# ELECTRON DIFFUSION IN GnSES 

## J. M. ELLIS

# A THESIS SUBMITTED FOR THE DEGREE OF Ph. D. AT THE UNIVERSITY OF LIVERPOOL 

DECEMBER, 1965

ACKNOWLEDGEMENTS.

The work submitted in the present thesis has been supervised by Dr. J. Lucas. The author is greatly indebted to Dr. Lucas for his aid, encouragement and enthusiasm, and, together with Mr. P. A. Lawson, for the many useful discussions which have taken place.

The computations involved in this work would not have been possible without the facilities and advice proferred by the staff of the Numerical Analysis Department. Thanks are also due to the staff of the Electrical Engineering workshops, in particular Mr. D. Ferris, for conetructing some of the apparatus, and to Professors J.D. Crages and J. M. Meek for their interest.

Finally, the author appreciates the financial assistance received from the Science Research Council over the past three years.

1. HISTORICAL DEVELOpMENT OF SWARM EXPERIMENTS. ..... 1.
2. THEORY.
2.1. Diffusion coefficient.4.
2.2. Drift velocity.
2.3. Townsend's energy factor and mean energy.4.4.5.
2.4. Other parameters of electron collisions.6.
2.5. Relation between drift velocity and diffusioncoefficient.7.
2.6. The diffusion equation.2.7. Townsend's solution of the diffusion equation incylindrical coordinates.8.9.
2.8. Huxley's solution of the diffusion equation. ..... 12.
2.9. Equivalence of Townsend's and Huxley's solutions.14.
2.10. Modifications of Huxley's solution. ..... 16.
2.11. Parker's concentration distribution. ..... 19.
3. EXTENSIONS CO DIFFUSION THEORY. ..... 20.
3.1. Diffusion in the presence of electron attachment. ..... 20.
3.2. Resonance radiation. ..... 26.
3.3. Non-resonance radiation. ..... 31.
4.apparatus.37.
4.1. Electrode structure. ..... 37.
4.2. Discharge chamber and vacuum system. ..... 44.
4.3. Electrode circuitry. ..... 47.
4.4. Pressure measurement.
4.5. Current measurement. ..... 52.
4. OPERAIION AND DESIGN UF EXPERI ENTE. ..... 57.
5.1. Procedure. ..... 57.
5.2. Difficulties encountered. ..... 62.
5.3. Kunning checks. ..... 65.
5. RESULIS AND DISCUSSION. ..... 68.
6.1. Hydrogen. ..... 63.
6.2. Nitrogen. ..... 72.
6.3. Oxygen. ..... 82.
Ar PENIX 2. Potential distribution in a gap with thick cúard rinss. ..... 56.
AFPENDIX 2. Computer program ito obtain $R$. $\lambda$ tables using Townsend's solution of the diffusion equation. ..... 92.
APPENDIX 3. Computer program for voltage determination in a gap with thick guard rings. ..... 95.
REFERENCES . ..... 97.

## SUMMARY.

The aim of the present work was to repeat $D / \mu$ measuremento made by other workers and to extend them into higher regions of $\mathrm{E} / \mathrm{p}$. Thus the diffusion of medium energy electrons in $H_{2}, N_{2}$ and $O_{2}$ has been investigated by swarm ex eriments in a Townsend-type apparatus. The E/p ranges considered are 5 to 120,3 to 30 and 5 to 40 (volts/cm.inm. Hg.) respectively. Pressures vary approximately from 0.1 to $1.5 \mathrm{~mm} . \mathrm{Hg}$. Agreement with the results of other workers is in general good, but a pressure dependence was found in $N_{2}$ which has been attributed to the appropriate diffusion equation being non-linear. Results in $\mathrm{H}_{2}$ and $\mathrm{O}_{2}$ agree well with other modern values, and values of attachment coefficients in $\mathrm{O}_{2}$ are also presented.

Theoretical investigations have yielded solutions of the diffusiou equation in the preserce of the secondary effects, electron attachment, resonance radiation and non-resonance radiation. Fownsend's and Huxley's solutions of the diffusion equation are shown to be similar.

Diffusion theory originated a century ago with Clerk Maxwell (1867) when he gave a mathematical solution for the interdiffusion of two gases. In 1899, J.S.E. Townsend, one of J.J. Thomson's first students, expanded Maxwell's irk to explain the diffusion of charged particles through aga under the influence of an applied electric field. Townsend devised an apparatus (1908) where electrons passed through a circular aperture and were collected by an anode composed of an inner disc surrounded by an outer ring.

He later devised an ingenious experiment, using a magnetic field to deflect the diffusing electron stream, for measuring drift velocities. These values, together with $D / \mu$ values from the radial diffusion measurements, enabled electron mean energy, electron mean free path, electron mobility and electron energy loss in collisions with gas molecules to be readily estimated (Townsend and Tizard 1913). At this time Townsend wrote his classic text-book 'Electricity in Gases', which has served as the foundation for subsequent studies in this, and allied, fields.

During the First World War Townsend was involved in important work on radio communications and it was some years before Townsend and Bailey (1921, 1922, 1923) and Skinker (1922) published their comprehensive sets of results in various gases. Bailey was appointed a professor at Sydney University in 1924
and, after studying Neon (1924), he became involved in attachment studies (1925) and drift velocity measuremerits (1930).

In 1930, Townsend published a summary of known work entitled 'Energies of Electrons in Gases'. He thereafter became interested in eleotron energy distributions (lownsend 1936) and allied subjects. 'Electrons in Gases', written by Townsend, appeared in 1948. An account of the early measurements and others is given by Healey and Reed (1941), and Llewellyn-Jones (1957) has written an appreciation of Townsend's work.

A much simpler solution of the diffusion equation than that given by Townsend has been given by L. G. H. Huxley (1940). It may be stated that this new solution originated a new interest in swarm experiments, although mathematical mistakes were made in the derivation (Huxley and Crompton 1955) and the correct formula resulted by chance. Huxley and Zazou (1949) were next to give a set of results, in air, but their apparatus is open to some critivism. Adelaide University, Australia appointed Huxley as a professor and he began to establish a group equipped with apparatuses capable of making accurate measurements on electron swarms. Members of the group, notabl R. W. Crompton, have since published the results of many accurste and consistent exporiaents in the low E/p range. The grour moved from Adelaide in 1960 to form, under Crometon, the Ion Difiusion Unit at Canberra University, Australia.

Amongst Huxley's contributions since then are a general theory of electron and ion motion in gases (1960) and a solution of the diffusion equation when electron ionization and attachment are

| Author (s) | Year | Gas | $E / p_{\min }$ | $\mathrm{E} / \mathrm{p}_{\max }$ |
| :---: | :---: | :---: | :---: | :---: |
| Townsend | 1908 | Air | 0.09 | 0.27 |
| Townsend and Tizard | 1913 | Air | 0.5 | 100 |
| Townsend and Builed | 1921 | $\mathrm{N}_{2}$ | 0.25 | 60 |
|  |  | $\mathrm{H}_{2}$ | 0.25 | 50 |
|  |  | $\mathrm{O}_{2}$ | 2 | 50 |
|  |  | Air | 0.5 | 100 |
| Skinker | 1922 | $\mathrm{CO}_{2}$ | 0.25 | 50 |
| Fownsend and Bailey | 1922 | A | 0.125 | 15 |
| Townsend and Bailey | 1923 | He | 0.013 | 5 |
| Bailey | 1924 | Ne | 0.06 | 6 |
| Brose | 1925 | $\mathrm{O}_{2}$ | 0.4 | 50 |
| Bailey | 1925 | Air | 0.5 | 2.5 |
| Bailey and Rudd | 1932 | $\mathrm{CO}_{2}$ | 2 | 16 |
| Healey and Kirkpatrick | 1939 | $\mathrm{O}_{2}$ | 0.25 | 50 |
| Huxley and Zaazou | 1949 | Air | 0.5 | 25 |
| Crompton and Sutton | 1952 | $\mathrm{H}_{2}$ | 0.05 | 20 |
|  |  | $\mathrm{N}_{2}$ | 0.05 | 20 |
| Crompton, Huxley and Sutton | 1953 | Air | 0.1 | 20 |
| Huxley and Crompton | 1955 | $\mathrm{H}_{2}$ | 0.5 | 5 |
| Huxley, Crompton and Bagot | 1959 | $\mathrm{O}_{2}$ | 5 | 20 |
| Cochran and Forester | 1962 | $\mathrm{H}_{2}$ | 0.2 | 5 |
|  |  | $\mathrm{N}_{2}$ | 0.21 | 5 |
|  |  | $\mathrm{CO}_{2}$ | 0.2 | 5 |

Table $1 . \quad$ Published $D / \mu$ values (continued over).

| Author (s) | Year | Gas | $E / p_{\text {min }}$ | $E / P \max$ |
| :--- | :---: | :---: | :---: | :---: |
| Warren and Parker | 1962 | He | 0.00015 | 0.4 |
|  |  | A | 0.00015 | 0.04 |
|  | $\mathrm{~N}_{2}$ | 0.0002 | 3 |  |
|  | $\mathrm{H}_{2}$ | 0.00015 | 5 |  |
|  | $\mathrm{CO}_{2}$ | 0.005 | 15 |  |

When the present work began, no modern results were available for $E / \mathrm{F}>20$ in $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and $\mathrm{O}_{2}$. Since then some furtier results have appeared in the literature.

| Crompton and Elford | 1963 | $\mathrm{H}_{2}$ | 0.006 | 5 |
| :--- | :--- | :--- | :--- | :--- |
| Rees |  | $\mathrm{H}_{2}$ | 0.006 | 0.1 |
| Rees | 1964 | $\mathrm{CO}_{2}$ | 0.1 | 50 |
| Lawson and Lucas | 1965 | $\mathrm{O}_{2}$ | 0.4 | 6 |
| Crompton, Liley, McIntosh and Hurst | 1965 | $\mathrm{H}_{2}$ | 10 | 100 |
| Lawson and Lucas | $1965 a$ | $\mathrm{H}_{2}$ | 15 | 70 |

Table 1. Published $D / \mu$ values, cortinued.

CHAPIER 2. THEORY.

### 2.1. DIFFUSION COEFFICIENT.

When a number of particles having agitational energy occupy a space and have an uneven spatial distribution then in general they will tend to distribute themselves uniformly throughout this space. This process is known as 'diffusion', and the rate at which the process occurs is governed by the 'diffusion coefficient', D. If there is a particle concentration gradient in a particular dierection then $D$ is defined as being the net number of particles passing in unit time through unit area perpendicular to the gradient direction and for unit concentration gradient. In three dimensions this may be written

$$
\frac{\partial n}{\partial t}=-D g \min
$$

where $n$ is the particle concentration.
By kinetic theory, $D=\overline{L c} / 3$ where $L$ is electron free path and $c$ is electron velocity (Huxley 1960).
2.2. DRIFI VELOCITY.

When an electron exists in a region between two parallel plates together with gas molecules and an electric field is applied, the electron receives energy and begins to collide with the gas molecules. Most of its motion is in random directions but it also has a relatively
small velocity in the field direction. This velocity is known as the 'drift velocity'. i.e. drift velocity $W$, is given by

$$
W=\frac{\text { ga. length }}{\text { electron transit time }}
$$

Kinetic theory gives $W$ in terms of microscopic parameters as

$$
W=\frac{E e}{3 m} \cdot \overline{c^{-2}} \frac{d}{d c}\left(L c^{2}\right) \quad \text { (Huxley 1960) }
$$

Electron mobility is defined as drift velocity per unit electric field. i.e. $\mu=W / E$.
2.3. TOWNSEND'S ENERGY FACTOR AND MEAN ENERGY.

The ratio of drift velocity and diffusion coefficient in terms of microscopic parameters (Huxley 1960) is written

$$
\begin{aligned}
\frac{W}{D} & =\frac{E e}{m} \cdot \overline{c^{-2}} \frac{d}{d c}\left(L c^{2}\right) \cdot \frac{1}{\overline{L c}} \\
& =\frac{3}{2} \cdot-\frac{E e}{1 / m o^{2}} \quad \text { (for a Maxwellian distribution) } \\
& =\frac{3}{2} \cdot \frac{E e}{\bar{u}}, \text { where } \vec{u} \text { is the mean electron anergy. }
\end{aligned}
$$

A more convenient form is $D^{\prime} \mu=\frac{2}{3} \bar{u}$.
When positive or negative ions diffuse and drift through a gas at low $E / p$ they remain in thermal equilibrium with the gas molecules and it may be written

$$
\bar{u}=1 / 2 \overline{m c}^{2}=\frac{3}{2} \mathrm{kT}
$$

where $k=$ Boltzmann's constant, $T=$ gas temperature (absolute)
= ion temperature.

When electrons drift through a gas, in general their energies are higher than those of the gas molecules and Townsend introduced an energy factor, $k_{11}$, which is defined as the number of times that electron mean energy is greater than thermal energy,

$$
\begin{align*}
& \text { i.e. } \vec{u}=k_{T}(3 / 2 \mathrm{kT}) \text {, } \\
& \text { and } D / \mu=k_{T}(\mathrm{kT} / \mathrm{e}) \text {. }
\end{align*}
$$

From (2), $k_{T}=D / \mu \times$ constant, for a fixed temperature. The values of the constant are 40.3 at $15^{\circ} \mathrm{C} ., 39.6$ at $20^{\circ} \mathrm{c} .$, ard.. 39.0 at $25^{\circ} \mathrm{C}$., when the units of $\mathrm{D} / \mu$ are electron-volts.
(2) is derived from (1) assuming a Maxwellian velocity distribution. If a Druyvesteyn distribution is assumed, (2) becomes

$$
\mathrm{D} / \mu=1.14 \mathrm{k}_{\mathrm{T}}(\mathrm{kT} / \mathrm{e}) .
$$

2.4. OTHER PARAMETERS OF ELECTRON COLLISIONS.

Once $D / \mu$ values have been obtained, a knowledge of drift velocity, $W$, either from other workers' results or from a magnetic deflection experiment on the swarm, uncovers a variety of information (Huxley and Zaazou 1949).

The root mean square electron velocity is given immediately by

$$
\bar{c}=7.24 \times 10^{7}(\mathrm{D} / \mu)^{1 / 2} \mathrm{~cm} / \mathrm{sec} \quad \text { (Maxwell) }
$$

where $0 / \mu$ is in electron-volts,

$$
\text { or } \bar{c}=6.30 \times 10^{7}(\mathrm{D} / \mu)^{1 / 2} \mathrm{~cm} / \mathrm{sec} \text { (Druyvesteyn). }
$$

The mean free path at unit pressure ( $1 \mathrm{~mm} . \mathrm{Hg}$. ) is given by

$$
\begin{aligned}
& L=4.41 \times 10^{-8} \frac{W(D / \mu)^{1 / 2}}{E / p} \mathrm{~cm} \quad \text { (Maxwell) } \\
& L=4.59 \times 10^{-8} \frac{W(D / \mu)^{1 / 2}}{E / p} \mathrm{~cm} \quad \text { (Druyvesteyn). }
\end{aligned}
$$

The mean proportion of energy last by an electron per collision is given by

$$
\begin{array}{ll}
f=4.51 \times 10^{-16} w^{2} /(D / \mu) & \text { (Maxwell) } \\
f=4.23 \times 10^{-16} w^{2} /(D / \mu) & \text { (Druyvesteyn). }
\end{array}
$$

The above equations assume a gas temperature of $20^{\circ} \mathrm{C}$.
2.5. RELATION BETVEEN DETFT VELOCITY AND DIFFUSION COEFFICIENT.

If a stream of electrons enters a parallel plate gap through a small hole in the cathode, then the electrons, under the influence of an electric field, drift and diffuse through the gap until they are collected by the anode. Between collisions, an electron will sain energy from the electric field, and at a collision it will lose a small proportion of its energy to the gas molecule concerned. Equilibrium is established between these two processes, and the electrons in the swarm attain a characteristic mean energy. The spreading of the electron stream is due the thectron diffusion, and since the time during which this process is acting is inversely proportional to the draft velocity $W$, then the radial concentration
distribution of the electrons at the anode (the only plane of interest) is dependent on the ratio, W/D.

Thus $W / D$, or $\lambda(=W / 2 D)$ as $1 . s$ commonly used in the literature, is a direct measure of the spread of the electron stream (and indirectly a measure of the electron mean energy).

### 2.6. THE DIFFUSION EQUATION.

The diffusion equation, representing electron movement through a gas, in its simplest form may be formulated by considering the electron currents passing through the two planes, $z$ and $z+d z$. The electrons are assumed to have a fixed energy distribution. Considering firstly the currents due to electrondrift, the number passing through unit area of the $z$ plane in unit time is $n W$, and the corresponding number through the $z+d z$ plane is $n W+\frac{d}{d z}(n W) d z$. Similarly the diffusion currents are, through the $z$ plane, $-D \mathrm{~d} / \mathrm{dz}$, and through the $z+d z$ plane, $-D \frac{d n}{d z}-\frac{d}{d z}\left[\frac{D d n}{d z}\right] d z$.

There can be no accumulation of particles between the planes so that, equating the number passing through each plane,

$$
\begin{aligned}
& n W-\frac{D d n}{d z}=n W+\frac{d}{d z}(n W) d z-D \frac{d n}{d z}-\frac{d}{d z}\left[\frac{D d n}{d z}\right] d z \\
& \text { or, } \quad \frac{d^{2} n}{d z^{2}}=\frac{W}{D} \frac{d n}{d z} .
\end{aligned}
$$

This is the diffusion equation in one dimension. Extension of the above to three dimensions (remembering that drift is only in the
$z$ direction and diffusion is 3-dimensional) yields the equation

$$
\begin{align*}
& \quad \frac{\partial^{2} n}{\partial x^{2}}+\frac{\partial^{2} n}{\partial y^{2}}+\frac{\partial^{2} n}{\partial z^{2}}=\frac{W}{D} \frac{\partial n}{\partial z} \\
& \text { or, } \quad \nabla^{2} n=\frac{W}{D} \frac{\partial n}{\partial z}=2 \lambda \frac{\partial n}{\partial z} . \tag{3}
\end{align*}
$$

It remains to solve this equation for the usual form of discharge gap for diffusion studies. That is, a gap consisting of circular parallel plane electrodes with the electron current entering through an aperture at the cathode centre and being collected by an anode composed of concentric circular annuli. The gap may be surrounded by a series of uniformly spaced guard rings.
2.7. TOWNSEND'S SOLUTION (1915) OF THE DIFHUSION EQUATIUN

## IN CYLINDRICAL COORDINATES.

Consider a parallel plate gap, length $d$, with metal walls at a radius $b$ from the axis of the gap, the axis passing through the centre of an aperture in the cathode. Suppose this aperture to be of radius $a$, and its centre to be the origin of the cylindrical coordinate system.

The diffusion equation (3) of the last section in cylindrical coordinate is

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left[r \frac{\partial n}{\partial r}\right]+\frac{\partial^{2} n}{\partial z^{2}}=2 \lambda \frac{\partial n}{\partial z} \tag{4}
\end{equation*}
$$

where $\lambda=W / 2 D$.

Let $n=\phi_{e}{ }^{-u z}$; where $\phi=\phi(r, z)$ and $u=u(r)$. Then (4) becomes
where $u=-\lambda \pm\left(\lambda^{2}+\theta^{2}\right)^{1 / 2}$.


This is Bessel's equation of order zero, and its solution is written

$$
\phi=A J_{0}\left(\theta_{r}\right)+B Y_{0}(\theta r)
$$

where $A$ and $B$ are arbitrary constants. Since $n$ and taus $\phi$ must be finite at $r=0$, then $B=0$, and a particular solution for the electron concentration $n$ may be written, $\quad n=A J_{0}\left(\theta_{r}\right) e^{-u z}$. Summing all possible solutions gives a general solution

$$
n=\sum_{s=1}^{\infty} A_{s} J_{0}\left(\theta_{s} r\right) \exp \left(-u_{s} z\right)
$$

The unknown constants $A_{s}$ and $\theta_{s}$ are found by making the above equation satisfy the boundary conditions. These are (according to Townsend):
(i) $n$ is zero at the walls,

$$
\text { i.e. } n=0 \text { for } r=b, \text { all } z
$$

(ii) n is constant across the cathode aperture and zero over the rest of the cathode,

$$
\begin{array}{ll}
\text { i.e. } & n=n_{0} \text { for } 0 \leq r \leq a, z=0 \\
\text { and } n=0 \text { for } a<r \leq b, z=0 .
\end{array}
$$

Condition (i) is satisfied by taking $J\left(\theta_{s} b\right)=0$. ie. the $\theta_{s} b$, which are always positive, are roots of the equation $J_{0}(x)=0$. The corresponding values of $u_{s}$ are given from (5) by $u_{s}=\left(\lambda^{2}+\theta_{s}^{2}\right)^{1 / 2}-\lambda$
the positive root of the quadratic equation being taken so that $n$ remains finite as $z \rightarrow \infty$.

Condition (ii) gives the values for $A_{s}$. Putting $z=0$, multiplying both sides of $(6)$ by $J_{0}\left(\theta_{s} r\right) r d r$ and integrating from $r=0$ to $r=b, A_{s}$ is giver by

$$
\int_{0}^{b} r J_{0}\left(\theta_{s} r\right) r d r=A_{s} \int_{0}^{b} J_{o}^{2}\left(\theta_{s} r\right) r d r
$$

Use is made of the relation

$$
\begin{aligned}
\int_{0}^{b} J_{0}\left(\theta_{m} r\right) J_{0}\left(\theta_{n} r\right) r d r & =0, \quad m \neq n \\
& =\frac{b^{2}}{2} J_{1}^{2}\left(\theta_{m} b\right), \quad m=n
\end{aligned}
$$

when $\theta_{m} b$ and $\theta_{n} b$ are roots of $J_{0}(x)=0$. Simplifying the right hand side now gives

$$
\frac{n_{o}}{\theta_{s}} J_{1}\left(\theta_{s} a\right)=A_{s} \frac{b^{2}}{2} J_{1}^{2}\left(\theta_{s} b\right)
$$

where $J_{1}(x)$ is a Bessel function of the first kind. Thus,

$$
A_{s}=\frac{2 a n_{0}}{\theta_{s} b^{2}} \frac{J_{1}\left(\theta_{s} a\right)}{J_{1}^{2}\left(\theta_{s} b\right)}
$$

and the spatial electron concentration satisfying the boundary conditions (i) and (ii) and the diffusion equation is given by

$$
n=\sum_{s=1}^{\infty} \frac{2 a n}{b_{0}} \frac{J_{1}\left(\theta_{s} a\right)}{\theta_{s} j_{1}^{2}\left(\theta_{s} b\right)} \quad J_{o}\left(\theta_{s} r\right) \cdot \exp \left(-u_{s} z\right)
$$

The ratio, $R$, of current collected by an anode area of radius $F$ to that collected by an area of radius $q$ is found by integrating $n$ over the anode surface.

$$
\begin{aligned}
& \text { ide. } \quad R=\frac{\int_{0}^{p} 2 \pi r n d r}{\int_{0}^{q} 2 \pi r n d r} \text {. } \\
& \frac{\sum_{s=1}^{\infty} \frac{J_{1}\left(\theta_{s} a\right)}{\theta_{s}{ }^{2} J_{1}{ }^{2}\left(\theta_{s} b\right)} J_{1}\left(\theta_{s} p\right) p \exp (-u s d)}{\sum_{s=1}^{\infty} \frac{J_{1}\left(\theta_{s} a\right)}{\theta_{s}{ }^{2} J_{1}{ }^{2}\left(\theta_{s} b\right)} J_{1}\left(\theta_{s} q\right) q \exp \left(-u_{s} d\right)}
\end{aligned}
$$

Townsend, in his original apparatus, made the centre collecting disc and the cathode aperture the same diameter ( 0.75 cm , compared with a gap length of 7 cm ). This facilitates computation.
2.8. HUXLEY'S SOLUTION (1959) OF THE DIFFUSION EQUATION.

If in the diffusion equation (3)

$$
\nabla^{2} n=2 \lambda \frac{\partial n}{\partial z}
$$

it is written

$$
\mathrm{n}=\mathrm{V} e^{\lambda z}
$$

then the equation satisfied by $V$ is

$$
\nabla^{2} v=\lambda^{2} v
$$

This equation is similar to an equation in wave-propagation theory, and its solution may be represented as a simple pole source,
i.e. $\quad V=$ constant $\times e^{-\lambda r} / r$,
where, in this case, $r$ is the distance from the source.
The solution of the diffusion equation for electron concentration (Huxley 1940, 1959) is obtained by placing a positive electron source at the centre of the cathode. The walls are assumed to be at a large distance from the axis of the discharge gap. In order to satisfy the anode boundary condition of zero concentration over its surface ( $z=d$ ), a negative image source at $z=2 d$ of suitable strength is added. The equation for $n$ then becomes

$$
n=A e^{\lambda} z\left(e^{-\lambda r} / r-e^{-\lambda r^{\prime} / r^{\prime}}\right)
$$

where $r^{\prime}$ is the distance measured from the negative image source. At the anode $r=r^{\prime}$, and $n=0$. The currents at the anode will be diffusion currents, and the anode current distribution is found by making the integral

$$
i=\int \frac{\partial n}{\partial z} \rho d \rho,
$$

over the anode surface.
The current to a disc of radius $\rho$ from tho anode centre is then given by

$$
i=i_{0}\left(1-\frac{d}{r} e^{\lambda(\alpha-r)}\right)
$$

where $r^{2}=\rho^{2}+d^{2}$.
The ratio $R$ of the current to radius $\rho$ to the total current collected by the anode is thus giver by

$$
\begin{equation*}
R=1-\frac{d}{r} e^{\lambda(d-r)} . \tag{9}
\end{equation*}
$$

### 2.9. EQUIVALENCD OF TOWNEEND'S AND HUXLEY'S SOLUTION.

The analysis of the two previous sections (2.7 and 2.8) shows that the solution of the diffusion equation may be obtained in two dissimilar ways. Each solution satisfies only one electrode boundary condition, the anode in Townsend's solution and the cathode in Huxley's solution. The analysis given below shows the two solutions to be, in fact, identical. This is a satisfying result not previously appreciated by other workers in this field.

Townsend's solution for the electron concentration at the anode is

$$
n=\sum_{s=1}^{\infty} \frac{2 a n_{o}}{b^{2}} \frac{J_{1}\left(\theta_{s} a\right)}{\theta_{s} J_{1}^{2}\left(\theta_{s} b\right)} J_{o}\left(\theta_{s} r\right) e^{-u_{s} d}
$$

where $u_{s}=\left(\lambda^{2}+\theta_{s}^{2}\right)^{1 / 2}-\lambda$, and $J_{o}\left(\theta_{s} b\right)=0$.
It is desired to simplify this solution for a point source and infinite walls i.e. $a \rightarrow 0, b \rightarrow \infty$. As $b \rightarrow \infty, \theta_{s} \rightarrow 0, u_{s} \rightarrow 0$, and $J_{0}\left(\theta_{s} r\right) \rightarrow 1$. At sal $s$, the terms in the above series tend to zero. The terms only become significant when $\theta_{S}$ is large enough to make $J_{l}\left(\theta_{s} b\right)$ small. Thus only the later terms in the series need be considered.

$$
\begin{gathered}
\text { As } a \rightarrow 0, J_{1}\left(\theta_{s} a\right) \rightarrow \frac{\theta_{s}}{2} \text { and the concentration becomes } \\
n=\sum_{s=1}^{\infty} \frac{a^{2} n_{0}}{b^{2}} \frac{J_{0}\left(\theta_{s} r\right)}{J_{1}{ }^{2}\left(\theta_{s} b\right)} e^{-u_{s} d}
\end{gathered}
$$

When $s$ is large, $J_{1}^{2}\left(\theta_{s} b\right) \simeq 2 / \pi \theta_{s} b$. In the limit, the above series may be written as an infinite integral,

$$
\text { i.e. } n=\int_{0}^{\infty} \frac{a^{2} n_{o}}{b} \theta_{s} J_{o}\left(\theta_{s} r\right) e^{\left[\lambda-\left(\lambda^{2}+\theta_{s}^{2}\right)^{1 / 2}\right]} d d \theta_{s}
$$

The total current, I, to a ring of radius $r$ is found by multiplying by the drift velocity $W$ and interratin; over the anode surface. The total current at the pinole is given by

$$
\begin{gathered}
i_{0}=n_{0} w \pi_{a^{2}}^{2} . \\
\frac{d}{d \lambda}\left[\frac{I}{e^{\lambda \alpha}}\right]=\int_{0}^{r} \int_{0}^{r} \int_{0}^{\infty} i_{0} \theta_{s} r J_{0}\left(\theta_{s} r\right) e^{-\left(\lambda^{2}+\theta_{s}^{2} J_{0}\left(\theta_{s} r\right)\right.} \frac{\lambda d e^{-\left(\lambda^{2}+\theta_{s}^{2}\right)^{1 / 2} d}}{\left(\lambda^{2}+\theta_{s}^{2}\right)^{1 / 2}} d r . \\
\end{gathered}
$$

Use is now made of a standard solution

$$
\text { i.e. } \begin{aligned}
\int_{0}^{\infty} J_{0}\left(\theta_{s} r\right) \frac{\theta_{s} e^{-\left(\lambda^{2}\right.}+\theta_{s}^{2 y^{\prime / 2}} d}{\left(\lambda^{2}+\theta_{s}^{2}\right)^{1 / 2}} & =\frac{e^{-\lambda\left(r^{2}+a^{2}\right)^{1 / 2}}}{\left(r^{2}+a^{2}\right)^{1 / 2}} \\
& =e^{-\lambda R^{\prime} / R^{\prime}}
\end{aligned}
$$

where $k^{\prime}=\left(r^{2}+x^{2}\right)^{1 / 2}$.
This formula was widely used by A. Sommerfeld and is often called the Sommerfeld relation. Then,

$$
\begin{aligned}
\frac{d}{d \lambda}\left[\frac{I}{d e^{\lambda d}}\right] & =\int_{0}^{r} i_{0} r \lambda \frac{e^{-\lambda} \theta^{\prime}}{\theta^{R}} d r \\
& =i_{0}\left[-e^{-\lambda R^{\prime}}\right]_{0}^{r} \\
& =i_{0}\left(e^{-\lambda d}-e^{-\lambda R^{\prime}}\right) .
\end{aligned}
$$

Integrating with respect to $\lambda$,

$$
\begin{equation*}
I=i_{0}\left(1-\frac{d}{R^{\prime}} e^{\lambda\left(d-R^{\prime}\right)}\right) . \tag{1.0}
\end{equation*}
$$

This is Huxley's solution (equation (3)) relating the current received by a disc of radius $r$ to the total current received by the anode

### 2.10. MODIFICATTONS OR HUKLEY'S SOLUTION.

Althoufh the Townsend and Huxley solutions seem correct experimentally, they do not satisfy the electrode boundary conditions exactly. Other workers have attempted to obtain exact solutions.

It is possible to obtain Huxley's relationshiy (9) by a different procedure (Crom,ton and Jory 1962). Another solution to the diffusion equation is then

$$
n=A e^{\lambda z} \frac{z}{r} \frac{d}{d r}\left[\frac{e^{-\lambda r}}{r}\right]
$$

The current collected by the anode is taken to bo equal to the current passing through a plane at $z=d$. This procedure gives exactly Huxley's relation between ${ }^{i}$ and $\lambda$ but, in comon with Townsend's solution, it does not satisfy the anode boundary condition of $n=0$ over the anode surface. But, also li'ke Townsend's, it does satisfy the cathode boundary condition oí zero over the whole cathode surface, except at the eiectron source. fuxley's solution of the previous section results from a satisfied anode condition but an unsetisfied cathode condition.

Thus the curious situation arises whereby the same formul: results from satisf ins independently the two boundary. conditions. When the two are satisfied cogether the formula obtained is

$$
R=1-\left[\frac{3}{r}-\frac{1}{\lambda d}+\frac{d}{r^{2} \lambda}\right] \frac{d}{r} \operatorname{ext}(\lambda(\alpha-r)) .
$$

Over larse experime..tal repions this formala yields the same results (within experimental error) as Huxley's formala, but at low Ad and at relatively large distances from the axis (i.e. siall $d / r$ )
there are discrepancies. Huxley and Crompton (1955) and Crompton and Jory (1962) have show r empirically however that the so-called approximate solution

$$
\mathrm{K}=1-\frac{\mathrm{d}}{\mathrm{r}} \mathrm{e}^{\lambda(\alpha-r)}
$$

is the more correct solution, whilst the solution satisfying? both boundary conditions does not explain experimental results over an adequate range.

Lawson and Lucas (1965) succeeded in solving the diffusion equation and both boundary conditions by considering the timeresolved equation in the presence of primary ionization,

$$
\text { i.t. } \quad \frac{1}{D} \frac{\partial r_{n}}{\partial t}=\nabla^{2} n-\frac{\mu E}{D} \frac{\partial n}{\partial z}+\alpha \mu \frac{E}{D} n
$$

where the field acts in the $z$ direction.
A set of image charges are considered, of strengths is , velocities $v_{s}$ and positions $d_{s}$ (Lucas 19.4). These values are chosen specifically to satisfy the anode and cathode boundary conditions. The time-resolved electron concentration is then given by

$$
(x, y, z, t)=\sum_{s=1}^{\infty} \frac{n_{s} e^{\alpha v t}}{(4 \pi D t)^{3 / 2}} \quad \exp -\left\{\frac{x^{2}+y^{2}+\left(z-a_{s}-v_{s} t\right)}{+D t}\right\}
$$

the total rumour of electrons collected by an anode disc of radius $b$ is

$$
N(u, b)=\int_{0}^{\infty} \int_{0}^{b}\left\{e(n w)-e D \frac{\partial n}{\partial z}\right\} 2 \pi p d \rho d t
$$

where

$$
p=\left(x^{2}+y^{2}\right)^{1 / 2} \text { and } w=\mu E .
$$

Integrating,

$$
\begin{aligned}
1-I_{1} & =1-N(d, b) / i(d, \infty) \\
& =e^{-u(r-\alpha)}\left\{\frac{1 / r+(\lambda / u-d / r) e^{-2 \lambda \alpha}+\ldots . .}{1+(\lambda / u-1) e^{-2 \lambda d}+\ldots}\right\}
\end{aligned}
$$

where $\lambda=\mu E / 2 D, u^{2}=\lambda^{2}-2 \alpha \lambda$ and $r=\left(a^{2}+b^{2}\right)^{1 / 2}$. When $\lambda d>2$, the equation reduces to

$$
\begin{equation*}
I-R=\frac{d}{r} e^{-(r-d) u} \tag{11}
\end{equation*}
$$

Equation (11) above snows that an experimental determination of $R$ will give a value for $u$, but the coefficient $\lambda$ is required to find values of $D / \mu$. In the absence of primary ionization, $u=\lambda$, and (II) reduces to huxley's equation, (9). When ionization is present $u \neq \lambda$, but the term $(\lambda-u)$ can be determined by measuring the variation of the current amplification $h^{\prime}(z)$ with electrode separation $z$ (Huxiej 2959, Lucas 1964). In this case

$$
\lambda-u=\frac{1}{a} \operatorname{los}_{e}\left[\frac{A(x+a)}{A(x)}\right]
$$

and

$$
\begin{equation*}
\frac{E}{\mu}=2\left[\frac{E}{[u+(\lambda-u)]}\right. \tag{12}
\end{equation*}
$$

In all the above equations it has been assumed that no current is lost to the walls of the diffusion gap. Comparing ratios found from Townsend's and Huxley's solutions it may be shown that the current collected by a wall, even at quite a small distance from the outer collector, is small except at low values of $\lambda$. Fig. 12 shows the magnitude of this effect.
2.11. PARKER'S CONCENTRATIUN DISIEIBITION.

Parker (1963) has shown theoretically, that the accepted distruution of electron concentration at the collecting anode is incorrect. He arrives at this postulation by considering exactly the terms in the Boltzmann transport equation involving spatial derivatives of the electron distribution. These terms are normally neglected, the electron energy distribution being taken to be position independent. The concentration distribution at the anode is then given by

$$
{ }^{2} \text { approx }=(1+x)^{-1 / 2} \exp \left\{-\lambda a\left[(1+x)^{1 / 2}-1\right]\right\},
$$

where $x=b^{2} / z^{2},(b=$ distance from anode centre, $z=$ field direction) . The position dependent distribution as riven by Parker is

$$
n_{\text {exact }}=(1+x / 4)^{-3 / 2} \exp (-\lambda d x / 2)
$$

This expression has been integrated over the anode surface to find the current distribution.

The ratio, $R$, of currents to a central ring of radius $b$, and an annulus of inner and outer radii $b_{1}$ and $b_{2}$ is given by

$$
\begin{equation*}
R=\frac{f_{0}-i_{1}}{f_{1}-i f_{2}}, \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
& f_{0}=\frac{1}{k}-\frac{0.375}{2}+\frac{0.234}{k^{3}}-\frac{0.204}{k^{4}}+\cdots \cdot \\
& f_{1,2}=e^{-p}\left[\frac{1}{k}-0.37 \frac{5(p+1)}{k^{2}}+0.117 \frac{\left(p^{2}+2 p+2\right)}{k^{3}}-0.034 \frac{\left(p^{3}+3 p^{2}+5 p+6\right)}{k^{4}}\right. \\
& +\cdots \cdots]
\end{aligned}
$$

$$
k=\lambda d / 2, \text { and } p\left(b_{1}, b_{2}\right)=k b^{2} / z^{2}=k x
$$

UTAPTER 3. CLUSURGTOLIFUZOSTHORY.

The diffusion equation has been extended to cover the cases when electron attachment and serondary ionization by photons at the cathode are present. A fnowledge oi the quantitative effects of secondary ionization will enable further gases to be investigated and the range of $E / p$ to be extended to include higher values. Thotons may travel -hroush a gas in two ways, as resonance radiation or as non-rescnance radiation. Both have been considered in the tollowing analusis.

## 3.2. $L F E T S I O N$ IN THE FRESENOE UF E GOURON ATUACHMENT.

Huxley (195) has given an account of a theoretical investization of a stream of electrons and ions drifting and diffusing in a gas when ionization by collision and electron attachment are prestnt. Iis solution contains definite integrals and does not lend itseif to rapid calculation, everi with the use of a computer.

H simplified solution, following from Townsend's ivlution and amenate to quick calculation, is given below.

A steady state is assumed a nd the electron and nerative and positive ion currents will be calculated separiatel $j$.
(a) Electrn ourcent.

The spatial electron concentration $n_{e}(x, y, z)$ for electrons
drifting and diffusing under the action of a uniform electric field (direction $z$ ) is found from solving the basic diffusion equation

$$
\begin{equation*}
\frac{\partial n_{e}}{\partial z}=(\alpha-\eta) n_{e}-\frac{D_{e} \nabla^{2} n_{e}}{\mu_{e} E} \tag{14}
\end{equation*}
$$

where $\quad \alpha=$ primary ionization coefficient,

$$
\eta=\text { attachment coefficient }
$$

and $\mu_{e}=$ electron mobility.
The solution of (14) has been given by Lucas (1965). It assumes point emission of electrons from the centre of the cathode and zero electron concentration at the electrodes $(z=0$ and $z=d)$ and at the walls $(r=b)$ : the sum of three sources is sufficient when $\lambda d>2$, giving

$$
\begin{array}{r}
n_{e}(z, r)=\sum_{s=1}^{\infty} A_{s} J_{0}\left(\theta_{s} r\right)\left\{\exp \left(\lambda-u_{s}\right)_{z}-\exp \left[\left(\lambda+u_{s}\right) z-2 u_{s} d\right]\right.  \tag{15}\\
\left.-\exp \left[-\left(\lambda+u_{s}\right) z\right]\right\}
\end{array}
$$

where

$$
\begin{aligned}
& A_{s}=\frac{j_{0}}{2 \pi \mu_{e} E} \frac{2}{b^{2} J_{1}^{2}\left(\theta_{s} b\right)} \frac{u}{u_{s}} \\
& u^{2}=\lambda^{2}-2(\alpha-\eta) \lambda^{2} \\
& u_{s}^{2}=\lambda^{2}-2(\alpha-\eta) \lambda^{2}+\theta_{s}^{2} \\
& \lambda=\frac{\mu_{e}}{2 D_{e}}, \text { and } J_{o}\left(\theta_{s} b\right)=0
\end{aligned}
$$

The electron current density at any point is then given by the
vector equation

$$
\begin{equation*}
{\underset{\sim}{e}}^{e}(x, r)={\underset{\sim}{e}}_{z}+j_{e r} \tag{16}
\end{equation*}
$$

(i) Axial electron current at anode.

The current to a radius $r$ at the anode is giver by

$$
J_{e z}(d, r)=\int_{0}^{r} j_{e z}(d, r) 2 \pi r d r
$$

Now

$$
j_{e z}=n_{e} \mu_{e} e-D_{e} \frac{\partial n_{e}}{\partial z}
$$

and substitution from (15) gives

$$
J_{e z}(d, r)=\sum_{s=1}^{\infty} 2 \pi \mu_{e} E_{A_{s}}{\underset{\theta}{\theta_{s}}} J_{1}\left(\theta_{s} r\right) \frac{u_{s}}{\lambda} \exp \left(\lambda-u_{s}\right) d \quad-\infty(17)
$$

for $\lambda d>2$.
(ii) Axial electron current at cathode.

This current may be written as an expansion of Bessel functions

$$
\begin{equation*}
j_{0}=J_{e Z}(0, r)=\sum_{s=1}^{\infty} 2 \pi \mu_{e}^{E A_{s}} \frac{r}{\theta_{s}} J_{1}\left(\theta_{s} r\right) \tag{18}
\end{equation*}
$$

(iii) Total radial electron current to walls.

The total wall current is written

$$
J_{e r}(d, r)=\int_{0}^{d} j_{e r} 2 \pi b d z
$$

Making use of $j_{e r}=D_{e} \frac{\partial n_{e}}{\partial r}$,
equation (15) gives

$$
\begin{equation*}
J_{e r}(d,: \because)=\sum_{s=1}^{\infty} 2 \pi \mu_{e} e_{s} \frac{r}{\theta_{s}} J_{1}\left(\theta_{s} r\right) \frac{\theta_{s}^{2}}{\lambda^{2}-u_{s}^{2}}\left\{\frac{u_{s}}{\lambda} e^{\left(\lambda-u_{s}\right) d}-1\right\} \tag{19}
\end{equation*}
$$

(b) Ion currents.

Equations (14) and (15) may be combined to give the electron current as

$$
\operatorname{div} j_{e}(z)=(\alpha-\eta) n_{e} \mu_{e} E
$$

Likewise similar equations may be ontained for the positive and negative ions,

$$
\operatorname{div} j_{+}(z)=\alpha n_{e} \mu_{e} E
$$

and

$$
\operatorname{div} j_{-}(z)=\eta_{e}^{r_{e}} \mu_{e} \mathbb{E} .
$$

These equations combine to rive

$$
\begin{equation*}
\operatorname{div}\left[\frac{j_{+}}{\alpha}-\frac{j_{-}}{\eta}\right]=0 \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{div}\left(j_{e}-j_{+}+j_{-}\right)=0 . \tag{21}
\end{equation*}
$$

Generally, ions have much lower energies than electrons i: the present experiments, and it is justified to assume that their diffusion in a radial direction is negligible. Applying Stokes' theorem to a region bounded by the walls, the anode and the cathode gives
$J_{e Z}(d, r)+J_{e r}(d, r)-J_{e Z}(0, r)+J_{-}(d, r)+J_{+}(0, r)=0$.


This condition gives the anode negative ion current and the cathode positive ion current in terms of the electron currents.

Frown equation (20),

$$
J_{-}(d, r)=-\frac{\eta}{\alpha} J_{+}(0, r) .
$$

Substitution into (22) gives

$$
J_{-}(\alpha, r) \frac{(\alpha-\eta)}{\eta}=J_{e z}(\alpha, r)+J_{e r}(d, r)-J_{e z}(0, r)
$$

and from equations (17) and (19),

$$
\begin{array}{rl}
J_{-}(d, r)=\frac{\eta}{\alpha-\eta} \sum_{s=1}^{\infty} 2 \pi \mu_{e} E A_{s} & r \\
\theta_{s} & J_{1}\left(\theta_{s} r\right) \cdot\left\{\left[\frac{u_{s}}{\lambda}\left[e^{\left(\lambda-u_{s}\right) d}\right]-1\right]\right. \\
& \left.+\frac{\theta_{s}^{2}}{\left(\lambda^{2}-u_{s}^{2}\right)}\left[\frac{u_{s}}{\lambda} e^{\left(\lambda-u_{s}\right)}-1\right]\right\}
\end{array}
$$

or

$$
J_{-}(d, r)=\sum_{s=1}^{\infty} 2 \pi \mu_{e}^{E A_{s}} \frac{r}{\theta_{s}} J_{1}\left(\theta_{s} r\right) \frac{2 \eta \alpha}{\left[2(\alpha-\eta)-\theta_{s}^{2}\right]}\left\{\frac{u_{s}}{\lambda} e^{\left(\lambda-u_{s}\right) \alpha_{-1}}\right\}
$$

$$
\begin{equation*}
J(d, r)=J_{e \mathbf{z}}(d, r)+J_{-}(d, r) \tag{24}
\end{equation*}
$$

Substituting the results of equations (17) and (23) into equation (24) gives

$$
\begin{align*}
J(d, r)= & \sum_{s=1}^{\infty} 2 \pi \mu_{e} E A_{s} \frac{r}{\theta_{s}} J_{l}\left(\theta_{s} r\right)\left\{\frac{u_{s}}{\lambda} e^{\left(\lambda-u_{s}\right) d}\right. \\
& \left.+\frac{2 \eta \lambda}{2(\alpha-\eta) \lambda-\theta_{s}^{2}}\left[\frac{u_{s}}{\lambda} e^{\left(\lambda-u_{s}\right) d}-1\right]\right\} \\
= & \sum_{s=1}^{\infty} \frac{2 j_{o} J_{1}\left(\theta_{s} r\right)}{b^{2} J_{1}^{2}\left(\theta_{s} b\right)} \frac{u}{u_{s}} \frac{r}{\theta_{s}}\left\{\frac{u_{s}}{\lambda} e^{\left(\lambda-u_{s}\right) d}\right. \\
& \left.+\frac{2 \eta \lambda}{2(\alpha-\eta) \lambda-\theta_{s}^{2}}\left[\frac{u_{s}}{\lambda} e^{\left(\lambda-u_{s}\right) d}-1\right]\right\} \tag{25}
\end{align*}
$$

where

$$
\begin{aligned}
\lambda & =\mu_{e}^{E / 2 D_{e}}, \\
u_{s}^{2} & =\lambda^{2}-2(\alpha-\eta) \lambda+\theta_{s}^{2}, \\
u^{2} & =\lambda^{2}-2(\alpha-\eta) \lambda, \\
b & =\text { wall radius, }
\end{aligned}
$$

and $J_{o}\left(\theta_{s} b\right)=0$.
Thus the current distribution at the anode is given in the presence of primary ionization and electron attachment. If allowance is to be made for a finite diameter cathode aperture, then each term in the series is multiplied by a factor, $2 J_{1}\left(\theta_{s} a\right) / \theta_{s}$ a, where $a=$ aperture radius. This assumes a constant electron concentration over the cathode aperture.
3.2. RESONANCE RaDIATION.

When electrons drift through a gas they will be continuously colliding with gas molecules. Occasionally an electron in collision with a gas molecule will excite one of the atoms of the molecule and radiation will be emitted of a frequency appropriate to the difierence in electron energy levels between the excited state and the ground state in the particular atom concerned. The emitted radiation travels through the gas in a random direction before contactins another molecule, and again excites one of its atoms before re-einittinc. Thus the resonance radiation process consists of a continual euission and absorption of radiation by the gas molecules, and, by virtue of the random direction of emission, it may be considered as a diffusion process (Little 1959). The time taken for a photon to be absorbed and re-emit is of the order of $10^{-9}$ seconds, whilst the time spent between emission and ausorption may be neglected. In the present apparatus the photon transit time between electrodes is awout $10^{-5}$ seconds, so the absorption process occurs about $10^{4}$ tines in one transit.

The movement of resonance radiation, having been described as a diffusion process, may now be represented by a diffusion equation. If $n$ is the photon concentration and $D$ the photon diffusion coefficient, then

$$
\begin{equation*}
D \nabla^{2} n-n / \tau+\alpha_{p} v_{e} n_{e}=0, \tag{26}
\end{equation*}
$$

where $n / \tau$ represents the sum of the rate at which photons are lost
by absorption with foreign gases and impurities, and the rate at which the emitting atoms may be transferred to some other radiating state. $\alpha_{p}$ is the number of photons produced by electron collision per cm . electron travel in the field direction, and $v_{e}$ is electron drift velocity.

The electron concentration $n_{e}$ is given by equation (15),

$$
\begin{equation*}
\text { i.e. } \quad n_{e}=\sum_{s} A_{s} J_{0}\left(\theta_{s} r\right) e^{\left(\lambda-u_{s}\right) z} \text {. } \tag{27}
\end{equation*}
$$

When resonance radiation is present photons are emitted which may liberate electrons from the cathode surface. Townsend determined the $A_{s}$ of the above equation by consideration of the relevant cathode boundary condition. In the present case the cathode boundary condition is modified and to avoid confusion, $B_{S}$ will be used instead of $A_{s}$.

Substitution for $n_{e}$ into equation (26) gives

$$
\begin{equation*}
D \nabla^{2} n-n / \tau=-\sum_{s} \alpha_{p} v_{e} B_{s} J_{0}\left(\theta_{s} r\right) e^{\left(\lambda-u_{s}\right)_{z}} \tag{28}
\end{equation*}
$$

Let the photon concentration be written as a series solution,

$$
n=\sum_{s} f_{s}(z) J_{0}\left(\theta_{s} r\right)
$$

Substitution into equation (2) gives the relation

$$
D \frac{d^{2} f_{s}}{d z^{2}}-\theta_{s}^{2} f_{s}-\frac{f_{s}}{\tau}=-\alpha_{p} v_{e_{s}} e^{\left(\lambda-u_{s}\right) z}
$$

or $\frac{d^{2} f_{s}}{d z^{2}}-\left[\frac{1}{D \tau}+\theta_{s}^{2}\right] f_{s}=\frac{-\alpha_{p} v_{e} B_{s}}{D} e^{\left(\lambda-u_{s}\right)_{z}}$.

This is a linear 2nd-order differential equation and may be solved by observing that $l / D \tau=h^{2}$, where $h=$ photon absorption coefficient $=$ fractional number of photons absorbed / cm.path/photon, and letting $h_{s}^{2}=h^{2}+\theta_{s}^{2}$. Its solution is

$$
f_{s}=X_{s} \exp \left(h_{s} z\right)+Y_{s} \exp \left(-h_{s} z\right)-\frac{\alpha_{p} v_{e} B_{s}}{D} \frac{e^{\left(\lambda-u_{s}\right) z}}{\left(\lambda-u_{s}\right)^{2}-h_{s}}{ }^{2}
$$

where the $X_{s}$ and $Y_{s}$ are unknown constants. The photon concentration is then given by

$$
\begin{equation*}
n=\sum_{s}\left\{x_{s} \exp \left(h_{s} z\right)+Y_{s} \exp \left(-h_{s} z\right)-c_{s} e^{\left(\lambda-u_{s}\right) z}\right\} J_{0}\left(\theta_{s} r\right) \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{s}=\frac{\alpha_{p} v_{e} B_{s}}{D} \frac{1}{\left(\lambda-u_{s}\right)^{2}-h_{s}^{2}} \tag{32}
\end{equation*}
$$

$X_{S}$ and $Y_{S}$ are determined from the boundary conditions of zero concentration at the electrodes. The cathode boundary condition gives

$$
X_{s}+y_{s}=C_{s},
$$

and the anode boundary condition

$$
X_{s} \exp \left(h_{s} d\right)+Y_{s} \exp \left(-h_{s} d\right)=C_{s} e^{\left(\lambda-u_{s}\right) d} .
$$

$X_{S}$ and $Y_{s}$ are then

$$
\begin{equation*}
x_{s}=C_{s} \frac{\left(e^{\left(\lambda-u_{s}\right) d}-\exp \left(-h_{s} d\right)\right)}{\left(\exp \left(h_{s} d\right)-\exp \left(-h_{s} d\right)\right)} \tag{33}
\end{equation*}
$$

$$
Y_{s}=-u_{s} \frac{\left(e^{\left(\lambda-u_{s}\right) d}-\exp \left(h_{s} d\right)\right)}{\left(\exp \left(h_{s} d\right)-\exp \left(-h_{s} d\right)\right.}
$$

The constants $B_{s}$ are found from consideration of the electron currents at the cathode.

The photon current density, $j_{p}$, at the cathode is written

$$
\begin{align*}
& j_{p}=+D\left[\frac{\partial n}{\partial z}\right]_{z=0} \\
&= D \sum_{s}\left[h_{s}\left(x_{s}-Y_{s}\right)-c_{s}\left(\lambda-u_{s}\right)\right] J_{0}\left(\theta_{s} r\right) \\
&=D \sum_{s} c_{s}\left\{\frac{2 h_{s}\left(\lambda-u_{s}\right) d-\exp \left(-h_{s} d\right)-\exp \left(h_{s} d\right)}{\exp \left(h_{s} d\right)-\exp \left(-h_{s} d\right)}-\left(\lambda-u_{s}\right)\right\} J_{0}\left(\theta_{s} r\right) \\
&=D \sum_{s} C_{s}\left\{\frac{h_{s} e^{\left(\lambda-u_{s}\right) d}-\cosh \left(h_{s} d\right)}{\sinh \left(h_{s} d\right)}-\lambda+u_{s}\right\} J_{0}\left(\theta_{s} r\right)-(35) \tag{35}
\end{align*}
$$

The photon current to a region radius $r$ of the cathode is written

$$
J_{p}=\int_{0}^{r} 2 \pi r j_{p} d r
$$

Integrating and substituting for $C_{s}$ from (32),

$$
\begin{align*}
J_{p} & =\sum_{s} \frac{2 \pi_{r}}{\theta_{s}} \frac{J_{1}\left(\theta_{s} r\right) \alpha_{p} v_{e} B_{s}}{\left(\lambda-u_{s}\right)^{2}-h_{s}^{2}} \frac{h_{s} e^{\left(\lambda-u_{s}\right) d}-\cosh \left(h_{s} d\right)}{\sinh \left(h_{s} d\right)}-\lambda+u_{s} \\
& =\sum_{s} \frac{2 \pi r}{\theta_{s}} J_{l}\left(\theta_{s} r\right) \alpha_{p} v_{e} B_{s} Q_{s} \tag{36}
\end{align*}
$$

letting $Q_{s}$ replace some of the expression. The above equation neglects
the effect of electrodes on the photon distribution. But from equations (15) and (17) it may be seen that if electrodes are allowed for, the gap length is effectively decreased from $d$ to ( $d-1 / \lambda$ ). The term ( $d-1 / \lambda$ ) may replace $d$ in the above expression for $Q_{s}$. Having found the photon current at the cathode, the $B_{s}$ are found by applying the equation

$$
\begin{equation*}
J_{e}(0)=j_{0}+\gamma_{p} J_{p}(0) \tag{37}
\end{equation*}
$$

i.e. total electron current at cathode $=$ electron current injected through pinhole + electron current due to photon bombardment of the cathode.

The total electron current at the cathode is (see equation (18))

$$
\begin{equation*}
J_{e}(0)=\sum_{s} \frac{2 \pi r}{\theta_{s}} J_{l}\left(\theta_{s} r\right) v_{e} B_{s}, \tag{38}
\end{equation*}
$$

and the current through the pinhole, $j_{0}$, is

$$
\begin{equation*}
j_{0}=\sum_{s} \frac{2 \pi_{r}}{\theta_{s}} J_{l}\left(\theta_{s} r\right) v_{e} A_{s} \tag{39}
\end{equation*}
$$

Substituting the results of equations (36), (38), (39) into equation (37), we get

$$
B_{s}=A_{s}+\alpha_{p} \gamma_{p} Q_{s} B_{s}
$$

so that

$$
B_{s}=\frac{A_{s}}{1-\alpha_{p} \gamma_{p} Q_{s}}
$$

It remains to substitute for $B_{s}$ (and $A_{s}$ ) in the equation for the eleotron current at the anode;

$$
\text { i.e. } J_{e}(d, r)=\sum_{s} \frac{2 \pi_{r}}{\theta_{s}} J_{l}\left(\theta_{s} r\right) v_{e} B_{s} \frac{u_{s}}{\lambda} e^{\left(\lambda-u_{s}\right) d} \text {. }
$$

Thus, the final expression for the anode current distribution is

$$
J_{e}(d, r)=\sum_{s=1}^{\infty} \frac{2 j_{0} J_{1}\left(\theta_{s} r\right)}{b^{2} J_{2}{ }^{2}\left(\theta_{s} b\right)} \frac{u}{\lambda} \frac{r}{\theta_{s}} \frac{e^{\left(\lambda-u_{s}\right) d}}{\left(1-\alpha_{p} \gamma_{p} Q_{s}\right)}
$$

where $\quad Q_{B}=\frac{1}{\left(\lambda-u_{s}\right)^{2}-h_{s}^{2}}\left\{\frac{h_{s} e^{\left(\lambda-u_{s}\right) d}-\cosh \left(h_{s} d\right)}{\sinh \left(h_{s} d\right)}-\lambda+u_{s}\right\} \cdot(40)$
As in the case of the distribution in the presence of attaohment, allowance may be made for a finite diameter cathode aperture. Each term in the above series is multiplied by a factor $2 J_{1}\left(\theta_{s} a\right) / \theta_{s} a$, where $a=$ aperture radius. Care must be taisen not to oalculate for too large an aperture, because allowance has not been made for photons falling on the aperture itself. These cannot liberate electrona.

### 3.3. NON-RESONANCE RADIATION.

A gas atom, after a collision with an electron, may become excited into a normal excited state and, after a further collision, pass into an adjacent 'metastable' state, Metastable atoms may have long lifetimes, of the order of $10^{-3}$ seconds, before they de-exite to the ground state. The de-excitation is accompanied by radiation emission
of a frequency corresponding to the difference in characteristic energies of the ground and metastable states. Atoms in the ground state canc be excited directly into a metastable state without first passing through a normal excited state; and the radiation emitted in the de-exoitation process is not of the correct frequency for raising atoms to normal excited states. The result is that emitted radiation, known as non-resonance radiation, enjoys a virtually uninterrupted path through the gas.

The emission of photons from a point source may be thought of as analogous to electric lines of force leaving a point charge. In each case the flux density obeys the same laws governing its intensity.

The equation governing voltage distribution is Laplace's equation

$$
\begin{equation*}
\nabla^{2} v=0 \tag{HI}
\end{equation*}
$$

whose general solution in cylindrical coordinates $(r, z)$, after separating the variables and solving two ordinary linear differential equations, may be written

$$
\begin{equation*}
V=\sum_{S} P_{s} J_{0}\left(\theta_{s}^{r}\right) \exp \left(-\theta_{s} z\right) \tag{42}
\end{equation*}
$$

where $P_{s}$ and $\theta_{S}$ are unknown constants.
If photon absorption is to be allowed for, the analogous electrical equation becomes

$$
\nabla^{2} v=h^{2} v
$$

and its general solution is

$$
\begin{equation*}
V=\sum_{s} P_{s} J_{0}\left(\theta_{s} r\right) \exp \left(-h_{s} z\right) \tag{43}
\end{equation*}
$$

where $h_{s}=\left(h^{2}+\theta_{s}^{2}\right)^{1 / 2}$.
The flux density, $q$; in the field direction is

$$
\begin{aligned}
q & =-\varepsilon_{0} \frac{\partial V}{\partial z} \\
& =\sum_{s} \varepsilon_{0} P_{s} h_{s} J_{0}\left(\theta_{s} r\right) \exp \left(-h_{s} z\right)
\end{aligned}
$$

The total flux onto a disc radius $r$ and distance $z$ from a source is given by

$$
\begin{align*}
Q & =\int_{0}^{r} q 2 \pi r d r \\
& =\sum_{s} \varepsilon_{0} P_{s} h_{s} \frac{2 \pi r}{\theta_{s}} J_{1}\left(\theta_{s} r\right) \exp \left(-h_{s} z\right) \tag{44}
\end{align*}
$$

If more than one source, or even a charge distribution, exists at a distance $z$ from the measuring plane, the flux density distribution still obeys the above formula, the source distribution being incorporated into the factors, $P_{s}$. The source distribution must of course be symmetrical. about the axis, $\mathbf{r}=0$. Equation (44) shows by analogy that the distribution of photons striking the cathode from a symmetrical plane source distance $z$ from the cathode will depend on $z$ as $\exp \left(-h_{s} z\right)$.

The number of photons produced in unit time in a region between the planes $z$ and $z+d z$ and of radius $r$ is given by

$$
\begin{equation*}
d J_{p}(z)=\int_{0}^{r} \alpha_{p} v_{e}^{n} e^{d z} 2 \pi r d r \tag{45}
\end{equation*}
$$

When $\lambda d>2$, the sum effect of three sources is sufficient to determine the electron concentration and satisfy the electrode boundary
conditions (Lucas and Lawson 1965, and equation (15)).
Substitution for this $n_{e}$ in (45), and the inclusion of a factor 1/2 (because only $1 / 2$ the photons are emitted towards the cathode; the rest being towards the anode) gives

$$
\begin{align*}
d J_{p}(z)=\sum_{s} \frac{\alpha_{p} v_{e} B_{s}}{2} \frac{2 \pi_{r}}{\theta_{s}} J_{1}\left(\theta_{s} r\right) d z & {\left[e^{\left(\lambda-u_{s}\right)_{z}}-e^{-\left(\lambda+u_{s}\right) z}\right.} \\
& \left.-\exp \left(\left(\lambda+u_{s}\right)_{z}-2 u_{s} \alpha\right)\right] \tag{46}
\end{align*}
$$

The result of equation (44) indicates that the number of these photons which fall on the cathode is found by including a term, $\exp \left(-h_{s} z\right)$, where $h_{s}^{2}=h^{2}+\theta_{s}^{2}$ and $h$ is the photon absorption coefficient. The total number of photons falling on the cathode then becomes

$$
\begin{aligned}
J_{p}(0)= & \int_{0}^{d} d J_{p} d z \\
= & \sum_{s} \frac{\alpha_{p} v_{e} B_{s}}{2} \frac{2 \pi_{r}}{\theta_{s}} J_{1}\left(\theta_{s} r\right)\left\{\frac{e^{\left(\lambda-u_{s}-h_{s}\right) d}-1}{\lambda-u_{s}-h_{s}}\right. \\
& \left.+\frac{e^{-\left(\lambda+u_{s}+h_{s}\right) d}}{\lambda+u_{s}+h_{s}}-\frac{e^{\left(\lambda-u_{s}-h_{s}\right) d}-\exp \left(-2 u_{d} \alpha\right)}{\lambda+u_{s}-h_{s}}\right\}
\end{aligned}
$$

The two terms of the order $e^{-2 \lambda d}$ may be neglected to give

$$
\begin{align*}
& J_{p}(0)=\sum_{s} \frac{\alpha_{p} v_{e} B_{s}}{2} \frac{2 \pi_{r}}{\theta_{s}} J_{1}\left(\theta_{s} r\right)\left\{\frac{2 u_{s} e^{\left(\lambda-u_{s}-h_{s}\right) d}}{\left(\lambda-h_{s}\right)^{2}-u_{s}{ }^{2}}\right. \\
&\left.-\frac{2 \lambda}{\lambda^{2}-\left(u_{s}+h_{s}\right)^{2}}\right\} \tag{47}
\end{align*}
$$

The relation between $A_{s}$ and $B_{s}$ is found from the cathode current condition as in the previous section on resonance radiation;

$$
\begin{equation*}
\text { i.e. } \quad J_{e}(0)=j_{0}+\gamma_{p} J_{p}(0) \tag{48}
\end{equation*}
$$

Now

$$
\begin{equation*}
J_{e}(0)=\sum_{s} v_{e} B_{s} \frac{2 \pi r}{\theta_{s}} J_{l}\left(\theta_{s} r\right) \tag{49}
\end{equation*}
$$

$$
\begin{equation*}
j_{0}=\sum_{s} v_{e} A_{s} \frac{2 \pi r}{\theta_{s}} J_{1}\left(\theta_{s} r\right) \tag{50}
\end{equation*}
$$

Substituting the results of equations (47), (49) and (50) into equation (48), we get

$$
B_{s}=A_{s}+\alpha_{p} \gamma_{p} B_{s} T_{s}
$$

so that

$$
B_{s}=\frac{A_{s}}{1-\alpha_{p} \gamma_{p}^{T} s}
$$

It remains to substitute for $B_{B}$ (and $A_{B}$ ) in the equation for the anode electron current;

$$
\text { i.e. } \quad J_{e}(d, r)=\sum_{s} v_{e} B_{B} \frac{2 \pi r}{\theta_{s}} J_{1}\left(\theta_{s} r\right) \frac{u_{s}}{\lambda} e^{\left(\lambda-u_{s}\right) d}
$$

The final expression for the anode current distribution then
becomes
where

$$
\begin{aligned}
& T_{s}=\frac{u_{s} e^{\left(\lambda-u_{s}-h_{s}\right) d}}{\left(\lambda-h_{s}\right)^{2}-u_{s}^{2}}-\frac{\lambda}{\lambda^{2}-\left(u_{s}+h_{s}\right)^{2}}, \\
& b=\text { wall radius }, \\
& J_{0}\left(\theta_{s} b\right)=0, \\
& u^{2}=\lambda^{2}-2 \alpha \lambda, \\
& u_{s}^{2}=u^{2}+\theta_{s}^{2}, \\
& h_{s}^{2}=h^{2}+\theta_{s}^{2}
\end{aligned}
$$

Each term in the series may be multiplied by $2 J_{1}\left(\theta_{s} a\right) / \theta_{s}$ a to allow for a finite radius ( $=\mathrm{a}$ ) cathode aperture as in the formulae for attachment and resonance radiation.

CHAPTER 4. APPARATUS.

### 4.1. ELECTRODE STRUCTURE.

(a) Construction.

The final apparatus, on which all the present results were taken, is shown in fig.1. The metal parts are of brass, except the steel anode springs, the copper wiring, and the glow discharge cathode which is of aluminium. The insulators are glass, PTFE and Perspex. The electrode structure is mounted on three 12 mm . diameter glass rods: brass collars fitted with screws keep the structure rigid. The whole electrode assembly is contained in a glass ohamber (fig.2.) fitted with $3 / 8$ in. brass endplates. O-rings are fitted to the plates and the ends of the chamber are ground to make the joints vacuum-tight.

## (b) Diffusion gap

The diffusion gap, of fixed length, consists of anode (A,fig. 1 ), cathode (C) and guard rings (G) all made of brass. Thus the alectrons, after entering this region, are presented with only one type of surface so eliminating contact potential and other awkward effects.
(i) Anode.

The anode consists of a oentral disk surrounded by three conoentric rings, and an outer portion always kept at zero potential. These are mounted on a $1 / 4$ in. thick PTFE base and retained in position by several 4 BA screws for each ring. Each ring is separated by an air gap 0.25 mm. wide at the anode surface. But the back of the



Fig.2. Chamber(Scale 1:4) and schematic gas-1ine equipment.
rings channel away to give a separation of about 2 mm . at the PTFE surface. This increases the leakage resistance between the rings at the PTFE layer and also much lessens the chance that, when assembling, a small particle of dust, or auchlike, might alight in the air gap and reduce the resistance. The ring radii, to the centre of each air gap and as measured by a travelling microscope, are $1,2,3$, and $4 \mathrm{~cm} .$, all accurate to 0.001 cm . The currents collected by the rings are led out to the anode endplate by weak steel springs attached to the retaining sorews at the rear of the anode.
(ii) Cathode.

The cathode of the diffusion gap is made of $\%$ in. brass with a 2 mm . diameter pin-hole at its centre.

A recess on the rear surface of $1 / 16 \mathrm{in}$. depth and 2 in , diameter is provided. The rear of the pin-hole is further recessed so that the actual final hole height is only about 0.5 mm . (compared with 2 mm . diameter). Then the eiectric field inside the pin-hole is not so much different from the fields either side of the oathode. The front surface of the cathode is precision turned to a mirror finish making it as flat and regular as possible.

Originally a pin-hole diameter of 1 mm . was used but calculation showed that the error involved in regarding a 2 mm . diameter hole as a point source was negligible. The larger hole allows at least four times as much ourrent to pass as the smaller. This extra oonductance was found to be necessary at the higher pressures.
(iii) Guard rings.

Five thick brass rings (G,Fig.1), of internal diameter 10.3 cm . are used as guard rings to keep the electric field in the diffusion gap linear and eliminate outside effects. Originally conventional flat guard rings with 2 cm . spacing were used, but after some time it became apparent that the glass walls of the chamber external to the electrode structure were charging up sufficiently to distort the field in the gap. An effect attributed by Crompton and Jory (1962) to surface effects at the anode was later attributed to the charging of glass spacers used to separate their conventional guard rings (Crompton, Elford and Gascoingne 1965). In the present apparatus, there was also a suspicion that some electrons, especially at low pressures, were reaching the anode through the open guard ring struoture without passing through the pin-hole. Huxley and Zaazou (1949) could be criticised on this count.

The atvantages of a thick guard ring structure are the virtually complete enclosure of the diffusion region with metal boundaries, and the greater mechanical strength and aocuracy which give rise to a more linear electric field in the gap. The main errors arising from the use of a non-linear field in swarm experiments are due to field errors in the radial direction. Field errors in the longitudinal direction have less effect (Crompton, Elford and Gascoigne 1965). In the present apparatus changes in guard ring voltages have no dramatic effects on the observed current ratios, but it is not possible to estimate the effect of radial distortion.

It may seem surprising that such a severe step-function wall


Fig.3. Calculated voltage distortion in diffusion gap. Solid lines for 3 guard rings and broken lines for 6 guard rings.
boundary condition as suggested would be acceptable. But calculation shows that field distortion due to the non-linear wall condition becomes negligible at a small distance fromthe wall. The mathematics of this potential problem is given in the Appendix. At some points (near the walls) the series solution has been summed to 150 terms before attaining the required accuracy. Fig. 3 and Table $|\mid$ show the calculated voltage disturbances.

In the present chamber, the voltage steps near the anode are made finer giving a more linear field where it is most necessary. Greater errors (though still small) are readily tolerated near the cathode where the electron stream hasn't diffused sufficiently to reach a region of significant field distortion. Fig. 4 shows the guard ring arrangement diagramatically. The bold linc gives the theoretical wall condition with no spacers whilst the finer lines give the ideal condition and the condition when spacers are included. The dotted line shows the voliage deviations at some distance from the walls.

The guard ring widths are nominally $1.0,2.0,1.5,1.0$ and 0.5 cm . taken from cathode to unode. The middle three values are lessened by 1 mm . to allow for a 1 mm . gap between each ring. The outer two are only made 0.5 mm . less because they are in direct contact with cathode and anode. The spacers separating the rings are slightly less than 1 mm . thick ( 0.9 mm ) and, when in position, the actual gap length, as measured by travelling microscope, was found to be 5.96 cm . Field distortion due to incorrect spacer thickness in completely negligible.


Fig.4. Effect of thick guard rings in present system.

In a guard ring system where all the rings are of equal width the field linearity improves with increasing spacer thickness, as may be seen by modifying fig. 4 slightly. The results indicated in fig. 3 and Table 1 were caloulated assuming zero spacer thickness; so the field distortion in the present system will be about $10 \%$ or $20 \%$ less than indicated.

## (c) Equalising gap.

This is the region between $C$ and $D$ in fig.l. Its purpose is to provide a field to the rear of the pinhole equil to the field in the diffusion gap, allowing electrons to enter the diffusion gap with the correct energy. The distance between $C$ and $D$ is 4 cm . with a guard ring mid-way.

Compton (1923) has given an expression which gives an estimate of the distance travelled in an eleotric field by an electron with zero initial energy before it reaches a oertain fraction of its terminal equilibrium energy. The expression is

$$
d=\frac{u_{t}}{2 E} \log _{e}\left\{\frac{1+Q}{1-Q}\right\}
$$

where $\quad u_{t}=$ terminal energy (electron volts), $E=$ electric field strength (volts/cm.), $Q=$ fraction of equilibrium energy attained, $d=$ distance travelled by electron from zero energy position. Calculations for $d$ when $Q$ is $90 \%$ are shown in fig. 5 . It is seen that with the present experimental conditions $\alpha$ is always less than


Eig. 5. Electron equintbrin in nitrosen and hyarozer. (Initial cacrey = O)

1 cm . and making $O D=4 \mathrm{~cm}$. sives the electrons ample time to find their correct energy distribution before entering the diffusion gap.

The electric $i$ ield between $C$ and $D$ is variable between 0 and 30 volts/cm. Two glass cylinders, 10.8 cm. diameter and 1 cm . height, serve to separate the plates $C$ and $D$. The 8 holes in plate $D$ are 1 cm . diameter on a 4 cm . p.c.d. Negative ions which may be produced in the regions behind $D$ and pass through these holes will not reach the pinhole in $C$ because of their low diffusion. They will merely drift
through and be collected by C. Originally a short negative ion gap was provided behind the control gap to stop any negative ions leaving the glow discharge. A small reverse field was intended to oapture the low energy ions and allow most of the higher energy electrons to pass through. This was found to attenuate the electron current too much and the off-centre holes in D were included to stop the negative ions. Even so, in nitrogen and hydrogen these ions were only found to be present when the gas sample was impure or the electrodes relatively dirty.

## (d) Control gap.

The control gap, DF, controls the electron current passing into the diffusion gap. The plates $D$ and $F$ are separated by another glass oylinder 10.8 cm . diameter and 3 cm . high. The plate F has a 4 cm . diameter hole with fine ( 28 SWG ) wire threaded through 20 small holes around its perineter. This gives an open structure for low electron attenuation but is sufficient to prevent the glow discharge extending into the control gap at the higher pressures when as much ourrent as possible is needed. Continuously veriable fields between $\pm 40$ volts/ cm. are available using a potentiometer arrangement and reversing switch (fig.6), The strongest reverse field is sufficient to stop all electrons from the glow discharge souroe from passing into the equalising and diffusion gaps at all pressures but the lowest. Current cut-off is in this way conveniently gained for zeroing the current measuring units. At the lowest pressures the field in the equalising gay is also made zero or the glow discharge switched off
altogether. Also at the lowest pressures, the amount of electron current allowed through is very sensitive with the control gap field and for this reason a fine voltage control potentiometer was fitted.
(e) Glow discharge.

The glow discharge is contained in the region between electrodes $F$ and $H$ in fig.1. The glow cathode $H$ is made of aluminium. Brass and copper have also been tried but aluminium gives the most stable discharge. A nylon screw threaded into the centre knob holds the cathode to the Perspex (for ease of drilling) backing plate. At low pressures the glow discharge fills the whole region between $F$ and $H$, but at high pressures ( $>1 \mathrm{~mm}$. Hg.) it beoomes contracted and the knob was fitted to keep it near the centre. A gliss oylinder 9 cm . diatheter completely surrounds the glow discharge preventing stray electrons from reaching the anode leads at the other end of the chamber. The other cylinders separating the plates $C, D$ and $F$ and the guard rings G also prevent stray currents from affecting results. The high tension lead to the plate $H$ is surrounded by glass tubing, thus preventing a glow discharge from forming between this lead and the other electrode leads, which are left uncovered.
4.2. DISCHARGE CHAMBER AND VACUUM SYSTEM.

The electrode structure is enclosed in a 6 in. internal diameter glass oylinder with ground glass end surfaces (fig.2). Two brass discs, $8 \frac{1}{2}$ in. diameter and $7 / 16$ in. thick, fitted with $0-r i n g$ grooves
make the end-plates. Glass lead-throughs (AEI-type $2201 \mathrm{~S} / 109$ ) are fitted into these plates to carry the electric currents to and from the electrodes. The anode currents are out through weak steel springs: a retaining ohain to the other end-plate holds these in tension. Some method such as this must be used when leads are taken out through both end-plates. Taking leads only from the anode of the diffusion gap out through one plate means that a minimum of complicated precautions have to be taken to prevent stray ourrents reaching these leads; they themselves oarrying minute currents ( $\sim 10^{-10}$ amps.).

Leads to all other electrodes are taken to the other end-plate through glass tubes ( 2 mm .bore) serving to insulate the leads from the other eleatrodes they pass through. The oopper wire is coiled in the region behind the glow cathode to facilitate manoeuvering the end-plate after soldering to the lead-throughs.

The copper piping, connected to the chamber through 1 in.
Heusekeeper seals and Edwards' unions, is made as large a diameter as is practical, 1 in., to keep pumping speeds high. A minimum amount of vacuum rubber tubing is used.

Two evacuating pumps in series are included; an oil diffusion pump (Speedivac-type $203 \mathrm{~B}-\mathrm{no} .26 .139$ ) and a rotary pump (Metrovac type DRI-K-no. 26.88). The former is only used for initial pumping, after, say, the chamber has been opened for electrode alterations and water vapour must be pumped away. Although the diffusion pump is left in position, the rotary pump is adequate at other times, as shown below.

Gas supply to the chamber is from a commercial high pressure cylinder through a multistage regulator (set at 10 prig constant output) and a fine-control needle valve (Edwards-type LB2A). As the gas enters it is also being pumped away by the rotary pump and equilibrium is established at an internal pressure determined by the needle valve setting. The gas inlet is near the gas outlet (fig. 2 ) so the gas enters the glass chamber and McLeod gauge by a backidiffusion process. Apart from convenience of construction, it was felt that this method was the least likely to establish pressure gradients within the apparatus.

The cold traps were surrounded by liquid nitrogen when investigating nitrogen and hydrogen, and by a mixture of solid carbon dioxide and acetone for oxygen.

The impurity level in the chamber may be calculated as follows. Suppose;

$$
\begin{aligned}
Q_{0} & =\text { pumping rate }, \\
Q_{i} & =\text { input rate }, \\
\text { and } Q_{L} & =\text { leak rate } .
\end{aligned}
$$

Then, $Q_{0}=Q_{i}+Q_{L}$, and impurity level $=Q_{L} / Q_{i} \simeq Q_{L} / Q_{0}$.
Now $\quad Q_{L}=A \frac{d p_{L}}{d t}$ and $Q_{0}=A \frac{d p_{0}}{d t}$
whore $A$ is a constant. $\frac{d p_{L}}{d t}$ is found by measuring the rate of pressure increase in the closed system ( $=\mathrm{L}$ microns/hr:) , and $\frac{\mathrm{d} \mathrm{o}_{\mathrm{o}}}{\mathrm{dt}}$ by measuring the rate of increase of chamber pressure when the pumps are switched off. Experimental measurement of $\frac{d p_{o}}{d t}$ proves it to be proportional to
pressure, yielding the relation
impurity level $\simeq 5 \times 10^{-3} \mathrm{~L} / \mathrm{p}$
where $p$ is in microns, and $L$ in microns/ hr.
A leak rate of 1.3 miorons/hour has been obtained in the present apparatus, and remained consistently for the greater part of the experiments recorded. This gives an impurity level of about 35 p.p.m. at 200 microns, and 3.5 p.p.m. at $2 \mathrm{~mm} . \mathrm{Hg}$. The worst leak rate at which results have been taken is 4 miorons/hour and the above impurity levels are then trebled.

The gases used are all from gas cylinders provided by the British Oxygen Co. The hydrogen is highest oylinder grade (100 p.p.m. impurity), the nitrogen is the 'oxy-free' grade ( 100 p.p.m.) and the oxygen used was the normal ( 5000 p.p.m.) grade. The largest source of impurity is therefore from the gas sample and not.'fyom apparatus leaks and out-gassing. Swarm experiments for measuring $D / \mu$ values are not as sensitive to impurities as some other experiments in gas discharge work, so it was felt that the above purities were adequate (Crompton, Elford and Gascoigne 1965).
4.3. ELECTRODE CIRCUITRY.

A general circuit diagram is shown in fig. 6.
(a) Power sources.

A 500 volt power pack (A.P.T .--Model 509--no. 11.92) is used for


Fig. 6. Electrode circuitry.


Transformer--1:8 stép-up,60mA----Rectifier bridge--3 off 15107 per arm, 800 volt peak inverse voltage, 750 mA steady forward current, 40 A peak forward current-----Capacitors--4 $\mu \mathrm{F}$, 2 kV working-----L. F. Choke--30H, 50 mA d.c.)
the diffusion gap. The gap voltage under operation is limited to 150 volis to prevent significant secondary ionization although 200 volts has been used at isolated times. Potentials for the guard rings are taken from a resistance chain made of two $10 \mathrm{~K} \Omega$ and two $5 \mathrm{~K} \Omega$ resistors as shown. These were nominally accurate to $1 \%$ but actual voltage measurements showed that the field on the axis of the diffusion gap was not in error by more than $0.5 \%$ from uniformity at any point.

120 volt dry batteries and potentiometers are used to control the fields in the equalising and control gaps.

Two interchangeable power packs with floating outputs are used to drive the glow discharge,
(i) A Dynatron 4KV unit (Type P200A--no.11.94). This provides a stabilised output current of up to lmA, and was used with a series resistance of $2 M \Omega$ ( 2 watts),
(ii) A simple $2 k V$ power pack shown in fig.7. This provides an unstabilised output current of up to 20 mA through a series resistance of $82 \mathrm{~K} \Omega$ ( 20 watts). It was found neoessary to use these larger currents at high pressures in order to have sufficient electrons enter the diffusion gap.

## (b) Meters.

The diffusion gap voltager is measured on an accurate multi-range voltmeter (no.3.S.118) of impedance $200 \Omega /$ volt. This was.checked against a sub-standard meter and raadings were found to be accurate to $0.4 \%$ at 25 volts (the lowest gap voltage used) and better than
$0.1 \%$ at 150 volts.
A Weston voltmeter ( $0-150$ volts) is used for the equalising gap and a Sangamo-Weston multimeter (no. 6.45) for measuring the glow discharge current. This is placed in the lead to the anode of the discharge for insulation reasons.
(c) Cathode ray oscilloscope.

A cathode ray oscilloscope (Cossor 1076--no.10.78) is connected, as shown in Fig.6, to determine glow discharge stability. The glow current, under certain conditions, was found to oscillate at a frequency of the order of $10 \mathrm{kc} / \mathrm{s}$. Generally, the amplitude of the oscillations was found to be a function of glow discharge current and the frequency to be very sensitive to gas pressure. There is evidence to suggest that these observed oscillations are due to standing waves occurring in the discharge. These waves may also be the cause of positive oolumn striations in glow discharges in long narrow tubes (Labrum and Bigg 1952).

The oscillation phenomenon has been used on a number of ocoasions as the basis for a leak-detection device. The voltage generated at the CRO input is fed into an audio amplifier and loudspeaker, giving a whistle output. External application of a gas or vapour, such as coal gas, hydrogen, or carbon tetrachloride, to a leak source results in a notioeable changein pitch of the whistle. The technique is only of use for large leaks in the present apparatus, because pressures lower than about 0.08 mm . will not support an oscillating glow discharge.
4.4. PRESSURE MEASUREMENT.

A McLeod gauge (fig.8) constructed in this Department is used to measure pressure.
(a) Operation.

The gauge is divided into two pressure regions; one (including bulb A) at chamber pressure and the other, B, at a pressure varying from virtually zero to atmospheric pressure. These regions are separated by the mercury pool and the tap $T 1$, which is normally closed. In the diagram the pressures in $A$ and $B$ are approximately equal as shown by the equal levels of mercury.

Readings are taken by opening the needle valve, Vl , thus allowing air from the atmosphere to pass into $B$ through the two-way tap, T2. The mercury then rises into regions $A, C, D$, and $E$ at a speed governed by the needle valve setting, trapping the chamber gas in $A$ and $D$. The inequality of the heights of mercury in the capillary tubes $D$ and $E$, due to the excess pressure in $D$ of the oompressed chamber gas, is a measure of the original ohamber pressure. Care must be taken not to raise the mercury too fast to the neck of $A$ (where the gas cut-off occurs) otherwise the pressures in $A$ and $C$ will not be equal and the resulting pressure reading will be too high. V2 is a valve to regulate the rate at which mercury returns to the reservoir. A cold trap prevents meroury vapour reaching the chamber and tap Tl may be opened in an emergency to equalise the pressures in $A$ and $B$. The tubes $D$ and $E$ are placed olose together to facilitate height measurements. The maximum obtainable difference in mercury level is conveniently made greater than 76 cm . to prevent


Fig. 8. MoLeod gauge.
possible overflow at the top of the gauge.

## (b) Calibration.

The total volume, $V$, of $A$ and $D$ was measured by filling with mercury up to the trapping point and weighing this mass. The bore of the special capillary tube $D$ is $1 \mathrm{~mm} . \pm 0.01 \mathrm{~mm}$. The tube $E$ also has a nominal bore of 1 mm . to eliminate the surface tension capillary effects.

Let $x=$ length of ohamber gas trapped in $D$ ( cm.$)$,
$h=$ difference in height of columns in $D$ and $E(c m$.
$=$ pressure of trapped gas (cm. Hg. ),
$V_{C}=$ total volume of $A$ and $D$ to trapping point ( $\mathrm{cm}_{3}^{3}$ ),
and $d=$ capillary tube diameter (om.).
Then the chamber pressure, p, assuming Boyle's Law to hold, is given by

$$
\begin{aligned}
p & =\frac{h}{\text { volume compression ratio }} \\
& =\frac{h \pi_{d}^{2} x}{4 V} \mathrm{~cm} \cdot \mathrm{Hg} . \quad=\mathrm{Khx} \mathrm{~mm} \cdot \mathrm{Hg} .
\end{aligned}
$$

where $K$ is the gauge constant. $K$ was found to be $1.273 \times 10^{-3}$ at $20^{\circ} \mathrm{C}$., with negligible temperature correction for $\pm 5^{\circ} \mathrm{C}$.

Thus,

$$
\mathrm{p}=1.273 \mathrm{hx} \text { microns. }
$$

The absolute error of the gauge at a pressure of $0.5 \mathrm{~mm} . \mathrm{Hg}$. was estimated to be less than $2 \%$. Most of this is an initial systematic error in finding $K$. The random error in reading $h$ and $x$ is considered to be only about $0.5 \%$. The maximum pressure
measureable is $2 \mathrm{~mm} . \mathrm{Hg}$., and the gate will also give sensible readings around 1 micron.

In a perfect gas, the quantity $h x$ should remain constant for different values of $h$ if the mass of gas in $A$ and $D$ remains the same. Experiment proves this so. Variations in the product of less than $0.5 \%$ were consistently observed over a wide variation of $h$ (a factor of 2 and more). If any condensible vapours not obeying Boyle's Law (such as water vapour) are present in the chamber this product ceases to be constant, thus affording a useful oheok for gas purity.

### 4.5. CURRENT MEASUREPENT.

(a) Electrometer amplifier.

The anode currents involved in these experiments are of the order of $10^{-10}$ amps. They are measured simultaneously using two electrometer amplifiers. The detailed amplifier circuit diagram is shown in fig.9. The mode of operation may be shown by referring to the schematic diagram (fig. 10).

The circuit equations are

$$
\begin{aligned}
V_{i} & =i R_{x}+I R_{z} \\
\text { and } \quad Q V_{i} & =I\left(R_{y}+R_{z}\right),
\end{aligned}
$$

assuming the source impedance and the amplifier input impedance both to be infinitely large. Q is the voltage amplification factor of the d.c. amplifier.


Fig.9. Electrometer amplifier circuit diagram.


Fig. 10. Electrometer amplifier -- schematic diagram.


Fig. 11. Circuit for current ratio measurement.

Thus,

$$
I=-\frac{i R_{x}}{\left(R_{z}-R_{y} / Q-R_{z} / Q\right)}
$$

Q is approximately 4000 and the equation reduces to

$$
I=-i R_{x} / R_{z} \quad \text { for } R_{z}>100 \Omega
$$

Thus the output current (and hence the voltage at T) is proportional to the voltage drop across the high resistance, $R_{x}$, and inversely proportional to the feedback resistance, $R_{z}$.

When the circuit is earthed at point $B$, it may be seen that the input terminal is a virtual earth. This is necessary in the present experiments as it avoids field distortion at the receiving electrode and eliminates large time constants by reducing the effective input capacitance to near zero.

Special anti-microphonic coaxial cables feed the electrometer amplifiers. Conventional oo-axial cable was found to affect the amplifiers, currents being induced in the cable by vibrations. Apparently this is due to friction between the centre conductor and the surrounding insulator.

Temperature instabilities, etc., are discussed by Leak and Austin (1960).
(b) Ratio measurement.

Because of instabilities, drift, and meter errors, it is difficult to measure two currents on two amplifiers independently and obtain an accurate ratio. To overcome this difficulty a method was devised whereby the ratio is read continuously. The arrangement
is shown in fig.11. One of the electrometers (in.1) has its fixed feedback chain replaced by an external high-pre:ision decade resistance box (total resistance of $10 K \Omega$ ). Jack-plugs and sockets let into the amplifier unit facilitate the substitution. The other amplifier (El.2.) operates normally having a fixed feedback resistance of $10 \mathrm{~K} \Omega$.

Suppose the currents $i_{1}$ and $i_{2}$ in fig.11. are unequal and it is desired to find their ratio. The oirouit equations may be written

$$
V_{1}=K i_{1} R_{1} / r_{1} \quad \text { and } \quad V_{2}=K 1_{2} R_{2} / r_{2}
$$

$r_{1}$ may be varied by altering the decade box setting, and $V_{1}$ made equal to $\mathrm{V}_{2}$ as determined by the null-deteoting galvanometer arrangement. In this case the equations reduce to

$$
\frac{i_{1}}{i_{2}}=\frac{R_{2}}{R_{1}} \cdot \frac{r_{1}}{r_{2}}=f \times R \quad \text { (where } f \text { is constant). }
$$

The resistances $R_{1}$ and $R_{2}$ have been measured separately on a high resistance bridge every few months to make sure no oranges in their resistances occur. An example of the results obtained is given below.

Date

$$
\mathrm{R}_{1}
$$

$$
0.9469 \times 10^{10} \Omega
$$

March, 1965.
January, 1964. +

$$
0.9478 \times 10^{10} \Omega
$$

- 



These show the ratio to be almost constant over long periods of time.

In all the calculations assooiated with these experiments $f$ has been taken to be 0.970 .

The ratio $R$ is read directly from the decade resistance box under balanced conditions. The constant ratio $f$ is incorporated into all the calculations associated with diffusion; giving values of $R$ directly in terms of the gas and chamber parameters. If $i_{1} / i_{2}>1$ (or 1.03 to be exact) the input leads must be reversed, because $R<1$ for the system to function. A reaistance of about $100 \mathrm{~K} \Omega$ between the two amplifiers prevents interaction.

By this method, current ratios are measured very muoh more quiokly and simply, all the errors assooiated with meter reading and ourrent instabilities being eliminated.

## (c) Current switching.

Only two electrometer :mplifiers are available to measure the three current ratius in the present experiments, so a multirange switoh must be used. 'The switch is of the conventional Yaxley type specially constructed with PTFE wafers to keep the leakage resistances high. The anode electron currents pass through the multirange switoh to the two comaxial oables carrying them to the electrometer amplifiers.

The region between the anode and end-plate is surrounded by earthed copper foil external to the glass chamber. Piok-up between collection and measurement is thus eliminated by enclosing the whole region with metal at zero petential.

The multirange switch has four positions. The first three
positions direct the currents $i_{1}$ and $i_{2}, i_{3}$ and $i_{2}, i_{4}$ and $i_{3}$ respectively to the two electrometer amplifiers. The ratios $i_{1} / i_{2}$, $i_{3} / i_{2}, i_{4} / i_{3}$, rather than their reciprocals, are those which remain at less than unity over the widest range of experiment parameters. The fourth position conneots no electrode to either electrometer amplifier and may be used for zeroing the units.
5.1. PROCEDURE.
(a) Gas Pressure.

Gas pressure is set by adjusting the needle valve to an appropriate position, equilibrium being established between inflow and outfiow of gas. Particular pressures cannot be set but the actual pressure set is measured accurately with the McLeod gauge (Section 4.4). At least three readings are taken at each pressure.

## (b) Temperature.

Room temperature is taken after each pressure reading. The thermometer is situated close to the MoLeod gauge, and the temperature inside the diffusion gap taken to be equal to room temperature. Justification for this assumption is experimental. No variations in ratios with temperature were ever witnessed. hpossible source of error would have been heating of the gas by the glow discharge, but, although pressure rises in the olosed system when a strong ( $\sim 10 \mathrm{~mA}$ ) glow discharge is switohed on, in the open system (back-diffusion) there is no change in pressure or in current ratios. The heat developed by the glow discharge must be absorbed into the parts of the electrode structure around the glow disoharge and between glow and diffusion gap cathode.

## (o) Glow disentrge.

At low pressures a glow current, $1_{g}$, of about $300 \mu \mathrm{~A}$ is sufficient
but at high pressures near 2 mm . Hg . currents of about 10 mA must be used to have enough current pass through the pinhole. Increasing the pinhole diameter from 1 mm . to 2 mm . Increased this transmission by a factor between 5 and 10 , enabling lower glow currents to be used, Oscillations in the discharge are also checked for with a CRO. If present, they are removed by adjusting the current, although the effect of quite large ago. signals on the electrometer amplifiers is small.

## (d) Measurement procedure.

When the electrometer amplifiers are zeroed, the diffusion gap voltage, $V_{1}$, is set at a value and the control gap voltage, $V_{3}$, and $i_{f}$ adjusted to give reasonable diffusion gap current. In general, when a ratio of two currents is being measured, the one collecting the larger current is allowed to receive $2 \times 10^{-10} \mathrm{~A}$.

In principle the equalising gap voltage $V_{2}$ should obey the relation

$$
V_{2}=\frac{2}{3} V_{1} \quad \text { i.e. } E_{2}=E_{1}
$$

but in practice unequal fields were found to have little or no effect on the current ratios, and $V_{2}$ was often used to adjust the pinhole current. The currents and three ratios are measured as described in section 4.5.

Up to 15 separate values of $V_{2}$ are taken at each pressure, and three independent current ratios recorded at aah voltage. Values of $V_{1}$, are limited to the range of 25 to 145 volts in general, to
prevent the effects of contact potentials and secondrixy ionization by positive ions and photons beooming important. The values of $V_{1}$ in this range at a particular pressure are ohosen in a random manner. This prevents any human errors forming.

## (e) Analysis of current ratios.

The dimensions of the difiusion region have been measured with a travelling microscope and found to be: gap length $=5.960 \mathrm{~cm} .$, ring radii $=1.000,2.000,3.000,4.000$ om., guard ring radius $=$ 5.150 om . and cathode aperture radius $=0.10 \mathrm{om}$.

These dimensions are fed into a general computer program (28. TowNS, Appendix) of Townsend's solution of the diffusion equation. Table 2 shows a sample output of this program giving three current ratios for each value of $\lambda$. Extensive calculations have been made With the aid of this program to determine the effect on results of varying guard ring radius and cathode aperture radius.

It is to be expected from physioal considerations, that guard rings olose to the buter neaduring annulus will have the greatest effect on this annulus and hence on the ratio $R_{3}$. This is confirmed by oomparing program outputs for $b=5$ and $b=4.5$ as shown in fig.l2. In this diagram ourves are not shown for the ohanges in $\lambda$ due to the wall effects on $R_{1}$, because the change is undetectable for $\lambda>1$ (when current ratios are output to only 3 significant figures). Also, a comparison with another set of results for $b=15.0$ (i.e. a large distance from the diffusion gap axis) shows that a change in ourrent ratios of 0.001 , when $b=5.150$ as in the present apparatus, ooours

## Input

$a=0.100=$ cathode aperture radius.
$b=5.150=$ guard ring radius.
$1_{1}, 1_{2}, 1_{3}, 1_{4}=1.000,2.000,3.000,4.000=$ ring radii.
$d=5.960=$ gap length.
$A=1.0, B=0.5, C=7.01$ ( $\lambda_{\text {steps }}$ ).
$f=0.970=$ electrometer resistance factor.

## Output

$\lambda \quad R_{1}=i_{1} / i_{2} \quad R_{2}=i_{2} / i_{3} \quad R_{3}=i_{3} / i_{4} \quad$ Terms of series

| 1.00 | 404 | 898 | -704 | 6 |
| :--- | :--- | :--- | :--- | :--- |
| 1.50 | 435 | -915 | -595 | 6 |
| 2.00 | 469 | -791 | -490 | 7 |
| 2.50 | 506 | -683 | -399 | 7 |
| 3.00 | 545 | -590 | -325 | 8 |
| 3.50 | 587 | -511 | -264 | 8 |
| 4.00 | 631 | -443 | -215 | 9 |
| 4.50 | 678 | -385 | -175 | 9 |
| 5.00 | 728 | -334 | -143 | 9 |
| 5.50 | 781 | -291 | -117 | 10 |
| 6.00 | 837 | -254 | -96 | 10 |
| 6.50 | 896 | -222 | -78 | 10 |
| 7.00 | 958 | -194 | -64 | 10 |

Table 2. Sample input and output of program 28. TOWNS. Each ratio is multiplied by 1000 to eliminate decimal points, and by the electrometer factor 0.970. Negative signs=inverse ratios.


Fig. 12. Effect of wall radius 'b', cathode aperture radius 'a', and Parker's solution of the diffusion equation on $\lambda$. Reference conditions are:- $a=0.01, b=5.25, d=5.96$ and ring radii $=1,2,3,4$. Figures refer to ratios,i.e. $2 \equiv R_{2}$.
for $\lambda_{1}=0.8, \lambda_{2}=1.2$ and $\lambda_{3}=2.1$. That is, the walls have greatest effect on $R_{3}$.

The effect of increasing the size of the oathode aperture is also indicated in fig.12, where ourves are drawn giving errors in $\lambda$ for radii of 3 mm . and 5 mm . The effect on $\lambda_{1}, \lambda_{2}, \lambda_{3}$ (the $\lambda$ values derived from $R_{1}, R_{2}, R_{3}$ ) increases as the value of $\lambda$ increases. This is to be expected because the less divergent the electron stream (i.e. the larger its $\lambda$ value) the more is the source size likely to affect the distribution at the anode. The greatest effect, at a particular $\lambda$, is generally on the current ratio $R_{1}$, the large diameter source having the greater effect on the current reaching the central disc. The errors in $\lambda$ due to a source hole of diameter 0.1 cm . are not shown in fig.12: the $\lambda$ values obtained with a 0.01 diameter hole being negligibly different when measured current ratios are considered to be accurate to 0.001 only. A change in ratio $R_{1}$ of 0.002 was indicated at $\lambda$ values above 6 , but the percentage error of less than $0.4 \%$ is considered negligible.

To determine $\lambda$ values from ourrent ratios in the present experiments an output from program 28. TOWNS was printed in $\lambda$ steps of 0.1 ( 5 times finer than that of Table 2), for $a=0.10$ and $b=5.15$. Another computer program giving $\lambda$ vaR tables from Huxley's solution has been written and could have been used because the effects of cathode aperture and guard rings (for $\lambda>2$ ) are negligible. Both programs give virtually identical sets of tables for $\lambda>2$ : the program of Townsend's solution is used simply because it is available
on magnetic tape and is relatively fast.
A third program has been written which takes ourrent ratios as input and outputs the corresponding $\lambda$ values. Huxley's solution is used and the method of calculation involves the use of iteration procedures.

However, it was generally found to be more efficient to output a straightforward $\lambda \nabla \cdot R$ table in fine $\lambda$ steps. $\lambda$ values are then reat off this tole from the measured current ratios, interpolating linearly to give values of $\lambda$ accurate to 0.01 .
5.2. DIFFICULTIES ENCOUNTERED.
(a) Negative ions.

If negative ions are formed then there is a possibility that they may enter the diffusion gap and affect the results. They have masses of the same order as the gas molecuies and have near-thermal energies. This means that they will diffuse little and, if formed behind the diffusion gap cathode, will all be colleoted by the oentre ring. Effectively, they upset only the ratio measured on the oentre two rings. Their presence is then readily detected by observing a $\lambda_{1}$ inconsistent with $\lambda_{2}$ and $\lambda_{3}$. Also the number of negative ions reaching the pinhole is a function of $V_{2}, V_{3}$ and $i_{g}$, so $R_{1}$ will not remain constant when these parameters are varied.

It is known that electrons do not attach significantly to nitrogen or hydrogen moleoules, so if negative ions are formed there must be impurities present. In oxygen, electrons attach freely
and theory cannot allow for negative ions formed behind the pinhole. These are collected by the centre ring making the inner ratio useless for obtaining $D / \mu$ values.

The cure is to make the holes in plate D (fig.l) in a circle around the centre. Any negative ions passing through these holes are collected by the diffusion gap cathode. This does not help in the oxygen case because a significant number of negative ions are formed in the equalising gap.

## (b) Photons.

The early testing experiments in the present apparatus were made in nitrogen which is strongly photon producing. Currents were observed at the anode on initiating the glow discharge and, although these were small ( $\sim 10^{-11_{A}}$ ) and could have been compensated for, it was decided to eliminate them. Their magnitude was approximately proportional to the glow current, $i_{g}$, but unaffected by gap voltages $V_{2}$ or $V_{3}$. A larger $V_{1}$ would increase them slightly but, if $V_{1}$ was reversed, large positive currents were registered.

These observations point to the existence of photons or metastable atoms. They are not affected by electric fields, except in the diffusion gap. Photons produced the discharge passed directly through to the pinhole and liberated electrons there, to be collected at the anode. The large currents resulting from reversal of $V_{1}$ were due to photons passing directly through the pinhole, striking the anode and liberating electrons there, to be oolleoted at the cathode. The experimental technique described in (a) also solved this
problem. The hole positions in plates $D$ and $F$ were so adjusted that no direct line could be made from any point in the glow discharge region ( FH ) to any point in the diffusion gap. The spurious currents were then completely eliminated.

## (c) Charging of glass walls.

The early method of using conventional flat guard rings separated by glass spacers allowed glass surfaces to be visible to the electron swarm. It was noticed that current ratios were altering with time. The use of a thick guard ring structure completely eradicated this source of error.
(d) Leakage resistances.

It is essential that leakage resistances from the current path between anode collector and electrometer valve input should be greater than about $5 \times 10^{12} \Omega$. Low leakage resistances will give erroneous measures of current. The resistances are especially liable to be low just after dismantling and cleaning when, for example, there might be a thin film of solvent over the glass surface of the leadthrough.

The measurement of these resistances is carried out simply, using one electrometer amplifier unit and the diffusion gap power pack. The oircuit is shown in fig. 13. All rings not under test are short circuited to the screening can, which itself is connected to the power pack output. The ring under test is connected directly to the electrometer amplifier input. When the applied voltage $V$ is increased slowly a small current flows through the leakage resistance, $R_{L}$, and


Fig.13. Circuit for measuring leakage resistances.
is recorded as a voltage drop across the amplifier resistance, $R_{a}$.
If $v$ is the potential drop across $R_{a}$ then the leakage resistance is given by $R_{L}=\frac{V}{v} F_{a}$, since $R_{L} \gg R_{a}$ normally. Typical values give $R_{L}=\frac{100}{0.01} \times 10^{10}=10^{14} \Omega$. No results were taken in the present apparatus whilst any leakage resistance was less than $5 \times 10^{13} \Omega$. The leakage resistances measured in the above manner do not include the resistances of the anti-miorophonic input cable and the remaining current path to the grid of the electrometer valve. This total was measured separately and was found to be greater than $10^{16} \Omega$.
5.3. RUNNING CHECKS.

The various experimental oheoks made whilst taking results to ensure correct operating conditions are listed below.
(a) Current ratios may be measured over a time interval of a few minutes ocasionally, to make sure there is no steady drift.
(b) The current ratios should be independent of the magnitude of the currents to each ring. Space charge effects should be absent at currents smaller than $10^{-9} \mathrm{~A}$. The ratio constanoy may be observed as the current is raised from zero to its maximum value, and any ohange indicates the presence of unwanted effeots.
(c) Ratios should be independent of the parameters $V_{3}$ and $i_{g}$, whioh may be varied together to give the same anode ourrent. Also it has been experimentally found that ratios are generally independent of $v_{2}$
(d) Generally, three ourrent ratios are measured for each partiou's: combination of field and pressure. Eaoh ratio yields a corresponding value for $\lambda$. In the absence of effeots such as attachment or secondary ionization, the three $\lambda$ values should be equal. Their agreement, or otherwise, provides a useful guide to correot operatione
(e) It has been found empirically under the best operating conditions, that the removal of cold traps during operation affects neither the pressure reading nor the observed current ratios. The mercury vapour pressure at room temperature of 1 mioron is apparently
not high enough to affect the electron swarm. A change in current ratios would indicate the presence in the cold traps of impurities which should be removed by a period of pumping.
(f) An accurate value for the ratio of electrometer amplifier resistances has been found using a special high-resistance electrometer bridge, and found to be 0.970 . In practice the smaller current when measuring a ratio is passed through the smaller resistance. If the measured current ratio, $R_{I}$, is adjusted to be between 0.940 and unity, it may also be measured by reversing the leads from the rings to the electrometer amplifiers. This gives a ratio $R_{2}$. The electrometer resistance factor $f$ is then given by

$$
f^{2}=R_{1} \times R_{2}
$$

or more simply

$$
f=\left(R_{1}+R_{2}\right) / 2
$$

The value of $f$ thus obtained should be 0.970 and in practice never differed from this figure by more than 0.003 .

CHAPTER 6. RESULTS AND DISCUSSION.
6.1. HYDROGEN.

The present results in hydrogen are shown in figs. 14 and 15. It may be seen that the values of $D / \mu$ are functions of $E / p$ only, i.e. they show no pressure dependency. The ranges of $\mathrm{E} / \mathrm{p}$ covered at each pressure are indicated.

At each combination of field and pressure, 3 current ratios are measured, $R_{1}, R_{2}$, and $R_{3}$, which yield the three values, $\lambda_{1}, \lambda_{2}$, and $\lambda_{3}$. In general these values are in good agreement with each other (theoretically, they should be all the same). The mean deviation in the three values is always less than $3 \%$ of their mean in the results used. The deviations appear to be random and the value (or more strictly the value of $u=\left(\lambda^{2}-2^{\prime} \alpha \lambda\right)^{1 / 2}$ ) used in calculating $D / \mu$ is taken as the mean of $\lambda_{1}, \lambda_{2}$ and $\lambda_{3}$.

The effect of primary ionization ( $\alpha$ ) in the gas must be corrected for when extending the results to high $E / p_{0}$. Equation (12) gives $D / \mu$ as

$$
D / \mu=\frac{E}{2[u+(\lambda-u)]} \text {, where } u=\left(\lambda^{2}-2 \alpha \lambda\right)^{1 / 2} .
$$

That is,

$$
D / \mu=E / 2 \lambda=\frac{E / 2 u}{1+\frac{E / 2 u \cdot(\lambda-u) / p}{E / p}}
$$




It may be seen that the above expression is a function of $\mathrm{E} / \mathrm{p}$ only. The effect of applying this formula is seen in fig. 16 , where the $(\lambda-u) / p$ values used are those of Rose (1956): the effect of $\alpha$ ? becomes significant for $\mathrm{E} / \mathrm{p}_{0}>27$.

The results are compared with those of other workers in fig. 16 and Table 3. The present corrected values for $D / \mu$ agree quite well at $E / p_{0}<70$ with those of Townsend and Bailey (1921) and Crompton, Wiley, McIntosh and Hurst (1965), but they are consistently smaller than those of Lawson and Lucas' first set (1965a). It is believed that secondary ionization at the cathode ( $\gamma$ ) in the latter set is responsible for the discrepancy. Lawson and Lucas (1965b) have since allowed for $\gamma$, and their $D / \mu$ values fall below the present values for $E / p_{0}>70$, although at 60 and 70 the agreement is good.
Secondary ionization has not been allowed for in the present results. This may account for the discrepancies with the results of Lawson and Lucas (1965b) for $E / p_{0}>70$.

In Table tare shown parameters relating to collisions between electrons and hydrogen molecules. The root mean square electron velocity $\bar{\sigma}$, electron mean free path $L$, and mean fractional energy Lost by an el $\because 0$ tron in a collision have been oaloulated (see Section 2.4.) from the present experimental values for $D / \mu$ and the drift velocity measurements of Townsend (1948).


$T B=$ Townsend and Bailey (1921) $\quad T=$ Townsend (1948)
CS $=$ Crompton and Sutton (1952) HC $=$ Huxley and Crompton (1955)
CF = Cochran and Forester (1962) CJ = Crompton and Joy (1962)
LiLa $=$ Lawson and Lucas $1965 a$ ) $\quad$ Pr $=$ Present results
CLiNK = Crompton, Lilly, McIntosh and Hurst (1965)
LLb $=$ Lawson and Lucas (1965b
Table 3. Comparison of $D / \mu$ values in hydrogen. (The results have all been presented to 3 significant figures although in some cases this degree of accuracy is greater than indicated). $D / \mu$ involts'.


Table 4a. Quantities determined $\mathrm{from} \mathrm{D} / \mu$ values in hydrogen, Drift velooity values, W, are taken from Towneend (1948). A Maxwellian distribution is assumed. Formulae are given in Seotion 2.4.
$d=5.96 \mathrm{~cm} . \quad b_{1}, b_{2}, b_{3}, b_{4}=1,2,3,4 \mathrm{om} . \quad f=0.970 . \quad N_{2}$. wall radius $=5.15 \mathrm{~cm}, \quad \mathrm{p}=0.588 \mathrm{~mm} . \mathrm{Hg} . \quad \mathrm{T}=22.4^{\circ} \mathrm{C}, \mathrm{p}_{0}=0.543 \mathrm{~mm} . \mathrm{Hg}$.

| $\mathrm{V}_{1}$ | $\mathrm{R}_{1}$ | $\mathrm{R}_{2}$ | $\mathrm{R}_{3}$ | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ | $(\mathrm{D} / \mu)_{12}$ | $E / \mathrm{p}_{0}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 145 | .718 | .348 | .143 | 5.19 | 5.12 | 5.23 | 2.26 | 42.7 |
| 60 | .571 | .539 | .266 | 3.52 | 3.51 | 3.66 | 1.37 | 17.7 |
| 15 | .409 | -.911 | .687 | 1.20 | 1.15 | 1.17 | 1.02 | 4.4 |
| 100 | .678 | .383 | .163 | 4.76 | 4.76 | 4.90 | 1.68 | 29.4 |
| 35 | .479 | .769 | .446 | 2.29 | 2.23 | 2.36 | 1.24 | 10.3 |
| 50 | .534 | .620 | .325 | 3.04 | 3.00 | 3.17 | 1.33 | 14.7 |
| 115 | .699 | .366 | .153 | 4.99 | 4.93 | 5.07 | 1.86 | 33.9 |
| 40 | .497 | .713 | .399 | 2.54 | 2.50 | 2.65 | 1.27 | 11.8 |
| 20 | .426 | .970 | .621 | 1.48 | 1.39 | 1.48 | 1.12 | 5.9 |
| 10 | .394 | . .852 | .762 | 0.90 | 0.86 | 0.78 | 0.91 | 2.9 |
| 130 | .710 | .355 | .146 | 5.10 | 5.05 | 5.18 | 2.05 | 38.3 |
| 70 | .606 | .480 | .223 | 3.95 | 3.93 | 4.11 | 1.42 | 20.6 |
| 45 | .514 | .665 | .361 | 2.78 | 2.75 | 2.89 | 1.30 | 13.2 |
| 175 | .737 | .331 | .134 | 5.38 | 5.31 | 5.42 | 2.62 | 51.5 |
| 200 | .752 | .317 | .126 | 5.53 | 5.47 | 5.58 | 2.91 | 58.9 |
| 25 | .442 | .899 | .558 | 1.73 | 1.67 | 1.78 | 1.18 | 7.4 |
| 85 | .651 | .418 | .183 | 4.47 | 4.44 | 4.61 | 1.53 | 25.0 |
| 30 | .459 | .831 | .499 | 2.00 | 1.95 | 2.07 | 1.22 | 8.8 |

Table 4. Sample set of data in nitrogen. (The negative signs indicate the reciprocal of normal ratio. Townsend's unmodified formula is used for converting ratios into $\lambda$ values. The mean of * $\lambda_{1}$ and $\lambda_{2}$ is used to determine $D / \mu$, or $E / 2 \lambda$ ).


Fig. 17. D/A values in nitrogen, shouins pressure depandency.



Table 5. $D / \mu$ values in nitrogen (aV).
$T B=$ Townsend and Bailey (1921)
CS $=$ Crompton and Sutton (1952)
CF = Cochran and Forester (1962)
$C E=$ Crompton and Elford (1963)
Pr $=$ Present mean values.
looked up in a R v. $\lambda$ table composed for a different gap length, they will yield three quite different values of $\lambda$. It has been shown however, using Townsend's formula, that the agreement between the three new $\lambda$ values oan still be within experimental errors for ohanges in gap length of about $\pm 10 \%$. Thus, a phenomenon which alters the effective gap length with changing pressure could explain the pressure dependenoy.

An attempt has been made to attribute the pressure dependency to photon secondary effects. The theory is given in seotion 3.2. In order to explain the results a phenomenon must exist which will increase the $D / \mu$ value at high pressures and/or decrease it at lower pressures. That is the $\lambda$ value should be deoreased and increased respectively. Tables 6 and 7 show the effect of resonance radiation on observed current ratios. Each table applies at one value of $\mathrm{E} / \mathrm{p}$ only. The values of $\alpha, \alpha_{p}, h_{p}$ and $\gamma_{p}$ are 'iorfenabie' values ( $\alpha=$ Townsend's primary ionization ooefficient, $\alpha_{p}=$ photon primery , Ionization coefficient, $h_{p}=$ photon absorption coefficient, $\gamma_{p}=$ photon secondary ionization coefficient). In order to keep consistency as $\lambda$ is increased, pressure must be increased in proportion; and in consequence $\alpha_{p}, h_{p}$, and $\gamma_{p}$ are also altered in proportion. The quoted values of the parameters are at $1 \mathrm{~mm} . \mathrm{Hg}$. The 'effective $\lambda$ ' values shown are obtained by inserting the ratios ehown (whioh are already multiplied by the resistance factor, 0.97) Into the unmodified $R \vee . \lambda$ table (similar to that of Table 2). Tables 6 and 7 show that as pressure (or $\lambda$ ) is increased the

| $\lambda$ | $\mathrm{R}_{1}$ | $\mathrm{R}_{2}$ | $\mathrm{R}_{3}$ | $\lambda_{1}^{\prime}$ | $\lambda_{2}^{\prime}$ | $\lambda_{3}^{\prime}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1.00 | .404 | -.900 | .702 | 1.00 | 1.01 | 1.01 |
| 2.00 | .472 | .778 | .474 | 2.04 | 2.05 | 2.08 |
| 3.00 | .548 | .580 | .307 | 3.03 | 3.05 | 3.07 |
| 4.00 | .626 | .456 | .235 | 3.93 | 3.89 | 3.78 |
| 5.00 | .711 | .368 | .207 | 4.82 | 4.65 | 4.09 |
| 6.00 | .809 | .293 | .172 | 5.74 | 5.46 | 4.54 |
| 7.00 | .922 | .229 | .131 | 6.70 | 6.37 | 5.20 |
| 8.00 | -.896 | .177 | .092 | 7.67 | 7.32 | 6.07 |

Table 6. Effect of resonance radiation. $\left(\alpha=0, \alpha_{p}=1, h_{p}=0.03, \gamma_{p}=0.3\right)$.

| $\lambda$ | $R_{1}$ | $R_{2}$ | $R_{3}$ | $\lambda_{1}^{\prime}$ | $\lambda_{2}^{\prime}$ | $\lambda_{3}^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.00 | .404 | -.899 | .703 | 1.00 | 1.01 | 1.01 |
| 2.00 | .467 | .799 | .500 | 1.98 | 1.96 | 1.95 |
| 3.00 | .537 | .616 | .358 | 2.89 | 2.85 | 2.76 |
| 4.00 | .620 | .465 | .242 | 3.87 | 3.82 | 3.71 |
| 5.00 | .717 | .349 | .158 | 4.88 | 4.84 | 4.74 |
| 6.00 | .827 | .262 | .103 | 5.90 | 5.87 | 5.80 |
| 7.00 | .949 | .198 | .067 | 6.90 | 6.90 | 6.87 |
| 8.00 | -.867 | .151 | .045 | 7.93 | 7.93 | 7.90 |

Table 7. As above. $\left(\alpha=0, \alpha_{p}=1, h_{p}=0.1, \gamma_{p}=0.3\right)$, hay $L^{\prime}$
(Resistance factor, $f=0.970$ for each current ratio above).
true $\lambda$ values that would be obtained, assuming resonance radiation to be effective, would be higher at large pressures, especially when absorption is low. In other words the pressure dependency due to resonance radiation would act in the opposite direction to that required to explain the results. If resonance radiation was present and effective, Table 6 shows also that the inequalities $\lambda_{1}>\lambda_{2}>\lambda_{3}$ should be present. The disagreements actually found in the values were not of this form ( $\lambda \simeq \lambda_{2}, \lambda_{2}<\lambda_{3}$ ).

The next approaoh to this problem is to assume that simple diffusion theory no longer holds. Parker (1963) has obtained an approximate solution to the problem at low $\mathrm{E} / \mathrm{p}$. His solution for electron concentration may be made to yield $R$ v. $\lambda$ ourves (Seotion 2.11.). The ohanges in $\lambda$ values from those derived from Huxley's or Townsend's solution are shown in fig.12. Applioation of Parker's result to experimental current ratios gives an agreement between the three $\lambda$ values worse than that obtained from Huxley's or Townsend's formulae (Table 8).

Since October, 1965, the author's supervisor, Dr. J. Lucas, has been re-examining the diffusion equation. He has worked out a preliminary theory whioh is beginning to explain the nitrogen results. The diffusion theory breaks down beoause of two factors, (1) The electrons reaching the anode travel by different
paths. Those reaching the outer part of the anode will have travelled an effective distance of $\left(6^{2}+4^{2}\right)^{1 / 2}=7.2$ om., compared with a 6 om. path to the centre of the anode. The longer path means


Table 8. Showing inconsistency of $\lambda$ values interpreted from Parker's solution of the diffusion equation. (The ratios used are those in Table 5 for $\lambda>2.5$. Parker's solution does not consider wall effects, but these are negligible for $\lambda>2.5$ ).
more electron collisions and hence a lower mean electron energy.
(ii) The pinhole injects electrons from the centre of the avalanche and these might have an energy which is higher than the mean electron energy for the collecting ring.

When these two factors are considered it is found that the value of $\lambda$ is governed by the position of the collecting ring. For an inner ring of radius $b$ and an infinite outer ring

$$
\begin{equation*}
\lambda=\lambda_{M}(r / d)^{1 / n}+\frac{3}{4 d} \log _{e}\left\{\frac{1}{2}\left[(d / r)^{1 / n}+1\right]\right\} \tag{52}
\end{equation*}
$$

where $r=\left(d^{2}+b^{2}\right)^{1 / 2}$, and $n$ governs the extent of non-linearity. For small variations

$$
\frac{D / \mu}{(D / \mu)_{M}}=\left[\frac{(E / p)_{M}}{E / p}\right]^{1 / n}, E / p \simeq(E / P)_{M} .
$$

$\lambda_{M}$ and $(D / \mu)_{M}$ correspond to the mean conditions over the swarm. These are what we want to measure. The position-dppendent $\lambda$ (equatio n(52)) has been inserted into the Townsend formula to give the three ratios of the current collected by the anode rings, namely $i_{1} / i_{2}, i_{3} / i_{2}$ and $i_{4} / i_{3}$. The results of the analysis for $n=1 / 3$ and $n=1 / 2$ are given in Table 9. Effective $\lambda$ values have been obtained by substituting the obtained current ratios back into the output of Townsend's unmodified solution. It may be seen that the mean values for the three rings are too mall at low $\lambda$, and too large at high $\lambda$. The range $2<\lambda<4$ is satisfactory and this corresponds

Effective values

| $\lambda$ | $R_{1}$ | $R_{2}$ | $R_{3}$ | $\lambda_{1}^{\prime}$ | $\lambda_{2}^{\prime}$ | $\lambda_{3}^{\prime}$ | Mean |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\underline{n=1 / 3}$ |  |  |  |  |  |  |  |


| 1.00 | .411 | -.910 | .739 | 0.74 | 0.83 | 1.01 | 0.86 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2.00 | .478 | .820 | .494 | 1.79 | 2.05 | 2.10 | 1.98 |
| 3.00 | .557 | .606 | .318 | 2.79 | 3.11 | 3.17 | 3.02 |
| 4.00 | .646 | .450 | .205 | 3.80 | 4.12 | 4.27 | 4.06 |

$n=1 / 2$

| 1.00 | .409 | -.902 | .744 | 0.69 | 0.91 | 0.99 | 0.86 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2.00 | .476 | .822 | .487 | 1.76 | 2.04 | 2.25 | 2.02 |
| 3.00 | .555 | .604 | .309 | 2.76 | 3.09 | 3.23 | 3.03 |
| 4.00 | .644 | .447 | .196 | 3.78 | 4.16 | 4.36 | 4.10 |

Table 9: Showing effect of using a non-linear diffusion equation. (Resistance factor, $f=0.970$ for each current ratio).
to selected parts of each of the curves as given in fig.17. A mean curve (fig.18) has been obtained from these selected parts, and a comparison made with the results of other workers. It may be supposed that their results for variable pressures and values of $\lambda$ are in error. But the results of these workers lie within the series of curves shown in fig.18.

The theory at this stage is sufficient to enable $\mathrm{D} / \mu$ to be determined within $\pm 5 \%$ for the range $4<E / p_{0}<40$. The present results in nitrogen have shown that the normal diffusion equation does not hold and a non-linear diffusion equation must be used. The use of the normal Townsend equation will only give experimental values to $\pm 10 \%$ as indicated in fig. 17.

### 6.3. OXYGEN.

Oxygen is known to be strongly attaching in the E/p regions here investigated. Any negative ions formed in the apparatus behind the cathode aid passing into the diffusion gap upset the oaloulated current dis:ubution at ,he anode, and the centre ratio, $R_{1}$ : then becomes of no use.

There are then left only two independent current ratios in the prevent system. $r$ has beer: found that the effect of primary ionization in altering $D / \mu$ values is not as great as the effect of attachment; in fact, $\mathcal{\alpha}$ moves the $R v . \lambda$ curve about $1 / 5$ as much as $\eta$ but in the opposite direction. This may be seen (fig.19) by inserting values of $\lambda, \alpha$ and $\eta$ into the 'attachment' equation described in Section 3.1. When $\alpha$ is neglected the two ratios, $R_{2}$ and $R_{3}$, are functions of the two remaining variables $\lambda$ and $\eta$ Figs. 19 and 20 show the calculated dependences 4

A combination of $R_{2}$ and $R_{3}$, measured under particular conditions, may be made to yield a pair of values, $\lambda$ and $\eta$. Use is made of the calculated dependences shown in ing. 20. In the results for nitrogen, small systematic difference was obtained between $\lambda_{2}$ and $\lambda_{3}$, although $\lambda_{1}$ and $\lambda_{2}$ agreed perfectly well. It was decided that, in oxygen, the measured values of $R_{3}$ should be corrected for this effects making $\lambda_{2}$ and $\lambda_{3}$ equal in the absence of attachment. The correction curve (obtained from $N_{2}$ results) is shown in the inset of Ifs. 22.


1- 1 . 19. variation of $\mathrm{n}_{2}, \lambda_{2}$ curve with attachment.


F18,20. $R_{2}$. $R_{3}$ a a function of $\lambda^{3}$ and attachment coefficient, $/$ The primary ionization coefficiett, 0 , is assumed zero.

The $D / \mu v . E / p_{0}$ curve obtained by the above procedure is shown in fig. 22. Although the maximum setter is about 0.2 electron-volte, in general the agreement with pressure is good. The results also agree very well with those of Huxley, Crompton and Begot (1959) for $E / p_{0}<16$. It nay be that insufficient account was taken of $\alpha$ at higher values of $E / p_{0}$. This would bring the curve down in the higher $E / p_{0}$ region (as for hydrogen). But values of $\alpha$ would have to exist far higher than those (fig.2.3) found by Prasad and Crags (1961).

By-products of the above procedure are estimates of the attachment coefficient, $\eta$. A curve of $\eta / p_{0} \nabla \cdot E / p_{0}$ is shown in fig.23. An experimental indeterminanoe of about 0.005 in $\eta$ must be considered when assessing these results. At the lower pressures a remarkable consistency with pressure and $E / p_{0}$ is exhibited. The values do not agree well with those of other workers, but it is estimated that in order to obtain attachment coefficients to an accuracy of $5 \%, R_{2}$ and $R_{3}$ would have to be consistent and accurate to better than $0.1 \%$. In the present apparatus this figure is about 1.5\%. When comparing with the results of Huxley, Crompton and Begot (1959) it should be remembered that they used one pressure only ( $p_{0}=1.86 \mathrm{~mm} . \mathrm{Hg}$.), and their ratio -measurements are only slightly more accurate than in the present experiments.

In short, the present results for $D / \mu$ are in remarkably good agreement with those of Huxley, Crompton and Begot although the values of attachment coefficient obtained are totally different. If their values of attachment coefficient are used, two values of $\lambda$




Fig. 23. Attachment coefficients in oxygen.

result corresponding to each pair of current ratios, $R_{2}$ and $R_{3}$. The agreement of these values is poor, differences of about $20 \%$ being general. If their mean is used for calculating $D / \mu$ values, a much larger scatiter (up to 0.45 volts) of points occurs (fig. 21, of. fig. 22) The $D / \mu$ values are also up to $30 \%$ higher than those shown in fig. 22 ; so they do not agree as well with the $D / \mu$ values of Huxley, Crompton and Bagot.
$D / \mu$ values cbtained by Sownsend and Bailey (1921), Brose (1925) and Healey and Kirkpatrick (1939) are consistently much lower than the present values (fig. 24 ). But the first two sets were taken in apparatuses where the centre of the anode was used for making current measurements. Any negative ions formed by attachment behind the pinhole (or slit in the above two cases) are colleoted and give a higher apparent $\lambda$, and lower apparent $D / \mu$, than if allowance had been made for the phenomenon.

Healey and Kirkpatriok used a different electrode configuration, due to Bailey (1925) and described in Healey and Reed (1941); but their low $D / \mu$ results cannot theoretically be ascribed to ion Cormation before the first aperture, because this has been allowed for. However, even negative ions have a small diffusion coefficient and the widths of successive apertures being exactly the same may have resulted in errors. In the present apparatus the finite size of the central collecting disc (1 om.radius) allows a large safety margin for the diffusion of those negative ions formed outside the diffusion gap. Table 20 shows the available $D / \mu$ values in oxygen in the present range of $\mathrm{E} / \mathrm{p}_{0}$.


Table 10. $D / \mu$ values (aV) in oxygen.

## POTENTIAL LISTRIBUTION IN A GAP WITH THICK GUARD RINGS.

The conventional method of fitting guard rings to parallel plane gaps is to build thin circular rings at fixed distances apart between the two electrodes, and to apply voltages to them depending on their position. Long insulators must be used to separate them, making alignment difficult and exposing the region between the plates to effects outside the gap whioh might influence field linearity (Section 4.1.b.iii). The use of thick guard rings reduces these errors, the chief disadvantage being the field distortion inherently introduced. The mathematical solution of the potential problem is given below.

The idea of using thick guard rings is initially Crompton's (Crompton and Elford 1963), and it is believed that the analysis below is due, in essence, to Dr. C.A. Hurst of Adelaide University, Australia.

It is desired to obtain the voltage at any point in an electrode system consisting of two parallel plates separated by several circular guard rings (fig.1). All guard rings are assumed to be the same size and to be separated by infinitely small air gaps. The effect of finite air gaps is to reduce the distortion at any point within the structure, and the values calculated using the formula derived below will be maximum values only. Each guard ring has a
potential corresponding to the position in the gap of the plane through its centre and perpendicular to its axis.

The best method of solving this problem is to find an expression for the voltage deviation from uniformity at each point.

It is required to solve Laplace's equation

$$
\nabla^{2} \phi=0
$$

where $\oint$ is the voltage at any point. Consider a cathode at zero potential with the origin of cylindrical coordinates at its centre and an anode at potential $V_{0}$, with a distance d between them.

Now let $\phi=\frac{V_{0} z}{d}+V$ where $V$ is the voltage deviation from uniformity at any point. Since $\phi$ and $\frac{V_{0} z}{d}$ both satisfy Laplace's equation, then so does $V$.

$$
\begin{equation*}
\text { i.e. } \quad \nabla^{2} v=0 \tag{53}
\end{equation*}
$$

By symmetry the voltages are independent of angle, and are a function of $r$ and $z$ only.

Then, $\frac{1}{r} \frac{\partial}{\partial r}\left[\frac{r}{\partial r}\right]+\frac{\partial^{2} v}{\partial z^{2}}=0$.

Separating variables, let $V=R(r) . Z(z)$. Then,

$$
\frac{1}{d r} \frac{d}{d r}\left[r \frac{d R}{d r}\right]+\frac{1}{2} \frac{d^{2} z}{d r^{2}}=0 .
$$

Each term must be a constant, and two independent equations may be established,

$$
\begin{aligned}
& \frac{d^{2} z}{d z^{2}}=-a^{2} z \\
& \frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}-a^{2} R=0,
\end{aligned}
$$

the second of which is the modified Bessel equation of zero order. Thus a general solution for equation (53) may be written,

$$
V=[A \sin (a z)+B \cos (a z)]\left[C I_{0}(a r)+D K_{0}(a r)\right]
$$

where $a, A, B, C$ and $D$ are arbitrary constants.
Boundary conditions to be satisfied for a single guard ring at a potential $V_{0} / 2$ are $V=0$ at $z=0$ and $z=d$, and $V$ to be finite when $r=0$. Thus $B=0, a=n \pi / d$ and $D=0$.

$$
\text { ie. } \quad V=K I_{0}\left(\frac{n \pi r}{d}\right) \sin \left(\frac{n \pi z}{d}\right) \text {, }
$$

where K is an arbitrary constant. Thus there are an infinite number of independent solutions, corresponding to $n=1,2,3, \ldots$, and a further solution would be the sum of all these,

$$
\text { i.e. } \quad V=\sum_{n=1}^{\infty} K_{n} I_{0}\left(\frac{n \pi r}{d}\right) \text { sin }\left(\frac{n \pi z}{d}\right) \text {. }
$$

The values $\mathbb{K}_{n}$ may be found from the wall condition using a property of Fourier-Bessel expansions giving

$$
K_{n}=\frac{2}{d \cdot I_{0}\left(\frac{n T b}{d}\right)} \int_{0}^{d} v_{\text {wall }} \sin \left(\frac{n \pi z}{d}\right) d z .
$$

When a single guard ring of potential $v_{0} / 2$ is considered then

$$
K_{n}=\frac{2 V_{0}}{n \pi I_{0}\left(\frac{n \pi b}{d}\right)} \quad \text { for } n \text { even }
$$

and

$$
K_{n}=0
$$

$$
\text { for } \mathrm{n} \text { odd. }
$$

Thus the final solution is

$$
v=\sum_{n=2}^{\infty} \frac{2 v_{0}}{n \pi} \frac{I_{0}(n \pi r / a)}{I_{0}(n \pi b / d)} \sin \left(n \pi_{z} / d\right) \quad n=2,4,6,8 \ldots
$$

The above solution applies only for a single guard ring but is readily extended to a system of $p$ identical rings by writing

$$
\begin{align*}
& v_{0}^{\prime}=v_{0} / p \text { and } d^{\prime}=d / p \text {. i.e. For p rings } \\
& v=\sum_{n=2}^{\infty} \frac{2 V_{0}}{p n \pi} \frac{I_{0}\left(p n \pi_{r} / d\right)}{I_{0}\left(p n \pi_{b} / d\right)} \sin \left(p n \pi_{z} / d\right), \text { n even. } \tag{54}
\end{align*}
$$

Exact account may also be taken of the effect of including finite spacers. A 'spacer term' is merely added to the above expression; and then it reads

$$
v=\sum_{n=2}^{\infty} \frac{2 v_{0}}{p n \pi} \frac{I_{0}(p n \pi r / d)}{I_{0}(p n \pi b / d)} \sin (p n \pi z / d) \quad \frac{\sin (p n \pi f / 2 d)}{p n \pi f / 2 d} \text {,n even —— }(55)
$$

where $f$ is the spacing between guard rings.
If half-rings are used adjacent to cathode and anode then the solutions are identical to (54) and (55) but with the signs reversed.

The convergence of the series (54) depends on the ratio of Bessel functions and is very rapid away from the walls, but tends
to get slower as $r \rightarrow b$. The number of terms $N$ needed to converge the series to an absolute error less than $E$ is given approximately by

$$
N=\frac{d \log _{10} E}{I .5(r-b)}
$$

Before the existence of solution (54) was known, another solution was obtained by a different procedure. Two separate sets of boundary oonditions were used,

1. anode $=V_{0}$, cathode $=0$, walls $=0$
2. anode $=0$, cathode $=0$, walls $=$ normal step function condition for three rings. The two solutions of Laplace's equation for these boundary conditions give two independent voltages at a partioular point. Since the sum of the two boundary conditions oonsidered yields the actual boundary condition, the actual voltage at a point in the region is the sum of the two voltages obtained. To find the voltage deviation from uniformity at a point, the voltage corresponding to the uniform field condition must be subtracted.

The solution obtained was

$$
\phi=\sum_{s=1}^{\infty} \frac{2 v_{0}}{\theta_{s} b} \frac{J_{0}\left(\theta_{s} r\right)}{J_{1}\left(\theta_{s} b\right)} \frac{\sinh \left(\theta_{s} z\right)}{\sinh \left(\theta_{s} d\right)}
$$

$$
+\sum_{n=1}^{\infty} \frac{2 V_{0}}{3 n \pi}[\cos (t)+\cos (3 t)+\infty 0 s(5 t)-3 \cos (6 t)] \frac{I_{0}(n \pi r / d)}{I_{0}(n \pi b / d)} \sin (n \pi z / d)
$$

where $J_{0}\left(\theta_{s} b\right)=0$ and $t=n \pi / 6$. The voltage deviation $V$ is given by

$$
V(r, z)=\phi(r, z)-v_{0} z / d .
$$

Solution (56) is only correct for three guard rings and is inferior to the solution (54) because of its greater complexity, lack of generality and slowness of convergence in certain regions. Voltage deviations calculated from both (54) and (56) have proved to be exactly the same.
*E12 28.TOWNS $\rightarrow$
begin
Feal $a, b, 11,12,13,14, d, A, B, C, z, 81, s 2, s 3, s 4, k$, S1,S2,S3,S4,T1,T2,T3, Pi, ff:
integer $1, n, 0, Z, c$ terms;
real array $v[1: 25], p[1: 25], q 1[1: 25], q 2[1: 25]$,

$$
q 3[1: 25], q 4[1: 25], 4[1: 25] ;
$$

real procedure bessel (y); real y;
begin bessel: $=1 f$ f $\bar{Y}<T^{\prime}$ then bes one $(y)$ else bes two $(y)$ end;
real procedure bes one (y); value y; real y;
begin real $1, g$;integer $w$, $X$;
X: $=0$;
f: =g: =y/2;
for $w:=1, w+1$ while abs $(f)>a b s\left(g x_{n}-6\right)$
do begin
$f:=f x(-y \times y) /(4 x(w+1) x w) ;$
$g:=g+f ;$
$X:=X+1$
end;
bes one :-g;
end;
real procedure bes two (y); value y;real y;
begin Feal $a, b, f, g, h, j, q, i, m, r ;$

## integer $\mathrm{t}, \mathrm{Y}$;

1: $=0$ g
a:-eqrt(2/p1); b:=0.75xpi;
f: $-00 \mathrm{~g}(\mathrm{y}-\mathrm{b})$; $\mathrm{g}:=\mathrm{min}(y-b)$;
h:m-64xy×; $1:=s q r t(y)$;
q:m1:m1;
m: $\mathrm{m}=\mathrm{r}:=3 / 8 / \mathrm{y}$;
for $t:=2, t+2$ while $a b s(1)>a b s\left(q x_{n}-6\right)$ or $a b s(m)>a b s\left(~\left(~ x_{n}-6\right)\right.$
do begin
$\left.\left.1:=1 \times(4-(2 \times t-3) \uparrow 2) \times\left(\begin{array}{l}4-(2 \times t-1) \uparrow 2) \\ m \\ 4-(2 \times t-1\end{array}\right) \uparrow 2\right) \times\binom{ t \times(t-1) \times n}{4-(2 \times t+1)} ; 2\right) /(t \times(t+1) \times n) ; ~$
q: $=\mathbf{q}+1$;
r: mem;
$Y:=X+1 ;$
end;
end;
(CONTINUED OVER)

Appendix 2. Computer program in Liverpool University Algol for the calculation of $R$. $\lambda_{\text {tables }}$ using Townsend's formula.

```
terms:=DATA;
p1:m 3.141 592 654;
v[1]:=2.4048256;
v{2}:=5.5200781;
v{3]:=8.6537279;
v(4]:=11.7915344;
v{5}:=14.9309177;
v[6]:=18.0710640;
v(7):=21.2116366;
v[8]:=24.3524715;
for c:m9 step i until terme
do begin
    j:m;;:mpx(j-0.25+0.050661/(4\timesj-1));
end;
```

n:mDATA; e:mo;
repeat:
a:=DATA; b:mDATA; 11:=DATA; 12:=DATA;
13:=DATA; 14:mDATA; d:mDATA;
A:=DATA; B:mDATA; C:=DATA; $f:=D A T A ;$
NEWLINE (3); PRINI $(a, 1,4) ; \operatorname{PRINT}(b, 2,4)$;
PRINT $(11,1,4)$; PRINT $(12,1,4)$;
PRINT $(13,1,4) ; \operatorname{PRINT}(14,1,4) ; \operatorname{PRINT}(d, 2,4)$;
PRINT (f,1,4); PRINT(terms, 3,0);
1:- $1 \times 1000$;
for 1:m1 step 1 until terms
do begin
p[1]:~v[1]/b: $\quad$ bessel $[1] \times a) / b e s s e l(u[1] \times b) \uparrow 2 / u[1] \uparrow 2 ;$

end;

## do begin

 for 1: $1,1+1$ whil
do begin
k: $=\exp (d \times(z-s q r t(z \times z+u[1] \times u[1])))$;


## end

10; 3:
.01;50;1;2;3;4;6.00;
$0 ; 1: 10.1 ; 1 ;$
.1;50;1;2;3;4;6.00;
(SAMPLIT DATA)

0:1:10.01:1.
1;50;1;2;3;4;6.00;
$0 ; 1 ; 10.1 ; 1 ;$
*E12 51 DIST ACC ANY $\rightarrow$

## begin

## comment LUA 29 SEPT 1964;

comment This procedure evaluates IO(x) for any argument $x>-8$ by Chebyshev series; real procedure BIO(x,failure); value $x$; real $x ;$ 1abel fallure;
This is a standard library procedure and has been
omitted for space reasons. Exit is to 'failure' if $x<-8$.
real procedure $I o R(W, R, B)$; value $W, R, B$; real $W, R, B$; IOR:mir WXRCI5 Ehen $\operatorname{BIO}(W \times R, F A I L) / B I O(W \times B, F A I L)$
else $\operatorname{sqrt}(B / R) \times \exp (W \times(R-B)) ;$
procedure $P$ RINGS (Vo, R, $B, Z, D, F, P)$; value Vo, $R, B, Z, D, P ;$
real Vo,R,B,Z,D,F; Integer P;
begin real pi,t, FAHIO, term; integer 1,$8 ;$
p18=3.7415926536;
NEWLINE (1); PRINT ( $\mathrm{R}, 2,3$ );

comment if half ring system used---output will give
input transposed,1.e. the pt $(3,2,12)$ becomes $(3,2,88)$;
F: $=0$; T: $=0$;
for $\mathrm{s}:=2,8+2$ while abs (RATIO) $>a b s\left(F X_{p-7}\right.$ ) and $s \leq$ FINX2 do begin
$t:=P \times 8 \times p 1 / D$
RATIO: $=I O R(t, R, B)$;
term: TYPEXEXVO/P/s/piXRATIQ×sin(tXZ);
$\mathrm{F}: \mathrm{m}$ +term;
if 0 FIFINX2 then TEXT ([TOO*SLOW]);
Ty $\mathrm{T}+1$;
end:

SPACE(4); PRINT ( LETH, 0,4 );
end:
APPRNDIX 3. Computer program in Liverpool University Algol for voltage determination in a gap with thick guard rings.
real $d, b, I, J, K, L, M, N, T, Z, F ;$ integer TYPE, FIN, $\mathrm{D}, \mathrm{X}, \mathrm{Y}, \mathrm{TIME}$, TURNS; NENLINE(2):
TEXTT ([VOLTAGE*****GENERAL*SOLUTICN*FOR*P*RINGS]);
TURNS :mDATA;
for TIME: 1 step 1 until TURNS
co begin

NENLINE (3); TEXT ([NO*OF*RINGS=1); PRINT(TYPEXp,2,0);
d:mDATA $\mathrm{P}:=\mathrm{DATA}$
NEWLINE (1); PRINT $(d, 2,3) ; \operatorname{PRINT}(b, 2,3) ;$
NEWLINE (3);
I:=DATA; J:=DATA; K $m=D A T A ; L:=D A T A ; M:=D A T A ; N:=D A T A ;$
for $x: m$ step $J$ until $K$
do for $z$ : do P RINGS (TO $, r, 0,2 \times d / 2 / p, d, F, p)$; end;

NEWLINE (2);
$Y:=D A T A ;$
for $X:=1$ stop 1 until $Y$
do begin
$r:=D A T A ;$
$z:=D A T A ;$
$P \operatorname{RINGS}(100, r, b, z \times d / 2 / p, d, P, p) ;$
end:
FAIL:
end $\rightarrow$


```
NO OF RINGSz
    Gap= 6.000%
```

        -6:
    5.150: =guard ring radius
    | $\mathbf{r}$ | $\frac{6 z}{d}$ | No. of terms | $\delta v$ | $\log _{10}(\delta v)$ | Final term considered |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0008 | 0.100\% | 28 | -2.061.-13: |  |  |
| 0.000 : | 0.3008 | 2: | -2.061n-13\% | -12.6868 | 2.4575m-27\% |
| 0.0001 | 0.5008 | 23 | -6.668x-13\% | -12.2688 | 3.9763-278 |
| 0.0008 | 0.7008 | $2 \%$ | -6.660\%-13\% | -12.1768 -12.2688 | $1.4335 n-37 \%$ $-3.9763 n-27 \%$ |
| 0.000\% | 0.9008 | 28 | -2.061\%-13\% | $-12.268 \%$ $-12.686 \%$ | -3.9763n-27\% |
| 1.0008 | $0 \cdot 1001$ | 23 | -1.795x-111 | -10.7468 | $-2.4575 x-278$ $8.0132 x-238$ |
| $1.000 \%$ $1.000 \%$ | 0.3008 | $2:$ | -4.699n-11: | -10.3288 | 1.2966x-22: |
| 1.0001 | 0.5008 0.7008 | 28 | -5.808n-11: | -10.2368 | 4.6743 mm - 338 |
| 1.0001 | 0.9001 | 28 | -4.699\%-118 | -10.3288 -10.7468 | -1.2966n-22: |
| 2.0008 | $0.100 \%$ | 2 \% | -6.7190-98 | -10.746: | -8.0132x-231 |
| 2,000: | $0.300 \%$ | 2; | -1.7590-8 | -8.1738 | $1.6111 \mathrm{~m}-178$ |
| 2.0008 | 0.5008 | 2 : | -2.174m-88 | -7.7558 | 2.6069-171 |
| 2.0001 | 0.7001 | 2: | -1.759x-8i | -7.6638 | 9.3982n-28: |
| 2.0001 | 0.9008 | $2 \%$ | -6.719x-98 | -7.755 | -2.6069-17\% |
| 3.0001 | 0.1008 | 3 3: | -2.919n-68 | -8.1738 | -1.6111m 171 |
| $3.000:$ | $0 \cdot 3001$ | 38 | $-2.919 n-68$ $-7.642 *-68$ | -5.535: | -4.7035m-18: |
| 3.0008 | 0.5001 | 38 | -9.445 -6i | -5.1178 | -1.7966m-188 |
| 3.000 : | 0.7008 | 38 | -7.642n-68 | -5.0258 | 5.81390-188 |
| 3.0008 | 0.9001 | 3 3: | -2.919n-68 | -5.117\% | -1.7966m-18: |
| 4.0001 | 0.1001 | 4 : | -1.353n-3i | -5.5358 | -4.7035-188 |
| 4.0001 | 0.300 : | 4: | -3.542r-3i | -2.869 | 4.0129n-13: |
| 4.0008 | 0.5008 | 3 3: | -4.3800-3\% | -2.451\% | -2.48010-132 |
| 4.0001 | 0.7008 | 48 | - $3.5450-38$ | -2.3588 | 7.7313p-108 |
| 4.0008 | 0.9008 | 4: | -1.355\%-3i | -2.450\% | 2.48010-13: |
| 5.0001 | 0.100: | 183 | -4.718*-11 | -2.8682 | -400129n-13: |
| 5.000: | 0.300 ) | 17: | -4.718* $-1.352 x$ | -0.326: | -7.5410n-9: |
| $5.000 \%$ | 0.500: | 17: |  | 0.1318 | 1.0773n-8i |
| 5.0001 | 0.7001 | $17 \%$ | $-2.001 \%+0 \%$ -2.090 | $0.301 \%$ | -3.4862y-8: |
| $5.000:$ | 0.9001 | $18:$ | $-2.0908+08$ $-1.0188+08$ | 0.320: | 1.07730-8: |
|  |  |  |  | 0.008 : | 7.54100-9: |

Table 11. Output of program'51 DIST ACC ANY'; showing degree of voltage distortion (100 volts on anoded.

## REFERENCES.

Bailey, V.A., 1924, Phil. Mag. 47, 379.
Bailey, V.A., 1925, Phil.Mag. 50, 825.
Bailey, V.A., 1930, Phil.Mag. 2, 560 and 625.
Bailey, V.A., and Rudd, J.B., 1932, Phil.Mag. 14, 1033.
Brose, H.L., 1925, Phil.Mag. 50, 536.
Coohran, L.W., and Forester, D.W., 1962, Phys.Rev. 126, 1785.
Compton, K.T., 1923, Phys.Rev. 22, 333.
Crompton, R.W., and Elford, M.T., 1963, 6th.Int.Conf. on Ionized
Gases, Paris, 3, 337.
Crompton, R.W., Elford, M.T., and Gascoigne, J., 1965, to be published.

Crompton, R.W., Huxley, L.G.H., and Sutton, D.J., 1952, Proc.Roy.Soc. A218, 507.

Crompton, R.W., and Jory, R.L., 1962, Aust.J. Phys. 12, 303. Crompton, R.W., Liley, B.S., McIntosh, A.I., and Hurst, C.A., 1965 7th. Int. Conf. on Ionized Gases, Belgrade, to be published. Crompton, R.W., and Sutton, D.J., 1952, Proc.Roy.Soo. A215. 467. Gray, E.P., and Mathews, J.M., 1922, 'Treatise on Bessel Functions", 2nd.ed., Macmillany London.

Harrison, M.A., and Geballe, R., 1953, Phys.Rev. 21, 1.
Healey, R.H., and Kirkpatrick, C.B., 1939, Healey and Reed (1941), 94 Healey, R.H., and Reed, J.W., 1941, 'Behaviour of Slow Electrons in Gases', Amal. Wireless Ltd., Sydney.

Huxley, L. G.H., 1940, Phil.Mag. 30, 396.

Huxley, L.G.H., 1959, Aust. J. Phys. 12, 171.
Huxley, L.G. H., 1960, Aust. J. Phys. 13, 718.
Euxley, L.G.H., and Crompton, R.W., 1955, Proc. Phye.Soc. B68, 381. Euxley, L. G.H., Crompton, R.W., and Bagot, C.H., 1959, Aust.J. Phys.

$$
\text { 12, } 303 .
$$

Huxley, L. G. H., and Zaazou, A.A., 1949, Proc.Roy.Soo. Al96, 402. Labrum, Nr. R, and Bigg, E.K., 1952, Proc. Phys.Soc. B65, 356.
Lawson, P. A., and Lucas, J., 1965a, Proc. Phys.Soc. 85, 177.
Lawson, P.A., and Lucas, J., 1965b, J.App. Phys., to be published.
Little, P.F., 1959, 4th.Int.Conf. on Ionized Gases, Uppsala, 202. Llewellyn-Jones, F., 1957, 3rd.Int.Conf.on Ionized Gases, Venice. Lucas, J., 1964, J.El. and Control 17, 43.

Lucas, J., 1965, Int.J. of Electronics 18, 419.
Maxwell, J.C., 1867, Phil.Trans.Roy.Soc. 157, 49.
Parker, J. H., 1963, Phys.Rev. 132, 2096.
Prasad, A.N., and Craggs, J.D., 1961, Froc.Roy.Soc. 77, 385.
Rees, J. A., 1964, Aust. J. Phys. 17, 462.
Rees, J.A., 1965, Aust.J.Phys. 18, 41.
Rose, D.J., 1956, Phys.Rev. 104, 273.
Skinker, M. F., 1922, Phil.Mag. 44, 994.
Townsend, J.s.E., 1899, Phil.Trans.Roy.Soo. Al93, 129.
Townsend, J.S.E., 1908, Proc.Roy.Soc. A81, 464.
Townsend, J.S.E., 1915, 'Electricity in Gases', Clarendon, Oxford.
Towneend, J.S.E., 1930, Phil.Mag. 9, 1145.
Towneend, J.s.E., 1936, Phil.Mag. 22, 145.
Townsend, J.S.E., 1948, Motions of Eleotrons in Gases', Oxford.

Towneend, J.S.E., and Bailey, V. A., 1921, Phil.Mag. 42, 873,
Townsend, J.S.E., and Bailey, V.A., 1922a, Phil.Mag. 43, 593.
Townsend, J.S.E., and Bailey, V.A., 1922b, Phil.Mag. 44, 1033.
Townsend, J.s.E., and Bailey, V.A., 1923, Fhil.Mag. 46, 657.
Townsend, J.S.E., and Tizard, H.T., 1913, Proc.Roy.Soc. A88, 336.
Warren, R. W., and Parker, J.H., 1962, Phys.Rev. 128, 2661.

Gas supply to the chamber is from a commercial high pressure cylinder through a multistage regulator (set at 10 prig constant output) and a fine-control needle valve (Edwards-type LB2A). As the gas enters it is also being pumped away by the rotary pump and equilibrium is established at an internal pressure determined by the needle valve setting. The gas inlet is near the gas outlet (fig.2) so the gas enters the glass chamber and McLeod gauge by a back diffusion process. Apart from convenience of construction, it was felt that this method was the least likely to establish pressure gradients within the apparatus.

The cold traps were surrounded by liquid nitrogen when investigating nitrogen and hydrogen, and by a mixture of solid carbon dioxide and acetone for oxygen.

The impurity level in the chamber may be calculated as follows. Suppose,

$$
\begin{aligned}
Q_{0} & =\text { pumping rate }, \\
Q_{i} & =\text { input rate }, \\
\text { and } Q_{L} & =\text { leak rate } .
\end{aligned}
$$

Then, $Q_{0}=Q_{i}+Q_{L}$, and impurity level $=Q_{L} / Q_{i} \simeq Q_{L} / Q_{0}$.
Now $\quad Q_{L}=A \frac{d p_{L}}{d t} \quad$ and $\quad Q_{0}=A \frac{d p_{o}}{d t}$
whore $A$ is a constant. $\frac{d p_{L}}{d t}$ is found by measuring the rate of pressure increase in the closed system ( $=\mathrm{L}$ microns/hr:), and $\frac{d p_{o}}{d t}$ by measuring the rate of increase of chamber pressure when the pumps are switched |off. Experimental measurement of $\frac{d p_{o}}{d t}$ proves it to be proportional to

