281H "ZB 'H
respectively.

Footnotes 1: This term results from an unfortunate mistranslation
of the German "{berstruktur" or "overstructure". In
its commonest usage 'superlattice' is synonymous
with 'multiple-cell structure'. However, it must
not be confused with the term ‘superlattice' used
in the lattice geometry to refer to a lattice obtained
from an origzinal lattice by means of a transformation
matrix having integral elements and determinant
larger than unity (Santoro & Mighell, 1972; Bucksch,
1971,1972; Cassels, 1959),

2: No details are given since the point group m3mil!
contains 418 subgroups.
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8.2 Crystallography of interphase boundaries

An interphase boundary is the surface1 separating two crystals with
different structures; its structure is similar in many ways to that of
a grain boundary. 1In the general case, five degrees of freedom are
associated with an interphase boundary. Three degrees of geometrical
freedom are needed to specify the relative orientations of the two lattices,
but of course it is no longer possible to carry one lattice into the
other by means of a pure rotation. The additional two degrees of freedom
are associated with the specification of the interface plane.

In order to study the symmetry of interphase boundaries the conven- -
tions made in chapter 3 are considered., Thus, one of the semi-infinite
structures across a general interphase boundary is desigﬁated ‘white!
and the other 'black'. For symmetry considerations the atomic structure
of the adjacent crystals can be disregarded. The interphase boundary
is, then, considered as the geometrical plane separating the black and
white semi-infinite lattice—complexes-.

The relative orientation of the two lattice53 across an interphase
boundary can be described as follows. The white lattice is considered
fixed in space and is used as reference. Then, the relative orientation
is considered to arise by the appropriate transformation of the black
lattice. This transformation describing the relation between the white
and black lattices is a general linear transformation 52 where g is a
pure strain and 5 a pure rotation4; it may also be described by any
other linear transformation giggg where Ei and gj represent symmetry

operations of either lattice.

8.2.1 Point symmetry of interphase boundaries

The point symmetry of interphase boundaries can be determined by

a way similar to that employed for grain boundaries. The interphase
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boundary is, from the crystallographic point of view, a unique plane
which must be invariant under the transformations of the point group.
Thus, the symmetry classes possess three-dimensional highest invariance
(since the bicrystal is 'in' three-dimensional space) and, additionally,
a two-dimensional invariance (in view of the presence of the unique
plane). Therefore, the point symmetry of interphase boundaries is

described by groups of the class Gg 2 0? i.e. the two—coloured, two-sided
t Aag

rosettes,

However, not all of the rosette groups are consistent with the
geometry of interphase boundaries. For instance, centrosymmetrical ro-
sette groups are not permissible since the inversion centre implies
that both sides of the unique plane are neutral (see section 5.3).
Furthermore, unlike'grain boundaries, the antiinversion operation is not
consistent with interphase boundaries. As was explained in section 5.3
a centre of colour reversal, although leaving the unique plane invariant
(without interchanging its two sides), it imposses continuation conditions
on the lattices across the interface. In other words, the white and
black lattices must be identical and in complete coincidence, which,
clearly is not the case with interphase boundaries.

Further restrictions on the symmetry operations are impossed by
the fact that the interphase boundary separates two different structures.
This means that there is no symmetry operation which trfnsfbrms the white
lattice-complex to the black one or vice versus. Therefore, no colour-
=reversing symmetry elements are consistent with the geometry of inter-
phase boundaries. It is at this point where the crusial difference between
grain and interphase boundaries, as far as the symmetry is concerned,

arises. Consequently, the only permissible symmetry operations are ordi-
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nary ones lying perpendicular to the boundary plane.

The point symmetry classes are given in table 8.2,1; these are
the two-dimensional point groups (Niggli, 1959). The coordinate system,
relative to which the group symbols are given has an axis a perpendi-
cular to the plane, while the axes b and ¢ are orthogonal to the axis
a and make a right or oblique angle with each other, depending on the
class of rosette symmetry. The letters or numbers in the first, second,
and third positions of the symbol indicate that a particular symmetry
element coincides with the coordinate axes in the order a, b, ¢ (for
the lower symmetry classes) or with (and in this order) the axes a, b

and the bisector of the angle between the axes b and ¢ (for the senior

classes).

8.2.2 Spatiel symmetry of interphase boundaries

In discussing the symmetry of interphase boundaries, it is conven-
ient to distiguish three types of interface which are described as
incoherent, semi-coherent and coherent respectively. For the case of
incoherent phase boundaries there is no continuity condition for the
lattice vectors or planes across the interface. In the fully coherent
interface, on the other hand, the lattices match exactly at the interface,
and ‘corresponding' lattice planes and directions are continuous across
the interface, although they change direction as they pass from one
structure to anothers.

It is not generally possible, however, to find a coherent interface
between two arbitrary structures. If the matching condition is nearly
satisfied, two phases may be forced elastically into coherence across
an interphase boundarys. This is usually possible only when one (included)

crystal is very small, since the stress at any point increases with the



TABLE 8.2.1

Point groups describing the symmetry of

interphase boundaries

Point group
Number | Full Short
symbol | symbol
1 111 1
2 211 21
3 im1 im *
4 2mm 2mm
5 411 4
6 4mm 4mm
7 3ml 3m
8 311 3
9 611 6
10 6mm 6mm

+ In the international notation the (third position) symbol
1 in the class 1m (short symbol) is omitted because of con-
fusion that might occur in later two-dimensional space-
-group nomenclature, in which 1 may occur in the second or

third position of the symbol.
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size of the crystal. Forced elastic coherence of this kind may exist
at the nucleation in early growth stage of a transformation. By con-
trast, the semi-coherent interface consists of regions in which the two
structures may be regarded as being in forced elastic coherence, separated
by regions of misfit.

The above considerations indicate that interphase boundaries can
have one- or two-dimensional periodicity. This immediately implies
that their symmetry is described by band and layer symmetry groups respec-
tively. The permissible groups are determined by considering the
combination of the point symmetry groups (table 8.2.1) with translational
symmetry. The procedure for establishing the spatial symmetry is, there-
fore, to consider the lists of the two-coloured, two-si&ed band or
layer groups and to delete those groups which are not isomorphous to a
bicrystal point group (table 8.2.1). Tables 8.2.2 and 8.2.3 give the

symmetry groups of one- and two-dimensional interphase boundaries.,

8.2.3 Eiahbies.of interphase boundary-symmetgy

Three examples related to epitaxial growth of II-VI components are
nov mentioned in order to indicate the symmetry classification of inter-
phase boundaries. All the epitaxial orientation relations for II-VI
compounds7 grown on cubic crystal substrates are of two types only |
(Pashley, 1956, 1965). The sphalerite structure films always grow in
the parallel orientation and the wurtzite structure films in the quasi-
-parallel orientation8 on these substrates. The P orientation corre-
sponds to: (hkl)y,, parallel to (k1) o ¢ with [uvw],, parallel
to E“v']substrate’ vhere [uvw] is a direction in the (hkl) plane. The
P! orientation, on the other hand, occurs when (OOOI)film is parallel

and [1120],, parallel to [110] In both

%o (lll)substrate substrate’



TABLE 8.2.2

Band groups describing the symmetry of

interphase boundaries

Number Z::gp Number Z:;Sp
1 p111 7 pll2
2 pl21 8 pmll
3 plml 9 pma2
4 plal 10 P1llm
5 pmam 11 plla
6 pm2a 12 pmm2




TABLE 8.2.3

Layer groups describing the symmetry of

interphase boundaries

Number Z:g:; Number z:z:;
1 pl 9 cmm2
2 pli12 10 p4é
3 piml 11 p4mm
4 rlal 12 P3
5 climl 13 p3ml
6 pmm2 14 pP31m
7 pbm2 15 p6
8 pba2 16 p&mm
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the P' orientation and its geometrically equivalent P orientation (namely

with [oI1]f11m// {o011] ) hexagonal

(lll)filn// (lll)substrate substrate
arrays of atoms in the substrate surface and in the interface plane of

the film are parallel. This can be seen in considering the ZnS growth

on (111) surfaces of silicon. Figure 8.2.1 shows the two interface planes;
during growth (0001) planes of wurtzite-type-structure ZnS are deposited
onto (111) planes of silicon. From this figure it can be easily found
that the symmetry of the interphase boundary is 3m (group no. 7 in table
8.2.1).

The second example of epitaxially grown interphase boundaries refers
to the vacuum evaporation of CdS (sphalerite structure) onto NaCl. The
latter has a f.c.c. lattice (a=5.63%) and the basis has one Na® ion at
000 and one C1~ ion at %%%. Cadmium sulfide is also based on the f.c.c.
lattice (a=5.828) with a basis containing a S atom at 000 and a Cd atom
at ¥{%. The (001) projections of NaCl and CdS are shown in figure
8.2.2. Chopra & Khan (1967) have found that moderately high temperature
epitaxial growth of CdS on rock salt follows the parallel (P) orienta-
tion: (001).,.// (001)y. Qith [110]cds// [llo]NaCI' In this case the
symmetry of the interface is described by the point group 2mm; the
mirror planes are normal to [lloﬂuacl and [ilO]NaCl while the 2-fold
axis is along the normal to the interface.

Finally, epitaxial films of CdS onto (110) surfaces of germanium
have been found (Holt & Wilcox, 1971; Abdalla, Holt & Wilcox, 1973) to
be in parallel aligment with the substrate, i.e.: (11o)cds// (110)Ge
and [110],45// [110], . Figure 8.2.3 shows the (110) projections of
CdS and Ge; it is clear that if the two structures are superimpossed

on the (110) planes, then the point symmetry of the interphase boundary



Figure 8.2.1
The (00.1) surface of ZnS and (111) surface of Si
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Figure 8.2.2
The (001) surfaces of NaCl and CdS
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Figure 8.2.3
The (110) surfaces of Ge and CdS
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is 1m (i.e. a mirror plane normal to the common [ 110] direction). The
examples given above cover most of the usual cases of epitaxial growth

as listed in table 8.2.4.
Footnotes 1: In the present treatment the interphase boundary is
considered planar.
At menmensees o -9y :Unlike “grain boundaries, the two lattice-complexes

are not identical in the case of interphase boundaries.

3: Since the two structures across the interphase bound-
ary are different, a misorientation relationship is

"*“Hot uniquely defined as in the case of grain bound-
aries., Thus, the term 'relative orientation' is
used instead.

4: Obviously, for £=£, ; being the 3x3 unit matrix, the
grain boundary case is obtained, |

.

5: A coherent interface in the sense in which it is used
here does not necessarily imply a ratidnal interface.

6: The best known example of nearly exact matching is
this involving f.c.c. and h.c.p. structures with
virtually identical interatomic distances in the
octahedral and basal planes respectively.

7: The structure of II-VI components is either hexagonal
wurtzite or cubic zinc-blend type (see, e.g. Holt,
1974).

8: These orientation relationships are denoted by the
letters P and P' respectively.

8.3 Discussion

The foregoing considerations have shown how the spatial and/or
point symmetry of grain or interphase boundaries can be classified.
The application of the symmetry scheme so determined is discussed in
the present section and future work is proposedl.

Pond & Bollmann (1979) have already pointed out that the conside-
ration of bicrystal symmetry can be useful for the investigation of

interfacial structure. For instance, the tessellated form of secondary



TABLE 8.2.4

Point symmetry of epitaxial interphase boundaries of II-VI

compounds on cubic substrates

compound | & and oniencation” | synnetny | ReTerence
ZnSe GaAs (100) S,P 2mm (1)
cds NaCl (100) S,P 2mm (2)
NaCl (110) S,P m
NaCl (111) w,p? 3m
BaF, (111) V,P! 3m
cds Ge (100) S,P 2mm (3)
Ge (110) S,P m
Ge (111) w,p! 3m
ZnTe Ge (100) S,P 2mm (4)
Ge (110) s,P m
CdTe Ge (100) S,P 2mm (5)
Ge (111) WP 3m
CdTe si (111) w,p! 3m (6)
cdse Ge (100) S,P 2mm (7)

+ In the epitaxial orientation column S signifies the sphalerite
structure, W the wurtzite structure, P the parallel orientation
end P' the quasi-parallel orientation for the wurtzite struc-

ture as discussed in section 8.2.

References: (1) Genthe & Aldrich, 1971

(2) Chopra
Holt &

& Khan, 1967;
Wilcox, 1971;

Wilcox & Holt, 1969;
Wilcox, 1970




TABLE 8.2.4~continued

(3) Holt & Wilcox, 1971; Abdalla, Holt & Wilcox, 1973
(4) Multi & Holt, 1972

(5) Abdalla & Holt, 1973

(6) Abdalla, 1973

(7) Gejji & Holt, 1975
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dislocation networks accommodating small angular deviations from coin-
cidence misorientations could give information concerning the presence
‘oft-equivalent interfacial structures. - The same authors have indicated.
how the bicrystal symmetry can be used for the investigation of inter-
facial structure by atomistic computer simulation. In general the nature
of atomistic rélaxations-will depend on the symmetry of the bicrystal
(see e.g. Smith et al. 1977; Pond & Vitek, 1977; Pond et al. 1979).
Here, the discussion is somewhat more general in the sense that
" the implications of symmetry on the physical properties of bicrystals is
considered. It must be born in mind that at least some of the physical
properties of bicrystals are not identical to those of single crystals
with identical chemical composition and structure. The Aiffarontiation
of the physical properties can be contributed by:

(1) factors that are inherent to the complex geometrical rela-
tions defining each grain and its tensor properties with
respect to its neighbors, e.g. size and shape of grains,
relative lattice orientation, etc.,

(2) factors that are intrinsic properties of the internal bound-
ary surfaces, i.e. grain boundaries bounding individual
grains from their neighbours, e.g. grain boundary structure,
strength, energy, diffusion, ete.

The factors of both categories are related to the symmetry of the
grain boundary and therefore it is evident that considerations of inter-
facial symmetry yield an important insight of both the structure and

properties of polycrystalline materials.

I1f the point or spatial symmetry group of a bicrystal is established

experimentally, it can be said that the minimum symmetry of its poasible
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physical properties has also been established. This provides a basis

for deriving descriptive structural classifications and grouping of
bicrystals in classes by appropriate sets of criteria. In exactly the
same way, physics classifies elementary particles, atomic and molecular
spectra, normal vibrations, etc. These symmetry classifications are
based on the various groups of permissible transformations carried out
on the elements of the corresponding bicrystal. The problem of classi-
fication'is a primary one, so that symmetry, which establishes structural
invariants, constitutes an essential technique for interfacial investi-
gations.

Howeéer. this is not the most important aspect. More important
for 'bicrystal physics' is the fact that it is possible.to relate a unique
coordinate system to the symmetry elements of a bicrystal and thus ensure
uniqueness of description for its physical properties, which generallyz
depend on the direction of measurent. Having settled the choise of axes
(appendix 1) it can be asserted without embiguity that along a specific
direction the bicrystal will have such and such physical properties.
Thus, measurements of the physical properties of bicrystals of one parti-
cular material are only comparable when they are refered to the same
coordinate system. Knowing the symmetry group of the bicrystal it is
possible to limit the range of measurements of physical properties along
specified directionss. This greatly reduces the number of measurements
required to reveal anisotropy, i.e. the dependence of the physical
properties on the direction of measurement.

Another important implication is that the bicrystal symmetry group
(wvhich is closely connected to the symmetry groups of the physical

quantities-Neumann's principle) enables us to establish the number of
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independent constants characterizing every property. In other words,

it can always be stated how many measurements (along different directions)
will have to be made in order to obtain a complete characterization of

a particular property of the bicrystal. The number of measurements
depends on the nature of the property under consideration and on the

law governing the trarnsformation of the corresponding physical quantity.

The use of symmetry methods may be still more effective in the

studies of the electron structure or structural analysis of bicrystals.

If translational symmetry do not exist for bicrystals, the analysis

of the physical properties of the corresponding atomic system containing
about 1023 particles/cm3 would be extremely difficult. However, bicrystals4
can be periodic and thus their structure can be describe& by the (periodic)
repetition of an elementary atomic motif usually consisting of a small
number of particles. This motif (occuping the unit cell) plays the part
of the 'molecule'’ in the structure of bicrystal. Hence, in the study

of the physical properties of bicrystals, it is (roughly speaking) suffi-
cient to study the behaviour of an aggregate of particles within a single
unit cell, since the properties of the whole may be judged from the prop-
erties of the part. In quantum mechanical terms the properties of the
whole are reflected in the properties of the translationally periodic

part through Bloch's theorem and its equivalent.

In other words, the link between the interfacial symmetry and quantum
mechanics comes about through the transformation properties of the Hamil-
tonian operator, whose eigenvalues play an extremely important role‘in
quantum mechanics. In the single crystal case it is well-known (see e.g.
Cornwell, 1969) that all transformations leaving the Hamiltonian operasor
invariant form a group which is isomorphic to the group of the crystal.

‘Consider, now, electrons in the vicinity of the interface. Within the
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tone~electron' approximation every electron of mass m has associated with

4t a Hamiltonian of the simple form:

2 2 2
H(r) = -%—n{f— d o +V(r)

2 0
where the potential energy term V(r) contains the field caused by the

- nuclei and the average-field of all the other electrons acting on the - -
electron under consideration.

In the general case of a bicrystal the form of V(r) is not known
because:

(1) intrinsic difficulties in calculating V(r) for an array
of atoms, and,

- ~(2) moré singificantly, because the actual structure of the

‘interface is not known.

However, one can draw very important conlusions without knowing

the precise form of V(r). This is based on the fact that:

v({R/t}r) = V(z)
or, in other words, the potential energy has the symmetry of the spatial
group of the ‘b:lcrysta.ls. Hence, for an electron in the vicinity of an
interface, its Hamiltonian is invariant with respect to the spatial
symmetry group of the interface.

The implication of this is that by using basic functions of repre=-
sentations of the group of the Schrodinger equation it is possible to
simplify significantly several important types of quantum mechanical
calculations. In analogy to the single crystal cases (see e.g. Wigner,
1830; Chen, 1967; Maradudin & Vosko, 1968) it can be seen that such
calculations are only feasible when group theoretical arguments are used

to exploit the symmetry to the full.
Of course, before the interfacial symmetry is applied to quantum
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mechanical calculations account must be given to the significance of the
colour-reversing operations. One way that this can be done is as follows.
The potential energy ¥(r) in the vicinity of the interface can be calcu-
lated in principle by the corresponding potentials of the two components
Vl(;_-_) and Vz(g), f.e.:

T V(z) = V,(x) + V,(r)

Let G the symmetry group of the interface and G1 and G2 the respective
groups of each component. In general, not every operation of 61 or G2
will Yeavé V(i) ifivariant atthough every transformation of G will leave
vl(g) and vz(g) invariant (in view of the fact that G is a subgroup/super-
group of G1 and Gz). Therefore, the colour-reversing elements of G can
be considered as the symmetry opérations which express the misorientation
contribution of Vl(g) and Va(g) in v(r).

Concluding this section it is, perhaps, of interest to indicate
another aspect of the bicrystal symmetry. This refers to electron
contrast simulations of planar coincidence-site lattice interfaces. Such
simulations are complicated and in the general case it is impossible to
take into account the dynamical interactions between primary and secondary
beams arising from interfaces which do not conserve the reciprocél lattice.
However, symmetry considerations show that this problem can be exactly
solved for the case of CSL boundaries. In this case, whereas the direct
crystals are merely in contact with one another (semi-infinite crystals),
the extent of a reciprocal lattice is independent of the size of the
crystal and pervades all the reciprocal space. Therefore, the reciprocal
lattices of the two individuals of the bicrystal occupy the same space.
T;us, the reciprocal lattice Lc of the bicrystal is described as the

intersection (common subgroup) of the reciprocal space groups I.1 and La
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of the components. Gratias & Portier (1979) proposed that in this case

the scattering matrices (Howie--Whelan formulation) 51 and g

2 are then

built up on this common basis by computing the structure factors in the

group Lc for the two different sets of Wyckoff positions of the atoms

corresponding to the two crystals (see also Guan & Sass, 1973a,b; Sass,

1980).

Footnotes 1:

LA S S SRV RN (e

These considerations are primarily referred to grain
boundaries. Extension to interphase boundaries is,
in principle, possible provided that their parti-
cular nature is taken into account,

For non-scalar properties

These directions form a solid angle which 'cut' the

ToeweTrasar sy anos Pleprstal - into symmetrically'indepeﬁdent regions,

The choise of the directions of measurement is based
on the fact that the number of symmetrically independent
(or symmetrically equal) regions into which a sym-
metrical Tigiré may be divided equals the order of
its symmetry group.

Or, at least, bicrystals with special properties.
This leads to the above mentioned theorem of Bloch
(1928).
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Chapter 9
ELECTRON MICROSCOPY OF GRAIN BOUNDARIES

intf&&ﬁcfion

In the last twenty years optical, electron, field-ion and X-ray
microscopy has been used to study grain boundaries in a wide variety
of materials (table 9.1.1). Critical examination of these methods indi-
cates that, at present, the transmission electron microscope allows con-
siderable flexibility in operation, as well providing the essential
image contrast and diffraction information necessary for the elucidation
of grain boundary structure.

The interpretation of image contrast across grain boundaries, based
on the dynamical theory of diffraction (see e.g. Hirsch gg_é;& 1965),
is generally more complicated than in the single crystal cases. This
is mainly due to the presence of the interface. The surface separating
the two crystals corresponds, in first approximation, to the Junction
of two elastically isomorphic half-spaces. Thus, the displacement field
of a grain-boundary dislocation, say, must be determined for each crystal,
and numerical values in the Howie-Whelan (1960, 1961) equations will be
different on either side of the interface (see e.g. Tucker, 1969).

Further complications arise due to the misorientation relationship
across the interface which causes different diffraction modes to occur
(see e.g. Pond, Smith & Clark, 1974). Each of the beams excited in the
upper crystal is incident on the lower one and can give rise to further
diffracted beams in that crystal. Thus, the total number of beams pro-
pagating in the lower crystal can be substantial, and unlike the single
crystal case, all these beams are not necessarily coupled to each other

(Sutton & Pond, 1978). The effect is that: (a) the specimen can be



TABLE S.1.1

Methods of interface examination and specific
properties investigated

T e—— = =

Optical metallography ~faceted or non-faceted boundaries

X~ray Laue -orientation relationships
Thermionic emission -interface migration mechanisms
Electron microscopy -interface structure and crystallography

~* - Fleld<ion microscopy -atomic structure of boundary

—
]
.



114

orientated for one of several diffraction conditions, and, (b) multi-beam
dynamical theory must be employed to interpret the images of interfaces
(Cortett & Sheinin, 1976; Sheinin & Corbett, 1976; Sutton & Pond, 1978).
Geometrically speaking the occurence of the various diffraction
modes depends on which set of atomic planes and in which crystal are
orientated for diffractién.  The various diffraction conditions are
illustrated in figure 9.1.1 (for a review see Pond, 1980). Humble &
Forwood (1975) pointed out that the 'one-crystal-diffraction' mode can
only be obtaihed approximately. On the other hand, they obtained excellent
agreement for comparisons of experimental observations, obtained by
simultaneous two-beam conditions, to simulations using the two~beam
equations. This diffraction mode is particularly imporéant for investi-
gating interfacial imperfections while the ‘same g condition' is very
useful for studying the structure of grain boundaries between coinci-
dence related crystals (Sutton & Pond, 1978; Pond, 1979).
Although the above mentioned factors influence the interpretation
of the interfacial contrast, the electron microscope can be used successfully
for the determination of (a) the geometrical parameters of grain boundaries
(see section 9.2), and, (b) the investigation of grain boundary imperfections,
as well as of physical processes such as grain-boundary sliding or

segregation, and, (c) the study of grain-boundary structure.

9,1 Detorminatiop of the geometrical parameters

As the models of grain boundary structure, outlined in section 1.2,

depend very sensentively on the crystallography of the interface and the
crystals which form it, it is important to determine the grain boundary
paraneters with the highest possible accuracy. These parameters are the

misorientation relationship and the interface plane; their determination



Figure 9.1.1

“‘Schremdtic representation of the diffraction modes in a sample
containing a grain boundary:

(a) one=crystal diffracting,

(b) simultaneous two-beam condition,

(c) same g condition’ (this mode is a special case of (b) for
g+h=g'+h' and the two crystals are CSL
rela;ed).

In all diagrams the reciprocal space vector of a reflection

from the upper crystal is called g and from the lower crystal h).

(af;er Pond, 1980a)
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is a significant part of any experimental project concerned with grain

boundaries.

8.1.1 Thé determination of the misorientation matrix1

Misorientation relationships across an interface are generally
expressed in one of the following two ways:

(1) a pair of parallel directions in a pair of parallel planes;
this is normally used for epitaxial interphase boundaries,
and,

(2) as a matrix describing the vector transformation from one
crystal to the other; physically this corresponds to an
axis/angle pair, and it is mainly used fbr'grain boundaries.

The technique used to determine the misorientation relationship
between two grains depends upon the type of misorientation, the accuracy
of information required, and the limitations imposed by the specimen
and/or the instrument. Two approaches are commonly used:

(1) Spot patterns from both grains may be used either because
strain effects prevent the formation of Kikuchi lines or
because the crystallographic relationship is particularly
simple?.

(2) Kikuchi lines may be employed to improve the accuracy of
the misorientation determination since the spot pattern
is clearly an inaccurate representation of thg beam direction.

The minimum information required to calculate a misorientation
matrix is the indices of two pairs of parallel directions, with one of
each pair in each crystal (Goux, 1974). A third pair of such directions
follows automatically from the vector cross-product of the first two,

but additional pairs of directions will overdetermine the relationship
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and allow an estimate of the error in the procedure to be obtained (see
appendix 13). In practice the determination of the misorientation matrix
18 carried out in two stages. Firstly, the pairs of parallel directions
are obtained, then the misorientation relationship is determined either
graphically as an axis/angle pair3 or by calculating the misorientation
matrix.

The most accurate analysis for indexing Kikuchi patterns is that
due to von Heimendahl et al. (1964) and requires a minimum of three
non=parallel Kikuchi line pairs to obtain the beam direction unambigously
from one pattern. This method is based on the relationship between the
three Kikuchi line pairs and the central beam spot. The measurement of
the directions of the triangle, and its relation to the.beam spot.clearly
14mit the accuracy of the method, and considerable care must be taken
to ensure that the error is kept to a minimum. An analysis (see appen-
dix 12) of the factors limiting the accuracy indicates that in all of
todays methods comparitably large errors arise by the uncertainty in the
exact position of the centre of the diffraction pattern. In order to
eliminate such errors a new technique was developed during this work
(appendix 12). This method, though in its second phase similar to that
described by von Heimendahl and co-workers (Heimendahl von et al. 1964;
Heimendahl von, 1971), is more accurate than the latter. The exact
direction of the electron beam is determined in an accuracy of the order
of 1' provided that the area selected for diffraction is not deformed.
The advantage of the proposed method is that no geometrical constructions
are necessary for finding the position of the points required for the
indexing procedure.

It is, however, not feasible to determine precisely the beam direction

‘of a Kikuchi pattern. Thus, in the experimental situation error may
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reside in any or all of the beam directions derived from the Kikuchi
patterns, and, thus, the calculated matrix R is subject to experimental
errors. Consequently, it is important to use as many independently
obtained directions as possible in order to prevent the propagation of
systematic errors among the components of 5. It is usual practice to
overdetermine 5 by providing excess information for the solution and

find the matrix best fitting to the available data. Such an adjustment
of 5. associated with a non-linear least-squares problem, is, however,

by no means straightforward. A detailed analysis of the problem is given
in appendix 13 where a least-squares method for the determination of

the best fitting matrix R subjected to orthogonality constraints is

developed.

9,1.2 Deterﬁination of the boundary plane

The most general method for determining the boundary plane is
the trace analysis (see e.g. Edington, 1974, vol. 3, p. 55). Using
this approach errors in the boundafy plane of +5° may occur primarily
because the method relies on measurements of some dimension of the inter-
face, usually the projected width, taken from the image and such measu-
rements are prone to error. Uncertainty in the boundary plaene is intro-
duced by the following factors:

(1) the boundary may not be exactly planar, particularly rear
the surfaces of the specimen, and,

(2) diffraction effects frequently make the accurate measure-
ments of the interface dimensions difficult, by obscuring
the intersections of the boundary and the foil surface with
thickness fringes, for example.

A more reliable approach is available in electron microscopes where

specimen tilting in large angles is possible. The principle of this
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technique, often called ‘'edge-on technique', is to tilt the specimen such
that the boundary plane lies parallel to the electron beam, that is
minimum width of the image. The procedure of the above approach is as
follows:
(1) determine the foil normal by obtaining a diffraction pattern
at zero tilt from the area of interest
(2) set the tilt axis parallel to the line of intersection of
the foil and boundary planes
(3) tilt the specimen in a known sense until the defect is
edge on (minimum image thickness)
(4) obtain image and diffraction patterns at this tilt and
determine the crystallographic directions'on the image.

The 'edge-on technique' must be used in all cases where the geo-
metry of the specimen permits it. Errors are generally'io.so; significant
errors will always arise because the image of the boundary is influenced
by the diffracting conditions and may remain constant over several degrees
of tilt. For maximum accuracy a series of pictures and diffraction
patterns should be taken at different angles of tilt and the projected
width of the boundary measured to determine the position of minimum image
width.

The 'edge-on technique' is now demonstrated by giving an example.
Figure 9.1.2 shows the intersection of three grains being set in
dynamical diffraction. The misorientation relationship across the boundary
A as well as across the interface B was determined to be the CSL
(011)/70.530, Z =3 rotation. On the other hand, the misorientation
relationship between grains 2 and 3 was found to correspond to (011)/38.94°

3=9., The foil normal was determined for each crystal from a diffraction



Figure 9.1.2

A b’i&’?“"*“’l" electron micrograph of an intersection of three
grovwth twing in silicon. All the grains are diffracting. The
bomanricsA and B are coherent twins whereas the misorientation
across the plane C is [011]/38.94°, 2=9.
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pattern at zero tilt. Then, the specimen was tilted (in a known direction)
until the boundary plane width was a minimum (figure 9.,1.2) 1In the
dif!raction‘pattefn at the angle of tilt the E:(llflz 4 reflection

was (after allowing for image/diffraction pattern rotation) within 1°
of the perpendicular to the trace of the twin boundary A. Furthermore,
the angle of tilt measured on the goniometer stage was within 1° of the
angle between the foil normal and (111)2. Consequently, the boundary
Plane was concluded to be (111), which is the coherent twin plane in
diamond-structure~type materials (Kdhn, 1958; Fontaine & Rocher, 1979).
Similarly, the normal to the boundary plane C was determined to be
[i2§]2/[i§2]3; this is in full agrement to the observation by Krivanek,

Isoda & Kobayashi (1977) as was pointed out by Pond (1980a).

Footnotes 1: The treatment given here refers to the more general
case. A number of special techniques have, however,
been developed relying on particular diffraction
conditions being satisfied (see, for example, Lange,
1967; Young, Steele & Lytton, 1973; Clark, 1976).

2: In the latter case the interface plane as well as
particular image characteristics often provide a
check of the misorientation relationship.

3: The graphical method (due to Goux, 1961, 1974) is
only accurate to 1° at best, which is not sufficient
for reliable analysis of grain boundary structure.

4: The subscript denotes the crystal system relative
to which the directions (and planes) are expressed.

9.2 Method for measuring the rigid-body translation across a grain

boundary
It was mentioned above that due to the misorientation relationship

across the interface various diffraction modes may occur depending on
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which set of atomic planes and in which crystal are orientated for dif-

fraction. Here the 'same g condition' is considered and its application

is briefly examined.

8.2.1 The principle of the method

The same g condition is of great importance in the case of inter-
faces between coincidence related crystals and it can be used when there
are two parallel, low-index, directions in the two crystalsl. When thesge
planes are gset into Bragg condition then, if they are continuous across
the interface, no contrast is observed. Any rigid-body translation, R,
between the two crystals (that is not a DCS lattice vector) will give
rigse to stacking-fault-like fringes in the plane (Pond & Smith, 1974)
equivalent to that of a stacking fault or anti-phase boﬁndary in a single
crystal, and exhibiting the same quantitative behaviour (Pond, Smith &
Clark, 1974). Relative translation, R, between the crystals is known
to be an important mode of relaxation in grain boundaries (Pond & Vitek,
1977).

The featur;s expected in the interface image where there is a
rigid-body translation R are summarized in table S.2.1. They can be :
deduced by the following considerations. The existence of R involves
that the planes used for imaging the boundary are offset on either side
of the boundary plane. This introduces a phase shift between the Bloch
waves traveling in the upper crystal, and those below the interface in
the lower crystal and consequently the amplitudes of the diffracted
components of the Bloch waves at the interface are modulated by a factor
exp(io]), whereax=2q5§ the phase factor due to the rigid-body displacement,

The nature of the relative displacement R can be unterstood in terms

of the structural model of CSL boundaries by reference to figure S9.2.1.



TABLE 9.3.1

Characteristics of the boundary image where there is a rigid-
-body translation R

m—

Bright field image

Dark field image

Fringes parallel to the inter-
section of the interface and

the foil surface

As in bright field image

Symmetrical image, absorption Asymmetrical image

dampts out fringe contrast in
the centre of the foil

Performed by gc

1{f performed by Ec then the
fringe at the top of the foil
is the same as in bright
field; the fringe at the
bottom shows opposite contrast

jas in bright field image

Fringe contrast is a function
of gz. w, and total thickness

of the specimen

As in bright field image

In thin sample area the
profile consists of a
superposition of two sets of

- fringes, one having periodici-

ty e:ff , the other z;ff/z

On a positive print the fringq
at the top is bright for gR>0

and dark for gR<O




- Figure 9.3.1

The structure of a CSL grain boundary. In the top figure the
boundary separating the two crystals is drawn with the atoms
represented as hard spheres. Dashed spheres are 3a/4[110]1/2
out of the page. Atoms from the two crystals overlap at the
boundary in the hatched region and this might be expected to
increase the boundary energy . A means of avoiding the overlap
is to displace one crystal relative to the other by R (bottom
figure). It is emphasized, however, that this figure does not
represent an exact solution (no relaxations of individual atoms
have been superimposed on the translation, for example), but is

merely intended to illustrate qualitatively the type of transla-

tion that may occur.
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Computer simulation indicates that the configuration in figure 9.2.1a

has a high energy mainly because of the 'overlapping' of atoms. Further-
more, it was found that a major reduction in interfacial energy can be
achieved by a rigid-body relaxation (figure 9.2.1b).

The vector R can be resolved into two components: R=t'+e. The
displacement t' corresponds to a vector which shifts the lower crystal
away from the coincidence position in a direction parallel to the inter-
face vhile the component e represents a local expansion normal to the
boundary plane2 (i.e. it introduces excess volume into the interface

compared to a perfect crystal).

9,2.2 Limitations of the method

Using the above experimental technique the total displacement R
can be measured, and in certain circumstances the constituent components
can be measured separately. Three experimental requirements are, however,

essential for a reliable determination of R (Pond & Smith, 1974; Pond,

1979):

.

(1) the adjacent crystals must be orientated very close to a
coincidence relationship. Deviation from the exact CSL
misorientation introduces complications in image contrast
due to the presence of dislocations or moiré effects.

(2) it is important that only common beams are excited. Sutton
& Pond (1978) have shown that if there are non-common re-
flections present in the diffraction pattern (other than
000) then two sets of thickness fringes are expected and
in this case no information about the translation at the
boundary can be obtained.

(3) the common reflections used must be relatively low index
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or fringe intensity Is low and ambiguity in the determi-
nation of I_g_c .R| may arise (Pond, 1979).

The translation R does not, in general, have low indices, and,
hence, it may not be possible to satisfy the '§.§=-O criterion' for two,
or sonetimes even for one, reflection. Therefore, the direction and
magnitude of R must be confirmed by other meanss. This can be achieved
by coma‘ring' the observed fringes with those calculated from multi-beam
dynamical theory, using the boundary parameters as input (Sutton, 1977;
Pond, 1979). The calculated fringes may be output as fringe profiles
(Humprheys, Howie & Booker, 1967) and matched to microdensitometer
traces of the micrographs or the 'half-tone' method of Head et al.
(1973) may be employed. Both these techniques will determine R fully
provided that the following two conditions are satisfied.

Firstly, the values of g.R must be determined absolutely, and not
Just simply expressed modulus 1. Pond (1979) has outlined the limits
of g.R for which R may be considered unambiguously determined. For the
Z =3 boundary these limits are -0.5<¢g.R€0.5 for g=111 type, -1/3(5.3‘1/3
for g=220 type and -1/12(5.3_(1/12 for g=311 type.

Secondly, the boundary must be imaged in three non-coplanar dif-
fracting vectors g (i=1,2,3). The value of 2,-R is then determined
for each reflection either by obtaining g i.gnn i or by image matching
for !1’5""1' Let g the 3x3 matrix with the & vectors in orthogonal
coordinates written as rowvs, 5 the column vector with the components of
R in orthogonal coordinates and g the column vector with the values of
the scalar products g R, then G.R=U. The latter matrix equation yieids .

a (non-trivial) solution for R only when det(g);lo, or, in other terms,

when the diffracting vectors are non-coplanar.
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9.2.3 The sensitivity of the technique

Concluding this section it is appropriate to indicate the sensiti-
vity of the technique in determining R. Theoretical calculations
untertaken by Humphreys et al. (1967) show that a detectable change in
contrast (minimum 210% of background) could be obtained from values of
&R which differ from an integer by +0.02 or more. This implies that
for a <220> type vector displacements as small as 0.032 could be detected.
In other words, a resolution comparable with the wavelength of the 100kV
electrons.

It is emphasized, in view of the earlier remarks made about the
sensitivity of the fringes to Eg, w and the foil thickngss that these
quantities must be determined accurately in order to maximize the overall
sensitivity of the method. Provided that this is done the sensitivity
in determining R depends on:

(1) the A(Ec.g) value, i.e. the change of g .R which is necessary
to produce a certain change of contrast of any fringe (whether
subsidiary or maiﬁ) in the simulation profile, and,

(2) the finite size of the slit width in the microdensitometer
which influences directly the sensitivity of the instrument.

The effect of these factors on the overall sensitivity in determing
gihn; been considered by Sutton (1977) who concluded that it is not

possible to define a generalized sensitivity for the method.

Footnotes 1: These directions correspond to planes of the CSL.
2: The complete crystallographic formulation has been
given by Pond (1977).
3: At a grain boudary R must be determined absolutely
and not, unlike the stacking fault displacements'
be distinguished between several values.
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Chapter 10
TWIN BOUNDARIES IN SILICON

Introduction

The observations reported herein were made on silicon specimens
prepared from bulk of polycrystalline silicon kindly supplied by Dr. A.G.
Cullis of the Royal Signals and Radar Establishment (the sample preparation
methods are discussed in appendix 15). The specimen was examined in a
JEOL, model JEM 200B, scanning-transmission electron microscope operating
at 150 kV, Thus, the accelerating voltage was well below the threshold
voltage for electron bombartment damage in silicon of 2180 kV (Fraser,
1977).

The main objective of the experimental work was the investigation
of the structure of the twin boundaries in silicon. Speaking more accu-
rately, it was sought to establish: (1) the geometrical parameters, and,
(2) the rigid-body displacements for twin boundaries. The need to deter-
mine the former is self—explanatory and the techniques outlined in.section
8.2 were used for this. The measurement of the rigid-body displacements
is necessary, apart from the geometrical parameters, for an unambiguous
determination of the grain-boundary structure. This is carried out by
employing the method in section 9.3 and the determination of the rigid-
~body movement for two Z=3 boundaries is given in this chapter. 1In the
first case the interface is the coherent twin while the second example

refers to the {211} incoherent twin boundary.

10.1 The =3, {111} twin

The coherent twin in silicon being a simple case, from the crystal-
lographic point of view, is the first case presented. Micrograph 10.1.1

shows a sample area where six grains meet. The interfaces AB, BC, CD,



A p?iihﬁfield electron micrograph of growth twins in silicon.
Grain 1 is i,nia two-beam diffraction condition and the other
is dit‘lra;:ting negligibly. The boundary planes AB, CD, and
EF have been indexed as (111), Planes.
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DE and EF are inclined relative to the electron beam and are imaged with
two=beam dynamical conditions in grain 1 and kinematical conditions inv
the other grains, that is s is very large on all reflections. Under these

conditions the boundaries are visible as conventional thickness fringes

(Pond, Smith & Clark, 1974).

10.1.1 Determination of the interfacial crystallography

The misorientation between crystals 1 and 2 has been calculated
from four pairs of parallel directions plus their cross-products. All
the beam directions have been determined by the method of appendix 12
and the misorientation matrix has been calculated by the least-squares
method in appendix 13. This matrix indicates no detectable deviation
from the exact coincidence orientation [011]/70.530,‘Z=3. Since no
dislocations of any kind were observed in this interface at any time
during the course of this experiment the misorientation was taken to be
the exact 2a3 CSL misorientation.

Similarly, the misorientation between crystals 1 and 4 as well ;B
between 1 and 6 were found to be related by a rotation of 70.53° about
a common <011) axis. The misorientation relationships are not expressed
by the lower angle description <111)/60o (see e.g. Acton & Bevis, 1971);
this is because the geometry of the particular specimen allowed the
rotation axis to be determined unambiguously. The diffraction pattern
in figure 10.1.2a has been recorded by placing the selected area aperture
across the interface AB. This pattern corresponds to a supérpoaition
of two [110] diffraction patterns related by a rotation 70.53° along

the common [110] axis (figure 10.1.2b).

The misorientation across the other interfaces could not be measured

since grains 3 and 5, being in fact microtwins, were considerably narrow,



Figure 10.1.2

(a) Diffraction pattern from silicon twinned on (111); the beam
direction §= [170] is common to both the matrix and the twin
crystals .

(b) A schematic representation of the spot pattern. Matrix spots

~ are shown by open squares, twin spots as open circles and

common spots by filled squares. The two superimposed spot
patterns are related by a rotation 70.52° along the beam
direction (insert).
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An attempt to record diffraction patterns with the selected area aperture
stradding the boundary was not succeful because the intensity of the
Kikuchi lines originated from grain 3 was very low and the required
exposure times involved that the strong Kikuchi lines from crystal 2,
say, overlapped the weak ones.

In order to determine the boundery planes the specimen was set so .
the interfaces AB, CD, and EF were parallel to the tilt axis of the micro-
scope and the foil normal was determined from the diffraction pattern
at Zerd til€. Then the specimen was tilted in a known direction until
the boundary plane width was a minimum (figure 10.1.3). In the diffraction
pattern at the angle of tilt the 1111 reflection1 wae very strong and,
after allowing for image rotation 111, was within 1° of the perpendicular
to the line of the twin boundary. Furthermore, the angle of tilt measured
on the goniometer stage was within 1° of the angle between the foil
normal and 1111. Consequently, the boundary plane may be concluded to
be (111)1 which is thg coherent twin plane in diamond-structure-type
materials (KShn, 1958; Fontaine & Rocher, 1979). The latter indicates
that the established interface planes are in complete agreement with

the measured misorientation relationship across the boundaries AB, CD,
EF.

10.1.2 Determination of the rigid-body displacement

Figure 10.1.4 shows the CSL unit cell in the Z=3 system; this is
hexagonal with the [111],/ [:Lﬁ:l2 direction along the c-axis. In reciprocal
space a lattice of common diffraction spots exists (figure 10.1.4b) whose
orientation, symmetry and dimensions are related to those of the CSL.
Figure 10.1.5 shows the schematic representation of the (115)1/(TI2)2

diffraction pattern; all the reflections in this pattern are common to



Figure 10.1.3

Bright-field image in which the boundaries are tilted edge on.
A1l the boundaries are diffracting; the diffraction pattern across
the interface AB is shown in figure 10.,1l1.2.






Figure 10.1.4

(a) The geometry of the 3=3 coincidence lattice cell in silicon.
The height of the cell is three (111) interplanar spacings

(b) The geometry of the lattice of common diffraction spots for |
the Z=3 twin.
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Figure 10.1.5
Schematic representation of (112)M/ (112)T diffraction pattern.
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both crystals. Thus, these spots may be used to image the boundary in
order to detect any rigid-body translation.

The analysis of the translation fringes was undertaken in two stages,
as the discussion in section 9.2 might suggest. Firstly, the boundary
was examined in reflections such as 2501/2502 which are orthogonal to
the (111)1/(11T)2 plane. From the image behaviour in these reflections
the in-plane translation, t, is determined. The images in figure 10.1.6
were taken by using the common reflection §c=250 (i.e. g, is perpendicular
to the coherent boundary normal‘[lll]l). No stacking-fault-like fringes
are observed in the boundary and therefore there is no‘component of
displacement parallel to [250]1'2. Similarly, no fringes were detected
using §b=§201' This means that no relative displacemenf parallel to the
interface existé.

In order to detect any displacement normal to the boundary common
planes inclined to the interface were used. The image in figure 10.1.7
shows the contrast observed using §c=1§11/3T12, and again no fringes
are detectable across the boundary. Taking into account the sensitivity
of the method (see, for example, Sutton, 1977) it is concluded that if
there is a normal displacement then this must be less than 5% of the
interplanar spacing of {113} planes. Therefore, in the case of coherent
twins in silicon no (parallel or normal) relative displacement exists.

This is now examined in terms of the interfacial structure.

10.1.3 The structure of the coherent twin in silicon

The structure of the coherent twin in diamond-structure materials,
projectea on (110), is shown in figure 10.1.8. The large circles are
atoms in the (110) plane passing through the origin of the unit cell;

the small ones are atoms in a (110) plane separated from the first by



Figure 10.1.6

. Bright- and dark-field micrographs in a common two-beam condition
of the coherent twin in silicon. No fringe contrast is visible
along the (111)1 interfaces.
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Fig.10.1.7a

Fig.10.1.7b




Figure 10,.1.8

The atomic configuration of -the coherent twin boundary (indicated
by the arrows) in diamond-strucutre type silicon projected along

[110].

Key: Large circles: sites in page
Small circles: sites J2a/4 above page
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a Quarter of a cell diagonal. The matrix and the twin are related by
a rotation of 70.52° about the normal to the figure. The following can
be seen from this figure.

The atomic configuration of the single crystal can be described
as six-sided arrays of atoms along the [011]. Along the unit length of
the twin boundary the proposed structure offers, instead, an altered
six-sided array. Any atom in the vicinity of the boundary has four nearest
neighbors and, there are no dangling bonds across the coherent twin.
It can be ¢oncluded, therefore, on the grouds of the discussion on the
covelent bond energy given in appendix 16, that the energy of this
interface is very similar to that of the single crystal.

A relative small increase in energy can be easily éredicted in
terms of deviations in the direction and/or the length of the bonds
along the interface. At the atomic positions where such changee have
taken place, the 'undistorted! bond.direction is indicated by dotten
1ines in the figure 10.1.8. At points designated A and A' the bond has
been rotated respectively into and out of the plane of the figure by 57.1°.
The same occurs in points B and B'. The lengths of all these bonds
are, however, unchanged (the twin plane is a mirror plane passing midway
atoms A and C). If nearest neighbour interactions are only considered,
then it is seen that the energy of each of the atoms A and B is identical
to that of an atom in the untwinned material. For an atom in a single
crystal the angles between the bonds are equal to 109°28' and the bond
lengths are 0.433a (a is the lattice parameter). In the case of atom
A (and B) the bond angles and lengths are identical but the bonds are
differently orientated (figure 10.1.9). They are related to the

undistorted configuration by a rotation [111] /180° (an alternative



Figure 10.1.9
Atomic bonding in silicon: (a) single crystal

(b) across the coherent twin
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description of the I=3 misorientation).

If interactions between atoms of second (and higher) coordinations
© "gre 'ow considered the energy-of the interfacial configuration increases;
deviations from the undistorted structure occur for second (and higher)
coordinations. As was, however, mentioned in appendix 16 the increases
in the energy due to such deviations is relatively low. Its influence
is so remote that it seems most unlikely that it could affect the
structure (Buerger, 1945).

It is, therefore, concluded that the structure of the coherent twin
in silicon is that given in figure 10.1.8. The low energy of this twin
is due to the fact that the nearest neighbours are the same as in the
perfect crystal. A similar situation can be found in th.ez =3, {111}
twins in f.c.c. metals. In the case of aluminium (Pond & Smith, 1974)
and stainless steel (Pond, Smith & Clark, 1974) no relative displacement
at all was observed. Negligible increase in the energy has been reported
for coherent twins in copper (Mclean, 1973) and nickel (Murr et al, 1970).
Insomuch as the diamond-structure-type materials are concerned no direct
experimental evidence is to-day available. However, it is well-known
that in diamond-structure-~type materials twinning in {111} planes is very
common (Slawson, 1950; Kdhn, 1958; Fontaine & Rocher, 1979); this is
easily explained by the low energy of the coherent twin. Furthermore,
there have been several reports of results which support the low energy
configuration of the coherent twins in silicon. The majority of such
evidences are related to investigations of electrical behaviour of poly-

crystalline silicon. These studies are discussed in section 10.3,

Footnote 1: The subscript denotes the crystal coordinate system
relative to which the particular direction is expressed.
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10.2 The {211} incoherent twin

The second example of a Z=3 boundary in silicon refers to an
incoherent twin. The micrograph 10.2.1 shows the area of observation;

the interfaces are imaged with the common [011] axis parallel to the

electron beam.

10.2.1 Determination of the interfacial crystallography

The misorientation between crystals 1 and 2, as well as between
1 and 3, and, 1 and 4 has been determined by the method given in
appendices 12, 13 and 14. Again, no detectable deviation from the exact
coincidence orientation Z=3 was detected, and, hence, it was taken to
be the exact CSL misorientation.

In a study of this nature, where the proposed rigid-body translation
is a function of the boundary plane, the accouracy with which the boundary
plane may be indexed is of fundamental importance. In this case it was
possible to tilt the specimen sufficiently to align the interfaces parallel
to the electron beam, and, index them directly from the diffraction
pattern (see figure 10.2.1). The relevant plane and line directions so
determined are given in figure 10.2.1b.

As an additional check the trace analysis (see section 9.1) was
employed for the segments marked by arrows in figure 10.2.1a; the boundary
planes were determined from 10 estimates for each facet, involving three
separate tilts of the specimen in the microscope. ‘The magnitudes of
the tilts employed were large (:400) giving substantial variations in
the length of defined vectors in the boundary plane, and increasing thus
the accuracy of the method. Facets had the same boundary plane normal
(211). In all cases the deviations were found to be less than #1.0°,

which indicates a high degree of accouracy for a boundary plane determi-



Figure 10.2.1

(a) Bright-field micrograph of coherent and incoherent twin -
boundary facets in silicon; all crystals are diffracting

(b) Sketch of the boundary geometry
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nation. It is concluded, therefore, that these facets are (21T) incoherent

twins.

10.2.2 Determination of the rigid-body displacement

In order to determine the rigid-body displacement for the (2171)
incoherent interfaces they were imaged by using reflections common to
both the matrix and twin crystals. A wide variety of these spots were
used to study the fringe behaviour as fully as possible., Since the
reciprocal CSL lattices of the coherent and incoherent twins are identical
the spots in the diffraction rattern of figure 10.2.2 are common and
these spots can be used for determining the rigid-body translation in
the incoherent twin,

Figure 10.2.3 shows the brizht and dark field micrographs obtained

by using the common reflection §c=1ill/I1T The vector g_ lies in the

o
plane of the boundary (211). The observation of fringes for this reflec-
tion yields immediately that the two grains across the interface are
displaced relative to one another. Moreover, since g, is in the inter-
face plane, there is a component of the rigid-body translation parallel

to the plane,

For the unambigious determination of the total rigid-body displace-
ment the translations giving rise to fringes for, at least, three non-
—coplanar diffraction vectors must be determined (see section 9.2).

The speci@en was, thus, orientated for the two-beam condition with
§c=0221. No fringe contrast was observed for this setting. Since gc

{s on the boundary plane it is concluded that the only rigid-body displace-
ment parallel to the interface is along the [liljll[ilija direction.

Finally, the interfaces were imaged for §c=1i31/§112 (figure

10.2.4); in this case g is inclined to the boundary plane. The



Figure 10.2.2
Schematic representation of (211 )M/ (211 ),r diffraction pattern
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Figure 10.2.3

Bright- and dark-field micrographs of the boundaries shown in

figure 10.2.1 but with a common diffraction spot g_operating.
-c

The (211) segments show stacking-fault like fringes and the (111)
gsegments are out of contrast



Fig. 10.2.3(a)

LO-Sum l

Fig. 102.3(b)




Figure 10.2.4
Bright- and dark-field micrigraphs obtained with the ‘'same g
condition' where g is inclined to the boundary planes -
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i}

presencé of stacking-fault-like fringes to the boundary for this reflec-
tion yields that there may be a rigid-body translation perpendicular to
the interface. This displacement (if exists) corresponds to an expansion;
see section 9.2.

The components of the rigid-body displacement are determined by
matching “experiméntal and éémputer simulated intensity profiles. Figure
10.2.5 is a series of calculated intensity profiles and microdensidometer
traces of the experimental fringes illustrated in figures 10.2.3 and
10.2.4. Microdensitometer traces were taken for the micrographs using
a Hilger—Jaco machine. The slit width used to illuminate the photo-
graphic plates was 60 pm which was typically 10% of the frince width.

The same scan across the plates was chosen for produciné the traces and
is from A to B in figure 10.2.3.

The computer simulated intensity profiles were calculated by a
FORTRAN computer program, called STACKFAULT, written by Dr. P. Rez.

This program uses many beam dynamical theory and the required input data
are listed in table 10.2.1. The value of K, (the component of the inci-
dent electron wave vector parallel to the surface of the foil) was
calculated for each micrograph from the Kikuchi line positions on the
corresponding diffraction patterns (see appendix 17). The thickness was
measured by multiplying the number of fringes on micrographs obtained
from good two-beam conditions by the relevant extinction distance; it
was found to be 4500:1502. Numerical values for the relevant extinction
distances and anomalous absorption coefficients are given in appendix 17;
The number of calculated points on each simulation was 100 (Sutton,1977).
The details of the simulations are given in table 10.2.3. By matching

of the simulated and experimental profiles it was found that



Figure 10.2.5

Theoretical and experimental intensity profiles for the incoherent
boundaries in silicon. Microdensitometer traces were taken along
the line AB in figure 10.2.3. The vertical axis of the simulation
is the ratio of transmitted to incident beam intensity, and the
horizontal axis is scaled in units of the extinction distance of
the most strongly excited beam. The vertical axis of the micro=-
densitometer traces is in percentage of transmitted light.
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TABLE 10.2.1

Input data for STACKFAULT program

Number of beams
Accelerating voltage (in kV)
g () ’

ﬂ
Indices of beams

Extinction distances (Eg and Eé)
Lattice parameter (in )'9)

Thickness (in &)

Number of points on each intensity profile

(+) Kx is the component of the incident electron wave vector
parallel to the surface of the foil. For a reflection g,

in a systematic row, gx is given by:

1 sk
X, = 853

where k the magnitude of the electron wave vector corrected
for the mean inner potential of the crystal, and s the

deviation parameter for g.



TABLE 10.2.2

Diffraction parameters for micrographs of figures 10.2.3 and 10.2.4

Beams inserted

Fig. B.F./D.F. g, w ig input data
(relative to crystal 1)
10.2.3a B.F. 1T11/'1'1i2 0.52 111,000,111,222
10.2.3b D.F. I1I1/1'i12 0.14 111,000,111,3222
10.2.4a B.F. 3331/5112 0.26 000,113
10.2.4b D.F. 1151/3312 0.65 113,000
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R=[-0.188, 0.218, -0.218]. This rigid-body displacement can be resolved
as t=[-0.208, 0.208, -0.208], e=[0.020, 0.010, -0.010], or as t=0.208[111]

and e=0.010[21T].

10.2.3 The structure of the {211} incoherent twin

As was mentioned earlier the Z=3 misorientation relationship is
described by a rotation ¢110>/70.52° or equivalently as a rotatiéQ 180°
about a (111) axis. Figure 10.2.6 shows a (110) projection of a twinned
diamond-structure-type material with twin plane been the (211) plane.
The latter passes through coincidence sites (Ellis & Treuting, 1951).

However, under this construction atoms on the coincidence plane
have alternatively seven, five, six and five (altered) nearest neighbours,
a circumstance that presumably requires some adjustment along such a
boundary. Ellis & Treuting (1951) have proposed that imperfections
are required in order to satisfy nearest neighbour distance requirements
ac;oss such boundaries. The experimental evidence, however, indicates
that this is not the case and that nearest neighbours requirements are
satisfied by a rigid-body translation.

Figure 10.2.7 shows the atomic structure of the {112} twin where
now the two crystals are shifted by R=[-0.188, 0.218, -0.218]. It is
gseen from this figure that all the atoms near the boundary have four
fold coordination and hence the energy of the configuration must be less
than that of figure 10.2.6. However, the trans-boundary structure is
not completely restored. For each boundary segment there are atomic
configurations having seven, four and six sides. The directions and/or
the lengths of a number of bonds are now altered (for example A and B

in figure 10.2.7). This leads, of course, to an increase in the energy

but the total interfacial energy is less than that of a general (non-



Figure 10.2.6

(011) projection of the atomic configuration across thé (211)
twin boundary in silicon (indicated by the arrows). The two
crystals are mirror images of each other with respect to (21i)

Key: Large circles: sites in page
Small circles: sites V2a/4 above page
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Figure 10.2.7

Low energy structure of the (211) twin boundary in silicon. The
arrow shows the displacement of the lower crystal with respect

+o0 the upper one. Symbols as in figure 10.2.6.






134

-twin-related) grain boundary. This is explained by the following
considerations.
The energy of a covalent bond is largely the energy of resonance
of two electrons between two atoms. Examination of the form of the
resonance integral (see e.g. Pauling, 1967) shows that the resonance
eneééy increases in magnitude with decrease in the overlapping of the
two atomic orbitals involved in the formation of the bond. Consequently,
it is expected that if two 8P3 atomic orbitals in two atoms are only
partially overlapped, the bond formed (i.e. the molecular orbital) will
tend to have a higher energy than in the case of complete overlap. The
two extremes in the bonding energy are the coincidence of the two atomic
orbitals (low energy) and non-coincidence (high enerzy); Thus, either
in the case of partial overlap the eﬂergy is relatively low; in other
words, it is the requirement of non-existence of dangling bonds than the
changes in angles/or directions which influence the energy predominaly.
It can be said, therefore, that the {112} incoherent twins are
intermediate in energy between the coherent and a general grain boundary.
This will be further examined in the next seqtion. The actual equilibrium
position for the boundary is most probably one corresponding to a

configuration where atomic adjustmgnts occur in order to accommodate -

these abnormalities.

10.3 The use of polycrystalline silicon for solar cells

The study of the structure of grain boundaries in silicon is of
great importance for the construction of solar cells (section 1.3). In
this context the experimental results are discussed in this section.
But before that the boundary effect on the electric behaviour of the

material is briefly discussed.
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10.3.1 Electrical characteristics of solar cells

To understand the grain boundary effects, the mechanism of the
photovéltaic effect (Adams & Day, 1877; Chaepin, Fuller & Pearson, 1954;
Reynolds et al. 1954) must be born in mind. Photons absorbed in a
semiconductor release their energies to electrons in the valence band,
causing them to rise to the conducting band. Thus, electron-hole pairs
are created, giving an excess above the equilibrium concentration. Once
excess electron-hole pairs are generated they must be separated, moved
to an edge of the semiconductor and removed to an external circuit before
useful power may be obtained from the incident photons. To effect the
separation an electrostatic field (potential barrier) must be supplied;
the conventional technique is to create an p-n Junction'by diffusion
at one surface of the semiconductor.

The most important factor which influences the effeciency of é
solar cell is the lifetime of the carriers. This is defined as the
average period before a minority carrier recombines with a majority
carrier. Grain boundary effects are also important since they can short
circuit the junction or barrier, and often lifetimes in general boundaries
are very short. Such effects yield a low efficiency of the device.
Moreover, some authors (Cowher & Sedgwick, 1972) have suggested that
in polycrystalline layers a loss of doping occurs due to the impurity
segregation at grain boundaries; this contributes to a lower conductivity.
However, recent experimental evidence (see e.g. Graef et al. 1979) indi-
cates that the decrease in the conductivity has to be explained in
terms of the segregation of electrons and holes, and not the segregation

of dopant atoms. Therefore, the electrical behaviour is solely determi-

ned by energy barriers at the grain boundaries.
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10.3.2 Discussion of the electrical properties of twins in silicon

' It is well recognized by now (Hovel, 1975; Palz, 1979) that the
cost of silicon sheet has to be substantially reduced in order to meet
the requirements of low=cost terrestrial solar cell arrays. Several
low-cost silicon sheet technologies are currently being developed
(see e.g. Overstraeten van & Palz, 1979). The quality of the silicon
produced by any of the processes is less than perfect (see e.g. Koliwan,
Daud & Liu, 1979). Thus, considerable effort has been put forward to
determine the electrical characteristics of these low~cost silicon sheet.

Schwuttke (1977) studied the structural perfection as well as its
effect on the lifetime distributions of silicon ribbons produced by the
edge=defined film-fed growth. He concluded that th§ pe?fbction-of ribbons
so obtained is dominated by simple parallel twinning. Such ribbon . .
sections display excellent lifetime properties and in this respect
compare well with lifetime distributions observed in Czochralski wafers.
The majority of interfaces in Schwuttke's specimens were coherent twins,

Similar are the results obtained by Daud, Koliwad & Allen (1978)
and Koliwad, Daud & Liu (1979). These authors measured the diffusion
length in the vicinity of a planar defect and showned that this is
considerably reduced in a general grain boundary but not in twins. The
quantitative differentiation of general grain boundaries and twins was
recently demonstrated by Helmreich & Seiter (1979). They investigated
the characteristics of polycrystalline silicon and were able to show
that the behaviour degradation due to coherent and incoherent twins
(8% and 12% respectivély) is appreciably less than that of general
grain boundaries (40%). The unique behaviour of twins, and in particular

of coherent twins, can be explained in terms of the twin structure as

4t was determined in this work.
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It can be seen from figures 10.1.8 and 10.2.7 that no dangling
bonds or elastic deformation of the lattice occur in the twin boundary
region. The absence of dangling bonds implies that no extra energy levels
are introduced in the gap and hence the capture cross-section for inci—
dent carriers will be similar to that in a single crystal. Moreover,
the 'smooth' trans-boundary structure is associated with a constant-
~width-forbidden gap across the twin boundaries. In other words, no
additional defect-acceptor-levels are introduced by the existence of
twins and consequently the carrier lifetime is not altered in the
vicinity of twin boundaries. A detailed analysis of the electrical
properties across a high-angle grain boundary has been given by Mataré
(1956) but his approach was based on‘the low—-angle dislocation model.
An extention to electrical properties of high-angle grain boundaries
was recently proposed by Brown (1977a-e). However, neither of the two

approaches gives a comprehensive relation between atomic structure and

electrical properties of grain boundaries.
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Appendix 1
NOMENCLATURE OF SYMMETRY GROUPS, ELEMENTS AND OPERATIONS

The main function of this appendix is to give an outline of the
nomenclature used in this thesis. Symbols are chiefly and frequently
employed for point groups, spatial groups, symmetry elements as well as
operations of symmetry. Additional mathematical data are also given
providing the essential background for group-theoretical calculations.

Before explaining the nomenclature it must be mentioned that in
the present work concepts from two-coloured symmetry are extensively
used. Thus, it is necessary to discriminate between one- and two-
~coloured point groups, spatial groups, symmetry operations or symmetry
elements. The symbols of the two-coloured point and spatial groups are
constructed according to the 'international' or Hermann-Mauguin extented
scheme, the fundamentals of which are given by Koptsik (1966) and
Shubnikov & Koptsik (1974). Each of the elements of symmetry designated
in symbols may be ordinary or colour-reversing. The latter are designated
by a 'prime’'.

In chapter 4 it is explained that some non-crystallographic sym-
metry groups mustvalso be included in symmetry considerations of dichro-
matic complexes and bicrystals. In this case, however, the use of the
symbol 12 can be misinterpreted. This is because of the possibility of
confusing the 12-fold axis with the two-sided, one=-coloured rosette group
(see group no. 6 in table A3.1). For this the 12-fold axis is designated
by a line underneath the symbol, i.e. 12.

As regards the symbols of the symmetry operations it is imperative
to discriminate between them and the symbols of.symmetry elements. Ac=-

cording to a scheme proposed by Donnay & Donnay (1972) the Hermann-Mauguin
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symbols that normally refer to symmetry axes also represent symmetry
operations and their matrix representations, provided the power of the
operation be explicity stated. It must ndte that the sense of rotation
i8 necessary to be also defined in order the scheme of Donnay & Donnay
represents unambiguously the rotational symmetry operations. By conven-
tion the rotation of the symmetry axes (and therefore of the corresponding
symmetry operations) is considered in the right-~handed (anticlockwise)
sense. Subscripts are used to indicate the direction of the symmetry
axisl. As to inversion and reflection the letters i (for inversion)
and s (for §piege1ung=ref1ection)2 provide self-explanatory symbols;
whereas the subscript for the mirror operation (or mirror element) shows
the normal of the mirror plane. Symbols of some symmetry operations
are given briefly below demonstrating the above scheme:

1 = identity operation

inversion operation

He
"

22 = rotation through n about Oz
3,2( = right-handed rotation through 4n/3 about Ox
72 _ inversion followed by rotation through 3n/2 about Oy
in the right-handed sense
8> - inversion followed by rotation through 5n/3 about Oz
in the right-handed sense
8l = right-handed rotation through n/4 about Ox
12)= right-handed rotation through %12 about Oy
Colour-reversing symmetry operations are designated by a prime
which implies that the ordinary symmetry operation is followed by colour
chenge. Thus, 2% is the symbol of a 2-fold colour-reversing rotation

along the z-axis of the coordinate system.
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In applying the equations derived in this thesis it is necessary
to0 know the symmetry operations (and their matrix representations) asso-
ciated with the point group in question. Matrix representations of the
symmetry operations included in the 32 point groups have been given by
Billings (1969). Table Al.l gives the comparison between the notation
used in the present work and that by Billings. According to the latter

(000)_1 signifies inversion

1/n

(abc) signifies one n-fold rotational operation in the

anticlockwise sense about the line joining (0,0,0)
to (a.b.C)
(abc)m signifies a mirror reflection in the plane perpendi-

cular to the line joining (0,0,0) to (a,b,c)

1/n 1/n
-1

In a similar way the symmetry operations (and their matrix repre-

(abc) signifies (abc)

(000)_1

gsentations) of the 8- and 12-fold symmetry classes are given in table

Al.2. On the other hand, in table Al.3 the symmetry operations asso-

giated with the 32 crystal classes are listed (a similar table for the
g~ and 12-fold classes is given in appendix a).

Finally, it must be mentioned that the stereographic representations
of point groups are given throughout the present work by using the notation
by Nye (1957). All rotational axes pass through the space origin and
are shown on the stereogram at the position correspondinding to the intef-
section between the axis and a sphere centred on the origin. The directions
of the coordinate axes x, y, z are as follows: the z-axis is always per-
pendicular to the plane of the drawing, while the x~ and y-axes are
orthogonal to the z-axis and make a right angle with each other. These



TABLE Al.1l

Comparison of the notations of symmetry operations

o | Mime | Ty | e
gymbols symbols
1 (000), 5, (010)_
1 (000)_, 5, (001)
2 (100)* S (110)_
2] (010)* 8, (130)
2i (001)% 5, (1v30)
2} (110)* . (1/30)_
2g (170)* s (V310)_
2 (1v30)* s, (370 _
22 (1/30)% 5, (101)
2‘1. (¥310)* 8 (101)
21 (¥310)*% 8, (011)
2 (201)*% 5, (011)_
2t (101)% 3 (001)%
2: (o17)% 35 (001)%
2 (011)* 3 (111)%
8, (100) 3;9' (111"




TABLE Al.l—=continued

iy Billings oy Billings

symbols symbols symbols symbols
3y (111)% 4} (100)%
3z (111)% 4 (100)%
3 (111)% 4; (010)%
3Z (111)* 4: (010)*
3; (117)* 4 (001)*
3;2 (111)% 42 (001)%
5; (001)1f1=(001)x(000)__1 Zi (100)1f1
E: (001)f/f1=(001)?/3(000)_1 Z: (1oo)3f1=’(1oo)%(ooo)_1
5; (1i1):/jl=( 1‘1’1)1'{‘(000)_1 Z; (om)1f1===(01o)}“(ooo)_1
32 | Inf = 131)%(000)_, 2 (010)% =(010)%(000) _
5: (111)1:{‘1«(111)3{'(000)_1 Z: (001)‘f1-=(001)z(000)_1
32 (110)% =(111%(000)_y 5 (001)’_‘1.“(001)9‘(000)_1
3! ('1'11)’_51-—-('1'11)%(000)_1 6] (001)*/
2 | @u¥=dnFoo)_, | 6 (001)%/°
32 (11D)% =(117)%(000) 82 |(001)M®=(001)®(000)
32 | (D% =(u1D*000)_ 8> |(001)2/%=(001)%%(000)




TABLE Al.2

Symmetry operations associated with the 8- and 12-fold classes

a:.(oo1)1/8= -B/2 B2 0

v2/2 272 0
) 0o 1

82=(001)%/%=(001)*/8(001) /481 4
8 (001)%/8_(001)28(001) 128 1.21
8 _(001)7/8=(001)1/8(001)3/4 1 42
8i=(001)2/82(001) 3(000)_ =82.1
82=(001)%/%=(001)*/8(000) _ 82,1
) =(001)5/8 (001)5/8(000)_1-:8:.:1
§7 (001)7/8-(001)7/8(000)_1=8:.i

2 1 J2+é, V2-v2, 0)1/2=(001)1/8(110)1/2=81.23'(
2la( Vo4 B-1o- B, J2rB+o- 2, 0)Y/2.(001)3/8(110) /2, 82.2 :
2,=(-J2-/é',v~/2+'/§. )2/2 (001)5/8(110)1/2-85.:«:1

2:.(-lé+12=-/2-72"', V2ri2-2-72, 012 (001)7/8(170)/2.g :

1
9

8,=( V2V B, VE-7Z, 0) =( Vi iE, 2%, 0)1/2(000)_1=2:.1
Btz( 2 o-\2=12, V2+2+Y2-/2, o)m=( 2+ V2-V2=V2, V24VB+v2-V3, 0)1/ 2(.ooo). =
=2l.1

svs(;;é-/i, V2+ /2, 0)m=(-\/ 2, 2+/2, 0)1/2(000) ..20,,1
.SE.(- 2"‘\,2-'\‘5-59 2+\/§-V2"\[2—0 0)m=(-\/2+ﬁ-\12-75, \/2-.-&-@, 0)1/2(000)-1.

1
=21

v3/2 1/2 0

121..(001)1/ 12 1/2 v3/2 O

=z o 1



TABLE Al.2-continued

1/3 1

1/12 12 _3

5/12

5
12 =(001)™ ""=(001) (001)

1/2 1

-_133-(001)7/12 (001)12(001) =127.2]

_;_2_:1.(001)11/12=(001)1/12(001)1/3(001)1/2=121.31. 1
-z 2z 2

12z (001)1/ 12_(001)}/*2(000) _ 121.1

12: (001)5/12 (001)5/12(000) -125.1

=7 7/12 7/12 7
_1_2,2-(001) =(001) (000)_,=12 .1

11

11/12(000)- =121

11/12

(001) =(001)

1,1

1/3‘2( ,/510)1/2 12 .2‘,

2E.( V2473, V2-/3, 0)1/2=(001)
2ka( VA TB-VB /2B, VBVErVE+/E=1, 0)%/2a(001) "2 (v3T0) M 223 2!
2Le(~Vo=T8, V5r B, 0)Y/%(001)7/*2(v310)2 %12, o
20 a(~VBEVE-/2-T8, 2+B-3 /25, 0)1/2=(oo1)n/12(féio)l/z-lgil.zj
sg=(/Z+18, /B3, 0) =(/+78, =P, 0)*/%(000)_-21.4
8,=(V2+/3-5/2-18, V32+/3+/2-/3, 0) =

=(BrB-V3V2- 18, BVErTEe/o=TE, 0)M/2(000)_m2l.1
8,=(~12-T3, V2+73, 0) =(-2-T5, /25, 0)1/2(000)_1-2;.1
sAg(-EvEJTé‘-w/a_-'ﬁ. 2+ B- B -5, 0) =

=(= V5 s -/, J2rT3-13 B=B, 0)/%(000)_mzl.1



TABLE Al.3

Groups of transformations associated with the 32 crystal

classes
Crystal Minimum Other symmetry trans-
nba] e pri ot e o
define group| transformation)

1 1 1 1

2 1 2 |4

3 m 2 s,

a4 2 2 2;

5 2/m 4 Zi.sz i

6 mm2 4 sx,sy 21

7 222 4 2;.2; 2;

8 ' mmm 8 sx,sy,sz 1.2;'.2;.2:

10 S IR 2

n | am |8 |dds,  |L2EE

12 Zom 8 3:,32,2i 2;,2;‘.sﬂ,sh

13 Amm 8 | 8,08, 4;,42,2;.sy.sp
14 222 s | 2}.25 4:‘,4:.2;.2;.21
15 afmom | 16 | 88,08, 1.4;.4:.23;.2;.2;.2}‘.

2;' ;'32'°x"p

16 3 3 3;,32




TABLE Al.3-continued

orystal inimt;m Ig&ertzme*:ry trane-
| Number|  class [Orden l:‘:&z'maz:l.ons (Z;Z:udgg:' 13e§::g
description define group| transformation)
17 3 6 3.3 1,3,32
18 3m 6 31'32'% 2%
19 a2 6 |35,32,2 25,23
20 3m 12 5;.5:,sx 1,3003208,185127420,2;
21 6 6 ei,si 3l,3%,2]
22 5 6 51,62 3‘_1‘,3:.52
23 6/m |12 | 62,638 1.21,3;,35,5;.'3'2,51.3:
24 82m 12 Ei,ﬁ:,sx 3:’3:'2;’2:'2:'82'SA’BB
25 6mm 12 6;,5:,8x Zi,Si.Bi.ay,sA.sB,sr,s‘1
| e |w|eed |edddadd
27 | 6/mmm | 24 | s .8 .5 1,23,37,32,67,62,20,2],
2i'%'2:'2:'°x'°1\'
8. 48, ,5::.3:.3;,5:
28 23 | 12 | 2L35,32 '2;,2;,3:.35.3:.35,
al,3f
29 s | 24 | 543,35 1,24,20120,3] 1300,
32,37,30.5;,52.5, 5
ko




TABLE Al.3-continued

Minimum Other symmetry trans-
Crystal symmetry formations in group
Number] class [Order formations|(excluding identity
description mﬁne group| transformation)
30 Zm |24 |3,2,q,, 2y 25033 30,
3,82 3:.35.3,1(,32,2;,3:,39.
81,59 ’S“.B\
31 432 |24 31;35.23‘ 2},2,,2;,2,2%,31,92,
‘ 3t,32,3%,2,48, 43, 2L,
43,4;,43‘,2;,2;,2;
a2 man |48 |s 30,32, 3%,35,3}.3,2.3%,33.,23.
Bu 2:,2}'.2:.2&21,4;4:,
4;,4;,4;,43,2;,2;.2;
1,35,32,35,32,50,%2,
5:"53"9"-"55"*’8\’
ot Wl S
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axes consist the coordinate system relative to which all the matrix repre-

sentations are expressed (alias expressions). Stereograms of the two-

coloured point groups have been given by Koptsik (1966), Billings (1969)

and Joshua (1974)3-

Footnotes 1:

The symbols used for denoting the various directions

of rotation axes and normals to mirror planes are
explained in table Al.1l.

Note that the symmetry element of mirror reflection

is represented by m while the mirror symmetry opera-
tion by s. This is, in fact, the only departure

from the Hermann-Mauguin notation.

Joshua (1974) introduced new symbols of colour-reversing
operations in order to avoid the use of two different
colours (usually black and red) for printing the

stereograms.
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Appendix 2
THE 'DIMENSIONAL' DESCRIPTION OF SYMMETRY GROUPS

After the introduction of the concept of antisymmetry by Heesch
(1930), and later by Shubnikov (1951), symmetry groups are generally
classified in terms of antisymmetry or extensions of this idea. A sym-
metry group belongs, therefore, to either the one-coloured or the
(generalized) two-coloured class. However, another aspect of the sym-
metry groups can serve as a basis of classification as well. The prine
ciple of this claséification is the dimensions of the space which is
invariant under the operations of each particular group in the class.
With this viewpoint a 'dimensional' description of Eymmetry groups may
be established. This scheme has been considered by Neronova & Belov
(1961) and independently by Holser (1961) for indicating relations among
gome categories of one-~ or two-coloured classes.

The space (point, line, plane, cell or some combination of them)
4s invariant under all operations1 of the symmetry groups in a class.
Thus, as Holser (1961) pointed out, the dimensions of‘the space, or its
general symmetry, is a description of the symmetry class. The symbol

G1 (or G ) is introduced (following Bohm, 1963; Bohm

rySpeesst TyBpeseyt
& Domberger—-Schiff, 1966) to denote the (isometric) symmetry group of
an r—~dimensional geometrical space if this group simultaneously transforms
the (periodic or non-periodic) subspaces of fhis space with dimensions
8,000pt (r)sdc.c>t) into themselves. If n-coloured is considered, the
symbol Gﬁ's"“’ . is used (Shubnikov & Koptsik, 1974); the meaning of

the lower indices is as above, while the upper index determines the

2
number of colours in the group . Thus, the two-coloured groups are
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representéd by the symbol G:,s,...,t'

The term 'invariance' is used to express the fact that any symmetry
operation of the group acting on any subspace gives it back unchanged.
Translational symmetry is necessarily restricted to the lowest dimen-
sion of invariance. On the other hand, if a group is 'in' n-dimensional
space, the n-dimensional space must be invariant with respect to this
group; this is the highest dimension of invariance. From this point of
view all the classes of groups may be designated in terms of their dimen-
sional invariance. Thus, the one-coloured point groups of finite (or
infinite) figures acquire the symbol G;'o since while transforming a
three-dimensional space into itself they keep only a singular point
(zero-dimensional space) invariant. |

The classification of one~ and two-coloured crystallographic groups
(up to three dimensions) according to this dimensional description are
given in tables 2.1.1 and 2.2.1 respectively. All the dimensions listed
are invariant with respect to any group in the class; the group lies in

the space of highest dimension and has translation along the lowest

dimension.

Footnotes 1: This includes translations as well as rotations and
reflections.

Attention must be given with respect to the meaning
of the upper index. Some authors (see e.g. Koptsik,
1967) define the upper index as the group of equality
(i.e. colour) substitutions. Thus, according to

the latter definition the two-coloured groups are

[\
(1)

1
resented by G .
represented by By eeeyt
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Appendix 3
TWO~-SIDED, TWO-COLOURED ROSETTE GROUPS

The 31 point groups and their isomorphic 80 plane groups related
to a two-sided, one-coloured plane wer§ independently derived by Hermann
(1929a), Alexander & Herrmann (1929), Heesch (1929). These groups are
based on one of the fburl two-dimensional lattices with the addition of
those symmetry elements that are invariant with respect to the plane.
Thus, the 31 point groups of a two-sided, one coloured plane are the 32
crystallographic groups minus the 5 cubic groups and plus alternative
orientations for the 4 crystallographic groups 2, m, 2/m, and mm2. They
are relisted in table A3.1 in a notation consistent with the Hermann-
=Mauguin scheme.

The coordinate system, relative to which the group symbols are
given, has an axis g perpendicular to the plane, while axes b and ¢ are
orthogonal to the axis a and make a right or oblique angle with each
other, depending on the class of rosette symmetry. The letters in the
first, second and third positions of the symbol indicate that a particular
symmetry element coincides with the coordinate axes in the order a, b, ¢
(for the lower symmetry classes) or with (and in this order) the axes
a, b and the bisector of the angle between the axes b and ¢ (for the
senior classes). If no symmetry axes or normals to symmetry planes
coincide with a coordinate axes the number 1 is placed in the correspond-
ing position (for the full symbol) or the position is left vacant.
According to this notation the symbol 211 means a two-fold axis normal
to the plane, while mll denotes a mirror plane parallel to the plane.

The two-sided, two-coloured rosette groups are obtained as extensions

of the classical two-sided, one-coloured groups of table A3.1. The 125



TABLE A3.1
Point groups of a two-~-sided

one~coloured plane

Two-sided one-coloured
Number rosette groups
Short symbol | Full symbol
1 1 111
2 1 111
3 21 - 211
4 ml mll
5 2/ml 2/ml1l
6 12 121
7 im iml
8 12/m 12/ml
9 222 222
10 2mm 2mn
11 ma2m mam
12 mmm mmm
13 4 411
14 3 311
15 4/m 4/ml1l
16 422 422
17 4nm 4mm
18 42m 42m
19 4/mmm 4/mmm
20 3 311
21 3 311
22 32 321
23 3m 3ml
24 3m 3m1
25 6 611
26 6 611
27 6/m 6/m11
28 622 622
29 6mm 6mm
30 Bm2 &m2
31 6 /mmm 6/mmm
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groups were derived by starting with the 31 'generating' groups (in the
sense of Zamorzaev, 1957) considered as two-sided but one=coloured and
simply or severally changing ordinaryyoperations by colour-reversing ones,
The two-coloured, two-sided rosette groups are listed in table A3.2.
The second column contains the symbols of the 31 generating groups. The
31 grey groups, those for which every point is bicoloured, are indicated
by adding 1' to the symbol and are given in the third column. The remain-
ing 63 groups, in which particular aymmefry operations or groups of
operations involve colour change are symbolized in the last column of
the table.
Alternatively, the deviation of the two-coloured, two-sided rosette
groups has been carried out by employing Boyle's (1969) method (see
also appendix 9). Another derivation of the crystallographic two-sided,
two-coloured rosette groups can be devised by selecting the 158 point
groups from the 530 two-coloured, two-sided layer groups given by
Neronova & Belov (1961). The 33 of these 158 groups have reoriented

counterparts leaving only 125 crystallographically non-equivalent rosette

groups.

Footnote 1: Five two-dimensional lattices if centred rectangular
is allowed.



TABLE A3.2

Point groups of a two-sided, two-coloured plane

Two-sided, two-coloured rosette groups

Number
Classical | Neutral Black-white
1 (1-2) 1 1°
2 (3-5) 1 11 I
3 (6-8) 21 211 2'1
4 (9-11) ml ml® m'l
5 (12-16) 2/m1 2/m1! 2/m'1,2'/m1,2'/m'1
6 (17-19) 12 121° 12!
7 (20-22) im iml' im'
8 (23-27) 12/m 12/m1' | 12/m',12'/m,12'/m'
9 (28-31) 222 2221' | 2'2'2,22'2"
10 (32-35) 2mm 2mml' | 2'm'm,2m'm"
11 (36-40) m2m m2ml' | m2'm'y,m'2m',m*2'm
12 (41-47) mmm mmml * m'm'm;mm'm,m'm'm',
m‘mm,mm'm'
13 (48-50) 4 a1 a
14 (51-53) r} 41 3
15 (54-58) 4/m 4/ml* | 4/m',4'/m,4'/m'
16 (59-62) 422 4221 | 42'2',4'2'2
17 (63-66) 4mm 4mml' | 4m'm',4'm'm
18 (67~-71) a2m 22m1' | 32'm',3'2m',4'2'm
19 (72-78) 4/omm | 4/mmmlt| 4/m'm'm',4/m'mm,4'/m'm'm,
4'/mmm*,4/mm'm*
20 (79-80) 3 31
21 (81-83) 3 31 | 3
22 (84-86) 32 321 | 32°
23 (87-89) 3m 3ml' | 3m!
24 (90-94) 3m | 3m1' 3'm*,3'm,3m’
25 (95-97) 6 61' | 6!
26 (98-100) 6 61+ | &
27 (101-105) 6/m 6/m1* | 6/m',6'/m*,6'/m
28 (106-109) 622 6221' | 61'2'2,62'2"
29 (110-113) 6mm 6mml* | 6'm'm,6m'm’
30 (114-118) m2 Bm21' | &'m'2,8m'2,5'm2"
31 (119-125) 6/mmm | 6/mmml' | 6/m'm'm',6/m'mm,6'/mmm*,

6'/m'm'm,6/mm'm*
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Appendix 4
TWO- SIDED, TWO-COLOURED BAND GROUPS

Bands are infinite figures with a singular plane and a singular
translation axis lying on the plane. The one~sided bands are special
cases in which the singular plane is polar; its 'face' is different from
4ts 'back'. One-sided bands might, therefore, be defined as figures
without singular points but with a singular polar plane and a singular
translation axis. For bands in general, however, the sinéular plane
can be nonpolar, i.e. transformations making the two sided coincide with
each other are permitted. The consideration of the additional permissible
transformations means that the number of symmetry classes is increased

The seven one-sided, one-coloured band groups are, apart from the
point groups, the simplest symmetry class. Lists of these groups have
been given by Polya (1924) end Niggli (1926). The 31 two-sided, one-
—coloured band groups were first enumerated by Speiser (1924); these
groups are listed in table A4.1. The group symbols are given according
to the international notation. The coordinate axis g is directed perpen-
dicular to the band plane, and the axes b and ¢ are orthogonal to the
axis a and make a right angle with each other; the b-axis coincides with
the translation direction. In the notation of bands, the symbol p of
the one~dimensional translation group is given first, the letters or
numbers in the second, third and fourth positions of the symbol indicate
that a particular symmetry element coincides with the coordinate axes
in the order a, b, ¢. If no symmetry axes or normals to symmetry planes
coincide with a coordinate axis the number 1 is placed in the correspond-

ing position of the symbol or the position is left vacant.



TABLE A4.1

One-coloured, two-sided band groups

Number | Group Number | Group
i plll 16 p112/m
2 plil | 17 p112/b
3 p211 18 p222
4 pl21 19 92212
5 p12,1 . 20 p2mm
6% pl12 21 p2mb
7% pmll 22 PmZm
8% pb11 23 pb2b
. _
9 plml 24 pbalm
10 pllm 25 szlb
11 pllb 26% pmm2
12 p2/m1l 27+ pbm2
13 Pz/bu 28 pmmm
14 912/ﬁ1 29 pbmm
15 9121/1111 30 pmmb
31 Pbmb

Note: Asterisks mark the one-coloured, one-sided band groups



147

These groups are considered as the 31 'generating' groups (in the
sense of Zamorzaev, 1957) in order to derive the two-sided, two-coloured
band grﬁups. The groups in table A4.2 were derived-by starting with the
generating groups and simply or severally changing operations to their
colour-reversing counterparts. At the same time the possibility of -.
coloured translation is taken also into account; this involves the
consideration of a second one-dimensional lattice, designated p'. This
lattice having a basic period t contains a coloured translation t'

('y] =%|t|) as well.

The first two columns in table A4.2 give the 31 ‘generating’
classical and the 31 grey groups. The remaining 117 black-white groups
are symbolized in the third column. The 31 of these zr&ups correspond
to the black-white lattice whereas in the remaining 86 groups particular
symmetry operations are colour-reversing ones,

Asterisks in table A4.2 mark the 31 classes of one-sided, - two-
~coloured band groups whose list and pictorial representations were
given by Shubnikov (1930). These groups differ in their symmetry elements
but not in the orientation of these symmetry elements with respect to
the singular plane. The remaining 148 classes describe the symmetry
of the two-sided, two-coloured bands. |

Another deviation of the two-sided, toncoloured band groups
can be devised by selecting from among the 394 two-coloured rod groups
(Neronova & Belov, 1961) the 119 which do not have 3-, 4~ or 6-fold
axes. Among these there are 60 which symmetry operation in only one
of the axial directions normal to the rod axis. To each of these there
correspond two among the two-sided, two-coloured band groups, e.g.

’ :‘32'/m11 and 9112'/m in the orientation here adopted. A comparable



TABLE A4.2

Two-sided, two=coloured band groups

Band group symbols

Number One-coloured Neutral Two-coloured
groups (grey) groups groups
1 # (1-3) pl11 pl111’ p'111
2 (4=7) plil plill’ p'111,p1'11
3 (8-11) p21l p2111' P'211.P2'11
4 (12-15) p121 p1211' p'121,p12"1
5 (16-19) p12,1 pl2,11" p'12,1,p1211
6 * (20-23) pll2 pli2y! p'112,p112"
7 & (24-27) pmil pmill’ p'mll,Pm'li
g8 * (28-31) pbll pb111! ¢'bll,pb'11
9 * (32-35) plml Pimil’ p'iml,plm'l
10 (36-39) ellm pliml' ¢ 11m,plim'
11 (40-43) p11b plibl’ p'11b, p11b?
12 (44-49) p2/mll p2/mill' | p'2/m11,p2'/m11,p2/m'11,
p2'/m*11
13 (50-55) p2/b11 p2/b111" p'2/b11,p2'/b11,p2/b'11,
p2'/b'1l
14 (56-61) p12/m1 p12/m11’ p'12/m1,p12'/m1,p12/m'1,
pl2'/m'1
15 (62-67) p12,/ml pl2,/mi1' | p'12,/m1, pl2i/ml,
p121/m'1.p12i/m'1
36 (68-73) p112/m p112/m1' | P'112/m,pl12'/m,pl12/m",

PllZ'/m' :




TABLE Ad.2—continued

Band group symbols

Number One-coloured Neutral Two-coloured
groups (grey) groups groups

17 (74-79) p112/b pl112/b1* p'112/b,p112'/b,p112/b",
p112' /v’

18 (80-85) p222 p2221' p'222,p22'2¢,p2'22',
p22'2

19 (86-91) p22,2 p22,21" p'22 2, p2212',p2'2,21,
92'2i2

20 (92-97) p2mm p2mm1* p'2mm,p2m'm' ,02'mm" ,
p2'm'm

21 (98-103) p2mb p2mb1 ! ¢'2mb,p2m'b!,p2'mb*,

' p2'm'd

22 (104-109) pm2m Pm2m1' P'm2m,Pm2'm',Pm'2m'.
pm'2'm

23 (110-115) pb2b eb2bl! p'b2b,pb2'b',pb'2b",
pbt2'b

24 (116-121) pb2,m pb2,ml* p'b2,m,pb2im' ,pb* 2 m* ,
Pb'Zim

25 (122-127) pm2,b pm2,b1! -p'm21b,Pm2ib',Pm'21b',
pm'Zib

26+* (128-133) pmm2 ?’"’“21' P'mmz,Pmm'z'.Pm'mZ',
pm'm'2

27+ (134-139) pbm2 P bm21* P'me,Pbm'Z',pb’mZ',

Pb‘m'Z




TABLE A4.2=continued

Band group symbols

Number One=coloured Neutral Two=coloured
groups (grey) groups groups
28 (140-149) pmmm pmmm1 * p'mmm, pmn‘m*® ,om*mm* ,

pm'm'm,pm'mm,pmm'm,
pmmm' ,om'm'm*
29 (150-159) pbmm pbmml * ¢'bmm, pbm'm* ,0b *mm* ,
Pb'm'm.pb'mm.Pbm'm,
Fbmm',Pb'm'm'
30 (160-169) pmmb pmmbl! | p'mmb,pmm'b!,omtmb?,
pm'm*'b,em'mb, pmm'b,
pmmb',Pm'm'b'
31 (170-179) pbmb pbmb1' p'bmb,pbm'b,pbmb*,

pb'm'b,eb 'mb,pbm'b,

pbmb',pb'm'b'

Note: Asterisks mark the two-coloured, one-sided band groups

——
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situation arises in selecting symbols for the 80 two-~sided (one-coloured)
pPlane groups from among the symbols of the 230 Fedorov groups -(classical

space groups).
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Appendix 5
GRAPHICAL REPRESENTATION OF POINT GROUPS SUPERPOSITION

The best way to demonstrate graphically the combination of point
groups is by considering the corresponding stereograms. Stereographic
projections of symmetry groups represent which symmetry elements are
contained in a given symmetry group and how these symmetry elements
are disposed relative to one another. In an alternative way, the stereo-
gram can be considered as the totality of all points which can be derived
from a given point, xyz ('starting' point) by the operation of all the
symmetry operations of the given point group. This concept is the
basis for the representation of the superposition of two point groups.

The'combination of two point groups is represented by the super-
position of the corresponding stereograms. In order to account for the
relative misorientation the superposed stereograms are rotated by the
apprbpriate angle relative to each other along the appropriate axis.
This is demonstrated below.

Referring to the superposition of the cubic point group m3m
and the tetragonal group 4/mmm, considered in section 4.1, their misorien-
tation results by rotation about the (common) 4-fold axis. Figures
AS5.1a and A5.1b show the stereograms of the two groups where the normal
to the page of the paper coincides with the 4-~fold axis in each group.
Any misorientation is, therefore, expressed as a rotation about the
normal to the paper.

Consider the misorientation to be 9=0°. Then, the mirror planes
of the two groups coincide; this is shown in figure AS.1c. It is
aevident that the conserved symmetry operations shown in this figure

correspond to the point group 4/mmm,



Figure A5.1
Representation of point group superposition by means of stereograms:

(a) stereogram of the point group m3m (filled and open
circles represent points above and below the page
respectively)

(b) stereogram of the point group 4/mmm (squares and crosses
represent points above and below the page plane
respectively)

(c) superposition of stereograms (a) and (b) for 8=0°

(d) superposition of stereograms (a) and (b) for 6 #nn/2

(n=integer)



(b)

(a)

(d)

(c)
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On the other hand, the stereogram in figure A5.1d corresponds to
the superposition of the two point groups for 6#nr/2 (n=integer); the
planes of symmetry passing through the 4-fold axes are now misaligned.
In this case the 4-fold axis and the mirror plane perpendicular to it

are only conserved and thus the composite symmetry is 4/m.
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Appendix 6
THE PROOF OF THEOREMS 4.2.1 AND 4.2.,2

In this appendix it is proved that the ordinary operations present
in a dichromatic point group form a subgroup of the original point group
Go' In other terms, it must be proved that:

(1) the set D_ is a group by itself, and,
(2) it contains elements of Go only.

The set Do of the ordinary symmetry operations in the dichromatic
point group contains all the symmetry operations of the white point
group which satisfy the relation gi—ggj (relation 4,2.1). The set
of these operations is a group only if its elements fullfil the following
three postulates (see e.g. McWeeny, 1963):

(1) the group property

(2) existance of the identity element

(3) existance of the inverse element for each element of the
set.

The group property states that (a) the combination of any two
elements (including an element with itself) is also an element of the

get, and, (b) the element combination is associative. In the particular
-1 -]
case, if g,=Rg R R . 32—55 _ and 53—_§ R =, then it should g.,§.5 D and
-1

(g,-8>) E5"81- (B2 -83). But g§,8,7§,-8,=R§ §_§b= =B§a§b= , i.e.

g g, is an element of D_ and (g,. §2) §3'(=§ R .Rgbg 1).§§c§'1=

=Rg GrR l.rg R '-Rg 8 g K "=Rg B~ 'R§b§c= =§R -<=§b, -=gR 1)

=§1,(32.g3). Therefore, the elements of Do satisfy the group property.
The second postulate is also satisfied since I-.=Rl=t"1=RIR"1 (where

= = ===
1 is the identity element, i.e. the 3x3 unit matrix). The last axiom
=

requires the existence of the inverse element for each element of Do’
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-1
In other words, if gizggkg then there must be an element EJED 80
=i ==2k= °

§18;~1 or 5§k§-1°gj=£ or §j=2§;1§-1’ Thus, for each element of D_ its
inverse element belongs also to Do'

Consequently, the set Do is a group and since Do contains only
elements of the white group Gw’ D° is a subgroup of the Gw. The latter
proves theorem 4.2.1.

This theorem is now used for deriving the relation between the
orders of the dichromatic point group (r) and of the white point group
(rw)' According to the analysis in section 4.2 ordinary elements belong
to the dichromatic point group only if they relate white and at the
game time black points. Thus, the number of general points (nd) in
the dichromatic point group is twige the order r, of Do; Alternatively
stated, the point symmetry of the dichromatic complex is described by
the set of the 2r° general points. But the number of the general points
ijs equal to the order of the dichromatic point group and thus r=2r°.
The group Do is, however, a subgroup of the white point group Gw and
according to the Lagrange's theorem (see e.g. Buerger, 1963) the order
of a subgroup is a factor of the group, i.e. ro=rw/k vhere k is an

integer. The latter proves theorem 4.2.2.
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Appendix 7

THE PROOF OF THEOREMS 4.2.3 AND 4,2.4

It has been shown in section 4.2 that the set of the symmetry
operations in a dichromatic point group is D=D°+Dc. In this appendix
the conditions under which the set D=D°+Dc forms a group are investigated.

The combination law between elements of the set D is based on the
fundamental property of the colour-reversing operations: two consecutive
colour-reversing transformations are equivalent to one uncoloured opera-
tion. On the other hand, the combination of an ordinary and a colour-
-reversing operation is equivalent to another colour-reversing operation.
Therefore, regarding the nature of the product between elements of the
get D the following relations occur: 0x0=0, CxC=0, OxC=C, Cx0=C, where
0 and C denote ordinary and colour-reversing operations.

The investigation of the conditions for which the set D-D°+Dc is
a group must be carried out in two stages. This is because two cases
must be distinguished for the element g entering the relation 4.2.2,
namely:

(1) g is an element of D, and,
(2) g is not an element of Do'

The former case is called 'doubled symmetry case' while the latter

48 the 'single symmetry case'.

A7.1 The doubled symmetry case

In this case the colour-reversing operations are given by Cighiﬁ-l
= miwe

with hieDo- thus the set D contains the elements:
=

D= {Bs Bpreees Gpo Gooner]

and the conditions for the formation of a dichromatic point group are
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derived by requiring these elements to fulfil the group postulates (see

appendix 6). The group property holds for the products between ordinary
elements since the set D  is a group (theorem 4.2.1). Additionally, it

must be satisfied for the product of two colour-reversing elements, say,
C.=h R~L and gj=gj§-1’ i.e. their product must be an ordinary element

=1 =i=
1

. - - - 1 ‘
belonging to the set D. Thus, it must be: gi.gj_gig '232 ng. But,

- -1
from the relation (4.2.1) R 12j=215 and the last relation can be written
Therefore, in erder the closure property to be satisfied for the
colour-reversing elements, the operation gg must be equivalent to an
operation of the set D . Let £§=2p; then, the closure property holds
' -1 -1

for all the colour-reversing elements_of D, since: gi.gjggjzlz 5 ‘EiEIEp.

It remains, now, to check if the closure property holds for the
combination of an ordinary and a colour-reversing element. In other

words, it must be checked that the products gigj and gjgi belong to the

set D. But:

- hiC; = hyb,R " = LR "€ D
and , Csby =B8R By =HR7eD
since from the relation (4.2.1) it holds that 5‘12 (= m§-1°

Therefore, the closure property holds for the set D only when the
operation RR is equivalent to an ordinary operation of the set Do' The

products of elements of D satisfy the associative law as it is indicated

below:
(a) (21'22)'23=21’(22'23) since D is a group (theorem 4.2,1)
1)

= -1 -1 -1 -
= ] oh R '-'-h h .h = . =
(b) (h;-hy)-Cy=(By hp)eBgR "=byDo-BgR “=hyh bR “=h).hh Rsh o (hych R7T)=

=h,. (h, o)
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= 3 [ =, R . = . = . =
(e) (hy.C,).hy=(hy R ") .hy=h h,R “oha=h hoR “hy=h,.hoR “hy=h).(hR “.hj)

‘21'(32‘23)

h.R~Y.(h..h_ )=

-1 “Ih u -1
= L) . h 'Y = = .
ORCERERTS S8 A5 A g Ry R R RN A L 3

=3 = =2 =3 =1=
'21'(22'23)
- - =1 : -
(e) (hy-Cp).Ca=(h, bR )-bgR "=hyh R “.hjR “=h,h.R "hgR~l=h; bR h
-1, =1

3210(2 B oh R )-—h '(22'23)

(£) (C.eh.).C.=(h 2 Lh )R teh B b R teh R~ h b R~Yah h.h R le
U1°857 237 312 *22/°23= "=l= =2'=3= =1= =2=3= =la ‘=2=3a
-1 -1
=h. R ~.(h,.h_R )“51‘(22'23)

=1= =2 =3=
1

(8) (C-8p) by=(BsE Yy R eh R7Ln R7Ih =

'222 )-hy=h,R ]22«5 .23=21§ =2= =3 =l= =2 =3

‘=3 =1=

=h.R L, (hpt.n)=C .(C,.h,)
=l= *lio= °*=3 T21°'=2"=3

1

-1, . =1, =1
h R “).h R "=h\R "h

Lhrlonr
=

(h) (C;+C,)Cq=(R k™ R eh,R =h.R

3 '=]1=

e S N I (W e
=2= =

-1
=]1= =2= =3= =]1l= B )—g].. (22.23)

3=
Taking into account theorem 4.2.1 it is clear that the set D
contains the identity element as well as the inverse element of each

ordinary symmetry operation. The set D contains also the inverse ele-

ment ‘of each colour-reversing element, since there are two ordinary

elements 21 and 2k such so 21£J=21§ .232 =21215 g ggkg 15 ggkemgg

for all the elements gi’ gj'

Therefore, in the doubled symmetry case the set D forms a group
only when the rotation 5 is such so the transformation 55 is equivalent
to one of the ordinary elements of the group Gw'

The dichromatic point group contains 2ro points, half of them white
and the rest black. Thus, according to theorem 4,2.2 the r, white points
of the group G can be dispersed into i=2/k subsets each containing r,

points, and the same can be done for the black points. The following
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notation is introduced:
white point subsets: zl. 22, coe zi
black point subsets: Ul' Uz' eos 3 Ui

Moreover, it is considered that the points in Z, and U1 are given

1
by the operation of the ordinary symmetry elements D° on a general point
(vhiich is % for the white and Rh x for the black points; EJ;D0)° The
points in the remaining subsets are given by the operation of the sym-

metry elements belonging to the set {GO-DOS on the same starting points.
Thus:
LR RN | O AP IEE A

Uy={Rh b x,Rhoh X, .o B % ]' U= {5§r°+15' e 'Réaroi}' oo

It is now clear that the colour-reversing symmetry operations in
the doubled symmetry case have been obtained by considering relations
between points of the subsets Z1 and Ul’ However, if a colour-reversing
symmetry element is obtained by considering relations between points of
the subsets zk and Uk with k#1, then it is given by §k§-1 with §££Do’
Therefore, in the doubled. symmetry case the colour-reversing symmetry
elements are given by _g_ng-l with g any element of the white point
group Gw. This implies that the order of the dichromatic point group
. -4n “the doubled symmetry case is twice the order of the white point group.
But, the transformation R cén be written as ZE' ('i'g) where 5'

is the antiidentity operation and P is to be understood as the ordinary

rotation 'equivalent' to R. Hence, the colour-reversing elements are
1l

-1 -1 -
given by éig 1 (=£.§i£ ), and the group D can be written as D=Gw+50Gw£
This group is, obviously, a supergroup of Gw of factor 2. Therefore,

" 4n the doubled symmetry case a dichromatic point group is formed only

when an isomorphic ordinary point group exists.
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It should be noticed that in this case the ordinary operations are
given by a relation of the form §i=§§j§-1' Moreover, all the elements
of the white group satisfy necessarily the above relation and therefore
the transformation 5 is a similarity transformation of the white point
group. Hence, the relation RR=g. gives the rotations which leave the
white point group invariant. The last involves that in theorem 4.2.1

the trivial subgroups must be included as well.

A7.2 The single symmetry case

The colour-reversing elements of the set D=D°+Dc are given, in the
single symmetry case, by gi=§j§-l with éj‘no' Thus, the set D contains
the elements:

| D = {hy, Byreees Cyo 22....}

In order this set to form a group the fundamental postulates must
be satisfied. The fulfilment of these postulates imposes certain conditions
on the form of the transformation 5. Moreover, additional conditions
are imposed on the operations g This is because, according to theorem
4.2.2, the number of elements of the set D is 2r where r_ is the order
of the group Do’ and hence the number of colour~reversing elements in
D is r_. However, since the number of elements giéDo is greater than
it is necessary to investigate the conditions imposed on the gi's
under which the set D is a group.

Initially, it is examined whether the elements of D satisfy the
closure property. Since the ordinary symmetry operations form a group
Do' the product of any two ordinary elements is another ordinary opera-
tion of Do and therefore of D=D°+Dc. Considering, now, the product of
two colour-reversing elements g =§i§-1 and gj=§J§-1it is required that

their product must be an ordinary element gk, i.e.:
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it e B o R,
1

But, 5 g corresponds necessarily to an ordinary operation (two

consecutive colour transformations). Therefore, the operation g;lﬁk
must be an ordinary operation of Do’ i.e. g;lgk=2m. The last relation
means that the set of operations {21. 22,.... £1° 52,...] must be a group.
But, since the elements {gl, 92,...} form a group and because

the number of gi's is equal to the number of hi’ the group {h 2,...,
g 52,...} is a supergroup of D  of factor 2. Moreover, since all the
elements of this group are elements of Gw"{gl’ 22,..., 51, gz,...} is

a subgroup of Gw' This supergroup will be symbolized by D2. Therefore,
in the single symmetry case a dichromatic point group is formed when the
isomorphic ordinary point group exists. In other words, no new ordinary
point groups are introduced.

It follows that the set D is a group when the relation 5512‘53 is
satisfied for any element belonging to the set {DZ-D;‘° However, this
condition can be further restricted. Let C =g K™ and C=g R are two
colour-reversing elements such that gl'&Z‘E where 2 is an ordinary sym-
metry element. The condition for the set D to be group states that the
relation §§i§=§J must hold for any pair of éi' §j where §i€[D2-D°} and
‘je{DZ-Do}. Therefore, the relations §§1§=§2 and 5§2§=§1 hold. Accounte
ing for the relation g 22=2 it holds respectively: 5151’2 and §2§2’h'

The two last relations impose that §1=§2. Therefore, the set D is a

group only when the relation Bgig=§i is satisfied for all the elements

——

of the set {DZ-DO} .
It should be noticed that as far as the products of an ordinary

-1
element 21 and a colour=reversing element gjxgdg are concerned it
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holds that:
Bs-E; '-—‘535 = &R
-1
and Cyohy = 5 By = EBET = gE
where the relation (4.2.1) is taken into account for the second relation

and with & and -3 being elements of the group Dz.
Therefore, the c¢ondition méntioned above is the only one required
"for the fulfilment of the closure property. It can be proved easily that
the associative property is also satisfied. Taking into account theorem
4.2.1, the set D contains the unit element as well as the inverse of each
ordinary symmetry operation. Moreover, the set D contains also the

inverse elements of the colour-reversing elements, since there are two

-1
elements gi, g belonging to the set {D D } such that §1- '555 'gigj'£
-1
for all the elements gi-g 5 -J‘gj= .
Therefore, in the single symmetry case, the set D forms a group
only when there is a factor 2 supergroup of the group Do being subgroup

of G_ and the rotation R is such that the relation §§15=§i holds for all

the elements of the set {DZ-DO} .



160

Appendix 8
EXAMPLES OF POINT SYMMETRY SUPERPOSITION

The coordinate system used for the calculations in this appendix
is that of the white point group, except if it is otherwise stated. This
orthogonal coordinate system is considered to have the standard orienta-
tion (see International Tables of X-ray Crystallography, 1969) relative
to the symmetry operations of the white point group. The symmetry opera-

tions are denote according to the scheme given in appendix 1.

A8.1 Superposition in monoclinic hemihedral holoaxial class

In the case of the monoclinic group Zsfl, 21} both doubled and
single symmetry dichromatic groups are likely to be formed. The latter
arise since the monoclinic group has two subgroups (corresponding to the
trivial ones), namely, 1={i} and 2:{1, 2;}.

The doubled symmetry rotations. are [KYZ]/.IBOO and [00z]/90°, obtained
from RR=1 and gg:gi respectively. A [002]/90°=4i misorientation creates
1 -1 3¢

1t [}
a dichromatic point group isomorphic to 4'={;, 22. 42 ’ 4: } since 1.R =ﬁz

and 21R'1£%3L; Similarly, the improper rotation [002]/90o corresponds
=2Z== =

to the dichromatic point group a,

The rotation [Xyi]/180° yields a dichromatic point group only when

1 rolr™l,
z

4t transforms the white group into itself, i.e. only when 2 R2' R

The solutions of this equation are the rotations [00z] /180° and [xyO] /180°.
However, [002]/180o is a symmetry operation of the white group and thus

it creates a 21' point group. The dichromatic point group formed by
proper and improper rotations [002]/180°%, [xy0]/180° and [00Z] /90° are

given in table A8.1.



TABLE A8.1
Dichromatic point groups created by the superposition of two

monoclinic groups 2={i, 2:}

. Ordinary | Colour-reversing| Dichromatic
Rotation elements elements point
group
Proper
]
xyz/0° |1, 2; 1', 2i 21!
]
00z/180° |1, 2i 1Y, 2; 21"
] [ ]
xy0/180° |1, 2i '2i . 2; 2122
‘ ' '
00z/90° |1, 2; 41.. 4: 4
]
xy0/¢° 1 2; 2' (»)
Improper
O 1 [] [ ]
xyz/0 1, 2z i', M 2/m
O 1 (] (] [}
00z/180 1, 2z it, Bz 2/m
(o] 1 9 [ Tt
xy0/180° |1, 2z 89 sy 2m'm
1 =] =3
00z/90° {1, 2, 4, 4 4
o] 1
xy0/8 1 s m' (%)

(#) Relative to the dichromatic coordinate system
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In the single symmetry case the subgroup D°-1={1} is considered
only. The next step is to determine its supergroup Da; referenc9 to
figure A9.2 indicates that only the ordinary point group 2=[1, 2;} can
be considered as D2 and thus only one dichromatic point group corresponds
to the single symmetry case. In order to determine the single symmetry
rotation(s) the equation 5£;§=§i is solved. The solution of this equation

corresponds to any rotation about a direction normal to the z-axis, i.e.:

2
cosO+m1(1-cosB) mlmz(l-cose) —m281n6
2
5 = m1m2(1—cose) cosO+m2(1-cosa) mlsine
mzsinﬁ -mlsine cosB

The colour-reversing element relative to the white coordinate

gystem is given by:

2
-cose-ml(l-cosﬁ) -m1m2(1-cose) . m,8in®
213'1 = -m_m,_(1-cosb) -cose-ma(l-cose) -m_8ind
=2= 12 2 1
mzsinﬂ -m181n9 cosh

or expressed relative to the dichromatic coordinate system:

-1 0 O
ggig‘lg'l =|{ 0-1 0
0 0 1
where
cosO/2+mi(1—cosG/2) mlm2(1-0039/2) masine/Z
T= m1m2(1-cosB/2) cosB/2+m§(1-cosa/2) —mlsine/z
mzsinG/Z mlsin9/2 cosB/2
Therefore, any rotation about an axis normal to the z-axis creates

1'
a dichromatic point group 2'={1o 2z }. It should be emphasized, however,

?
that in this case the position of the colour-reversing operation 2i

is expressed relative to the dichromatic coordinate system which is
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not coincident with the white one. For the improper rotation [hk1]/8,
the corresponding dichromatic point group is m'={1, s;} vhere again
the position of the mirror operation is expressed relative to the dichro-
matic coordinate system.

Table A8.1 summarizes the dichromatic point groups obtained by

the superposition of two monoclinic hemihedral-holoaxial groups.

A8.2 Superposition in hexagonal tetartohedral class

For the case of doubled symmetry of the superposition of hexagonal
tetartohedral groups the solution of the equations 25'51 is given in
table A8.2 for each of the elements of the group 6={1, 2;, Si. 35, si, 63}.
Therefore, only the rotations corresponding to the solutions no. 1b, 2
and 5 must be considered in order to determine the colour-reversing
elements obtained by both proper and improper rotations (table A8.3).

Considering the single symmetry cases the subgroups of the point
group 6 are: 1={1}, 2={1, 2;}, and 3={1, 3, 3%]. But, only rotations
[xyz]/180°, corresponding to the subgroup 2, give a dichromatic point
group.

The possible dichromatic point groups formed by the superposition
of hexagonal tetartohedral groups are those in table A8.4. The study
of the superposition of point groups belonging to planar symmetry classes
appears to be more complicated. The caée of the white point group 4mm
will be presented in detail while the superposition of the other planar

gsymmetry groups can be treated in a similar matter.

A8.3 Superposition in tetragonal antihemihedral class

The point group 4mm contains the symmetry operations 1, Ai, 4:, 22,

8., B.s Sy1 sé;‘ In table A8.5 the rotations corresponding to the doubled
x Y

symmetry case are derived. It can be seen from this table that only



TABLE A8.2

Solution of the equation.§§_=§i for the elements of the group

1 .1 .2
{120 3 & 6, o

No | Element 51 Solution of §§=§i Remarks
o *
la 1 00z/180 *) symmetry operation of Go
*
1b 1 xy0/180° *)
2 2i 002/90°
1 ()
3 3z 00z/60 symmetry operation of G°
2 (o]
4 3z 00z/120 symmetry operation of Go
5 ei 00z/30°
5 o
6 ez 00z/150 related by symmetry to
solution no. 5

(*) Rotations conserving the white point group



TABLE A8.3

Colour-reversing symmetry operations created by the
rotations in table A8.2

-1 -1| ,1.-1 =1} elp=1| 5.1
Rotation 1R 32 2R 2225 R
proper
d 1 1 1 1 1 1
xy0/1809 2 |3 12| % |2
: o| L3 11! 7' 1’ 1 5
00z/90" | 4 | 12, 12, |4, 2, | 12,
o|,,11' 1 3! 5! 1! 7"
00z/30" [ 12, | 12, | 4, l12, ‘2 |22
impropen
-1t -ty -l -2
S0 I B L B R 6
o 1 1 1! 1! 1 1
xyo/180] 2, 2r | 2 |3 % | °a
=31 | ==11' | ==7' | =1* ==1' | ==5
00z/90° | 3> Bt | |3 iz =
oles11t | =1° =3' [==5! =1' | 57!
00z/30 lgz lgz 42- lgz 42 lg'z




Dichromatic point groups created by the superposition of two

TABLE A8.4

1 2

1 5
groups {1, 22, 32. 32, 6:, Gz}

Dichromatic Dichromatic
Proper point Improper point
rotation group rotation group
00z/30° 12! xyz/0° 6/m*
00z/60° 61" 002/30° 3
002/90° 12' 00z/60° 6/m*
00z/180° 61" 00z/90° 3
xy07180° 6212* 00z/180° 6/m*
o . o
xy0/e 2 xy0/180 62121
xyo/e° m




TABLE A8,5
Solution of the eguation 55851 for the elements of the group

3 .1
{10 4;9 4,, 229 8 syv B, 5’}

No | Element gi Solution of 55351 Remarks
*
1a 1 00z/180° *) symmetry operation of G°
0
1b 1 xy0/180
2 2; OOz/90° symmetry oberation of Go
3 4§ 00z/45°
a 42 00z/135° related by symmetry to
solution no. 3

(*) Rotation conserving the white point group
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the [xy0]/180° and [002]/45° proper and improper rotations must be con-
sidered. Additionally, since the point group 4mm does not contain a
centre of symmetry the pure inversion must be included in the set of

the improper rotations. The table A8.6 gives the created colour-reversing
symmetry operations and the corresponding dichromatic point group for
each of the above rotations.

To establish the dichromatic point groups corresponding to the
single symmetry case, the subgroups of the white group Gw must be deter-
mined. Moreover, for each subgroup of Gw its supergroup of index 2 which
at the same time is a subgroup of Gw must be found., The deviation of
the single symmetry groups is shown in table A8.7.

Finally, improper rotations of the single symmetry case must be
considered in addition to those in table A8.7. Table A8.8 gives the

dichromatic point groups resulting by such rotations together with those

derived above.



TABLE A8.6

Colour-reversing symmetry operations created by the rotations in table A8.5

Rotation ;5_1 g;g-l 222-1 g;g-l gxg-l 5 5-1 gug-l gpg-l Dichromatic

' point
group

Proper

xy0/180° 2’1c "I 2L 2:,' 2;' g0 5! Z: ' E: "1 a/m'mm

oo;/4s° 87| 8 g2 | 8 | s o | s | e | 8t

Improper

xyz/0° it 4: ' 4; ' 5! 2; ' 2; ' 2! '. 2:, "1 a/m'mm

002/45° EZ ' 31 ' 52' ?3': "2 2: ' 21;' 21; 8'm2°

Note: The improper rotation xy0/180° corresponding to a symmetry operation
~ of the white point group G° is not included in the above table



TABLE A87

Investigation of the dichromalic poirt groups created by the superposition of two point groups 4mm

Solutions of | Colour-reversing | Dichromatic
No | Subgroup DO Elements | Supergroup D2 Dz- D0 Remarks
RgiR:gi elements point group
153 .1 st . - ;
1 4 14,652, Lmm Sx:Sy: SU'SB 00z/3° Ser sJ Su.5g Lm'm reiative to the dichromatic system
2 mm2 1,21z,sx,sy 4mm sq,sﬁ,l.‘z 43| oozmeoe S —_ 002/180°=2}, , symmetry operation of Gy,
3 mm2 1 ,z‘z,su,s 4mm sl,sy,lﬂz,ég 00zn80° B _ 002/180°=21z ,symmetry ope ration of Go
1 : ,
00z/180° —_ —_ 00z/180°-2,, ,symmetry operation of
4 m Tiss mm2 S 21z 0y0/180° — S, 0y0/180° Z c){nservez S0
x00/y° sy,2z mm'2' relative to the dichromatic system
00z/180° —_— _— 002/1&')°=21z , symmetry operation of Cb
5 m 1.s mm2 s2) x00/180° = _— x00/180° “ conserves
y OyQ/y° s 2y mm'2’ relative to the dichromatic system
00z/180° —_— _ 002/180°=2! , Symmetry operation of
6 m 1.5 mm2 sﬁ,ZIz *x0/180° —_ _ %x0/180° %' conserves %
xx0/3° S 2’2 mm'2 relative to the dichromatic system
002/180° —— —_— 002/180°-2}, ,symmetry operation of &
7 m 1,s mm2 s 2! xx0/180° — — xx0/180° ~ conserves
B a“z %x0/° Sty mm'2 relative to the dichromatic’ system
1 x00/180° — . x00/180° conserves Gg
8 2 1.2, mm2 Sx:Sy 0y0/180° —_— —_— 0y0/180° conser ves Gy
00z/9° — _ see no.!
1 xx0/180° _— _— xx(0/180° conserves
9 2 1,2 mm2 Sq:S % x0/180° _ — ¥x0/180° conservesGy
z B 00z/3° —_— see no.1
10 1 1 2 Pl xyOI ¥ 2! 2 relative to the dichromatic system
" 1 1 m SS Oyz/¥ Sy m’ relative p the dichromatic system
12 1 1 m S, x0z¥F S, m’ regtive o the dichromatic  system
13 1 1 m Sq xxQ/y° Sq m' reiative o the dichromatic system
14 1 1 m Sg ix0l¥F Sp m’ reigtive 1o the dichromatic sysiem




TABLE A8.8

Dichromatic point groups created by the superposition of two

groups {11 421! 423t 2211 on E_V' sd,sb}

Dichromatic Dichromatic
Proper point Improper point
rotation group rotation group
xy0/180° 4/m*mm xyz/O° 4/m'mm
00z/45° 8'mm'* 00z/45° E'm2!
00z/8° 4m'm' 00z/0° 4212"
x00/g° mm*2" x00/@° mm*2*
0y0/e ° m'm2° oyo/e° m'm2' -
J.(XO/eo ml'n'2' ;xoleo mm*2"
o ot | o

xx0/g m'm2 xx0/0 m'm2'
xy0/e° 2 xy0/e ° m
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Appendix 9
POINT GROUPS CONTAINING 8- OR 12-FOLD ROTATION

(OR ROTOINVERSION) AXES

It has been pointed out in section 4.3 that 8- or 12-fold rotation
(or rotoinversion) groups must be included in the symmetry classes of
dichromatic complexes with (zero—- or) one-~dimensional translational sym-
metry (see also section 5.1). These symmetry classes are derived in this
appendix (the one~dimensional groups are considered in appendix 10).

Initially, the complete list of the ordinary point groups containing
8~ or 12-fold symmetry operations is deduced. For this, combinations
among the symmetry elements 8, §. ;g,~i§ and the crystallographic symmetry
elements must be considered. The procedure for determining these combi-
nations is similar to the one yielding the 32 classical point groups.
Thus, applying the method of the conventional crystallography (see e.g.
Buerger, 1963) it is found that the only combinations with the 2-~fold
rotation axis and the mirror plane are permissible. Working on these
1ines the ordinary point groups containing an 8- or 12-fold symmetry
operation are derived. These are given in table A9.1, whereas their
geometrical representations are shown in figure A9.1.

Having deduced the ordinary point 8r6UPB a complete enumeration
of the corresponding grey and black-white point groups is feasible. The
most comprehensive procedure for the determination of the new groups is
the one proposed by Boyle (1969)1 for the construction of non-crystal-
logrephic antisymmetry groups. |

The basic principle of Boyle's procedure is the classification
_ of the 32 ordinary point grours into families of ‘helving subgroups'Z

and thus forming the halving subgroup disgrams. The construction of



TABLE A9.1

The ordinary classes of 8- and 12=fold rotation or

rotoinversion axes

Group { Order Halving subgroups
8 8 4
8 4
8/m 16 4/m, 8, 8
8mm | 16 4mm, 8
8m2 16 422, 4mm, 8
g22 | 16 422, 8
8/mmm | 24 4/mmm, 8/m, 8mm, Bm2, 822
12 12 6
12 12 6
12/m | 24 6/m, 12, 12
12mm | 24 6mm, 12
Dn2 | 24 622, 6mm, 12
1222 | 24 622, 12
12/mmm | 48 6/mmnm, 12/m, 12mm, 1Zm2, 1222

Notes: (1)

(2)

The elements of each of the above groups are given
in tables A9.l1a and AS.1b.

The new symbolism is built up on the following
principles: each symbol gives from one to three
symbols for the elements which lie along special
directions. The latter are: the principal axis
(along which the non-crystallographic axis lies),
the secondary axis perpendicular to it and an axis
which is also perpendicular to the principal axis
and cuts the secondary axis at 22,5° (for 8-fold
groups) or 15° (for 12-fold groups).



TABLE A9}

Symmetry operations of the 8-fold point groups
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Symmetry operations of the 12-fold point groups
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Figure A9.1
Stereograms of the 8< and 12-fold point symmetry classes
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non-crystallographic antisymmetry groups requires the extension of these
'fqnilv trees' downwards or the establishing of new ordinary groups without
halving subgroups.

In the particular case, the 8~ and 12-fold classes belong to the
cl and 03 families respectively and therefore, the families are extended
" downwards. This is shown in figure A9.2. This figure is reproduced from
the corresponding diagrams given by Boyle (1969) but the Hermann-Mauguin
symbols are given instead of the Schonflie's notation and the 8~ and
12-fold ordinary groups are included. The horizontal rows contain groups
of the same order and adjacent rows differ ‘in order by a factor of 2.
The tie-lines relate a group G to its halving subgroups H above and the
groups of which it is halving subgroup below. |

As it has been mentioned in section 2.2 for any ordinary point
group G there exists a grey group given by MaG+CG (where C is the colour-
~4dentity operation) and a number of black-white point groups. The latter
are defined by ﬂsﬂ+g(G-l-l) where H is a halving subgroup of G, and G-H
means the set of elements of G that do not belong to H. It is immediately
clear from the last relation that the black-white point groups corresponding
+o an ordinary point group are equal in number to the halving subgroups
of the ordinary group.

Therefore, each tie-line in figure A9.2 defines a black-white group.
The lines comnecting crystallographic point groups correspond to the 58
-black-white groups found by Tavger & Zaitsev (1956). The rest of the
tie-lines correspond to non-crystallographic black-white point groups
of the 8- and 12-fold classes.

Applying this procedure the grey and black-white classes of the

8- and 12-fold axes are derived and the complete lists are given in



Figure A9.2

The *‘family trees' of (one-coloured) point groups used for the
construction of two-coloured point groups:

(a) the C1 family

(b) the C3 family

(c) the T (or cubic) family
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tables A9.2 and A9.3 respectively.
Footnotes 1: See also Tavger & Zaitsev (1956), Bertaut (1968),
Krishnamurti & Gopalakrishnamurti (1969) and Schelkens
(1970).
2: Halving subgroup is a subgroup of index 2, or alter-
natively stated, a subgroup which has half as many
elements as the point group in question.



TABLE A9,2

Antisymmetry point groups containing an
(ordinary or colour-reversing) 8-fold
rotation axis

Ordinary Grey Black=white
groups groups groups
8 81’ 8!
8 81 8
8/m 8/m1' 8'/m, 8/m*, 8'/m!'
8mm 8mm1' 8'mm', 8m*m*
8m2 8m21' | 8'm'2, 8'm2*, Em'2'
822 ga221' 8r22¢', 822
8/mmm | 8/mmmi!’ 8/m'm'm*', 8'/mmm*,
8/mm'm*, 8/m'mm,
8/m'm'm

Altogether 31 two-—coloured groups including the 7 ordinary

and 7 grey groups.



TABLE A9.3

Antisymmetry point groups containing an
(ordinary or colour-reversing) 12-fold
rotation axis

Ordinary Grey Black-white
groups groups groups
12 210 | 12f
12 o1 |12
12/m 12/m1* | 12/m*, 12'/m, 12'/m'
12mm 12mml' | 12m'm', 12'mm'
12m2 12m21' | 1Zm'2', I2'm2', 12'm'2
1222 12221 | 122'2', 12'22'
12/mmm 12/mmm1*| 12'/mmm*, 12'/m‘'mm’,
12/m'm'm*, 12/m'mm,
12/mm'm’

Altogether 31 two-coloured groups including the 7 ordinary
and 7 grey groups
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Appendix 10
ROD GROUPS CONTAINING 8- AND 12-FOLD ROTATION

(OR ROTOINVERSION) AXES

A figure without singular points and planes but with a singular
axis is called a rod and the singular axis in it is called the axis of
the rod. In addition to the translation axis, simple rotation, mirror-
-rotation and screw axes of any order may coincide with the axis of the
rod.

The principles for the deviation of the (one-coloured) symmetry
classes of rods is based on the fact that rods can not have inclined axes
or symmetry planes, since these would give rise to several rod axes,
whereas by hypothesis a rod can have only one singular or special axis.
Hence, in order to derive all classes of rod symmetry, only the types
of symmetry applicable to figures with a singular point can be used,
Therefore, translation axis, screw axis, glide-reflection plane are
located along the axis of the rod; additional derivative symmetry
elements (centres of symmetry, planes and two~fold axes perpendicular
to the rod axis, and mirror-rotation axes coinciding with the axis of
the rod) can be arise. The Bravais lattice for a rod is the one-dimen-
sional net, i.e. the primitive one-dimensional lattice (P)'

In this appendix the deviation of rod groups containing an 8-
or 12-fold axis is given. It is evident from the considerations above
that the 8- or 12-fold axis must coincide with the rod axis. It is,
thus, necessary to add the 8- or 12-fold point symmetry elements to the
trenslation to obtain the possible rod groups. Hence, it is required
to consider the combination of the translation and the new rotation
axes; in other words, the screv axss corresponding to 8- or 12-fold

rotations must initially be determined.
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These screv axes are characterized by the elementary angle q>-360°/8-
=45° or 360°/12=30° respectively, and also by the screw translation t-%t.
In the latter relation t is the elementary translation along the axis
of the rod, n is equal to 8 or 12 and J is the pitch component-.of the
screv axis.

Consequently, the screw axes isogonal with the 8- and 12~fb1& rota-

tion axes have translation components of t-%tha and T-Jﬁths of the trans-

lation ¢; or:

2 3 4 5 6. 7
ot, %t, 5t Bts Bt Bt» gt gt
8 9
§t' 'S't’ X X}

and

i, 2, 3, 4_5_6_7_ 8_9_ 10 11
ot, 13t 33t 13t Y BH Y BV B¢ Y b 3t

12, 13
rz't. 12t. LX N J

But note that only the first row of these sequences is really
distinct. The second row, for example, can be taken from the first row
by an elementary translation.

The results of this consideration for the 8- and 12-fold rotation
axes are listed in table A10.1. The pairs of enantiomorphic axes are
as follows: (8,, 87). (82. 8¢)s (83. 85). (_1.31. ;l_?,n). (;gz. _1310).
(12, 129), (124 125), (124 12,). |

Taking into account the operations of the 8- and 12-fold point
symmetry (appendix 9) and translation (including screw axes and glide
planes) the one~coloured rod groups are now derived (table A10.2). In

table A10.2 the symbol p of the translation group is given first; the



TABLE A10.1

8- and l12-fold screvw axes

n permissible screws
¢ n/4 n/4 n/4 /4 n/4 n/4 n/4 v/4
8 T 1., 2, 3. 4 5 6, 7
0 3t §t 8t §° & &° &
designation| 8 81 8, 83 8, 8 8g 37
& n/6 n/6 n/6 n/6 n/6 n/6 n/6 n/6 n/é Y6 n/6 n/6
12 T 1. .2 3 .4 5 6 7 8 9, 10 11
0 5t 15t 15t T2t 12 12° 12° 12° 12° 12° 12°
designation | 12 12, 12, 12, 12, 12; 125 12, 12, 12, 1210 1:211




TABLE Al10.2

Rod groups containing an 8= or 12-fold rotation axis

8=fold

12-fold

P8, Palo P821 P831 9840
985, PB » 987
R
p8mm, p8cc, P8, mm
¢822, 98122, 98222, 98322,
p8422, 98522, P8622’

F8722

P8/mmm, 984/mmm,

98/mcc

91_2_.9121. Pl?_zo Pl-z-s’ P-]-'-Z-A'
Pl'.z.st ri2q, P.].-.g7o P!'_z.eo
Pl2ge P12)or P12y

o

pl2/m, pl2s/m

pi2mm, pl2cc, Pl_zsmm

p1222, pl2,22, p12,22, 12,22,

P;l_2_422, P-1—2522' P_l_2622,
P_l_g722. p_lg822, P_1_2922.
p12,,22, pl2,,22
pi2am, PEZc
pl2/mmn, pl2./mmm,

pi2/mcc
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letter or number in the second, third and fourth positions of the symbol
indicate that a particular symmetry element coincides with the coordinate
axes a, b and the bisector of the angle between the axes b and ¢ (if no
symnetry axes or normal to symmetry planes coincide with the coordinate
axis the number 1 is placed in the corresponding position of the symbol,
or the position is left vacant). The coordinate axis a is directed along
the fod axis, and the axes b and c are orthogonal to the axis a and been
topologically different make a right or oblique angle with each other,
depending on the class of rod symmetry (8- or 12-fold).

The two-coloured rod groups containing 8- or 12-fold axes can be
derived by considering the one—cqloured rod groups (table A10.2) as
the 'generating! groups and at the same time the possibilitv of coloured
translation is taken into account, i;e. of a (second) black-white lattice
(Belov, 1956). Then, according to Belov & Tarkhova (1956) starting from
the monochromatic groups the grey srbups are written down. Next come
the two-coloured groups with uncoloured translation (p). These are obtained
by replacing in the monochromatic group symbol one (or more) symmetry
elements by coloured ones. Finelly the dichromatic groups with coloured
translation (P') are considered. The complete list of the two-coloured

rod groups containing the non—crys