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SUM MARY 

The research reported in this thesis is concerned with the 

response of mechanical structures to the excitation of acoustic fields. 

Both the vibration of the structure itself (sonic boom studies) and the 

secondary sound field which this vibration produces (transmission loss 

studies) are investigated. 

In measuring the airborne transmission loss of a high loss 

partition an important limitation of the University's experimental 

suite was discovered. Attempts at an indirect measurement of trans- 

mission loss using vibration transducers illustrate a fallacious assump- 

tion of most transmission loss theories. These findings impose a con- 

siderable limitation upon the accelerometer method of transmission loss 

measurement. 

The study of structural vibration was extended to sonic boom 

response. In particular the effects of a cavity behind a panel upon 

the panel's dynamic properties is studied both experimentally and theoreti- 

cally. This model is comparable with a window-room system and so is of 

current interest in the evaluation of the possibility of sonic boom 

damage. 
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1.0 Introduction 

1.1 The Measurement of Sound Transmission Loss 

A great deal of effort has already been expended at Liverpool 

University into the investigation of various methods of transmission 

loss measurement (1.1), (1.2), (1.3). The University possesses a large 

transmission loss suite and the method of airborne measurement (1.1) 

remains (with slight modifications) the principal method of laboratory 

measurement. Utley (1.2), undertook a survey of alternative methods 

of measurement which are applicable in the field or the presence of 

flanking paths and Cummings (1.3), developed the transmission loss box 

for normal incidence measurements within the laboratory. 

Chapter two is concerned with measuring the transmission loss 

of a cavity brick wall. As the brick wall had a much higher value of 

transmission loss than any panel previously measured in the suite the 

electronics employed had to be considerably modified. Also in view of 

the unusually high value of transmission loss the suite's external 

flanking transmission is investigated. Because of the doubtful 

reliability of airborne measurements of high values of transmission 

loss the accelerometer method of measurement is investigated in Chapter 

Three. 

1.2 The Theory of Sound Transmission Loss of single panels 

The simplest theory of sound transmission loss is the "mass law" 

(1.8) which assumes that the panel acts simply as a limp mass. Mulholland 

(1.1) has shown that this theory is equivalent to, a more general theory 
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given by Lord Rayleigh (1.9) when the panel thickness becomes negligible 

compared with the acoustic wavelength. Cremer (1.10) has developed a 

theory which takes the panel stiffness into account and predicts the 

coincidence effect. 

In Chapter three a theory similar to Cremer's is developed and 

the transmission loss and panel response which it predicts is compared 

with experiment. The need to be able to correctly predict the mech- 

anical vibration caused by an acoustic excitation lead to an interest 

in the response of structures to the sonic boom. 

1.3 Structural response, to the Sonic Boom. 

Because of Britain's involvement in the building of Concorde, 

the world's first supersonic transport aircraft, the problem of struc- 

tural response to the sonic boom is currently of topical interest. 

The dangers of uncontrolled supersonic flight were aptly demonstrated 

a few years ago when a single bang due to a fighter aircraft resulted 

in %300,000 worth of damage to Ottawa Air Terminal (1.11). Because of 

the shape of their pressure time-history, sonic boom's are sometimes 

termed "N-waves" and in Chapter four their effects upon an ideal struc- 

ture are calculated theoretically. The work reported in Chapter four 

was undertaken in conjunction with Mr. M. J. Crocker. 

In order to study these effects experimentally a shock tube 

facility was developed. The experimental "N-wave" was made to impinge 

normally upon a rectangular simply supported steel plate whose strain 

was recorded together with the shock wave's pressure time-history. 
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These. experiments are described in Chapter five. 

1.4 The Panel Cavity problem 

When a thin panel is backed by an acoustically stiff cavity, 

the panel's dynamic behaviour is affected. For a large plate glass 

window in front of a shallow room (e. g. a display window) the room's 

acoustic stiffness is comparable with the windows mechanical stiffness 

and so in order to calculate the window's sonic boom response, room 

effects must be considered. 

A study of the panel-cavity problem is undertaken in Chapter 

six and a theory is developed which allows the cavity-modified panel 

response to be calculated for real window room and sonic boom para- 

meters. This theory is compared with the results obtained from an 

experimental panel-cavity system. 
. 
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2.0 The measurement of high transmission loss 

(The brick wall experiment) 

2.1 Introduction 

The sound insulation provided by a cavity brick wall in the 

field has been established by measurements carried out by the Building 

Research Station (2.1). This shows that the insulation varies in an 

approximately linear manner from 39 dB at 100 Hz to 66 dB at 3.2 kHz 

but there is also evidence both measured (2.2) and theoretical (2.3 - 

2.6) that under special conditions the insulation provided by such a 

wall can exceed these values quite substantially. Moeller reported 

a measured insulation of 57 dB at 100 Hz to 80 dB at 400 Hz and the 

theoretical work of Mulholland et al shows that under diffuse field 

conditions a sound insulation curve ranging from 50 dB at 100 Hz to 

128 dB at 4 kHz is possible. In order to provide further experimental 

evidence to substantiate these theoretical ideas it was decided to con- 

struct a double brick wall in the new Liverpool University transmission 

loss suite and attempt to measure the insulation provided. 

Special experimental difficulties were encountered when attempt- 

ing to measure transmission losses of the order of 100 dB with conven- 

tional rooms and apparatus. It was found necessary to modify the 

apparatus normally employed for transmission loss measurements and these 

modifications are described in Section 2.2. Further experiments were 

carried out to determine the amount of sound energy passing along air- 

borne paths via the instrument area adjacent to the two rooms. This 

investigation, which justified the assumption that this external air- 

borne flanking transmission of the suite was significantly less than 

the suite's internal transmission, is described in Section 2.3. 
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Section 2.4 is concerned with the brick wall experiments 

themselves. In Section 2.4.1 the actual experiments that were per- 

formed on various types of double and single brick walls are described 

and the results are investigated in Section 2.4.2. Finally, Section 

2.5 summarises the conclusions that may be drawn from the whole of this 

chapter about both the experimental transmission loss properties of a 

single and double brick wall and also about the facilities of the new 

Liverpool University transmission loss suite. 

In Table 2.1, the various measurements undertaken are listed 

for easy reference. 

r 
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TABLE ?. 1 

N. B. An 'L' represents a sound insulation and a 'TL' is the trans- 

mission loss derived from it (where applicable). 

L TL1 Transmission room to reception room with a double cement 

Ll 

LZ 

L3 

L4 

L5 

L6 

L7 

L8 

faced cavity brick wall in the window. 

Transmission room to instrument area. 

Reception room to laboratory. 

Laboratory to reception room. 

TL4 As 'L' but without cement facing. 

'As, 'L4' but with one brick removed from reception 

room wall. 

Transmission room to cavity. 

TL8 

L9 TL9 

L10 Th2 

L11 

TL3 

LTL 

Reception room to cavity. 

Transmission room to reception room with a single brick 

wall on the transmission room side of the window. 

As 'L8' but with the wall on the reception room side 

of the window. 

Semi-empirical prediction of that between the trans- 

mission and reception rooms with a double cement faced 

cavity brick wall in the window. 

As 'L10' but allowing for'the unequal insulation 

provided by the two leaves of the double brick wall. 

Multiple reflection theory for a cavity brick wall. 

The limiting transmission loss that can be measured 

by the suite in view of the external flanking path. 
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2.2 Experimental method of measuring high values of transmission loss 

The apparatus normally employed to measure the sound level dif- 

ference daring the course of transmission loss measurements is shown in 

Figure 2.1. The noise generation equipment was not modified and is, 

therefore, not shown on Figures 2.1 and 2.3. It has been described by 

previous authors (1.1 - 1.3). The sound level in the transmission room 

on one side of the sample is measured and then immediately a switch is 

thrown to connect a microphone in the reception room on the other side of 

the panel to the measuring instrument. This procedure reduces the possi- 

bility of experimental error due to variation in the sensitivity of 

apparatus. However, if the levels of the two signals differ by more 

than about 60 dB it is impossible to measure both signals with the same 

instrument set to the same sensitivity without either overloading the 

instrument with a signal from one channel or losing the signal from the 

other channel into the electrical background noise. This difficulty 

was overcome by providing extra microphone amplification for one channel 

and the apparatus used for this is shown in Figure 2.2. Each amplifier 

was set at a suitable sensitivity to receive the signal from one of the 

microphones and pass it to the selector switch at a level approximately 

equal to that of the other signal. By suitably attenuating the trans- 

mission room signal, it was thus possible to read both signals from the 

same instrument without overloading or noise level difficulties. 

It was necessary to interrupt the transmission room channel with 

a supplementary microphone amplifier as well as the reception room channel 

because of the signal rectification and change from 11 core microphone 

cable to standard co-axial cable that occurs at an amplifier. The micro- 

phone selector switch had now to handle co-axial cables instead of 11 core 
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microphone cables and in order that the process remain fully automatic, 

a new selector switch driven by an astable multivibrator with a4 second. 

time constant was designed and built. 

The method suffers now of course from the disadvantage that the 

two channels no longer have the same amplification and so a variation of 

the amplification of one with respect to the other after calibration with 

a pistonphone is recorded as a correction to be made to the measured 

transmission loss. Similarly if the difference between the sensitivities 

for different amplifier settings did not exactly correspond with the 

nominal values given by these settings, these discrepancies would again 

result in errors in the measured value of transmission loss. This error 

could, in theory, be reduced by dispensing with the twin amplifiers and 

introducing a passive attenuator in the transmission room microphone lead. 

However, due to the high accuracy specification of the Bruel and Kjaer 

equipment, it was found that such errors were small in comparison with 

those of the reverberant room method itself. Therefore, it was decided 

that the design and construction of a radiation shielded 11 core micro- 

phone cable interruptor with passive attenuators that did not introduce 

any noise or error into the system would not be justified. 

Care had to be taken with calibration and frequency response and 

it was necessary to guard against losing the reception room signal into 

the ambient noise as the level fell off at higher and higher third octave 

frequency bands. Despite the double amplification, it was noted that if 

a complete transmission loss spectrum was to be obtained without altering 

the gain of an amplifier during an automatic run, the reception room sig- 

nal dropped to within a few dB of the noise level at the highest frequency 

employed (4,000 Hz). It was noted that this persistently high noise 
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level at the high frequencies was mainly of electrical origin and did 

not vary with time. Use was made of this fact when the measured signal 

was less than 10 dB above the electrical noise level. If the measured 

signal is x dB above the noise level, it exceeds the actual signal by 

y dB where y is given by: - 

y=x-. 10 log[antilogf X% 
- 1I (A2.5) 

The derivation of the above formula together with a pre-calculated table 

for rapid application of the correction is given in Appendix 2.1. A 

typical result of employing this correction technique to the measured 

sound insulation between the transmission and reception rooms of a double 

cement faced cavity brick wall can be seen in Figure 2.3. As the elec- 

trical noise is frequency independent, its effect upon the reception room 

signal is similar to that produced by a high but frequency independent 

transmission loss as is usually associated with a thin panel air leak 

(assuming that the transmission room noise field is "perfectly white" 

and that the non-geometrical effects can be ignored (1.7) ). Therefore, 

failure to correct for it produces the same sort of levelling of high 

frequency high transmission loss values as does a thin panel air leak 

which can be seen from the shape of Figure 2.3. 
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2.3 Investigation of an airborne flanking path 

2.3.1 Introduction and theory 

The other main problem that was considered was that of airborne 

flanking paths through the doors and walls of the measurement rooms via 

the instrument area adjacent to the two rooms. For accurate results it 

is necessary for the sound energy reaching the reception room through the 

panel to exceed that reaching the reception room via the instrument room. 

The reason that this investigation was undertaken originated from 

the following subjective observations. With the double brick wall in the 

transmission loss suite window it was observed that the noise level inside 

the reception room resulting from the source in the transmission room was 

lower than the noise level in the surrounding laboratory. Furthermore, 

it was noted that if the reception room door was not properly closed the 

main influx of sound into the room was from this door as opposed to the 

brick wall under test and that when it was closed, the resonant field was 

barely audible. It, therefore, seems possible that a considerable pro- 

portion, if not the majority of the reception room's resonant field was 

caused by sound travelling along this flanking path. Assuming that the 

instrument area can be regarded as a resonant cavity, the situation is re- 

presented in Figure 2.4 where T is a total transmission coefficient be- 

tween two rooms and the subscripts 1,2,3, refer to the transmission room, 

the reception room and the instrument area respectively. It is noted that 

in view of the high values of transmission loss under investigation and 

that El » E3 >7 E2, reverse transmission effects have been ignored. 

For example, the sound power flowing from the transmission room to the 

reception room is assumed to be El 'Y S whereas it should more 
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accurately be represented by (El - E2) 2' S. However, for values of 

transmission loss in excess of 15 dB such an assumption is justified 

(1.1,1.4). 

For the results to be meaningful, we require a signal in excess 

of the flanking sound, i. e., 

El S ii E3 T2,3 (2.1) 

If we define X as being the ratio of the power of the signal plus the 

flanking noise to that of the flanking noise, we have: - 

X_ jEl -r s+ E3 T2,3 
E3 T213 

(2.2) 

But the total sound entering the reception room (E1 7' S+ E3 T23) is 

equal to the power being absorbed by the walls of the reception room, 

i. e., 

E1'VS+E3T293 E2A2 (2.3) 

Combining Equations (2.2) and (2.3) we have: - 

X= E2 A2 
(2.4) 

E3 T293 

Similarly, the sound power entering the instrument area from the trans- 

mission room and reception room is equal to-the power being absorbed by 

the walls of the instrument area, i. e., 

El T10 + E2 T2,3 = E3 A3 (2.5) 
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where A3 includes the energy lost from the instrument area via 

T13 and T23. If T13*T23 (which is a reasonable assumption in view 

of the fact that the transmission and reception rooms share almost 

identical construction) and El» E2 the second term on the left hand 

side of Equation (2.5) can be ignored whence: - 

E3 = 
El T193 (2.6) 

" 
A3 

Substituting Equation (2.6) into Equation (2.4): - 

.-. X= E2 A2 (2.7) 
EI Tj, 

13- 
T293 

A3 

Taking the logarithm to base 10 and then multiplying by 10 both sides of 

Equation (2.7) and defining: - 

x= 10 log(X) (2.8) 

as the number of dB by which the signal exceeds the noise we have: - 

x= 10 log 1+ 10 log 1+ 10 log(A2 A3) - 10 log -1. 
T1T2 E 3ý 3ý ýs2 

We define: - 

10 log E1 
=L 

E2 

(2.9) 

0 

(2.10) 
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which is the experimental sound insulation of the double brick wall 

under test (after correction for electrical noise as described in 

Section 2.2). In order to find T13 and T23 three subsidiary 

experiments were performed which provided two separate estimates of x. 

2.3.2 Subsidiary Experiments 

Experiment 1 

A sound field of intensity Fri was generated and measured in 

the transmission room and the resultant energy level in the instrument 

area E3 was measured. 

E1 T193 E3 A3 

91 

10 log 1= 10 log 1 (2.11) 
T1933 E; A 33 

= L1 - 10 log(A3) (2.12) 

where L1 is the sound insulation-measured in Experiment 1. 

Experiment 2 

Similarly by generating and measuring a noise -E2 in the recep- 

tion room and measuring the resultant noise in the instrument area E3 

we have: - 

10 logj 1ý=1,2 - 10 log(A3) 
3 
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where L2 is the sound insulation measured in Experiment 2. 

Experiment 3 

A sound field of intensity E3' was generated and measured in 

the instrument area and the resultant energy level in the reception room 

E2t was measured. During the course of this experiment the experi- 

mentalist took refuge from the high noise level in the instrument area by 

siting himself and his recording instruments in the transmission room. 

As before, we have: - 

10 log 1j= L3 10 log(A2) (2.14) 
T 2,3 

., 

where L3 is the sound insulation measured in Experiment 3. 

2.3.3 Analysis of results and conclusions 

Substituting Equations (2.10), (2.12) and (2.13) into the defin- 

ition for x given in Equation (2.9) we have for a first experimental 

measurement. of x which we call x, where: - 

xl = JL1 - 10 log(A3)3 + ýL2 - 10 1og(A3)ý 

+ 10 log(A2 A3) -L 

L1 + L2 -L+ 10 1o2 (2.15) 
A3 
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In order to determine the ratio of the two absorption areas it was found 

necessary to measure the reverberation times of both the reception room 

and the instrument area. From elementary theory (1.5) it then follows 

that: - 

A2 
_. 

V2 Rt3 

A3 V3 Rte 
(2.16) 

where Rt2 and Rt3 are the reverberation times of the reception room 

and instrument area respectively. 

A second estimate of x which we call x2 was found by sub- 

stituting Equations (2.12) and (2.14) into Equation (2.9) 

x2 = ¬L1 - 10 log(A3) )+ ýL3 - 10 log(A2)) 

+ 10 log(A2 A3) -L 

= Ll + L3 -L (2.17) 

This second estimate of x does not require a knowledge of 

reverberation times. Furthermore, it can be intuitively understood as 

the sum of the transmission room to instrument area and instrument area 

to reception room sound insulations minus the direct transmission room 

to reception room insulation. 

On Figure 2.5 the level L is plotted together with the values 

of xj and x2 derived above. It can be seen that the two estimates of 

x are in reasonable agreement with each other. Although errors of 3 dB 
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or so are larger than those normally associated with the suite it must be 

remembered that the instrument area is not the perfect reverberant cavity 

upon which the above calculations are based. The instrument area is 

approximately L-shaped, has various other peculiarities of geometry, the 

distribution of absorbent is uncertain and the reverberation time is as 

low as 1.5 seconds. 

We now make use of the arithmetic mean of x1 and x2 which we 

call x3 to calculate the error in L due to this flanking path. If 

we regard the flanking sound as a "noise" x3 dB below the noise plus 

signal in the reception room when L is being measured, it is possible 

to use the table in Appendix 2.1 to calculate the error (y dB) that this 

produces. Hence, we can calculate the insulation that wöuld be measured 

if the error due to this flanking sound were not present. This corrected 

value of L is also plotted on Figure 2.5. It can be seen that this 

correction is not important except at high frequencies and even there does 

not exceed 1.5 dB. In the remaining sections of this chapter, whenever 

the insulation of the double cavity brick wall is quoted, it is this 

corrected value L to which we refer. 

This calculation of x1 and x2 only takes into account airborne 

sound leakage through the instrument area. Other sources of sound leakage 

in the suite such as structure borne sound and air leaks around the window 

are not included. Direct evaluation of these would be a much more compli- 

cated process. However, the experiment does set an upper limit to the 

transmission loss that can be measured with the suite given by: - 

LTL =L+ x3 (2.18) 
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This function is plotted in Figure 2.6 and represents an absolute 

limit to the values of sound insulation (which is usually within 3 dB of 

the transmission loss of the test panel) that can be measured by the suite. 

The actual limit of the suite may well be less than this due to 

structure borne leakage and lie somewhere between L and LTL. The values 

of L quoted for the double cement faced brick wall may have more connection 

with the limit of the suite than the properties of the wall itself. To 

test whether or not this is the case, a further experiment in which a panel 

(or panels) of mass comparable to that of the brick wall would have to be 

added to it. If this produced no significant increase in the transmission 

loss L would represent the limit of the suite. 

-r 
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2.4 Brick wall experiments 

2.4.1 Summary of the experiments performed 

The brick wall that was used in the experiments consisted of two 

identical single brick walls separated by a 3.3 inch air gap. One was 

built into the transmission room window and the other into the reception 

room window as shown in Figure 2.7. Each wall was built of "Phorpres" 

4J" x 2j" x 81" bricks manufactured by the London Brick Company and 

weighing 41b 9oz. each. They were professionally laid using cement of 

specific gravity 1.75 ± 0.25 and in some of the experiments were faced 

with half an inch of this cement. 

The experiments actually. performed were as follows: - 

a) The insulation between the transmission room and the reception 

room L4 when the sound is generated in the transmission room and a double 

unsealed brick wall is in the window (Figure 2.7(a) ). 

b) As (a), only with a double cement faced brick wall L 

(Figure 2.7(b) ). 

c) A single brick was *then carefully cut out of the reception 

room wall and a measurement similar to (a) and (b) was performed L5 

(Figure 2.7(c) ). 

d) A condenser microphone was lowered into the cavity through the 

hole in the reception room wall. The brick was then replaced and sealed 

with "plasticine". The insulation L6 between the transmission room and 

the cavity resulting from sound being transmitted from the transmission room 

was then measured (Figure 2.7(d) ). 

e) The insulation L7 between the reception room and the cavity 

resulting from sound being transmitted from the reception room was then 

measured (Figure 2.7(e) ). 
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f) A small. speaker was introduced into the cavity but was not 

sufficiently powerful to produce a measurable sound field in either the 

transmission or reception rooms. Consequently it was not possible to 

measure the equivalent of L6 and L7 in the reverse direction. How- 

ever, the cavity field was sufficient to give an indication of the rever- 

beration time of the cavity at frequencies greater than 800 Hz. 

The cavity reverberation time was measured at 800,1600, and 

3150 Hz. At 800 and 3150 Hz, it was too short to be. resolved by the 

level recorder and was consequently less than 0.05 sec. At 1600 Hz 

however, the reverberation time was 0.6 sec. This was probably due to 

standing waves in the cavity when the wavelength is equal to twice the 

wall separation. This corresponded to a frequency of 2 kHz at normal 

incidence and slightly lower frequencies at non-normal incidence, which 

fell within the octave band centred on 1.6 kHz. The reverberation time 

of the reception room was also measured. 

g) Finally, the remainder of the reception room, wall was knocked 

down to leave the single cement faced transmission room wall. The insu- 

lation L8 between the transmission room and reception room resulting from 

transmission from the transmission room was then measured (Figure 2.7(f) ). 

2.4.2 Conclusions arising 

As has already been indicated L1 the measured transmission loss 

of the double cement faced cavity brick wall, might well be the result of 

leaking and flanking paths rather than the properties of an infinite wall. 

In order to investigate this possibility further, an attempt was made to 

relate the various measurements described in Section 2.4.1 to see if they 

were compatible. If it is assumed that the cavity between the walls can 

be regarded as resonant, we can obtain a theoretical prediction for L 

which we term L10 where: - 
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Llo = L6 + L8 +3 (2.19) 

This relationship can be understood as the sum of two sound insu- 

lations. The first L6 is the insulation between the transmission room 

and the cavity and the second L8 is that when sound incident on a single 

brick wall is received in the cavity. The 3 dB is added to L10 because 

of the proximity of the cavity microphone to the reception room wall. 

This causes a3 dB increase in the sound pressure level over what it would 

have been if measured under homogeneous diffuse field conditions several 

wavelengths away from the reception room wall (assuming that the wall has 

an absorption coefficient less than 0.2) resulting in a consequent 3 dB 

increase in the "apparent transmission loss" of that wall (2.7). 

The values of L10 calculated above are shown on Figure 2.8 to- 

gether with L. It is noted that there is a wide discrepancy between L 

and L10 which requires some explanation. If Lip on Figure 2.8 is 

compared with LTL on Figure 2.6, it is seen that L10 is well above the 

capabilities of the suite and therefore, if L10 did, in fact, repre- 

sent the transmission loss of the double brick wall, it could not possibly 

be measured. The reasoning behind the estimation of L10 assumes that 

the transmission loss of the remaining single brick wall on the transmission 

room side of the cavity is the same as the wall on the reception room side. 

This would be the case if the transmission loss were an intrinsic property 

of the brick wall but comparing the transmission into the cavity from 

either side L6 and 17 shown on Figure 2.9 this is apparently not so. In 

order to check that the discrepancy between these two results for L6 and 

1a7 did not arise from faulty sealing of the brick that was replaced in the 
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reception room wall the measurement of L, was repeated. On a different 

day the cavity microphone and brick were replaced and the brick was re- 

sealed with "plasticine". A new measurement of L7 was found by a 

different operator to differ from that previously obtained by less than 

1 dB above 200 Hz. Therefore, it may be concluded that the two brick 

walls do not provide equal insulation. As they are identical in every 

other respect it was, therefore, concluded that the transmission between 

the cavity and the reception room was the result of flanking transmission. 

It is possible to allow for the difference in insulation provided 

by the two walls and derive a second semi-empirical estimate L11 of the 

transmission loss of the double wall. If we consider sound travelling 

from the reception room into the cavity it has a drop in level of L7. 

This sound in travelling from the cavity to the transmission room will 

suffer a further level drop of L8 dB if we assume reciprocity of sound 

transmission (ignoring the slight error due to the different volumes and 

absorption areas of the reception and transmission rooms). Assuming re- 

ciprocity once again the sum of L5 and L6 should (with the addition of 

3 dB as in the previous case) provide a second semi-empirical estimate of L. 

;. L11 = L? + L8 +3 (2.20) 

L1, is shown plotted on Figure 2.8 and is seen to be a better approximation 

to L than L10 calculated previously especially at the higher frequencies. 

However, it is still 10 dB or more in excess of L measured directly. 

From this we may conclude that the directly measured value of L not only 

differs from an ideal cavity brick wall in respect of the different insu- 

lation provided by each of its two leaves but there is also some error 
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caused by direct flanking transmission between the transmission and recep- 

tion rooms. This flanking path does not make any contribution to the 

cavity sound field or there would have been no discrepancy between L and 

L11. It is, therefore, a direct flanking path with an insulation such as 

to be insignificant when measuring a single wall but catastrophic for a 

double wall measurement. 

In order that the results obtained so far in this chapter be com- 

pared with theory or the results of other experimentalists, it is necessary 

to convert the sound energy level differences that we have been discussing 

so far into transmission losses of the walls in question. This conver- 

sion, which relies upon a knowledge of the volume and reverberation time 

of the receiving room is dealt with by previous authors (1.1,1.2, and 

1.3). In Figure 2.10 the, experimentally measured transmission loss of a 

single brick wall TL8 (derived from L8) is plotted together with the mass 

law prediction. It is noted that the experimental transmission loss is 

consistently 10 dB or so below the mass law prediction at all frequencies. 

It is indeed fortunate that the decision to knock the reception room wall 

down and leave the transmission one standing was taken. Otherwise the 

measurement of the transmission loss of a single brick wall would have 

been performed on the "leaky" reception room wall. Assuming that its 

transmission loss differed from that of the transmission room wall by the 

difference of L6 and L7 it is possible to hazard a prediction to what 

it might have been. Subtracting (L6 - L7) from TL8 we arrive at the very 

tentative prediction TL9 of the transmission loss of a single brick wall 

mounted on the reception room side of the transmission cavity. The irreg- 

ular behaviour of TL9 which is shown on Figure 2.10 is evidence of the 

approximate nature of this estimate. Although the two main dips in TL9 
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are separated by one octave, this is probably more fortuitious than the 

result of a standing wave interference effect. 

On Figure 2.11, various predictions estimate the transmission 

loss of a double cement faced cavity brick wall. The directly measured 

transmission loss (TL1 derived from L) is shown together with a semi- 

empirical value TL2 derived from L10. The purely theoretical pre- 

dictions of simple mass law and multiple reflection theory (with reflec- 

tion coefficient °=0.9 ) Reference 1.6, are also shown. It is found 

that the nearest approximation to TLS is the mass law which was calculated 

assuming a single panel of the combined mass which is obviously an unsatis- 

factory physical representation of the situation. A better estimation of 

the wall's ideal transmission is obtained from the semi-empirical value 

TL2. Even this is not necessarily free from flanking effects and its 

value lies about 10 dB below that predicted by multiple reflection theory 

(TL3). 

The discrepancy between TLS and TL2 raises the question first 

posed in Section 2.3.3 as to whether the wall construction itself was very 

relevant in the experimental results obtained for TLS. In Figure 2.12, 

TL1 is compared with the directly measured transmission loss of the double 

wall before it was faced with cement. The mass law predictions for both 

constructions are also shown. The general trend of the unsealed wall to 

register a consistently lower transmission loss would seem to indicate that 

although there is a lot of flanking sound, it appears from Figure 2.12, 

that the wall construction is still relevant to the amount of sound enter- 

ing the reception room. However, this difference could possibly be 

due to a calibration error of the equipment. 
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2.5 
. 

Summary of conclusions 

As described in Section 2.2, a method of measuring high trans- 

mission loss was developed. This method is now regularly employed in 

the routine measurement of high transmission loss panels. The value of 

the highest transmission loss that can be measured by the suite LTL 

(Figure 2.6) that was derived in Section 2.3 provides an upper limit to 

the capabilities of the suite. However, any transmission loss measured 

in the suite that is equal to or exceeds that measured for the double 

brick wall (TL1 Figure 2.11) must be regarded with some suspicion. 

The measured value of the transmission loss of a single brick 

wall (TL8) is well within the most pessimistic view of the suite's capa- 

bility (TLS) and is, therefore, a valid result in so far as it is purely 

a function of the wall under test. The fact that it is 10 dB or so 

below the mass law value is no great surprise when one remembers that 

mass law ignores the transmission due to flexural waves. As explained 

in the next chapter, these waves are efficient radiators of sound above 

the critical frequency which, in the case of a brick wall, occurs at 

160 Hz (2.9). On Figure 2.13, the value of transmission loss for a 

single brick wall TL8 is compared with the results obtained by the 

Building Research Station (2.1). The two results are in remarkably good 

agreement especially when one bears in mind the fact that the Building 

Research Station results were the average of several field measurements 

which had a spread of about 5 dB. 

There. is, on the other hand, a great deal of doubt as to whether 

TL1 represents the transmission loss of an ideal double brick wall where 

we-define "ideal" as meaning a wall in which the wall to wall coupling is 

purely acoustic. Certainly the unequal insulation provided by the two 
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leaves represents a very serious deviation from the ideal (Figure 2.9). 

However, the semi-empirical prediction L11 which assumes that there is 

only acoustic wall to wall coupling allows for this inequality and still 

exceeds the directly measured insulation L by over 10 dB. We must, 

therefore, assume that the main sound transmission path relies upon 

mechanical coupling between the two leaves of the wall. However, before 

rejecting the results out of hand, one must consider the circumstances 

under which they were taken. The New Liverpool University Transmission 

Loss Suite was constructed in such a way as to keep sound leakage to a 

minimum. The manner in which this has been done has already been des- 

cribed (1.1,1.2, and i. 3) and in very few functional buildings will such 

stringent precautions be taken. It is true that the basic construction 

of the suite relies largely upon that of its double brick wall construction 

for airborne sound insulation but that should not produce an unacceptably 

large error in the measurement of the test wall's transmission loss, The 

measured transmission loss TLS therefore, represents the best that one 

can hope to achieve from a practical wall. It is seen on Figure 2.14 

that it is not substantially different from results obtained by the Build- 

ing Research Station (2.1) which represent the average of 22 measurements 

in the field for both flats and houses. Also shown on Figure 2.14 are 

the experimental results obtained by Moeller (2.2) for the insulation 

afforded by a broadcasting studio wall. The results, however, are not 

directly comparable with the other two curves because the wall in question 

had a 12 inch airgap (apart from the results being for insulation as 

opposed to transmission loss). However, in view of the previous comments 

about mechanical coupling, the increase in insulation is probably more a 
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result of better vibration isolation employed in the broadcasting studio 

than being directly attributable to the wider airgap. 

To conclude, it appears that an "ideal" cavity brick wall is 

unlikely to be obtained in practice and that such theories as multiple 

reflection theory (2.3) or the'impedance matching of Beranek and Work 

(2.4), and (2.7) are largely academic in this particular case. The 

experimental result TLS is in good agreement with those of the 

Building Research Station but in order to have any success in making 

a theoretical prediction in reasonable agreement with experimental 

results it will be necessary to consider mechanical coupling between. 

the two wall leaves and other flanking paths. Such a theory is being 

developed by Zaborov (2.8), (2.10) but for the present we must rely 

entirely upon empirical results. 
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3.0 The use of vibration transducers in the measurement 

of transmission loss 

3.1 Introduction 

In Chapter two the difficulties encountered when attempting 

to measure the transmission loss of a panel, by directly measuring the 

insulation it provides between two reverberant rooms, were discussed. 

In particular the difficulties and limitations due to flanking paths 

were considered. It is sometimes necessary to measure sound insulation 

in the presence of these flanking paths and it is often found in field 

measurements that the flanking path has a much lower insulation than the 

transmission path being considered (e. g., the transmission loss of a 

partition in a partially finished building). Consequently, a great 

deal of effort has already been expended in developing methods of 

transmission loss measurement in the presence of flanking paths (3.1 ). 

These rely upon correlation techniques (3.2 ), (3.3 ), (3.4 ), short 

pulse measurements (3.5 ), (3.6 ), measurement of sound pressure or 

particle velocity in close proximity to the test panel (3.7 ), or the 

use of vibration transducers (3.8 (1.2 ), (3.9 ). It is with the 

last of these various methods that this chapter is concerned. 

In measurements with accelerometers it has previously been 

assumed that the surface of the test panel has a radiation efficiency 

of unity (3.8 ), (3.9 ). This is equivalent to assuming that the vibra- 

tion of the panel is in phase at all points on the panel and consequently 

such an assumption where the energy flux transmitted by the panel is 

given by ( 3.10) 

t 
(3.1) F= 1)o cu 

2 



28 

(where Uo is the peak velocity amplitude of the panel from the 

accelerometer reading), has been termed "the piston theory". No 

justification for the piston theory can be-put forward except for the 

fact that in certain circumstances it gives (3.8 ), (3-1 ), and has 

sometimes been wrongly claimed (3.9 ), to give correct results when 

calculating the transmission loss of the panel. The assumption that 

a panel radiates as a plane piston when reacting to a random incidence 

white noise field cannot be justified theoretically and thus the agree- 

ment between measured and predicted transmission loss using the theory 

is fortuitous. 

Utley and Mulholland (3.9 ) when using accelerometers to measure 

the transmission loss of a single panel reported that there is a discre- 

pancy of about 15 dB between the experimental value of the vibration 

amplitude of such panels and the value predicted theoretically from the 

mass law. Despite this discrepancy, the panels usually have a measured 

transmission loss close to mass law. It is also claimed (3.9 ), that 

by using the experimental panel velocity in a simple piston theory to 

predict the transmitted sound flux, a value of transmission loss is 

obtained which is in good agreement with both the mass law and airborne 

measurements (performed, according to BS. 2750 with a slight modification 

(3.11) ). 

Thus it seems that we are faced with a discrepancy in the simple 

mass law and piston theories whereby a panel that has an airborne trans- 

mission loss in good agreement with mass law predictions has an experi- 

mental vibration amplitude that exceeds the mass law predictions by 

15 dB; furthermore, when used in the simple piston theory this experi- 

mental vibration amplitude was claimed to predict a value of transmission 
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loss in good agreement with mass law and the airborne measurements. In 

order to investigate the above discrepancy and find the false link in the 

chain of argument, the preliminary calculations described in Section 3.2 

were performed. 

These calculations showed that if the value of vibration ampli- 

tude predicted by the mass law was substituted into the piston theory, 

the resultant calculated value of transmission loss exceeded the mass law 

by 3 dB. Thus, there appears to be no discrepancy between piston theory 

and mass law as a3 dB or so error can be expected from a theory that 

fails to allow for the random-angle re-radiation of sound from the panel's 

surface. However, if this is the case, how can the experimental vibra- 

tion amplitude exceed that predicted by mass law by 15 dB and yet still 

provide an approximately mass law value of transmission loss when substi- 

tuted in the piston theory? In order to answer this question, the experi- 

ments of Section 3.3 were performed and the results are discussed, in 

detail, in Section 3.3.3. These results prompted an investigation into 

the theory of sound transmission and panel vibration which is described 

in Section 3.4. Finally, the conclusions arising from the whole of the 

chapter are. summarised in Section 3.5. 

3.2 The relation between simple piston theory and the mass law 

In Reference (3.9 ) Equation 7 the velocity amplitude of a mass 

law panel due to a random incident field containing N plane waves per 

steradian, each with velocity amplitude "VI is given by: - 

OL 

ö= 2uNV cost B sin BdB (3,2) 

2 
1+ w_m cos8 

2 "'o c 
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The sound energy flux incident on the panel from a random incidence field 

of energy density F; i is given by: 

F. =cE. 1 14 1 (3.3) 

where the total energy density Ei is related to that of one of the 

plane waves EI by: 

Ei =4 iT N EI (3.4) 

Each of these plane waves has an energy flux FI given by: 

FI =c EI (3.5) 
0. 

also 

FI lac v21 
2 (3.6) 

combining Equations (3.3 ), (3.4 ), (3.5) and (3.6 ) we have for the 

incident flux: 

N)°c. i 
2 (3.7) 

Similarly combining Equations (3.1) and (3.2) we have for the trans- 

witted flux: 

F_c 
�N I cost 9 sin 9dA (3.8) 

ti+ 
wmCos h 2- 

2c 

0 
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Consequently, we have for the transmission coefficient: 

Ft 
=2 cost 8 sing d9 (3.9) 

Fý 

2joc 

F 
i1 7+ wmcos0 

0 
This expression is similar in appearance to the transmission coefficient 

predicted directly from the mass law: 

rM 
=21 cos 9 sin 9d9 (3.10) 

sin 
8 1+ jW m cos 09 

2 

2 i' c 
0 

except that Tp has an extra cos bý term in the numerator which leads 

to the 3 dB increase in transmission loss. The transmission loss result- 

ing from these two values of transmission coefficient was calculated fora 

panel with surface density, m= ß_. 2 gm/cm2 at a frequency of 

1000 Hz. It was found that the transmission loss predicted by the piston 

theory was 21 dB and the value directly from mass law was 18 dB. The dis- 

crepancy of 3 dB or so can be attributed to the piston theory's assumption 

that all the sound is radiated normally. 

Thus, we find that there is no theoretical discrepancy between 

piston theory and the mass law's assumptions concerning the panel's vibra- 

tion amplitude. However, the discrepancy between this theoretical ampli- 

tude and that measured experimentally (3.9 ), suggested further experiments 

and a thorough investigation of the methods used to calculate transmission 

loss from experimental panel velocity. 
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3.3 The experiments performed 

3.3.1 Details of experimental measurement 

The experiments were all performed on a7 ft 4 in by 5 ft 10 in 

quarter inch thick aluminium panel mounted in the aperture of Liverpool 

University's transmission loss suite. A white noise level of about 

90 dB was produced in the transmission room in the usual way (1.1 ), 

(1.2 (1.3 ). The sound pressure level in the transmission room 

SPL1 with respect to a reference level of 2X 1074' /' bar RMS 

was measured using a Bruel and Kjaer microphone type 4131 in conjunction 

with a cathode follower type 2613 and a spectrometer type 2112 calibrated 

with a pistonphone type 4220. The microphone's indicated pressure level 

was further corrected for a random incidence field using Figure 1.17 of 

Reference (3.12 ). The results of several microphone positions were 

averaged and the sound pressure level in the reception room SPL2 was 

measured in a similar manner. The need for such care (and specification 

of the exact method and equipment used) was because an absolute value of 

sound pressure was required in order to be compared with the panel's 

vibration amplitude; whereas usually in the sound transmission loss 

laboratory, the measured sound pressure level is compared with another 

measured sound pressure level and any calibration errors (apart from a 

small difference in the sensitivity of two microphones) are self com- 

pensating. 

A light accelerometer type 4335, in conjunction with a preampli- 

fier, type 1606, was used to measure the peak panel velocity Uo The 

equipment was calibrated using a shaker table in which ball bearings 

vibrated audibly when the acceleration amplitude of the table reached 19 
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(1.2), (3.13). The panel velocity amplitude was then measured using 

a heavy accelerometer, type 4328, which required re-calibration of the 

pre-amplifier. The measured velocity amplitude was considerably less 

than the value obtained with the light accelerometer. 

In order to be sure that this difference in the two measured 

velocity amplitudes was not due to a calibration error of the pre-ampli- 

fier, the whole experiment was repeated for both the light and heavy 

accelerometers. Thus, two values of panel velocity were obtained for each 

accelerometer, the discrepancy between the two values for a single accel- 

erometer gave an estimate of the probable calibration error. The values 

of vibration amplitude and their errors are shown in Table 3.1. 

TABLE 3.1 

Panel velocity amplitude (Uo) at 4 kHz 

Light Heavy Mass- 
Accelero-. Accelero- corrected 
meter. meter. value 

Uo cm/sec 0.174 0.147 0.202 

Error cm/sec 0.007 ± 0.007 ± 0.021 

It is noted that the calibration errors are much less than the discrepancy 

between the values for the two accelerometers. It was, therefore, con- 

cluded that the discrepancy was due to the mass loading effect of the 

accelerometer upon the panel. A mass corrected value of panel velocity 

Vo 1 (3.9), was found using the formula: 

(ml - m2) VI V2 
VO = m1 V1 - m2 V2 (3.11) 
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where m1, m2, Vi, V2, are the masses and velocities of the 

light and heavy accelerometers respectively. The results of this cor- 

rection are shown in Table 3.1 and it is seen to increase the light 

accelerometer reading by about 15%. 

However, if we apply the well known formula of error theory 

(3.14 ): 

22 
Vo(V1, v2) vo ° vi + vo dv2 2 (3.12) 

V1 aV2 

to Equation ( 3.11) we obtain: 

vo m7 m2 m2 V2 A v1) 2+ (ml V12 G1v2) 2 (3,13) 

tel. vl M2 V2 

The error in the mass corrected panel velocity calculated in this way is 

shown in Table 3.1 and is seen to represent an error of about 10010. Thus 

the error in applying the mass loading correction, although large (10%), 

(because of the subtraction of two experimental results) is less than the 

correction itself (15%) and, therefore, such a correction is justified, 

However, the above calculation illustrates the need for an accurate cali- 

bration of the accelerometers as any calibration error is multiplied three- 

fold when the mass loading correction is applied-to readings taken with 

the 13.42 gm. and 31.94 gm. accelerometers that were used in these experi- 

ments. 

Since these experiments were performed, a less subjective method 

of accelerometer calibration has been introduced. The onset of ball 

bearing rattle (formerly detected audibly) at a peak shaker table acceler- 

ation of lg is determined by observing the accelerometer output on an 
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A scale weighting network. The A scale weighting effectively suppresses 

(-30 dB) the 50 Hz oscillations of the shaker table but records the ball 

bearings' rattle thus causing a sudden increase in the meter reading at 

the onset of rattling. It is considered that if the experiments were to 

be repeated using this new method of calibration, the l0% error may be 

substantially reduced. However, this error is not sufficient to affect 

the conclusions of later sections. 

The reverberation time of the reception room was measured and 

used in conjunction with SPL1'and SPL2 to calculate a value of airborne 

transmission loss according to BS. 2750 (TLS) which is shown plotted on 

Figure 3.1. 

3.3.2 The piston theory calculation of transmission loss 

From Equation (3.9) we have: 

`p 
F. 

where, according to the piston theory Ft is given by: 

" Ft =2c U2 (3.1) 

and from elementary diffuse field theory (3.15 ) F. is given by: 

= E. c Fi (3.3) 

but (3.10) 

Ei L. 2 
-- 

(3.14) 
)c2 
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and 

p2 = pö X antilog(SPL1/10) (3.15) 

where Po is the reference sound pressure level of 2X 10-4 dyne/ 

0m2 RMS" Therefore, substituting Equations (3.1 ), (3.3 ), (3.14) and 

(3 15) into Equation (3.9 ) we have: 

2 (3.16) 
=2 (>Oc)2IIo 

P 
p0 antilog(SPL1/10) 

The transmission loss value (TL2), calculated by inserting the 

experimental values of U02 and SPL1 in Equation (3.16 ) is shown in 

Figure 3.1. A theoretical mass law value of U02 was also calculated 

by substituting Equations (3.7 ), (3.3 )l ( 3.14) and (3.15 ) into 

Equation (3.2 ) which gives: 

II2 _ 
pö antilog(SPL1/10) cos29 sin 8dO (3.17) 

0 

J (1O c)2 1+wm cos 
2 127 

00 

and using the experimental value of SPL1. It was noted that this vibra- 

tion amplitude was appreciably less than the experimental one. This 

theoretical vibration amplitude was used in conjunction with Equation 

( 3.16 ) to calculate another value of transmission loss (TL3) which is 

shown on Figure 3.1. This curve shows the value of transmission loss 

that ought to be predicted by the piston theory if the measured vibration 

amplitude agrees with the amplitude predicted by the mass law. In order 

to reduce the possibility of human error, the calculation of TL2 and TL3 

from the experimental and theoretical values of Uo utilised the same 
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computer program. A direct mass law calculation of transmission loss 

(TLM) is also shown for comparison on Figure 3.1. 

3.3.3 Discussion of results 

Looking at Figure 3.1 it is at once seen that the value of pre- 

dicted transmission loss using the mass law predicted vibration amplitude 

and the piston theory (TL3) exceeds the value of transmission loss pre- 

dicted by using the measured value of panel vibration amplitude and 

piston theory (TL2) by about 15 dB throughout the frequency range. From 

this we can at once confirm the earlier findings of Utley and Mulholland 

(3.9), that the measured value of the panel vibration amplitude exceeds 

the theoretical value by 15 dB. 

It also appears that at frequencies below 1 kHz, whereas the 
01 

piston theory using a theoretical panel velocity overestimates the theoret- 

ical transmission loss by 4 dB or so (TL3 - TLM), it underestimates the 

experimental transmission loss by 7 dB or more when the experimental value 

of panel velocity is used (TLS - TL2). 

An even more striking discrepancy between the airborne measure- 

ment (TL1) and the accelerometer curve (TL2) is the pronounced dip in TL1 

at 2 kHz which is hardly noticeable in TL2. This dip is due to the 

coincidence effect as the critical frequency of the panel is calculated 

from (3.16): 

1 
fc = c2 

__ 
z (3.18) 

11. ßh E 

to be 2,012 Hz where h, p and E are the thickness, density and 

Young's modulus of the panel. 

If the coincidence effect was entirely due to a greater panel 
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response at the critical frequency, one would expect the greater panel 

velocity to register as a dip in TL2. However, the accelerometer 

registers only a marginal drop in transmission loss. At frequencies 

greater than the critical frequency, the piston theory is in agreement 

with the airborne measurement of transmission loss. Because of this 

we may assume that the panel is only an efficient radiator at frequencies 

greater than fc This condition seems reasonable when one bears in 

mind that this condition requires that the panel's bending wavelength for 

a given frequency be longer than the corresponding acoustic wavelength. 

The panel's radiation efficiency calculated as the difference between TL2 

and TLS is shown on Figure 3.2. 

As the reduction in transmission loss associated with the coinci- 

dence effect is caused as huch by an increase in radiation efficiency as a 

measureable increase in panel vibration amplitude, care must be exercised 

when using the accelerometer (or indeed any other form of displacement or 

vibration transducer such as a non-contacting capacitive or inductive 

gauge) to measure transmission loss. If one can be certain that one is 

working above the critical frequency and that, therefore, the panel has an 

approximately unity radiation factor, the use of a simple piston theory 

appears to be'justified. This explains the good results obtained by 

workers (3.1), when applying this theory to typical building structures 

which have a low critical frequency (e. g., for a9 in. brick wall 

fc = 80 Hz (2.9) ) 

However, in order to be able to calculate transmission loss of a 

panel in the field at frequencies in the region of, or lower than, the 

coincidence frequency, one requires a knowledge of the panel's radiation 
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efficiency. This can be found by measuring the transmission loss and 

vibration amplitude of a similar panel mounted in a transmission loss 

suite. This knowledge can be used in conjunction with the field panel's 

vibration amplitude to calculate the sound power passing through it. 

This can then be used to estimate the transmission loss of a composite 

structure of which the panel under investigation is the final re-radiating 

element (although error will be introduced because the panel will no 

longer have the same mode of vibration as when it was an independant leaf), 

or, alternatively, to find through which surface most of the sound power 

is entering a room. 

-e 
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3.4 The theory of panel vibration 

3.4.1 Introduction 

From the conclusions of the previous section, it is obvious that 

both the mass law and piston theory are inadequate descriptions of the 

sound transmission mechanism of a panel. Below coincidence, the mass 

law appears to predict the correct value of transmission loss but piston 

theory does not and above coincidence the situation is reversed. As the 

mass law theory implies a panel motion that should be in agreement with 

piston theory we may conclude that nowhere in the spectrum does the mass 

law theory correctly represent the physical facts of the situation. Con- 

sequently it was decided to study the theory of sound transmission loss 

and panel vibration and in, particular to consider the effects of panel 

stiffness. 

3.4.2 Development of the theory 

With reference to Figure 3.3 for steady state conditions, we 

assume that the reflected and transmitted are plane waves with the same 

frequency as and hence bearing a constant phase relationship to the inci- 

dent wave. 
j wit -x 

cos Bi-y sing i) (3.19) 
Let: - 

ýi 
= 

Oijo 
eC0 

Or, 
o ej w(t +x cos S) 

r-y sing r) (3.20) 
r cc 

ýt 
- 

Ot, 
o 

. ej w(t -x cos gt -y singt (3,21) 
cc 
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where the phase relationships are included by allowing complex values 

of 
ýr, 

o and 
ý 

tto . If this phase relationship is to be the 

same at all parts of the panel, we must have: 

sin gi 
= 

sin Br 
_ 

sin 9t 
(3.22) 

ccc 

which, for physically meaningful values of 
9 

requires: 

Bi= Or 
=- Bt (3.23) 

As in the derivation o1 the mass law, we assume that there is no discon- 

tinuity in velocities normal to the panel, i. e., 

jw cos 
01 

- 
Or 

Jw cos 
9r 

tjw cos 
6t 

(3.24) 
ccc 

Substituting Equation ( 3.23 ) into Equation ( 3.24 ): 

ýi 
- 

ýr 
= 

ýt 
(3.25) 

Equation ( 3.24 ) also implies that the -panel motion must have the same 

waveform as the incident wave, i. e., 

_o i (3.26) 

The equation of motion for a bending wave in a thin plate is given by ( 3.16): 

Kl )4+md2. 
= driving force (3.27) 

T 
t2 
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where the bending stiffness: 

y m(h c: )2 
K, 

12 
(3.28) 

C1 being the longitudinal plate velocity. If cul is real the 

above system has no damping. It follows from a later discussion that 

a better agreement between theory and experiment can be obtained for non- 

zero damping. It was, therefore, decided to introduce an arbitrary 

viscous damping term K2 into the equation of motion: 

iT+ K2 II 
+m= driving force (3.29) 

ay )t at 

As with the mass law the driving force must be due to the pressures acting 

on the panel, i. e., 

driving force = 2aj w(Oi + 
0, 

," 
0t) (3.30) 

The assumptions of Equation ( 3.26 ) yield: 

=w (3.31) 
dY C 

_Jw 
*9 (3.32) 

-- w2 
" 

(3.33) 
ät 2 
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Substituting Equations (3.30) through (3.33) into Equation (3.39): 

Kl w4 sin4 
B+ K2 jw-m w2 

c4 
= 7,01 w (0i +r- 

ýt) (3.34) 

Substituting Equation (3.25) into the R. H. S. of Equation (3.34), 

differentiating with respect to time and substituting for from 

Equation (3.24): 

, 
(3.35) 

K, 4 
"-i +cost jwm+ KZ -3 

w3 sin9. 

c 

which after substituting for Kl from Equation (3.28), neglecting 

the first term in the denominator, and taking the case of zero damping 

( K2 =0), leads to an expression for transmission loss identical to 

one given by Cremer (3.17). Thus we have an English language derivation 

of this oft-quoted formula. However in the case of non-zero damping, 

the above expression differs from that given by Cremer (3.18), (3.16). 

From Equation (3.35) by analogy with the mass law we have for the 

impedance of the panel: 
2 ,2 w3 

4r 
Z=jwm-mh cý sin + K2 (3.36) 

12 c 

whereas Cremer (3.16) gives the impedance of the panel as: 

"02m h2 w3 s in4 8 
ZCremer = 

12 c 

c612 m h2 w3 s in4 
+jwm- (3.37) 

12 c 
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where is the loss factor of the panel's complex Young's modulus 

Eý = E(1 +j ') ) 

The difference between the two damping terms in Equations (3.36) 

and (3.37) results from the differing initial assumptions about the 

damping mechanism. Cremer assumed a complex Young's modulus which 

leads to frequency dependent hysteretic damping whereas the constant 

K2 in Equation (3.29) represents viscous damping which is independent 

of frequency. Certainly for an infinite sheet the internal losses are 

best represented by hysteretic damping. However, for a practical panel 

the actual damping is orders of magnitude greater than that predicted 

by the internal loss factor of the panel material. Therefore, the 

main damping mechanism is not due to the panel's internal loss factor 

but is due to radiation damping and the imperfect reflection of bending 

waves at the panel boundaries. In view of the complicated and uncertain 

nature of the damping, it is difficult to say in what way, if any, it 

varies with frequency and so at this stage neither viscous nor hyster- 

etic damping can be justified to the exclusion of the other. Therefore, 

the arbitrary decision to continue the investigation with viscous damping 

was taken. 

FOOTNOTE: 
Beranek (3.16) quotes Equation (3.37) with c, (the longitudinal velocity 
CL EIP throughout as opposed to c` (the longitudinal plate 

velocity c` = 
JE/j° (1- i) 

where s is Poisson's ratio). However, 

from a study of Cremer's original paper (3.17) it is obvious that he 

intended the latter to be used. 
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From Equation (3.36) we can derive an expression for the trans- 

mission loss: 

TL = 10 109 Cos (1+ K2)2 

+wm-m h2 c' 
2 

w3 sil, 
4g 2 

4 (3.38) 
12 c 

The damping factor was adjusted until a best fit was obtained 

between the above theoretical transmission loss and that obtained experi- 

mentally (TL1). Curves for zero damping and the best fit value 

(K2 = 600 c. g. s. which corresponds to a critical frequency Q factor 

of 36) are shown along with TLi on Figure 3.4. 

-There is a discrepancy between the theoretical and experimental 

curves which is especially pronounced at Z KHz. This is due to the 

fact that the points on the BS. 2750 curve were measured using third 

octave band filters whereas the theoretical curve calculates the trans- 

mission loss at specific frequencies. This explains why the experi- 

mental curve "ro\inds off" such pronounced features as the sharp coin- 

cidence dip at 2 KHz. There is bound to be an error present in com- 

paring the two curves in regions of rapidly varying transmission loss 

which may result in an incorrect value of K2 being selected to give 

the best fit. It would be possible to calculate the theoretical 

transmission loss at several frequencies within a third octave band 

and perform a third octave analysis using a computer program developed 

by A. Cummings. However, it was not considered that such an investi- 

gation would justify the computer time required nor the time required 

to re-write the Dartmouth Algol program that had previously been used 

into KDF9 Algol in order to utilise the Cummings third octave program. 
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3.4.3 Discussion of the theory and its implications 

Despite the discrepancy at the coincidence frequency itself this 

theory seems to be in remarkably good agreement with the airborne trans- 

mission loss (TLS). However, if we are to take this theory at face value 

at frequencies in the region of 500 Hz the panel would have a mass law 

vibration amplitude and TL2 of Figure 3.1 would agree with TL3. This is 

clearly not the case and so like the mass law itself our theory, although 

it correctly predicts the transmission loss, underestimates the panel 

vibration amplitude by 15 dB or so. 

The fault in the argument probably lies in the assumption of 

Equation (3.26) (which, presumably, was also made by Cremer) i. e., that 

the panel displacement assumes the same waveform as the incident radiation. 

As the panel's bending waves represent such a highly tuned oscillatory 

system (Q factor = 36) it seems probable that they would be excited 

and that the panel would, therefore, assume a waveform of the type: 

_o e3 Wit c) 
(3.39) 

where c: is the bending wave velocity (3.16): 

c9 _ (1 . C` ) 

This, of course, assumes that the dimensions of the panel are large com- 

pared with its bending wavelength. If we consider a spatially infinite 

panel upon which a time infinite wave train of the form of Equation (3.19) 

is incident, we find that the correlation between the incident radiation 

(Equation (3.19) ) and a panel deformation of the form of Equation (3.39) 

is zero. If, however, either the incident wave train or the panel dimen- 

sions are finite, then the correlation between the bending waves and 
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incident radiation is non-zero and so there will be some bending wave 

response. 

Both these alternative conditions for bending wave response are 

satisfied in practice. The white noise consists of non-infinite wave 

trains and the panel dimensions are only a few wavelengths. The second 

of these conditions also causes a further complication to the panel wave- 

form. The reflections of the bending waves from the panel boundaries 

create the formation of standing waves. In order to study such effects, 

methods based on modal theories (such as statistical energy methods 

(. 3.19 ), ( 3.20 )' ( 3.21 ) and ( 3.22 ) ), are needed. 

If we accept that the panel has a wave form of the type given by_ 

Equation ( 3.39 ) it explains the low frequency discrepancy between TLS 

and TL2. At such frequencies the bending waves are shorter than the 

corresponding acoustic waves which makes the panel a very inefficient 

radiator. At frequencies in the coincidence region Equations ( 3.39 ) 

and ( 3.26 ) become equivalent for certain specific angles of incidence 

which explains to some extent why the curves coalesce. 
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3.5 Conclusions 

One of the purely experimental aspects of this work has been the 

confirmation of the previous findings of Utley and Mulholland ( 3.9 ) that 

the experimental panel velocity exceeds that predicted by mass law by 

15 dB or so. From this it follows that, as there is no disagreement 

between piston theory and mass law, the experimental panel velocity cannot, 

as was claimed, be used in conjunction with piston theory to correctly 

predict the panel's transmission loss. Because of the dangers inherent 

in the indiscriminate use of this accepted method of transmission loss 

measurement 3.1 ), ( 3.8 ), ( 3.9 ), a letter was written to the Editor 

of the Journal of Sound and Vibration ( 3"23 ) summarising the limitations 

of the method. 

The theory that wps developed in Section 3.4 was able to predict 

the panel's transmission loss with great accuracy whilst being completely 

wrong in its prediction of panel velocity at sub-critical frequencies. 

We must, therefore, conclude that this theory, like the mass law itself, 

is giving the right answers for wrong reasons. The evidence and argu- 

ments of Section 3.4.3 suggest that in order to explain the true physical 

situation, we must abandon infinite panel theories. 

Crocker and Price ( 3.22 ) simultaneously arrived at identical 

conclusions about the panel's radiation efficiency by studying the essen- 

tially modal theories of Lyon and Maidanik (3.19 ), ( 3.20), (3.21 ). 

In order to prevent a duplication of effort, it was decided not to attempt 

to develop a finite panel theory in view of the success that Crocker and 

Price were having when comparing their experimental results with the 

already existing theories based upon a statistical treatment of panel and roon 

ti 
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modes. Consequently, the work of following chapters is concerned not 

with steady state conditions such as are encountered in the reverberant 

measurement of transmission loss, but with the response of structures to 

acoustic transients. 

p 



50 

4.0 The theoretical response of an ideal structure to sonic booms 

4.1 Introduction 

A supersonic aircraft in flight produces a pressure disturbance 

on the ground which is commonly known as a sonic boom or bang. In the 

case of a supersonic transport flying at 70,000 ft. the sonic boom may 

be experienced in a corridor up to about 100 miles wide on the ground 

under the flight path of the aircraft. Two of the undesirable effects 

produced by the sonic boom are the annoyance it causes to people and the 

effect which it has upon buildings. In this thesis only the response 

of structures to sonic booms is considered. 

Typical measured pressure-time histories (4. l) of sonic booms 

measured at ground level are shown in Figure (4.1) for small, medium and 

large aircraft flying at their cruising altitudes. The total durations 

(21-7) of the sonic booms shown are of the order 0.1,0.2, and 0.3'seconds 

respectively, while the overpressure is about 2 to 3 lb/ft2. The time 

histories in Figure (4.1) are seen to have the shape of a capital letter 

N. For this reason sonic booms are sometimes termed N-waves. Unless 

an aircraft flies supersonically at low altitude, it is unlikely that 

the pressure wave produced will be strong enough to cause fracture in 

any of the structural members of a building. However, if a building 

component such as a window has a built-in stress then on occasions when 

the sonic boom is magnified the extra stress induced by the boom can 

cause failure. Magnification of the sonic boom may be caused by re- 

flection from the ground or walls, by acceleration or manoeuvring of the 

aircraft and by atmospheric focusing. Even if structural failure does 

not occur sonic booms will cause building members to vibrate and rattle 
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which is annoying and psychologically undesirable. 

For these reasons it is necessary to understand how structures 

respong to N-waves and to know how the response of a structural member 

depends upon the structural and sonic boom parameters. With this 

knowledge it is possible to estimate the likelihood of damage to windows 

due to supersonic overflights and to make recommendations to minimise the 

response of structural members of buildings to sonic booms. 

In this chapter a structural member is considered to be repre- 

sented by a mass-spring-damper system and the sonic boom is represented 

by an idealised mathematical expression. The sonic boom and structural 

parameters are varied one at a time in order to find the dependence of 

the structural response upon the variations of each parameter. 

Sonic booms are by no means repeatable and the pressure-time 

history depends upon several factors including location, atmospheric 

absorption and the speed, acceleration, rate of climb, size and weight 

of the aircraft. The three main types of sonic booms normally observed 

are shown in Figure (4.1). The "normal" N-wave is most often observed. 

However, as shown in Figure (4. la) the positive phase duration is often 

not equal to the negative phase duration. The effect upon the structure 

of varying the ratio of the total duration to the positive phase duration 

is examined in Section 4.3. Sometimes, the sonic boom is "rounded" due 

to atmospheric absorption of the high frequency content of the N-wave 

(Figure (4.1b) ). This effect which produces a finite-rise time is 

examined in Section 4.4. Sonic booms are also observed with "peaks" 

(Figure 4.1c) ). The peaks are often produced by reflection from the 
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ground or buildings. This effect is examined in Section 4.6. The 

effect of structural damping upon the response is examined in Section 

4.5. Finally all these effects of variations in sonic booms are con- 

sidered and a dynamic magnification factor curve (Figure (4.20) ) is 

produced which may be used to predict possible damage to building cöm- 

ponents such as windows due to overflights of a super-sonic transport. 

4.2 The Duhamel integral 

Suppose that the damping in a structure is small so that inter- 

modal coupling may be neglected, or else that the system can be idealised 

by an equivalent single degree of freedom system. Then in the first 

case, each mode, or in the second case, the equivalent system, may be 

represented by the simple mass-spring-damper system shown in Figure 4.2. 

The equation of motion for this system is: - 

M x(t) +C x(t) +K x(t) = p(t) (1. ß) 

If the system is subjected to a force p(6) which varies with 

time 6 
. 

then provided that the initial displacement and velocity are 

zero, the displacement at time t during the excitation is (4.2), (4.3), 

(4.4), (4.5): - 

t 
2M(tý 6) 

x(t) _ P(6) e sin(wd(t -5 )) de (4.2) 
M wd 

6=0 

where wd is the damped angular resonance frequency which is given by: - 

Wd2 - W2 -ý212r w2 1- 2) 
(4.3) 
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where w is the undamped angular resonance frequency given by 

w2 = K/M and S is the critical damping ratio. Equation (4.2) 

is only valid if the damping is subcritical, (C/2M) 2< 
K/M. If the 

excitation ends at time SC, then the displacement after excitation 

at time t (where t>sL), is given by Equation (4.2) with the upper 

limit of integration changed to s r. 

-r 
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4.3 The response to an asymmetrical N-wave 

4.3.1 Introduction 

The. effect of a symmetric N wave upon a single degree of freedom 

system has recently been evaluated by several authors (4.5), (4.6), (4.7). 

Previous results given in the literature appear to have been incorrect 

(4.8), (4.9), or incomplete (4.10). However, in practice sonic booms 

are usually somewhat asymmetric (Figure (4.1a) ). To account for this 

asymmetry the pulse length parameter s has been introduced (4.2), (4.11), 

(4.12), (4.13), (4.14). 

Suppose a mass-spring system is subjected to an N-wave, the 

force-time history experienced by the system being (see inset to Figure 

4.3)"- ' 

p(r) = Po(1 0<6< s'ý )'- 

(4.4) 

P(6-) _ of (-Qo<d"10, and s 2r<6 < cO ). 

For an undamped system C4 0 The response of the system 

may be obtained by substituting Equations (4.4) into Equation (4.2). 

The response must be divided into two time regimes, the first during 

forced motion and the second during free motion. 

4.3.2 The response during forced motion 

For time 0Cr<sL from Equations (4.2) and (4.4), if the 

damping C is zero the displacement is: - 
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t 
x(t) = ri1w po sin(w(t -6 )) d6 (4.5) 

J6=o 

x(t) Pot 1-- cos(w t) +w sin(w t) (4.6) 
Mw 

4.3.3 The response during free motion 

For time s<t< from Equations (4.2) and (4.4), if 

the damping C is zero the displacement is: - 

0, 
sý 

x(t) =MW Po( 1-6 /V ) sin(w(t -6 )) dc (l+. 7) 

67=0 

a(t) _ w2 (1-s) cos((sz - t)) - sin(w(s2' - t)) 
11 Mw wr 

- cos(w t) + 
in(w t) (4.8) -C 

I 

4.3.4 Dynamic magnifaction factor during excitation 

The displacement, Xs due to a static force 
o 

is given by 

Equation (4.1) with x (t) =x (t) = 0, thus X8 = po /K. However 

K= Mw2 and thus Xm = p� /(Mw2). Thus from Equation (4.4) +ý,. 

normalised displacement during excitation is: - 
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x(t) _1_t- cos wt +1 sin wt (4.9) 

Ks Ir WT 

The times at which maxima or minima of the displacement occur 

are obtained by differentiating Equation (4.9) with respect to time and 

equating the result to zero. The maximum values of the displacement 

will occur at the times: - 

t= 2 

W 

tari 1 (wi) (4.10) 

The minima of the normalised displacement will occur at times: - 

oft 
t= 2n %j 1w (n = 1,29 3 .... ) (4. ii) 

Since Equations (4.10) and (4.11) must also satisfy the relation 

t<s it is seen from Equation (4.11) that there can be no 

minimum for sV<2 17 /w" 

The maximum value of the normalised displacement is given by 

substituting Equation (4.10) into Equation (4.9) and using half angle 

formulae (k. 5): - 

xmax 21_ tan 1 (w (, ) 

XS w 

(4.12) 

It follows from Equation (4.10) that there is a maximum during 

forced motion provided tan 
1(w G) < (s/2) wC. Thus for s>2 

there must always be a maximum during forced motion. This is easily 

=2 
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understood qualitatively if one considers the N wave as two separate 

impulses. For s>2 the negative impulse is at least as great as 

the positive one. The positive impulse initially creates a positive 

displacement which sets up negative restoring forces. Therefore, the 

total negative impulse (second part of N-wave plus restoring forces) is 

greater than the positive one. Thus by the end of the N wave the 

oscillator will have acquired a negative velocity after a positive dis- 

placement which explains why there must always be a true positive 

maximum of the displacement. For s<2 there will be no maximum 

during forced motion for w less than some limiting value. 

The minimum value of the normalised displacement is found by 

substituting Equation (4.11) into Equation (4.9) and choosing the largest 

value of n which satisfies the relation sC>7/- 

Xmin 2n (w') 

xc 
(4.13) 

The dynamic magnification factor may be defined as the greatest 

maximum or minimum of normalised displacement for any value of non- 

dimensionalised frequency fL" The dynamic magnification factor is 

so named because it represents the ratio of the dynamic to static dis- 

placement of the system. 

4.3.5 Dynamic magnification factor after excitation 

From Equation (4.8) the normalised displacement is: - 

X( t) -(1-s) cos(w(s L- t)) - 
X 

s- 
cos(w t) + sin(w t) 

sin(w(s L- t)) 
wr 

(4.14) 
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X(t) Maxima or minima of the displacement occur when =0 that is 
Xs 

for times: - 

1 t min =w tan-' (1 - s) sin(ws T) _ 
cos( + max W -C w 

- s) cos(ws2) + sinw_ 

(k. 15) 

Substitution of Equation (4.15) into Equation (4.14) gives the 

maximum or minimum value of the normalised displacement after excitation; 

this calculation was conducted using a digital computer. Equations 

(4.12) and (4.13) were evaluated by hand. 

4.3.6 Discussion 

Plots of the dynapic magnification factor against non-dimen- 

sionalised frequency f are given in Figures (4.3), (4.4), (4.5) 

and (4.6) for several representative values of s. 

It is observed that as s is increased the frecuencies at 

which the large free response peaks occur are decreased. Increasing 

s also has the effect that these peaks grow in magnitude and emerge 

further above the curve for the greatest maximum of displacement during 

forced motion. which is independent of s (providing P> 1). Fortun- 

ately, in practice, there is not a great variation in and it is 

usually found that 1.6 <s<2.2 and for most sonic booms s 2.0. 

For a symmetric N-wave 8=2 and Equation (4.15) gives the 

solution: - 

t 
max. min =+nu 1w , 

provided tan w (, wL, 
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It can be shown (4.5), that the second equation gives the 

values of w2 at which there is zero free motion, that is at which nulls 

occur. This equation is satisfied by: - 

wý '% (n+ 
2T IT n= 1,2 9 3, ... . 

and this solution becomes progressively better as n is increased. 

For values of s other than 2.0 the nulls disappear although there is 

still a minimum of free response at certain values of w 

-t 
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4.4 The response to an N-wave with a finite rise-time 

Suppose an undamped mass-spring system is subjected to an N- 

wave with a finite rise time and decay. Such an idealised N-wave (see 

the inset to Figure 4.7) is a good approximation to measured sonic booms 

(see Figure 1(b) ). Using the notation of the inset to Figure 7, the 

force-time history of such an N-wave (for rI=r2=r) is: - 

p=0, (-60 <6c0 , t3<6<oo) , 

p= Po(6/(r7)) , (0<6-< t1) , 

p= po(r +1- 6/v) , (t1< < t2) , 

P=P (1 (2 r+s)L -6 
a'sr, ( t< 

(4.16) 

where tl = r-l L, t2 = (rl + s) G and t3 = (r 1 +r2 +s )-C 

The response must be divided into four time regimes and using 

a Duhamel integral approach similar to that presented in Section (4.3) 

the normalised displacement may be shown to be: - 

x(t) _t_ 
sin(wt) 

Xrwr2 
s 

X(t) 1+r sin(wt) x( wr x8 

when 04 t( rt (4.17) 

- (1 + r) sin(w(r z- t)) 
w rZ' 

t 
-r 

when r4t4 (s + OT (4.18) 
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x(t) t-2(. (r + 1) 
Xs rv 

+ 
(r + 1) sin(w((r + 2)L - t)) 

wr L- 

_ 
(r + 1) sin(w(r - t)) 

_ 
sin(wt) 

wrLwrL 

when (s+r)Cýt. 4(s+2r) L. (4.19) 

X_ 
_ 

sin(w((r + 2)2 - t)) - sin(w(rZ - t)) 
X 

(r + 1) 
sw rL 

sin(w(2(r + 1)Z - t)) + sin(wt) 
wrL 

when (s +2r)L<t56o (4.20) 
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The dynamic magnification factor was calculated for forced 

motion (Equations (4.17), (4.18) and (4.19) ) and for free motion 

(Equation (4.20) ) using a digital computer program. The program cal- 

culated the displacement time history for different values of the para- 

meters r and w and also selected the dynamic magnification factors. 

Typical results are given in Figures (4.7), (4.8), (4.9) and (4.10). 

It is seen that the dynamic magnification factor is plotted 

against fL This non-dimensionalisation ensures that the 

positive impulse imparted by the N wave as r is varied remains con- 

stant. As the rise time ratio r is increased it is seen that the 

peak in the response during free motion which occurs at fL0.5 

increases, while the successive peaks decrease in magnitude. When r= 

1.0 the dynamic magnification factor curve begins to look similar to that 

for a complete cycle sine pulse forcing function (see Figure 4.4 and 4.5, 

Reference 15). The maximum dynamic magnification factor for the sine 

pulse is 3.25 at ft '^% 0.5" This magnification factor is larger than 

the value of 2.68 produced for an N wave with r=1.0 (Figure 4.9) 

because the impulse for the sine pulse is greater. Since the response 

is impulse dependent (10) up to values of f _C of about 0.5, it might 

be expected that the ratio of these maximum dynamic magnification factors 

be very nearly equal to the ratio of the positive impulses for these two 

forcing functions. This does indeed prove to be the case, since the 

ratio of impulses is 1.27: 1 and the ratio of maximum dynamic magnifi- 

cation factors is 1.22: 1. 
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4.5 The effect of viscous damping 

Suppose the damped mass-spring system (shown in Figure 4.2) is 

subjected to an N-wave (whose force-time history is given by Equations 

(4.4) ). 

4.5.1 Forced response 

During excitation, 0<t<s -C the displacement is given by 

integrating Equation (4.2) from 6=0 to 6=t where p (6) is given 

by the first half of Equations (4.4). Thus the normalised displacement 

may be shown to be (14): - 

x(t) _1_t*2 
XS -e 

29 
- e-w 

t+ 
cos(w i) 

W-TI d 

+ ws r+ (ws )2 -wd2 sin(wd t) 

w2 w -C 

11 

d 

(4.21) 

4.5.2 Free response 

Similarly after excitation, s<<t< co , the displacement is 

given by integrating Equation (4.2) from 6=0 to 6=s where 

p(6) is again given by the first of Equations (4.4). The normalised 

displacement is (14): 
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(w s )z w2 sinýw (s t- t) 

X(t) e-w 
St 

z(s - 1)wö -w2d wd'r 
x 

8 

+ 
1(1 

- s) + 
w-. 

cosýwd(sz - t) owssr 

-l+w- Cosjwd tý 

++ 
(w3)2 -wd21 sinýwd tj 

w2 w dZ 

(4.22) 

From Equation (4.3) the undamped frequency w= wd/(1 

Thus making this substitut, ion in Equations (4.21) and (4.22), the norm- 

alised displacement may be expressed in terms of. wd' and thus of fdi. 

The dynamic magnification factor was calculated for forced and free 

vibration using a numerical digital computer program for a symmetric 

N-wave. The program calculated the response time history for different 

values of the damping ratio 
ý 

and selected the dynamic magnification 

factors as the parameter fd Z was varied. A typical time history is 

given in Figure (4.11). Typical dynamic magnification factor plots are 

given in Figures (4.12), (4.13), (4.14) and (4.15). 

The greatest true maxima or minima are plotted against fd ' 

during forced motion, but during free motion the greatest absolute value 

of the normalised displacement is plotted. It is seen that damping has 

the effect of reducing the free motion considerably, especially as fd IV 

is increased. However, the greatest maximum during forced motion is not 

as much reduced as S is increased and the free motion at higher values 
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of fd L falls further below the forced motion curve. The damping 

also has the effect of smoothing out the nulls and peaks during free 

motion. However, the nulls and peaks still occur at the same values 

of fd Z as for a symmetric N wave (see Figure (4.4) ). 

r 
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4.6 The response to an N-wave with shock reflections 

When a sonic boom is reflected by the ground or by the wall of 

a building shock reflections will occur. Typical measured N-waves with 

reflections are shown in Figure (4.1c). A suitable mathematical repre- 

sentation for the force-time history of such a pulse is given by Equations 

(4.23) (see Figure 10 of Reference 2 or the inset to Figure 4.16). 

Using the notation of the inset to Figure 4.16, the force-time history 

of this idealised pulse is: - 

p0( -ý<6< 0ý (2 + u)L<6<ý ) 

ý(1+u) 
p p0 2uß +( 0<6ýuý ) 

p=2 Po 1-` i46 -2 0 

p=2 Po 1- 6u 
-r 

ý' 
U)77 4 

(4.23 ) 

Suppose an undamped mass-spring system is subjected to a shock 

pulse with a pressure-time history given by Equations(4.23). Again as 

in Section 4.4, the response must be divided into four time regimes. 

Using a Duhamel integral approach similar to that presented in Section 4.3 

the normalised displacement may be shown to be: - 

xXt) 
=1- 

t12u uj T 

8 
cos(s2. T) +1+u sin(-aT 

2u_. 

when 0<T< it (li.. 24) 
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x(t) -2s1-T+u sin(! (u - T)) -2 cos(. L T) 
x+ 

11 + uj sin T) j 
u -c2- 

when u<T42 (Z+. 25) 

X(t) -2j1+ 
(2 - T) 

+ 
ýu 

sin(-R-(u - T)) 

"s 

-2 cos(MT) + 
c1 +u sin(. n-T) 

u _a_ 

2 cos(Sf-(2 - T)) -1- 
u) sin(. n- (2 - T) ) 

u -0.. 

when ". 2(. T<2+u (4.26) 

r 

X (t), =2j s-I- sin(SL (2 +u- T)) + Sý u sin(n- (u - T) ) 
u2 

cos(CLT) +1+u sin (SL T) 
uI _a. 

-2 cos(CL (2 - T)) 
il-u3 sin(SL (2 - T) ) 

u 

when 2+u<T 4' oo (4.27) 

where T=t and -fL =w 
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The dynamic magnification factor was calculated for forced 

motion (Equatiom (4.24), (4.25) and (4.26) ) and for free motion 

(Equation (4.27) ) using a digital computer program. The program 

calculated the displacement-time history for different values of the 

parameters u and wlC and selected dynamic magnification factors. 

Typical results for the reflection shock pulse ratio u=0.1,0.2 

and 0.3 are given in Figures (4.16), (4.17) and (4.18) respectively. 

Figure (4.19) shows a comparison of the envelopes for curves with in- 

creasing values of U. 

It is observed that as the reflection shock pulse ratio is 

increased both the forced and free motion dynamic magnification factors 

increase although the effect is greater for increasing fl, One 

very interesting feature is that the nulls which were observed for free 

motion for a symmetric N-wave (see Figure 4.4) are still virtually re- 

tained independant of the value of u. The reason for this is that the 

force-time history (Equations(4.23) ) may be regarded as an N-wave with 

the addition of two triangular pulses separated in time by 2 

Since the equation of motion is a linear differential equation, 

the response to these separate pulses may be found by superposition. 

However, there will be nulls in the free motion due to the N-wave when 

fL __ (2 n+ 1) /4 (n = 1,2,3 ..... 
), (see Section 4.3.6 

or Reference (5) )" However, there will also be zero free motion due 

to the repeated triangular pulses when 2 (2 n- 1) / (2f) or 

fr (2n - 1)/4, (n = 1,2,3 .... 
). Since the values of fC are not 

quite identical for the N-wave and the repeated triangular pulses, 

absolute nulls will not be produced. Also since f'C x (2n + 1)/4 

becomes a better solution as n increases, the nulls will become more 
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nearly absolute as ft increases. Both these facts are confirmed by 

Figures (4.16), (4.17), (4.18) and (4.19). 

d> 
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4.7 Repeated N Waves 

In some cases it is found that more than one N-wave is experi- 

enced at a point in space. This may be due to a variety of reasons. 

The first N wave may travel direct while the second is reflected from 

the ground. Acceleration of the aircraft can also cause two N waves. 

A window in a building may also experience a sonic boom directly on its 

outside face and then on its inside face a sonic boom which is delayed 

and diffracted through an opening such as a doorway. 

These sonic booms may be separated or they may overlap. The 

analysis for the response of a simple system to repeated N waves proves 

complex since there are four time regimes for the overlapping case and 

four for the non-overlapping case. 

For the case of the free motion, the results are very simple and 

tractable. It may be shown that the displacement due to each shock pulse 

during free motion may be expressed as a sine wave. 

Let the free response due to the first shock pulse be: - 

X(t) 
Xs 

sin (wtt ). (4.28) 

Then the free motion displacement due to the second shock pulse 

is: - 

x(t) _A sin (w -t), (4.29) 
xs 

where t is the time measured from a displaced origin, t is the time 

difference between the pulses and A is the relative magnitude of the 

second pulse. Thus the total free motion displacement is (summing 

Equations (4.28) and (4.29) ): - 
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x(t ) 

xs 
B sin (wt - 

4) 
, (4.30) 

where B="1+ A2 + 2A x cos 
(wt `) 

, 

and tan 
4=A sin wt 

1+ cos wt 

(4.31) 

(4.32) 

when A= +1, B=2, for. wt = 0,2 ü, 4V 
, ..... and B=0 

for wt = ii , 3V9 5779 ..... . Thus as one might expect the 

dynamic magnification factor for two N-waves can be increased by a 

value up to twice that fora single N-wave. 

The results for forced motion are more complicated although 

somewhat similar results are found. Again the dynamic magnification 

factor can be increased to twice the value for a single N-wave. 
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4,8 Discussion and conclusions 

Building components will be subjected to a variety of N-wave 

shapes during overflights of a supersonic transport (see Figure (4.1) ). 

It is thus desirable to determine an upper limit to the dynamic magni- 

fication factor curve against non-dimensionalised frequency f -C which 

will encompass the effects of these sonic boom variations. Such a 

curve, Figure (4.20), was produced by studying Figures (4.6), (4.10) 

and (4.15). It is seen that increasing the values of s ,r and u 

tends to produce higher dynamic magnification factors and to cause some 

shift in the non-dimensionalised frequency fL at which peak responses 

occur. However, increasing values of structural damping 9 cause a 

marked decrease in response particularly for free motion as fV increases. 

Thus it was necessary to choose upper values of s, r and u and a rep- 

resentative value of 
S before Figure (4.20) could be drawn. With the 

supersonic transport and with windows particularly in mind, these upper 

values where chosen to be s=2.2, r=0.5, and u=0.2. A 

representative value of 
9=0.02 

was chosen for the critical damping 

ratio for a window. 

It is seen that the envelope given in Figure (4.20) rises to a 

maximum value of 2.5 atf T. 
= 0.5 and then at high values of f -C assumes 

a value of 2.0. The assumption is made that increases in the dynamic 

magnification factor at higher values of fr due to the values of s, r, 

and u chosen, are reduced by the damping so that an asymptotic value 

of the dynamic magnification factor of 2.0 is reached at high values of fZ 

Figure (4.20) should be useful in a study of the possibility of 

damage to windows and other building structural members due to overflights 

by a supersonic transport. It is foreseen that the curve in Figure (4.20) 
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is dependent upon the maximum values of s, r, and u chosen and the 

assumed value of d. However, it is also seen that the resultant 

curve is not too sensitive to small changes in the values of these 

parameters. In order that these results be more freely available they 

have been published in detail (4.14) and provide an aid to the calculation 

of sonic boom response that has already been requested, used and acknow- 

ledged (4.16). 

One interesting result shown in Figures (4.11), (4.12), (4.13), 

(4.14), and (4.15) is that increasing structural damping causes a con- 

siderable reduction in response in all regimes with the exception of 

the first maximum during forced motion. It would seem very worthwhile 

if the internal damping ratio of a window could be raised possibly by 

the use of a different support. This should at the very least reduce 

the free vibration considerably, hence reducing the psychologically bad 

effect of rattling or vibration of a window when it is excited by a 

sonic boom. 
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5.0 The Experimental investigation of the response of a structure 

to Acoustic transients. (The Shock Tube) 

5.1 Introduction 

In order to verify whether or not the Duhamel Integral technique 

of the previous chapter could accurately predict the response time history 

of an actual structure to an acoustic transient, it was decided to perform 

a series of experiments making use of a shock tube. The experiments of 

Crocker (5.1), (5.2), (5.3), showed that if a small explosive charge is 

detonated at the open end of a metal tube of square cross-section, the 

resultant pressure time'history contains two shock waves and is almost 

identical (except for time and pressure scaling factors) to the time 

history of the sonic boom., Although there are more predictable and, 

therefore, reliable methods of generating experimental N waves (5.4), 

the "Blunderbuss" facility requires a great deal of precision engineering, 

compressors and diaphragm bursting mechanisms which make it a very costly 

piece of equipment. However, the simple shock tube that was used in 

these experiments consisted of a steel tube from stock, driven by a 

commercially available firework, and consequently, was remarkably inex- 

pensive in comparison. 

The aim of the experiments was to use this simple tube to produce 

an N wave which would then impinge normally upon a simply supported steel 

panel. The N-wave pressure time history was recorded by photographing 

the oscilloscope trace of a microphone's output. The resultant panel 

response was recorded in a similar manner using strain gauges. The 

detailed description of the tube's construction and instrumentation is 

given in Section 5.2. and the success in producing satisfactory N waves 

in Section 5.3" 
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In Section 5.4 the design and construction of the test panel's 

simple support is described. In order to have any success whatsoever in 

predicting the panel response, it is necessary that the supports provide 

a known set of boundary conditions. Of the various possible theoretical 

boundary conditions possible, clamped-clamped, and simply supported are 

the two most likely to be achieved experimentally and, therefore, met in 

practice. In order that the plate represent a window as nearly as 

possible, a simply supported panel was chosen for the analysis as that 

most closely corresponding to the boundary conditions of a real window. 

At first thought it appears that the clamped-clamped boundary conditions 

are easier to achieve experimentally. It is true that a clamped-clamped 

panel is easier to construct. However, due to thermal expansion an 

experimental clamped-clamped panel can experience a surface tension 

which produces membrane effects in the panel's response. Worse still, 

it can experience a surface compression which produces "oil-canning". 

Therefore an experimentally clamped panel may not be mathematically, 

what it appears to be. Finally not only is a simple support a better 

representation of a window and unlikely to be affected by spurious 

effects such as oil-canning, it is also simpler to analyse mathematically. 

This is not of great importance in this chapter where the straightforward 

panel response and strain are calculated, but is important in obtaining 

a solution to the panel-cavity problem of the following chapter. 

In Section 5.5 the multi-mode response (and strain) of the panel 

is calculated using Duhamel technique and compared with the experimental 

values in order to see whether better agreement can be obtained than was 

obtained by previous authors. On Figure 9 of Reference (5.3) the 

theoretical and measured time histories bear little correlation to one 
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another. By eliminating "oil-canning", the higher modes excited by 

grazing incidence and the difference between the experimental and 

theoretical physical conditions, it is hoped that this may be improved. 

In view of the findings of Section 5.2.3 concerning the triggering of 

the oscilloscope, even the previous claim that "the first measured strain 

maximum is overestimated by only 13%" X5.3), requires thorough investi- 

gation. 

In Section 5.6 the findings of the chapter are summarised and in 

particular from the results of Section 5.5 whether or not the assumption 

of the following chapter, that a two-mode analysis can effectively 

represent the physical situation, can be justified. 

10 
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5,2 
, 

Construction and instrumentation of the shock tube 

5.2.1 Construction 

Basically the tube consisted of a 10 inch square steel tube 

with quarter inch walls which was purchased from stock. As the tube 

weighed 33 pounds per foot it was cut into manageable sections and 

. mounted on castors as shown in Figure 5.4. The first section to 

section join was by means of two flanges bolted together and sealed 

with a rubber gasket. The other joints contained no vibration bridge 

and were sealed with waterproof sticking plaster (from the inside where 

possible) in order that the inner surface remain flush. It was nec- 

essary not to have a vibration bridge between the tube and the tail- 

piece in order that flexural waves in the tube excited by the explosion 

should not directly excite the test panel. However, even when the test 

panel excitation was purely acoustic the flexural waves produced undes- 

irable secondary acoustic waves as described in Section 5.3.3" The end 

plate which contained the simply supported test panel was bolted to the 

flange of the tail piece and sealed with a second rubber gasket. The 

general lay-out of the tube and its associated instrumentation is shown 

in Figure 5.1: At a later date a damping compound described in Section 

5.3 was added which changed the appearance of the tube. 

5.2.2 Instrumentation - General considerations 

In selecting the instruments to be employed with the shock tube, 

and in particular the microphone, one was largely working in the dark in 
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so far as the exact magnitude and form of the signal was uncertain. Once 

these factors are known it is possible to exercise discretionary choice 

in selecting the most suitable instruments, but in order to discover these 

factors, the instruments have to be employed and purchased. There was 

no alternative but to assume that the results would be similar to those 

obtained by Crocker (5.1), (5.2), (5.3), and hope that an American 

"Cherry-bomb" was comparable in explosive power to a British "Mighty 

Demon" etc. It was assumed that the peak overpressure would be about 

4 p. s. i. and that the positive phase duration 7 would be about 3 milli- 

seconds. 

With the aid of reference (5.5) it was then a simple matter to 

calculate the frequency range that the instruments required in order to 

record the N-wave with the , minimum of distortion. For T3 milli- 

seconds, in order that the error in the measurement of T be 1% or less 

the transducers lower cut-off frequency should be 2 Hz. Similarly in 

order that the error in the measurement of peak overpressure be 1% or 

less the transducers upper cut-off frequency should be 200 kHz. There- 

fore, the instrumentation requires the surprisingly large frequency 

range of 2 Hz to 200 kHz in order to adequately record the N-wave. 

5.2.3 Pressure measurements 

Although the original experiments of Crocker had used a "Photocon" 

microphone it was considered desirable that Bruel and Kjaer equipment be 

used if at all possible in order that it be compatible with the existing 

amplifiers etc. It was found that a Bruel and Kjaer quarter inch condenser 

microphone, Type No. 4136, when used in conjunction with the usual cathode 
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follower, Type 2615, did not have a sufficiently wide frequency range. 

However, the new preamplifier, Model 2618 (which at the time was still 

in the final stages of development which caused considerable delays) 

has a frequency range of exactly 2 Iiz to 200 kHz and so appears admir- 

ably suited for the job in that respect. However, the quarter inch 

condenser microphone becomes non-linear at 180 dB (4.16 peak p. s. i. ) 

and damages at 184 dB (6.59 peak p. s. i. ). In view of the fact that 

the shock tube had almost twice the cross-sectional area of Crocker's 

it was considered unlikely that these pressures be encountered and so 

the above microphone and preamplifier were purchased and employed. 

The microphone had its protective cover removed and was mounted 

in a bush which was flush fitting in the back plate (Figure 5.6) along- 

side the test panel (Figure 5.3). The preamplifier (which was rigidly 

attached to the microphone) is shown in Figure 5.3. The pressure signal 

then passed from the preamplifier to a Bruel and Kjaer microphone-ampli- 

fier, Type No. 2603, and then to an E. M. I. oscilloscope, Type No. WM416. 

The resultant trace was photographed using a Telford, Type A. 513, camera 

with "Polaroid" film. The oscilloscope was in a single-shot' mode and 

a time exposure was used. A block diagram of the equipment is shown on 

Figure 5.5" 

Although with the single-shot,, time exposure technique it was 

not necessary to trigger the camera shutter, it was still necessary to 

trigger the oscilloscope time base itself. It was decided to employ a 

second microphone to trigger the oscilloscope externally before the shock 

wave reached the quarter inch microphone. This would provide a complete 

trace of the pressure time history including the rise of the first shock 

front. It was feared that unless this first shock was observed (which 

required that the initial part of the trace be undisturbed) by use of the 

external trigger, some unknown portion of the-trace would be lost. 



80 

If the signal triggers itself internally the first part of the trace to 

be observed is the N-wave's steady decline. 

In order to see whether these fears were justified or not the 

following subsidiary experiments were performed. Ideally it would have 

been preferable to photograph pressure time histories with the oscillo- 

scope on internal and external trigger and compare the two photographs. 

Unfortunately, the waveform produced by the fireworks was not consistent 

enough for this approach to be very meaningful. However, it was found 

that a highly reproducible waveform could be obtained by tapping the test 

panel and observing the resultant strain (see Section 5.2.4). With prac- 

tice it was found that with a free-running time base a very consistent 

initial peak strain could be obtained (Figure 5.7(a)). When the time 

base was set to internal trigger however only the tail-end of the decay 

was observed (Figure 5.7(b)). Photographs of the form of Figure 5.7(a) 

and Figure 5.7(b) were found to be highly reproducible and without there 

being any conscious change in the "tapping level" it was possible to pro- 

duce an "(a)" followed by a '"(b)" then an "(a)" and a '"(b)" again. 

Hence by using the internal trigger a great deal of the signal is lost 

and so all the measurements were taken using the external trigger. 

The reason why so much of the signal was lost in the time be- 

tween the internal trigger signal being received and the time base 

actually firing was probably due to a fault in the oscilloscope being used. 

However, even when using a reliable oscilloscope some signal is lost when 

used in the internal trigger mode. This is apparent from a study of 

Figure 8 of Reference (5.3). The oscilloscope was on internal trigger 

when this photograph was taken, the time base was assumed to have fired 

when the N-wave reached the first microphone. As one would expect from 

the microphone separation of 9 inches, the signal from the second micro- 

phone is about j of a millisecond behind that from the first, as can easily 
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be seen by observing the position of the second shock. That being the 

case one would expect that if the time base fired when the first shock 

reached the first microphone, the signal from the second microphone ought 

to have an initial 4 of a millisecond of undisturbed trace. This is not 

found to be the case and so the first shock must have reached the second 

microphone before the time base fired. Therefore the trace from the 

first microphone has lost at least ý of a millisecond if not more. 

This failure to record the whole of the incident N-wave therefore, throws 

the previous experimental observations (5.1), (5.2), (5.3), into doubt. 

The oscilloscope amplifiers were not properly calibrated and 

so it was difficult to obtain an absolute value of acoustic pressure from 

the oscilloscope trace. To minimise the possibility of error which may 

arise from the non-specification sensitivity of the microphone, preampli- 

fier, amplifier or oscilloscope a pistonphone calibration of the whole 

system was undertaken. The oscilloscope trace resulting from the micro- 

phone being coupled to the 124 dB pistonphone was too small to be observed 

with the overall sensitivity set to record an explosive's pressure time 

history. However, if the sensitivity of the microphone amplifier was 

increased by 40 dB the pistonphone waveform was now equivalent to a signal 

of 164 dB at the original sensitivity and provided a measurable trace. 

A single-shot photograph of such a trace was taken and used to calibrate 

both the overpressure and the time-base (from a knowledge of the piston- 

phone frequency measured by a digital frequency counter) of the oscillo- 

scope. 
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5.2.4 Strain Measurements 

Although it is unlikely that the strain time history vary as 

rapidly as that of the pressure producing it (in order to do so it would 

require a mass-less panel) it was decided not to pre-judge the situation 

too much by employing a strain measurement system which imposed a serious 

frequency limitation. It is found, as was expected, that the panel 

response and strain, can be adequately described by the first few modes 

of the panel, which fall within a somewhat limited frequency band. 

However, if the measuring system employed had only been capable of 

measuring frequencies within this band the above conclusion could hardly 

be justified. 

-Because of the difficulties usually encountered when using non- 

contacting displacement gauges, and the ease with which the theoretical 

predictions of modal panel displacement can be converted into strain for 

comparison with experiment, it was decided to employ strain gauges to 

measure the panel response. A rosette of two orthogonal foil strain 

gauges, Kyowa KF2 Dl was cemented to the centre of the test panel, as 

shown in Figure (5.2), using EP18 cement in order to measure strain along 

the panel's major and minor axes (x and y directions). As it was only 

dynamic strain with which we were concerned the gauges were not tempera- 

ture compensated. 

The gauge Was used in conjunction with a "Peekel" bridge and 

amplifier unit type GRL 1. which was- used in the 4 bridge mode. The 

unit had a frequency response of D. C. to somewhere between 120 kHz and 

. 
400 kHz depending on the sensitivity. The strain gauge amplifier output 

was recorded on the second trace of the oscilloscope which was triggered 

together with the first (it being a single gun scope in the switched mode)' 
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by the external trigger microphone. In order to calibrate the strain 

the strain gauge amplifier had a position in which, when correctly cali- 

brated by adjusting a potentiometer it gave a D. C. signal of 10 volts 

(measured on an "AVO"). This voltage when fed onto the oscilloscope's 

second trace gave it a deflection equivalent to that which would be 

obtained from a f. s. d. (of the amplifier) strain. Hence it was not 

necessary to make any assumption about the oscilloscope amplifier 

sensitivity but merely to compare the strain trace deflection with that 

produced by the calibrating D. C. signal, multiply this ratio by the strain 

gauge amplifier's f. s. d. and make a slight correction for the gauge 

factor in order to obtain an absolute value of strain for comparison 

with the theory of Section 5.5 and the following chapter. 

-r 
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5.3. Experimental Waveforms and the Result of Tube Damping 

5.3.1 General Observations 

Initially it was hoped that by exploding a common firework in 

the open end of the tube N-waves similar to those obtained by Crocker, 

(5.1), (5.2), (5.3), would result. However, this shortly proved not 

to be the case as the photograph of Figure (5.23) shows there tobe no 

stern shock and a very ill-defined negative phase. This was a normal 

incidence shock wave, the microphone being mounted in the end plate. The 

peak overpressure was 4.2 x 104 c. g. s. (0.625 lb/ft 2) 
and the positive 

phase duration was 1.5 milliseconds, This waveform was by no means 

reproducible in shape or intensity. The positive "hump" before the 

bow shock was not always present and sometimes there were many secondary 

waves following the initial wave. 

As Crocker's N-waves were obtained for grazing incidence the 

microphone was fitted in the side wall of the shock tube and the photo- 

graphs of Figure 5.24 were obtained. Figure (5.24(a)) was a good 

example of a "clean" waveform whereas Figure (5.24(b)) illustrates the 

variations that may occur. In Figure (5.24(a)) the waveform has a nega- 

tive phase but this has about half the pressure amplitude of the positive 

phase. The negative phase intensity of 0.15 lb/ft2 had not been suffi- 

cient to create the piling of a stern shock. In Appendix A5.2 it is 

calculated that a wave starting with the shape of Figure (5.24(a)) and 

negative pressure amplitude of 0.45 lb/ft2 would form a stern shock in 

the shock tube. Obviously Figure (5.24(a)) has already experienced some 

shock piling and so in order that a stern shock form within the 

29 ft. of tube available a negative pressure amplitude of 0.6 lb/ft2 

would be required. With this in mind the firework manufacturers were 

asked. to-produce an explosive charge of approximately this pressure amplitude. 
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The charges supplied were detonated electrically which took some 

of the athletics out of the photographic procedure. The charges were 

detonated by a foot operated switch which allowed the operator two free 

hands to protect his ears. The waveform produced for normal incidence 

is shown in Figure (5.25). Although the pressure amplitude was 1.3 lb/ft2 

the almost complete lack of negative phase prevented the formation of a 

stern shock. 

The results obtained from a second more powerful electrically 

detonated charge are shown in Figure 5.26. The positive pressure ampli- 

tude was increased only marginally to 1.4 lb/ft2 and a large proportion 

of the extra energy available appears in the form of secondary waves. 
A-third type of electrically detonated charge which was claimed 

to be even more powerful wes found to produce a pressure amplitude of 

1.2 lb/ft2. Their variability is illustrated by. Figures (5.27(a)) and 
(5.27(b)) which are photographs of two of the charges detonated within 

a minute of each other. However, they do not vary as much as the firework 

waveforms as illustrated by Figure (5.28). 

In view of the unpredictable nature of the explosives used and 

the small negative phase of their waveforms it was decided to accept the 

waveforms as they were rather than continue in the search for an ideal 

N-wave. If the experimental response and strain of a panel to an arbi- 

trary acoustic transient, (which is what this and the following chapter 

are primarily concerned with), can be predicted by a theory, the same 

theory can presumably be used with confidence in predicting the response 

to an ideal N-wave. This obviously precludes the use of closed form 

solutions for the theoretical panel response and requires Duhamel integral 

technique using a numerical analysis of the pressure waveform. 
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5.3.2 Calculation of the shock velocity 

With the oscilloscope on a slow timebase it is possible to 

observe a second shock wave as shown on Figure (5.29). It is presumed 

that this second disturbance is due to reflection of the shock wave when 

it returns to the open end of the tube. It is observed that the pres- 

sure of the reflected wave is "reversed" as one would expect from open- 

ended reflection. Furthermore, if one uses the time delay of the second 

wave and assumes the above explanation of open end reflection one can 

calculate the wave's propagation velocity as being 1140 ± 30 ft/sec. 

As this is approximately equal to the velocity of sound in air the 

interpretation of Figure (5.29) was correct the measured waveforms being 

beyond doubt purely acoustic (as opposed to tube vibration) phenomona. 

Furthermore, using Equation (5.1) extracted from Reference 5.11 

Equation (19.59) (derived from the Rankine Hugoniot equations), we have 

for the velocity of a shock front V of overpressure Ap travelling 

into an undisturbed medium of pressure p1 :- 

I 
Vc 1+(2+1) 

Qý 
2 p1 

(5.1) 

For Ap=1.3 lb/ft2 , p1 = 14.7 lb/ft 
2, I=1.4, and taking 

the velocity of an infinitesimal sound wave (c) from Reference (5.12) 

we have: - 

V= 1124 x 1.04 = 1170ft/sec. 

which is in reasonable agreement with the experimental value. 
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5.3.3 The effect of tube damning 

Many of the experimental waveforms were complicated by second- 

ary waves such as those on the upper traces of Figures (5.30) and (5.31). 

These waves were due partly to discontinuities in the tube's internal 

geometry, and partly to the tube "ringing" and exciting secondary 

acoustic waves. The tube discontinuities were eliminated as much as 

possible by removing firework debris from the tube at frequent intervals, 

and also by sealing the airgap between different tube sections as smoothly 

as possible with waterproof "elastoplast" (internally where accessible). 

The first attempt at tube damping was to drape felt over the 

tube but this did not meet with much success as the photographs of 

Figures (5.30) and (5.31) were taken with the felt in place. Eventually 

the-tube was covered with ja 
layer of "Aqua-Plas", a commercially available 

damping compound. It is difficult to assess the effectiveness of this 

treatment quantitatively because of the non-reproducibility of the results 

but in general, it seemed to provide a substantial reduction of the 

secondary waves. However, these secondary waves were not completely 

eliminated and unlike Crocker's results (5.3) there is no region in the 

pressure time history that can truly be called "free response". 
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5.4 The Design and Construction of a Simple Support 

5.4.1 Theoretical Considerations 

A simple support is defined as being the type of support 

provided by an ideal pair of knife edges situated at the extremities 

of the panel. 

z 

x 

Plate 

knife 
edges 

All IDEAL SIMPLE SUPPORT 

These supports prevent lateral (z) displacement but allow the 

panel to pivot freely with no bending moment at the panel extremities. 

Mathematically this is equivalent to: - 

71 
z= ax =0 at. x = x1 and x2 (5.2) 

In order to achieve this condition experimentally a knife-edge 

type of support is unlikely to be successful, for several reasons. In 

the above diagram the panel is assumed to be infinitely thin whereas a 

panel of finite thickness would experience a bending moment between the 

grip of the opposing knife edges. A single knife edge may be used to 

overcome this in the civil engineering type of problem where gravity 

ensures that the support reaction is always upwards but this is obviously 

J 
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not applicable for an acoustic problem with a vertically mounted plate. 

It is also unlikely that the knife edge support could give an airtight 

seal, which is essential in the following chapter, without resorting to 

some form of gasket or sealing compound that would produce undesirably 

high damping. Therefore, it was decided to try to achieve the simple 

support conditions expressed in Equatiors(5.2) by mounting the panel on 

thin shims in the (z) plane that would provide negligible bending moment 

but resist edge displacement. In Appendix A5 the effect -upon a panel 

of such shim supports is studied mathematically and compared with some 

experimental results obtained by Parrott. The conclusions of this 

Appendix influenced the design of the actual constructions employed. 

p 

5.4.2 The actual constructions employed 

Before the theoretical investigations of Appendix 5A1, the 

experimental support shown in Figure 5.8 was constructed. Figure 5.9 

shows the decay of strain in this construction after the panel had been 

excited by a shock wave. Although the decay is not that of a pure sine 

wave there is an obvious fundamental frequency present which, upon 

measurement, is found to be 270 Hz compared with a theoretical value of 

515 Hz for a perfect simply supported panel. This discrepancy was 

attributed to the large length of free shim which allowed lateral move- 

ment at the panel boundaries. Such a panel was obviously unsuitable for 

a theoretical analysis of its response. 

Following the findings of Appendix 5A1 the experience gained 

above, and the experimental results of Parrott, a new shim support shown 

in Figure 5.10 was designed. There then followed a search for a 
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satisfactory adhesive. "Araldite" proved too brittle, whereas "Evo- 

stick" created a thick visco-elastic layer which provided too much damping. 

Other adhesives were tried without success but eventually the problem 

was solved with "Evo-stick" diluted with petrol. The dilution allowed 

a thin even layer of the adhesive to be applied without any of the 

"balling" usually associated with a "rubbery" glue. This type of support 

was used on, a 17cm by llcm 0.0813cm thick panel which was found to have 

an experimental frequency of 221 Hz compared with 229 Hz given by the 

theory (see next section). 

It is this panel and support that is used in the experimental 

investigations in the remainder of this chapter. 

p 

5.4.3 Investigation of the panel properties (The Damping Dilemma) 

Twenty four hours after the construction on the 4th March 1969 

of the simple support described in the previous section, some experiments 

were performed to determine its fundamental natural frequency w11 and 

critical damping ratio 
5. These parameters were measured by two 

- different methods and the results compared. 

The first experiment consisted of tapping the panel and photo- 

graphing. the resultant strain (Figure (5.11)). By comparing the "screen 

wavelengths" of the pahel strain and pistonphone on Figure 5.11, the panel 

appears to have a fundamental frequency of 221 Hz compared with a theoretical 

value of 229 Hz. This close agreement with the theory is most encouraging 

when one bears in mind that such a discrepancy could be accounted for as 

an error of one thousandth of an inch in the measurement of the panel 

thickness (0.032 inches). As the panel had an anti- corrosive surface 

treatment such an error is not unlikely. 
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In order to measure the strain decay, "the time base of the 

oscilloscope was slowed down and the photograph of Figure 5.7(a) was 

obtained. On Figure 5.12 the successive peak to peak heights of the 

oscillations of Figure 5.7(a) are plotted on log-linear graph paper. 

Apart from a slight regular fluctuation (due to electrical noise from 

the strain gauge amplifier) the graph is a good example of an exponential 

decay from which we may calculate the critical damping ratio 
ý. From 

elementary damping theory of the simple harmonic oscillator the ampli- 

tude at time t is given by: - 

x(t) '= xo e-w 
5t 

where x, is the amplitude at t=Q. 
o 

In (Xo/Xn) 
2i, N (5.3) 

where Xo and Xn are the heights of the initial and Nth subsequent peaks 

respectively. Applying Equation (5.3) to Figure 5.12 we find that 

5=1.3"0. 

The second experiment involved plotting the panel's resonance 

curve in response to acoustic excitation. The experimental technique 

which involved exciting the panel with plane waves from the transmission 

loss box (1.3) is illustrated in Figures 5.13 and 5.14. - The resultant 

resonance curve is shown in Figure 5.15 from which the panel's resonant 

frequency is 219.5 Hz. It can be shown that the half power width of the 

resonance curve (p w) is given by: - 

(5.2a) 

From Equation 5.2a it follows that: - 

AW=2S Wr (5"L) 
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where. wr is the resonant angular frequency. 

to Figure 5.15 we find S=0.82%. 

Applying Equation (5.4) 

Clearly something appears to be wrong to account for the two 

widely divergent values of 
9. The fundamental principles of elemen- 

tary damping theory have been disputed by Naylor (5.10) and his asser- 

tions were studied but were found to be, in the author's opinion, 

invalid. Consequently it was decided to repeat the experiments already 

performed, making modifications wherever possible to improve the accuracy. 

The accuracy of the resonance curves was increased by using a filter to 

remove the electrical noise and also by monitoring the sound field. 

The sound field was adjusted to a constant intensity (105 dB) (measured 

through the same filter as the strain) at each frequency at which the 

strain was measured. The-equipment used is shown on Figure 5.16 and a 

resonance curve obtained on the 21st March using-this new improved 

technique is shown in Figure 5.17. This experiment gave the fundamental 

resonant frequency of 220.6 Hz withS = 0.585%. Thus the critical damping 

ratio seems to be reduced with each successive measurement. In order to 

compare this resonance curve 
9 

with a decay curve 
5 it was decided to 

investigate the decay after acoustic excitation so that the amplitudes of 

vibration be the same in both cases (lest non-linear damping give rise to 

a discrepancy). Figure 5.18 shows the decay of the acoustic excitation 

in the sound transmission loss box when the loudspeakers are switched off, 

which is almost instantaneous in comparison with the subsequent decay of 

panel strain (Figure 5.19). The panel decay is analysed on Figure 5.20 

which is complicated by electrical noise as no filter was employed. From 

the three straight lines drawn on Figure 5.20 we obtain values of 0.446/, 

0.495, ö and 0.565% for the minimum, most probable, and maximum values of 9. 
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Although these decay results are not in perfect agreement with the values 

of the resonance experiment they are of the same order and vastly differ- 

ent from those of the first decay experiment. 

It therefore appears that S has been decreasing during the 

series of experiments. The final proof of this is seen if we compare the 

decay of strain after tapping on the 5th and 24th March, shown on Figures 

5.7(a) and 5.21 respectively. 

Figure 5.22 shows the resonance curve obtained for the first 

asymetric mode (3,1) from which we obtain f3,1 = 721 Hz compared with 

a theoretical value of 770 Hz. This small discrepancy can be explained 

by an error in the panel dimensions. In order to obtain better agreement 

with the experimental response of the panel to N-waves it was decided in 

the light of these preliminary experiments, to assume that the thickness 

of the steel panel was 0.031 inches as opposed to the micrometer reading 

of 0.032 which included an anti-corrosive zinc coating. This assumption 

leads to panel natural frequencies of 221 and 743 Hz for the two modes 

mentioned above. 
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5.5 The Analysis of the Panel Response 

5.5.1 The general theory 

The response of the simply supported panel G (x, y) was analysed 

into its normal modes such that: 

uo ov 

G (x, y) = qnm 
4) 

nm 
(5.5) 

n=1 m=1 

where qnm is the generalised displacement of the n, m th mode with mode 

shape 
4 

nm given by: 

4 nm = sin (n a. X) sin (m-bfl Y) (5"'6) 

., 

where a and b are the panel dimensions in the x and y directions respect- 

ively. The set of modes given by Equation (5.6) satisfy the panel 

boundary conditions (Equations5.2) and are a complete set of orthogonal 

modes such that by a correct choice of generalised displacements they can 

be used to represent any arbitrary panel deformation. 

For a given excitation such as a pressure p(x, y, t) on the panel 

surface the generalised displacements may be obtained as solutions of the 

Lagrange equation of motion: - 

Mn, m 
q ý9 + Cn, m 

q (t) + KnIm q (t) 

= Ln, m(t) (5.7) 

where: - 



95 

Mn m is the generalised mass 

ab 

=Y Tp 
S fj 

T n, m 
2 

(x, y) dx dy (5.8) 

x=o y=o 

Cn, m is the generalised damping coefficient 

= 2Mn, m Wn, m ä n, m (5.9) 

Knsm is the generalised stiffness 

Mn, 
m Wn, m2 

(5.10) 

Ln, m(t) is the generalises force at time t 

ab 

=1n, m(x, y) p (x, y, t) dx dy (5.11) 

x=o y=o 

Tp is the panel thickness 

,? 
Op is the panel density 

5 is the critical damping ratio n, m 

wn, m is the undamped angular resonant frequency of the panel 

p (x, y, t) is the pressure time history on the panel surface. 

For a simply supported panel the generalised mass is given by: - 

ab 

Mnlm =1°pTPJ sin 
2(n a x) sin 

2(m ) dx dy b0 

ya Tp ab 
=4 (5.12) 
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and for normal incidence the generalised force by: - 

ab 

Ln, m(t) = p(t) 
CS 

sin (n a x) sin (m b) dx dy 

of 0 

0 (n or m) 
even 

Ln, m(t) 

p(t) 

4ab 
(n and m) 

nm ii-2 odd 

(5.13) 

Equation (5.7) was solved to find the generalised displacements of the 

first two volume displacing modes qj, and q31 using a Duhamel integral. 

technique similar to that employed in the previous chapter. In view of 

the findings of Section 5.4.3 the panel damping effects were ignored. 

The generalised displacements were substituted into Equation (5-5) 

to find the actual displacement G(x, y, t) which was converted into strain 

in the x and y directions using Equations (51.4) and (5.15). 

6- x 
ix, Y, t) =-2ä 3X2 G (x, Y, t) (5.14 ) 

aý-22 G (x, y, t) (5.15) 

The calculation of theoretical strain in the x-direction, given 

the experimental forcing pressure time history in the form of a numerical 

array, was performed using the Dartmouth Algol computer program RRHSPR 

which is shown in Appendix A5.3" 



97 

5.5.2 Analysis of panel response to steady state acoustic excitation 

Before using the above program to calculate the panel strain due 

to a shock wave the following preliminary calculation was performed to 

check whether the above Lagrangian-Modal analysis could correctly predict 

the results of steady state excitation. If the panel is being excited 

by normal incidence sine waves of amplitude po we have: - 

Lit) _ poet wt 4ab 

run e (5.16) 

For a steady state solution the Duhamel technique is not appli- 

cable but for such a well-defined forcing function we have the analytic 

solution to Equation (5.7): - 

q 
16 p0 ejwt (t) =2 (5.17) 

run )gyp Tp (w 2- w2 + 2j ww nm) 

For a lightly damped panel such as the one in question when 

w= w11 the response in modes other than the fundamental is negligible and 

so at the panel centre the displacement is given by: - 

G(22 t) = q11 (t) (5. i) 

16 poejwt 
- (5.19) ?- op 

nm is! Tp 2j W112 X 
11 

The panel response is controlled by damping which in one of the experiments 

of Section 5.4.3 was found to be 0.535'. In that same experiment Po was 

equivalent to 105 dB and using these two values in Equation (5.19) we arrive 
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at a theoretical value of the peak displacement of 0.0056 cm. This 

compares very favourably with the experimental value of 0.0059 cm 

obtained by integrating the experimental strain according to Equation 

(5.14). In view of this'success we may use the theory with confidence 

to predict the panel response to transients. 

5.5.3 Analysis of panel response to an acoustic transient 

Figure (5.32) shows a typical time history for pressure and 

resultant panel strain along the major panel axis at the panel centre. 

In order to fix the pressure D. C. line the upper trace was allowed to 

sweep the screen a secondetime in the absence of a signal. The location 

of the strain D. C. line was not so simple however as in the absence of 

signal the strain gauge amplifier produced electrical-noise. The pro- 

blem was overcome by taking a 1/15 second exposure with the strain trace 

free running which resulted in the lower bright band of Figure 5.32. 

The D. C. line must lie within this band and a line was drawn within this 

band in such a way as to equalise the experimental positive and negative 

strain. 

On Figure 5.33 the experimental time history is compared with 

the theoretical one calculated from the experimental pressure using the 

program RRHSPR. The pressure time history of the shock wave is also 

shown. The indicated strain is that which would be produced in the 

panel's first two modes by a steady pressure of this magnitude. With 

reference to the previous chapter the situation approximates to a trian- 

gular wave (s = 1), with the fundamental frequency such that fi=0.3" 



99 

It is seen from Figure 5.33 that the two mode analysis used gives 

a satisfactory prediction of the experimental strain. The theory correctly 

predicts the time at which the peak strain occurs and overestimates it by 

only 20; % (1.6 dB). It therefore appears that neglecting the higher panel 

modes is justified when predicting panel strain. The higher modes would 

have an even smaller effect upon the panel response than they had upon 

strain. This is because it follows from Equations (5.14) and (5.15) that 

the strain in a particular direction is equal to the sum of the responses 

in the various modes each weighted with the square of the number of anti- 

nodes in that direction thus favouring the higher modes. Furthermore 

although the 3,1 (f Z- = 0.9) and higher modes tune better to the N wave 

than does the fundamental (f '=0.3), this is by virtue of the greater 

stiffness associated with the higher modes which thus causes a reduction r 

rather than an increase in their response. However, the most important 

reason why higher modes can be neglected in calculating panel response 

and strain is their very small generalised force. When calculating this 

from Equation (5.11) by integrating over the mode shape all but one of 

the half waves cancel out. Thus the generalised forces of the 3,1; 1,3; 

3,3; modes are 1/3; 1/3 and 1/9 of that of the fundamental respectively. 

. 
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5.6 Summary and Conclusions arising 

An inexpensive experimental facility for the generation of high 

intensity acoustic transients has been established. Although these 

transients are not perfect N-waves they start with a shock wave which 

facilitates a prediction of the structural response which they produce. 

An ideal simply supported panel has been made and instrumentation 

developed to measure the panel's strain time history together with that of 

the pressure wave producing it. It was found that the damping of such a 

panel can be reduced by a factor of more than two during the course of 

ageing. This indicates the caution which must be employed when applying 

the results obtained for the acoustic behaviour of an actual glass window 

in a specially constructed test house to windows in actual buildings where 

the putty has aged. Fortunately damping is not of great significance in 

the response of windows to the sonic bang and so. the recent experiments 

undertaken by Webb of the Royal Aircraft Establishment, Farnborough, are 

not likely to be in error. However the use of such a test house in 

investigating steady state phenomena such as transmission loss, where in 

certain regions of the spectrum the damping is of primary importance, could 

lead to significant errors. 

Finally the experiment of Section (5.5.3) summarised by Figure 

5.33 illustrates how a Iagrangian analysis of the panel's first two volume 

displacing modes by a Duhamel integral technique, can adequately predict 

the panel's strain time history. This is of particular significance in 

simplifying the theory of a panel cavity system in the following chapter. 
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6.0 The Effects of a Closed Cavity behind a Panel upon the 

Panel's Acoustic Behaviour 
1 

6.1 Introduction 

In attempting to analyse the damage caused to a large shop 

window by an actual sonic boom Lowery and Andrews (6.10) were unsuccess- 

ful when attempting to use the simple theory of the previous chapter. 

Bowles and Sugarman (6.11) have shown experimentally that under normal 

conditions membrane stresses arise under static uniform loading before 

failure and thus they are, in part, the cause of failure. Freynik (6.12) 

has made some dynamic measurements of such non-linear membrane stress 

effects in glass windows using random noise. Acousto-elastic inter- 

action effects are another, possible cause for the failure of the simple 

theory. 

The acoustical effects upon a window of the room behind it may 

considerably affect the window's dynamic behaviour. One possible mode 

of action is for the room'to have a door or corridor and act as a Helm- 

holtz resonator. The pressure in the room will then continue to oscillate 

and excite the window long after the sonic boom has passed. This situation 

is similar to that described by Crockett (6.9) in a study of traffic noise. 

He found that the vibration amplitude of some parts of a building structure 

continued to increase long after the initial primary exciting force had 

ceased. This was attributed to the primary noise exciting one lightly 

damped part of the structure which would then continue to induce a secon- 

dary excitation in another part of the structure for many cycles after the 

primary noise had ceased. 

Alternatively if the room is closed and has high transmission loss 

walls its acoustic. field is caused entirely by the window vibration. This 

acoustic field in turn affects the window and the effect may be regarded 
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as an acoustic stiffness which may be positive or negative depending upon 

the frequency and cavity depth (6.1). It is this second type of room 

effect with which this chapter is concerned. Other authors have studied 

this problem and in Section 6.2 their work is reviewed and two "rival" 

theories are found to be equivalent in some respects. Fortunately, the 

parameters of actual windows, rooms, and sonic bangs allow a considerable 

simplification of these general theories and the effects of a simple cavity 

theory upon the panel fundamental frequency, and dynamic response, is com- 

pared with experiment in Sections 6.3, and 6.4 respectively. Finally the 

results are summarised in Section 6.5 
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6.2 The Panel-Cavity Problem -a Review 

6.2.1 Pretlove's Solution 

In 1965 Pretlove published a paper (6.1) in which he derived a 

solution for the free response of a rectangular panel backed by a closed 

rectangular cavity., The model used is shown in Figure 6.1 and his 

approach to the problem was as follows: 

1. Solve the general wave equation for the acoustic velocity poten- 

tial T in the cavity by assuming separation of variables and a har- 

monic time depenence: - 

i. e. 7= fix) g(y) h(z) e j(w t+ A) (6.1) 

0 

and applying the boundary conditions of zero particle velocity on the five 

rigid walls to give - using Pretlove's"own notation (6.1): - 

oa 00 

= cos (n ä X) 
cos (m Y) L b rim 

n=o m=o 

cosh ( Z)*i(w tr A) (6.2) 

I 

2. Assume that the flexible panel has simple supports and hence 

double sine modes; and that these can be Fourier analysed into double 

cosine modes such that the fundamental (r =s= 1) panel mode can be 

expressed: - 



io4 

G= qýý sin ( äX ) sin (fib )e j(w t= All) 

00 Co (11) 

=e 
j(w t- All) oG rim cos (n , X)cos (m 11 y) 

n=o m=o 
(6.3) 

3. It is observed that this analysis of the panel modes has the same 

x, y dependence as the acoustic potential (Equation 6.2) and this facili- 

tates the application of the final boundary condition that the particle 

velocity at the flexible panel is equal to the panel velocity. This leads 

to the following equation for the acoustic potential in the cavity caused 

by a panel amplitude qj, in its fundamental mode. 

=3W q11 eJ 
(w "t - A11) 

OL X11) 
cosh (/ Z) 

s inh 
iv'nm h /ýnm 

00 00 

n=o m=o 

cos (n ä X) cos () 
b 

where "h" is the depth of the cavity. 

(6.4) 

4. Pretlove then goes on to calculate the pressure due to this acoustic 

potential acting upon the panel, and the generalised force that it represents 

on the Lagrangian equation for each of the panel modes. As this force is 

proportional to panel displacement it is termed an "acoustic stiffness". 

The cross acoustic stiffnesses (i. e. the acoustic potential of one panel 

mode causing a generalised force upon another panel mode) means that the 

panel modes are no longer independent. Instead of a series of independent 

Lagr. angian equations which were solved to find the in vacuo panel natural 

frequencies there: is now a matrix equation. Pretlove solved the matrix 

equation by an iterative technique for the case of zero external exciting 

force to'obtain the panel's new natural frequencies and mode shapes. 
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5. In a later paper (6.2) Pretlove solves the above matrix eigen- 

equations for non zero external forces and was thus able to calculate 

the transmission of sound into the cavity through the flexible panel. 

An identical solution to Pretlove's has also been obtained 

independently by Dowell and Voss (6.3). 

6.2.2 - Bhattacharya's Solution 

Following an attempt by Kihlman (6.4) at a more complete solution 

of the problem than Pretlove's which, unfortunately, failed to satisfy all 

the boundary conditions, Bhattacharya (6.5) has produced a mathematically 

rigorous solution employing transform theory. He assumes Pretlove's 

boundary conditions and in addition imposes the condition that the acoustic 

potential and pressure be zero at t 0. 

Apart from being incomplete Pretlove's solution was rejected by 

Bhattacharya on the grounds of his double cosine analysis of the panel 

modes (Equation (6.3)) (an objection not shared by the author of this 

thesis and. subsequently admitted, by Bhattacharya, to be invalid (6.6)). 

However, Pretlove's assumption of a separation of variables solution for 

the acoustic potential is not justified in the case of inhomogeneous 

boundary conditions. The solution employs Fourier transforms in the x and 

y (Pretlove's notation, i. e. the panel plane) directions and a Laplace 

transform to the time leaving the z variable (cavity depth) untransformed. 

It yields a solution containing a "steady state" part (i. e. possessing the 

frequency at which the panel is being forced) and a "transient" part (con- 

taining the room eigenfrequencies). 

It has been shown (6.7) that the steady state part of the solution 

is identical to Pretlove's solution and-that Bhattacharya's complete 
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solution represents an unattainable physical situation. The "complete" 

acoustic potential given in Equation (13) of Reference (6.5) is due 

entirely to the panel's steady state response. It is physically equiva- 

lent to a panel that has been vibrating for a considerable period of time 

when suddenly a cavity is attached to the back of it. However, it has 

been shown (6.7) that this objection can easily be overcome by considering 

a few extra poles in the contour integral for the inverse Laplace trans- 

form. This complete solution then represents the acoustic potential of 

the panel cavity system due to the panel being excited by an acoustic 

transient. 

V. 

6.2.3 Conclusions 

Despite Pretlove making a non-justifiable assumption regarding 

the separation of variables (6.6), his solution is identical with the 

steady state part of Bhattacharya's solution. Although the "general 

solution" given by Pretlove is not a general solution in the strictly 

mathematical sense it is correct in representing a particular physical 

situation. That situation is one of a panel that has been vibrating for 

a sufficiently long time for cavity transients to be ignored. This theory 

would obviously not in general be very successful in predicting the res- 

ponse of a panel cavity system to a transient excitation. However, as 

described in the following section the actual physical parameters of 

typical windows, rooms, and sonic booms, allow a considerable simplification 

of Pretlove's cavity panel theory. This simplified theory allows the 
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cavity-modified panel eigenfrequencies and mode shapes to be used to 

predict the panel response to a sonic boom. 

Bhattacharya's solution on the other hand is more complete. 

However, unlike Pretlove, Bhattacharya does not consider in detail the 

effects upon the panel of the back acoustic pressure (although these 

effects are all stated formally in Appendix B of Reference (6.5)) and 

so his theory is not so useful in predicting panel response. Conse- 

quently, a modification (Section 6.3) and extension (Section 6.4) of 

Pretlove's solution is used in the remainder of this chapter to predict 

the effects of a cavity upon panel strain produced by a sonic bang. 

O> 
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6.3 The Effect of the Cavity upon the Panel's Resonant Frequencies 

6.3.1 Introduction 

In the summer of 1968 Pretlove's Reading group performed a 

survey of large shop windows in which they measured their aspect ratios 

and fundamental frequencies. They found that the average aspect ratio 

was 1.44 and the fundamental frequency of the larger windows was around 

5 Hz. This frequency corresponds to an acoustic wavelength of over 

200 feet which is almost equal to the spatial extension of a sonic boom. 

As this is an order of magnitude greater than the depth of cavity likely 

to be encountered behind a window it is possible to consider the cavity 

as a static stiffness. Furthermore in view of the findings of the pre- 

vious chapter it is possibXe to ignore all the panel modes except the 

fundamental and first asymmetric mode. 

6.3.2 The Theory used 

Considering only the first two volume displacing modes we have 

for the panel deflection 

G(x, y, t) = gll(t) 
ý11(x, 

y) + g31(t) 
0 

31(x, y) (6.5) 

where 
ý11 

and 
C1 

are the simply supported mode shapes as defined in 

the previous chapter. 

The nett volume displacement, S V, due to this deflection is: - 
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ab 
Sv=CJ G(x, y, t) dx dy 

00 

ab 

= g11(t) JJ sin (ä x) 
sin () dx dy 

00 

ab 

+ g31 (t) 
S 

sin (3 
a 

x) sin () dx dy 

00 

q1ý (t) + q31 (t) 
(6.6) 

3 

If dynamic pressures are neglected and the compression is assumed to be 
0. 

adiabatic 

5P = pa 
Ö9v 

(t) 
c2 

4 

[qii 

9 
3 i1 2h 

This static pressure gives rise to the following generalised forces acting 

upon the panel modes. 

ab 

L11 
Sp 

sin a sin ( 1b) dxdy 

0f0 

_-Sp 
`- 

lr 
(6.8) 

L31 _- 
9p 4a2 (6.9) 

3 i' 
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Thus the equations of motion of the two mode system in the absence of 

damping and external forces, are: - 

M11 q11 + K11 q11 =-gp 
4- 

u 
(6.10) 

and M31 q31 + K31 q31 =-p4 ab (6.11) 
3� 

Defining: - 

_ 
Acoustic generalised stiffness in the first in-vacuo mode 

- Mechanical generalised stiffness in the first in-vacuo mode 

_KA (6.12) 
-. K11 

where KA is the generalised force on the first in vacuo mode due to unit 

generalised displacement in that mode. Therefore, combining Equations 

(6.7) and (6.8 ) we have: - 

L11 2 16 ab KA 
q11 14 

(6.13) 

Assuming harmonic motion of frequency w, Equations (6.10) and 

( 6.11) can after dividing by K11, be written as 

- w2 K1ý q11 + q11 + 
. 
"i q11 + 

3- 
q31 =0 

2 M31 K 
-w K11 q31 + K11 q31 + 

-f 
q11 + q31 0 

(6.14) 

(6.15) 

or 
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1+- . SL2 q11 + q31 0 (6.16) 
3 

)2 + 
-- 

-. f1.2 q1=0 
(6.17) 1 

q11 +92 3 1+a. 93 

where ý2 = ww 
(6.18) 

0 

" 
and of = the aspect ratio of the panel -- 

a 
b 

Defining: - 

(9 +2 12 (6.19) 

in order that Equations (6.16 and be satisfied we have that: - 

l+I - od 
3 

=0 (6.20) 

31 %3+ 9 
-Sß-21 

which can be-expanded as: - 

- (i+193+/3). n. _. 
2+ 13 +(9+/3), 'j =o (6.21) 

This quadratic equation in 51-2 has the formal analytic solutions: - 

221 +"13 + 
109 

+ J(1 _ 
io9 + t. 3 )2 -4 (13 +(+4) ýj ) (6.22) 9 
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The solutions of this equation give the new resonant frequencies 

of the panel which are greater than the in-vacuo eigenfrequencies because 

of the cavity stiffness. This calculation is performed by the computer 

program RRHNPR (Appendix A6.1), lines 1 to 300. 

6.3.3 The Experiments performed 

An adjustable cavity illustrated in Figure 6.2 was built in order 

to test the theory of the preceding section. Preliminary calculations 

indicated that the 0.032 inch thick panel used in Chapter Five had too 

great a mechanical stiffness to be significantly affected by the cavity 

and so a thinner panel was fitted. Deciding upon the ideal panel thick- 

ness had to be something of a compromise due to the various other para- 

meters that had to be considered. In order that the panel be affected 

by the cavity it should ideally be as thin as possible. However, a 

thinner panel has a lower fundamental frequency which does not couple so 

well with the experimental "N'-wave". Also as the panel thickness is 

reduced the thickness of the supporting shims should similarly be re- 

duced in order that the panel remain simply supported. Clearly the shim 

thickness can not be reduced indefinitely and still remain strong enough 

to support the panel when subjected to the experimental "N-waves". 

Finally if the panel is too thin its deflections would be so great as to 

require a non-linear deflection theory analysis. 

Taking all these factors into consideration a panel thickness of 

0.022 inches supported by 0.003 inch thick shims was decided upon and 

fitted. 

The resonant frequencies of this panel in the first two volume 

displacing modes, was measured by plotting its resonance curve when 

excited by plane sound waves from the transmission loss box, as described 
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in the previous chapter. The adjustable cavity was then fitted behind 

the panel and the experiment was repeated for several values of cavity 

depth. It was noticed from the resonance curves obtained that the pre- 

sence of a cavity considerably increased the panel damping. The damping 

remained sufficiently low however to be ignored when calculating the 

response of the panel to an acoustic transient. The results are shown 

plotted in Figure 6.3. 

In the absence of a cavity (h = oo) there is a discrepancy of about 

7 Hz between the theoretical and experimental eigenfrequencies which could 

be explained by an error of one thousandth of an inch in the panel thick-, 

ness. The experimental and theoretical curves have a similar shape and 

so we may assume that the theory of the previous section is correct in 

predicting panel eigenfregpencies. In particular the difference between 

the h= oo and h= 20 cm eigenfrequencies (about, 8 or 9 Hz), is the same 

for both the experimental and theoretical curves. Also as the cavity 

depth is reduced, so is the discrepancy between the two curves. This is 

because for shallower cavities the panel stiffness is no longer entirely 

mechanical and so the error in mechanical stiffness (apparent from the 

discrepancy of the in-vacuo eigenfrequencies) is no longer dominant. 

It thus appears that we are more accurate in predicting the panel's 

acousto-mechanical properties than its purely mechanical ones. 
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6.4 The Effect of the Cavity upon the response of the Panel 

to Acoustic Transients 

6.4.1 Development of the Theory 

After calculating the new panel eigenfrequencies w1 and w2 

(w, 1.01 and w, 1 
--2) from Equation ( 6.22) the motion is then analysed 

as the sum of the two new modes with which they are associated. 

(w1 mode) M1 Q1 + K1 Q1 = L1 (6.23) 

(w2 mode) M2 Q2 +2 Q2 = L2 (6.24) 

where Qi and Q2 are each composed of a mixture of q1l and q3l. From 

Equation (6.16 the ratio of q31 to qll is given by: - 

R(w) =qI1+ 'ý - 51.2 (6.25) 
l 

Therefore the physical displacement due to the first new mode 

may be represented as: 

G1 (x, y, t) = Q1(t) 
ii 

(X, Y) (6.26) 

= 911 (' 11 + R(w1) 4731) (6.27) 

If we define: - 

Q1 = q11 il - R(w1) ) (6.28) 

It follows that: - 
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_ 

ý11 
+ R(w1) 

431 

-1-R wl 
(6.29) 

Therefore a new generalised displacement (Q1) of unity represents a 

physical displacement: - 

Gj = Qj 
11 

(6.30) 

(6.31) 

_ 

ý11 
+ R(w1) OL, 

(6.32) 
- 1-ß wi) 

at the centre of the panel +11 
ý31 

r 

G1 (6.33) 

So the definitions of Q, and 
11 

given by Equations (6.28 ) and (6.29 ), 

mean that a generalised displacement of unity represents a unit physical 

displacement at the panel centre. 

We now require to calculate M1, K1 and L1 

ab 

M, _ >OTp JJ 
2(x, 

y) dx dy (6.34) 

00 

ab 
T13 

2SS( 112 + 2R(w1) Cl 
`f'31 

00 

+ R2(w1) 
0312) 

dx dy (6.35) 
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The middle term of the integral of Equation (f ! 35)*disappears because 

of the orthogonality of the in-vacuo modes, leaving: - 

M1 -1-R w1 2 
{m11 

+ R2(w1)m3 
J 

where m11 and m31 are the generalised masses of the in-vacuo modes. 

m 31 
pT 

4ab m11 == 

M _yo 
Tp ab (1 + R2(wl) ) 

i(1 
- R(wi) ')2 

From this K, can be easily found using the relationship=- 

K1 = w1 
2 Mi 

(6.36) 

(6.37) 

(6.38) 

(6.39) 

The generalised force in the first new mode (L1) is given for 

normal incidence by: - 

ab 

p(t) SS 
ýj 

(x, y). dx dy (6.40) 

00 

ab 
p (t) E(ý+ 

R(w) 1) dx dy 1-R w1 

S 
11 l3 (6.41) 

00 

1+1 R(w1) 
= ab p (t) 

1-3 w1 
(6.42) 

With the above values of M1, K1, and L, it is possible by using a Duhamel 

technique to calculate the generalised displacement in the first new mode 

due to an experimental pressure time-history. We can convert this 
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generalised displacement into physical panel strain as follows. 

Given a unit generalised displacement in the first new-mode 

we have: - 

G1 =j1-. ý 
1 -1I(w1) 

(+ 11 + R(w1) 
+ 

31) 

The strain at the panel centre in the x direction is given by: - 

_1 exi -1-R wl 

2 

2!! 
2( 1-9R(w1) ) 

(6.43) 

(6.44) 

and for the y direction: - 

2 

ey1 =1 
1R 

w1 
71- T 

ý1 -R iwl )) (6.45) 

The generalised displacement in the second new mode can be cal- 

culated in an identical manner except replacing R(w1) by R(w2). The 

actual physical strain for comparison with experiment is calculated by 

adding the strain due to these two new modes. This calculation is 

performed by the computer program RRHNPR (Appendix A6.1), lines 300 

onwards. 

6.4.2 The Experiments performed 

A photograph of the pressure and resultant panel strain time 

histories was taken using the shock tube as described in the previous 

chapter. The photograph obtained when the panel was backed by a 2.9 cm 
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deep cavity is shown in Figure 6.4. These experimental results 

together with the theoretical predictions of the two mode theory des- 

cribed in the previous section are shown in Figure 6.5. It is seen 

that although this two mode theory predicts the maximum strain reason- 

ably well it bears little relation to the early part of the experi- 

mental strain time history. This initial strain time history is due 

to the higher panel modes which can respond more rapidly to the "N- 

wave" than the fundamental and 3,1 modes. 

The results of the program RRIINPR inform us that although the 

fundamental frequency is raised from 157.5 to 208.2 Hz there is no 

appreciable change in the 3,1 eigenfrequency (529.4 to 531.5 Hz). We 

may therefore assume that higher modes are relatively unaffected by the 

cavity (by virtue of their higher mechanical stiffness and the smaller 

volume of air which they displace). Consequently we may add to the 

previously calculated strain the strain due to these higher in-vacuo modes, 

completely ignoring cavity effects so far as they are concerned. The 

results of "adding" the q13, q51 and q71 mode strain to that already cal- 

culated for the Q1 and Q2 modes is shown in Figure 6.5. The number of 

extra modes that could be added was limited by the computer storage avail- 

able and these three modes were found to have the most significant effect 

upon the panel strain. The 7,1 mode was chosen as opposed to the 3,3 mode 

of similar frequency because the former has a larger generalised force and 

produces 5.45 times as much strain per unit displacement. 

It is seen from figure 6,. 5 that the addition of these extra modes 

gives an initial theoretical strain in good agreement with the experimental 

strain. In the later part of the time history the agreement between theory 

and experiment is not improved by these higher modes because of inaccuracies 

in their predicted. relative phasings after several cycles. This explains 

why the "shoulder" appears before rather than after the maximum strain. 
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However, despite the. half-millisecond delay (which may be due to dynamic 

cavity stiffness effects in the higher modes) the maximum strain is 

correctly predicted to within 13%. 

The experimental strain encountered within the experiments of 

this (and the previous) chapter is 3x 10 
4 - This corresponds to a peak 

stress of 6x 108 which is an order of magnitude lower than the tenacity 

of steel (6.8). We may therefore safely assume that the panel never 

goes beyond its elastic limit. If we assume that all this strain is 

due to the first mode it represents a"panel displacement of 0.3 cm and 

so we are justified in using 
. 

linear. deflection theory. 

p 
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6.5 Conclusions and the Possibility of Window Damage 

A simple theory of acousto-elastic panel stiffening has been 

justified experimentally. This theory has been extended to predict the 

response of a panel backed by a closed cavity to an acoustic transient 

and has been successful in predicting the experimental panel strain to 

within 13Sä. 

For this type of acousto-elastic effect the cavity stiffness 

always reduces the panel stress as the cavity stiffness is always posi- 

tive for actual room, window and sonic boom parameters. Furthermore 

as the ratio given in Equation (6.25 ) is always negative for the first 

new panel mode, the stresses due to its in-vacuo 1,1 and 3,1 components 

add in the panel centre and are of opposite sign at the panel edges. 

Therefore, the cavity theory does not in any way explain the tendency 

for windows to sometimes break first away from their centres which is 

probably due to glass imperfections. 

It is such imperfections which will probably be the cause of any 

sonic boom window damage. A2 lb/ft2 sonic boom acting on a 20 feet by 

8 feet by c inch thick window with a dynamic magnification factor of 2 

(Chapter Four) will produce a maximum tensile stress of 3,000 lb/in2 

which is only half the mean breaking stress of plate glass which is 

6,000 lb/in2 (6.13). However, the breaking stress of glass has a coeffi- 

cient of variation of 0.25 (6.13) which assuming a normal distribution 

means that 241, of those reaching a stress of 3,000 lb/in2 will suffer 

damage. A truly normal distribution is however unlikely as the weakest 

windows are likely to suffer damage from other sources and be replaced. 

Also only a small proportion of windows will experience the maximum dynamic 

magnification factor of 2 and so the number of windows actually damaged is 

likely to be much less than 2 %. 



121 

7.0 Conclusions 

7.1 The Theory and Measurement of Transmission Loss 

In Chapter Two a method of measuring high transmission loss was 

developed which is now regularly employed in routine laboratory measure- 

ments. The experiments of Chapter Two have also provided an upper and 

lower estimate of the highest transmission loss that can be measured 

with Liverpool University's new transmission loss suite. 

The experimental transmission loss measured for a single brick 

wall is well within the suite's capabilities and is in good agreement with 

field measurements obtained by the Building Research Station (2.1). This 

transmission loss is 10 dB or so below the predictions of mass law due to 

flexural wave transmissions 

The results obtained for the cavity brick wall are similarly in 

good agreement with field measurements obtained by the Building Research 

Station (2.1). It has been shown that the main coupling mechanism between 

the two leaves of the double wall is not through the acoustic coupling of 

the cavity but is due to mechanical flanking paths. This explains the 

great discrepancy between the experimental values of transmission loss, for 

a cavity brick wall and the theoretical predictions of multiple reflection 

theory (2.3) or Beranek and Work (2.4), (2.7) which assume acoustic coupling 

only. 

The results of the accelerometer measurements of Chapter Three 

have important consequences for both the theory and measurement of trans- 

mission loss. It is shown that mass law and Cremer-type theories give, 

like Rutherford's classical calculation of nuclear scattering, the right 

answers for the wrong reasons. Although these infinite panel theories 

provide remarkably accurate predictions of reverberant transmission loss 
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their prediction of panel response hass been shown to be in error by as 

much as 15 dB. Therefore, these theories and the models on which they 

are based must be rejected as not representing the true physical facts 

of the situation. Similarly any multiple panel theories derived from 

then must be regarded with suspicion. Crocker and Price (3.22) reached 

similar conclusions by studying the essentially modal theories of Lyon 

and Maidanik (3.191, (3.20), (3.21) and have since been able to obtain 

good agreement between these theories and their experimental results for 

both transmission loss and panel response. The accelerometer measure- 

ments have illustrated severe limitations on the use of this method of 

transmission loss measurement. A letter was written to the Editor of the 

Journal of Sound and Vibration (3.23) summarising the dangers inherent 

in the indiscriminate use-of this accepted (3.1), (3.8), (3.9) method 

of measurement. 
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7.2 Structural Pestionse to Sonic Booms 

The calculations of Chapter Four, which were undertaken in 

conjunction with Mr. N. J. Crocker, provide an upper limit to the theore- 

tical dynamic magnification factor associated with the various N-wave 

shapes produced by supersonic aircraft. It is seen from Figure 4.20 

that the dynamic magnification factor rises to a maximum value of 2.5 

at fZ=0.5 and then at high values of f -C assumes a value of 2.0. 

In order that these results be more freely available they have been 

published in detail (4.14) and provide an aid to the calculation of 

sonic boom response that has already been requested, used and acknow- 

ledged (4.16). 

Chapter'Five describes the establishment of an experimental 

shock tube facility and the construction. of a simply supported test 

panel. The experiments with this facility illustrated the accuracy 

with which a two mode theory can predict the strain in a simply supported 

panel caused by normally incident experimental "N-waves". In the absence 

of the cavity effects described in Chapter Six such a theory can be used 

with confidence to predict the strain and possibility of damage to a 

plate glass window subjected to a full scale sonic boom. 

When a large window is backed by a shallow room the back acoustic 

pressures on the window due to the room affect the panel's dynamic 

behaviour. In Chapter Six this effect is studied both experimentally 

and theoretically. A theory is given which predicts both the new panel 

eigenfrequencies and the panel's response to an acoustic transient. This 

theory may similarly be used with confidence to predict the possibility of 

damage by a real sonic boom to a room-backed window. 

The current interest in sonic bangs is so great that the Royal 

Aircraft Establishment has produced a 100 page bibliography on the subject 

(7.1). The results of Chapters 4,5, and 6 will help add to this store 

of knowledge which will ultimately be used to determine the acceptability 
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of various boom levels and regulate supersonic flights accordingly. 

Even with this knowledge there is still the possibility of accidents. 

While this thesis was in the course of preparation, RAF jets damaged 

20 bungalows near Abingdon (7.2). When such accidents occur this 

pool of knowledge will be useful in distinguishing between the genuine 

and frivolous claims for damage. 

Ob 
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7.3 Further Work 

The most useful extension of the work would be a calculation 

of the dynamic effects of the cavity upon the panel response. Such 

effects have already been studied by Pretlove (6.3) but his solution 

relies upon a computer-time consuming iterative technique. If an 

analytic solution to the problem could be found it would be useful in. 

the calculation of both panel response and the radiation of sound into 

an acoustically stiff cavity. 

I. 
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APPENDIX 2.1 - Measurement of Signals Approaching the Noise Level 

In measurements of high transmission loss panels the signal in 

the reception room is often very little above the background noise level. 

This is especially true at high frequencies where fortunately the noise 

level is almost constant and so can be used in the calculation of the 

true signal level. 

Referring to Figure I we have from experiment the levels of the 

noise (AdB) and the signal plus noise (BdB) and wish to calculate the 

signal level (CdB) 

Energy Scale dB. Scale 

Noise and Signal En + Es B 

II 

yI I 
Signa]. Es C 

I" 

Noise En A1f 

FIGURE 2A. 1 

a 
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C= 10 log (E) = 10 log 
[antilog 

(10) - antilog (10) (2A. 1) 
0 

or: 

y=B-C (A+x) -C (2A. 2) 

A 

A+x- 10 log 
[1oc1o_1)] 

(2A. 3) 

*x- 10 log 
[ti1og 

(ice) -1 (2A. 4) 

i. e. If the measured signal is x dB above the noise it exceeds the 

actual signal by ya where y is given by: 

y=x- 10 log antilog (i0) -1 (2A. 5) 
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x dB y dB z=x-y 

0.5 9.6 - 9.1 

1.0 6.9 - 5.9 

1.5 5.3 - 3.8 

2.0 4.3 - 2.3 

2.5 3.6 - 1.1 

3,0 3.0 +0 

3.5 , 
2.9 + 0.8 

4.0 2.2 + 1.8 

4.5 1.9 + 2.6 

5.0 1.9 + 3.3 

5.5 1.4 + 4.1 

N. B. 

is given to 0.1 dB. The value of y 

x dB y dB z=x-y 

6.0 1.3 + 4-7 

6.5 1.2 + 5.3 

7.0 1.0 + 6.0 

7,5 0.9 + 6.6 

8.0 0.7 + 7.3 

8.5 0.7 + 7.8 

9.0 0.6 + 8.4 

9.5 0.5 + 9.0 

10.0 0.5 + 9.5 

10.5 0.4 + 10.1 

L 

An ideal of the error involved 

in the correction can be gained from the consecutive values of y. 

e. g. x=5.0 
± 0.5 dB y=1 . 7± 0.3 
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APPENDIX A5.1 - The Effect of Shim Stiffness on Simple Supports 

A5.1.1 The problem 

To ascertain what effect the mounting of a one dimensional 

panel (i. e. a beam) on shims as shown has upon the mode shapes and 

frequencies of the panel compared with an ideal simply supported panel. 

Cons 
Curv 

0. 

Z1. Rigid 
Support 

0 

THE SHIM-SUPPORTED PANEL 

Xi 
a 

N. B. The shim parameters have the subscript "s". whereas those of 
the panel ""p" (e. g. zp zs). 

_--_--_L--_--_--_- 
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A5.1.2 Ideal Boundary conditions 

2z 
z= Ix 2=0, at x=0 and x1 (5A1.1) 

P 

A5.1.3 Actual Boundary conditions 

Zs =0 

at (O, z. 1) and (xl 9 zl) (5A1.2) 

Iza= o0 
ax 

i. e. the shims are clamped to the rigid supports. 

0- 

Z5 = Zp 

at (0 , 0) and (x1 , 0) (5A1.3) 

ä 

xZS 
r-1Z 

i. e. the shims are clamped to the panel. 

We ignore the effects of contraction along the panel and assume 

that the shim assumes a constant curvature as shown in the inset diagram. 

A5.1.4 Perturbation method of calculation employed 

We assume that the shim causes only a small perturbation on the 

mode shape and eigenfrequency of the panel and are thus justified in using 
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first order perturbation theory as follows: - 

1) Assume a pure sine waveform on the panel as one 

gets in the case of perfect simple supports. 

2) Calculate a zp/ x at the panel boundaries 

(0 9 0) and (x, , 0), hence ä zs/ ax at these 

points. 

3) Given ö zs/ äx at these points calculate the 

shim curvature and hence its bending moment. 

4) From the continuity of bending moment calculate 

a2ZP/ x2 at these points. 

5) Solve the equation for the panel using the new 

boundary conditions: - 

P 2 

i. e. 
z 13 as calculated in (4 

öx 2 

at x=0 and x OA1.4) 

andzp=0 

This solution yields both the new waveform and also the eigenfrequency. 

STEP 1 

From Reference 5.7 Equation (3.35) we have for the equation of 

a plate (beam): - 

a2zp _ K2 ,2 ä4 zp (5A1.5) 
ate °` ax 



140 

2 
where k2 = 

12 is the second moment of area and c4 is the longitu- 

dinal plate velocity. 

The general solution of Equation 5A1.5 is: - 

zp = cost (w t+ 4) A cosh (wvx) +B sinn (wvX) 

+C cos (wv-) +D sin (wvX) (5A1.6) 

where v2 =w c` K (5A1.7) 

Applying the boundary conditions: - 

2z o 
zp =0 at x=0 and x, (5A1.8) 

X2 

where zpo refers to the unperturbed value of the plate displacement 

we have: - 

zp =D cos (w °t+ 0) in (wox) 

and wo _n 
it v 
L 

(5A1.9) 

(5A1.10) 

the unperturbed eigenfrequency. 

STEP 2 

Differentiating Equation (5A1.9) with respect to x we have: - 

a)nq 
cos (w°t +-s ) (5A1.11) 
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cos (w°t + 4) (-1)fl (5A1.12) and 
ZpX(X )=D-0 

As the angle between the shim and the panel is always 900 at (0 
1 0) 

and (x, 
9 0) :- 

and 

0 ý 

Zs° 
(0,0) = -D 

Y cos (w°t + 
*) (5A1.13) 

0 
as 

Z-x(0,0) = -D cos (wot + 
ý) (-1)n (. 5A1.14) 

STEP 

Expressing the above as Taylor expansions we have: - 

aI 
Zso 

(0,0) = aý 
Za (o, zi) +%ý (o, o) (5a1.15) 

8 

the first term on the right hand side is zero because of the boundary 

conditions. 

2X 

2(0,0) _- 
v 

cos (w°t +#) (-1)n (5A1.16) yss 

Similarly 

a2x (x1.0) 
_-D 

° 

a Zso2 
ý' 

y cos (w°t + 0) (-1)n (5A1.17) 
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STEP 4 

The bending moment must be the same in both the shim and the 

panel where they join. 

and 

221 
E8 Ss F2 

a zý-- 
x(0,0) Ep Sp Kp2 

X2 (010) (5A1.18) 

2X 2zl 
E$ Ss ßs2 (x, ß, 0) =+ EP S, I't2 (x1,0) (5A1.19) 

02 zs 

ä 

where E and S represent Young's moduli and total cross sectional areas. 

Supercript (1) indicates the first order perturbation theory solution. 

Defining: - 

LP" SsKs2 
F= Ep SP p 

(5A1.20) 

we have for the new first order perturbation theory boundary conditions: - 

aaý(0j0) 
=FD 

wo cos (w°t + (5A1.21) 

1 (x1,0) _ (. 1)n+l v0 cos (w°t + (5A1.22) 

Zp1 (x = 0) =z1 (x1) =0 (5x1.23) 
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STEP 

The general solution is as before: - 

zp = cos(w 
1t+A 

cosh 
'k1 

vii +B sinhýW1yxi 

+C cosýWlg 
i+D 

sinýWly" (5A1.24) 

Applying Equation (5A1.23) we have: - 

A+c_o (5A1.25) 

1 
änd A 'cosh W 

QL +B sinhj=1 
j+c 

cosfw1 
Ll 

4 

1 
D sinfw 

Q) 
=0 (5A1.26) 

differentiating twice with respect to x and applying Equation (5A1.21) 

we have: - 

91 (A - C) = (5A1.27) 

and applying Equation (5A1.22) we have: - 

Wl (A cosh w1vL) +B sinhlw1 LI 

-C cos 
1 cw 

VL) -D sin 
jw' 

v 

Combining the above four equations and simplifying we have: - 

1I 
n wyL C C-1) + cos v)' 

sin 
L 

(5A1.29) 
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We now assume that the solutions lie in the region of the unperturbed 

eigenfrequencies. 

i. e. wl wo + L1 w (5A1.30) 

Combining Equations (5A1.29), (5A1.30) and (SA1,10) we have for 

odd values of n :- 

Ff- 
cosjAw y 

L5 
-1_2 sins 

L1A LI (5A1.31) 
v 

If we assume: - 

QwL 
v '< 0.1 (5A1.32) 

i. e. 
Dew 01 (5 J"33) 
W n» 

which is true for small perturbations of the first few modes, we may 

expand the. trigonometric functions of Equation (5A1.31) as far as first 

powers only: - 

-2w1 L1wL 
V" (5Al. 34) 

Substituting for v from Equation (5A1.7) and w0 from Equation (5A1.10);.. 

0 2n' (5A1.35) F 
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When n is even a different equation to (5Al. 31) is found. However, 

like Equation (5A1.31) this second equation leads to Equation (5A1.35)" 

Therefore, for all modes the non-dimensionalised increase in 

frequency is given by: - 

2 
pw 

Es Ss Ks 
L1 

W_21 
n2 t 

(5A1.36 ) 
EP Sp 9p 

If the only difference in geometry between the shim and the 

panel is their thickness h, and they are made of the same material. 

AW hs3 L1 

w° hp n 

0 

(5A1.37) 

A5.1.5 Conclusions 

This formula was compared with some experimental results obtained 

by Parrott (5.8). The results of Parrott indicate that the imperfections 

of his simple support were due to some cause other than the shim stiffness 

perturbation considered in this appendix. His measured frequency was 

lower than that calculated for ideal simple supports which would seem to 

indicate that the supports allowed lateral movement. However, the dis- 

crepancy between his experimental and theoretical frequencies increased with 

higher mode numbers. This is most surprising as with the higher mode 

numbers with many. intermediary nodes one would expect the end support 
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conditions to have very little effect upon the panel eigenfrequencies. 

The perturbation theory given above is a very crude approximation 

to what actually takes place. Apart from the possibility of lateral 

movement at the supports the effects of the panel foreshortening have 

been neglected. If the shim were to take the shape shown in the pre- 

vious diagram it would require the panel to span a greater length when 

deformed than when it was in its equilibrium position. This is obviously 

not the case as the deformed panel is foreshortened and the shim would 

probably take the shape shown below. 

p Panel 
Foreshortening 

-- 
-, 3 

A MORE LIKELY SHIM DEFORK&TION 
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Panel foreshortening would also create a tension in the panel 

giving rise to membrane forces. 

However, in spite of the thortcomings of the theory, equation 

(5A1.37) can given an order of magnitude estimation of the perturbation 

and indicate whether a particular support construction is likely to be 

satisfactory or not. 
F 

A thorough investigation of the effects of various edge con- 

ditions upon the vibration of plates has been undertaken by White (5.9). 

However, in order to utilize his results one has to express the panel 

boundary conditions mathematically in terms of elastic and inertial 

constraints of translation and rotation. Given a real physical 

situation, the translation of the, support geometry into these idealised 

mathematical parameters is almost as difficult a problem as determining 

what effect they will have upon the panel vibration. 
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APPENDIX A5.2 - Determination of Pressure for Stern Shock-Piling 

Equation (5A2.1) below extracted from reference (5.11) 

Equation 19.39, relates the distance X. required by a sine wave 

of intensity Apm 
, travelling in a fluid of mean pressure Po 

with the ratio of the principal specific heats LY, to change into 

a sawtooth waveform. 

X PO 

2+ 1) dpM (5A2.1) 

Taking the total length of shock tube available (29 foot) 

as X, Po as 14.7 lb/ft 2, 
as 1.4 and 

% 
as 3 ft we find that 

the Q pm = 0.45 lb/ft2. 
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APPENDIX A5.3 

RRHSPR 16: 20 MANCHR 26/06/69 

100 BEGIN REAL PI, A, B, TP, RP, E, NU, PF, DT, M, W11, W31, F11, F31, LF11, 
101 LF31, K11, K31, EXIIF, EX31F; 
106 ARRAY P, LI1, L31(1: 100], Q11, Q31, EXTC1: 2003; 
108 INTEGER I, J; 
110 PI: =4*ARCTAN(1); 
112 READATA(LENGTH, A); READATA(BREADTH, B); 
113 READATA(THICK, TP); READATA(PANDEN, RP); 
114 READATA(YOUNG, E); READATA(POISSON, NU); 
120 READATA(PRESSFAC, PF); READATACDELTAT, DT); 
121 FOR I: =1 STEP I UNTIL 100 DO READATA(PRESS, PCI]); 
130 M: =RP*TP*A*B/4; 
132 111: =PI*2*TP*((1/A)t2+(1/B)t2)*SQRT(E/(12*RP*("I-NUt2))); 
136 W31: =W11*((3/A)t2+(1/B)t2)/((1/A)t2+(1/B)t2); 
136 K11: =4: llt2*M; K31: =W31*2*M3 
140 Fl1: =W1l/(2*PI); F31: =W31/(2*PI); 
142 PRINT("Fll", "F31"); PRINT(F11, F31); 
160 LFI1: =PF*A*B/2*DT/(M*W11); LF31: =LF11*WIl/(W31*3); 
162 FOR I: =1 STEP I UNTIL 100 DO 
164 BEGIN LI1[I]: =PCI]*LFI1; L311I3: =PCI3*LF31; 
166 END; 
170 EXIIF: =PIt2*TP/(2*At2); EX31F: =9*PIt2*TP/(2*At2); 
178 PRINT ("J", "EXT[J]"); 
180 FOR J: =l STEP I UNTIL 200 DO 
182 BEGIN 01I[J]: =0; 031[J]: =0; 
184 FOR I: =1 STEP 1 UNTIL J DO 
1 86 BEGIN IF I>100 THEN GOTO OUT; 
187 QI1[J]: =Q11CJ]+L11[I3*SIN(b11*(J-I)*DT); 
188 031CJ]: =031[J]+L31CI]*SIN(W31*(J-I)*DT); 
192 END; 
194 OUT: 
196 EXTCJ): =EXIIF*Q1ICJ]-EX31F*031[J]; 
198 PRINTCJ, EXTCJ]); 
200" END; 
900 DATA LENGTH: =17; 
901 DATA BREADTH: =11; 
902 DATA THICK: =0.0784; 
904 DATA YOUNG: =2$12; 
905 DATA POISSON: =0.3; 
906 DATA PANDEN: =7.82; 
920 DATA PRESSFAC: =1S3; 
921 DATA DELTAT: =6.955-5; 
925 DATA PRESS: =43,43.5,42.5,41,40,38,36,32.5,31.5,28, 
926 25,22.5,20,15.5,14,10,8.5,6.5,3.5,0.5, 
927 -1.5, -3.5,0,1.5,0, -1.5, -2.5, -4, -5, -7, 
928 -10, -12, -12.5, -5, -3.5, -5.5, -6, -7, -5.5, -4, 
929 -3.5, -3.5, -4, -5.5, -6.5, -5, -4.5, -4, -4, -3.5, 
930 -5.5, -9, -7.5, -5.5, -5, -5, -4.5, -5, -6.5, -9, 
931 -8.5, -3, -2, -2, -2, -2.5, -3, -3, -3.5, -2, 
932 0.5,0, -4, -5, -4.5,2,0, -1.5, -2.5, -1, 
933 0.5,1, -4, -6.5, -8,1,0.5, -2, -1,0, 
934 0,0.5, -1.5, -4, -5, -7.5, -5, -3, -3, -0.5; 
999 END; 
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APPENDIX -A6.1 

RRHNPR 16: 36 MANCHR 26/06/69 

100 BEGIN REAL PI, A, B, TP, H, E, NU, RP, RA, C, 
101 D, M11, M31, K11, K31, KA, ETA, ALP, t! 0, 
102 BET, VC 1, WC2,4: I, W2, k11,4: 31, F1, F2, F11, F31, 
103 RI, R2, M1, M2, K1, K2, LF1, LF2 
104 , PF, DT, LKl, LK2, EX1, EX2, K13, K7l, K51. -W-13, W71, W51. RF13, 
105 F71, F51, EX13, EX71, EX51, LF13, LF71, LF51, LK13, LK71, LK51; 
106 ARRAY P, LRI, LR2, EXT, Q1,02, LRI3, LR71, LR51,013,071,051( 
108 INTEGER I, J; 
109 PI: =4*ARCTAN(1); 
110 READATA (LENGTH, A); READATA (BREADTH, B); 
I11 READATA(THICK, TP); READATA(DEPTH, H)i 
112 READATACYOUNG, E); READATA(POISSON, NU); 
113 READATA(PANDEN, RP); READATA(AIRDEN, RA); 
114 READATA(AIRVEL, C); 
120 D: =TPt3*E/(12*(1-NUt2). ); 
121 M1l: =RP*TP*A*B/4; M31: =M11; 
122 K1l: =D*A*B/4*((PI. /A)12+(PI/B)t2)t2; 
123 K31: =D*A*B/4*((3*PI/A)t2+(PI/B)t2)t2f 
124 KA: =RA*Ct2*16*A*B/(PIt4*H); 
125 ETA: =KA/K11; ALP: =A/B; 
126 W0: =SORT(K11/M11 ); 
130 BET: =((9+ALPt2)/C1+ALPt2))t2; 
131 WC1: =SORTC(1+BET+10*ETA/9 
132 -SQRT((1+10*ETA/9+BET)t2 
133 -4*(BET+(1/9+BET)*ETA)))/2)3 
134 WC2: =SORT((I+BET+10*ETA/9 
135 +SORT((1+10*ETA/9+BET)t2 
136 -4*(BET+(1/9+BET)*ETA)))/2); 
1 37 W1: =W0*l%C 1; W2: =WO*WC2; 
138 W11: =W0; U'31: =W11*SQRT(BET); ' 
140 F1: =W1/(2*PI); F2: =W2/(2*PI); 
142 F11: =4: 11/(2*PI); F31: =W31/(2*PI)3 
150 R1: =-3/ETA*(1+ETA-W'Clt2)) 
151 R2: =-3/ETA*(1+ETA-WC2t2); 
152 M1: =RP*TP*A*B/4*(1+R1t2)/(1-R1)t2; 
153 M2: =RP*TP*A*B/4*(1+R2t2)/(1-R2)t2; 
154 K1: =4! lt2*M1; K2: =W'2t2*M2; 
155 LF1: =A*B/2*(1+R1/3)/(1-R1); 
156 LF2: =A*B/2*(1+R2/3)/(1-R2); 
160 PRINT ("A", "B", "TP", "H"); 
161 PRINT(A, B, TP, H); 
162 PRINT(" "); 
164 PRINTC"E", "NU", "RP"); 
165 PRINT(E, NU, RP); 
167 PRINTC"0"); 
168 PRINTC"F1 
169 PRINT(F11, F31, F1, F2)J 
170 PRINT(" "); 
172 PRINTC"R1", "R2"); 
173 PRINT(R1, R2); 
175 PRINT(" "); 
176 PRINT("Kll", "K31", "KA"); 
177 PRINT(K11, K31, KA); 
180 K13: =K11*(((1/A)t2+(3/B)t2)/C(1/A)t2+(I/B)t2))t2; 
182 K71: =Kll*(C(7/A)t2+(1/B)t2)/C(1/A)t2+(1/D)12))t2; 
184 K51: =K11*(C(5/A)t2+(1/B)t2)/((1/A)t2+(1/B)t2))t2; 
1 

1: 100], 
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190 W13: =SORT(KI3/M11); F13: =W13/(2*PI); PRINTC"F13=", F13); 
192 4. '71: =SQRT(K71/M11); F71: =1471/(2*PI); PRINTC"F71=", F71)3 
194 W51: =SQRT(KS1/M1l); F51: =W'51/(2*PI); PRINTC"F51="sF51); 
200 EX13: =PItP*TP/(2*At2); LF13: =A*B/6; 
202 EX71: =49*PI? 2*TP/(2*A*2); LF71: =A*B/143 
204 EX51: =25*PI*2*TP/(2*At2); LF51: =A*B/103 
300 PRINT(" "); PRINT(" "); PRINT(" ")., *PRINT(" "); 
301 READATA(PRESSFAC, PF); READATA(DELTAT, DT); 

"); 302 PRINT ("PF", "DT"); 'PRINT(PF, DT); PRINT(' 
303 LK1: =PF*DT*LF1/(M1*l": 1)3 LK2: =PF*DT*LF2/(M2*W2); 
304 LK13: =PF*DT*LF13/(M11*WI3); LK71: =PF*DT*LF71/(M11*W71)3 
305 LK51: =PF*DT*LF51/(M11*W51); FOR I: =1 STEP 1 UNTIL 100 DO 
306 BEGIN READATACPRESS, PCI)); 
307 LR1CI]: =LK1*PCI7; LR2[I]: =LK2*P[II; 
308 LR13CI]: =LK13*PCI]3 LR71(I]: =LK71*P[I]S LR51(I3: =LK51*PCI); 
310 END; 
320 EX1: =1/(1-R1)*PIt2*TP/'(2*At2)*C1-9*R1)3 
322 EX2: =1/(1-R2)*PI*2*TP/(2*A*2)*(1-9*R2)3 
326 PRINT("01+02-Q13-Q71+051 MODES"); 
328 PRINT ("J", "EXTCJ]"); 
330 FOR J: =9 STEP I UNTIL 100 DO 
331 BEGIN OICJ]: =O; Q2CJ]: =03013[J): =0; 071[JJ: =03051CJ7: =0; 
332 FOR I: =1 STEP I UNTIL J DO 
334 BEGIN Q1CJ): =Q1CJ]+SIN(WI*(J-I)*DT)*LR1(I); 
335 02[J]: =02[J]+SIN(W2*(J-I)*DT)*LR2CI7; 
336 013[J]: =013CJ]+SIN(W13*(J-I)*DT)*LR13[I]; 
337 071[J]: =071[J]+SIN(W71*(J-I)*DT)*LR71[I7; 
338 051[J]: =051CJ3+SINCW51*(J-I)*DT)*LR51CI]; 
340 END; 
350 EXTCJ]: =Q1[J]*EXI+02[J]*EX2-013CJ']*EX13-071CJ]*EX71+051[J]*EX513 
360 PRINT(J, EXTCJ])3 
370 END) 
900 DATA LENGTH: =17; 
901 DATA BREADTH: =113 
902 DATA THICK: =0.05588; 
903 DATA DEPTH: =2.9; 
904 DATA YOUNG: =2$123 
905 DATA POISSON: =0.33 
906 DATA PANDEN: =7.82; 
907 DATA AIRDEN: =1.21$=3; 
908 DATA AIRVEL: =343003 
920 DATA PRESSFAC: =-2.91$33 
921 DATA DELTAT: =2.9$-5; 
925 DATA PRESS: =32.5,31,30'29,28,27,26.5,25.5,25., 24, 
926 23,24,23,22,21,20,19,17.5. -16.5115) 
9 27 13-5,11-5,11,10,9-5,8-5,8,7,6,4j 
928 2.5,2,1.5,0.5, -0.5, -1, -1.5, -2.5, -3, -4, 
929 -4.5, -4, -3.5, -3, -3, -3, -2s-2.5, -3, -3.5, 
930 -4.5, -5, -5, -5, -5.5, -5.5, -6, -8, -8.5, -9.5, 
931 -I1, -11, -11, -6"5s-4.5, -4, -4.5, -3, -1.5, -2s 
932 -2.5'-3.5, -4, -3, -1, -0.5,0, -0.5, -1.5, -3, 
933 -2.5, -3, -4, -4, -3, -2, -1,0,1,2, 
934 2,1-5,0-5,0,0,0, -l, -2-5, -2, -2j 
999 END; 
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FIGURE THE SHOCK TUBE IPISTRUMiE: ITATIhýN 

:. M. I. Occillo$cope Type H1116 

with Telford Camera Type h. 513 

B&K 

, 
Microphone 
Amplifier 
Type 26C> 

Upper Lower 
Trace Trace 

B Eý K Pro-Amplifier 

4,, --"'ý'Type 2618 

T - inchB&K 
Microphone 
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SiICCY TUBE 
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Gauge Bridge and 
D. C. Amplifier 
Type GRL. 1 
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Trigger I 

B&K 
Microphone 
Amplifier 
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+ºri[; ger" 
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FIGURE 5.6 - THE MICROPHONE BUSH 

Blast 
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FIGURE 5.7 - THE DANGERS OF USING AN INTERNAL TRIGGER AS DEMONSTRATED 

BY THE DECAY OF STRAIN AFTER TAPPING THE PANEL 

5.7(a) - Free Running Time Base. 

5.7(b) - Time Base on Internal Trigger 
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FIGURE 5.8 - The Original Design for a Sirmle Support 

0.005 inch Shim Blast 
Wave 



FIGURE 5*9 - THE DECAY OF STRAIN IN THE FIRST SIMPLY 

SUPPORTED PANEL 



FIGURE 5.10 - THE FINAL DESIGN FOR A SIMPLE SUPPORT 

Enid 
Plate 

0.005 inch _. _--" 
Packing 
Shim 

0.005 inch 
Support Shim 

Free Shim 
Length - 

I/ 

0.03 inch 

0.005 inch clearance 
gap due to Packing Sh 
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Test Panel 

I 

Bla t 
Wave 



FIGURE 5.11 - PANEL STRAIN AFTER TAPPING FOR THE FINAL 

SIMPLY SUPPORTED PANEL 

Upper Trace: - Strain of panel excited by tapping with finger. 

Middle Trace: - Electrical noise from strain gauge amplifier. 

Lower Trace: - New pistonphone with frequency of 250 ± 10 Hz. 



Crest Height (Measured as Crest to Crest distance in 

1/16 inch. Between crest in question 

and previous negative crest) 

Nrziber of Crest 

FIGU'ü 5.12 - DECAY OF PANEL STRAIN AFTE TAPPING' 
(TAKEN FROM FIGURE 5.7 (a)) 



FIGURE 5.13 - THE TRANSMISSION LOSS BOX 

(for further design and construction details see"iteference 1.3) 
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FIGURE 5.14 - THE ORIGIN.. TRANSMISSION LOSS BOX INSTRUMI RNMATIOF 
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i'" ýý ý 5.16 - MODIFI D DRAN,;; ; ISS ION LOSS BOX IN:; THUN. L: Iv i 'rIoN 
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FIGURE 5.18 - TH DECAY CF SOUND IN THE TRANSMISSION LOSS BOX 
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FIGURE 5.19 - TH y-CAY OF STRAIN AFTER ACOUSTIC EXCITATION 

TI A SrusSIC: 1 LOSS BOX 
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FIGURE 5.21 - DECAY CF PANEL STRAIN AFTER TAPPING (24.3.69) 
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(Compare with results of similar experiment performed on 5.3.69 

(Figure 5.7(a)) to see how damping has decreased. ) 
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WAVE MEASURED AT NORh1AL INCIDENCE 

Ab 



FIGURE 5.24 - FIREWORK PRESSURE WAVES MEASURED AT GRAZING INCIDENCE 
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5.24(b) Variation that may occur 



FIGURE 5.25 - PRESSURE WAVE DUE TO Ist ELECTRICALLY DETONATED 

C: iARGE MEASURED AT NORMAL INCIDENCE 

FIGURE 5.26 - PRESSURE WAVE DUE TO 2nd ELECTRICALLY DETONATED 

CHARGE MEASURED AT NORMAL INCIDENCE 
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FIGURE 5.27 - PRESSURE WAVES DUE TO THIRD ELECTRICALLY 

DETONATED CHARGES MEASURED AT NORMAL INCIDENCE 
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FIGURE 5.28 - FIIcr' Ci3; i VARIABILITY 
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FIGURE 5.28 - FIREWORK VARIABILITY 

5.28(c)1' 



FIGURE 5.29 - SFIOCK REFLECTION 
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Lower Trace: - Accelerometer on t.; ain Shock Tube. 
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FIGURE 6.2 - T3, '! ": ADJý TABU: CAVITY 
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J. Sound Vib. (1969) 9 (1), 145-146 

LETTERS TO THE EDITOR 

COMMENTS ON "MEASUREMENT OF TRANSMISSION LOSS USING 
VIBRATION TRANSDUCERS" 

In a recent paper Utley and Mulholland [1 ] described a method of transmission loss measure- 
ment using vibration trapsducers. We should like to make some further comments on this 
subject. 

First, on page 419, the previous workers make the assumption that the sound energy falling 
on a unit area of wall per second should be 

Ef = Eo antilog (Ll/10) 

where Li is the measured sound level in the transmission room and E0 is "the reference energy 
level", which we assume to mean the standard reference energy flux of 10-16 W/cm2. They 
state that this is the simplest assumption available to apply to a fairly empirical theory. 
However, we consider that a better assumption would be to apply the normal diffuse field 
correction factor of I and thus allow the incident flux to be 

Ef = 
4° 

antilog (L, /10). 

This would alter Utley and Mulholland's first equation for T to 

,r= 4(jpcUö)/[Eo antilog (LI/10)], 

a reduction in estimated transmission loss of 6 dB. 
The effect of such a reduction is to reduce the estimated transmission loss to between 10 

and 15 dB below the measured value. Thus, there is no longer any agreement between the 
measured value of transmission loss and the value predicted by applying measured vibration 
amplitudes to the above formula. Further tests have shown that in general the transmission 
loss estimated by our formula is up to 15 dB below the measured value below the coincidence 
frequency but that at and above the coincidence frequency the two values are in agreement 
[Figure 1, curves c and d]. This has led to the idea of a "radiation efficiency" that is small below 

coincidence where the panel wavelength is shorter than that of the corresponding acoustic 
waves, rising to unity at and above the coincidence frequency. 

The above theory may be loosely termed the piston theory. By carrying out a computation 
similar to that described in the latter part of reference 1 it is possible to calculate the amplitude 
of panel vibration predicted by the "mass law" theory. This value used in the piston theory 
gave a value of transmission loss 3 dB higher than the value predicted directly from mass law 
[Figure 1, curves a and b]. 

Our results show that such a calculated value of transmission loss should be 3 dB above the 
directly calculated mass law value. However, in the same paper the authors observe that the 
measured vibration amplitude is up to 15 dB greater than it should be according to the mass 
law, and so the measured values of transmission loss using the above method should be 
12 dB below mass law. 

It is seen that this is in fact the case below coincidence and so "low frequency discrepancy" 
reported by the previous workers is worse than originally suspected, but this can now be 
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explained. The fact that observed vibration amplitudes are higher than expected has been 
explained by Crocker and Price [2] using modal energy method theories developed by Lyon 
and Maidanik [3,4]. The inevitable conclusion to be drawn here is that except in cases where 

50 

C 

.4 
ZQ 

10 

40 

s 30 

-- .ý 

Frequency (Hz) 

Figure 1. The transmission loss of a} in. aluminium panel. (a) Mass law calculation of theoretical 
panel velocity applied in piston theory; (b) direct mass law calculation; ' (c) experimental panel 
velocity applied in piston theory; (d) airborne measurement (B. S. 2750). 

one can be certain to be working above the coincidence frequency [the work reported by 
Ward (BBC Report No. B. 078) on brick walls is an example of this], "membrane" theories 
of transmission loss that ignore panel size effects are erroneous and should be discarded in 
favour of the new theories. 

Department of Building Science, R. R. HUDSON 
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P. O. Box 147, 
Liverpool, England 
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ABSTRACT 

The purpose of the work reported in this thesis is to give a 

satisfactory theoretical analysis of the problem of sound transmission 

through finite single and double panel structures. The effects of panel 

size, damping and stiffness are accounted for in the theory and in the 

double panel system the effect of absorbing material in the air cavity 

is also allowed for. 

In the first part of this thesis existing theories for sound 

transmission through infinite panel systems are reviewed and in some 

cases extended. Later sound radiation from finite panels is studied 

and the results are then applied to the problem of sound transmission 

through finite single and double panels using a statistical energy method 

of analysis. Throughout this work direct comparison is made between 

''theoretical predictions and experiment wherever possible. Existing 

problems are defined and suggestions are made of the direction in which 

future work might proceed. 
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LETTERS TO THE EDITOR 
EVALUATION OF INVERSE COTHANGENT OF COMPLEX ARGUMENT 

FOR USE IN TRANSMISSION LOSS THEORY 

When calculating the transmission loss of multiple wall structures in random incidence 
fields, it is necessary to use numerical analysis to perform the complicated integrals 
involved. 

When employing the theory of Beranek and Work [i], the inverse cothangent of a 
complex argument must be found in order to solve the equations for the transmission loss. 
This complex argument is given by the ratio 

Z= Complex terminating impedance 
zo 

zo = characteristic impedance of the medium carrying the incident sound. It can be seen 
that IZI will be either greater than or less than unity in roughly equal proportions. 

In short it is necessary to solve the equation 
Z' = arcoth (Z), 

i. e. x+jy = arcoth (A+jB) (z) 
for IZ I lying anywhere on the complex plane. 

Nonograms of complex hyperbolic functions [z] for use in this context do exist, but for 
random incidence fields it is necessary to compute many values of arcoth(Z) for each 
value of the mean transmission loss evaluated. It is, therefore, essential to have available 
numerical methods for solving equations (i). 

For IZ I>i the following rapidly converging series may be used: 

zp =1+I 2 ýz--3 3-Z5+***IP-tc* 

But it appears that no equivalent series exists when IZI < I. In this case, which often 
occurs in practice, it is necessary to resort to numerical methods. It can be shown that 
equation (i) reduces to the following non-linear equations: 

cosh (x) cos (y) +B cosh (x) sin (y) -A sinh (x) cos (y) =o; (z) 

sinh (x) sin (y) -B sinh (x) cos (y) -A cosh (x) sin (y) = o. (3) 
Equations (z) and (3) can be solved using linear interpolation methods, thus giving values 
of arcoth(Z) for IZ I<I. 

A procedure has been written in ALGOL 6o to evaluate arcoth (Z) for all IZI &i. 
Copies of this procedure are available either in print-out form or on eight channel paper 
tape in KDF 6/9 code. Copies will be sent on request. 

A. J. PRICE 
Department of Building Science, K. A. MULHOLLAND 

The University, 
Liverpool, 
England. 

Received 27 February 1967 

REFERENCES 

i. L. L. BERANEK and G. A. WORK 1949.7. acoust. Soc. Am. 211,419. Sound transmission through 
multiple structures containing flexible blankets. 

2. J. RYBNER 1955 Nomogrammer Over Komplekse Hyperbolske Fonktioner. Copenhagen: Jul. 
Gjellerups Forlag. 

163 



Reprinted from THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, Vol. 43, No. 6,1432-1435, June 1968 

Copyright, 1968 by the Acoustical Society of America. 
Printed in U. S. A. 

Transmission Loss of Multiple Panels in a Random Incidence Field 

K. A. MULHOLLAND, A. J. PRICE, AND H. D. PARBROOK 
. 

Department of Building Science, The University of Liverpool, Liverpool 3, England 

In this paper, the method of predicting the transmission loss of multilayer panels first proposed by Beranek 
and Work is used and developed to the point where the method can be applied under conditions where 
sound is incident on the panel from any angle or from many angles simultaneously as in the random 
incidence field. Doubts expressed recently about the accuracy of the theory are removed, and the method 
is shown to be a powerful tool for the prediction of transmission loss. 

INTRODUCTION 

T HERE are three theoretical methods of deriving 

an expression for the sound insulation provided 
by a multiple layer construction : 

(1) The ray or multiple-reflection method (Mul- 
holland and Parbrookl). 

(2) The progressive-wave method (Londons). 
(3) The impedance-transfer method (Beranek and 

Work'). 

The first method was used by two of the authors to 
investigate double panels with an air gap between them. 
The method was shown to give results identical with the 
other two more rigorous methods. The ray method is 
however not easily applicable to the case of insulation 
by finite thickness panels because the total internal 

reflection phenomenon results in imaginary directions 
for the rays. London's wave method, in which progres- 
sive solutions of the wave equation within the various 
layers of a multiple panel lead to a solution of the 
problem, must then be used. This involves the solution 
of 2N simultaneous equations (where N is the number 
of medium interfaces), and the method becomes un- 
wieldy with multiple layered systems. The impedance- 
transfer method developed by Beranek and Work is 
easier to apply; in fact, with a little practice it is 
possible to write down expressions for the transmission 
loss of a wide range of panels of any degree of com- 
plexity without having to resort to algebra or analysis. 

I K. A. Mulholland and H. D. Parbrook, J. Sound Vibration 
(to be published). 

2 A. London, J. Acoust. Soc. Am. 22,270-279 (1950). 
+ L. L. Beranek and G. A. Work, J. Acoust. Soc. Am. 21,419-428 

(1949). 
. 

Beranek and Work developed their method rigorously 
for the case of normal incidence waves only, and it is the 
purpose of this paper to show how this useful method 
can be extended to cover the case of oblique incidence 
waves and the more practical random incidence field. 

I. APPLICATION OF BERANEK AND WORK 
METHOD TO SIMPLE PANELS 

White and Powell' recently stated that the Beranek- 
Work method is not of practical use since it only gives 
an expression for the ratio of the pressure on the face 
of a panel to the pressure transmitted, which may 
yield an error of up to 6 dB for the transmission loss. 
To take a simple example, consider a wave at normal 
incidence to a septa of impedance jwm, such that e'ie. 
incident sound pressure is P;, while the pressure on the 
face is Pf, and the pressure due to the transmitted wave 
is Pt. Using the Beranek-Work method, we find 

P>/Pt= (pc+jwm)/pc. (1) 

Beranek and Work state that the insulation is thus 

TLB=10 log[1+ (wm/pc)2], (2) 

whereas the mass law is 

TL=10 log[1+ (wm/2pc)2]. (3) 

However, it is a simple matter to correct this apparent 
discrepancy by considering the ratio P. /Pf- 

For a surface of impedance Z, P; /P1 is given by 

P; /P, = (Z+pc)/2Z. .. 
c4) 

4 P. White and A. Powell, J. Acoust. Soc. Am. 40,821-832 
(1965). 
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With the Beranek-Work method, Z is easily found for 

any set of panels; in the present case, Z= pct- jwm. Thus 

P; /Pf = (2pc+jwm)/2 (Pc+jwm); (5) 

whence, using Eqs. 1 and 4, 

Pi pc-}- jwnt 2pc-{- jwm 

p, -L 
pc JXL2(pc+jwm)J 

(6) 

This gives a modified Beranek-Work transmission loss 

TLB'=10log[1+(wm/2pc)2]. (7) 

This agrees with the mass-law expression. The objec- 
tions raised by White and Powell are therefore invalid, 

and the Beranek-Work method can be accurately 

applied to all panel constructions. 

IL EXTENSIONS OF BERANEK-WORK METHOD TO 
INTERFACE BETWEEN TWO MEDIA AT 

OBLIQUE INCIDENCE 

If a ray of potential 4, is incident on an interface of an 
angle 0 in a medium pi, there will be a ray of potential 
01 transmitted at an angle 02 in the second medium of 
density p2. The angle 02 is given by 

02= aresin[(c2/ci) sinOl]. " (8) 

If cZ>c1 sin6i, then 02 will be complex'; the complex 
notation immediately gives this as an evanescent wave 
in the second medium. Using the continuity of pressure 
and surface velocity, the relation between ¢, and 4; is 
found to be 

95; P2C3 CosO2+Plcl COSO2 

2Plc2 cosOi 
ý9ý 

Now the entrance impedance normal to a surface at 
oblique incidence is found from 

P J"P20 P2Cs 
Z=-= _ (10) 

Vr jk2 cos920 COSO2 

Similarly, the exit impedance is plci/cos8l. If we 
apply the Beranek-Work method using these imped- 

ances, this gives P1/Ps=1 (no boundary impedance) 

and 
/ Pi p7Cs CosO2+plcj/COSBi 

P1 2p2c, /cosO2 ' 
(11) 

The resulting formula 
P; p2c2 cosO1+p1C1 cosO2 
-= (12) 
Pi 2p2c2 cosOl 

'Because of this and other factors, it is assumed that all 
quantities in this paper except w and p and the usual constants are 
complex. w and p are chosen as real quantities because of de- 
generacy. It can be seen that computer programs based on this 
theory will need a wide range of complex-number subroutines, 
including sophisticated ones for inverse circular and hyperbolic 
functions. These have been developed in ALGOL 60 and are 
available on request. 

is not identical with Eq. 9 since ¢; /¢, is not P; /Ps. 
Now P, = jwp24 and P; = jwpl¢;; and therefore, from 
Eq. 12, 

Pi jwplci P2C2 cosO +P1C1 COSO2 
(13) 

Pt jWP208 2p2c2cosO1 

which gives 
ýt p2C2 CosOj+plcl CosO2 

- (14) 
2pic2 cosO1 

This equation is identical with Eq. 9, which implies 
that the Beranek-Work method can be usefully and 
accurately applied to this case. Of course, the trans- 
mission loss across the face is given by neither of these 
two expressions (Eqs. 9 and 12) but by the ratio of the 
incident and transmitted intensities given by 

10 lo -P{2 
I= 

g- 10 log 
J [plipli 1PilC! ill 

Ps c1 12 

III. TRANSMISSION LOSS OF A THIN SEPTUM AT 
OBLIQUE INCIDENCE 

Consider a wave incident on an interface at angle 0. 
Let the pressure of the incident wave be P: and the 
pressures on either side of the interface be P1 and Pe, 
respectively. 

A thin septum is commonly considered to have an 
impedance jwm; at oblique incidence this becomes 
jwm cosO. 

Repeating the arguments of Sec. II, we at once arrive 
at the following expressions: 

P, PC 
(15) 

Pf pc+ jwm cosO' 

Pi 2pc+ jwm cosO 
(16) 

Pf 2 (pc+ jwm cosO)' 

P, 
_ 1+ 

jwm cos0. (17) 
Pt 2pc 

This is the usual mass-law expression. 

IV. TRANSMISSION LOSS OF A MEDIUM OF 
FINITE THICKNESS 

For both the Beranek-Work and for the London 
wave-matching methods, we can assume the following 
solutions of the wave equation within the three regions: 

Region 1: 
CeA("t-kia cos6l-ktll Iin61).. FOtei(wt+kls cosO -k1V sin8i) (18) 

Region 2: 
A cosh(-jk2x cosO2+lt)ei(wi-k: v "in#2)1 (19) 
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Region 3: 
oie1(wt-ki= 6osO -kir sine, ), (20) 

where 03=aresin[(c2/ci) sinO1] 6T, 'more usefully: 

cos02, [1-s (cs/ci)s(1-cos2Bi)]}. 

Using the London method, the usual pressure- and 
velocity-matching conditions' permit'. 'the . 

following 
quantities to beset out after some labor: 

P; /P: =1, (21) 

Now 

= arcoth(plci cosO2/pzc2 cosOl), (22) 

P2/P1=, cosh(jk2dcoso2+(b), (23) 

P, IP2=1. (24) 

Zf. ce= (pzc2/cosO2) coth(jk2d cos02+1), (25) 

and hence 0 

x. -d xO 

FiG. 1. Schematic diagram of the transmission process through a finite thickness panel with thin impervious septa on both faces. 

Using the wavefunctions of Sec. IV, at x=0, we find 
(normal velocities equal, put y=t=0) 

Pi P2c2 coth(jkzd cos92+4') cosO, ±plc, cos02 (26) and 
Pf 2P2c2 coth (jk2d cosO2+(I)) cosO1 

The Beranek-WVork method allows us to write down all 
the above expressions directly without solving any 
simultaneous equations, provided that the entry and 
exit impedances pc/cosO are used. 

Combining the equations or using Beranek-WVork's 
method allows the following expression to be obtained 
for the pressure ratio across the whole septum: 

P{ Pets coth(jk2d cosO2-}-cF) cosOi+plcl cos02 

P4- L 2p2C2 coth(jk2d cosüs+4) cosOi 

X 
[cosh (jk2d cos02+c)J(27) 

cosh (4P) 

V. ADDITION OF IMPERVIOUS THIN SEPTA TO 
LAYERS OF FINITE THICKNESS 

Having demonstrated the application of the Beranek- 
Work method to the oblique incidence insulation of 
finite thickness panels, we now finally proceed to a 
combination of finite thickness layers and thin im- 
pervious septa, as depicted in Fig. 1. In Sec. III, it is 
demonstrated that by using an impedance jwm cos0 it 
is possible to obtain an oblique incidence mass law by 
using the Beranek-Work method, but when an im- 
pervious septum is flanked by two different media, there 
are two different angles (0 and 02) involved. 

Hence the question arises: Do we use 0 or 02 or some 
combination of the two when including the impedance 
of a septum? This question can be answered by solving 
for the pressure ratio across such septa using the 
London pressure- velocity-matching method and observ- 
ing the result. 

jk2 cosO2A sinh((b)= jkl cosO, 4t (28) 

jwP2A cosh (4')- jwp, gj= jwml jkl cosO, ot . (29) 

By dividing, we find 

(jwmi cosOi+plcl) Cos0z 
Pzcs coth (ý) _ (30) 

giving 
cos91 

(jwml cos91+picl) Cos02 
4) = arcoth[ 

ý. 
(31) 

P2Cs cos6l 

We also note that 

A kl cosO1 1 
(32) 

. 0e k2 cosO2 sinh(44 

and the pressure ratio 
Pi jwp2,4 cosh() paki cosOj cothl) 

-3 (33) 
P, jwploe plk2 cosO2 

which yields 
Pi/Pt= (jwml cosOI+Plci)/Pic1. (34) 

It can now be seen that Eqs. 31 and 34 could both be 
written down directly using the Beranek-Work method, 
provided that the impedance of the wall septum at x= 0 
was taken as jwm cosOl. The wall impedance is a 
function, not of the angle of incidence as might be 
expected, but of the angle of refraction. Equation 31 is 
found by direct comparison of impedance at x=0 
before the interface, thus: 
EXIT IMPEDANCE= p2C2 cothýD/cosO2 

=INPUT IMPEDANCE= jwml COS91+PiCi/COSOI, 
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giving, as before, 
n 

r(jwmi cosO--plci) cosO2'1 
(1- arcoth[ (35) 

p2c2 COS01 

The pressure ratio is found from 

Pi/P: = (plci+jwmi cosOi)/pici, (36) 

which is identical to Eq. 34. 

Similarly, if the equations of continuity at x= -d 
are worked through, the following expressions for face 

impedance and P1/P2 are obtained. 

p2c2 coth(jk2d cosO2+'P)+ jwm2 cosO2 
Zr. a. = (37) 

cos62 

and 
P1 coth (jk2d cosO2+'D)+ jwm2 cosO2 

- 
P2 Goth (jk2d cosOa+') 

(38) 

Both these equations can be written down using 
the Beranek-Work idea provided that the wall im- 
pedance is taken as jwm2 cosO2. 

Note that again the refracted angle is used to modify 
the mass impedance of the wall. 

Familiarity with the concepts explained by Beranek 
and Work, together with the few simple rules concern- 
ing the use of 0 developed in this paper, makes it 
possible to write down directly expressions for the 
oblique-incidence sound insulation of any combination 
of impervious septa, air gaps, and uniform layers of 
finite thickness. As an example, the complete expression 
for a double sandwich panel such as is discussed in the 
Introduction is 

p; 
_ 

rplcl COSO2+ (pzc2 coth(jk2d cosO2+*)+ jwma cosO2) cosOi 1cosh(jk2d cosO2+c) plcl+ jwml cosO1 
39 

2 cosOj coth(jkzd COSO2+ý) 

]><L 

cosh() JL plcl . 
1' 

() 
Ps 

C(jwml cosOi+piCi) COS02 

arcoth ' 
p2C2 cosol 

VI. RANDOM INCIDENCE FIELDS 

(40) 

Now that we have a method for finding the transmission coefficient -r(9), it is, in theory, possible to 

obtain an expression for the random incidence transmission coefficient fi using the usual integral 

-r= 
r82 

r(O) cosO sinodo/ 
e 

cosO sinOdO. (41) 
r 

Such an integration is not possible analytically; but it is a straightforward task to perform it numerically 

with a computer. The results thus obtained bear direct comparison with laboratory measurement. 

. -ý 
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STRUCTURAL RESPONSE TO SONIC BOOMS 

M. J. CROCKER AND R. R. HUDSON 

Department of Building Science, University of Liverpool, Liverpool 3, England 

(Received 27 May 1968) 

The response of a damped mass spring system to an Nwave is examined. In particular, the 
dependence of the response upon structural damping, upon the ratio of total to positive 
phase duration, and upon the rise time of the N wave is determined. The cases of response 
to N waves with shock reflection and to repeated N waves are also studied. The results in 
this paper are given in terms of dynamic magnification factors which are expressed as func- 
tions of the non-dimensionalized frequencyfr. A final curve of dynamic magnification factor 
against fr is produced which envelopes the effects of varying positive to negative phase 
duration, rise time, shock reflections and structural damping. This curve may be used to 
determine the possibility of damage due to overflights of a supersonic transport. 

1. INTRODUCTION 

A supersonic aircraft in flight produces a pressure disturbance on the ground which is 
commonly known as a sonic boom or bang. In the case of a supersonic transport flying at 
70,000 ft, the sonic boom may be experienced in a corridor up to about 100 miles wide on the 
ground under the flight path of the aircraft. Two of the undesirable effects produced by the 
sonic boom are the annoyance it causes to people and the effect it has upon buildings. In this 
paper only the response of structures to sonic booms is considered. 

Typical pressure-time histories [1] of sonic booms measured at ground level are shown in 
Figure 1 for small, medium and large aircraft flying at their cruising attitudes. The total 
durations (27) of the sonic booms shown are of the order of 0- 1,0.2 and 0.3 sec, respectively, 
while the overpressure is about 2 to 3 lb/ft2. The time histories in Figure 1 are seen to have the 
shape of a capital letter N. For this reason sonic booms are sometimes termed N waves. 
Unless an aircraft flies supersonically at low altitude, it is unlikely that the pressure wave 
produced will be strong enough to cause fracture in any of the structural members of a 
building. However, if a building component such as a window has a built-in stress then on 
occasions when the sonic boom is magnified the extra stress induced by the boom can cause 
failure. Magnification of the sonic boom may be caused by reflection from the ground or 
walls, by acceleration or manoeuvring of the aircraft or by atmospheric focusing. Even if 
structural failure does not occur, sonic booms will cause building members to vibrate and 
rattle which is annoying and psychologically undesirable. 

For these reasons it is necessary to understand how structures respond to N waves and to 
know how the response of a structural member depends upon the structural and sonic boom 
parameters. With this knowledge it may be possible to estimate the likelihood of damage to 
windows due to supersonic overflights and to make recommendations to minimize the 
response of building structural members to sonic booms. 

In this paper, a structural member is considered to be represented by a mass-spring-damper 
system and the sonic boom is represented by an idealized mathematical expression. The sonic 
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boom and structural parameters are varied one at a time in order to find the dependence of the 
structural response upon the variations of each parameter. t 

Sonic booms are by no means repeatable and the pressure-time history depends upon 
several factors including location, atmospheric absorption and the speed, size and weight of 
the aircraft. The three main types of sonic booms normally observed are shown in Figure 1. 
The "normal" N wave is most often observed. However, as is shown in Figure 1(a) the 
positive phase duration often is not equal to the negative phase duration. The effect upon the 

(a) 

(b) 

iG) p- 

F-104 B-58 XS-7C 

Figure 1. Typical pressure-time histories of sonic booms, measured at ground level produced by 
small, medium and large aircraft flying in steady flight at their cruising altitudes [1]. 

structure of varying the ratio of the total duration to the positive phase duration is examined 
in section 3. Sometimes, the sonic boom is "rounded" due to atmospheric absorption of the 
high frequency content of the N wave [Figure 1(b)]. This effect which produces a finite rise 
time is examined in section 4. Sonic booms are also observed with "peaks" [Figure 1(c)]. The 
peaks are often produced by reflection from the ground or buildings. This effect is examined 
in section 6. The effect of structural damping upon response is examined in section 5. Finally 
all these effects of variations in sonic booms are considered and a dynamic magnification 
factor curve (Figure 20) is produced which may be used to predict possible damage to building 
components such as windows due to overflights of a supersonic transport. 

2. RESPONSE OF A SIMPLE SYSTEM TO AN IMPULSE 

Suppose that the damping in a structure is small or else that the system can be idealized by 
an equivalent single degree-of-freedom system. Then in the first case, each mode, or in the 
second case, the equivalent system, may be represented by the simple mass-spring-damper 
system shown in Figure 2. The equation of motion for this system is 

MM(t) + CC(t) + Kx(t) = p(t). (1) 

If the system is subjected to a force p(a) which varies with time a, then provided that the 
initial displacement and velocity are zero, the displacement at time t during the excitation is 
[2-5] 

x(t) = 
MW $ 

p(a) e sin [wd(t - o)] da (2) 
d 

°-0 

t Since completion of this paper, an independent investigation into some of the phenomena discussed in this 
paper has been published (D. H. CHENG and J. E. Bexevisre 1968 Trans. N. Y. Acad. Sci., Series II, 30,457). 
Cheng and Beneviste use different methods but arrive at somewhat similar results to the present authors, 
although there are some detailed differences. 
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where cod is the damped angular resonance frequency which is given by 

wä = w2 
G', V 

= w2(1 -82) (3) 

where w is the undamped angular resonance frequency given by w2 =KIM and 8 is the 
critical damping ratio. Equation (2) is only valid if the damping is subcritical: (C/2M)2 
< K/M. If the excitation ends at time sr, then the displacement after excitation at time t is 

given by equation (2) with the upper limit of integration changed to sr. 

x(1) 

Figure 2. Damped mass-spring system. 

3. RESPONSE OF A MASS-SPRING SYSTEM TO AN ASYMMETRICAL 
N WAVE 

The effect of a symmetric N wave upon a single degree-of-freedom system has recently been 
evaluated by several authors [5,6,7]. Previous results given in the literature appear to have 
been incorrect [8,9] or incomplete [10]. However, in practice, sonic booms are usually some- 
what asymmetric [Figure 1(a)]. To account for this asymmetry the pulse length parameters 
has been introduced [2,11,12,13,14]. 

Suppose a mass-spring system is subjected to an N wave, the force-time history experienced 
by the system being (see inset to Figure 3) 

P(a) =Po(1 - 7/7), (0 <a< sr), 
(4) 

p(a) = 0, (-oo <a <0 and sr <a< oo). 

For an undamped system C -> 0. The response of the system may be obtained by sub- 
stituting equations (4) into equation (2). The response must be divided into two time regimes: 
first, during forced motion and second, during free motion. 

3.1. RESPONSE DURING FORCED MOTION 

For time 0 <a < sr from equations (2) and (4), if the damping Cis zero, the displacement is 

t 

x(t) _wJ Po(' - v/-r) sin [w(t - a)] do, ($) 

o-o 

x(t) = 
M& 1- t- 

cos wt + w1 T 
sin wt (6) 

ZL T 
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3.2. RESPONSE DURING FREE MOTION 

For time sr <a< oo from equations (2) and (4), if the damping C is zero, the displacement 
is % 

ST 
(7) x(t) = 

Mw f 
Po(1 - a/-r) sin [w(t - a)] da, 

a-0 

x(t) = 
Mw2 [(I 

- s) cos [w(sr - t)] + sin [w(sT - t)] 
- cos wt + si`ný tl, (8) 

3.3. DYNAMIC MAGNIFICATION FACTOR DURING EXCITATION 

The displacement, x� due to a static force po is given by equation (1) with k(t) = z(t) = 0, 
thus x, =pof K. However, K- Mw2, (see reference 5, Appendix A), and thus x,. =po/(Mw2). 
Thus from equation (6) the normalized displacement during excitation is 

X(t) 
=1- 

I- 
cos wt +1 sin wt. (9) 

X3 T CUT 

The times at which maxima or minima of the displacement occur are obtained by differenti- 

ating equation (9) with respect to time and equating the result to zero. The maximum value of 
the displacement will occur at the time 

2t= 
tan-1(coT). (10) 

The minima of the normalized displacement will occur at times 

t= 2n7-/w, (n =1,2,3, ... ). 
(11) 

Since equations (10) and (11) must also satisfy the relation t< sr it is seen from equation (11) 
that there can be no minimum for arr < 27r/s. 

The maximum value of the normalized displacement is given by substituting equation (10) 
into equation (9) by using half angle formulae [51: 

X'==211 tan (cor)1. 
(12) 

XS COT J 
It may be shown [14] that there is a maximum during forced motion provided tan' (wr), 
< (s12) wT. Thus for s>2, there must always be a maximum during forced motion. For 

s<2, there will be no maximum during forced motion for cur less than some limiting value. 
The minimum value of the normalized displacement is found by substituting equation (11) 

into equation (9) and choosing the largest value of n which satisfies the relation sr > 2nirlw 

x3 

For any particular value of the non-dimensionalized frequency fr, the dynamic magnifica- 
tion factor may be defined as the greatest maximum or minimum value of the normalized 
displacement which can occur. The dynamic magnification factor is so named because it 
represents the ratio of the dynamic to static displacement of the system. 
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3.4. DYNAMIC MAGNIFICATION FACTOR AFTER EXCITATION 

From equation (8) the normalized displacement is 

X(t) sin [w(sT 
- t)] sin wt (14) 

XS 
= (1 - s) COS [tu(sT -t )] + 

COT 
- COS wt + 

(07 

Maxima or minima of the displacement occur when X(t)/x, = 0, that is for times 

(1- s) sin (wsr) - 
cos (WS 

rr) 
+ 

wr tmai. 
min =- tan-1 (IS) 

wL (1- s) cos (c)st) + sin (ws7) 
-1 

Substitution of equation (15) into equation (14) gives the maximum or minimum value of 
the normalized displacement after excitation; this calculation was conducted using a digital 
computer. Equations (12) and (13) were evaluated by hand. 

3.5. DISCUSSION 

Plots of the dynamic magnification factor against non-dimensionalized frequency fr are 
given in Figures 3,4,5 and 6 for several representative values of s. 

It is observed that as s is increased the frequencies at which the large free response peaks 
occur are decreased. Increasing s also has the effect that these peaks grow in magnitude and 
emerge further above the curve for the greatest maximum of displacement during forced 
motion which is independent of s. Fortunately, in practice, there is not a great variation in s 
and it is usually found that 1.6 <s<2.2, and for most sonic booms s<2.0. 

For a symmetric N waves =2 and equation (15) gives the solution 
fmai, 

mIn =T+ nTT/W, 

provided 
tan wr u, r. 

It can be shown [5,14] that the second equation gives the values of or at which there is zero 
free motion, that is at which nulls occur. This equation is satisfied by 

car,:, (n + j) Tr, n=1,2,3 ..., 

and this solution becomes progressively better as n increased. For values of s other than 2.0 
the nulls disappear although there is still a minimum of free response at certain values of w r. 

4. RESPONSE OF A MASS-SPRING SYSTEM TO AN N WAVE WITH A FINITE RISE TIME 

Suppose an undamped mass-spring system is subjected to an N wave with a finite rise time 
and decay. Such an idealized N wave (see the inset to Figure 7) is a good approximation to 
measured sonic booms [see Figure 1(b)]. Using the notation of the inset to Figure 7, the force- 
time history of such an N wave (for r, = r2 = r) is 

p=0, (-co<a<O, ty<a<oo), 

p=Po[Ql(rr)], (0<v<t1), 

P=po[r+1-a/T], (tI<a<t2), (16) 

P=Po(1-s)ý(2r+l)r-tel (t2<v<t3), 
where 

J 

tl=rar, t2=(rl+s)? and t3=(r1+r2+s)r. 

The case where r, 0 r2 is studied in reference 14. 
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The response must be divided into four time regimes and using a Duhamel integral approach 
similar to that presented in section 3 the normalized displacement may be shown to be [14] 

x(t) t sin wt, (06t<rr), (17) 
X. rr wrr 

x(t) sin wt sin [ul(rr 
- t)] t 

-=l+r- -(r+l) --, (rri t<(s+r)T), (18) 
XS wrr wri or 

x(t)-t-2T(r+1) sinw[(r+2)T-t]-sin[w(rr-t)] sinwt +(r+ 1) - (19) 
XS rr wrr arr 

[(s+r)r< l< (s+2r)TI, 

x(t) 
_ (r + l) sin w[(r + 2), r -t]- sin [w(rr - t)] 

- 
sin w[2(r + 1) r- t]+ sin wt (20) x, wrr wrr 

[(s+2r)r<t<col. 

The dynamic magnification factor was calculated [14] for forced motion [equations (17), 
(18) and (19)] and for free motion [equation (20)] using a digital computer program. The 
program calculated the displacement time history for different values of the parameters r and 
cur and also selected the dynamic magnification factors. Typical results are given in Figures 7 
through 10. 

It is seen that the dynamic magnification factor is plotted againstfr. This non-dimensional- 
ization ensures that the positive impulse imparted by the N wave as r is varied remains the 
same. As the rise time ratio r is increased it is seen that the peak in the response during free 
motion which occurs at fr -- 0.5 increases, while the successive peaks decrease in magnitude. 
When r =1.0 the dynamic magnification factor curve begins to look similar to that for a 
complete cycle sine pulse forcing function (see Figures 4-4 and 4-5 of reference 15). The 
maximum dynamic magnification factor for the sine pulse is 3.25 atfr; tl 0.5. This magnifi- 
cation factor is larger than the value of 2.68 produced for an N wave with r -1.0 (Figure 9) 
because the impulse for the sine pulse is greater. Since the response is impulse dependent [10] 
up to values of fr of about 0.5, it might be expected that the ratio of these maximum dynamic 
magnification factors would be very nearly equal to the ratio of the positive impulses for these 
two forcing functions. This does indeed prove to be the case, since the ratio of impulses is 
1.27: 1 and the ratio of maximum dynamic magnification factors is 1.22: 1. 

5. RESPONSE OF A VISCOUSLY DAMPED MASS-SPRING SYSTEM TO A 
SYMMETRICAL N WAVE 

Suppose the damped mass-spring system (shown in Figure 2) is subjected to an N wave 
[whose force-time history is given by equations (4)]. 

$. 1. FORCED RESPONSE 

During excitation, 0<t< sr the displacement is given by integrating equation (2) from 
o=0 to a=t where p(a) is given by the first of equations (4). Thus the normalized displace- 
ment may be shown to be [14] 

xt t 28 1r 12 2 

Q1_7+ 
CUT r- 

e-w8t 
ýrl 

+ 
2S 

J cos wd t+ LwST + 
w2 J 

wS-wal sin 
wd _ 

oid 

7t XS (21) 
L wr 
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5.2. FREE RESPONSE 

Similarly after excitation, sr <t< oo, the displacement is given by integrating equation (2) 
from a=0 to a- sr where p(a) is again given by the first of equations (4). The normalized 
displacement is [14] 

x(t) = e-r�ao 
{[[rs 

- 
1) WS - 

(408)2 
2 W; 1 sin [W, (sr 

- t)] 
+ 

[(1 

- s) +S] cos Wd(sr - t)] x 
XS WJ Wd7 WT 

eL\1+ WS) 
COSWdt+[Wer+ 

(WS)ýý WdlsinWdt]). 
(22) Jd 

From equation (3) the undamped frequency W= Wd/(1- 82)1/2. Thus, making this sub- 
stitution in equations (21) and (22), the normalized displacement may be expressed in terms of 
Wdr and thus offs r. The dynamic magnification factor was calculated [14] for forced and free 

vibration using a numerical digital computer program for a symmetric N wave. The program 

Figure 11. Typical time history of the response of a damped mass-spring system to a symmetrical 
sonic boom. Critical damping ratio 8=0.1. Q-5; frequency ja r-2.0; ratio s-2.0. 

calculated the response time history for different values of the damping ratio S and selected 
the dynamic magnification factors as the parameter fd r was varied. A typical time history is 

given in Figure 11. Typical dynamic magnification factor plots are given in Figures 12 
through 15. 

The greatest true maxima or minima are plotted against fd r during forced motion, but 
during free motion the greatest absolute value of the normalized displacement is plotted. 
It is seen that damping has the effect of reducing the free motion considerably, especially as 
fd-r is increased. However, the greatest maximum during forced motion is not much reduced 
and as S is increased the free motion at higher values of fa r falls further below the forced 

motion curve. The damping also has the effect of decoupling the system during free motion 
and smoothing out the nulls and peaks. However, the nulls and peaks still occur at the same 
values off, r as for a symmetric N wave (see Figure 4). 

6. RESPONSE OF A MASS-SPRING SYSTEM TO AN N WAVE WITH SHOCK 
REFLECTIONS 

When a sonic boom is reflected by the ground or by the wall of a building, shock reflections 
will occur. Typical measured N waves with reflections are shown in Figure 1(c). A suitable 
mathematical representation for the force-time history of such a pulse is given by equations 
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(23) (see Figure 10 of reference 2 or the inset to Figure 16). Using the notation of the inset to 
Figure 16, the force-time history of this idealized pulse is 

p=0, (-oo<a<O, (2+u)r<a<oo), 

P -Po I1- 
a(2uru)j' (0 <a< ur), 

P=jpoo[1-a/r], (ur<a<2r), (23) 

a- 
P=IPo 1- 

2r, 
(2r<a<(2+u)r). 

u7 

Suppose an undamped mass-spring system is subjected to a shock pulse with a pressure- 
time history given by equations (23). Again as in section 4, the response must be divided into 
four time regimes. Using a Duhamel integral approach similar to that presented in section 3, 
the normalized displacement may be shown to be [14] 

x(t) (L±ii) (1 + u) sin T 
X =1- 2u 

T- cos S2T + 2u 
(0 T4 u), (24) 

3 
_D 

x(t) (1 ()sTJ, l 
=ill -T+ sin [(u - T)] -2 cos DT + (u 4Ts 2), (25) 

1 t) 
_fI1+ (2 - T)/u + sin [Q(u - T)] -2 cos QT + 

ý1 

ü 
uj sir T- 

3u LJ 
2cos[S1(2-T)]-rl Uu)sin[S2 -T)]l1 (2 T4 2+u), (26) 

XW_. [Fusin[Q(2+u-T)]+ 
usin[Q(u-T)]-2cosDT+(±! 

)si1T_ 

-2cos[S2(2-T)]-(1 
=u)sin[Sl-T)]jý (2+u6TSoo), (27) 

where T= t/r and 92 = to-r. 

J 

The dynamic magnification factor was calculated [14] for forced motion [equations (24), 
(25) and (26)] and for free motion [equation (27)] using a digital computer program. The 
program calculated the displacement-time history for different values of the parameters u and 
urr and selected the dynamic magnification factors. Typical results for the reflection shock 
pulse ratio u=0.1,0.2 and 0.3 are given in Figures 16,17 and 18, respectively. Figure 19 
shows a comparison of the envelopes for curves with increasing values of u. 

It is observed that as the reflection shock pulse ratio u is increased, both the forced and free 
motion dynamic magnification factors increase although the effect is greater for increasing 
jr. One very interesting feature is that the nulls which were observed for free motion for a 
symmetric N wave (see Figure 4) remain almost unchanged independent of the value of u. 
The reason for this is that the force-time history [equations (23)] may be regarded as an N wave 
with the addition of two triangular pulses separated in time by 27 (see reference 2). 

Since the equation of motion is a linear differential equation, the response to these separate 
pulses may be found by superposition. However, there will be nulls in the free motion due to 
the N wave when fr� (2n + 1)/4, (n =1,2,3 ... ) (see section 3.5 or reference 5). However, 
there will also be zero free motion due to the repeated triangular pulses when 2r = (2n -1)l 
(2J) orf r= (2n -1)/4, (n =1,2,3 ... ) (see section 7). Since the values offr are not quite identical 
for the N wave and the repeated triangular pulses, absolute nulls will not be produced. Also, 
since fT r.. (2n + 1)/4 becomes a better solution as n increases, the nulls will become more 
nearly absolute as fr increases. Both these facts are confirmed by Figures 16 to 18. 
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7. REPEATED N WAVES 

In some cases it is found that more than one N wave is experienced at a point in space. This 
may be due to a variety of reasons. The first N wave may travel direct while the second is 
reflected from the ground. Acceleration of the aircraft can also cause two N waves. A window 
in a building may also experience a sonic boom directly on its outside face and then receive on 
its inside face a sonic boom which is delayed and diffracted through an opening such as a 
doorway. 

These sonic booms may be separated or they may overlap. The analysis for the response of a 
simple system to repeated N waves proves complex since there are four time regimes for the 
overlapping case and four for the non-overlapping case. However, this problem has been 
examined in detail in reference 14. 

For the case of the free motion, the results are very simple and tractable. It may be shown 
[14] that the displacement due to each shock pulse during free motion may be expressed as a 
sine wave. 

Let the free response due to the first shock pulse be 

x(t) 
= sin (wt'). (28) 

XS 
Then the free motion displacement due to the second shock pulse is 

x(t)_Asin [w(t'-t% (29) 
x3 

where t' is the time measured from a displaced origin, t is the time difference between the 
pulses and A is the relative magnitude of the second pulse. Thus the total free motion displace- 
ment is [summing equations (28) and (29)] 

x(t) 
_B sin (wt' - ý), (30) 

x, 
where 

B=-%I1+A2 +2Acoswi and tangy= 
A sin oil 

1+Acosw( 

when A= +1, B=2, for cot= 0,21r, 47r, ..., and B- 0 for wf ='r, 3ir, 5ir, .... Thus, as might be 
expected, in free motion for two N waves the dynamic magnification factor can be increased by 
a value up to twice that for the single N wave. 

The results for forced motion are more complicated although somewhat similar results are 
found. Again the dynamic magnification factor can be increased to twice the value for a single 
N wave. 

8. DISCUSSION AND CONCLUSIONS 

Building components will be subjected to a variety of N wave shapes during overflights of a 
supersonic transport (see Figure 1). It is thus desirable to determine an upper limit to the 
dynamic magnification factor curve against non-dimensionalized frequency Jr which will 
encompass the effects of these sonic boom variations. Such a curve (Figure 20) was produced 
by studying Figures 6,10,15 and 19. It is seen that increasing the values of S, r and u tends to 
produce higher dynamic magnification factors and to cause some shift in the non-dimen- 
sionalized frequency fr at which peak responses occur. However, increasing values of 
structural damping ratio 8 cause a marked decrease in response particularly for free motion as 
Jr increases. Thus, it was necessary to choose upper values of s, r and u and a representative 
value of 8 before Figure 20 could be drawn. With the supersonic transport and with windows 
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particularly in mind, these upper values were chosen to be s=2.2, r=0.5 and u=0.2. A 
representative value of S=0.02 was chosen for the critical damping ratio for a window. 

It is seen that the envelope given in Figure 20 rises to a maximum value of 2.5 at fr = 0.5 and 
then at high values of fr assumes a value of 2.0. The assumption is made that increases in the 
dynamic magnification factor at higher values of fr due to the values of s, r and u chosen, are 
reduced by the damping so that an asymptotic value of the dynamic magnification factor of 
2.0 is reached at high values of fr. 
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Figure 20. Envelope of dynamic magnification factor curves for use in assessing possibility of 
damage due to supersonic transport overflight. 

Figure 20 should be useful in a study of the possibility of damage to windows and other 
building structural members due to overflights by a supersonic transport. It is foreseen that 
the curve in Figure 20 is dependent upon the maximum values of s, r and u chosen and the 
assumed value of S. However, it is also seen that the resultant curve is not too sensitive to small 
changes in the values of these parameters. 

One interesting result shown in Figures 11 to 15 is that increasing structural damping 
causes a considerable reduction in response in all regimes with the exception of the first 
maximum during forced motion. It would seem very worthwhile if the internal damping ratio 
of a window could be raised to about 0.05 or 0.10. This might be achieved by lamination or by 
the attachment of a transparent layer of "damping tape. " This should at the very least reduce 
the free vibration considerably, hence reducing the psychologically bad effect of rattling or 
vibration of a window when it is excited by a sonic boom. 
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APPENDIX: LIST OF SYMBOLS 

A constant 
B constant 
C damping coefficient of system 
f undamped resonance frequency of system 

fd damped resonance frequency of system 
K stiffness of system 
M mass of system 

n integer 
p force 

po initial force 
r rise time ratio of N wave 
s pulse length ratio of N wave 
t time 

t' time 
I time delay between N waves 
T non-dimensionalized time 1/r 
u reflection shock pulse ratio 
x displacement 
X. displacement due to static force 
8 viscous damping ratio 
v dummy time variable 
T duration of positive phase of N wave 
-r' duration (1 + r» 
4 phase angle 
w undamped angular resonance frequency of system 

w, damped angular resonance frequency of system 
Si non-dimensionalized frequency car 
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Statistical energy analysis is used to predict the sound transmission loss, the radiation 
resistance and the vibration amplitude of a partition. Agreement between theory and 
experiment is shown to be good. The "mass-law" sound transmission is seen to be due to 
non-resonant modal vibration while the increased transmission in the coincidence region is 
seen to be due to resonant modal vibration. The observed vibration amplitude is also shown 
to be due to resonant modes. The previously observed discrepancy between the values of 
vibration amplitude derived from the mass law and those observed experimentally which 
has been described in the literature [I] is thus satisfactorily explained. 

1. INTRODUCTION 

In recent years new techniques have been developed for predicting the acoustic response and 
radiation properties of complicated structures [2-6]. These techniques sometimes known as 
"statistical energy methods" have been primarily applied to predicting the noise and vibration 
levels in aircraft and spacecraft structures. In the past, the classical architectural sound trans- 
mission problem has normally been approached theoretically with so-called "mass-law 
theories" [7-11]. Often these theories neglect damping and stiffness in the partition, which is 
assumed to be infinite in extent and to respond as a limp membrane. In this paper the classical 
sound transmission problem is approached using statistical energy methods. This approach 
includes panel stiffness and damping and the effects of finite panel size and successfully 
predicts the panel vibration amplitude and the dip in the transmission loss curve at the 
coincidence frequency. 

Theory developed by Lyon [12,13] and Ungar [14] is used to predict the partition trans- 
mission loss and vibration amplitude in section 5 of the paper. The present authors have 
extended this theory in sections 4.2 and 4.4 of the paper to enable the partition radiation 
resistance and its coupling with the transmission rooms to be determined. In order to predict 
the partition transmission loss and vibration amplitude it is necessary to know the radiation 
resistance of the partition. Both theoretical values (due to Maidanik [4]) and experimental 
values (determined using the analysis developed in section 4.2) were used in the predictions. 

Utley and Mulholland [I] have recently shown that the vibration amplitude of a partition is 
very much greater than that predicted by mass law. This discrepancy is easily explained by the 
present approach. As is shown in this paper, the vibration amplitude at any frequency is due 
to the response of resonant modes. The vibration amplitude is thus governed by the total 
resistance and by the radiation resistance of the panel at any particular frequency. It is found 
that using a measured value of the partition total resistance, it is possible to predict the 
vibration amplitude to within I or 2 dB throughout the frequency range 400 to 10,000 Hz. 

2. MODAL BEHAVIOUR OF PANEL 

The resonant modes of a panel can be divided into two classes. Modes with resonance 
frequencies above the critical or coincidence frequency and thus having bending velocities 
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greater than the speed of sound in air are termed acoustically fast (A. F. ). Modes with reson- 
ance frequencies below the critical frequency and thus having bending velocities less than the 
speed of sound are termed acoustically slow (A. S. ). 

It can be shown theoretically [4,6] that the A. F. modes have a high radiation efficiency, 
whilst the A. S. modes have a low radiation efficiency. The A. S. modes may be further sub- 
divided into two groups. A. S. modes which have bending phase speeds in one edge direction 
greater than the speed of sound and bending phase speeds in the other edge direction less than 
the speed of sound are termed "edge" or "strip" modes. A. S. modes which have bending phase 
speeds in both edge directions less than the speed of sound are termed "corner" or "piston" 
modes. Corner modes have lower radiation efficiencies than edge modes. 

The theoretical results for the radiation efficiency and classification of modes can also be 
given a simple physical explanation. Figure 1 shows a typical modal pattern in a simply- 
supported panel. The dotted lines represent panel nodes. 

., 

,, I 
+, 11 

fý1 

far 

O 

(a) (b) (c) 
Figure 1. Wavelength relations and effective radiating areas for corner, edge and surface modes. 

(a) Corner mode; (b) X-edge mode; (c) surface mode. ®, Effective radiating area. 

The modal vibration of a finite panel consists of standing waves. Each standing wave may be 
considered to consist of two pairs of bending waves, the waves of each pair travelling in oppo- 
site directions. Consider a mode which has bending wave phase speeds which are subsonic in 
directions parallel to both of its pairs of edges. In this case the fluid will produce pressure 
waves which will travel faster than the panel bending waves and the acoustic pressures 
created by the quarter wave cells [as shown in Figure l (a)] will be cancelled everywhere except 
at the corners as shown. If a mode has a bending wave phase speed which is subsonic in a direc- 
tion parallel to one pair of edges and supersonic in a direction parallel to the other pair, then 
cancellation can only occur in one edge direction and for the mode shown in Figure 1(b), the 
quarter wave cells shown will cancel everywhere except at the x edges. Acoustically fast 
modes have bending waves which are supersonic in directions parallel to both pairs of edges. 
Then the fluid cannot produce pressure waves which will move fast enough to cause any cancel- 
lation and the result is shown in Figure 1(c). 

Since A. F. modes radiate from the whole surface area of a panel, they are sometimes known 
as "surface" modes. With surface modes the panel bending wavelength will always match the 
acoustic wavelength traced onto the panel surface by acoustic waves at some particular angle 
of incidence to the panel; consequently, surface modes have high radiation efficiency. This 
phenomenon does not happen for A. S. modes, the acoustic trace wavelength always being 
greater than the bending wavelength; A. S. modes have a low radiation efficiency. 

i 
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At the critical frequency (when the panel bending wavelength equals the trace wavelength of 
grazing acoustic waves), the panel vibration amplitude is high (Figure 17). The radiation 
efficiency which is proportional to the radiation resistance is also high (Figure 12). Thus at the 
critical frequency the sound transmission is high and is due to modes resonant in a band 
centred at this frequency. Since the modes are resonant the transmission can be reduced 
effectively in this region by increasing the internal damping of the panel. 

Well below coincidence the vibration amplitude of resonant modes is low and the radiation 
efficiency is also low. In this region it is usually found that more sound is transmitted by modes 
which are not resonant in the frequency band under consideration. Since these modes are not 
excited at their resonance frequencies they are little affected by internal damping. The contri- 
bution due to the non-resonant modes gives rise to the well-known "mass law" transmission. 
Just above coincidence the panel vibration amplitude and the radiation efficiency are high and 
the transmission is still resonant. However, as the frequency is increased further, the internal 
damping increases rapidly, the non-resonant transmission becomes more important, and the 
transmission again approaches mass law [15]. 

The relative importance of resonant and non-resonant transmission of course depends upon 
the practical structure under consideration and upon the variation of internal and radiation 
resistance with frequency. The radiation resistance is normally increased with the addition of 
stiffeners which will usually increase resonant transmission. An increase of internal damping 
which may be achieved in several ways including the use of rivetted structures or damping 
material will decrease resonant transmission and increase the importance of "mass law" 
transmission. 

3. POWER FLOW BETWEEN COUPLED SYSTEMS 

The power flow between coupled oscillator systems has been studied by several authors 
[3,12,16-18]. It is assumed that the power flow from one system to another is proportional to 
the difference in modal energies of the systems [3]. 

3.1. TWO COUPLED SYSTEMS 

Consider the panel suspended in a reverberant room. The room may be considered as 
system I and the panel as system 2 as shown schematically in Figure 2. Following Lyon and 

in ri1n2 

(I) 
rlI2 

(2) 

1 

fldiss2 

Figure 2. Block diagram representing energy flows between panel and reverberant room. 

Scharton [12] the power flow balance for the two systems maybe written [equations (1) to (4)] 
"ini 

_ 
"dissi + 8129 (1) 

n'nI=(0ri1El +OJ7112n1(--E2)9 (2) 
nl n2 

1111,2 -'Tdisss - 
1712s (3) 

171-2=0)7%2 E2-(07112n, 
( 

l-E2ý Il (4) 
r 1,2 l 

; 
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where II1,,, and H,,,, are the rates of energy flow (in a frequency bandwidth of I rad/sec, 
centred on w) into systems 1 and 2, respectively, supplied by a loudspeaker or shaker; IIa,,,, 
and 17d,,,, are the rates of internal dissipation of energy in systems 1 and 2 (in a bandwidth of 
1 rad/sec); El and E2 are the total energies of systems 1 and 2 (in a bandwidth of 1 rad/sec). It 
should be noted that the coupling loss factor 7712 strictly is only defined for zero energy in the 
second system [19], E21n2 = 0, otherwise equations (2) and (4) do not balance. However, in 
most practical situations E2/n2ß E1/n, and 7712 71121e, _o- 
3.2. THREE COUPLED SYSTEMS 

Consider the transmission suite shown in Figure 3. This may be considered to consist of 
three coupled systems as shown schematically in Figure 4. In a similar manner the power flow 
balance for the three systems may be written 

171n 
i= 

"d 
iss i+ 

1112 + "13' (5) 

(El 
17In to-9, _Eel 

(El_ 
ý-w'1i13 ni 

E3) 
, 

(6) 
n21 

lnl 
n3 

171., 
2 -11diss= - 

1112 + 1123+ 
(7) 

171.2=w'72E2-401712nl(ni -n2ý +401]23172(;. _ 
2 3 

; j; (8) 
1 

;� 

_'7dtss3 - 
1713 - 

H239 
(9) 

'7153 = w'i3 E3 - W77,3 ni 
IE' 

- 
E3) E2 

- - w923 nz 
(ý E3ý 

" 
(10) 

nl 173 2 173 

The 17t3 term represents power flow from system 1 to system 3 when there are no modes 
excited in system 2 in the frequency band under consideration. Thus the power flow IIi 3 must 

Transmission room (I) Reception room (3) 

SF, Spa 

Shaker 

ýin3\ 110, /M 

Pcnel (2) ---J 

Figure 3. The transmission suite. 

Figure 4. Block diagram representing energy flows between coupled systems of transmission suite. 

nm, nm2 nm3 
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be due to modes which are resonant outside of the frequency band under consideration. In 
this situation system 2 is non-resonant and acts only as a coupling element between systems 1 
and 3. Providing the coupling factor is defined (i. e. a limp mass giving "mass law" power 
flow) this non-resonant power flow can be calculated. Since "mass law" transmission is 
derived assuming zero stiffness and damping in the partition and off resonance, these para- 
meters are unimportant to the response; then 1713 can be derived from "mass law" trans- 
mission [13,20]. 

4. PANEL RADIATION RESISTANCE AND COUPLING WITH ROOMS 
4.1. RADIATION RESISTANCE OF PANEL IN REVERBERANT ROOM 

Suppose a panel is suspended in a reverberant room and is excited by a shaker. The power 
flow is given by equations (1) to (4) with HI., = 0. Making this substitution, equations (1) and 
(3) become equations (11) and (12), respectively: 

O° ndissl + 11129 (11) 
llin= 

- 
tmdiss1 

- 
1112" (12) 

Thus, combining equations (11) and (12), 

171.2 =17diss: + Ildissi. (13) 

The total power supplied to the panel by the shaker is 

where 
II1,, 

2 = E2(R0o, /Mo) = Mo SS(R, o, /MM) = (So/w2) R, 01, 

A., ° Riot + Rrad" 

The rate of energy dissipation by the panel in internal friction is 

nais6, = E2(R, o1/Mv) = (Sal w2) RI., 

and the rate of internal energy dissipation by the room is 
nay:, 

i = EI ß, - [V1 S 
1f(Pc2)]ßt" 

Substituting these expressions in equations (13) gives 

and, on rearranging, 
(Sa/w2) Rt0 = (Sa/w2) R1., + [VI Sat/(PC2)] ßl+ 

ý2 Rrao = SoPC2 
I`S, 

1 
VI 

Equation (14) was used in the measurement of the radiation resistance described in section 
6.3.1. of this paper. But n, _ (w2 Vi)/(2irz c3), thus equation (14) may be rewritten 

27Y2 c 

red p 
[S vi nl ßj]. (15) R=S 

Equation (15) is the result obtained by Lyon and Maidanik [3]. 

4.2. RADIATION RESISTANCE OF PANEL BETWEEN ROOMS 

Suppose a panel is clamped between two reverberant rooms (Figure 3) and is excited by a 
shaker. The power flow is given by equations (5) to (10) with A., =0 and IIio, - 0. Thus, 
with this substitution, equations (5) and (9) become equations (16) and (17), respectively: 

0=lldI, 
st+IIIZ+1713, 

(16) 

0-17diss3 
-I13-1123" (17) 

.1 
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Combining equations (16) and (17) and noting that since power flow must be directional, 
1721= -1712, gives equation (18): 

17dissi +'7diss2 = 
1721 + "23. ý18ý 

In this instance equation (7) is rewritten as 
"i-2 _ "dIse2 + 172 + 1123, (19) 

which becomes, on substituting equation (18), 
H1.2 

= 
11diss2 + 17disst + Thdiss3 (20) 

Thus in a similar manner to section 4.1, equation (20) may be rewritten: 
(Sa/w2) R, o1= (Sa/W2 ) R,,,, + [V1 SP, I (Pc2)] ßl +I V3 

JP3/(Pc2)l 93- 

Rrna =S 
pct [s 

sI VIßl+ S03 T'3ß3), (21) 

2ir2 c Rrad =SP LSDi nº ßi + Sv3 n3 ß3]. (22) 
a 

It is seen that equation (22) reduces to equation (15) if one of the rooms (system 3) is elimin- 
ated. Equation (21) was used in the measurement of radiation resistance described in section 
6.3.2. 

4.3. COUPLING FACTOR FOR PANEL IN REVERBERANT ROOM 

If a panel is suspended in a reverberant room and a loudspeaker is driven in the room, the 
power flow is given by equations (1) to (4) with III,,, = 0. Thus equation (3) becomes 

0= 17ai8s2 - nI2, (23) 

nj n2 . 
712 E2 =7112 ni 

(E, 
- 

E2) 
" (24) 

Now Lyon and Scharton [12] and Ungar and Scharton [14] have shown that under most 
conditions encountered in practice 

'nie nj = 772, n2" (25) 

But 7)21= 71 ;a and 772 = 771ot, thus equation (24) may be rewritten: 

.: d 
_ 

EZ El 
(26) 

"1+ 7,4. d 

(; 

2 

which may be rewritten using the expressions given for El, E2 and n, in section 4.1.: 

= [sa/SQ, ]T ̀ I1 (27) 
where 

µ 

1' = 2ir2 [n, (w)/MM] (c/p)" (28) 

Equations (27) and (28) give the result obtained by Lyon and Maidanik [3]. 

4.4. COUPLING FACTOR FOR PANEL BETWEEN ROOMS 

If the panel is excited by driving a loudspeaker in each room, then the power flow is given by 
equations (5) to (10) with I7,,,, = 0. Thus equation (7) becomes 

O'°17a1s13 - 1712 -11320 (29) 

/E, EZ (! 3 EZ 
712E2 -12n11 - +'132na - 

)" 
(30) 

\ni n2) n3 nZ 

/ 
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Thus in a similar manner to section 4.3, equation (30) may be rewritten: 

? rad 
Ez rEi 

+ 
E3 

/31 
'lint + 277rad n2 

/Lnl 

nl l) 

A= [sa/(Sp. + SIM)l F-1. (32) 

where ris given by equation (28). Equation (32) reduces to equation (27) if one of the rooms is 
eliminated. 

5. SOUND TRANSMISSION AND PANEL RESPONSE 

It is assumed that the panel is clamped between the transmission room and the reception 
room of the transmission suite. Reverberant sound is produced in the transmission room by a 
loudspeaker. In this case the noise reduction, E, /E3, and consequently the sound transmission 
loss produced by the panel and also the panel vibration amplitude may be determined from 
equations (5) to (10) with 171o= =0 and 17,0, = 0. 

$. 1. PANEL TRANSMISSION LOSS 

Putting II, o, =0 in equation (8) and using equation (25), equation (33) is obtained: 

Ea 
= 

-) 7721 - 
(3) 

7123 

(33) n2 712+7121+7123 

but , 12I _ 7123 = 72,, d and, except at low frequency where the present theory does not apply, 
Ei/n, E3/n3, thus equation (33) becomes 

E2 E, l%rad 
(34) 

n2 n1 %int + 217rad] 

Putting 17is, -0 in equation (10) yields 

E3 _ 
Ei 7713 + E2 7723 (35) 
7%3+7731+7132 

This is a similar result to that found by Lyon [13], except that no terms are neglected in the 
present analysis. The term El 7713 represents the mass law or non-resonant transmission since 
it occurs without the modes resonant in the frequency band under consideration being excited. 
The term E2'? 23 represents the resonant transmission. 

Substituting equation (34) in equation (35) gives 
E_3 

c 
, q, 3 + ýrad(n2/nl)/(7Iitr + 2'? rad) (36) El 3%3 + (nil n3) 72 ,3+ (n2/n3) 71ra. 

Equation (36) gives the noise reduction from the transmission to the reception room. The 
parameters fl13,1lrad and '13 can be evaluated from the following equations: 

R2ir 
'7rad =, (37) ; im- 

where the panel radiation resistance to half space R 2'r is given by Maidanik [4] as 
A, A. 1A, )2(f/fe)S, (f/fc)+(PAc/A, )S2(f/fc), f<. fe 

Rl ä-A, pc. + (12/AC)"2, 
- i°fý ý (38) 

(i -flf)-1I2, I>Ic, 
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where 

g, (. flf, ) = 
(0,4/ý4)(1 - 2«2)/«(1 - «z)1iz, f< 

f fc, 

g2(f/ff) = (27r)-2 {(1 - «Z) In [(1 + «)/(1 - «)] + 2«)/(1 - «2)312, 
(f/f, )1 /2. 

It should be noted that the expression forf <f, given in reference 4 was in error, but the correct 
expression [21] (communicated by Maidanik), is given in equation (38). The expression for 
f> ff given in reference 4 was also incorrect and this has been corrected above. 

The coupling loss factor 7713 due to non-resonant mass-law transmission is obtained from 
[13]: 

101og, ar7�=-T. L. +101ogloIApe 
w), 

(39) 
\4 , 

where T. L. is the random incidence mass law transmission loss value for the second system 
(the panel). Finally, 

2.2 (40) 7)3 ý 

If equations (37), (38), (39) and (40) are evaluated and a value for q,., is chosen, or else 
measured by experiment, then the noise reduction N. R. (in dB) can be evaluated by taking 
logs of equation (36): 

N. R. =101og1o[? ]13 + 7rad(n2/nI)/(T7int + 2hlrad)] - 
-101091017 13 + (ni/n3)'113 + (n2/n3) 71rad], X41) 

where the room modal densities are 
V3 a2 

ni = 21F2 cs . (42) 
V3 w2 

n3 = 2,2 C3 
The transmission loss is then 

T. L. = N. R. + lOloglo[24V31n(10)]' (43) 

5.2. RESPONSE OF PANEL 

The panel vibration amplitude is given by equation (34). For a reverberant field the total 
energy in a1 Hz bandwidth E, = SD, Vi/(pc2), and the total panel energy in a1 Hz bandwidth 
E2 = MMSa/cue; hence equation (34) becomes 

Mo Sa SD, Vi 'head (44) 
W2 wZ Pc-2 n, 'Ii., + 2-qf. a 

The modal density of the transmission room nI(w) = Vl w2/(2ir2 c3), while the modal density of 
the panel n2(w) = %/3A, /(27rhcj), and the critical frequency ff = ßc2/(nhci), thus 

S. 
__ 

71rad 7. f., (45) 
S'vº fiat+2lradpsPC. 

If the panel responded as a limp mass, the response would be 

S=. ý. 
1S (46) z+ 
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where S,,, is the pressure spectral density at the panel surface. Neglecting panel motion, 
S,,, = 2S,,, since there is pressure doubling for each wave arriving at the panel surface, 
although at any instant only half the waves are travelling towards the panel. Thus, 

S...,. 2 (47) - 2" Sv1 P3 

Dividing equation (45) by equation (47) gives the panel response relative to mass law: 
S. flrad 7r2J c ps (48) 

Sawa, glint + 2'7rad 2pc 

6. EXPERIMENTAL MEASUREMENTS 

Experiments were made to measure the radiation resistance, the total resistance, the 
coupling factor, the modal density, the transmission loss and the vibration response of an 
aluminium panel. The panel was } in. thick and measured 77.5 by 61.0 in. when clamped in 
a frame. In some of the following experiments the panel was suspended from two corners in an 
anechoic room or in a 4500 ft' reverberant room. In these experiments the panel was 
surrounded by a2 ft wide baffle and the narrow gap between the panel and baffle was sealed 

61 in. 

Figure S. Positions on panel. 

with a plastic tape. In the other experiments described here the panel was clamped in a frame 
between the transmission and reception rooms. The panel edge conditions were intended to be 
fully fixed and the frame was attached to the reception room (Figure 3) which was vibration- 
isolated from the transmission room with glass fibre. Unless otherwise stated the experiments 
in section 6 were conducted by supplying I-octave bands of white noise to the loudspeakers 
or shakers in use. Panel measurement positions are shown in Figure 5. 
6.1. MEASUREMENTS OF PANEL MODAL DENSITY 

The panel was suspended in an anechoic room and excited by a loudspeaker producing 
acoustic waves at grazing incidence and in a direction diagonally across the panel. The 
experimental arrangement is shown in Figure 6, where the sine-wave generator was driven at a 
very low speed from the level recorder. The output from an accelerometer was fed into the 
level recorder. A typical result is shown in Figure 7. The modal density was computed by 
counting the number of modes in a given frequency band and dividing by the bandwidth. 

For a simply-supported panel the modal density is 

n, (f) = cY 
° (49) 

- 7T5in. -i 
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For aluminium, the speed of longitudinal waves is ci -~ 17,000 ft/sec, and for the panel, 
A, = 37.6 ft2, h =1/96 ft. Hence the modal density is 

no(f) = 0.36 modes/Hz. 

----------- 

time wave 
generator Anechoic 

B&K 1024 room 

Accelerometer 
4 B&K 4335 L--- ----------- 

weight 12.7g Preamplifier 

Panel B&K 1606 

Level Microphone 
recorder amplifier 

BB K 2305 1 BS K 2112 

m 

ö 

v 
u u 

Q 

Figure 6. Experimental apparatus to measure panel modal density. 

Frequency (Hz) 

Figure 7. Modal resonances in panel. 

Figure 8 shows that except at very low frequency (<20 Hz) the agreement between theory and 
experiment is good. The experiment was repeated with the panel clamped between the rooms. 

I 

The clamping reduced the area to 32.9 ft2 and hence the theoretical modal density to 0.315 
modes/Hz. This compared with a measured value of 0.303 in the mid-frequency range (about 
500 Hz). 

rrequancy vul 

Figure 8. Modal density of panel. 
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6.2. MEASUREMENT OF TOTAL RESISTANCE 

The apparatus used is shown schematically in Figure 9. The panel was clamped at its edges 
between the two rooms and excited with a shaker near to one corner (Figure 5, position A). 
The panel damping was determined from decay measurements when excitation was abruptly 
terminated. Use of discrete tone excitation instead of }-octave bands of white noise ap- 

Random 1/3 Octave 
noise source filter Amplifier 
B8 K 1024 8 ßK 2109 

Accelerometer Loudspeaker 
B&K 4335 
Preamplifier Shaker 
BBK1606 

Panel 

3 Level Microphone 
recorder amplifier 4 

B& K 2305 B8K 21 l2 5ýý 

m. microphones ZT,,. 
nsmission B&K 4131 
suite 

TABLE 

Measurement Switch positions 

Total resistance 2,3 
Radiation resistance 2,4 and 5 
Noise transmission 1,4 and 5 
Vibration response 1,3 

i 
i 

Figure 9. Apparatus used to measure panel total resistance, radiation resistance, noise transmission 
and vibration response. 

a 

up 

Q 

17 ' 

17' 

Frequency(Hz) 

Figure 10. Normalized total resistance of panel: direct measurement (o); measured using reduced 
playback speed on tape-recorder (9). 

peared to give rather inconsistent results, depending upon whether or not the frequency 
coincided with a modal resonance [22]. Due to limitations in the writing speed of the level 
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corder it was only possible to measure directly the total resistance of the panel up to 2000 
Hz. Above this frequency it was necessary to use a tape-recorder and play back the signal at 
a slower speed. The plot of normalized total radiation resistance is given in Figure 10. The 
total resistancet was determined from 

8101- (13-8/T2) M, 

6.3. MEASUREMENT OF RADIATION RESISTANCE 

6.3.1. Baffled panel in reverberant room 
The panel was excited by a shaker attached at position B. The pressure levels were measured 

at two points in the room and the acceleration was measured at positions 2 and 3 on the panel 

octave 

N 

Q 

Frequency (Hz) 

Figure 11. Normalized radiation resistance-baffled panel. 

(see Figure 5). The reverberation time of the room against frequency was measured. The 
radiation resistance was calculated using equation (14) and averaged values of S� and S. 
The results are plotted in Figure 11. 

6.3.2. Panel between rooms 
The radiation resistance was measured in a similar manner to section 6.3.1. The panel was 

excited by a shaker attached at position A. The pressure levels were measured at five positions 

octave 

4 
Qý 
N 

ö 
Q 

Q 

o 

Frequency(Hz) 

Figure 12. Normalized radiation resistance-panel between two rooms. 

t It should be noted that the total resistance R,., - ßM, - , 1wM, - 28wM,. 
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in each room and the acceleration at five points on the panel (see Figure 5). The reverberation 
times of each room were measured (as a function of frequency) and the radiation resistance 
was calculated from equation (21) using averaged values of SD,, So, and S,. The result is 
plotted in Figure 12. 

6.4. MEASUREMENT OF PANEL COUPLING FACTOR 

6.4.1. Baled panel in reverberant room 

The panel was excited with reverberant white noise in I-octave bands from a loudspeaker at 
one corner in the room. The acceleration level was measured at five points on the panel and the 
pressure level at five points in the room. The coupling factor was calculated using equations 
(27) and (28) and arithmetically averaged values of S� and Sa. The result is plotted in Figure, 
13. 

6.4.2. Panel between rooms 
The panel was again excited with reverberant white noise in 4-octave bands. The noise was 

produced by feeding the same signal through different amplifiers to a loudspeaker in each 
room. At the beginning of the experiment the amplifier gains were adjusted until the levels in 
each room were approximately the same throughout the frequency range. The gains were then 
kept constant throughout the experiment. The acceleration level was measured at five points 
on the panel and the pressure level at five points in the room. The coupling factor was cal- 
culated using equations (32) and (28). The result is shown in Figure 14. 

6.5. MEASUREMENT OF TRANSMISSION LOSS AND PANEL RESPONSE 
6.5.1. Transmission loss 

The panel was placed between the two large reverberant rooms (Figure 3). }-octave bands of 
white noise were made in the transmission room with a loudspeaker (Figure 9) and the levels 
recorded in each room. This was repeated at five positions of the microphone in each room. 
The reverberation time of the reception room was measured as a function of frequency. A 
plot of transmission loss calculated by the theory of section 5.1 is given in Figure 15. 

6.5.2. Panel response 
At the same time as the transmission loss experiment described above was performed, the 

acceleration of the panel was measured for five different panel positions (Figure 5). The panel 
response compared with mass law was calculated from equation (48) and is plotted in Figure 
17. 

7. DISCUSSION OF EXPERIMENTAL RESULTS 

The total resistance of a panel R,,,, is the sum of the internal resistance R,,,, and the radiation 
resistance Rf, d. At low frequency, where the radiation resistance is small, the resistance of the 
panel is mostly due to the internal resistance. At the critical frequency the resistance is 
mostly due to the radiation resistance, but well above coincidence the total resistance again 
normally becomes dominated by the internal resistance. The measured values of total 
resistance, in general, tended to confirm the above hypotheses. Figure 10 shows that the total 
resistance lies between 72, a, = 0.005 and 0.01, below coincidence. This value agrees fairly 
closely with the value measured by Lyon for a similar sized aluminium panel of* in. thickness 
[12]. 

The measurements of radiation resistance appear to agree well with the theory (Figures 11 
and 12). The panel in Figure 11 was freely supported and baffled, while the panel in Figure 12 
had clamped edges. The panel assumed in the theoretical comparison had simply-supported 
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edges and the weld was assumed to act as a rib. It is probable that the difference in the 
mid-frequency range between Figures 11 and 12 is due to the different edge conditions. 
Maidanik states [4] that at low frequencies the radiation resistance of a clamped panel should 
be twice that of a simply-supported panel. The difference between the theoretical and ex- 
perimental results in Figure 11 may be due to the inefficiency of the baffle at low frequencies. 

The coupling of the panel with the rooms is shown in Figures 13 and 14. In the first case the 
coupling factor µ=+ R�d]. As expected the coupling factor µ -* 1 above co- 
incidence because Rrad R,,,, at and just above coincidence when the panel was freely- 
supported. However, when the panel was clamped between the two rooms, the coupling factor 
became µ= lRf, a/[Rj�t + Rfed] and the internal resistance was increased considerably. Thus, 
as expected, at and just above coincidence it -+ 0.5; also as the frequency increases above 

%3 OCtovl 
average 

Frequency(Hz) 

Figure 17. Panel response relative to mass law. r7,., - 0.005. 

coincidence it decreases again, due to the rapid relative increase in R, o1. The agreement 
between the values of µ given in Figure 14 found from experiment (section 6.4.2) and those 
determined from experimental values of Rr, d and R,., is satisfactory, except at low frequency 
(<400 Hz). It is thought that the low-frequency disagreement, which is considerable, is due to 
the low-frequency panel/room modal interaction. At low-frequencies there are insufficient 
panel modes to make a correct average, a fact which is not included in the present theory. 

Figure 15 shows a comparison between the transmission loss of the panel measured experi- 
mentally and that calculated using the theory of section 5.1. The value of q,., used in the 
theoretical calculation was 0.005 and the theoretical values of 77rad used were determined from 
Maidanik's expressions for a simply-supported panel [equation (38)]. It is seen that agreement 
between experiment and theory is good, with two exceptions. These are at low frequency 
(<400 Hz) and just below coincidence. The low-frequency disagreement is again thought to be 
due to room mode/panel mode coupling as also observed in the coupling factor experiment 
and discussed above. The apparent discrepancy just below coincidence is removed if experi- 
mental values Of 77rad are used in the calculations (see Figure 16). 

The measured acceleration level of the panel above mass law as compared with that pre- 
dicted by the theory is given in Figure 17. For the theoretical prediction a value of ri,., 
= 0.005, and 77r. d determined from Maidanik's expressions were again used. A similar low- 
frequency discrepancy to that observed in the other experiments was again apparent. The 
agreement is otherwise remarkably good. Above coincidence the experimental values start to 
fall below the theoretical curve; part of this disagreement above coincidence is probably 
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due to mass loading of the panel by the accelerometer. No correction was made for mass 
loading which was expected to be of the order of I or 2 dB in this frequency region. 

8. CONCLUSIONS 
"Statistical energy analysis" has been shown to provide a useful way of predicting the 

transmission loss of a panel. This analysis obviously has its uses in classical architectural 
transmission loss problems as well as in aerospace transmission loss predictions. The vibration 
amplitude of a partition has also been satisfactorily predicted thus explaining the previously 
observed discrepancy [1] between the experimental partition response and that predicted 
by mass law. 
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APPENDIX: LIST OF SYMBOLS 

Ao 

C' 
Ei 
l 
fC 

panel surface area 
speed of sound in air 
speed of longitudinal panel waves 
total energy in ith system 
frequency 
critical or coincidence frequency 
functions off/je 
panel thickness 
integer subscripts representing system numbers (i =1,2,3 and ja1,2,3) 
length, breadth of panel 
total panel mass modal density of ith system in radian frequency 
model density of the ith system in radian frequency 
modal density of panel 
perimeter of panel (including twice length of weld) 
internal resistance of panel 
radiation resistance of panel to whole space 
radiation resistance of panel to half space 
total resistance of panel 
spectral density of panel acceleration 
spectral density of panel acceleration predicted by mass law 
spectral density of pressure in transmission room or reverberant room 
spectral density of pressure in reception room 
spectral density of panel velocity 
reverberation time of ith system 
volume of transmission room or reverberant room 
volume of reception room 
energy decay constant for transmission room or reverberant room 
energy decay constant for reception room 
internal loss factor for ith system 
coupling loss factor from ith to jth system 
internal loss factor for panel 
radiation loss factor for panel (to half space) 
radiation loss factor for panel (to whole space) 
total loss factor for panel 
acoustic wavelength 
coincidence wavelength of panel 
coupling factor between acoustic field and panel 
power flow from ith to jth system 
power dissipated internally by ith system 
power supplied to ith system 
air density 
panel surface density 
angular frequency 

91,92 
h 

i, j 
11,12 
M, 

nj 
np 
P 

Rtot 
Rr. d 
R3" 
Rtot 

S. 
Sd. 

a. 

SP. 
S� 
S. 
Ti 
V, 
V3 
N1 

P3 
711 

11li 

tat 

17rad 
71rad 
"/fad 

7)tot 

IL 
IIu 

net,,, 
lIt� 

P+ 
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LETTERS TO THE EDITOR 

DAMPING IN PLATES 

In a recent paper [11, measured total loss factors for plain and stiffened panels were presented. 
These factors were determined by recording the decay of strain following impulsive excitation. 
In previous experiments at Liverpool University the present authors had already attempted to 
make similar measurements of panel damping and were forced to reject impulsive excitation 
as unsatisfactory for determining total loss factors in I octave bandwidths. There were two 
reasons for this decision. The first was that the value of loss factor deduced seemed to depend 
upon size and hardness of the hammer used to produce the impulsive excitation. The second 
was that the loss factors deduced from this method did not agree throughout most of the 
frequency range under examination with those determined from the decay of vibration 
produced by a mechanical shaker, or by a loudspeaker, supplied with } octave bands of white 
noise. The authors have subsequently studied this interesting phenomenon further and give 
the results of some experiments and their conclusions below. 

The total loss factor for an aluminium panel measuring 61 x 77.5 x} in. thick was 
deduced both from the decay of acceleration following the decay of steady-state vibration 
produced by a mechanical shaker and from the decay of acceleration following impulsive 
excitation. The panel boundary conditions at the edges were intended to be clamped. The 
panel was plain with the exception of a vertical weld near the panel centre. 

1lb Steel weight 

Pone 

Figure 1. Sketch of mechanism for producing impulsive excitation. 

The impulsive excitation was repeatedly produced by allowing a1 lb steel weight to swing 
against the panel as shown in Figure 1. Records of the decay of the acceleration were made by 

recording the output from a Brüel and Kja; r 4335 accelerometer on aB&K 2305 level 

recorder. The signal from the accelerometer was fed through a} octave filter and traces were 
obtained for decays for each l octave centre frequency from 100 to 1000 Hz. Typical records of 
400 and 800 Hz are shown in Figure 2. The records are characterized by fluctuations about a 
mean decay of roughly constant slope at low frequency. At higher frequency the fluctuations 
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decrease in magnitude but the slope steadily decreases in value with time. For comparison a 
total loss factor was calculated by determining the mean slope of the first 5,15 and 25 dB decay 
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Figure 2. Typical I octave band filtered records of acceleration decay produced after impulsive 
excitation. (a) Centre frequency 400 Hz; (b) centre frequency 800 Hz. 

of each record. The results are plotted in Figure 3. The records were also used to determine 
the approximate amplitude-frequency response of the panel to the impulse by measuring the 
peak acceleration level of each j octave record. These levels are plotted in Figure 4. 
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Figure 3. Total loss factor of panel. -y-, Impulsive exitation, first 25 dB of record; 
--p--, impulsive excitation, first 15 dB of record; -o -, impulsive exitation, first 5 dB of 
record; -0-, white noise excitation first 15 dB of record. 

The panel was also excited by supplying with "white noise" a Goodmans shaker attached 
near to a corner. The signal from an accelerometer filtered through aI octave filter was 
recorded on a level recorder at frequencies up to 1000 Hz as before. Typical records of 400 and 
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800 Hz are shown in Figure 5. The recorder traces had a very different appearance from those 
obtained from the decay of impulsive excitation. 

In this instance they were characterized by fluctuations about a mean decay whose slope 
remained constant for a greater duration at each frequency than for impulsive excitation. 
At higher frequencics this was particularly noticeable. It is also interesting to note the appear- 
ance of very lightly damped modes at the end of the higher frequency traces. Values of total 
loss factor were deduced from the mean slope of the first 15 dB decay of each record and the 
results are plotted in Figure 3. Using this method of excitation the most consistent results 

o_ 
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np ,O 

N C3 
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100 200 400 
Frequency (Hz) 

Figure 4. Panel acceleration response against frequency for two types of excitation; o, white noise 
excitation, o, impulsive excitation. 

were obtained and so this method was chosen to measure i, ot at higher frequencies. Since the 
decay times of the panel response at frequencies above 1000 Hz were so small, the decay was 
recorded on a tape recorder at a high tape speed, and then played back at a lower tape speed, 
the ratio of the speeds being chosen so that a measurable decay could be obtained. 
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Figure 5. Typical } octave band filtered records of acceleration decay produced after excitation by 
shaker fed with white noise. (a) Centre frequency 400 Hz; (b) centre frequency 800 Hz. 

The steady-state acceleration response of the panel against frequency was also determined 
by supplying the shaker with "white noise" and filtering the output in I octave bands. The 
result is plotted in Figure 4. 

A study of all the shaker-excited and impulse-excited decay records (of which Figures 2 and 
5 are examples) reveals that the decays due to the two types of excitation are very different, 

particularly at higher frequency. In the impulsive case the mean slope decreased much sooner 
than in the shaker-excited case, particularly for the higher frequencies. 

The authors offer the following explanation which appears to fit all the observed 
phenomena. As Figure 4 demonstrates, the impulse tends to produce a higher acceleration 
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level in the lower-order modes than the higher-order modes. The opposite occurs with "white 
noise" excitation by the shaker which produces a higher acceleration level in the higher-order 
modes than in the lower-order modes. The low-frequency difference in levels between the two 
types of excitation is of the order of 30 dB. Since the low-frequency modes are much less 
damped, they decay more slowly and it is proposed that energy is transferred to higher-order 
modes. This is supposed to happen to a greater extent with impulsive excitation than with 
excitation by a mechanical shaker, because the impulse excites the lower-order modes very 
much better. Thus it is proposed that with the impulsive decays, particularly with the higher 
frequency records, that only the first part of the trace (say about 5 dB) represents a true decay. 
The latter part of the trace is artificially extended by energy transferred from the lower-order 
modes. It is indeed observed in Figure 3 that only at higher frequency does the initial part of 
the impulsive curve give a value of mo, which roughly agrees with that deduced from the 
shaker traces, and even then the value is lower. 

The authors have not been able to prove conclusively that the change in slope in the higher 
frequency impulsive traces is due to appreciable coupling with lower-order modes; however, 
they point out that this does appear to be plausible and to fit the facts. Nevertheless, it has been 
demonstrated that the decay curves derived from impulsive decay differ markedly from those 
produced from decay of vibration produced by a shaker. Also it appears that it is necessary to 
use more interpretive judgment with the impulsive decay curves and thus they are less satis- 
factory. Perhaps this points to the necessity for the use of a completely different method of 
determining the total loss factor in a plate. It should be noted that the phenomenon of a 
change of slope in a decay record has already been discussed in the literature [2,3]; however, 
in most of these instances the explanation is due to the presence of some modes in each band 
with very low damping. 

The authors thus suggest that there may be some doubt in the values of fiat presented for the 
higher frequency range in Figure 4 of reference 1. Other researchers [4,5] seem to find that for 
similar plain plates q,,,, does not decrease with frequency as shown in this Figure, but remains 
roughly constant at about 0.01, or even increases a little. For stiffened plates %, should be 
considerably larger. It is interesting to note the rise in ', ot in Figure 3 at the coincidence 
frequency, since this is exactly what is to be expected due to the increase in 7)I, a. Since 
-%, =', n, + 77�d and at coincidence 77rad 771, then 77, t N 77rad. It is indeed found that the value 
for'�, at 4000 Hz is in good agreement with the experimental value of %ad measured at 
coincidence [5] and with the theoretical value of brad [6]. 

Errors in 71�t may also partly explain the large discrepancies between experimental and 
theoretical values of the radiation resistance for different panels reported in Figure 3 of 
reference 1. A considerable increase in the value of fiat, for a particular measured value of 
µ(w) will necessitate an increased value of 17rad. At the lower frequencies some of the scatter 
observed may be due to cavity-panel mode coupling. Radiation resistance is normally better 
measured by directly exciting the panel under examination and measuring the reverberant 
pressure level produced [6]. An indirect method such as that used in reference 1 has the danger 
of additional inaccuracy due to the necessity of also measuring 77,,, with consequent further 
experimental error. 
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SUMMARY 

Measurements of the effect of paint finishes on the acoustic absorption properties of a 
number of surfaces suitable for use as sound absorbers are reported. It is shown that in 

no case does the paint fail to alter the absorption characteristics of the surface. In the 
case of materials having open pores on their surfaces the effect is particularly harmful. 
In these cases it is recommended that the surfaces be first covered with perforated 
board which can enhance the acoustic properties and which provides a surface which 
will take paint without the acoustic properties being affected. 

INTRODUCTION 

The fundamental purpose of employing sound-absorbing materials in architecture 
is to control the average sound pressure level (S. P. L. ) in an enclosure or the rever- 
beration time or both. It is easy to show' that each doubling of the total amount of 
absorption in an enclosure results in the reverberation time being halved and the 
S. P. L. being reduced by 3 dB. Hence, by a suitable selection of absorbing materials, 
the acoustic properties of an enclosure may be adapted to suit one's requirements. 
In practice, however, this does not merely mean choosing a material with the 
desired absorption coefficient, but the following points must also be considered. 

(i) Can the material be mounted easily or even integrated into the structural 
design? 

(ii) Does the material conform with the prescribed fire precautions? 
(iii) Is the lighting in the enclosure reduced to an undesirable level by the pre- 

sence of the absorbing material? 

(iv) Is the visual effect of the material desirable? 

Applied Acoustics-Elsevier Publishing Company Ltd., England-Printed in Great Britain 
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When all these points have been considered it seems that the absorption coeffi- 
cient is only of secondary importance. Perhaps the most important point is that the 
desired visual impact must, on most occasions, dictate the surface finish of the 
material, i. e., we must consider the paintability of the chosen absorbing materials. 

It is clearly of primary importance that the acoustic properties be maintained 
and be essentially unaltered following painting. ' In the case of porous materials, 
the mechanism by which sound is absorbed depends upon air particles excited by 
the incident sound wave being able to enter the material wherein dissipation of 
energy by turbulence, etc., takes place. Thus, clearly, if this access is completely or 
even partially blocked then either a loss in sound absorbing efficiency or a shift in 
the absorption frequency curve will occur. Either of these will alter the room acous- 
tics from the original design. It would appear, therefore, that an investigation into 
the effect of painting the surface of porous materials upon their acoustic properties 
is necessary. 

Of the other two mechanisms whereby sound may be absorbed, the first, the 
resonant panel, is not affected by paint and the second, the Helmholtz resonator, 
is unaffected provided that the entrance to the resonator is not obstructed by the 
paint. 

EXPERIMENTAL WORK 

The absorption coefficient of a material can be measured by either the reverberation 
room method or by using a standing wave tube. The latter method was chosen for 
this work, and hence all the results quoted for the absorption coefficient apply 
only to a normal incidence field. It is known' that this value is about one-half the 
random incidence value at low frequencies, while at high frequencies the values are 
approximately equal. 

Samples of various types of acoustic materials were tested and an absorption 
coefficient/frequency curve measured for the untreated surface and for the surface 
treated with paint. 

The effect of paint applied by brush and by spray was also studied. 

EXPERIMENTAL RESULTS 

Results for the following four materials are given, these being considered as 
representative of their type of sound absorbing material: 

(i) wood-wool with 1-in plaster facing 
(ii) felt 

(iii) polyurethane foam 
(iv) polystyrene tiles. 
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(i) Wood-wool 
The absorption coefficient vs. frequency curve for a 2-in-thick wood-wool sample 

alone and with 1-in plaster facing, is shown in Fig. 1. 
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Fig. 1. Effect of 1-inch plaster coating on 2-inch wood-wool. , untreated; ----, with 
1-inch plaster coating. 

Clearly, the effect of plastering the surface is to shift the curve towards the low- 
frequency end so that the low-frequency absorption coefficient is increased while 
at the high frequencies it is decreased. This type of shift behaviour can be explained 
qualitatively. 

The effect of painting the plaster surface with domestic paint is shown in Fig. 2. 
Painting decreases the absorption coefficient while keeping the general pattern of the 

original curve. As more layers of paint are added the absorption coefficient de- 
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Fig. 2. Effect of paint upon absorption coefficient when applied by brush to 4-inch plaster coating 
on 2-inch wood-wool. (a) Untreated plaster surface; (b) one coat of paint applied by brush; (c) two 

coats of paint applied by brush; (d) spray-gun application. 
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creases. It can also be seen from Fig. 2 that the original acoustic properties are 
changed less when the paint is sprayed on than when applied by brush. 

(ii) Acoustic felt 
The application of paint by brush is seen (Fig. 3) in this case to shift the curve 

towards the low frequencies but at the same time a considerable (15%) overall 
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Fig. 3. Paint applied by brush and spray-gun to acoustic felt. (a) Untreated surface; (b) one coat 
of paint, sprayed; (c) one coat of paint, applied by brush; (d) two coats of paint, applied by brush. 

decrease in the absorption coefficient, a, is noted. Applications of further coats de- 
crease a considerably and still shift the original unpainted curve towards the low 
frequencies. Spraying is again seen to reduce the absorption coefficient less drasti- 
cally than by brush painting. 
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Fig. 4. Effect of paint applied by brush and spray-gun to polyurethane foam. (a) Untreated; 
(b) one coat of paint, sprayed; (c) one coat of paint, applied by brush. 

(iii) Polyurethane foam 
Application of paint by brush is now seen (Fig. 4) to be drastic in its effect upon 
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the acoustic properties while spraying seems to alter only slightly the absorption 
coefficient curve. 

(iv) Polystyrene (acoustic tile) 
The high absorption in the 1000-4000 Hz range (Fig. 5) is seen to be considerably 

reduced by the application of paint both when applied by brush and by spray-gun. 
Once again spraying appears to be less drastic than brush painting. 
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Fig. 5.11-inch polystyrene (acoustic tiles) when painted by brush and by spray-gun. (a) Untreated 
material; (b) two coats of paint, applied by brush; (c) paint applied by spray-gun. 

QUANTITATIVE EXPLANATIONA OF RESULTS 

As suggested by Kosten4 the paint layer may be thought of as a very thin layer of 

relatively great air resistance backed by the impedance of the unpainted layer. 

Hence, the impedance curve of the total layer, giving the impedance in its complex 

plane as a function of frequency, is approximately the same as that of the un- 
treated layer except for a shift in the positive direction of the real axis through a 
distance determined by the air resistance of the coating. This means an improve- 

ment in the low frequencies and a reduction in the mid and high frequencies. 

This type of behaviour was seen in all three types of acoustic material tested. 
The more porous the surface of the material the more drastic the effect of paint 

becomes simply due to the blocking of the "access passages" into the material. 
Hence, paints of minimum solid material should be used. Oil paint would appear 
to be catastrophic if used on very porous materials (i. e. foam). Hence, for porous 
materials, spray-gun applications of well-thinned (water-base) paints are recom- 
mended. 

CONCLUSION 

The paintability of architectural acoustic materials is of primary importance and 
must be considered when choosing an acoustic material for use in buildings. It 
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appears that the more open-surface type materials suffer most from the application 
of paint, and if the painting of the surface is absolutely essential then only very 
thin paints should be used and these should be applied by means of a spray-gun. 

In the case of materials like felt and polyurethane foam it would appear that the 
only way to obtain a desirable surface finish is to cover the surface with a perforated 
panelling of the Helmholtz resonator type. By choosing the spacing and diameter of 
the holes in a panel of given thickness the resonant frequency can be made to fall 
in the range 100-500 Hz thereby increasing the absorption in the low frequency. 
For example, Fig. 6 shows the effect of adding a 1-in-thick perforated panel with 
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Fig. 6.2-inch wood-wool covered by a 1-in-thick perforated panel with }-in-diameter holes 
spaced at a distance of } inch. (a) Wood-wool; (b) wood-wool plus perforated panel. 

+-in-diameter holes at 1-in centres to a layer of wood-wool 2 in thick. It can be seen 
that the low-frequency absorption coefficient is increased without substantially 
reducing the high-frequency performance. This panel can now be painted any 
number of times, and, provided the holes are not blocked, it will not be affected by 
the paint. 
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