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Abstract
The main eye condition associated with diabetes is called diabetic retinopathy and is,

the main cause of blindness. The earliest signs of this disease include damage to

retinal blood vessels and then the formation of lesions such as exudates and red

spots. Such lesions are normally detected manually by clinicians in intensive and

time-consuming processes. Computer-aided detection and grading of such conditions

could facilitate an immediate and accurate diagnosis. Whilst some progress has been

made to detect these diseases, there is no complete system for automated detection

and grading of diabetic retinopathy and this is hindering the development of

automated methods to support assessment of diabetic eye disease. The aim of this

work is to develop computer algorithms that can be used in the medical screening

system for evaluating the condition of the retina leading to successful treatment.

This work comprises five stages: 1) image pre-processing, 2) retinal structure

extraction, 3) hard exudate detection, 4) red lesion detection and 5) grading of

diabetic retinopathy. The aim of image pre-processing is to prepare the image with

better quality where shade correction using morphological processes and contrast

enhancement using fuzzy logic-based method are applied to the image. In the retinal

structure extraction, multi-scale morphological technique and classification

procedure are proposed for blood vessel detection. Vasculature loop-based method

for the optic disc localisation is proposed, while for fovea localisation, a method

based on its features and geometric relationships with the other retinal structures is

developed. These methods have the advantage of lower computational complexity

and competitive performance compared to the existing related methods.

A novel coarse to fine strategy is proposed to detect hard exudates, where a

local variation operator is used to calculate the standard deviation around each pixel

followed by automated thresholding, morphological operations, and classification to

segment coarse hard exudates. To fine-tune the result of coarse hard exudates, two

region-based segmentation techniques are investigated to detect fine hard exudates.

The significance of this method is manifested by its superior performance, lower

computational complexity (compared to the current state of the art) and the ability to

deal with a variety of image qualities.



A novel red lesion detection method is proposed using mathematical

morphology to segment candidate red lesions followed by refining them from traces

of retinal structures and then a classification based on red lesion features is used to

detect red lesions with high degree of discrimination between genuine red lesions

and artifacts and as a result its detection performance has proved to be favourable.

Grading of diabetic retinopathy is a very important stage after the detection of

retinal lesions to evaluate their severity and to decide appropriate treatment. The

most reliable medical approaches to diabetic retinopathy grading were investigated to

build a novel computer-aided model for automated grading based on the clinical

criteria and results of the earlier lesion segmentation. This model quantifies the

nature, extent and spatial distribution of all the detected features and provides a

clinical grading assessment. This is among the first of such models published and as

such the novelty is considered to be one of the main contributions of this thesis.
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Chapter 1

Introduction

1.1 Motivations

Human eyes are the parts which are responsible for the sight sense which is the

most important among the 5 human senses organs because they are the unique

window by which the human can see everything around him, and all the recent

technologies in the world cannot compensate their functions by an alternative. On the

other hand, status of human eyes can provide early signs about many other diseases

like diabetes, cardiovascular and hypertension. In addition, examination of eye

vasculature can assist to predict early the heart attack and stroke [1].

Most of ocular diseases such as diabetic retinopathy (DR) often have no early

warning signs and the vision is not affected. So a periodic eye examination to check

the retina for early signs of the diseases, like blood vessel leak, macular edema, fatty

deposits and any change in the blood vessels (BVs) is important for effective

treatment. Ocular diseases such as hard exudates (HEs), soft exudates (SEs) and red

lesions (RLs) are normally detected and graded manually by clinicians in time-

consuming and is susceptible to observer error. Manual examination by

ophthalmologists is a laborious process as they have to spend a great deal of time in

manual analysis and diagnosis. Moreover, manual detection requires using chemical

dilation material which takes time and has negative side effects on the patient.

Hence, automated screening techniques for eye examination including: retinal

structure extraction, lesion detection and lesion grading have great significance in

saving costs, time, and labour as well as to avoid side effects on the patient.

Automated eye screening programmes can assist to detect signs of all types of

retinal abnormalities in fast operations and precise results. In like these programmes,

many images for the same patient taken at different times are processed and their

results are compared to check the development of existing disease or may find signs

of new diseases. This can be accomplished by early automated detection and grading

of different types of retinal lesions associated with the DR.



Chapter 1: Introduction

1.2 Aims and Objectives

Digital image processing has provided the ability of processing retinal images to

assist immediate and accurate diagnosis and treatment. With advent of rapid growth

of computational software for identifying those at risk developing DR and for the

reduction in costs and labours, an advanced and cost-effective retinal image analysis

algorithm can be developed to detect and grade signs of diabetic retinopathy. Our

objectives in this work are to develop reliable and accurate image processing

techniques for automatic fundus image analysis, and our main focus is on automatic

detection and grading of HEs and RLs from retinal fundus images.

Automated screening for the detection of different types of lesions from retinal

background is a big challenge for two reasons. Firstly, the overlap between some

faint lesions and the retinal background as well as the low contrast between them

makes it difficult to discriminate these lesions from the background. Secondly, the

resemblance between some features of the different types of lesions with those of

retinal structures i.e. the BVs, the optic disc (OD) and the fovea can significantly

affect the performance of lesion detection.

Based on these difficulties in the detection of lesions, our other aim in this

research is to enhance the image and prepare it for post-processing with better

quality. For this, the image is pre-processed by applying shade correction and

contrast enhancement techniques before the processing for lesion detection. In

addition, we proposed improvements to some existing methods and proposed others

to detect retinal BVs and localise the OD and the fovea from colour fundus images to

be used for refining the results of HE and RL detection. Moreover, different

classification techniques are also investigated in our work based on features of each

of HEs and RLs to discriminate true lesions from spurious objects.

Computer-aided DR grading from the retinal fundus photographs could

facilitate more immediate and accurate diagnosis and treatment of DR. Manual

grading which is based on the experience is usually done by the clinician in time-

consuming and it is susceptible to observer error. Thus, one of our main aims is to

develop a computer-aided method as a part of a medical screening scheme for

grading severity of detected HEs and RLs.

2
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1.3 Contributions

The proposed methods, presented in this thesis, have resulted in the development of

novel automated approaches for the extraction of retinal structures and detection and

grading of different types of retinal lesions. The main contributions of this research

can be summarised as follows:

• A new method for BV detection characterised by low computational complexity

and the ability to separate the BVs from retinal background efficiently. In this

method the retinal BVs can be detected in competitive performance and less

processing time than the other related methods (2.2 minutes for images of size

565x584 pixels on a 2.4 GHz PC, where this time is 12% less than that of the

fastest method in the literature, see Chapter 4).

• An efficient new method for OD localisation based on the number of vasculature

loops. The contribution of this method is manifested by its ability to localise the

OD irrespective of its visibility on the retinal image with superior success rate

compared to the related works (100% for all the images from the DRIVE dataset

and 98.8% for all the images from the STARE dataset, see Chapter 4).

• A new method for fovea localisation based on its features and geometric

relationships with the BVs and OD. The main strength of this method is

represented by its ability to approximate the location of fully obscured fovea using

its geometric relationships with the BVs and OD (achieved SR of 100% for all the

images from both the DRIVE and the STARE datasets, see Chapter 4).

• A novel coarse to fine strategy for the detection of REs, where a local variation is

applied to segment coarse HEs, followed by region-based segmentation to fine-

tune the coarse HEs. As the fine segmentation stage is based on decomposing the

image into homogeneous sub-images and its processing is delimited within the

coarse ROI, this method has the advantages of; low processing time (4.5 minutes

for images of 640x480 pixels on a 2.4 GRz PC), superior performance compared

to the other related works in the literature (sensitivity at pixel level is 93.2%) and

the ability to deal efficiently with a variety of image qualities (see Chapter 5).

3
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• An efficient novel RL detection method based on morphological operations,

refining, and classification. This method has a characteristic of high degree of

discrimination between circular shapes (as RLs) and linear shapes (as vessel

traces) as well as a favourable sensitivity at lesion level (89.7%, see Chapter 6).

• A novel DR grading model based on a combination of the most reliable medical

grading references. Images of different detected lesions are the input of the

proposed model while its output is information about DR grade and suitable

medical treatment. The contribution of this model is that it is a pioneer study that

performs converting medical grading knowledge into computer-aided DR grading

efficiently. This model is tested on a set of 30 pathological images in 100%

accuracy with reference to an expert from the Royal Liverpool University

Hospital (see Chapter 7).

1.4 Publications

This research has resulted in a number of publications as follows:

1.4.1 Journal Paper

• H. F. Jaafar, A. K. Nandi and W. Al-Nuaimy, "Decision support system for the

detection and grading of hard exudates from color fundus photographs," Journal

of Biomedical Optics, vol. 16, p. 116001(1-10), Nov 2011.

1.4.2 Conference Papers

• H. F. Jaafar, A. K. Nandi and Waleed Al-Nuaimy, "Automated detection of

exudates in retinal images using a split-and-merge algorithm," 18th European

Signal Processing Conference (EUSIPCO) 2010, Denmark, Alborg, pp. 1622-

1626, Aug 2010.

• H. F. Jaafar, A. K. Nandi and W. Al-Nuaimy, "Detection of exudates in retinal

images using a pure splitting technique," IEEE 32nd Engineering in Medicine and

Biology Society Conference (EMBC) 2010, Buenos Aires, pp. 6745-6748, Aug

2010.

4
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• H. F. Jaafar, A. K. Nandi and W. Al-Nuaimy, "Detection of exudates from digital

fundus images using a region-based segmentation," 19th EUSIPeO 2011,

Barcelona pp. 1020-1024, Aug 2011.

• H. F. Jaafar, A. K. Nandi and W. Al-Nuaimy, "Automated detection and grading of

hard exudates from retinal fundus images," 19th EUSIPeO 2011, Barcelona,

pp. 66-70, Aug 2011.

• H. F. Jaafar, A. K. Nandi and W. Al-Nuaimy, "Automated detection of red lesions

from digital fundus photographs," IEEE 33rd EMBe 2011, Boston, pp. 6232-6235,

Sep 2011.

1.4.3 Workshop Papers

• H. F. Jaafar, A. K. Nandi and W. Al-Nuaimy, "Automated detection of retinal

blood vessels from colour fundus images," Ophthalmic Image Analysis Workshop

2011, Liverpool, pp. 21-26, Dec 2011.

• W. Al-Nuaimy , A. K. Nandi and H. F. Jaafar, "Retinal landmark detection:

selected case studies," Ophthalmic Image Analysis Workshop 2011, Liverpool, pp.

27-28, Dec 2011.

1.5 Thesis Overview

To take an overview about the work of this thesis, one can look at the block diagram

shown in Figure 1.1, where input, outputs and overall approach stages and steps used

in this thesis are illustrated. The thin black arrows refer to the transmission of images

among approach stages and steps, while the thick coloured arrows refer to the

transmission of resulting images and resulting information among approach stages

and steps. Our study consists of five main stages: image pre-processing, extraction of

retinal structures, HE detection, RL detection and grading of DR.

In the first stage, the colour fundus image is converted to one or more of its

components and analysed to calculate image statistics and to generate its binary mask

followed by image shade correction and contrast enhancement to reduce variation of

image illumination and to enhance visibility of image structures and lesions (if

5
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available). Once the image has been analysed and pre-processed, the other three

stages can be implemented separately using the pre-processed image as input. While

the last stage, i.e. the DR grading is based on information from medical grading

approaches and earlier detected HEs and RLs.

Although our main aims in this research are the detection and grading of HEs

and RLs, the stage of retinal structure extraction is our first task to be investigated

and performed for two reasons. First; the resemblance between some features of the

retinal structures and those of HEs or RLs requires prior knowledge about these

structures to avoid detecting them as any of these lesions. Second, in the DR grading

operation, which is very important stage for evaluating severity grade of detected

lesions, the spatial distributions of detected lesions are calculated with reference to

the location of one of these retinal structures, namely the fovea (the centre of vision)

which is itself in need of information from the other structures for its localisation.

In retinal structure extraction, as information of the BVs is important in

identifying other retinal structures, we start with BV detection where two methods

are presented. The first is our proposed method that is based on multi-scale

morphological operations and classification while the second is an existing efficient

method presented and modified by adding a classification step to improve its

performance. The second step is OD localisation, where an existing effective method

is presented in addition to our proposed method. The existing OD localisation

method is based on parabolic Hough Transform, morphological operations and

circular Hough Transform.

The proposed method is based on calculating the most vasculature loops for

initial OD centre localisation, while the second phase of this method is emanated

from the existing OD localisation method. The third step is the fovea localisation,

where features of the fovea and its geometric relationships with the other structures,

namely the BVs and the OD are used to determine its centre and boundary. In this

thesis the geometric relationships between the fovea and both BVs and OD are

presented in two different methods, the first is an existing method, while the second

is our proposed method with superiority in the performance.

For HE detection, we proposed a novel two-step HE segmentation method that

is based on two main operations; coarse HE segmentation and fine HE segmentation.
6
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In the coarse HE segmentation, the standard deviation around each pixel is calculated

to get the local variation image followed by thresholding with automatic threshold

and then applying a morphological dilation with small structuring element to ensure

the presence of all bright objects of distinct boundaries within the coarse HE result.

A classification step is applied based on some selected features to classify true HEs

and reject spurious objects. In the fine HE segmentation, two novel techniques are

proposed, i.e. split-and-merge segmentation (SAMS) and pure-splitting segmentation

(PSS). Both techniques are implemented to compare their performance based on

experimental tests.

For RL detection, we presented two methods; a proposed method and an

existing method with a modification step proposed to improve its performance. In the

proposed method, a mathematical morphology is used to extract candidate RLs

followed by refining from traces of the retinal structures and then a classification step

is applied using a rule-based classifier to classify true RLs from artifacts. A set of 20

features is used in this classifier selected based on RL specifications. The existing

method is presented because it is efficient and flexible to be improved. In this

method, a matched filter is used to increase the contrast of RLs against the

background and a relative entropy-based thresholding is employed to distinguish

between RL segments and the background of the matched filter response image. To

improve performance of this method, a step of image refining is added, where the

BV image, OD mask and fovea mask are subtracted from thresholded image before

applying the classification step, thus artifacts will be suppressed as well as the

classification process will be easier and of low computational complexity.

After the detection of HEs and RLs, grading operation is very important stage

to evaluate their severity and to decide appropriate treatment. Consequently, the most

reliable medical approaches in diabetic retinopathy grading were investigated to

build a novel computer-aided model for automated grading based on the clinical

criteria and results of the earlier lesion segmentation and classification. In the

proposed model, numbers, sizes, and spatial distributions of both HEs and RLs are

calculated separately throughout the fields of the fovea coordinate system and then

DR is graded to report appropriate treatment based on severity of DR.
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Figure 1.1 A block diagram indicating approach stages for the detection and grading of DR.
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1.6 Thesis Outline

This thesis is structured according to the task priority sequence and it is organised as

follows:

Chapter 2: It introduces necessary information about medical background, image

processing, and literature survey. The medical background presents information on

structure of the human eye, retinal problems and DR. Image processing presents

information on image segmentation, thresholding, mathematical morphology and

performance measurements. The literature survey provides a brief review to some

recent methods on retinal structure extraction, detection of bright lesions (BLs) and

detection of RLs.

Chapter 3: It presents information about the datasets used in this research and a

review to colour spaces and the channel components used in this work. In addition,

this chapter presents proposed methods for retinal binary mask generation, image

shade correction and image contrast enhancement.

Chapter 4: It investigates the extraction of retinal structures starting with an

introduction. For BV detection a proposed method using multi-scale morphological

operations and an existing modified method based on vessel centerline detection are

presented. For OD localisation, an existing method using parabolic Hough Transform

and circular Hough Transform as well as our proposed method which is based on the

calculation of most vasculature loops are presented. An existing method and a

proposed method for fovea localisation are presented, where both of them are based

on geometric relationships with the BVs and OD but in different procedures and

performances.

Chapter 5: It presents a proposed method of HE detection. A two-step approach of a

coarse and fine segmentation is used. In the coarse segmentation, the standard

deviation around each pixel is calculated to get the local variation image followed by

morphological operations and classification to remove artifacts. In the fine

segmentation two region-based segmentation techniques, i.e. SAMS and PSS are
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investigated and then the result of each one is combined separately with the coarse

segmentation result to obtain the final fine HE image.

Chapter 6: It displays two methods for detection of RLs, i.e. a proposed method and

a modified existing method. In the proposed method, operations from mathematical

morphology are used to extract candidate RLs followed by refining from traces of

retinal structures and finalised by a classification based on selected features. The

existing method is based on entropy-based thresholding to extract candidate RLs

from an image subjected to matched filter to increase the contrast between RLs and

the background. An adaptation is introduced to this method by refining candidate

RLs from traces of retinal structures. A method for the detection of RLs inside the

fovea is proposed using a morphological basic gradient followed by thresholding.

Chapter 7: It presents a novel model for the grading of DR with respect to the most

common eye diseases, i.e. the HEs and the RLs. This chapter presents necessary

information on the most reliable medical grading systems, i.e. the fovea coordinate

system (PCS) and the Scottish grading scheme (SOS). Then a proposed approach for

automated DR grading which is based on a combination of these two medical

grading systems and previously segmented lesions is presented. In this approach,

numbers, sizes of different eye lesions and their spatial distributions throughout the

fields of the PCS are calculated, and then the grade of retinopathy and maculopathy

are computed based on the information from the SOS to report finally the appropriate

treatment.

Chapter 8 reviews and presents a summary and our conclusions for the whole thesis

topics to highlight what we have learned and concluded and to present the proposed

method advantages and limitations as well as any important notes and finally to

suggest some future avenues to develop this work.
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Background

2.1 Medical Background

Early detection of eye diseases and knowing the reasons of visual impairment are

necessary for active treatment in their early stages. To ensure that treatment is

received on time, the eye fundus of diabetic patients must be examined at least once

a year. In addition, health evaluation of the retina is widely used to detect and

diagnose many other diseases, such as diabetes and hypertension. The fundus is the

back portion of the interior of the eyeball, visible through the pupil by use of the

ophthalmoscope [2]. A photograph is taken to the eye fundus using a customised

camera to document the health of the optic nerves, macula, retina, and its blood

vessels (BVs). These images are taken periodically to evaluate the effect of medical

treatment. Measuring degenerations and changes in the retina during a periodical

time is hard and laborious for ophthalmologists. Therefore, automated screening for

detection of degenerations in the retina has become very important.

Diabetic retinopathy (DR) is a complication of diabetes and one of the most

common causes of frequent eye diseases in the world which leads to vision

impairment and blindness. It occurs when diabetes damages the tiny blood vessels

inside the retina [3]. If the disease is diagnosed during its early stages, the treatment

by laser photocoagulation can slow down or stop the degeneration of DR. However,

this is not always easy task, because DR is asymptomatic in the beginning stages.

Age-related macular degeneration (ARMD) is an eye condition that affects a

tiny part of the retina at the back of the eye, which is called the macula. It is a

common retinal disease and may even result in blindness for people over the age of

65 years [4]. ARMD causes problems with the central vision, but does not lead to

total loss of sight and is not painful. Over a period of time, this disease may cause a

black patch in the centre of the vision [4]. Recent researches have shown that retinal

fundus image allows the evaluation of ARMD. However, segmenting and measuring

enlargement of ARMD are quite difficult because of the irregular structures.

11



Chapter 2: Background

2.1.1 Structure and Function of the Human Eye

The human eye is the organ which gives us the sense of sight. Its function is to

receive incoming light rays and convert them into electrical signals, and send these

signals through the optic nerves to the brain where they are turned into images. The

human eye consists of several structures, among the most important are the: cornea

(dome-shaped surface that covers the front of the eye), iris (ring of muscle fibers that

controls aperture size of the pupil), pupil (hole in the centre of iris), lens (transparent

crystalline to focus the light on the retina) , retina (light sensitive tissues to convert

light rays into nerve impulses), macula (a part of the retina that is responsible for

central vision), and optic nerves (nerve fibers connecting the eye to the brain) [5].

Figure 2.1 illustrates the main structures of the human eye.

Choroid

Cornea

~/
I .
I I

Lens

Iris

Ciliary body

Figure 2.1 A section of the human eye with a schematic enlargement of the retina [6].

The eye works in a way similar to the work of the camera, where each part in

the eye has individual role in providing clear vision. The pupil and iris act similar to

the aperture in the camera, while the eye lens works like the lens in a camera to focus

rays of light on the back of the eye where a light sensitive tissue named the retina

that acts in the eye in very similar manner as a film in a camera. In the center of the

retina there is the macula with 10% of the whole retina, it is responsible for the sharp

vision [7]. A comparison between the camera and the human eye is illustrated in

Figure 2.2.
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Ca) Cb)
Figure 2.2 Comparison between the camera and the human eye, (a) the camera, (b) the human eye [8].

2.1.2 Retina

The retina is the most important part in the human eye, and it is considered as an

extension of the brain. The function of the retina is to receive light and turn it into

nerve impulses to be sent to the higher regions of the brain through the optic nerves.

The retina is a multi-layer tissue that lines the back surface of the eye. These tissues

are light sensitive because they contain millions of photoreceptors that convert light

rays into electrical pulses. These pulses are transmitted through the optic nerves to

the brain where changed to image. In adult humans the entire retina is 72% of the

inner surface of a sphere about 22 mm in diameter [9]. It contains about 7 million

cones and 75 to 150 million rods. The function of cones is represented in bright light

to allow appreciating colour, while the best function of the rods, which are spread

throughout the peripheral retina, is in dim light.

The optic disc (OD) is an area of the retina known as "the blind spot" because

it lacks photoreceptors and appears as an oval white area of 3 mm''. The macula is

another area which is temporal (in the direction of the temples) to the OD. At the

centre of the macula is the fovea, the most light sensitive part in the retina. The

central retina extends around the fovea for about 6 mm and then the peripheral retina.

The ora serrata is the edge of the retina and the length from one ora to other (or

macula) are along the horizontal meridian is about 3.2 mm [9].

The retina has three layers of optic nerve cells and two of synapses, where the

optic nerve carries the ganglion cell axons to the brain and BVs that open into the

retina. By product of evolution, eye ganglion cells lie innermost in the retina while

13
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the photoreceptive cells lie outermost of the retina. This arrangement makes light

first pass through the thickness of the retina before reaching the rods and cones, and

it does not pass through the epithelium or the choroids. An image is produced by the

patterned excitation of the cones and rods in the retina, and the excitation is

processed by the neuronal system and various parts of the brain working in parallel

to form a representation of the external environment in the brain [6].

2.1.3 Retinal Problems

Retina may be affected by many problems and can be summarised as follows [6]:

1. Macular degeneration: It is the most common cause of vision loss for people over

50 [4].

2. Macular Holes: They are a result of the normal aging, a macular hole can cause

blurred vision and it can even cause a complete loss of central vision.

3. Retinal detachment: This problem can be extremely detrimental to vision and

takes place when the sensory and pigment layers in retina are separated.

4. Diabetic retinopathy: Diabetes affects many parts of the body, including the eye.

People with diabetes have an increased chance of developing a variety of eye

problems, including cataracts and glaucoma. The effect of diabetes on the retina is

the most serious threat to vision, it begins to take place in the retina after a patient

has been living with diabetes for 10 to 15 years and like this effect on the retina

and vitreous is called DR [3].

Over time, DR begins to affect the circulatory system of the retina. In the

earliest phase of disease, the arteries in the retina become weakened and vessel leak

can form small dot-like hemorrhages (HRs). These leaking vessels often cause

swelling or edema in the retina, which may result in vision impairment. The effect of

DR on vision varies widely depending on the stage of the disease. Although DR has

no early warning signs in its early stages, some common symptoms of this disease

are:

1. Blurred vision - often linked to blood sugar levels

2. Floaters and flashes.

3. Sudden loss of vision.
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The symptoms listed above give a sign of DR that can cause various other eye

symptoms as well. Several treatment types can be used to treat this disease and the

appropriate treatment type is selected based on the stage of the disease and the

specific problem that requires treatment. To determine the appropriate course of

treatment, surgeons test the retina using fluorescein angiography, retinal

photography, or ultrasound imaging of the eye, and the most effective treatment for

the eye diseases can be achieved with early detection through regular screening [6].

2.1.4 Methods of Retinal Test

To determine the health of the eye, many techniques are in practice at many eye

health centres in the world, they are as follows [6]:

1. Asmler grid: It is simple screening test and to test for vision problems. In this test

a simple dot is located in the center of the grid for fixation, while starting at the

dot, the patient looks for wavy lines and missing areas of the grid.

2. Slit lamp examination: It is a microscope with a light attached to see the eye under

high magnification. It is used to examine the cornea, iris, and lens.

3. Indocyanine green dye test: It is special dye test used to evaluate the circularity

system of the choroids. In this test, the dye is injected into the patient arm and it

travels through the blood to the eye to reveal leaking vessels in the choroids.

4. Ophthalmoscopes: It is equipment used to examine the retina. This test requires

dilation to the pupils with drops to give the best view inside the eye.

5. Fluorescein angiography: This test provides doctors with information about the

circularity and the condition of the eye. To get effective result, a special dye,

called fluorescein, is inserted in the eye. It passes through the BVs at the back of

the eye and then a special camera is used to take a photograph. By looking at the

dye patterns in the photograph the doctor can know if problems exist.

6. Fundus photography: It involves a customized camera that is mounted to a

microscope with intricate lenses and mirrors. Using high powered lenses, the

photographer can visualize the back of the eye by focusing light through the

cornea, pupil and lens. Fundus photography is widely used by clinicians to

evaluate the health of optic nerves, macula, and retina.
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2.1.5 Diabetic Retinopathy

Diabetic retinopathy is a complication of diabetes and a leading cause of blindness. It

occurs when diabetes damages the tiny BVs inside the retina. DR has four stages [3]:

1. Mild non-proliferative retinopathy: It is the earliest stage of DR, where small areas

of balloon-like swelling, known as micro aneurysms (MAs), in retinal tiny BVs.

2. Moderate non-proliferative retinopathy: It is a disease progress where some BV s

that nourish the retina are blocked.

3. Severe non-proliferative retinopathy: It is the case when more BVs are blocked

and several areas of the retina will be deprived from blood supply. As a result,

these areas send signals to the body to grow new BVs for nourishment.

4. Proliferative retinopathy: It is the advanced stage of DR; the signals sent by the

retina for nourishment trigger the growth of new BVs. The new BVs are abnormal

and fragile growing along the retina and along the surface of the vitreous gel that

fills the inside of the eye. These BVs do not cause symptoms or vision loss. But,

they have thin and fragile walls and may leak blood resulting in severe vision.

Damaged BVs from DR can cause vision loss in two ways: abnormal BVs can

leak blood into the center of the eye causing vision impairment. This is proliferative

retinopathy and is the fourth and most advanced stage of DR. Fluid can leak into the

center of the macula, centre of vision, making the macula swell and then causing

blurring vision. This condition is called macular edema and can occur at any stage of

DR. About half of the people with proliferative retinopathy have macular edema.

Figure 2.3 shows the effect of proliferative DR on the vision.

(a) (b)
Fig~re 2:3 Eff~ct of DR on the vision, (a) normal vision, (b) same scene viewed by a person with
proliferative retinopathy [3].
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2.2 Image Processing

2.2.1 Introduction

Image processing is the use of computer algorithms to perform manipulation

processes on the image. In electrical engineering, image processing is any form of

signal processing for which the input is an image and the output is either an image or

a set of characteristics related to the image. Image processing often refers to digital

image processing, but analogue and optical image processing are possible. Image

processing problems are different from one to another, so it is difficult to conceive

general algorithms to deal with images that come from different origins or require to

solve different problems. Recent image processing works, dealing with automated

image processing algorithms, are all based on the search on a plan of treatment

adapted to the problem nature and image specifications [10].

In our current work, we are interested in solving retinal image problems in a

dynamic way according to the specific features and image characteristics. Many

efforts on creating algorithms for accomplishing easy, accurate, and fast detection of

retinal features and abnormalities are based on digital image processing; in fact, there

are no clear-cut boundaries in the continuity from image processing at one end of

computer vision to the other. However, it is useful to consider of computerised

processes in this continuum: low-, mid-, and high-level processes.

Low-level processes involve primitive operations such as image pre-processing

to reduce noise, contrast enhancement, and image sharpening. A low-level process is

characterised by the fact that both inputs and outputs are images. Mid-level processes

on images involve tasks segmentation (partitioning an image into regions or objects),

description of those objects to reduce them to a form suitable for computer

processing. A mid-level process is characterised by that its inputs generally are

images, but its outputs are attributes extracted from those images for instance edges,

contours, and identity of objects. High-level processes involve making sense of

recognized objects, as in image analysis [11]. As image segmentation, thresholding,

and mathematical morphology are more frequent concepts used in our work than

others, we present them in brief in this chapter.
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2.2.2 Image Segmentation

Image segmentation is essential process in most image processing applications,

particularly in the subsequent chapters of this thesis. It is the operation of image

partitioning into many segments, and separating objects such as lines, curves, areas

and others from background. Level of segmentation limits depends on the problem

being worked on. More precisely, segmentation process should stop when the object

of interest have been separated. Segmentation methods for grayscale images are

based on one of the two following properties of image intensity values: discontinuity

and similarity. In the first, the image is partitioned based on abrupt changes in

intensity, such as edges while in the second, the partitioning process is based on

similarity to a set of predefined criteria [11].

Segmentation can be implemented by four approaches, they are: thresholding

techniques, edge-based methods, region-based techniques, and connectivity-

preserving relaxation methods. Many techniques have been created and developed

for image segmentation; most of those techniques are general-purposes. These

methods are: clustering methods, histogram-based methods, edge detection methods,

region growing methods, level set methods, graphic partitioning methods, watershed

transformation, model based segmentation, image segmentation and primal sketch,

semi-automatic segmentation and neural network segmentation. There is no

particular method can deal with all image segmentation problems, and it may be

impossible to fit any segmentation technique on all image types. The appropriate

solution for image segmentation problems is to combine these techniques with

domain knowledge for a problem domain [12].

2.2.3 Thresholding

Thresholding is the simplest method of image segmentation. It is the operation that

converts grayscale image into binary image with two levels below and above

specified threshold value. In the thresholding process, pixels in image are separated

into two groups. First group comprises pixels that represent objects; the intensity

values of these pixels are equal to or greater than selected threshold value. Second

group comprises pixels that represent the background; intensity values of these pixels
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are smaller than the threshold value. The simplest way to implement image

thresholding is to select a threshold value (a) from the intensity histogram of an

image A(x, y). Any point (x, y) that verifies A(x, y) ~ a is called an object point.

The others those verify A(x, y) < a are background points. The parameter a

represents the brightness threshold and applied on the image as indicated in the

following equation [13]:

A(x, ) = {1 if A(x,y) ~ a
y 0 otherwise

(2.1)

There are many methods for thresholding, and it is efficient to find the optimal

threshold value for a given image. Thresholding methods are:

1. Histogram shape-based methods where the peaks, valleys and curvatures of the

smoothed histogram are analyzed.

2. Clustering-based methods where the gray level samples are clustered in two parts

as background and foreground or are modeled as two Gaussian distributions.

3. Object attribute-based methods search a similarity between the gray-level and

binarized images, such as fuzzy similarity, shape, edges and number of objects.

4. Fuzzy thresholding using a method that minimizes fuzziness measure involving

the mean gray level in the object and background.

5. Entropy-based methods that use the entropy foreground-background regions or

the cross-entropy between the original and binarized images.

The major difficulties and problems with global thresholding have mostly been

taken place when we deal with uneven illumination and poor contrast images. In

poor images, it is easy to find extraneous pixels in thresholding results that are not

part of the desired region, at the same time; it can easily miss pixels within the

region. These problems get worse with the increase of noise, shadow, and non-

uniformity illumination on the same image. The best solution for these problems can

be achieved by dealing with those types of images as parts, and determining different

threshold values for each part locally. Local thresholding is another method that can

deal with uneven illumination in part by determining threshold locally. In this type,

the operation allows threshold value to smoothly vary across the image.
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2.2.4 Mathematical Morphology

Mathematical morphology is a tool for segmenting image components which are

important to describe region shapes such as boundary, skeleton, and the convex hull.

Morphological techniques are used for both pre-processing and post-processing, such

as filtering, thinning, filling, pruning and others [14].

Some of the main processes used in our work are dilation, erosion, opening and

closing. These involve a special mechanism of combining two sets of pixels. Usually,

one set consists of the image being processed and the other is a smaller set of pixels

known as a structuring element or kernel. Intuitively, dilation expands the image

objects, while erosion shrinks them. Two very important transformations are opening

and closing, where opening process generally smoothes the contour in an image by

breaking narrow isthmuses and eliminating thin protrusions. Closing tends to narrow

smooth sections of contours, fusing narrow breaks and long thin gulfs, eliminating

small holes, and filling gaps in contours. Algorithms combining the above processes

are used to create mechanisms of edge detection, noise removal and background

removal as well as for finding specific shapes in images. Some of the main

morphological operations we used are as follows [14]:

The dilation of A by B denoted by A E9 B and defined as the set operation:

(2.2)

where A is the gray image, B is the structuring element, 0 is empty set. This equation

says that dilation of A by B is the set consisting of all points z such that B, translated

by z. overlap at least one element of A.

The erosion of A by B denoted by A e B and defined as follows:

A e B = {ZI(B)z ~ A} (2.3)

This equation says that the erosion of A by B is the set of all points z such that B,

translated by Z, is contained in A.

Morphological opening of A by B denoted by A 0 B and defined as an erosion

of A by B, followed by a dilation of the result by B as follows:

A 0 B = (A e B) E9 B (2.4)
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An equivalent formulation of the opening is:

A 0 B =U {(B)zl(B)z !;;;;; A} (2.5)

Morphological closing of A by B denoted by A . B and defined as a dilation of

A by B, followed by a erosion of the result by B as follows:

A . B = (A E9 B) e B (2.6)

A . B is the complement of the union of all translations of B that do not overlap.

2.2.5 Performance Measurements

Due to growing need to more developed image processing techniques, a lot of

techniques have been proposed to design new algorithms or to improve existing

methods. To evaluate the success and then the effectiveness of a new technique,

performance measures are required to be calculated and compared to previous related

works. In the applications of lesion detection, three criteria are used to evaluate

performance of the new method, they are: pixel-based calculation, lesion-based

calculation, and image-based classification. In pixel-based calculation, the

performance is assessed based on pixel number of lesions correctly detected, while in

lesion based calculation, performance is calculated based on number of lesions

correctly detected, and in image-based classification, the assessment is based on

method ability to correctly classify processed images into normal or abnormal [15].

In pixel-based calculation, four types of pixels are considered as follows: true

positives (TPs), true negatives (TNs), false positives (FPs) and false negatives

(FNs). TPs refer to the number of abnormal pixels correctly detected as abnormal,

TNs refer to the number of normal pixels identified correctly as normal, FPs refer to

the number of normal pixels wrongly detected as abnormal and FNs refer to the

number of abnormal pixels wrongly identified as normal. For each individual image,

these quantities are computed to calculate the following performance measures [16]:

TP.Sensitivity = s
TPs + FNs (2.7)

S 'f" 'fiNspecz icity = ---
TNs + FPs (2.8)

21



Chapter 2: Background

TPs + TNs
Accuracy = TP. + FP. + TN + FN

s s s s
(2.9)

TP.
Positive Predictive Value = TP

s
+sFP

s
(2.10)

In lesion-based calculations, the same procedures of pixel-based calculations

are followed but on the number of objects rather than the number of pixels. While in

image-based classification the performance measures, i.e. sensitivity (SN) and

specificity (SP) are used to assess algorithm ability to classify processed images into

normal or abnormal images, where the sensitivity refers to the percentage of

abnormal images correctly detected as abnormal by the screening method, while

specificity refers to the percentage of normal images correctly identified as normal

by the screening method. The higher sensitivity and specificity, the better detection,

and are computed as follows [16]:

T
Sensitivity = T p F

p + N
(2.11)

T
Specificity = T N F

N + p
(2.12)

where Tp is the number of abnormal images correctly classified as abnormal, TN is

the number of normal images identified as normal, Fp is the number of normal

images found wrongly as abnormal and FN is the number of abnormal images

wrongly classified as normal.

Performance can be measured with receiver operating characteristics (ROC)

curves [17]. ROC curves graphically plots the sensitivity or true positives rate (TPR)

against false positive rate (FPR). In pixel-based calculation, the TPR is calculated by

dividing the number of detected true positive pixels by the total number of pixels

manually-labelled as positive pixels, while the FPR is calculated by dividing the

number of false positive pixels by the total number of pixels manually-identified as

true negative pixels. While in image-based classification, the TPR is calculated by

dividing the number of images correctly detected as abnormal by the total number of

abnormal images, and FPR is calculated by dividing the number of images wrongly

detected as abnormal by the total number of normal images.
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A success rate (SR), in our applications is another measure that is used to

evaluate accuracy of OD and fovea localisation. It is calculated by dividing the

number of images correctly localised by the total number of processed images. In the

assessment of our BVs method we employed a pixel-based calculation to calculate

the sensitivity and specificity, and also FPR and TPR to compare the performance of

proposed BV method with some other related works. In the OD and fovea

localisation methods the SR is used to evaluate success degree of each method.

In the validation of HE detection, we used both pixel-based and image-based

criteria to test performance of the proposed method. While in the RL detection, we

used lesion-based and image-based criteria to evaluate performance of the proposed

and the developed methods of RL detection.

2.3 Literature Review

Diabetic retinopathy remains the most common cause of new blindness in the

working age population in the UK [18]. DR meets all the criteria for a disease that

warrants screening. It has a long latent period before visual loss and is eminently

treatable. Screening for retinopathy is non-invasive, highly sensitive and cost-

effective [19]. Timely treatment can prevent up to 98% of visual loss from DR [20].

Automated methods for DR detection begin with image pre-processing [21],

detection of anatomical structures [22], and end with the detection and grading of

lesions [23]-[25]. In this section we present previous related works for retinal

structure extraction, i.e. the BVs, the OD and the fovea and lesion detection, i.e.

different types of red lesions (RLs) and different types of bright lesions ( BLs).

2.3.1 Retinal Structure Extraction

Several techniques have been proposed to detect the BVs, OD and fovea.

Sinthanayothin et al. [26] proposed an automated system to detect the BVs and

identify the OD and fovea from digital colour images. The OD was located by

identifying the area with the highest variation in intensity of adjacent pixels and the

BVs are identified by means of a multilayer neural network, whose inputs are derived

from a principal component analysis of the image and edge detection of the first

component of principal component analysis result. The fovea was localised by using
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matching correlation together with characteristics typical of a fovea as the darkest

area in the neighbourhood of the OD. This system achieved a sensitivity of 83.3%

and a specificity of 91% to the BV detection, while in the OD localisation both of

sensitivity and specificity are 99.1%. In the fovea identification these measures are

80.4% and 99.1 % respectively. Performance of this technique is competitive in OD

localisation, whilst it looks poor in fovea localisation. Staal et al. [27] segmented the

BVs based on extraction of image ridges and then these ridges were used to compose

primitives in the form of line elements, where an image is partitioned into patches by

assigning each image pixel to the closest line element to constitute a local coordinate

frame for its corresponding patch. Feature vectors are computed for every pixel by

making use of properties of the patches and the line elements. For true vasculature

classification, a kNN-classifier and sequential forward feature selection were used

and found to achieve an accuracy of 94.4%.

Hoover et al. [28] proposed a new method for BV segmentation. In this method

the matched filter response image is thresholded using a novel probing technique

where this probe examines the image with pieces to test a number of region

properties. If the probe finds the piece as vessel, constituent pixels are segmented and

classified. Jiang and Mojon [29] applied a general framework to detect BVs from

retinal images. In this work an adaptive local thresholding using verification-based

multi-threshold are used. In this work object hypotheses are generated by

binarization using hypothetic thresholds and accepted/rejected by a verification

procedure. This verification procedure can be designed to fully utilize all relevant

information about the objects of interest. Comparing with exiting related works, this

method can be regarded as unique in using a knowledge-guided.

Wu et al. [30] proposed a BV detection method that is based on adaptive

contrast enhancement, feature extraction, and tracing. The standard deviation of

Gabor filter responses are used to extract features of small BVs. For vessel tracing,

they used forward detection, bifurcation identification and backward verification.

Overall test results to 20 normal and abnormal images were found to achieve a good

FPR, it is 3.9%, and competitive TPR, it is 82.8%. Salem et al. [31] proposed a

clustering technique with a partial supervision for BV segmentation. This algorithm

uses a distance based principle to map the distributions of the data by utilising the
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premise that clusters are determined by a distance parameter. Experimentation tests

demonstrated that it is able to segment even small vessels and those of low contrast,

and achieved a sensitivity of 86.8% and a specificity of 99.1 %.

Niemeijer et al. [32] proposed a fast method for the localisation of the OD and

fovea. This method is based on defining the problem of retinal structure localisation

as a regression problem. Itmakes few assumptions about the location of both OD and

fovea in the image, and then a kNN regressor is utilized to predict the distance in

pixels in the image to the object of interest at any given location in the image-based

on a set of features measured at that location. In OD localisation, the method

combines cues measured directly in the image with those derived from BV

segmentation. A distance prediction is made for a limited number of image locations

and the point with the lowest predicted distance to the OD is selected as the OD

centre. For fovea localisation, the location with the lowest predicted distance to the

fovea within the foveal search area is selected as the fovea location. Using normal

and pathological images, this method was found to achieve overall SR of 96.2% and

92.9% for OD and fovea localisation respectively. Muramatsu et al. [33] compared

three different methods that employed artificial neural network, active contour model

and fuzzy c-mean clustering for the segmentation of the OD. The results of the three

methods were evaluated after performing them with new datasets. In this study, OD

segmentation by active contour model method was performed on the basis of the disc

edges detected by the Canny edge detector. After detecting the edges between the

OD and peripapillary atrophy regions successfully, the disc region could be

determined adequately. The result was found to be better for this method than those

obtained by other two methods.

Abramoff et al. [34] employed a pixel classification method for OD

localisation where an operation of feature analysis followed by the nearest neighbour

algorithm were used. The final output of their scheme comprised the classification of

each pixel to a group that belongs to rim, cup or background. After selecting a

subset of features, the k-nearest neighbour (kNN) classifier, support vector machines

and linear discriminator analyser were investigated. As the kNN classifier has the

advantage that only one parameter needs to be adjusted and no elaborate training is

required, it outperformed the other two classifiers. This has been proved in many
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other studies like [24], [27] and [35]. Wei fer et al. [36] has proposed a method for

fovea identification based on the retina anatomy and mathematical morphology.

After image filtering the regional minima operator is used to identify low intensity

regions as fovea candidates. As the fovea centre is located below the aD centre, all

candidates above the horizontal line at the Of) centre is discarded. To select fovea

candidate from the other which are located below the horizontal line, the average

intensity of the remaining candidates are calculated, and the candidate centroid of the

lowest intensity is chosen as the fovea centre. This method works well in normal

images but with images of RLs the accuracy will be low.

2.3.2 Bright and Red Lesion Detection

Several techniques have been proposed to detect BLs or RLs in retinal images. Wang

et al. [37] proposed an approach that combines brightness adjustment procedure with

statistical classification method and local-window-based verification strategy. Osareh

et al. [38] proposed a system for automated identification of exudates in digital

colour images. In this system the colour retinal images were segmented using Fuzzy

c-means clustering following some key processing steps. To classify the segmented

regions into exudates and non-exudates, an artificial neural network classifier was

applied and achieved a sensitivity of 93% and specificity of 94.1 %. This system

works well in Luv colour space but with low accuracy in a case of uneven

illumination.

Walter et al. [16] proposed an approach based on morphological reconstruction

techniques and texture analysis to detect exudates in a sensitivity of 92.8% and

positive predictive value (PPY) of 86.7%. This approach achieved good performance

measures in reasonable computational complexity, but it was validated with a very

small number of images, in addition it is not able to distinguish REs from SEs.

Sanchez et al. [39] proposed a method based on mixture models to threshold images

in order to separate exudates from the background with 90.2% sensitivity and 96.8%

PPY. A limitation of this method is that it sometimes misses faint exudates.

Garcia et al. [40] employed a combination of local and global thresholding for

exudate segmentation and investigated three neural network classifiers to classify

REs. It achieved a sensitivity of 87.6% and PPY of 83.7%, but it is tested with a
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small set of images that makes it difficult to evaluate its performance on large

number of images. Sopharak et al. [41] employed naive Bayes and support vector

machine classifiers for feature selection and exudate classification with a sensitivity

of 92.3%, specificity of 98.5% and PPV of 53.1 %. Both of the classifiers

occasionally fail to detect faint exudates. Jayakumari et al. [42] proposed a method

consists of many stages: first, the retinal image are subjected to pre-processing and

contrast enhancement, second, a contextual clustering algorithm is used to segment

the retinal image, and finally a classification is used to separate candidate objects as

exudates and non-exudates using the features; convexarea, solidity and orientation.

This method obtained a sensitivity of 93.4% and specificity of 80%.

Fleming et al. [43] proposed a method for exudate detection. Candidate

exudates were detected using a multi-scale morphological process. Based on local

properties, the likelihoods of a candidate being a member of class exudate, drusen or

background were determined. This leads to likelihood to the image containing

exudates which can be thresholded to create a binary decision. This method achieved

95% sensitivity and 84.6% PPV. Sanchez et al. [44] proposed an algorithm based on

Fisher's linear discriminant analysis and made use of colour information to perform

the classification of retinal exudates with 88% sensitivity and 100% specificity.

Wei fer et al. [45] proposed a new method based on mathematical morphology for

the detection of exudates with low sensitivity 70.5% and good specificity 98.9%. A

limitation of this method is that it is not suitable to detect exudates in retinal images

that contain macular reflection, i.e. the reflections from various image components

are detected as exudates.

Kavitha and Duraiswamy [46] used information of colour histogram to

segment both HEs and SEs from the retinal background with a sensitivity of 89.8%.

This method tried to segment both HEs and SEs using same algorithm and

parameters where that may affect the performance measures especially the PPV

which is not addressed in this work. Jaafar et al. [47] proposed a method based on

image decomposition into homogeneous sub-images using a region-based

segmentation followed by edge detection using a morphological gradient technique.

After a classification step, this method achieved exudate detection results with a
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sensitivity of 93.1%. A limitation of this method was that it occasionally fails to get

rid of some artifacts.
With regard to the RL detection, several researchers have proposed different

techniques such as Niemeijer et al. [24] who proposed a RL detection system based

on pixel classification to separate vasculature and RLs from the background and a

kNN classifier to classify RLs from the connected vasculature. This method is tested

at lesion basis and found to obtain a sensitivity of 87%, while at image basis it

achieved a sensitivity of 100%. The system was adjusted to attain maximum

sensitivity, but this leads to the detection of large number of spurious candidate and

then to low specificity, i.e. 87%. Acharya et al. [48] used morphological technique to

detect the BVs, while for MAs detection, an edge detection technique followed by a

mathematical morphology were used and found to achieve low sensitivity 77.5% and

reasonable specificity 88.7% at lesion basis, while the specificity at image basis was

85.5%.
Walter et al. [49] proposed an automatic method for the detection of MAs

based on diameter closing for detecting candidates followed by feature extraction to

automatically classify candidates into real MAs and other objects. This method was

tested at lesion basis and found to obtain a good performance (sensitivity of 88.5%

and specificity of 98.5%). A decision support system for early detection of MAs was

proposed by Kahai et al. [50]. The principle of this system is based on a binary-

hypothesis testing problem by using the Bayes optimality criteria and found to obtain

100% sensitivity and 67% specificity at image basis.

A bilinear top-hat transformation and matched filtering are used by Spencer et

al. [51] to provide an initial segmentation of candidate MAs from the image. Then a

region-growing algorithm is used to delineate each marker object and subsequent

analysis of candidate features for final detection of MAs. This method was tested at

lesion basis and found to obtain a sensitivity of 83.6% and specificity of 99.2%.

Garcia et al. [52] investigated four neural network classifiers to segment RLs from

the background. A set of colour and shape features from regions are first extracted

and performed feature selection using logistic regression. Experimental tests found to

achieve a sensitivity of 86% at lesion level and 100% at image level. The limitation

of this technique is that it sometimes fails to avoid detecting small vessels as RLs.
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2.4 Summary and Conclusions

In this chapter, we reviewed necessary medical background, including information

on structure of human eye, retina and its problems and DR. Brief background on

essential processes in image processing such as image segmentation, thresholding

operation, principal information about mathematical morphology, and criteria of

method evaluation and performance measurements used in each criterion are

presented in this chapter. A survey to the main algorithms of retinal image

processing i.e. methods for retinal structure extraction, bright lesion detection and

red lesion detection are reviewed.

Despite good progress which has been made to extract retinal structures and to

detect different types of retinal lesions automatically, there are still some limitations

with their outcomes in terms of performance, speed and dealing with images of poor

feature appearance. Extraction of retinal structures, which is essential in automated

analysing algorithms, is investigated by many researchers with some difficulties. The

difficulties are mainly due to noises, non-uniform illumination, abnormalities, and

variation between individuals. In the literature, most studies extract retinal features

with low performance and/or high computational complexity. Many BV detection

methods fail to detect thin vessels, while for the OD and fovea localisation methods ,

the majority of them are based on the OD and fovea features, and hence they may fail

to locate them with images containing large abnormalities or having unclearly visible

features.

With respect to the detection of BLs and RLs in the literature, the common

difficulties for all proposed techniques are due to presence of artifacts created by

retinal structures, non-uniform illumination and low contrast between retinal features

and the background. Thus, some proposed methods detect BLs or RLs in low

performance, while others are based on complex procedures that require long

processing time.

From this survey, we concluded that despite good progress made in automated

detection of DR, there is no consistent and complete system for automated detection

and grading of DR, and this is motivating the development of automated system for

the detection and grading of DR. In addition, we noticed that most of these

29



Chapter 2: Background

techniques those mentioned above worked on images that have specific image

qualities, for instance, different lesion types and retinal structures should be clearly

visible, or the retinal image must be clear enough to recognize all details. Thus, best

endeavors should be done for building a comprehensive system of automated

detection and grading of DR.

In this work, we propose an extensive study as a framework for comprehensive

integrated system of detection and grading of DR. For this aim, the study has

undertaken the following tasks:

• Development of novel methods for retinal structure extraction, namely the BVs,

OD and fovea in competitive performances and lower computational complexity

compared to the current state of the art. The proposed BV detection method

achieved results in competitive performance and lower computational complexity

compared to the existing related methods, while our proposed methods for OD

and fovea localisation have the advantage of being applicable for all images

irrespective of the feature visibility with favourable performance compared to the

other related methods.

• Development of novel methods for the detection of HEs and RLs in high

performance and low computational complexity. A novel coarse to fine strategy

for the detection of HE achieved results in superior performance and lower

processing time (compared to the other related works) because it is based on

decomposing the image into homogeneous sub-images and processing within

delimited coarse RO!. The proposed RL method achieved favourable performance

at lesion level because it is based on morphological technique that is characterised

by a high degree of discrimination between circular objects and linear objects .

• Development of novel DR grading method for grading severity of earlier detected

lesions. For this, we developed a novel model based on the most reliable medical

references and earlier results of lesion detection to support assessment of DR

grade. On the basis of many experimental outcomes, the high accuracy of this

model is validated with reference to an expert.
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Image Pre-processing

3.1 Materials

The proposed methods of retinal structure extraction and detection and grading of

HEs and RLs have been implemented in MATLAB and tested under Linux on an

AMD Athlon(tm) 64 X2 2.4 OHz Pc. A large number of images and corresponding

ground truth results from a variety of datasets such as DRIVE [27], STARE [53],

MESSIDOR [16], DIARETDBO [54] and DIARETDBI [55] have been used in the

proposed methods of this work, where each method is trained and tested with more

than two datasets so that they can be applicable to different image resolutions and

qualities.

The DRIVE dataset consists of 40 images captured by a Canon CR5 non-

mydriatic 3CCD camera at 45° field of view. They are captured in a digital form of

size 565x584 pixels with standard ROB and 8 bits per channel. Thirty three images

are healthy and the other seven images contain different types of pathologies. These

40 images have been divided into two equal sets (training and test sets). They have

been manually segmented by three experts [27] to produce ground truth for BVs. The

images of the training set were segmented once, while the images of test set were

segmented twice. Typical image from DRIVE dataset is shown in Figure 3.1(a).

The STARE dataset consists of 81 images which are digitised slides captured

by a Top-Con TRV-50 fundus camera at 35° field of view. Each slide was digitised

to produce a 700x605 pixels image with standard ROB and 8 bits per channel. Every

image has been manually segmented by two observers to produce ground truth for

BVs. Typical image from STARE dataset is shown in Figure 3.1 (b).

A set of 17 pathological images from the MESSIDOR dataset was also used in

this work. These images are kindly provided by the Center of Mathematical

Morphology, Mines Paris Tech. with their corresponding ground truth of HE

segmentation. These images are captured at 45° field of view with a size of 640x480

pixels. We have selected these images among all images of the MESSIDOR dataset
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because they are available with their ground truth, thus could be used for validation

purposes. Typical image from MESSIDOR dataset is shown in Figure 3.1(c).

Another set from the DIARETDBO dataset [54] consists of 130 images of

which 110 contain different sings of DR. These images were captured with a 50°

field of view digital fundus camera with unknown camera setting and a resolution of

1500x1152 pixels. Information corresponds to the abnormality situations were

marked by experts using different symbols to denote the type of DR. This

information can be used to evaluate the general performance of diagnosis methods.

A set of 89 images from the DIARETDB 1 dataset [55], of which 84 contain

different sighs of the DR and 5 are normal, was used in our work. The images of this

dataset were captured using 50° field of view with varying imaging setting and a

resolution of 1500x1152 pixels. Independent marking results from 4 experts were

provided as image annotation to mark the area related to the MAs, HRs, HEs and

SEs. In this marking, the experts are instructed to avoid marking the findings so that

the borders of the marked areas will contain all pixels belonging to the finding.

Typical image from DIARETDBI dataset is shown in Figure 3.1(e).

(d)
Figure 3.1 Typical images from a variety of datasets, used in our work, appearing at the same dataset
proportion between width and height for each dataset, (a) DRIVE #1, (b) STARE #1,
(c) MESSEDOR #1, (d) DIARETDBO #1, (e) DIARETDBI #1.
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3.2 Colour Spaces and Channel Selection

There are many variant colour spaces in the literature and each one has its own

specifications [56]. While there is no one of these colour spaces which is better than

all others and suitable for processing all kinds of images, the selection of a colour

space for image processing is application dependent. In our research, two groups of

results using the ROB and HSI colour spaces separately were compared and the ROB

space was found to be more suitable for our various processing tasks.

Digital colour fundus images are available as a true colour ROB images.

Although the colour retinal image contain more information about features and

background than the corresponding gray level image, the additional colour

information does not necessarily mean the process will be easier, but on the contrary

it may make the process computationally more expensive, and thus a careful channel

selection is required. In our image processing tasks for the extraction of image

structures and the detection of variant lesions, we have to select the suitable channel

from the channels (red, green and blue).

The red channel is often called the saturated channel because it is the brightest

channel. The green channel is often called the detail channel because it usually looks

more like a black and white version of the photograph than the other channels.

Because the green channel usually has the most image information, it has the highest

contrast between objects and background. The blue channel is often called the noise

channel, and is usually the darkest, and contains the most noise. Thus, noise

reduction techniques are required when using the blue channel. Figure 3.2 illustrates

a colour fundus image and the three corresponding channels (red, green and blue),

while gray-level distributions of these three channels are shown in Figure 3.3.

Experimental tests showed that the red channel has the advantage of being

distributed over a wider range of gray-level values that results in less contrast

between retinal structures and abnormalities (if found) and the retinal background.

The green channel image is widely used in most image segmentation techniques

because retinal structures and abnormalities, in green channel, are more contrasted

against the background than those in the other channels [16].
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(d)

Figure 3.2 Visual comparisons among the channels of a colour fundus image, (a) colour fundus

image, (b) red channel, (c) green channel, (d) blue channel.

150 200 250200

Cc)
Figure 3.3 Gray level distribution of a fundus image on each channel, (a) red channel, (b) green
channel, (c) blue channel.
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In the case of abnormal images, the green channel image has a high contrast

between the abnormalities and the background. Then, it will be more suitable for HE

and RL detection than the other channels. Due to contrasted abnormalities in the

green channel images, results of retinal structure extraction on normal images are

much better than those of abnormal images particularly in the BV detection.

Consequently, in selected special cases, i.e. normal and uniform illumination images,

experimental tests for BV detection showed that the red channel is more suitable than

the green channel, but special cases (only normal) in our work is impractical.

In general, experimental results using a variety of image qualities and cases

(normal or abnormal) showed that the green channel component is still more suitable

for the extraction of all types of retinal structures. In the literature, the green channel

for BV segmentation was used in several techniques [27], [29] and [57]-[60]. As the

red channel is the brightest channel, it has the most contrast between fundus field of

interest and its outer black surrounding region, thus it is suitable to be used for

segmentation of retinal field of interest (binary image mask).

3.3 Mask Generation

The colour fundus image can be described as a circular or semicircular region of

interest on a dark background. Thus the retinal fundus image can be divided into two

main regions, i.e. fundus region of interest (FROI) and dark surrounding region

(DSR). All ocular information is concentrated in FROI, while DSR is just a dark

background region that occupies about 25% of the whole colour fundus image.

Consequently, discarding DSR from subsequent processing stages is necessary to

decrease processing time and to get accurate calculation of retinal statistics.

The principle of mask generation is based on labeling pixels belonging to the

FROI and pixels outside the FROI are those belonging to the DSR in the image. The

challenge in the mask generation is that the DSR is really not quite black i.e. meant

not all elements of DSR are strictly of zero intensity, and also there may be some

FROI elements are of zero intensity. We propose a fast and efficient method using

the red channel component of the colour image, because it has the most contrast

between the DSR and FROI compared with the other channels.
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The method is simply based on defining four samples within the DSR and

outside the FRO!. These samples are rectangle-shaped located at the corners of the

image and selected to have bigger possible areas tangential to the FRO! from points

of large variation in rows and columns as illustrated in Figure 3.4(a). The points of

large variation in rows and columns can be determined from maximum change in the

standard deviation for successive regions from each corner towards the FRO!. The

maximum intensity (Ismp) within all selected samples is computed as a threshod.

To produce initial binary mask, the red channel image is binarised using

automated thresholding with a threshold value equal to Ismp + 1. As the computed

highest intensity may not represent the actual highest intensity of the whole DSR, we

Ca) Cb)

Cc) Cd)
Figure 3.4 Step results of the proposed binary mask generation, (a) a red channel image from Stare
dataset with a clarification to the way of automated 4-samples selection, (b) initial binary mask image
indicating defects in both black and white regions, Cc) binary mask image after the morphological
filling, (d) Final binary mask image after suppressing all smaller white objects.

36



Chapter 3: Image Pre-processing

might find some white objects inside the binary DSR. On the other side, as some

elements of FROI in the red channel may be of intensity lower than Ismp, we might

find some black objects inside the binary FROI. Figure 3.4(b) illustrates initial binary

mask image containing both defects. To rectify these two expected defects, the initial

mask image is subjected to a morphological filling operation to fill all holes objects

within the white region as shown in Figure 3.4(c), and then suppressing all smaller

white objects from DSR by binary classifying only one white region, i.e. the region

of maximum area; it is the fundus mask as shown in Figure 3.4(d).

3.4 Shade Correction

Like most camera-acquired images, retinal fundus images suffer from non-uniform

illumination and variable visual contrast. Accordingly, image pre-processing aims to

prepare the image with better properties using a shade correction. The RGB and RSI

colour spaces were compared and the RGB space was found to be more suitable for

RE detection and RL detection. A colour fundus image is provided as the input; it

includes colour information for each pixel in RGB colour space. To let the proposed

method be applied to different datasets, the image is resized to 640x480 pixels, if it is

already in these proportions; otherwise the width is resized to 640 pixels while the

aspect ratio is preserved. The green channel (G) is used for the detection of retinal

structures, REs and RLs as their contrast is the greatest in this channel.

To correct for the non-uniform illumination of the image, a morphological top-

hat operation was used. This is based on producing a reasonable approximation of

the background across G using morphological opening and closing operations with a

large enough structuring element to avoid entirely fitting within small candidate

regions. Alternating repetition between opening and closing is used to calculate the

approximation of background E (G) as follows:

(3.1)

where y refers to opening operator, 1/J refers to closing operator, <;1 refers to

structuring element, and n is the number of repetitions. Based on many experimental

tests, we found that selecting <;1 as a disk-shaped structuring element with fixed
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radius of 3 pixels and n = 8 can give effective results in reducing image illumination

variability. The idea behind using alternating repetition between opening and closing

is to avoid unexpected bright areas at retinal borders and around the OD that usually

appear in the classical method which is based on one opening followed by closing.

E(C) is then subtracted from C to get a new image (C') with a uniform background.

C' = C - E(C) (3.2)

To smooth the image and remove noise, a median filter is applied to the shade-

corrected image. Figure 3.5 shows an example for the shade correction result.

Figure 3.5 An example of a shade correction result, (a) green channel image, (b) shade-corrected
green channel image with filtering.

3.5 Contrast Enhancement

The retinal images are sometimes poorly contrasted; thus, the retinal structures and

abnormalities are not easily distinguishable from the background. Consequently, a

processing of contrast enhancement is vital to improve the contrast of the image. For

this, we investigated two techniques to be applied on the shade-corrected image or on

the raw image depending on the application. The first technique, we tried, is the

Contrast-Limited Adaptive Histogram Equalization (CLAHE). It is applied to the

intensity channel of the image after conversion from the RGB to HSI colour space.

The HSI colour space is appropriate since the intensity component is separated

from the other two components. CLAHE enhances the image by transforming the

intensity values of the image. It operates on small regions instead of the entire image.

The contrast of each small region is enhanced with histogram equalization. The
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resulting RSI components are converted again to RGB space to achieve the pre-

processed image from the green channel component image. Results from applying

CLARE on each of a raw green channel image and a shade-corrected image are

shown in Figure 3.6.

Figure 3.6 Contrast enhancement result using a CLAHE, (a) from a raw green channel image,
(b) from a shade-corrected image.

The second technique we tried was the fuzzy logic-based method. The theory

of fuzzy set can provide a suitable algorithm for analyzing complex systems and

decision processes when the pattern indeterminacy is due to inherent variability

and/or vagueness rather than randomness [61]. Due to the possible multi-valued

levels of brightness, the gray plane picture possesses some ambiguity within pixels.

Thus, it is justified to apply the concept and logic of fuzzy set rather than ordinary set

theory. To enhance the contrast of image features, we employed a fuzzy

enhancement algorithm, called minimum of fuzziness [61]. The selection of this

algorithm is based on computational efficiency expense. For clarity and immediate

relevance, some aspects are summarized below. The gray-levels of C' are fuzzified

by the membership function as follows:

(3.3)

where C:nax is the maximum gray level value and parameters Fe and Fd denote the

exponential and denominational fuzzifiers respectively. Fe is commonly taken up to 2

and Fd is calculated with respect to the transition point of the membership function

as follows:
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G' -Xc
Fd = ---:1'---

2Fe - 1

where X; is the crossover point, suitably selected from the image plane, where the

(3.4)

brightness distribution is used as a measure of image quality. To modify the

membership values, the intensification operator is applied to the membership

function as follows:

(3.5)

Successive application of the nonlinear transformation (Tr) is used to enhance

the membership function as follows:

r = 1,2, ... (3.6)

The parameter r refers to the number of iterations and allows the user to set an

appropriate level of enhancement. A new gray level, as a pre-processed image (Gp),
can be generated from the modified membership values using the inverse

membership function as follows:

(3.7)

Figure 3.7 shows two results from applying fuzzy logic-based method on a green

channel image without and with a shade correction.

(a) (b)
Figure 3.7 Contrast enhancement results using a fuzzy logic-based method, (a) result using a green
channel image, (b) result using a shade-corrected green image. (see their input images in Figure 3.5).
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3.6 Results and Discussion

The materials used in our research are available as true colour images in RGB space

where their specifications and sources are presented in section 3.1. In order to select

a suitable colour spaces for various lesion detection and retinal structure extraction,

we implemented many experiments using the RGB and HSI colour spaces separately,

and experimental results showed that the RGB space was more suitable for our

various tasks. As it has the highest contrast between objects and the background, the

green channel is selected to be used in most our processing tasks.

In order to implement retinal image processing with better accuracy and low

computational time, the black background surrounding the retina should be excluded.

For this, we proposed very simple, fast and accurate method for the binary mask

generation using the red channel image as it is the brightest channel. Additional

examples of mask generation results for various datasets are shown in Figure 3.8.

Image pre-processing is essential for better performance of retinal image

processing. We investigated image shade correction to normalise non-uniform

illumination and contrast enhancement to increase the contrast of image

abnormalities (if available) and retinal structures against the background. In shade

correction, morphological top-hat operations are used where an approximation of the

background is calculated to be subtracted from the raw green channel image.

For the contrast enhancement, two methods were investigated, i.e. the CLAHE

and a fuzzy logic-based method. The contrast enhancement was applied to both raw

green channel image and its shade-corrected image. The experimental results showed

that both methods could achieve similar acceptable results when using the green

channel image, but in the case of using a shade-corrected image the outcomes of

CLAHE method contain abnormal bright areas which may affect HE detection. We

concluded that because the gray plane possesses some ambiguity within pixels, it is

better to use the logic of fuzzy set rather than ordinary set theory. A set of 100

images from all datasets mentioned in section 3.1 are used to train the pre-processing

steps, while for the test purposes another set of 200 images from same datasets are

used. Figure 3.9 illustrates preprocessing results from various datasets after applying

both shade correction and contrast enhancement using fuzzy logic-based method.
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(d)

(t)

Figure 3.8 Binary mask results for variant datasets, (a) red channel image from the DRIVE dataset
(b) its binary mask, (c) red channel image from the DIARETDB I dataset, (d) its binary mask:
(e) red channel image from the MESSIDOR dataset, (f) its binary mask.
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(a)

Figure 3.9 Examples of image pre-processing results for different datasers, (a) green channel
images, (b) their corresponding pre-processed images.
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3.7 Summary and Conclusions

This chapter has reviewed the datasets used in our work with some details about

them, the colour space selection and colour channel selection, a proposed method for

retinal binary mask generation and image pre-processing. Image pre-processing

which is essential to prepare the image with better quality comprises, in this work,

two steps, i.e. shade correction and contrast enhancement.

For colour space selection, it was found that ROB space is more suitable for

lesion detection and retinal structure extraction than HSI space. Experimental results

with both hue and intensity planes of HSI showed alternation between their

performances and that may require additional information from saturation plane to

decide the preference between them, and that is the major difficulty in the use of HSI

with the retinal images. Conversely, most results with the ROB planes showed

superior performance with the green channel compared to those of other channels,

because it has the highest contrast between image features and the background.

In the step of shade correction, morphological top-hat operations are used. In

the background approximation, we noticed that alternation between opening and

closing with small structuring element and suitable number of repetition can achieve

image with less variability in the illumination than the classical method which is

based on opening followed by closing with larger structuring element.

Image contrast enhancement is also essential for efficient retinal image

processing. Due to multi-valued levels of retinal image brightness it is difficult to

achieve efficient contrast enhancement with simple method like CLAHE. The gray

plane of retinal images possesses some ambiguity within pixels. Thus, it is justified

to apply the logic of fuzzy set rather than ordinary set. Experimental results with 200

images from different datasets showed that the adopted fuzzy logic method can

achieve outstanding enhancement compared with the CLAHE. In our investigation, it

Was found that the optimal iteration parameter can be got based on image gray level

statistics to avoid over-exposed appearance, while the best crossover can be got by

experience and 0.6 was found to be the optimal for our used datasets. Despite its

efficiency for image contrast enhancement, a limitation with the fuzzy logic method

is that the processing time is reported as larger than that of the ordinary method.
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Extraction of Retinal Structures

4.1 Motivations

Early detection and treatment of eye diseases are essential to stop progression of

vision impairment. Retinal fundus images are widely used in the diagnosis and

grading of various eye diseases. Along with the optic disc (aD) and the fovea, the

retinal blood vessels (BVs) constitute one of the main features of ocular fundus

image and several of its properties are noticeably affected by worldwide major

diseases such as diabetes, hypertension, and arteriosclerosis. The BVs are also

affected by other eye diseases such as choroidal neovascularization and retinal artery

occlusion [62].

In addition, information of the BVs, aD and fovea are of high importance as a

mean of detecting, grading and following up the evolution of retinal lesions over

time. Moreover, as most photoreceptor cells are located in the fovea (the centre of

vision) the severity of lesions could be graded using the fovea location as a reference

to their risk. Since information of the BVs and the aD are essential in most fovea

localisation techniques, their localisation are crucial for establishing a system of

automated lesion grading.

On the other hand, retinal structures mostly appear similar to characteristic

features of BLs and RLs. Therefore, most artifacts which affect performance of DR

detection are created due to contrasted retinal structures. For the stated reasons, the

extracting of retinal structures can provide valuable aid for diagnosing eye diseases,

fine-tuning of lesion detection results and grading detected lesions. In this chapter,

Wepresents a proposed method for the detection of BVs and another existing method

after adaptation step to improve its performance. Also an existing method and our

proposed method for aD localisation are presented with a step of combination

between them for the sake of better performance. For the fovea localisation, an

existing method and our proposed method are presented, where the proposed method

is emanated from the existing method but in better performance.
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4.2 Blood Vessel Detection

In the literature, there are some of the clinical objectives are reported for retinal BVs

segmentation and are implemented for screening programmes of DR [63], vessel

diameter measurement to diagnose hypertension and cardiovascular diseases [64],

and evaluation of the retinopathy of prematurity [65]. In addition, automated

screening of retinal BVs is important for screening programmes of DR, registration

of retinal images for treatment evaluation, generating retinal map for the diagnosis

and treatment of ARMD and locating other retinal structures such as OD and fovea.

Retinal BVs appear as dark line structures with different ranges of diameter,

length and orientation. In this section, we present two methods for BV detection; the

first is our proposed method which is based on multi-scale morphological operations

and classification based on BV features, while the second is an existing method with

a modification introduced to improve its performance. This method is selected to be

presented because it is efficient and flexible for adaptation. It is based on centerlines

and morphological reconstruction technique, followed by a classification step

proposed to improve its performance through refining its results from artifacts.

The segmentation of colour retinal images requires the determination of a

certain colour channel to be used for this purpose. The green channel component is

recommended in the proposed algorithm because it shows the highest contrast

between retinal structures and the background. BVs are represented in the green

channel as dark elongated lines on a brighter background. The detection of these BVs

can be based on the detection of their parallel edges and their centerlines. The

features used in this paper are the green channel intensity and the local maxima of

the gradient magnitude.

Figure 4.1 plots intensity information, gradient magnitude, ridge strength and

the local maxima of the large eigenvalue along the same horizontal line in a sub-

image from red and green channel images. From these graphs, it appears that the

green channel has a higher contrast than the red channel image, gradient magnitude

gives two peaks at the parallel edges of the BVs, and finally the large eigenvalue is

better than the ridge strength in determining centrelines of the BVs when processing

colour fundus images [31].
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Figure 4.1 A sub-image with colour and scale-space features, (a-e) sub-image from a red channel image, its
intensity, gradient magnitude, ridge strength and large eigenvalue along a horizontal line crossing a BV,
(f-j) same as before but for sub-image from a green channel image.
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4.2.1 Multi-Scale Morphology Technique

Image segmentation is a process of grouping pixels or objects whose specifications,

such as intensity, shape, size and others are similar. Image segmentation results may

indicate the presence of all or part of objects and may show presence of extra false

objects, and then a modification process should be followed to fine-tune the results.

Retinal BVs appear as dark line structures with different ranges of diameter, length

and orientation. Consequently, the multi-scale approach is suitable to isolate features

of BVs from the background.

Detection of linear structures using multi-scale techniques have been attempted

by some researchers, such as Gelman et al. [66] and Osareh et al. [67] and our

previous work [68]. These systems work well on predefined image specifications but

they are not able to get accurate outcomes when image quality is variable. Hence, we

propose a low computational complexity method by applying the following steps.

1) Pre-processing, for removing illumination variations and contrast enhancement of

the image (as in chapter3). 2) Multi-scale morphological operations, for highlighting

all dark regions including the BVs. 3) Feature extraction, for selecting features of

only true BVs. 4) Classification, for discriminating true BVs from other dark regions.

• Multi-scale morphological operations: Morphological closing operation is

applied on the same image twice with two different scales of disk-shaped structuring

element (~2) and (~3)' On the basis of many experiments with different sizes and

shapes of structuring elements we found that the most suitable radii for the larger and

smaller disk-shaped structuring elements are 8 and 2 pixels respectively (for the

image size adopted in this work). Then the closed image with the smaller structuring

element is subtracted from the larger one followed by thresholding to obtain an initial

BV image (Rv) as follows:

Rv = THal{1jJC:2(Gp) _1jJC:3(Gp)} (4.1)

where THis a thresholding operator, al is a threshold value and 1jJ is a closing

operator. Empirically, it was found that the appropriate threshold is about 80% of the

maximal intensity. The idea behind this approach is that the dilation process expands

bright regions and shrinks small dark regions, and the subsequent erosion operator

will shrink the dilated bright regions to their original sizes while the shrunk dark
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regions do not respond to the erosion operation (origin of closing operation is a

dilation operation followed by an erosion operation). Thus, a subtraction process

between the two resulting images will highlight dark regions, including the BVs.

• Feature extraction: Due to the variability of the condition and quality of images,

the initial BV image may include other types of dark regions. Discrimination of the

true BVs from these other dark regions could be achieved using a classification

process based on the vessel attributes. Piecewise linearity and regional properties are

adopted for selecting features of every vessel pixel. The piecewise linearity of the

BVs can be specified by extracting centrelines of BVs. Regional properties of the

BVs are specified based on training information of texture, shape and size.

Moreover, the BVs can be recognised from colour property as dark regions on a

bright background. Vessel features such as major axis length, minor axis length,

aspect ratio (ratio of major axis length to minor axis length), area, perimeter,

circularity (relation from perimeter and area), eccentricity, mean intensity of the raw

green channel component image and the pre-processed image were used to describe

BV features based on experimental comparison and test using the ground truth.

• Classification: A series of experiments on feature selection and vessel

classification were carried out using a rule-based (RB) system, based on a number of

quantities and logical rules. A RB system consists of if-then rules which are used to

formulate the conditional statements that comprise the complete knowledge base.

These rules, in our work, are empirically derived from the training data by a series of

comparison between many pairs of features from the feature vector and looking for

functions of every two features. These rules from specifications of true BVs are:

aspect-ratio> 2, circularity < 0.5, area> 100, eccentricity> 0.6 and mean intensity in

green channel ~ O.4Imax, while mean intensity in the pre-processed image ~ 0.35Imax•

If all these rules are satisfied, the candidate is a true BV. Otherwise, the candidate is

classified as, a non-vessel. A number of such rules based on empirical constraint

criteria were incorporated into the image analysis and quantification program. These

operations lead to an effective classifier. The final binary BV image is clearly

showing a reduction in the number of false positive BV regions. Figure 4.2 illustrates

an original image and its produced BV image and showing all step results of the

proposed multi-scale morphology technique.
49



Chapter 4: Extraction of Retinal Structures

(a) (b) (c)

(d) (e) (f)

(g) (i)

Figure 4.2 Steps of the BY detection by the multi-scale morphology technique, (a) colour retinal image,
(b) its green channel component, (c) green image after pre-processing, (d) image in 'c' after applying a
morphological closing with the smaller structuring element and filtering, (e) image in 'c' after applying a
morphological closing with the bigger structuring element, (f) result of subtracting image of 'd' from that of 'e',
(g) image in 'f after the thresholding, (h) image in 'g' after the classification as the final binary blood vessel
image, (i) BY ground truth of the corresponding image (for visual comparison),
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4.2.2 Centerlines and Morphology Technique

This algorithm is proposed by Mendonca and Campilho [69] to detect the BVs, and

we have chosen this algorithm to present because it is efficient and flexible to be

developed for better performance. In this algorithm, initial step for vessel centerline

detection combines local information with structural features, as the vessel length.

Global intensity characteristics and local vessel width information are adaptively

used in the subsequent filling process. This technique identifies three main

processing: I) pre-processing, for background normalization and thin vessel

enhancement, 2) vessel centerline detection, for defining a set of connected segments

in the central part of the vessels, 3) vessel segmentation, for finally labeling the

pixels belonging to the vessels [69]. From carrying out this technique and testing its

performance with many experiments, we found that it works well with normal and

good quality images and concluded that it needs to be improved for abnormal and

noisy images. Consequently, we propose a modification to this approach by adding a

classification process to enhance its performance with abnormal and uneven

illumination images. This technique is presented in brief as follows [69]:

• Pre-processing: The background of retinal images is mostly uneven illumination

and characterized by gradual intensity variation. In addition, small vessels are very

thin structures and mostly present low local contrast, and their extraction is hence

difficult task. To improve the distinction between thin retinal vessels and background

noise and to normalise image background an estimate of background is subtracted

from the original image. For thin vessel enhancement a set of line detection filters

corresponding to angles 0°, 45°, 90° and 135° [69] is used. Then the highest filter

response for each pixel is kept and added to the pre-processed image.

• Vessel centerline detection: Retinal vessels can go in all directions, hence the

selection of a set directional filters can be combined to cover all orientation range.

Directional information from a set of two (0° 90°) and four (0°, 45°, 90° and 135°)

directions are tested and concluded that the approach of four directions ensure best

balance between the accuracy and the computational complexity. A set of four

directional Difference of Offset Gaussian (DoOG) filters is used to select vessel

centerline candidates.
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Candidate points are connected using a region growing process guided by some

image statistics. Resulting segment candidates, for each one of the four directions are

validated (confirmed or rejected) based on the characteristics of the line segments

before combining them to produce detected vessel centerlines. Characteristics for the

validation are represented by two features [69]; segment intensity, it is evaluated by

the geometric mean between the average and maximum intensity values of the

segment, and segment length, it is measured by the number of segment points. The

measured number of points for horizontal and vertical directions is a good length

estimate because the pixel segments are linked using four-connectivity. For diagonal

segments a scaling factor {2 is used as approximated length value.

• Vessel segmentation: A morphological vessel enhancement using a modified top-

hat transform with variable size structuring elements is performed to enhance vessels

with different widths. Then morphological vessel reconstruction is applied using a

binary morphological reconstruction method to obtain binary maps of the vessels at

four scales. Finally, vessel filling by a region growing process is performed using the

pixels within the centerlines obtained in the vessel centerline detection phase as

initial seeds. The growing is successively applied to the four scales and, in each

growing region step, the seed image is the result of the previous aggregation [69] .

• Classification: On the basis of BV specifications, a set of features are selected and

used as described in the previous section (in Section 4.2.1) and then a RB classifier

was applied to discriminate true BVs from other artifacts as explained in the previous

section (in Section 4.2.1). The main advantage of the classification step is manifested

by its importance in discriminating original vessels from spurious-vessels caused by

some artifacts.

We performed many experiments for this algorithm before and after the

proposed classification to test its influence on the performance of the centrelines and

morphology technique, and we noticed a clear improvement in the average detection

performance. Figure 4.3 presents an example for step results of the centerline and

morphology technique with the classification step and the ground truth of the

corresponding image. The ground truth is presented with this figure for the sake of

visual comparison with the method result.
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Figure 4.3 Steps of the BY detection by centerlines and morphology technique, (a) colour fundus
image, (b) its green channel image, (c) pre-processed image, (d) result of DoOG filter, (e)
complement of filtering result, (f-i) horizontal, vertical, diagonal 45° and diagonal 135° vessel
centerline segments, (j) combination result of vessel centerline segments and morphological
reconstruction, (k) final result of the vessel segmentation using morphological reconstruction
followed by classification, (I) corresponding manual-segmented image (ground truth).
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4.2.3 Results and Discussion

We have presented two methods for BV detection. The first is a proposed technique

based on four steps; pre-processing, multi-scale morphological operations, feature

extraction and classification. The second is an existing method that is based on a

combination of centrelines and morphological reconstruction. The second method

works well with normal and good quality images, but in case of abnormal images,

particularly with RLs or non-uniform illumination, the accuracy is low.

Consequently, we have proposed a modification step to this method represented by a

classification process to remove artifacts and enhance its performance.

Two sets of images were used to train and test both techniques. A set of 40

images from STARE dataset was used to train these methods, and a set of 61 retinal

images (20 from DRIVE [27] and 41 from STARE [53] databases) was used to test

them. We have chosen these two sets of retinal images from [27] and [53] for two

reasons; first, the retinal images are provided with their hand-labelled vessel

segmentation and this is essential requirement for the quantitative evaluation.

Second, the retinal images of both datasets contain normal and abnormal cases, in

contrast of some methods which used only normal images.

The results of proposed and modified methods were tested using pixel-based

calculation, where each pixel is classified as true vessel or non-vessel and then

compared with the ground truth to calculate four types of pixels, i.e. TPs, TNs, FPs,

and FNs to measure the sensitivity and specificity. Overall sensitivity and specificity

of multi-scale morphology technique were 87.1% and 97.8% respectively, while in

the centrelines and morphology technique, we achieved, before the classification, a

sensitivity and specificity of 85.7% and 97.2% respectively while after the

classification they became 85.5% and 98.4%.

We carried out many experiments on the centerlines morphology technique and

we concluded that this technique can be improved by refining its outcomes from

artifacts. Thus, introducing a classification to this method was suitable intervention

to develop this technique. Figure 4.4 illustrates an example of BV detection from

pathological image using this method before and after the classification step. The

specificity, in this example is increased due to the classification from 97.3% to 98%.
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(a) (b)

(c) (d)

Figure 4.4 An example indicating the classification effect on performance of the centerlines and
morphology technique, (a) colour retinal image, (b) the ground truth of BY, (c) blood vessel image
using the centerlines and morphology technique, (d) same of 'c' after the classification step.

To study influence of the classification step on the centerlines and morphology

technique, many experiments have been carried out on this method with and without

the classification step. Overall performance of 20 images in terms of relation

between sensitivity and FPR is shown in Figure 4.5, where ROC curves for both

cases indicate that for many FPR values, overall sensitivity of the method after the

classification step is higher than that achieved before the classification.

The proposed multi-scale technique has three parameters: the threshold a1 and

the structuring elements S'z and S'3' For five values of a1, experimental results

demonstrate that the average performance measures of this algorithm could be

clearly influenced by varying the threshold a1 as shown in Table 4.1.
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Figure 4.5 ROC curves showing the effect of classification step on the centerlines and morphology
technique in terms of a relation between the sensitivity and the FPR.

The structural elements values which should be tried together were selected by

some experiments to test their influence on the algorithm performance. Several

experiments with different values of t;2 and t;3 were implemented. It was observed

that as the difference between their values is increased, both FPR and TPR will

increase as well. Selection of reasonable difference between these parameters relies

on desired balance between performance measures. Figure 4.6 shows the average

curve for the influence of difference between the values of structuring elements.

Table 4.1 Sensitivity and specificity of BV detection at different thresholds, al (Imax= maximum
intensity).

al SN% SP%

O.9Imax 85.2 98.7

O.85Imax 86.5 98

o.si.., 87.1 97.8

O.75Imax 87.9 96.9

O.71max 89.3 94.4
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Figure 4.6 Influence of the difference between C;z and C;3 on the trade-off between TPR and FPR.

To evaluate our proposed method performance in BV segmentation a

comparison with other related works using a set of 20 images from STARE dataset is

illustrated in Table 4.2 in term of TPR and FPR.

Table 4.2 Comparison between the proposed method and other related works in terms of performance
of BY detection using 20 images from STARE dataset.

Method FPR% TPR%

Martinez-Perez [70] 4 75

Hoover [28] 4.5 75.5

Wu [30] 3.9 82.8

Jiang [29] 4.4 83.5

Sekhar [22] 4.5 80.9

Proposed method 4.3 85.2

To demonstrate its ability to deal efficiently with a variety of datasets, we

performed the proposed method using 17 pathological images from MESSIDOR

dataset and Figure 4.7 illustrates an example of this dataset with input, step results

and final BV image. Although many images of this dataset have severe DR we

achieved reasonable performance (sensitivity of 85.5% and specificity of 97.3%).

For more clarification about the proposed method efficiency, five samples of

colour retinal images, their corresponding proposed method results and manual-

segmented images (ground truth) are illustrated in Figure 4.8.
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(c) (d)

(h)

Figure 4.7 An example of BY detection for an image of severe DR by the multi-scale morphology
technique, (a) colour retinal image, (b) its green channel image, (c) pre-processed image,
(d) morphological closing with the smaller structuring element and filtering, (e) morphological
closing with the bigger structuring element, (f) result of subtracting image in 'd' from that in 'e',
(g) result of thresholding image, (h) image after the classification as the final binary BY image.
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(a) (b) (c)

Figure 4.8 Five examples showing proposed method results for the BY detection, (a) original colour
images, (b) results of BY images by the proposed method, (c) corresponding ground truth results.
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4.3 Optic Disc Localization

The optic disc (OD) is a spot on the retina where ganglion cells exit to form the optic

nerves. It is also the entry point for the major BVs that supply the eye by blood.

There are no light sensitive cells in the OD, and that is why it is known as 'blind

spot'. Changes in the shape, colour, boundary and depth of retinal OD is an indicator

of various ophthalmic pathologies [3]. In addition, the location and size of the OD

are important as they can aid in the location of the fovea which itself is important for

grading the severity of retinopathy. Moreover, the bright OD normally exhibits

similar visual features to HEs, often resulting in misclassification. Thus, OD

localization is important to prevent it being detected as HE during grading.

On the basis of its medical and technical importance, we reproduced some

algorithms, like those are proposed by Sekhar et al. [22], Li et al. [71] and Niemeijer

et al. [32] and based on many experimental results, we found that the first one is the

most suitable for OD localisation in terms of the performance and computational

efficiency expense. In this algorithm a parabolic Hough Transform (PHT),

mathematical morphology, and a circular Hough Transform (CHT) are used to

determine centre and boundary of the OD. In spite of its good success rate (SR) for

OD localisation, this method sometimes fails to localise the OD with high accuracy,

especially for those images of unclearly visible OD. The reason of this is that the

method of OD boundary localisation and later the final OD centre are based on the

determination of the gradient magnitude of the OD which may provide the CHT step

with insufficient OD features when the OD is faint or invisible.

In order to achieve better performance and to be able to deal with a variety of

image specifications, we propose a method making use of emerging loops of BVs

inside the OD. The proposed method is based on determination of most vasculature

loops, where most BVs branches and loops are available near their entry points in the

OD. When the OD is not clearly visible or there are exudates look similar to the OD

in shape, size and colour, the information about the connections between vessels and

loops is used to construct a network of most vasculature loops. By means of this

algorithm, the region with most vasculature loops can be selected as ROI and then

this is used to determine initial OD centre. The second phase of the proposed
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method for the final boundary and centre of the OD is emanated from the Sekhar

algorithm. Then, the algorithm proposed by Sekhar et al. [22] is firstly presented

with some step results achieved from reproducing its procedures.

4.3.1 Parabolic and Circular Hough Transform

• Parabolic Hough Transform: The classical Hough transform was concerned with

the identification of lines in the image, but later the Hough transform has been

extended to identify positions of arbitrary shapes, most commonly circles or ellipse.

The linear Hough transform is the simplest transform used to detect straight lines. To

use the Hough transform, a way to characterize a line is required. One representation

of a line is the slope-intercept form:

y=mx+b (4.2)

where m is the slope of the line and b is the y-intercept. In the Hough transform, a

main idea is to consider the characteristics of the straight line not as image points

x or y, but in terms of its parameters; slope parameter m and intercept parameter b.

In the Sekhar algorithm [22], the main retinal BVs are used to generate a

parabolic curve where the PHT is applied on segmented thick BVs to approximate

the two main BVs into a parabolic curve, thus finding the vertex where the BVs

emerge. As the OD centre is located exactly where the BVs emerge, the detected

vertex of the parabola can be used as the estimate of the OD centre. To apply PHT

with robust detection of OD centre, the thin BVs are removed to use an image of

only main BV arcade. For this, a morphological top-hat is applied on the binary BV

image to get an image with only thin BVs. Then, a further processing is carried out to

remove detected thin BVs leaving us with the main BV arcade for parabolic fitting.

The generic equation of a parabola is as follows [22]:

(4.3)

where (xc. Yc) is the vertex of the parabola and a is the focal length. Figure 4.9

indicates step results of parabola fitting and detection of OD centre by reproducing

the method proposed by Sekhar et al. [22].
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(a)

(c) (d)

(e) (f)

Figure 4.9 Steps of Ol) centre estimation using PHT method, (a) colour retinal image, (b) its
BV image, (c) thin BV image, (d) main BVs for parabola arcade, (e) skeletonised main BVs
indicating fitted parabola, (f) fitted parabola and vertex overlaid on the original gray image.
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• Circular Hough Transform: The location of vertex detected by PHT can be used

as an initial estimate of OD centre, while the second estimate of the OD location is

obtained using a CHT [22]. This step comprises many operations as follows:

Pre-processing using mathematical morphology; mathematical morphology, III

image processing, is suitable for analysing image shapes. The green channel

component is used because it has the highest contrast between the OD and the

background. Image mask is used to label the pixel belonging to the FROI and to

avoid the effect of DSR. Retinal image illumination is often uneven and this may

lead to incorrect segmentation. Initially, image pre-processing is carried out to

counteract the effects of uneven illumination then a circular ROI is found by

isolating the brightest area in the image by means of morphological processing. CRT

is used to detect the main circular feature (corresponding to the OD) within the

positive horizontal gradient image in this ROI. The detection is marked as fail, if the

overlap between the two OD centres detected by CHT and PRT is less than 80%.

Finding optic disk contour; the binary image which contains the largest and the

brightest blobs from pre-processed image is computed by the adaptive histogram

thresholding method. This thresholding method will automatically adjust the

threshold based on the intensity of the pixel and the total area of the blobs. To get the

bright regions on the image, the input pre-processed image is filtered with this

threshold value. The binary image will contain the blobs representing exudates,

artifacts and the OD. The optimal OD diameter calculated based on the BV width is

used to get the blob that represents the OD from that image.

On the basis of many trial and error experiments carried out on all the available

images, the OD mean diameter was found to be 16.5 times the average BV width

from all datasets [22]. Then considering this relation between average BV width and

the OD mean diameter as optimal OD diameter, any blob that has a diameter greater

than or less than 50% of the optimal OD diameter are eliminated. Artifacts and

exudates are generally either much smaller or larger than the OD. Therefore this blob

removal technique which is based on the optimal disk diameter seems to be a

reasonable approximation. Steps of initial OD boundary by the Sekhar method are

illustrated in Figure 4.10.
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(a) (b) (c)

(d) (e) (t)

(g) (h)

Figure 4.10 Pre-processing and initial boundary finding steps of OD by CHT, (a) original image (green
channel), (b) background approximation image, (c) pre-processed image, (d) median filtered image,
(e) blob detection image by filtering with selected level, (t) thresholded image, (g) optimal blob representing
the OD, (h) Initial OD boundary on the pre-processed image.
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Tracing optic disk boundary; the accurate detection of the OD boundary can be used

to assess the progress of eye disease and evaluate treatment results. The initial

boundary of the OD is traced from that binary image. A ROI is circular shape from

the centroid of the initial traced boundary is marked, whose diameter is thrice the

diameter of the initial detected blob, which consists of only the OD to find the

boundary of the OD. The gradient magnitude of the image for the ROI is calculated

using morphological operations.

Initially morphological closing is performed on the ROI to fill the vessels, and

then to remove large peaks, morphological opening is performed. Then the image is

reconstructed using morphological reconstruction. The gradient is calculated by

subtracting the eroded region of interest from the dilated one as shown in Figure

4.11. The boundary of the OD and its centre are found by applying the Hough

Transform to the gradient image. The circular Hough Transform is similar to the

linear Hough Transform, but uses the parametric form for a circle [22] and can be

expressed as follows:

x = a + rsinn

y = b + TCaSe

(4.4)

(4.5)

where (a, b) is the centre of the circle of radius r that passes through (x, y). The

radius for the CHT, to find the OD boundary, is calculated from the retinal BV width

to be 16.5 times the average BV width from all dataset as previously explained. This

will ensure that this method will work on any dataset irrespective of the image

resolution and data acquisition settings.

The Hough space is three dimensional. The gradient image is transformed to a

set of 3 parameters, representing the accumulator, its centre and its radius. For each

feature point, votes are accumulated in an accumulator array for all parameter

combinations. The accumulator will have a set of edge points; each edge point

contributes a circle of radius r in the accumulator. The accumulation space has peaks

where these contributory circles overlap at the centres of any circles detected. If N

circles are detected, the centre array is a 2 x N matrix with each row containing the

(x, y) positions of the circles detected in the image. The estimated radii of these
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circles are stored in a 1 x N array with a one-to-one correspondence to the centre

array. The circle corresponding to the radius closest to the OD boundary is adopted

and plotted over the original fundus image as show in Figure 4.12.

(a) (b)

Figure 4.11 Region of interest of OD, (a) close-up of region of interest, (b) gradient of the ROI
surrounding the OD.

Figure 4.12 Localised OD using circular Hough Transform.
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• Final optic disc detection: To obtain the final location of the OD, a detection

criterion is used to evaluate the initial estimations obtained by the PHT and CHT

techniques and to decide the detection result as either successful or not. The initial

results of both PHT and CHT techniques are illustrated in Figure 4.13(a) as green

and white circles respectively. Locations of these circles are important for calculating

localisation sensitivity of the OD. If the overlap between resulting circles is equal to

or more than 80%, then the OD detection is successful, where the precision of this

success increases with the increase of overlap rate. In the case of successful

detection, the average of these two centres is marked as the new centre for the final

OD location and the same manner is applied on their boundaries to obtain the final

OD boundary as shown in Figure 4.13(b).

In some retinal images, the OD may not be distinguishable easily due to some

abnormalities like large exudate spots. In other some retinal images, the OD is not

clearly visible due to non-uniform illumination or high light reflection during image

acquisition. In like these cases, this technique may fail in detecting the OD and this is

hindering the development of a new method that can localise the OD irrespective of

its visibility and can discriminate the genuine OD from artifacts.

(a) (b)

Figure 4.13 An example showing results of the PHT, CHT and final detected OD, (a) initial centres
and boundaries of both PHT (green) and CHT (white) indicating overlap between them, (b) final
centre and boundary of the OD after averaging results of PHT and CHT.
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4.3.2 Most Vasculature Loops

In the literature, the majority of OD localisation techniques are based on OD features

such as shape, size and colour. In some retinal images the OD is not clearly visible or

some of bright lesions may look similar to the OD in shape, size and colour. In like

these cases, the techniques which are using OD features may fail to localise the OD.

In this section, we propose a method based on the features of retinal vasculature and

its spatial relation with the OD to localise the OD. The vessel map is turned into a

network of vessels, branches, and loops, and then a network of most vasculature-

loops can be selected and used as candidate area for the OD as indicated in the

following steps:

• Vasculature loops: A binary BV image is required to construct this network,

where the vessels that are also connected in the original image should be connected

in the binary image to accomplish successful approach. To obtain an increase of

vessel connectedness, an intervention on the threshold of the proposed BV detection

method is made to retrieve the entire vessels and ensure better vessel connectedness.

Steps of determining the most vasculature loops (MVL) are as follows:

1. Increasing vasculature connectedness: This is accomplished by decreasing the

binarization threshold level used in the multi-scale technique, for the BV

detection, by 5%. This operation leads to increase the TPs and to retrieve the

entire vessels with some increase in the undesired FPs.

2. Generating vessel skeleton: A morphological skeletonisation is applied to the BV

image. This operation largely preserves the extent and the connectivity of the

original vessel while throwing away most of the foreground pixels.

3. Removing small vessels: The vessel is a group of many pixels, where the small

vessel is that starts with a pixel of one neighbour and ends with another pixel of

also one neighbour. Small vessels are suppressed from the BV image before

classifying it into loops and branches.

4. Loop fitting: The vessels inside the OD emerge and overlap forming loops and

semi loops in contrary to vessels outside the OD which are spread away from their

origin. To fit small semi loops in the vasculature image, a connectivity-based

procedure for fitting multiple-circles is applied, where false circle detection is
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solved using circular arcs, which are intra-connected subsets that agree with the

circular models with a specified error.

5. Suppressing large loops: As the loops inside the OD are expected to be smaller

than the OD, the original and fitted loops that have a major axis length bigger

than a threshold (Dm) are excluded and considered as branch vessels, where Dm is

the mean diameter of the OD which is found to be 16.5 times the average

vasculature width according to what is found in [22].

• Selection of most vasculature loops: The most constructed vasculature loops can

be used to find the initial OD centre. The OD contains the optic nerve from which a

few main vessels split up into many smaller vessels which spread around the retina.

Vasculature segments in this area of the retina are often small and are therefore often

combined into several loops connected to each others. An increasing amount of

vessel connections of a loop also increases the probability of the loop being located

in the OD area. The procedure of determination of the initial OD centre is presented

as follows:

1. The area of the most vasculature loops is selected as a candidate OD location.

2. The candidate OD location is surrounded by a boundary box where its centre is

considered as initial OD centre.

Figure 4.14 illustrates step results of most vasculature loops and Figure 4.15 shows a

bounding box that surrounds these loops to determine the initial OD centre

• Determination of final OD boundary and centre: After the localisation of the

initial OD centre, a region of interest (ROJ) is selected. The selected ROJ is a sub-

image from the pre-processed green channel image centred at the initial OD centre

with same dimension proportion of the original image and its smaller dimension is

twice that of the mean diameter of the OD. Final boundary and centre of the OD are

determined by calculating the gradient magnitude of the ROJ followed by applying a

CHT. The morphological gradient is calculated by subtracting eroded ROJ from

dilated ROJ with appropriate structuring elements depending on the image size. In a

case of quite invisible OD, the final OD location is estimated where its centre is the

initial OD centre while the diameter is estimated from the vasculature information as

found in [22] (16.5 times the average vasculature width). Figure 4.16 illustrates the

step results of the proposed MVL method to localise boundary of the OD.
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Ca) Cb)

Cc) Cd)
Figure 4.14 Steps of the MVL method for OD localisation, (a) colour retinal image, (b) BV image,
Cc) skeleton of the BVs, (d) vasculature loops on the original gray image (white = branch vessels,
black = loops).

Figure 4.15 Boundary box of the most vasculature loops.
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(a)

(e) (f)

Figure 4.16 Steps of the OD boundary determination using the MVL method, (a) colour retinal
image, (b) pre-processed green channel image with ROI based on the initial centre, (c) sub-image
representing the ROI, (d) gradient magnitude of the ROI, (e) thresholding to the gradient
magnitude result, (f) determined boundary and centre of the OD.
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4.3.3 Results and Discussion

In this section, OD localisation is investigated usmg two methods; an existing

method and proposed method. In the first, the extracted result of parabola fitting is

used to estimate the location of OD centre then a boundary is determined using

morphological operations and CHT. A circular ROI is extracted by isolating the

brightest area in the image by means of morphological processing, followed by

applying CHT to detect the main circular feature within the positive horizontal

gradient image in this ROI. If the two coarse vessels are not symmetric around the

OD (in some images) the vertex of fitted parabola may not represent accurate OD

centre. In addition, if the OD is not clearly visible, the gradient magnitude operation

will fail to provide sufficient OD features for the CHT stage. On the basis of these

defects, we proposed the MVL method which is based on the most vasculature loops

to determine the initial OD centre followed by using morphological operations and

CHT for the final boundary and centre determination. In a case of quite invisible OD,

the final OD location is estimated from BV information and the initial OD centre.

The proposed method for OD localisation was trained and tested using a set of

138 retinal images (40 images from DRIVE dataset, 81 images from STARE dataset

and 17 images from MESSIDOR Dataset). These include healthy images and

pathological images with different types of abnormalities. This set was divided

randomly into a training set of 40 images and test set of 98 images from all used

datasets. Performance of the OD localisation was evaluated with regard to an expert

from the Royal Liverpool University Hospital. In this technique the OD is correctly

detected for all images except one from the STARE. Localisation SR with DRNE

and MESSIDOR datasets was 100%, while with STARE database it was 98.8%.

In this work, the pre-processed green channel image is used in the proposed

method and the reproduced methods. To evaluate performance of these methods,

criteria should be determined as used in the literature. Several techniques consider

that detecting the OD inside the OD border specified in the ground truth is a true

detection and adopted as an evaluation method [72]-[73]. Although, the border of

the fovea is not well defined, many works in the literature used the distance from OD

to the fovea centre as evaluation measure [73].
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Criteria of OD detection is used to evaluate the OD detection method by

calculating its SR and then classifying it as either successful or failed. In addition to

the SR, the accuracy of centre localisation in pixel basis is also important for precise

evaluation. Due to lack in ground truth for OD localisation in pixel level, we asked

an expert from the Royal Liverpool University Hospital for OD localisation of both

methods, namely the existing and the proposed methods. According to the expert,

there is an alternation in the accuracy of these two methods using a set of images

from the same dataset.

As the second phase, i.e. the determination of the OD boundary of both

existing and proposed methods are based on the same algorithm, we tried to

combine the results of both methods by calculating the average centre from both

centre results and found that the accuracy is better than that of each method

separately according to the expert evaluation. Figure 4.17 shows two examples for

the combination of results from the existing and the proposed methods, where Figure

4.17(a) and (d) illustrate OD results by both methods overlaid on the colour fundus

image. To approximate final modified results, the mean values of both centres are

calculated and marked as new OD information as illustrated in Figure 4.17 (b), (e),

(c) and (f).

To evaluate the performance of the modified method a comparison is

performed between this method and other related works using both DRIVE and

STARE datasets. Table 4.3 illustrates a comparison between the proposed model and

some other robust related works. Inspection to this table shows that the proposed

method achieved superior performance compared to some previous works or equal

performance compared to others. However, the comparison should be made with

considering other attributes of the proposed method notably its ability to deal with a

variety of image qualities and images of unc1early visible OD. These attributes are

acquired from using the technique of the most vasculature loops in which the

localistion process is based on the vasculatue features rather than the OD features.

For more clarification about the performance of the modified method, five

samples of colour retinal images are presented in Figure 4.18 with their localised OD

boundaries and centres overlaid on the original images in addition to five

corresponding zoomed images for the ROI around the OD.
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(a) (b) (c)

(d) (e) (f)

Figure 4.17 Modification of OD detection from MVL and PHT -CHT methods, (a) detection results of
both methods for one image from DRIVE database where green colour refers to result of the MVL
method and blue colour refers to result of the PHT-CHT method. (b) Modified OD localisation result,
(c) the modified OD result on the full image, (d-f) same as in 'a-c' but for another image example.

Table 4.3 Comparison between the proposed method and previous related works for the OD
localisation using DRIVE and/or STARE datasets.

SR% SR%

Method (DRIVE) (STARE) Comments

Foracchia & Grisan [74]

Hoover & Goldman [57]

Lalonde et al. [75]

Youssif et al. [76]

Ying et al. [77]

Sekhar et at. [22]

Proposed Method

100
97.5

100
100

98

89

71.6

98.8

Used only 20 images

100

98.8

1Excluded from STARE
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Figure 4.18 Examples about OD localisation results using the modified method, (a) retinal colour
images, (b) localised boundary and centre on the original images, Cc) zoomed locations where the

boundary and centre are.
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4.4 Fovea Localisation

The macula is the light sensitive part of the retina and is the centre of vision with the

help of the lens focusing. In the centre of the macula there is a region called the

fovea, the absolute centre of vision. Hence, the macula is actually an area where the

central vision is and the fovea is the centre of the macula where the absolute centre

of vision is. The fovea contains the largest concentration of photoreceptor cells;

hence it is the most specialised part of the retina and is the part of the eye that is

responsible for all activities when visual detail is required [78]. The location of the

fovea with respect to the OD differs vertically more than horizontally. Medically the

mean distance between centres of the fovea and the OD is approximately twice that

of the OD diameter (DD) [79] as illustrated in Figure 4.19.

Figure 4.19 Macular view of a retina, the fovea lies at the centre of the image and is marked '+' [79].

Because the fovea is the absolute center of vision, determining its location is

therefore essential to grade severity of lesions. In other words, the detection and

diagnosis of retinal lesions can provide a more precise and meaningful evaluation of

risk when their spatial distribution are described with reference to the location of the

fovea. This is not always easy task because in some retinal images, the fovea may be

fully or partially obscured by lesions and artifacts or subject to uneven illumination.

In this section, we present two methods for the fovea localisation, where both

of them are based on similar fovea features but on two different geometric relations
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with the other retinal structures. The first is an existing method proposed by Sekhar

et al. [22], while the second is our developed method emanated from the first one but

with the advantage of performance improvement.

4.4.1 First Fovea Localistation Method

It is an existing method proposed by Sekhar et al. [22] and based on specifications of

the fovea and its relation with the OD and the retinal disc centre. In some images the

fovea is not obvious to human eyes due to uneven illumination or presence of

lesions. Hence, along with fovea features, its geometrical relationships with the other

structures are used in this method to localise even unclearly visible fovea.

Figure 4.20 illustrates the geometric relationships applied in this method.

Figure 4.20 Geometric relationship of the fovea with the OD and the retinal disc centre.

After locating the OD, the fovea region can be determined by exploring the

region in the vicinity of the image centre, as determined by the OD centre, as

follows: The candidate fovea ROJ is defined as the portion of a sector subtended at

the centre of the OD by an angle of 30° above and below the line between this centre

and the centre of the retinal image disc. The angle 30° is chosen so as to circumscribe

within the sector portion a circle of twice the diameter of the OD, as suggested by

Chutatape [80]. The radius of the inner arc for this ROI is 1.5 times the OD diameter,

as illustrated in Figure 4.20. The fovea is identified within this ROI by iteratively
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applying a threshold, and then applying morphological opening (erosion followed by

dilation) on the resulting blob. The value of the threshold is selected such that the

area of the smoothed fovea region is not more than 90% of that of the OD.

Figure 4.21 shows steps of this method.

•
(c) (d)

Figure 4.21 Fovea localisation by the existing method, (a) original green channel image,
(b) ROI from pre-processed image, (c) zoomed fovea localisation after iterative thresholding,
(d) circle approximation with a diameter equal to the major axis length of the thresholded object,
(e) and (f) boundaries of the thresholded fovea and its circle approximation overlaid on the colour

fundus image.
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4.4.2 Second Fovea Localistation Method

It is our proposed method which is based on defining a candidate ROI with reference

to the established retinal landmarks, followed by a shape and intensity search. The

two main retinal BVs (known as the arcade) can together be approximated as a

parabola as explained in Section 4.3.1, and in most retinal images the fovea is located

within this arcade. On the basis of parabola information, the candidate region for the

fovea is defined as a circle with a diameter of twice that of the aD along the main

axis of the fitted parabola and centered at a distance of 2.5DD from the vertex.

Although the fovea is approximately equal in size to the Of) [81], we select the ROI

size four times as larger than that of the aD to ensure that all fovea pixels are within

the selected Ra!. Figure 4.22 illustrates a scheme for the geometric relationship

between the fovea and retinal structures, namely the Ol) and the BVs, and shows the

selected ROI overlaid on a colour retinal image.

The threshold value is calculated within this region in such a way that the

segmented area has an area not bigger than the Of) area. Because the fovea is not

completely obvious in some images, the lowest mean intensity is compared with the

second lowest mean intensity to avoid mistaking the peripheral area where the

illumination is relatively dark as the fovea. The centroid of the lowest mean intensity

cluster is specified as the center of the fovea when the difference is obvious and the

pixel number of the cluster is greater than 1/6 area of the Of) [82]. In the case of

fully obscured fovea due to bright lighting or being covered by lesions, the method

may fail in finding a suitable threshold value based on defined fovea features. In

which case, the fovea is approximated as a circle of diameter of DD at the centre of

the candidate ROI, like what is shown in Figure 4.23(b).

Figure 4.23 illustrates an example for the fovea localisation steps, where Figure

4.23(a) is a green channel image, Figure 4.23(b) is a pre-processed image with a

circle introduced to describe location of ROI based on the relationship between the

fovea and retinal structures, Figure 4.23( c) is a result of fovea localisation after the

thresholding for boundary and centre locations and Figure 4.23(d) illustrates the

location of the detected fovea after a modification to a circle. The diameter of the

modified circle is derived from the major axis length of the actual thresholded fovea.
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Figure 4.22 Geometric relationship, used in the proposed method, between the fovea and other retinal
structures overlaid on the original colour image.

(a) (b)

(c) (d)

Figure 4.23 Steps of the proposed method for the fovea localisation, (a) original green channel image,
(b) pre-processed image indicating ROI, (b) boundary and centre of localized fovea on the original
image, (d) localised fovea after a modification to a circular shape.
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4.4.3 Results and Discussion

In this section, two methods for fovea localisation have been discussed. The first is

an existing method in which a geometrical model has been proposed based on spatial

relationships between the fovea and the OD as well as the retinal disc centre. The

second method is our proposed method which is based on a fitted parabola

approximated from retinal vasculature to define a candidate region for the fovea. The

candidate region is defined as a circle along the main axis of fitted parabola and

centered at a distance of 2.5DD from the vertex. Then the threshold value is

calculated within this region to segment the fovea based on its features. Experimental

results showed that the first method can localise the fovea effectively if there is no

diversion in image acquisition and the OD is situated on the right or left side.

Otherwise, it will fail to localise the fovea because the OD will be closer to the centre

than the fovea. Hence, our method is proposed to remedy the defect of the first

method by introducing, in addition to the OD relationship, the fovea relationship

with the main coarse BVs rather than the relationship with the retinal disc centre.

The proposed fovea localisation method were trained and tested using a set of

268 retinal images (40 images from DRIVE dataset, 81 images from STARE dataset,

17 from MESSIDOR dataset and 130 images from DIARETDBO Dataset). These

images include healthy images and abnormal images with different types of

abnormalities. All the images, used in our work, were acquired using a non-mydriatic

fundus cameras, and may therefore be of lower average quality than datasets

acquired using mydriatic methods. This set was divided into training set of 100

images (mixture from STARE and DIARETDBO) and a test set of 168 images from

all used datasets. The proposed method has been evaluated with reference to an

expert and found to achieve an overall SR of 97.1%. Performance evaluation of the

proposed method is presented with a test set which contained images from different

datasets. Testing images were used with no attempt made to exclude images of poor

clarity or bad fovea appearance. In the proposed method the main BVs information

were used to guide the search for fovea location, thus the fovea could be localised

precisely even for images of low fovea appearance. Then the resulting accuracy of

fovea localisation is superior to those methods that do not make use of the BVs.
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Fovea detection accuracy was measured in our work by calculating the

Euclidean distance (ED) between fovea centres of the method results and manual-

labelled results. The accepted distance for successful fovea localisation is adjusted to

be proportional to the image size where the sensitivity of acceptance level can be

changed and decided based on the consultancy with a clinician and on medical

requirements. In this accuracy calculation we used a distance of 30 pixels as

maximum tolerance distance for successful localisation to image size of 640x480

pixels. After many experiments, it is appeared that this distance is around 10 for all

images of good fovea appearance; while for images of poor fovea clarity it increases

with a rate depending on its clarity. The reason for this is that the centre of unclearly

visible fovea is estimated from the selected ROI which is specified based on the

geometric relations with the BVs and OD. Measuring accuracy by using ED has been

used by some related works but with different tolerance distance as in [36] and [73].

Because it is difficult to find a number of methods tested by same criteria and

same publicly available dataset, we implemented and tested some methods using the

same criteria and dataset of our proposed method to be compared with it. Table 4.4

illustrates a comparison between the SR of our method and other previous related

works tested on 40 images from the DRNE and 80 images from the DIARETDBO.

Because there are no ground truth for the fovea localisation provided with any of the

publicly available datasets, all the localisation results in our work are evaluated with

reference to an expert from the Royal Liverpool University Hospital.

Table 4.4 Comparison for the SR of fovea localisation between the proposed method and recent
related works using 40 images from DRIVE dataset and 80 images from DIARETDBO dataset.

Reference Approach SR% SR%
~DRNE) (DIARETDBO)

Li et al. [82] Parabola fitting from vasculature 100 96.3

Narasimha et at. [83] Thresholding inside selected ROI 97.5 92.3

Welfer et al. [36] Mathematical morphology 100 93.8

Niemeijer et at. [32] Distance prediction from the OD 100 95

Kose el at. [84] ROI-based from OD and Macula 97.5 91.3

Sekhar et at. [22] Spatial relationship with the OD 100 95

Proposed method Selected ROI and fovea features 100 96.3
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The intent behind selecting these two contrary datasets is to demonstrate that

accuracy of fovea localisation in normal and good quality images is higher than that

in pathological and low quality images. As most of DRIVE images are normal and

good quality, most tested methods, on this dataset, are found to achieve SR of 100%.

While in the case of DIARETDBO dataset, because it includes 110 images which are

pathological, it is very difficult to achieve high accuracy with like these images.

Moreover we noticed that the average ED for the succeeded cases on both datasets

showed different values, where in DIARETDBO the average ED is bigger than that in

the DRIVE. Table 4.5 presents calculated ED of 40 consecutive images from

DIARETDBO and all 40 images of DRIVE in our method. For more illustration to

proposed method results, 4 examples of fovea localisation are shown in Figure 4.24.

Table 4.5 Measured distance between localised fovea centre by the proposed method and the hand-
labelled centre after approximation to integer values, where the threshold of success is 30 pixels.

Images, Rounded Images, Rounded Images, Rounded Image, Rounded
DIAR- ED DIAR- ED DRIVE ED DRIVE ED
ETDBO ETDBO

#1 7 #21 13 #1 6 #21 12
#2 19 #22 8 #2 5 #22 9
#3 3 #23 15 #3 13 #23 22
#4 7 #24 87(failed) #4 23 #24 8
#5 9 #25 4 #5 3 #25 11
#6 4 #26 9 #6 9 #26 12
#7 13 #27 11 #7 17 #27 5
#8 6 #28 2 #8 10 #28 8
#9 7 #29 10 #9 6 #29 10
#10 5 #30 5 #10 4 #30 13
#11 12 #31 6 #11 7 #31 25
#12 13 #32 15 #12 9 #32 7
#13 18 #33 11 #13 6 #33 9
#14 10 #34 28 #14 11 #34 27
#15 8 #35 22 #15 19 #35 6
#16 11 #36 16 #16 8 #36 5
#17 19 #37 6 #17 12 #37 8
#18 7 #38 4 #18 7 #38 12
#19 9 #39 8 #19 6 #39 10
#20 65(failed) #40 6 #20 14 #40 9
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Figure 4.24 Samples of results from the proposed method for the fovea localisation, (a) localised
boundary and centre of the fovea overlaid on their original images. (b) Same of 'a' after boundary

modification to be circular.
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4.5 Summary and Conclusions

In the BV detection it was found that the multi-scale morphological operations can

segment blood vessels efficiently with the advantage of low computational

complexity. In spite of some limitations associated with poor contrasted images, this

method is still favourable in terms of computational complexity and performance

compared with the existing related methods. The total processing time for BV

detection is 2.2 minutes with adopted image size and PC details indicated in Chapter

3, where this time is less than that of the fastest method in the literature by 12% [69].

The main advantage of this method is that it is completely unsupervised, so there is

no need for manual measurement of vessel width which is time-consuming and

requires an experienced ophthalmologist.

The proposed OD localisation method is based on the determination of the

most vasculature loops rather than the OD features. Then it could be localised even

for images of unclearly visible OD or abnormal images that containing HEs with

similar features of OD. Experimental results showed superior SR with different

datasets and a reasonable processing time compared with the other methods in the

literature (3.4 minutes with adopted image size and PC details, where the fastest

method in the literature takes 3.1 minutes [22]). A limitation of this method is that an

inefficient BV detection can be a cause of the OD detection failure.

In addition to fovea features, the proposed method makes use of the advantage

of the relationships between the fovea and the other retinal structures, namely the

BVs and OD to overcome difficulties of unclear fovea features. Fovea appearance in

some images may be fully obscured due to existing of abnormalities or low contrast

image, and this may be a cause of detection failure. In that case, the fovea centre can

be estimated based on the geometric relationship with a size equal to that of the OD.

A comparison between the proposed method and other related works showed

superior SR (100% with 40 images from the DRIVE dataset and 96.3% with 80

images from DIARETDBO dataset). What was encouraging to develop this method is

that it can detect the fovea efficiently in low processing time (2 minutes for adopted

image size and PC details as aforementioned).
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Hard Exudate Detection

5.1 Introduction

In most people with diabetic retinopathy (DR), retinal blood vessels (BVs) may swell

and leak fluid while in others, abnormal new BVs grow on the surface of the retina.

Hard exudates (HEs), which are lipid leaks from BVs of abnormal retinas, are one of

the most commonly occurring lesions in the early stages of DR. Such lesions are

normally detected manually from retinal fundus images in intensive and time-

consuming processes by clinicians. Computer-aided HE detection could facilitate

more immediate and accurate diagnosis. Thus, one of our main objectives in this

work is to develop a computer-aided algorithm for the detection of HEs as a part of a

medical screening scheme for evaluating the condition of the retina.

Due to some differences in features of HEs and soft exudates (SEs), we have

concentrated in this work on HEs and neglected SEs because the detection of both of

them as one package using one algorithm will be at the expense of detection

performance. Colour fundus images are used to detect exudates in retinal images, and

Figure 5.1 shows a retinal fundus image with the main retinal structures and different

lesions including HEs.

Figure 5.1 Colour fundus image indicating retinal structures and different pathologies.
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In this chapter, we propose a method carried out to identify the retinal HEs

from retinal images. This mainly includes coarse image segmentation, fine image

segmentation, feature selection, and classification. After image pre-processing, HEs

are identified and validated using two different approaches, i.e. pixel-based

calculation and image-based classification. In the pixel-based calculation, the

performance is assessed based on pixel number of HEs correctly detected, while in

the image-based classification, the algorithm is assessed based on its ability to

classify an image without HEs as normal image or with HEs as a pathological

image [85]. The pixel-based calculation approach to our retinal images can be

regarded as a labelling process in which the goal is to assign to each pixel in the

image a unique label that represents an anatomical-pathological structure. The labels

can represent the types of the pixels as HEs and non-HEs, where the non-HEs can

represent the background, any of the retinal structures or any of other lesions).

Variations in contrast and brightness inside most retinal images make it

difficult to distinguish HEs from other bright features in the image. Fortunately, most

bright regions due to HEs are characterized by having distinct borders in different

degrees depending on the severity of retinopathy, while bright regions due to light

reflection do not. On the basis of this characteristic a novel two-step algorithm for

HE detection is proposed as follows:

1. Coarse HE segmentation to outline bright candidates with distinct borders.

2. Fine HE segmentation to fine-tune the result of coarse HE segmentation.

As explained in Chapter 3, operations of image pre-processing can prepare the

image with better quality and reasonably different intensity for HE and non-HE

pixels including retinal structures and the background. However, the discrimination

of HEs from cotton wool spots and light reflecting artifacts from the background are

noticeably more difficult tasks. Consequently, we would like to find a feature space

such that maps the HEs and non-HEs to disjoint non-overlapping clusters.

In Section 5.2 we describe our proposed method to delimit HE candidates as

regions of interest. In section 5.3 two region-based segmentation (RBS) approaches

are investigated to precisely extract objects from the previously delimited areas in the

coarsely-segmented image.
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5.2 Coarse Segmentation

5.2.1 Local Variation and Morphological Operations

To delimit HE candidates as regions of interest, the distinctness of their borders is

exploited. To achieve this, the standard deviation around each pixel is calculated to

get the local variation image. To avoid detecting the high contrast BVs as HEs, they

must be eliminated before applying the local variation operator. The BVs are

eliminated from the pre-processed image (Cp) by applying a morphological closing

operator (t/J) with a structuring element (S'4) larger than the maximal width of the

BVs so that all vessels get closed. Experimentation with different sizes and shapes of

S'4 has shown that a disk S'4 of radius 8 pixels is most suitable for BV removal with

images of adopted resolution. The result of BV removal is denoted by Cl as follows:

(5.1)

Figure 5.3(a), 5.3(b) and 5.3(c) illustrate a green channel image, the pre-processed

image and the result of BV removal respectively.

The local variation operator was applied on Cl and resulting image is denoted

by C2as follows:

1 " 2C2(x) = N -1 L (Cl(O -/L(x))
iEW(X)

(5.2)

where x is a set of all pixels in a sub-window w(x) of N pixels centered at x and

/L(x) is the mean value of Cl(i). The selection of window size is based on the

necessary balance between the most informative performance measures, namely the

sensitivity and PPV as discussed in Chapter 2. A window size of 9x9 was found most

appropriate for the image size we adopted here. Resulting local variation image is

illustrated in Figure 5.3(d). In order to refine C2 from artifacts and from objects

which have low local variation, such as SEs, a thresholding was applied to the local

variation image using the automatic Otsu method [86]. Then, a morphological

dilation operator with a disk-shaped structuring element (S's) of radius 3 pixels was

applied to the thresholded image to ensure the majority of neighbouring pixels will

be included in the candidate regions as expressed below:
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(5.3)

where THis a thresholding operator with automatic level a2 and D refers to a

dilation operator. Figure 5.3(e) illustrates the result of first phase of coarse

segmentation, and while it has been successful at isolating the HEs, some artifacts

remain due to residual contrasted vessels and bright regions around the retina.

To avoid detecting the OD as HE, it must be eliminated before the

classification step and this is achieved by masking OD location on the initial coarse

image by a black colour to get a new image (G4) as illustrated in Figure 5.3(f).

G ( .. ) _ {O if o, = 1
4 t,l - G3(i,j) otherwise (5.4)

where Od is OD mask to represent the OD as white colour on a black background.

Figure 5.3(g) illustrates same result of OD elimination but in gray level in terms of

the pre-processed image.

5.2.2 Classification

Due to some contrasted retinal structures such as BVs and bright edges around the

DSR and OD, the coarse HE image may include some artifacts from these structures

resulting in extra false positives and then low performance. Coarse HEs can be

distinguished and separated from these artifacts by using many features such as

colour, shape, size and texture. A rule-based (RB) classifier is used to distinguish

genuine HE regions from false positives and artifacts based on quantified features.

A set of eight binary and gray-scale representation features are extracted for

every candidate to be used as input to the RB classifier. We have tried to keep a

reasonable and adequate number of features because misclassification probability

and classifier complexity tend to increase with the number of features. The binary

features are: area (A), perimeter (P), circularity (er) (measure of roundness from

perimeter and area), length (L), width (Wd) and aspect-ratio (Ar). The gray-scale

features are: mean intensity (1m) of the candidate and standard deviation (Std) for

candidate elements to measure variation of candidate elements. We found

empirically that the most suitable coarse HE discrimination can be achieved with the
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following rules: A > 25, c; ~ 0.5, 0.5 < Ar < 2, L < rows/3, l-« > 1.2lav and

Std> (JG
1
' where rows refers to the horizontal size of the image (in pixels) and (JG1

is the standard deviation of the entire image after BV removal, Cr = 4rrA/ p2 and

R = L/Wd. The final result of coarse HE detection after applying the classification

operator (CL) is shown in Figure S.3(h) and denoted by Cs as follows:

(5.5)

To indicate effectiveness of candidate classification using gray level features

and to distinguish the intensity difference between candidates belonged to the true

HE and artifacts, the resulting coarse HE image before the classification is converted

to its corresponding gray level. Focusing on both binary image and gray level image

of the same result, shown in Figure 5.3(f) and 5.3(g), and comparing with the final

HE coarse image after the classification, we can distinguish the clear differences in

shapes, sizes, textures, intensities and the inside local variations between the true HE

objects and removed spurious regions. For more visual clarification, the image of

Figure S.3(g) is amplified as shown in Figure 5.2.

Figure 5.2 Amplification of candidate coarse HE at gray level.
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Ce)

Cg) Ch)

Figure 5.3 Steps of the coarse HE segmentation, (a) green channel image, (b) pre-proCessed
image, Cc) image after BV removal, Cd) image after local variation operation, Ce) image after
thresholding and dilation, (f) image after OD removal as candidate HEs, Cg) image of candidate
HEs in the gray level. (h) final coarse HE image after the classification.
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5.3 Fine Segmentation

Fine image segmentation aims to precisely extract or threshold objects from the

previously delimited areas in the coarsely-segmented image. In this stage, a region-

based segmentation algorithm is applied only to the coarsely detected areas to fine-

tune them. The idea behind using two stages of HE segmentation is to manage the

balance between the performance measures, namely the sensitivity and PPV easily

and to trade off between them based on medical requirements and to achieve accurate

segmentation results. These attributes are acquired by using many parameters in the

two stages, by which the appropriate balance between the performance measures

could be selected.

The segmentation of an image is defined as image partitioning into regions, in

which the regions satisfy pre-defined criteria. There are many types of image

segmentation algorithms. Notable amongst these are the most popular and widely

used algorithms: the RBS and the histogram-based segmentation. In spite of being

simple and fast implementing, the approach of histogram-based segmentation only

considers the feature image and does not take the spatial relationships of

neighbourhood into account and may result in imprecise segmentation. Moreover, in

histogram-based segmentation the threshold selection is not always easy, particularly

when the histogram is multi-modal. Hence, the histogram-based segmentation is not

always efficient approach for manipulating complex medical images with variant

qualities like the images under consideration.

The algorithms of RBS can be classified into three types: pure-merging

segmentation (PMS), pure-splitting segmentation (PSS) and split-and-merge

segmentation (SAMS) schemes. In the first scheme the image is divided into small

regions which are then merged to form larger regions based on a homogeneity

criterion. The PSS technique performs segmentation of the entire image and then

successively split each segment into quarters until the homogeneity state is reached.

The SAMS scheme is based on partitioning the image into square sub-regions until

the homogeneity is verified. Then a merging process is applied to neighbouring sub-

regions that satisfy some uniformity. For more information and clarifications about

the schemes of RBS we describe its framework briefly in the next section.
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5.3.1 Framework of Region-based Segmentation

The purpose of this section is to review the basic technology associated with the

concept partition hierarchy. Suppose N = {l,2, ...n} and M = {l,2, ...m}, x EN,

Y E M to be the spatial coordinates in an image, K = {1,2, ... ,l} to be the set of gray

levels of the image and f(x,y) is the gray value of a pixel at (x,y). The domain of

an image with M rows and N columns is represented by I. This image can be

segmented into s homogeneous regions R, where i = 1,3, ... sand s is a variable

nonnegative integer depending on the homogeneity state of the image, where

homogeneity of a region is verified when it is composed of similar elements, i.e. of a

uniform quality throughout. The following equations indicate the relations among

these regions themselves and the whole image [87]:

1. 1= Ur=lRi
2. Ri n R, = 0 i '?! l,j -.5, s, i =1= j

3. p(Ra = true, for all i

4. peRi U Rj) = false R, and Rjare adjacent

The symbol P refers to a logical predicate for the homogeneity test. Conditions 1 and

2 declare that the image is partitioned into s regions. Condition 3 declares that all

regions are homogeneous. Condition 4 declares that merging process of any two

adjacent regions will produce a non-homogeneous region.

As mentioned in the above, the RBS algorithms are categorised into three

schemes, and then these schemes will verify, in their works, the above conditions. In

the PMS, the image is subdivided into small regions which are then merged to form

larger regions based on homogeneous criterion to verify the condition 4. In the PSS

scheme, the entire image is viewed as the initial segment and then successively split

each segment into quarters until the homogeneity state is reached to verify the

condition 3. The SAMS scheme adopted in this chapter is based on partitioning the

image into square sub-regions until the homogeneity is reached to verify the

condition 3, then a merging process is applied to neighbouring sub-regions that

satisfy some uniformity criterion until the condition 4 is verified. Figure 5.4(b)

illustrates a tree construction corresponding to a segmented picture in Figure 5.4(a).
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11 121 122 21 22
123 124
141 142 241 242

13 143 144 23 243 244
411 412 42

3 413 414
441 44243 443 444

(a)

121 122 3 124 141142 143 144 241 242 243 244 411412413414 441442443444
(b)

Figure 5.4 An example of RBS procedure, (a) image segmented based on homogeneity criteria, (b)

tree partitioning corresponding to segmented image.

5.3.2 Split-and-Merge Segmentation Technique

Image binarisation using a global thresholding performs fast segmentation, but

mostly results in undesired binary results especially when the input image are uneven

or of poor quality. Consequently, adaptive local thresholding methods are

alternatives to get better segmentation results. However these methods have the

disadvantage of slow running speed due to the re-computing operation of threshold

value to each local region. In this section, we propose an approach based on

combination of global and local thresholding for fine HE segmentation. Local

thresholding is applied to non-uniform background images by partitioning the image

into a number of sub-images.

The number and shapes of the sub-images depend on image uniformity and the

distribution of shade and bright locations throughout the image. Global thresholding

is then applied to each uniform sub-image using histogram-based thresholding. This

stage consists of three steps: the first step is to investigate the optimal number of

image partitions using the SAMS technique. The second step is to apply global

thresholding on each individual sub-image separately with appropriate threshold

value using a histogram-based thresholding. The third step is to combine the result of

the first two steps with the coarse HE segmentation result.

• Split-and-merge operation: In this stage, image is divided into square and/or

rectangular partitions based on image features and a statistical hypothesis. In order to

obtain the best number of partitions (as small as possible) for homogeneous sub-
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regions, the method traces the distribution of illumination throughout the image to

separate shady and bright locations according to their levels and areas. In this stage

the green channel image is used after pre-processing, OD elimination, BVs removal

and smoothing. To eliminate the optic disk, its location is masked with a colour equal

to the average background intensity of the pre-processed image. The following steps

describe briefly the proposed SAMS technique and more details can be found in

laafar et al. [88]:

1. Image Partitioning: Select two variables nl = 1, ...,6 and n2 = 1, ...,6 to be used

in dividing the image into k different partitioning forms, where k = nl x n2 .

Some of the 36 partitioning forms have same number and geometric shapes of

sub-regions but with different locations on the image.

2. Standard deviation: For everyone of the 36 partitioning forms, calculate the

average intensities of all sub-images, and then the standard deviation based on

average intensity of the entire image. Hence, we will have 36 values of standard

deviation ak 'V k = 1, ...,36.

3. Optimal partitioning: It is divided into two steps:

Stepl: Primitive partitioning; starting from the smallest number of partitions

(nl = 1, n2 = 1) onwards to the highest number of partitions (nl = 6, n2 = 6),

compare the standard deviation of each form with the maximum. A partitioning

form with standard deviation equal to or greater than ninety percent of the

maximum is selected empirically as the primitive partitioning form as follows:

ak(selected) ~ O.9ak(max) (5.6)

Step 2: Merging homogeneous sub-images; in order to perform optimal adaptive

thresholding and reduce processing time of segmentation, the number of uniform

sub-regions should be as small as possible. Thus it is essential to investigate

homogeneity of adjacent sub-regions to remerge them and get the optimal

partitioning form. Homogeneity of any two sub-regions, say X with elements

(xv X2, ... , xm) and Y with (Yv Y2' ... ,Yn), is assessed by testing X and Y under an

assumption of equality in their standard deviation ax and ay. As a rough rule we

can empirically consider the condition of equal standard deviation met if ratio of
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that larger to the smaller sub-region is less than 2. A statistical pooled Hest

procedure is performed to decide the homogeneity of the adjacent sub-regions,

where the hypothesis Ho: X=Y (refers to the homogeneity state) is supposed. The

significance level (jJ) is decided (we decided it to be 5%), and then values of

degree of freedom (d!> and test statistic (ts) are calculated based on information of

adjacent sub-regions. The preceding parameters are used in the statistical ta-table

to estimate the probability of observing a value (p-value) which determines the

final decision. If p ~ /3, Ho is rejected, otherwise the hypothesis is right.

• Histogram-based thresholding: Histogram-based thresholding may give

imprecise result when the amount of overlap of the feature distribution in the

histogram is large. Two methods can be used to rectify this problem, first by

applying the histogram-based thresholding on uniform local sub-images, and second

by recursive application of the global method to increasingly fine-gained regions. In

our method the uniform illumination locality is achieved by partitioning the image

into uniform sub-images. Hence, uniform illumination images are easy to be

segmented as their histograms will be bi-modal distribution and the pixel intensities

are clustered around two groups. On the basis of optimal image partitioning obtained

in the preceding section, histogram-based thresholding was applied to locations of

the sub-images corresponding to the pre-processed green channel image to obtain an

initial result for the fine HE segmentation.

• Combination of coarse and initial tine segmentation: Due to light reflection

and contrasted vessel edges, the initial result of fine HE segmentation often contains

some non-HEs. Thus a combination of the coarse and initial fine HE segmentation is

used to refine the initial fine HEs from artifacts. A logical AND operator is applied

on the coarse HE image and the initial fine HE image to achieve the final fine HE

image. In this logical operation, the coarse segmented image classifies pixels of the

initial fine segmented image in such a way that initial candidates which have clear

borders can only be segmented as final HEs.

Figure 5.5 shows an example about the proposed method for HE detection

using SAMS technique indicating input image, results of proposed method steps,

output image and the ground truth of the corresponding image. The ground truth is

presented here for visual comparison and evaluation to the proposed method.
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(a) (b)

(e) (t)

(g) (h)

Figure 5.5 Steps of SAMS technique, (a) colour retinal image, (b) pre-processed image after OD and
BV removal, (c) initial fine segmentation, (d) earlier coarse HE segmentation, (e) final fine HE
detection, (t) binary hand-labelled HE image, (g) final HEs overlaid on the colour fundus image,
(h) hand-labelled HEs (ground truth) on the colour fundus image.
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5.3.3 Pure-Splitting Segmentation Technique

A PSS technique is proposed here to achieve efficient region-based segmentation in

better performance than that of the SAMS technique. In the literature, the PSS

technique is normally carried out by considering the entire image as an initial

segmentation followed by successive splitting into quarters and then a homogeneity

test is performed to decide further splitting if the segment is not homogeneous

enough.

Although it is efficient and accurate, the PSS technique has a practical

drawback, namely the assumption that the image information is equally distributed

throughout the image and this may result in over-segmentation [89]. To remedy this

drawback, a novel PSS technique based on successively splitting the image was

proposed by Jaafar et al. [90]. In this work, a new developed technique is proposed

based on successively pure image splitting and introducing a novel procedure

(referred to as partitioning regions of interest PROJ). This is based on assigning

regions of interest inside the image in advance to be used later as constraints in the

decision of splitting limit [25].

• Proposed PROI procedure: The coarse HEs image Gs is applied to the pre-

processed image Gp by means of a morphological AND operation, reducing all

background pixels to zero. Region(s) of the other pixels in the new image (G6) are

called region of interest (ROn zonets).

G .. _ {O if Gs(i,j) = °
6(t,j) - Gp(i,j) otherwise (5.7)

The PROJ procedure is presented as follows:

1. The image G6 is viewed as the initial segmentation.

2. The image G6 is partitioned into four sub-regions called nodes.

3. All nodes are tested to appoint two types of nodes: information nodes represented

by resulting nodes which contain element(s) from the ROJ zone(s) and empty

nodes represented by resulting nodes which do not contain any element from ROJ

zone(s).
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4. Every information node is evaluated to determine whether or not it needs to be

divided in accordance with predefined homogeneity criteria based on standard

deviation and mean intensity.

5. Steps 3 and 4 are successively iterated only for the new nodes until achieving the

predefined homogeneity criteria (explained in the next paragraph) or a size

threshold (E).

The homogeneity test is an essential step to any RBS result to avoid over or

under segmentation. For this, the method described by Chen et al. [87] was followed

based on feature analysis. In this method, histogram analysis is used for analysing the

characteristics of regions and mapping the frequencies of the desired features such as

gray level distribution and local texture measures. The histogram of every

information node resulted from step 4 is tested. If the histogram consists of a number

of distinct modes (i.e. it possesses non-uniform intensity) then the region is non-

homogeneous and needs to be further spitted. While if the histogram is single mode,

then the region is homogeneous (i.e. it possesses uniform intensity) and will stop

splitting. The threshold E in the proposed PRO! procedure is specified in such a way

that the size of smallest node (even it possesses non-uniform intensity) should not be

smaller than 1/64 of the whole image size. It is worth mentioning that this threshold

value is selected based on many trial and error experiments which showed that this

size is small enough for sub-images to be uniform even with the worst non-uniform

images, and in most of them the splitting processes may stop before the last level.

The iterative splitting operation can be represented by a tree data structure as

shown in Figure 5.6. The tree structure consists of N levels: the top level (level 0)

that is represented by the reconstructed image, middle levels (l to N-2) which are

represented by different sizes nodes stopped splitting due to emptiness of information

or achieving the required homogeneity and the last level (N-1) that is represented by

all nodes which stopped splitting due to size threshold. The final outcome of splitting

operation results in many sub-images with different size levels where in each level,

either both node types (information nodes and empty nodes) or only information

nodes are available. The number of tree structure levels relies on the intensity

uniformity of the image and this number increases with the increase of non-

uniformity degree.
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Level2

LevelO

Levell

Level N-l • • • • • • • • • • • • •• - I ._I ........... -.-1

Figure 5.6 A tree data structure explaining the proposed PROI procedure.

• Thresholding of the nodes: Thresholding is widely used to segment distinct

modes in a histogram by determining a set of threshold values ak Ea, k =
0,1, ...m - 1, where m is the number of distinct modes in the histogram. In our

work, the image is divided into homogeneous sub-images, thus being with single

mode in the histogram. Accordingly, a global thresholding can now be applied to

each individual node to segment the required objects successfully. For this, a

histogram-based thresholding was applied to all nodes separately. Let a partition Q of

the image be defined as a subset of G6 with respect to uniform illumination criterion.

Hence running a histogram-based thresholding throughout all the nodes with

automatic threshold value a3 will produce a new binary image (fine HE image)

represented by G7 as follows:

G7 =LTHa3(Qz)
ZEk

(5.8)

where k is the number of the nodes, l is the number of information nodes.

Figure 5.7(a-h) illustrates step results of the proposed PROI procedure from the

colour fundus images (input) to the final results in the both forms (binary and

superimposed on the original image). The ground truth of the corresponding image is

also presented in this figure for the sake of comparison and evaluation the proposed

method result.
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(a) (b)

(c) (d)

Figure 5.7 Steps of the PSS technique, (a) colour retinal image, (b) green channel image after pre-
processing, (c) earlier step of coarse HE segmentation, (d) combination of images from 'b' and 'c',
(e) final fine HE segmentation, (f) binary hand-labelled for HEs, (g) binary HEs (by the proposed
method) overlaid on the original colour image, (h) hand-labelled HEs on the original colour image.
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5.4 Results and Discussion

5.4.1 Materials

Two sets of images from various datasets were used to train and test the proposed

method of HE detection. A set of 130 retinal images from the DIARETDBO

dataset [54], of which 110 images contain different types of lesions, are used to train

the proposed method. Satisfactory evaluation can be achieved when the test images

are from other source than the training source. Thus, a set of 106 retinal images from

two datasets (89 images from the DIARETDBI dataset [55], of which 84 are

pathological, and 17 pathological retinal images from the MESSIDOR dataset [16])

were used to test the proposed method.

The proposed method is tested in terms of two levels namely the pixel-based

calculation and image-based classification. In pixel-based calculation, the method is

assessed based on pixel number of HEs correctly detected, while in the image-based

classification, the method is assessed based on its ability to classify an image without

HEs as normal image or with HEs as pathological image. As the fine segmentation

step is implemented with two different techniques, i.e. SAMS and PSS, their

performance measurements, in the two levels, were calculated separately using same

set of images, thus their comparison and evaluation will be fair.

5.4.2 Performance Evaluation

The proposed HE detection method using PSS has been validated and found to

achieve an average sensitivity of 93.2%, specificity of 99.3%, accuracy of 99.4% and

PPV of 83.7%. To assess the ability of automated "HEs/no HEs" grading, the set of

106 images was used to evaluate the proposed method at image-based classification

and the average sensitivity and specificity were 98.9% and 91% respectively.

The step of fine segmentation in the proposed method of HE detection was

performed with two different methods and tested on images from two datasets. To

evaluate efficiency of both methods per each dataset the performance, in both criteria

(pixel basis and image basis), was calculated for both methods on each dataset

separately, and a comparison between their performances is illustrated in Table. 5.1.

This table shows that the performance measures of the PSS technique are clearly
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better than those of the SAMS technique. In addition, we observed that the

computation time when using PSS technique is lower than that of SAMS technique.

The reason for this is that the SAMS technique combines the split and the merge

approaches where the region homogeneity is treated as a sequence of decision

problems in terms of predicate in a hypothesis model, and this may allow in more

partitioning and merging with a time-consuming and a high computational

complexity

Table 5.1 Comparison between the performances of PSS and SAMS techniques which are used in the
fine HE detection.

Test Inpixel basis In image basis
Method (Dataset) set

SN% PPV% SN% PPV%

SAMS (DIARETDBl) 89 92.1 79.5 98.6 88

PSS (DIARETDBl) 89 92.9 83.1 98.8 90.7

SAMS (MESSIDOR) 17 93.4 82.6 98.6 90.3

PSS (MESSIDOR) 17 94.6 87 99.3 92.5

The number of true negatives that are correctly identified as non-HEs by both

grader and proposed method is the major number of image pixels. Therefore, the

specificity and accuracy in pixel-based are always near 99% and hence they are not

very meaningful for evaluation or comparison. A comparison between meaningful

performance measures, namely the sensitivity and PPV (in pixel-based calculation)

and sensitivity and specificity (in image-based classification) for the proposed and

some related recent works is summarized in Table 5.2. This Table shows that the

proposed method detects HEs with equal sensitivity in pixel level calculation, and

competitive sensitivity and specificity in image-based classification.

The main drawback of the proposed method is that the PPV falls short of that

reported by some researchers. The reason of this is that our method detects more

false positives than these other methods used in this comparison. In spite of this

shortcoming in terms of PPV, a more meaningful comparison should include the full

specifications of the proposed method, including the computational efficiency and
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the ability to deal with images of variable qualities. These attributes in our proposed

method are acquired by using the technique of RBS in which the image is

dynamically divided into homogeneous sub-images. Although the detection of faint

REs is not urgent for the purpose of treatment but it is important for early tracking of

patients, however the proposed method can detect faint REs with superior

performance compared to those of other related works cited as demonstrated by

sensitivity figures in Table 5.2.

Table 5.2 Comparison between performance measures to the proposed method and previous related
works for HE detection.

In terms of pixels In terms of images

Method Test set SN% PPV% SN% SP%

Osareh et al. [38] 67 93 95 88.9

Walter et al. [16] 15 92.8 92.4 100 86.7

Sanchez et al. [39] 80 90.2 96.8 100 90

Garcia et al. [40] 67 87.6 83.5 100 90

Sopharak et al. [41] 39 92.3 53.1

Our method 106 93.2 83.7 98.9 91

Because of the lack in the datasets with their ground truth for REs, it is difficult

to find many methods in the literature tested by same criteria and same publicly

available dataset. Although the comparison shown in the Table 5.2 is made for

methods which used different sets of images than that of our method, the proposed

method performance is still favourable with respect to the other related works

because it is tested with larger number of images from two different datasets.

For more clarifications about proposed method performance, five samples of

colour fundus images, their proposed method results and their ground truth are

illustrated in Figure 5.8. A comparison between the proposed method results and the

ground truth images shows a very good rapprochement between them.
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Ca) Cb) (c)
Figur S. i ual mpari on f propo ed method results and their ground truth for 5 retinal images,
(a) Fi e c lour fundu image, (b) their corresponding results produced by the proposed method using
p in th fin egm ntation tep, (c) their corre ponding clinician hand-labelled images.
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5.4.3 Influence of Parameters

In practical applications, some error in the full automatic thresholding is inevitable.

Hence, the disparity between the actual thresholding results and the ideal results

(ground truth) can be used to enhance the performance of the algorithms. To do so,

an intervention on some parameters, used in our work, has been tried to study their

influence on the performance measures. As the sensitivity and PPV are the most

informative measures in the performance evaluation at pixel level, they were used as

the basis of assessment to parameter influence on the proposed method performance.

Several experiments have been performed on parameters, such as the window

size (w) and the threshold values of the coarse and fine segmentation (a2 and a3) to

study their influences on the sensitivity and PPV. Experimental results showed that

as the window size is increased PPV is increased but at the expense of the sensitivity.

Although both thresholds a2 and a3 are determined automatically based on

image information, we represent each automated value as 1 and change it with a

percentage of ±50% in 10 steps for the both separately and together. From the

experimental tests, we concluded that a2 and a3 have noticeable influence on the

performance measures. Figure 5.9 shows ROC curves for the influence of each a2

and a3 separately on the overall measures. From these curves, it can be seen that for

the same rate of change to each of a2 and a3 seperately, the threshold of the fine

segmentation a3 has more positive and less negative influence on the sensitivity and

PPV than those of the coarse segmentation a2' The reason for this is that a variation

in the coarse segmentation threshold may significantly change the rate of undesired

false positives or wanted true positives more than that in fine segmentation, and

because variation of fine segmentation is limited within the delimited ROI (candidate

regions). In other words, as the ROI is determined by the coarse segmentation step, a

lack in these regions can affect dramatically the number of true positives or an extra

increase in these regions may cause extra increase in false positives.

The influence of variation in a2 and a3 together is also investigated and the

ROC curves are shown in Figure 5.10. The optimal percentage variation in the

threshold a2 and/or a3 depend(s) on the requested balance between the sensitivity

and PPV and the decision for that is set based on the diagnostic requirements.
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5.5 Summary and Conclusions

In this chapter, a novel two-step algorithm for HE detection is proposed. The first

step is coarse HE segmentation, and the second is fine HE segmentation. In the

coarse HE segmentation, a local variation operation, thresholding, morphological

operation and classification are used, while in the fine segmentation, two techniques

namely SAMS and PSS are investigated to refine coarse HE results. A comparison

between results of the two fine approaches is made to evaluate their performances.

A comparison between average performances for HE detection with PSS and

SAMS techniques shows that PSS technique achieved better sensitivity and PPV at

both pixel and image levels. In addition, the processing time with PSS is lower than

that of SAMS, where the full period of HE detection when using PSS technique is

4.5 minutes, while in case of SAMS it is more than 6 minutes for our adopted image

size and PC details. The reasons behind this is that in the PSS technique the image is

partitioned, homogeneity tested and then thresholded within delimited ROI from

resulted coarse HEs, while in the SAMS technique a split and merge approaches are

applied to the whole image where the region homogeneity is treated as a sequence of

decision problems in terms of predicate in a hypothesis model, and this may allow in

more partitioning and merging with a high computational complexity. Also the

proposed HE detection method with the PSS is found to achieve a superior sensitivity

at pixel level compared to the current state of the art (93.2%). Because of its low

computational complexity, easy reproducing and high accuracy this method is

expected to be preferable for other medical applications for bright object detection.

Experiments for testing the influence of percentage change on the parameters

used in HE detection have shown a noticeable influence on the detection

performance. The change in the widow size of the local variation operator has clear

influence on the balance between the sensitivity and PPV. Also it was found from

many experimental outcomes that a percentage changes in the threshold of coarse

segmentation has dramatic effect on the sensitivity, while in the case of fine

segmentation, the same rate of increase in the threshold has slight effect on the

sensitivity. A limitation in this method is that it occasionally fails to avoid detecting

some spurious-HEs as HEs especially those have similar features of HEs.
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Red Lesion Detection

6.1 Introduction

Both types of red lesions (RLs) namely the microaneurysms (MAs) and

hemorrhages (HRs) are considered to be the earliest detectable lesions of DR. They

can be thought of as representing the occlusion of at least one vessel. There is a

positive correlation between the number of RLs and severity of DR. The number of

RLs has been used to classify early DR and to predict further progression of

DR [91], [92]. In addition to the number of RLs, their sizes and spatial distributions

are considered important factors in the evaluation of DR severity. This disease can be

prevented from causing blindness if it is detected and treated at early stages.

The major challenges in RL detection are: (1) the low contrast of RLs against

the background making segmentation of small RLs difficult and (2) some RLs may

appear in association with larger vessels or they may look similar to other retinal

pathologies, making their identification difficult. Manual detection is time-

consuming and often susceptible to observer error, while digital image processing

approaches can provide an effective and repeatable way of quantifying the RLs.

Hence, a computer-aided algorithm would offer a fast and consistent diagnosis aid to

specialist inspection and assist the clinician to make timely treatment decisions.

In this chapter, two methods are presented for the detection of RLs

automatically from retinal fundus images. The first is our proposed method which is

based on mathematical morphology to segment RL candidates from the background

followed by refining and classification operations to discriminate true RLs from

artifacts. While the second is an adaptation of an existing method proposed by Kande

et al. [93]. This method used a matched filter to increase the contrast of RLs against

the background followed by applying a relative entropy-based thresholding to

segment RLs from background. To develop its performance, an adaptation is

proposed, in this work, by refining its initial results from traces of retinal structures

before applying the classification step.

109



Chapter 6: Red Lesion Detection

As the fovea has similar features to those of RLs, its location is masked during

steps of RL detection to avoid detecting it as RL, and therefore any probable RLs

inside the fovea will be missed. Discriminating RLs inside the fovea is necessary for

reliable RL detection, and due to their feature resemblance it is a big challenge.

However, making use of few differences between features of the fovea and RLs, a

method for detection and reinstating RLs inside the fovea is proposed in this chapter.

6.2 Mathematical Morphology in Red Lesion Detection

The main contribution of this method is the development of a new candidate

detection scheme based on mathematical morphology and pixel classification. This

method comprises four steps. The first consists of shade correction and contrast

enhancement operations as explained in chapter 3. The second comprises the RL

detection based on candidate extraction. The third is concerned on refining extracted

candidate RLs from retinal structure traces. The fourth comprises operations of

feature extraction and classification to separate true RLs from spurious RLs [94].

6.2.1 Candidate Extraction

The key idea of extraction of candidate regions is that RLs have a particular profile

that differs from other dark regions like the BVs. Firstly; RLs are segmented from

the background by using a flood-fill operation on the background pixels of the pre-

processed image, followed by subtracting the pre-processed image from the result of

filling operation. The morphological operations of filling and subsequent subtraction

of the original image from the filled image act as a regional minima operation to

highlight low level objects. In the flood-filling operation, circular and semi-circular

dark objects will be filled leaving other dark areas such as the blood vessels (BVs)

and dark edges without change. The morphological filling and subtraction operations

can give high degree of discrimination between circular and elongated objects and

then they are suitable for discriminating RLs from BVs and other dark big regions.

Secondly, the resulting image is converted to binary by thresholding with a

threshold value a4' This value is calculated dynamically based on the mean intensity

of the pre-processed image (mprd)' Experimental results showed that the threshold
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value 0.12mprd is the most suitable to achieve reasonable trade-off between true

positives (TPs) and false positives (FPs). Moreover, we took into account that most

RLs should be detected with this a4 because any RL object missing, at this stage,

could not be reinstated later and this may affect the method performance.

Figure 6.1(a) shows a colour fundus image, while Figures 6.1(b) and 6.l(c) illustrate

the green channel image before and after the pre-processing respectively.

Figure 6.1(d) illustrates the pre-processed image after filling operation, and

Figures 6.1 (e) and 6.1(f) show the result of morphological subtraction before and

after the thresholding operation respectively.

6.2.2 Candidate Refining

Although morphological operations, used for candidate extraction, can give high

degree of discrimination between linear and circular shapes, the resulting image may

still include some vessels and other artifacts. The fovea appears with similar features

as RLs and hence it is mostly detected as a RL spot. In addition, some contrasted

features inside the OD occasionally appear as RLs. Moreover, some small and

discrete vessels may be segmented within the candidate RLs. It is worth mentioning

that some features of these artifacts are similar to those of RLs and then it will be

difficult to discriminate and reject them by the classification step. To refine the

resulting image from such artifacts, the BV image, Ol) mask image and fovea mask

image were subtracted from the resulting candidate image to obtain a new image

with RLs and few spurious objects which could be removed by a classification

operation. The result of this step is shown in Figure 6.1 (g).

6.2.3 Feature Extraction

The result of candidate RL segmentation may include spurious RLs due to some

residual BV and dark region at edges of the retina. Since RLs are created due to leaks

from the side of swelling tiny BVs [95], they tend to have circular shape with

diameters greater than the feeding BVs. Hence, they have particular pattern shapes

extremely different from other retinal features. On the basis of many experiments, a

set of 20 different features (shape and pixel intensity features) was found to be
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suitable for distinguishing actual RLs. In the following features G , R and Se refer to

the green channel image, red channel image and shade-corrected image respectively:

1. The aspect ratio Ar = L / Wd, where L is the length of the longest axis of the

candidate and Wd is the width of the candidate on the axis perpendicular to the

longest axis.

2. The area A of the candidate in pixels.

3. The perimeter P which is approximated using the chain-code of the candidate.

P = no{2 + ne, where no is the number of odd chain-codes and ne is the number

of even chain-codes. Each point in P is classified as a corner where there are

abrupt changes in the curvature.

4. The circularity er = 4nA/ p2. It gives a measure of roundness and smoothness of

the candidate.

5. The eccentricity E which is a ratio of the distance between the foci of the ellipse

and its major axis length. This value is between 0 (for a circle) and 1 (for a line

segment).

6. The total intensity of the candidate in the green channel image (G), igrn =

LjEX Bj where Bj is the jth pixel of in the green channel image where X is the set

of pixels in the candidate.

7. The total intensity of the candidate in the red channel image (R), ird = LjEX 1)

where 1) is the jth pixel of in the red channel image.

8. The total intensity of the candidate in the shade-corrected image (Se),

isc = LjEX Sj where Sj is the jth pixel of in the shade-corrected image.

9. The mean intensity of the candidate in G, mgrn = igrn/ A.

10. The mean intensity of the candidate in R, mrd = ird/ A.

11. The mean intensity of the candidate in Se, msc = isc / A.

12. The normalised intensity in the G, Ngrn = (l/O")(igrn - z) where 0" and i are

the standard deviation and average pixel value of estimated background of G.

13. The normalised intensity in the R, Nrd = (l/O")ird
14. The normalised intensity in the Se, Nsc = (l/O")isc'

15. The normalised mean intensity in the G, Nmgrn = (l/O")(mgrn - i).
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16. The normalised mean intensity in the R, Nmrd = (l/C1)mrd'

17. The normalised mean intensity in the Se, Nmsc = (l/C1)mse.

18. The inner standard deviation of G, C1grn.

19. The inner standard deviation of R, C1rd'

20. The inner standard deviation of Se, C1se.

where igrn and ise refer to the total intensity of the green channel image and the

shade-corrected image respectively.

It is worth mentioning that the use of feature selection can significantly help

improve the performance of the classifier. Hence we tried many other features over

the set defined above but experimental results showed little enhancement in the

performance of RL detection but with a burden of increase in the computational

complexity.

6.2.4 Classification

The aim of candidate classification is to classify each candidate as either an actual or

spurious RL. A series of experiments on feature selection and RL classification were

performed using a Linear Discriminate classifier and a rule-based (RB) classifier and

we found that the performance of the RB classifier is better. The RB system is based

on a number of quantities and logical rules. These rules, in our work, are empirically

derived from the training data by a series of comparison between many pairs of

features from the feature vector and looking for functions of every two features and

also by limiting values to some binary and/or gray level features.

A number of rules were incorporated directly into the image analysis and

quantification program. Then they are established by a number of constraint criteria,

leading to an efficient classifier. For the classification of RL candidates, the features

described in the previous paragraph were used to set a number of rules which comply

with the specifications of RLs as constraint criteria. Figure 6.1 (h) illustrates the final

binary RL image after the classification, while Figure 6.1(i) shows the final binary

result superimposed on the colour fundus image, and Figure 6.1G) shows the

corresponding ground truth image. The ground truth is presented here with the final

result for visual comparison and evaluation to the proposed method.
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(h)

.1 tep d RL d le lion method, (a) colour fundu image, (b) green channel image,
( ) pr -pr . d irnag . d th pr -pr e ed image after filling operation, (e) result of subtracting the pre-

d im g' fr m th till d imag . (I) image after the thresholding, (g) image after removing all traces
and fov . (h) imag aft r the la ification a the final binary image of RLs, (i) the proposed

ed on th original colour image, (j) corresponding ground truth of RLs.
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6.3 Entropy-based Thresholding in Red Lesion Detection

This method is an existing method for the detection of RLs proposed by

Kande et al. [93]; it is based on extracting both BVs and possible RLs at once, and

subsequently the BVs are eliminated from the RL candidate objects. This algorithm

uses the intensity information from red and green channels of the same retinal image

and the thresholding based on local relative entropy. The idea behind using

information of the red channel in the pre-processing of colour fundus images is to

prepare the retinal image with better visual appearance in cases of non-uniform

illumination and as a result to improve the RL detection performance.

The retinal image is pre-processed using the histogram of the red channel of

the same retinal image to modify the histogram of the green channel and to obtain a

new modified image. To increase the contrast of RLs against the background the

matched filter is used, and to distinguish between RL segments and the background

in the matched filter response image, the relative entropy-based thresholding is used.

Classifying RLs from associated BVs and other artifacts is accomplished by

subtracting BV image from thresholding result followed by applying a classification

using SVM classifier to classify the candidate RLs from other dark segments. Our

intervention on this method is by introducing a modification step and investigation

another classifier for detecting RLs with better performance.

6.3.1 Pre-processing

The green channel of the colour retinal image is used as it shows the best contrast

between RLs and the background. But the red channel has the advantages of being

brighter and distributed over a wider range of gray-level values, which results in less

contrast between bright regions and the retinal background. Therefore, the intensity

information from red and green channels of the same retinal image is used to

eliminate bright regions between the sharp edges. For the same retinal image,

histogram of the green component is modified using the histogram of the red

component by means of histogram matching to obtain a new image having the

advantages of both channels. Then, the contrast of the modified colour retinal image

is enhanced using contrast stretching, followed by applying median filter to reduce
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the intensity variation in the image background. Figure 6.2(a) and 6.2(b) illustrate the

colour fundus image and its green channel image respectively. The histogram

matched image is shown in Figure 6.2(c), while the result after contrast enhancement

and median filtering is shown in Figure 6.2(d).

6.3.2 Candidate Red Lesions

Red lesions usually have poor local contrast. Hence the concept of matched filter

detection is used to detect RLs in retinal images where the two dimensional matched

filter kernel is designed to convolve with the original image in order to enhance the

RLs. A set of twelve 15x15 pixel kernels are applied by convolving to a fundus

image, and at each pixel only the maximum of their responses were retained. During

this process, the contrast of the BVs is also enhanced along with RLs. To extract the

enhanced RL segments in the matched filter response image, an effective

thresholding scheme is required. An efficient relative entropy-based thresholding

algorithm, which takes into account the spatial distribution of gray levels, is used,

because some matched filter response images have complicated relationships or

overlap between foreground and background.

The relative entropy thresholding is to minimize the discrepancy, i.e., the

relative entropy, between the co-occurrence matrix of the original image and that of

the binarized one. Therefore, the thresholded image will be the best approximation to

the original one. Due to the narrow intensity distribution of dark areas (RLs and

BVs), the co-occurrence matrix of dark regions has strong and narrow peaks, and the

relative entropy-based thresholding was found effective to keep all RLs along with

BVs. Result of thresholding process is shown in Figure 6.2(e).

In order to detect candidate RLs efficiently, the enhanced BVs in relative

entropy-thresholded image must be suppressed. For this a morphological top-hat

transformation was used where a morphological image opening with a linear

structuring element at different orientations was used. A total of 12 rotated

structuring elements were used with a radial resolution of 15°. In each of the 12

opened images, only those parts belonging to the BVs which the linear structuring

element can fit remain. Then, the top-hat-transformed image is subtracted from the
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relative entropy thresholded image to get candidate RL segments. Because RLs in

general do not appear on larger vessels, they are disconnected from the BVs.

To obtain possible candidate locations, connected component analysis was

applied on the binary objects. Any object which was too large to be an RL was

removed. A threshold of 300 pixels (with the adopted resolution) was found to

include 98% of all RLs. Most of the BVs are connected, forming objects larger than

300 pixels and will, thus, be removed by this step. To refine the resulting image from

other retinal features before the classification step, a modification is introduced to

this method. For this, Ol) mask image and fovea mask image are subtracted from the

resulting candidate image. What remains are those RLs not connected to the BVs, a

number of small vessels, and few spurious objects as shown in Figure 6.2(f).

6.3.3 Candidate Classification

The aim of the candidate classification is to discriminate actual RLs from non-RL

objects. In order to accomplish this, a classifier is needed to be trained using example

objects. These example objects are first extracted from a training set and this set is

available with the corresponding ground truth, as indicated in the material discussion

(Section 6.5). Using the reference standard segmentation of the training set each of

the example object is labelled. Experiments using a Linear Discriminate classifier, a

Support Vector Machine classifier and RB classifier were performed. The RB

classifier showed the best performance and better than what was used in [93].

The feature set proposed by Spencer et al. [96] and Frame et al. [97] has been

adopted in this method to classify each of candidates as a RL or a non-RL. To

improve the classification performance, another 12 features have been added by

Kande et al. [93] where these features are calculated from co-occurrence matrix.

These features are: angular second moment, contrast, correlation, sum of squares,

inverse difference moment, sum average, sum variance, sum entropy, entropy,

difference variance, difference entropy and information measurements for

correlation. Experimental tests shows that these 12 additional features could slightly

improve the method performance but at the expense of computational complexity.

Binary RL image after the classification is shown in Figure 6.2(g), while the binary

result overlaid on the colour fundus image is illustrated in Figure 6.2(h).
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ntr p -ba d RL dete tion technique, (a) colour fundus image, (b) fundus
imag 10 the gr n h nn I, ( ) hi togram-matched image, (d) image after contrast stretching and
m dian filt nng, ( mat h d filtering re ult after entropy thresholding, (f) image after connected

m n nt nal i and after r m ing the BV , OD, and fovea, (g) image with RL candidates after
ppl In th I n. (h) final binary RL re ult superimposed on the original image.
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6.4 Red Lesion Detection inside the Fovea

One of the major challenges in the RL detection is the resemblance of their features

with those of the fovea. In the two methods discussed in this chapter, the fovea

location is masked from the RL image to avoid detecting it as RL. Because of this,

the detection performance may be affected if there is any probable RL inside the

fovea. As the fovea is located in the centre of the macula, where no BVs, most of

RLs are located away of the fovea centre. However, to remedy the probability of

missing RLs inside the fovea a simple and fast morphological-based method is

proposed. This method is based on some few differences in shape and intensity

features between the fovea and RLs to discriminate RLs inside it.

Although the fovea is the darkest region in the retinal image, the gradient in the

darkness level between fovea centre and its boundary is very slow. In other words,

there are no clear limits between the darkest region (near the centre) and the fovea

boundary which are less darkness, i.e. meant there is no clear edges inside the normal

fovea, Hence, applying edge detection inside the fovea can highlight any abnormal

dark objects with distinct edges which are mostly belonged to RLs. For this, the

segmentation of RLs inside the field of interest (fovea location on the pre-processed

image) was applied using a morphological gradient operation, where three types

namely, basic, internal, and external gradient were investigated.

The basic gradient is calculated by subtracting the eroded image (acts like a

local minimum operator) from the dilated image (acts like a local maximum

operator), the internal gradient is calculated by subtracting the eroded image from the

original image and the external gradient is calculated by subtracting the original

image from the dilated image. Experimental tests for the three gradient kinds showed

that the best result in terms of achieving suitable balance between TPs and FPs could

be achieved with the basic gradient. Then a histogram-based thresholding with

automatic level (as) was applied followed by morphological filling operation to

extract RL objects inside the fovea. To find the whole RL in the retina, the binary

image resulted in this stage is added to the binary image resulted by the proposed RL

detection method. Figure 6.3(a-f) illustrates a colour fundus image and some steps of

the proposed RL method and steps of RL detection inside the fovea.
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6.5 Results and Discussion

In this chapter, two methods for RL detection are presented. The first is a proposed

method that is based on applying morphological operations, where suitable

morphological operators are used to detect candidate RLs with high degree of

discrimination between linear and circular shapes to ensure discriminating RLs from

BVs. To separate true RLs from spurious red objects a classification process was

performed based on RL features. The second is an existing method that used a

matched filter to increase the contrast of RLs against the background and a relative

entropy-based thresholding to segment RLs from the background. This method is

adapted by refining the image of RL candidates from traces inside the OD and the

fovea, and by investigating new classifiers to improve its performance.

A set of 236 retinal images from different sources are used to train and test

both methods. For the training operation a set of 65 images taken from the

DIARETDBO dataset [54] which consists of 130 images, of which 110 contain RLs.

Testing operation was carried out using the rest 65 images of DIARETDBO dataset,

a set of 17 retinal images came from the MESSIDOR dataset [16], of which 14

images contain at least mild signs of RLs and a set of 89 images taken from the

DIARETDB 1 dataset [55], of which 46 images contain RLs. The images of the test

set were annotated by ophthalmologists that can be used for testing the proposed

method at two levels of evaluation; the lesion level and the image level.

Performances of the proposed method and the modified existing method were

assessed quantitatively by applying logical comparison between the binary results of

each method and the annotated corresponding images (ground truth).

Performance of the proposed method is evaluated, in both lesion and image

levels, by comparing the sensitivity and specificity with other related works as shown

in Table 6.1. The proposed method has a distinctive sensitivity at lesion level

compared to the other related works. Anyhow, the other measures are still favourable

in comparison to the other works and can be improved by decreasing FPs. The

second method presented in this chapter, has been implemented and tested before and

after proposed modification and there appeared to achieve a significant enhancement

in the detection performance after the modification steps.
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Table 6.1 Comparison of performance measures for various related works with the proposed and
modified methods.

At Lesion Level At Image Level
--------------------------------------------------------

Reference SN% SP% SN% SP%

Niemeijer et al. [24] 87 100 87

Acharya et al. [48] 82 86 85.9

Walter et al. [49] 88.5 98.9

Kahai et al. [50] 100 63

Spencer et al. [51] 83.6 99.2

Kande et al. [93] 87.2 96.5 100 90.6

Modified method 87.1 97.7 100 91.8

Proposed method 89.7 98.6 98.8 90.1

Although, we are comparing the performance measurements of the proposed

method with those works of robust techniques, but this may not be fair because these

previous related works had tested their methods with different sources of datasets

than ours. Due to the lack of publicly available datasets which can be used by

researchers, it is difficult to find many techniques tested on the same dataset.

To investigate the importance of refining by removing retinal features (BVs,

OD and fovea), many experiments have been carried out with and without removing

retinal features. It was found that the method with feature removal can achieve

results with clearly lower undesirable FPs but with slight effect on the sensitivity.

Thus, retinal feature removal is feasible because it can remove many spurious RLs

with slight effect on the sensitivity and, in addition, it may simplify computational

burden of the classification processes. The algorithm performance at lesion level was

assessed with different threshold a4, and test results indicate that 0.12mprd achieves

the best compromise between FPs and sensitivity as shown in Figure 6.4.
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Figure 6.4 Effect of the threshold a4 on the balance between FPs and sensitivity.

In the pre-processing step of the proposed method, even after the shade

correction and normalisation, the images may be still heterogeneous especially for

the purpose of RL detection. The reason of this is that the contrast between RLs and

the background is mostly smaller than that of bright objects and the background.

Regarding our RL detection method in spite of missing some true lesions, we

detected a high percentage of RLs and achieved a superior sensitivity compared with

other related works. The majority of the missed lesions were connected to the BVs

and they were masked out as a part of the BVs during refining operation. On the

other hand, we may detect wrongly some non-RLs and this is due to presence of

small vessels having similar features of RLs that are segmented as candidates and not

eliminated in the refining and classification operations.

The proposed method of RL detection addressed some limitations. The colour

and size of RLs are variable even after the pre-processing step and therefore the

contrast between RLs and the background does not increase for all RLs. Because of

this inconvenient aspect it is difficult, in some images, to discriminate all RLs from

the background and this will affect the method performance. In addition, as the RLs

and the BVs have similar colour properties and as small and thin vessels are difficult

to be detected in the BV detection, these small vessels will not be masked out

completely leading to increase in FPs. For more clarification, five samples about

proposed method results and their ground truth images are illustrated in Figure 6.5.
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(a)

Figure 6.5 Visual comparison between results of the proposed method and their ground truth for 5
retinal images, (a) five colour fundus images, (b) their corresponding red lesion images by the
proposed method, (c) their clinician hand-labelled images (ground truth).
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6.6 Summary and Conclusions

In this chapter we have presented a novel method for the detection of RLs from

digital fundus images. This method includes segmentation of candidate RLs using

morphological operations, refining from traces of retinal features and classification to

discriminate genuine RLs. Morphological flood-fill operation has the advantage of

filling circular and semi-circular dark objects and then the subsequent subtraction of

the pre-processed image from the filled image will have the advantage of high degree

of discrimination between the circular objects (RLs) and linear objects (artifacts).

Importance of refining from traces of residual BVs and the fovea was

investigated by many experiments and found that the method with refining

operations can achieve results with clearly lower undesirable FPs but with slight

effect on the sensitivity. In addition, refining operations help reduce computational

burden of the classification processes. In the classification and feature selection we

noticed that efficient selection of features can significantly help improve the

performance of the classifier, but selection of reasonable number of features is also

important to avoid a burden of increase in the computational complexity.

Although some true lesions may be missed in the processes of refining and

classification, a high percentage of RLs are detected and found to achieve a

favourable sensitivity at lesion level (89.7%) with reasonable computational

complexity compared with the other related works. The majority of the missed

lesions were connected to the BVs and they were masked out as a part of the BVs

during refining operation. Conversely, some non-Rl.s may be detected wrongly as

RLs and this is due to presence of small vessels having similar features of RLs.

Based on its ability to discriminate between circular and linear dark objects and its

superior sensitivity, this method is expected to be preferable for other medical

applications for red and dark object detection.

A limitation of this method is that the colour and size of RLs are variable even

after the pre-processing step and therefore the contrast between RLs and the

background does not increase for all RLs. Hence some RLs will not be discriminated

from the background and this will affect the detection performance.
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Automated Grading of Diabetic Retinopathy

7.1 Introduction

Grading of discrete retinal lesions associated with diabetic retinopathy (DR) is of

great importance to evaluate severity grade of lesions leading to take suitable action

based on the grading outcome. This operation is usually performed by

ophthalmologists manually from retinal fundus photographs in intensive and time-

consuming processes. Computer-aided lesion grading from the retinal fundus

photographs could facilitate a more immediate and accurate diagnosis. The main aim

of this chapter is to develop a computer-aided model as a part of a medical screening

system for grading severity of detected hard exudates (HEs) and red lesions (RLS).

For this, we have attempted grading of HEs in our previous work, Jaafar et al. [98].

It is important that arrangements are made within a screening programme for

patients with ungradable images to be examined by an ophthalmologist, and it should

be noted that some patients with ungradable images may be unsuitable for treatment

due to a condition that is not going to be improved with treatment in either eye [99].

According to the programme adopted by the NHS [99], the patient is subjected to

two stages of full disease grading and based on the two grades the outcome can be

one of the following statuses: no retinopathy, background retinopathy, according to

arbitration level grade and proliferative DR. The next steps following this grading

are: annual rescreening, local decision whether to arbitrate, arbitration level grading

and referral to eye clinic respectively. In the grading operations the ophthalmologists

of most working groups in the UK follow the Scottish grading scheme (SGS) which

classify the DR into five grades (RO,...,R4) and the diabetic maculopathy (DM) into

three grades (MO,...,M2).

Many working groups regarding the DR grading proposed different grading

systems based on lesion types and their locations with respect to the fovea and OD

[100]-[101]. It should be noted that the differences among these systems are very

few, and all of them have built their models based on the clinical modification of the
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Early Treatment Diabetic Retinopathy Study (ETDRS) [81]. In the EyePACS

grading protocol [101], the presence and severity of discrete lesions associated with

DR are evaluated, where discrete lesions are classified as: MAs, HRs, HEs, SEs,

intraretinal microvasculature abnormalities (IRMA), venous beading (VB), new

vessels on the disc (NVD) and new vessels elsewhere (NVE). The algorithm of this

protocol processes the severity grades of the retinal lesions as:

1. Overall retinopathy severity level.

2. Macular edema severity level.

where the determination of overall retinopathy severity level is based on the both

methods described in the ETDRS [81], and the international classification of diabetic

retinopathy developed by the International Council of Ophthalmology [102].

The EyePACS overall retinopathy severity levels are classified into three

non-proliferative diabetic retinopathy (NPDR) grades (mild NPDR, moderate NPDR,

and severe NPDR) and one proliferative diabetic retinopathy (PDR) grade. The

grading of macular edema is based on the surrogate lesion of HEs, which is usually

associated with adjacent retinal thickening and is predictive of the presence of

macular edema. From our investigation, we noticed that most screening programmes

e.g. NHS project [99] are adopting the recent grading scheme which was proposed by

the Scottish screening programme for DR [103] which is itself based on the fovea

coordinate system (FCS) described by the ETDRS research group [81].

7.2 Fovea Coordinate System

In addition to size and number, a description of spatial locations of detected lesions

can provide a more precise evaluation of clinical risk. Ophthalmologists usually use a

polar coordinate system, centred either at the OD or the fovea to estimate severity

grade of lesions with laborious and time-consuming processes. To reduce safely the

burden of manual grading, we adopt in our proposed model the FCS centered at the

fovea (the center of vision) to assess severity of lesions on the patient's vision.

According to the description and information provided by the ETDRS [81], the

retinal image is divided into ten fields as illustrated in Figure 7.1. The centre of the

fovea is used as the centre of three circles of radii 0.33DD, IDD and 2DD. Four

coordinates are used to divide each of the two bigger circles into four fields. As the
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fovea centre is located at a distance of (2-2.5)DD from the OD centre, and as the DD

is variable for different images, the outer circle of FCS mayor may not cross the OD.

After detection of the lesions, their spatial distributions are calculated

throughout the fields of FCS to assess the degree of harm to the vision, where this

increases with lesion proximity to the inner fields and center. The result of this stage

is represented by a table of the FCS fields with the total area of lesions in each field

to be then evaluated for a suitable medical outcome.

Inner Superior Centre Outer Superior

Outer Ternporal-,
Inner Nasal

..
Far Temporal':~~

Optic Disk

Inner Temporal .> " Outer Nasal

,
Outer inferior Inner inferior

Figure 7.1 The fovea coordinate system for a right eye.

7.3 Retinopathy and Maculopathy Grades

As most screening and grading programmes follow the SGS, e.g. the NHS project

[99], we present its retinopathy and maculopathy grading information to be used for

establishing our automated grading system. According to the SGS, the grading of DR

is hierarchical and feature based, where severity grade of each eye is determined by

present features. In this scheme, DR and DM are graded separately where

retinopathy is classified into five grades based on the presence of different types of

lesions and their locations with respect to the fields of FCS, while maculopathy is

classified into three grades and also based on lesion type and location with respect to

the FCS fields. Grades of retinopathy and maculopathy, according to the SGS can be

summarised as in Table 7.1 and table 7.2. From the schedule of retinopathy grades,

automated grading can assign retinopathy grade based on the presence and locations
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of different eye diseases, where venous beading is a variation in vessel diameters,

and vitreous RLs is a blood leakage in the clear gel that fills the space between the

lens and the retina [104].

Table 7.1 Retinopathy grades, description, features, and the outcomes [103].

Retinopathy Description Features and locations Outcome

RO No DR No presence to any of lesion types Rescreen 12

months

RI (mild) Background Presence of at least one blot of any Rescreen 6 or 12

DR- mild type of lesions anywhere months

R2 (observable) Background Presence of four or more blots of Rescreen 6 months

DR- RLs in the only outer fields of the or refer to

observable FCS ophthalmology

R3 (referable) Background Presence of any of the following: kept under

DR-referable • Presence of four blots of RLs in surveillance

both outer and inner FCS fields

• Venous beading

R4 Pro liferati ve Presence of any of the following: Laser treatment or

(proliferative) DR • Active new vessels another

• Vitreous RLs intervention

·IRMA

Table 7.2 Maculopathy grades, description, features, and the outcomes [103].

Maculopathy Description Features and locations outcome
MO No No presence to any of lesion Rescreen 12

maculopathy types months

Ml Observable Any lesion type within the Rescreen 6 months
maculopathy outer fields of FCS or refer to

ophthalmology
M2 Referable Any of the following lesions kept under

maculopathy within the inner fields and the surveillance
centre of the FCS:
• Any blot of RLs
• Any HEs
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First of all and in order to simplify the medical concepts of SOS, we converted

their descriptions into numerical information where the relations among different

diseases, their amounts, spatial distributions, and the appropriate medical action are

summarised as shown in the Table 7.3.

Table 7.3 Summarised relation between disease types and grades and suitable medical decision.

Retinopathy Maculopathy Medical Decision
RO MO Rescreen 12 or 6 months
RI MO Rescreen 6 months
RI MI Rescreen 6 months or Refer to

ophthalmology
R20rR3 Ml Refer to ophthalmology or kept under

surveillance
RI, R2 orR3 M2 Kept under surveillance

R4 any Laser treatment

To grade severity of DR caused by HEs and RLs automatically, the following

procedures are performed:

1. The image fields described in FCS are determined based on the OD and fovea

information.

2. All earlier detected lesions, namely HEs and RLs are calculated separately

throughout the FCS fields in terms of area.

3. For each discrete lesion, DR and MR are both determined based on their area

distribution throughout the FCS fields.

4. From both grades of HEs and RLs, the bigger DR and bigger MR are adopted to

find suitable medical outcome from the information of Table 7.3.

In our HEs and RLs detection methods, lesions are detected and calculated in

terms of pixels (with REs) and lesions (with RLs). To avoid problems due to

differences in image resolution for variant datasets, we calculated, in step 2, the

lesion distribution for both lesions in terms of area. As the retina is concave, we

cannot adopt the average retina diameter (22 mm) mentioned in medical references

[9], because it is considered as flat disc. Hence we used the area of localised OD and

its area relation with the area of retinal disc to calculate actual area of the retina ,

because the OD area is very small (compared to that of the retinal disc) and hence its
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curvature IS negligible. Then areas of lesion blots can be calculated by ratio

calculation from their number of pixels and retinal number of pixels (after excluding

the dark surrounding background). In addition, to avoid imprecise grading due to

very small FPs in the detection processes, the blots of an area smaller than 0.05 mm"

is neglected and excluded from the calculations. In medical decision of SGS, there

are two optional decision reports as in the cases 3 and 4 of Table 7.3, and hence in

our algorithm, both of them are pointed out, in the outcome, leaving the final

decision up to the ophthalmologist.

To give more clarification about calculations of lesion distributions throughout

the whole retinal disc and the FCS fields and then to grade retinopathy and

maculopathy, we present an example for required images as illustrated in Figure 7.3.

In this figure, the retinal binary mask shown in Figure 7.3(b) is required to calculate

(b)

(d)
Figure 7.3 Illustration of req~ired imag~s in the grading of DR, (a) original colour image, (b) image
binary mask,(c) the anginal Image, indicating fields of the FCS with respect to the fovea and OD.
(d) binary masks of the FCS fields.
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different lesions anywhere throughout the retina, while discrete binary chunks and

fovea portion shown in Figure 7.3(d) are required to calculate lesions throughout the

fields of FCS. Along with the binary images of both detected REs and RLs the

binary mask of the retina is used to calculate detected lesions throughout the whole

retinal disc, where logical computations are performed to calculate sizes of both

lesions separately in anywhere of retinal disc to verify presence or absence of lesions

and then to determine retinopathy grade as RI or RO.

The four outer chunks indicated in the Figure 7.3(d) are logically combined

with the binary images of detected REs and RLs to calculate the number and sizes of

both lesions separately within the outer FCS fields. Based on the findings of these

calculations, the observable retinopathy (R2) is confirmed only if the findings

contain four or more blots of RLs, while the observable maculopathy (MI) is

confirmed only if the findings contain one or more blots of REs. The same above

calculations are repeated but by using the four inner chunks and the centre. Then,

based on the new findings the referable retinopathy (R3) or proliferative retinopathy

(R4) is diagnosed depending on RL number, sizes and the proximity to the centre,

while referable maculopathy (M2) is confirmed if the findings contain one or more

than one blot from any of RLs and REs.

Many experiments were implemented using images from different datasets and

the following two examples illustrate detection results with Matlab figures for RE

and RL distribution throughout the FCS fields as well as they illustrate retinopathy

and maculopathy grades. Figure 7.4(a) and 7.4(b) shows original colour fundus

image and detected REs and RLs overlaid on the colour fundus image with the FCS

fields. Figure 7.4( c) shows MATLAB results of size distribution for both lesions (in

mm') on the FCS fields as well as resulting retinopathy and maculopathy grades.

For more clarification about our proposed method, another example for grading

results is shown in Figure 7.5. A comparison between both lesions in the two

examples, in terms of number, size and distribution on the FCS fields, shows that the

total areas of both lesions in the second example are larger than those of the first

example and with similar proximity to the fovea. Consequently, the severity grade of

the retina in second example is more than that of the first , and this demonstrates that

severity grade relies on quantity, sizes and distribution of lesions on the FCS fields.
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(a) (b)
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(c)
Figure 7.4 Grading of DR by the proposed method, (a) example I of colour fundus image,
(b) detected HEs and RLs with FCS on the original image, (c) software result indicating, sizes and
spatial distribution of both HEs and RL and the DR grading.
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Figure 7.5 Grading of DR by the proposed method, (a-c) as the previous figure but for example 2.
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7.5 Results and Discussion

In this chapter we sought to implement and prove computationally the fact that

severity grade of lesions in a retina depends not only on their sizes and numbers, but

also on their spatial distribution throughout the fields of the FCS. After our algorithm

preparation, a set of 30 images (17 images from the MESSIDOR [16] and 13 images

from the DIARETDB I [55]) is used to test our grading method. Based on earlier RE

and RL detection results, the distribution of both lesions throughout the FCS fields,

grades of DR and DM, and suitable medical outcome are determined for both results,

i.e. the proposed method and the ground truth. From the calculation to the all 30

images, it is appeared that severity grade and then medical report for each image

from both proposed method and the ground truth are same.

For more clarification to the proposed detection and grading methods, five

examples of resulting images for REs and RLs, and their ground truth superimposed

on the original images with FCS overlaid are shown in Figure 7.6. In this figure,

detected REs and RLs by the proposed method are referred by yellow and black

colours respectively, while in the ground truth results these are referred by white and

black colours respectively. In addition, DR and MR grades and suitable medical

actions for these five examples are illustrated in Table 7.4. It is worth mentioning

that there is another retinopathy grade, i.e. R6 which we did not introduce in our

automated grading because it is related to manual grading when the retina clarity is

not adequate for grading, and an arrangement is taken for alternative screening.

Table 7.4 Grading outcomes by the proposed method using both results of the proposed methods for
HEs and RLs and their corresponding ground truth images.

Image Proposed Ground
method truth

DR DM Medical report DR DM
Medical report

1 R2 M2 Kept under surveillance R2 M2 Kept under surveillance

2 RI MI Refer to ophthalmology RI MI Refer to ophthalmology

3 RI M2 Kept under surveillance RI M2 Kept under surveillance

4 R2 M2 Kept under surveillance R2 M2 Kept under surveillance

5 RI M2 Kept under surveillance RI M2 Kept under surveillance
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(a) (b) (c)
ample of HE and RL detection and DR grading, (a) five colour fundus images, (b) their

lion re ult by the proposed methods and FCS overlaid on the colour images, (c) the ground
truth f both Hand RLs n the original images indicating their distribution throughout the FCS fields.
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To demonstrate the importance of the grading operation, we present in, Figure

7.7 and Table 7.5 two examples of grading DR results for the HEs and RLs using the

proposed methods for both detection and grading. From visual inspection, both

number and size of lesions in the example I look bigger than those of example 2, but

the actual inspection using the grading method indicate that although the number and

size of lesions in example I exceed those in example 2, those in example 2 are more

harmful to vision and clinically in more urgent need of treatment, because of their

spatial distribution and proximity to the fovea, and that is clearly demonstrated by

their resulting outcomes indicated in Table 7.5.

(a)

Figure 7.7 Two examples of detection and grading results, (a) colour fundus image of example I,

(b) its detected lesions on the colour image and FCS overlaid. (c) colour fundus image of example 2,

(d) its detected lesions on the colour image and FCS overlaid.

Table 7.5 Comparison between DR and MR grades and the medical outcomes of examples 1 and 2.

Example Retinopathy Maculopathy Medical report
I RI MI Refer to ophthalmology
2 RI M2 Kept under surveillance
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7.6 Summary and Conclusions

Grading of DR is of great importance to take suitable treatment decision, and

computer-aided DR grading can help the clinician to take fast and accurate decision.

In this chapter we proposed an automated method for DR grading based on medical

knowledge from the FCS and SGS.

According to the description in the FCS, a number of abnormalities assume

particular importance when they are located at the centre of the fovea or within the

inner fields. While from the description of SGS we noticed that, in addition to their

location, the importance of the abnormalities are specified based on their size and

type such as RLs, HEs, SEs, VB, NVD and IRMA. Size and spatial distribution of

each abnormality is determined separately and then information obtained from

different FCS fields is used to determine the severity of the abnormality.

Combination of information from the different abnormalities are clearly described in

the SGS to determine the severity of all the abnormalities together, where they are

classified into five retinopathy grades and three maculopathy grades.

Due to differences in risk severity on the vision between lesion types,

performance of automated DR grading which is based on precise calculations

outperform the performance of manual grading which is based on the experience.

Experiments has been performed with 30 pathological images from two different

datasets, and the reported results, with reference to an expert suggest that the

proposed DR grading method offers efficient screening programmes to reduce safely

the manual burden of grading. The proposed method results showed that the medical

treatment report is based not only on the number and sizes of detected lesions but

also on their spatial distributions throughout the FCS.

The novelty of this model is attributed to the ability of converting medical

grading knowledge and the results of earlier different lesion detection into computer-

aided DR grading efficiently. A limitation of this model is that it is tested with only

two types of lesions, whereas other lesions associated with DR should be included

for intensive performance evaluation.
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Conclusions and Future Work

8.1 Summary and Conclusions

Detection and grading of diabetic retinopathy (DR) are of significant importance to

stop progression of vision impairment and to prevent vision loss. This research is

motivated by the challenging problems of accurate detection and grading different

types of lesions associated with DR. The main aim of this research was to develop a

decision support system for automated detection and grading of DR from colour

fundus photographs. In particular, the work was concentrated on the most commonly

occurring lesions at the early stages of DR, namely the hard exudates (REs) and the

red lesions (RLs). Extraction of retinal structures, namely the blood vessels (BVs),

the optic disc (OD) and the fovea is also investigated for two reasons; first, the

resemblance between some features of retinal structures and those of REs or RLs

requiresprior knowledge about these structures to avoid detecting them as lesions,

and second, in the grading stage, the spatial distribution of detected lesions are

calculated with reference to the location of the fovea (the centre of vision).

The colour spaces ROB and RSI were investigated and a comparison between

their experimental results showed that the ROB space is more suitable for RE

detection, RL detection and retinal structure extraction. Inspection of many results

for both hue and intensity planes of RSI space showed alternation between their

performances and that may require additional information from saturation plane to

decide the preference between them, and that is considered a major difficulty in

using RSI space with retinal images. Conversely, experimental results with all ROB

planes showed superior performance with the green channel component compared to

performances of the others, because it has the highest contrast between image

features and the background compared to the other channels.

Image pre-processing is essential for efficient retinal image processing.

Operations of shade correction to normalise non-uniform illumination and contrast

enhancement to increase appearance of image features were used in this work. In the
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shade correction, morphological operations are applied, while in the contrast

enhancement, a CLAHE method and fuzzy logic-based method are investigated.

Experimental results for 200 images from different datasets showed that the adopted

fuzzy logic-based method can achieve outstanding contrast enhancement compared

with the CLAHE method. The reason for this is that the gray plane of retinal images

possesses some ambiguity within pixels. Then it is justified to apply the logic of

fuzzy set rather than ordinary set. Investigation for optimal iteration parameter r

showed that it should be selected dynamically based on image gray level statistics to

avoid over-exposed appearance. In addition, the best crossover could be determined

by experience and 0.6 was found to be the optimal for our used datasets. Despite its

efficiency for image contrast enhancement, a limitation with the fuzzy logic method

in terms of processing time is reported as higher than that of the ordinary method.

In the BV detection, the multi-scale morphological operations are found very

efficient in segmenting retinal blood vessels with the advantage of lower

computational complexity compared to the existing related methods. In spite of some

limitations associated with poor contrasted images, the proposed multi-scale

technique for BV detection method still favourable in terms of the processing time

and performance compared to the current state of the art, where the required

processing time is 12% less than that of the fastest method in the literature.

Unlike most Ol) localisation methods in the literature, our proposed method

has developed a new method, where initial Ol) centre is localised irrespective of its

visibility. The idea behind using most vasculature loops as candidate area of Ol) is

that the Ol) contains the optic nerves and main vessels which split up into many

smaller vessels. Experimental results to this method achieved a superior SR

compared to the most recent works. The success of this method is attributed to the

utilisation of the vasculature features rather than the Ol) features, thus the Ol) could

be localised even for images of unclearly visible Ol). A limitation of this method is

that an inefficient BV detection can be a cause of the aD detection failure.

The proposed fovea localisation method is based on fovea features and its

geometric relationship with the BVs and the Of). In some fundus images the fovea

may be partially or fully obscured. In like that case, the geometric relationship
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between the fovea and both BVs and OD are used to estimate fovea centre with a

diameter equal to that of the OD. A reduction in the processing time and a

competitive SR (compared to the recent related works) are the main significant

advantages of this method. It was encouraging to note in this method that it can

detect the fovea efficiently even for images of fully obscured fovea. An observed

limitation that should be mentioned is that in images of fully obscured fovea the

detection accuracy at pixel level is lower than those images of clearly visible fovea.

A coarse to fine strategy are employed for the detection of HEs, where their

main features are exploited to segment them coarsely and a fine HE is then

subsequently segmented within the delimited coarse HEs. From many experiments

we observed that among all retinal bright objects (HEs, SEs, light reflection areas

and other artifacts) only HEs have distinctive borders while the others do not.

Consequently, this feature is exploited by calculating the standard deviation around

each pixel followed by classification based on HE features to detect coarse HEs.

To fine-tune the detected coarse HEs, two methods, i.e. a split-and-merge

segmentation (SAMS) and a pure-splitting segmentation (PSS) were investigated. A

comparison between the SAMS and PSS outcomes, using the same set of images,

showed that the PSS technique can segment HE in better average performance and

lower computational complexity. The reason behind these advantages of the PSS

technique is that its procedure is based on successive splitting processes within a

delimited ROI from the coarse HEs and this will ensure accurate outcome for fine

HEs with low processing time. On the basis of its low computational complexity,

easy reproducing and high accuracy this method is expected to be preferable to other

medical applications for bright object segmentation.

Reduction of disparity between the detected HE results and their ideal results

(ground truth) was investigated by manipulating the parameters used in the proposed

method. An intervention on some parameters has been carried out to study their

influence on the proposed method performance. Based on many experimental

outcomes, the window size in the standard deviation calculations was found to have

influence on the performance, where its increase leads to noticeable increase in the

PPV but at the expense of the sensitivity and vice versa. Steps of changes to the
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automated threshold values for both coarse segmentation and PSS fine segmentation

were also investigated separately and together, and found that both threshold values

have noticeable influence on the balance between the sensitivity and PPV. Summary

talk, this method has excellent flexibility for selecting suitable balance between

different performance measures which may be useful in diagnostic requirements. A

limitation in this method is that it occasionally fails to avoid detecting some spurious

objects as HEs especially those have similar features to those of the HEs.

In the proposed method of the RL detection, the morphological flood-fill

operation which fills circular dark objects and the subtraction process are found to

perform efficiently in distinguishing between circular objects, as RLs, and elongated

objects, as artifacts. A refining process is employed to suppress residual traces of the

BVs and the fovea. Experimental results showed that the step of refining process has

significant impact on complexity reduction to the subsequent classification process.

Most other RL detection methods mask the location of fovea from the final RL

images to avoid detecting it as RL, losing any probable RLs inside it. In our method

RLs inside the masked fovea are reinstated using morphological operations and this

has a significant advantage to detect RLs with superior sensitivity compared to other

related works. Based on its ability to discriminate between circular and linear dark

objects and its superior performance, this method is expected to be preferable for

other medical applications for red and dark object segmentation.

Feature selection in the classification process can significantly help improve

the performance of the classifier. Hence, we tried additional features than those used

in the RL classification, but they showed little improvement in the performance with

a burden of increase in computational complexity. Hence features in classification

should be selected in reasonable and adequate number to avoid classifier complexity.

A limitation of this method is that the colour and size of RLs are variable even after

the pre-processing step and then the contrast between RLs and background may not

increase for all RLs, and some RLs will not be discriminated from the background.

Automated DR grading from retinal fundus photographs is of great importance

to assist the doctor for taking suitable treatment decision. In this work, we proposed a

novel automated DR grading model by making use of the most reliable medical
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references namely the fovea coordinate system (FCS) and the Scottish grading

scheme (SOS). Due to differences in risk severity on the vision between lesion types,

performance of automated DR grading which perform precise calculations

outperforms the performance of manual grading which is based on the experience.

Experimental outcomes showed that the decision of DR treatment relies not only on

the number and sizes of detected lesions but also on their spatial distributions on the

FCS fields. Also it was found that the closer lesions to the fovea the more harmful to

the vision and clinically in more urgent need of treatment.

On the basis of grading results for many pathological images and according to

evaluation by an expert, our proposed model offers accurate and fast method for

automated grading of DR. The novelty of this model is attributed to the ability of

converting medical grading knowledge and the results of earlier different lesion

detection into computer-aided DR grading efficiently and as a result this will offer

accurate and fast alternative to manual DR grading which is laborious, time-

consuming and susceptible to observer error. A limitation of this model is that it is

tested with only two types of lesions, whereas other lesions associated with the DR

should be included for intensive performance evaluation.

In conclusion, this work has provided an extensive study for automated

detection and grading of DR from retinal fundus photographs. Novel methods for

extraction of retinal structures, detection of the most occurring lesions, Le. HEs and

RLs and DR grading are proposed in promising outcomes. This work can be a

suitable framework for a comprehensive decision support system for the detection

and grading of DR.

8.2 FutureWork

The overall evaluations to our proposed methods for the detection and grading of DR

have shown promising results. However, there are still many improvement

possibilities towards achieving comprehensive DR screening package as follows:

• As retinal images are mostly acquired with different qualities (contrast and

illumination uniformity status), the use of fixed parameter values for all these

images may affect the efficiency of image pre-processing. Hence, it will be very
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useful to use a step of image quality assessment to decide appropriate parameter

values of the pre-processing based on the result of image quality assessment.

• The most cluster of vasculature loops method is proposed based on the BV

information to find initial OD centre and candidate ROI for the OD. For final

boundary determination, a morphological gradient followed by circular Hough

Transform is applied in this method. To achieve better modification to the final

OD boundary, a new efficient method based also on vasculature information will

effectively improve OD localisation results irrespective of OD appearance.

• Due to differences between some of the features of HEs and SEs, practically it is

not feasible to detect both of them in one algorithm because this will be at the

expense of the performance. Hence, it is interesting to make use of the principle of

the proposed HEs detection method to detect SEs. This may be accomplished by

investigating the same algorithm after a manipulation to its parameters followed

by a classification with appropriate set of features from specifications of SEs.

• In spite of feature resemblance between RL types; MA and HR, the discrimination

between them will be beneficial medically. This can be accomplished in the

classification step by making use of few differences between their features.

• The proposed DR grading model is investigated and carried out in terms of the

most occurring lesions, i.e. the HEs and the RLs. To develop this model, the other

types of eye diseases such as IRMA, VB and NVD can be introduced to our

grading model, and this will be very beneficial for comprehensive DR grading.

• A decision support system as package for the detection and grading of all

abnormalities associated with DR is the final destination to decide the suitable DR

treatment, and this can be achieved by gathering our work stages with the

development steps in our future venues. A combination of our work stages and

other techniques related to the detection of VB, IRMA and NVD can be a base to

an efficient package for a comprehensive DR detection and grading system.

144



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Anatomy and Structure of Human Sense Organs, ''http://www.
scientificpsychic.com/workbook!chapter2.htm". Accessed in November 2011.

The free dictionary, " http://medical-dictionary.thefreedictionary.com/fundus''
Accessed in November 2010.

Diabetic Retinopathy, ..http://www.craigbergermd.com/diabeticRetinopathy
.htm". Accessed in May 2011.

National eye institute, " http://www.rnib.org.uk!eyeheaIth/eyeconditions/
conditionsac/pages/amd.aspx ". Accessed in January 2012.

Anatomy physiology pathology of the human eye, ''http://www.
tedmontgomery.com/the_eye/index.html". Accessed in February 2011.

Eye anatomy, ..http://www.stlukeseye.com/anatomy/retina.html ", Accessed in
Apri12011.

Comparison of a Human Eye With That of a Camera, ''http://www.ehow.
com/about_631344S_comparison-human-eye-camera.html". Accessed in may
2011.

How Does the Humen Eye Work, ..http://www.pasadenaeye.comlfaq/faq 15/
faq IS_text.html". Accessed in December 2011.

The eye, ''http://retina.anatomy.upenn.edu/-lance/eye/eye.html''. Accessed in
July 2011.

R. Clourad, C. Porquet, A. Elmoataz, and M. Revenu, "Resolution of image
processing problems by dynamic planning within the framwork of the
backboard model," Intelligent Robots and Computer Vision, vol. 2056, 1993.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing
Using MATIAP. New Jersey: PEARSON Prentice Hall, 2004

L. G. Shapiro and G. C. Stockman, Computer Vision. New Jersey: Prentice-
Hall, New Jersey, 2001.

M. Sezgin and B. Sankur, "Survey over image thresholding techniques and
quantative performance evaluation," Journal of Electronic Imaging, vol. 13,
pp. 146-165, January 2004.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing
Using MATIAP. USA: Gatemark, LLc, 2009.

145

http://medical-dictionary.thefreedictionary.com/fundus''
http://www.craigbergermd.com/diabeticRetinopathy
http://www.rnib.org.uk!eyeheaIth/eyeconditions/
http://www.stlukeseye.com/anatomy/retina.html
http://''http://www.ehow.
http://www.pasadenaeye.comlfaq/faq
http://''http://retina.anatomy.upenn.edu/-lance/eye/eye.html''.


References

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Oserah, "Automated identification of diabetic retinal exudates and the
optic dusk," in Department of computer science. PhD thesis: University of
Bristol, 2004, p. 165.

T. Walter, J. C. Klein, P. Massin, and A. Erginay, "A contribution of image
processing to the diagnosis of diabetic retinopathy--detection of exudates in
color fundus images of the human retina," IEEE Trans Med Imaging, vol. 21,
pp. 1236-43, Oct 2002.

T. Fawcett, "ROC graphs: notes and practical considerations for researchers,"
HP laboratories, Tech. Rep. HPL-2003-2004 2004.

J. Evans, C. Rooney, F. Ashwood, N. Dattani, and R. Wormald, " Blindness
and partial sight in england and wales," Health Trends, vol. 28, pp. 5-12,
1996.

D. Maberley, H. Walker, A. Koushik, and A. Cruess, "Screening for diabetic
retinopathy in James Bay, Ontario: a cost-effectiveness analysis," CMAl, vol.
168, pp. 160-4, Jan 21 2003.

F. L. Ferris, 3rd, "How effective are treatments for diabetic retinopathy?,"
lAMA, vol. 269, pp. 1290-1, Mar 10 1993.

M. Foracchia, E. Grisan, and A. Ruggeri, "Luminosity and contrast
normalization in retinal images," Med Image Anal, vol. 9, pp. 179-90, Jun
2005.

S. Sekhar, F. E. Abd El-Samie, P. Yu, W. AI-Nuaimy, and A. K. Nandi,
"Automated localization of retinal features," Appl Opt, vol. 50, pp. 3064-75,
Jul2011.

D. Usher, M. Dumskyj, M. Himaga, T. H. Williamson, S. Nussey, and J.
Boyce, "Automated detection of diabetic retinopathy in digital retinal images:
a tool for diabetic retinopathy screening," Diabet Med, vol. 21, pp. 84-90, Jan
2004.

M. Niemeijer, B. van Ginneken, J. Staal, M. S. Suttorp-Schulten, and M. D.
Abramoff, "Automatic detection of red lesions in digital color fundus
photographs," IEEE Trans Med Imaging, vol. 24, pp. 584-92, May 2005.

H. F. Jaafar, A. K. Nandi, and W. Al-Nuaimy, "Decision support system for
the detection and grading of hard exudates from color fundus photographs," 1
Biomed Opt, vol. 16, p. 116001(1-10), Nov 2011.

C. Sinthanayothin, J. F. Boyce, H. L. Cook, and T. H. Williamson,
"Automated localisation of the optic disc, fovea, and retinal blood vessels
from digital colour fundus images," Br 1 Ophthalmol, vol. 83, pp. 902-10,
Aug 1999.

146



References

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, and B. van
Ginneken, "Ridge-based vessel segmentation in color images of the retina,"
IEEE Trans Med Imaging, vol. 23, pp. 501-9, Apr 2004.

A. Hoover, V. Kouznetsova, and M. Goldbaum, "Locating blood vessels in
retinal images by piecewise threshold probing of a matched filter response,"
IEEE Trans Med Imaging, vol. 19, pp. 203-10, Mar 2000.

X. Jiang and D. Mojon, "Adaptive local thresholding by verification-based
multi threshold probing with application to vessel detection in retinal Images,"
IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 25, pp.
131-137,2003.

D. Wu, M. Zhang, J. C. Liu, and W. Bauman, "On the adaptive detection of
blood vessels in retinal images," IEEE Trans Biomed Eng, vol. 53, pp. 341-3,
Feb 2006.

S. A. Salem, N. M. Salem, and A. K. Nandi, "Segmentation of retinal blood
vessels using a novel clustering algorithm (RACAL) with a partial
supervision strategy," Med Bioi Eng Comput, vol. 45, pp. 261-73, Mar 2007.

M. Niemeijer, M. D. Abramoff, and B. van Ginneken, "Fast detection of the
optic disc and fovea in color fundus photographs," Med Image Anal, vol. 13,
pp. 859-70, Dec 2009.

C. Muramatsu, T. Nakagawa, A. Sawada, Y. Hatanaka, T. Hara, T.
Yamamoto, and H. Fujita, "Automated segmentation of optic disc region on
retinal fundus photographs: Comparison of contour modeling and pixel
classification methods," Comput Methods Programs Biomed, vol. 101, pp.
23-32, Jan 2011.

M. D. Abramoff, W. L. Alward, E. C. Greenlee, L. Shuba, C. Y. Kim, J. H.
Fingert, and Y. H. Kwon, "Automated segmentation of the optic disc from
stereo color photographs using physiologically plausible features," Invest
Ophtha/mol Vis Sci, vol. 48, pp. 1665-73, Apr 2007.

B. van Ginneken and B. M. ter Haar Romeny, "Automatic segmentation of
lung fields in chest radiographs," Med Phys, vol. 27, pp. 2445-55, Oct 2000.

D. Welfer, J. Scharcanski, and D. R. Marinho, "Fovea center detection based
on the retina anatomy and mathematical morphology," Comput Methods
Programs Biomed, Sep 13. 2010.

H. Wang, W. Hsu, K. G. Goh, and M. L. Lee, "An Effective Approach to
Detect Lesions in Color Retinal Images," in IEEE Conference on Computer
Vision and Pattern Recognition, 2000, pp. 181-186.

147



References

[38] A. Osareh, M. Mirmehdi, B. Thomas, and R. Markham, "Automated
identification of diabetic retinal exudates in digital colour images," Br J
Ophthalmol, vol. 87, pp. 1220-3, Oct 2003.

[39] c. I. Sanchez, M. Garcia, A. Mayo, M. I. Lopez, and R. Homero, "Retinal
image analysis based on mixture models to detect hard exudates," Med Image
Anal, vol. 13, pp. 650-8, Aug 2009.

[40] M. Garcia, C. I. Sanchez, M. I. Lopez, D. Abasolo, and R. Homero, "Neural
network based detection of hard exudates in retinal images," Comput
Methods Programs Biomed, vol. 93, pp. 9-19, Jan 2009.

[41] A. Sopharak, M. N. Dailey, B. Uyyanonvara, S. Barman, T. Williamson, K.
T. Nwe, and Y. A. Moe, "Machine learning approach to automatic exudate
detection in retinal images from diabetic retinopathy," Journal of Modern
Optics, pp. 1-12,2009.

[42] C. Jayakumari and T. Santhanam, "Detection of Hard Exudates for Diabetic
Retinopathy Using Contextual Clustering and Fuzzy Art Neural Network,"
Asian Journal of Information Technology, vol. 6, pp. 842-846, 2007.

[43] A. D. Fleming, S. Philip, K. A. Goatman, G. J. Williams, J. A. Olson, and P.
F. Sharp, "Automated detection of exudates for diabetic retinopathy
screening," Phys Med Bioi, vol. 52, pp. 7385-96, Dec 21 2007.

[44] C. I. Sanchez, R. Homero, M. I. Lopez, M. Aboy, J. Poza, and D. Abasolo,
"A novel automatic image processing algorithm for detection of hard
exudates based on retinal image analysis," Med Eng Phys, vol. 30, pp. 350-7,
Apr2008.

[45] D. Welfer, J. Scharcanski, and D. R. Marinho, "A coarse-to-fine strategy for
automatically detecting exudates in color eye fundus images," Comput Med
Imaging Graph, vol. 34, pp. 228-35, Apr 2010.

[46] S. Kavitha and K. Duraiswamy, "Automatic detection of hard and soft
exudates in fundus images using color histogram thresholding," European
Journal of Scientific Research, vol. 43, pp. 493-504, 2011.

[47] H. F. Jaafar, A. K. Nandi, and W. Al-Nuaimy, "Detection of exudates from
digital fundus images using a region-based segmentation," in I 9th EUSIPCa
201 I, Spain, Barcelona, pp. 1020-1024, Aug 2011.

[48] U. R. Acharya, C. M. Lim, E. Y. Ng, C. Chee, and T. Tamura, "Computer-
based detection of diabetes retinopathy stages using digital fundus images,"
Proc Inst Mech Eng H, vol. 223, pp. 545-53, JuI2009.

148



References

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

T. Walter, P. Massin, A. Erginay, R. Ordonez, C. Jeulin, and J. C. Klein,
"Automatic detection of microaneurysms in color fundus images," Med
Image Anal, vol. 11, pp. 555-66, Dec 2007.

P. Kahai, K. R. Namuduri, and H. Thompson, "A decision support framework
for automated screening of diabetic retinopathy," Int. J. Biomed. Imaging, pp.
1-8,2006.

T. Spencer, J. A. Olson, K. C. McHardy, P. F. Sharp, and J. V. Forrester, "An
image-processing strategy for the segmentation and quantification of
micro aneurysms in fluorescein angiograms of the ocular fundus," Comput
Biomed Res, vol. 29, pp. 284-302, Aug 1996.

M. Garcia, M. I. Lopez, D. Alvarez, and R. Homero, "Assessment of four
neural network based classifiers to automatically detect red lesions in retinal
images," Med Eng Phys, vol. 32, pp. 1085-93, Dec 2010.

The University of Clemson, "The STARE project," 2007, ''http://www.ces.
cJemson.edul ahooverlstarel".

T. Kauppi, V. Kalesnykiene, J. K. Kamarainen, L. Lensu, I. Sorri, J. Pietila,
H. Kalviainen, and H. Unsitalo, "DIARETDBO: Evaluation database and
morphology for diabetic retinopathy algorithm," Finland 2006.

T. Kauppi, V. Kalesnykiene, J. K. Kamarainen, L. Lensu, I. Sorri, A.
Raninen, R. Voutilainen, H. Uusitalo, H. Kalviainen, and J. Pietila,
"DIARETDB1: diabetic retinopathy database and evaluation protocol,"
Finland 2007.

S. Sangwine and R. Home, The Colour Image Processing Handbook:
Chapman and Hall, 1998.

A. Hoover and M. Goldbaum, "Locating the optic nerve in a retinal image
using the fuzzy convergence of the blood vessels," IEEE Trans Med Imaging,
vol. 22, pp. 951-8, Aug 2003.

L. Gang, O. Chutatape, and S. M. Krishnan, "Detection and measurement of
retinal vessels in fundus images using amplitude modified second-order
Gaussian filter," IEEE Trans Biomed Eng, vol. 49, pp. 168-72, Feb 2002.

S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum,
"Detection of blood vessels in retinal images using two-dimensional matched
filters," IEEE Trans Med Imaging, vol. 8, pp. 263-9, 1989.

M. Niemeijer, J. Staal, B. van Ginneken, M. Long, and A. M.D., "
Comparative study of retinal vessel segmentation methods on a new publicly
available database," in Proc. SPIE Med. Imag, 2004, pp. 648-656.

149



References

[61] S. K. Pal and R. A. King, "Image enhancement using smoothing with fuzzy
sets.," IEEE Transactions on Systems vol. 11, pp. 494-501, 1981.

[62] D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam,
"Image processing algorithms for retinal montage synthesis, mapping, and
real-time location determination," IEEE Trans Biomed Eng, vol. 45, pp. 105-
18, Jan 1998.

[63] T. Teng, M. Lefley, and D. Claremont, "Progress towards automated diabetic
ocular screening: a review of image analysis and intelligent systems for
diabetic retinopathy," Med Bioi Eng Comput, vol. 40, pp. 2-13, Jan 2002.

[64] M. E. Martinez-Perez, A. D. Hughes, A. V. Stanton, S. A. Thom, N.
Chapman, A. A. Bharath, and K. H. Parker, "Retinal vascular tree
morphology: a semi-automatic quantification," IEEE Trans Biomed Eng, vol.
49, pp. 912-7, Aug 2002.

[65] C. Heneghan, J. Flynn, M. O'Keefe, and M. Cahill, "Characterization of
changes in blood vessel width and tortuosity in retinopathy of prematurity
using image analysis," Med Image Anal, vol. 6, pp. 407-29, Dec 2002.

[66] R. Gelman, M. E. Martinez-Perez, D. K. Vanderveen, A. Moskowitz, and A.
B. Fulton, "Diagnosis of plus disease in retinopathy of prematurity using
Retinal Image multiScale Analysis," Invest Ophthalmol Vis Sci, vol. 46, pp.
4734-8, Dec 2005.

[67] A. Osareh and B. Shadgar, " An automated tracking approach for extraction
of retinal vasculature in fundus images," J. Ophthalmic Vis Res, vol. 5, pp.
20-26,2010.

[68] H. F. Jaafar, A. K. Nandi, and W. Al-Nuaimy, "Automated detection of
retinal blood vessels from colour fundus images," in Ophthalmic Image
Analysis Workshop UK, Liverpool, pp. 21-26, Dec 2011.

[69] A. M. Mendonca and A. Campilho, "Segmentation of retinal blood vessels by
combining the detection of centerlines and morphological reconstruction,"
IEEE Trans Med Imaging, vol. 25, pp. 1200-13, Sep 2006.

[70] M. MartA-nez-PA©rez, A. Hughes, A. Stanton, S. Thom, A. Bharath, K.
Parker, C. Taylor, and A. Colchester, "Retinal Blood Vessel Segmentation by
Means of Scale-Space Analysis and Region Growing Medical Image
Computing and Computer-Assisted Intervention a€" MICCAIil€™99.'' vol.
1679: Springer Berlin / Heidelberg, 1999, pp. 90-97.

[71] H. Li and O. Chutatape, "Automatic detection and boundary estimation of the
optic disk in retinal images using a model-based approach," Journal of
Electronic Imaging, vol. 12, pp. 97-105, 2003.

150



References

[72] K. W. Tobin, E. Chaum, V. P. Govindasamy, and T. P. Karnowski,
"Detection of anatomic structures in human retinal imagery," IEEE Trans
Med Imaging, vol. 26, pp. 1729-39, Dec 2007.

[73] M. Niemeijer, M. D. Abramoff, and B. van Ginneken, "Segmentation of the
optic disc, macula and vascular arch in fundus photographs," IEEE Trans
Med Imaging, vol. 26, pp. 116-27, Jan 2007.

[74] M. Foracchia, E. Grisan, and A. Ruggeri, "Detection of optic disc in retinal
images by means of a geometrical model of vessel structure," IEEE Trans
Med Imaging, vol. 23, pp. 1189-95, Oct 2004.

[75] M. Lalonde, M. Beaulieu, and L. Gagnon, "Fast and robust optic disc
detection using pyramidal decomposition and Hausdorff-based template
matching," IEEE Trans Med Imaging, vol. 20, pp. 1193-200, Nov 2001.

[76] A. R. Youssif, A. Z. Ghalwash, and A. R. Ghoneim, "Optic disc detection
from normalized digital fundus images by means of a vessels' direction
matched filter," IEEE Trans Med Imaging, vol. 27, pp. 11-8, Jan 2008.

[77] H. Ying, M. Zhang, and J. C. Liu, "Fractal-based automatic localization and
segmentation of optic disc in retinal images," Con! Proc IEEE Eng Med Biol
Soc, vol. 2007,pp.4139-41,2007.

[78] Retina; Macula; and Fovea, ''http://library.thinkquest.org/C005949/anatomy/
retina.htm". Accessed in July 2011.

[79] ENSPDR National Programme Team (NHS), "Essential Elements in
Developing a Diabetic Retinopathy Screening Programme," Version 4.3, 23
June 2009.

[80] O. Chutatape, "Fundus foveal localization based on vessel model," Con! Proc
IEEE Eng Med BioI Soc, vol. 1, pp. 4440-4, 2006.

[81] "Grading diabetic retinopathy from stereoscopic color fundus photographs--
an extension of the modified Airlie House classification. ETDRS report
number 10. Early Treatment Diabetic Retinopathy Study Research Group,"
Ophthalmology, vol. 98, pp. 786-806, May 1991.

[82] H. Li and o. Chutatape, "Automated feature extraction in color retinal images
by a model based approach," IEEE Trans Biomed Eng, vol. 51, pp. 246-54,
Feb 2004.

[83] H. Narasimha-Iyer, A. Can, B. Roysam, C. V. Stewart, H. L. Tanenbaum, A.
Majerovics, and H. Singh, "Robust detection and classification of
longitudinal changes in color retinal fundus images for monitoring diabetic
retinopathy," IEEE Trans Biomed Eng, vol. 53, pp. 1084-98, Jun 2006.

151

http://''http://library.thinkquest.org/C005949/anatomy/


References

[84] C. Kose, U. Sevik, and O. Gencalioglu, "Automatic segmentation of age-
related macular degeneration in retinal fundus images," Comput Bioi Med,
vol. 38, pp. 611-9, May 2008.

[85] A. Osareh, B. Shadgar, and R. Markham, "A computational-intelligence-
based approach for detection of exudates in diabetic retinopathy images,"
IEEE Trans InfTechnol Biomed, vol. 13, pp. 535-45, JuI2009.

[86] N. Otsu, "A threshold selection method from gray-levels histograms," IEEE
Trans. Systems, Man, and Cybernetics, vol. 9, pp. 62-66, 1979.

[87] S.-Y. Chen, W.-C. Lin, and C.-T. Chen, "Split-and-merge image
segmentation based on localized feature analysis and statistical tests,"
CVGIP: Graphical Models and Image Processing, vol. 53, pp. 457-475,
1991.

[88] H. F. Jaafar, A. K. Nandi, and W. Al-Nuaimy, "Automated detection of
exudates in retinal images using a split-and-merge algorithm," in 18th
EUSIPCO 2010, Denmark, Alborg, pp. 1622-1626, Aug 2010.

[89] C.-H. Lee, "Recursive region splitting at hierarchical scope views," Computer
Vision, Graphics, and Image Processing, vol. 33, pp. 237-258, 1986.

[90] H. F. Jaafar, A. K. Nandi, and W. Al-Nuaimy, "Detection of exudates in
retinal images using a pure splitting technique," Conf Proc IEEE Eng Med
Bioi Soc, vol. 2010, pp. 6745-8.

[91] R. Klein, S. M. Meuer, S. E. Moss, and B. E. Klein, "The relationship of
retinal microaneurysm counts to the 4-year progression of diabetic
retinopathy," Arch Ophthalmol, vol. 107, pp. 1780-5, Dec 1989.

[92] E. M. Kohner and M. Sleightholm, "Does microaneurysm count reflect
severity of early diabetic retinopathy?," Ophthalmology, vol. 93, pp. 586-9,
May 1986.

[93] G. B. Kande, T. S. Savithri, and P. V. Subbaiah, "Automatic detection of
microaneurysms and hemorrhages in digital fundus images," J Digit Imaging,
vol. 23, pp. 430-7, Aug 2010.

[94] H. F. Jaafar, A. K. Nandi, and W. Al-Nuaimy, "Automated detection of red
lesions from digital colour fundus photographs," Conf Proc IEEE Eng Med
Bioi Soc, vol. 2011, pp. 6232-5, Sep 2011.

[95] Fact about diabetic retinopathy (National Eye Institute) ''http://www.
nei.nih.gov/health/diabetic/retinopathy.asp". Accessed in January 2011.

152



References

[96] T. Spencer, R. P. Phillips, P. F. Sharp, and J. V. Forrester, "Automated
detection and quantification of microaneurysms in fluorescein angiograms,"
Graefes Arch Clin Exp Ophthalmol, vol. 230, pp. 36-41, 1992.

[97] A. J. Frame, P. E. Undrill, M. J. Cree, J. A. Olson, K. C. McHardy, P. F.
Sharp, and J. V. Forrester, "A comparison of computer based classification
methods applied to the detection of micro aneurysms in ophthalmic
fluorescein angiograms," Comput Bioi Med, vol. 28, pp. 225-38, May 1998.

[98] H. F. Jaafar, A. K. Nandi, and W. Al-Nuaimy, "Automated detection and
grading of hard exudates from retinal fundus images," in 19th EUS/PCa
2011,1., Spain, Barcelona, pp. 66-70, Aug 2011.

[99] NHS Project, "Essential elements in developing a diabetic eye screening
programme," Workbook section 6: UK, Jan. 2012.

[100] Examining and grading retinopathy for professionals, ''http://medweb.
bham.ac.uk/easdec/gradingretinopathy.htm". Accessed in October 2011.

[101] EyePACS, ''http://credential.eyepacs.com/Clinical/grading/EyePACS
DIGITAL-RETINAL-IMAGE-GRADING.pdf". Accessed January 2012.

[102] International Clinical Diabetic Retinopathy Disease Severity Scale;
International Council of Ophthalmology, ''http://www.icoph.org/standards/
pdrclass.html", Accessed in January 2012.

[103] National Diabetes Retinopathy Screening, "www.ndrs.scot.nhs.ukl "
Accessed in August 2011.

[104] C. W. Spraul and H. E. Grossniklaus, "Vitreous Hemorrhage," Surv
Ophthalmol, vol. 42, pp. 3-39, Jul-Aug 1997.

153

http://''http://credential.eyepacs.com/Clinical/grading/EyePACS
http://''http://www.icoph.org/standards/

