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Abstract
To this date, experimental searches for exotics (fractionally charged states)
have yielded negative results, thus imposing strong limitations on their ex-
istence at low energies. In this work we argue that a possible scenario that
could explain the experimental data is that such states are simply not present
at the low energy limit. This thesis presents the phenomenology of the first
string model which does not have any exotic states at the massless level, and
where only the top quark Yukawa coupling exists at the tri-linear level su-
perpotential. More specifically we present its spectrum, cubic superpotential
and a viable semi-realistic phenomenological scenario which is supported by
a specific set of F- and D-flat solutions. The discovery of this model is the
result of the statististical exploration of a class of heterotic Pati-Salam vacua,
out of which we managed to extract three generation exophobic models with
the required representations needed to induce spontaneous breaking to the
Standard Model. We also exhibit the derivation of the analytic formulae that
permitted the exact identification of several properties of a string vacuum, and
thus allowed its distinction among supersymmetric vacua that share the same
gauge group.
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Chapter 1

Introduction: The Standard

~odel and Beyond

THE UKIFIED description of the laws of physics under a single theo-

retical construct has been a long-pursued goal among the theoretical

physics community. Newton unified celestial with terrestrial physics, Maxwell

unified electricity with magnetism, Einstein space with time, De Broglie waves

with particles. These are some of the most important corner stones towards a

unified picture for describing nature. The conceptual and calculational foun-

dations of contemporary physics are based on the fact that a physical sys-

tem's properties can be understood by studying its underlying symmetries

[1]. Consequently our efforts towards unification concentrate on extending the

space-time and internal symmetries, which dictate our currently most success-

ful theory for understanding subatomic physics: The Standard Model (SM).

Our biggest effort at the moment is the creation of a consistent quantum the-

ory of gravity which effectively describes the observed data. In this chapter we

briefly describe the Standard Model and some of the most explored theories of

unification which are relevant to the purpose of this thesis.
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1.1 The Standard Model: An Effective Field

Theory

Our experimentally-verified, and thus low-energetic, knowledge for the elec-

troweak and strong interactions of elementary particles is described by the

Standard Model, which is a four dimensional relativistic gauge theory based

on the internal symmetry group SU(3)c x SU(2)L x U(l)y. All the ele-

mentary particles are considered to be point-like, and forces emerge as the

result of the Lagrangian invariance under the pre-stated gauge group. Ac-

cording to the Standard Model the force carriers for the electroweak and

strong interactions are gauge bosons found in the adjoint representation of

SU(3)c X SU(2)L x U(l)y.

I Force Carrier II c.; I Spin I
g 0 1
r 0 1
w± ±1 1
Zo 0 1

Table 1.1: The gauge bosons of the strong and electroweak interactions

The three families of matter are described by fermionic fields in the funda-

mental representation of the SM gauge group.

I Matter Field II SU(3)c I SU(2)L I U(l)y I
QL 3 2 1/3
UC :3 1 -4/3L
dC :3 1 2/3L
L 1 2 -1
eC 1 1 2L

Table 1.2: Matter content and representations of the lightest family

The Higgs scalar is responsible for the breaking of the electroweak sym-

metry SU(2h x U(l)y to the observed U(l)em, by accumulating a non-zero

vacuum expectation value (VEV) (¢). This mechanism assigns mass to the

weak bosons Z and W±, while it leaves the photon massless. Chiral fermions

acquire mass through their Yukawa-like interactions with the Higgs multiplet:

QL¢ui, QL¢di and L¢>ei· The Higgs VEV is determined by the Higgs po-
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tential:

(1.1)

which in turn fixes the scale of the electro-weak symmetry breaking:

(1.2)

Despite all of its successes the Standard Model is highly unlikely to be

the complete theory for describing nature due to its phenomenological origins,

which introduce too many free parameters and leave too many fundamental

questions unresolved. Some of the main open questions concerning the SM are:

why is SU(3)c x SU(2)L x U(1)y the correct quantum field theory to describe

particle interactions and why are there three families of quarks and leptons?

Furthermore what is the origin for the quark and lepton masses? Moreover one

finds it difficult to accept the fact that it has 19 arbitrary parameters whose

values are carefully chosen in order to fit the data. Finally, the most obvious

weakness of the standard model is its inability to incorporate gravity, a theory

of the geometry of space-time, within its construction.

Our current strategy in dealing with the Standard Model's weaknesses is to

consider it as an approximation, a low energy effective theory of a more basic

theory which makes sense at higher energies.

The SM faces "infinities" issues coming from the integrand I d4k --+ 00.

This problem is dealt by introducing the regulator 1000dlkl --+ IDA dlkl. Our

former understanding of a renormalisable theory considered A to be a mathe-

matical parameter that yields cut-off independent results in the limit A --+ 00,

by redefining the finite number of parameters appearing in the Lagrangian.

From an effective theory's point of view, this cut-off is considered to be a pa-

rameter that corresponds to the energy scale at which the effects of the new

physics beyond the effective field theory become important. Summarising, we

can say that the Standard Model, although tremendously successful, is valid

up to a certain energy scale and it constitutes the low energy manifestation of

a more fundamental theory.
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1.2 Supersymmetry and the MSSM

Supersymmetry (SUSY) is an abstract extension of the Poincare group, which

commutes with the gauge symmetries. It relates bosons and fermions when

a supercharge operator Q acts on either: QIF/B} = IB/F}. Bosons and

fermions which are related through supersymmetric transformations are called

superpartners, they differ by spin 1/2, and they inhabit the same supermul-

tiplet. The squared mass operator commutes with the supercharge and with

all the spacetime rotation and translation operators, so all the particles within

the same supermultiplet must have equal momentum eigenvalues and therefore

equal masses.

I Partner II Spin I Superpartner II Spin I
Photon 1 Photino 1/2
Quark 1/2 Squark 0
Electron 1/2 Selectron 0
Gluon 1 Gluino 1/2

Table 1.3: Supersymmetric partners' spin, differs by 1/2.

Within the minimal supersymmetric extension of the Standard Model [2,3]'

gauge bosons and their supersymmetric partners, the gauginos, are found in

vector multiplets, whereas quarks and leptons and their superpartners (squarks

and sleptons) are found in chiral multiplets. Although exact invariance under

supersymmetry predicts that superpartners should have the same mass and

quantum numbers, the superpartners have never been observed. Therefore if

such a symmetry exists, it should be valid at higher energy scales than the

currently accessible ones and it is broken at lower enegy in a way that allows

superpartners to acquire masses heavier than their experimentally observed

counterparts.

1.3 Grand Unification

The idea of Grand Unification[4] is based on embedding the SM gauge group

G, in a larger simple group H. The low energy gauge structure then emerges

as follows: H --+ G : SU(3) x SU(2) x U(l) -+ SU(3) x U(l)em. The
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combination of SUSY and Grand Unified Theories (GUTs)[5] gives birth to

SUSY-GUTs. For a recent review see e.g [6, 7]. SUSY-GUTs belong to some

of the most explored scenarios beyond the Standard Model, because they can

provide appealing insights to numerous problems.

1.4 Extra Dimensions

At a first glance the task of unifying forces seems to be an impossible proce-

dure, in the sense that gravity is described by space-time symmetries while all

the other forces are described by internal symmetries. Kaluza and Klein in

their attempt to unify general relativity with electromagnetism, overcame this

conceptual obstacle by promoting the internal U(l)em symmetry into a space-

time symmetry. More specifically the Einstein-Hilbert action was generalised

so that it admits the M4 x SI space as a solution:

S = __ 1_ Jdx5Jd4
XHR.

167fG5

If we impose periodicity in the fifth dimension for all the fields:

(1.3)

(1.4)

then under the 5D coordinate transformation

(1.5)

the metric transforms as: h~B = hAB - OAEB - aBEA. Assuming that no metric

components or any fields depend on x5 we get that h~5 = hp,5 - Op,f5. After

assigning new names to hp,5 and E5 we get the usual electromagnetic gauge

transformation:

(1.6)

Therefore a theory of both gravity and electromagnetism can emerge, if one

adds one extra compact dimension in a purely gravitational theory. From this

example an important conceptual idea related to the present work emerges:
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extra dimensions appear as internal symmetries to a lower dimensional ob-

server. It is also important to note that a massless field 1> which depends on

the four ordinary and on one extra dimension will be described by an equation

for massive particles after periodicity on the extra dimension is imposed. Af-

ter Fourier expanding the field 1> in respect to the periodic coordinate, we get

that each mode <Pm corresponds to a mode of mass: M2 rv "* where m is the

mode number. For m =1= 0, and when the compactification radius is sufficiently

small, i.e R .......0, all the Kaluza-Klein modes become infinitely massive and

thus escape detection.

1.5 String Theory and String Phenomenology

String theory [8, 9, 10, 11] is a consistent theory of quantum gravity which at

low energies gives rise to gauge theories, scalar fields and chiral fermions. As

a unifying theory it incorporates, reproduces, and provides new perspectives

on, several concepts and extensions of the Standard Model of particle physics.

The above-mentioned achievements occur by generalising the concept of the

point particle to the case of an extended one-dimensional object propagating

in a multidimensional space-time. Anomaly cancellation allows the existence

of five different superstring theories in ten dimensions.

I Type Gauge Group Supersymmetry
Type I (open) SO(32) chiral N = 1
Type lIA non-chiral N = 2
Type lIB chiral N = 2
Heterotic Es x e, chiral N = 1
Heterotic SO(32) chiral N = 1

Table 1.4: The five consistent string theories in D = 10

String phenomenology [12]provides a bridge between string theory and the

observed low energy Standard Model data. It also provides new insights that

would be difficult or impossible to obtain using standard field theoretical tech-

niques [13]. The route that we follow in order to identify signatures of string

theory in the currently observed data is the construction and analysis of four

dimensional string models. The construction of such models demands a four-
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dimensional formulation of string theory. It is believed that the extra dimen-

sions are compactified on an internal manifold, whose size is sufficiently small

to have escaped detection. Although a string theory Lagrangian contains only

one free parameter, known as the string tension, the compactification of the

additional six dimensions introduces a much larger number of free parameters,

the values of which must be fixed in a way that provides phenomenologically

viable scenarios.

The work described in this thesis explores whether there can exist semi-

realistic string vacua, which do not contain any fractionally charged repre-

sentations at the effective field theory limit. Such vacua would back up con-

temporary experiments which have searched for such exotic particles without

yielding any evidence for their existence. An example of such an experiment

is the case of an improved and highly automated Millikan oil drop technique.

Drops of silicon oil are ejected through a silicon orifice and fall through the

air under the influence of gravity and a vertical alternating electric field. The

positions of the drops are imaged by a digital camera, which is interfaced to

a computer. The electric charge for a drop is then calculated by solving the

following system of equations: mg + El Q = 67r'T]rul and mg - ErQ = 67r'T]rur.

1.6 List of Publications

Parts of this thesis have been published in scientific journals.

• B. Assel, K. Christodoulides, A. E. Faraggi, C. Kounnas, and J. Rizos,

Exophobic Quasi-Realistic Heterotic String Vacua,

Phys.Lett. B683 (2010) 306313

• B. Assel, K. Christodoulides, A. E. Faraggi, C. Kounnas, and J. Rizos,

Classification of Heterotic Pati-Salam Models,

Nucl. Phys B844 (2010), 365

• K. Christodoulides, A. E. Faraggi, and J. Rizos,

Top Quark Mass in Exophobic Pati-Salam Heterotic String Model,

Phys.Lett. B702 (2011) 81-89
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1.7 Organising the chapters

The chapters of this thesis are organised as follows.

• Chapter 2: A general introduction to the bosonic string and superstring

is presented. We discuss canonical and light-cone quantisation, aspects of

the bosonic and fermionic partition functions, and the occurrence of modular

invariance. We also introduce the concept of compactification on a circle.

• Chapter 3: We begin the chapter with some generalities on the heterotic

string in its bosonic formulation, followed by the description of the toroidal

compactification. We then proceed by providing a very generic background on

2:2 x 2:2 orbifold compactifications, in order to introduce the concepts of twist

vectors, shift vectors and Wilson lines. After showing the equivalence between

fermions and bosons in two dimensions we proceed to presenting the heterotic

string in its four dimensional fermionic formulation.

• Chapter 4: We present the consistency constraints and model building

rules of the four-dimensional free fermionic models and we explain the general

derivation of the spectrum. In the second part of the chapter, we present a

specific free fermionic model, the main characteristic of which is the absence

of exotics in the massless spectrum. The standard analysis of fiat directions is

also exhibited.

• Chapter 5: In this chapter we exhibit the classification techniques that

we developed in order to perform the statistical exploration for a class of Pati-

Salam string vacua. The methodology described provides supersymmetric,

three family models with electroweak breaking and which are free of exotic

representations at the massless level.

• Chapter 6: In this chapter we give a short summary of the issues dis-

cussed and results obtained. We also provide some potentially interesting

outlooks and suggestions for future research.



Chapter 2

Elements of String Theory

THIS CHAPTER introduces the fundamental notions of the bosonic

string and the superstring by discussing their equations of motion, sym-

metries, conserved currents, and canonical and light-cone quantisation. The

constraints imposed by modular invariance on the one loop bosonic partition

function and compactification on a circle are also explored.

2.1 The Classical Relativistic Bosonic String

We consider the string to be embedded in a D-dimensional space-time M. A

point of the string X = XJL(O", T), f-l = 0, 1.. ... , D - 1, is then parametrised

by the proper time T and the spatial co-ordinate along the string 0". The part

of space swept by the string is called the world sheet.

(,-,,---J ____.,() )"-_
r

(a)

(b)

Figure 2.1: a) Closed string worldsheet b)Open string worldsheet

The kinematic and dynamical properties of the string are derived from the

minimisation of the Nambu-Goto (NG) action which defines the area swept by
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the bosonic string:

SNG = -T1d20"IdetGaj311/2,

where T is the tension (energy per length) of the string and Gaj3 is the induced

(2.1)

metric on the world-sheet:

(2.2)

where a, f3 = 0,1 are the world-sheet indices corresponding to the worldsheet

coordinates T and 0", and G IlV is the background metric. The square root in the

Ne action makes the quantisation procedure inconvenient and for this reason

we introduce an equivalent action consisting of more fields. The Polyakov

action is given by

where haj3 is an auxiliary field which corresponds to the intrinsic metric of the

worldsheet. The additional field haj3 does not propagate and doesn't affect

the kinematics of the string. Both actions yield the same equations of motion

for XJ1, and we can derive the Ne action from the Polyakov action. This can

be verified by varying the Polyakov action with respect to the intrinsic met-

ric. The equation of motion, which is the energy-momentum tensor, will then

contain expressions which include the induced metric and the intrinsic metric.

After some basic algebra we get that VdetGaj3 = ~..;=hhaj3Gaj3 and

therefore the equivalence between the Ne and the Polyakov action becomes

obvious. The Polyakov action is invariant under specific transformations:

• Poincare transformations <5XIl = A~Xv + bI1 which transform the world-

sheet metric as <5haj3 = O.

• Worldsheet diffeomorphisms or else reparametrisations of the world-sheet

coordinates (0", T) ~ (0"', T'). Under reparametrisations the metric is
ou'., ou' s ,: , ,transformed as haj3 = ouO ou/3 h-yo (0" , T ).

• Weyl transformations of the world sheet metric haj3 ~ e<!>(u,T)haj3.
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After setting ho:/3 = TJo:/3 and using light-cone coordinates a± = T ± a, the

Polyakov action takes the form:

(2.4)

Varying the action given by (2.4) yields the wave equation for the relativistic

string:

(2.5)

Whereas the variation of the action (2.3) with respect to the intrinsic metric

yields a vanishing energy momentum tensor, this condition does not follow from

the variation of the action (2.4). In this case, we need to impose To:/3 = 0 as an

independent constraint. The general solution of the wave equation (2.5)

can be written in terms of left Xf(T+a) and right X~(T-a) mov-

ing terms in the following way: XIL(T,a) =Xf(T+a)+X~(T-a). Such a

solution for the closed string can be written as an expansion of Fourier modes

XIL [2 [(it ,
X~(T-a)=2+ipIL(T-a)+i~L ;e-tk(T-U), (2.7)

ktfO

This solution satisfies the closed string's periodicity con-

dition XIL( T, a) = XIL( T, a + 27r) and hence the condition plL = jilL. The

former expansions have introduced the Regge slope parameter a' which is con-

nected to the characteristic length of the string ~ = a' and the string tension

T = -:::--r21 . The previous relations also indicate the fact that the degrees of
11'0:

freedom describing the classical relativistic string are

• The center of mass coordinate XIL.

• The total momentum of the string p'',

• The vibrational modes of the string O.k'

By imposing boundary conditions which are consistent with the equations

of motion, other solutions which describe open strings with free endpoints and
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open strings with fixed endpoints can be found. Our study only utilises closed

strings and we will therefore concentrate on this case.

2.1.1 Closed Bosonic String Quantisation and Spectrum

We will now demonstrate the covariant quantisation of the bosonic string. In

order to achieve covariant quantisation we impose equal-time commutation

relations on the position X!' and conjugate momenta 7r1l(0', T) = 8(~rxl-')'

[XI-'(O', r}, 7rV(O", r)]

[XI-'(O', T), XV(O", r)]

[7r1-'(0', r),7rV(O", r)]

o
o. (2.8)

Utilising the mode expansions of the bosonic string we get the following ex-

pressions for the 1st quantised closed bosonic string:

[xl-' ,pV] irJl-'V

[a~,a~] m rJllV 8m+n,o

[-I-' -V] m rJl-'V8m+n,oam,an

[- I-' V] O. (2.9)am,an

After the covariant quantisation procedure, the parameters xl-' and pI-', a~ and

a~,hence XI-', are promoted into operators which obey analogous commutation

relations with the harmonic oscillator. We now have to find the states on

which the pre-stated operators act. In analogy with the harmonic oscillator

we define a number operator Nm = a_m.am, m ~ 1, whose eigenstates

satisfy the relation Nmlim) = imlim). A closed string state will be given by

IS) = IL) ® IR) since the right and left movers act independently. Hence, in

order to get the closed string spectrum, we have to define two different number

operators which are defined by infinite sums over the modes:

(2.10)
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Following a procedure where we use the number op-

erators

relations [C\'~,C\'~l = m"7IlY6m+n,O, [Q~,Q~l = m"7IlY6m+n,O , we can define the

ground state i-, = i: = 0 as a state that is annihilated by the operators C\'~

and Q~, V m, n > O. For m, n > 0 the operators C\'~rn and Q~n raise the eigen-

values of the number operator N Land N R by m and n respectively. It then

follows that the states of the theory are obtained by a successive application

of creation operators on the ground state.

Yet there exists a "problem" in the theory'S spectrum: the presence of

the metric "7IlYmakes it possible for negative norm states to exist via the

relation [C\'~, C\'~ml = "7JLVm6m_m,O. These unphysical states are truncated by

imposing constraints on the theory's spectrum. The constraints arise from

the fact that the variation of the Polyakov action with respect to the intrinsic

metric demands that the energy momentum tensor vanishes: To:{1 = O. When

changing to complex coordinates the holomorphic and anti-holomorphic part

of the energy-momentum tensor are expanded into Laurent series where the

Laurent coefficients are the Virasoro operators:

(2.11)

(2.12)

The Virasoro operators describe the modes of the energy-momentum tensor

and after quantisation they are given by the normal-ordered relations

(2.13)

These operators satisfy commutation relations called the Virasoro Algebra

[Lm,Lnl

[Lm,Lnl

) D 3
(m - n Lm+n + 12 (m - m)6m+n,o ,

- D 3
(m - n)Lm+n + 12(m - m)6m+n,o ,

(2.14)

(2.15)

where the last term of the right-hand side is the central extension and it

vanishes for m = 0,±l. It should be noted that the former relations without
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the central extension constitute the Witt algebra of conformal transformations.

The Virasoro operators can be used to eliminate the unphysical states of the

theory by requiring their expectation value to vanish for a physical state l'lt):

('ltILm - ai5m,ol'lt) = 0

('ltILm - w5m,0I 'It) = O.

(2.16)

(2.17)

The former relations take into account that the operators Lm, Lm with m i- 0
do not have a normal ordering ambiguity. Therefore the term ai5m,o ensures

that we only get a contribution a due to normal ordering ambiguity in the

case of La. A physical state I'll) must then satisfy:

(2.18)

For m > 0 the Virasoro operators annihilate the physical state: Lml'lt) = 0,

Lml'lt) = O. For m = 0 we have the "mass shell" condition: (La - a)lw) = 0,

(La - a)I'lt) = O.

The Virasoro operators La and La can be written in terms of the number

operators:

(2.19)

Both the sum and difference of La and La annihilate the physical states:

(La + La - 2a)lw) = 0 , (La - Lo)lw) = o. (2.20)

The condition (La - Lo)lw) = 0 is called the level matching condition. In

order to understand the physical interpretation of our theory we must obtain

the mass spectrum. The mass operator M2 comes by using the rela-

tion M2 = -pI"PIl when acting on states with the Virasoro operators.

Taking to consideration that the absence of negative norm states requires that

a = 1, then the mass operator is given by

(2.21)
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The ground state of the closed bosonic string 10, k) is found when

NL = NR = 0:

(2.22)

As we can see this is a tachyon, meaning that the bosonic string admits an

unstable vacuum and thus cannot be a physical theory. The first excited state,

though, consists of the graviton, implying that a modification of the theory

could lead to a consistent theory of quantum gravity.

Another way of string quantisation is the light-cone quantisation. As the

name implies this method utilises the light-cone coordinates for space-time:

(2.23)

The former definition seperates the D space-time coordinates XJl into the null

coordinates X± and the D - 2 transverse coordinates Xi. Since the two sets

of coordinates are treated differently Lorentz invariance is no longer manifest.

In the light-cone gauge we choose

(2.24)

which corresponds to setting a;; = 0 for n t= o.
The mass formula is given in terms of the transverse oscillators:

(2.25)

where Nand N are defined by

N
+00

2: a~nani
n=l
+00
'"' r i -c: a_nani
n=l

(2.26)

N (2.27)

and a is a normal ordering constant satisfying the relation:

D-2
a= --.

24 (2.28)
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The former relation is obtained by using the so called (-function regularisation.

The dimension of the theory, D = 26, and the value of the normal ordering

constant, a = 1, follow from the closure of the Lorentz algebra in the light-cone

gauge.

The lower excited states are the massless states:

L Ri,j a'. 1a~11k) ,
1<;i,j<;D-2

(2.29)

These states can be split into three sets:

•
L s., a~la~llk),

l-::;i,j-::;D-2

(2.30)

where the matrix Si,j is symmetric and traceless. These states correspond

to the one-particle graviton states.

•
L Ai,j a~la~llk),

l-::;i,j-::;D-2

(2.31)

where the matrix Ai,j is antisymmetric. These states correspond to the

one-particle states of a Kalb-Ramond field, which is an antisymmetric

tensor field Bf.1v,

•
(2.32)

where S is a constant coming from the decomposition of Ri,j into a

symmetric traceless part, an antisymmetric part and a part proportional

to the identity matrix. This state corresponds to the dilaton.

2.1.2 Compactification

In the case where we compactify one dimension of the theory on a cir-

cle [14, 15, 16, 17, 18] we separate the fields into uncompactified fields Xr,
X~, 11= 0, .'" D - 2 which "live" on a M1,D-l space-time and the com-

pactified fields xi, xk, [ = D - 1 which "live" on an internal space K.
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The equations of motion of the compactified fields have an analogous form

with the uncompactified ones. The compactified fields obey the condition

X I = X I + 27fR, where R is considered to be the compactification radius.

This condition, along with the fact that momentum eigenstates are single val-

ued, yields the following relation for the internal momentum quantum number

m : pI +pI = ~. The compact coordinates obey the following relation:

x' (T, 0' + 27f)= x' (T, 0') + 27fRn, (2.33)

where n is the winding number (integer) which tells us how many times the

closed string winds around the compact dimension of radius R. The quantity

(pI _ pI) is called the winding contribution. After compactifying the 26th di-

mension in the Kaluza-Klein fashion i.e on a circle, the mass formula becomes:

o:'m2 = C~~?+ (-~-)2 + 2(NR + Nd - 4 and the level matching condition

becomes NR - NL = nK.

2.1.3 One-Loop Bosonic Amplitude and Modular

Invariance

All the possible closed string states can be found by studying loop diagrams.

The one-loop string amplitude corresponds to a world-sheet with the topology

of the torus, so we need to integrate over all the metrics

where the Teichmuller parameter T E C, Imr > 0 parametrises a family of

conformally inequivalent tori, and 0: > 0 is a continuous real parameter. Since

the torus satisfies the identifications

z == z + 27f and z == z + 27fT (2.34)

it can be expressed as a parallelogram. Tori parametrised by T are considered to

be conformally equivalent if they are connected through the so called modular
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Figure 2.2: The torus as a parallelogram

transformations

T: T ----t T + 1 reparametrises the torus, (2.35)

S: T ----t -l/T reorients the torus, i.e swaps (11 with (12. (2.36)

The modular group can be re-written more compactly as:

ar +b
T ----t --d' a, b,c, d E Z, ab - cd = 1.

CT+
(2.37)

The moduli space M is therefore given by M ~ JH[+/ PSL(2; Z), where 1HI+is

the upper half of the complex T plane. The fundamental domain

1 1
ReT E [-- +-)

2' 2
(2.38)

determines the values of T for which we get inequivalent tori.

The total one-loop partition function requires the integration over all the

independent values of T, i.e over the fundamental domain D:

r dTdt
JDlm(T)2

(2.39)

where I~(~2 is a modular invariant quantity. In analogy with Quantum Me-

chanics, where a given amplitude is given by 2:n{nle-iHtln) = Tr(e-iHt), the
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Figure 2.3: The fundamental domain

vacuum to vacuum amplitude for a rectangular torus is

(2.40)

In the generic case for which Re r =1= 0, and after defining q

q = e-27rif, the partition function becomes

(2.41)

00

Taking in consideration the Dedekind Eta function TJ(r) = ql/24 II(1 _ qn)

and its modular transformations
n=l

(2.42)

we get that the one-loop, modular invariant, vacuum to vacuum amplitude for

a free boson is

(2.43)

Compactification on a circle changes the partition function into

(2.44)

where the contibution from 11)(~)12 is due to bosonic oscillators acting on the

vacuum and the term q!UH+R.;')2 is due to the Kaluza-Klein and winding modes.
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2.2 Classical Superstrings

The bosonic string contains 26 bosonic fields and no ferrnions, therefore only

forces and no matter. Also, the lowest energy state is a tachyon, a particle

mode with negative mass squared, which means that the vacuum state of the

theory is unstable. The former problems are remedied by extending the bosonic

string to the superstring. After including D free fermionic terms 'l1Jl to the

Ramond-Neveu-Schwarz (RNS) action it takes the form

(2.45)

where XJl are the bosonic fields, 'l1Jl are the Majorana spinors 'l1 = (:~) and

pO are the two dimensional Dirac matrices on the world-sheet

(2.46)

This action is invariant under specific global supersymmetric transformations

(2.47)

(2.48)

where we have introduced the SUSY transformation parameter E = C~)which
is a Majorana spinor. The components of E are Grassman numbers. Vary-

ing the RNS action yields the equations of motion. In terms of light-cone

coordinates O'± = T ± 0', XJl and 'l1Jl obey the following relations:

e.o.x»
0+ 'l1~ = o_ 'l1~

o
o.

(2.49)

(2.50)

As in the purely bosonic case, the general solution for the former equations is

a decomposition into left and right movers. Equations of motion also im-

ply the decoupling between the left and right-moving world-

sheet fields 'l1Jl: 'l1+ = 'l1+ (0'+) and 'l1_ = 'l1_ (O'-). The conserved currents
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associated with the RNS action are are the result of translational invariance

and supersymmetry transformations. Translational invariance yields momen-

tum

(2.51)

Invariance under supersymmetric transformations yields the supercurrent

(2.52)

Variation of the RNS action with respect to the world-sheet metric yields the

energy-momentum tensor

(2.53)

The energy-momentum tensor and the supercurrent can be written more com-

pactly using worldsheet light-cone coordinates:

T__

8+XJl.8+XJl. + ~W~8+W+Jl.

8_XJl.8_XJl. + ~w~8_ W_Jl.

w~8+XJl.

w~8_XJl."

(2.54)

i:

(2.55)

(2.56)

(2.57)

2.2.1 Mode Expansions and Boundary Conditions

The vanishing of boundary terms when varying the RNS action with respect to

1JIJl.imposes that fermionic coordinates can take either periodic or antiperiodic

boundary conditions .

• The Ramond (or R) boundary conditions, which are periodic:

(2.58)
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• The Neveu-Schwarz (or NS) boundary conditions, which are antiperiodic:

(2.59)

Then the equations of motion lead to the following mode expansions :

1j;~ =L d~e-2in<7+, for R boundary conditions,
nEZ

(2.60)

1j;~ = L b~e-2ira+, for NS boundary conditions,
rEZ+~

(2.61)

and similar expressions for right-moving fermion fields, providing another set

of mode-oscillators d~, bf:.

2.2.2 Canonical Quantisation and Spectrum

The next step is to quantise the theory, which is done by assuming the canonical

bosonic commutation and fermionic anti-commutation relations. The bosonic

coordinates are quantised using the same procedure described in (2.8), which

in turn yields the relations (2.9). In order to quantise the world-sheet fermion

fields we impose the equal time anti-commutation relations

(2.62)

which lead to

{d':n,d~} r/tv 6m+n,Q, in the R-sector, (2.63)

(2.64){~, b~}

Once again this theory includes negative-norm states which will have to be re-

moved using the Super-Virasoro generators. The Super-Virasoro operators are

generalisations of the Virasoro operators which are extended by the inclusion
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of a Virasoro operator which is associated with fermionic oscillators:

(2.65)

In addition to the former generator we get generators arising from the super-

current:

L D:m·br+m in the NS sector

L D:-n.dm+n in the R sector.

(2.66)

(2.67)

In order to obtain the open superstring spectrum we have the freedom to

act with periodic or anti-periodic fermionic oscillators on the vacum, yielding

the so called Ramond and Neveu-Schwarz sectors. The NS sector has a unique

vacuum state and all excited states are obtained by applying creation operators

D:~n' b~r with positive half-integer frequencies, and they describe bosons. The

R-states are obtained by applying creation operators O:~n> d~m with integer

frequencies on the degenerate ground state. The R-ground states are obtained

by the zero mode oscillators D:~, d~ acting on the vacuum. The zero modes

d~ commute with the Hamiltonian and therefore do not change the energy

of the vacuum state. Furthermore they satisfy the commutation relations of

gamma matrices and thus realise a spinor representation of the Lorentz group.

Therefore they constitute a degeneracy which is interpreted as space-time spin

and hence the vacuum and excited R-states are fermions.

Since in the case of the closed superstring the boundary conditions for the

fermions are chosen independently for left and right movers we get bosonic or

fermionic states according to the following cases:

NS-NS Boson ® Boson Boson,

NS-R Boson ® Fermion Fermion,

R-NS Fermion ® Boson Fermion,

R-R Fermion ® Fermion Boson.
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2.2.3 The GSa Projection

The spectrum admits an imaginary mass (tachyon) indicating that the vacuum

is unstable. The "unphysical" states of the theory are truncated using the

Gliozzi-Scherk-Olive (GSO) projection. In the NS sector we keep states with

an odd number of fermion excitations and reject states with an even number

of fermion excitations. This is done by defining a fermion number operator

(2.68)

We then define a parity operator which determines the states that we can have

in the theory and removes the tachyon:

1 FPNS = 2[1 - (-1) 1 . (2.69)

In the R sector we define the Klein operator which is given by

(2.70)

for massless states. The operator rll = rOrl r9 is a 10D chirality operator

which acts on spinors, defining whether they have positive or negative chirality:

(2.71)

For the GSO projections of the R sector, we use the following projection op-

erator:

(2.72)

It should be noted that when one realises the spectrum from a partition

function, the GSO projection arises as a requirement of modular invariance.



Chapter 3

Heterotic Strings in Ten and

Four Dimensions

THIS CHAPTER briefly reviews the conceptual foundations and spec-

trum of the heterotic string, and then exhibits aspects of the orbifold

and fermionic compactifications. Our discussion aims to introduce the direct

formalism of the heterotic string in four dimensions that in turn will lead to

four dimensional model building.

3.1 The E8 x E8 Heterotic String

Up until now we have studied string theory where world-sheet supersymmetry

was realised for both the left and right movers. The heterotic string includes

only left fermionic worldsheet fields, thus realising supersymmetry only among

the left movers, and it therefore combines characteristics from both the bosonic

string and the superstring. The heterotic string in ten dimensions [19]requires

that the 16 mismatched dimensions, also known as gauge degrees of freedom,

I = 1, .., 16, are compactified on a 16-torus which is defined by an even and self-

dual lattice A. The lattice A is spanned by a set of basis vectors e~, 0: = 1, ... , 16

and where the coordinates obey the following relation:

(3.1)

where C denotes the winding.
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The states of the theory are obtained by acting on the vacuum with the

tensor product of the left quantised movers with the right quantised movers.

The left massless states in the lightcone gauge are given by the NS fermionic

oscillators bi_1/2 or the R fermionic zero modes db acting on the vacuum. The

right massless states include IpI) R which carry momentum but have no oscilla-

tors acting on the vacuum, and states where the oscillators Cii_l or Ci~l act on

the vacuum 10)R. Physical states are constrained by the mass-shell constraint

Mi = M~, (3.2)

which also leads to the absence of tachyonic states. That is because the only

left mover with negative Mi is the NS ground state with Mi = -2 whereas the

only right-mover with negative M'k is the bosonic string state with M'k = -4.

Combining the right and left quantised massless movers, the following states

arise:

• The super gravity D = 10, N = 1 multiplet

(3.3)

and the corresponding supersymmetric partners:

(3.4)

• Gauge bosons

and their corresponding gauginos

Here Iqsh denotes the spinor representation 8s of SO(8) and is given by

qs = (±~,±~,±~,±~) with an even number of plus signs. Also i,j = 1, ... ,8

and I = 1, ... , 16 for all of the previous states.
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3.2 Compactification on a Six-Torus

The connection of string theory with the real world is widely believed to be

achieved by choosing the ten dimensional space as MlO = M3,1 X M6. In

other words the six extra dimensions are compactified onto a six-dimensional

internal space, the dimensions of which are small enough to have escaped

detection. At the moment the geometry and dimensions of the internal mani-

fold are constrained by generic phenomenological guidelines and mathematical

consistency rather than a strict principle. One of the earliest compactification

schemes considers the background manifold to be a fiat torus [20].

Due to its periodicities the six dimensional torus is defined as the quotient

space T6 == JR.6 If where I'= {naea, nO' E Z, a = 1, '" 6} is the lattice spanned

by the basis vectors ea. Although simple and exactly solvable, this compactifi-

cation scenario is not realistic because the obtained four dimensional spectrum

yields N = 4 supersymmetry. In order for the toroidal compactification sce-

nario to become more realistic we impose finite symmetries on the toroidal

lattice, thus defining an orbifold [21, 22].

3.3 Z2 X Z2 Orbifold

We take the case where the six-dimensional torus lattice is the prod-

f th t tori . T6 - T2 T2 T2 E h t d' . 1uct 0 ree wo- on. - (1) X (3) X (5)' ac wo imensiona torus

T(~) = JR.2/f(a) is spanned by f(a) = {nieili = a,a + I} where a = 1,3,5. We

consider each complexified pair Z" = [X(2a-1) + iX(2a)] of the the six extra di-

mensions to be compactified on the analogus periodic complex plane, denoted

by Ca.

By defining Z2 x Z2 as the point group P, we are actually introducing

rotations to pairs of the three complex planes (Zl, Z2), (Z2, Z3), (Zl, Z3)

which correspond to the compactified directions. The complex plane ZO, which

corresponds to the uncompactified transverse coordinates, remains unchanged

under the orbifold group action. Each element (twist) of the point group

generates rotations to a different pair of complex planes.

The twists [23] of the point group are denoted as {IT, 81, 82, 81 0 82}.
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The two generators of the group 01 = diag( ei27rut, ei27rui, ei27rul)

and O2 = diag( ei27rU~, ei27ru~, ei27ru~), are associated with the twist vectors

HI = (0, ~, -~, 0) and U2 = (0, o,~, -~). The twists can then be considered as

the results of linear combinations of the twist vectors

IT ¢} OUI + OU2

01 ¢} lUI + OU2

O2 ¢} OUI + lu2

01 0 O2 ¢} lUI + lu2. (3.7)

Each point of the internal space is subjected to symmetries due to the toroidal

periodicities no eo and the twists ku, + [U2 (k, [ 0,1) imposed

by orbifolding the internal manifold. We define the space group

5 = {kUl + [U2, noeo I k, l = 0, 1 no E Z} as the combination of the

point group and the translations associated with r. The elements of the space

group for which k = l = 0, i.e just lattice translations, constitute the so called

untwisted sector while for any other values of k and l we have the so called

twisted sectors. The strings of the untwisted sector are closed before twisting,

whereas for the twisted sectors the closed string boundary conditions are only

satisfied upon the action of a point group element.

The action of the space group 5 is extended to an action on the 16 gauge

degrees of freedom. Elements of the space group 5 are then mapped into

elements of the gauge twisting group G as follows:

(3.8)

where Vi are the shift vectors, and Ao represent Wilson lines [24]. Wilson

lines are crucial for phenomenology since they project out gauge bosons and

gauginos. An element of the gauge twisting group acts on the 16 gauge degrees

of freedom as follows:
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The Z2 x Z2 toroidal orbifold is then the quotient space ({])Z2 XZ2 == ]R6 / S x

r16 / G, and the elements of the Z2 x Z2 orbifold are given by

(3.10)

The surviving states of the orbifold theory are S 0 G invariant, i.e they

remain invariant under the action of the orbifold elements.

Although orbifolding techniques are a powerful tool for the exploration of

string vacua, we will not give any more details because these techniques were

not used for the purpose of this thesis. Nevertheless, the Z2 x Z2 orbifold is

considered to be directly related to free fermionic compactifications [25, 26]

and it can provide useful intuition concerning these algebraic constructions.

3.4 The Free Fermionic Formulation of the

Heterotic String

The bosonic formulation of the heterotic string requires that the extra dimen-

sions and gauge degrees of freedom are compactified on some manifold. This

section introduces an alternative formulation of the heterotic string, where all

the extra dimensions and gauge degrees of freedom are represented as two-

dimensional free fermions propagating on the string world-sheet. This formu-

lation is a result of the equivalence between worldsheet bosons and fermions.

The Operator Product Expansions (OPEs) between bosonic operators e±iX(z)

are

1- + O(z),
z
O(z),

O(z),

(3.11)

while the OPEs among two complexified Majorana- Weyl fermions
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w(z)~(O)

W(z)W(O)

1- + O(z),
z
O(z), (3.12)

~(z)~(O) O(z).

Comparing the two equations the equivalence between bosons and fermions

in a two dimensional conformal field theory becomes obvious:

w(z) ~ eiX(z), (3.13)

The heterotic string action can be written in a form that utilises the equiv-

alence between bosons and fermions. In this formulation the 16 extra gauge

degrees of freedom, can be reinterpreted as fermionic fields. The heterotic

string only considers the following left-moving space-time fields:

X~(z), W~(z), J-L = 0, ... ,9 , (3.14)

and the following right-moving fields:

X!:(z), '\~(z), J-L = 0, ... ,9, a = 1, ... ,32. (3.15)

The ten dimensional heterotic action then realises supersymmetry only among

the left movers:

9 32
5 = - ~ J d20"[~(8aXIl8a XIl - 2i1jJ~8_1jJ~) - 2i ~ '\~8+'\~l·

11 0=1

(3.16)

Provided that the boundary conditions for ,\~ are all the same, meaning that

all of the internal fermions are either periodic or anti-periodic, we obtain the

50(32) heterotic string. A different choice for the boundary conditions of the

internal fermions, where 16 of them are chosen to be periodic and 16 of them

are chosen to be anti-periodic, leads to having two additional sectors in our

theory and yields the E8 x E8 heterotic string. At this point it is worth noting
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that the normal-ordered product between two internal fermions constitutes a

world-sheet current J. The OPE between two such currents is given by

(3.17)

where fABC are the structure constants of the 50(32) or the E8 x E8 gauge

group, and k is the level of the algebra.

Since we are interested in a direct 4D formulation of the heterotic string

we restrict the space-time index to run only from ° to 3, and we consider the

rest of the dimensions to be extra internal degrees of freedom [27]. Each of

the left and right moving free fermions contribute to the confor-

mal anomaly by ~,and therefore the conformal anomaly in four dimensions

(DL = DR = 4) vanishes:

44
eR = -26 + DR + 2' (3.18)

A vanishing conformal anomaly is equivalent to eliminating the negative norm

states in the covariant quantisation, and closing the Lorentz algebra in light-

cone gauge.

At this point we are left with 74 fields in our theory:

x-i», s), /-l = 0, ... ,3

Xi'(z, s), /-l = 0, ...,3

1jJi'(z), /-l = 0, ...,3

,Xi(Z), i = 1, ... ,18

:\J(z), j = 1, ... ,44, (3.19)

where 'x(z), 'x(z) denote real world-sheet fermions. After imposing the light-

cone gauge we are left with a total of 68 fields, since only the transverse

coordinates of Xi', Xi' and \l!1l are kept.



Chapter 4

Four-Dimensional String Models

INORDER to provide insights on certain phenomenological aspects,

we follow an approach where we consider that the theory which

effectively describes our low energy universe is a SUSY GUT which also in-

corporates gravity. For this purpose we study k = 1 heterotic string models

[28] where the SO(1O) GUT gauge group is further broken by Wilson lines.

This chapter introduces the construction constraints and analysis techniques

of semi-realistic Free Fermionic Models [29, 30], and finally exhibits how a

specific model can inspire a phenomenologically viable scenario.

4.1 Rules of String Model Building

Models in the free fermionic formulation [31, 32, 33] are constructed by spec-

ifying a finite set of spin structures [34], or else boundary condition vectors

(b.c vectors):

and their corresponding generalised GSO (GGSO) coefficients C (::i). Each
J

boundary condition vector is a spin structure containing the phases a(1) picked

up by world-sheet fermions when parallel transported along the torus' non-

contractible loops:

f ---+ _ei7ro(f) f , (4.2)
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where f is a fermionic field and the minus sign is conventional. When two

fermion fields ,\ i, )•.J have the same set of boundary conditions in every spin

structure they are combined into a complex fermion:

\ _ 1 (d '\j)
/lij - V2 /I + VI , or to its conjugate \* _ 1 (\i 'd)

/lij - V2 /I - ~/I . (4.3)

The low-energy properties of each model depend on the values of the GGSO

coeffiecients and the phases picked up by the following fermionic fields:

1/Ji,2 Correspond to the superpartners

of the transverse uncompactified coordinates.

~1...5 Correspond to fermionised gauge degrees of freedom.

Define the underlying Observable SO(10) symmetry.

<I>1...8 Correspond to fermionised gauge degrees of freedom.

Define the Hidden symmetry.

r;1...3 Correspond to fermionised gauge degrees of freedom.

Define the local abelian symmetries related to a family.

{Xl, yI, wI}, I = 1, .. , 6 The fermionised left moving compactified dimensions

and their superpartners.

{ti, ,:/},1= 1, ... ,6 The fermionised right moving compactified dimensions.

Linear combinations of basis vectors' spin structures give rise to sectors

which contain the physical states of the theory. The basis vectors then form a

finite additive group E through the operation

(4.4)

where 5Ui) + !lUi), Vi = 1, ... ,64 denotes the addition between the ith com-

ponent of the spin structures 5, Ii, and the underlying algebra is the result of

(4.2) :

0+0 = 0, 0 + 1= 1+ 0= 1, 1+ 1= o. (4.5)

Any two given spin structures 5, !l contribute to a modular invariant par-
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tition function

Z(T, f) = L _c(g) Z (g) (T, f),
spin structures ii,(3

(4.6)

where the GGSO coefficients C (~) are introduced in order to guarantee modu-

lar invariance. The choice of the GGSO coefficients admits some arbitrariness

and plays a crucial phenomenological role. The total partition function Z (~)

is the product of the partition functions associated to each fermion field:

(4.7a)

(4.7b)

where ()i are the Jacobi theta functions

()[bl = Lq (n)l e21Ti( -~)(n-~),
nEZ

(4.8)

and where

(4.9)

These formulae should be complex conjugated for the right-movers.

The consistency of each model is guaranteed by the so called Antoniadis-

Bachas-Kounnas (ABK) rules which arise from the modular invariance of the

partition function. The partition function for a four dimensional heterotic

string is given by the expression(we now drop the arrow over the basis vectors):

Z = J [d:~f] Z~ ?= c [a] IT Z F [a I] ,
2 spin str. i3 1=1 i31

(4.10)

where the integration measure is modular invariant, Z~ is the contribution

of the two uncompactified transverse bosonic coordinates expressed in terms

of the Dedekind eta function, and ZF is the fermionic contribution which is

expressed in terms of Jacobi theta functions. Under the modular trans-
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formation T ~ T+ 1, the Dedekind eta function and the Jacobi theta functions

transform as shown below:

(4.11)

while under T ~ _1
T

(4.12)

Modular invariance of the partition function leads to the following condi-

tions:

e i"(O.~+l.1) C ( a )
,8-a+1

~ (,8)e 2 C -a
.... -i,,(a.o') ( a ) ( a' )
UOUO,e 2 C C,8+ a' ,8' + a

(4.13)

(4.14)

(4.15)

where <50 = eim(I/Ji,2) and the inner product between two vectors a,,8 is defined

by

(
1 1 )a./3 = 2 L -2 L a(f),8(f).

left real fermions right real fermions

(4.16)

If we set a' = 'Y and (3' = -a in (4.15), combine the result with (4.14) and

normalise C(~) = 1 we get that C(~) = <50, Next, we define a set of vectors :=:

(4.17)

It can be shown that this set is an abelian additive group, and that a vector

which has all of its components periodic belongs to that group: 1 E :=:. A finite

abelian group is isomorphic to a direct sum of 7l,N factors: :=: = EB~=l7l,Ni• This
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means that there exists a basis {b1, ... , bd generating 3 such that

kL nub, = 0 <¢=:::? m, = 0 mod N, Vi,
i=l

(4.18)

where N, is the smallest positive integer for which Nibi = O. By setting o = b;

and (3 = bj and raising both sides to Nij (least common multiple of N, and

Nj) in (4.14), we obtain the relations Nijbibj = 0 mod 4 and Nibibi = 0 mod 4.

In the case that N, is even we get the condition Nibibi = 0 mod 8.

According to the ABK rules the GGSO phases between spin structures

which only take periodic or anti-periodic boundary conditions are constrained

to take the values 1 or -1. The rest of the ABK rules regarding the the GGSO

phases for this specific case, are the following:

c(:)
c(;)

C((3: 6)
(4.19)

The ABK rules regarding b.c vectors where the entries only take the values

o or 1 are the following:

if Vi, m, = Omod2

Omod2 Vi,j

Omod4 Vi (4.20)

b1= I (1E 3) .

4.2 The Spectrum

After the Fourier modes of each of the real or complex fermions are promoted

into operators they can act on the vacuum to form the states of each model.

Each sector Lt E 3 corresponds to a Hilbert space of states which is obtained by
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acting with raising operators on the vacuum. The state W~1/2 W~1/2 W~*1/210)NS,

for example denotes a gauge boson which is obtained by acting with the NS

raising operators of wIL, 1j!1 and 1j!3* on the vacuum of the NS sector. When

acting on the vacuum with zero modes we have to take into consideration

that the anti-commutation relation for the fermionic modes 7jJn is given by

{'l/Jn, 'l/Jm} = <5n+m,O which in turn gives {'l/Jn, 'l/Jo} = O. This means that the zero

mode 'l/Jo takes the ground state to another ground state. We label the "up"

state of the degenerate vacuum, where no oscillator acts on the vacuum, as

1+).In the case that a zero mode acts on the vacuum the "down" state of the

degenerate vacuum is denoted as 1-). The degenerate vacuum is denoted as

I±) where Fa(I+)) = 0 and Fa(I-)) = -1 [35]. Fa(f) is the fermion number

operator. In the case of a complex fermionic oscillator acting on the vacuum

Fa(f) = 1, and for a complex conjugate fermion Fa(f*) = -1. The initial

spectrum of each model is truncated by a set of constraints on the physical

states. The GGSO projection selects the surviving states IS)a of the sector 0:

by satisfying the relation:

(4.21)

and

In order to obtain the massless states of each model we have to utilise the

constraints

1 O:L.O:L--+--+2 8 L N(f),
left fermions

N(f) , (4.22)

Mi M~=O,

where O:L and O:R are the parts of the vector 0: corresponding only to the left

and right complex fermions respectively.
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The simplest set of basis vectors we can choose is to have only the vector r
in the basis. Then we have :=: = {r, O} and the physical states are found in only

two sectors. The states in the r sector are massive, whereas in the NS-sector

the ground state satisfies MI = M'A = - ~, yielding tachyonic states. These

tachyonic states )_j 10 >NS are obtained by acting on the vacuum 10 >NS with

one right fermionic creation operator. Then we have massless states obtained

by acting on the vacuum in several ways :

• 1jJILoX" 10)NS,
where ox- is a bosonic creation operator and 1jJ1Lis a fermionic creation

operator. These states correspond to the four-dimensional graviton, dila-

ton and antisymmetric tensor.

• 1jJILAiAjIO)Ns, i,j = 1, ... ,44.

The gauge bosons of the gauge group SO(44).

• {Xl, yI, wI}oX"IO) NS, 1= 1, ...,6.

Each fermion triplet {XI,yI,WI} = Ak, k = 1, .. ,18 yields the three

generators of the Ith SU(2) and therefore these states are identified

with the gauge bosons of SU(2)6.

• Ak.xi.xj 10)NS .

These are scalar fields.

The GGSO projections in the NS-sector are performed as follows:

•

_1jJILoXV 10)NS

1x (-1) x 1jJlLoXVIO) NS

= 66G (~ *1jJJLoX"IO) NS .

So the states ~JLoX"IO) NS verify the GGSO condition and thus remain

in the spectrum (In this calculation we used G(~) = -1).
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•

eirrfFO'ljJIl5:i 5:j 10)NS eirr(+l-l-l)'ljJIl5:i 5:j 10) NS

-'ljJIl5:i5:jIO)NS

(~* --8aC f 'ljJ1l..\i..\j 10) NS .

•

eirrfFo..\k8XVI0) NS eirr(+l+O) ..\k8XJI0) NS

-..\k8XVI0)Ns

D*° k-8aC(r ..\ 8XVI0)Ns .

•

eirrfFo..\ k5:i 5:j 10)NS eirr(+l-l-l)..\k 5:i 5:j 10)NS
k - -

-..\ N..\jIO)Ns

8csC(8 \k5:i5:jIO)Ns,

So, in this model we have the graviton, the dilaton and the antisymmetric

tensor (which are present in every model), gauge bosons which constitute the

unrealistic gauge group 8U(2)6 x 80(44), and scalars. This model, although

consistent, is far from being promising since it has a large gauge group, absent

fermions, no supersymmetry and contains tachyonic states. The various prop-

erties of a model can drastically change by adding more b.c vectors and their

corresponding GGSO phases.

4.2.1 Semi-Realistic Models

Adding supersymmetry resolves some of the above-mentioned problems. In

the supersymmetric sector, world-sheet SUSY is realised non-linearly and the



4.2. The Spectrum 51

world-sheet supercurrent [36], is given by

(4.23)

where FJK are the structure constants of a semi-simple Lie group of dimension

18. In the case of realistic free fermionic models the Xl (I = 1, ... ,18) transform

in the adjoint representation of SU(2)6 and are denoted by (Xl, u' , wI) and

1=1, ...,6.

The simplest supersymmetric extension of the pre-mentioned model is ob-

tained by including one additional b.c vector S = {1jJl,2, X1,..,6} and choosing

values for the GGSO phases in a modular-invariant fashion. Since the spec-

trum for the NS sector was found before, and the sector 1+ S is massive, we

will concentrate on the spectrum of sector S which contains the superpart-

ners of the untwisted sector. The spectrum is obtained by two right-moving

fermionic oscillators acting on the degenerate vacuum which is formed by the

zero modes of the periodic complexified fermions 1jJl,2, X1,2, X3,4 and X5,6. The
1/>1,2 X1,2 X3,4 X5,6 1/>1,2 X1.2 X3,4 X5,6,....-...,_,....-...,_,....-...,_,....-...,__ ,....-...,__....___."..__.".._

massless states are I ± ) I ± ) I ± ) I ± )ox- and I ± ) I ± ) I ± ) I ± )<jp¢{3.
After performing the GGSO projections we are left with four gravitini and the

superpartners of the particles coming from the NS sector. In order to achieve

N = 1 supersymmetry one has to add two additional b.c vectors.

The structure of each additional b.c vector is constrained by the require-

ment of a well-defined supercurrent. The eighteen left-moving fermions are

devided into six triplets {Xi, Yi, Wi} in the adjoint representation of SU(2)6,

The allowed boundary condition for each triplet depends on the boundary

condition of the world-sheet fermion 1jJi2'

CASE 1

b(1jJr2) = 1 (1,0,0)

(0, 1, 0)

(0,0, 1)

(1, 1, 1)

CASE 2

b(1jJi2) = 0 (1,1,0)

(1,0,1)

(0,1,1)

(0,0,0).

After adding more b.c vectors we reach a point where the gauge group becomes

SO(10) x OTHER, where OTHER denotes the horizontal U(l) symmetries
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along with the hidden gauge group. Further breaking of the 50(10) symmetry

into one of its maximal subgroups is achieved by adding Wilsonian sectors [35].

The resulting observable subgroup depends on the boundary conditions of the

worldsheet fermions {~1, ...,5} of the Wilsonian sector. We can distinguish the

following cases:

• b{~1, ,5} = OBB} --t 5U(5) x U(l)

• b{~1, ,5} = {ll100}

OR --t 50(6) x 80(4)

b{~1, ...,5} = {OOOll}

• The direct breaking of the initial gauge group into

5U(3) x8U(2) xU(l)c xU(l)L at the string scale is achieved by combining

both the previous two steps.

4.3 A Model without Exotics

In the next section we will exhibit the phenomenology of a specific semi-

realistic free fermionic model [37] which was discovered by util-

ising the methodology described in the next chapter. We con-

struct an N = 1 supersymmetric 8U(4) x 8U(2h x 8U(2)R model sup-

plemented by an 80(4) x 80(4) x 50(8) hidden gauge symmetry and three

abelian factors according to the guidelines of Ref. [38, 39, 40]. This is an ex-

emplary model, whose purpose is to show that there exist Pati-Salarn models

which are free of fractionally charged states [41, 42] at the massless level, and

where only the top quark trilinear Yukawa coupling can be obtained. The F-

and D-flat solutions are constrained by the requirements of GUT and elec-

troweak symmetry breaking, and the acquirement of heavy mass by coloured

gauge fields.
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4.4 The Model

The basis is formed by the following thirteen spin structures:

Vl = 1 {'ljJJ.l, Xl,,,.,6,yl,,,.,6,Wl, ... ,61

{'ljJJ.l, XI, ...,6},

{yi,wilyi,wi}, i=1, ... ,6,

(4.24)

VlO = b2 {XI2, X56, y12, y561y12, y56, ij2, ~l, ... ,5},

Vn = Z1 {<J)1, ,4},

VI2 = Z2 = {<J)5, ,8},

VI3 = 0: { ~4,5, <J)1,2} ,

where we have denoted only the fermions with periodic boundary conditions.

The first two basis vectors generate a model with N = 4 space-time super-

symmetry and an 50(44) gauge group in four dimensions. The next six basis

vectors ei, i = 1,...,6 reduce the gauge symmetry to 50(32) x U(1)6. The

basis vectors bl,b2 reduce the gauge group to 50(10) x U(1)2 x 50(18) and

reduce N = 4 to N = 1. The basis vectors ZI and Z2 reduce the hidden gauge

symmetry arising from the Neveu-Schwarz (NS) sector to 50(10) x U(1)3 x

50(8) x 50(8). The vector 0: corresponds to a Wilson line, and it breaks the

observable symmetry to 50(6) x 50(4) x U(1)3, and the hidden gauge group

to 50(4) x 50(4) x 50(8).
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The GGSO coefficients were chosen to be:

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1

S -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

el -1 -1 1 1 1 1 1 1 1 1 1 1-1

e2 -1 -1 1 1 -1 1 1 -1 1 1 -1 -1 1

e3 -1 -1 1 -1 1 -1 -1 1 1 1 -1 1 1

e4 -1 -1 1 1 -1 1 -1 1 1 1 -1 1-1

e5 -1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 -1

e6 -1 -1 1 -1 1 1 1 1 1 -1 -1 1 1

b1 -1 1 1 1 1 1 -1 1 -1 1 1 -1 1

b2 -1 1 1 1 1 1 1 -1 1 -1 -1 1 1

ZI -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1

Z2 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 -1

0: 1 -1 -1 1 1 -1 -1 1 -1 -1 1 -1 1
(4.25)

Apart from singlets, the observable massless states contain three chiral

generations, one pair of heavy Higgs states to break the Pati-Salam symmetry

[43] and light Higgs bi-doublets needed for generating fermion masses and

electroweak symmetry breaking. The twisted and untwisted spectrum, and

the gauge invariant terms which participate in the superpotential [44, 45], can

be found in Appendix A, and they were derived by a computer program written

in MATLAB. We will now roughly sketch how this program was written.

First we create "functions" where the underlying algebra, the addition and

inner product between two vectors is defined. The b.c vectors and the inde-

pendent GGSO coefficients (above the diagonal) are inserted manually by the

user. The program then ensures the consistency of the model by verifying the

ABK rules for the b.c vectors, and generates the remaining GGSO phases. The

user must initially specify which are the real, complex and conjugate fermionic

oscillators of the model, and input their corresponding fermion numbers. In or-

der to find all the possible 213 = 8192 linear combinations of b.c vectors which

constitute the sectors of the model a routine finds all the possible "numbers"
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of the binary system that can be expressed with 13 digits. In terms of our

purpose each binary number corresponds to a different sector, the components

of which are found when the entries of the binary number are multiplied with

the corresponding b.c vectors and then added. Based on the fact that we are

only interested in the massless sectors, the program then finds the quantities

exLexL, exRexR, NL and NR for each sector. The sectors for which both NL and

NR are equal or greater than zero such that they satisfy (4.22), are considered

to be massless. They are separated from the massive sectors and are grouped

into: observable spinorial sectors, hidden spinorial sectors, exotic spinorial sec-

tors and vectorial sectors. At this stage we are interested in generating all the

possible states of a sector and then truncating them with GGSO projections.

Each state corresponds to a "Fermion Number Vector" (FNV) which contains

the fermion numbers of each state. In the case of the NS sector all the possible

FNVs are generated by combining the fermion number of one left oscillator

with the fermion numbers of two right oscillators acting on the vacuum. For

spinorial sectors, the program checks the non-zero entries of a sector and, in

order to find the appropriate FNVs, it assigns all the possible combinations

of 0 and -1 to the corresponding entry of the FNV. In order to generate the

FNVs of the vectorial sectors the techniques of the NS and spinorial sectors

are combined. In order to be able to perform the GGSO projections it was

essential to write routines which calculate the 80:and C (~) for each sector ex

and b.c vector bi' Then another routine would perform the GGSO projections

for each state (which corresponds to a specific FNV), and keep only the FNVs

that survived the 13 GGSO projections. After this procedure is finished for all

the states, we are left with FNVs and the sector they belong to. Then, all the

local and global charges of each state were found. The states are then grouped

into representations based on their charges. In order to find the cubic super-

potential, we must take in to consideration that each trilinear term should

be SUSY invariant, gauge invariant ,and in general, it should not consist of

vanishing correlators. It is important to note that a sector S + excontains the

superpartners of the sector exand the states of both sectors belong to the same

supermultiplet.
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We should note that at the cubic level superpotential only the top quark ac-

quires mass through the interaction term F2RF3LhI. The fermions of the other

two families are considered to acquire mass through non-renormalisable [46]

interaction terms. The interaction terms found in the superpotential provide

general guidelines on how to interpret the several fields found in the spectrum.

The general way representations are combined in order to yield the three fam-

ilies and GUT Higgs are as follows:

3 x (4,2, 1) + 3 x (4, 1, 2) ---> Three families,

1 x (4,1,2) + 1 x (4,1,2) ---> GUT Higgs.

The heaviest family is formed by the representations F2R and F3L and

it gets its mass from trilinear interactions. The rest of the fermionic chiral

fields are considered to acquire their mass through higher-order interactions.

We consider that the Higgs pair that breaks the Pati-Salarn symmetry to the

Standard Model is H = FIR and II = FIR' That is because, at the level of the

cubic superpotential, both these representations remain massless and they can

provide masses to potentially hazardous triplets through the missing partner

mechanism. According to this mechanism [47], triplets that could mediate pro-

ton decay, can acquire heavy masses through the vacuum expectation value of

the singlet representations embedded in additional spinorial and anti-spinorial

representations of SO(lO). In our case these singlets are the superpartners of

the right-handed neutrino and right-handed anti-neutrino found in the pair of

heavy Higgs representations, and therefore the missing partner mechanism is

realised as follows: HDH + fIDfI ---> dCD3(vC
) + d/'fh(i/).

In each string model there typically exists a moduli space of solutions to

the F and D flatness constraints which are supersymmetric [48, 49, 50, 51].

Although much of the study concerning string vacua involves the analysis and

classification of these flat directions, here we will merely exhibit that such a

solution can be found for this particular model. For this reason we constrain

our study to cases where VEVs are acquired only by singlets and non-abelian

singlets which are charged exclusively under the observable gauge group.
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The set of D-flat constraints is given by

(D A) = (Do) = 0 ,

DA = [2:: Q~IXkI2 +~]
Do = [2:: Q~IXkI2] , Q 1= A ,

g2(TrQA) 2

~= 19271'"2Mpl ,

(4.26)

(4.27)

(4.28)

where Xk are the singlet fields which acquire VEVs of order VE" and ~ is the

Fayet-Iliopoulos term corresponding to the anomalous abelian symmetry and

is generated due to the Green-Schwarz mechanism. The Q~ and Q~ denote the

anomalous and non-anomalous charges, and Mpl ~ 2 X 1018 GeV denotes the

reduced Planck mass. The solution of such a system of equations is of course

not unique. From the previous set of equations it becomes obvious that we

must uncover the combination of the abelian symmetries that constitutes the

anomalous U(l). Such an anomalous abelian symmetry is a generic character-

istic of string models. The string vacuum initially contains three anomalous

abelian U (1) symmetries.

TrU(l)l = -12 TrU(1)2 = -24 TrU(1)3 = -12 . (4.29)

The anomalies can be rotated into two anomaly-free

U(l); = U(l)l - U(1)3

U(l); = U(l)1 - U(1)2 + U(1)3 ,

(4.30)

(4.31)

and one anomalous combination as expected

U(l)~ = U(l)1 + 2U(1)2 + U(1)3 , TrU(l)A = -72 . (4.32)

The anomalous U(l)A is broken by the Green-Schwarz mechanism [52,

53, 54] in which a potentially large Fayet-Iliopoulos D-term, ~, is generated

by the VEV of the dilaton field. Such a D-term would in general break su-

persymmetry, unless there is a direction which will acquire a VEV cancelling
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the Fayet-Iliopculos ~-term, and thus restore supersymmetry. After impos-

ing F2R = F3R = F4R = 0, the D-flatness constraints for the singlets and

non-abelian singlets of the model are given by

U(l)~ : (l<1>d2 -1~1212) + (1<1>1212-1~1212) + 2 (1<1>1312-1~1312)

- (l<1>d2 -1~2312) + (1<1>2312-1<pnI2) + ~ L (l(iI2 -1(iI2)
i=1,2

-~L (l(iI2 -1(iI2) + L (l(iI2 -1(iI2) - ~ IF1RI2 = 0(4.33)
i=5,6 i=3,4,7

U(l)~

2 (1<1>1212-1~1212) + 2 (1<1>1312-1~1312) - 2 (1<1>2312-1~2312)
+ (1(112 _1(112) + 21~_12 + ~ (IF1RI2 - IF1RI2) = 0 (4.34)
3 (l<1>d2 -1~1212) - (1<1>1212-1~1212) + 2 (l<1>d2 -1<1>1312)
+3 (1<1>2312-1~2312) + (1<1>2312-1~2312) - ~ (1(112 _1(112)
+~ L (l(iI2 -1(d2) + 31~+12 _1~_12

i=2,5,6
(4.35)

where 9 is the gauge coupling in the effective field theory and M is the reduced

Planck mass M == MPlanck/ v'8if.
Along with D-flatness we must also ensure F-flatness. The set of F-flatness

constraints are obtained by requiring that the superpotential's derivatives van-

ish:

(pt = _ 8W) = 0
• - 8rJi '

(4.36)

where rJi are all the singlet fields that appear in the model. The singlet super-
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potential is given by

Wei>
gv'2
<l>13~-~+ + <1>23<1>12<1>13+ <1>13<1>12<1>23+ <1>23<1>13<1>12+ <1>12<1>23<1>13

+<1>13<1>23<1>12+ <1>12<1>23<1>13+ <1>13<1>12<1>23+ <l>12<1>1:~<1>23

+(12<1>12 + (12<1>12 + ((32 + (42 + (i) <1>13+ ((/ + (/ + (l) <1>13

+~(i5~++ (224)12 + ((52 + (62) <1>23+ <1>12(22 + <1>5((1(1 + (2(2)
- - -

- - ) (- 2 - 2) - (4(5(2 (2(3(5+<I>d(5(5+(6(6 +<1>23 (5 +(6 +<1>4(7(7+ v'2 + v'2 (4.37)

The electroweak Higgs doublets come in pairs and are accommodated in

the Pati-Salam bi-doublets hI, h2' h3. Their mass matrix is

(4.38)

o

In order to keep hI massless we need to impose the condition

- (f
<1>13<1>23- - = 02 . (4.39)

Next we discuss the colour-triplet mass matrix in our string derived Pati-

Salam model. Three pairs of colour-triplets arise in the model from the un-

twisted Neveu-Schwarz sector, and are accommodated in the sextet of the

() h - ( 1 c- 1Pat i-Salam SU 4 . We denote t ese by D, - d, 3,1, -3) + di (3,1, 3) and

Di = di(3, 1, -i)) + di(3, 1, i)· An additional sextet arises in the model from

a twisted sector. A further pair of colour triplets is obtained from the heavy

Higgs states, FIR and FIR, that are used to break the Pati-Salam symmetry,

and must get a VEV of the order of the GUT scale. We denote the colour

triplet of FIR by dlR and the colour triplet of FIR by d~R. At the cubic level
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the colour triplet mass matrix then takes the form

dl d2 d3 dl d2 d3 d4 dIR

de 0 ~I2 ~I3 0 ~12 ~13 0 FIR1

de ~I2 0 ~23 ~12 0 ~23 ~- 02

de <1>13 <1>23 0 <1>13 <1>23 0 0 03

de 0 ~12 ~I3 0 ~I2 ~13 0 0AID = 1

de ~12 0 <1>23 <1>12 0 <1>23 ~+ 02

d~ <1>13 ~23 0 <1>13 ~23 0 0 0

de 0 ~- 0 0 ~+ 0 ~13 04

d~R 0 FIR 0 0 0 0 0 0

60

(4.40)

We have det(MD) f'V ~~3 so in order to keep triplets heavy and hI light we

need {~13, (1) ~23} i o.
Next, we examine the pattern of symmetry breaking. The following 9

parameter solution

(4.41)

satisfies all F-flatness equations while ensuring electroweak breaking, and that

all triplets become massive. The F-flatness equations (4.42)-(4.52) are ob-

tained after imposing ~I = ~2 = ~+ = ~- = (i = Zi = 0, Vi = 3, ... , 7.
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<1>5
2i<P12 <I> 13<I> 23<P23

- v'3 <P23 <1>13

<1>23 <l>23<P23
<1>23

<1>13
<1>13<P23
3<1>23

<1>13
3<1>23<I> 1.,

<1>23

<1>12 <P12<I> 13<I>23<P23
3<1>232<1>13

<1>12
<P12<I> 13<P23
3<1>23<I> 13

<P12
<1>12<1>;
<1>23

(1 if[ J <1>13<1>23

(1 -J2<1>23<P13

(2 f[~J _-_
Z "3 <1>23 <1>13<1>23

(2 J2<P23<1>13 .

(4.42)

(4.43)

(4.44)

(4.45 )

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

The triplet mass matrix determinant is

(4.53)

and thus all triplets are massive.

For this F -flatness solution, the three D-flatness equations (4.33-4.35)

depend on seven parameters, 1~231, 1<1>231,1<1>231,1<1>131,1<1>131,1<1>121,and

!FIR 1= !FIRI· Setting !FIR 1= !FIR 1= Me = 0.02~ the D-flatness equations

can be solved numerically in terms of three parameters. Choosing, for example,

1<P231= 1<P131= ~1<P231= X we can solve numerically for 1<1>131,1<P231and 1<P121.

The numerical solution is shown in figure 4.1 and was found by John Rizos.

In figure 4.2 we plot the mass of the two lightest colour triplets for the one

parameter solution displayed in figure 4.1. From the figure we note that for
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1.4

1<1>'21 .....

1.2

1.0

0.8

0.6

0.4 1<Ii 1-31-----------------~~~~~---------.....................
00 , ......•.

0.12 0.14 0.16 0.18 0.20 x

Figure 4.1: Solution of of the D-ftatness equations for 1<1>131, l<I>d and 1<1>121
as a function of X = 1<1>231 = 1<1>131 = ~I<I>231 (all VEVs are in units of JE,).

singlet VEVs of the order of O.lJE, the lightest triplet mass is of the order of

O.4MGUT' Thus the additional colour triplets are heavy enough to protect the

proton from decaying through dangerous triplet-mediated dimension-5 opera-

tors [55].

Md .
light !

MO~G .

o.~

0:18 . 0220,12
x

Figure 4.2: The ratio of the two lightest colour triplet mass over MGUT as a
function of X = 1<1>231 = 1<1>131 = ~I<I>231 (in units of JE,).



Chapter 5

Classification of Heterotic

String Models

STRING PHENOMENOLOGY's initial direction of research was the con-

struction and analysis of individual models [56, 57, 58, 59, 60, 61]like

the one exhibited in the previous chapter. Individual models have managed to

show that there can indeed exist a relation between string theory and reality,

but the insights they provide do not suffice towards the realisation of a vacua

selection mechanism. Recently, another direction of research is being explored:

the statistical exploration of large classes of vacua [62, 63, 64, 65, 66, 67, 68].

In this chapter we will illustrate the conceptual and calculational tools that

were developed in order to achieve the classification of a class of Pati-Salam

string vacua [69, 70, 71]. In particular, we have developed a combination

of analytical and computational techniques that allow us to identify models

from their low energy properties. The models under examination preserve the

canonical SO(lO)-GUT embedding of the weak hypercharge while the SO(lO)

breaking is achieved by the addition of Wilsonian sectors. These models nec-

essarily contain fractionally charged states [72], however the absence of such

states from the massless spectrum is supported by experimental searches [73].

Apart from the basic phenomenological requirements:

• Four uncompactified dimensions

• N = 1 space-time supersymmetry
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• Three generations of chiral matter

• SO(10) embedding of the hypercharge

we have searched for models that could provide an absence of exotic repre-

sentations at the massless level and mechanisms for the breaking of the gauge

group down to the Standard Model.

5.1 Generating the Class of Vacua

The class of Pati-Salam vacua is generated by defining a fixed basis (4.24) and

varying the generalised GSO phases. N = 1 SUSY is achieved by choosing the

following GGSO phases:

i = 1, ... ,6, m = 1,2, n = 1,2,

leaving 66 independent coefficients,

i,j = 1, ... 6 , A,B,m,n = 1,2.

By Varying the GGSO phases we can generate 2(13*12)/2-12 ~ 7.3 * 1019 distinct

vacua, each of which manifests different low energy properties. Although these

vacua are in principle different to each other it is expected that there exists

some degeneracy at the effective field theory limit.

5.2 Counting the Twisted Matter Spectrum

In the previous chapter we explained how each sector is a linear combination of

b.c vectors. Since we are interested in performing a classification it is practical

to be able to express sectors with common features (i.e they provide observ-

able spinorial states) in a single expression. For this reason we express a set
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of 16 sectors as B~qrs' where p, q, r, S are coefficients of some of the b.c vectors

constituting a sector which take values 0 or 1, and i counts the number of

these expressions. B~qrs yield states which manifest as spinorial and vectorial

representations charged under the observable, hidden, or both gauge groups.

The counting of spinorial and vectorial representations is realised by utilising

the so-called projectors. Each sector B~qrs corresponds to a projec-

tor P;qrs = 0, 1 which is an entity expressed in terms of GGSO coefficients

and determines the survival or not of a sector. The projectors are nothing

more than an alternative way of expressing the GGSO projection under spe-

cific conditions. The relation

makes it clear that the survival of a specific state characterised by Fa, with

respect to a sector b., depends on the product biFa and the GGSO coefficient

C (~)*. If we want to perform, for example, GGSO projections on the states
•

of a sector 0:' for which 60 = -1, then the previous relation becomes

In the case that the sectors 0:' and bi do not have any common elements, i.e

{O:'} n {bi} = 0 => biFa = 0, then the survival condition becomes

The former relation naturally leads to the so-called projector, the value of

which determines whether a state will be truncated or not from the spectrum:

1 (0:')*P = -[1- cl.
2 bi

Using the appropriate formalism the projectors can be expressed as a sys-

tem of linear equations with p,q,r and s as unknowns, which makes their

computational manipulation more feasible. The solutions of a specific system

of equations yield the different combinations of p,q,r,s for which sectors Sur-



5.2. Counting the Twisted Matter Spectrum 66

vive the GGSO projections. This formalism is more suitable and much more

flexible for a computer-oriented analysis. In order to achieve the transition to

this formalism, the following notation is introduced:

(5.2)

The new expression implies properties which can be easily derived after per-

forming standard algebraic methods involving the GGSO coefficients.

(5.3)

(5.4)

5.2.1 Observable Spinorial States, Representations and

Projectors

The chiral spinorial representations of the observable SO( 6) x SO( 4) arise from

the sectors

B~~s 8 + bI + pe« + qe4 + re5 + se6

{-Iji", Xl2, (1 - p)y3'f/,pW3W3, (1 - q)y4y\ qw4w\
(1 - r)y5y5, rw5w5, (1- s)y6y6, SW6W6, r,l, 'l]j1..5} (5.5)

B~~~s 8+ b2 + pel + qez + re5 + se6

B~~~s 8+ b3+ pel + qe2 + re3 + se4 ,

where bs = bI + b2 + X = 1 + 8 + bI + b2 + 2:~=Ie, + 2:~=1Zn. Provided

that we do not have any enhancements, these states fall into representations

of SO(6) x 80(4) x U(l)i or equivalently into representations of 8U(4) x

8U(2h x 8U(2)R x U(1)i : (4,2,1), (4,1,2), (4,2,1), (4,1,2). In order to

determine the particle content of each different representation we utilised the

following normalisations for the hyperchage and the electromagnetic charge:

y 1 1
3(Ql + Q2 + Q3) + 2(Q4 + Q5)

1
Y + 2(Q4 - Q5) ,

(5.6)

(5.7)Qem
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where the Qi charges of a state arise due to Wi for i = 1, ... ,5.

The following table summarises the eigenvalues of the electroweak SU(2) xU(l)

Cartan generators, with respect to states which fall into the chiral observable

Pati-Salam representations:

Representation 1jj 1,2,3 1jj4,5 Y o.;
(+,+,+) (+,+) 1 1

(4,1,2) (+,+,+) (-,-) 0 0

(+,-,-) (+,+) 1/3 1/3

(+,-,-) (-,-) -2/3 -2/3

(-,-,-) (-,-) -1 -1

(4,1,2) (-,-,-) (+,+) 0 0

(+,+,-) (-, -) -1/3 -1/3

(+,+,-) (+,+) 2/3 2/3

(4,2,1) (+,+,+) (+,-) 1/2 1,0

(+,-,-) (+,-) -1/6 1/3,-2/3

(4,2,1) (-,-,-) (+,-) -1/2 -1,0

(+,+,-) (+,-) 1/6 -1/3,2/3

Families and anti-families in the context of these models can be formed

only if we combine the surviving states of two different sectors:

16 = (4,2,1) + (4, 1,2) = N4L + N4R

f6 = (4,1,2) + (4,2,1) = N4R + N4L . (5.8)

A phenomenologically viable model must, of course, consist of only 3 families:

(5.9)

In order to be able to distinguish between N4L, N4L, N4R and N4R, one has

to define Representation Operators that will determine the representations in

which the states of each observable sector will fall. The operators X;~~s(4) = ±1

that define the SU(4) chirality (4 or 4) for B~qrs , B;qrs and B;qrs respectively
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are:

XISU(4)
pqrs

X2SU(4)
pqrs

X3SU(4)
pqrs

(5.10)

The representation operators x~~~;2)L/R = ±1 determine the SU(2h/R rep-

resentations ((1,2) or (2,1)) for B~qrs , B;qrs and B~qrs respectively. In the

following expressions V; = S + b, + et + X.

c( B~qrs )
VI + (1 - p)e3 + (1 - q)e4 + (1 - r)e5 + (1 - s)e6

c(V2 + (1 - p)eI + (1 - ~:~~ (1 - r)e5 + (1 _ s)eJ (5.11)

c( B~qrs )
V3 + (1 - p)el + (1 - q)e2 + (1 - r)e3 + (1 - s)e4

ISU(2)L/R
Xpqrs

X3SU(2)L/R
pqrs

The explicit expressions for the 48 projectors related to the observable

chiral matter are:

p(1)
pqrs

p(2)
pqrs

p(3)
pqrs

~(1- c(B~i~J) . (1- c(B~!~J)
'-4

1 (l-C( ~:))) . (l-C( ~~)))
Bpqrs Bpqrs

~ (l-C( ~;»)). (l-C( ~~»))4 Bpqrs Bpqrs

.~(1- c( ~~))) . (1- c( ~;)))
4 Bpqrs Bpqrs

~ (1 - C ( ~~) )) • (1 - C ( ~g) ))
4 Bpqrs Bpqrs

.~(1- c( ~~))) . (1- c( ~;)))
4 Bpqrs Bpqrs

(5.12)

The analytic expressions for each different projector P~q;~3respectively, are
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given in a matrix form ~iWi = yi:

(elle3) (elle4) (elle5) (elle6) p (el Ibd

(e2Ie3) (c2Ic4) (e21e5) (e21e6 ) q (e2 Ibl )

(zlle3) (zlle4) (zlle5) (zlle6) r (Zl Ibd

(Z21e:l) (z2Ie4) (z2Ie5) (z21e6 ) s (z2Ibl)

(e3led (e3Ie2) (c3Ie5) (e31e6 ) P (e3Ib2)

(e4led (e41e2 ) (e4Ie5) (e4Ie6) q (e41b2 )
(5.13)

(ZI led (ZI le2) (zlle5) (zlle6) r (Zl Ib2)

(Z2 lei) (Z2 Ie2) (z2Ie5) (z21e6 ) s (z21b2 )

(e5led (e51e2 ) (e51e3 ) (e5Ie4) p (e5!b3)

(c6led (e61e2 ) (e61e3 ) (e61e4 ) q (e61b3 )

(Zl lei) (zlle2) (zlle3) (zlle4) r (zllb3)

(z2led (z2!e2 ) (z21e3 ) (Z2 h) S (z21b3 )

5.2.2 Hidden Matter, Representations and Projectors

Although hidden matter representations can be used in order to further con-

strain the space of vacua we did not consider them in this study. Nevertheless,

utilising the hidden spinorial sectors and projectors can be used in further

studies, in order to distinguish between models which seem to be equivalent

at the effective field theory limit.

Hidden matter states come from 96 sectors, 48 of which yield «2,1),(2,1))

representations of SO(4)1 x SO(4h = SU(2h x SU(2h x SU(2h x SU(2k

B~~~s B~~~s + x + Zl = S + bl + pe3 + qe.; + re5 + se6 + x + ZI

{1jJIl, Xl2, (1 - p)y3rp,pw3c;}, (1 - q)y4y4, qw4c;;4,

(1 - r )y5y5, rw5Ci, (1 - s)y6y6, SW6C;;6, i]23, 4)1..4} (5.14)

B(5)
pqrs B~~~s + x + Zl

(3)
Bpqrs + x + ZlB(6)

pqrs
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where T = 1+ S + L:~=1 e, + Zl + Z2 = {1]123, 1}J12345}. The expressions for

the projectors corresponding to B~~~5~6) are given below.

p(4)
pqrs

p(5)
pqrs

p(6)
pqrs

~ (I-C( ~~))) . (I-C( ~~)))
8 Bpqrs Bpqrs

·(1 - c( ~~)))
Bpqrs

-8
1 (I-C( ~:))) . (I-C( ~i)))

Bpqrs Bpqrs

· (1 - C ( ~;) ))
Bpqrs

~ (1 - C(B~~~J). (1 - C(B~i~J)
·(1 - c( ~~))) .

Bpqrs

Their corresponding analytic expressions are:

(

(el h) (el !e4) (e1 !e5) (el !e6) )

(e2Ie3) (e2Ie4) (e2!e5) (e2!e6)

(z2Ie3) (Z2!C4) (z2!e5) (z2!e6)

(

(e3!el) (e3!e2) (e3Ie5)

(e4!e,) (e4Ie2) (e4!e5)

(Z2!c1) (z2!e2) (z2!e5)

(

(e5!ed (e5!e2) (e5!e3)

(e6 !e,) (e6!e2 ) (e6 !e3)

(Z2 led (Z2 le2 ) (z2Ie3)

(e3!e6) )
(e4!e6)

(Z2!e6 )

(e5!e4) )
(e6!e4)

(Z2/e4 )

(5.15)

p

q

(

(e1Ib1+x+Zd)
= (e2Ibl+x+Zl)

(Z2 !b1 + X + Zl )
r

s

p

q

(

(e1 !b2 + x + zd )
= (e2!b2 + x + zd (5.16)

(Z2 !b2 + X + Z1 )
r

s

p

q

(

(e1 !b3 + x + zd )
= (e2!b3+x+zd .

(z2!b3 + X + zd
r

s
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The remaining 48 sectors are given by

B~~~s B~~~s+ X + Z2 = S + bs + pe3 + qe4 + re5 + se6 + X + Z2

{l/'I\ X12, (1 - p)y3f/,pw3(;i, (1 - q)y4f/, qw\;;4,

(1 - r)y5fl, rw5(i;5, (1 - s)y6fl, sw6(i;6, fj23, iF·8} (5.17)

B(8)
pqrs

B(2) + .+pqrs X Z2

B(3) + +pqrs X Z2B(g)
pqrs

The states of B~~~8;g) fall into the spinorial 8 and antispinorial 8 representations

of SO(8). The 48 projectors P;':'';'s corresponding to B;:~:;',s are the following:

p(7) _
pqrs -

(5.18)

p(8)
pqrs

peg)
pqrs

The analytic expressions for P;":'';'s are given below:

(el le3) (elle4) (el le5) (elle6) p (el Ibl + x + Z2)

(e2 le3) (e21e4 ) (e21e5 ) (e2Ie6) q (e2lbl + x + Z2)

(zlle3) (zlle4) (Zl le5) (zlle6) r (zllbl +X+Z2)

(a le3) (a le4) (oh) (0 /e6) s (a /bi + x + Z2)

(e3Iel) (e3 le2 ) (e3Ie5) (e3Ie6) P (el Ib2 + x + Z2)

(e4led (e4Ie2) (e4Ie5) (e4Ie6) q (e2 Ib2 + X + Z2 )
(5.19)

(ZI led (Zl le2) (zlle5) (zlle6) r (Zl Ib2 + X + Z2)

(a leI) (0 le2) (a le5) (0 le6) s (0 Ib2 + X + Z2 )
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(cs Itl ) (CS 1£'2) (e5Ie:3 ) (e5Ie4) p (el Ib3 + X + Z2)

(61£'1) (e6 h) (e6 h) (e61e4 ) q (e21b3 + x + Z2)

(':1 Je'l ) (':1 h) (ZI h) (zlle4) r (ZI Ib:3+ x + Z2)

(0 leI) (0 le2) (0 le3) (0 le4) s (0 Ib3 + X + Z2 )

5.2.3 Exotic States, Representations and Projectors

Spinorial exotics are obtained from 192 sectors.

B~~~ B~~~s + 0 = S + bl + pex + qes + re5 + se6 + 0

{I/'!", X12, (1 - p)y3rl, pw3W3, (1_ q)y4y4, qw4w4,

(1 - r)y5f/, rw5w5, (1 - s)y6r/, sw6W6, ill, 1jJ1..3, ¢1..2} (5.20)

B(2)
pqrs + 0

(3)
Bpqrs + 0

The expressions for BI3.14,15 are given by: BIO,11,12 + ZI' The states of BIO,11,12p.q.r.s 'P,q,T,8 p,Q,T,S

fall into the representations of SU(4)obs x SU(2h x SU(2h while the states

of B~~.~~~15 fall into the representations of SU(4)obs x SU(2h x SU(2k The

representations and observable charges of these states are given below:
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Represent ation 01,2,3 ~1,2 or ~3,4 Y a;
(+.+.+) (+,+) 1/2 1/2

(4.1.2) (+.+.+) (-,-) 1/2 1/2
(+,-,-) (+,+) -1/6 -1/6
(+,-,-) (-,-) -1/6 -1/6
(-,-,-) (-,-) -1/2 -1/2

(4.1.2) (-.-,-) (+,+) -1/2 -1/2
(+.+,-) (-,-) 1/6 1/6
(+.+.-) (+,+) 1/6 1/6

(4.2.1) (+,+,+) (+,-) 1/2 1/2
(+,-,-) (+,-) -1/6 -1/6

(4.2.1) (-,-,-) (+,-) -1/2 -1/2
(+,+,-) (+,-) 1/6 1/6

We can therefore summarise all the previous results by saying that sectors

coming from B;~q.~~~12.13,14,15, give rise to (4, 1, 1) and (4, 1,1) repre-

sentations under the Pati-Salarn gauge group, with fractional elec-

tric charges ±~ and ±~.

The projectors corresponding to B;~,~~~12 are:

(5.21)

p(12)
pqrs

We can get the expressions for pI3,14,15 if we substitute BIO,11,12 ~ Bll,12,13

and Q + '::1 ~ 0:. The previous projectors can be expressed in matrix form:
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(e51e2 )

(e61e2 )

(z21e2 )

s

(ellbl +0)

(e2lbl + 0)

(Zl Ibl+ 0)

(Z2Ibl+0)

(z2Ie3) (z2Ie4) (z2Ie5) (z2Ie6)

(0+zlle3) (0+zlle4) (0+zlle5) (0+zlle6)

p

q

r

(e3led (e3 le2) (e31e5 ) (e3Ie6) P (ellb2 +0)

(e4led (e41e2 ) (e41e5 ) (e4Ie6) q (e21b2 + 0)
(5.22)

(z2led (z21e2 ) (Z2 le5) (z21e6 ) r (Zl Ib2 + 0)

(0 + zl/ed (0 + zlle2) (0+zlle5) (0 + zlle6) s (z21b2 + 0)

(e5Iel)

(e6led

(z2led

(e51e3 )

(e61e3 )

(z21e3 )

(e5Ie4)

(e61e4 )

(z21e4 )

p

q

r

s

(ellb3 + 0)

(e21b3 + 0)

(zllb3 + 0)

(z2Ib3+0)

We can get the analytical expressions for p13,14,15 if we sub-

stitute 0+ Zl ___.o. Then we have an additional 96 sectors producing exotics

in the spinorial representations.

B~~~~ B~~~s+ Cl: + X = S + bl + pe3 + qe4 + re5 + se6 + 0 + X

hll', Xl2, (1 - p)y3r/,pW\i)3, (1 - q)y4rl, qW\i)4,

(1- r)y5jl, rw5w5, (1- s)y6rl, SW6W6, f?, fj3, ijj4..5, <1>1..215.23)

B(l7)
pqrs

B(l8)
pqrs

B(2)
pqr s + 0 + X

B(3)
pqr s + Cl: + X

S + b2 + pel + qe2 + re5 + se6 + 0 + X

S + b3 + pel + qe2 + re3 + se4 + 0 + X .

The expressions for Bl9,20,2l are given by Bl6,l7,18 + Z . The states of Bl6,l7,l8p.q.r,s p,q,r,s 1 p,q,r,s

fall into the representations of SU(2h x SU(2)R x SU(2)l x SU(2h, while

the states of the sectors coming from B~~q,~:/8+ Zl fall into representations

of SU(2)L x SU(2)R x SU(2h x SU(2k The representations and observable

charges of these states are given below:
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Representation ijj4,5 (/;1,2 or (/;3,4 y o.;
(+,+) (+,+) 1/2 1/2

((1,2), (1,2)) (+,+) (-,-) 1/2 1/2
(-,-) (+,+) -1/2 -1/2
(-,-) (-,-) -1/2 -1/2

((1,2), (2, 1)) (+,+) (+,-) 1/2 1/2
(-,-) (+,-) -1/2 -1/2

((2,1), (1, 2)) (+,-) (+,+) 0 -1/2,1/2
(+,-) (-,-) 0 -1/2,1/2

I ((2,1), (2, 1)) 1(+, -) I (+,-) I 0 1-1/2,1/21
The "mixed" states from BI6,17,18,19,20,21 give rise to (1 2.1) and (1.1 2) rep-p,q,r,8 , . ,

resentations under the Pati-Salarn gauge group with fractional elec-

tric charges ±l. The projectors corresponding to B16,17,18 are2 p.q.r,«

p(16)
pqrs

p(17) =pqrs

p(18) =pqrs

In order to get the expressions for P~,~',~~21 we have to substitute
BI6,17,18 --+ B19,20,21

p,q,T,8 p,q,T,S .

(elle3) (elle4) (elle5)

(e2Ie3) (e2Ie4) (e2Ies)

(z2Ie3) (Z2 ie4) (z2Ies)

(elle6) 1
(e21e6 )

(z21e6 )

p

q

T (

(el Ibl + a + x) 1
= (e2Ibl+a+x)

(z21b1 + Q + X)
s

(

(e3Ie1) (e3Ie2) (e3Ies)

(e4led (e4Ie2) (e4Ies)

(z2led (z2Ie2) (z2Ies)

(e3I
e6) 1

(e41e6 )

(z2Ie6)

p

q

T (

(el Ib2 + 0' + X) 1
= (e21~ + Q + X) (5.25)

(z21b2 + Q + X)
s
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(

(e5ieI)

(e6led

(z2led

(e5Ie2) (e5Ie3)

(e6 ie2) (e6Ie3)

(z2Ie2) (z2Ie3)

(e5Ie4) 1
(e6 le4)

(z2Ie4)

p

q

r (

(e1 Ib3 + Q + x) 1
= (e2 Ib3 + Q + x) .

(z21b3 + Q + x)
s

We can get the analytical expressions for p19,20,21 if we sub-

stitute a + X - a + X + Zl in the previous expressions.

5.2.4 Vectorial States, Representations and Projectors

The 48 sectors that provide vectorial states are

B(l)pqrs + X 8+ b1 + pe3 + qe4 + re5 + se6 + X

h'i', X12, (1 - p )y3y3, pw3(~;3, (1 _ q)y4y4, qw4w4,

(1 - r)y5y5, rw5w5, (1 - S)y6y6, SW6w6, if, ij3 (5.26)

B(2)pqrs + X
B(3)

pqrs + X

Each surviving sector can potentially give rise to states which belong to ob-

servable or hidden 80(2N) vectorial representations:

• {~123}IR)~~r8' i = 1,2,3- Vectorial representation of 80(6),

• {~45}IR)1~s, i = 1,2,3- Vectorial representation of 80(4),

• {¢12}IR)~rs, i = 1,2,3- Vectorial representation of 80(4),

• {¢34}IR)~r8' i = 1,2,3- Vectorial representation of 80(4),

• {¢5 ..8}IR)~~s, i = 1,2,3- Vectorial representation of 80(8),
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where IR)~~rs is the degenerate Ramond vacuum of the B~~rs + X sector, and

i = 1. 2. 3,

The corresponding projectors are:

p(i)(.jj123) =
pqrs

p( i)( 4>5678)
pqrs

1 ( (e2i-1) ) ( (e2i) )- 1- c C) • 1- c C)
4 Bp~rs + x Bp~rs + x

1 ( ( Zl )) ( ( Z2 )),- 1- c (') . 1- c (')
4 Bp~rs + x Bp~rs + x

.~(1- c( (i)a ))
2 Bpqrs + x

1 ( (e2i-1)) ( (e2i))- 1- C (') , 1- C (')
4 Bp~rs + x Bp~rs + x

1 ( ( Zl ) ) ( ( Z2 ) ),- 1- C ( ') . 1 - c (')
4 Bp~rs + x B~rs + x

'~(l+C( (i)a ))
2 Bpqrs + x

1 ( (e2i-1)) ( (e2i))- 1 - c () , 1 - C ()
4 Bp~rs + x Bp~rs + x

1 ( ( Zl ) ) ( ( Z2 ) ).- 1+ c (') , 1 - C (')
4 B;qrs + x Bp~rs + x

.~ (1+ c( (i)a ))
2 Bpqrs + x

(5.27)

1 ( (e2i-1)) ( (e2i))- 1- C (i) , 1- C (i)
4 Bpqrs + x Bpqrs + x

1 ( ( Zl ) ) ( ( Z2 ) ),- 1+ C (') , 1- C ()
4 Bp~r8 + x Bp~rs + x

'~(l-C( (i)a ))2 Bpqrs + x

1 ( (e2i-1) ) ( (e2i) )- 1- C ( ') • 1- C ( ')
4 Bp~s + x Bp~rs + x

1 ( ( Zl ) ) ( ( Z2 ) ),- 1-c Cl ' l+c C)
4 Bp~rs + x Bp~rs + x

,~(1- c( (i)a ))
2 Bpqrs + x
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The explicit analytic expressions corresponding to B~~r8+ X, i = 1,2,3 are:

(elle3) (elle4) (el le5) (el le6)

(e2Ie3) (e2 le4) (e2Ie5) (e2 le6)
~(I) = (ZI le3) (Zl le4) (Zl le5) (Zl le6)v

(z21e3 ) (Z2 le4) (z21e5 ) (z21e6 )

(ale3) (a le4) (a le5) (a le6)

(el I bl + X ) (eilbi + x)

(e2 I bl + X ) (e2lbI + x)
(1) _

(ZI I bl + X )
yiI) _ (ZI Ibi + x)y,z;123 - 1/145 -

(Z2 I bl + X ) (z2lbl + x)

(a I bi + X ) 1 + (a Ibi + x)

(ellbl + x) (el Ibl + x)

(e2lbl + x) (e2lbl + x)
ySl) = 1+(Zllbl+x) ySl) _ 1+ (Zl Ibl + x)<1>12 <1>34 -

(z2lbl + x) (z2lbl + x)

1+ (a Ibl + x) (albl+x)

(eilbi + x)

(e2lbl + x)

(Zl Ibl + x)

1+ (z2lbI + x)

Ca Ibl + x)

(5.28)
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(e3led (e31e2 ) (e31e5 ) (e3 le6)

(e4led (e4/e2 ) (e4/e5) (e4/e6 )
~(2) (Zl led (Zl le2) (zlle5) (Zl les)v

(z2Iel) (z21e2 ) (z21e5 ) (z21e6 )

(a let) (a le4) (ales) (a le6)

(e3 I b2 + X ) (e31b2 + x)

(e4 I b2 + X ) (e4Ib2+x)
y(2) _ (Zl I b2 + X )

y~2) _ (zllb2 + x)1;,123 - 1/J45 -

( Z2 I b2 + X ) (z2Ib2+x)

(alb2+x) 1+ (a Ib2+ x)

(e31b2 + x) (e3Ib2+x)

(e41~ + x) (e4Ib2+x)
y(2) _ 1+(Zllb2+x) yS;l = 1+ (Zl Ib2 + x)ci>12 - <P

(z21~ + x) (z21b2 + x)

l+(al~+x) (a Ib2+ x)

(e3Ib2+x)

(e41~ + x)

(zllb2 + x)

1+ (z21~ + x)

(al~l+x)

(5.29)
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(es leI) (eSle2 ) (eSle3 ) (eSle4 )

(e6led (e61e2 ) (e6Ie3) (e6Ie4)
~(2) (Zl leI) (Zl le2) (Zl h) (zlle4)v

(z2led (z2Ie2) (z2Ie3) (z21e4 )

(aled (a le4) (a ies) (a le6)

(es I b3 + X ) (es/b3+x)

(e6 I b3 + X ) (e6Ib3+x)
(3) _

(ZI I bs + X )
yi3) _ (Zl Ib3 + x)Y~123 - 1/145 -

(Z2Ib3+x) (z21b3 + x)
(alb3+x) 1+ (a Ib3 + x)

(eslb3 + x) (eslb3 + x)

(e6Ib3+x) (e61b3 + x)
y5~; = 1+(Zllb3+x) yS3) _

1+ (ZI Ib3 + x)<I> <1>34 -

(z21b3 + x) (z21b3 + x)

1+ (a Ib3 + x) (a Ib3 + x)

(eslb3 + x)

(e61b3 + x)

(zllb3 + x)

1+ (z21b3 + x)

(alb3+x)
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5.3 The Four-Dimensional Gauge Group

The untwisted spectrum is common in all the Pati-Salam vacua that we clas-

sify, and the models differ by the states that arise in the twisted sectors. The

NS sector gives rise to the gauge group

SO(6) x SO(4) x U(1)3 x 80(4h x SO(4h x SO(8), (5.30)

which can equivalently be written as :

Hidden

SO(6)ob8 x SU(2h X SU(2)R x U(lh x U(1h x U(lh

SU(2h x SU(2h x SU(2h x SU(2)4 x SO(8)hid. (5.31)

Observable

In addition to NS sector, gauge bosons may arise from other sectors:

a,

}
. (5.32)

a+x+zl

When the gauge bosons of a sector transform under a subgroup of the NS

gauge group, the specific gauge group will undergo enhancement. In Appendix

B we present the types of enhancements which can potentially occur from dif-

ferent sectors, assuming that only one set of conditions is satisfied in each dis-

tinct case. We have cases where the observable, hidden, or both gauge groups

are enlarged. An enlargement of the observable gauge group, for example,

implies that chiral matter would be obtained from the 6 and 6 of SU(6). This

would result in losing the 80(10) embedding of the hypercharge, and would

make it impossible to form a complete SO(10) family from a net number of

representations. "Mixed enhancements" would be the worst case scenario since

they would unify observable and hidden states under the same representations,

resulting in phenomenologically unacceptable consequences which contradict

all the current low energy data. Due to simplicity, computational power limi-

tations, and acceptable phenomenology, we restricted the class of vacua to the

cases where we do not have any enhancements.
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5.4 Results

Using the algebraic expressions presented in the previous sections we can anal-

yse the entire massless spectrum for a given choice of GGSO projection co-

efficients that completely specify a specific string model. These formulae are

inserted into a computer program which is used to scan the space of string

vacua produced by random generation of the one-loop GGSO projection coef-

ficients. The number of possible configurations is 251 '" 1015, which is too large

for a complete classification. For this reason a random generation algorithm is

utilised, and the characteristics of the model for each set of random GGSO pro-

jection coefficients are extracted. This procedure was followed and produced

a three generation Pati-Salam string model that does not contain any exotic

massless states as described in the previous chapter. We use this methodology

to classify the Pati-Salam free fermionic string models with respect to some

phenomenological criteria. The observable sector of a heterotic string Pati-

Salam model is characterized by 9 integers (ng, kL, kR, n6, nh, n4, n4, n2L, n2R),

where

n4L - n4L = n4R - n4R = ng = # of generations

n4L = kL = # of non chiralleft pairs

n4R = kR = # of non chiral right pairs

n6 = # of(6, 1,1)

nh = # of (1,2,2)

n4 = # of (4, 1, 1) (exotic)

n4 = # of (4,1,1) (exotic)

n2L = # of (1,2,1) (exotic)

n2R = # of (1,1,2) (exotic) .

Using the methodology outlined in Section 5.2 we obtain analytic formulae

for all these quantities. The spectrum of a viable Pati-Salam heterotic string
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model should have:

ng = 3 three chiral generations,

kL ~ 0 heavy mass can be generated for non chiral pairs,

k« ~ 1 at least one Higgs pair to break the PS symmetry,

n6 ~ 1 at least one required for missing partner mechanism ,

nh ~ 1 at least one light Higgs bi-doublet,

n4 = n4 ~ 0 heavy mass can be generated for vector-like exotics,

n2L = 0 mod 2 heavy mass can be generated for vector-like exotics,

n2R = 0 mod 2 heavy mass can be generated for vector-like exotics.

We next explore the space of Pati-Salam free fermionic heterotic string

vacua. We perform a statistical sampling in a space of 1011 models out of

the total of 251. Using a computer FORTRAN95 program running on a sin-

gle node of the Theoretical Physics Division of University of Ioannina, HPC

cluster, we were able to obtain the relative data within a period of one week.

This corresponds to examining approximately 1/20000 models in this class.

Increasing the sample by one order of magnitude is within the cluster capabil-

ities, however, as already checked by using a 109 and a lOlD random sample.

The results obtained are similar to the ones presented below. Some of the

results are presented in Figures 5.1-5.6 and Table 1.

In Figure 5.1 the number of models versus the number of generations is

displayed. Of note in Figure 5.1 is the absence of any models with 7, 9, 11,

13, 14 and 15 generations. This may indicate that these cases are completely

forbidden or are extremely unlikely cases in the space of all possibilities.

In Figure 5.2 we display a three-dimensional plot, the number of models

versus the number of generations and the total number of exotic fractionally

charged states. As seen from the figure, the distribution exhibits a peak for

models with zero chiral generations and a non-vanishing number of exotic

multiplets, and decreases with increasing and decreasing number of exotics.

Moreover, we find no correlation between the absence of fractionally charged

exotic states and the number of generations. We can have exophobic models
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Figure 5.1: Number of models versus number of generations (ng) in a random
sample of 1011 GGSO configurations.

for all values of ng.

However, in the case of models without any exotic multiplets, we observe

the following relation between the number of chiral generations (ng), the num-

ber of Higgs bi-doublets (nh) and sextets (n6):

ng ( mod 2 ) nh ( mod 2 ) n6 ( mod 2 ) (5.33)

As noted from Table C.l, found in Appendix C, the number of Higgs bi-

doublets and sextets is indeed odd or even depending on the number of gener-

ations. Another important phenomenological point to note from table C.l is

the existence of exophobic models with a varying number of Higgs bi-doublet

representations.

In Figure 5.3 we display the multiplicities of models versus the number

of generations in the case of exotic-free models. As seen from the figure the

number of models decreases with increasing number of generations. The same

exclusion of models with some number of generations noted in Figure 5.1 is

also seen in Figure 5.2 for the same cases.

Figure 5.4 displays the total number of three generation models versus the

number of exotic fractionally charged states in a given three generation modeL
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16
90

100

Figure 5.2: Number of models versus number of generations (ng) and total
number of exotic multiplets in a random sample of 1011GGSO configurations.

As seen from the figure the total number of exophobic three generation models

is slightly less than 106, which is roughly 1/105 of the entire sample.
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Figure 5.3: Number of exotic free models versus number of generations (ng) in
a random sample of 1011 GGSO configurations.

In Figure 5.5 we display in a three dimensional plot, the total num-

ber of three generation models versus the number of exotic 8U (4)

4-plets and number of exotic 80(4) 2L and 2R doublets. In Fig-

ure 5.6 we display in a three dimensional plot the number of three genera-

tion models versus the number of additional non-chiral representations in the

(4,1, 2R) EB(4,1, 2R), (4, 2L, 1)EB(4,2L, 1), and additional (6,1,1) mul-

tiplets of 8U(4) x 8U(2)£ x 8U(2)R. Finally, in Table 5.1 we tabulate the

number of models with sequential imposition of phenomenological constraints.

The total number of models in the sample is 1011. We first impose that there

is no enhancement of the four dimensional gauge symmetry. Roughly 80%

percent of the models satisfy this criteria. Next, we impose that the genera-

tion form complete families. In other words, there is no chiral representation

of the Pati-Salam gauge group that is not accompanied by the representation

that completes it to a representation of 80(10). So the entire chiral spec-

trum i contained in complete representations of 80(10) decomposed under

the Pati-Salam ubgroup. Roughly 1/5 of the previous set satisfy this crite-

rion. The restriction to three chiral generations further reduces the number

of model b two orders of magnitude. Imposing the existence of heavy string
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Figure 5.4: Number of 3-generation models versus total number of exotic mul-
tiplets in a random sample of 1011 GGSO configurations.

states to break the Pati-Salam gauge symmetry to the Standard Model gauge

group leads to a reduction by another order of magnitude. The requirement of

Standard Model Higgs doublets does not lead to a further reduction because

as noted above in (5.33), the total number of Higgs bi-doublets is equal to

the number of chiral generations modulo 2. Therefore, the existence of three

chiral generations necessarily implies a non-zero number of Higgs bi-doublets

in the spectrum. Finally, imposing the absence of massless exotics reduces the

number of models by further two orders of magnitude. Therefore, the reduc-

tion from the initial sample is by roughly six orders of magnitude, i. e one in

every 106 models satisfy all of these constraints. Given that the total number

of vacua in the space of models scanned is of the order of 1015, we expect that

109 of the models satisfy these criteria, which leaves a substantial number to

accommodate further phenomenological constraints. For example, requiring

minimal number of PS breaking Higgs (kL = 0, kR = 1) truncates further by

a factor of 4 the number of models as seen in line (g). Furthermore, approxi-

mately 1/4 of these models have also a minimal Standard Model Higgs sector

with (nh = 1).
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Figure 5.5: Number of 3-generation models versus number of exotic SU(4) mul-
tiplets and total number of L plus R exotic SU(2) doublets in a random sample
of lOll GGSO configurations. We note that the exophobic cases correspond to
the upper left column.
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~"

Figure 5.6: Number of 3-generation models versus number of additional non-
chiralleft and right pairs (kL' kR) and additional (6,1,1) SU(4) reps (n6) in
a random sample of 1011 GGSO configurations. We note that accommodating
the heavy Higgs states necessitates kR = 1. By (5.33) the minimal case in
realistic models also requires n6 = 1.
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Constraint # of models Probability Estimated # of
in sample I models in class

None 100000000000 1 2.25 X 1015

(a) + No gauge group 78977078333 7.90 x 10-1 1.78 X 1015enhancements
(b) + Complete families 22497003372 2.25 x 10-1 5.07 X 1014
(c) + 3 generations 298140621 2.98 x 10 -;1 6.71 X 1012
(d) + PS breaking Higgs 23694017 2.37 x 10-4 5.34 X 1011
(e) + SM breaking Higgs 19191088 1.92 x 10 ·4 4.32 X 1011
(f) + No massless exotics 121669 1.22 x 10 ·6 2.74 X 1011
(g) + Minimal PS Higgs 31804 3.18 x 10 ·7 7.16 X 108

Table 5.1: Pati-8alam models statistics with respect to phenomenological con-
straints imposed on massless spectrum. Constraints in second column act addi-
tionally. Omitting constraint (e) does not change the results of (f), (g) since all
massless exotic free models have an odd number of pairs of 8M Higgs doublets.



Chapter 6

Conclusions

INTHIS chapter we will give a short summary of the issues discussed in

this thesis, and finally give some suggestions for further research.

We started by giving an overview of the Standard Model and theories of

unification such as supersymmetry, extra dimensions and grand unification

in Chapter 1. In the same chapter we briefly described how string theory

attempts to explain physical reality under a single theoretical framework. An

introduction to the basics of the bosonic string and superstring, including

quantisation and compactification, were given in Chapter 2. In Chapter 3 the

E8 x E8 heterotic string and orbifold compactifications were introduced.

String theory enables the construction of phenomenological models that

provide a self-consistent framework for the exploration of gauge interactions.

The free fermionic compactifications of the E8 x E8 heterotic string, which

were described in Chapter 4, have provided some of the most realistic models

to date, providing insights on gauge coupling unification, proton stability, top

quark mass etc. The work conducted for the purpose of this thesis was con-

centrated in providing insights as to why we have not yet been able to observe

any particles in exotic representations. By exploring a large class of heterotic

Pati-Salam vacua in the way described in Chapter 5 we were able to show

that such fractionally charged states might as well not exist at low energies.

Furthermore, we have shown that there possibly exists a plethora of heterotic

Pati-Salam vacua which provide both plausible phenomenology and an ab-

sence of massless exotic representations at the same time. This was achieved
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by utilising analytical and computational tools that distinguished models ac-

cording to their chiral content. The distinction between different vacua was

done by counting the observable and exotic chiral representations. Although

these vacua are in principle different to each other, it is expected that there

exists some degeneracy at the effective field theory limit. This degeneracy

can be reduced if we also take into consideration the hidden representations

of each model. It would also be interesting to see whether such "exophobic"

vacua exist in Pati-Salam models with a different configuration of boundary

condition vectors.

One such "exotic-free" model is exhibited in Chapter 4. In the same chapter

we gave the ABK consistency rules, its spectrum and superpotential. The

specific model combines a number of virtues, such as GUT and electroweak

symmetry breaking, acquisition of heavy mass by coloured gauge fields which

may mediate proton decay, an absence of massless exotic representations, and

the existence of a trilinear top quark Yukawa coupling. Its phenomenology

is studied and constrained by the analysis of supersymmetric flat directions.

The numerical solution of the F- and D-flat constraints was affected by the

existence of an anomalous U(l), which is a generic feature of free fermionic

models. Possible future directions regarding the phenomenology of isolated

"exotic-free" models would be to find higher-order terms in the superpotential

and a systematic classification of the F- and D-flat solutions.
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Appendix A

Spectrum and Superpotential

Untwisted sextet fields:

Dl = (6,1,1) 1, 0, 0 ,X12

D2 = (6,1,1) 0, 1, 0 ,X34

D3 = (6,1,1) 1, 0, 0 ,X56

151 = (6,1,1)_1, 0, 0 , X12

152 = (6,1,1) 0, -1, 0 , X34

153 = (6,1,1) 0, 0, -1 , X56 .

Untwisted Singlets:

4>23= (1, 1, 1)0, 1, 1

4>23= (1, 1, 1)0, 1,-1

~23 = (1, 1, 1)0, -1, -1

~23 = (1, 1, 1)0, -1, 1

4>13= (1, 1, 1) 1, 0, 1

4>13= (1, 1, 1) 1, 0,-1

~13 = (1, 1, 1)-1, 0,-1

~13 = (1, 1, 1)-1, 0, 1

4>12= (1, 1, 1) 1, 1, °
4>12= (1, 1, 1) 1, -1, °
~12 = (1, 1, 1) -1, -1, 0

~12 = (1, 1, 1) -1, 1, O.

Untwisted-Ungauged Singlets:

4>1= (1,1,1)0,0,0 X12 Yl,Wl, ,

4>2= (1,1,1)0,0,0 X12 Y2,W2, ,

4>3= (1,1,1 )0,0,0 X34 ih,w3, ,

4>4= (1,1,1)0,0,0 X34 Y4,W4, ,

4>5= (1,1,1)0,0,0 X
56

Y5, W5, ,

4>6= (1,1,1)0,0,0 X
56

Y6,W6·, ,
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Observable Spinorial Representations:

Sector Field SU(4) x SU(2)L x SU(2)R U(lh U(lh U(lh

S + b2 + e6 FlR (4,1,2) 0 -1/2 0

S + bl + e4 + e5 F2R (4,1,2) 1/2 0 0

S + bl + e3 + e4 + e5 + e6 FlR (4,1,2) -1/2 0 0

S + b2 + er + e6 FlL (4,2,1) 0 -1/2 0

1+ b1+ b2 + Zl + Z2 + e4 + e5 + es F2L (4,2,1) 0 0 -1/2

1+ b1+ b2 + Zl + Z2 + e3 + e5 + e6 F3R (4,1,2) 0 0 1/2

1+ b1+ b2 + Zl + Z2 + el + e4 + es + e6 F4R (4,1,2) 0 0 -1/2

1+ b1+ b: + ZI + Z2 + el + ea + e5 + es F3L (4,2,1) 0 0 1/2
Observable Vectorial Representations'

Sector Field SU(4) x SU(2)L x SU(2)R U(lh U(lh U(lh

S + b1 +b2 + e2 (1 (1,1,1) 1/2 -1/2 0

(1 (1,1,1) -1/2 1/2 0

S + b1+ b2 + el + e2 + e3 + e4 (2 (1,1,1) 1/2 1/2 0

(2 (1,1,1) -1/2 -1/2 0

1+ b2 + ZI + Z2 + ea + e4 + es (3 (1,1,1) 1/2 0 -1/2

(4 (1,1,1) 1/2 0 -1/2

(3 (1,1,1) -1/2 0 1/2

(4 (1,1,1) -1/2 0 1/2

D4 (6,1,1) -1/2 0 -1/2

~+ (1,1,1) 1/2 1 1/2

~- (1,1,1) 1/2 -1 1/2

1+ b2 + ZI + Z2 + ei + ea + e4 + e6 hi (1,2,2) -1/2 0 -1/2

1+ b1+ Zl + Z2 + el + e2 + e4 h3 (1,2,2) 0 -1/2 -1/2

1+ b1+ Zl + Z2 + el + e2 + e3 + e4 + e6 h2 (1,2,2) 0 1/2 1/2

1+ b1+ Zl + Z2 + el + e2 + e6 (5 (1,1,1) 0 1/2 1/2

(5 (1,1,1) 0 -1/2 -1/2

1+ b1 + ZI + Z2 + el + e2 + ea (6 (1,1,1) 0 1/2 1/2

(6 (1,1,1) 0 -1/2 -1/2

1+ bz + ZI + Z2 + el + e2 + e3 + e4 + es (7 (1,1,1) 1/2 0 -1/2

+e6

(7 (1,1,1) -1/2 0 1/2



95

Hidden Representations·
Sector Field Hidden Gauge Group U(1h U(lh U(lh

S + hI + h2 + ez + e4 Hf2 (2,2,1,1,1) -1/2 -1/2 0

S + bi + h2 + el + e2 + e3 Hf2 (2,2,1,1,1) 1/2 -1/2 0

1+ b2 + ZI + Z2 + el + e3 + e4 Hr2 (2,2,1,1,1) 1/2 0 -1/2

S + bi + b2 + e2 + e3 H~4 (1,1,2,2,1) 1/2 -1/2 0

S + hI + h2 + el + e2 + e4 H§4 (1,1,2,2,1) -1/2 -1/2 0

1+ b2 + ZI + Z2 + es + e4 Hl4 (1,1,2,2,1) 1/2 0 -1/2

1+ bi + ZI + Z2 + el + e2 Hi4 (1,1,2,2,1) 0 1/2 1/2

1+ bi + ZI + Z2 + ei + e2 + e3 + e6 H~4 (1,1,2,2,1) 0 -1/2 -1/2

S + bi + b2 + ZI Hf3 (2,1,2,1,1) -1/2 -1/2 0

S + bi + b2 + ZI + el + e3 + e4 Hf3 (2,1,2,1,1) -1/2 1/2 0

1+ b2 + Z2 + et + e3 + e4 + e5 + e6 Hr3 (2,1,2,1,1) -1/2 0 -1/2

1+ b2 + Z2 + et + e3 + e4 + es Hi4 (2,1,1,2,1) 1/2 0 1/2

1+ bi + Z2 + et + e2 + e4 + es + e6 Hf4 (2,1,1,2,1) 0 1/2 1/2

1+ bi + Z2 + et + e2 + ea + e4 + e5 Hr4 (2,1,1,2,1) 0 -1/2 -1/2

S + bi + Z2 + ZI + e3 + e4 HJ4 (1,2,1,2,1) -1/2 1/2 0

S + bi + Z2 + ZI + el H?4 (1,2,1,2,1) -1/2 -1/2 0

1+ b2 + Z2 + e3 + e4 + es + e6 H?4 (1,2,1,2,1) -1/2 0 -1/2

1+ bl + Z2 + et + e2 + e5 + e6 Hi4 (1,2,1,2,1) 0 -1/2 1/2

1+ bi + Z2 + el + e2 + e3 + e5 Hi4 (1,2,1,2,1) 0 1/2 -1/2

1+ bz + Zl + e3 + e4 + e5 Hi3 (1,2,2,1,1) 1/2 0 1/2

1+ b2 + Zl + el + e3 + e4 Zl (1,1,1,1, Bc) -1/2 0 1/2

1+ bi + ZI + el + e2 + e5 + e6 Z2 (1,1,1,1,8.) 0 -1/2 -1/2

1+ bi + ZI + el + e2 + e4 + e6 Z3 (1,1,1,1,8c) 0 -1/2 1/2

1+ bi + Zl + el + e2 + e3 + e5 Z4 (1,1,1,1,8.) 0 -1/2 -1/2

1+ bl + ZI + el + e2 + e3 + e4 Zs (1,1,1,1,8c) 0 1/2 -1/2

where the Hidden Gauge Group == SU(2h xSU(2hxSU(2h XSU(2)4 xSO(8).
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Yukawa Couplings

F2RF3Lhl

Si-doublet Masses

hlhl P13 + h2h2<1>23+ h3h3P23 + hlh2(1
Sextet Terms

DID2<1>12+ 1\D2p~2 + DI152<1>~2+ 151152PI2

DID3<1>13+ 151D3P~3 + DI153<1>~3+ 151153PI3

D2D34>23 + 152D3P23 + D21534>23 + 152153P23

DIFIRFIR + ihF2RF2R

D2(F1RF1R + F1LFlL)

D3(F4RF4R + F2LF2LJ + iJ3(F3RF3R + F3LF3LJ

D4 (F2R F3R + D2C + Ihf,+ + D4P13)

Hidden Terms

P23(H?4H?4 + Hr4Hr4 + Z2Z2 + Z4Z4)

P23(H~4H~4 + Z3Z3)

4>23(Hr4Hr4 + H14H14)

4>23(H~4H~4 + Z5Z5)

PI3(H~4H~4 + H~3H?3)

P~3Z1Z1

<l>13(Hi3Hi3 + Hf4Ht4)

<I>~3(H~4H~4+ Hl2H?2)

PI2(HiaHt3 + H?4H?4 + Ht2Hf2 + H§4H§4)

p~2(Hi4Hi4 + Hr3Hr3

4>12(H§4H§4 + Hr2Hr2)

(IZ1Z5

(1 Hf4Hr4

(2H~4H~4

(2H14H~4

f,+H§4H~4

(6(H§4H54 + Hf2Hr2)

(7Hi4H~4

Hi3H~4H§4 + H~4Hr4Hr2

Hf4H~4Hf2 + Hr3Hr4H§4

Singlet Terms

P2«5(5 + (6(6)

P5«1(1 + (2(2)

P23(<1>~34>12+ 4>13<1>~2+ (5(5 + (6(6)

<1>23(<1>13<1>12+ <I>~3<1>12)

4>23(<1>134>12+ 4>13<1>12+ (5(S + (6(6)

4>23(<1>134>12+ 4>13<1>12)
P13«3(3 + (4(4 + (7(7)
4>13f,+t-

4>13«(3(3 + (4(4 + (7(7)

<1>12(2(2

<1>12(1(1

4>12(2(2

4>12(1(1
(2(3(S

(2«4(S +f,+(S)



Appendix B

Enhancements

Enhancements of the Observable gauge group

• X = {ijI23, if;12345} is the only sector which can possibly enlarge the ob-

servable gauge group. Enhancement takes place when the following con-

ditions are satisfied
Enhancement conditions Resulting Enhancement

(xle;) = (xIZn) = 0 SU(4)obs x SU(2)L/ R x U(l)' -+ SU(6)

The pre-stated conditions hold Vi = 1, ... ,6, n = 1,2 and U(1)' is a linear

combination of the U(1k

Enhancements of the Hidden gauge group

• Z1 + Z2 = {4)12345678} is the only sector which can enlarge the hidden

gauge group when all of the following conditions are met
Enhancement conditions Resulting Enhancement

(eilzl + Z2) = (bklzl + Z2) = 0 SU(2h/2 X SU(2l3/4 X SO(8)hid -+ 50(12)

Vi=I, ... ,6,k=1,2

Mixed gauge group enhancements

Parts of the observable and hidden gauge group can be enhanced simul-

taneously in multiple cases.

Enhancement Conditions Resulting Enhancement

(eila + X) = (z2la + X) = 0, Vi = 1, ... ,6 SU(4)obs x SU(2h/2 x U(I)' -+ 5U(6)

(zda + X) == (ala + X)
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Enhancement Conditions Resulting Enhancement

(eila+z2) =0, lIi=I, ...,6 8U(2h/ R x 8U(2h/2 X 80(8)hid -+ 80(12)

(blla + Z2) = (b2la + Z2)

(bk [o + Z2) + (zlla + Z2) = (ala + Z2)

• ZI = {4)1234} gives rise to different types of enhancements which are sum-

marised in the following table,
Survival Conditions Resulting Enhancement

(eilzl) = (z2lzIl = 0 8U(4)obs X 8U(2h/2 X 8U(2b/4 -+ 80(10)

(bk IzIJ = 1

(eilzIl = (z2lzIl = 0 8U(2)L X 8U(2)R x 8U(2h/l X 8U(2)4/3 -+ 80(8)

(bklzl) = 1

(eilzIl = (z2Iz1) = (~IZl) = 0 8U(2h/2 X 8U(2h/4 x U(I) -+ 80(6)

(bllzIJ = 1

(edzIl = (z2lzIl = (bIizl) = 0 SU(2h/2 x 8U(2h/4 x U(I) -+ SO(6)

(~lzIl=1

(edzIl = (z2Iz1) = (bklzIl = 0 8U(2h/2 X 8U(2h/4 x U(I) -+ 80(6)

(eJlzd = (z2lzIl = 0 SU(2h/2 X 8U(2la/4 -+ SO(5)

(e.lzIl = 1

AND

(bllzIJ = 0, (~lzIl = 1,i = 1,2

or

(bllzIl = 1, (b2lzIl = 0, i = 3,4

or

(bllzIl = 1, (b2lzIl = 1, i = 5,6

(ej IZl) = (z2lzIl = 0 8U(2h/2 X 8U(2b/4 -+ SO(5)

(eilzIl = 1

(bklzIl = 0

(eilzIl = (bklzIJ = 0 8U(2h/2 X 8U(2b/4 x 80(8)hid -+ SO(12)

(z2lzIl = 1

The relations above hold V i,j = 1, ....6;i =1= j and k = 1,2,

• Q + ZI + Z2 = {q,45, 4>34, <l>5678}
Enhancement Conditions Resulting Enhancement

(eila + Zl + Z2) = 0 8U(2)L/R X 8U(2b/4 X 80(8)hid

(b1la + Zl + Z2) = (~Ia + Zl + Z2) = (ala + Zl + Z2) -+ 80(12)

The conditions of the previous table hold Vi = 1, .." 6,
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• Z2 = {¢5678} can generate enhancements in the following cases
Survival Conditions Resulting Enhancement

(e;lz2) = (ztiz2) = (0Iz2) = 0 SU(4)obs X SO(8)hid _, SO(14)

(bklz2) = 1

(eilz2) = (zllz2) = 0 SU(2)L X SU(2)R X SO(8)hid -+ SO(12)

(bklz2) = (0Iz2) = 1

(eilz2) = (ztiz2) = (b2Iz2) = (0Iz2) = 0 U(1) x SO(8)hid -+ SO(lO)

(btiz2) = 1

(eilz2) = (ztiz2) = (bllz2) = (0Iz2) = 0 U(1) x SO(8)hid -+ SO(10)

(~lz2) = 1

(eilz2) = (ztiz2) = (bk IZ2) = (0Iz2) = 0 U(l) X SO(8)hid -+ SO(10)

(ej IZ2) = (zllz2) = (0Iz2) = 0 SO(8)hid -+ SO(9)

(eilz2) = 1

AND

(bllz2) = 0, (b2Iz2) = 1,i = 1,2

or

(bdz2) = 1,(~!Z2) = O,i = 3,4

or

(bl!Z2) = 1,(~!Z2) = 1,i = 5,6

(ej!z2) = (zllz2) = (bk IZ2) = (0Iz2) = 0 SO(8)hid -+ SO(9)

(eilz2) = 1

(eilz2) = (bklz2) = 0 SO(4h X SO(8)hid -+ SO(12)

(0Iz2) = (z1lz2) = 1

(ei!z2) = (bklz2) = (0Iz2) = 0 SO(4)2 x SO(8)hid -+ SO(12)

(ZI!Z2) = 1

The relations above hold V i, j = 1, ....6;i =I j and k = 1,2.

Enhancement Conditions Resulting Enhancement

(eilo + X + zd = (z2lo + X + Zl) = 0 SU(4)obs X SU(2b/4 x U(1)' -+ SU(6)

The conditions above hold Vi = 1, ... , 6.
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• Q = {~45¢12} can also present numerous potential enhancements.
Survival Conditions Resulting Enhancement

(e,lo) = (z210)= 0 SU(4)obs X SU(2lL/R X SU(2h/2 __,SO(lO)

(bllo) = (~Io) AND

(110) = 1+ (bklo) + (zllo) SU(2)L/R x SU(2h/2 x SU(2)3 X SU(2)4 __,SO(8)

(eilo) = (z210)= 0 U(I) x SU(2)L/ R x SU(2h/2 __,SO(6)

(bdo) = 1+ (~Io)

(110) = (bllo) + (zdo)

(eilo) = (z210)= 0 U(l) X SU(2)L/R x SU(2h/2 __,SO(6)

(~Io) = 1+ (bl\O)

(I]o) = (~Io) + (zdo)

(eilo) = (z210)= 0 U(l) X SU(2)L/R x SU(2h/2 ---+ SO(6)

(bllo) = (~\o)

(110) = (~Io) + (zllo)

(ej 10)= (z210)= 0 SU(2)L/R X SU(2h/2 -+ 50(5)

(eilo) = 1

AND

(bllo) = 1+ (~\o) and

(110) = (bdo) + (zllo), i = 1,2

or

(bllo) = 1+ (~Io) and

(lio) = (~Io) + (zdo), i = 3,4

or

(bdo) = (~Io) and

(110)= 1+ (bklo) + (zllo),i = 5,6

(ejlo) = (z210)= 0 SU(2)L/R X SU(2h/2 ---+ SO(5)

(e,lo) = 1

(bdo) = (~Io)

(110) = (bklo) + (Zl\O)

(e.Io) = 0 SU(2)L/R X SU(2h/2 X SO(8)hid -+ SO(12)

(z210)= 1

(bt\o) = (~Io)

(110)= (bklo) + (zllo)

The relations above hold V i,j = 1, ....6;i f= j and k = 1,2.



101

• Cl: + ZI = {~45 4)34} gives rise to enhancements in the following occasions:
Survival Conditions Resulting Enhancement

(eilo + zIl = (z2lo + zIl = 0 SU(4)obs X SU(2)L/R X SU(2h/4

(bdo + zJ) = (b2lo + zIl -+ SO(10)

(010 + zJ) = 1 + (bklo + er) AND

SU(2)L/R x SO(4)I X SU(2h/4

-+ SO(8)

(e.]o + zll = (z2la + zIl = 0 U(I) X SU(2)L/R x SU(2h/4

1 + (blla + ztJ = (b2la + Zl) = (010 + Zl) -+ SO(6)

(e.]o + zIl = (z2la + Zl) = 0 U(I) X SU(2)L/R x SU(2b/4

1 + (~Io + zt} = (blla + Zl) = (010 + Zl) -+ SO(6)

(e.]o + zIl = (z2lo + zIl = 0 U(I) X SU(2)L/R x SU(2h/4

(btio+zIl = (b2Io) = (010+ Zl) -+ SO(6)

(ej]o + ZI) = (z2lo + zt} = 0 SU(2lL/R X SU(2h/4 -+ SO(5)

(e.]o + zIl = 1

AND

(bllo + zJ) = 1+ (b2lo + Zl) = (010 + zJ), i = 1,2

or

(bllo + zIl = 1 + (b2lo + ar) = 1 + (010 + zJ), i = 3,4

or

(bllo+ zIl = (~Io +zIl = 1 + (010+ ztl,i = 5,6

(ejlo + ztl = (z2la + Zl) = 0 SU(2lL/R X SU(2h/4 -+ SO(5)

(eilo + ztl = 1

(blla + zIl = (~Io + ztl

(110 + Zl) = (bklo + zd + (zllo + zd

(eilo + ZI) = 0 SU(2lL/R X SU(2h/4 x SO(8)

(z2la + Zl) = 1 -+ SO(12)

(bllo + zil = (~Ia + zil = (010 + zil
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Res III ,s
ng nh n6 # of models
0 0 0 7389484
0 0 2 1645466
0 0 4 1000290
0 0 6 7964
0 0 8 35156
0 0 12 125
0 0 16 48
0 2 0 1772537
0 2 2 3370245
0 2 4 282693
0 2 6 101806
0 2 8 240
0 2 10 1425
0 4 0 1281766
0 4 2 314402
0 4 4 1272994
0 4 6 41240
0 4 8 26600
0 4 12 695
0 4 16 3
0 6 0 32801
0 6 2 162980
0 6 4 42929
0 6 6 197305
0 6 10 1077
0 8 0 83905
0 8 2 891
0 8 4 44391
0 8 8 53896
0 8 10 667
0 8 12 198
0 8 16 38

ng nh n6 # of models
0 10 0 948
0 10 2 3951
0 10 6 1650
0 10 8 716
0 10 10 2681
0 10 14 7
0 12 0 1657
0 12 4 2207
0 12 8 322
0 12 12 2458
0 14 2 14
0 14 10 4
0 16 0 336
0 16 4 37
0 16 8 98
0 16 16 121
0 18 2 3
0 20 0 2
0 20 4 1
0 20 12 2
0 24 0 2
0 24 8 1
0 24 24 1
1 1 1 690074
1 1 3 50495
1 3 1 54719
1 3 3 701850
1 3 5 47239
1 5 3 51664
1 5 5 91419
1 5 7 2408
1 7 5 2636

Table C.1: Multiplicities of massless fractional charge free models in a random
sample of 1011 PS models.
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ng nh n6 # of models
1 7 7 2283
2 0 0 159209
2 0 4 2935
2 2 2 1060873
2 2 6 15898
2 2 10 243
2 4 0 4435
2 4 4 220673
2 4 8 1180
2 6 2 25966
2 6 6 53586
2 6 10 52
2 8 0 526
2 8 4 1631
2 8 8 5419
2 10 2 824
2 10 6 61
2 10 10 629
3 1 1 240224
3 1 3 19086
3 3 1 20709
3 3 3 238714
3 3 5 14007
3 5 3 14932
3 5 5 56886
3 5 7 539
3 7 5 591
3 7 7 3135
4 0 0 105365
4 0 4 3234
4 0 8 114

Table C.1 contmued.

ng nh n6 # of models
4 0 12 3
4 2 2 145699
4 2 6 2159
4 2 10 14
4 4 0 4757
4 4 4 118796
4 4 8 1546
4 4 12 42
4 6 2 2660
4 6 6 27834
4 6 10 84
4 8 0 556
4 8 4 2484
4 8 8 7942
4 10 2 24
4 10 6 81
4 10 10 22
4 12 0 37
4 12 4 124
4 12 12 234
4 16 0 1
5 1 1 5743
5 3 3 24930
5 5 5 16949
5 7 7 656
6 0 0 9339
6 0 4 162
6 2 2 34884
6 2 6 55
6 4 0 184
6 4 4 10612
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ng nh n6 # of models
6 4 8 26
6 6 2 62
6 6 6 7539
6 6 10 10
6 8 4 34
6 8 8 781
6 10 6 20
6 10 10 187
8 0 0 2543
8 0 8 35
8 2 2 2529
8 4 4 7055
8 4 12 3
8 6 6 1742
8 8 0 19
8 8 8 3328
8 8 16 1
8 10 10 134
8 12 4 4
8 12 12 100
8 16 8 3
8 16 16 4
10 0 0 124
10 2 2 219
10 4 4 112
10 6 6 187
10 8 8 23
12 0 0 47
12 2 2 22
12 4 4 122
12 8 8 145
12 10 10 3
12 12 12 43
16 0 0 7
16 4 4 17
16 8 8 7
16 12 12 4

Table C.1 contmued.
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