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Abstract 

Ultra wideband (UWB) technology is intended to provide a high-data-rate short-range 

wireless communication solution for the forthcoming wireless personal area networks 

(WPAN). Efficient channel equalisation and estimation solutions are required to be 

robust against the severe frequency selective fading nature of UWB channels that causes 

the inter-symbol interference (lSI). 

Machine learning algorithms are concerned with the design and development of tech

niques that allow a computer to "learn" from observations. They have gained special 

importance with kernel-induced learning that maps highly nonlinear problems to lin

ear formulation. The recent advances in both computing and digital signal processing 

(DSP) have attracted many researchers to use machine learning for different real time 

applications. 

This thesis investigates and examines machine learning techniques for the application 

of channel equalisation and estimation for wireless communication systems. Emphasis is 

laid on the single-user direct sequence UWB (DS-UWB) system, aiming to outperform 

conventional time-domain and frequency-domain channel equalisation and estimation 

at a low computational complexity considering low signal processing complexity. The 

thesis contains three main contributions described as follows. 

First, a support vector machine (SYM) based equalisation structure is proposed, 

which utilises the promising classification performance of the SYM methodology for the 

purpose of estimating and equalising the frequency-selective fading channels in DS-UWB 

systems, and is effective to combat the lSI accordingly. The proposed system constructs 

block-by-block signal arrangement so that a bank of SYM based classifiers is employed at 

the proposed receiver. With comparable complexity settings, the proposed SYM based 
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equaliser significantly outperforms the conventional receivers in severe lSI conditions. 

The training complexity of the proposed equaliser is further reduced by employing the 

least squares support vector classifiers (LS-SVCs) with nearly identical performance. 

The detection complexity of the LS-SVC based equalisation can be reduced by imposing 

sparsity to LS-SVC. 

Second, a multi-criteria quadratic programming (MCQP) based equalisation struc

ture is proposed, aiming to produce improved performance over SVM by modifying the 

cost function in the SVM optimisation processing module, so that a better performance 

and a less training complexity are obtained. The MCQP based equaliser is applied for 

nonlinear time-variant channel and the results confirm a close performance to the typical 

optimal Bayesian detector. With a similar structure to that of SVM based system, the 

MCQP based equlisation and its sparse version are used and investigated for DS-UWB 

system. Expectedly, results show that the MCQP based equaliser outperforms the SVM 

based equaliser with better convergence in terms of required pilot size. On the contrary, 

the sparse version of the MCQP shows worse performance than sparse LS-SVC due to 

the multi-criteria being applied in optimisation. Furthermore, the MCQP has a high 

sensitivity to the kernel parameter. 

Third, probabilistic classification methods with sparse Bayesian inferred models are 

investigated, and a relevance vector machine (RVM) based equalisation structure is 

proposed. Two prediction criteria are adopted for the proposed equaliser: one with 

maximum a posterior (MAP) RVM model parameters, referred to as (MAP-RVM), and 

the other with integration (marginalisation) over the RVM model parameters distri

bution, referred to as (MRVM). The proposed equalisers are applied to the DS-UWB 

system and simulation results confirm the out performance of RVM based equaliser over 

the SVM and MCQP based equalisers with less sensitivity to kernel parameters. In 

particular, MRVM provides a performance very close to the case of frequency-domain 

equalisation (FDE) with perfect channel state information (CSI). 
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Chapter 1 

Introduction 

This introductory chapter gives a general overview and organisation of this PhD re

search. The presented aspects are: the introductory background and the motivation 

beyond this work, in Section 1.1; Research contributions are summarised in Section 1.2; 

then the organisation of the thesis in Section 1.3; A list of publications, produced during 

this PhD study, is provided in Section 1.4. 

1.1 Background and Motivation 

The increasing demand for wirelessly-connected devices with a huge data rate transmis

sion is inevitable, and the wireless communication community has continuously striven 

forward to tackle the challenges such as high throughput and low power consump

tion at wireless devices. Ultra wideband (UWB) communication systems [1, 2, 3] have 

an unprecedented opportunity to impact communication systems considering the men

tioned requirements. So that the enormous bandwidths available (by sending very short 

impulse-like pulses), the wide scope of the data rate/range tradeoff, and the potential 

for very-l ow-cost operation leading to pervasive usage. All these present a unique op

portunity for UWB to impact the way people interact with communications systems. 

In the past decades, UWB has been used for radar, sensing, and military communica

tions [4]. UWB systems have been proposed as an air-interface to the physical layer 

of wireless personal area networks (WPANs) in the IEEE 802.15 standards using the 

license-free spectrum [5], and many technologies have been proposed to implement these 
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UWB systems [6]. 

On the other hand, the UWB communication systems will face highly dispersive 

channels relative to the increased bandwidth and therefore high symbol rate. In other 

words, the channel characteristics in the UWB spectrum of operation suffer from severe 

inter-symbol interference (lSI) [5, 7], which, accordingly, causes tremendous degradation 

of the overall system performance. Therefore, a proper equalisation technique is required 

to mitigate the lSI effects. Some, but not too many, methods and techniques have been 

proposed from research community to combat the lSI in UWB as will be described in 

Section 2.5. The system performance in these proposals, however, was unsatisfactory 

for low-to-medium SNR range which corresponds to the assigned power level for UWB 

systems. Also, most of the performance improvements were based on the assumption 

that a perfect knowledge of the UWB channel is present. This motivates the research for 

more promising alternatives to tackle the performance issue, as well as the insufficient 

knowledge of channels information. 

Machine learning algorithms [8, 9] provide state-of-the-art technologies that solve 

many scientific and engineering problems. In particular, machine learning algorithms 

can effectively solve pattern recognition and function regression problems. The main 

task of a learning machine is to automatically discover the regularities in given data 

through the use of computer algorithm. In pattern classification, this can be interpreted 

as to find the class (or, label) of a given data point (or, vector) without precise knowledge 

of the underlying generating function of the data, by just training the machine with 

some known data (i. e. training set) from the same unknown generator. The statistical 

learning theory [10, 11] can be considered as a breakthrough to the development of many 

promising machine learning algorithms that are proved to improve the performance of 

solving many classification tasks in different fields. 

In the world of digital wireless communications, the recent advances in digital signal 

processing (DSP) technologies have inspired many researchers to apply the machine 

learning methodology in many communication applications. Most of the existing work 

perceives the communication task in hand as a pattern recognition solution. For in

stance, support vector classifiers (SVCs) have been applied for channel equalisation, 

2 



channel estimation [12, 13J and multiuser detection [14J. However, most previous work 

only considered simple theoretical (not practical) channels. Other examples are men

tioned throughout the text that follows. 

The thesis presents different performance-effective channel equalisation and estima

tion techniques of single-user DS-UWB systems based on machine learning algorithms, 

which all operate at the receiver side and are incorporated with each other to combat 

frequency-selective fading channels in DS-UWB systems considering realistic channel 

models that are globally approved. Both deterministic (i. e. single solution) and prob

abilistic learning models were investigated, and low complexity models were proposed 

incorporating sparsity at both training and detecting stages. The thesis reveals the ap

plication prospect of the proposed machine learning based equalisation and estimation 

in the impulse radio UWB communication system. 

1.2 Research Contributions 

The research conducted in this PhD study has produced the following main original 

contributions. 

• SVM based equalisation techniques are proposed for DS-UWB systems. An exten

sive investigation is provided for SVCs based equaliser. The investigation was de

veloped from basic wireless communication scenario to more realistic UWB chan

nel models. The least squares support vector classifiers (LS-SVCs) based equaliser 

is also proposed to reduce the training complexity of the SVC based equaliser 

without sacrifying much of the performance. Furthermore, sparse LS-SVCs based 

equaliser is proposed to reduce the detection complexity of the LS-SVCs based 

equaliser, with little performance loss compared to SVCs based equaliser. The 

performance and complexity analyses are discussed. 

• Multi-criteria quadratic programming (MCQP) based equalisation techniques are 

proposed and examined as a competitive alternative to standard SVM in both 

performance and complexity. The performance of MCQP equaliser has been in

tensively investigated in nonlinear channel equalisation scenarios and is also exam-
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ined for DS-UWB systems. A sparse version of MCQP based equaliser is proposed 

to reduce the detection complexity. The effect of imposing sparseness, learning 

convergence, and the sensitivity to kernel parameter are discussed . 

• Probabilistic learning models with Bayesian inference methodology are adopted 

to propose relevance vector machine (RVM) based equalisers. The performance of 

these equalisers is investigated and examined for nonlinear channel equalisation 

and for DS-UWB systems, with two variants of prediction strategies; the first is 

based on a single maximum a posterior (MAP) solution (MAP-RVM), and the 

other is based on marginalising the posterior of model parameters. The perfor

mance and the learning convergence of the proposed system are discussed. 

1.3 Thesis Organisation 

The work on this thesis has been arranged into 8 chapters, which are organised as 

follows. After this introductory chapter, an introduction and literature survey on UWB, 

including the general DS-UWB system model, are presented in Chapter 2. Chapter 

3 provides the fundamentals and main principle of the machine learning algorithms 

and the kernel-induced functions. The SVM based receiver for channel estimation and 

equalisation is proposed and discussed in Chapter 4. The MCQP based receivers are 

presented and discussed in Chapter 5. Chapter 6 proposes and describes the RVM based 

receivers. A comparison discussion to all of the proposed receivers is presented in the 

end of Chapter 6. The thesis conclusions are drawn in Chapter 7, with hints to more 

future work suggestions. 

1.4 Publication List 

A number of publications, that contributes to the thesis, has been arisen during the 

work on this PhD. They are listed as follows: 
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Journal papers 

• M. Musbah and X. Zhu, "Support Vector Machine based Equalisation for DS-UWB 

Systems" submitted to Wireless Communications and Mobile Computing. 

• M. Musbah and Xu Zhu, "Multi-Criteria Quadratic programming for DS-UWB 

Channel Equalization", to be used in the proposed work given in the later chapters. 

Conference papers 

• M. Musbah and X. Zhu, "Support Vector Machines for DS-UWB Channel Equali

sation," in Proc. International Conference on Wireless Communications, Network

ing and Mobile Computing, WiCom 2007, pp.524-527, Wuhan, China, September 

2007. 

• M. Musbah and X. Zhu, "Low-Complexity Equalization Based on Least Squares 

Support Vector Classifiers for DS-UWB Systems," in Proc. IEEE International 

Conference on Communications ICC 2009, pp.1-5, Dresden, Germany, June 2009. 

• M. Musbah and X. Zhu, "Multi-Criteria Quadratic programming based Low Com

plexity Nonlinear Channel Equalisation," in Proc. 17th European Signal Process

ing Conference (EUSIPCO 2009), pp 328-332, Glasgow, Uk August 2009. 

• M. Musbah and Xu Zhu, "Sparse Probabilistic Classification Models for Nonlinear 

Channel Equalization", submitted to IEEE International Symposium on Personal, 

Indoor and Mobile Radio Communications (PIMRC 2010). 
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Chapter 2 

Ultra Wideband Wireless 

Communication Systems 

This chapter introduces and presents the fundamental principles of wireless UWB com

munication systems. In particular, it considers the impulse-based format, since the work 

in this research considers this form in the applied algorithms. Also, a general DS-UWB 

system model is formulated to be used in proposed the proposed work in later chapters. 

The organisation of this chapter is as follows. A brief introductory background to the 

UWB system is presented in Section 2.1. The multiple access schemes for UWB sys

tems are summarised in Section 2.2. Section 2.3 presents the UWB channel modeling 

principles and the approved model that is widely adopted in literature. The general 

DS-UWB system model is provided in Section 2.4. Section 2.5 provides a description 

and basic simulations for the conventional receivers that are used in UWB systems. 

2.1 Introduction 

The ever-increasing demand for the amount of data transmission requires the increase 

in the available bandwidth for many applications (such as multimedia and number of 

communicating devices and so on). UWB technology is one of the promising solutions 

in terms of high-speed short-range wireless communication systems, or, in other words, 

a WPAN which links devices, both, and as diverse as, portable and fixed appliances, 

personal computers, and entertainment equipment [5]. Unlike conventional radio sys-
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terns which operate within a relatively narrow bandwidth, the impulse-based UWB 

system operates across a very wide radio spectrum (up to a few GHz), by transmitting 

a series of very short pulses which results in very high-resolution timing information 

[15]. Furthermore, UWB can also transmit a large amount of data at a data rate of 

several hundreds Mbps with an extreme low power over a short distance of a few meters 

[16]. In a multipath dominant environment, larger transmission bandwidth results in 

the ability to increase the resolution of multipath arrivals to a very fine level, which 

leads to reduced fading per resolved path, since the impulsive nature of the transmit

ted waveform prevents significant overlap and, hence, reduces possibility of destructive 

combining [17]. 

As a regulatory example, the federal communications commission (FCC), in USA, 

has regulated the power levels for UWB systems to be very low (below -41.3 dBm), 

which allows the UWB technology to co-exist with some services that also operate in 

subbands of 3.6-10.1 GHz, such as the global positioning system (GPS) and the IEEE 

802.11 WLANs. Figure 2.1 depicts the spectral mask mandated by FCC 15.517 (b,c) for 

UWB indoor systems [18]. Although UWB signals can propagate for greater distances 

at higher power levels, current FCC regulations enable high-rate (above 110 Mbps) 

data transmissions over a short range (10-15 m) at very low power spectral density. 

Major efforts are currently under way (some have been done and published) by the 

IEEE 802.15 working group for standardising UWB wireless radios for indoor (home 

and office) multimedia transmissions. Similar to the frequency reuse principle exploited 

by wireless cellular architectures, low-power, short-range UWB communications are also 

potentially capable of providing high spatial capacity, in terms of bits per second per 

square meter. In addition, the high resolution of UWB pulse enables the technology 

to be used in many ranging and location-determining applications such as radar and 

position estimation technologies [6]. 

To fulfill the above expectations and confinements, research and development on 

UWB have to cope with formidable challenges that limit their bit error rate (BER) 

performance, capacity, throughput, and network flexibility. Those include high sensi

tivity to optimal exploitation of fading propagation effects with pronounced frequency-
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Figure 2.1: The spectral mask mandated by FCC [18]. 

selectivity, low-complexity constraints in decoding high-performance multiple access 

protocols_ Also, the strict power limitations imposed by the desire to minimise interfer

ence among UWB communicators, and the coexisting with other systems, particularly 

GPS, aircraft radar, and WLANs [5], are challenging the design of UWB technologies. 

These challenges call for advanced DSP expertise to accomplish tasks such as channel 

estimation and equalisation [19]. 

A brief history of the UWB technology 

The modern era in the UWB started in the early 1960s from work in time-domain 

electro magnetics and was led by Harmuth at Catholic University of America, Ross 

and Robins at Sperry Rand Corporation, and Van Etten at the United State Air Force 

(USAF) Rome Air Development Centre. Harmuth's work culminated in a series of books 

and articles between 1969 and 1990 [20]. Harmuth, Ross, and Robins all referred to their 

system as baseband radio [4]. During the same period, engineers at Lawrence Livermore, 

Los Alamos National Laboratories (LLNL and LANL), and elsewhere performed some 

of the original research on pulse transmitters, receivers, and antennas [2]. 

A major breakthrough in UWB communications occurred as a result of the devel-

opment of sampling oscilloscope by both Tektronix and Hewlett-Packard in the 1960s 
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[2], These sampling circuits not only provided a method to display and integrate UWB 

signals, but also provided simple circuits necessary for sub-nanosecond, baseband pulse 

generation. In the late 1960s, Cook and Bernfeld published a book that summarised 

Sperry Rand Corporation's developments in pulse compression, matched filtering, and 

correlation techniques [20]. The invention of a sensitive baseband pulse receiver by 

Robbins in 1972, as a replacement of the sampling oscilloscope, led to the first patented 

design of a UWB communication system by Ross at Sperry Rand Corporation [4]. 

By the early 1970s, the basic designs for UWB radar and communication systems 

evolved with advances in electronic component technology. The first ground-penetrating 

radar based on UWB was commercialised in 1974 by Morey at the Geophysical Sur

vey Systems Corporation [20]. In 1994, McEwan at LLNL developed the Micropower 

Impulse Radar (MIR), which provided a compact, inexpensive and low power UWB 

system for the first time. 

Through the late 1980s, the UWB technology was alternately referred to as base

band, carrier-free or impulse the term "ultra wideband" not being applied until ap

proximately 1989 by the U.S. Department of Defense. By that time, UWB theory, 

techniques and many hardware approaches had experienced nearly 30 years of extensive 

development. By 1989, for example, Sperry had been awarded over 50 patents in the 

field covering UWB pulse generation and reception methods, and applications such as 

communications, radar, automobile collision avoidance, positioning systems, liquid level 

sensing and altimetry [21]. 

In 1993, Robert Scholtz at the University of Southern California wrote a landmark 

paper that presented a multiple access technique for UWB communication systems 

[22]. With a viable multiple access scheme, UWB became capable of supporting not 

only radar and point-to-point communications but wireless networks as well. 

Recently, there has been a rapid expansion of the number of companies and govern

ment agencies involved with UWB, growing from a handful in mid 1990s that included 

Multispectral Solutions, Time Domain, Aether Wire, Fantasma Networks, LLNL and a 

few others, to the plethora of today's players. These companies and many governmen

tal bodies have spent many years investigating the effect of UWB emissions on existing 
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narrowband systems. The results of those studies were used to inform the FCC of how 

UWB could be allowed to operate [2]. In 2003, the first FCC certified commercial sys

tem was installed, and in April 2003 the first FCC-compliant commercial UWB chipset 

wes announced by Time Domain Corporation [23]. 

UWB Signalling 

In this subsection, the fundamental properties of the UWB signal have been investigated. 

In the context of UWB, there are two common forms of UWB signals: one based on 

sending very short duration pulses to convey information, referred to as impulse radio 

UWB (IR-UWB), and another approach using multiple simultaneous carriers, referred 

to as called multicarrier UWB (MC-UWB). Each approach has its relative technical 

merits and demerits. This research will primarily focus on IR-UWB since the most 

common form of MC-UWB modulation, orthogonal frequency division multiplexing 

(OFDM), has been extensively investigated in the context of wideband OFDM. Hence, 

and for convenience, the term UWB will be used through the research instead of IR

UWB. 

So far two UWB technologies have been proposed to the IEEE 802.15.3a task group 

TG3a: 1) direct-sequence UWB (DS-UWB) [2], supported by the UWB Forum [24]; 

2) multi-band orthogonal frequency division multiplexing (MB-OFDM) UWB [4], sup

ported by the WiMedia Alliance [25]. After numerous attempts by each proposer and 

several discussion sessions to choose one of the two UWB technologies for wireless per

sonal area networks (WPANs), no conclusion was reached. As a result, the plan for 

a unique standardisation process by the IEEE 802.15.3a task group (TG3a), has been 

withdrawn. Hence, it is expected that both the DS-UWB and MB-OFDM UWB tech

nologies will coexist in the future [26]. 

Advantages of IR-UWB 

In addition to its high data rate capabilities, the impulse radio UWB technology has 

some attractive advantages. The following list summarises the most significant benefits 

that are expected from UWB systems: 
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• Firstly, it is a baseband modulation and demodulation technology, therefore, the 

systems become less complex, allowing for significantly lower cost and smaller size, 

since they do not use any RF jIF conversion stages [15]. 

• Secondly, because of the combination of large spectrum, lower power, and pulse 

shaped data, the impulse radio system has very high multipath resolution, which 

leads to the reduced fading and thus improved communication quality, as well as 

granting higher level of security and privacy than narrowband radio systems [17]. 

• Thirdly, the repetition period of the pulse is very large compared with the pulse 

duration, which has two advantages: one is that using time hoping multiple access 

technology, the impulse radio system can accommodate many users; the other is 

that the power spectral density is very low, so the impulse radio system has very 

little impact on other narrow band systems operating in the same frequency range 

[27]. 

• Eventually, the possibility of using both precise ranging (object location) and high 

speed data communication in the same wireless device, which introduces new de-

vices and applications. For example, collision avoidance radar and communication 

can give accident-free smooth traffic flow [18]. 

UWB signal definition 

The UWB signal is defined as a signal with bandwidth greater than 20% of the centre 

frequency (this percentage represents the fractional bandwidth) [19] or greater than 500 

MHz of absolute bandwidth [17]. Unlike conventional communications, UWB does not 

use a sinusoidal carrier to convey information. Instead, the transmit signal is a series 

of extremely short baseband pulses (in nanoseconds), to obtain a bandwidth of several 

GHz. In general, the transmit signal can be mathematically represented as [1] 

00 

s(t) = L Ap(t-iTf) (2.1) 
i=-oo 

where A is the amplitude of the pulse which, for binary coding, equals to ±jE; , with 

Ep denoting the energy per pulse, p(t) is the transmitted pulse shape with normalised 
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energy, and Tf is the frame repetition time which is defined as the time interval in which 

one pulse is transmitted. An important note one should realise is that the pulse width 

(duty cycle) is much smaller than frame repetition time Tf. Most practical systems will 

use some form of pulse-shaping to control the spectral content to conform to spectrum 

restrictions. UWB symbols usually contain a group of repeated, or formatted, pulses so 

that the symbol duration Ts equals to NTf. The general form in (2.1), however, is to 

be mapped according to the information via some sort of modulation as will be shown 

soon. 

UWB pulse shapes 

The most common form for the pulse shape in the literature on UWB, is Gaussian and 

its derivatives [2] as they are easy to describe and work with. The Gaussian pulse shape 

can be formulated in the following form: 

(2.2) 

where Ko is a power normalising factor. The second derivative of a Gaussian function 

with zero-mean, also known as a Gaussian Doublet, is illustrated in Figure 2.2(a). The 

idealised Gaussian Doublet pulse can be expressed as following 

(2.3) 

where Tm is a parameter determining the time and frequency characteristics of the 

Gaussian Doublet pulse. This pulse is often used in UWB systems because of the 

simplicity of its generation. It is simply a square pulse which has been shaped by the 

limited rise and fall times of the pulse and filtering effects of the transmit and receive 

antennas. A square pulse can be generated by switching a transistor on and off quickly. 

The spectrum of the Gaussian Doublet is shown in Figure 2.2(b). The centre fre

quency can be seen to be approximately 5 GHz, with the 3 dB bandwidth extending 

over several GHz. 
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Figure 2.2: (a) Idealised UWB pulse shape and, (b) idealised spectrum of a single UWB 
pulse [18]. 

UWB signal waveform simulator 

This simulation is aimed to generate a UWB pulse shape according to second derivative 

Gaussian waveform. Figure 2.3 depicts the output of the generator for 2 ns of pulse 

width and 10 ns of repetitive duration. The sampling frequency is 20 GHz. 

The power spectrum of this signal is provided in the following diagram (Figure 2.4). 

It can be noticed that the 10 dB bandwidth of this signal is approximately 600 MHz. 

UWB signal modulation 

The ultra wide bandwidth and exceptionally narrow pulses (the carrierless nature) of 

UWB signals make it difficult to employ conventional narrowband modulation tech

niques in UWB systems [3]. However, the transmitted pulses should be characterised' 

in some manner to convey information, i. e., modifying Equation (2.1) to include infor-

mation bearing contents. 

The modulation schemes that are used in UWB can be categorised into two broad 

types: 1) the time-based techniques. The most common method in this category is the 

pulse position modulation (PPM) [28] where each pulse is delayed or sent in advance of a 

regular time scale. 2) the shape-based techniques. Many considerable methods are laid 

in this category. The common method is the bi-phase modulation (BPM) where pulses 

are created with opposite phase [18]. Also, shape-based modulation can be attained 

via generating special forms of orthogonal pulses as in orthogonal pulse modulation 
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(OPM). Some of the conventional forms of modulation are also used in shape-based 

UWB systems. This includes the pulse amplitude modulation (PAM) in which digital 

information is contained by varying the amplitude of transmitted pulse. Binary phase 

shift key (BPSK) can be considered as a special case of both PAM and BPM. On-off 

keying (OOK) is another well-known method that can be employed in modulating UWB 

pulses [19]. 

More recently, an M-ary code shift keying (MCSK) impulse modulation has been 

proposed in [29], where the effect of multipath-delayed pulses on M decision variables 

was explicitly provided in terms of channel impulse response coefficients. By randomis

ing locations of the transmit pulse, the MCSK demonstrates a performance gain over 

M-ary pulse position modulation (MPPM) as it reduces the effects of multipath delays 

on the decision variables. 

2.2 Multiple Access Schemes for UWB Systems 

One of the most important issues that have to be considered in designing a communi

cation system is the multiuser capabilities since single user detection is typically sub

optimal [17]. A number of multiple access schemes have been proposed to enable a 

channel-sharing purpose for multi-user networking. The major access schemes for the 

pulse based UWB are: the time hopping (TH) UWB, and the direct sequence (DS) 

spread spectrum UWB. The following will provide a brief overview of these schemes 

[30]. 

TH-UWB 

In TH-UWB, each data symbol, or frame duration, is divided into Ne chips of duration 

Te. Each user is assigned a unique pseudo-random time shift pattern, hu,n, where u is 

the user index, called a TH sequence, which provides an additional time shift to each 

pulse in the pulse train. The nth pulse undergoes an additional shift of hu,nTe, where Te 

is also the duration of an addressable time delay bin [22]. The addressable TH duration 

must be strictly less than the frame time [30]. 

In order to mathematically represent the typical TH-PAM UWB signal, consider 
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the following formulation 

00 

SC;:k-PAM(t) = L VEsbu,nP (t - nT, - hu,nTc) , (2.4) 
n=-oo 

where Es is the symbol energy, bu,n is the nth symbol for the uth user, and p(t) is the 

applied pulse shape. 

DS-UWB 

The symbols in DS-UWB are represented by a sequence of pulses that are pulse

amplitude-modulated to the corresponding symbol. The modulation schemes that are 

used accompanying DS can be summarised as PPM and PAM. For binary DS-PPM

UWB systems, information bit 1 is represented by a frame of zero delay shift, and 

information bit 0 is represented by the same frame of pulses but with a delay of T 

relative to the time reference. 

In DS-PAM systems, the information bits are represented by bipolar pattern of the 

pulse sequence [30]. As an example of a binary DS-PAM UWB system, the transmit 

signal for the uth user can be mathematically expressed as 

00 Nc 

S~1_PAM(t) = L VEsbu,n LP (t - nT, - Cu,iTc)' (2.5) 
n=-oo i=l 

where Cu,i is the ith component of the uth user spreadingcode. 

Low cross-correlation ternary codes 

The ternary codes have shown superior performance in terms of signal correlation [31]. 

Hence, it is being widely used for impulse-based DS-UWB systems and, subsequently, 

is adopted for IEEE 802.15-03/334r5 proposals [32]. Ternary direct sequences includes 

bursts of zero signal amplitude as a natural extension of the typical binary antipodal 

format. An example of designing a low cross-correlation ternary codes can be found in 

[31] where zero correlation zone sequences have been proposed. 
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TH-UWB vs. DS-UWB 

The multiple accessing capability of these approaches depends on a variety of factors 

that contribute to multiple access interference (MAl) at the receiver detector input, 

namely, the properties of the respective sequence design and the type of receiver used. 

In [33], it is concluded that, with a matched filter receiver, DS-UWB multiple access is 

more suitable for higher rates, as it can accommodate more users compared to TH-PPM 

for a given BER. At lower data rates, the multiple accessing capacity of the two systems 

are approximately the same. In such cases, TH-PPM may be preferable over DS-UWB, 

since it is potentially less susceptible to the near-far effect. For a multiuser detector, 

the system capacity of the two approaches are approximately the same. 

2.3 Channel Modeling 

In order to evaluate the performance of any communication system, as well as to design 

a receiver, it is necessary to have a good knowledge of how this system behaves on 

the signal transmitted through it. Such behaviour includes attenuation, delay, and all 

possible factors that may distort the signal. This requires to develop a sufficient math

ematical model representing the overall relationship between transmitted and received 

signals. Generally, for wireless channels, there are two prevalent types of modelling of 

electromagnetic (EM) wave propagation. The first can be termed Deterministic M od

elling, which attempts to model the exact interaction of the EM wave in the specific 

environment of interest. This type is often used to predict coverage patterns in wireless 

systems when detailed information concerning the environment is available. The second 

type of modelling attempts to model the relevant statistics of the received signal and is 

called Statistical Modelling. Statistical modelling is particularly useful in communica

tion system development where the system must work in a wide variety of environments 

[2]. The statistical models will be discovered and studied in this research. 

2.3.1 Overview of Wireless Channel Propagation 

Mainly, propagation models are classified into two categories: large scale and small 

scale. Large-scale models predict the mean signal strength for the transmission distance. 
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These models are useful in estimating the radio coverage area of the transmitter. The 

small-scale propagation models, on other hand, characterise the rapid fluctuations of 

the received signal strength over very short travel distances or short time durations [34]. 

2.3.2 UWB Channel Modelling 

For UWB systems, the most potential operational environment is the indoor channel 

because of the low transmission power that restricts UWB communications. Therefore, 

UWB channel modelling will concern the effects of small-scale propagation much more 

than large-scale models. In addition, the model should be relatively simple to use in 

order to allow physical layer (PRY) proposers to use it and evaluate the performance of 

their proposals in typical operational environments. Currently, the IEEE802.15.3a [35] 

is an approved model for UWB channels which concludes many indoor-channel models 

that are considered to match the PRY UWB operational environment. 

IEEE 802.15.3a standard 

In November 2002, the channel modelling subcommittee of the IEEE 802.15.3a Task 

Group [35] recommended a channel model which includes the previous proposals and 

refinements that capture the important characteristics of UWB channel. This model is 

basically a modified version of the Saleh-Valenzuela (8-V) model [36], where the average 

multipath power is considered to be distributed following a Log-Normal pattern instead 

of Rayleigh distribution, and multi path components have a phase shift of either 0 or 

7r instead of uniformly distributed phases. The total number of paths is defined as 

the number of multipath arrivals with expected power within 10 dB from that of the 

strongest path [7]. 

In the proposed model, according to the 8-V model, multipath components are as

sumed to arrive in exponential power decaying groups (described as clusters), and the 

time arrival for each cluster follows a Poisson's process with a rate of A. Within each 

cluster, the paths also have exponential power decaying and arrive following Poisson 

distribution with rate A > A [19]. The time arrivals of the clusters and inside com

ponents, however, are defined by the exponential distributions which are represented 
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respectively by 

P(Tm I Tm - 1) = Ae-A(Tm-Tm-l), m> 0 

P(~ I ~ -1) = ),e-A(Tm,n-Tm,n-l) n> 0 m,n m,n , 

(2.6) 

The channel impulse response (CIR) can be expressed as 

00 00 

h(t) = XL L am,nejOm,no(t - Tm - Tm,n) (2.7) 
m=On=O 

where Tm + Tm,n (Tm,O = 0) denotes the arrival time of the nth multipath component of 

the mth cluster, Bm,n are equally distributed values of 0 and 71", and O!m,n are independent 

Log-Normal random variables with power decaying as shown in Equation (2.8) below, 

where r > 'Y. 

(2.8) 

The model also includes a shadowing term X to account for the total received mul

tipath energy variation that results from blockage of the line-of-sight (LOS) path. The 

shadowing factor is also Log-Normal distributed. 

Since it is difficult to match all possible channel characteristics, the main character

istics of the channel that are used to derive the above model parameters are chosen to 

be the following: 

• Mean excess delay 

• Root mean squares (RMS) delay spread 

• Number of multipath components (defined as the number of multi path arrivals 

that are within 10 dB of the peak multipath arrival) 

• Power decay profile 

The main channel characteristics that are used by the Task Group subcommittee to 

determine the model parameters are the first three above, since the model parameters 

are difficult to match to the average power decay profile. Table 2.1 lists some initial 
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Table 2.1: Multipath channel target characteristics and model parameters [35]. 
I Target Channel Characteristics5 I CMl l I CM22 I CM33 I CM44 I 

Mean excess delay (ns) 5.05 10.38 14.18 
RMS delay (ns) 5.28 8.03 14.28 25 

NP 10dB 35 

NP (85%) 24 36.1 61.54 
Model Parameters 
A (l/ns) 0.0233 0.4 0.0667 0.0667 
A (l/ns) 2.5 0.5 2.1 2.1 
r 7.1 5.5 14 24 

'Y 4.3 6.7 7.9 12 
Model Characteristics 
Mean excess delay (ns) 5.0 9.9 15.9 30.1 
RMS delay (ns) 5 8 15 25 
NP 10dB 12.5 15.3 24.9 41.2 

NP(85%) 20.8 33.9 64.7 123.3 
Channel energy mean (dB) -0.4 -0.5 0.0 0.3 
Channel energy std (dB) 2.9 3.1 3.1 2.7 
1, ThIS model IS based on LOS (0 - 4m) channel measurements. 
2This model is based on NLOS (0 - 4m) channel measurements. 
3This model is based on NLOS (4 - 10m) channel measurements. 
4This model was generated to represent an extreme NLOS multipath. 
5These characteristics are based upon a 167ns sampling time. 

model parameters for a couple of different channel scenarios (NLOS refers to non LOS) 

that were found through measurement data. 

IEEE802.15.4 

The IEEE established the 802.15.4 Study Group to define a new physical layer concept 

for low-data-rate applications. The IEEE802.15TG4 is chartered to investigate low-

data-rate solutions for very low power and very low complexity systems. It is intended to 

operate in unlicensed, international frequency bands. Potential applications are sensors, 

interactive toys, smart badges, remote controls, and home automation, etc. [37]. 

Discrete UWB indoor channel model 

The CIR model in Equation (2.7) can be finitely re-expressed as 

CL K 

h(t) = L L ai,k6(t - Ti - Ti,k) (2.9) 
i=l k=l 
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where Ii is the delay of the ith (i = 1, ... , CL ) cluster, and Ti,k is the delay of the kth (k = 

1, ... , K) path within the ith cluster relative to Ii. Ti and Ti,k are described with a double

Poisson process and are rounded to integer multiples of the delay resolution Te. ai,k = 

Pi,k~i,k is the path gain of the kth path within the ith cluster, where Pi,k E {+ 1, -I} 

denotes the equally-likely random polarity (the possible phases for real coefficients), and 

the fading amplitude ~i,k is real valued and follows the lognormal distribution [7]. 

With Texe denoting the multipath delay spread, L = TexciTe is the total number of 

paths, and hl is the sum of all ai,k at time index L where L = l(Ti + Ti,k)/Tej. Due to 

clustering of multi path components [38], the channel does not necessarily have multipath 

arrivals within each delay bin. This is accounted for by setting hl = 0 for any LTc that 

has no path arrival. Therefore, the CIR of Equation (2.9) can be simplified to 

L 

h(t) = L hle) (t - (I - I)Te) (2.10) 
l=1 

This discretised model that represents the CIR can be further expressed by a Ne(LGI + 

M) X Ne(Lcr + M) matrix H [39] as follows: 

o o 

(2.11) 

o 

2.3.3 UWB Channel Realisations 

As shown in Subsection 2.3.2, the proposal of the IEEE802.15.3a working group is the 

widely known standardisation for indoor UWB channel modelling. In this experiment, 

100 channel realisations of this standard have been implemented and discretised to a 

time resolution of Te = O.I67ns according to the specifications discussed in Subsection 

2.3.2. Two environments have been considered in this simulation: CMI for LOS sce-

nario, and CM3 for medium-range NLOS scenario. The results of these realisations 

have been included in the following figures and descriptions. These scenarios will be 
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(a) CM! (b) CM3 

Figure 2.5: Channel impulse response 

(a) CM! (b) CM3 

Figure 2.6: RMS delay spread 

adopted for the rest of the work in this study. 

The CrRs of both CM1 and CM3 are shown in Figure 2.5, and it is clearly noticed 

that the NLOS model in CM3 has a longer excess time delay (much more time dispersive) 

than the LOS scenario in CMl. The RMS time delay for both channel models in 100 

realisations is illustrated in Figure 2.6, where the thick-dashed line of both graphs 

represents the average of TRMS , and results show that TRMS = 5 ns for CM1, and 

TRMS = 15 ns for CM3. 

Figure 2.7 depicts the power-delay profile (in dB) of each of the tested channels. The 

graphs in Figure 2. 7( a) and Figure 2. 7(b) show that the significant power components 

are laid very close to zero for CM1 (i. e. most power is in direct LOS), whereas the 

significant power components for CM3 are distributed over a wider range of time delay. 
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Figure 2.8: Number of significant paths within 10 dB from maximum path 

The number of significant power components are shown in Figure 2.8 and Figure 2.9. 

These numbers are calculated for two criteria: one is the number of power components 

within 10 dB of maximum path power, i.e., Figure 2.8; the other is to evaluate the 

number of paths that contain 85% of the total channel energy, as shown in Figure 2.9. 

The average numbers of significant paths are indicated by thick-dashed lines. Their 

values are: NPlOdB = 12.5 and NP85% = 20.8 for CMl, and NPlOdB = 24.9, NP85% = 

64.7 for CM3. 
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Figure 2.9: Number of significant paths that contain 85% of energy 

2.4 DS-UWB System Model 

The work in this study focuses mainly on the design of machine learning based single

user receivers for high data rate DS-UWB systems. This section describes the general 

structure of the DS-UWB system model that contains design of the transmitted and 

the received signals. The system model is used for the proposed machine learning based 

receivers in later chapters. 

Under anticipated regulations, as mentioned in Section 2.1, UWB transmit power 

will be likely to be limited by the power spectral density (PSD) of the transmitted signal, 

affecting the choice of modulation in two ways. First, the modulation technique needs 

to be power efficient [40]. Second, the choice of a modulation scheme has effects on the 

structure of the PSD and thus has the potential to impose additional constraints on the 

total transmit power. DS-UWB suggests a reasonable choice ofUWB system models. In 

DS-UWB modulation, a number of pulses, representing chips, are sent per bit duration. 

The chip pulse sequence corresponds to a short pseudo-random code sequence for the 

uth user, analogous to code division multiple access (CDMA) [30]. 

2.4.1 Transmitted Signal 

Figure 2.10 illustrates the overall transmitting system model of a binary DS-UWB sys

tem. The transmit signal is designed so that the information symbols bm E {-I, + I} (m = 

1, ... , M), which are of unit energy, are arranged in blocks of length M by a serial-to-
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Figure 2.10: System model of the DS-UWB transmitter 

parallel (SIP) converter for spreading by a ternary code. Then, a guard interval (GI) of 

LGI zero symbols is prefixed to each block, in order to mitigate the effect of inter-block 

interference (IBI). A whole transmission session is represented by a packet, which con

sists of P pilot blocks for training and B data blocks for communicating. The packet 

structure is illustrated in Figure 2.10(a). The jth extended (GI-inserted) block is ex

pressed as bGI(j) = [OIGI b1 ·-- bMjT where 01 denotes an all-zero column vector oflength 

t. The discrete-time signal representation will be used throughout the work. 

Considering a single user transmission, a ternary spreading code S = [SI S2 __ . sNcjT 

is used, where Sk E {-1,0,1} (k = 1,--.,Nc), and Nc is the spreading code length (in 

chips). The jth block after spreading can be evaluated by 
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s 
bDS(j) = bGI(j) (2.12) 

s 

where the spreading matrix is of size Nc(M + LeI) x (M + LeI), or in vector compact 

formulation, b DS can be expressed as 

(2.13) 

2.4.2 Received Signal 

For block-by-block transmission, the discrete-time form of the lh received signal block 

can be expressed as 

rGI(j) = HbDs(j) + v(j) (2.14) 

where H is the UWB channel matrix defined in Equation (2.11), v(j) is an additive 

white Gaussian noise (AWGN) vector whose elements are independent Gaussian random 

variables with zero mean and variance (j2. The GI samples (the first NcLGI chips of 

each block) are then removed from rGI so that the jth received signal can be defined as 

r = [rGI [NcLGI + 1J ... rGI [Nc(LGI + M)JJT (2.15) 

2.5 Overview of Receivers for DS-UWB Systems 

This section presents and describes the conventional receivers for UWB systems in the 

literature. In particular, it discusses the problem of channel estimation and equalisation. 

The presentation comprises of two general subsections for the UWB channel estimation 

and equalisation, followed by detailed description and simulations of two conventional 

receivers for DS-UWB systems. The discussion of UWB channel equalisation techniques 

will mainly focus on DS-UWB, because of its similarity to other signaling format and its 
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utilisation for the applications of machine learning algorithms in the rest of the research. 

2.5.1 UWB Channel Estimation 

In the equalisation process, i. e., in order to compensate for the channel effects, a good 

knowledge of the channel impulse response is necessary at the receiver. Hence, an 

appropriate channel estimation method is very important, especially for UWB channels 

where when the CIR is long and large number of parameters have to be taken into 

account [19]. 

The impulse response estimators for UWB channels have been developed in [41] and 

[42] based on the maximum-likelihood (ML) criterion, The input-output channel identi

fication algorithm in [41] uses a single transmitted pulse in the absence of MUI; whereas 

the approaches in [42] form impulse response estimates using either training symbols, 

referred to as data-aided (DA) or unknown information-conveying symbols, referred to 

as non data-aided (NDA). Both DA and NDA channel estimators are tested in [42] over 

a fixed channel with three multipath components. The formidably high sampling rates 

required by the UWB increases the computational complexity of the optimal ML esti

mators to a prohibitive complexity, as the number of multipath components increases. 

For instance, the number of parameters to be estimated, i.e., the number of delays and 

amplitudes, can be as large as 400 for a typical UWB indoor channel. 

For more practical indoor UWB channel estimators, however, suboptimal ML-based 

estimators are adopted. The sliding window (SW) or sliding correlator, with the help 

of known pilot symbols, is widely used in the literature (e.g., [43] and [44]), where the 

algorithm cross-correlates the received pilot signal with the transmitted known pilot in 

order to calculate channel gains and delays. 

Another suboptimal estimator is the successive channel estimator (SC) which has 

originally been proposed for DS-CDMA systems in [45]. In the SC algorithm, the SW 

is used in an iterative manner to search for the strongest path, then a delayed version 

of signal is subtracted from the received signal accordingly, and so on until the number 

of assigned taps of the estimator is evaluated. 

Furthermore, the characteristics of the frequency response of the UWB channel can 
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also be estimated using the frequency-domain (FD) channel estimation methods. FD 

channel estimators show fast convergence and lower complexity. To this end, a recur

sive least squares (RLS) algorithm has been adopted in [46] to independently operates 

over channel frequency bins. More recently, an FD based channel estimator has been 

proposed in [47] by deriving a lower MSE bound for the linear minimum mean squared 

error (LMMSE). 

2.5.2 Channel Equalisation for DS-UWB Systems 

In general, most digital communication channels can be represented by bandlimited 

filters with an impulse response of htr(t) and a frequency response of Htr(f). Hence, 

the transmission is degraded by the channel. The intersymbol interference (lSI) can be 

considered as one of the main distortions of broadband wireless channels [48]. In UWB 

systems, lSI is mostly occurred due to the overlapping among the transmitting frames 

of pulses. 

Channel equalisation for wireless communication systems 

In the context of wireless communications, equalisation compensates for the lSI caused 

by time dispersive channels [34]. In a broad sense, equalisers can be categorised into two 

main types: linear and nonlinear equalisers. A linear equaliser is typically implemented 

as a finite impulse response (FIR) filter, called the feedforward filter, in which the current 

and past values of the received signal are linearly weighted by the filter coefficients and 

summed to produce the equaliser output. A nonlinear equaliser known as the decision 

feedback equaliser (DFE) consists of a feedforward filter and a feedback filter. Both 

the linear equaliser and DFE can be implemented either in the transversal or lattice 

structure [34]. 

Linear equalisers are widely used in modern communication systems. However, they 

are less effective in the high-lSI environments where the channel distortion is too severe. 

Two designs are commonly used in linear equalisation, and they are the zero-forcing 

solution [49] and the minimum mean square error (MMSE) solution [48]. The zero

forcing design is effective in combating lSI but suffere from a serious noise enhancement 
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problem. The MMSE design is often preferred in practice. 

On the other hand, the nonlinear equalisers can perform well on channels with 

much severe time dispersion where their spectrals have deep nulls in the passband [48]. 

Therefore, nonlinear equalisers are mostly used in practical wireless communication 

systems. Three main methods have been developed for nonlinear equalisers, including 

decision feedback equalisation (DFE), maximum likelihood symbol detection [34J and 

maximum likelihood sequence estimation (MLSE) [49]. 

UWB channel equalisation 

Due to the very dispersive effects of UWB channels, it can be arguably stated that the 

issues of UWB channel estimation and equalisation are the most challenging aspects 

in designing and implementing the physical layer for UWB systems. Many researchers, 

therefore, have proposed different techniques and strategies for this purpose. 

The mechanism of energy capturing and lSI combating of a multi path fading chan

nels was adopted via RAKE receivers. RAKE receivers were employed in [50] based 

on decorrelation effect. In [51], a combined RAKE and an MMSE equaliser structure 

was proposed for the UWB systems. The RAKE receiver concatenated with the MMSE 

equaliser was also constructed in [52] for the DS-UWB system. Different versions of 

matched-filter bound (MFB) were derived for DS-UWB in [53], where a BPSK modu

lation with the square-root raised cosine (RC) was proposed. A tap selection method 

using the matching pursuit (MP) algorithm with quadratic constraint was proposed in 

[54]. 

More recently, some other techniques were proposed for DS-UWB equalisation such 

as the combination of received response sequence at the transmitter and matched filter

equaliser-RAKE [55J. Also, spatial diversity schemes were considered in DS-UWB equal

isation as proposed in [56], or jointly with pre-equalisation and pre-RAKE [57J. 

Because of the receiver complexity issues for the mentioned time-domain equalisers, 

some FDE based techniques were proposed, including the DS-UWB system with MMSE

FDE in [58], channel estimation and equalisation in the FD in [44], and the FD turbo 

equalisation in [59]. 
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Figure 2.11: RAKE receiver structure for DS-UWB. 

2.5.3 RAKE Receiver for DS-UWB Systems 

As mentioned in Subsection 2.5.2, the RAKE receiver demodulator is conventionally 

used to detect DS-UWB signals, due to its simple implementation. Typically, for low 

symbol rates, it can be used for multiuser detection (MUD), and, for high symbol rates, 

it can be used to mitigate the frequency-selective channels' effect. This subsection 

briefly describes the structure and functionality of RAKE receiver. Detailed discussion 

on RAKE receiver can be found in [44], [60]. 

The general structure of RAKE receiver is illustrated in Figure 2.11. It consists of 

Lj correlators followed by a RAKE combiner. The reference signature, Srej(t), is the 

DS code signature of the user. Each correlator correlates the received signal with the 

reference signature at the delay times Tfz ' and integrates over one symbol duration 

(Tj). The lth correlator output Z}l for the lh desired symbol is given by: 

(2.16) 

where Tjl is the delay time of the lth path within one symbol duration. 

Different combining criteria are used to select the number of RAKE fingers, which 

is normally less than the number of channel taps. The most common types of RAKE 

receivers includes all RAKE (ARAKE), partial RAKE (PRAKE), and selective RAKE 

30 



(SRAKE) [61]. However, RAKE receivers require good channel estimation technique in 

order to obtain a satisfactory performance. 

RAKE receiver simulation 

Here, the performance of the conventional RAKE receiver [44][60] is investigated and 

examined for DS-UWB systems. The maximal ratio combining (MRC) SRAKE receiver 

[61] is used. In MRC SRAKE (denoted by RAKE for convenience), the RAKE fingers 

corresponding to the Lj strongest estimated path gains with the delay times Tfl (l = 

1,2, ... , Lf) are selected. 

Assuming binary transmission scheme and perfect chip synchronisation between the 

transmitter and the receiver, the lth correlator (finger) output Z~l for the jth desired 

symbol, from a discrete received signal from Equation (2.15), is given by: 

Nc 

Zp = L Sir[(j - l)Nc + i + Tft] (2.17) 
i=1 

where Tft is the delay time ofthe lth strongest path gain within one symbol duration. The 

combined output of the Lf-finger RAKE receiver for the jth symbol can be expressed 

as follows: 

(2.18) 

h [ II hf]T d - [- -]T h fi f were Zj = Zj , ... , Zj ,an 'Y = 1'1, ... , 1'Lf is t e nger weight vector 0 the 

RAKE receiver. Based on the MRC criterion, 'Yl is given by 

(2.19) 

where hI is the estimate of the lth strongest path gain. The estimated binary symbol is 

then determined by the decision function as 

(2.20) 
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Data-aided channel estimation for RAKE receiver 

A data-aided (DA) approach [42J is used to estimate the channel impulse response in 

this simulation. The general sliding correlator method [51, 43J is employed for channel 

estimation. This is accomplished by sending P known pilot symbols bj (j = 1,2, ... , P) 

for training. The RAKE receiver, during the training, gives the output signal vector 

zfest = [zJ, zJ. .. , zfestJT where Lest is the number of paths to be estimated, and it is 

assumed that the receiver knows the optimal value of Lest, i.e., Lest = L [62J. By 

applying the cross-correlation method, the estimated path gains in the form of vector 

of the channel (11) can be expressed as follows: 

(2.21 ) 

2.5.4 Frequency Domain Equaliser for DS-UWB System 

FDE is simply the frequency representation analogy of what is done by a conventional 

time domain equalisers. For channels with severe delay spread, FDE is computationally 

simpler than the corresponding time-domain equalisation, because it is performed on 

a block of data at a time, and the operations on this block involve an efficient FFT 

operation and a simple channel inversion operation [63J. A cyclic prefix (CP) insertion 

technique has been proposed [64]' jointly with FFT processing, to make convolutions 

appear circular and to avoid the channel time dispersion effects. Figure 2.12 illustrates 

the general structure of a communication system that employs linear FDE. 
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The CP insertion is accomplished by repeating the last Lcp symbols in a given block 

of symbols and pre-appending them to the header of this block. FDE is regarded as a 

low-complexity method of reducing the lSI resulted from the multipath environments. 

FDE receiver simulation 

A simulation has been implemented to examine the FDE performance for DS-UWB 

systems. The over all system is illustrated in Figure 2.13, where data are generated by 

random uniform binary bits in blocks and spreaded by an arbitrary ternary code [32]. 

Then, a CP is added to the head of each block to generate the transmitted signal. The 

received signal is passed through an FFT block after removing the CP symbols, then 

the frequency components are multiplied by the equaliser coefficients from the channel 

information, to produce an FD signal. The FD equalised signals are transferred back 

into the time domain by IFFT, and are then despread and passed through a decision 

device to recover the transmit symbols. 

Assuming perfect chip synchronisation, the received samples can be expressed as 

r(n) = s(n) 0 h(n) + n(n), (2.22) 

where ® represents the convolution operation. 

After removing the CP samples, and applying the FFT, the frequency components 
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of the received signals are expressed as 

R(k) = H(k)S(k) + N(k) (2.23) 

where R(k), H(k), S(k) and N(k) are the FFT of the received signal, the CIR, the 

transmitted signal and the AWGN, respectively. 

Frequency domain LS channel estimation for FDE 

A simple least squares (LS) channel estimation technique can be used to estimate H(k) 

for binary signalling. The estimation can be achieved by transmitting a pilot block prior 

to data blocks. This pilot is a known block of symbols that are used to estimate the 

channel in the training mode as following 

(2.24) 

where St(k) is the discrete Fourier transform of the transmitted pilot signal, and Rt(k) 

is the received pilot in frequency representation. Hence, the channel estimate H (k) is 

then applied at the equaliser to restore the original signal by 

S(k) = R(k)H*(k). (2.25) 

where if * (k) is the complex conjugate of H(k). 

2.5.5 Simulation Results 

This subsection presents the simulation results of the RAKE receiver and the FDE. The 

simulation setup is similar to that in later chapters for consistency. A channel model 

3 of IEEES02.15.3a standard (CM3) is considered, and a pilot size of 200 symbols is 

employed for channel estimation parts. For RAKE receiver simulations, the number of 

fingers L f considered is 200. The simulations were tested on a range of SNR levels of 

0- 25dB. The BER performance of the two receivers with both perfect CSI and the 

channel estimation (CE) schemes described in Subsections 2.5.3 and 2.5.4, is shown in 

Figure 2.14. 
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Figure 2,14: DS-UWB system performance with conventional receivers (Lf = 200 for 
RAKE receiver) 

It is precisely expected that the system performance is better when ideal channel 

is assumed, This is true even comparing with ideal RAKE receiver, because of the 

limited number of RAKE fingers used in these simulations compared to the number of 

UWB channel paths, Also it is noticed that the FDE system performance dramatically 

improves at high SNRs, this is because of neglecting the noise power in Equation (2.24). 

Whereas the RAKE receiver with CE outperforms the FDE at low-to-medium SNR 

levels. 

The choice of pilots plays an important role in channel estimation, especially in the 

FD channel estimation, This is because of that the null frequency components, if any, 

lead to unreliable estimate in Equation (2.24), In these simulations, an impluse-like 

pilot is considered representing almost a fiat frequncy response. 

2.6 Summary 

In this chapter, a general overview ofthe UWB system has been presented in the context 

of its main signal processing aspects. The presentation starts by describing the definition 
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of UWB signalling, its major pulse waveforms, and the common multiple access schemes 

of these technologies. Then, system model of the DS-UWB systems investigated in this 

thesis is presented, including the transmitted and the received signals formulation. 

More emphasis is being laid on the current literature of the issues of representing 

and tackling UWB severe channel degradation; such as channel modeling, estimation, 

and equalisation. In particular, the RAKE receiver and the FDE based receiver are 

described and discussed as conventional receivers for DS-UWB systems. Some basic 

simulations of conventional UWB channel equalisation which will be used as a reference 

for the proposed equalisers in subsequent chapters. 
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Chapter 3 

Machine Learning Algorithms 

This chapter presents a general overview on the ever-growing area of machine learning 

techniques and algorithms. In fact, machine learning is quite a broad subject with 

loads of information and contributions, hence, it is beyond the scope of this chapter to 

cover all the aspects of machine learning. Rather, the necessary basics and fundamental 

principles, that relate to the work in this research, are considered in this presentation. 

The organisation of this chapter is as follows. An introduction is provided in Section 3.1. 

Section 3.2 considers linear models in classification followed by kernel-induced methods 

for nonlinearly separable patterns in Section 3.3. The statistical learning methods are 

illustrated in Section, 3.4, and their promising finding of support vector machines are 

described in Section 3.5. Subsequently, the issue of model selection is presented in 

Section 3.6. Section 3.7 is concerned with the application of Bayesian inference in the 

context of machine learning. Eventually, a chapter summary is provided in Section 3.8. 

3.1 Introduction 

The field of machine learning was conceived nearly five decades ago with the bold 

objective to develop computational methods that would implement various forms of 

learning [8], in particular algorithms capable of inducing knowledge from examples or 

data, i. e., via training. Gaining such knowledge automatically is particularly desirable in 

many problems in real world applications in fields such as medical diagnoses, engineering 

and computer design, as will be shown soon. Figure 3.1 depicts the general task of a 

37 



Training Examples ----+l 

Model Parameters -----.! 

Learning 
Algorithm 

t------l--.. Concept 
Description 

Figure 3.1: The general framework of machine learning 

learning machine. 

Machine learning is, by nature, a multidisciplinary field [8, 9, 65]. Its algorithms rep

resent results drawn from many disciplines such as philosophy, mathematics, statistics 

and probability theory, data mining, signal processing, optimisation theory, computa

tional complexity theory, information theory, and artificial intelligence, and many other 

disciplines. 

Types of learning algorithms 

The learning tasks can be categorised into [9]: Probability distribution estimation, 

pattern association (e.g., clustering), pattern recognition (e.g., classification), function 

approximation (e.g., regression), beamforming, and control. The learning processes, on 

the other hand, are widely classified into the following three categories: 

• Supervised learning, which requires the availability of a target or desired response 

for the realisation of specific input-output mapping by minimising a cost function 

of interest. 

• Unsupervised learning [66], the implementation of which relies on the provision 

of a task-independent measure of the quality of representation that the network 

is required to learn in a self-organised manner. 

• Reinforcement learning [9], in which input-output mapping is performed through 

the continued interaction of a learning system with its environment so as to min-

imise a scalar performance index. 

The work in this PhD study applies the supervised learning in the problem of channel 

equalisation by mapping the problem domain into a pattern classification one [67]. 
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Therefore, the rest of this overview will treat the subject of machine learning from 

supervised-pat tern-recognition point of view. 

Applications of machine learning 

As mentioned in the introduction of this section, machine learning has a wide spec

trum of applications that make it increasingly desirable. Among many applications to 

consider, some include handwritten recognition, search engines, medical diagnosis, bio

metric recognition (e.g., face and fingerprint), stock market analysis, load forecasting 

in power systems, machine games, natural language processing, image processing, and 

DNA sequence classification. 

3.2 Linear Models for Classifications 

One of the most important learning tasks in pattern recognition, and is the core of 

this study's application, is the class of models for solving classification problems. The 

goal in classification is to take an input vector x and to assign it to a target y from 

one of K discrete classes Ck where k = 1, ... , K. In the most common scenario, the 

classes are taken to be disjoint, so that each input is assigned to one and only one class. 

The input space is thereby divided into decision regions whose boundaries are called 

decision boundaries or decision surfaces. Figure 3.2 shows a simple binary classification 

example, where a set of N training data points {Xi, Yi}, X E ]R2 and Y E {-I, +1}, 

is passed through the classifier. The classifier's task is to produce the linear decision 

boundary defined by w T 
X + (3 = 0, where w, (3 are the classifier's parameters to be 

resulted from learning. And the discriminant function is then 

(3.1) 

In the following subsections, the linear models for classification are considered, which 

means that the decision surfaces are linear functions of the input vector x, as shown 

in the example, and hence are defined by (d - I)-dimensional hyperplanes within the 

d-dimensional input space. Data sets whose classes can be separated exactly by linear 

39 



6 

4 

N 
')1- 2 

+ 
+ 

o ... 

+ 
-2 

Pattern space 

* 

* * 

+ :+ 
.. +. ................... . 

+ 

... .+. 
+ 

+ 

* 

* 
+ 

* * 

y. = +1 
I 

y. =-1 
I 

-4~~------~----~~----~----~~----~----~ 
-4 -2 o 4 6 8 

Figure 3.2: General linear model for binary classification with a decision boundary (solid 
line) 

decision surfaces are said to be linearly separable. Others, of course, are said to be 

nonlinearly separable datasets. The classification models are categorised into three 

main types as follows. 

3.2.1 Deterministic Models 

In these models, the parameters are evaluated in a 'single-shot' manner, so that only 

one optimum coefficients vector is obtained. Common examples are presented next. 

LS methods for linear classification 

L8 methods are matured techniques that are widely used in parameter estimation prob

lems for many applications [66]. They consider the models that are linear functions of 

the model parameters, and by minimising the sum-of-squares of some error function, a 

simple closed-form solution for the parameter values can be obtained. The same formal

ism can be applied to classification problems. Consider a general classification problem 

with K classes, with a binary coding scheme for the target vector Y = [YI, ... , YK]T. 

Each class Ck is described by its own linear discriminant model so that 
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(3.2) 

where k = 1, ... , K. These models can be conveniently group together using vector

matrix notation so that 

(3.3) 

where W is the (d + 1) x K weight matrix whose kth column comprises the (d + 1)

dimensional vector Wk = (f3k, wI)T , x = (1, xT)T is the corresponding augmented 

input vector with a dummy input Xo = 1, and f = (iI, ... , fk)T is the discriminant 

model vector. A new input x is then assigned to the class k for which the output 

fk = wk x is the largest. The parameter matrix W is determined by minimising a sum

of-squares error function. Consider a training data set V = {Xi, Yi} where i = 1, ... , N, 

and define the N x K target matrix Y whose ithrow is yT, together with the N x (d + 1) 

input matrix X whose ith row is xT = (1, xf). The sum-of-squares error function can 

then be written as 

ED(W) = ~Tr {(XW - Yf(XW - Y)} , (3.4) 

where Tr {} denotes the matrix trace operator. Setting the derivative of ED(W) with 

respect to W to zero leads to the least squares solution W LS given by the form 

(3.5) 

where X is the pseudo-inverse of the matrix X. The discriminant function is then 

obtained in the form 

(3.6) 

The LS approach gives an exact closed-form solution for the discriminant function pa

rameters. However, even as a discriminant function, which is a single parameter set, 

it suffers from some severe problems. Most importantly, the lack of robustness to out

liers to the classification application. The outliers sensitivity means the change in the 

location of the decision boundary according to some additional data points that are 
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relatively far from their cloud of data class. 

The sum-of-squares error function penalises predictions that are 'too correct' in that 

they lie a long way on the correct side of the decision boundary [68]. However, problems 

with LS can be more severe than simply lack of robustness. That is, having the property 

that linear decision boundaries can give excellent separation between the classes, the LS 

solution gives poor results for multiclass problems, with only a small region of the input 

space assigned to the corresponding class. Indeed, the technique of logistic regression, 

described later in this section, gives a satisfactory solution. 

Fisher's linear discriminant 

This discriminant is widely used for binary (and can be extended to multiclass) linear 

classification [69]. The main idea behind it is to reduce the dimension of the problem 

so that a decision threshold can be estimated by maximising the distances between the 

class means and minimising the class variances. In other words, Fisher linear discrim-

inant finds a linear projection such that the classes are well separated. Separability is 

measured by two quantities: maximising the interclass difference and minimising the 

intraclass spread. This confirms the reduction of interclass overlapping. Hence, the 

Fisher's criterion for two-class problem is to maximise 

(3.7) 

where w is the hyperplane coefficient vector. SB in Equation (3.7) is the between-class 

covariance matrix, defined by 

(3.8) 

where ILl and 1L2 are the means of the classes C1 and C2, respectively. Sw in Equation 

(3.7) is the total within-class covariance matrix, defined by 

(3.9) 

By differentiating Equation (3.7) with respect to w, the maximum of J(w) is found 
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when 

SBW = ),SwW (3.10) 

where). is a scaling factor. Recognising that the matrix product SBW is always in the 

direction of the difference vector J.L2 - J.L1, the solution of Equation (3.10) is simply 

(3.11) 

Equation (3.11) is known as Fisher's linear discriminant, although strictly it is not a 

discriminant but rather a specific choice of direction for projection of the data down to 

one dimension. However, the projected data can subsequently be used to construct a 

discriminant, by choosing a threshold fo so that we classify a new point x as belonging 

to C1 if f(x) = w T 
X 2: fo and classify it as belonging to C2 otherwise. 

3.2.2 Iteration based Learning Models 

In this type of models, the evaluation process is conducted in an iterative manner. 

Rosenplatt's perceptron is the common pioneered example. 

Rosenplatt's perceptron 

The first iterative algorithm for learning linear classifications is the procedure proposed 

by Rosenblatt [70] for the perceptron. The algorithm created a great deal of interest 

when it was first introduced. It is an 'on-line' and 'mistake-driven' procedure, which 

starts with an initial weight vector Wo (usually Wo = 0, the all zero vector) and adapts 

it each time a training point is misclassified by the current weights. The algorithm is 

shown in Table 3.1. 

The algorithm updates the weight vector and bias directly. This procedure is guaran

teed to converge provided there exists a hyperplane that correctly classifies the training 

data. In this case the data are perfectly linearly separable. If no such hyperplane exists 

the data are said to be linearly nonseparable. 

The number of iterations in Rosenplatt's procedure depends on a quantity called 

the margin. This quantity will playa central role in the majority of the techniques used 
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Given a linearly separable training set S = {xn, Yn}~=l and learning rate 1J E JR+. 
Wo ~ OJ bo ~ OJ k ~ 0 
R ~ maxl~n~N Ilxnll 
repeat 

for n = 1 to N 
if Yn { wI Xn + bd :::; 0 then 

end if 
end for 

Wk+l ~ Wk + 1JYnX n 
bk+1 ~ bk + 1JYnR2 
k ~ k+1 

until no mistakes made within the for loop 
return (Wk' bk) where k is the number of mistakes 

Table 3.1: The perceptron algorithm [71] 

in this research and so some formal definition is emphasised. 

The (functional) margin of an example (Xi, Yi) with respect to a hyperplane (w, (3) 

is defined to be as the quantity in Equation (3.1). Note that f(x) ~ 0 implies correct 

classification of (Xi, Yi). The margin distribution of a hyperplane (w, (3) with respect 

to a training set 1) is the distribution of the margins of the examples in 'D. The 

minimum of the margin distribution is sometimes referred to as the (functional) margin 

of a hyperplane (w, (3) with respect to a training set 1). In both definitions if the 

functional margin is replaced by geometric margin we obtain the equivalent quantity for 

the normalised linear function (1I!lIw, 1I!1I(3), which therefore measures the Euclidean 

distances of the points from the decision boundary in the input space. Finally, the 

margin of a training set 1) is the maximum geometric margin over all hyperplanes. A 

hyperplane realising this maximum is known as a maximal margin hyperplane, and will 

be discussed in further detail in Section 3.5. The size of its margin will be positive for 

a linearly separable training set. 

3.2.3 Probabilistic Models 

The resulting model parameters in this category are obtained by their probabilistic 

distributions. This provides a better measurement of the uncertainty degrees to the 

estimation. Common examples are as follows. 
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Naive Bayes classifier 

A naive Bayes classifier (NBC) [72] is a simple probabilistic classifier by applying the 

Bayes' theorem with strong (naive) independence assumptions. Let p(Ck ) be the prob

ability of occurrence of class Ck, k = 1,2, ... , K. p(Ck) is known as a priori probability. 

A posterior probability that an observed sample x came from class Ck is expressed as 

p(Cklx). According to Bayes rule, 

(3.12) 

where p(x) is the unconditional probability density function of x, and P(XICk) is called 

the likelihood function of class Ck.The NBC simply assumes features are independent 

given the class Ck, that is p(xICk) = rr~l p(xiICi). Thus 

(3.13) 

where p(x) is a scaling factor dependent only on x, i. e., a constant. Models of the form 

in Equation (3.13) are much more manageable, since the independent probability dis

tributions p(xiICk) allows the model parameters to be approximated from the training 

samples, in addtion to the only factor of the class prior p(Ck ). The decision function of 

the Bayes classifier is given as 

N 

f(x) = argmax P(Ck) IIp(xiICk) 
k i=l 

(3.14) 

The decoupling of the class conditional feature distributions means that each distri-

bution can be independently estimated as a one dimensional distribution. This in turn 

helps to alleviate problems stemming from the curse of dimensionality, such as the need 

for data sets that scale exponentially with the number of features. 

Logistic regression 

As mentioned in Subsection 3.2.1, Logistic regression [73] is an effective alternative for 

data patterns with separated outliers. Logistic regression estimates the probability of 
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occurrence of an event. In order to explain logistic linear model, consider the problem 

of binary classification. The posterior probability of class C1 can be written as a logistic 

sigmoid acting on a linear function of the data vector x so that 

(3.15) 

with p(C2 Ix) = 1- p(C1 Ix). Here 0'(.) is the logistic sigmoid function defined by 

1 
O'(A)=----

1 + exp( -A)' (3.16) 

This model is known, in statistics, as logistic regression, although it should be em

phasised that this is a model for classification not regression. For a d-dimensional input 

space of data, this model has d adjustable parameters only, unlike that when using 

maximum likelihood for the Gaussian class conditional densities, where a 2d adjustable 

parameters are used for the means and d( d + 1)/2 parameters for the common covari

ance matrix. Together with the class prior p(C1), this gives a total of d(d + 5)/2 + 1 

parameters, which grows quadratically with d. Therefore, there is a clear advantage in 

working with the logistic regression model directly, especially for large values of d. 

To determine the parameters of the logistic regression model, the maximum likeli-

hood [70] is used combined with the derivative of the logistic sigmoid function that is 

defined in Equation (3.16), which can be conveniently expressed in terms of the sigmoid 

function itself as follows 

dO' 
- = 0'(1- 0') dA . (3.17) 

For a data set {Xi, Yi}, where Yi E {a, I} 1, with i = 1, ... , N, the likelihood function 

can be written 
N 

p(ylw) = IIfr(1- fd 1
- Yi (3.18) 

i=1 

where y = (Yl, ... , YN f and fi = p(C1Ixi)' An error function can be defined by taking 

IThis encoding scheme is usually used for probabilistic representation. 
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the negative logarithm of the likelihood, which gives the form 

N 

E(w) = -lnp(yJw) = - L {Yi In li + (1 - Yi) In(l -lin (3.19) 
i=l 

where Ii = a(Ai) and Ai = w T xi. The quantity in Equation (3.19) is sometimes referred 

to as cross-entropy error function [69]. 

Taking the gradient of the error function with respect to w, and using Equation 

(3.17) yield 
N 

\7 E(w) = L(fi - Yi)Xi. (3.20) 
i=l 

The contribution to the gradient from the ith data point is given by the 'error' 

(fi - Yi) between the target value and the prediction of the model, times the training 

data vector Xi. 

It is worth noting that maximum likelihood can exhibit severe over-fitting for data 

sets that are linearly separable. This arises because the maximum likelihood solution 

occurs when the hyperplane corresponding to a = 0.5, equivalent to w T x = 0, separates 

the two classes and the magnitude of w goes to infinity. Furthermore, the maximum 

likelihood depends on the choice of optimisation algorithm and on the parameter ini

tialisation. Note that the problem will arise even if the number of data points is large 

compared with the number of parameters in the model, so long as the training data 

set is linearly separable. The singularity can be avoided by inclusion of a prior and 

finding a MAP solution for w, or equivalently by adding a regularisation term to the 

error function. 

3.3 Kernel-Induced Methods 

Despite the fact that linear machines suggest solid and tractable theoretical grounds for 

the problem of classification, they are blamed for their computational power limitation 

[71]. Also, they lack the applicability for nonlinearly separable clouds of patterns, 

which is the case for most real-world applications. Kernel representations provide an 

alternative solution by projecting the patterns into a high dimensional feature space to 
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Figure 3.3: Mapping to high dimensional feature space [74] 

increase the computational power of the linear learning machines of Section 3.2. In this 

section, the fundamental principles of kernel mapping are described as it is an important 

concept for nonlinear scenarios in which this work is highly dependent on. 

3.3.1 Mapping to Higher Feature Space 

Mapping the data onto another space called feature space is not new and time in ma

chine learning [71]. The original data representations are sometimes called attributes or 

input space. Let the original input space be denoted by X. A mapping ¢: x --+ ¢(x) 

is (implicitly) defined on X that maps it onto a higher-dimensional feature space 

:F = {¢(x): x E X}. The advantage of doing so is that the project data onto 

the higher-dimensional feature space are more likely to be linearly separable and hence 

the classification task is greatly simplified. 

Figure 3.3 shows an example of a feature mapping from a two dimensional input 

space to a three dimensional feature space. The data in this example cannot be sepa

rated by a linear function in the input space, but it is possible for the projected data 

in the feature space. 

The aim of the subsequent subsections is to show how such mappings can be made 

into very high dimensional spaces where linear separation becomes more likely. 
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Cover's theorem 

The underlying justification in mapping to a higher dimensional feature space is found 

in Cover's theorem [75] on the separability of patterns, which, in qualitative terms, is 

re-stated in [9] as follows: 

"A complex pattern-classification problem, cast in a high-dimensional space 

nonlinearly, is more likely to be linearly separable than in low-dimensional 

space, provided that the space is not densely populated." 

Dual form of linear machines 

In the previous discussion of linear models of classifications, the models and their op

timisation formulation were in what is called 'primal form' [76]. The primal form is 

simply the form that comprises the hyperplane's parameters (i. e., wand (3) explicitly in 

the problem model. The dual representation [71], on the other hand, substitutes these 

parameters with a linear combination of the original attributes so that only the inner 

products of the original attributes appear in the form, not the explicit model param

eters. An important property of the dual representation is that the data only appear 

through entries in the Gram matrix {G: Gi,j = x: Xj} [77] and not through their 

individual attributes. Similarly in the dual representation of the decision function, it is 

only the inner products of the data with the new test point that are needed. 

Most of the algorithms discussed in this study solve the optimisation problems for 

which a mathematical framework exists that naturally encompasses duality. An advan

tage of using the machines in the dual representation derives from the fact that in this 

representation the number of tunable parameters does not depend on the number of 

attributes being used. This representation will be used in subsequent subsections, and 

will be shown to be a general property of a wide class of algorithms. Duality is one of 

the crucial concepts in developing SVMs. 

The kernel trick 

A kernel function is an appropriately chosen function that computes the inner product 

of the feature vectors in the higher-dimensional feature space corresponding to the two 
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inputs, so that one can implicitly perform a nonlinear mapping from the input space to 

a high-dimensional feature space without the need of explicitly defining the nonlinear 

mapping 4>. 

The idea of using kernel functions in machine learning was introduced by Aizer-

man in [78]. Kernel based methods in pattern analysis embed the data in a suitable 

feature space, and then use algorithms based on optimisation, linear algebra, geome

try, and statistics to discover patterns in the embedded data. Two main procedures 

are conducted when applying any kernel based method: a procedure that performs the 

mapping into an empirical feature space F, and a learning algorithm procedure designed 

to discover linear patterns in that space. A kernel function is the high-dimensional em-

pirical feature space representation to the original data that ensures simple analysis. 

Four key aspects of kernel based machines are highlighted [77]: 

• Input patterns are projected into the feature vector space. 

• The patterns projections, in the feature space, are treated by Linear relations. 

• Only the inner products of patterns projections are considered in implementing 

kernel based algorithms in such a way that a scalar value represents a pairwise of 

high-dimensional patterns projections. 

• The pairwise inner products can be computed efficiently directly from the original 

input patterns using a kernel function. 

Mercer theorem 

In order for a kernel function to be an inner product kernel in some space, it has to 

satisfy Mercer's conditions that arise in the Mercer's theorem [79] of the functional 

analysis field. In order to briefly describe Mercer's theorem, let X be a compact subset 

of lRd , and suppose that a continuous symmetric function that is defined on X x X. 

The expansion in the series 

00 

K(x, z) = L <Pj(x)<Pj(z), 
j=l 
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in terms of functions CPj, is said to be valid and uniformly convergent, if the necessary 

and sufficient condition that 

r K(x, z)f(x)f(z)dzdx ~ 0, 
Jxxx 

holds for all f (.) , for which 

3.3.2 Constructing Kernels 

(3.22) 

(3.23) 

Defining a kernel function for an input space is frequently more natural than creat

ing a complicated feature space [71]. This subsection summarises the most important 

properties and principles to construct kernels with examples of commonly used forms 

of kernels. 

Kernel properties 

According to [77], a number of necessary properties of a function K(x, z) is required to 

ensure that it is a kernel function for some feature space. 

Firstly and obviously, the function must be symmetric, so that 

K(x,z) = ¢T(x)¢(z) = ¢T(z)¢(x) = K(z,x). (3.24) 

Secondly, it satisfies the inequalities that follow from the Cauchy-Schwarz inequality, 

that is 

K(X,Z)2 = (¢T(x)¢(z))2:s 11¢(x)11 2 11¢(z)11 2 

= (¢T(x)¢(x)) (¢T(z)¢(z)) = K(x,x)K(z,z). 
(3.25) 

These conditions are, however, not sufficient to guarantee the existence of a feature 

space. 
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Constructing kernels from kernels 

Kernels can also be constructed from other simple kernels. This is due to the fact that 

a new symmetric function is a kernel if the condition in Equation (3.22) is satisfied 

and the matrix defined by restricting the function to any finite set of points is positive 

semi-definite [77]. 

The following proposition can be viewed as showing that kernels satisfy a number 

of closure properties, allowing the creation of more complicated kernels from simpler 

(prototype) forms. 

Proposition Let K1and K2 be two kernels defined on X x X, where X ~ ]Rd. 

Suppose that a E ]R+, f(·) is a real-valued function on X, f : X ---t ]Rm, K3 is a kernel 

on ]Rm x ]Rm, and B a symmetric positive semi-definite d x d matrix. Then the following 

functions are kernels: 

1. K(x, z) = Kl (x, z) + K 2(x, z), 

2. K(x, z) = aK1(x, z), 

3. K(x, z) = K1(x, Z)K2(X, z), 

4. K(x, z) = f(x)f(z), 

5. K(x, z) = K3 (¢(x), ¢(z)) 

6. K(x, z) = xTBz. 

Examples of kernel functions 

Some of the most common forms of kernel functions that satisfy the above mentioned 

conditions and properties, specially for the field of support vector machine, are: 

1. Polynomial generator, which is formulated in two forms as 

K(x· x·) - (xT X .)P ~, J - i J (3.26) 

or, 

(3.27) 
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for a pre-defined degree of p. 

2. Gaussian radial basis function (GRBF), which can be expressed as 

(3.28) 

where (7 is the width parameter. 

3. Sigmoidal neural network, which is represented by 

(3.29) 

where k, 0 are sigmoid function parameters. It is worth mentioning that the 

sigmoidal kernel satisfy Mercer's theorem [9] only for some specific values of kando. 

3.4 Statistical Learning Methods 

The theory of Vapnik and Chervonenkis (VC) has motivated the development of the 

SVMs, which is the core of most work in this study. This theory was the underpinning 

of the field of statistical learning. In this section, the basic principles and main results of 

the VC theory are presented. VC theory provides reliable bounds on the generalisation 

of linear classifiers in a way that indicates how to control the complexity of linear 

functions in kernel spaces. 

The initial introduction of the statistical learning theory is dated to the late 1960's 

[10]. It was meant to be a theoretical framework for the problem of function estimation 

given some sort of observed data. More attention has been given to the statistical 

learning theory in the 1990's when new types of learning algorithms (SVMs) based on 

the developed theory were proposed. This made statistical learning theory a promising 

tool for creating practical algorithms for estimating functions in high dimensional spaces, 

not just a theoretical framework. The general learning theory has the following main 

four theories, according to [80], to address the questions of learning process: 

1. The theory of consistency of learning processes; in order to answer the question of 

the conditions for consistency of the empirical risk minimisation (ERM) principle. 
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2. The rate of convergence of learning processes; to answer "How fast does the se-

quence of smallest empirical risk values converge to the smallest actual risk?" In 

other words, what is the rate of generalisation of a learning machine that imple-

ments the empirical risk minimization principle? 

3. The theory of controlling the generalisation of learning processes; How can one 

control the rate of convergence (the rate of generalisation) of the learning machine? 

4. The theory of constructing learning algorithms. How can one construct algorithms 

that can control the rate of generalisation? 

Empirical risk minimisation 

The core task of a learning machine to be 'trained' is to find a functional form f (x, 0:) 

that best describe the data set {x, y} as seen in previous sections; In other words, to 

find the optimum values of the parameter vector 0: that minimises the risk function [76] 

of the form 

R(o:) = ~ J Iy - f(x, 0:)1 dP(x, y), (3.30) 

where P(x, y) is the probability distribution from which these data are drawn from. 

The data are assumed to be i.i.d. (independently and identically distributed). This 

distribution, however, is mostly unknown and only the observed data in the training 

( {Xi, Yi}~l) are available. 

In order to minimise the risk functional in Equation (3.30), the following induction 

principle, called empirical risk minimisation (ERM), is usually used [11]. The principle 

is to approximate the risk functional R(o:) by the function which minimises the empirical 

risk 
1 N 

Remp(O:) = N L IYi - f(Xi, 0:)1 (3.31) 
i=l 

that is defined to be the mean error rate of the training data points from a finite 

number of observations, which are.constructed on the basis of the training set. It is 

worth mentioning that the MSE can also be used in Equation (3.31). 

The ERM principle is quite general. The classical methods, that solve estimation 

problems, such as the least squares method or the maximum likelihood method, are 
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realisations of the ERM principle for the specific loss functions in the learning processes. 

Since the ERM principle is a general formulation of these classical estimation problems, 

any theory concerning the ERM principle applies to the classical methods as well [80]. 

The VC dimension 

The VC dimension is a property of a set of functions {f(x, an, and can be defined for 

various classes of function f(x, a). The VC dimension of a set of estimator functions 

{f (x, a)} is the maximum number h of vectors {Xl, ... , Xh} which can be separated in 

all possible 2h ways using functions of this set, which is usually said that that set of 

vectors is shattered by that set of functions. If for any N there exists a set of N vectors 

which can be shattered by the set then the VC dimension is equal to infinity. Note 

that, if the VC dimension is h, then there exists at least one set of h points that can be 

shattered, but in general it will not be true that every set of h points can be shattered. 

Structural risk minimisation 

The principle of structural risk minimisation (SRM), introduced by Vapnik [11], is 

intended to minimise the risk functional with respect to both empirical risk and VC 

dimension of the set of functions. Let S the set of functions f(x, a), a E A, be 

provided with a structure: so that S is composed of the nested subsets of functions 

Sk = {f(x, a), a E Ak } such that 

(3.32) 

Considering the quantity ~ IYi - f(Xi, a)1 in Equation (3.31) that is called ''loss'' 

[76], and for binary values to this quantity {a, I}, one can choose some rJ such that 

o :::; 'f} :::; 1. Then for losses with probability (1 - 'f}), the VC theory [11] suggests the 

following bound 

(
h(10g(2N/h) +N1) -10g('f}/4)), R(a) :::; Remp(a) + (3.33) 

where h is the VC dimension and N is the number of training data samples. The entire 
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right hand side of Equation (3.33) is called the risk bound or guaranteed risk, and the 

second term on it is called VC confidence. Note that this VC confidence term depends 

on the chosen class of functions, whereas the empirical risk and actual risk depend on 

the one particular function chosen by the training procedure. So, the aim is to find 

that subset of the chosen set of functions, such that the risk bound for that subset is 

minimised. Clearly, it is not possible to arrange things so that the VC dimension h 

varies smoothly, since it is an integer. Instead, a 'structure' is introduced by dividing 

the entire class of functions into nested subsets as in Equation (3.32). SRM then consists 

of finding that subset of functions which minimises the bound on the' actual risk. This 

can be done by simply training a series of machines, one for each subset, where for a 

given subset, the goal of training is simply to minimise the empirical risk. One then 

takes that trained machine in the series whose sum of empirical risk and VC confidence 

is minimal. The SRM principle actually suggests a tradeoff between the quality of the 

approximation and the complexity of the approximating function. 

3.5 Support Vector Machines 

An significant result from the statistical learning theory is the emerge of SVMs as 

mentioned in Section 3.4. SVMs are elegant and highly principled learning methods for 

the design of feedforward networks. Its derivation follows the method of SRM principle 

that is rooted in VC dimension theory, which makes it more profound. SRM was 

discussed in Subsection 3.4. As the name implies, the design of the machines hinges 

on the extraction of a subset of the training data that serves as support vectors and 

therefore represents a stable characteristics of the data. The SVMs includes different 

models of intrinsic statistical regularities contained in the training data, yet they all 

stem from common root in a SVM setting. 

SVMs construct a hyperplane as the decision surface in such a way that the margin 

of separation between the positive and negative samples is maximised in an appropriate 

feature space, known as maximal margin rule [76]. Figure 3.4 illustrates the maximal 

margin rule for a 2D data patterns. The circled points around the decision line are 

called support vectors (SVs) and they represent the data patterns in the testing stage. 
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Figure 3.4: Maximum margin rule 

Boser et al. [81] combined the kernel function with large margin hyperplanes, leading 

to kernel based SVMs that are highly successful in solving various nonlinear and linearly 

nonseparable problems in machine learning. 

In this section, three variants of support vector classifiers (SVCs) are described, 

namely, the hard margin SVC, the soft margin SVC, and the lI-SVM. Before starting 

the discussion of these SVM based classifiers, it is necessary to emphasise the general 

form of the required classifier. This can be expressed as to find the class y of a given test 

input pattern x with regard to part or all of the training data {T : T ~V} as follows. 

y(x) = f(x) = L QiYiK(Xi, x) + {3, (3.34) 
XiET 

where cl sand {3 are the classifiers' parameters to be determined via various criteria as 

shown in the rest of this PhD study. 

3.5.1 Hard Margin SVC 

For linearly separable patterns, the hard margin SVC is used. The fundamental principle 

of hard margin SVC is to find a linear hyperplane (w) in higher dimensional space that 

57 



maximise the distance (margin) between two different patterns. Hence, the optimisation 

problem in its primal form is defined to minimise 

(3.35) 

subject to 

(3.36) 

where cp(.) is the mapping function to feature space and f3 is the bias or the shift from 

origin. 

By introducing Lagrange multipliers (0 = [aI, ... , aN]) and applying Karush-Kuhn

Tucker (KKT) conditions [82] for constrained optimisation [71], the primal objective 

function (3.35) with its constrains in (4.12) is converted to dual formulation. The 

optimisation process, according to [10]' is then to find the values of a's of the classifier 

that maximise the resulting dual objective function 

subject to 

N 1 N N 
Wd(O) = Lai - 2" L LaiajYiyjK(Xi,Xj) 

i=l i=l j=l 

2:f:1 aiYi = 0 

ai ~ 0 

(3.37) 

(3.38) 

where K(a, b) = cp(a)Tcp(b) is an arbitrary kernel function that is chosen according to 

the application. A well known procedure called quadratic programming (QP) [83] may 

be used to minimise -Wd(O). Nonzero Lagrange multipliers of the optimising solution 

correspond to the SVs that are used to construct the classifier in (3.34). 

3.5.2 Soft Margin SVC 

In linearly nonseparable cases, the soft margin SVC is widely used for its classification 

error-tolerance capabilities. The soft margin SVC introduces the margin slack vector 

e = [6, ... , ~N J to allow the possibility of samples violating inquality constrains in (3.36), 
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with the soft margin loss 

Rso/t-margin-SVC( ) _ { 0, 
LOSS X,Y -

1 - yf(x) 

yf(x) 2 1 
(3.39) 

otherwise 

By involving the I-norm of the margin slack vector ~, the primal form of the soft margin 

SVC optimisation problem is defined as to minimise 

N 

w;o/t-margin(w,~) = ~wT w + C L ei 
i=1 

---------:subjeet-to---------------------

(3.40) 

(3.41) 

where C is a controlling, or regularisation, parameter for the optimisation stability and 

tolerance allowance, and is a subject of wide area of research [84]. 

As in the hard margin case, the dual optimisation form of (3.40), after introducing 

Lagrange multipliers and applying KKT conditions, can be re-expressed as 

subject to 

N N N 

WJo/t-margin(a) = L Cti - ~ L L CtiCtjYiyjK(Xi, Xj) 

i=1 i=1 j=1 

2:!1 CtiYi = 0 

O:S Cti :S C 

(3.42) 

(3.43) 

One can easily notice that the dual optimisation form in (3.42) is very similar to the hard 

margin counter-part with the change in the upper bound of the Lagrange multipliers 

indicating the limits of error-tolerance in the learning machine. 

It is also worth mentioning that some literature use the 2-norm of ~ in formulating 

the optimisation primal form [71] so that the soft margin SVC learning is viewed as a 

special case of the hard margin SVC with a modified kernel functions. 
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v-SVM 

An alternative and equivalent formulation of the support vector machine, known as 

the l/-SVM, has been proposed in [82]. The l/-SVM is also a soft-margin SVM which 

employs the same margin slack vector e as in SVM but with a different soft-margin loss, 

given by 

Rv-SVM( ) {o, 
LOSS X,Y = 

P - yf(x) 

yf(x) 2 p 
(3.44) 

otherwise 

where p denotes the margin width varying through positive values. Thus, the SVM can 

be viewed as a special case of the l/-SVM with margin width equal to 1. 

The dual form representation of the l/-SVM optimisation formulation involves, after 

introducing Lagrange multipliers, maximising 

1 N N 

£(0) = -"2 L L QiQjYiyjk(Xi, Xj) 
i=1 j=1 

subject to the constraints 

0< Q' < ..1. - t - N 

2:f:1 QiYi = 0 

2:f:1 Qi 2 l/ 

(3.45) 

(3.46) 

This approach has the advantage that the parameter l/, which replaces C in standard 

SVM, can be interpreted as both an upper bound on the fraction of margin errors (points 

for which ~i > 0 and hence which lie on the wrong side of the margin boundary and 

which mayor may not be misclassified) and a lower bound on the fraction of support 

vectors. 

Karush-K uhn-Tucker optimality conditions 

The KKT conditions playa central role in both the theory and practice of constrained 

optimisation. For the primal problem above, Equation (3.40), the KKT conditions may 

be stated [83]: 
8 N 

8w Wp = Wn - LQiYi'P(xd = 0, n = 1, ... ,D 
n i=1 

(3.47) 
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8 N 

8/3Wp = - LO!iYi = 0, 
i=l 

(3.48) 

(3.49) 

or, 

(3.50) 

The KKT conditions are satisfied at the solution of any constrained optimization 

problem, with any kind of constraints. This rather technical regularity assumption holds 

for all support vector machines, since the constraints are always linear. Furthermore, 

the problem for SVMs is convex, and for convex problems, the KKT conditions are 

necessary and sufficient for {w, 0:,,B} to be an optimal (global) solution. Thus, solving 

the SVM problem is equivalent to finding a solution to the KKT conditions. It comes 

handy that these conditions are particularly simple for the dual SVM problem, Equation 

(4.11), so that [85] 

o < O!i < C ~ yi/(xd = 1 and ei = 0 (3.51 ) 

They reveal one of the most important property of SVMs; the solution is sparse, 

i. e., many patterns are outside the margin area and the corresponding optimal O! values 

are zero. 

Note that, while w is explicitly determined by the training procedure, the threshold 

/3 is not and it is implicitly determined. However, /3 is easily found by using the KKT 

'complementarity' condition, Equations (3.50), by choosing any i for which O!i i- 0 and 

computing /3 (taking the mean value of /3 resulting from all such equations is numerically 

more stable). In real world problems, finding optimisation solutions requires applying 

numerical methods. 
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3.6 Model Selection 

Classification performance of a parametric classifier depends on the process of picking 

the best value for the classifier's hyper-parameters, such as the kernel width and regu-

larisation parameters (C) for SVMs. This leads to a nontrivial model selection problem 

[84] that needs either an exhaustive search over the space of hyper-parameters or an 

optimisation procedure that explores only a finite subset of the possible values. 

Validation tests 

Ideally, one would like to select models of a classifier, based on the true risk of the 

classifier. Unfortunately, such a quantity is not accessible, and one has to build estimates 

for the true risk of a classifier. The following validation procedures are widely used in 

the literature [9]. 

Single validation 

If enough data are available, it is possible to estimate the error rate on a validation set. 

Such an estimate is unbiased and the corresponding variance gets smaller as the size 

of the validation set increases [86]. Letting V denotes the set of N v labeled validation 

samples V = {xi,yn~l E jRd x {-1,+1}, with no intersection with the training 

samples in the space, the single validation error estimate is given by 

1 N v 

ESVT = N. Lsign(-yif(xi)). 
v i=l 

(3.52) 

Cross-validation 

If no enough data are available for validation, a U-fold-cross-validation procedure within 

the training samples can be employed to estimate the error rate of the classifier [86]. 

Such a procedure is executed by randomly dividing the training samples into U groups. 

In one trial, one group is used for validation and the remaining U -1 groups for training, 

so that every group is used as the validation set once. The cross-validation error estimate 
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is calculated by averaging the classification error rates of the U validation sets, given as 

U 

ECVT = ~ L I~I L sign( -yj f(xj)), 
i=l ~ JEVi 

(3.53) 

where IViI denotes the number of validation samples in group Vi, and xj, yj denote the 

lh validation sample. sign operator in Equations (3.52) and (3.53) is the thresholding 

sigmoidal function. 

Leave-one-out cross-validation procedure 

The LOO procedure [84] removes one sample from the N training samples and construct 

the decision rule on the basis of the remaining (N - 1) training samples, then tests on 

the removed training sample. In this fashion, one tests all of the N training samples 

using N different decision rules. The LOO error gives an almost unbiased estimate of 

the expected generalisation error. Also, the estimation variance may be large. 

3.7 Bayesian Inference in Machine Learning 

Bayesian inference methods have been discussed for linear classification models in Sub-

section 3.2.3. They were mainly applied in terms of underlying data distributions. This 

section gives a basic introduction to the principles of Bayesian inference in a machine 

learning context in terms of model parameters' distributions, with an emphasis on pat-

tern recognition problems including linear classification and kernel based classification. 

The importance of marginalisation for dealing with uncertainty is also presented. 

3.7.1 A Probabilistic Classification Framework 

Bayesian inference can be applied in the classification modelling procedure. So, for a 

typical parameterised classification model, the conditional probability 

P(ylx) = f(x; w); (3.54) 

can be used, where w denotes a vector of all the 'adjustable' parameters in the model. 

Then, given a set 1) of N examples of training patterns, 1) = {Xi, ydf::l' a conventional 
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approach would involve the maximisation of some measure of 'accuracy' (or minimi-

sation of some measure of 'loss') of the classification model for V with respect to the 

adjustable parameters. Of course, if the model f(x; w) is made too complex, e.g. with 

too many parameters, a poor model of the true underlying distribution P(ylx) is con

sequently realised. 

For a new testing pattern x, as usual, the task is to find a prediction iJ by evaluating 

f(x; w) with parameters w set to their optimal values. 

The first key element of the Bayesian inference paradigm is to treat parameters 

such as w as random variables [70], exactly the same as x and y. So the conditional 

probability now becomes P(ylx, w), and the dependency of the probability of yon the 

parameter settings, as well as x, is made explicit. Rather than 'learning' comprising the 

optimisation of some quality measure, a distribution over the parameters w is inferred 

from Bayes' rule. To obtain this posterior distribution over w, it is necessary to specify 

a prior distribution p(w) before observing the data. 

However, the most attractive facet of a Bayesian approach is the manner in which 

Occam's Razor [9J2 can be automatically implemented by "integrating out" all irrelevant 

variables. That is, under the Bayesian framework there is an automatic preference for 

simple models that sufficiently explain the data without unnecessary complexity. 

Maximum likelihood inference 

The maximum likelihood estimate for w is the value which maximises p(ylw, a 2). In 

fact, this is identical to the LS solution, discussed in Subsection 3.2.1, which it can be 

noticed that minimising the sum of the squared errors is equivalent to minimising the 

negative logarithm of the likelihood which here is EML(W) = -logp(ylw, a 2) 

20ccam razor principle was originally appeared in a religious context in fourteenth century, and was 
commonly translated as "entities should not be multiplied unnecessarily". In machine learning context, 
it can be re-interpreted as "models should be no more complex than is sufficient to explain the data". 
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Posterior inference 

To control the model complexity, a prior distribution is defined which expresses our 

'degree of belief' over values that w might take, so that 

M (O).! {I } p(wIO) = II 271" 2 exp -2"0W! . (3.55) 

This (common) choice of a zero-mean Gaussian prior, expresses a preference for smoother 

models by declaring smaller weights to be a priori more probable. Though the prior is 

independent for each weight, there is a shared inverse variance hyperparameter 0 which 

moderates the strength of "degree of belief". 

Previously, a single point estimate WLS is determined for the weights. Now, given 

the likelihood and the prior, the posterior distribution over w can be computed via 

Bayes' rule: 

( I 0 
2) _ likelihood x prior 

p w y, ,(7 - l·· f . norma 2s2ng actor 
(3.56) 

So instead of determining a single value for w, a distribution over all possible values 

is inferred. In effect, this is merely updating the prior "degree of belief" in the param

eter values according to the information provided by the data V, with more posterior 

probability assigned to values which are both probable under the prior and which best 

describe the data [87]. 

MAP estimation 

The maximum a posterior (MAP) estimate for w is the single most probable value under 

the posterior distribution p(wly, 0, (72). This is equivalent to minimising EMAP(W) = 

-logp(wly, 0, (72), or equivalently, maximising the numerator since the denominator in 

Bayes' rule (3.56) is independent of w. 

Marginalisation 

The distinguishing element of Bayesian methods is really marginalisation [70], where 

instead of seeking to 'estimate' all 'nuisance' variables in the model, it is much com-

prehensible to integrate these variables out. As it can be shown, this is a powerful 
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component of the Bayesian framework. 

So, the "true" Bayesian way is to integrate out, or marginalise over, the uncertain 

variables w in order to obtain the predictive distribution, so that 

(3.57) 

This distribution p(yly; e, 0'2) incorporates uncertainty over the weights having seen y, 

by averaging the model probability for y over all possible values of w. 

For any general model, in order to predict y given some training data y, what is 

really required is p(yIY). That is, to integrate out all variables not directly related to 

the task at hand. 

In fact, and for more general modelling, the hyperparametrs e, 0'2 are also unknowns. 

And, to be fully Bayesian, one needs to change the posterior distribution in Equation 

(3.56) so that a prior p(O) along with a prior over the noise level p(0'2) are also defined. 

Then the full posterior over 'nuisance' variables becomes 

( 0 21) _ p(ylw,0'2)p(wle)p(e)p(0'2) 
p w, ,0' Y - p(y) . (3.58) 

3.7.2 Sparse Bayesian Models 

Sparsity is a very important requirement in most practical applications, hence it is 

desirable to adapt probabilistic models to include sparsity. The most common ap

proach is via an appropriate regularisation term or prior [87]. The most common reg

ularisation term, that is widely and practically used, corresponds to a Gaussian prior 

and is easy to work with, but while it is an effective way to control complexity, it 

does not promote sparsity. In the regularisation sense, the 'correct' term would be 

Ew(w) = 2:m Iwmlo [88], but this, being discontinuous in W m , is very difficult to work 

with. Instead, Ew(w) = 2:m IWml 1 is a workable compromise which gives reasonable 

sparsity and reasonable tractability, and is exploited in a number of methods, including 

as a Laplacian prior p(w) ex exp(2:m Iwml 1
) [89]. 

A more elegant way of obtaining sparsity within a Bayesian framework was proposed 

by Tipping, in [88]. The idea was that sparsity can be obtained by retaining the 
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traditional Gaussian prior, which is preferred for tractability. The modification to the 

earlier Gaussian prior (3.55) is subtle, that is 

(3.59) 

In contrast to the model in Subsection 3.7.1, M hyperparameters () = [01 , ... ,OMJ are 

now obtained, one Om independently controlling the (inverse) variance of each weight 

W m · This sparse Bayesian inference method has led to the introduction of what is 

called relevance vector machines (RVMs) [88J. In typical RVM, probabilistic predictions 

are produced based on Bayesian techniques. Basically, RVMs introduce a zero-mean 

Gaussian prior over every weight to obtain a sparse solution. As a result of sparseness

inducing prior, posteriors of many weights are sharply distributed around zero, hence 

these weights are pruned and the model becomes sparse. The RVM learning model will 

be discussed in further detail in Chapter 6. 

Probabilistic classification vector machines 

RVMs adopt the zero-mean Gaussian prior over weights for both positive and negative 

classes in classification problems, hence some training points that belong to positive 

class may have negative weights and vice versa. This formulation might result in the 

situation that the decision of RVMs is based on some untrustful vectors, and thus is 

unreliable in some situations. 

Recently, a probabilistic classification vector machine (PCVM) algorithm is intro

duced [90J to overcome this RVM disadvantage. In PCVM, different priors over weights 

are introduced (for training points) belonging to different classes, i.e., the nonnegative, 

left-truncated Gaussian for the positive class and the nonpositive, right-truncated Gaus

sian for the negative class as shown in Figure 3.5. PCVMs also implement a parameter 

optimisation procedure for kernel parameters in the training algorithm, which is proved 

to be effective in practice. However, this truncation modification makes the inference 

integrals intractable, thus an expectation-maximisation (EM) is used to get a MAP 

estimation of parameters. 
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Figure 3.5: The pdf of weight prior in PCVM 

3.8 Summary 

This chapter has provided the necessary background to the area of machine learning in 

the context of pattern recognition task. Starting with a general overview, the tasks and 

applications of the machine learning processes are presented followed by some common 

linear classification algorithms to explain the concept of learning. Nonlinear classifica

tion is perceived as linear through the utilisation of kernel mapping power, hence the 

fundamentals of kernel induced methods were discussed.in some details. The statistical 

learning theory enabled the learning machines, through its resulting SVMs, to combine 

the linear classification and kernel mapping with a solid theoretical generalisation capa

bilities. Also, the selection of model parameters is discussed for better choice of machine 

learning parameters. The chapter concludes the presentation with a brief introduction 

to the probabilistic learning or Bayesian inference models of machine learning. 
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Chapter 4 

Support Vector Machine based 

Equalisation 

This chapter deals with the application of SVM family of algorithms in the issue of 

channel equalisation. SVM based equalisers are then proposed for the DS-UWB channel 

equalisation. Three types of equalisers are introduced, namely, SVC, least squares SVC 

(LS-SVC), and sparse LS-SVC. The rest of the chapter is organised as follows. After 

the introduction in Section 4.1, the applications of SVM methods in broadband wireless 

communications systems are discussed in Section 4.2. The general machine learning 

based system model, for the proposed receivers for DS-UWB systems, is presented in 

Section 4.3. The proposed SVM based equalisers are then introduced in Section 4.4 

with a discussion of the simulation results. Summary is found in Section 4.5. 

4.1 Introduction 

As introduced in Chapter 3, the applications of statistical learning techniques have at

tracted many researchers. And the SVMs [10, 91J are resulting statistical learning tech

niques of related supervised learning methods used to solve the classification problem, 

by using support vector classifiers (SVCs) [71J. A special property of SVMs is that they 

simultaneously minimise the empirical classification error and maximise the geometric 

margin in the training mode, hence they provide high-level' classification performance 

[71J. Kernel induced methods are used in SVM classifiers to perform the classification 
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of nonlinearly separable patterns. A number of modifications and extensions to conven

tional SVCs have been developed to reduce the complexity of the training process, such 

as online SVC training [92] and LS-SVC [93]. 

In digital communications, SVMs have been applied for channel equalisation, chan

nel estimation and multiuser detection (MUI) [12, 13, 14]. For those applications, in 

fact, the problem was mapped to symbol-by-symbol detection, and the channels were 

assumed to be a simple stationary multi path fading with short maximum time excess 

delay for theoretical and educational purposes. In [12], SVMs were considered for de

cision feedback equalizers (DFE) design using linear feedback filter. The DFE filter in 

[13] is replaced by a Volterra filter for nonlinear channels. The DS-CDMA multi-user 

detection (MUD) based on SVM has been discovered in [14]. SVMs have been used for 

UWB systems in range estimation and positioning applications [94]. 

4.2 SVM based Equaliser for Broadband Wireless Systems 

Digital channel equalisation may be viewed as a classification problem [67]. In such 

a scenario, the output of a communications channel can be grouped, in a designated 

manner, to produce a set of vectors which are used as inputs to a classification machine. 

The output of the machine should match as best as possible the original signal (or, 

some delayed version of it) entering the channel. The raw data (i. e., channel output) 

is transformed to a pattern space, i. e., it is grouped as a state vector according to the 

expected amount of lSI. The pattern space is then transformed to a higher dimensional 

feature space (usually of much higher dimension, which is sometimes infinite dimen

sional) that incorporates the nonlinear nature of the model. Equalisation attempts to 

map the nonlinear channel output to an element of which this mapping represents the 

inverse of the channel as closely as possible according to some accepted functional mea

sure. Clearly, if this can be done effectively, then detection follows in a straightforward 

manner. On the other hand, detection only attempts to map the channel output into 

a finite alphabet, say, such that this mapping is optimum in a statistical sense. The 

underappreciated point is that in cases where finding the system inverse only serves 

as an intermediate step to the goal of detecting digital symbols, the system designer 
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usually finds that the direct detection problem is much easier to solve than the more 

general equalisation problem [13]. 

The attempt to use the SVM method can be limited by the fact that not always the 

overall set of incorporated choices is well-suited to the application scenarios; also in such 

a case, however, important advances in the classical design procedures are possible by 

exploiting some of the principal SVM contributions. This is clearly seen with reference 

to the problem of digital channel equalization [91]. Consider the discrete-time linear 

time-invariant noisy communication channel: 

r(n) = h(n) ® x(n) + w(n) ( 4.1) 

where ® denotes the discrete-time convolution, h(n) is the channel impulse response 

with finite impulse response (FIR), w(n) is a zero-mean, independent and identically 
'-

distributed (i.i.d.) noise process with variance a~ and Gaussian distribution, x( n) E 

{-I, I} is an Li.d. sequence of information symbols. 

4.2.1 System Model 

In this work, the concept of SVM based equalisation in digital communication systems 

is examined for simple 2D scenarios for visualisation purposes. Three simple wireless 

communication scenarios are considered to equalise received signals to their original 

transmitted form, considering thereceived signal constellation as attributes space for an 

SVC in both training mode and detection mode. 

The system block diagram is depicted in Figure 4.1, where the input data symbols 

d(t) are the generated signals of our interest and the final target is to retrieve this signal 

as accurate as possible. The transmitted symbols are corrupted by the physical medium 

which is modelled as a FIR filter (the channel H(z)). 

At the receiver, an AWGN is added to the received signal to produce observed signal 

r(t), which together with the previously observed signal r(t - 1) make the 2D input 

space of the SVC. The SVC estimates the previous data symbol d( t - 1) as following 

d(t - 1) = sign(Jsvc{r(t))) (4.2) 
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Figure 4.1: System model of SVC based equaliser for broadband wireless channel 

where r(t) = [r(t), r(t - 1)] , sign is the signum function, and 

fsvc{r(t)) = L CiidiK(r(t), ri). 
iESV 

(4.3) 

where di and ri are the support vectors from the training data set {r(t), d(t)} , respec-

tively. In this experiment, the bias term f3 is chosen to be zero considering the common 

assumption that the symmetry around the origin [14]. The Cii are calculated in the 

training mode via solving a QP problem to maximise 

PIP P 

W(o) = L Cii - :2 L L CiiCijYiYjK(ri, rj) 
i=l i=l j=l 

( 4.4) 

where P is the training set (pilot) size and K(ri' rj) is the Gaussian radial basis function 

(RBF) kernel mapping which is defined in Equation (5.24), and (12 is chosen to be 

proportional to the noise power in this experiment. 

The system performance is then evaluated by comparing original sent symbols with 

those retrieved by the SVC at different noise levels (i. e. calculating the simulated BER). 

Experiment configurations 

The generated data are assumed to be independently distributed binary symbols, which 

take the values from the symbol set {-I, +1} with equal probability, to represent base

band BPSK pulses (1 million symbols). Three discrete channel models were used to 

represent simple multipath wireless communication channels: 
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ChI: H(z) = 0.50 + 1.0z-1 

Ch2 : H(z) = 0.30 + 0.7z-1 +0.3z-2 (4.5) 

Ch3: H(z) = 0.35 + 0.8z-1 +1.0z-2 +0.8z-3 

The noiseless channel states of these channels are depicted in Figure 4.2. The 

accompanying noise SNR (Eb/NO) varies from 0 to 24 dB. 

The SVC is designed to extract the previous transmitted symbol (delay of 1 symbol) 

to allow the classifier to work with two symbols a time. The upper boundary condition 

for the QP (C) was set to 10 after testing many empirical values. 

4.2.2 Simulation Results 

The simulation results of an SVC based equalisation system are presented in this sub

section. The SVC simulator was tested for linear data learning and nonlinear data 

learning considering the RBF kernel mapping. For linear training, K(ri' rj) was as

sumed to be merely a normal inner product r[ r j. The results of both situations are 

illustrated in Figure 4.3, and it is clearly deduced that, for highly nonlinear separable 

constellations such as Ch3, considering kernel mapping would improve the performance 

of the classifier. Generally, the kernel mapping outperforms normal linear SVC. 

The results of Figure 4.3 assume a perfect knowledge of the channel at the receiver, 

that is, only the output of noiseless channel states are used as a training dataset. The 

SVC is also trained with the noisy data set for more realistic scenarios, and the results 

are shown in Figure 4.4, which shows the robustness of the SVC with the noisy training 

data. 
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Figure 4.2: Channels states constellation 
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Linear vs Nonlinear classifiers 
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Figure 4.3: Linear vs Nonlinear SVC 

To summarise the findings of this experiment, nonlinear SVC performs more effec-

tively than linear classifier due to the introduction of kernel mapping function and the 

nonlinearly separable nature of the signal constellation of most multi path channels. This 

is at the cost of more computational complexity. High performance can be achieved if 

the knowledge of the channel is known to the detector. However, the performance does 

not change considerably if no information about the channel is available (which is the 

case for most real applications). This second case can be accomplished by training the 

detector by a sufficient training data set. 
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Noiseless vs Noisy channel states 
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Figure 4.4: Ideal vs Noisy channels performance 

4.3 General Machine Learning based Model for DS-UWB 

Systems 

In this section, the general structure of the proposed receivers are introduced and de-

scribed for DS-UWB system. Figure 4.5 depicts the block diagram of the proposed 

machine learning (ML) based receiver, this structure will be used throughout the re

search, and the subsequent work will investigate the learning methodology of the ML 

units in this structure. The receiver structure, therefore, consists of a bank of indepen-

dent ML based classifiers with optimised parameters at the receiver in a block-by-block 

fashion. The M classifiers are arranged in parallel as shown at the receiver in Figure 

4.5. 

The principle of solving equalisation problem as a pattern recognition is developed 

to the spreading code space in DS-UWB systems. In the proposed receivers, the received 

discrete signal in Equation (2.15) is arranged in M parallel groups of Nc chip length 

each, as shown in Figure 4.5. The signal is passed through M classifiers, and the input 

vector to the mth (m = 1, ... , M) classifier from the jth received block, r, can be denoted 
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Figure 4.5: General machine learning based receiver for DS-UWB system 

in machine learning convention as 

XJm
) = [r[Nc(m - 1) + 1J r[Nc(m - 1) + 2J ... r[Nc(m - 1) + Ncll.T (4.6) 

For training the ML based equalisers, i.e., classifiers, P pilot blocks, each having of 

M symbols, are transmitted. The mth pilot symbol in the jth (j = 1, ... , P) training 

block is given by yjm) = bm(j). 

In the detection (testing) mode, the estimated mth symbol of the ith (i = 1, .. , B) 

received data block are obtained from the mth machine learning based classifier as 

b (.) _. {f(m) ( (m))} 
m 'I, - SIgn Machine Learning Xi (4.7) 

where sign is a decision function defined in Equation (2.20), and f;;Jchine Learning is 

the classification function of the mth classifier, which is generally defined as 

f (m) ( (m)) _ ~ (m) (m) ((m) (m)) (3(m) 
Machine Learning Xi - 6 aj Yj K Xi ,Xj + (4.8) 

x(m)EV 
J 

where V is the resulting set of support vectors obtained by the learning process from all 

the training input vectors XJm) , and yjm) are the pilot symbols or class labels for xJm). 

a's are classifier parameters which are calculated in the training mode via the training 

input vectors with a proper optimisation scheme. (3(m) in Equation (4.8) is a threshold 

term that indicates how far the origin is from the hyperplane (or, affine offset [13]). 
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For simplicity of notation, the classifier's index m will be omitted in the subsequent 

chapters since the optimisation process applies independently to all the classifiers in the 

receiver. 

K(xa, Xb) in Equation (4.8), is the kernel function of the machine learning classifiers 

that is discussed in Section 3.3. The natural choice of kernel function in most commu-

nication applications is the Gaussian radial basis function (RBF) [12], which takes the 

form in Equation (5.24) where a is the kernel width parameter. 

4.4 SVM based Equalisers for DS-UWB Systems 

This work proposes and investigates the SVM based equalisation for DS-UWB systems 

by employing three types of SVM based classifiers in the equalisation units in the general 

receiver structure (i. e. the ML units in Figure 4.5). The three chosen classifiers are the 

SVC, least squares SVC (LS-SVC), and the sparse LS-SVC. To the best of our knowl

edge, this is the first work to apply the SVM technique to UWB communication systems 

considering practical UWB channels and scenarios. The following subsections describe 

these equalisers in details, and present and discuss the simulation results compared to 

conventional receivers in DS-UWB systems. 

4.4.1 SVC based Equaliser 

A powerful advantage of SVMs is that only some of the training vectors, referred to as 

support vectors (SVs) , are used in the classification stage. The fundamental principle 

of SVC is to find a linear hyperplane (w) in higher dimensional space that maximise 

the distance (margin) between two different patterns. Hence, the optimisation problem 

in its primal form is defined to minimise 

1 p 

Wp(w,~) = 2wTw+CL~i (4.9) 
i=l 

subject to 

(4.10) 
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where C is the regularisation parameter and ~i is the ith slack variable. By introducing 

Lagrange multipliers (a's) and applying Karush-Kuhn-Thcker (KKT) conditions [82] 

for the above constrained optimisation [71], the primal objective function in Equation 

(4.9) with its constrains in Equation (4.12) is converted to the dual formulation. The 

optimisation process, according to [10], is then to find the values of a's of the mth 

classifier that maximise the resulting dual objective function: 

subject to 

PIP P 

Wd(O) = L ai - "2 L L aiajYiyjK(Xi, Xj) 

i=l i=l j=l 

2:{:1 aiYi = 0 

a ~ ai ~ c. 

( 4.11) 

(4.12) 

Again, C is a controlling parameter for the optimisation stability. The dual form facili

tates the nonlinear separable data patterns to depend only on the size of the training set, 

not on the dimension of the high dimensional feature space. A well known procedure 

called quadratic programming (QP) [13] may be used to minimise - Wd(O), subject 

to the constraints of Equation (4.12). The optimal solution consists of those nonzero 

values of a's and the corresponding support vectors, which are used to construct the 

classifier in Equation (4.8). 

Parameter selection for SVM 

For a SVM, choosing a suitable kernel is imperative to the success of the learning 

process. The regularisation parameter C is also important, as it controls the tradeoff 

between the complexity of a SVM and the number of nonseparable points [11]. The 

most common model selection validation tests have been presented in Section 3.6, and 

some other testscan be used for SVM model selection as follows. 

Leave-one-support-vector-out cross-validation 

The leave-one-support-vector-out cross-validation (LOSVOCV) procedure is a modified 

LOa that has been introduced in the SVM context by [95]. The LOSVOCV algorithm 
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has been proposed for estimating the optimal bandwidth of the kernel of support vector 

classifiers. Its generalisation performance and computational efficiency have been dis

cussed in comparison with the conventional LOO algorithm [95]. It is initialised using 

a pre-determined value of kernel width parameter and the SVC is then trained with the 

whole training data to obtain a set of SVs. At each loop of the training process, after 

one of the current SVs is deleted, a new decision function is obtained by training the 

SVC with the remaining SVs. The new decision function is then used to classify the 

whole training set with errors defined as the total number of misclassification 

Automatic tuning of SVM parameters 

In [84], an approach for automatically tuning the kernel parameters has been proposed. 

This is based on the possibility of computing the gradient of various bounds on the 

generalisation error with respect to these parameters. By using smoothed gradient 

techniques, the search of kernel parameters space is performed with gradient descent 

algorithm. 

4.4.2 LS-SVC based Equaliser 

To reduce the computational complexity of the QP process in standard SVCs, we apply 

the LS-SVC technique [93] for equalisation, by modifying the inequality constraints in 

Equation (4.10) to equality constrains. The classification problem in LS-SVC, therefore, 

is formulated as (in a primal form) to minimise 

(4.13) 

subject to the equality constrains 

( 4.14) 

where w is the hyperplane coefficients vector, ej is the misclassification error due to the 

equality constraint, and 'Y is a regularisation parameter that is predefined to control the 

error tolerance weight. 
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By introducing Lagrange multipliers, we construct a Lagrange function from Equa-

tion (4.13) as 

P 

WLSd (W,,6, e, 0:) = WLSp (w, e) - I>~j{Yj[wT cp(Xj) + ,6]- 1 + ej} 
j=1 

where ai E JR, and the conditions for optimality become 

g;, = 0 ~ w = 2:;=1 ajYjcp(xj) 

8e. - 0 --"- "\,,,P ro, Y 0 
8(3 - -7 L..Jj=1 u.j j = 

g~ = 0 ~ aj = "Iej, j = 1,2, ... , P 

g~ = 0 ~ Yj[wTCP(Xj) + ,6]-1 + ej = 0, j = 1,2, ... ,P. 

It can be derived that Equation (4.16) can be expressed in a matrix form as 

(4.15) 

( 4.16) 

( 4.17) 

where y = [Y1 ... ypjT, and the element in the ith row, jth column of n is defined as 

nij = YiYjcpT(Xi)CP(Xj) 

= YiyjK(Xi, Xj). 
(4.18) 

The linear equation in Equation (4.17) can be easily solved by many existing algo

rithms rather than the QP technique used in SVCs in Subsection 4.4.1. However, the 

concept of support vectors disappears in the LS-SVC case since the solution contains a 

spectrum of values rather than few nonzero values as in SVCs. This, therefore, intro

duces an increase in detection complexity. Once classifier coefficients (0:,,6) have been 

evaluated, the classification process for the information data can be accomplished by 

using Equation (4.7) and Equation (4.8), but with the whole range of training symbols. 

4.4.3 Sparse LS-SVC based Equaliser 

To alleviate the detection complexity resulted from the full spectrum of LS-SVC support 

values, some sort of sparseness can be imposed by using the pruning approach [96], whose 
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procedure is as follows: train the classifier by the training data set; sort the spectrum 

of resulting classifiers' coefficients; remove the least important coefficients according to 

some acceptable degree in performance. This process can be terminated at this stage 

or extended to re-train the classifier by inputting the remaining corresponding data set. 

This pruning algorithm can be applied to the current application of the LS-SVC for 

DS-UWB equalisation. 

As concluded from Subsection 4.4.2, a drawback of the LS-SVC in comparison with 

the original SVC formulation is that sparseness is lost in the LS-SVC case. This is 

because the support values are proportional to the errors at the data points, as can 

be seen in the third condition of Equation (4.16). However, by plotting the spectrum 

of the sorted support values, one can evaluate which data are the most significant 

for contribution to the LS-SVC classifier. Sparseness is imposed then by gradually 

omitting the least important data from the training set and re-estimating the LS-SVC. 

This algorithm can be summarised as [96J: 

1. Train each of the M LS-SVCs on P pilot symbols. 

2. Remove a predefined number (of sparseness ratio p) of pilot symbols that corre

spond to the smallest support values in the spectrum. 

3. Re-train the LS-SVCs based on the reduced training set. 

This procedure can also be implemented iteratively by removing a small part of training 

data until some preset performance index is reached. This represents pruning of the 

LS-SVC. As a result, the number of the classifier's coefficients becomes smaller, which 

reduces the detection complexity. It is worth noting that the pruning does not involve 

a computation of a Hessian matrix. Instead, it is immediately done based upon the 

physical meaning of the solution vector 0:. 

4.4.4 Performance Analysis 

In order to appreciate the performance advantages of the SVM based equalisation, we 

explain in this section the conceptual differences between conventional equalisation and 

equalisation as a pattern recognition solution. Considering the signal constellation for 
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a digital communication signalling with lSI effects, the equalisation problem is to find 

the optimal mapping that returns the lSI corrupted signals to their original positions 

on the constellation. While in pattern recognition, the problem is to find the optimal 

decision boundary (a hyperplane in an appropriate higher dimensional space) that is 

used for symbol detection. 

There are two main implications of the pattern recognition based equalisation. First, 

for an increasing number of observed symbols, a stable decision boundary can be ob

tained with a faster convergence speed, achieving a better detection accuracy. Second, 

the time-varying nature of multipath channels has small impact on the decision bound

ary, since the time variation can be viewed as a small noise added to the constellation 

in the detection regions of the learning machine. 

A special case that clearly shows the superior performance of the SVM based 

equaliser is the line-of-sight (LOS) scenario, where most of the channel energy is con

centrated on first components which results in two (for binary signalling) separable 

intensive clouds of observations in a high dimensional feature space with, most impor

tantly, a proper kernel mapping. The detection then performs on average as a simple 

AWG N detection, if a well-chosen kernel function is used for the mapping. An illustra

tive example is shown in Figure 4.6, where two 4-tap FIR channel models with Rayleigh 

fading for each tap are used to visualise the signal constellation in the feature space 

for a binary signaling assuming no added noise. For an NLOS scenario (Channell), 

Figure 4.6(a), the average channel taps' powers are equal so that the signal centres are 

spread in the feature region. Hence, more classification errors occur potentially when 

the noise is added at the receiver. On the other hand, Figure 4.6(b) (Channel 2) shows 

the signal pattern for a LOS scenario where most of the channel power is concentrated 

on the first tap. With the assumption of unit average channel energy, the classification 

performance resembles the detection performance of the simple case of AWGN only, 

i. e., the distance d in Figure 4.6(b) reflects the signal amplitude. 
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4.4.5 Complexity Analysis 

In this subsection, a complexity analysis is provided for the proposed SVM based equal-

isation, in terms of the number of multiplication operations in both the training and 

detection modes for a single training session, i. e., one transmission packet. The analysis 

given in this section is normalised to one classifier, so that only a corresponding symbol 

of each block is considered. 

Table 4.1 summarises the complexity of the proposed SVC, LS-SVC and sparse SVC 

based equalisers. The complexity of RAKE-MRC is also included as a benchmark. In 

the RAKE-MRC receiver, the training mode is used for channel estimation. The compu

tational complexity of one training session is of O(NcPLest ) multiplication operations. 

Whereas the detection complexity is of O(NcLfB) operations for B detected symbols 

per packet. 

Table 4.1: Complexity Comparison (Nc-Code length, P- Pilot size, B- Num
ber of data blocks, Lf-RAKE fingers, Nsv-Average number of Support Vectors, 
p-Sparseness ratio, and Lest-Length of the estimated channel) 

I I Training Complexity I Detection Complexity I 
RAKE with MRC O(NcPLest ) O(LfNcB) 

SVC O(P3 ) O(NsvNcB ) 
LS-SVC 

O((Nc + 1)P2
) 

O(PNcB ) 
Sparse-LSSVC 0((1 - p)PNcB) 

For the standard SVM method, solving the QP problem for optimisation in a SVC 

training for P pilot symbols requires 0(P3 ) multiplication operations plus NcP 2 mul

tiplications in generating Hessian matrix K for non-linear mapping [69], where Nc rep

resents the dimension of the detector input space that is equal to the spreading code 

length in this system. Thus, the total number of multiplication operations in training 

the SVC can be approximated by (NcP2 + p3). 

The most important reason for using LS-SVC is to reduce the training complexity 

over the standard SVC. In order to evaluate the multiplication operations in LS-SVC 

training, the linear equations system in Equation (4.17) requires ~ (P + 1)2 operations 

when using Gaussian elimination algorithm. In addition, one should consider another P 

multiplications for adjusting n by ,-II. Moreover, the same number of K -generating 

operations is considered here. Therefore, the total number of operations in LS-SVC 
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Figure 4.7: Training complexity comparison for SVM based equalisers 

training would be on the order of ( NcP 2 + P + ~p2 ~ (Nc + 1)P2 ). 

For detection complexity, the numbers of multiplications for one detection session 

(B data symbols) can be calculated for each tested symbol as follows O(NsvNcB) for 

SVC and O(PNcB) for LS-SVC, where Nsv is the average number of support vectors 

of the SVC method. Since typically N sv < P, the detection computational complexity 

of the SVC is lower than that of the LS-SVC. However, practical experiments show that 

a large number of support vectors are obtained in DS-UWB systems. 

Imposing sparseness will reduce the detection complexity of LS-SVC according to a 

predefined cutting ratio p - the ratio of the removed training points to the total training 

points. Hence, the detection complexity of the sparse LS-SVC is O( (1 - p)P NcB). 

Figure 4.7 illustrates the training complexity comparison for both the SVC and 

LS-SVC based equalisers with respect to the number of pilot symbols. 

For comparison purposes, define {) = Nsv / P (0 < {) ~ 1). The overall complexity, 

i.e., training and detection, saving of (sparse) LS-SVC over SVC can be evaluated by a 

ratio 7], which is defined as 
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tors fraction and p is the removed pilot symbols ratio by imposing sparseness (sparseness 
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(Total Number of Multiplications)Ls_svc 
TJ = (Total Number of Multiplications)svc . ( 4.19) 

Figure 4.8 shows the reduction in the overall computational complexity for different 

numbers of pilot symbols considering two average numbers of support vectors and three 

cutting ratios of sparseness of p = 0 (no sparseness), 30% and 60%. The number of 

data symbols is assumed to be 6 times of the number of pilot symbols, i. e., B = 6P. 

4.4.6 Simulation Results 

We use simulation results to demonstrate the performance of the proposed SVM based 

equalisers. The simulations were executed using two channel models proposed in IEEE802.15.3a 

[35]: CMl for the case of line-of-sight (LOS), and CM3 with non-LOS (NLOS). We set 

the GI length to LGr = 15 for CMl, and LCI = 40 for CM3, respectively, to match the 

maximum delay spreads of these two channels. The channels are assumed to be constant 

over one transmission session (one packet). We assume BPSK modulation with data 

rate varying from 138 Mbps to 163 Mbps. A ternary code [97] of length Nc = 32 is used 
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Figure 4.9: kNN based classification system performance for CMl 

for spreading, with a chip width of Tc = 0.167 ns. The number of symbols per block 

is M = 200, and the sizes of pilot blocks per packet were chosen to be P = 100, 200, 

and 500. The number of data blocks per packet is B = 2500. The signal-to-noise ratio 

(SNR) is defined as the ratio between the average received signal power and the noise 

power. 

For the sake of comparison, typical k-Nearest Nieghbour (kNN) based classifiers [70] 

were used as a benchmark reference of learning machine for CMl and CM3 settings. 

Figure 4.9 shows the BER results of kNN based classifiers for CMl with a range of 

values of K, i.e., 1, 5, 11, and 31. It can be clearly noticed from the results that better 

performance can be obtained for large values of K that represent the DS code length 

(i.e.,31). Figure 4.10 shows the same results but for CM3 scenario. The optimal value 

of K in this scenario is varying depending on the SNR level, but, in general, we can 

choose K = 31 as an overall optimal value for later comparison. In both figures, it is 

obviously shown that classification in original attribute space is far worse than using 

nonlinear mapping through kernels as will be illustrated next. 

Figure 4.11 depicts the BER performance of the proposed SVM based equalisers in 

comparison with the RAKE-MRC receiver and kNN based classifiers for CMl, where 
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Figure 4.10: kNN based classification system performance for CM3 

an LOS scenario is considered. The number of RAKE fingers was chosen to be the 

same as the number of pilot symbols of the classifiers, i.e., Lf = P = 100, in order to 

fix the detection complexity for all equalisers. K was fixed to 31 for the kNN based 

classifiers. The SVM based equalisers significantly outperform the RAKE receiver and 

the kNN based classifiers. For instance, at SNR = lOdB, the average BER of the SVM 

based equalisers is around 2 x 10-5 , whereas it is 7 X 10-3 for RAKE receiver with 

perfect channel state information (CSI). As shown in Figure 4.11, the performance of 

the SVM based equalisers is nearly the same as the performance of an AWGN detector. 

This is because the data patterns (in high dimensional space) of the received chips are 

concentrated around far-apart centres that represent dominant LOS components, as 

described in Section 4.4.4. 

The BER performance with CM3 is illustrated in Figure 4.12 where the number of 

RAKE fingers and the number of pilot symbols of the classifiers are set to be L f = P = 

200. Similar to Figure 4.11, the proposed SVM based equalisers outperform the RAKE 

receiver and the kNN based classifiers, at the same detection complexity. It is also 

inferred that, for medium-to-high SNR range, the cross-correlator channel estimator in 

the RAKE receiver results in an irreducible error floor at BER~ 10-3 , while the SVM 
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Figure 4.11: SVM system performance for CM1; Number of RAKE fingers L, = Number 
of pilot symbols P = 100 

based equalisers with implicit channel estimation even outperform the RAKE receiver 

with perfect CSI. Moreover, by introducing the LS-SVC based equalisers, the system 

performance is almost retained with the benefit of saving up to 50% of the training 

complexity, as shown in Figure 4.7. 

The effect of imposing sparseness was examined for two levels of cutting ratios (p = 

30%,60%) representing the detection complexity that could be saved. The effectiveness 

of the sparse LS-SVC based equaliser is illustrated in Figure 4.13 for three pilot sizes 

P = 100,200 and 500. The results show that for a large enough size of pilot symbols 

(P = 500), sparse LS-SVC provides nearly the same performance as SVC, even with 

a reduction of 60% in detection complexity. The spectrum of the resulting average 

support values is depicted in Figure 4.14. 

Choosing the appropriate number of symbols for training is a matter of a tradeoff 

between BER performance and bandwidth efficiency. Figure 4.15 illustrates the learning 

curve of the LS-SVC based equaliser with CM3, which can guide to choose the appro-

priate pilot size. For our simulations, we have chosen up to P = 500 pilot symbols so 

that no significant improvement is achieved beyond that size, compared to the entailed 
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Figure 4.14: Support values spectrum 

increase in complexity. 

Due to the sensitivity of kernel parameters, an optimal width parameter ((1) value 

in the Gaussian RBF kernel is required. In the above simulations, empirical tests have 

been conducted to obtain the optimum value of (1. Figure 4.16 shows the effect of the 

value of (1 on the performance of LS-SVC based equaliser with CM3, for different SNRs 

levels. It is interestingly noticed that the optimal value of (1 is around 100.5 for different 

SNR levels. 

4.5 Summary 

This chapter investigates the applications of SVM family of classification algorithms in 

the field of digital channel equalisation. The idea was developed from basic 2D scenario 

where an SVC based equaliser has been applied for digital wireless communication 

channel equalisation (i. e. symbol detection) and results have shown that the SVM 

approach is very effective in overcoming the lSI. Also, the nonlinear nature of signal 

constellation is effectively overcome by introducing kernel mapping. 

Furthermore, the SVM techniques have been applied for DS-UWB channel equalisa-

92 



LS-SVC Learning Curve 
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tion. Results show superior performance of SVCs compared to the conventional RAKE 

receiver. In particular, the SVM based equalisation in the LOS scenario provides a close 

performance to the AWGN case. The LS-SVC based equalisers have been employed to 

reduce the training complexity of the standard SVC based receiver significantly, at a 

cost of small increase in detection complexity. The detection complexity, however, can 

be reduced by imposing some sparseness to the LS-SVC taps. Simulation results show 

that, with a relatively large number of pilot symbols, the proposed sparse LS-SVC based 

equaliser can save up to 60% of the detection complexity, while maintaining the superior 

BER performance of SVCs. 
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Chapter 5 

Multi-Criteria Quadratic 

Programming based Equalisation 

The optimisation in the SVM algorithm family is based on maximising only the margin 

that separates the classes, with some relaxation tolerance. In this chapter, a recent 

method called multi-criteria quadratic programming (MCQP) is investigated and ap

plied to the channel equalisation and signal detection of communication systems. The 

organisation of this chapter is as follows. An introduction to the MCQP [98] is pro

vided in Section 5.1, and detailed descriptions of MCQP learning model are presented in 

Section 5.2. An MCQP based equalisation method for nonlinear channels is proposed 

and presented in Section 5.3. Section 5.4 introduces and proposes the MCQP based 

equalisers for DS-UWB systems. Summary is provided in Section 5.5. 

5.1 Introduction 

The concept of MCQP methodology can be considered as an extension to the SVM 

methodology of the generalised learning theory presented in Chapter 3. MCQP enables 

a performance improvement in the optimisation module of the learning machine through 

the modification of the optimisation cost (i.e., objective) function. In addition, MCQP 

is more computationally efficient, compared to standard SVMs, because the optimisation 

technique associated with MCQP only requires solving a set of linear equations. The 

preceding advantages raise the motivation to use MCQP for different digital channel 
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equalisation applications. 

5.2 MCQP Learning Model 

The MCQP uses training data, similar to SVM, to estimate the decision function for 

the detection stage. The estimated function is, then, used to perform the classification 

to the testing transmission data. For a binary classification problem, the idea of MCQP 

model is based on maximising the external distance between the two classes' groups and 

minimising the internal distance within the same class group. This model has two sig

nificant advantages. The first is its relatively low complexity since it only needs to solve 

a set of linear equations. The second advantage is the performance enhancement due to 

the introduction of internal distance to the optimisation object function. Furthermore, 

kernel functions can also be used to solve nonlinear patterns. The following subsections 

develop the model formulation for linearly and nonlinearly separable patterns. 

5.2.1 MCQP for Linearly Separable Patterns 

Same as that in the SVC, the data patterns are separated by a hyperplane of direction 

represented by w = [WI, W2, ... , wnjT, where n is the data pattern dimension, and a 

scalar distance f3 from the origin. Considering the training set {fi' yd1:I' the MCQP 

model is formulated as to 

(5.1) 

subject to Yi(f[ w - (3) = -ai + "ti, (i = 1,2, ... , P) 

where A and B are arbitrary pre-defined model parameters that control the optimisation 

objectives. ai, "ti ::::: 0 represent the slack distances for misclassification errors and the 

distances of correctly classified points from the hyperplane, respectively. In other words, 

the aim of the optimisation problem in Equation (5.1) is to maximise the margin between 

different classes and to minimise the internal distance within the same class. 

Assuming ai = 0 for correctly classified points and "ti = 0 for misclassified points, 
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and by introducing Tfi = O::i - "ti, model of Equation (5.1) can be rewritten as 

(5.2) 

subject to Yi(i't w - (3) = -Tfi, (i = 1,2, ... , P), 

the new term (~K{32) in Equation (5.2) is introduced to add strong convexity to the 

objective function [98]. The weight K is an arbitrary positive number. By introducing 

Lagrange multipliers Bi , The Lagrange function for the constrained optimisation in 

Equation (5.2) can be obtained as follows: 

L1(W, (3, TI, 0) = ~ IIwl12 + ~A 2:{:1 Tf; - B 2:{:1 Tfi 

+~K{32 - 2:{:1 0dYi(i't w - (3) + Tfd. 
(5.3) 

A matrix-vector notation is adopted for simplicity where 0 = [B I , B2 , ... , BpjT, and 

TI = [Tf1, Tf2, ... , Tfp]T. Further define the P-dimensional column vector e = [1,1, ... , IV, 

the P x n matrix R =[1'1,1'2, ... , i'pV and the diagonal matrix Y = diag(Y1, Y2, ... , yp). 

Then, the optimal solution of Equation (5.3) can be obtained by setting the derivatives 

of the Lagrange function to zeros, namely, 

a:L1 = w - RTyO = 0, 

/PL1 = K{3 - eTyO = 0, 

I",L1 = ATI + Be - 0 = 0, 

18L1 = Y(Rw - (3e) + TI = O. 

(5.4) 

Thus, by simple manipulation to the equations in Equation (5.4), the optimal Lagrange 

multiplier vector can be expressed as 

(5.5) 

Therefore, the optimal solution can be obtained by substituting Equation (5.5) into 
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the first two equations of Equation (5.4) 

w=RTyO 

/3 = keTyO 

5.2.2 MCQP for Nonlinearly Separable Patterns 

(5.6) 

For nonlinear separable clouds of data, the kernel mapping [85] is utilised. By apply

ing nonlinear mapping, through the transformation function ¢(.), the original linearly 

nonseparable input data space is transformed to a high dimension linearly separable 

feature space. The kernel mapping, however, can be realised as the inner product of the 

higher-dimensional feature vectors without explicitly knowing ¢. Therefore, the kernel 

mapping is defined as 

and 

K(rl,rl) K(rl,r2) 

K(r2,rl) 

K(rp,rp) 

(5.7) 

(5.8) 

From the model of Equation (5.2) and its optimal conditions in Equation (5.4), and by 

substituting w = RTyO, and replacing RRT by K(R, RT), we can reformulate the 

model as in Equation (5.9) below 

subject to Y (K(R,RT)yO - /3e) = -Tl. 

The Lagrange function of this model can be expressed as 

L2(0, /3, TI, p) = ~ 110112 + ~A 2:{:1 rJ;- B 2:{:1 rJi + ~K/32 
_pT [y (K(R, RT)yO - /3e) + TI] , 
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where p = [PI, P2, ... , ppVare Lagrange multipliers for nonlinear scenario. The optimal

ity conditions of the model of Equation (5.10) are then expressed by 

/eL2 = () - Y (K(R, RT)f yp = 0, 

/{3L2 = K(3 + eTyp = 0, 

-Ir,L2 = A11 - Be - p = 0, 

/pL2 = Y (K(R, RT)y() - be) + 11 = 0. 

Hence, the optimal solution is given by 

p = [11 + Y (K(R, RT) (K(R, RT)) T + k eeT ) yr l [~e] , 

(3 = keTyp 

5.3 MCQP based Equaliser for Nonlinear Channels 

(5.11) 

(5.12) 

In this section, the low complexity MCQP based approach is proposed for nonlinear 

channel equalisation or, more appropriately, signal detection in wireless communica-

tions. The proposed system model is presented with simulations to show the perfor

mance and complexity improvements over SVM. Simulation results confirm the perfor

mance enhancement of the proposed MCQP over standard SVM based equaliser. It also 

provides a performance close to that of the optimal Bayesian detector. Furthermore, the 

MCQP based equaliser considerably demonstrates its robustness to the time variation 

effects of channel coefficients. 

5.3.1 System Model 

The communication system used in this experiment is shown in Figure 5.1. Assuming 

baseband transmission and perfect symbol matching filtering associated with real valued 

data, a discrete-time real channel can be considered to fit the learning based equalisers 

adopted. The channel model, according to [13]' consists of a deterministic term yp(k) 

and random process term v(k) which represent AWGN samples. The deterministic 

term, Equation (5.14), is a polynomial combination of order Pc of a linear FIR filter 

with length L, which is defined in Equation (5.13). Hence, for a transmit symbol 
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d(k) E {+1, -I}, the output of a general form of nonlinear channel can be modelled as 

follows 

L-1 

Yl(k) = L hl(k)d(k -l) ( 5.13) 
1=0 

and 

Pc 

Yp(k) = L ciyi(k), (5.14) 
i=O 

where Ci is a real coeffiecient. The channel output can be modelled as 

r(k) = Yp(k) + v(k). (5.15) 

The channel output in Equation (5.15) can be grouped into vectors of length n as 

r(k) = [r(k), r(k - 1), ... , r(k - n + l)]T (5.16) 

where n is the dimension of received signal vectors that is chosen to match the length 

of the channel so that the equaliser output· in Figure 5.1 is dependent on the length of 

the lSI channel (i.e. n = L). This means that the number of channel states (signal 

constellation) for the binary detection is 2n+l if no AWGN is added. 

Optimal Bayesian detector 

The utilised optimal detector in this study is the Bayesian or maximum a posterior 

(MAP) equaliser. The binary decision role for the Bayesian detector is presented here. 

Bayesian equaliser works in a symbol-by-symbol manner, with the aim of maximising 

the posterior of symbol d(k) is being transmitted, given the likelihood and the priori of 

the observed signal [99]. 

Given a set of noise-free received vectors (i.e. channel states) {rt,ri}, the deci

sion rule is to choose the optimal Bayesian symbol (d( k)) for a noisy received vector 

(r(k), or r for simple notation). d(k) is estimated by 
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Figure 5.1: Discrete-time system model 
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A { +1, fBAYEs(r) 2': 0 
d(k) = sign{JBAYEs(r)} = 

-1, fBAYEs(r) < 0 
( 5.17) 

where sign denotes the decision function, and the optimal Bayesian function is given by 

fBAYEs(r) = L!~ exp (-JJr - rtJJ 2 
/20"2) 

- Lf:~ exp (-JJr - riJJ 2 
/20"2) 

(5.18) 

where r; = [yp(k), yp(k-1), ... , Yp(k-n+1)] for d(k) = ±1, and 1 ~ i ~ N± respectively. 

N+ and N- in Equation (5.18) refer to the number of channel states for +1, -1 symbols 

(in this application, N+ = N- = 2n). 0"2 denotes the AWGN power. The Bayesian 

decision function in Equation (5.18) assumes equiprobable a priori probabilities and a 

binary decision solution. 

5.3.2 Symbol Detection by MCQP based Equaliser 

For digital communication channel equalisation, the training stage is accomplished 

through transmitting pilot symbols (Y), and receiving their corresponding channel out

puts (R). Thus, by applying Equation (5.12), the equaliser parameters are evaluated. 

Then, the symbol estimation, for an observed received channel output (r), is evaluated 

by the function in Equation (5.20) for detection process. First, define 

(5.19) 

then, the evaluation function can be expressed as 

(5.20) 

where, for our binary signalling, the estimate of d( k) decision is given by 

A { +1, fMcQP(r) > 0 
d(k) = sign{JMCQp(r)} = -

-1, fMCQP(r) < O. 
(5.21) 
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5.3.3 Simulation Results 

In this subsection, we present the computer simulation configurations and results of the 

proposed system. To simplify visualisation, a channel model of 2 FIR taps were used 

(i.e. L = n = 2), and the general channel output is defined as [100] 

r(k) = y(k) + I-Ly3(k) + v(k), (5.22) 

where 

y(k) = ho(k)d(k) + h1(k)d(k - 1). (5.23) 

For all simulations, I-L is empirically chosen to be 0.1 and [ho(k), h1(k)] = [0.5, 1] for 

time invariant model. For time variant scenario, and according to [101], ho(k), h1(k) are 

two time-varying coefficients. These coefficients were generated by passing AWGN of 

variance O"~ = 0.01, and centred around [0.5, 1], through a Butterworth low pass filter. 

The normalised cuttoff frequency (JD) is 0.15 representing a Doppler shift relative to 

symbol rate. The noise-free channel states, for both time invariant and time variant, are 

shown in Figure 5.2(a). The FIR channel coefficients variations are plotted in Figure 

5.2(b) . 

The MCQP parameters settings for simulations are as follows: A = 0.9, B = O.land 

K = 0.5 based on empirical tests. The number of training symbols (pilots) is set to 

P = 100. For nonlinear transformation by kernel function, the GRBF is used as a 

preferred kernel for communication applications [12]. The GRBF is rewritten here, for 

convenience, as 

(5.24) 

where 0" is the kernel width parameter that is proportional to standard deviation of the 

AWGN. The SVC is used for comparison. The controlling parameter for the SVC (C) 

is empirically set to be 10. The kernel function for the SVC is chosen to be the same 

one used in the proposed MCQP for fair comparison. 

The computational complexity of the proposed equaliser for training is tested in 

terms of computer execution time. Figure 5.3 shows a comparison between the proposed 
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Figure 5.3: Training computational complexity comparison. 

equaliser and SVC equaliser training times for different pilot sizes. Results in Figure 

5.3 confirm the massive reduction in the training complexity by the proposed equaliser, 

in comparison with the SVC equaliser. The training complexity of the MCQP based 

equaliser increases almost linearly with respect to the training pilot size (i. e. ~ O(P)), 

while the training complexity of the SVC is quadratic This is a massive reduction 

compared to that of SVC where the trend follows a quadratic in the training pilot size 

(i.e. O(p2)). On the other hand, the detection complexity ofthe MCQP based equaliser 

is higher than that of the SVC. 

The resulting BER curves of the Bayesian, SVC and MCQP based equalisers are de

picted in Figure 5.4. The results show the superb performance of the proposed equaliser 

and its convergence to the optimal Bayesian detector, especially for SNR levels over 10 

dB. It is also shown that the high capability of tracking the time variation with the 

proposed equaliser, where the MCQP performance for time varying channel, with fast 

channel variation, is almost identical to the SVC performance for the corresponding 

static channel. 

Figure 5.5 shows the learning curves of the proposed equaliser. By stating learn

ing curve, it is meant to describe finding the sufficient number of training data that 
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guarantees the best performance for a particular condition. The results in Figure 5.5 

consider three levels of SNR (8, 12 and 16 dB) for both the time invariant and time 

variant scenarios. Learning curves converge after approximately 80 training pilot sym

bols. Hence, a pilot of size 100 was chosen in the simulations. Moreover, curves confirm 

the comparable performance between time invariant and time variant scenarios. 

5.4 MCQP based Equalisers for DS-UWB Systems 

This section proposes and investigates the MCQP based equalisation for DS-UWB sys

tems. Here, the ML units in Figure 4.5 are replaced by MCQP based classifiers. A 

sparse version of the MCQP based equaliser is also proposed in this investigation. The 

following subsections describe these equalisers in details, and present and discuss the 

simulation results compared to conventional receivers in DS-UWB systems. 

5.4.1 MCQP based Equaliser 

As mentioned in the general receiver structure in Section 4.3, a group of M paral

lel MCQP based equalisers are used in the receiver. In training mode, and for each 

equaliser, the input to the mth equaliser can be defined as rj = XJm ) , as in Equation 

(4.6). Now, we construct R = [1'1, 1'2, ... , rpV, K(R, RT) as in Equation (5.8) and 

Y = diag(Yl, Y2, ... , yp). Yi represents the pilot symbols of this mth equaliser. The aim 

of training in MCQP based equalisation is to estimate the coefficients vector (p) from 

Equation (5.12) and f3 from Equation (5.11). The resulting estimates are then applied 

in Equation (5.20) and the detected symbol is given by Equation (5.21). 

5.4.2 Sparse MCQP based Equaliser 

The sparseness imposing procedure in the MCQP based equaliser is identical to that in 

the sparse LS-SVC based equaliser, which is described in Subsection 4.4.3. Here, the 

resulting MCQP based equaliser coefficients vector (p) is sorted according to absolute 

values and truncated to the specified level (cutting ratio). 
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5.4.3 Complexity Analysis 

In this subsection, the complexity analysis of the MCQP based equaliser is provided. As 

in Section 4.4.5, the analysis is also in terms of the number of multiplication operations 

in both the training and detection modes for a single training session. All analyses 

are normalised to one classifier, so that only a corresponding symbol of each block is 

considered. 

The MCQP based equaliser is trained by solving a linear equation system as dis

cussed in Subsection 5.2.2. This is similar to the case in the LS-SVC based equaliser. 

However, an additional matrix multiplication term is added in Equation (5.12), for the 

constructed kernel matrix resulting in additional 0(p2) operations, compared to to the 

LS-SVC. Therefore, the training complexity of the proposed MCQP based equaliser is 

approximately O([Ne + ~JP2). 
For detection complexity, the numbers of multiplications for one detection session 

(B data symbols) can be calculated for each tested symbol in MCQP as O(PNeB), 

which is the same as the detection complexity of the LS-SVC based equaliser. Similarly 

to the sparse LS-SVC based equaliser, imposing sparseness will reduce the detection 

complexity of MCQP according to a predefined cutting ratio p. Hence, the detection 

complexity of sparse MCQP is also 0((1 - p)PNeB). 

5.4.4 Simulation Results 

This section presents simulation settings and results to demonstrate the performance of 

the proposed MCQP based receivers for DS-UWB system. For fair comparison purposes, 

similar settings and assumptions to the proposed SVM based receiver in Section 4.4 are 

considered. We will briefly repeat the most important settings for convenience. A 

BPSK signalling is adopted for CM1 and CM3 of the IEEE802.15.3a report [35J. The 

GI were set to 15 for CM1 and 40 for CM3. A similar ternary code of length Ne = 32 

is used for spreading. The number of symbols per block is M = 200, and the sizes 

of pilot blocks per packet were chosen to be P = 100, 200, and 500. The number of 

data blocks per packet is B = 2500, representing a period of 16 /-lS, and the channel is 

assumed to be constant within this period. The MCQP parameters were empirically 
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set to: A = 0.85, B = 0.15, and K = 0.5, although changing these values does not 

considerably affect the performance. 

For the LOS scenario of CM1 settings, Figure 5.6 depicts the BER performance of the 

MCQP based receiver in comparison with the RAKE receiver for CM1, in both perfect 

CSI and with channel estimation. Also, the performance of LS-SVC based receiver is 

shown. For same detection complexity settings, the number of RAKE fingers was chosen 

to be the same as the number of pilot symbols of the classifiers, i.e., Lf = P = 100. 

The proposed MCQP based receiver has also shown superior performance, as in LS-SVC 

based receiver case, that is very close to the pure AWGN channel. It even outperforms 

the LS-SVC based receiver for higher SNR levels (e.g. at 10 dB). 

For the NLOS scenario of CM3, the BER performance of the MCQP based receiver 

is illustrated in Figure 5.7 where the number of RAKE fingers and the number of pilot 

symbols of the classifiers are set to be L f = P = 200. By comparison to the conventional 

RAKE receiver and the FDE, with and without channel estimation, the MCQP based 

receiver is obviously excellent. The MCQP based receiver even better outperforms the 

RAKE receiver with perfect CSI if similar complexity settings were considered, i. e., the 
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Figure 5.7: MCQP system performance for CM3; Number of RAKE fingers Lf = 
Number of pilot symbols P = 200 

number of RAKE fingers = the number of pilot symbols. The optimal performance 

reference is for the FDE with perfect CS!. 

Figure 5.8 illustrates the effects of imposing sparseness to the MCQP based receiver 

for CM3 considering the same two levels of cutting ratios (p = 30%, 60%) of the sparse 

LS-SVC based receiver. Also, the sparseness effectiveness was examined for three pilot 

sizes P = 100,200 and 500. The results show that imposing sparseness is negatively, 

comparing to the sparse LS-SVC, affecting the performance. Even for a large enough size 

of pilot symbols (P = 500), where the sparse MCQP exhibits performance degradation, 

unlike the case of the sparse LS-SVC based receiver. 

Learning curves provide good guidance to the appropriate number of training sym

bols needed. Figure 5.9 illustrates the learning curves of the MCQP based receiver for 

CM3, under three SNR levels. The results of Figure 5.9 show that the optimal number 

of training symbols for the MCQP based receiver is approximately 400. This should 

be compared with the results of Figure 4.15 for the LS-SVC based receiver, which in

dicates that the optimal number of training symbols for the LS-SVC based receiver is 

approximately 600. 
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Figure 5.10: Choosing GRBF kernel parameter a for MCQP (P = 200) 

Figure 5.10 depicts the MCQP based receiver sensitivity to the kernel width param

eter (a) of the GRBF function for CM3 with different SNRs levels. The optimal values 

of a is almost the same to that in SVC, i.e. 10°·5. The most significant observation in 

this context is the high sensitivity to the values outside these optimal values. In other 

words, the optimal MCQP based receiver performance can be obtained only for small 

range of kernel parameter. 

5.5 Summary 

The MCQP method of classification has been investigated and applied for various chan

nel equalisation applications. In the first application, an MCQP based equaliser is 

proposed for nonlinear channel equalisation, which demonstrates a performance close 

to that of the optimal Bayesian detector. Compared to the SVM based equaliser, the 

proposed MCQP based approach has two advantages. First, it introduces the internal 

distance criteria to the objective function which improves the equalisation performance. 

Second, the optimisation in MCQP requires solving a linear set of equations, hence, a 

considerable reduction in the training computational complexity can be attained. Sim-
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ulation results show that the proposed MCQP based equaliser outperforms, in terms 

of BER, the standard SVM based equaliser as well as reducing the training computa

tional complexity significantly. Furthermore, the proposed equaliser has shown superb 

robustness to the time variation of the communication channels. 

In the second application, the MCQP based receiver is proposed and discussed for 

DS-UWB channel equalisation. Results show superior performance of the proposed 

MCQP based receiver compared to the previous SVM based receivers. Therefore, for 

CMI, a close performance to the AWGN case is also obtained. A sparse version of 

MCQP based receiver is investigated to reduce the detection complexity and it is found 

that sparsity in MCQP based receiver is less effective than that in sparse LS-SVC. 

The learning convergence rate of the MCQP based receiver is smaller than the LS-SVC 

receiver. In terms of sensitivity to kernel parameter, the MCQP based receiver has 

shown high sensitivity to the optimal choice of 0'. 
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Chapter 6 

Relevance Vector Machine based 

Equalisation 

The learning models of the previous proposed receivers in Chapters 4 and 5 can be re

garded as "Deterministic" in terms of a single optimal solution is found for the equaliser. 

In this chapter, a sparse probabilistic learning model called relevance vector machine 

(RVM) is investigated and applied to the channel equalisation and signal detection of 

communication systems. The organisation of this chapter, consistently with previous 

chapters, is as follows. An introduction to the RVM methodology is provided in Section 

6.1, and detailed descriptions of RVM learning model are presented in Section 6.2. An 

RVM based equalisation for nonlinear channels is proposed and presented in Section 

6.3. Section 6.4 introduces and proposes the RVM based receiver for DS-UWB systems. 

Discussions and comparisons among all the proposed receivers in this PhD study are 

provided in Section 6.5. The summary of this chapter is presented in Section 6.6. 

6.1 Introduction 

The aim of supervised learning is to find a model that establishes the dependency of 

target values or labels with respect to input data. This model is constructed from a 

priorly given training set of data ({Xi, Yi}[:l' where N is the size of the training set, and 

Yi is the label for the input Xi), hence the name "learning". The corresponding targets 

could be real values, for regression, or labels, for classification. The latter is considered 
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in this study. As in the standard SVM methodology, the target estimation of an input 

point (x) can be evaluated from the general functional expression 

N 

f(x) = L wiK(x, Xi) + Wo (6.1) 
i=l 

where w~s are model weights, Wo represents the bias or the model shift from origin 

(i.e. f3 in the previous models). K(.,.) is the typical kernel basis function. The SVM 

outputs a hard binary decision in classification. The RVM, however, is a probabilistic 

sparse kernel model identical in functional form to the SVM, introduced by [88]. The 

probabilistic estimates captures the uncertainty degrees to the resulting predictions. 

The following sections presents the advantages of using RVM over standard SVM. 

The detailed description of the RVM model is also provided. Originally, RVM approach 

is aimed and developed for regression application, and by introducing integral approx-

imations, it can be extended to perform classification tasks. The application of RVM 

based equalisation is investigated and discussed in the latter sections. 

Advantages of RVM in comparison with SVM 

The RVM methodology does not suffer from any of the following disadvantages that 

standard SVM do: 

• Although relatively sparse, SVMs make unnecessarily liberal use of basis functions 

since the number of support vectors required typically grows linearly with the size 

of the training set. 

• Predictions are not probabilistic. Ideally, it is desired to estimate the conditional 

distribution p(yJx) in order to capture uncertainty in our prediction. 

• In SVM, it is necessary to estimate the error/margin trade-off parameter 'C'. This 

generally entails a cross-validation procedure, which is wasteful both of data and 

computation. 

• The kernel function K(.,.) must satisfy Mercer's condition. That is, it must be 

the continuous symmetric kernel of a positive integral operator [87]. 
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6.2 RVM Learning Model 

Given a block of N training data {Xi, Yi }f::l' consider the estimation expression in 

Equation (6.1). The relevance vector (RV) approach for classification can readily be 

applied to construct the classifier [102]. Denote y = [YI, ... , YNJT and w = [WI ... WNV . 
The posterior probability of w is 

( I ) - P(ylw, a)p(wla) 
P w y,a - P(yla) (6.2) 

where p(wla) is model parameters prior with a = [aI, ... , aNJT denoting the vector 

of hyperparameters. P(ylw, a) is the likelihood, and P(yla) is called the evidence. 

Considering the probabilistic binary encoding scheme to the targets labels, i.e., Y E 

{O, I}, the following likelihood of the Bayesian classification framework can be defined 

as 

N 

P(ylw, a) = II {O'(J(xi))}Yi[l - O'(J(xi)W-Yi (6.3) 
i=l 

, 

where 0'(.) is the logistic sigmoid function that is defined in Equation (3.16). The model 

parameters prior, p(wla), is chosen to be Gaussian with hyperparameters as expressed 

in the sparse Bayesian model in Equation (3.59), so that 

(6.4) 

As the marginal likelihood P(yla) cannot be obtained analytically by integrating out 

the weights from Equation (6.3), an iterative procedure is necessitated. 

6.2.1 MAP-RVM Prediction 

By initializing the hyperparameter vector a, a Gaussian approximation can be built 

to the posterior distribution in Equation (6.2) and thereby obtain an approximation 

to the marginal likelihood [87]. Maximisation of this approximate marginal likelihood 

then leads to a re-estimated value for a, and the process is repeated until convergence. 

By considering the Laplace approximation for this model, with a fixed given a, the 
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MAP solution WMAP can be obtained by maximising 

In(p(wIY, a)) = In{P(Ylw, a)p(wla)} -In P(Yla), (6.5) 

or, equivalently, by minimising the following cost function [102]: 

1 N 
J(wly, a) = '2wT Aw - L (Yi log (O'i) - (1 - Yi) log (1 - O'i)) , (6.6) 

i=l 

where A = diag{a1' "" aN} and O'i = O'(f(Xi)). The iterative reweighted least squares 

(IRLS) [70] can be used to solve this optimisation problem in Equation (6.6). To do 

this, the gradient and the Hessian of the cost function J in Equation (6.6) with respect 

to ware evaluated, so that 

\lJ = Aw - K(y - 0'), (6.7) 

(6.8) 

where 0' = [0'(f(X1)) , '''' a (J(XN ))]T, the matrix K is the kernel mapping matrix that 

is defined in Equation (5.8) , and B = diag{ 0'1 (1 - 0'1), "" O'N(l - O'N)}, 

At convergence of the IRLS algorithm, the Hessian represents the inverse covariance 

matrix for the Gaussian approximation to the posterior distribution around WMAP. 

The MAP-RVM solution (WMAP) can be then obtained by equating the gradient in 

Equation (6.7) to zero, so that the mean of the approximation is 

WMAP = A -lK(y - 0'), (6.9) 

and the covariance matrix is 

(6.10) 

The hyperparameters a are updated using [102] 
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1 old 
new - a i Ci i a - , 
i - J.L~ (6.11) 

with Ci,i being the diagonal elements of C. The new values of a are iteratively applied 

to the cost function in Equation (6.6) until a convergence to the hyperparameters is 

achieved. During this process, many of the a's are driven to very large values and the 

corresponding weights to small near zero values. A zero threshold can then be set to 

remove these near-zero-value weights, leading to a sparse model. 

6.2.2 MRVM Prediction 

Having found the hyperparameters values a that maximise the marginal likelihood, we 

can evaluate the marginalised RVM (MRVM) predictive distribution over y for a new 

input x. Using marginalisation, according to [70], this is given by 

P(fJlx, y, a) = J P(fJlx, w)p(wly, a)dw, (6.12) 

where we assume the first quantity P(fJlx, w) represents the logistic sigmoid function, 

and the the second quantity p(wly, a) is the approximated Gaussian posterior that is 

been found in the previous section of the MAP-RVM. 

In the case of an MAP-RVM with the basis functions centred on data points, the 

model will therefore become increasingly certain of its predictions when extrapolating 

outside the domain of the data, which of course is undesirable. The predictive distribu-

tion in MRVM does not suffer from this problem. However, the computational cost of 

making predictions with an MRVM is typically much higher than with an MAP-RVM. 

6.3 RVM based Equaliser for Nonlinear Channels 

In this section, a number of simulations has been reported for the application of RVM 

based classifiers for nonlinear channel equalisation. In particular, the MAP-RVM model 

is used for convenience and simplicity of illustration. Some other learning machines 

based equalisers were implemented, namely the SVC and the MCQP [103]' for compar-

is on purposes. 
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6.3.1 System Model 

The system model adopted in this experiment is identical to that in Subsection 5.3.1 for 

the MCQP based equalisation for nonlinear channel. Thus, the communication system 

block diagram is same to which is shown in Figure 5.1. And the same signalling settings 

and channel model are used for comparison purposes. Only time invariant scenario is 

considered in this work for convenience. The initial settings for the proposed RVM 

based equaliser's were w = Q = 108 . 

6.3.2 Simulation Results 

In this section, the computer simulation configurations and settings are presented for 

the proposed system followed by a discussion to the obtained results. The nonlinear 

channel model of this experiment, according to those in Subsection 5.3.3, is given by 

the two transmit-receive relations of Equation (5.23) and Equation (5.22). 

The signal constellation of output (received) signal is illustrated in Figure 6.1 for 

SNR=12 dB showing the nonlinear pattern to be passed through our classifiers. Three 

types of classifiers were used; RVM, SVC and MCQP based equaliser. The kernel 

width ((T) is fixed to 1 for all classifiers, and the SVC regularisation parameter (C) is 

empirically chosen to be 4. A, Band K of MCQP parameters were chosen as 0.1, 0.9, 

and 0.5 respectively. 

The performance criterion used is the BER, and results are as shown in Figure 6.2. 

For low to moderate SNR levels, the RVM based receiver performs closely to the optimal 

Bayesian detector [103]. 

The most significant feature of RVM is its sparsity where the number of nonzero 

coefficients (relevant vectors or RVs) are the lowest amongst the other classifiers (i. e. 

equalisers) as shown in Figure 6.3. Moreover, the number of RVs in RVM does not 

considerably change with increased number of training symbols. This can be obviously 

seen in Figure 6.4 which can be interpreted as that the RVM based learning can predict 

the clusters of the underlying model, i.e., in our constellation (Figure 6.1) we have 8 

centred clusters of symbols and the number of resulting RVs is almost 8 whatever the 

training set size. Also, the number of resulting RVs is not significantly affected by the 
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Figure 6.1: Received signal constellation for both pilot and detection, with SNR=12 
dB. 
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Figure 6.3: Number of nonzero coefficients vs SNR 

kernel parameter (0-) as shown in Figure 6.5. 

Another important feature worth to mention in RVM is that the BER performance of 

RVM classifier is not significantly changing with kernel parameter unlike other classifiers. 

Figure 6.6 illustrates this precisely. 

6.4 RVM based Equalisers for DS-UWB Systems 

In a consistent and similar way to the proposed receivers in the previous chapters. This 

section proposes and investigates the probabilistic RVM based equalisation for DS-UWB 

systems. The RVM based classification modules are used in the the ML units of the 

proposed DS-UWB receiver in Figure 4.5. The MAP-RVM based equaliser were used 

these experiments, and an MRVM based equaliser is investigated as well. The following 

subsections describe these equalisers in details, and present and discuss the simulation 

results compared to the conventional and the previously proposed receivers in DS-UWB 

systems. 
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6.4.1 MAP-RVM based Equaliser 

As described in Section 4.3, a group of M parallel MAP-RVM based equalisers are used 

at the receiver. In the training mode, and for each equaliser, the input to the mth 

equaliser can be defined as Xi = x~m), as in Equation (4.6). Now, we construct R = 

[Xl, X2, ... , xpjT, K(R, RT) as in Equation (5.8) and Y = [YI, Y2, ... , yp]T. Yi represents 

the pilot symbols of this m th equaliser, and they are converted to {O, I} coding for 

probabilistic convenience. The learning aim in the MAP-RVM based equalisers is to 

find the optimum coefficients (WMAP) according to the iterative procedure discussed in 

Subsection 6.2.1. So that, and after initialisation, the cost function in Equation (6.6) is 

evaluated, then the Hessian and the covariance matrices are calculated from Equation 

(6.8) and Equation (6.10) respectively. The WMAP solution is evaluated from Equation 

(6.9), and the hyperparameters are then updated according to the Equation (6.11). This 

process is repeated until convergence. The resulting optimum WMAP solution is used 

for signal estimation in Equation (6.1). The symbols are then detected by applying a 
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threshold of 0.5 to the signal estimates as following 

6.4.2 MRVM based Equaliser 

+1 f(x) 2: 0.5 

-1 f(x) < 0.5 
(6.13) 

The optimisation in the MRVM based equaliser is the same as in the MAP -RVM case, 

the difference lays in the detecting process. The resulting Gaussian approximations of 

the converged parameters from MAP-RVM, i.e., Equation (6.9) and Equation (6.10), 

are used in detection (i. e., prediction). This is by integrating out equalisers coefficients 

according to the form in Equation (6.12). In fact, this integration is not tractable analyt

ically, therefore a simple numerical method is employed to approximate the integration. 

The basic Simpson's rule [104] for multivariables is used for simplicity, considering five 

points around the WMAP solution. Symbol detection is then performed by thresholding 

the integration approximation to the detector in Equation (6.13). 

6.4.3 Complexity Analysis 

Computational complexity is the main drawback of the RVM methods. However, some 

pruning techniques [70] are usually applied to reduces P to a manageable size in most 

problems. In short, the pruning procedure truncates the resulting zeros coefficients and 

their corresponding data points from the matrices after each iteration. 

For RVM based equalisers training complexity, the update rules for the hyperpa

rameters depend on computing the posterior weight covariance matrix, which requires 

an inverse operation of order O(P3) complexity [87]. This is carried out in an iterative 

manner, with a number of iterations equal to NIT. The overall RVM based equaliser 

training complexity is then of order of O(NITP3), which, of course, leads to extended 

training times, although the disadvantage of this is significantly offset by the lack of 

necessity to perform cross-validation over nuisance parameters, such as the nuisance 

parameter C in the SVM. 

For detection complexity, the numbers of mul~iplications for one detection session 

(B data symbols) of the MAP-RVM are of order O(NRvNcB), where NRV is the average 
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Figure 6.7: RVM system performance for CM1; Number of pilot symbols P = 100 

number of the resulting relevance vectors of the MAP-RVM based equalisers. For the 

MRVM based equalisers, applying numerical approximations to perform the integration 

in Equation (6.12) results in an prohibitive detection complexity. So, for a resulting RV 

of size NRV and five points of integration periods, the detection complexity can be of 

order O(NRV5P NcB). However, it is shown that the number of RVs in the MAP-RVM 

based equalisers is much less than the number of SVs in the SVM based equalisers, and 

therefore the complexity reduction of MAP-RVM over SVM is up to 70%. 

6.4.4 Simulation Results 

This subsection presents simulation settings and results to demonstrate the performance 

of the proposed RVM based receivers for DS-UWB systems. For the sake of consistency 

in the comparison, the simulation settings and assumptions of Subsection 4.4.6 are 

considered. They are also described in Subsection 5.4.4. The initial values of the 

equalisers' coefficients are set to zero, and the RVM hyperparameters are set initially 

to a large value of 108
. For the MRVM based receiver, five points of equal spaces of 0.1 

are centred around the optimum W M AP solution. 

For the LOS scenario of CM1 settings, Figure 6.7 depicts the BER performance of 
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Figure 6.8: RVM system performance for CM3; Number of RAKE fingers Lf = Number 
of pilot symbols P = 200 

the RVM based receivers in comparison with the LS-SVC and MCQP based receivers. 

For the same training complexity settings, i. e., P = 100, the proposed RVM based 

receiver has also shown similar superior performance to the LS-SVC and the MCQP 

based receivers. In particular, the MRVM based receiver outperforms all other receivers 

in higher SNR levels (e.g., at 10 dB). 

For the NLOS scenario of CM3, the BER performance of the RVM based receivers 

is illustrated in Figure 6.8 where the number of RAKE fingers and the number of 

pilot symbols of the classifiers are set to be L f = P = 200. By a comparison to the 

conventional RAKE receiver and the FDE with perfect CSI, it is obvious the significant 

performance of the RVM based receivers over the conventional receivers. The MAP-

RVM and MRVM based receivers outperform the RAKE receiver with the perfect CSI 

under similar complexity settings. As expected, the MRVM receivers outperforms the 

MAP-RVM since a range of equalisers coefficients were employed for integration. 

Figure 6.9 illustrates the effects of increasing the pilot size on the performance of 

both the MAP-RVM and the MRVM based receivers. This was examined for three pilot 

sizes P = 100,200 and 500 for CM3. And as expected for most probabilistic models, 
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Figure 6.9: RVM performance for different numbers of pilot symbols 

increasing the number of observed data significantly improves the model performance. 

This can be confirmed by the close performance to the ideal FDE case at P = 500. 

Also, the performance improvement due to the increase in pilot size is more obvious in 

the MRVM based receiver case. 

The learning curves of the MRVM based receiver is illustrated in Figure 6.10. Again, 

three SNR levels were considered in these tests for CM3. Results demonstrates that 

although a significantly better BER performance can be achieved by the MRVM based 

receiver, in comparison with the previously proposed receivers, it requires a large train-

ing pilot size to do so. A different observation in the RVM learning curve, as compared

with the previously proposed receivers, is that the optimal pilot size increases as the 

SNR level increases. 

An important feature in RVM methodology is its sparsity, that is, only a few training 

pilot data are used in detection. This can be confirmed in Figure 6.11 where a compar-

ison between standard SVC and RVM based receivers at P = 500 is illustrated. The 

numbers of nonzero coefficients represent the average numbers of the SVs and RVs for 

the SVC and RVM, respectively. The results show the reduced number of the resulting 

RVs, in comparison with the number of SVs, which therefore means a reduced detection 
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Figure 6.12: Choosing GRBF kernel parameter a for RVM (P = 200) 

complexity for the RVM based receiver. Also, the robustness of the RVM, in terms of 

the number of RVs, to the SNR level is an advantage of this receiver. 

Figure 6.12 depicts the RVM based receiver sensitivity to the kernel width parameter 

(a) of the GRBF function for CM3 with different SNRs levels. The results show that 

the BER performance of the RVM based receiver is insensitive to the kernel width 

parameter value used, which is an advantage of this receiver. 

6.5 Comparisons and Discussions 

This section discusses the proposed receivers, and provides comparisons among them in 

terms of their performance, complexity, sparsity, learning convergence and sensitivity to 

kernel parameter. Selected results were rearranged and illustrated to show significances 

in the related aspect of comparison. 

6.5.1 Performance Comparisons 

In terms of BER performance, Figure 6.13 shows the BER results of all the proposed 

receivers for CM3 with a training pilot of size 200. The RAKE receiver and FDE with 
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Figure 6.13: Performance comparisons of the machine learning based systems for CM3; 
Number of RAKE fingers Lf = Number of pilot symbols P = 200 

perfect knowledge of the same channel are also shown as reference. Results confirm the 

significance of the proposed receivers that is even better than the ideal RAKE if same 

complexity is assumed. Among the proposed receivers, they show close performance at 

this pilot size with notable performance improvement for the MRVM receiver. Also, the 

MCQP and MAP-RVM based receivers are almost identical and they outperform the 

LS-SVC and SVC based receivers slightly. The SVC based receiver, however, approach 

the MCQP and MAP-RVM at higher SNR levels. 

The sparsity of an equaliser is referred to the fact that only a subset of the training 

data are used in detection. Therefore, it is highly demanded in designing the receiver. 

SVC and RVM techniques provide this feature by their nature. In practice, the pro

posed RVM based equalisers have shown better model sparseness than the SVC based 

counterparts. This can be confirmed in the results of Figure 6.11. In the LS-SVC and 

MCQP based receivers, the sparseness can be imposed by pruning as discussed in the 

previous chapters. Figure 6.14 depicts the BER performance of the sparse LS-SVC vs 

sparse MCQP based receivers for CM3 with a pilot size of 100. Results inform that the 

sparse LS-SVC based receiver outperforms the sparse MCQP based receiver, although 
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Table 6 1· Performance comparison between sparse MCQP vs sparse LS-SVC 
Sparseness ratio Pilot size 

p = 0% (No Sparseness) p= 30% p= 60% 
p= 100 20% -13% -26% 
p= 200 35% -9% -16% 
P = 500 63% -2% -3% 

Learning Curves 
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Figure 6.16: A comparison of different machine learning based equalisers learning curves 
for CM3 at SNR level of 20dB. 

the non-sparse receiver are vice versa. This can be shown obviously in a much larger 

pilot size as in Figure 6.15, where for P = 500, both the sparse and non-sparse LS-SVC 

based receivers perform almost identically. On the other hand, the MCQP based re-

ceiver retains the performance advancement over its sparse version. Table 6.1 provides 

the MCQP performance improvement as a percentage over the sparse LS-SVC (nega

tive values mean better sparse LS-SVC performance). In other words, the percentage 

of BER performance improvement is evaluated from 

BERsparse LS-SVC - BERsparse MCQP 
--:.!:...::::.::..::....::=---.:.:....:.....~---=.!:...:=.:..:...:~ X 100. 

BERsparse LS-SVC 
(6.14) 

Figure 6.16 illustrates the learning curves of the proposed receivers in the training 

for CM3 at SNR level of 20dB. The trends show that the MCQP based receiver has the 
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Figure 6.17: A comparison of GRBF kernel width sensitivity for CM3 (P = 200, SN R = 
20 dB) 

fastest convergence rate, such that it can achieve its steady state just after 300 symbols 

at this SNR level. Whereas RVM based receiver is the slowest to converge to its steady 

state, yet it provides the best performance. 

The sensitivity to the kernel width parameter (CT) is illustrated in Figure 6.17. This 

is by testing the BER performance of the proposed receivers for CM3 at the pilot size of 

200 and the SNR level of 20dB. The tests were carried out for a range of CT values, from 

10°·3 to 10°.7
, that contains the optimal CT. These results show the highest sensitivity 

to CT for MCQP based receiver where the optimum BER performance can be achieved 

within a small range around the optimum CT. On the other hand, the RVM based receiver 

proves its advantage since the BER trend is almost flat within the specified range of CT. 
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6.5.2 Complexity Comparisons 

Table 6.2: Computational complexity comparisons for all proposed equalisers 
I I Training Complexity I Detection Complexity I 

SVC O(P3 ) O(NsvNcB ) 
LS-SVC 

O((Nc + 1)P2) 
O(PNcB ) 

Sparse LS-SVC 0((1 - p)PNcB) 
MCQP 

O((Nc + ~)p2) O(PNcB ) 
Sparse MCQP 0((1 - p)PNcB) 

MAP-RVM 
O(NITP3) O(NRVNcB ) 

MRVM O(NRV5r NcB) 

Table 6.2 summarises the computationq,l complexity to the proposed equalisers in terms 

of the number of multiplications required, where P is the pilot size, Nc is spreading code 

length, B is the number of data symbols for detection, N sv and N RV are the average 

numbers of resulting support and relevance vectors, respectively, and NIT represents the 

number of iterations in RVM training. As regarding the training requirements, the LS-

SVC based equaliser has shown the lowest complexity, while the MCQP based equaliser 

has the second lowest complexity with slight increase in the training requirements, com-

pared with the LS-SVC. The RVM based equaliser, however, has the highest complexity 

which is approximately NIT times more complex than the SVC based equaliser. 

For detection, the computational complexity is dependent on either a predesigned 

factor such as the sparseness ratio (p) in the sparse LS-SVC and MCQP cases, or on a 

resulting number of non-zero coefficients or weights (Lagrange multipliers). In practice, 

N RV is the lowest among the others, in terms of resulting non-zero vectors, and can be 

of 70% reduction to the pilot size, while Nsv, on the other hand, is the highest, and no 

more than 13% of reduction was obtained. Among all, the detection complexity of the 

MRVM based equaliser is the highest due to the numerical integration part in it. 

6.6 Summary 

In this chapter, the probabilistic method of RVM has been investigated and applied 

for various channel equalisation applications. In the first application, an RVM based 

equaliser is proposed for nonlinear channel equalisation, which demonstrates a perfor-
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mance close to that of the optimal Bayesian detector. Compared to the SVM and MCQP 

based equalisers, the proposed RVM based approach has three advantages. Firstly, It 

does not required any hyperparameter to be set via cross-validation method. Second, it 

provides an impressive few number of model parameter which mean lots of reduction in 

detection time (the sparsity). Third, The kernel parameter almost does not affect the 

performance of RVM which provides robustness and less sensitivity to kernel choice. 

The RVM based receivers are also proposed and discussed for DS-UWB channel 

equalisation. Two variants of RVM receivers, according to their prediction strategy, 

were considered. The MAP-RVM and the MRVM. The simulation settings were fixed 

to those in the previous chapters. Results show similar, and even superior, performance 

of the proposed RVM based receiver compared to the previous proposed receivers. In 

particular, the MRVM based receiver outperforms all other receivers. For large pilot size, 

the RVM based receivers provide a performance close to the ideal FDE case. Sparsity 

is an impressive feature of applying the RVM and a reduction of up to 62% of pilot 

symbols can be obtained, which outperforms the SVC based receiver. The learning 

convergence rate of the RVM based receivers are slower than the MCQP and LS-SVC 

receiver. In terms of sensitivity to the kernel parameter, the RVM based receivers has 

shown the least sensitivity to the optimal choice of 17, with slight dependence to the 

SNR level. 

. The chapter has been concluded by providing discussions and comparisons among 

all the proposed receivers, in terms of performance, sparsity, learning convergence, sen

sitivity to kernel parameter, and computational complexity. 
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Chapter 7 

Conclusions and Further Research 

7.1 Conclusions 

The thesis has applied machine learning algorithms for channel equalisation of single

user wideband wireless communication systems, in particular the DS-UWB, which aim 

to combat the severe frequency selective channels thus the high lSI, and to improve the 

throughput of the systems. This is by mapping the estimation and equalisation problem 

into a pattern recognition solution in detection process. The significant performance of 

the machine learning algorithms, through kernel-induced function, is also incorporated 

in tackling unknown channels by observing distorted samples from known pilot data. 

Chapter 4 has proposed a bank of SVM based equalisers in the receiver structure for 

DS-UWB systems. The proposed block-wise SVC based receiver achieves a significant 

BER performance over the conventional RAKE receiver, even for the case that a perfect 

knowledge of channel is available. For LOS UWB channels, the SVC based receiver 

provides the performance which is close to that of pure AWGN. Although detection 

complexity in SVC is low due to the fewer support vectors, the optimisation processing 

in SVC is accomplished via QP procedure, which increases the training complexity of 

the receiver. Hence, a lower training complexity LS-SVC based equalisers have been 

proposed to replace the SVC based ones. The LS-SVC based receiver provides almost 

same performance of the SVC. The detection complexity in LS-SVC, however, is raised. 

The latter issue can be alleviated by imposing sparseness to the LS-SVC coefficients 

up to specific performance tolerance index. The performance and complexity analyses 
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of the proposed receivers have been investigated. Also, the sensitivity to the kernel 

function parameter was investigated and it is found that kernel parameter in SVM 

based receivers are moderately sensitive to specific values, and not much sensitive to 

the SNR level. 

Chapter 5 has investigated a lower complexity machine learning algorithm that 

uses multi-criteria in optimisation processing modules. One of the contributions of this 

chapter is to propose the MCQP based equaliser for nonlinear channel systems, for both 

time-invariant and time-variant scenarios. While achieving a significant complexity re

duction, the MCQP based receiver provides improved BER performance, with nearly 

the same performance as the typical optimal Bayesian detector in time-invariant sce

nario. By utilising a similar receiver structure to that in SVM based system, MCQP 

based equalisers are also proposed for DS-UWB system at the receiver end. The MCQP 

based receiver outperforms its LS-SVC counterpart in terms of BER performance. A 

sparse version of MCQP based receiver is also proposed to reduce the detection com

plexity, but the performance is negatively affected comparing to the sparse LS-SVC 

counterpart. By increasing the number of pilot symbols for training, MCQP based re

ceiver achieves a steady-state BER with a higher convergence speed. A drawback to 

the proposed MCQP is the high sensitivity to the choice of kernel parameter. 

Chapter 6 has investigated the probabilistic learning algorithms for classification 

and their sparse Bayesian inferred models represented by the RVM technique. An RVM 

based equaliser is, therefore, proposed for the nonlinear channel system obtaining bet

ter BER performance than the previously proposed equalisers. RVM based equalisers 

are arranged in a similar way to construct the RVM based receiver for DS-UWB sys

tem. Two variants of RVM based equalisers, according to their predicting criteria, were 

proposed: the MAP-RVM using a single set of optimised coefficients, and the MRVM 

using integration over the coefficients distribution. As expected, the MRVM is found 

to significantly outperform its MAP-RVM counterpart. In fact it outperforms all the 

proposed receivers in this study. Furthermore, the proposed RVM based receivers show 

efficiency to the kernel parameter choice, i. e., the performance does not change much 

for different parameter values. Another impressive advantage of using RVM is its high 
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sparsity and robustness in the detection process, hence, a very low detecting complexity 

can be achieved. The cost is the significant high training complexity. Also, the RVM 

based receivers have a slow convergence to the steady-state when increasing the number 

of pilot symbols. 

Among all the proposed receivers for DS-UWB, it can be concluded that, in terms 

of BER performance, the MRVM based receiver outperforms all the others in cost of 

very high training computational complexity. In terms of training complexity, LS-SVC 

based receiver show the lowest training complexity but near to MCQP. The sparsity in 

detection is accredited to the RVM based receivers with a stable number of relevance 

vectors. However, imposed sparsity can be obtained for both LS-SVC and MCQP, and 

the former shows better performance than the latter. RVM based receivers are the 

least sensitive to the choice of kernel parameter. In terms of training convergence, i. e., 

learning curves, MCQP based receivers are the fastest to converge whereas the RVM 

based receivers are the slowest. 

7.2 Further Research 

The field of machine learning algorithms is really a rich and unlimited horizon of motiva

tions and potential contributions, considering their promising performance and elegant 

developments. For this reason, they can be extensively investigated and developed to 

be applied as solutions to many of the current signal processing challenges in commu

nication systems. To continue the research having been done, the following ideas can 

be suggested for future research activity, which will still focus on developing machine 

learning algorithms for communication systems. 

• The channel estimation and equalisation using machine learning processing mod

ules can help improve the performance of the wireless communication systems in 

time domain through observed data samples. The same idea can be applied to fre

quency domain signal processing, which is to mitigate the effect of additive noise 

and phase noise in low to medium SNR levels in the existing frequency domain 

signal processors. 
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• The BER performance of the proposed systems can be improved further by sys

tematically optimising the kernel mapping function rather than the existing em

pirical and validation tests. The similar kernel mapping scheme can be applied to 

different machine learning algorithms. The comparison will reveal how differently 

the same kernel mapping scheme works on these algorithms . 

• Despite the fact that some of the proposed receivers reduce the training or land de

tecting complexity, there is still a vital requirement of developing lower complexity 

learning algorithms. The potential algorithms should consider linear training with 

minimum number of pilot symbols as well as to have huge sparsity for detection. 

• The proposed systems consider single user single input single output (SISO) sce

nario. This idea can be elaborated to include MUD orland multi-input multi

output (MIMO) systems. By such developments, the observation input domain 

may be perceived in space diversity or in any diversity scheme. 
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