(x) unversity of

Title:

A PROPOSED FAHP-BASED TECHNOLOGY SELECTION AND SPECIFICATION METHODOLOGY

Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy
by

Kin Chung Liu

VOLUME II

Primary Supervisor: Doctor Dong Li
Secondary Supervisor: Professor Dennis F. Kehoe

June 2009

Best Copy Available

Print bound close to the spine

REFERENCES

Accenture (2001) "Accenture Radio Frequency Identification (RFID) White Paper".
Account\&See Invoicing and Accounting (ASIA) (2007) "Barcode Formats". Available at: http://www.account-n-see.com/barcodetypes.html (accessed July 2007).

Allen, B., Boynton, A. (1991) "Information Architecture: in Search of Efficient Flexibility", MIS Quarterly, Vol. 15, Iss. 4, pp. 435-445.

Amaratunga, D. and Baldry, D. (2001) "Case Study Methodology as a Means of Theory Building: Performance Measurement in Facilities Management Organizations", Work Study, Vol. 50, Iss. 3, pp.95-104, MCB University Press.

AMR Research (2000) "Supply Chain Strategies Outlook: E-business is Morphing Supply Chains", AMR Research. Available at: http://www.amrresearch.com/Content/ View.asp?pmillid=13110 (accessed July 2007).

Amy Helen Johnson (2002) " 35 years of IT leadership: A new supply chain forged", Computerworld. Framingham: Sep 30, 2002, Vol. 36, Iss. 40, pp. 38-39.

Archer, N. and Yuan, Y. (2000) "Managing Business-to-Business Relationships Throughout the E-commerce Procurement Life Cycle", Internet Research: Electronic Networking Applications and Policy, Vol. 10, Iss. 5, pp. 385-395.

Asprey, Len \& Middleton, Michael (2002) "Specifying your requirements \& selecting your supplier for records and document management applications", The Enterprise Information \& Content Management Forum, 19-20 November 2002, International Centre, Hammersmith, London.

Attaran, M. (2007) "RFID: an Enabler of Supply Chain Operations", Supply Chain Management: An International Journal, Vol. 12, Iss. 4, pp. 249-257.

Avison, D. E. and Fitzgerald, G. (2003) "Information Systems Development", Third Edition, McGraw Hill Publishing Company, UK.

Bacheldor, Beth (2007) "Chemical Industry Explores ROI for RFID", RFID Journal LCC. Available at: http://www.rfidjournal.com/article/articleview/3569/ (accessed December 2007).

Bard, J. F. (1986) "Evaluating Space Station Applications of Automation and Robotics", IEEE Transactions on Engineering Management, 33, 102-111.

Barlas, D. (2003b) "RFID Revolution". Available at: http://www.line56.com/ (accessed December 2005).

Barlas, Demir (2003a) "Wal-Mart's RFID Mandate". Available at: http://www.line56.com/ (accessed December 2005).

Barua, A. and Mukhopadhyay, T. (2000) "Information Technology and Business Performance: Past, Present and Future", in: R.W. Zmud (Ed.), Framing the Domains of IT Management: Projecting the Future through the Past, Pinnaflex Education Resources, Inc.

Bass, L., Clements, P. and Kazman, R. (2003) "Software Architecture in Practice", ISBN: 0-631-21304-X, Addison-Wesley.

Beheshti, H.M. (2006) "What Managers Should Know about ERP/ERPII", Journal Management Research News, Vol. 29, Iss. 4, pp. 184-193.

Beheshti, H.M., Hultman, M., Jung, M.-L., Opoku, R.A., Salehi-sangari, E. (2007) "Electronic Supply Chain Management Applications by Swedish SMEs", Enterprise Information Systems, Vol. 1, No. 2, May 2007, 255-268.

Benbasat, I.G., Goldstein, D.K. and Mead, M. (1987) "The Case Research Strategy in Studies of Information Systems", Management Information Systems Quarterly, Vol. 11, Iss. 3, pp. 369-386.

Bhatti, T. (2000) "Justification of Manufacturing Technology Capital Investment: an Integrated Approach", Proceedings of the IEEE International Conference on Management of Innovation and Technology (ICMIT 2000): Management in the 21 st century, Singapore, 12-15 November 2000, pp. 346-353.

Boender, C.G.E., de Grann, J.G. and Lootsma, F.A. (1989) "Multicriteria Decision Analysis with Fuzzy Pairewise comparison", Fuzzy Sets and Systems 29, pp.133-143.

Booch, G. (1991) "Object-Oriented Design with Applications", The Benjamin/Cummings Publishing Company, Inc.

Bowersox, D.J., Closs, D.J. and Cooper, M.B. (2002) "Supply Chain Logistic Management", McGraw-Hill/Irwin. ISBN 0-07-235100-4.

Bozdag, C.H., Kahraman, C., Cebeci U. and Ruan, D. (2003) "Fuzzy Group Decision Making for Selection Among Computer Integrated Manufacturing Systems", Computers in Industry, Vol. 51, Iss. 1, pp. 13-29.

Brain, Marshall and Harris, Tom (2006) "How GPS Receivers Work", 25 September 2006. HowStuffWorks.com. Available at: http://adventure.howstuffworks.com/gps.htm (accessed August 2007).

Brender, J. (1999) "Methodology for Constructive Assessment of IT-based Systems in an Organisational Context", International Journal of Medical Informatics 56, pp.67-86.

Broatch, M. (2001) "Making the ERP Connection", Computerworld New Zealand, July. Bruce, K. (1998) "Can you align IT with business strategy?", Strategy and Leadership, Vol. 26, Iss. 5, pp. 6-21.

Bryman, Alan (1988) "Quantity and Quality in Social Research", Unwin Hyman Ltd., London, ISBN: 0-04-312039-3

Bryman, Alan (2004) "Social Research Methods", Second Edition, Oxford University Press, New York, ISBN: 019-926446-5.

Brynjolfsson, E. and Kahin, B. (Eds.) (2000) "Understanding the Digital Economy", MIT Press.

Buckley, J.J. (1985) "Fuzzy Hierarchical Analysis", Fuzzy Sets and Systems, Vol. 17, Iss. 3, pp. 233-247.

Burns, Robert B. (2000) "Introduction to Research Methods", Sage Publications Ltd., London.

Carr, W. and Kemmis, S. (1986) "Becoming Critical: Education Knowledge and Action Research", Falmer Press, London.

Celik, M., Er, I.D. and Ozok, A.F. (2007) "Application of Fuzzy Extended AHP Methodology on Shipping Registry Selection: The Case of Turkish Maritime Industry", Expert Systems with Applications, September 2007.

Chan, F.T.S, Chan, M.H. and Tang, N.K.H. (2000). "Evaluation Methodologies for Technology Selection", Journal of Materials Processing Technology, 107, pp. 330-337.

Chan, F.T.S. and Kumar N. (2007) "Global Supplier Development Considering Risk Factors Using Fuzzy Extended AHP-based Approach", Omega, Vol. 35, Iss. 4, pp. 417431.

Chan, F.T.S., Chan, H.K., Chan, M.H. and Humphreys, P.K. (2006) "An integrated fuzzy approach for the selection of manufacturing technologies", International Journal of Advanced Manufacturing Technology 27, pp. 747-758.

Chang, D.-Y. (1992) "Extent Analysis and Synthetic Decision", Optimization Techniques and Applications, Vol. 1. World Scientific, Singapore, p. 352.

Chang, D.Y. (1996) "Applications of the extent analysis method on FAHP", European Journal of Operational Research 95(3):649-655.

Chase, Richard B. (1998) "Production and Operations Management: Manufacturing and Services", Irwin/McGraw-Hill.

Chatterjee, D., Grewal, R. and Sambamurthy, V. (2002) "Shaping up for E-commerce: Institutional Enablers of the Organizational Assimilation of Web Technologies", MIS Quarterly 26(2), pp. 65-89.

Checkland, P. (1981) "Systems Thinking, Systems Practice", Wiley, Chichester.
Chen, Y. and Li, L. (2006) "Deriving Information from CRM for Knowledge Management-A Note on a Commercial Bank", Systems Research and Behavioral Science., 23, 141-146.

Cheng, C.-H. (1996) "Evaluating Naval Tactical Missile Systems by FAHP Based on the Grade Value of Membership Function", European journal of Operational Research, Vol. 96, Iss. 2, pp. 423-443.

Cheng, C.H. (1999) "Evaluating Weapon Systems using Ranking Fuzzy Numbers", Fuzzy Sets and Systems, Vol. 107, Iss. 1, pp. 25-35.

Cheng, C.H. and Mon, D.L. (1994) "Evaluating Weapon System by Analytical Hierarchy Process based on fuzzy scales", Fuzzy Sets and Systems 63, pp. 1-10.

Cherchye L. and Puyenbroeck T.V. (2007) "Profit Efficiency Analysis under Limited Information with an Application to German Farm Types", Omega 35, pp. 335-49.

Chi, S.C. and Kuo, R.J. (2001) "Examination of the Influence of Fuzzy Analytic Hierarchy Process in the Development of an Intelligent Location Selection Support System of Convenience Store", IFSA World Congress and 20th NAFIPS International Conference, Vol. 3, pp. 1312-1316.

Chou, Y., Lee, C., and Chung, J. (2004) "Understanding M-commerce Payment Systems through the Analytic Hierarchy Process", Journal of Business Research, Vol. 57, Iss. 12, pp. 1423-1430.

Choy K.L., Lee W.B., Lau H.C.W., Lu D. and Lo V. (2004) "Design of an Intelligent Supplier Relationship Management System for New Product Development", International Journal of Computer Integrated Manufacturing 17, pp. 692-715.

Christopher, M. (1998) "Logistics and Supply Chain Management", Second Edition, Financial Times Pitman Publishing, London.

Cigolini, R., Cozzi, M., Perona, M. (2004) "A New Framework for Supply Chain Management: Conceptual Model and Empirical Test", International Journal of Operations \& Production Management, Vol. 24, Iss. 1, pp. 7-41.

Clemen, R., and Reilly, T. (2001) "Making Hard Decisions with Decision Tools", Duxbury Press.

Convery, Tim (2004) "RFID Technology for Supply Chain Optimization: Inventory Management Applications and Privacy Issue". Available at: http://aim.uoregon.edu/ research/pdfs/Convery2004.pdf (accessed August 2007).

Corvallis Microtechnology, Inc. (1996) "Introduction to the Global Positioning System for GIS and TRAVERSE", Corvallis Microtechnology, Inc. Available at: http://www.cmtinc.com/gpsbook/index.htm (accessed October 2006).

Cox, J.F., and Blackstone, J.H. (1995) "APICS Dictionary", APICS - the American Production and Inventory Control Society. Eight Edition, Falls Church, VA.

Csutora, R., and Buckley, J.J. (2001)"Fuzzy Hierarchical Analysis: the Lambda-Max Method", Fuzzy Sets and Systems, Vol. 120, Iss. 2, pp. 181-195.

Curtis, C. (1996) "EDI Over the Internet: Let the Games Begin", Communications Week, Vol. 627, Iss. 59.

Davenport, T. (2000) "Mission Critical: Realizing the Promise of Enterprise System", U.S.: Harvard Business School Press, U.S..

Davenport, T. H. (1998) "Putting the Enterprise into the Enterprise System", Harvard Business Review, Vol. 76, Iss. 4, pp. 121-131.

Davenport, T., (1993) "Process Innovation: Reengineering Work Through Information Technology", Harvard Business School Press, Boston, MA, pp. 13.

David Kosiur (1997) "Understanding Electronic Commerce", Microsoft Press, ISBN 1-57231-560-1.

Davis, A.M. (1993) "Software Requirements: Objects, Functions and States", Englewood Cliffs.

Deloitte and Touche (1998) "Vision in Manufacturing", In Global Report, Global Manufacturing Survey, Deloitte and Touche and Deloitte Consulting: London.

Deng, H. (1999) "Multicriteria Analysis with Fuzzy Pairwise Comparison", International Journal of Approximate Reasoning 21, pp. 215-231.

Denzin, N. K. (1970) "The Research Act in Sociology", Aldine, Chicago.
Devlin, Ger J., McDonnella, K. and Warda, S. (2007) "Timber Haulage Routing in Ireland: an Analysis using GIS and GPS", Journal of Transport Geography.

Dijkstra, E.W. (1968) "The Structure of the'T.H.E.' Mulitprogramming System", Communications of the ACM, Vol. 18, Iss. 8, pp. 453-457.

Dimitriadis, N. and Koh, S.C.L. (2005) "Local Production Networks and Supply Chain Management: the Role of People and Information Systems", Production Planning and Control, Vol. 16, Iss. 6, pp. 545-54.

Duarte, B. and Sharifi, H. (2006) "Getting started with RFID; What You Need to Know and a Success Story", CONTROL, Vol. 32, No. 1, pp.20-24.

Durán, O., Aguilo, J. (2007) "Computer-aided Machine-tool Selection based on a FuzzyAHP Approach", Expert Systems with Applications.

Dussauge, P., Hart, S. and Ramanantsoa, B. (1992) "Strategic Technology Management", Second Edition, Wiley, New York, pp. 5, 87-104.

Eagleson, J. (2002) "RFID: The Early Years 1980-1990". Available at: http://members.surfbest.net/eaglesnest/rfidhist.htm (accessed August 2005).

Easterby-Smith, M., Thorpe, R. and Lowe, A. (2002) "Management Research: An Introduction", Second Edition, Sage Publications, London.

Edosomwan, A.E. (1989) "Integrating Innovation and Technology Management", Wiley, New York, pp. 1-26.

Elliott, J. (1991) "Action Research for Educational Change", Open University Press, Buckingham.

Ellram, L.M., Cooper, M. (1993) "Characteristics of Supply Chain Management and the Implications for Purchasing and Logistics Strategy", International Journal of Logistics Management, Vol. 4, Iss. 2, pp. 1-10.

EPCglobal (2005) "Glossary V.6.0". Available at: http://www.epcglobalinc.org/ what/cookbook/chapter5/039--GlossaryV.6.0May2005FINAL.pdf (accessed January 2007).

EPCglobal, Inc. (2004). "The EPCglobal Network: Overview of Design, Benefits, \& Security", EPCglobal, Inc.

Erensal, Y.C., Oncan, T. \& Demircan, M.L. (2005) "Determining Key Capabilities in Technology Management using Fuzzy Analytic Hierarchy Process: A Case Study of Turkey", Information Sciences, Vol. 176, Iss. 18, pp. 2755-2770.

Ericson, J. (2003) "RFID Rising". Available at: http://www.line56.com (accessed August 2006),

Esichaikul, V. and Chaichotiranant, C. (1999) "Selecting an EDI Third-party Network", Information Systems Management, Vol. 16, Iss. 1, pp. 26-31.

Eversheim, W. (1997) "Prozessorientierte Unternehmensanalyse: Konzepte und Methoden zur Gestaltung schlanker Organisationen", Springer, Berlin, Heidelberg, pp. 6f.
F.A. Lootsma (1997) "Fuzzy Logic for Planning and Decision Making", Dordrecht: Kluwer Academic Publishers.

Fawaz, K. A.-K. (2006) "Characterizing Battlefield Human Decision Making with Value Focused Thinking and Reliability Modeling", Wright State University.

Figueira, José; Salvatore Greco and Matthias Ehrgott (2005) "Multiple Criteria Decision Analysis: State of the Art Surveys", New York, Springer Science + Business Media, Inc. ISBN 0-387-23081-5.

Financial Times (1998) "Digital Business Series", October-November 1998, Prentice Hall: London, England.

Finkenzeller, K. (1999) "RFID Handbook: Radio-Frequency Identification Fundamentals and Applications", John Wiley \& Sons Ltd. ISBN 0-471-98851-0.

Fitzek, D. (2003) "Application of RFID in the Grocery Supply Chain: Universal Solution for Logistics Problems in the CPG Industry or a mere Hype?", University of St. Gallen.

Flyvbjerg, Bent (2006) "Five Misunderstandings About Case Study Research", Qualitative Inquiry, Vol. 12, No. 2, April 2006, pp. 219-245.

Folinas, D., Manthou, V., Sigala, M. and Vlachopoulou, M. (2004) "Evolution of a Supply Chain: Cases and Best Practices", Internet Research, Vol. 14, Iss. 4, pp. 274-283.

Forrester, J.W. (1961) "Industrial Dynamics", MIT Press, Wiley, New York.
Fraser, J., Fraser, N., McDonald, F. (2000) "The Strategic Challenge of Electronic Commerce", Supply Chain Management: An International Journal, Vol. 5, Iss. 1, pp. 714.

Frazelle, E. (2002) "Supply Chain Strategy: The Logistics of Supply Chain Management", NewYork, McGraw-Hill.

Frese, E. (1995) "Organisationsstrukturen und Managementsysteme", In: Eversheim, W. (Ed.), Die Betriebsh.utte. Produktion and Management, 4. Auflage. Springer, Berlin, Heidelberg, pp. 3-1-3-93.

Frye, C. (1995) "EDI Users Explore Internet as Tool of Trade", Software Magazine Vol. 15, Iss. 13.

Garca-Dastugue, S.J. and Lambert, D.M. (2003) "Internet-enabled Coordination in the Supply Chain", Industrial Marketing Manage., 2003, Vol. 32, Iss. 3, pp. 251-263.

Garlan, D. and Shaw, M. (1993) "An Introduction to Software Architecture", Advances in: Software Engineering and Knowledge Engineering. Vol 1. River Edge, NJ: World Scientific Publishing Company, 1993.

Garlan, D., Allen, R. and Ockerbloom, J. (1995) "Architectural Mismatch: Why It's Hard to Build Systems Out of Existing Parts", In Proceedings of the 17th International Conference on Software Engineering. Seattle, WA, April 23-30, 1995. New York: Association for Computing Machinery, pp. 170-185.

Ghiassi, M. and Sperab C. (2003) "Defining the Internet-based Supply Chain System for Mass Customized Markets", Computers \& Industrial Engineering 45, pp. 17-41.

Giaglis G.M., Minis I., Tatarakis A. and Zeimpekis V. (2004) "Minimising Logistics Risk through Real-time Vehicle Routing and Mobile Technologies", International Journal of Phaysical Distribution and Logistics Management 34, pp. 749-64.

Gill, P. (1996) "Manufacturers Cautious on the Internet", Software Magazine, Vol. 16, Iss. 5.

Giunipero, L.C. and Brand, R.R. (1996) "Purchasing's Role in Supply Chain Management", The International Journal of Logistics Management, Vol. 7, Iss. 1, pp. 2937.

Goepp, V., Kiefer, F. and Geiskopf, F. (2006) "Design of Information System Architectures Using a Key-problem Framework", Computers in Industry 57, pp. 189-200.

Goldberg, R. (1999) "Turning Points in Software Development", IBM System Journal Vol. 38, Iss. 2 and 3, pp. 225-229.

Greco, S., Matarazzo, B. and Słowiński, R. (2001) "Rough Sets Theory for Multicriteria Eecision Analysis", European Journal of Operational Research, Vol 129, Iss. 1, pp. 1-47.

Greco, S., Matarazzo, B. and Słowiński, R. (2002) "Multicriteria Classification by Dominance-based Rough Set Approach", In: W.Kloesgen and J.Zytkow (eds.), Handbook of Data Mining and Knowledge Discovery, Oxford University Press, New York.

Greenough, R., Almannai, B. and Kay, J. (2008) "A Decision Support Tool Based on QFD and FMEA for the Selection of Manufacturing Automation Technologies", Robotics and Computer-Integrated Manufacturing 24, pp. 501-507.

Gregory, M.J. (1995) "Technology Management: a Process Approach", Proceedings of the Institution of Mechanical Engineers (IMechE) 209, pp. 347-355.

Grover, V., Teng, J. and Fiedler, K., (1993) "Information Technology Enabled Business Process Redesign: An Integrated Planning Framework", International Journal of Management Science, Vol 4, Iss. 21, pp. 443-447.

Gudmundsson, S.V. and Schieveen, L.V. (2001) "The Potential Use of Internet Based EDI in Small to Medium Size Enterprises". Available at: http://www.nofoma.org/conferences/
nofoma2001/fp/FP/FP 66 Gudmundsson Sveinn Vidar.pdf (accessed December 2005).
Handfield, R. B. and Nichols, E.L. (2002) "Supply Chain Redesign: Transforming Supply Chains into Integrated Value Systems", Financial Times/Prentice Hall: Upper Saddle River, NJ.

Harler, C. (1996) "Logistics on the Internet: Freeway or Dead End?", Transportation \& Distribution, Vol. 37 No.4, pp.46-8.

Harvey, M. G., and Richey, R. G. (2001) "Global Supply Chain Management", Journal of International Management, Vol. 7, Iss. 2, pp. 105-128 (Summer).

Hayes, F. (2002) "The Story So Far: Application Development", Computerworld. Available at: http://www.computerworld.com/developmenttopics/development/story/ 0,10801,71213,00.html? $=$ (accessed November 2005).

Hengst, M. and Sol, H.G. (2001) "The Impact of Information and Communication Technology on Inter-organisational Coordination", Proceedings of the $34^{\text {th }}$ Hawaii International Conference on System Sciences. Available at: http://csdl.computer.org/ comp/proceedings/hicss/2001/0981/07/09817006.pdf (accessed October 2005).

Hitt, L. and Brynjolfsson, E. (1996) "Productivity Business Profitability, and Consumer Surplus: Three Different Measures of Information Technology Value", MIS Quart., Vol 20, Iss. 2, pp. 121-142.

Ho, William (2007) "Integrated Analytic Hierarchy Process and its Applications - A Literature Review", European Journal of Operational Research, Vol. 186, No. 1, 211-228

Holweg, M. and Bicheno, J. (2002) "Supply Chain Simulation - a Tool for Education, Enhancement and Endeavour", International Journal Production Economics 78, pp. 163175.

Hong, W.Y. and Zhu, K. (2006) "Migrating to Internet-based E-commerce: Factors Affecting E-commerce Adoption and Migration at the Firm Level", Information \& Management 43, pp. 204-221.

Hou J.-L. and Huang, C.-H. (2006) "Quantitative Performance Evaluation of RFID Applications in the Supply Chain of the Printing Industry", Industrial Management \& Data Systems, Vol. 106, No. 1, pp. 96-120.

Hsieh, C.T. and Lin, B.S. (2004) "Impact of Standardization on EDI in B2B Development", Industrial Management \& Data Systems, Vol. 104 No.1, pp.68-77.

Huang, G.Q. and Mak, K.L. (1999) "Current Practices of Engineering Change Management in UK Manufacturing Industries", International Journal of Operations and Production Management, Vol. 19, Iss. 1, pp. 21-37.

IBM (2002) "Glossary: E-commerce". Available at: http://www-05.ibm.com/ebusiness/il/glossary/e.html (accessed July 2007).

IEEE (1995) "Introduction to the Special Issue on Software Architecture", IEEE Transactions on Software Engineering, vol. 21, no. 4, pp. 269-274.

IEEE (1998) "IEEE Recommended Practice for Software Requirements Specifications", Institute of Electrical \& Electronics Enginee (IEEE).

IEEE (2000) "IEEE Recommended Practice for Architecture Description of SoftwareIntensive Systems", IEEE Recommended practice for architectural description of software-intensive systems, E-ISBN 0-7381-2519-9, ISBN 0-7381-2518-0, IEEE ordering information.

Ignizio, JP, Cavalier, TM (1994) "Linear Programming", Prentice Hall.

Jick, T. (1979) "Mixing Qualitative and Quantitative Methods: Triangulation in Action", Administrative Science Quarterly, Vol. 24, December 1979, pp. 602-611.

Johnson, M.E. and Whang, S. (2002) "E-business and Supply Chain Management: an Overview and Framework", Production and Operations Management, Vol. 11, Iss. 4, pp. 413-423.

Jones, T.C. and Riley, D.W. (1985) "Using Inventory for Competitive Advantage through Supply Chain Management", The International Journal of Physical Distribution \& Materials Management, Vol. 15, Iss. 5, pp.16-26.

Joshi, Y., V., (2000) "Information Visibility And Its Effect On Supply Chain Dynamics", MSc. Thesis, Massachusetts Institute of Technology, 2000.

Kahraman, C., Cebeci U. and Ruan, D. (2004) "Multi-attribute Comparison of Catering Service Companies using FAHP: the Case of Turkey", International Journal of Production Economics, Vol. 87, Iss. 2, pp. 171-184.

Kaplan, S. and Sawhney, M. (1999). "B2B E-Commerce Hubs: Towards a Taxonomy of Business Models", Chicago, The University of Chicago graduate school of Business, pp. 1-10.

Kaplan, S. and Sawhney, M. (2000). "E-hubs: the New B2B Marketplaces", Harvard Business Review 78, pp. 97-100.

Karsak, E.E. (1998) "A Two-phase Robot Selection Procedure", Production Planning \& Control, Vol. 9, Iss. 7, pp. 675-684.

Karsak, E.E. and Kuzgunkaya, O. (2002) "A Fuzzy Multiple Objective Programming Approach for the Selection of a Flexible Manufacturing System", International Journal Production Economics 79, pp. 101-111.

Karwowski W, Kantola J, Rodrick D and Salvendy G. (2002) "Macroergonomic Aspects of Manufacturing In: Hendrick H, Kleiner M, editors", Macroergonomics: theory, methods, and applications. New Jersey: Lawrence Erlbaum Associates Inc. Publishers.

Kauffman, R.J. and Walden, E.A. (2001). "Economics and Electronic Commerce: Survey and Directions for Research", International Journal of Electronic Commerce, Vol. 5, Iss. 4, pp. 5-116.

Kazman, R., Bass, L. and Klein M. (2006) "The Essential Components of Software Architecture Design and Analysis", The Journal of Systems and Software 79, pp. 12071216.

Keen, P.G.W. (1977) "The Involving Concept of Optimality", TIMS Studies in the Management Sciences 6, pp. 31-57.

Keeney, R. (1994) "Value Focused Thinking. A Path to Creative Decision Making", Harvard University Press.

Kehoe, D.F., Boughton, N.J. and Sharifi, H. (2001) "Demand Network Alignment: An Empirical View", UK Symposium on Supply Chain Management, Liverpool, UK, July 2002.

Kelly, E.P. and Erickson, G.S. (2005) "RFID Tags: Commercial Applications v. Privacy Rights", Industrial Management and Data Systems 105, pp. 702-13.

Kenneth C. Laudon and Jane Price Laudon (1998) "Information Systems and the Internet", Fourth Edition, The Dryden Press, ISBN 0-03-024797-7.

Kenneth C. Laudon and Jane Price Laudon (1998) "Information Systems and the Internet", Fourth Edition, The Dryden Press, ISBN 0-03-024797-7.

Ketikidis, P. H., Koh, S.C.L., Gunasekaran, A., Dimitriadis, N. and Kehajova, M. (2007) "The Use of Information Systems for Logistics and Supply Chain Management in South East Europe: Current Status and Future Direction", Omega: International Journal of Management Science, Vol. 36, Iss. 4, pp. 592-599.

Koh S.C.L. and Saad S.M. (2006) "Managing Uncertainty in ERP-controlled Manufacturing Environments in SMEs", International Journal of Production Economics Vol. 101, Iss. 1, pp. 109-27.

Koh SCL (2004) "MRP-controlled batch-manufacturing environment under uncertainty", Journal of The Operational Research Society, Vol. 55, Iss. 3, pp. 219-32.

Koh, S.C.L. and Saad, S.M. (2002) "Development of a Business Model for Diagnosing Uncertainty in ERP Environments", International Journal of Production Research, Vol. 40, Iss. 13, pp. 3015-39.

Koh, S.C.L., Saad, S.M. and Arunachalam, S. (2006) "Competing in the $21^{\text {st }}$ Century Supply Chain through Supply Chain Management and Enterprise Resource Planning Integration", International Journal of Physical Distribution and Logistics Management, Vol. 36, Iss. 6, pp. 455-465.

Kraft, C. L. (2001). "Executive ERP". Available at: http://www.oracle.com/oramag/ profit/99-May/index.html?p29ind.html (accessed June 2001).

Kritchanchai, D. and MacCarthy, B.L. (1999) "Responsiveness of the Order Fulfilment Process", International Journal of Production \& Operations Management, Vol. 19 No.8, pp.812-33.

Kryvobokov, Marko (2005) "Estimating the Weights of Location Attributes with the Analytic Hierarchy Process in Donetsk, Ukraine", Nordic Journal of Surveying and Real Estate Research, Vol. 2, Iss. 2, pp. 5-29.

Kulkarni A.G., Ralph D. and McFarlane D.C. (2007) "Value of RFID in Remanufacturing", International Journal of Services, Operations and Informatics, Vol. 2, Iss. 3, pp. 225-252.

Kumar, K. and Van Hillsgersberg, J. (2000) "ERP Experiences and Evolution", Communications of the ACM, Vol. 43, Iss. 4, pp. 23-26.

Kuo, R.J., Chi, S.C. and Kao, S.S. (2002) "A Decision Support System for Selecting Convenience Store Location through Integration of Fuzzy AHP and Artificial Neural Network", Computers in Industry, Vol. 47, Iss. 2, pp. 199-214.

Kwong, C.K. and Bai, H. (2002) "A Fuzzy AHP Approach to the Determination of Importance Weights of Customer Requirements in Quality Function Deployment", Journal of Intelligent Manufacturing, Vol. 13, Iss. 5, pp. 367-377.

Kwong, C.K. and Bai, H. (2003) "Determining the Importance Weights for the Customer Requirements in QFD using a Fuzzy AHP with an Extent Analysis Approach", IIE Transactions, Vol. 35, Iss. 7, pp. 619-626.

Lai, V.S., Trueblood, R.P. and Wong, B.K. (1999) "Software Selection: A Case Study of the Application of the Analytical Hierarchical Process to the Selection of a Multimedia Authoring System", Information \& Management 36, pp. 221-232.

Lamb, M. and Gregory M.J. (1997) "Industrial Concerns in Technology Selection", Proceedings of the Portland International Conference on Management of Engineering and Technology (PICMET' 97), pp. 206-212.

Lambert, D.M., Cooper, M.C. and Pugh, J.D. (1998) "Supply Chain Management: Implementation Issues and Research Opportunities", International Journal of Logistics Management, Vol. 9, Iss. 2, pp. 1-19.

Lancioni, R. (2000) "New developments in Supply Chain Management for the Millennium", Industrial Marketing Management, Vol. 29, Iss. 1, pp. 1-6.

Lancioni, R.A., Smith, M.F. and Olivia, T.A. (2000) "The Role of the Internet in Supply Chain Management", Industrial Marketing Management, Vol. 29, Iss. 1, 45-56.

Lancioni, R.A., Smith, M.F. and Schau H.J. (2003) "Strategic Internet Application Trends in Supply Chain Management", Industrial Marketing Management 32, pp. 211 217.

Lankford, W.M. (2004) "Supply Chain Management and the Internet", Online Information Review, Vol. 28, Iss. 4, pp. 301-305.

Larman, C. and Basili, V.R. (2003) "Iterative and Incremental Development: A Brief History", IEEE Computer, pp. 47-56.

Lawton, G. (2000) "Integrating ERP and CRM via the Web", SW Expert, March, pp.4752.

Lee, A.H.I., Kang, H.Y. and Wang, W.P. (2006) "Analysis of Priority Mix Planning for Semiconductor Fabrication under Uncertainty", International Journal of Advanced Manufacturing Technology, Vol. 28, Iss.3-4, pp. 351-361.

Lee, H.-J., Meng, M.-C. and Cheong, C.-W. (2006) "Web Based Fuzzy Multicriteria Decision Making Tool", International Journal of the Computer, the Internet and Management, Vol. 14, No. 2 (May - August, 2006), pp 1-14.

Lee, J.W. and Kim, S.H. (2000) "Using Analytic Network Process and Goal Programming for Interdependent Information System Project Selection", Computers \& Operations Research 27, pp. 367-382.

Lee, W. B., Lau, H., Liu, Z., and Tam, S. (2001) "A Fuzzy Analytic Hierarchy Process Approach in Modular Product Design", Expert Systems, February, Vol. 18, Iss. 1, pp. 32-42.

Lefley, F. and Sarkis, J. (1997) "Short-termism and the Appraisal of AMT Capital Projects in the US and UK", International Journal of Production Research, Vol. 35, Iss. 2, pp. 341-368.

Levary, R.R. and Wan, K. (1998) "A Simulation Approach for Handling Uncertainty in the Analytic Hierarchy Process", European Journal of Operations Research 106, pp. 116122.

Li, D., Kehoe, D. and Drake, P. (2006) "Dynamic Planning with a Wireless Product Identification Technology in Food Supply Chains", The International Journal of Advanced Manufacturing Technology, Vol. 30, Iss. 9-10, pp. 938-944.

Li, L. (2006) "The Effects of Information Technology Implementation on Supply Chain Collaboration", International Journal of Internet \& Enterprise Management, Vol. 4, Iss. 2, pp. 118-134.

Li, L. and Zhao, X. (2006) "Enhancing Competitive Edge through Knowledge Management in Implementing ERP Systems", Systems Research and Behavioral Science, 23, pp. 129-140.

Li, X. and Wang, Q. (2007) "Coordination Mechanisms of Supply Chain Systems", European Journal of Operational Research 179, pp. 1-16.

Liang, G.S. and Wang, M.J.J. (1993) "A Fuzzy Multi-criteria Decision Making Approach for Robot Selection", Robotics and Computer Integrated Manufacturing, Vol. 10, Iss. 4, pp. 267-274.

Liu, K. C., Li, D. and Kehoe, D. F. (2006) "Agile Scheduling by MAS-based Intelligent Products", Proceedings of LSCM 2006, 5-7 January 2006, Hong Kong SAR, China, pp. 63.

Liu, K. C., Li, D. and Kehoe, D. F. (2008) "A FAHP-Based Technology Selection and Specification Methodology", Proceedings of the 10th International Conference on Enterprise Information Systems (ICEIS), pp. 161-168.

Liu, Y.-W., Kwon, Y.-J. and Kang, B.-D. (2007) "A Fuzzy AHP Approach to Evaluating E-commerce Websites", Fifth International Conference on Software Engineering Research, Management and Applications, pp. 114-122.

Loh T.C. and Koh S.C.L. (2004) "Critical Elements for a Successful ERP Implementation in SMEs", International Journal of Production Research, Vol. 42, Iss. 17, pp. 3433-55.

Lohr, S. (1997) "Information Technology Field is Rated Largest U.S. Industry", New York Times, November 18.

Lu, M., Chen W., Shen, X., Lam, H.-C. and Liu, J. (2007) "Positioning and Tracking Construction Vehicles in Highly Dense Urban Areas and Building Construction Sites", Automation in Construction, Vol. 16, Iss. 5, August 2007, pp. 647-656.

Lu B.H., Bateman R.J. and Cheng K. (2006) "RFID-enabled Manufacturing Fundamentals, Methodology and Applications", International Journal of Agile Systems and Management 1, pp. 73-92.

Ludwig Consulting Services LLC (LCS) (2006) "Managing Requirements: Definitions". Available at: http://www.jiludwig.com/Definitions.html (accessed November 2007).

Lummus, R.R. and Vokurka, R.J. (1999) "Defining Supply Chain Management: a Historical Perspective and Practical Guidelines", Industrial Management and Data Systems, Vol. 19, Iss. 1, pp. 11-17.

Ma, L.-C. and Li, H.-L. (2008) "A Fuzzy Ranking Method with Range Reduction Techniques", European Journal of Operational Research 184, pp. 1032-1043.

Manecke, N. and Schoensleben, P. (2004) "Cost and Benefit of Internet-based Support of Business Processes", International Journal Production Economics 87 213-229

Manic, M. (2005)"Decision Support Systems, AHP \& Fuzzy AHP", Presentation slides, Guest Talk on FAHP, Dr. Allesi's course, 10.13.2005. Available at: http://husky.if.uidaho.edu/pubs/talk FAHP_10.13.05 2-1.pdf (accessed November 2007).

Marciniak, J (2002) "Encyclopedia of Software Engineering", Second Edition, ISBN: 0471210080 , John Wiley \& Sons, 2002.

Mårtensson, F. (2006) "Software Architecture Quality Evaluation: Approaches in an Industrial Context", Blekinge Institute of Technology, Kaserntryckeriet, Karlskrona, Sweden, ISBN: 91-7295-082-X.

Matson J.B. and McFarlane, D.C., (1999) "Assessing the Responsiveness of Existing Production Operation", International Journal of Operations and Production Management, Vol. 19, Iss. 8, pp. 765-784.

McCaffrey, James (2005) "Multi-Attribute Global Inference of Quality (MAGIQ)", Software Test and Performance Magazine, Vol. 2, No. 7, August 2005, pp. 28-32.

McEwen, S. (2004) "A Better Way to Build Business Software". Available at: Http://www.developer.com/jav/ent/article.php/3407131 (accessed November 2005).

McFarlane, D. (2005) "RFID: Reducing the Uncertainty", Cambridge Auto ID Labs. Presentation slides, GS1 Event, London, June 2005.

McFarlane, D. and Y. Sheffi (2003) "The Impact of Automatic Identification on Supply Chain Operations", International Journal of Logistics management, Vol 14, No. 1.

McFarlane, D., Sarma S., Chirn, J.L., Wong, C.Y. and Ashton, K. (2003) "Auto ID Systems and Intelligent Manufacturing Control", Engineering Applications of Artificial Intelligence 16 (2003), pp. 365-376.

McFarlane, D., Zaharudin, A.A., Wong, C.Y., Agarwal, V., Koh, R. and Kang, Y.Y. (2002) "White Paper: The Intelligent Product Driven Supply Chain", Auto-ID Centre.

McNamara, P. and Baden-Fuller, C. (1999) "Lessons from the Celltech Case: Balancing Knowledge Exploration and Exploitation in Organisational Renewal", British Journal of Management 10, pp. 291-307.

Merriam Webster on-line Dictionary (2000), Available at: http://www.m-w.com/cgibin/dictionary (accessed December 2000).

Merritt K. (2001) "Logistics Systems Remain Disconnected", Frontline Solutions, Vol. 2, Iss. 8, July 2001, pp. 38.

Messmer, E. (1996a) "Chase Manhattan Parks VAN, Drives Up to Internet", Network World Vol. 13, Iss. 37.

Messmer, E. (1996b) "The Internet Rocks EDI Boat", Network World, Vol. 13 , Iss. 18.
Mintsis, G., Basbas, S., Papaioannou, P., Taxiltaris, C. and Tziavos, I. N. (2004) "Applications of GPS Technology in the Land Transportation System", European Journal of Operational Research, Vol. 152, Iss. 2, 16 January 2004, pp. 399-409.

Mital A. and Pennathur A. (2002) "Getting the Most Out of Advanced Manufacturing Technology (AMT)-based Systems: Part II: Recognizing and Managing Human Limitations", International Journal Manufacturing Technology and Management, Vol. 4, Iss. 1-2, pp. 119-33.

Mon, D.K., Cheng, C.H. and Lin, J.C. (1994) "Evaluating Weapon System using Fuzzy Analytic Hierarchy Process based on Entropy Weight", Fuzzy Sets and Systems 62, pp. 127-134.

Moon, T.-H. and Lee, W.-B. (1999) "Construction of Supporting System for Decision Making Process of Zoning Designation and Change That has Fuzziness", The 6th International Conference Computers in Urban Planning and Urban Management, 1999.

Mukhopadhyay, T., Kekre, S. and Kalathur, S. (1995) "Business Value of Information Technology: a Study of Electronic Data Interchange", MIS Quarterly, Vol. 19, Iss. 2, pp. 137-156.

Murtaza, M.B. (2003) "Fuzzy-AHP Application to Country Risk Assessment", American Business Review, Vol. 21, Iss. 2, pp. 109-116.

Naik B. and Chakravarty A. (1992) "Strategic Acquisition of New Manufacturing Technology: a Review and Research Framework", International Journal of Production Research, Vol. 37, Iss. 7, pp. 1575-601.

Narasimhan, R. and Carter, J.R. (1998) "Linking Business Unit and Material Sourcing Strategies", Journal of Business Logistics, Vol. 19, Iss. 2, pp. 155-171.

Nash, K. (1996) "Internet EDI on Horizon", Computerworld, Vol. 30, Iss. 5, pp. 65.
Nelson, P. F. and Kastenberg, W. E. (1986) "An Extended Value-impact Approach for Nuclear Regulatory Decision-making", Nuclear Engineering and Design 93, pp. 311-317.

O’Leary, D. E. (2000) "Enterprise Resource Planning Systems: Systems, Life Cycle, Electronic Commerce, and Risk", Cambridge University Press, UK. ISBN 9780521791526.

Oborski P. (2004) "Man-machine in Advanced Manufacturing Systems", International Journal of Advanced Manufacturing Technology 23, pp. 227-32.

Office of Science and Technology Policy National Security Council (OSTPNSC) (1999) "Fact Sheet: U.S. Global Positioning System Policy", Office of Science and Technology Policy National Security Council. March 29, 1999. Available at: http://clinton4.nara.gov/textonly/WH/EOP/OSTP/html/gps-factsheet.html (accessed July 2007).

OPEN Process Framework Repository Organization (OPFRO) (2006) "Architecture: Definitions", OPEN Process Framework Repository Organization (OPFRO). Available at: http://www.opfro.org/Components/WorkProducts/ArchitectureSet/Architectures/Architec tures.html (accessed November 2006).

Pagel, D. (1999) "Managing for Optimal Performance Through Effective Coordination of the Supply Chain", Production and Inventory Management Journal, First Quarter, pp. 6670.

Parkinson, B.W., Spilker Jr, J.J., Axelrad, P. and Enge, P. (1996) "Global Positioning System: Theory and Applications", American Institute of Aeronautics \& Astronautics (AIAA),U.S.ISBN 978-1563472497.

Parnas, D. (1976) "On the Design and Development of Program Families", IEEE Transactions on Software Engineering SE-2, 1, pp. 1-9.

Parnas, D. L. (1972) "On the Criteria to be Used in Decomposing Systems into Modules", Communications of the ACM,Vol. 15, Iss. 12, pp. 1053-1058, ISSN: 0001-0782.

Perry, D.E. and Wolf, A.L. (1992) "Foundations for the Study of Software Architecture. Software Engineering Notes", ACM SIGSOFT, Vol. 17, Iss. 4, pp. 40-52, October 1992.

Picot, A. and Reichwald, R. (1994) "Aufl.osung der Unternehmung? Vom Einfluss der luk-Technik auf Organisationsst rukturen und Kooperationsformen", Zeitschrift f .ur Betriebswirtschaft ZfB, Vol. 64, Iss. 5, pp.547-570.

Pisello, Tom (2006) "The ROI of RFID in the Supply Chain", RFID Journal LCC. Available at: http://www.rfidjournal.com/article/articleview/2602/l/2/ (accessed November 2006).

Prater E., Frazier G.V. and Reyes P.M (2005) "Future Impacts of RFID on E-supply Chains in Grocery Retailing", Supply Chain Management: An International Journal, Vol. 10, Iss. 2, pp. 134-42.
R. Kalakota and A.B. Whinston (1996) "Frontiers of Electronic Commerce", AddisonWesley Publishing, New York, U.S..

Radhakrishnan A., Zu X. and Grover V. (2008) "A Process-oriented Perspective on Differential Business Value Creation by Information Technology: an Empirical Investigation", Omega: International Journal of Management Science Vol. 36, pp. 11051125.

Rao, B. (1999) "The Internet and the Revolution in Distribution: a Cross-industry Examination", Technology in Society, Vol. 21, pp. 287-306.

Rashid, M., Hossain, L. and Patrick, J.D. (2002) "The Evolution of ERP Systems: A Historical Perspective", Enterprise Resource Planning: Global Opportunities and Challenges, pp.1-16, L. Hossain, J.D. Patrick, MA Rashid, Idea Publishing. 2002. ISBN 10930708-36-X.

RFID Centre (2007) "RFID Technology", RFID Centre. Available at: http://www.rfidc.com/docs/introductiontorfid technology.htm (accessed November 2006).

RFID Journal LLC (2006) "The History of RFID Technology", RFID Journal LLC. Available at: http://www.rfidjournal.com/article/articleview/1338/1/129/ (accessed November 2006).

Ribeiro, R.A. (1996) "Fuzzy Multiple Attribute Decision Making: A Review and New Preference Elicitation Techniques", Fuzzy Sets and Systems 78, pp. 155-181.

Roberti, Mark (2003) "Case Study: Wal-Mart's Race for RFID". Available at: http://www.eweek.com/article2/0,1759,1492297,00.asp (accessed November 2006).

Roberti, Mark (2004) "Tag Cost and ROI", RFID Journal LCC. Available at: http://www.rfidjournal.com/article/articleview/796/1/2/ (accessed November 2006).

Roberts, M. (2000) "The Dawn of Next-generation Digital Supply Chains", Chemical Week, pp. 14-17.

Roper-Lowe, G.C. and Sharp, J.A. (1990) "The Analytic Hierarchy Process and its Application to an Information Technology Decision", Journal of Operational Research Society, Vol. 41, Iss. 1, pp. 49-59.

Rost \& Co (2000) "New Trends in Silicon Valley’s Digital Revolution", Client Conference of Simma Management Consultants, Zurich, Switzerland.

Roy, Bernard (1968) "Classement et choix en présence de points de vue multiples (la méthode ELECTRE) ", la Revue d'Informatique et de Recherche Opérationelle (RIRO) 8, pp. 57-75.

Saaty, T. L. (1980b). "The Analytic Hierarchy Process: Planning, Priority, Allocation", McGraw-Hill Book Company, New York, U.S..

Saaty, T. L. and Kearns, K. P. (1985) "Analytical Planning", Pergamon, New York, U.S..
Saaty, T.L. and Vargas, L.G. (1990) "Models, Methods, Concepts \& Applications of the Analytic Hierarchy Process", Kluwer Academic Publishers, Boston, U.S..

Saaty, T.L., (1980a) "The Analytic Hierarchy Process", McGraw-Hill, New York, U.S.
Sadiqa, R. and HU.S.in, T. (2005) "A Fuzzy-based Methodology for an Aggregative Environmental Risk Assessment: a Case Study of Drilling Waste", Environmental Modelling \& Software 20, pp. 33-46.

Sahinidis, N. V. and Ahmed, S. (2008) "Selection, Acquisition, and Allocation of Manufacturing Technology in a Multi-period Environment", European Journal of Operational Research 189, pp. 807-821.

Saleh B, Hacker M. and Randhawa S. (2001) "Factors in Capital Decisions Involving Advanced Manufacturing Technologies", International Journal Operations and Production Management, Vol. 21, Iss. 10, pp. 1265-88.

Salo, A., Gustafsson, T. and Ramanathan, R. (2003) "Multicriteria Methods for Technology Foresight", Journal of Forecasting, Vol. 22, Iss. 2, pp. 235-255.

Samuels, J., Wilkes, M. and Brayshaw, R. (1999) "Financial Management and Decision Making", Thomson Business Press, Italy pp. 58, 61-66.

Schniederjans, M.J. and Wilson, R.L. (1991) "Using the Analytic Hierarchy Process and Goal Programming for Information System Project Selection", Information \& Management 20, pp. 333-342.

Segev, A., Porra, J. and Roldan, M. (1997) "Internet-based EDI Strategy", Decision Support Systems 21, pp. 157-170.

Segev, A., Wan, D, Beam, C., Toma, B. and Weinrot, D. (1995) "Internet Based Financial EDI: a Case Study", The Fisher Center for Management and Information Technology Working Paper CITM-95-WP-1006.

Shallit, J. (1995). "A Very Brief History of Computer Science". Available at: http://www.cs.uwaterloo.ca/~shallit/Courses/134/history.html (accessed October 2007).

Shang, J. and Sueyoshi, T. (1995) "A Unified Framework for the Selection of a Flexible Manufacturing System", European Journal of Operational Research 85 297-315.

Sharif, A.M., Irani Z. and Love P.E.D. (2005) "Integrating ERP using EAI: a Model for Post Hoc Evaluation", European Journal of Information Systems 24, pp. 162-74.

Shaw, A, McFarlane, D.C., Chang, Y.S. and Noury, P.J.G. (2002) "Measuring Response Capabilities in the Order Fulfillment Process", Proceedings of EUROMA, Amsterdam, NL.

Shaw, M. and Garlan, D. (1994). "An Introduction to Software Architecture". Available at: http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf (accessed October 2006).

Shaw, M. and Garlan, D. (1996) "Software Architecture: Perspectives on an Emerging Discipline". Available at: http://www.cs.cmu.edu/~Vit/paper_abstracts/SoftArch.html (accessed October 2006).

Shehabuddeen, N., Probert, D. and Phaal, R. (2006) "From Theory to Practice: Challenges in Operationalising a Technology Selection Framework", Technovation 26, pp. 324-335.

Simchi-Levi, D., Kaminsky, P. and Simchi-Levi, E., (2000) "Designing and Managing the Supply Chain", McGraw-Hill, Irwin , U.S., ISBN: 0072357568.

Singleton, C. and Spickett, A. (2003) "A Biography of Development Methodologies", Communications of the ACM, Vol. 46, No. 1

Siow, C. H. R., Yang, J. B. and Dale, B. G. (2001) "A New Modelling Framework for Organisational Self-assessment: Development and Application", Quality Management Journal, Vol.8, No.4, pp.34-47.

Slater, D. (1998) "The Hidden Costs of Enterprise Software", CIO Magazine, Vol. 11, Iss. 7, pp. 48-55.

Słowiński, R., Greco, S. and Matarazzo, B. (2005) "Rough Set Based Decision Support. Chapter 16 [in]: E.K. Burke and G. Kendall (eds.)", Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, Springer-Verlag, New York pp. 475-527.

Smith, A.D. (2005) "Exploring Radio Frequency Identification Technology and its Impact on Business Systems", Information Management and Computer Security 13, pp. 16-28.

Smithson, M. and Verkuilen, J. (2006) "Fuzzy Set Theory: Application in the Social Sciences", Sage Publications, Inc., California, U.S.

Sokol, P.K. (1995) "From EDI to Electronic Commerce: A Business Initiative", McGraw-Hill, New York, U.S..

Sommerville, Ian (2001) "Software Engineering", Sixth Edition, Addison-Wesley. ISBN 0-201-39815.

Srdjevic, B. and Medeiros Y. D. P. (2007) "Fuzzy AHP Assessment of Water Management Plans", Water Resources Management, Springer 2007, ISSN: 0920-4741.

Stake, Robert E. (1995) "The Art of Case Study Research", Sage Publications, Inc, ISBN: 080395767X.

Stam, A. and Kuula, M. (1991) "Selecting a Flexible Manufacturing System using Multiple Criteria Analysis", International Journal of Production Research, Vol. 29, Iss. 4, pp. 803-820.

Stanley, M. (2000) "The State of B2B Commerce: Past, Present and Future: A Quick Summary", Collaborative Commerce pp.25-26. Available at http://www.eglobal.es/ 008 morgan btbf.pdf (accessed July 2005).

Steven, J. (1989) "Integrating the Supply Chain", International Journal of Ohysical Distribution and Materials Management, Vol. 19, Iss. 8, pp. 3-8.

Stevenson M., Hendry L.C. and Kingsman B.G. (2005) "A Review of Production Planning and Control: the Applicability of Key Concepts to the Make-to-Order Industry", International Journal of Production Research 43, pp. 869-98.

Sutton, Lee (2006) "Best Practices of Adobe LiveCycle Barcoded Forms and PDF417 Barcodes". Available at: http://www.taxadmin.org/FTA/meet/06tech/06tech_pres/ sutton.pdf (accessed June 2007).

Sysoptima.com (2005) "History and Evolution of ERP". Available: http://www.sysoptima.com/erp/history of erp.php (accessed October 2007).

System ID Warehouse (2001) "Bar Code Input Devices". Available at: http://www.systemid.com/learning_center/input devices.asp (accessed October 2007).

Tadjer, R. (1998) "Enterprise Resource Planning", Internetweek, Manhasset, April 13.
Tang Z., Chen R. and Ji X. (2005) "Operational Tactics and Tenets of a New Manufacturing Paradigm Instant Customerisation", International Journal of Production Research 43, pp. 2873-94.

Tarn, J.M., Yen, D.C. and Beaumont, M. (2002) "Exploring the Rationales for ERP and SCM Integration", Industrial Management and Data Systems 102, pp. 26-34.

TechWeb Technology News (2004) "Companies Unprepared to Handle RFID Data", The TechWeb Network 5 November 2004. Available at: http://www.techweb.com/ wire/ebiz/52200286 (accessed December 2006).

Tekinerdoğan, B. and Akşit, M. (2001) "Classifying and Evaluating Architecture Design Methods", Software Architectures and Component Technology, Kluwer Academic Publishers, Dordrecht, pp. 3-28, ISBN: 0792375769.

Teltumbde, A. (2000) "A Framework of Evaluating ERP Projects", International Journal of Production Research 38, pp. 4507-4520.

The Open Group Architecture Framework (TOGAF) (2006)"Glossary: Architecture", The Open Group. Available at: http://www.opengroup.org/architecture/togaf8-doc/ arch/chap36.html (accessed December 2007).

Thomas, D.J. and Grifin, P.J. (1996). "Coordinated Supply Chain Management", European Journal of Operational Research, Vol. 94, Iss. 1, pp. 1-15.

Thornton, J. and Marche, S. (2003) "Sorting Through the Dot Bomb Rubble: How Did the High-profile E-tailers Fail? ", International Journal of Information Management. Vol. 23, Iss. 2, pp. 121-138.

Towill, D.R. (1996) "Industrial Dynamic Modeling of Supply Chain", International Journal of Physical Distribution and Logistics Management, Vol. 26, Iss. 2, pp. 23-42.

Twist, D.C. (2004) "The Impact of Radio Frequency Identification on Supply Chain Facilities", Journal of Facilities Management, Vol. 3, Iss. 3, pp. 22 6-2 39.
U.S. Coast Guard (USCG) (2005a) "USCG Navcen: GPS Frequently Asked Questions", U.S. Coast Guard. Available at: http://www.navcen.uscg.gov/faq/gpsfaq.htm (accessed August 2007).
U.S. Navy (2007) "USNO. NAVSTAR Global Positioning System", U.S. Navy. Available at: http://tycho.usno.navy.mil/gpsinfo.html (accessed December 2007).

Udo G, Ebiefung A. (1999) "Human Factors Affecting the Success of Advanced Manufacturing Systems", Journal of Computers \& Industrial Engineering, Vol. 37, pp. 297-300.

United Devices (2004) "GlaxoSmithKline: Implementing Breakthrough Technology for Clinical Development Modeling and Simulation", United Devices Case Study. Available at: http://www.ud.com/ (accessed July 2005).

US Coast Guard (USCG) (2005b) "General GPS News 9-9-05", U.S. Coast Guard. Available at: http://www.navcen.uscg.gov/gps/gps news 090905.htm (accessed August 2007).
V. Laopodis (1994) "TAIS: Technology Assessment Information System. In: K. Duncan, K. Krueger (Eds.)", Proceedings of the Thirteenth World Computer Congress, Vol. 94, Iss. 3, Elsevier, Amsterdam, pp. 235-240.

Van Laarhoven, P. J. M. and W. Pedrycz (1983). "A Fuzzy extension of Saaty's Priority Theory: Fuzzy Sets and Systems", Vol. 11, pp. 229-241.

Van Weele, A.J. (2000) "Purchasing and Supply Chain Management: Analysis, Planning and Practice", Second Edition, Thomson Learning, UK.

Vertern V. (1997) "An Integrated Model for Facility Location and Technology Acquisition", (Working Paper-CRT-97-35), Centre for Research on Transportation, University of Montreal, Canada, pp. 1-19.

Voss, C., Tsikriktsis, N. and Frohlich, M. (2002) "Case Research in Operations Management", International Journal of Operations and Production Management, Vol. 22, No. 2, pp. 195-219.

Vyse, Leah (2005) "RFID Could Save UK Retailers Billions". Available at: http://www.foodproductiondaily.com/news/ng.asp?n=64072-igd-rfid-supermarkets (accessed August 2006).

Wall, F. (2000) "Kostenwirkungen der Prozessorientierung", Wirtschaftsinformatik, Vol. 42, Iss. 3, pp. 210-221.

Wallace, T.F. and Kremzar, M.H. (2002) "ERP: Making it Happen", Wiley, America. ISBN 978-0-471-21703-9.

Walters, S.A., Broady, J.E. and Hartley, R.J. (1994) "A Review of Systems Development Methodologies", Library Management, Vol. 46, Iss. 6.

Wang, S. and Archer, N. (2007) "Electronic Marketplace Definition and Classification: Literature Review and Clarification", Enterprise Information System, Vol. 1, Iss. 1, pp. 89-1 12.

Webb, E. J., Campbell, D. T., Schwartz, R. D. and Sechrest, Li (1966) "Unobtrusive Measures: Nonreactive Measures in the Social Sciences", Rand McNally, Chicago.

Weeks, A.M. (2000) "PRC trading strong in first half", The China Buiness Review, Vol. 27, Iss. 6, pp. 23-40.

Wei, C.C., Chien, C.F. and Wang, M.J. J. (2005) "An AHP-based Approach to ERP System Selection", Int. J. Production Economics 96, pp. 47-62.

Weisul, K. (1996) "Heavy Hitters Open Doors to EDI Over the Internet", Investment Dealers' Digest, Vol. 62, Iss. 46.

White, J.C. (2003). "People, Not Places: A Policy Framework for Analyzing Location Privacy Issues", Masters Memo Prepared for the Electronic Privacy Information Center. Available at: http://www.epic.org/privacy/location/jwhitelocationprivacy.pdf (accessed August 2005).

Wikipedia (2007) "Global Positioning System". Available at: http://en.wikipedia.org/ wiki/Gps.htm (accessed July 2007).

Winser, J.D. and Tan, K.C. (2000) "Supply Chain Management and its Impact on Purchasing", Journal of Supply Chain Management, Vol. 36, Iss. 4, pp. 33-42.

Wong, Johnny K.W. and Li, H. (2008) "Application of the Analytic Hierarchy Process (AHP) in Multi-criteria Analysis of the Selection of Intelligent Building Systems", Building and Environment, Vol. 43, Iss. 1, January 2008, pp. 108-125

Woods, E. (2006). "How do you define Software Architecture?". Available at: http://www.sei.cmu.edu/architecture/definitions.html (accessed July 2006).

Wu F., Kuo F. and Liu L.W. (2005) "The Application of RFID on Drug Safety of Inpatient Nursing Healthcare", Proceedings of the ICEC 2005, 15-17 August 2005, Xi'an, China. pp. 85-92.

Wu, N.C., Nystrom, M.A., Lin, T.R. and Yu, H.C. (2006) "Challenges to Global RFID Adoption", Technovation 26, pp. 1317-1323.

Yang, J. B. (2001) "Rule and Utility Based Evidential Reasoning Approach for Multiple Attribute Decision Analysis Under Uncertainty", European Journal of Operational Research, Vol. 131, No.1, pp.31-61.

Yap, C.M. and Souder, W.E. (1993) "A Filter System for Technology Evaluation and Selection", Technovation, Vol. 13, Iss. 7, pp. 449-469.

Yin, R.K. (1994) "Case Study Research: Design and Methods", Second Edition, Sage Publications, ThoU.S.nd Oaks.

Yusuf, Y., Gunasekaran, A. and Abthorpe, M.S. (2004) "Enterprise Information Systems Projects Implementation: a case study of ERP in Rolls-Royce", International Journal of Production Economics 87, pp. 251-66.

Zaddeh, L.A. (1965) "Fuzzy Sets", Information \& Control 8, pp. 338-353.
Zahedi, F. (1986) "The Analytic Hierarchy Process-a Survey of the Method and its Applications", Interfaces, Vol. 16, Iss. 4, pp. 96-108.

Zebra Technologies Corp. (2007) "Bar Code Glossary: ADC". Available at: http://www.zebra.com/id/zebra/na/en/index/resource library/glossary/bar code terminol ogy.parsys.0001.A.Glossary.html (accessed November 2007).

Zeleny, M. (1982) "Multiple Objective Decision Making", Addison-Wesley, Readying, Massachusetts, U.S.

Zeng, J.H., An, M. and Smith, N. J. (2007) "Application of a Fuzzy Based Decision Making Methodology to Construction Project Risk Assessment", International Journal of Project Management, Vol. 25, Iss. 6, pp. 589-600.

Zhu, K. and Kraemer, K. (2005) "Post-adoption Variations in U.S.ge and Value of Ebusiness by Organizations: Cross-country Evidence from the Retail Industry", Information Systems Research, Vol. 16, Iss. 1, pp. 61-84.

Zhu, K., Kraemer, K., Gurbaxani, V. and Xu, S. (2006) "Migration to Open-Standard Inter-Organizational Systems: Network Effects, Switching Costs, and Path Dependency", MIS Quarterly, 2006, special issue on Standards.

Zhu, K.J., Jing, Y. and Chang, D.Y. (1999) "A Discussion on Extent Analysis Method and Applications of Fuzzy AHP", European Journal of Operational Research 166, pp. 450-456.

APPENDIX A - USE CASE DIAGRAM (CASE STUDY III)

The following use-case diagram is extracted from the requirement specifications of the RFID-based tracking and planning system.

Figure A. 1 Use case diagram
(source: Requirement specification document for the RFID-based tracking and planning system)

APPENDIX B - PHASE 3 RESULTS FOR CASE STUDY III

This appendix documents the phase 3 results for the case study III. Through solution decomposition in phase 2, there are twelve solution components identified with six of them gone through phase 3 for solution component decomposition processes.

Thereby, this document will be divided into 6 sections with each section includes the results for one of the solution components. Each section contains the identified goal and means-objectives resulted from step 3.1 and a complete AHP-based hierarchy model resulted from step 3.1.

1. Tracking technology

Goal: define and specify the best-fit tracking technology

Table B. 1 The means-objectives for tracking technology

Fundamental-objective	Means-objective(s)
Implementation cost	Purchasing cost, software development cost, easiness and cost of installation
Operational cost	Cost for data carrier, maintenance cost, cost for manual operation
Efficient data capturing	Data capturing time, reading range
Reliable data capturing	Data capturing accuracy, low data error rate, environmental susceptibility
Fast, real-time tracking data update to system	Data transmission media, network protocol, operational speed
Maintainability	Resource for repairing and replacement
Availability	Resource for repairing and replacement, operational stability

Figure B. 1 The complete AHP-based hierarchy model for tracking technology

2. Software platform (intranet application)

Goal: define and specify the software platform for intranet applications

Table B. 2 The means-objectives for software platform (intranet application)

Fundamental-objective	Means-objective(s)
Intranet accessibility (intranet applications)	Compatibility to various intranet-based protocols
Implementation cost	Purchase cost, setup cost
Fast, secured business data transaction (for SOP, Planning and scheduling)	Data management capability
Sufficient processing and memorial power	Low resources requirements
Efficient job card printing	Efficient serial interface, compatible to job card printer's software driver
Maintainability	Resource for repairing and replacement

Availability	Resource for repairing and replacement, operational stability
MS Windows compatible (SOP)	Compatibility to MS Windows

Figure B. 2 The complete AHP-based hierarchy model for software platform (intranet application)

3. Software platform (Internet application)

Goal: define and specify the software platform for Internet applications

Table B. 3 The means-objectives for software platform (Internet application)

Fundamental-objective	Means-objective(s)
Internet accessibility (customer report)	Compatibility to various internet-based protocols
Implementation cost	Purchase cost, setup cost
Sufficient data storage and data transaction capabilities	Capable to cope with high volume of users' access
Sufficient processing and memorial power	Low resources requirements
Maintainability	Resource for repairing and replacement

Availability	Resource for repairing and replacement, operational stability
Software platform independency (customer report)	Applications independent to client's platform, avoiding software installations on client computers

Figure B. 3 The complete AHP-based hierarchy model for software platform (Internet application)

4. Database management system

Goal: define and specify the software platform for database management system

Table B. 4 The means-objectives for database management system

Fundamental-objective	Means-objective(s)
Internet accessibility (customer report)	Accessibility to Internet-based applications
Intranet accessibility (intranet applications)	Accessibility to intranet-based applications

Implementation cost	Software purchasing cost, setup cost
Operational cost	Administration cost, maintenance cost, hosting cost
Fast, real-time tracking data update to system	Efficient data interface to data capturing sub-system
Fast, secured business data transaction (for SOP, Planning and scheduling)	Capability in handling simultaneous accesses, data security
Sufficient data storage and data transaction capabilities	Efficient with huge amount of cumulative data, efficient with continuous frequent accesses
Maintainability	Resource for repairing and replacement
Availability	Resource for repairing and replacement, operational stability

Figure B. 4 The complete AHP-based hierarchy model for software platform (database management system)

5. User interface (customer reporting)

Goal: define and specify the user interface for customer report functionalities

Table B. 5 The means-objectives for user interface (customer reporting)

Fundamental-objective	Means-objective(s)
Implementation cost	Setup cost, software development cost
Sufficient processing and memorial power	Low resources requirements
Software platform independency (customer report)	Avoiding additional software installations, accessibility by different software platform
Report content convertible to file	Direct copy/save data from user interface
Readability and usability	Efficient data presentation, conventional data format

Figure B. 5 The complete AHP-based hierarchy model for user interface (customer reporting)

6. User interface (other Intranet application)

Goal: define and specify the user interface for Internet applications other than customer report

Table B. 6 The means-objectives for user interface (other Intranet applications)

Fundamental-objective	Means-objective(s)
Implementation cost	Setup cost, software development cost
Efficient data capturing	Enable efficient data input with keyboard, quick screen refresh
Sufficient processing and memorial power	Low resources requirements
Report content convertible to file	Direct copy/save data from user interface
Readability and usability	Efficient data presentation, conventional data format

Figure B. 6 The complete AHP-based hierarchy model for user interface (other Intranet applications)

APPENDIX C - PHASE 4 RESULTS FOR CASE STUDY III

Appendix documents the phase 4 results for the case study III. With the AHP-based hierarchy models of the six solution components produced in phase 3, ranking of alternatives for the solution components were generated through a series of computational processes.

This document is divided into six sections with each section includes the results for one of the solution components. Each section contains two sub-sections for step 4.1 and step 4.2 respectively.

The first sub-section contains the PCMs resulted from process 4.1.1 and process 4.1.2, the consistency ratios as the consistency test results in process 4.1.3, the fuzzified PCMs resulted from process 4.1.4, the synthetic extents as the results of process 4.1.5, the weight vectors and thereby rankings of fundamental-objectives resulted from process 4.1.6.

Similarly, the second sub-section include the PCMs resulted from process 4.2.1 and process 4.2.2, the consistency ratios as the consistency test results in process 4.2.3, the fuzzified PCMs resulted from process 4.2.4, the synthetic extents as the results of process 4.2 .5 , the weight vectors, priority weights and thereby ranking of alternatives resulted from process 4.2.6.

1. Tracking technology

1.1 Step 4.1 results

Process 4.1.2

$\mathrm{M}_{1}=$			
	C_{11}	C_{12}	C_{13}
C_{11}	1	1	3
C_{12}	1	1	3
C_{13}	$1 / 3$	$1 / 3$	1

C_{11} : cost
C_{12} : data capturing
C_{13} : general performance, availability and maintainability

$\mathrm{M}_{2}=$		
	C_{21}	C_{22}
C_{21}	1	$1 / 5$
C_{22}	5	1

C_{21} : implementation cost
C_{22} : operations cost

$M_{3}=$			
	C_{31}	C_{32}	C_{33}
C_{31}	1	1	3
C_{32}	1	1	3
C_{33}	$1 / 3$	$1 / 3$	1

C_{31} : efficient data capturing
C_{32} : reliable data capturing
C_{33} : fast, real-time tracking data update to system
$M_{4}=$
$\mathrm{C}_{41} \quad \mathrm{C}_{42}$
$\begin{array}{lll}\mathrm{C}_{41} & 1 & 3\end{array}$
$\mathrm{C}_{42} \quad 1 / 3 \quad 1$
C_{41} : maintainability
C_{42} : availability

Process 4.1.3

M_{2} and M_{4} involve only two comparing objectives and consistency test is not needed.
$C R_{I}=0.000$,
$C R_{2}=0.000$
M_{1} and M_{3} are considered perfectly consistent.

Process 4.1.4
$M_{1}=$

	C_{11}	C_{12}	C_{13}
C_{11}	$(1,1,3)$	$(1,1,3)$	$(1,3,5)$
C_{12}	$1 /(1,1,3)$	$(1,1,3)$	$(1,3,5)$
C_{13}	$1 /(1,3,5)$	$1 /(1,3,5)$	$(1,1,3)$

$M_{2}=$

	C_{21}	C_{22}
C21	$(1,1,3)$	$1 /(3,5,7)$
C22	$(3,5,7)$	$(1,1,3)$

$\mathrm{M}_{3}=$			
	C_{31}	C_{32}	C_{33}
C_{31}	$(1,1,3)$	$(1,1,3)$	$(1,3,5)$
C_{32}	$1 /(1,1,3)$	$(1,1,3)$	$(1,3,5)$
C_{33}	$1 /(1,3,5)$	$1 /(1,3,5)$	$(1,1,3)$

M_{4}	$=$	
	C_{41}	C_{42}
C_{41}	$(1,1,3)$	$1 /(1,3,5)$
C_{42}	$(1,3,5)$	$(1,1,3)$

Process 4.1.5

$S_{1}^{1}=(0.134,0.429,1.634)$,	$S_{2}^{1}=(0.104,0.429,1.337)$,
$S_{3}^{1}=(0.063,0.143,0.347)$,	
$S_{1}^{2}=(0.086,0.167,0.648)$,	$S_{2}^{2}=(0.300,0.833,1.944)$,
$S_{1}^{3}=(0.134,0.429,1.634)$,	$S_{2}^{3}=(0.104,0.429,1.337)$,
$S_{3}^{3}=(0.063,0.143,0.347)$,	
$S_{1}^{4}=(0.100,0.250,1.250)$,	$S_{2}^{4}=(0.167,0.750,2.500)$,

Process 4.1.6

$W_{1}^{\prime}=(1.000,1.000,0.4262)^{\mathrm{T}}$,	$W_{2}^{\prime}=(0.3431,1.000)^{\mathrm{T}}$,
$W_{3}^{\prime}=(1.000,1.000,0.4262)^{\mathrm{T}}$,	$W_{4}^{\prime}=(0.6842,1.000)^{\mathrm{T}}$.
$W_{1}=(0.4584,0.4584,0.1954)^{\mathrm{T}}$,	$W_{2}=(0.3070,0.8947)^{\mathrm{T}}$,
$W_{3}=(0.4584,0.4584,0.1954)^{\mathrm{T}}$,	$W_{4}=(0.4660,0.6811)^{\mathrm{T}}$.

Table C. 1 Ranking for fundamental-objectives

Ranking	Fundamental-objective	Weight vector
	C_{11} Cost	0.4584
	C_{12} Data capturing	0.4584
3	C_{13} General performance, availability and maintainability	0.1954
Ranking		Fundamental-objective
1	C_{22} Operation cost	Weight vector
2	C_{31} Efficient data capturing	0.8947
3	C_{21} Implementation cost	0.4626
	Ranking	Fundamental-objective
1	C_{32} Reliable data capturing	0.3070
2	C_{33} Fast, real-time tracking data update to system	Weight vector
	Fundamental-objective	0.4626
1	Ranking	C_{42} Availability
2	C_{41} Maintainability	0.1859

1.2 Step 4.2 results

Process 4.2.2

$M_{21}=$				$\mathrm{M}_{22}=$			
	A_{1}	A_{2}	A_{3}		A_{1}	A_{2}	A_{3}
A_{1}	1	7	3	A_{1}	1	7	3
A_{2}	1/7	1	1/3	A_{2}	1/7	1	1/5
A_{3}	1/3	3	1	A_{3}	1/3	5	1
$M_{31}=$				$M_{32}=$			
	A_{1}	A_{2}	A_{3}		A_{1}	A_{2}	A_{3}
A_{1}	1	1/5	1/3	A_{1}	1	3	7
A_{2}	5	1	3	A_{2}	1/3	1	3
A_{3}	3	1/3	1	A_{3}	1/7	1/3	1
$\mathrm{M}_{33}=$				$M_{41}=$			
	A_{1}	A_{2}	A_{3}		A_{1}	A_{2}	A_{3}
A_{1}	1	1/5	1/5	A_{1}	1	3	3
A_{2}	5	1	1	A_{2}	1/3	1	1

A_{3}	5	1	1		A_{3}	$1 / 3$	1
M_{42}	$=$			1			
	A_{1}	A_{2}	A_{3}				
A_{1}	1	3	5				
A_{2}	$1 / 3$	1	3				
A_{3}	$1 / 5$	$1 / 3$	1				
$A_{1}:$ Barcode							
$A_{2}:$ RFID							
$A_{3}:$ GPS							

Process 4.2.3

$C R_{21}=0.0093$,	$C R_{22}=0.0834$,
$C R_{31}=0.0477$,	$C R_{32}=0.0093$,
$C R_{33}=0.0000$,	$C R_{41}=0.0000$,
$C R_{42}=0.0477$.	

All matrices above are considered consistent for their consistency ratio valued less than 0.100.

Process 4.2.4
$M_{21}^{\prime}=$

	A_{1}	A_{2}	A_{3}
A_{1}	$(1,1,3)$	$(5,7,9)$	$(1,3,5)$
A_{2}	$1 /(5,7,9)$	$(1,1,3)$	$1 /(1,3,5)$
A_{3}	$1 /(1,3,5)$	$(1,3,5)$	$(1,1,3)$

$M_{22}^{\prime}=$
$A_{1} \quad A_{2} \quad A_{3}$
$A_{1}(1,1,3) \quad(5,7,9) \quad(1,3,5)$
$A_{2} 1 /(5,7,9) \quad(1,1,3) \quad 1 /(3,5,7)$
$\begin{array}{ll}A_{3} & 1 /(1,3,5) \\ (3,5,7) & (1,1,3)\end{array}$
$M_{31}^{\prime}=$
A_{1}
A_{2}
A_{3}

A_{1}	$(1,1,3)$	$1 /(3,5,7)$	$1 /(1,3,5)$
A_{2}	$(3,5,7)$	$(1,1,3)$	$(1,3,5)$
A_{3}	$(1,3,5)$	$1 /(1,3,5)$	$(1,1,3)$

$M_{32}^{\prime}=$

	A_{1}	A_{2}	A_{3}
A_{1}	$(1,1,3)$	$(1,3,5)$	$(5,7,9)$
A_{2}	$1 /(1,3,5)$	$(1,1,3)$	$(1,3,5)$
A_{3}	$1 /(5,7,9)$	$1 /(1,3,5)$	$(1,1,3)$

$M_{33}^{\prime}=$
A_{1}
$A_{1} \quad(1,1,3)$
$A_{2}(3,5,7)$
$A_{3}(3,5,7)$
$M_{41}^{\prime}=$
A_{1}
$A_{1}(1,1,3)$
$A_{2} 1 /(1,3,5)$
$A_{3} 1 /(1,3,5)$
A_{2}
$1 /(3,5,7)$
A_{3}
$1 /(3,5,7)$
$(1,1,3)$
$(1,1,3)$
$1 /(1,1,3)$
$(1,1,3)$
A_{1}
A_{2}
$(1,3,5)$
A_{3}
$(1,3,5)$
$(1,1,3)$
$(1,1,3)$
$1 /(1,1,3) \quad(1,1,3)$
$M_{42}^{\prime}=$

	A_{1}	A_{2}	A_{3}
A_{1}	$(1,1,3)$	$(1,3,5)$	$(3,5,7)$
A_{2}	$1 /(1,3,5)$	$(1,1,3)$	$(1,3,5)$
A_{3}	$1 /(3,5,7)$	$1 /(1,3,5)$	$(1,1,3)$

Process 4.2.5

$$
\begin{array}{ll}
S_{1}^{21}=(0.205,0.565,1.503), & S_{2}^{21}=(0.062,0.213,0.725), \\
S^{21}=(0.064,0.222,0.796), & \\
S^{22}=(0.183,0.469,1.110), & S_{2}^{22}=(0.108,0.262,0.666), \\
S^{22}=(0.110,0.270,0.718), & \\
S_{3}^{31}=(0.072,0.240,0.892), & S_{2}^{31}=(0.169,0.513,1.606), \\
S_{1}^{31}=(0.074,0.247,0.678), & \\
S_{3}^{32}=(0.232,0.654,1.617), & S_{2}^{32}=(0.073,0.258,0.856), \\
S_{3}^{32}=(0.043,0.088,0.400), &
\end{array}
$$

$S^{33}=(0.046,0.091,0.345)$,	$S_{2}^{33}=(0.181,0.455,1.224)$,
$S^{33}{ }_{3}=(0.157,0.455,1.036)$,	
$S^{41}=(0.120,0.600,1.931)$,	$S_{2}^{41}=(0.088,0.200,1.040)$,
$S^{41_{3}}=(0.061,0.200,0.743)$,	
$S^{42}=(0.176,0.605,1.756)$,	$S^{42}{ }_{2}=(0.078,0.291,1.054)$,
$S^{42}=(0.047,0.103,0.507)$.	

Process 4.2.6

$$
\begin{array}{ll}
W_{21}^{\prime}=(1.000,0.596,0.633)^{\mathrm{T}}, & W_{22}^{\prime}=(1.000,0.700,0.729)^{\mathrm{T}}, \\
W_{31}^{\prime}=(0.725,1.000,0.657)^{\mathrm{T}}, & W_{32}^{\prime}=(1.000,0.612,0.228)^{\mathrm{T}}, \\
W_{33}^{\prime}=(0.312,1.000,1.000)^{\mathrm{T}}, & \\
W_{41}^{\prime}=(1.000,0.697,0.609)^{\mathrm{T}}, & W_{42}^{\prime}=(1.000,0.736,0.397)^{\mathrm{T}}, \\
W_{21}=(0.5695,0.3394,0.3605)^{\mathrm{T}}, & W_{22}=(0.4947,0.3463,0.3606)^{\mathrm{T}}, \\
W_{31}=(0.3704,0.5109,0.3357)^{\mathrm{T}}, & W_{32}=(0.7010,0.4290,0.1598)^{\mathrm{T}}, \\
W_{33}=(0.1440,0.4783,0.4783)^{\mathrm{T}}, & \\
W_{41}=(0.5386,0.3754,0.3280)^{\mathrm{T}}, & W_{42}=(0.5885,0.4331,0.2336)^{\mathrm{T}} .
\end{array}
$$

Table C. 2 Priority weights of alternatives with respect to cost C_{11}

	C_{21} Implementation cost	C_{22} Operation cost	Priority weight $\left(w_{2}\right)$
Weight vector	0.3070	0.8947	
A_{1} Barcode	0.5695	0.4947	0.6174
A_{2} RFID	0.3394	0.3463	0.4140
A_{3} GPS	0.3605	0.3606	0.4333

Table C. 3 Priority weights of alternatives with respect to data capturing C_{12}

	C_{31} Efficient data capturing	C_{32} Reliable data capturing	C_{33} Fast, real-time tracking data update to system	Priority weight $\left(w_{3}\right)$
Weight vector	0.4626	0.4626	0.1859	
A_{1} Barcode	0.3704	0.7010	0.1440	0.5224
A_{2} RFID	0.5109	0.4290	0.4783	0.5237
A_{3} GPS	0.3357	0.1598	0.4783	0.3181

Table C. 4 Priority weights of alternatives with respect to general performance, availability and maintainability C_{13}

	C_{41} Maintainability	C_{42} Availability	Priority weight $\left(w_{4}\right)$
Weight vector	0.4660	0.6811	
A_{1} Barcode	0.5386	0.5885	0.6518
A_{2} RFID	0.3754	0.4331	0.4699
A_{3} GPS	0.3280	0.2336	0.3120

Table C. 5 Priority weights of alternatives with respect to goal

	C_{11} Cost	C_{12} Data capturing	C_{13} General performance, availability and maintainability	Priority weight $\left(w_{1}\right)$
Weight vector	0.4584	0.4584	0.1954	
A_{1} Barcode	0.6174	0.5224	0.6443	0.6484
A_{2} RFID	0.4140	0.5237	0.4596	0.5196
A_{3} GPS	0.4333	0.3181	0.3237	0.4077

Table C. 6 Ranking of alternatives

Ranking	Alternative	Priority weight $\left(w_{1}\right)$
1	A_{1} Barcode	0.6484
2	A_{2} RFID	0.5196
3	A_{3} GPS	0.4077

2. Software platform (intranet application)

2.1Step 4.1 results

Process 4.1.2

$\mathrm{M}_{1}=$					
	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}
C_{11}	1	5	1	$1 / 3$	5
C_{12}	$1 / 5$	1	$1 / 5$	$1 / 3$	1
C_{13}	1	5	1	1	3
C_{14}	3	3	1	1	5
C_{15}	$1 / 5$	1	$1 / 3$	$1 / 5$	1

```
C
C12: cost
C}\mp@subsup{C}{13}{}\mathrm{ : data transaction
C14: general performance, availability and maintainability
C}\mp@subsup{C}{15}{}\mathrm{ : software platform
```

$M_{5}=$				
	C_{51}	C_{52}	C_{53}	C_{54}
C_{51}	1	3	5	7
C_{52}	$1 / 3$	1	3	3
C_{53}	$1 / 5$	$1 / 3$	1	3
C_{54}	$1 / 7$	$1 / 3$	$1 / 3$	1

C_{51} : efficient card job printing
C_{52} : efficient processing and memorial power
C_{53} : availability
C_{54} : maintainability

Process 4.1.3
$C R_{l}=0.0726$, $C R_{2}=0.0662$
M_{1} and M_{2} are considered consistent for their consistency ratio valued less than 0.100.

Process 4.1.4

$M_{1}^{\prime}=$					
	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}
C_{11}	$(1,1,3)$	$(3,5,7)$	$(1,1,3)$	$1 /(1,3,5)$	$(3,5,7)$
C_{12}	$1 /(3,5,7)$	$(1,1,3)$	$1 /(3,5,7)$	$1 /(1,3,5)$	$(1,1,3)$
C_{13}	$1 /(1,1,3)$	$(3,5,7)$	$(1,1,3)$	$(1,1,3)$	$(1,3,5)$
C_{14}	$(1,3,5)$	$(1,3,5)$	$1 /(1,1,3)$	$(1,1,3)$	$(3,5,7)$
C_{15}	$1 /(3,5,7)$	$1 /(1,1,3)$	$1 /(1,3,5)$	$1 /(3,5,7)$	$(1,1,3)$

	C_{51}	C_{52}	C_{53}	C_{54}
C_{51}	$(1,1,3)$	$(1,3,5)$	$(3,5,7)$	$(5,7,9)$
C_{52}	$1 /(1,3,5)$	$(1,1,3)$	$(1,3,5)$	$(1,3,5)$
C_{53}	$1 /(3,5,7)$	$1 /(1,3,5)$	$(1,1,3)$	$(1,3,5)$
C_{54}	$1 /(5,7,9)$	$1 /(1,3,5)$	$1 /(1,3,5)$	$(1,1,3)$

Process 4.1.5
$S_{1}^{1}=(0.1134,0.2951,0.8343), \quad S_{2}^{1}=(0.0344,0.0654,0.3046)$,
$S_{3}^{1}=(0.0876,0.2632,0.7548), \quad S_{4}^{1}=(0.0876,0.3110,0.8343)$,
$S_{5}^{\prime}=(0.0251,0.0654,0.1457)$,
$S_{1}=(0.1904,0.5392,1.4073), \quad S_{2}^{S}=(0.0609,0.2471,0.8209)$,
$S_{3}=(0.0446,0.1528,0.5473), \quad S_{4}=(0.0288,0.0610,0.3049)$.

Process 4.1.6

$$
\begin{aligned}
& W_{1}^{\prime}=(0.9791,0.4543,0.9331,1.0000,0.1233)^{\mathrm{T}}, \\
& W_{S}^{\prime}=(1.0000,0.6835,0.4802,0.1933)^{\mathrm{T}} .
\end{aligned}
$$

$$
\begin{aligned}
& W_{1}=(0.3209,0.1489,0.3058,0.3278,0.0404)^{\mathrm{T}}, \\
& W_{5}=(0.5763,0.3939,0.2768,0.1114)^{\mathrm{T}} .
\end{aligned}
$$

Table C. 7 Ranking for fundamental-objectives

Ranking	Fundamental-objective	Weight vector
1	C_{14} General performance, availability and maintainability	0.3278
2	C_{11} Accessibility	0.3209
3	C_{13} Data transaction	0.3058
4	C_{12} Cost	0.1489
5	C_{15} Software platform	0.0404
Ranking	Fundamental-objective	Weight vector
1	C_{51} Efficient card job printing	0.5763
2	C_{52} Efficient processing and memorial power	0.3939
3	C_{53} Availability	0.2768
4	C_{54} Maintainability	0.1114

Process 4.2.2

$M_{21}=$		$M_{31}=$					
	A_{1}	A_{2}	A_{3}		A_{1}	A_{2}	

A_{1} : Adobe AIR
A_{2} : MS .Net
A_{3} : Java

Process 4.2.3

$C R_{21}=0.0000$,	$C R_{31}=0.0000$,
$C R_{41}=0.0834$,	$C R_{51}=0.0193$,
$C R_{52}=0.0000$,	$C R_{53}=0.0000$,
$C R_{54}=0.0000$,	$C R_{54}=0.0000$,

$C R_{61}=0.0000$.

All matrices above are considered consistent for their consistency ratio valued less than 0.100 .

Process 4.2.4

$M_{21}^{\prime}=$			
	A_{1}	A_{2}	A_{3}
$A_{1} \quad(1,1,3)$	$1 /(5,7,9)$	$1 /(5,7,9)$	
$A_{2} \quad(5,7,9)$	$(1,1,3)$	$(1,1,3)$	
$A_{3} \quad(5,7,9)$	$1 /(1,1,3)$	$(1,1,3)$	
$M_{31}^{\prime}=$		A_{3}	
	A_{1}		$(1,1,3)$
A_{1}	$(1,1,3)$	$(3,5,7)$	$(1 /(3,5,7)$
$A_{2} \quad 1 /(3,5,7)$	$(1,1,3)$	$1 / 2$	
$A_{3} \quad 1 /(1,1,3)$	$(3,5,7)$	$(1,1,3)$	

$M_{41}^{\prime}=$

	A_{1}	A_{2}	A_{3}
A_{1}	$(1,1,3)$	$1 /(5,7,9)$	$1 /(3,5,7)$
A_{2}	$(5,7,9)$	$(1,1,3)$	$(1,3,5)$
A_{3}	$(3,5,7)$	$1 /(1,3,5)$	$(1,1,3)$

$M_{51}^{\prime}=$

	A_{1}	A_{2}	A_{3}
A_{1}	$(1,1,3)$	$1 /(5,7,9)$	$(1,1,3)$
A_{2}	$(5,7,9)$	$(1,1,3)$	$(3,5,7)$
A_{3}	$1 /(1,1,3)$	$1 /(3,5,7)$	$(1,1,3)$

$M_{52}^{\prime}=$

	A_{1}	A_{2}	A_{3}
A_{1}	$(1,1,3)$	$1 /(1,3,5)$	$(1,1,3)$
A_{2}	$(1,3,5)$	$(1,1,3)$	$(1,3,5)$
A_{3}	$1 /(1,1,3)$	$1 /(1,3,5)$	$(1,1,3)$

$M_{53}^{\prime}=$

	A_{1}	A_{2}	A_{3}
A_{1}	$(1,1,3)$	$1 /(1,3,5)$	$1 /(1,3,5)$
A_{2}	$(1,3,5)$	$(1,1,3)$	$(1,1,3)$
A_{3}	$(1,3,5)$	$1 /(1,1,3)$	$(1,1,3)$
$M_{54}^{\prime}=$		A_{3}	
	A_{1}		
A_{1}	$(1,1,3)$	$1 /(1,3,5)$	$1 /(1,3,5)$
A_{2}	$(1,3,5)$	$(1,1,3)$	$(1,1,3)$
A_{3}	$(1,3,5)$	$1 /(1,1,3)$	$(1,1,3)$
$M_{61}^{\prime}=$		A_{2}	$1 /(5,7,9)$
	A_{1}	$(1,1,3)$	$(5,7,9)$
A_{1}	$(1,1,3)$	$1 /(5,7,9)$	$(1,1,3)$
A_{2}	$(5,7,9)$		
A_{3}	$1 /(1,1,3)$		

Process 4.2.5

$\begin{aligned} & S_{1}^{21}=(0.0389,0.0667,0.2336), \quad S^{21}=(0.2229,0.4667,1.0305), \\ & S_{2}^{21}=(0.2017,0.4667,0.8931), \end{aligned}$	
$S^{31}{ }_{1}=(0.1807,0.4545,1.2242)$,	$S^{31}{ }_{2}=(0.0465,0.0909,0.3453)$,
$S^{31}{ }_{3}=(0.1566,0.4545,1.0359)$,	
$S^{41} 1=(0.0398,0.0719,0.2837)$,	$S^{41}{ }_{2}=(0.2220,0.5890,1.3650)$,
$\begin{aligned} & S^{41_{3}}=(0.1332,0.3391,0.8833), \\ & S_{1}^{51}=(0.0715,0.1236,0.4926), \end{aligned}$	$S^{51}{ }_{2}=(0.3047,0.7496,1.5095)$,
$S^{51}{ }_{3}=(0.0500,0.1269,0.3443),$	
$\begin{aligned} & S_{1}^{52}=(0.0880,0.2000,1.0396), \\ & S^{S 2_{3}}=(0.0613,0.2000,0.7426), \end{aligned}$	$S^{52}{ }_{2}=(0.1200,0.6000,1.9307)$,
$S^{3 S}{ }_{1}=(0.0560,0.1429,0.7426),$	$S^{53}{ }_{2}=(0.1200,0.4286,1.6337)$,
$S_{1}^{54}=(0.0560,0.1429,0.7426)$	$S^{54}{ }_{2}=(0.1200,0.4286,1.6337)$,
$S^{54}{ }_{3}=(0.0933,0.4286,1.3366)$,	
$\begin{aligned} & S^{61} 1_{1}=(0.0672,0.1111,0.4260), \\ & S^{61}{ }_{3}=(0.0460,0.1111,0.2885) . \end{aligned}$	$S^{61}{ }_{2}=(0.3503,0.7778,1.4427)$,

$$
\begin{aligned}
& W_{21}^{\prime}=(0.0260,1.0000,1.0000)^{\mathrm{T}}, \quad W_{31}^{\prime}=(1.0000,0.3116,1.0000)^{\mathrm{T}} \text {, } \\
& W^{\prime}{ }_{41}=(0.1066,1.0000,0.7258)^{\mathrm{T}}, \quad W^{\prime}{ }^{\prime}=(0.2308,1.0000,0.0597)^{\mathrm{T}} \text {, } \\
& W_{52}^{\prime}=(0.6969,1.0000,0.6088)^{\mathrm{T}}, \quad W_{53}^{\prime}=(0.6854,1.0000,1.0000)^{\mathrm{T}} \text {, } \\
& W_{54}=(0.6854,1.0000,1.0000)^{\mathrm{T}}, \quad W_{61}^{\prime}=(0.1019,1.0000,0.0000)^{\mathrm{T}} \text {. } \\
& W_{21}=(0.0130,0.4998,0.4998)^{\mathrm{T}}, \quad W_{31}=(0.4769,0.1486,0.4769)^{\mathrm{T}}, \\
& W_{41}=(0.0693,0.6501,0.4719)^{\mathrm{T}}, \quad W_{51}=(0.2184,0.9462,0.0565)^{\mathrm{T}} \text {, } \\
& W_{52}=(0.3754,0.5387,0.3280)^{\mathrm{T}}, \quad W_{53}=(0.2775,0.4049,0.4049)^{\mathrm{T}} \text {, } \\
& W_{54}=(0.2775,0.4049,0.4049)^{\mathrm{T}}, \quad W_{61}=(0.1009,0.9897,0.0000)^{\mathrm{T}} \text {. }
\end{aligned}
$$

Table C. 8 Priority weights of alternatives with respect to accessibility C_{11}

	C_{21} Intranet accessibility (intranet applications)	Priority weight $\left(w_{2}\right)$
Weight vector	1	
A_{1} Adobe AIR	0.0130	0.0130
A_{2} MS .Net	0.4998	0.4998
A_{3} Java	0.4998	0.4998

Table C. 9 Priority weights of alternatives with respect to cost C_{12}

	C_{31} Implementation cost	Priority weight $\left(w_{3}\right)$
Weight vector	1	
A_{1} Adobe AIR	0.4769	0.4769
A_{2} MS .Net	0.1486	0.1486
A_{3} Java	0.4769	0.4769

Table C. 10 Priority weights of alternatives with respect to data transaction C_{13}

	C_{41} Fast, secured business data transaction (for SOP, Planning and scheduling)	Priority weight $\left(w_{4}\right)$
Weight vector	1	
A_{1} Adobe AIR	0.0693	0.0693
A_{2} MS .Net	0.6501	0.6501
A_{3} Java	0.4719	0.4719

Table C. 11 Priority weights of alternatives with respect to general performance, availability and maintainability C_{14}

	C_{51} Efficient job card printing	C_{52} Sufficient processing and memorial power	C_{53} Availability
Weight vector	0.5763	0.3939	0.2768
A_{1} Adobe AIR	0.2184	0.3754	0.2775
A_{2} MS .Net	0.9462	0.5387	0.4049
A_{3} Java	0.0565	0.3280	0.4049
	C_{54} Maintainability	Priority weight (w_{5})	
Weight vector	0.1114		
A_{1} Adobe AIR	0.2775	0.3815	
A_{2} MS .Net	0.4049	0.9147	
A_{3} Java	0.4049	0.3189	

Table C. 12 Priority weights of alternatives with respect to software platform C_{15}

	C_{61} MS Windows compatible (SOP)	Priority weight $\left(w_{6}\right)$
Weight vector	1	
A_{1} Adobe AIR	0.1009	0.1009
A_{2} MS .Net	0.9897	0.9897
A_{3} Java	0.0000	0.0000

Table C. 13 Priority weights of alternatives with respect to goal

	C_{11} Accessibility	C_{12} Cost	C_{13} Data transaction
Weight vector	0.3209	0.1489	0.3058
A_{1} Adobe AIR	0.0130	0.4769	0.0693
A_{2} MS .Net	0.4998	0.1486	0.6501
A_{3} Java	0.4998	0.4769	0.4719
	C_{14} General performance, availability and maintainability	C_{15} Software platform	Priority weight $\left(w_{1}\right)$
Weight vector	0.3278	0.0404	
A_{1} Adobe AIR	0.3815	0.1009	0.2255
A_{2} MS .Net	0.9147	0.9897	0.7211
A_{3} Java	0.3189	0.0000	0.4802

Table C. 14 Ranking of alternatives

Ranking	Alternative	Priority weight $\left(w_{1}\right)$
1	A_{2} MS .Net	0.7211
2	A_{3} Java	0.4802
3	A_{1} Adobe AIR	0.2255

3. Software platform (internet application)

3.1 Step 4.1 results

Process 4.1.2

$\mathrm{M}_{1}=$					
	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}
C_{11}	1	7	3	3	7
C_{12}	$1 / 7$	1	$1 / 3$	$1 / 5$	$1 / 3$
C_{13}	$1 / 3$	3	1	$1 / 3$	1
C_{14}	$1 / 3$	5	3	1	5
C_{15}	$1 / 7$	3	1	$1 / 5$	1

C_{11} : accessibility
C_{12} : cost
C_{13} : data transaction
C_{14} : general performance, availability and maintainability
C_{15} : software platform

$M_{5}=$			
	C_{51}	C_{52}	C_{53}
C_{51}	1	$1 / 3$	1
C_{52}	3	1	3
C_{53}	1	$1 / 3$	1

C_{51} : efficient processing and memorial power
C_{52} : availability
C_{53} : maintainability

Process 4.1.3
$C R_{1}=0.087557$,
$C R_{2}=0.0000$
M_{1} and M_{2} are considered consistent for their consistency ratio valued less than 0.100.

Process 4.1.4

$M_{1}^{\prime}=$					
	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}
C_{11}	$(1,1,3)$	$(5,7,9)$	$(1,3,5)$	$(1,3,5)$	$(5,7,9)$
C_{12}	$1 /(5,7,9)$	$(1,1,3)$	$1 /(1,3,5)$	$1 /(3,5,7)$	$1 /(1,3,5)$
C_{13}	$1 /(1,3,5)$	$(1,3,5)$	$(1,1,3)$	$1 /(1,3,5)$	$(1,1,3)$
C_{14}	$1 /(1,3,5)$	$(3,5,7)$	$(1,3,5)$	$(1,1,3)$	$(3,5,7)$
C_{15}	$1 /(5,7,9)$	$(1,3,5)$	$1 /(1,1,3)$	$1 /(3,5,7)$	$(1,1,3)$
$M^{\prime}{ }_{5}=$					
	C_{51}	C_{52}	C_{53}		
C_{51}	$(1,1,3)$	$1 /(1,3,5)$	$(1,1,3)$		
C_{52}	$(1,3,5)$	$(1,1,3)$	$(1,3,5)$		
C_{53}	$1 /(1,1,3)$	$1 /(1,3,5)$	$(1,1,3)$		

Process 4.1.5

$$
\begin{array}{ll}
S_{1}^{1}=(0.1584,0.4343,1.0748), & S_{2}^{1}=(0.0202,0.0416,0.1919), \\
S_{3}=(0.0414,0.1172,0.4507), & S_{4}^{1}=(0.0999,0.2964,0.7975), \\
S_{5}^{1}=(0.0315,0.1105,0.3305), & \\
S_{1}^{s}=(0.0985,0.2000,1.0396), & S_{2}^{s}=(0.1343,0.6000,1.9307), \\
S_{3}^{s}=(0.0687,0.2000,0.3465) . &
\end{array}
$$

Process 4.1.6

$$
\begin{aligned}
& W_{1}^{\prime}=(1.0000,0.0785,0.4797,0.8225,0.3471)^{\mathrm{T}}, \\
& W_{s}^{\prime}=(0.6936,1.0000,0.3466)^{\mathrm{T}} . \\
& W_{\mathrm{l}}=(0.4918,0.0386,0.2359,0.4045,0.1707)^{\mathrm{T}}, \\
& W_{5}=(0.4332,0.6245,0.2165)^{\mathrm{T}} .
\end{aligned}
$$

Table C. 15 Ranking for fundamental-objectives

Ranking	Fundamental-objective	Weight vector
1	C_{11} Accessibility	0.4918
2	C_{14} General performance, availability and maintainability	0.4045
3	C_{13} Data transaction	0.2359
4	C_{15} Software platform	0.1707
5	C_{12} Cost	0.0386
Ranking	Fundamental-objective	Weight vector
1	C_{52} Availability	0.6245
2	C_{51} Efficient processing and memorial power	0.4332
3	C_{53} Maintainability	0.2165

3.2 Step 4.2 results

Process 4.2.2

$\mathrm{M}_{21}=$				$\mathrm{M}_{31}=$			
	A_{1}	A_{2}	A_{3}		A_{1}	A_{2}	A_{3}
A_{1}	1	1	1	A_{1}	1	5	1
A_{2}	1	1	1	A_{2}	1/5	1	1/5
A_{3}	1	1	1	A_{3}	1	5	1
M_{41}	$=$			M_{51}	$=$		
	A_{1}	A_{2}	A_{3}		A_{1}	A_{2}	A_{3}
A_{1}	1	1	1	A_{1}	1	1/3	1
A_{2}	1	1	1	A_{2}	3	1	3
A_{3}	1	1	1	A_{3}	1	1/3	1
M ${ }_{52}$				M ${ }_{5}$	$=$		
	A_{1}	A_{2}	A_{3}		A_{1}	A_{2}	A_{3}
A_{1}	1	1/3	1/3	A_{1}	1	1/3	1/3
A_{2}	3	1	1	A_{2}	3	1	1
A_{3}	3	1	1	A_{3}	3	1	1

	A_{1}	A_{2}	A_{3}
A_{1}	1	$1 / 5$	1
A_{2}	5	1	5
A_{3}	1	$1 / 5$	1

A_{1} : Adobe AIR
A_{2} : MS .Net
A_{3} : Java

Process 4.2.3

$C R_{21}=0.0000$,	$C R_{31}=0.0000$,
$C R_{41}=0.0000$,	$C R_{51}=0.0000$,
$C R_{52}=0.0000$,	$C R_{53}=0.0000$,
$C R_{61}=0.0000$.	

All matrices above are considered perfectly consistent for their consistency ratio valued 0.0000 .

Process 4.2.4

$\mathrm{M}_{21}^{\prime}=$			
	A_{1}	A_{2}	A_{3}
A_{1}	$(1,1,3)$	$(1,1,3)$	$(1,1,3)$
A_{2}	1/($1,1,3$)	$(1,1,3)$	$(1,1,3)$
A_{3}	1/($1,1,3$)	1/(1, 1, 3)	$(1,1,3)$
$M^{\prime}{ }_{31}$			
	A_{1}	A_{2}	A_{3}
A_{1}	$(1,1,3)$	$(3,5,7)$	$(1,1,3)$
A_{2}	$1 /(3,5,7)$	$(1,1,3)$	$1 /(3,5,7)$
A_{3}	$1 /(1,1,3)$	$(3,5,7)$	$(1,1,3)$
M_{41}			
	A_{1}	A_{2}	A_{3}
A_{1}	$(1,1,3)$	$(1,1,3)$	$(1,1,3)$
A_{2}	$1 /(1,1,3)$	$(1,1,3)$	$(1,1,3)$
A_{3}	$1 /(1,1,3)$	1/(1, 1, 3)	$(1,1,3)$

$\mathrm{M}_{51}^{\prime}=$			
	A_{1}	A_{2}	A_{3}
A_{1}	$(1,1,3)$	$1 /(1,3,5)$	$(1,1,3)$
A_{2}	$(1,3,5)$	$(1,1,3)$	$(1,3,5)$
A_{3}	$1 /(1,1,3)$	$1 /(1,3,5)$	$(1,1,3)$

$M_{52}^{\prime}=$

	A_{1}	A_{2}	A_{3}
A_{1}	$(1,1,3)$	$1 /(1,3,5)$	$1 /(1,3,5)$
A_{2}	$(1,3,5)$	$(1,1,3)$	$(1,3,5)$
A_{3}	$(1,3,5)$	$1 /(1,3,5)$	$(1,1,3)$

$M_{53}^{\prime}=$
A_{1}
A_{2}
A_{3}

A_{1}	$(1,1,3)$	$1 /(1,3,5)$	$1 /(1,3,5)$
A_{2}	$(1,3,5)$	$(1,1,3)$	$(1,1,3)$
A_{3}	$(1,3,5)$	$1 /(1,1,3)$	$(1,1,3)$

$M_{61}^{\prime}=$

	A_{1}	A_{2}	A_{3}
A_{1}	$(1,1,3)$	$1 /(3,5,7)$	$(1,1,3)$
A_{2}	$(3,5,7)$	$(1,1,3)$	$(3,5,7)$
A_{3}	$1 /(1,1,3)$	$1 /(3,5,7)$	$(1,1,3)$

Process 4.2.5
$S_{1}^{21}=(0.1429,0.3333,1.2857), \quad S_{2}^{21}=(0.1111,0.3333,1.0000)$,
$S^{21}{ }_{3}=(0.0794,0.3333,0.7143)$,
$S^{31}=(0.1807,0.4545,1.2242), \quad S_{2}^{31}=(0.0465,0.0909,0.3453)$,
$S_{31}{ }^{3}=(0.1566,0.4545,1.0359)$,
$S^{41}=(0.1429,0.3333,1.2857), \quad S^{41}=(0.1111,0.3333,1.0000)$,
$S^{41}{ }_{3}=(0.0794,0.3333,0.7143)$,
$S_{1}^{51}=(0.0880,0.2000,1.0396), \quad S_{2}^{S 1}=(0.1200,0.6000,1.9307)$,
$S^{S 1}{ }_{3}=(0.0613,0.2000,0.7426)$,
$S_{1}^{52}=(0.0519,0.1282,0.7576), \quad S_{2}^{52}=(0.1111,0.5385,1.9697)$,
$S_{3}{ }_{3}=(0.0815,0.3333,1.3636)$,
$S_{15}^{35}=(0.0519,0.1429,0.7426), \quad S_{2}^{53}=(0.1111,0.4286,1.9307)$,
$S_{3}{ }_{3}=(0.0864,0.4286,1.3366)$,
$S^{61}{ }_{1}=(0.0722,0.1429,0.5612), \quad S^{61}{ }_{2}=(0.2360,0.7143,1.5063)$,
$S^{61}{ }_{3}=(0.0722,0.1429,0.5612)$.

Process 4.2.6

$$
\begin{array}{ll}
W_{21}^{\prime}=(1.0000,1.0000,1.0000)^{\mathrm{T}}, & W_{31}^{\prime}=(1.0000,0.3116,1.0000)^{\mathrm{T}}, \\
W_{41}^{\prime}=(1.0000,1.0000,1.0000)^{\mathrm{T}}, & W_{51}^{\prime}=(0.6969,1.0000,0.6088)^{\mathrm{T}}, \\
W_{52}^{\prime}=(0.6118,1.0000,0.8593)^{\mathrm{T}}, & W_{53}^{\prime}=(0.6885,1.0000,1.0000)^{\mathrm{T}}, \\
W_{61}^{\prime}=(0.3627,1.0000,0.3627)^{\mathrm{T}}, & \\
& \\
W_{21}=(0.3333,0.3333,0.3333)^{\mathrm{T}}, & W_{31}=(0.4769,0.1486,0.4769)^{\mathrm{T}}, \\
W_{41}=(0.3333,0.3333,0.3333)^{\mathrm{T}}, & W_{51}=(0.3754,0.5387,0.3280)^{\mathrm{T}}, \\
W_{52}=(0.2896,0.4733,0.4067)^{\mathrm{T}}, & W_{53}=(0.2783,0.4042,0.4042)^{\mathrm{T}}, \\
W_{61}=(0.2872,0.7917,0.2872)^{\mathrm{T}} . &
\end{array}
$$

Table C. 16 Priority weights of alternatives with respect to accessibility C_{11}

	C_{21} Intranet accessibility (intranet applications)	Priority weight $\left(w_{2}\right)$
Weight vector	1	
A_{1} Adobe AIR	0.3333	0.3333
A_{2} MS .Net	0.3333	0.3333
A_{3} Java	0.3333	0.3333

Table C. 17 Priority weights of alternatives with respect to cost C_{12}

	C_{31} Implementation cost	Priority weight $\left(w_{3}\right)$
Weight vector	1	
A_{1} Adobe AIR	0.4769	0.4769
A_{2} MS .Net	0.1486	0.1486
A_{3} Java	0.4769	0.4769

Table C. 19 Priority weights of alternatives with respect to data transaction C_{13}

	C_{41} Sufficient data storage and data transaction capabilities	Priority weight $\left(w_{4}\right)$
Weight vector	1	
A_{1} Adobe AIR	0.3333	0.3333
A_{2} MS .Net	0.3333	0.3333

A_{3} Java	0.3333	0.3333

Table C. 20 Priority weights of alternatives with respect to general performance, availability and maintainability C_{14}

	C_{51} Sufficient processing and memorial power	C_{52} Availability	C_{53} Maintainability	Priority weight $\left(w_{5}\right)$
Weight vector	0.4332	0.6245	0.2165	
A_{1} Adobe AIR	0.3754	0.2896	0.2783	0.4037
A_{2} MS .Net	0.5387	0.4733	0.4042	0.6164
A_{3} Java	0.3280	0.4067	0.4042	0.4836

Table C. 21 Priority weights of alternatives with respect to software platform C_{15}

	C_{61} MS Windows compatible (SOP)	Priority weight $\left(w_{6}\right)$
Weight vector	1	
A_{1} Adobe AIR	0.2872	0.2872
A_{2} MS .Net	0.7917	0.7917
A_{3} Java	0.2872	0.2872

Table C. 22 Priority weights of alternatives with respect to goal

	C_{11} Accessibility	C_{12} Cost	C_{13} Data transaction
Weight vector	0.4918	0.0386	0.2359
A_{1} Adobe AIR	0.3333	0.4769	0.3333
A_{2} MS .Net	0.3333	0.1486	0.3333
A_{3} Java	0.3333	0.4769	0.3333
	C_{14} General performance, availability and maintainability	C_{15} Software platform	Priority weight $\left(w_{1}\right)$
Weight vector	0.4045	0.1707	
A_{1} Adobe AIR	0.4037	0.2872	0.4733
A_{2} MS .Net	0.6164	0.7917	0.6328
A_{3} Java	0.4836	0.2872	0.5056

Table C. 23 Ranking of alternatives

Ranking	Alternative	Priority weight $\left(w_{1}\right)$

1	A_{2} MS .Net	0.6328
2	A_{3} Java	0.5056
3	A_{1} Adobe AIR	0.4733

4. Database management system

4.1Step 4.1 results

Process 4.1.2

$\mathrm{M}_{1}=$					
	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}
C_{11}	1	$1 / 5$	$1 / 3$	1	$1 / 5$
C_{12}	5	1	3	5	1
C_{13}	3	$1 / 3$	1	3	$1 / 3$
C_{14}	1	$1 / 5$	$1 / 3$	1	$1 / 3$
C_{15}	5	1	3	3	1

C_{11} : accessibility
C_{12} : cost
C_{13} : data capturing
C_{14} : data transaction
C_{15} : general performance, availability and maintainability

$\mathrm{M}_{2}=$		
	C_{21}	C_{22}
C_{21}	1	1
C_{22}	1	1

C_{21} : internet accessibility (customer report)
C_{22} : intranet accessibility (intranet applications)

$\mathrm{M}_{3}=$		
	C_{31}	C_{32}
C_{31}	1	$1 / 5$
C_{32}	5	1

C_{31} : implementation cost
C_{32} : operational cost

$M_{5}=$		
	C_{51}	C_{52}
C_{51}	1	1
C_{52}	1	1

C_{51} : fast, secured business data transaction (for SOP, Planning and scheduling)
C_{52} : sufficient data storage and data transaction capabilities

$M_{6}=$		
	C_{61}	C_{62}
C_{61}	1	$1 / 5$
C_{62}	5	1

C_{61} : maintainability
C_{62} : availability

Process 4.1.3

M_{2}, M_{3}, M_{5} and M_{6} involve only two comparing objectives and consistency test is not needed.
$C R_{1}=0.0333$
M_{1} and M_{2} are considered consistent for their consistency ratio valued less than 0.100 .

Process 4.1.4

$\mathrm{M}_{1}=$					
	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}
C_{11}	$(1,1,3)$	$1 /(3,5,7)$	$1 /(1,3,5)$	$(1,1,3)$	$1 /(3,5,7)$
C_{12}	$(3,5,7)$	$(1,1,3)$	$(1,3,5)$	$(3,5,7)$	$(1,1,3)$
C_{13}	$(1,3,5)$	$1 /(1,3,5)$	$(1,1,3)$	$(1,3,5)$	$1 /(1,3,5)$
C_{14}	$(1,1,3)$	$1 /(3,5,7)$	$1 /(1,3,5)$	$(1,1,3)$	$1 /(1,3,5)$
C_{15}	$(3,5,7)$	$1 /(1,1,3)$	$(1,3,5)$	$(1,3,5)$	$(1,1,3)$

$\mathrm{M}^{\prime}{ }_{2}=$		
	C_{21}	C_{22}
C_{21}	$(1,1,3)$	$(1,1,3)$
C_{22}	1/(1,1,3)	$(1,1,3)$
$\mathrm{M}^{\prime} 3=$		
	C_{31}	C_{32}
C_{31}	$(1,1,3)$	$(3,5,7)$
C_{32}	$1 /(3,5,7)$	$(1,1,3)$
$M^{\prime} 5=$		
	C_{51}	C_{52}
C_{51}	$(1,1,3)$	$(1,1,3)$
C_{52}	$1 /(1,1,3)$	$(1,1,3)$
$\mathrm{M}^{\prime}{ }_{6}=$		
	C_{61}	C_{62}
C_{61}	$(1,1,3)$	$(3,5,7)$
C_{62}	1/($3,5,7$)	$(1,1,3)$

Process 4.1.5
$S_{1}=(0.0323,0.0662,0.3226), \quad S^{1}=(0.1169,0.3635,1.0521)$,
$S_{3}^{\prime}=(0.0442,0.1858,0.6313), \quad S_{4}^{1}=(0.0330,0.0695,0.3507)$,
$S^{1}=(0.0823,0.3150,0.8838)$,
$S_{1}^{2}=(0.2000,0.5000,1.8000), \quad S_{2}^{2}=(0.1333,0.5000,1.2000)$,
$S_{1}^{3}=(0.2857,0.7500,1.8750), \quad S_{2}^{3}=(0.0952,0.2500,0.7500)$,
$S_{1}=(0.2000,0.5000,1.8000), \quad S_{2}=(0.1333,0.5000,1.2000)$,
$S_{1}=(0.3000,0.8333,1.9444), \quad S_{2}=(0.0857,0.1667,0.6481)$.

Process 4.1.6

$$
\begin{array}{ll}
W_{1}^{\prime}=(0.4091,1.0000,0.7432,0.9406,0.9406)^{\mathrm{T}}, \\
W_{2}^{\prime}=(1.0000,1.0000)^{\mathrm{T}}, & W_{3}^{\prime}=(1.0000,0.4815)^{\mathrm{T}}, \\
W_{5}^{\prime}=(1.0000,1.0000)^{\mathrm{T}}, & W_{6}^{\prime}=(1.0000,0.3431)^{\mathrm{T}} . \\
& \\
W_{1}=(0.1172,0.2866,0.2130,0.2696,0.2696)^{\mathrm{T}}, \\
W_{2}=(0.5000,0.5000)^{\mathrm{T}}, & W_{3}=(0.8118,0.3909)^{\mathrm{T}},
\end{array}
$$

$$
W_{5}=(0.5000,0.5000)^{\mathrm{T}}, \quad W_{6}=(0.8947,0.3070)^{\mathrm{T}}
$$

Table C. 24 Ranking for fundamental-objectives

Ranking	Fundamental-objective	Weight vector
1	C_{12} Cost	0.2866
2	C_{14} Data transaction	0.2696
	C_{15} General performance, availability and maintainability	0.2696
4	C_{13} Data capturing	0.2130
5	C_{11} Accessibility	0.1172
Ranking	Fundamental-objective	Weight vector
1	C_{21} Internet accessibility (customer report)	0.5000
	C_{22} Intranet accessibility (intranet applications)	0.5000
Ranking	Fundamental-objective	Weight vector
1	C_{31} Implementation cost	0.8118
2	C_{32} Operational cost	0.3909
Ranking	Fundamental-objective	Weight vector
1	C_{51} Fast, secured business data transaction (for SOP, Planning and scheduling)	0.5000
	C_{52} Sufficient data storage and data transaction capabilities	0.5000
Ranking	Fundamental-objective	Weight vector
1	C_{61} Maintainability	0.8947
2	C_{62} Availability	0.3070

4.2Step 4.2 results

Process 4.2.2

M_{21}	$=$	$M_{22}=$			
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	1	A_{1}	1	1
A_{2}	1	1	A_{2}	1	1

$M_{31}=$			$\mathrm{M}_{32}=$		
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	3	A_{1}	1	1
A_{2}	1/3	1	A_{2}	1	1
M_{41}			M_{51}	=	
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	3	A_{1}	1	1
A_{2}	1/3	1	A_{2}	1	1
M_{52}			M_{61}	$=$	
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	1	A_{1}	1	5
A_{2}	1	1	A_{2}	1/5	1
$M_{62}=$					
	A_{1}	A_{2}			
A_{1}	1	1/9			
A_{2}	9	1			
A_{1} : Oracle 10 g					
A_{2} : MS SQL 2000					

Process 4.2.3

Since there are only two comparing alternatives and consistency test is not needed.

Process 4.2.4

$M_{21}^{\prime}=$		
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(1,1,3)$
$A_{2} \quad 1 /(1,1,3)$	$(1,1,3)$	
$M_{22}^{\prime}=$		
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(1,1,3)$
A_{2}	$1 /(1,1,3)$	$(1,1,3)$

$M_{31}^{\prime}=$

	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(1,3,5)$
A_{2}	$1 /(1,3,5)$	$(1,1,3)$

$M_{32}^{\prime}=$

	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(1,1,3)$
A_{2}	$1 /(1,1,3)$	$(1,1,3)$

$M_{41}^{\prime}=$		
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(1,3,5)$
A_{2}	$1 /(1,3,5)$	$(1,1,3)$

$M_{51}^{\prime}=$		
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(1,1,3)$
A_{2}	$1 /(1,1,3)$	$(1,1,3)$

$M^{\prime}{ }_{52}=$		
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(1,1,3)$
A_{2}	$1 /(1,1,3)$	$(1,1,3)$

$M_{61}^{\prime}=$		
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(3,5,7)$
A_{2}	$1 /(3,5,7)$	$(1,1,3)$

$\mathrm{M}_{62}^{\prime}=$

	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(7,7,9)$
A_{2}	$1 /(7,7,9)$	$(1,1,3)$

[^0]$S^{21}=(0.2000,0.5000,1.8000)$,
$S^{22}{ }_{1}=(0.2000,0.5000,1.8000)$,
$S^{31}=(0.1667,0.7500,2.5000)$,
$S^{32}{ }_{1}=(0.2000,0.5000,1.8000)$,
$S^{41}=(0.1667,0.7500,2.5000)$,
$S^{51}{ }_{1}=(0.2000,0.5000,1.8000)$,
$S^{52}{ }_{1}=(0.2000,0.5000,1.8000)$,
$S^{61}=(0.3000,0.8333,1.9444)$,
$S^{62}{ }_{1}=(0.5283,0.8750,1.3171)$,
$S^{21}=(0.1333,0.5000,1.2000)$,
$S^{22}=(0.1333,0.5000,1.2000)$,
$S^{31}=(0.1000,0.2500,1.2500)$,
$S^{32}{ }_{2}=(0.1333,0.5000,1.2000)$,
$S^{41}=(0.1000,0.2500,1.2500)$,
$S^{51}{ }_{2}=(0.1333,0.5000,1.2000)$,
$S^{52}{ }_{2}=(0.1333,0.5000,1.2000)$,
$S^{61}{ }_{2}=(0.0857,0.1667,0.6481)$,
$S^{62}{ }_{2}=(0.0734,0.1250,0.3449)$.

Process 4.2.6

$$
\begin{array}{ll}
W_{21}^{\prime}=(1.0000,1.0000)^{\mathrm{T}}, & W_{22}^{\prime}=(1.0000,1.0000)^{\mathrm{T}}, \\
W_{31}^{\prime}=(1.0000,0.6842)^{\mathrm{T}}, & W_{32}^{\prime}=(1.0000,1.0000)^{\mathrm{T}}, \\
W_{41}^{\prime}=(1.0000,0.6842)^{\mathrm{T}}, & \\
W_{51}^{\prime}=(1.0000,1.0000)^{\mathrm{T}}, & W_{52}^{\prime}=(1.0000,1.0000)^{\mathrm{T}}, \\
W_{61}^{\prime}=(1.0000,0.3431)^{\mathrm{T}}, & W_{62}^{\prime}=(1.0000,0.0000)^{\mathrm{T}}, \\
& \\
W_{21}=(0.5000,0.5000)^{\mathrm{T}}, & W_{22}=(0.5000,0.5000)^{\mathrm{T}}, \\
W_{31}=(0.6811,0.4660)^{\mathrm{T}}, & W_{32}=(0.5000,0.5000)^{\mathrm{T}}, \\
W_{41}=(0.6811,0.4660)^{\mathrm{T}}, & \\
W_{51}=(0.5000,0.5000)^{\mathrm{T}}, & W_{52}=(0.5000,0.5000)^{\mathrm{T}}, \\
W_{61}=(0.8947,0.3070)^{\mathrm{T}}, & W_{62}=(0.5000,0.5000)^{\mathrm{T}} .
\end{array}
$$

Table C. 25 Priority weights of alternatives with respect to accessibility C_{11}

	C_{21} Internet accessibility (customer report)	C_{21} Intranet accessibility (intranet applications)	Priority weight $\left(w_{2}\right)$
Weight vector	0.5000	0.5000	
A_{1} Oracle 10g	0.5000	0.5000	0.5000
A_{2} MS SQL 2000	0.5000	0.5000	0.5000

Table C. 26 Priority weights of alternatives with respect to $\operatorname{cost} C_{12}$

	C_{31} Implementation cost	C_{32} Operational cost	Priority weight $\left(w_{3}\right)$
Weight vector	0.8118	0.3909	
A_{1} Oracle 10 g	0.6811	0.5000	0.7484

A_{2} MS SQL 2000	0.4660	0.5000	0.5737

Table C. 27 Priority weights of alternatives with respect to data capturing C_{13}

	C_{41} Fast, real-time tracking data update to system	Priority weight $\left(w_{4}\right)$
Weight vector	1	
A_{1} Oracle 10g	0.6811	0.6811
$\begin{aligned} & \hline A_{2} \text { MS SQL } \\ & 2000 \end{aligned}$	0.4660	0.4660

Table C. 28 Priority weights of alternatives with respect to data transaction C_{14}

	C_{51} Fast, secured business data transaction (for SOP, Planning and scheduling)	C_{52} Sufficient data storage and data transaction capabilities	Priority weight $\left(w_{5}\right)$
Weight vector	0.5000	0.5000	
A_{1} Oracle 10g	0.5000	0.5000	0.5000
A_{2} MS SQL 2000	0.5000	0.5000	0.5000

Table C. 29 Priority weights of alternatives with respect to general performance, availability and maintainability C_{15}

	C_{61} Maintainability	C_{62} Availability	Priority weight $\left(w_{6}\right)$
Weight vector	0.8947	0.3070	
A_{1} Oracle 10 g	0.8947	0.5000	0.9540
A_{2} MS SQL 2000	0.3070	0.5000	0.4282

Table C. 30 Priority weights of alternatives with respect to goal

	C_{11} Accessibility	C_{12} Cost	C_{13} Data capturing
Weight vector	0.1172	0.2866	0.2130
A_{1} Oracle 10 g	0.5000	0.7484	0.6811
A_{2} MS SQL 2000	0.5000	0.5737	0.4660
	C_{14} Data transaction	C_{15} General performance, availability and maintainability	Priority weight $\left(w_{1}\right)$
Weight vector	0.2696	0.2696	

A_{1} Oracle 10 g	0.5000	0.9540	0.8102
A_{2} MS SQL 2000	0.5000	0.4282	0.5725

Table C. 31 Ranking of alternatives

Ranking	Alternative	Priority weight $\left(w_{1}\right)$
1	A_{1} Oracle 10g	0.8102
2	A_{2} MS SQL 2000	0.5725

5. User interface (customer reporting)

5.1Step 4.1 results

Process 4.1.2
$M_{1}=$

	C_{11}	C_{12}	C_{13}	C_{14}
C_{11}	1	$1 / 5$	$1 / 3$	$1 / 7$
C_{12}	5	1	5	1
C_{13}	3	$1 / 5$	1	$1 / 7$
C_{14}	7	1	7	1

C_{11} : cost
C_{12} : general performance, availability and maintainability
C_{13} : software platform
C_{14} : user friendliness

$M_{5}=$		
	C_{51}	C_{52}
C_{51}	1	$1 / 5$
C_{52}	5	1

C_{51} : report content convertible to file
C_{52} : readability and usability

Process 4.1.3
M_{5} involves only two comparing objectives and consistency test is not needed.
$C R_{I}=0.0954$.
M_{1} is considered consistent for their consistency ratio valued less than 0.100 .

Process 4.1.4

$M^{\prime}{ }_{1}=$				
	C_{11}	C_{12}	C_{13}	C_{14}
C_{11}	$(1,1,3)$	$1 /(3,5,7)$	$1 /(1,3,5)$	$1 /(5,7,9)$
C_{12}	$(3,5,7)$	$(1,1,3)$	$(3,5,7)$	$(1,1,3)$
C_{13}	$(1,3,5)$	$1 /(3,5,7)$	$(1,1,3)$	$1 /(5,7,9)$
C_{14}	$(5,7,9)$	$1 /(1,1,3)$	$(5,7,9)$	$(1,1,3)$
$\mathrm{M}^{\prime}{ }_{5}=$				
	C_{51}	C_{52}		
C 51	$(1,1,3)$	$1 /(3,5,7)$		
C 52	$(3,5,7)$	$(1,1,3)$		

Process 4.1.5
$S_{1}^{1}=(0.0264,0.0493,0.1967), \quad S^{\prime}=(0.1453,0.3527,0.8680)$,
$S_{3}^{\prime}=(0.0409,0.1277,0.3703), \quad S_{4}^{1}=(0.2058,0.4703,0.9548)$,
$S_{1}{ }_{1}=(0.0857,0.1667,0.6481), \quad S_{2}=(0.3000,0.8333,1.9444)$,
Process 4.1.6

$$
\begin{array}{ll}
W_{1}^{\prime}=(0.0000,0.8492,0.3244,1.0000)^{\mathrm{T}}, & W_{5}^{\prime}=(0.3431,1.0000)^{\mathrm{T}} \\
W_{1}=(0.0000,0.4650,0.1776,0.5475)^{\mathrm{T}}, & W_{5}=(0.3070,0.8947)^{\mathrm{T}}
\end{array}
$$

Table C. 32 Ranking for fundamental-objectives

Ranking	Fundamental-objective	Weight vector
1	C_{14} User friendliness	0.5475
2	C_{12} General performance, availability and maintainability	0.4650
3	C_{13} Software platform	0.1776

4	C_{11} Cost	0.0000
Ranking	Fundamental-objective	Weight vector
1	C_{52} Readability and usability	0.8947
2	C_{51} Report content convertible to file	0.3070

5.2Step 4.2 results

Process 4.2.2

$\mathrm{M}_{21}=$			$\mathrm{M}_{31}=$		
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	7	A_{1}	1	1/7
A_{2}	1/7	1	A_{2}	7	1
M_{41}			M_{51}	$=$	
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	7	A_{1}	1	5
A_{2}	1/7	1	A_{2}	1/5	1
$M_{52}=$					
	A_{1}	A_{2}			
A_{1}	1	3			
A_{2}	1/3	1			

A_{1} : Web-based user interface
A_{2} : GUI

Process 4.2.3

Since there are only two comparing alternatives and consistency test is not needed.

Process 4.2.4

$M^{\prime}{ }_{21}=$		
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(5,7,9)$

```
A2 1/(5,7,9) (1,1,3)
M'31 =
    A1 
A1 (1,1,3) 1/(5,7,9)
A2 (5,7,9) (1, 1,3)
M'41 =
    A1 A
A
A2 1/(5,7,9) (1, 1,3)
\begin{tabular}{rlr}
\(\mathrm{M}^{\prime}{ }_{51}=\) & \\
\(A_{1}\) & \(A_{2}\)
\end{tabular}
A
A}\mp@subsup{A}{2}{}1/(3,5,7) (1,1,3
M'52 =
    A
A
A}\mp@subsup{A}{2}{1/(1,3,5) (1, 1,3)
```

Process 4.2.5

```
\(S^{21}=(0.3947,0.8750,1.6875), \quad S^{21}{ }_{2}=(0.0731,0.1250,0.4500)\),
\(S^{31}=(0.0731,0.1250,0.4500), \quad S_{2}^{31}=(0.3947,0.8750,1.6875)\),
\(S^{41}=(0.3947,0.8750,1.6875), \quad S_{2}^{41}=(0.0731,0.1250,0.4500)\),
\(S^{S 1}=(0.3000,0.8333,1.9444), \quad S_{2}^{S 1}=(0.0857,0.1667,0.6481)\),
\(S^{52}=(0.1667,0.7500,2.5000), \quad S_{2}^{52}=(0.1000,0.2500,1.2500)\).
```

Process 4.2.6

$W_{21}^{\prime}=(1.0000,0.0686)^{\mathrm{T}}$,	$W_{31}^{\prime}=(0.0686,1.0000)^{\mathrm{T}}$,
$W_{41}^{\prime}=(1.0000,0.0686)^{\mathrm{T}}$,	$W_{51}^{\prime}=(1.0000,0.3431)^{\mathrm{T}}$,
$W_{52}^{\prime}=(1.0000,0.6842)^{\mathrm{T}}$,	
$W_{21}=(0.9953,0.0683)^{\mathrm{T}}$,	$W_{31}=(0.0683,0.9953)^{\mathrm{T}}$,
$W_{41}=(0.9953,0.0683)^{\mathrm{T}}$,	$W_{51}=(0.8947,0.3070)^{\mathrm{T}}$,

$$
W_{52}=(0.6811,0.4660)^{\mathrm{T}} .
$$

Table C. 33 Priority weights of alternatives with respect to $\operatorname{cost} C_{11}$

	C_{21} Implementation cost	Priority weight $\left(w_{2}\right)$
Weight vector	1	
A_{1} Web-based user interface	0.9953	0.9953
A_{2} GUI	0.0683	0.0683

Table C. 34 Priority weights of alternatives with respect to general performance, availability and maintainability C_{12}

	C_{31} Sufficient processing and memorial power	Priority weight $\left(w_{3}\right)$
Weight vector	1	
A_{1} Web-based user interface	0.0683	0.0683
A_{2} GUI	0.9953	0.9953

Table C. 35 Priority weights of alternatives with respect to software platform C_{13}

	C_{41} Software platform independency (customer report)	Priority weight $\left(w_{4}\right)$
Weight vector	1	
A_{1} Web-based user interface	0.9953	0.9953
A_{2} GUI	0.0683	0.0683

Table C. 36 Priority weights of alternatives with respect to user friendliness C_{14}

	C_{51} Report content convertible to file	C_{52} Readability and usability	Priority weight (w_{5})
Weight vector	0.3070	0.8947	
A_{1} Web-based user interface	0.8947	0.6811	0.8841
A_{2} GUI	0.3070	0.4660	0.5112

Table C. 37 Priority weights of alternatives with respect to goal

	C_{11} Cost	C_{12} General performance, availability and maintainability	C_{13} Software platform

Weight vector	0.0000	0.4650	0.1776
A_{1} Web-based user interface	0.9953	0.0683	0.9953
A_{2} GUI	0.0683	0.9953	0.0683
	C_{14} User friendliness	Priority weight $\left(w_{1}\right)$	
Weight vector	0.5475	0.6926	
A_{1} Web-based user interface	0.8841	0.7548	
A_{2} GUI	0.5112		

Table C. 38 Ranking of alternatives

Ranking	Alternative	Priority weight $\left(w_{1}\right)$
1	A_{2} GUI	0.7548
2	A_{1} Web-based user interface	0.6926

6. User interface (other internet application)

6.1Step 4.1 results

Process 4.1.2

$M_{1}=$

	C_{11}	C_{12}	C_{13}	C_{14}
C_{11}	1	$1 / 5$	$1 / 5$	$1 / 3$
C_{12}	5	1	1	5
C_{13}	5	1	1	5
C_{14}	3	$1 / 5$	$1 / 5$	1

C_{11} : cost
C_{12} : data capturing
C_{13} : general performance, availability and maintainability
C_{14} : user friendliness

$M_{5}=$		
	C_{51}	C_{52}

$\begin{array}{lll}C_{52} & 5 & 1\end{array}$

C_{21} : report content convertible to file C_{22} : readability and usability

Process 4.1.3

M_{5} involves only two comparing objectives and consistency test is not needed.
$C R_{I}=0.0828$.
M_{1} is considered consistent for their consistency ratio valued less than 0.100

Process 4.1.7

$M^{\prime}{ }_{1}=$				
	C_{11}	C_{12}	C_{13}	C_{14}
C_{11}	$(1,1,3)$	$1 /(3,5,7)$	$1 /(3,5,7)$	$1 /(1,3,5)$
C_{12}	$(3,5,7)$	$(1,1,3)$	$(1,1,3)$	$(3,5,7)$
C_{13}	$(3,5,7)$	$1 /(1,1,3)$	$(1,1,3)$	$(3,5,7)$
C_{14}	$(1,3,5)$	$1 /(3,5,7)$	$1 /(3,5,7)$	$(1,1,3)$
$M^{\prime}{ }_{5}=$				
	C_{51}	C_{52}		
C_{51}	$(1,1,3)$	$1 /(3,5,7)$		
C_{52}	$(3,5,7)$	$(1,1,3)$		

Process 4.1.5
$S_{1}^{1}=(0.0289,0.0591,0.2443), \quad S_{2}^{1}=(0.1558,0.4091,1.0469)$,
$S_{3}^{1}=(0.1429,0.3818,0.9422), \quad S_{4}^{1}=(0.0445,0.1500,0.4536)$,
$S_{1}^{5}=(0.0857,0.1667,0.6481), \quad S_{2}^{5}=(0.3000,0.8333,1.9444)$,

Process 4.1.6

$$
\begin{aligned}
& W_{1}^{\prime}=(0.2017,1.0000,0.9665,0.5348)^{\mathrm{T}}, W_{5}^{\prime}=(0.3431,1.0000)^{\mathrm{T}} . \\
& W_{1}=(0.0892,0.4423,0.4275,0.2366)^{\mathrm{T}}, W_{5}=(0.3070,0.8947)^{\mathrm{T}} .
\end{aligned}
$$

Table C. 39 Ranking for fundamental-objectives

Ranking	Fundamental-objective	Weight vector
1	C_{12} Data capturing	0.4423
2	C_{13} General performance, availability and maintainability	0.4275
3	C_{14} User friendliness	0.2366
4	C_{11} Cost	0.0892
Ranking	Fundamental-objective	Weight vector
1	C_{52} Readability and usability	0.8947
2	C_{51} Report content convertible to file	0.3070

6.2Step 4.2 results

Process 4.2.2

$\mathrm{M}_{21}=$			$\mathrm{M}_{31}=$		
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	1/7	A_{1}	1	1/7
A_{2}	7	1	A_{2}	7	1
M_{41}	=		M_{51}		
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	1/5	A_{1}	1	1/5
A_{2}	5	1	A_{2}	5	1
$M_{52}=$					
	A_{1}	A_{2}			
A_{1}	1	1/5			
A_{2}	5	1			

A_{1} : Web-based user interface
A_{2} : GUI

Process 4.2.3

All matrices above involve only two comparing objectives and consistency test is not needed.

Process 4.2.4

$M^{\prime}{ }_{21}=$	
A_{1}	A_{2}
$A_{1}(1,1,3)$	$(5,7,9)$
$A_{2} 1 /(5,7,9)$	$(1,1,3)$
$\mathrm{M}^{\prime}{ }_{31}=$	
A_{1}	A_{2}
$A_{1}(1,1,3)$	$(5,7,9)$
$A_{2} \quad 1 /(5,7,9)$	$(1,1,3)$
$\mathrm{M}^{\prime}{ }_{41}=$	
A_{1}	A_{2}
$A_{1}(1,1,3)$	$(3,5,7)$
$A_{2} 1 /(3,5,7)$	$(1,1,3)$
$M^{\prime}{ }_{51}=$	
A_{1}	A_{2}
$A_{1}(1,1,3)$	$(3,5,7)$
$A_{2} \quad 1 /(3,5,7)$	$(1,1,3)$
$M^{\prime}{ }_{52}=$	
A_{1}	A_{2}
$A_{1} \quad(1,1,3)$	$(3,5,7)$
$A_{2} 1 /(3,5,7)$	$(1,1,3)$

Process 4.2.5
$S_{1}^{21}=(0.3947,0.8750,1.6875), \quad S_{21}^{21}=(0.0731,0.1250,0.4500)$,
$S^{31}=(0.3947,0.8750,1.6875), \quad S^{31}{ }_{2}=(0.0731,0.1250,0.4500)$,
$S^{41}=(0.3000,0.8333,1.9444), \quad S^{41}=(0.0857,0.1667,0.6481)$,
$S^{51}=(0.3000,0.8333,1.9444), \quad S_{2}^{s 1}=(0.0857,0.1667,0.6481)$,
$S^{52}=(0.3000,0.8333,1.9444), \quad S_{2}{ }_{2}=(0.0857,0.1667,0.6481)$.

$$
\begin{array}{ll}
W_{21}^{\prime}=(1.0000,0.0686)^{\mathrm{T}}, & W_{31}^{\prime}=(1.0000,0.0686)^{\mathrm{T}}, \\
W_{41}^{\prime}=(1.0000,0.3431)^{\mathrm{T}}, & W_{\mathrm{S} 1}=(1.0000,0.3431)^{\mathrm{T}}, \\
W_{52}^{\prime}=(1.0000,0.3431)^{\mathrm{T}} . & \\
& \\
W_{21}=(0.9953,0.0683)^{\mathrm{T}}, & W_{31}=(0.9953,0.0683)^{\mathrm{T}}, \\
W_{41}=(0.8947,0.3070)^{\mathrm{T}}, & W_{51}=(0.8947,0.3070)^{\mathrm{T}}, \\
W_{52}=(0.8947,0.3070)^{\mathrm{T}} . &
\end{array}
$$

Table C. 40 Priority weights of alternatives with respect to cost C_{11}

	C_{21} Implementation cost	Priority weight $\left(w_{2}\right)$
Weight vector	1	
A_{1} Web-based user interface	0.9953	0.9953
A_{2} GUI	0.0683	0.0683

Table C. 41 Priority weights of alternatives with respect to data capturing C_{12}

	C_{31} Efficient data capturing	Priority weight (w_{3})
Weight vector	1	
A_{1} Web-based user interface	0.9953	0.9953
A_{2} GUI	0.0683	0.0683

Table C. 42 Priority weights of alternatives with respect to general performance, availability and maintainability C_{13}

	C_{41} Sufficient processing and memorial power	Priority weight (w_{4})
Weight vector	1	0.8947
A_{1} Web-based user interface	0.8947	0.3070
A_{2} GUI	0.3070	

Table C. 43 Priority weights of alternatives with respect to user friendliness C_{14}

	C_{51} Report content convertible to file	C_{52} Readability and usability	Priority weight (w_{5})
Weight vector	0.3070	0.8947	
A_{1} Web-based	0.8947	0.8947	1.0752

user interface			
A_{2} GUI	0.3070	0.3070	0.3689

Table C. 44 Priority weights of alternatives with respect to goal

	C_{11} Cost	C_{12} Data capturing	C_{13} General performance, availability and maintainability
Weight vector	0.0892	0.4423	0.4275
A_{1} Web-based user interface	0.9953	0.9953	0.8947
A_{2} GUI	0.0683	0.0683	0.3070
	C_{14} User friendliness	Priority weight $\left(w_{1}\right)$	
Weight vector	0.2366	1.1659	
A_{1} Web-based user interface	1.0752	0.2548	
A_{2} GUI	0.3689		

Table C. 45 Ranking of alternatives

Ranking	Alternative	Priority weight $\left(w_{1}\right)$
1	A_{1} Web-based user interface	1.1659
2	A_{2} GUI	0.2548

APPENDIX D - QUESTIONNAIRE DESIGN FOR CASE STUDY III

This appendix includes thirteen unfilled questionnaires designed for carrying out the TSS methodology in case study III: The questionnaires $1-\mathrm{x}$ were designed for surveying the relative importance of fundamental-objectives in process 4.1.1; the questionnaires $2-x$ were designed for surveying relative effectiveness of alternatives in process 4.2.1; the questionnaire 3 was designed for surveying the relative importance of solution components in process 5.1.1.

Questionnaire 1-1

(This questionnaire is designed for process 4.1.1 of the TSS methodology for case study III.)

Solution component: Tracking technology

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria in terms of their importance for achieving the goal.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Important / (1)" means that the two criteria are considered equally important; the answer options on the right side of it mean that the criterion on the right side is considered more important with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more important with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad
Number of questions: 8

Section I - Level 1 Goal Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
Cost	$\begin{gathered} \text { (9) } \\ \square \\ \hline \end{gathered}$	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	$\begin{array}{r} (5) \\ \square \end{array}$	$\begin{array}{r} (7) \\ \square \\ \hline \end{array}$	(9) \square	Data Capturing
Cost	(9) \square	(7) \square	(5) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(1)	(3) \square	(5) \square	(7) \square	(9) \square	General performance, availability \& maintainability
General erformance, aintainability	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	$\begin{aligned} & (5) \\ & \square \end{aligned}$	(7) \square	(9) \square	Data Capturing

Section II - Level 2 Cost Factors Comparison

Section III - Level 2 Data Capturing Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
Efficient data capturing	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	$\begin{gathered} (7) \\ \square \\ \hline \end{gathered}$	$\begin{array}{r} (9) \\ \square \end{array}$	Reliable data capturing
fficient data capturing	$\begin{gathered} \text { (9) } \\ \square \end{gathered}$	(7) \square	$\begin{array}{r} (5) \\ \square \end{array}$	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(1) \square	(3) \square	(5) \square	$\begin{aligned} & (7) \\ & \square \end{aligned}$	(9) \square	Fast, real-time updating tracking data
Reliable data capturing	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	$\begin{array}{r} (5) \\ \square \end{array}$	$\begin{aligned} & \text { (7) } \\ & \square \end{aligned}$		Fast, real-time updating tracking data

Section IV - Level 2 General Performance, Availability and Maintainability Factors Comparison

Questionnaire 1-2

(This questionnaire is designed for process 4.1.1 of the TSS methodology for case study III.)

Solution component: Software platform (intranet application)

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria in terms of their importance for achieving the goal.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Important / (1)" means that the two criteria are considered equally important; the answer options on the right side of it mean that the criterion on the right side is considered more important with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more important with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad
Number of questions: 16
End time: \qquad
Duration: \qquad

Section I - Level 1 Goal Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
Ccessibility	(9) \square	(7)	(5) \square	(3) \square	(1)	(3) \square	(5) \square	(7) \square	(9) \square	Cost
Ccessibility	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Data transaction
$T_{\text {cessibility }}$	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	General performance, availability \& maintainability
Ccessibility \qquad	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square \square	Software platform

Cost	(9) \square	(7) \square	(5) \square	(3) \square \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Data transaction
Cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	General performance, availability \& maintainability
Cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	$\begin{aligned} & \text { (9) } \\ & \square \end{aligned}$	Software platform
Data ransaction	(9) \square	(7) \square	(5) \square	(3) \square	(1)	(3) \square	$\begin{array}{r} (5) \\ \square \end{array}$	(7) \square	(9) \square	General performance, availability \& maintainability
Data ansaction	(9) \square	(7) \square	$\begin{aligned} & (5) \\ & \square \end{aligned}$	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Software platform
General rformance, ailability \& intainability	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Software platform

Section II - Level 2 General performance, availability and maintainability Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
fficient job Ard printing	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square		(9) \square	Efficient processing \& memorial power
Efficient job Card printing	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Availability
Efficient job Card printing $^{\text {and }}$	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Maintainability
Efficient Drocessing \& memorial	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3)	$\begin{aligned} & \text { (5) } \\ & \square \end{aligned}$	(7) \square	(9) \square	Availability

Questionnaire 1-3

(This questionnaire is designed for process 4.1.1 of the TSS methodology for case study III.)

Solution component: software platform (Internet application)

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria in terms of their importance for achieving the goal.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Important / (1)" means that the two criteria are considered equally important; the answer options on the right side of it mean that the criterion on the right side is considered more important with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more important with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad
Number of questions: 13

Section I - Level 1 Goal Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
Ccessibility	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Cost
Ccessibility	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Data transaction
${ }^{\text {Ccessibility }}$	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	General performance, availability \& maintainability
Accessibility \qquad	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Software platform

Cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square \square	(9) \square	Data transaction
Cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	General performance, availability \& maintainability
Cost	(9) \square	(7) \square	(5) \square	$\begin{aligned} & (3) \\ & \square \end{aligned}$	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Software platform
Data transaction	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	$\begin{array}{r} (5) \\ \square \end{array}$	(7) \square	(9) \square	General performance, availability \& maintainability
Data transaction	(9) \square	(7) \square	$\begin{array}{r} (5) \\ \square \end{array}$	(3) \square	(1) \square	(3)	(5) \square	(7) \square	(9) \square	Software platform
General Derformance, Zailability \& Aintainability	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Software platform

Section II - Level 2 General performance, availability and maintainability Factors Comparison

Questionnaire 1-4

(This questionnaire is designed for process 4.1.1 of the TSS methodology for case study III.)

Solution component: database management system

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria in terms of their importance for achieving the goal.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Important / (1)" means that the two criteria are considered equally important; the answer options on the right side of it mean that the criterion on the right side is considered more important with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more important with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad
Number of questions: 14
Section I - Level 1 Goal Factors Comparison

Cost	(9)	(7)	(5)	(3)	(1)	(3)	(5)	(7)	(9)	Data capturing
	\square									

Section II - Level 2 Accessibility Factors Comparison

Section III - Level 2 Cost Factors Comparison

Section IV - Level 2 Data transaction Comparison

Section V - Level 2 General performance, availability and maintainability Comparison

Questionnaire 1-5

(This questionnaire is designed for process 4.1.1 of the TSS methodology for case study III.)

Solution component: user interface (customer reporting)

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria in terms of their importance for achieving the goal.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Important / (1)" means that the two criteria are considered equally important; the answer options on the right side of it mean that the criterion on the right side is considered more important with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more important with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad End time: \qquad
Number of questions: 7
Duration: \qquad

Section I - Level 1 Goal Factors Comparison

	Extremely Important	$\begin{aligned} & \text { Very } \\ & \text { Important } \end{aligned}$	Important	Moderately Important	Equally Important	Moderately Important	Important	$\begin{aligned} & \text { Very } \\ & \text { Important } \end{aligned}$	Extremely Important	
Cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	General performance, availability \& maintainability
Cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Software platform
Cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	User friendliness
General erformance	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Software platform

Section II - Level 2 User friendliness Factors Comparison

Questionnaire 1-6

(This questionnaire is designed for process 4.1.1 of the TSS methodology for case study III.)

Solution component: user interface (other Intranet application)

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria in terms of their importance for achieving the goal.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Important / (1)" means that the two criteria are considered equally important; the answer options on the right side of it mean that the criterion on the right side is considered more important with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more important with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad Number of questions: 7

End time: \qquad
Duration: \qquad

Section I - Level 1 Goal Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
Cost	(9) \square \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square		Data capturing
Cost	(9) \square	(7)	(5) \square	(3) \square	(1) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	$\begin{aligned} & \text { (5) } \\ & \square \end{aligned}$	(7) \square	(9) \square	General performance, availability \& maintainability
Cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	User friendliness
ta capturing	(9) \square	(7)	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	$\begin{gathered} \text { (7) } \\ \square \end{gathered}$	(9) \square	General performance, availability \& maintainability

Section II - Level 2 User friendliness Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
Convertible to file	(9) \square	(7) \square	$\begin{array}{r} (5) \\ \square \end{array}$	$\begin{aligned} & (3) \\ & \square \end{aligned}$	(1) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	$\begin{array}{r} (5) \\ \square \end{array}$	$\begin{aligned} & (7) \\ & \square \end{aligned}$	(9) \square	Readability \& usability

Questionnaire 2-1

(This questionnaire is designed for process 4.2.1 of the TSS methodology for case study III.)

Solution component: Tracking technology

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria according to their effectiveness towards the criteria they against. The provided space after "Remarks" must be filled with reason(s) for answers considering the provided means-objectives.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Effective / (1)" means that the two criteria are considered equally effective; the answer options on the right side of it mean that the criterion on the right side is considered more effective with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more effective with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad End time: \qquad
Number of questions: 21
Duration: \qquad

Section I - Comparison against criteria Implementation cost

Means-objectives: Software development cost, purchasing cost, easiness and cost of installation

Remarks:

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Barcode	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	RFID
Barcode	(9) \square \square	(7) \square	(5) \square	(3) \square	(1)	(3) \square	(5) \square \square	(7) \square	(9) \square	GPS

-3	RFID	(9)	(7)	(5)	(3)	(1)	(3)	(5)	(7)	(9)	GPS
	\square										

Section II - Comparison against criteria Operational cost

Means-objectives: Cost for data carrier, maintenance cost, cost for manual operation Remarks: \qquad
\qquad

		Extremely Effective	Very Effective	Moderately Effective	Equally Effective	Moderately Effective	Verf Effective	Eftremective Effective		
$\therefore-1$	Barcode	(9)	(7)	(5)	(3)	(1)	(3)	(5)	(7)	(9)

Section III - Comparison against criteria Efficient data capturing

Means-objectives: Data capturing time, reading range
Remarks: \qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Barcode	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	RFID
Barcode	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GPS
RFID	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GPS

Section IV - Comparison against criteria Reliable data capturing

Means-objectives: Data capturing accuracy, low data error rate, environmental susceptibility
Remarks: \qquad
$\begin{array}{l|c|ccccccccc|c|}\hline & & \begin{array}{c}\text { Extremely } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Very } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Moderately } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Equally } \\ \text { Effective }\end{array} & \text { Moderately } \\ \text { Effective } \\ \text { Effective }\end{array}$ Effective $\left.\begin{array}{c}\text { Very } \\ \text { Effective }\end{array} \begin{array}{c}\text { Extremely } \\ \text { Effective }\end{array}\right]$

Section V - Comparison against criteria Fast, real-time tracking data update to system

Means-objectives: Data transmission, network protocol
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Barcode	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	RFID
Barcode	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GPS
RFID	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	$\begin{gathered} \text { (9) } \\ \square \\ \hline \end{gathered}$	GPS

Section VI - Comparison against criteria Maintainability
Means-objectives: Resource for repairing and replacement
Remarks: \qquad
\qquad

		Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
$\because 1$	Barcode	(9) \square	(7) \square	$\begin{aligned} & (5) \\ & \square \end{aligned}$	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	RFID
2	Barcode	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GPS
-3	RFID	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GPS

Section VII - Comparison against criteria Availability

Means-objectives: Resource for repairing and replacement
Remarks: \qquad
\qquad
$\left.\begin{array}{|c|ccccccccc|c|}\hline & \begin{array}{c}\text { Extremely } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Very } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Effective }\end{array} & \begin{array}{c}\text { Moderately } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Equally } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Moderately } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Exfremely } \\ \text { Effective }\end{array} & \\ \hline & \text { Bffective } & \text { Effective }\end{array}\right]$

Questionnaire 2-2

(This questionnaire is designed for process 4.2.1 of the TSS methodology for case study III.)

Solution component: software platform (intranet application)

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria according to their effectiveness towards the criteria they against. The provided space after "Remarks" must be filled with reason(s) for answers considering the provided means-objectives.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Effective / (1)" means that the two criteria are considered equally effective; the answer options on the right side of it mean that the criterion on the right side is considered more effective with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more effective with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad
Number of questions: 24
End time: \qquad
Duration: \qquad

Section I - Comparison against criteria Internet accessibility (customer report)

Means-objectives: Compatibility to various intranet-based protocols
Remarks: \qquad

Section II - Comparison against criteria Implementation cost
Means-objectives: Purchase cost, setup cost
Remarks: \qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Adobe AIR	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square \square	(7) \square	(9) \square	MS .Net
Adobe AIR	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Java
MS .Net	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Java

Section III - Comparison against criteria Fast, secured business data transaction (for SOP, Planning and scheduling)

Means-objectives: Data management capability
Remarks:

Section IV - Comparison against criteria Efficient job card printing

Means-objectives: Efficient serial interface, compatible to job card printer's software driver

Remarks:

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Adobe AIR	(9) \square	(7) \square	(5) \square \square	$\begin{aligned} & (3) \\ & \square \end{aligned}$	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	MS .Net
Adobe AIR	(9) \square	(7) \square	(5) \square	$\begin{aligned} & \text { (3) } \\ & \square \\ & \hline \end{aligned}$	(1) \square	(3) \square	(5) \square	$\begin{gathered} (7) \\ \square \\ \hline \end{gathered}$	(9) \square	Java
MS .Net	(9) \square	$\begin{aligned} & (7) \\ & \square \\ & \hline \end{aligned}$	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Java

Section V - Comparison against criteria Sufficient processing and memorial power

Means-objectives: Low resources requirements
Remarks: \qquad
\qquad
$\left.\begin{array}{|c|ccccccccc|c|}\hline & \begin{array}{c}\text { Extremely } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Very } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Moderately } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Equally } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Moderately } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Very } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Extrectively }\end{array} & \\ \hline \text { Effective }\end{array}\right]$

Section VI - Comparison against criteria Availability

Means-objectives: Resource for repairing and replacement, operational stability Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Adobe AIR	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	MS .Net
Adobe AIR	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Java
MS . Net	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	$\begin{aligned} & \text { (7) } \\ & \square \\ & \hline \end{aligned}$	\square	Java

Section VII - Comparison against criteria Maintainability

Means-objectives: Resource for repairing and replacement
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Adobe AIR	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	MS .Net
Adobe AIR	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Java
MS .Net	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9)	Java

Section VIII - Comparison against criteria MS Windows compatible (SOP)

Means-objectives: Compatibility to MS Windows
Remarks: \qquad

		Adobe AIR	(9)	(7)	(5)	(3)	(1)	(3)	(5)	(7)	(9)
-3	MS .Net	\square									
		\square	Java								

Questionnaire 2-3
(This questionnaire is designed for process 4.2.1 of the TSS methodology for case study III.)

Solution component: software platform (internet application)

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria according to their effectiveness towards the criteria they against. The provided space after "Remarks" must be filled with reason(s) for answers considering the provided means-objectives.
> * Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Effective / (1)" means that the two criteria are considered equally effective; the answer options on the right side of it mean that the criterion on the right side is considered more effective with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more effective with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad End time: \qquad
Number of questions: 21
Duration: \qquad

Section I - Comparison against criteria Internet accessibility (customer report)

Means-objectives: Compatibility to various internet-based protocols Remarks:

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Adobe AIR	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	MS .Net
Adobe AIR	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	$\begin{gathered} (5) \\ \square \\ \hline \end{gathered}$	(7) \square	(9) \square	Java

-3	MS .Net	(9)	(7)	(5)	(3)	(1)	(3)	(5)	(7)	(9)	
	\square										

Section II - Comparison against criteria Implementation cost

Means-objectives: Purchase cost, setup cost
Remarks:

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Adobe AIR	$\begin{aligned} & \text { (9) } \\ & \square \\ & \hline \end{aligned}$	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	MS .Net
Adobe AIR	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Java
MS .Net	(9) \square	(7) \square \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	$\begin{array}{r} (7) \\ \square \end{array}$	$\begin{aligned} & \text { (9) } \\ & \square \\ & \hline \end{aligned}$	Java

Section III - Comparison against criteria Sufficient data storage and data transaction capabilities

Means-objectives: Capable to cope with high volume of users' access Remarks: \qquad

Section IV - Comparison against criteria Sufficient processing and

Means-objectives: Low resources requirements
Remarks: \qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Adobe AIR	(9) \square	(7) \square	(5) \square	$\begin{aligned} & \hline(3) \\ & \square \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \square \end{aligned}$	(3) \square	(5) \square	(7) \square	(9) \square	MS .Net
Adobe AIR	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Java
MS .Net	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Java

Section V - Comparison against criteria Availability

Means-objectives: Resource for repairing and replacement, operational stability
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Adobe AIR	$\begin{aligned} & \text { (9) } \\ & \square \end{aligned}$	(7) \square	$\begin{aligned} & (5) \\ & \square \end{aligned}$	(3) \square	$\begin{aligned} & \text { (1) } \\ & \square \end{aligned}$	(3) \square	(5) \square	(7) \square	(9) \square	MS .Net
Adobe AIR	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(5) \square	(7) \square	(9) \square	Java
MS .Net	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Java

Section VI - Comparison against criteria Maintainability

Means-objectives: Resource for repairing and replacement
Remarks:

Section VII - Comparison against criteria Software platform independency (customer report)

Means-objectives: Applications independent to client's platform, avoiding software installations on client computers

Remarks: \qquad
\qquad
$\left.\begin{array}{|c|ccccccccc|c|}\hline & & \begin{array}{c}\text { Extremely } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Very } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Moderately } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Equally } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Moderately } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Very } \\ \text { Effective }\end{array} & \begin{array}{c}\text { Exfrectively }\end{array} & \\ \hline- & \text { Adfective } \\ \text { Effective }\end{array}\right]$

Questionnaire 2-4

(This questionnaire is designed for process 4.2 .1 of the TSS methodology for case study III.)

Solution component: database management system

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria according to their effectiveness towards the criteria they against. The provided space after "Remarks" must be filled with reason(s) for answers considering the provided means-objectives.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Effective / (1)" means that the two criteria are considered equally effective; the answer options on the right side of it mean that the criterion on the right side is considered more effective with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more effective with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time:
End time: \qquad
Number of questions: 10
Duration: \qquad

Section I - Comparison against criteria Internet accessibility
(customer report)

Means-objectives: Accessibility to Internet-based applications
Remarks: \qquad

Section II - Comparison against criteria Intranet accessibility (intranet applications)

Means-objectives: Accessibility to intranet-based applications Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Oracle 10g	(9)	(7) \square	(5) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(1) \square	(3) \square	(5) \square	(7) \square	(9)	MS SQL 2000

Section III - Comparison against criteria Inplementation cost

Means-objectives: Software purchasing cost, setup cost
Remarks: \qquad

Section IV - Comparison against criteria Operational cost

Means-objectives: Administration cost, maintenance cost, hosting cost Remarks: \qquad

Section V - Comparison against criteria Fast, real-time tracking data

update to system

Means-objectives: Efficient data interface to data capturing sub-system
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Oracle 10 g	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square \square	(3) \square	(5) \square	(7) \square	(9) \square	$\begin{gathered} \text { MS SQL } \\ 2000 \end{gathered}$

Section VI - Comparison against criteria Fast, secured business data transaction (for SOP, Planning and scheduling)

Means-objectives: Capability in handling simultaneous accesses, data security
Remarks: \qquad

Section VII - Comparison against criteria Sufficient data storage and data transaction capabilities

Means-objectives: Efficient with huge amount of cumulative data, efficient with continuous frequent accesses
Remarks: \qquad
\qquad

Section VIII - Comparison against criteria Sufficient processing and memorial power

Means-objectives: Low resources requirements
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Oracle 10g	(9) \square	(7)	(5) \square	(3)	(1)	(3)	(5) \square	(7) \square	$\begin{gathered} \text { (9) } \\ \square \end{gathered}$	$\begin{gathered} \text { MS SQL } \\ 2000 \end{gathered}$

Section IX - Comparison against criteria Maintainability
Means-objectives: Resource for repairing and replacement
Remarks: \qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Oracle 10g	(9) \square	(7) \square	(5) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	$\begin{gathered} \text { MS SQL } \\ 2000 \end{gathered}$

Section X - Comparison against criteria Availability

Means-objectives: Resource for repairing and replacement, operational stability Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Oracle 10g	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	$\begin{gathered} \text { MS SQL } \\ 2000 \end{gathered}$

Questionnaire 2-5

(This questionnaire is designed for process 4.2.1 of the TSS methodology for case study III.)

Solution component: user interface (customer reporting)

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria according to their effectiveness towards the criteria they against. The provided space after "Remarks" must be filled with reason(s) for answers considering the provided means-objectives.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Effective / (1)" means that the two criteria are considered equally effective; the answer options on the right side of it mean that the criterion on the right side is considered more effective with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more effective with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:
\qquad End time: \qquad
Number of questions: 5
Duration: \qquad

Section I - Comparison against criteria Implementation cost

Means-objectives: Setup cost, software development cost
Remarks:

Section II - Comparison against criteria Sufficient processing and memorial power

Means-objectives: Low resources requirements
Remarks: \qquad
\qquad

		Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
2.1	Web-based user interface	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GUI

Section III - Comparison against criteria Software platform independency (customer report)

Means-objectives: Avoiding additional software installations, accessibility by different software platform

Remarks: \qquad
\qquad

Section IV - Comparison against criteria Report content convertible to file

Means-objectives: Direct copy/save data from user interface Remarks: \qquad

4.1	Web-based user interface	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GUI

Section V - Comparison against criteria Readability \& usability

Means-objectives: Efficient data presentation, conventional data format Remarks:

		Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
S. 1	Web-based user interface	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3)	(5) \square	(7) \square	(9) \square	GUI

Questionnaire 2-6

(This questionnaire is designed for process 4.2.1 of the TSS methodology for case study III.)

Solution component: user interface (other Intranet application)

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria according to their effectiveness towards the criteria they against. The provided space after "Remarks" must be filled with reason(s) for answers considering the provided means-objectives.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Effective / (1)" means that the two criteria are considered equally effective; the answer options on the right side of it mean that the criterion on the right side is considered more effective with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more effective with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad
Number of questions: 5
End time: \qquad
Duration: \qquad

Section I - Comparison against criteria Implementation cost

Means-objectives: Setup cost, software development cost
Remarks:

Section II - Comparison against criteria Efficient data capturing

Means-objectives: Enable efficient data input with keyboard, quick screen refresh Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Web-based user interface	(9) \square	(7) \square		(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GUI

Section III - Comparison against criteria Sufficient processing and memorial power

Means-objectives: Low resources requirements
Remarks: \qquad
\qquad

Section IV - Comparison against criteria Report content convertible to file

Means-objectives: Direct copy/save data from user interface
Remarks: \qquad
\qquad

Section V - Comparison against criteria Readability \& usability

Means-objectives: Efficient data presentation, conventional data format
Remarks:

Questionnaire 3

(This questionnaire is designed for process 5.1.1 of the TSS methodology for case study III.)

Please answer all questions. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria in terms of their importance for achieving the goal.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Important / (1)" means that the two criteria are considered equally important; the answer options on the right side of it mean that the criterion on the right side is considered more important with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more important with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad End time: \qquad
Number of questions: 15
Duration: \qquad

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	$\begin{aligned} & \text { Very } \\ & \text { Important } \end{aligned}$	Extremely Important	
Tracking technology	(9) \square	(7) \square	$\begin{aligned} & (5) \\ & \square \end{aligned}$	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Software platform (intranet app.)
Tracking technology	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Software platform (Internet app.)
Tracking technology \qquad	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Database management system
Tracking technology \qquad	$\begin{aligned} & \text { (9) } \\ & \square \end{aligned}$	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	$\begin{aligned} & \text { (7) } \\ & \square \end{aligned}$	(9) \square	User interface (customer reporting)
Tracking technology	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square		(7) \square	(9) \square	User interface (other intranet app.)

Software platform (intranet app.)	(9)	(7)	(5)	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(1) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(5) \square	(7) \square	$\begin{gathered} \text { (9) } \\ \square \end{gathered}$	Software platform (Internet app.)
Software platform (intranet app.)	(9)		(5) \square	(3) \square	(1) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	$\begin{aligned} & (5) \\ & \square \end{aligned}$	$\begin{gathered} \text { (7) } \\ \square \end{gathered}$	(9) \square	Database management system
Software platform (intranet app.)	(9)		(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	User interface (customer reporting)
Software platform (intranet app.)			(5) \square	(3) \square	(1) \square	$\begin{aligned} & (3) \\ & \square \end{aligned}$	(5) \square	$\begin{aligned} & (7) \\ & \square \end{aligned}$	$\begin{gathered} \text { (9) } \\ \square \end{gathered}$	User interface (other intranet app.)
Software platform (Internet app.)			(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Database management system
Software platform (Internet app.)			(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	User interface (customer reporting)
Software platform (Internet app.)			$\begin{aligned} & (5) \\ & \square \end{aligned}$	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	User interface (other intranet app.)
Database management system			\square	(3) \square	(1) \square	(3) \square	(5) \square	(7)	(9) \square	User interface (customer reporting)
Database management system			(5)	(3) \square	(1) \square	(3) \square	(5)	(7)	(9) \square	User interface (other intranet app.)
$\begin{gathered} \begin{array}{c} \text { (cer interface } \\ \text { (customer } \\ \text { reporting) } \end{array} \\ \hline \end{gathered}$			(5)	(3)	(1) \square	(3)	(5)	(7)	(9)	User interface (other intranet app.)

APPENDIX E - MS EXCEL SPREADSHEET DESIGN

MS Excel spreadsheets were designed for support the mathematical computations required by the proposed TSS methodology. This appendix briefly introduces the setup and screenshots.

1. Spreadsheet $\mathbf{1}$ - consistency ratio

This spreadsheet was designed for calculation of eigenvector, principle eigenvalue, consistency index, and finally consistency ratio. With the necessary inputs (matrix, size of matrix n, and the random consistency index $R I$) entered into the Inputs section, the results (eigenvector, principal eigenvalue, consistency index $C I$, and consistency ration $C R$) will thereby come out and presented in the Answers section. Below is the screenshot of the spreadsheet for a matrix sized 3×3.

Figure E. 1 Operation screen of spreadsheet 1

2. Spreadsheet 2 - Synthetic extent and weight vector

This spreadsheet was designed for calculation of synthetic extent and weight vector in crisp value. With the necessary inputs (matrix in triangular fuzzy numbers) entered into the Inputs section, the results (synthetic extent and weight vector) will thereby come out and presented in the Answers section. Note that the \boldsymbol{V} variables in the Variable section require manual input for 1 and 0 for the conditions defined by equation:

$$
V\left(S_{\mathrm{b}} \geq S_{\mathrm{a}}\right)= \begin{cases}1, & m_{\mathrm{b}} \geq m_{\mathrm{a}} \\ 0, & l_{\mathrm{a}} \geq u_{\mathrm{b}} \\ \left(l_{\mathrm{a}}-u_{\mathrm{b}}\right) /\left[\left(m_{\mathrm{b}}-u_{\mathrm{b}}\right)-\left(m_{\mathrm{a}}-l_{\mathrm{a}}\right)\right], & \text { others }\end{cases}
$$

Below is the screenshot of the spreadsheet for a matrix sized 3×3.

Figure E. 2 Operation screen of spreadsheet 2

APPENDIX F - MATLAB PROGRAMME SCRIPT

Software Maplab v.7.1 was employed during case-based testing. This appendix list the contents of m file that was created for the work, and then briefly introduce it.

1. Script file: s2ni.m

Code:

```
function y = s2ni(u, i);
b=1e-10 * i;
y = u./ (norm(u).^2 + b);
```


Descriptions:

This script provides function to fulfill squared 2-norm normalization for a given array or matrix.

There are 2 parameters in the function: the matrix of any dimension to be process and the size of normalization bias.

Note that the ' b ' in the code means the normalization bias which is typically chosen to be a small positive constant (e.g. 1×10^{-10} or $1 \mathrm{e}-10$) in order to prevent potential division by 0 . When used, the second parameter can always be 1 in order to use the $1 \mathrm{e}-10$ as the normalization bias by default. However, the second parameter provides options to time the normalization bias.

Operation screenshots:

The following screenshots show that an 1-d matrix was first created and then employed the function defined in the script for solution.

Figure F. 1 Demonstration of normalization function defined by s2ni.m

APPENDIX G - PHASE 3 RESULTS FOR CASE STUDY IV

This appendix documents the phase 3 results for the case study IV. Through solution decomposition in phase 2, there are nine solution components identified with six of them gone through phase 3 for solution component decomposition processes.

Thereby, this document will be divided into 6 sections with each section includes the results for one of the solution components. Each section contains the identified goal and means-objectives resulted from step 3.1 and a complete AHP-based hierarchy model resulted from step 3.1.

1. Tracking technology

Goal: define and specify the best-fit tracking technology

Table G. 1 The means-objectives for tracking technology

Fundamental-objective	Means-objective(s)
Fixed cost	Hardware purchase cost, setup cost, software development cost
Variable cost	Vehicle-based purchase cost (e.g. cost for data carrier), maintenance cost, labour cost for manual operations
Effective live tracking data update to database	Connectivity from tracking device to data modem, connectivity from data modem to remote server
Effective location tracking	Location tracking accuracy, low data error rate
Maintainability	Less need for collection of mobile devices during maintenance, low breakdown/operational failure rate
Availability	Influence by environmental factors (e.g. weather), geographical tracking coverage, low breakdown/operational failure rate

Figure G. 1 The complete AHP-based hierarchy model for tracking technology

2. PDA software platform

Goal: define and specify the best-fit PDA software platform

Table G. 2 The means-objectives for PDA software platform

Fundamental-objective	Means-objective(s)
Effective data presentation	Rich graphical interface, quick screen refresh rate, short loading time
Fixed cost	PDA purchase cost, software development cost
Variable cost	Maintanence cost
Effective live tracking data update to database	Connectivity to tracking devices, connectivitiy to remote server
Effective live job data update to	Connectivitiy to remote server

database	
Maintainability	Quality of support from provider
Availability	Operational stability
Sufficient processing and memorial power	High processing and memorial performance

Figure G. 2 The complete AHP-based hierarchy model for PDA software platform

3. Database management system

Goal: define and specify the best-fit database managemet system

Table G. 3 The means-objectives for database management system

Fundamental-objective	Means-objective(s)
Fixed cost	Software purchasing cost, setup cost
Variable cost	Administration cost, maintenance cost
Effective live tracking data update to database	Effective data interface to applications
Effective live job data update to	Effective data interface to applications

database	
Effective data integration to legacy system	Capability in handling continuous frequent data import
Maintainability	Low breakdown rate, easy-to-upgrade
Availability	Operational stability
Sufficient processing and memorial power	Being efficient with huge amount of data transaction and data storage
Sufficient data storage and data transaction capabilities	Capability in handling huge amount of historical data, capability to handling continuous frequent accesses
Secured data transaction	Data security

Figure G. 3 The complete AHP-based hierarchy model for database management system

4. User interface (portal applications)

Goal: define and specify the best-fit user interface (portal applications)

Table G. 4 The means-objectives for user interface (portal applications)

Fundamental-objective	Means-objective(s)
User friendly vehicle tracking	OS independent for access of application, avoid

functionalities for public user	additional software installation, conventional reading format
Effective data presentation	Rich content presentation, quick screen refresh rate, short loading time
Sufficient processing and memorial power	Low resources requirements to server
Effective location tracking	Rich content presentation, tracking automatic information refreshing

Figure G. 4 The complete AHP-based hierarchy model for user interface (portal applications)

5. User interface (PDA applications)

Goal: define and specify the best-fit user interface (PDA applications)

Table G. 5 The means-objectives for user interface (PDA applications)

Fundamental-objective	Means-objective(s)
User friendly user interface for PDA applicaitons	Efficient use of screen space, avoid horizontal scroll bar
Effective data presentation	Rich content presentation, quick screen refresh rate, short loading time
Sufficient processing and memorial power	Low resources requirement to server
Effective location tracking	Capability to manage tracking device and remote server connectivity status on screen

Figure G. 5 The complete AHP-based hierarchy model for user interface (PDA applications)

6. GIS technology

Goal: define and specify the best-fit GIS technology

Table G. 6 The means-objectives for GIS technology

Fundamental-objective	Means-objective(s)
User friendly vehicle tracking functionalities for public user	Map readibility, ETA (Estimated Time of Arrival), distance calcuation
Effective data presentation	Map zooming, fast screen refresh
Fixed cost	Software purchase cost (include geographical data purchase cost if any), software integration cost
Variable cost	Service subscription cost, maintenance cost
Effective data integration to legacy system	Geocoding and reverse geocoding for address data integration
Maintainability	Quality of support from provider
Availability	Operational stability
Sufficient processing and memorial power	Low resource requirement to server
Secured data transaction	Managed geographical data protection

Figure G. 6 The complete AHP-based hierarchy model for GIS technology

APPENDIX H - PHASE 4 RESULTS FOR CASE STUDY IV

Appendix H documents the phase 4 results for the case study IV. With the AHP-based hierarchy models of the six solution components produced in phase 3, ranking of alternatives for the solution components were generated through a series of computational processes.

This document is divided into six sections with each section includes the results for one of the solution components. Each section contains two sub-sections for step 4.1 and step 4.2 respectively.

The first sub-section contains the PCMs resulted from process 4.1.1 and process 4.1.2, the consistency ratios as the consistency test results in process 4.1.3, the fuzzified PCMs resulted from process 4.1.4, the synthetic extents as the results of process 4.1.5, the weight vectors and thereby rankings of fundamental-objectives resulted from process 4.1.6.

Similarly, the second sub-section include the PCMs resulted from process 4.2.1 and process 4.2.2, the consistency ratios as the consistency test results in process 4.2.3, the fuzzified PCMs resulted from process 4.2.4, the synthetic extents as the results of process 4.2.5, the weight vectors, priority weights and thereby ranking of alternatives resulted from process 4.2.6.

1. Tracking technology

1.1 Step 4.1 results

Process 4.1.2

$M_{1}=$			
	C_{11}	C_{12}	C_{13}
C_{11}	1	3	$1 / 3$
C_{12}	$1 / 3$	1	$1 / 5$
C_{13}	3	5	1

C_{11} : cost
C_{12} : data synchronization
C_{13} : other non-functional requirements

$M_{2}=$		
	C_{21}	C_{22}
C_{21}	1	$1 / 5$
C_{22}	5	1

C_{21} : fixed cost
C_{22} : variable cost
$M_{3}=$
C_{31}
$\mathrm{C}_{31} 1$
C_{31} : effective live tracking data update to database

$M_{4}=$			
	C_{41}	C_{42}	C_{43}
C_{41}	1	3	1
C_{42}	$1 / 3$	1	$1 / 3$
C_{43}	1	3	1

C_{41} : effective location tracking
C_{42} : availability
C_{43} : maintainability

Process 4.1.3

M_{1} and M_{2} involve less than 3 objectives and consistency test is not needed.
$C R_{I}=0.0478$,
$C R_{4}=0.000$
M_{1} and M_{4} are considered consistent for their consistency ratio valued less than 0.100 .

Process 4.1.4

$M_{1}=$			
	C_{11}	C_{12}	C_{13}
$C_{11}(1,1,3)$	$(1,3,5)$	$1 /(1,3,5)$	

C_{12}	$1 /(1,3,5)$	$(1,1,3)$	$1 /(3,5,7)$
$C_{13}(1,3,5)$	$(3,5,7)$	$(1,1,3)$	

$M_{2}=$

	C_{21}	C_{22}
C_{21}	$(1,1,3)$	$1 /(3,5,7)$
C_{22}	$(3,5,7)$	$(1,1,3)$

$M_{4}=$

	C_{41}	C_{42}	C_{43}
C_{41}	$(1,1,3)$	$(1,3,5)$	$(1,1,3)$
C_{42}	$1 /(1,3,5)$	$(1,1,3)$	$1 /(1,3,5)$
C_{43}	$1 /(1,1,3)$	$(1,3,5)$	$(1,1,3)$

Process 4.1.5
$S_{1}^{1}=(0.0776,0.2915,1.0535), \quad S_{2}=(0.0474,0.1031,0.5072)$,
$S_{3}^{1}=(0.1765,0.6054,1.7559)$,
$S_{1}^{2}=(0.0857,0.1667,0.6481), \quad S_{2}^{2}=(0.3000,0.8333,1.9444)$,
$S_{1}^{4}=(0.1200,0.4286,1.6337), \quad S_{2}^{4}=(0.0560,0.1429,0.7426)$,
$S_{3}=(0.0933,0.4286,1.3366)$.

Process 4.1.6
$W_{1}^{\prime}=(0.7364,0.3971,1.0000)^{\mathrm{T}}, \quad W_{2}^{\prime}=(0.3431,1.0000)^{\mathrm{T}}$,
$W_{4}^{\prime}=(1.0000,0.6854,1.0000)^{\mathrm{T}}$.
$W_{1}=(0.4332,0.2336,0.5882)^{\mathrm{T}}, \quad W_{2}=(0.3070,0.8947)^{\mathrm{T}}$,
$W_{4}=(0.4049,0.2775,0.4049)^{\mathrm{T}}$.

Table H. 1 Ranking for fundamental-objectives

Ranking	Fundamental-objective	Weight vector
1	C_{13} Other non-functional requirements	0.5882
2	C_{11} Cost	0.4332
3	C_{12} Data synchronization	0.2336
Ranking	Fundamental-objective	Weight vector
1	C_{22} Variable cost	0.8947

2	C_{21} Fixed cost	0.3070
Ranking		Fundamental-objective
	C_{41} Effective location tracking	Weight vector
	C_{43} Maintainability	0.4049
3	C_{42} Availability	0.4049

1.2 Step 4.2 results

Process 4.2.2

$M_{21}=$		$M_{22}=$			
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	$1 / 3$	A_{1}	1	5
A_{2}	3	1	A_{2}	$1 / 5$	1
$M_{31}=$		$M_{41}=$			
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	$1 / 3$	A_{1}	1	7
A_{2}	3	1	A_{2}	$1 / 7$	1
$M_{42}=$		M_{43}	$=$		
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	$1 / 3$	A_{1}	1	3
A_{2}	3	1	A_{2}	$1 / 3$	1

A_{1} : GPS
A_{2} : RFID

Process 4.2.3

As there are only two alternatives, the PCMs regarded always consistent.

Process 4.2.4

$M^{\prime}{ }_{21}=$		
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$1 /(1,3,5)$

$A_{2} \quad(1,3,5) \quad(1,1,3)$
$M^{\prime} 22=$

	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(3,5,7)$
A_{2}	$1 /(3,5,7)$	$(1,1,3)$

$M^{\prime}{ }_{31}=$
$A_{1} \quad A_{2}$
$A_{1} \quad(1,1,3) \quad 1 /(1,3,5)$
$A_{2}(1,3,5) \quad(1,1,3)$
$M^{\prime}{ }_{41}=$
$A_{1} \quad A_{2}$
$A_{1} \quad(1,1,3) \quad(5,7,9)$
$A_{2} \quad 1 /(5,7,9) \quad(1,1,3)$
$M^{\prime} 42=$
$A_{1} \quad A_{2}$
$A_{1} \quad(1,1,3) \quad 1 /(1,3,5)$
$A_{2}(1,3,5) \quad(1,1,3)$
$M^{\prime}{ }_{43}=$
$A_{1} \quad A_{2}$
$A_{1}(1,1,3) \quad(1,3,5)$
$A_{2} 1 /(1,3,5) \quad(1,1,3)$

Process 4.2.5

$S^{21}=(0.1000,0.2500,1.2500), \quad S_{21}^{21}=(0.1667,0.7500,2.5000)$,
$S^{22}=(0.3000,0.8333,1.9444), \quad S^{22}{ }_{2}=(0.0857,0.1667,0.6481)$,
$S_{11}^{31}=(0.1000,0.2500,1.2500), \quad S^{31}=(0.1667,0.7500,2.5000)$,
$S^{41}=(0.3947,0.8750,1.6875), \quad S_{2}^{1}=(0.0731,0.1250,0.4500)$,
$S^{42}=(0.1000,0.2500,1.2500), \quad S^{42}{ }_{2}=(0.1667,0.7500,2.5000)$,
$S^{43}=(0.1667,0.7500,2.5000), \quad S_{2}^{43}=(0.1000,0.2500,1.2500)$.

Process 4.2.6
$W_{21}^{\prime}=(1.0000,1.2632)^{\mathrm{T}}$,
$W_{31}^{\prime}=(1.0000,1.2632)^{\mathrm{T}}$,
$W_{42}^{\prime}=(1.0000,1.2632)^{\top}$,
$W_{21}=(0.3853,0.4867)^{\mathrm{T}}$,
$W_{31}=(0.3853,0.4867)^{\mathrm{T}}$,
$W_{42}=(0.3853,0.4867)^{\top}$,
$W^{\prime}{ }_{22}=(1.0000,0.3431)^{\mathrm{T}}$,
$W_{41}^{\prime}=(1.0000,0.0686)^{\mathrm{T}}$,
$W_{43}^{\prime}=(1.0000,0.6842)^{\mathrm{T}}$.
$W_{22}=(0.8947,0.3069)^{\top}$,
$W_{41}=(0.9953,0.0687)^{\mathrm{T}}$,
$W_{43}=(0.6813,0.4660)^{\top}$.

Table H. 2 Priority weights of alternatives with respect to cost C_{11}

	C_{21} Fixed cost	C_{22} Variable cost	Priority weight $\left(w_{2}\right)$
Weight vector	0.3070	0.8947	
A_{1} GPS	0.3853	0.8947	0.9188
A_{2} RFID	0.4867	0.3069	0.4240

Table H. 3 Priority weights of alternatives with respect to other non-functional requirements C_{12}

	C_{31} Effective live tracking data update to database	Priority weight (w_{3})
Weight vector	1	
A_{1} GPS	0.3853	0.3853
A_{2} RFID	0.4867	0.4867

Table H. 4 Priority weights of alternatives with respect to data synchronization C_{13}

	C_{41} Effective location tracking	C_{42} Availability	C_{43} Maintainability	Priority weight $\left(w_{4}\right)$
Weight vector	0.4049	0.2775	0.4049	
A_{1} GPS	0.9953	0.3853	0.6813	0.7858
A_{2} RFID	0.0687	0.4867	0.4660	0.3516

Table H. 5 Priority weights of alternatives with respect to goal

	C_{11} Cost	C_{12} Data synchronization	C_{13} Other non-functional requirements	Priority weight $\left(w_{1}\right)$
Weight vector	0.4332	0.2336	0.5882	
A_{1} GPS	0.9188	0.3853	0.7858	0.9502
A_{2} RFID	0.4240	0.4867	0.3516	0.5042

Table H. 6 Ranking of alternatives

Ranking	Alternative	Priority weight $\left(w_{1}\right)$
1	A_{1} GPS	0.9502
2	A_{2} RFID	0.5042

2. PDA software platform

2.1 Step 4.1 results

Process 4.1.2

$\mathrm{M}_{1}=$				
	C_{11}	C_{12}	C_{13}	C_{14}
C_{11}	1	$1 / 5$	$1 / 3$	1
C_{12}	5	1	3	5
C_{13}	3	$1 / 3$	1	3
C_{14}	1	$1 / 5$	$1 / 3$	1

C_{11} : user friendliness
C_{12} : cost
C_{13} : data synchronization
C_{14} : other non-functional requirements
$M_{2}=$
$\mathrm{C}_{21} 1$
C_{21} : effective data presentation
$M_{3}=$

	C_{31}	C_{32}
C_{31}	1	3
C_{32}	$1 / 3$	1

C_{31} : fixed cost
C_{32} : variable cost

$\mathrm{M}_{4}=$		
	C_{41}	C_{42}
C_{41}	1	$1 / 5$
C_{42}	5	1

C_{41} : effective live tracking data update to database
C_{42} : effective live job data update to database

$M_{5}=$			
	C_{51}	C_{52}	C_{53}
C_{51}	1	5	$1 / 3$
C_{52}	$1 / 5$	1	7
C_{53}	3	$1 / 7$	1

C_{51} : maintainability
C_{52} : availability
C_{53} : sufficient processing and memorial power

Process 4.1.3

M_{2}, M_{3} and M_{4} involve less than 3 objectives and consistency test is not needed.
$C R_{I}=0.0260$,

$$
C R_{5}=0.0834
$$

M_{1} and M_{5} are considered consistent for their consistency ratio valued less than 0.100 .

Process 4.1.4

$M_{1}=$

	C_{11}	C_{12}	C_{13}	C_{14}
C_{11}	$(1,1,3)$	$1 /(3,5,7)$	$1 /(1,3,5)$	$(1,1,3)$
C_{12}	$(3,5,7)$	$(1,1,3)$	$(1,3,5)$	$(3,5,7)$
C_{13}	$(1,3,5)$	$1 /(1,3,5)$	$(1,1,3)$	$(1,3,5)$
C_{14}	$1 /(1,1,3)$	$1 /(3,5,7)$	$1 /(1,3,5)$	$(1,1,3)$

$M^{\prime} 3=$
$\begin{array}{ll}\mathrm{C}_{31} & \mathrm{C}_{32}\end{array}$

C_{31}	$(1,1,3)$	$(1,3,5)$
C_{32}	$1 /(1,3,5)$	$(1,1,3)$

$\mathrm{M}_{4}=$		
	C_{41}	C_{42}
C_{41}	$(1,1,3)$	$1 /(3,5,7)$
C_{42}	$(3,5,7)$	$(1,1,3)$

$M_{5}=$

	C_{51}	C_{52}	C_{53}
C_{51}	$(1,1,3)$	$(3,5,7)$	$1 /(1,3,5)$
C_{52}	$1 /(3,5,7)$	$(1,1,3)$	$(5,7,9)$
C_{53}	$(1,3,5)$	$1 /(5,7,9)$	$(1,1,3)$

Process 4.1.5

$S_{1}^{1}=(0.048,0.096,0.482)$,	$S_{2}^{1}=(0.164,0.530,1.446)$,
$S_{3}^{1}=(0.066,0.278,0.920)$,	$S_{4}^{1}=(0.034,0.096,0.350)$,
$S_{1}^{3}=(0.167,0.750,2.500)$,	$S_{2}^{3}=(0.100,0.250,1.250)$,
$S_{1}^{4}=(0.086,0.167,0.648)$,	$S_{2}^{4}=(0.300,0.833,1.944)$,
$S_{1}^{S}=(0.133,0.339,0.883)$,	$S_{2}^{s}=(0.195,0.439,0.990)$,
$S_{3}^{S}=(0.067,0.222,0.658)$.	

Process 4.1.6

$W_{1}^{\prime}=(0.4223,1.0000,0.7495,0.2999)^{\top}, \quad W_{3}^{\prime}=(1.0000,0.6842)^{\top}$,
$W_{4}^{\prime}=(0.3431,1.0000)^{\top}, \quad W_{5}^{\prime}=(0.8732,1.0000,0.6809)^{\top}$.

$$
\begin{array}{ll}
W_{1}=(0.2308,0.5464,0.4096,0.1639)^{\mathrm{T}}, & W_{3}=(0.6811,0.4660)^{\mathrm{T}}, \\
W_{4}=(0.3070,0.8947)^{\mathrm{T}}, & W_{5}=(0.3923,0.4492,0.3059)^{\mathrm{T}} .
\end{array}
$$

Table H. 7 Ranking for fundamental-objectives

Ranking	Fundamental-objective	Weight vector
1	C_{12} Cost	0.5464
2		
3	C_{13} Data synchronization	0.4096
	C_{11} User friendliness	0.2308
	C_{14} Other non-functional	0.1639

	requirements	
Ranking	Fundamental-objective	Weight vector
1	C_{31} Fixed cost	0.6811
2	C_{32} Variable cost	0.4660
Ranking	Fundamental-objective	Weight vector
1	C_{42} Effective live job data update to database	0.8947
2	C_{41} Effective live tracking data update to database	0.3070
Ranking	Fundamental-objective	Weight vector
1	C_{52} Availability	0.4492
2	C_{51} Maintainability	0.3923
3	C_{53} Sufficient processing and memorial power	0.3059

2.2 Step 4.2 results

Process 4.2.2

$\mathrm{M}_{21}=$			$M_{31}=$		
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	1	A_{1}	1	1
A_{2}	1	1	A_{2}	1	1
M 32			M_{41}	$=$	
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	3	A_{1}	1	3
A_{2}	1/3	1	A_{2}	1/3	1
$\mathrm{M}_{42}=$			M ${ }_{51}$	$=$	
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	3	A_{1}	1	5
A_{2}	1/3	1	A_{2}	1/5	1
$\mathrm{M}_{52}=$			M_{53}	$=$	
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	1/5	A_{1}	1	1

A_{1} : MS Windows Mobile
A_{2} : Palm OS

Process 4.2.3

As there are only two alternatives, the PCMs are regarded always consistent.

Process 4.2.4

$M^{\prime}{ }_{21}=$
A_{1}
A_{2}
$A_{1} \quad(1,1,3) \quad(1,1,3)$
$A_{2} 1 /(1,1,3) \quad(1,1,3)$
$M^{\prime}{ }_{31}=$

	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(1,1,3)$
A_{2}	$1 /(1,1,3)$	$(1,1,3)$

$M^{\prime}{ }_{32}=$

	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(1,3,5)$
A_{2}	$1 /(1,3,5)$	$(1,1,3)$
$M^{\prime}{ }_{41}=$		
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(1,3,5)$
A_{2}	$1 /(1,3,5)$	$(1,1,3)$

$M^{\prime}{ }_{42}=$

	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$1 /(1,3,5)$
A_{2}	$1 /(1,3,5)$	$(1,1,3)$

$M^{\prime}{ }_{51}=$
A_{1}
A_{2}

A_{1}	$(1,1,3)$	$(3,5,7)$
A_{2}	$1 /(3,5,7)$	$(1,1,3)$

$M^{\prime}{ }_{52}=$		
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$1 /(3,5,7)$
A_{2}	$(3,5,7)$	$(1,1,3)$

$M^{\prime}{ }_{53}=$
A_{1}
$A_{1} \quad(1,1,3) \quad(1,1,3)$
$A_{2} \quad 1 /(1,1,3) \quad(1,1,3)$

Process 4.2.5

$\begin{array}{ll}S^{21} 1=(0.2000,0.5000,1.8000), & S^{21}{ }_{2}=(0.1333,0.5000,1.2000), \\ S^{31}{ }_{1}=(0.2000,0.5000,1.8000), & S^{31}{ }_{2}=(0.1333,0.5000,1.2000), \\ S^{32}=(0.1667,0.7500,2.5000), & S^{32}{ }_{2}=(0.1000,0.2500,1.2500), \\ S^{41_{1}}=(0.1667,0.7500,2.5000), & S^{S 1_{2}}=(0.1000,0.2500,1.2500), \\ S^{42}{ }_{1}=(0.1500,0.5000,1.6667), & S^{42_{2}}=(0.1500,0.5000,1.6667), \\ S^{51}=(0.3000,0.8333,1.9444), & S^{S 1_{2}}=(0.0857,0.1667,0.6481), \\ S^{S 2}=(0.0857,0.1667,0.6481), & S^{S 2}{ }_{2}=(0.3000,0.8333,1.9444), \\ S^{53}=(0.2000,0.5000,1.8000), & S^{53}{ }_{2}=(0.1333,0.5000,1.2000) .\end{array}$

Process 4.2.6
$W^{\prime}{ }_{21}=(1.0000,1.0000)^{\mathrm{T}}$,
$W_{32}^{\prime}=(1.0000,0.6842)^{\mathrm{T}}$,
$W_{42}^{\prime}=(1.0000,1.0000)^{\mathrm{T}}$,
$W_{52}^{\prime}=(0.3431,1.0000)^{\mathrm{T}}$,
$W_{21}=(0.5000,0.5000)^{\top}$,
$W_{32}=(0.6813,0.4660)^{\mathrm{T}}$,
$W_{42}=(0.5000,0.5000)^{\mathrm{T}}$,
$W_{52}=(0.3069,0.8947)^{\mathrm{T}}$,
$W^{\prime}{ }_{31}=(1.0000,1.0000)^{\top}$,
$W^{\prime}{ }_{41}=(1.0000,0.6842)^{\mathrm{T}}$,
$W_{S 1}^{\prime}=(1.0000,0.3431)^{\top}$,
$W^{\prime}{ }_{53}=(1.0000,1.0000)^{\mathrm{T}}$.
$W_{31}=(0.5000,0.5000)^{\top}$,
$W_{41}=(0.6813,0.4660)^{\top}$,
$W_{51}=(0.8947,0.3069)^{\top}$,
$W_{53}=(0.5000,0.5000)^{\top}$.

Table H. 8 Priority weights of alternatives with respect to user friendliness C_{11}

	C_{21} Effective data presentation	Priority weight $\left(w_{3}\right)$
Weight vector	1	
A_{1} MS Windows Mobile	0.5000	0.5000
A_{2} Palm OS	0.5000	0.5000

Table H. 9 Priority weights of alternatives with respect to cost C_{12}

	C_{31} Fixed cost	C_{32} Variable cost	Priority weight $\left(w_{3}\right)$
Weight vector	0.6811	0.4660	
A_{1} MS Windows Mobile	0.5000	0.6813	0.6580
A_{2} Palm OS	0.5000	0.4660	0.5577

Table H. 10 Priority weights of alternatives with respect to data synchronization C_{13}

	C_{41} Effective live tracking data update to database	C_{42} Effective live job data update to database	Priority weight $\left(w_{4}\right)$
Weight vector	0.3070	0.8947	
A_{1} MS Windows Mobile	0.6813	0.5000	0.6565
A_{2} Palm OS	0.4660	0.5000	

Table H. 11 Priority weights of alternatives with respect to other non-functional requirements C_{14}

	C_{51} Maintainability	C_{52} Availability	C_{53} Sufficient processing and memorial power	Priority weight $\left(w_{4}\right)$
Weight vector	0.3923	0.4492	0.3059	
A_{1} MS Windows Mobile	0.8947	0.3069	0.5000	0.6418
A_{2} Palm OS	0.3069	0.8947	0.5000	

Table H. 12 Priority weights of alternatives with respect to goal

	C_{11} User friendliness	C_{12} Cost	C_{13} Data synchronization	C_{14} Other non-functional requirements	Priority weight $\left(w_{1}\right)$
Weight vector	0.2308	0.5464	0.4096	0.1639	
A_{1} MS Windows Mobile	0.5000	0.6580	0.6565	0.6418	0.8490
A_{2} Palm OS	0.5000	0.5577	0.5904	0.6752	0.7726

Table H. 13 Ranking of alternatives

Ranking	Alternative	Priority weight $\left(w_{1}\right)$
1	A_{1} MS Windows Mobile	0.8490
2	A_{2} Palm OS	0.7726

3. Database management system

3.1 Step 4.1 results

Process 4.1.2

$\mathrm{M}_{1}=$				
	C_{11}	C_{12}	C_{13}	C_{14}
C_{11}	1	$1 / 3$	$1 / 5$	$1 / 3$
C_{12}	3	1	3	1
C_{13}	5	$1 / 3$	1	3
C_{14}	3	1	$1 / 3$	1

C_{11} : cost
C_{12} : data synchronization
C_{13} : data management
C_{14} : other non-functional requirements

$$
\begin{array}{ll}
M_{2}= \\
C_{21} & C_{22}
\end{array}
$$

| C_{21} | 1 | $1 / 5$ |
| :--- | :--- | :--- | :--- |
| C_{22} | 5 | 1 |

C_{21} : fixed cost
C_{22} : variable cost
$M_{3}=$

	C_{31}	C_{32}	C_{33}
C_{31}	1	1	$1 / 5$
C_{32}	1	1	$1 / 5$
C_{33}	5	5	1

C_{31} : effective live tracking data update to database
C_{32} : effective live job data update to database
C_{33} : effective data integration to legacy system

$M_{4}=$		
	C_{41}	C_{42}
C_{41}	1	5
C_{42}	$1 / 5$	1

C_{41} : sufficient data storage and data transaction capabilities
C_{42} : secured data transaction

$M_{5}=$			
	C_{51}	C_{52}	C_{53}
C_{51}	1	$1 / 5$	$1 / 3$
C_{52}	5	1	3
C_{53}	3	$1 / 3$	1

C_{51} : maintainability
C_{52} : availability
C_{53} : sufficient processing and memorial power

Process 4.1.3

M_{2} and M_{4} involve less than 3 objectives and consistency test is not needed.
$C R_{I}=0.023, \quad C R_{3}=0.000, \quad C R_{5}=0.048$
M_{1}, M_{3} and M_{5} are considered consistent for their consistency ratio valued less than 0.100 .

Process 4.1.4

$M_{1}=$

	C_{11}	C_{12}	C_{13}	C_{14}
C_{11}	$(1,1,3)$	$1 /(1,3,5)$	$1 /(3,5,7)$	$1 /(1,3,5)$
C_{12}	$(1,3,5)$	$(1,1,3)$	$(1,3,5)$	$(1,1,3)$
C_{13}	$(3,5,7)$	$1 /(1,3,5)$	$(1,1,3)$	$(1,3,5)$
C_{14}	$(1,3,5)$	$1 /(1,1,3)$	$1 /(1,3,5)$	$(1,1,3)$

$M_{2}=$

	C_{21} C_{21} C_{21} $(1,1,3)$	$1 /(3,5,7)$
C_{22}	$(3,5,7)$	$(1,1,3)$

$M^{\prime}{ }_{3}$			
	C_{31}	C_{32}	C_{33}
C_{31}	$(1,1,3)$	$(1,1,3)$	$1 /(3,5,7)$
C_{32}	$(1,1,3)$	$(1,1,3)$	$1 /(3,5,7)$
C_{33}	$(3,5,7)$	$(3,5,7)$	$(1,1,3)$

$M^{\prime}{ }_{4}=$

	C_{41}	C_{42}
C_{41}	$(1,1,3)$	$(3,5,7)$
C_{42}	$1 /(3,5,7)$	$(1,1,3)$

$M_{5}=$

	C_{51}	C_{52}	C_{53}
C_{51}	$(1,1,3)$	$1 /(3,5,7)$	$1 /(1,3,5)$
C_{52}	$(3,5,7)$	$(1,1,3)$	$(1,3,5)$
C_{53}	$(1,3,5)$	$1 /(1,3,5)$	$(1,1,3)$

Process 4.1.5

$S_{1}^{1}=(0.0326,0.0761,0.4017)$,	$S_{2}^{1}=(0.0845,0.3261,1.2052)$,
$S_{3}^{1}=(0.1099,0.3804,1.2052)$,	$S_{4}^{1}=(0.0535,0.2174,0.7532)$,
$S_{1}^{2}=(0.0857,0.1667,0.6481)$,	$S_{2}^{2}=(0.3000,0.8333,1.9444)$,
$S_{1}^{3}=(0.0722,0.1429,0.5612)$,	$S_{2}^{3}=(0.0722,0.1429,0.5612)$,
$S_{3}^{3}=(0.2360,0.7143,1.5063)$,	
$S_{1}^{4}=(0.3000,0.8333,1.9444)$,	$S_{2}^{4}=(0.0857,0.1667,0.6481)$,
$S_{1}^{5}=(0.0474,0.1031,0.5072)$,	$S_{2}^{5}=(0.1765,0.6054,1.7559)$,
$S_{3}^{5}=(0.0776,0.2915,1.0535)$.	

Process 4.1.6

$W_{1}^{\prime}=(0.4895,0.9527,1.0000,0.7978)^{\mathrm{T}}, \quad W_{2}^{\prime}=(0.3431,1.0000)^{\mathrm{T}}$,
$W_{3}^{\prime}=(0.3627,0.3627,1.0000)^{\mathrm{T}}, \quad W_{4}^{\prime}=(1.0000,0.3431)^{\mathrm{T}}$,
$W^{\prime}{ }_{5}=(0.3971,1.0000,0.7364)^{\mathrm{T}}$.
$\begin{array}{ll}W_{1}=(0.1758,0.3422,0.3592,0.2866)^{\mathrm{T}}, & W_{2}=(0.3070,0.8947)^{\mathrm{T}}, \\ W_{3}=(0.2872,0.2872,0.7917)^{\mathrm{T}}, & W_{4}=(0.8947,0.3070)^{\mathrm{T}}, \\ W_{5}=(0.2336,0.5882,0.4332)^{\mathrm{T}} . & \end{array}$

Table H. 14 Ranking for fundamental-objectives

Ranking	Fundamental-objective	Weight vector
1	C_{13} Data management	0.3592
2	C_{12} Data synchronization	0.3422
3	C_{14} Other non-functional requirements	0.2866
4	C_{11} Cost	0.1758
Ranking	Fundamental-objective	Weight vector
1	C_{22} Variable cost	0.8947
2	C_{21} Fixed cost	0.3070
Ranking	Fundamental-objective	Weight vector
1	C_{33} Effective data integration to legacy system	0.7917
2	C_{31} Effective live tracking data update to database	0.2872
	C_{32} Effective live job data update to database	0.2872
Ranking	Fundamental-objective	Weight vector
1	C_{41} Sufficient data storage and data	0.8947

	transaction capabilities	
2	C_{42} Secured data transaction	0.3070
Ranking	Fundamental-objective	Weight vector
1	C_{52} Availability	0.5882
2	C_{53} Sufficient processing and memorial power	0.4332
3	C_{51} Maintainability	0.2336

3.2 Step 4.2 results

Process 4.2.2

$\mathrm{M}_{21}=$			$\mathrm{M}_{22}=$		
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	5	A_{1}	1	7
A_{2}	1/5	1	A_{2}	1/7	1
M_{31}			M_{32}	$=$	
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	1	A_{1}	1	9
A_{2}	1	1	A_{2}	1/9	1
M_{33}	$=$		M_{41}	$=$	
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	9	A_{1}	1	1
A_{2}	1/9	1	A_{2}	1	1
M_{42}	$=$		M_{51}	$=$	
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	1	A_{1}	1	9
A_{2}	1	1	A_{2}	1/9	1
M_{52}	$=$		M ${ }_{5}$		
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	9	A_{1}	1	7
A_{2}	1/9	1	A_{2}	1/7	1

A_{1} : Oracle 10 g
A_{2} : MS SQL 2000

Process 4.2.3

As there are only two alternatives, the PCMs are regarded always consistent.

Process 4.2.4

$M^{\prime}{ }_{21}=$		
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(3,5,7)$
A_{2}	$1 /(3,5,7)$	$(1,1,3)$

$M^{\prime}{ }_{22}=$

	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(5,7,9)$
A_{2}	$1 /(5,7,9)$	$(1,1,3)$

$M^{\prime} 31=$
$A_{1} \quad A_{2}$
$A_{1}(1,1,3) \quad(1,1,3)$
$A_{2} \quad 1 /(1,1,3) \quad(1,1,3)$
$M^{\prime} 32=$

	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(7,9,9)$
$A_{2} \quad(7,9,9)$	$(1,1,3)$	
$M^{\prime}{ }_{33}=$		
	A_{1}	
$A_{1} \quad(1,1,3)$	$(7,9,9)$	
$A_{2} \quad(7,9,9)$	$(1,1,3)$	
$M^{\prime}{ }_{41}=$		
	A_{1}	
$A_{1} \quad(1,1,3)$	$(1,1,3)$	
$A_{2} \quad 1 /(1,1,3)$	$(1,1,3)$	

$M^{\prime}{ }_{42}=$	
A_{1}	A_{2}
$A_{1}(1,1,3)$	$(1,1,3)$
$A_{2} 1 /(1,1,3)$	$(1,1,3)$
$M^{\prime}{ }_{51}=$	
A_{1}	A_{2}
$A_{1}(1,1,3)$	$(7,9,9)$
$A_{2} \quad(7,9,9)$	$(1,1,3)$
$M^{\prime}{ }_{52}=$	
A_{1}	A_{2}
$A_{1} \quad(1,1,3)$	$(7,9,9)$
$A_{2}(7,9,9)$	$(1,1,3)$
$M^{\prime}{ }_{53}=$	
A_{1}	A_{2}
$A_{1} \quad(1,1,3)$	$(5,7,9)$
$A_{2} 1 /(5,7,9)$	$(1,1,3)$

Process 4.2.5

$$
\begin{array}{ll}
S^{21}=(0.3000,0.8333,1.9444), & S^{21}{ }_{2}=(0.0857,0.1667,0.6481), \\
S^{22_{1}}=(0.3947,0.8750,1.6875), & S^{22}{ }_{2}=(0.0731,0.1250,0.4500), \\
S^{31}=(0.2000,0.5000,1.8000), & S^{31}{ }_{2}=(0.1333,0.5000,1.2000), \\
S_{1}^{32}=(0.5283,0.9000,1.3171), & S^{32}{ }_{2}=(0.0734,0.1000,0.3449), \\
S^{33}=(0.5283,0.9000,1.3171), & S^{33}{ }_{2}=(0.0734,0.1000,0.3449), \\
S_{1}^{41}=(0.2000,0.5000,1.8000), & S^{41_{2}}=(0.1333,0.5000,1.2000), \\
S^{42}=(0.2000,0.5000,1.8000), & S^{42_{2}}=(0.1333,0.5000,1.2000), \\
S^{51}=(0.5283,0.9000,1.3171), & S_{2}^{51}=(0.0734,0.1000,0.3449), \\
S^{52}=(0.5283,0.9000,1.3171), & S_{2}^{S 2_{2}}=(0.0734,0.1000,0.3449), \\
S^{S 3}=(0.3947,0.8750,1.6875), & S^{53}=(0.0731,0.1250,0.4500) .
\end{array}
$$

Process 4.2.6

$$
\begin{array}{ll}
W_{21}^{\prime}=(1.0000,0.3431)^{\mathrm{T}}, & W_{22}^{\prime}=(1.0000,0.0686)^{\mathrm{T}}, \\
W_{31}^{\prime}=(1.0000,1.0000)^{\mathrm{T}}, & W_{32}^{\prime}=(1.0000,0.0000)^{\mathrm{T}},
\end{array}
$$

$W_{33}^{\prime}=(1.0000,0.0000)^{\mathrm{T}}$,
$W_{41}^{\prime}=(1.0000,1.0000)^{\mathrm{T}}$,
$W_{42}^{\prime}=(1.0000,1.0000)^{\mathrm{T}}$,
$W_{s 1}^{\prime}=(1.0000,0.0000)^{\mathrm{T}}, \quad W^{\prime}, \quad=(1.0000,0.0000)^{\mathrm{T}}$,
$W_{43}^{\prime}=(1.0000,0.0686)^{\mathrm{T}}$.
$W_{21}=(0.8947,0.3070)^{\mathrm{T}}$,
$W_{22}=(0.9953,0.0683)^{\mathrm{T}}$,
$W_{31}=(0.5000,0.5000)^{\mathrm{T}}$,
$W_{32}=(1.0000,0.0000)^{\mathrm{T}}$,
$W_{33}=(1.0000,0.0000)^{\mathrm{T}}$,
$W_{41}=(0.5000,0.5000)^{\mathrm{T}}$,
$W_{51}=(1.0000,0.0000)^{\mathrm{T}}$,
$W_{42}=(0.5000,0.5000)^{\mathrm{T}}$,
$W_{53}=(0.9953,0.0683)^{\mathrm{T}}$.

Table H. 15 Priority weights of alternatives with respect to $\operatorname{cost} C_{11}$

	C_{21} Fixed cost	C_{22} Variable cost	Priority weight $\left(w_{2}\right)$
Weight vector	0.3070	0.8947	
A_{1} Oracle 10 g	0.8947	0.9953	1.1652
A_{2} MS SQL 2000	0.3070	0.0683	0.1554

Table H. 16 Priority weights of alternatives with respect to data synchronization C_{12}

	C_{31} Effective live tracking data update to database	C_{32} Effective live job data update to database	C_{33} Effective data integration to legacy system	Priority weight $\left(w_{3}\right)$
Weight vector	0.2872	0.2872	0.7917	
A_{1} Oracle 10 g	0.5000	1.0000	1.0000	1.2225
A_{2} MS SQL 2000	0.5000	0.0000	0.0000	0.1436

Table H. 17 Priority weights of alternatives with respect to data management C_{13}

	C_{41} Sufficient data storage and data transaction capabilities	C_{42} Secured data transaction	Priority weight $\left(w_{4}\right)$
Weight vector	0.8947	0.3070	
A_{1} Oracle 10 g	0.5000	0.5000	0.6009
A_{2} MS SQL 2000	0.5000	0.5000	0.6009

Table H. 18 Priority weights of alternatives with respect to other non-functional requirements C_{14}

	C_{51} Maintainability	C_{52} Availability	C_{53} Sufficient processing and memorial power	Priority weight $\left(w_{5}\right)$
Weight vector	0.2336	0.5882	0.4332	
A_{1} Oracle 10g	1.0000	1.0000	0.9953	0.6009
A_{2} MS SQL 2000	0.0000	0.0000	0.0683	0.0296

Table H. 19 Priority weights of alternatives with respect to goal

	C_{11} Cost	C_{12} Data synchronization	C_{13} Data management
Weight vector	0.1758	0.3422	0.3592
A_{1} Oracle 10g	1.1652	1.2225	0.6009
A_{2} MS SQL 2000	0.1554	0.1436	0.6009
	C_{14} Other non-functional requirements	Priority weight (w_{1})	
Weight vector	0.2866		
A_{1} Oracle 10 g	0.6009	1.0112	
A_{2} MS SQL 2000	0.0296	0.3008	

Table H. 20 Ranking of alternatives

Ranking	Alternative	Priority weight $\left(w_{1}\right)$
1	A_{1} Oracle 10g	1.0112
2	A_{2} MS SQL 2000	0.3008

4. User interface (portal applications)

4.1 Step 4.1 results

Process 4.1.2

| $M_{1}=$ | |
| :--- | :--- | :--- |
| C_{11} | C_{12} |

C_{11}	1	5
C_{12}	$1 / 5$	1

C_{11} : user friendliness
C_{12} : other non-functional requirements

$M_{2}=$		
	C_{21}	C_{22}
C_{21}	1	3
C_{22}	$1 / 3$	1

C_{21} : user friendly vehicle tracking functionalities for public user C_{22} : effective data presentation

$M_{3}=$		
	C_{31}	C_{32}
C_{31}	1	$1 / 3$
C_{32}	3	1

C_{21} : sufficient processing and memorial power
C_{22} : effective location tracking

Process 4.1.3

As all of the matrices are in two dimensions only, they are regarded always consistent.

Process 4.1.4

$M_{1}^{\prime}=$		
	C_{11}	C_{12}
C_{11}	$(1,1,3)$	$(3,5,7)$
C_{12}	$1 /(3,5,7)$	$(1,1,3)$
$M^{\prime}{ }_{2}=$		
	C_{21}	C_{22}
C_{21}	$(1,1,3)$	$(1,3,5)$
C_{22}	$1 /(1,3,5)$	$(1,1,3)$

$\mathrm{M}^{\prime}=$		
	C_{31}	C_{32}
C_{31}	$(1,1,3)$	$1 /(1,3,5)$
C_{32}	$(1,3,5)$	$(1,1,3)$

Process 4.1.5

$S_{1}^{1}=(0.3000,0.8333,1.9444), \quad S_{2}^{1}=(0.0857,0.1667,0.6481)$,
$S_{1}^{2}=(0.1667,0.7500,2.5000), \quad S_{2}^{2}=(0.1000,0.2500,1.2500)$,
$S_{1}^{3}=(0.1000,0.2500,1.2500), \quad S_{2}=(0.1667,0.7500,2.5000)$.

Process 4.1.6

$$
\begin{array}{ll}
W_{1}^{\prime}=(1.0000,0.3431)^{\mathrm{T}}, & W_{2}^{\prime}=(1.0000,0.6842)^{\mathrm{T}}, \\
W_{3}^{\prime}=(0.6842,1.0000)^{\mathrm{T}} . & \\
W_{1}=(0.8947,0.3070)^{\mathrm{T}}, & W_{2}=(0.6811,0.4660)^{\mathrm{T}}, \\
W_{3}=(0.4660,0.6811)^{\mathrm{T}} . &
\end{array}
$$

Table H. 21 Ranking for fundamental-objectives

Ranking	Fundamental-objective	Weight vector
2	C_{11} User friendliness	0.8947
3	C_{12} Other non-functional requirements	0.3070
Ranking	Fundamental-objective	Weight vector
1	C_{22} User friendly vehicle tracking functionalities for public user	0.6811
2	C_{21} Effective data presentation	0.4660
Ranking	Fundamental-objective	Weight vector
1	C_{32} Effective location tracking	0.6811
2	C_{31} Sufficient processing and memorial power	0.4660

4.2 Step 4.2 results

Process 4.2.2

$\mathrm{M}_{21}=$		
	A_{1}	A_{2}
A_{1}	1	9
A_{2}	$1 / 9$	1

$\begin{array}{lll}M_{31}= & \\ & A_{1} & A_{2}\end{array}$
$\begin{array}{lll}A_{1} & 1 & 1 / 5 \\ A_{2} & 5 & 1\end{array}$
$\begin{array}{lll}\mathrm{M}_{22}= & \\ & A_{1} & A_{2} \\ A_{1} & 1 & 1 / 3 \\ A_{2} & 3 & 1\end{array}$
$M_{32}=$

	A_{1}	A_{2}
A_{1}	1	3
A_{2}	$1 / 3$	1

A_{1} : Web-based UI
A_{2} : GUI

Process 4.2.3

As there are only two alternatives, the PCMs are regarded always consistent.

Process 4.2.4

$M^{\prime}{ }_{21}=$	
A_{1}	A_{2}
$A_{1}(1,1,3)$	$(7,9,9)$
$A_{2} 1 /(7,9,9)$	$(1,1,3)$
$M^{\prime}{ }_{22}=$	
A_{1}	A_{2}
$A_{1}(1,1,3)$	1/(1, 3, 5)
$A_{2}(1,3,5)$	$(1,1,3)$
$\mathrm{M}^{\prime}{ }_{31}=$	
A_{1}	A_{2}
$A_{1}(1,1,3)$	1/(3,5,7)
$A_{2}(3,5,7)$	$(1,1,3)$

$M_{32}=$		
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(1,3,5)$
A_{2}	$1 /(1,3,5)$	$(1,1,3)$

Process 4.2.5

$S^{21}=(0.5283,0.9000,1.3171), \quad S^{21}{ }_{2}=(0.0734,0.1000,0.3449)$,
$S^{22}=(0.1000,0.2500,1.2500), \quad S^{22}{ }_{2}=(0.1667,0.7500,2.5000)$,
$S_{1}^{31}=(0.0857,0.1667,0.6481), \quad S_{2}^{31}=(0.3000,0.8333,1.9444)$,
$S_{12}=(0.1667,0.7500,2.5000), \quad S^{32}=(0.1000,0.2500,1.2500)$.

Process 4.2.6

$$
\begin{array}{ll}
W_{21}^{\prime}=(1.0000,0.0000)^{\mathrm{T}}, & W_{22}^{\prime}=(0.6842,1.0000)^{\mathrm{T}}, \\
W_{31}^{\prime}=(0.3431,1.0000)^{\mathrm{T}}, & W_{32}^{\prime}=(1.0000,0.6842)^{\mathrm{T}} . \\
& \\
W_{21}=(1.0000,0.0000)^{\mathrm{T}}, & W_{22}=(0.4660,0.6811)^{\mathrm{T}}, \\
W_{31}=(0.3070,0.8947)^{\mathrm{T}}, & W_{32}=(0.6811,0.4660)^{\mathrm{T}} .
\end{array}
$$

Table H. 22 Priority weights of alternatives with respect to user friendliness C_{11}

	C_{21} Effective data presentation	C_{22} User friendly vehicle tracking functionalities for public user	Priority weight $\left(w_{2}\right)$
Weight vector	0.4660	0.6811	
A_{1} Web-based UI	1.0000	0.4660	0.7834
A_{2} GUI	0.0000	0.6811	0.3174

Table H. 23 Priority weights of alternatives with respect to other non-functional requirements C_{12}

	C_{31} Sufficient processing and memorial power	C_{32} Effective location tracking	Priority weight $\left(w_{3}\right)$
Weight vector	0.4660	0.6811	
A_{1} Web-based UI	0.3070	0.6811	0.6070
A_{2} GUI	0.8947	0.4660	0.7343

Table H. 24 Priority weights of alternatives with respect to goal

	C_{11} User friendliness	C_{12} Other non-functional requirements	Priority weight $\left(w_{1}\right)$
Weight vector	0.8947	0.3070	
A_{1} Web-based UI	0.7834	0.6070	0.8873
A_{2} GUI	0.3174	0.7343	0.5094

Table H. 25 Ranking of alternatives

Ranking	Alternative	Priority weight $\left(w_{1}\right)$
1	A_{1} Web-based UI	0.8873
2	A_{2} GUI	0.5094

5. User interface (PDA applications)

5.1 Step 4.1 results

Process 4.1.2

$M_{1}=$		
	C_{11}	C_{12}
C_{11}	1	5
C_{12}	$1 / 5$	1

C_{11} : user friendliness
C_{12} : other non-functional requirements
$M_{2}=$

	C_{21}	C_{22}
C_{21}	1	1
C_{22}	1	1

C_{21} : user friendly UI for PDA application
C_{22} : effective data presentation
$M_{3}=$

| | C_{31} | C_{32} |
| :--- | :--- | :--- | :--- |
| C_{31} | 1 | $1 / 3$ |
| C_{32} | 3 | 1 |

C_{21} : sufficient processing and memorial power
C_{22} : effective location tracking

Process 4.1.3

As all of the matrices are in two dimensions only, they are regarded always consistent.

Process 4.1.4

$\mathrm{M}^{\prime}{ }_{1}=$		
	C_{11}	C_{12}
C_{11}	$(1,1,3)$	$(3,5,7)$
C_{12}	$1 /(3,5,7)$	$(1,1,3)$

$\mathrm{M}_{2}=$		
	C_{21}	C_{22}
C_{21}	$(1,1,3)$	$(1,1,3)$
C_{22}	$1 /(1,1,3)$	$(1,1,3)$

$M^{\prime} 3=$

	C_{31}	C_{32}
C_{31}	$(1,1,3)$	$1 /(1,3,5)$
C_{32}	$(1,3,5)$	$(1,1,3)$

Process 4.1.5

$S_{1}^{1}=(0.3000,0.8333,1.9444), \quad S_{2}^{1}=(0.0857,0.1667,0.6481)$,
$S_{1}^{2}=(0.2000,0.5000,1.8000), \quad S_{2}^{2}=(0.1333,0.5000,1.2000)$,
$S_{1}^{3}=(0.1000,0.2500,1.2500), \quad S_{2}^{3}=(0.1667,0.7500,2.5000)$.

Process 4.1.6

$$
\begin{array}{ll}
W_{1}^{\prime}=(1.0000,0.3431)^{\mathrm{T}}, & W_{2}^{\prime}=(1.0000,1.0000)^{\mathrm{T}}, \\
W_{3}^{\prime}=(0.6842,1.0000)^{\mathrm{T}} . &
\end{array}
$$

$\begin{array}{ll}W_{1}=(0.8947,0.3070)^{\mathrm{T}}, & W_{2}=(0.5000,0.5000)^{\mathrm{T}}, \\ W_{3}=(0.4660,0.6811)^{\mathrm{T}} .\end{array}$

Table H. 26 Ranking for fundamental-objectives

Ranking	Fundamental-objective	Weight vector
2	C_{11} User friendliness	0.8947
3	C_{12} Other non-functional requirements	0.3070
Ranking	Fundamental-objective	Weight vector
1	C_{21} Effective data presentation	0.5000
	C_{22} User friendly UI for PDA application	0.5000
Ranking	Fundamental-objective	Weight vector
1	C_{32} Effective location tracking	0.6811
2	C_{31} Sufficient processing and memorial power	0.4660

5.2 Step 4.2 results

Process 4.2.2

$M_{21}=$		$M_{22}=$			
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	$1 / 5$	A_{1}	1	$1 / 7$
A_{2}	5	1	A_{2}	7	1
$M_{31}=$		$M_{32}=$			
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	$1 / 5$	A_{1}	1	3
A_{2}	5	1	A_{2}	$1 / 3$	1

A_{1} : Web-based UI
A_{2} : GUI

Process 4.2.3

As there are only two alternatives, the PCMs are regarded always consistent.

Process 4.2.4

$M_{21}=$		
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$1 /(3,5,7)$
A_{2}	$(3,5,7)$	$(1,1,3)$

$M^{\prime}{ }_{22}=$		
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$1 /(5,7,9)$
A_{2}	$(5,7,9)$	$(1,1,3)$

$M^{\prime} 31$	$=$	
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$1 /(3,5,7)$
A_{2}	$(3,5,7)$	$(1,1,3)$

$M^{\prime} 32=$		
	A_{1}	A_{2}
A_{1}	$(1,1,3)$	$(1,3,5)$
A_{2}	$1 /(1,3,5)$	$(1,1,3)$

Process 4.2.5

$S^{21}=(0.0857,0.1667,0.6481), \quad S_{21}^{21}=(0.3000,0.8333,1.9444)$,
$S^{22}=(0.0731,0.1250,0.4500), \quad S^{22}{ }_{2}=(0.3947,0.8750,1.6875)$,
$S^{31}=(0.0857,0.1667,0.6481), \quad S^{31}=(0.3000,0.8333,1.9444)$,
$S^{32}=(0.1667,0.7500,2.5000), \quad S^{32}{ }_{2}=(0.1000,0.2500,1.2500)$.

Process 4.2.6

$W_{21}^{\prime}=(0.3431,1.0000)^{\mathrm{T}}$,	$W_{22}^{\prime}=(0.0686,1.0000)^{\mathrm{T}}$,
$W_{31}^{\prime}=(0.3431,1.0000)^{\mathrm{T}}$,	$W_{32}^{\prime}=(1.0000,0.6842)^{\mathrm{T}}$.
$W_{21}=(0.3070,0.8947)^{\mathrm{T}}$,	$W_{22}=(0.0683,0.9953)^{\mathrm{T}}$,
$W_{31}=(0.3070,0.8947)^{\mathrm{T}}$,	$W_{32}=(0.6811,0.4660)^{\mathrm{T}}$.

Table H. 27 Priority weights of alternatives with respect to user friendliness C_{11}

	C_{21} Effective data presentation	C_{22} User friendly UI for PDA application	Priority weight $\left(w_{2}\right)$
Weight vector	0.5000	0.5000	
A_{1} Web-based UI	0.3070	0.0683	0.1877
A_{2} GUI	0.8947	0.9953	0.9450

Table H. 28 Priority weights of alternatives with respect to other non-functional requirements C_{12}

	$\|c\|$ C_{31} Sufficient processing and memorial power	C_{32} Effective location tracking	Priority weight $\left(w_{3}\right)$
Weight vector	0.4660	0.6811	
A_{1} Web-based UI	0.3070	0.6811	0.6070
A_{2} GUI	0.8947	0.4660	0.7343

Table H. 29 Priority weights of alternatives with respect to goal

	C_{11} User friendliness	C_{12} Other non-functional requirements	Priority weight $\left(w_{1}\right)$
Weight vector	0.8947	0.3070	
A_{1} Web-based UI	0.1877	0.6070	0.3543
A_{2} GUI	0.9450	0.7343	1.0709

Table H. 30 Ranking of alternatives

Ranking	Alternative	Priority weight $\left(w_{1}\right)$
1	A_{2} GUI	1.0709
2	A_{1} Web-based UI	0.3543

6. GIS technology

6.1 Step 4.1 results

Process 4.1.2

$\mathrm{M}_{1}=$					
	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}
C_{11}	1	$1 / 5$	$1 / 3$	$1 / 3$	3
C_{12}	5	1	3	3	5
C_{13}	3	$1 / 3$	1	1	3
C_{14}	3	$1 / 3$	1	1	3
C_{15}	$1 / 3$	$1 / 5$	$1 / 3$	$1 / 3$	1

C_{11} : user friendliness
C_{12} : cost
C_{13} : data synchronization
C_{14} : other non-functional requirements
C_{15} : data management
$M_{2}=$

	C_{21}	C_{22}
C_{21}	1	5
C_{22}	$1 / 5$	1

C_{21} : user friendly vehicle tracking functionalities for public user C_{22} : effective data presentation

$M_{3}=$		
	C_{31}	C_{32}
C_{31}	1	$1 / 7$
C_{32}	7	1

C_{31} : fixed cost
C_{32} : variable cost
$M_{4}=$
C_{41}
$\mathrm{C}_{41} 1$
C_{41} : effective data integration to legacy system
$M_{5}=$

	C_{51}	C_{52}	C_{53}
C_{51}	1	$1 / 5$	$1 / 5$
C_{52}	5	1	1
C_{53}	5	1	1

C_{51} : maintainability
C_{52} : availability
C_{53} : sufficient processing and memorial power
$M_{6}=$ C61
$\mathrm{C}_{61} 1$
C_{61} : secured data transaction

Process 4.1.3

M_{2}, M_{3}, M_{4} and M_{6} involve less than 3 objectives and consistency test is not needed.
$C R_{l}=0.0580$,

$$
C R_{5}=0.000
$$

M_{1} and M_{5} are considered consistent for their consistency ratio valued less than 0.100 .

Process 4.1.4

$M_{1}^{\prime}=$					
	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}
C_{11}	$(1,1,3)$	$1 /(3,5,7)$	$1 /(1,3,5)$	$1 /(1,3,5)$	$(1,3,5)$
C_{12}	$(3,5,7)$	$(1,1,3)$	$(1,3,5)$	$(1,3,5)$	$(3,5,7)$
C_{13}	$(1,3,5)$	$1 /(1,3,5)$	$(1,1,3)$	$(1,1,3)$	$(1,3,5)$
C_{14}	$(1,3,5)$	$1 /(1,3,5)$	$1 /(1,1,3)$	$(1,1,3)$	$(1,3,5)$
C_{15}	$1 /(1,3,5)$	$1 /(3,5,7)$	$1 /(1,3,5)$	$1 /(1,3,5)$	$(1,1,3)$
$M_{2}^{\prime}=$					
	C_{21}	C_{22}			
C_{21}	$(1,1,3)$	$(3,5,7)$			
C_{22}	$1 /(3,5,7)$	$(1,1,3)$			

$\mathrm{M}_{3}=$			
	C_{31}	C_{32}	
C_{31}	$(1,1,3)$	$1 /(5,7,9)$	
C_{32}	$(5,7,9)$	$(1,1,3)$	
$\mathrm{M}^{\prime}{ }_{5}=$		C_{53}	
	C_{51}	C_{53}	$1 /(3,5,7)$
C_{51}	$(1,1,3)$	$1 /(3,5,7)$	$(1,1,3)$
C_{52}	$(3,5,7)$	$(1,1,3)$	$(1,1,3)$
C_{53}	$(3,5,7)$	$1 /(1,1,3)$	$(1,1)$

Process 4.1.5

$S_{1}^{1}=(0.034,0.119,0.492)$,	$S_{2}^{1}=(0.119,0.417,1.285)$,
$S_{3}^{1}=(0.056,0.205,0.809)$,	$S_{4}^{1}=(0.047,0.205,0.714)$,
$S_{5}^{1}=(0.023,0.054,0.301)$,	
$S_{1}^{2}=(0.300,0.833,1.944)$,	$S_{2}^{2}=(0.086,0.167,0.648)$,
$S_{1}^{3}=(0.073,0.125,0.450)$,	$S_{2}^{3}=(0.395,0.875,1.688)$,
$S_{1}^{S}=(0.046,0.091,0.345)$,	$S_{2}^{5}=(0.181,0.455,1.224)$,
$S_{3}=(0.157,0.455,1.036)$,	

Process 4.1.6

$$
\begin{aligned}
& W_{1}^{\prime}=(0.5558,1.0000,0.7643,0.7365,0.3342)^{\top}, \quad W_{2}^{\prime}=(1.0000,0.3431)^{\top}, \\
& W_{3}^{\prime}=(0.0686,1.0000)^{\mathrm{T}}, \\
& W_{5}^{\prime}=(0.3116,1.0000,1.0000)^{\top} \\
& W_{1}=(0.2182,0.3926,0.3001,0.2891,0.1312)^{\mathrm{T}}, \quad W_{2}=(0.8947,0.3070)^{\mathrm{T}}, \\
& W_{3}=(0.0683,0.9953)^{\mathrm{T}}, \quad W_{5}=(0.1486,0.4769,0.4769) .
\end{aligned}
$$

Table H. 31 Ranking for fundamental-objectives

Ranking	Fundamental-objective	Weight vector
1	C_{12} Cost	0.3001
2	C_{13} Data synchronization	0.3001
	C_{14} Other non-functional requirements	0.2891
4	C_{11} User friendliness	0.2182
5	C_{15} Data management	0.1312

Ranking	Fundamental-objective	Weight vector
1	C_{21} User friendly vehicle tracking functionalities for public user	0.8947
2	C_{22} Effective data presentation	0.3070
Ranking	Fundamental-objective	Weight vector
1	C_{32} Variable cost	0.9953
2	C_{31} Fixed cost	0.0683
Ranking	Fundamental-objective	Weight vector
1	C_{52} Availability	0.4769
	C_{53} Sufficient processing and memorial power	0.4769
3	C_{51} Maintainability	0.1486

6.2 Step 4.2 results

Process 4.2.2

$\mathrm{M}_{21}=$			$\mathrm{M}_{22}=$		
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	1	A_{1}	1	1/5
A_{2}	1	1	A_{2}	5	1
M_{31}	$=$		M_{32}	=	
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	5	A_{1}	1	1/3
A_{2}	$1 / 5$	1	A_{2}	3	1
M_{41}	$=$		M_{51}	$=$	
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	1/3	A_{1}	1	5
A_{2}	3	1	A_{2}	1/5	1
M_{52}	=		M_{53}	$=$	
	A_{1}	A_{2}		A_{1}	A_{2}
A_{1}	1	3	A_{1}	1	5
A_{2}	1/3	1	A_{2}	1/5	1

$M_{61}=$

	A_{1}	A_{2}
A_{1}	1	5
A_{2}	$1 / 5$	1

A_{1} : MS MapPoint
$A_{2}:$ ARC GIS

Process 4.2.3

As there are only two alternatives, the PCMs are regarded always consistent.

Process 4.2.4

$M^{\prime}{ }_{21}=$	
A_{1}	A_{2}
$A_{1}(1,1,3)$	$(1,1,3)$
$A_{2} 1 /(1,1,3)$	$(1,1,3)$
$M^{\prime}{ }_{22}=$	
A_{1}	A_{2}
$A_{1} \quad(1,1,3)$	$1 /(3,5,7)$
$A_{2}(3,5,7)$	$(1,1,3)$
$M^{\prime} 31=$	
A_{1}	A_{2}
$A_{1} \quad(1,1,3)$	$(3,5,7)$
$A_{2} 1 /(3,5,7)$	$(1,1,3)$
$M^{\prime} 32=$	
A_{1}	A_{2}
$A_{1} \quad(1,1,3)$	$1 /(1,3,5)$
$A_{2} \quad(1,3,5)$	($1,1,3$)
$M^{\prime}{ }_{41}=$	
A_{1}	A_{2}
$A_{1}(1,1,3)$	$1 /(1,3,5)$
$A_{2} \quad(1,3,5)$	$(1,1,3)$

$M^{\prime}{ }_{51}=$	
A_{1}	A_{2}
$A_{1}(1,1,3)$	$(3,5,7)$
$A_{2} \quad 1 /(3,5,7)$	$(1,1,3)$
$M^{\prime}{ }_{52}=$	
A_{1}	A_{2}
$A_{1}(1,1,3)$	$(1,3,5)$
$A_{2} \quad 1 /(1,3,5)$	$(1,1,3)$
$\mathrm{M}^{\prime}{ }_{53}=$	
A_{1}	A_{2}
$A_{1}(1,1,3)$	$(3,5,7)$
$A_{2} 1 /(3,5,7)$	$(1,1,3)$
$M^{\prime}{ }_{61}=$	
A_{1}	A_{2}
$A_{1} \quad(1,1,3)$	$(3,5,7)$
$A_{2} 1 /(3,5,7)$	$(1,1,3)$

Process 4.2.5

$$
\begin{array}{ll}
S^{21}=(0.2000,0.5000,1.8000), & S^{21}{ }_{2}=(0.1333,0.5000,1.2000), \\
S^{22}=(0.0857,0.1667,0.6481), & S^{22}{ }_{2}=(0.3000,0.8333,1.9444), \\
S^{31}{ }_{1}=(0.3000,0.8333,1.9444), & S^{31}{ }_{2}=(0.0857,0.1667,0.6481), \\
S^{32}{ }_{1}=(0.1000,0.2500,1.2500), & S^{32}{ }_{2}=(0.1667,0.7500,2.5000), \\
S^{41}{ }_{1}=(0.1000,0.2500,1.2500), & S^{41}{ }_{2}=(0.1667,0.7500,2.5000), \\
S^{S 1}=(0.3000,0.8333,1.9444), & S^{S 1}{ }_{2}=(0.0857,0.1667,0.6481), \\
S^{52}=(0.1667,0.7500,2.5000), & S^{S 2}{ }_{2}=(0.1000,0.2500,1.2500), \\
S^{53}=(0.3000,0.8333,1.9444), & S^{53}{ }_{2}=(0.0857,0.1667,0.6481) \\
S_{1}^{61}=(0.3000,0.8333,1.9444), & S^{61}{ }_{2}=(0.0857,0.1667,0.6481) .
\end{array}
$$

Process 4.2.6

$W_{21}^{\prime}=(1.0000,1.0000)^{\mathrm{T}}$,	$W_{22}^{\prime}=(0.3431,1.0000)^{\mathrm{T}}$,
$W_{31}^{\prime}=(1.0000,0.3431)^{\mathrm{T}}$,	$W_{32}^{\prime}=(0.6842,1.0000)^{\mathrm{T}}$,

$$
\begin{array}{ll}
W_{41}^{\prime}=(0.6842,1.0000)^{\mathrm{T}}, & W_{51}^{\prime}=(1.000,0.3431)^{\mathrm{T}}, \\
W_{52}^{\prime}=(1.000,0.6842)^{\mathrm{T}}, & W_{53}^{\prime}=(1.000,0.3431)^{\mathrm{T}}, \\
W_{61}^{\prime}=(1.000,0.3431)^{\mathrm{T}} . &
\end{array}
$$

$$
\begin{array}{ll}
W_{21}=(0.5000,0.5000)^{\mathrm{T}}, & W_{22}=(0.3070,0.8947)^{\mathrm{T}} \\
W_{31}=(0.8947,0.3070)^{\mathrm{T}}, & W_{32}=(0.4660,0.6811)^{\mathrm{T}} \\
W_{41}=(0.4660,0.6811)^{\mathrm{T}}, & W_{51}=(0.8947,0.3070)^{\mathrm{T}}, \\
W_{52}=(0.6811,0.4660)^{\mathrm{T}}, & W_{53}=(0.8947,0.3070)^{\mathrm{T}} \\
W_{61}=(0.8947,0.3070)^{\mathrm{T}} . &
\end{array}
$$

Table H. 32 Priority weights of alternatives with respect to user friendliness C_{11}

	C_{21} User friendly vehicle tracking functionalities for public user	C_{22} Effective data presentation	Priority weight $\left(w_{2}\right)$
Weight vector	0.8947	0.3070	0.541
A_{1} MS MapPoint	0.5000	0.3070	0.7220
A_{2} ARC GIS	0.5000	0.8947	

Table H. 33 Priority weights of alternatives with respect to cost C_{12}

	C_{31} Fixed cost	C_{32} Variable cost	Priority weight $\left(w_{3}\right)$
Weight vector	0.8947	0.3070	
A_{1} MS MapPoint	0.8947	0.4660	0.5416
A_{2} ARC GIS	0.3070	0.6811	0.7220

Table H. 34 Priority weights of alternatives with respect to data synchronization C_{13}

	C_{41} Effective data integration to legacy system	Priority weight (w4)
Weight vector	1	0.4660
A_{1} MS MapPoint	0.4660	0.6811
A_{2} ARC GIS	0.6811	

Table H. 35 Priority weights of alternatives with respect to other non-functional requirements C_{14}

	C_{51} Maintainability	C_{52} Availability	C_{53} Sufficient processing and memorial power	Priority weight $\left(w_{5}\right)$
Weight vector	0.4769	0.4769	0.1486	
A_{1} MS MapPoint	0.8947	0.6811	0.8947	0.8845
A_{2} ARC GIS	0.3070	0.4660	0.3070	0.4143

Table H. 36 Priority weights of alternatives with respect to data management C_{15}

	C_{61} Secured data transaction	Priority weight $\left(w_{6}\right)$
Weight vector	1	
A_{1} MS MapPoint	0.8947	0.8947
A_{2} ARC GIS	0.3070	0.3070

Table H. 37 Priority weights of alternatives with respect to goal

	C_{11} User friendliness	C_{12} Cost	C_{13} Data synchronization
Weight vector	0.2182	0.3001	0.3001
A_{1} MS MapPoint	0.541	0.5416	0.4660
A_{2} ARC GIS	0.7220	0.7220	0.6811
	C_{14} Other non-functional requirements	C_{15} Data management	Priority weight (w_{1})
Weight vector	0.2891	0.1312	0.7935
A_{1} MS MapPoint	0.8845	0.8947	0.7387
A_{2} ARC GIS	0.4143	0.3070	

Table H. 38 Ranking of alternatives

Ranking	Alternative	Priority weight $\left(w_{1}\right)$
1	A_{1} MS MapPoint	0.7935
2	A_{2} ARC GIS	0.7387

APPENDIX I - QUESTIONNAIRE DESGIN FOR CASE STUDY IV

This appendix includes 13 unfilled questionnaires designed for carrying out the TSS methodology in case study IV. The questionnaires $1-x$ were designed for surveying the relative importance of fundamental-objectives in process 4.1.1; the questionnaires 2-x were designed for surveying relative effectiveness of alternatives in process 4.2.1; the questionnaire 3 was designed for surveying the relative importance of solution components in process 5.1.1.

Questionnaire 1-1

(This questionnaire is designed for process 4.1.1 of the TSS methodology for case study IV.)

Solution component: Tracking technology

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria in terms of their importance for achieving the goal.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Important / (1)" means that the two criteria are considered equally important; the answer options on the right side of it mean that the criterion on the right side is considered more important with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more important with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time:	End time:
Number of questions: 7	Duration:

Section I - Level 1 Goal Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
Cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	$\begin{aligned} & \text { (9) } \\ & \square \end{aligned}$	Data synchronization
Cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	$\begin{aligned} & (7) \\ & \square \end{aligned}$	(9)	Other non-functional requirements
Data chronization	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Other non-functional requirements

Section III - Level 2 Other non-functional requirements Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
Effective Iocation tracking	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Availability
Effective location tracking	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	$\begin{aligned} & (5) \\ & \square \end{aligned}$	$\begin{aligned} & (7) \\ & \square \end{aligned}$	(9) \square	Maintainability
vailability	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square		(7) \square	(9) \square	Maintainability

Questionnaire 1-2

(This questionnaire is designed for process 4.1.1 of the TSS methodology for case study IV.)

Solution component: PDA software platform

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria in terms of their importance for achieving the goal.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Important / (1)" means that the two criteria are considered equally important; the answer options on the right side of it mean that the criterion on the right side is considered more important with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more important with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad
Number of questions: 11
End time: \qquad
Duration: \qquad

Section I - Level 1 Goal Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
User Fiendliness	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square		(9) \square	Cost
User Triendliness	(9)	(7) \square	(5) \square	(3) \square	(1) \square	(3)	(5) \square		(9) \square	Data synchronization
User Triendliness	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Other non-functional requirements
Cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	$\begin{aligned} & (3) \\ & \square \end{aligned}$	(5) \square	(7) \square	(9) \square	Data synchronization

Cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Other non-functional requirements
Data Mchronization	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Other non-functional requirements

Section II - Level 2 Cost Factors Comparison

Section III - Level 2 Data synchronization Factors Comparison

Section IV - Level 2 Other non-functional requirementsFactors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
intainability	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Availability
intainability	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Sufficient processing \& memorial power
Availability	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	

Questionnaire 1-3

(This questionnaire is designed for process 4.1 .1 of the TSS methodology for case study IV.)

Solution component: database management system

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria in terms of their importance for achieving the goal.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Important / (1)" means that the two criteria are considered equally important; the answer options on the right side of it mean that the criterion on the right side is considered more important with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more important with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad
Number of questions: 14

End time: \qquad
Duration: \qquad

Section I - Level 1 Goal Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
Cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square		$\begin{array}{r} \text { (7) } \\ \square \\ \hline \end{array}$	(9) \square	Data synchronization
Cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3)	(5) \square	(7) \square	(9) \square	Data management
Cost	(9) \square	(7) \square	(5) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(1) \square	$\begin{aligned} & \text { (3) } \\ & \square \\ & \hline \end{aligned}$	(5) \square	$\begin{aligned} & (7) \\ & \square \end{aligned}$		Other non-functional requirements
Data hronization	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Data management
Data chronization	(9) \square		$\begin{aligned} & \text { (5) } \\ & \square \end{aligned}$	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(1) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(5) \square	(7) \square	$\begin{aligned} & \text { (9) } \\ & \square \\ & \hline \end{aligned}$	Other non-functional requirements

| Data
 management | (9) | (7) | (5) | (3) | (1) | (3) | (5) | (7) | (9) | Other
 non-functional
 requirements |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Section II - Level 2 Cost Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
Fixed cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	$\begin{aligned} & \text { (7) } \\ & \square \end{aligned}$	(9) \square	Variable cost

Section III - Level 2 Data synchronization Factors Comparison

$\stackrel{ }{ }$	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
ETective live ${ }^{4}$ acking data ${ }^{4} D_{\text {date }}$ to DB	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Effective live job data update to DB
TYective live Tacking data ${ }^{4}$ Ddate to DB	(9) \square	(7) \square	(5) \square	$\begin{aligned} & (3) \\ & \square \end{aligned}$	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Effective data integration to legacy system
Fective live Of data update to DB	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	$\begin{aligned} & (3) \\ & \square \end{aligned}$	(5) \square	(7) \square	(9) \square	Effective data integration to legacy system

Section IV - Level 2 Data Management Comparison

Taintainability	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Availability
Taintainability	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Sufficient processing \& memorial power
Availability	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Sufficient processing \& memorial power

Questionnaire 1-4

(This questionnaire is designed for process 4.1.1 of the TSS methodology for case study IV.)

Solution component: user interface (portal application)

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria in terms of their importance for achieving the goal.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Important / (1)" means that the two criteria are considered equally important; the answer options on the right side of it mean that the criterion on the right side is considered more important with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more important with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time:
Number of questions: 3
Section I - Level 1 Goal Factors Comparison

	Extremely Important	Very Important	Moderately Important	Equally Important	Moderately Important	Very User	(9)	(7)	(5)	(3)
friendliness	\square	\square	\square	\square	\square	(3)	(5)	(7)	(9)	Other

Section II - Level 2 User friendliness Factors Comparison

	Extremely Important	Very Important	Mmportant Moderately Important	Equally Important	Moderately Important	Very Important Important

User friendly										
vehicle	(9)	(7)	(5)	(3)	(1)	(3)	(5)	(7)	(9)	Effective data
tracking	\square	presentation								

Section III - Level 2 Other non-functional requirements Factors Comparison

	Extremely Important	$\begin{aligned} & \text { Very } \\ & \text { Important } \end{aligned}$	Important	Moderately Important	Equally Important	Moderately Important	Important	Very mportant	Extremely Important	
Sufficient ${ }^{\text {Pr ocessing \& }}$ Inemorial power	$\begin{aligned} & \text { (9) } \\ & \square \end{aligned}$	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Effective location tracking

Questionnaire 1-5

(This questionnaire is designed for process 4.1.1 of the TSS methodology for case study IV.)

Solution component: user interface (PDA applications)

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria in terms of their importance for achieving the goal.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Important / (1)" means that the two criteria are considered equally important; the answer options on the right side of it mean that the criterion on the right side is considered more important with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more important with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad
Number of questions: 3

Section I - Level 1 Goal Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
User friendliness	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Other non-functional requirements

Section II - Level 2 User friendliness Factors Comparison

Section III - Level 2 Other non-functional requirements Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
Sufficient $\mathrm{D}_{\mathrm{O}_{\text {cessing \& }}}$ Memorial power	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	$\begin{aligned} & (5) \\ & \square \end{aligned}$	(7) \square	(9) \square	Effective location tracking

Questionnaire 1-6

(This questionnaire is designed for process 4.1.1 of the TSS methodology for case study IV.)

Solution component: GIS technology

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria in terms of their importance for achieving the goal.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Important / (1)" means that the two criteria are considered equally important; the answer options on the right side of it mean that the criterion on the right side is considered more important with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more important with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad
Number of questions: 15

End time: \qquad Duration: \qquad

Section I - Level 1 Goal Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
User iendliness	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square			(9) \square	Cost
User iendliness	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Data synchronization
User riendliness	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square		Other non-functional requirements
User Friendliness	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square		Data management

Cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Data synchronization
Cost	(9) \square	(7) \square	(5) \square	(3) \square	$\begin{aligned} & \text { (1) } \\ & \square \end{aligned}$	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(5) \square	(7) \square	(9) \square	Other non-functional requirements
Cost	$\begin{aligned} & (9) \\ & \square \end{aligned}$	(7) \square	(5) \square	(3) \square	$\begin{aligned} & \text { (1) } \\ & \square \end{aligned}$	(3) \square	(5) \square	(7) \square	(9) \square	Data management
$\begin{gathered} \text { Data } \\ \text { nchronization } \end{gathered}$	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Other non-functional requirements
Data Inchronization	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Data management
Other -functional requirements	(9)	(7) \square	(5)	(3) \square	(1) \square	(3) \square	(5)	(7) \square	(9) \square	Data management

Section II - Level 2 User friendliness Factors Comparison

Section III - Level 2 Cost Factors Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
Fixed cost	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	$\begin{aligned} & (3) \\ & \square \end{aligned}$	$\begin{aligned} & (5) \\ & \square \end{aligned}$	$\begin{aligned} & (7) \\ & \square \end{aligned}$	$\begin{aligned} & \text { (9) } \\ & \square \end{aligned}$	Variable cost

Section IV - Level 2 Other non-functional requirements Factors
Comparison

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	$\begin{aligned} & \text { Very } \\ & \text { Important } \end{aligned}$	Extremely Important	
Maintainability	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Availability
Maintainability	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Sufficient processing and memorial power
Availability	$\begin{aligned} & \text { (9) } \\ & \square \end{aligned}$	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Sufficient processing and memorial power

Questionnaire 2-1

(This questionnaire is designed for process 4.2.1 of the TSS methodology for case study IV.)

Solution component: Tracking technology

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria according to their effectiveness towards the criteria they against. The provided space after "Remarks" must be filled with reason(s) for answers considering the provided means-objectives.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Effective / (1)" means that the two criteria are considered equally effective; the answer options on the right side of it mean that the criterion on the right side is considered more effective with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more effective with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad End time: \qquad
Number of questions: 6
Duration: \qquad

Section I - Comparison against criteria Fixed cost

Means-objectives: Hardware purchase cost, setup cost, software development cost Remarks: \qquad

Section II - Comparison against criteria Variable cost

Means-objectives: Vehicle-based purchase cost (e.g. cost for data carrier), maintenance cost, labour cost for manual operations

Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
GPS	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	RFID

Section III - Comparison against criteria Effective live tracking data update to database

Means-objectives: Connectivity from tracking device to data modem, connectivity from data modem to remote server

Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
GPS	(9) \square	(7) \square	$\begin{aligned} & \hline(5) \\ & \square \\ & \hline \end{aligned}$	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	RFID

Section IV - Comparison against criteria Effective location tracking

Means-objectives: Location tracking accuracy, low data error rate
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
GPS	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	RFID

Section V - Comparison against criteria Maintainability

Means-objectives: Less need for collection of mobile devices during maintenance, low breakdown/operational failure rate

Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
GPS	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	\square	RFID

Section VI - Comparison against criteria Availability

Means-objectives: Influence by environmental factors (e.g. weather), geographical tracking coverage, low breakdown/operational failure rate
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
GPS	(9) \square	(7) \square	(5) \square	$\begin{array}{r} (3) \\ \square \end{array}$	(1) \square	(3) \square \square	(5) \square	(7) \square	(9) \square	RFID

Questionnaire 2-2

(This questionnaire is designed for process 4.2.1 of the TSS methodology for case study IV.)

Solution component: PDA software platform

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria according to their effectiveness towards the criteria they against. The provided space after "Remarks" must be filled with reason(s) for answers considering the provided means-objectives.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Effective / (1)" means that the two criteria are considered equally effective; the answer options on the right side of it mean that the criterion on the right side is considered more effective with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more effective with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:
\qquad End time: \qquad
Number of questions: 8
Duration: \qquad

Section I - Comparison against criteria Effective data presentation

Means-objectives: Rich graphical interface, quick screen refresh rate, short loading time

Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
MS Windows Mobile	(9) \square	(7) \square		(3) \square	(1) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(5) \square	(7) \square	(9) \square	Palm OS

Section II - Comparison against criteria Fixed cost

Means-objectives: PDA purchase cost, software development cost
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
MS Windows Mobile	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Palm OS

Section III - Comparison against criteria Variable cost

Means-objectives: Maintanence cost
Remarks: \qquad
\qquad

Section IV - Comparison against criteria Effective live tracking data update to database

Means-objectives: Connectivity to tracking devices, connectivitiy to remote server Remarks: \qquad
\qquad

\square

Section V - Comparison against criteria Effective live job data update

 to databaseMeans-objectives: Connectivitiy to remote server
Remarks: \qquad
\qquad

Section VI - Comparison against criteria Maintainability

Means-objectives: Quality of support from provider
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
MS Windows Mobile	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Palm OS

Section VII - Comparison against criteria Availability

Means-objectives: Operational stability
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
MS Windows Mobile	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Palm OS

Section VIII - Comparison against criteria Sufficient processing and memorial power

Means-objectives: High processing and memorial performance
Remarks: \qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
MS Windows Mobile	(9) \square	(7) \square	(5) \square	$\begin{aligned} & (3) \\ & \square \end{aligned}$	(1) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(5) \square	(7) \square	(9) \square	Palm OS

Questionnaire 2-3

(This questionnaire is designed for process 4.2.1 of the TSS methodology for case study IV.)

Solution component: database management system

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria according to their effectiveness towards the criteria they against. The provided space after "Remarks" must be filled with reason(s) for answers considering the provided means-objectives.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Effective / (l)" means that the two criteria are considered equally effective; the answer options on the right side of it mean that the criterion on the right side is considered more effective with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more effective with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad End time: \qquad
Number of questions: 10
Duration: \qquad

Section I - Comparison against criteria Fixed cost

Means-objectives: Software purchasing cost, setup cost
Remarks: \qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Oracle 10g	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	$\begin{gathered} \text { MS SQL } \\ 2000 \end{gathered}$

Section II - Comparison against criteria Variable cost

Means-objectives: Administration cost, maintenance cost
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Oracle 10g	(9) \square	(7) \square	(5) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	$\begin{gathered} \text { MS SQL } \\ 2000 \end{gathered}$

Section III - Comparison against criteria Effective live tracking data update to database

Means-objectives: Effiective data interface to applications
Remarks: \qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Oracle 10g	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	$\begin{aligned} & \text { (7) } \\ & \square \end{aligned}$	(9) \square	$\begin{gathered} \text { MS SQL } \\ 2000 \end{gathered}$

Section IV - Comparison against criteria Effective live job data update to database

Means-objectives: Effective data interface to applications
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Oracle 10g	(9) \square \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	$\begin{aligned} & \text { (7) } \\ & \square \end{aligned}$	(9) \square	$\begin{gathered} \text { MS SQL } \\ 2000 \end{gathered}$

Section V - Comparison against criteria Effective data integration to
legacy system

Means-objectives: Capability in handlining continuous frequent data import
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Oracle 10g	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	$\begin{gathered} \text { MS SQL } \\ 2000 \end{gathered}$

Section VI - Comparison against criteria Maintainability

Means-objectives: Low breakdown rate, easy-to-upgrade
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Oracle 10g	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	$\begin{aligned} & (9) \\ & \square \end{aligned}$	$\begin{gathered} \text { MS SQL } \\ 2000 \end{gathered}$

Section VII - Comparison against criteria Availability

Means-objectives: Operational stability
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Oracle 10g	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	$\begin{gathered} \text { MS SQL } \\ 2000 \end{gathered}$

Section VIII - Comparison against criteria Sufficient processing and memorial power

Means-objectives: Being efficient with huge amount of data transaction and data storage
Remarks: \qquad
\qquad

| | Extremely
 Effective | Very
 Effective | Moderately
 Effective | Equally
 Effective | Moderately
 Effective | Effective
 Effective | Effective | | | | |
| :---: |
| | Oracle 10 g | (9) | (7) | (5) | (3) | (1) | (3) | (5) | (7) | (9) | MS SQL |

Section IX - Comparison against criteria Sufficient data storage and data transaction capabilities

Means-objectives: Capability in handling huge amount of historical data, capability to handling continuous frequent accesses
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Oracle 10g	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	$\begin{gathered} \text { MS SQL } \\ 2000 \end{gathered}$

Section X - Comparison against criteria Secured data transaction
Means-objectives: Data security
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Oracle 10g	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	$\begin{gathered} \text { MS SQL } \\ 2000 \end{gathered}$

Questionnaire 2-4

(This questionnaire is designed for process 4.2.1 of the TSS methodology for case study IV.)

Solution component: user interface (portal applications)

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria according to their effectiveness towards the criteria they against. The provided space after "Remarks" must be filled with reason(s) for answers considering the provided means-objectives.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Effective / (1)" means that the two criteria are considered equally effective; the answer options on the right side of it mean that the criterion on the right side is considered more effective with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more effective with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad End time: \qquad
Number of questions: 4
Duration: \qquad

Section I - Comparison against criteria User friendly vehicle tracking functionalities for public user

Means-objectives: OS independent for access of application, avoid additional software installation, conventional reading format
Remarks: \qquad
\qquad

Section II - Comparison against criteria Effective data presentation

Means-objectives: Rich content presentation, quick screen refresh rate, short loading time

Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Web-based user interface	(9) \square	$\begin{aligned} & \text { (7) } \\ & \square \end{aligned}$	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GUI

Section III - Comparison against criteria Sufficient processing and memorial power

Means-objectives: Low resources requirements to server
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Web-based user interface	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GUI

Section IV - Comparison against criteria Effective location tracking

Means-objectives: Rich content presentation, tracking automatical information refreshing

Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Web-based user interface	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GUI

Questionnaire 2-5

(This questionnaire is designed for process 4.2.1 of the TSS methodology for case study IV.)

Solution component: user interface (PDA applications)

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria according to their effectiveness towards the criteria they against. The provided space after "Remarks" must be filled with reason(s) for answers considering the provided means-objectives.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Effective / (1)" means that the two criteria are considered equally effective; the answer options on the right side of it mean that the criterion on the right side is considered more effective with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more effective with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad End time: \qquad
Number of questions: 4
Duration: \qquad

Section I - Comparison against criteria User friendly user interface for PDA applicaitons

Means-objectives: Efficient use of screen space, avoid horizontal scroll bar
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Web-based user interface	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GUI

Section II - Comparison against criteria Effective data presentation

Means-objectives: Rich content presentation, quick screen refresh rate, short loading time
Remarks: \qquad
\qquad

| | Extremely
 Effective | Very
 Effective | Moderately
 Effective | Equally
 Effective | Moderately
 Effective | Very
 Effective | Exfremely
 Effective | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Web-based
 user
 interface |
 (9) (7) (5) (3) (1) (3) (5) (7) (9) | GUI | | | | | | |

Section III - Comparison against criteria Sufficient processing and memorial power

Means-objectives: Low resources requirement to server
Remarks: \qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
Web-based user interface	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GUI

Section IV - Comparison against criteria Effective location tracking

Means-objectives: Capability to manage tracking device and remote server connectivity status on screen

Remarks: \qquad
\qquad

Web-based

Questionnaire 2-6

(This questionnaire is designed for process 4.2 .1 of the TSS methodology for case study IV.)

Solution component: GIS technology

Please answer every question in all sections. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria according to their effectiveness towards the criteria they against. The provided space after "Remarks" must be filled with reason(s) for answers considering the provided means-objectives.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Effective / (1)" means that the two criteria are considered equally effective; the answer options on the right side of it mean that the criterion on the right side is considered more effective with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more effective with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad End time: \qquad
Number of questions: 9
Duration: \qquad

Section I - Comparison against criteria User friendly vehicle tracking functionalities for public user

Means-objectives: Map readibility, ETA (Estimated Time of Arrival), distance calcuation
Remarks: \qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
MS MapPoint	(9) \square	(7) \square	(5) \square	(3)	(1)	(3) \square	(5) \square	(7) \square	(9) \square	ARC GIS

Section II - Comparison against criteria Effective data presentation

Means-objectives: Map zooming, fast screen refresh
Remarks: \qquad
\qquad

Section III - Comparison against criteria Fixed cost

Means-objectives: Software purchase cost (include geographical data purchase cost if any), software integration cost
Remarks: \qquad
\qquad

		Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
3.1	MS MapPoint	(9) \square	(7) \square	$\begin{aligned} & \text { (5) } \\ & \square \end{aligned}$	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	ARC GIS

Section IV - Comparison against criteria Variable cost

Means-objectives: Service subscription cost, maintenance cost
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
MS MapPoint	(9) \square	(7) \square	(5) \square	$\begin{aligned} & \text { (3) } \\ & \square \end{aligned}$	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	ARC GIS

Section V - Comparison against criteria Effective data integration to legacy system

Means-objectives: Geocoding and reverse geocoding for address data integration Remarks: \qquad
\qquad

		Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
5.1	MS MapPoint	$\begin{aligned} & \text { (9) } \\ & \square \end{aligned}$	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	ARC GIS

Section VI - Comparison against criteria Maintainability

Means-objectives: Quality of support from provider
Remarks: \qquad
\qquad

		Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
5.1	MS MapPoint	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	ARC GIS

Section VII - Comparison against criteria Availability

Means-objectives: Operational stability
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
MS MapPoint	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9)	ARC GIS

Section VIII - Comparison against criteria Sufficient processing and

Means-objectives: Low resource requirement to server
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
MS MapPoint	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	ARC GIS

Section IX - Comparison against criteria Secured data transaction

Means-objectives: Managed geographical data protection
Remarks: \qquad
\qquad

	Extremely Effective	Very Effective	Effective	Moderately Effective	Equally Effective	Moderately Effective	Effective	Very Effective	Extremely Effective	
MS MapPoint	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	ARC GIS

Questionnaire 3

(This questionnaire is designed for process 5.1.1 of the TSS methodology for case study IV.)

Please answer all questions. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria in terms of their importance for achieving the goal.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Important / (1)" means that the two criteria are considered equally important; the answer options on the right side of it mean that the criterion on the right side is considered more important with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more important with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad
Number of questions: 10

End time: \qquad
Duration: \qquad

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
Tracking technology	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square \square	$\begin{aligned} & \text { (7) } \\ & \square \\ & \hline \end{aligned}$	$\begin{aligned} & \text { (9) } \\ & \square \\ & \hline \end{aligned}$	PDA software platform
Tracking technology	(9) \square	(7) \square	$\begin{aligned} & (5) \\ & \square \end{aligned}$	$\begin{aligned} & \text { (3) } \\ & \square \\ & \hline \end{aligned}$	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	Database management system
Tracking technology	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	User interface (portal app.)
Tracking technology	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	User interface (PDA app.)
PDA software platform	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square		$\begin{aligned} & (5) \\ & \square \end{aligned}$	$\begin{aligned} & \text { (7) } \\ & \square \end{aligned}$	(9) \square	Database management system
PDA software platform	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	User interface (portal app.)

PDA software platform	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	$\begin{gathered} \text { (5) } \\ \square \end{gathered}$	(7) \square	(9) \square	User interface (PDA app.)
Database management system	(9) \square	(7) \square	$\begin{gathered} (5) \\ \square \end{gathered}$	(3) \square	(1) \square	(3) \square	(5)	(7) \square	(9)	User interface (portal app.)
Database management system	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	$\begin{aligned} & (5) \\ & \square \end{aligned}$	(7) \square	(9)	User interface (PDA app.)
User interface (portal app.)	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9)	User interface (PDA app.)

Questionnaire 4

(This questionnaire is designed for process 5.1 .1 (round 2) of the TSS methodology for case study IV.)

Please answer all questions. Please select one and only one answer by ticking the box below it. *The answer should indicate the comparison between two criteria in terms of their importance for achieving the goal.

* Hints: The number in the bracket of every answer option indicates the amount of importance. The answer option "Equally Important / (1)" means that the two criteria are considered equally important; the answer options on the right side of it mean that the criterion on the right side is considered more important with the amount indicated by the selected answer; similarly, the answer options on the left side of it mean that the criterion on the left side is considered more important with the amount indicated by the selected answer.

Please mark the time (up to minute) that you started and finished the questionnaire:

Start time: \qquad
Number of questions: 5 \qquad
\qquad
End time: \qquad Duration: \qquad

	Extremely Important	Very Important	Important	Moderately Important	Equally Important	Moderately Important	Important	Very Important	Extremely Important	
Tracking technology	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GIS technology
PDA software platform	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GIS technology
Database management system	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	$\begin{aligned} & \text { (9) } \\ & \square \end{aligned}$	GIS technology
User interface (portal app.)	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GIS technology
User interface (PDA app.)	(9) \square	(7) \square	(5) \square	(3) \square	(1) \square	(3) \square	(5) \square	(7) \square	(9) \square	GIS technology

APPENDIX J - PHASE 5 RESUTLS FOR CASE STUDY III

Appendix J documents the phase 5 results for the case study III. With ranking of alternatives for each solution components obtained in phase 4 , phase 5 attempts to obtain the ranking of relative importance between the solution components, and consequently identify potential solutions and finally obtain the ranking of potential solutions.

This document is divided into two sections for outlining the results of step 5.1 and step 5.2 respectively.

The first section contains the PCMs resulted from process 5.1.1 and process 5.1.2, the consistency ratios as the consistency test results in process 5.1.3, the fuzzified PCMs resulted from process 5.1.7, the synthetic extents as the results of process 5.1.5, the weight vectors and thereby rankings of relative importance of solution components resulted from process 4.1.6.

The second section lists the potential solutions with its solution component contents, and outlines the mathematical process for obtaining the final integrated result - the ranking of potential solutions.

1. Step 5.1

Process 5.1.2

$M=$						
	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}
C_{1}	1	5	9	3	7	7
C_{2}	$1 / 5$	1	3	$1 / 3$	5	3
C_{3}	$1 / 9$	$1 / 3$	1	$1 / 5$	$1 / 3$	$1 / 3$
C_{4}	$1 / 3$	3	5	1	5	5
C_{5}	$1 / 7$	$1 / 5$	3	$1 / 5$	1	1
C_{5}	$1 / 7$	$1 / 3$	3	$1 / 5$	1	1

C_{1} : tracking technology
C_{2} : software platform (intranet application)
C_{3} : software platform (internet application)
C_{4} : data management
C_{5} : user interface (customer reporting)
C_{6} : user interface (other intranet application)

Process 5.1.3

M is considered consistent for the consistency ratio ($C R$) valued 0.0874 , less than 0.100 .

Process 5.1.4

$M^{\prime}=$					
C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}
$C_{1}(1,1,3)$	$(3,5,7)$	$(7,9,9)$	$(1,3,5)$	$(5,7,9)$	$(5,7,9)$
$C_{2} 1 /(3,5,7)$	$(1,1,3)$	$(1,3,5)$	$1 /(1,3,5)$	$(3,5,7)$	$(1,3,5)$
$C_{3} 1 /(7,9,9)$	$1 /(1,3,5)$	$(1,1,3)$	$1 /(3,5,7)$	$1 /(1,3,5)$	$1 /(1,3,5)$
$C_{4} 1 /(1,3,5)$	$(1,3,5)$	$(3,5,7)$	$(1,1,3)$	$(3,5,7)$	$(3,5,7)$
$C_{5} 1 /(5,7,9)$	$1 /(3,5,7)$	$(1,3,5)$	$1 /(3,5,7)$	$(1,1,3)$	$(1,3,5)$
$C_{6} 1 /(5,7,9)$	$1 /(1,3,5)$	$(1,3,5)$	$1 /(3,5,7)$	$1 /(1,3,5)$	$(1,1,3)$

Process 5.1.5
$S_{1}=(0.1344,0.3351,0.8639), \quad S_{2}=(0.0538,0.1769,0.5280)$,
$S_{3}=(0.0158,0.0335,0.1600), \quad S_{4}=(0.0952,0.2793,0.7199)$,
$S_{5}=(0.0285,0.1053,0.3328), \quad S_{6}=(0.0223,0.0699,0.2528)$.

Process 5.1.6
$W^{\prime}=(1.0000,0.7132,0.0783,0.9129,0.4633,0.3087)^{\mathrm{T}}$.
$W=(0.3762,0.2683,0.0295,0.3434,0.1743,0.1161)^{\top}$.

Table J. 1 Ranking for solution components

Ranking	Solution components $\left(C_{\mathrm{i}}\right)$	Weight vector $\left(v_{\mathrm{i}}\right)$
1	C_{1} Tracking technology	0.3762
2	C_{4} Data management	0.3434
3	C_{2} Software platform (intranet application)	0.2683
4	C_{5} User interface (customer reporting)	0.1743
5	C_{6} User interface (other intranet	0.1161

	application)	
6	C_{3} Software platform (internet application)	0.0295

2. Step 5.2

Alternatives for solution components are denoted as below.

Table J. 2 Solution component and alternative summary

Solution components $\left(C_{\mathrm{i}}\right)$	Alternatives $\left(A_{\mathrm{ij}}\right)$		
C_{1} Tracking technology	A_{11} Barcode,		
	A_{12} RFID,		
	A_{13} GPS.		
C_{2} Software platform (intranet application)	A_{21} Adobe AIR,		
	A_{22} MS .Net,		
	A_{23} Java.		
C_{3} Software platform (internet application)	A_{31} Adobe AIR,		
	A_{32} MS .Net,		
C_{4} Data management	A_{33} Java.		
C_{5} User interface (customer reporting)	A_{41} Oracle 10g,		
	A_{42} MS SQL 2000.		
C_{6} User interface (other intranet	A_{52} GUI.		
application)		\quad	51
:---			

Potential solutions are denoted by $P S_{\mathrm{k}}$ which contains a set of solution components ($A_{\mathrm{k}, 1}, A_{\mathrm{k}, 2}, A_{\mathrm{k}, 3}, A_{\mathrm{k}, 4}, A_{\mathrm{k}, 5}, A_{\mathrm{k}, 6}$.). As indicated by compatibility analysis, all alternatives shown in above table are compatible with all alternatives of other solution components. There are 216 potential solutions exist. They are listed below.

Table J. 3 Potential solution summary

Potential solutions $\left(P S_{\mathrm{k}}\right)$	Contents $\left(A_{\mathrm{k}, 1}, A_{\mathrm{k}, 2}, A_{\mathrm{k}, 3}, A_{\mathrm{k}, 4}, A_{\mathrm{k}, 5}, A_{\mathrm{k}, 6}\right)$	Potential solutions $\left(P S_{\mathrm{k}}\right)$	Contents $\left(A_{\mathrm{k}, 1}, A_{\mathrm{k}, 2}, A_{\mathrm{k}, 3}, A_{\mathrm{k}, 4}, A_{\mathrm{k}, 5}, A_{\mathrm{k}, 6}\right)$
$P S_{1}$	$A_{11}, A_{21}, A_{31}, A_{41}, A_{51}, A_{61}$.	$P S_{2}$	$A_{11}, A_{21}, A_{31}, A_{41}, A_{51}, A_{62}$.
$P S_{3}$	$A_{11}, A_{21}, A_{31}, A_{41}, A_{52}, A_{61}$.	$P S_{4}$	$A_{11}, A_{21}, A_{31}, A_{41}, A_{52}, A_{62}$.
$P S_{5}$	$A_{11}, A_{21}, A_{31}, A_{42}, A_{51}, A_{61}$.	$P S_{6}$	$A_{11}, A_{21}, A_{31}, A_{42}, A_{51}, A_{62}$.

P^{-1}	$A_{11}, A_{21}, A_{31}, A_{42}, A_{52}, A_{61}$.	PS_{8}	$A_{11}, A_{21}, A_{31}, A_{42}, A_{52}, A_{62}$.
${ }_{P S} S_{9}$	$A_{11}, A_{21}, A_{32}, A_{41}, A_{51}, A_{61}$.	$P S_{10}$	$A_{11}, A_{21}, A_{32}, A_{41}, A_{51}, A_{62}$.
$P^{P} S_{11}$	$A_{11}, A_{21}, A_{32}, A_{41}, A_{52}, A_{61}$.	$P S_{12}$	$A_{11}, A_{21}, A_{32}, A_{41}, A_{52}, A_{62}$.
$P S_{13}$	$A_{11}, A_{21}, A_{32}, A_{42}, A_{51}, A_{61}$.	$P S_{14}$	$\frac{A_{11}, A_{21}, A_{32}, A_{42}, A_{11}, A_{62} .}{A_{11}, A_{21}, A_{32}, A_{42}, A_{52}, A_{62} .}$
$P S_{15}$	$A_{11}, A_{21}, A_{32}, A_{42}, A_{52}, A_{61}$.	$\frac{P S_{16}}{P S_{18}}$	$\frac{A_{11}, A_{21}, A_{32}, A_{42}, A_{32},{ }_{\text {a }}}{A_{11}, A_{21}, A_{33}, A_{41}, A_{51}, A_{62} .}$
$P S_{17}$	$A_{11}, A_{21}, A_{33}, A_{41}, A_{51}, A_{61}$.	$\frac{P S_{18}}{P S_{20}}$	$A_{11}, A_{21}, A_{33}, A_{41}, A_{51}, A_{21}, A_{33}, A_{41}, A_{52}, A_{62}$.
PS ${ }_{19}$	$A_{11}, A_{21}, A_{33}, A_{41}, A_{52}, A_{61}$.	$\frac{P S_{20}}{P S_{22}}$	$\frac{A_{11}, A_{21}, A_{33}, A_{41}, A_{52}, A_{62}}{A_{11}, A_{21}, A_{33}, A_{42}, A_{51}, A_{62} .}$
$P S_{21}$	$A_{11}, A_{21}, A_{33}, A_{42}, A_{51}, A_{61}$.	$\frac{P S_{22}}{P S_{24}}$	$A_{11}, A_{21}, A_{33}, A_{42}, A_{52}, A_{62}$.
PS_{23}	$A_{11}, A_{21}, A_{33}, A_{42}, A_{52}, A_{61}$.	$\frac{P S_{24}}{P S_{26}}$	$A_{11}, A_{22}, A_{31}, A_{41}, A_{51}, A_{62}$.
$P S_{25}$	$A_{11}, A_{22}, A_{31}, A_{41}, A_{51}, A_{61}$.	${ }_{P S} \mathrm{PS}_{28}$	$A_{11}, A_{22}, A_{31}, A_{41}, A_{52}, A_{62}$.
$P S_{27}$	$A_{11}, A_{22}, A_{31}, A_{41}, A_{52}, A_{61}$.	PS_{30}	$A_{11}, A_{22}, A_{31}, A_{42}, A_{51}, A_{62}$.
$P S_{29}$	$A_{11}, A_{22}, A_{31}, A_{42}, A_{51}, A_{61}$.	${ }_{P S} S_{32}$	$A_{11}, A_{22}, A_{31}, A_{42}, A_{52}, A_{62}$.
PS_{31}	$A_{11}, A_{22}, A_{31}, A_{42}, A_{52}, A_{61}$.	${ }_{P S} S_{34}$	$A_{11}, A_{22}, A_{32}, A_{41}, A_{51}, A_{62}$.
$P^{\prime} S_{33}$	$A_{11}, A_{22}, A_{32}, A_{41}, A_{51}, A_{61}$.	$P S_{36}$	$A_{11}, A_{22}, A_{32}, A_{41}, A_{52}, A_{62}$.
$P S_{35}$	$A_{11}, A_{22}, A_{32}, A_{41}, A_{52}, A_{61}$.	${ }_{P S} \mathrm{PS}_{38}$	$A_{11}, A_{22}, A_{32}, A_{42}, A_{51}, A_{62}$.
$P S_{37}$	$A_{11}, A_{22}, A_{32}, A_{42}, A_{51}, A_{61}$.	${ }_{P S} S_{40}$	$A_{11}, A_{22}, A_{32}, A_{42}, A_{52}, A_{62}$.
$P S_{39}$	$A_{11}, A_{22}, A_{32}, A_{42}, A_{52}, A_{61}$.	$\frac{P S_{40}}{P S_{42}}$	$A_{11}, A_{22}, A_{33}, A_{41}, A_{51}, A_{62}$.
P^{-1}	$A_{11}, A_{22}, A_{33}, A_{41}, A_{51}, A_{61}$.	$\frac{P S_{42}}{P S_{44}}$	$A_{11}, A_{22}, A_{33}, A_{41}, A_{52}, A_{62}$.
$P^{P S} S_{43}$	$A_{11}, A_{22}, A_{33}, A_{41}, A_{52}, A_{61}$.	$\frac{P S_{44}}{P S_{46}}$	$A_{11}, A_{22}, A_{33}, A_{42}, A_{51}, A_{62}$.
$P S_{45}$	$A_{11}, A_{22}, A_{33}, A_{42}, A_{51}, A_{61}$.	${ }_{P S S_{48}}$	$A_{11}, A_{22}, A_{33}, A_{42}, A_{52}, A_{62}$.
PS 47	$\frac{A_{11}, A_{22}, A_{33}, A_{42}, A_{52}, A_{61} .}{}$	$\frac{P S_{48}}{P}$	$A_{11}, A_{23}, A_{31}, A_{41}, A_{51}, A_{62}$.
$P S_{49}$	$A_{11}, A_{23}, A_{31}, A_{41}, A_{51}, A_{61}$.	${ }_{P S} S_{52}$	$A_{11}, A_{23}, A_{31}, A_{41}, A_{52}, A_{62}$.
$P S_{51}$	$\frac{A_{11}, A_{23}, A_{31}, A_{41}, A_{52}, A_{61} .}{A_{11}, A_{23}, A_{31}, A_{42}, A_{51}, A_{61} .}$	${ }_{P S}{ }_{\text {S }}$	$A_{11}, A_{23}, A_{31}, A_{42}, A_{51}, A_{62}$.
$P^{P S 5}$	$\frac{A_{11}, A_{23}, A_{31}, A_{42}, A_{51}, A_{61} .}{} A_{11}, A_{23}, A_{31}, A_{42}, A_{52}, A_{61}$.	${ }_{P S 5}$	$A_{11}, A_{23}, A_{31}, A_{42}, A_{52}, A_{62}$.
PS Ss	$\frac{A_{11}, A_{23}, A_{31}, A_{42}, A_{52}, A_{61} .}{A_{11}, A_{23}, A_{32}, A_{41}, A_{51}, A_{61} .}$	${ }_{P S 58}$	$A_{11}, A_{23}, A_{32}, A_{41}, A_{51}, A_{62}$.
PS 57	$\frac{A_{11}, A_{23}, A_{32}, A_{41}, A_{51}, A_{61} .}{A_{41}, A_{23}, A_{32}, A_{41}, A_{52}, A_{61} .}$	$\stackrel{P}{P S_{60}}$	$A_{11}, A_{23}, A_{32}, A_{41}, A_{52}, A_{62}$.
${ }_{P S} S_{59}$	$\frac{A_{11}, A_{23}, A_{32}, A_{41}, A_{52}, A_{61} .}{A_{11}, A_{23}, A_{32}, A_{42}, A_{51}, A_{61} .}$	$\frac{P S_{60}}{P S_{62}}$	$A_{11}, A_{23}, A_{32}, A_{42}, A_{51}, A_{62}$.
$P S_{61}$	$\frac{A_{11}, A_{23}, A_{32}, A_{42}, A_{51}, A_{61} .}{A_{11}, A_{23}, A_{32}, A_{42}, A_{52}, A_{61} .}$	$P S_{64}$	$A_{11}, A_{23}, A_{32}, A_{42}, A_{52}, A_{62}$.
$\frac{P S_{63}}{}$	$\frac{A_{11}, A_{23}, A_{32}, A_{42}, A_{52}, A_{61} .}{A_{11}, A_{23}, A_{33}, A_{41}, A_{51}, A_{61} .}$	$P S_{66}$	$A_{11}, A_{23}, A_{33}, A_{41}, A_{51}, A_{62}$.
PS ${ }^{\text {P5 }}$	$\frac{A_{11}, A_{23}, A_{33}, A_{41}, A_{51}, A_{61} .}{A_{11}, A_{23}, A_{33}, A_{41}, A_{52}, A_{61} .}$	$P S_{68}$	$A_{11}, A_{23}, A_{33}, A_{41}, A_{52}, A_{62}$.
$\frac{P S_{67}}{}$	$\frac{A_{11}, A_{23}, A_{33}, A_{41}, A_{52}, A_{61} .}{A_{11}, A_{23}, A_{33}, A_{42}, A_{51}, A_{61} .}$	$P S_{70}$	$A_{11}, A_{23}, A_{33}, A_{42}, A_{51}, A_{62}$.
$\frac{P S_{69}}{}$	$\frac{A_{11}, A_{23}, A_{33}, A_{42}, A_{51}, A_{61} .}{A_{11}, A_{23}, A_{33}, A_{42}, A_{52}, A_{61} .}$	${ }_{P S} S_{72}$	$A_{11}, A_{23}, A_{33}, A_{42}, A_{52}, A_{62}$.
$\frac{P S_{71}}{P}$	$\frac{A_{11}, A_{23}, A_{33}, A_{42}, A_{52}, A_{61} .}{A_{12}, A_{21}, A_{31}, A_{41}, A_{51}, A_{61} .}$	$P S_{74}$	$A_{12}, A_{21}, A_{31}, A_{41}, A_{51}, A_{62}$.
$\frac{P S_{73}}{} \frac{P S_{75}}{}$	$\frac{A_{12}, A_{21}, A_{31}, A_{41}, A_{51}, A_{61} .}{A_{12}, A_{21}, A_{31}, A_{41}, A_{52}, A_{61} .}$	$P S_{76}$	$A_{12}, A_{21}, A_{31}, A_{41}, A_{52}, A_{62}$.
$\frac{P S_{75}}{}$	$\frac{A_{12}, A_{21}, A_{31}, A_{41}, A_{52}, A_{61} .}{A_{12}, A_{21}, A_{31}, A_{42}, A_{51}, A_{61} .}$	$P^{P} S_{78}$	$A_{12}, A_{21}, A_{31}, A_{42}, A_{51}, A_{62}$.
$P^{P S} S_{71}$	$\frac{A_{12}, A_{21}, A_{31}, A_{42}, A_{51}, A_{61} .}{A_{12}, A_{21}, A_{31}, A_{42}, A_{52}, A_{61}}$	$P S_{80}$	$A_{12}, A_{21}, A_{31}, A_{42}, A_{52}, A_{62}$.

PS ${ }_{\text {15S }}$	$A_{13}, A_{21}, A_{32}, A_{41}, A_{52}, A_{61}$.	$P S_{156}$	$A_{13}, A_{21}, A_{32}, A_{41}, A_{52}, A_{62}$.
$P S_{157}$	$A_{13}, A_{21}, A_{32}, A_{42}, A_{51}, A_{61}$.	$P S_{158}$	$A_{13}, A_{21}, A_{32}, A_{42}, A_{51}, A_{62}$.
PS 159	$A_{13}, A_{21}, A_{32}, A_{42}, A_{52}, A_{61}$.	$P S_{160}$	$A_{13}, A_{21}, A_{32}, A_{42}, A_{52}, A_{62}$.
PS 161	$A_{13}, A_{21}, A_{33}, A_{41}, A_{51}, A_{61}$.	$P S_{162}$	$A_{13}, A_{21}, A_{33}, A_{41}, A_{51}, A_{62}$.
PS ${ }_{163}$	$A_{13}, A_{21}, A_{33}, A_{41}, A_{52}, A_{61}$.	$P S_{164}$	$A_{13}, A_{21}, A_{33}, A_{41}, A_{52}, A_{62}$.
PS ${ }_{165}$	$A_{13}, A_{21}, A_{33}, A_{42}, A_{51}, A_{61}$.	$P S_{166}$	$A_{13}, A_{21}, A_{33}, A_{42}, A_{51}, A_{62}$.
$P S_{167}$	$A_{13}, A_{21}, A_{33}, A_{42}, A_{52}, A_{61}$.	$P S_{168}$	$A_{13}, A_{21}, A_{33}, A_{42}, A_{52}, A_{62}$.
$P S_{169}$	$A_{13}, A_{22}, A_{31}, A_{41}, A_{51}, A_{61}$.	$P S_{170}$	$A_{13}, A_{22}, A_{31}, A_{41}, A_{51}, A_{62}$.
$P S_{171}$	$A_{13}, A_{22}, A_{31}, A_{41}, A_{52}, A_{61}$.	$P S_{172}$	$A_{13}, A_{22}, A_{31}, A_{41}, A_{52}, A_{62}$.
$P S_{173}$	$A_{13}, A_{22}, A_{31}, A_{42}, A_{51}, A_{61}$.	$P S_{174}$	$A_{13}, A_{22}, A_{31}, A_{42}, A_{51}, A_{62}$.
$P S_{175}$	$A_{13}, A_{22}, A_{31}, A_{42}, A_{52}, A_{61}$.	$P S_{176}$	$A_{13}, A_{22}, A_{31}, A_{42}, A_{52}, A_{62}$.
$P S_{177}$	$A_{13}, A_{22}, A_{32}, A_{41}, A_{51}, A_{61}$.	$P S_{178}$	$A_{13}, A_{22}, A_{32}, A_{41}, A_{51}, A_{62}$.
$P S_{179}$	$A_{13}, A_{22}, A_{32}, A_{41}, A_{52}, A_{61}$.	$P S_{180}$	$A_{13}, A_{22}, A_{32}, A_{41}, A_{52}, A_{62}$.
$P S_{181}$	$A_{13}, A_{22}, A_{32}, A_{42}, A_{51}, A_{61}$.	$P S_{182}$	$A_{13}, A_{22}, A_{32}, A_{42}, A_{51}, A_{62}$.
$P S_{183}$	$A_{13}, A_{22}, A_{32}, A_{42}, A_{52}, A_{61}$.	$P S_{184}$	$A_{13}, A_{22}, A_{32}, A_{42}, A_{52}, A_{62}$.
$P S_{185}$	$A_{13}, A_{22}, A_{33}, A_{41}, A_{51}, A_{61}$.	$P S_{186}$	$A_{13}, A_{22}, A_{33}, A_{41}, A_{51}, A_{62}$.
$P S_{187}$	$A_{13}, A_{22}, A_{33}, A_{41}, A_{52}, A_{61}$.	$P S_{188}$	$A_{13}, A_{22}, A_{33}, A_{41}, A_{52}, A_{62}$.
PS ${ }_{189}$	$A_{13}, A_{22}, A_{33}, A_{42}, A_{51}, A_{61}$.	$P S_{190}$	$A_{13}, A_{22}, A_{33}, A_{42}, A_{51}, A_{62}$.
$P S_{191}$	$A_{13}, A_{22}, A_{33}, A_{42}, A_{52}, A_{61}$.	$P S_{192}$	$A_{13}, A_{22}, A_{33}, A_{42}, A_{52}, A_{62}$.
$P S_{193}$	$A_{13}, A_{23}, A_{31}, A_{41}, A_{51}, A_{61}$.	$P S_{194}$	$A_{13}, A_{23}, A_{31}, A_{41}, A_{51}, A_{62} .$
$P S_{195}$	$A_{13}, A_{23}, A_{31}, A_{41}, A_{52}, A_{61}$.	$P S_{196}$	$A_{13}, A_{23}, A_{31}, A_{41}, A_{52}, A_{62}$.
PS ${ }_{197}$	$A_{13}, A_{23}, A_{31}, A_{42}, A_{51}, A_{61}$.	$P S_{198}$	$A_{13}, A_{23}, A_{31}, A_{42}, A_{51}, A_{62}$.
PS ${ }_{199}$	$A_{13}, A_{23}, A_{31}, A_{42}, A_{52}, A_{61}$.	$P S_{200}$	$A_{13}, A_{23}, A_{31}, A_{42}, A_{52}, A_{62}$.
${ }^{P} S_{201}$	$A_{13}, A_{23}, A_{32}, A_{41}, A_{51}, A_{61} .$	$P S_{202}$	$A_{13}, A_{23}, A_{32}, A_{41}, A_{51}, A_{62}$.
${ }^{P S_{203}}$	$A_{13}, A_{23}, A_{32}, A_{41}, A_{52}, A_{61} .$	$P S_{204}$	$A_{13}, A_{23}, A_{32}, A_{41}, A_{52}, A_{62}$.
$P S_{205}$	$A_{13}, A_{23}, A_{32}, A_{42}, A_{51}, A_{61}$	$P S_{206}$	$A_{13}, A_{23}, A_{32}, A_{42}, A_{51}, A_{62}$.
$P S_{207}$	$A_{13}, A_{23}, A_{32}, A_{42}, A_{52}, A_{61}$.	$P S_{208}$	$A_{13}, A_{23}, A_{32}, A_{42}, A_{52}, A_{62}$.
${ }^{P} S_{209}$	$A_{13}, A_{23}, A_{33}, A_{41}, A_{51}, A_{61}$.	$P S_{210}$	$A_{13}, A_{23}, A_{33}, A_{41}, A_{51}, A_{62}$.
$P^{P} S_{211}$	$A_{13}, A_{23}, A_{33}, A_{41}, A_{52}, A_{61}$.	$P S_{212}$	$A_{13}, A_{23}, A_{33}, A_{41}, A_{52}, A_{62}$.
PS ${ }^{213}$	$A_{13}, A_{23}, A_{33}, A_{42}, A_{51}, A_{61}$.	$P S_{214}$	$A_{13}, A_{23}, A_{33}, A_{42}, A_{51}, A_{62}$.
PS ${ }_{215}$	$A_{13}, A_{23}, A_{33}, A_{42}, A_{52}, A_{61}$.	$P S_{216}$	$A_{13}, A_{23}, A_{33}, A_{42}, A_{52}, A_{62}$.

Ranking of the relative importance of the potential solutions can be achieved by integrating the relative effectiveness of the containing alternatives. Two steps are involved in this: 1) transform the priority weight of the alternatives into comparison score; 2) find the priority weight of potential solutions with the comparison scores of alternatives and the weight vectors of solution component.

The following equation can be used to transform the priority weights (w_{ij}) into comparison score ($w_{\mathrm{ij}}{ }^{\prime}$).
$w_{i j}{ }^{\prime}=w_{i \mathrm{ij}} / \sum_{l} w_{\mathrm{ij}}$

Table J. 4 shows the normalized priority weight of alternatives.

Table J. 4 Comparison scores of alternatives

Solution components $\left(C_{\mathrm{i}}\right)$	Alternatives $\left(A_{\mathrm{ij}}\right)$	Priority weight $\left(w_{\mathrm{ij}}\right)$	Comparison score $\left(w_{\mathrm{ij}}\right)$
	A_{11} Barcode	0.6484	0.4115
	A_{12} RFID	0.5196	0.3298
	A_{13} GPS	0.4077	0.2587
C_{2}	A_{21} Adobe AIR	0.2255	0.1580
	A_{22} MS .Net	0.7211	0.5054
	A_{23} Java	0.4802	0.3366
	A_{31} Adobe AIR	0.4733	0.2937
	A_{32} MS .Net	0.6328	0.3926
	A_{33} Java	0.5056	0.3137
C_{4}	A_{41} Oracle 10g	0.8102	0.5860
	A_{42} MS SQL 2000	0.5725	0.4140
	A_{51} Web-based UI	0.6926	0.4785
	A_{52} GUI	0.7548	0.5215
C_{6}	A_{61} Web-based UI	1.1659	0.8207
	A_{62} GUI	0.2548	0.1793

Therefore, ranking of the relative importance of the potential solution can be obtained by finding their priority weight (w_{k}). The priority weight is simply the sum of the priority weights multiplies with the respective weight vector of the containing alternatives. It can be expressed with formula below.
$w_{\mathrm{k}}=\sum,\left(w_{\mathrm{k}, \mathrm{i}}{ }^{*} v_{i}\right)$
For example, priority weight of $P S_{1}$ can be found as below:

$$
\begin{aligned}
w_{1}= & \left(w_{11}^{\prime} * v_{1}\right)+\left(w_{21}^{\prime} * v_{2}\right)+\left(w_{31}^{\prime} * v_{3}\right)+\left(w^{\prime}{ }_{41} * v_{4}\right)+\left(w_{51} * v_{5}\right)+\left(w_{61}^{\prime} * v_{6}\right) \\
= & (0.4115 * 0.3762)+(0.1580 * 0.2683)+(0.2937 * 0.0295)+(0.5860 * 0.3434) \\
& +(0.4785 * 0.1743)+(0.8207 * 0.1161)
\end{aligned}
$$

Table J. 5 shows the priority weights of the potential solutions.

Table J. 5 Priority weight of potential solutions

Potential solutions ($P S_{\mathrm{k}}$)	Priority weight (w_{k})	Potential solutions ($P S_{\mathrm{k}}$)	Priority weight (w_{k})
$P S_{1}$	0.5858	$P S_{2}$	0.5113
$P S_{3}$	0.5933	$P S_{4}$	0.5188
$P S_{5}$	0.5267	$P S_{6}$	0.4522
$P S_{7}$	0.5342	$P S_{8}$	0.4597
$P S_{9}$	0.5887	$P S_{10}$	0.5142
$P S_{11}$	0.5962	$P S_{12}$	0.5217
$P S_{13}$	0.5296	$P S_{14}$	0.4552
$P S_{15}$	0.5342	$P S_{16}$	0.4627
$P S_{17}$	0.5864	$P S_{18}$	0.5119
$P S_{19}$	0.5939	$P S_{20}$	0.5194
$P S_{21}$	0.5273	$P S_{22}$	0.4528
$P S_{23}$	0.5348	$P S_{24}$	0.4603
$P S_{25}$	0.6790	$P S_{26}$	0.6045
$P S_{27}$	0.6865	$P S_{28}$	0.6120
$P S_{29}$	0.6199	$P S_{30}$	0.5455
$P S_{31}$	0.6274	$P S_{32}$	0.5530
$P^{P} S_{33}$	0.6819	$P S_{34}$	0.6074
$P S_{35}$	0.6894	$P S_{36}$	0.6149
PS_{37}	0.6228	$P S_{38}$	0.5484
$P S_{39}$	0.6274	$P S_{40}$	0.5559
$P S_{41}$	0.6796	$P S_{42}$	0.6051
$P S_{43}$	0.6871	$P S_{44}$	0.6126
$P S_{45}$	0.6205	$P S_{46}$	0.5460
$P S_{47}$	0.6280	$P S_{48}$	0.5535
PS 49	0.6337	$P S_{50}$	0.5592
$P S_{51}$	0.6412	$P S_{52}$	0.5667
$P^{P} S_{53}$	0.5746	$P S_{54}$	0.5002
$P S_{55}$	0.5821	$P S_{56}$	0.5077
$P^{+1} S_{57}$	0.6366	$P S_{58}$	0.5621
$P S_{59}$	0.6441	$P S_{60}$	0.5696

$P S_{61}$	0.5776	$P S_{62}$	0.5031
$P S_{63}$	0.5821	$P S_{64}$	0.5106
$P S_{65}$	0.6343	$P S_{66}$	0.5598
$P S_{67}$	0.6418	$P S_{68}$	0.5673
$P S_{69}$	0.5752	$P S_{70}$	0.5008
$P S_{71}$	0.5827	$P S_{72}$	0.5083
$P S_{73}$	0.5550	$P S_{74}$	0.4806
$P S_{75}$	0.5625	$P S_{76}$	0.4881
$P S_{77}$	0.4960	$P S_{78}$	0.4215
$P S_{79}$	0.5035	$P S_{80}$	0.4290
$P S_{81}$	0.5580	$P S_{82}$	0.4835
$P S_{83}$	0.5655	$P S_{84}$	0.4910
$P S_{85}$	0.4989	$P S_{86}$	0.4244
$P S_{87}$	0.5035	$P S_{88}$	0.4319
$P S_{89}$	0.5556	$P S_{90}$	0.4812
$P S_{91}$	0.5631	$P S_{92}$	0.4887
$P S_{93}$	0.4966	PS ${ }_{94}$	0.4221
PS 9_{95}	0.5041	$P S_{96}$	0.4296
PS S_{97}	0.6483	PS ${ }_{98}$	0.5738
PS S_{99}	0.6557	$P S_{100}$	0.5813
$P S_{101}$	0.5892	$P S_{102}$	0.5147
$P S_{103}$	0.5967	$P S_{104}$	0.5222
$P S_{105}$	0.6512	$P S_{106}$	0.5767
$P S_{107}$	0.6587	$P S_{108}$	0.5842
$P S_{109}$	0.5921	$P S_{110}$	0.5176
$P S_{111}$	0.5967	$P S_{112}$	0.5251
$P S_{113}$	0.6488	$P S_{114}$	0.5744
$P S_{115}$	0.6563	$P S_{116}$	0.5819
$P S_{117}$	0.5898	$P S_{118}$	0.5153
$P S_{119}$	0.5973	$P S_{120}$	0.5228
$P S_{121}$	0.6030	$P S_{122}$	0.5285
$P S_{123}$	0.6105	$P S_{124}$	0.5360
$P S_{125}$	0.5439	$P S_{126}$	0.4694
$P S_{127}$	0.5514	$P S_{128}$	0.4769
$P S_{129}$	0.6059	$P S_{130}$	0.5314
$P S_{131}$	0.6134	$P S_{132}$	0.5389
$P S_{133}$	0.5468	$P S_{134}$	0.4723

$P S_{135}$	0.5514	$P S_{136}$	0.4798
$P S_{137}$	0.6036	$P S_{138}$	0.5291
$P S_{139}$	0.6110	$P S_{140}$	0.5366
$P S_{141}$	0.5445	$P S_{142}$	0.4700
$P S_{143}$	0.5520	$P S_{144}$	0.4775
$P S_{145}$	0.5283	$P S_{146}$	0.4538
$P S_{147}$	0.5358	$P S_{148}$	0.4613
$P S_{149}$	0.4692	$P S_{150}$	0.3948
$P S_{151}$	0.4767	$P S_{152}$	0.4023
$P S_{153}$	0.5312	$P S_{154}$	0.4567
$P S_{\text {IS }}$	0.5387	$P S_{156}$	0.4910
$P S_{157}$	0.4721	$P S_{158}$	0.3977
$P S_{159}$	0.4767	$P S_{160}$	0.4052
$P S_{161}$	0.5289	$P S_{162}$	0.4544
$P S_{163}$	0.5364	$P S_{164}$	0.4619
$P S_{165}$	0.4698	$P S_{166}$	0.3954
$P S_{167}$	0.4773	$P S_{168}$	0.4029
$P S_{169}$	0.6215	$P S_{170}$	0.5470
$P S_{171}$	0.6290	$P S_{172}$	0.5545
$P S_{173}$	0.5624	$P S_{174}$	0.4880
$P S_{175}$	0.5699	$P S_{176}$	0.4955
$P S_{177}$	0.6244	$P S_{178}$	0.5500
$P S_{179}$	0.6319	$P S_{180}$	0.5575
$P S_{181}$	0.5654	$P S_{182}$	0.4909
$P S_{183}$	0.5699	$P S_{184}$	0.4984
$P^{P S} 185$	0.6221	$P S_{186}$	0.5476
$P S_{187}$	0.6296	$P S_{188}$	0.5551
$P S_{189}$	0.5630	$P S_{190}$	0.4886
$P S_{191}$	0.5705	$P S_{192}$	0.4961
$P S_{193}$	0.5762	$P S_{194}$	0.5017
$P S_{195}$	0.5837	$P S_{196}$	0.5092
$P S_{197}$	0.5172	$P S_{198}$	0.4427
$P S_{199}$	0.5246	$P S_{200}$	0.4502
$P S_{201}$	0.5791	$P S_{202}$	0.5047
$P S_{203}$	0.5866	$P S_{204}$	0.5122
$P S_{205}$	0.5201	$P S_{206}$	0.4456
$P S_{207}$	0.5246	$P S_{208}$	0.4531

$P S_{209}$	0.5768	$P S_{210}$	0.5023
$P S_{211}$	0.5843	$P S_{212}$	0.5098
$P S_{213}$	0.5177	$P S_{214}$	0.4433
$P S_{215}$	0.5252	$P S_{216}$	0.4508

Therefore, below is the top ten ranked potential solutions according to table below.

Table J. 6 Top ten ranked potential solutions

Ranking	Potential solutions $\left(P S_{\mathrm{k}}\right)$	Priority weight $\left(w_{\mathrm{k}}\right)$	Alternatives $\left(A_{\mathrm{ij}}\right)$
1	$P S_{35}$	0.6894	A_{11} Barcode, A_{22} MS .Net, A_{32} MS .Net, A_{41} Oracle 10g, A_{52} GUI, A_{61} Web-based UI.
2	$P S_{43}$	0.6871	A_{11} Barcode, A_{22} MS .Net, A_{33} Java, A_{41} Oracle 10g,, A_{52} GUI, A_{61} Web-based UI.
3	$P S_{27}$	0.6865	A_{11} Barcode, A_{22} MS .Net, A_{31} Adobe AIR, A_{41} Oracle 10g, A_{52} GUI, A_{61} Web-based UI.
4	$P S_{33}$	0.6819	A_{11} Barcode, A_{22} MS .Net, A_{32} MS .Net, A_{41} Oracle 10g,, A_{51} Web-based UI, A_{61} Web-based UI.
5	$P P S_{41}$	0.6796	A_{11} Barcode, A_{22} MS .Net, A_{33} Java,

			A_{41} Oracle 10g, $A_{5 l}$ Web-based UI, A_{61} Web-based UI.
6	$P S_{25}$	0.6790	$A_{l l}$ Barcode, A_{22} MS .Net, A_{31} Adobe AIR, $A_{4 l}$ Oracle 10g, $A_{5 l}$ Web-based UI, A_{61} Web-based UI.
7	$P S_{107}$	0.6587	$\begin{array}{\|l} \hline A_{12} \text { RFID, } \\ A_{22} \text { MS .Net, } \\ A_{32} \text { MS .Net, } \\ A_{41} \text { Oracle } 10 \mathrm{~g}, \\ A_{52} \text { GUI, } \\ A_{61} \text { Web-based UI. } \end{array}$
8	$P S_{115}$	0.6563	$\begin{aligned} & \hline A_{12} \text { RFID, } \\ & A_{22} \text { MS .Net, } \\ & A_{33} \text { Java, } \\ & A_{41} \text { Oracle } 10 \mathrm{~g}, \\ & A_{52} \text { GUI, } \\ & A_{61} \text { Web-based UI. } \end{aligned}$
9	$P S_{99}$	0.6557	$\begin{aligned} & A_{12} \text { RFID, } \\ & A_{22} \text { MS .Net, } \\ & A_{31} \text { Adobe AIR, } \\ & A_{41} \text { Oracle } 10 \mathrm{~g}, \\ & A_{52} \text { GUI, } \\ & A_{61} \text { Web-based UI. } \end{aligned}$
10	$P S_{105}$	0.6512	$\begin{aligned} & \hline A_{12} \text { RFID, } \\ & A_{22} \text { MS .Net, } \\ & A_{32} \text { MS .Net, } \\ & A_{41} \text { Oracle } 10 \mathrm{~g}, \\ & A_{51} \text { Web-based UI, } \\ & A_{61} \text { Web-based UI. } \end{aligned}$

APPENDIX K - PHASE 5 RESULTS FOR CASE STUDY IV

Appendix K documents the phase 5 results for the case study IV. With ranking of alternatives for each solution components obtained in phase 4, phase 5 attempts to obtain the ranking of relative importance between the solution components, and consequently identify potential solutions and finally obtain the ranking of potential solutions.

This document is divided into two sections for outlining the results of step 5.1 and step 5.2 respectively.

The first section contains the PCMs resulted from process 5.1.1 and process 5.1.2, the consistency ratios as the consistency test results in process 5.1 .3 , the fuzzified PCMs resulted from process 5.1.4, the synthetic extents as the results of process 5.1.5, the weight vectors and thereby rankings of relative importance of solution components resulted from process 4.1.6.

The second section lists the potential solutions with its solution component contents, and outlines the mathematical process for obtaining the final integrated result - the ranking of potential solutions.

1. Step 5.1

Process 5.1.2

$M=$						
	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}
C_{1}	1	3	1	3	3	3
C_{2}	$1 / 3$	1	$1 / 5$	$1 / 3$	$1 / 3$	5
C_{3}	1	5	1	3	3	9
C_{4}	$1 / 3$	3	$1 / 3$	1	1	5
C_{5}	$1 / 3$	3	$1 / 3$	1	1	5
C_{5}	$1 / 3$	$1 / 5$	$1 / 9$	$1 / 5$	$1 / 5$	1

C_{1} : tracking technology
C_{2} : PDA software platform
C_{3} : database management system
C_{4} : user interface (portal application)
C_{5} : user interface (PDA application)
C_{6} : GIS technology

Process 5.1.3

M is considered consistent for the consistency ratio ($C R$) valued 0.091 , less than 0.100 .

Process 5.1.4

$M^{\prime}=$					
C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}
$C_{1}(1,1,3)$	$(1,3,5)$	$(1,1,3)$	$(1,3,5)$	$(1,3,5)$	$(1,3,5)$
$C_{2} 1 /(1,3,5)$	$(1,1,3)$	$1 /(3,5,7)$	$1 /(1,3,5)$	$1 /(1,3,5)$	$(3,5,7)$
$C_{3} 1 /(1,1,3)$	$(3,5,7)$	$(1,1,3)$	$(1,3,5)$	$(1,3,5)$	$(7,9,9)$
$C_{4} 1 /(1,3,5)$	$(1,3,5)$	$1 /(1,3,5)$	$(1,1,3)$	$(1,1,3)$	$(3,5,7)$
$C_{5} 1 /(1,3,5)$	$(1,3,5)$	$1 /(1,3,5)$	$1 /(1,1,3)$	$(1,1,3)$	$(3,5,7)$
$C_{6} 1 /(1,3,5)$	$1 /(3,5,7)$	$1 /(7,9,9)$	$1 /(3,5,7)$	$1 /(3,5,7)$	$(1,1,3)$

Process 5.1.5
$S_{1}=(0.0533,0.2103,0.6851), \quad S_{2}=(0.0422,0.1081,0.3513)$,
$S_{3}=(0.1185,0.3304,0.7905), \quad S_{4}=(0.0569,0.1602,0.5270)$,
$S_{5}=(0.0510,0.1602,0.4743), \quad S_{6}=(0.0155,0.0307,0.1355)$.

Process 5.1.6
$W^{\prime}=(0.8250,0.5115,1.0000,0.7058,0.6764,0.0536)^{\top}$.
$W=(0.2844,0.1763,0.3447,0.2433,0.2332,0.0185)^{\top}$.

Table K. 1 Ranking for solution components

Ranking	Solution components $\left(C_{\mathrm{i}}\right)$	Weight vector $\left(v_{\mathrm{i}}\right)$
1	C_{3} Database management system	0.3447
2	C_{1} Tracking technology	0.2844
3	C_{4} User interface (portal application)	0.2433
	C_{5} User interface (PDA application)	0.2332
5	C_{2} PDA software platform	0.1763

6	C_{6} GIS technology	0.0185

2. Step 5.2

Alternatives for solution components are denoted as below.

Table K. 2 Solution component and alternative summary

Solution components $\left(C_{\mathrm{i}}\right)$	Alternatives $\left(A_{\mathrm{ij}}\right)$
C_{1} Tracking technology	A_{11} GPS, A_{12} RFID.
C_{2} PDA software platform	A_{21} MS Windows Mobile, A_{22} Palm OS.
C_{3} Database management system	A_{31} Oracle 10 g, A_{32} MS SQL 2000.
C_{4} User interface (portal application)	A_{41} Web-based UI, A_{42} GUI.
C_{5} User interface (PDA application)	A_{51} Web-based UI, A_{52} GUI.
C_{6} GIS technology	A_{61} MS MapPoint, A_{62} ARC GIS..

Potential solutions are denoted by $P S_{\mathrm{k}}$ containing a set of solution components $\left(A_{\mathrm{k}, 1}\right.$, $A_{\mathrm{k}, 2}, A_{\mathrm{k}, 3}, A_{\mathrm{k}, 4}, A_{\mathrm{k}, 5}, A_{\mathrm{k}, 6}$.). As indicated by compatibility analysis, all alternatives shown in above table are compatible with all alternatives of other solution components. There are 64 potential solutions exist. They are listed below.

Table K. 3 Potential solution summary

Potential solutions ($P S_{\mathrm{k}}$)	$\begin{gathered} \text { Contents } \\ \left(A_{\mathrm{k}, 1}, A_{\mathrm{k}, 2}, A_{\mathrm{k}, 3}, A_{\mathrm{k}, 4,}, A_{\mathrm{k}, 5}, A_{\mathrm{k}, 6}\right) \end{gathered}$	Potential solutions ($P S_{\mathrm{k}}$)	$\begin{gathered} \text { Contents } \\ \left(A_{\mathrm{k}, 1}, A_{\mathrm{k}, 2}, A_{\mathrm{k}, 3}, A_{\mathrm{k}, 4}, A_{\mathrm{k}, 5,},\right. \\ \left.A_{\mathrm{k}, 6 .}\right) \end{gathered}$
$P S_{1}$	$A_{11}, A_{21}, A_{31}, A_{41}, A_{51}, A_{61}$.	$P S_{2}$	$A_{11}, A_{21}, A_{31}, A_{41}, A_{51}, A_{62}$.
$P S_{3}$	$A_{11}, A_{21}, A_{31}, A_{41}, A_{52}, A_{61}$.	$P S_{4}$	$A_{11}, A_{21}, A_{31}, A_{41}, A_{52}, A_{62}$.
$P S_{5}$	$A_{11}, A_{21}, A_{31}, A_{42}, A_{51}, A_{61}$.	$P S_{6}$	$A_{11}, A_{21}, A_{31}, A_{42}, A_{51}, A_{62}$.
$P S_{7}$	$A_{11}, A_{21}, A_{31}, A_{42}, A_{52}, A_{61}$.	$P S_{8}$	$A_{11}, A_{21}, A_{31}, A_{42}, A_{52}, A_{62}$.
PS S_{9}	$A_{11}, A_{21}, A_{32}, A_{41}, A_{51}, A_{61}$.	$P S_{10}$	$A_{11}, A_{21}, A_{32}, A_{41}, A_{51}, A_{62}$.
$P S_{11}$	$A_{11}, A_{21}, A_{32}, A_{41}, A_{52}, A_{61}$.	$P S_{12}$	$A_{11}, A_{21}, A_{32}, A_{41}, A_{52}, A_{62}$.
$P S_{13}$	$A_{11}, A_{21}, A_{32}, A_{42}, A_{51}, A_{61}$.	$P S_{14}$	$A_{11}, A_{21}, A_{32}, A_{42}, A_{51}, A_{62}$.
$P S_{15}$	$A_{11}, A_{21}, A_{32}, A_{42}, A_{52}, A_{61}$.	$P S_{16}$	$A_{11}, A_{21}, A_{32}, A_{42}, A_{52}, A_{62}$.

$P S_{17}$	$A_{11}, A_{22}, A_{31}, A_{41}, A_{51}, A_{61}$.	$P S_{18}$	$A_{11}, A_{22}, A_{31}, A_{41}, A_{51}, A_{62}$.
$P S_{19}$	$A_{11}, A_{22}, A_{31}, A_{41}, A_{52}, A_{61}$.	$P S_{20}$	$A_{11}, A_{22}, A_{31}, A_{41}, A_{52}, A_{62}$.
$P S_{21}$	$A_{11}, A_{22}, A_{31}, A_{42}, A_{51}, A_{61}$.	$P S_{22}$	$A_{11}, A_{22}, A_{31}, A_{42}, A_{51}, A_{62}$.
$P S_{23}$	$A_{11}, A_{22}, A_{31}, A_{42}, A_{52}, A_{61}$.	$P S_{24}$	$A_{11}, A_{22}, A_{31}, A_{42}, A_{52}, A_{62}$.
$P S_{25}$	$A_{11}, A_{22}, A_{32}, A_{41}, A_{51}, A_{61}$.	$P S_{26}$	$A_{11}, A_{22}, A_{32}, A_{41}, A_{51}, A_{62}$.
${ }^{P} S_{27}$	$A_{11}, A_{22}, A_{32}, A_{41}, A_{52}, A_{61}$.	$P S_{28}$	$A_{11}, A_{22}, A_{32}, A_{41}, A_{52}, A_{62}$.
$P S_{29}$	$A_{11}, A_{22}, A_{32}, A_{42}, A_{51}, A_{61}$.	$P S_{30}$	$A_{11}, A_{22}, A_{32}, A_{42}, A_{51}, A_{62}$.
$P S_{31}$	$A_{11}, A_{22}, A_{32}, A_{42}, A_{52}, A_{61}$.	$P S_{32}$	$A_{11}, A_{22}, A_{32}, A_{42}, A_{52}, A_{62}$.
$P S_{33}$	$A_{12}, A_{21}, A_{31}, A_{41}, A_{51}, A_{61}$.	$P S_{34}$	$A_{12}, A_{21}, A_{31}, A_{41}, A_{51}, A_{62}$.
$P S_{35}$	$A_{12}, A_{21}, A_{31}, A_{41}, A_{52}, A_{61}$.	$P S_{36}$	$A_{12}, A_{21}, A_{31}, A_{41}, A_{52}, A_{62}$.
$P S_{37}$	$A_{12}, A_{21}, A_{31}, A_{42}, A_{51}, A_{61}$.	$P S_{38}$	$A_{12}, A_{21}, A_{31}, A_{42}, A_{51}, A_{62}$.
$P S_{39}$	$A_{12}, A_{21}, A_{31}, A_{42}, A_{52}, A_{61}$.	$P S_{40}$	$A_{12}, A_{21}, A_{31}, A_{42}, A_{52}, A_{62}$.
$P S_{41}$	$A_{12}, A_{21}, A_{32}, A_{41}, A_{51}, A_{61}$.	$P S_{42}$	$A_{12}, A_{21}, A_{32}, A_{41}, A_{51}, A_{62}$.
$P S_{43}$	$A_{12}, A_{21}, A_{32}, A_{41}, A_{52}, A_{61}$.	$P S_{44}$	$A_{12}, A_{21}, A_{32}, A_{41}, A_{52}, A_{62}$.
${ }^{P} S_{45}$	$A_{12}, A_{21}, A_{32}, A_{42}, A_{51}, A_{61}$.	$P S_{46}$	$A_{12}, A_{21}, A_{32}, A_{42}, A_{51}, A_{62}$.
${ }^{P} S_{47}$	$A_{12}, A_{21}, A_{32}, A_{42}, A_{52}, A_{61}$.	$P S_{48}$	$A_{12}, A_{21}, A_{32}, A_{42}, A_{52}, A_{62}$.
${ }^{P} S_{49}$	$A_{12}, A_{22}, A_{31}, A_{41}, A_{51}, A_{61}$.	$P S_{50}$	$A_{12}, A_{22}, A_{31}, A_{41}, A_{51}, A_{62}$.
${ }^{P} S_{51}$	$A_{12}, A_{22}, A_{31}, A_{41}, A_{52}, A_{61}$.	$P S_{52}$	$A_{12}, A_{22}, A_{31}, A_{41}, A_{52}, A_{62}$.
${ }^{P} S_{53}$	$A_{12}, A_{22}, A_{31}, A_{42}, A_{51}, A_{61}$.	$P S_{54}$	$A_{12}, A_{22}, A_{31}, A_{42}, A_{51}, A_{62}$.
${ }^{P} S_{55}$	$A_{12}, A_{22}, A_{31}, A_{42}, A_{52}, A_{61}$.	$P S_{56}$	$A_{12}, A_{22}, A_{31}, A_{42}, A_{52}, A_{62}$.
${ }^{P} S_{57}$	$A_{12}, A_{22}, A_{32}, A_{41}, A_{51}, A_{61}$.	$P S_{58}$	$A_{12}, A_{22}, A_{32}, A_{41}, A_{51}, A_{62}$.
${ }^{P} S_{59}$	$A_{12}, A_{22}, A_{32}, A_{41}, A_{52}, A_{61}$.	$P S_{60}$	$A_{12}, A_{22}, A_{32}, A_{41}, A_{52}, A_{62}$.
$P S_{61}$	$A_{12}, A_{22}, A_{32}, A_{42}, A_{51}, A_{61}$.	$P S_{62}$	$A_{12}, A_{22}, A_{32}, A_{42}, A_{51}, A_{62}$.
$P S_{63}$	$A_{12}, A_{22}, A_{32}, A_{42}, A_{52}, A_{61}$.	$P S_{64}$	$A_{12}, A_{22}, A_{32}, A_{42}, A_{52}, A_{62}$.

Ranking of the relative importance of the potential solutions can be achieved by integrating the relative effectiveness of the containing alternatives. Two steps are involved in this: 1) normalize the priority weight of the alternatives; 2) find the priority weight of potential solutions with the normalized priority weight of alternatives and the weight vector of solution component.

The following equation can be used to transform the priority weights (w_{ij}) into normalized priority weights ($w_{i j}{ }^{\prime}$).
$w_{\mathrm{ij}}{ }^{\prime}=w_{\mathrm{ij}} / \sum, w_{\mathrm{ij}}$

Table K. 4 shows the normalized priority weight of alternatives.

Table K. 4 Normalized priority weights

Solution components $\left(C_{\mathrm{i}}\right)$	Alternatives $\left(A_{\mathrm{ij}}\right)$	Priority weight $\left(w_{\mathrm{ij}}\right)$	Normalized priority weight $\left(w_{\mathrm{ij}}{ }^{\prime}\right.$ or $\left.w^{\prime}{ }_{\mathrm{k}, \mathrm{i}}\right)$
	A_{11} GPS	0.9502	0.6533
	A_{12} RFID	0.5042	0.3467
C_{2}	A_{21} MS Windows Mobile	0.8490	0.5236
	A_{22} Palm OS	0.7726	0.4764
	A_{31} Oracle 10g	1.0112	0.7707
	A_{32} MS SQL 2000	0.3008	0.2293
C_{4}	A_{41} Web-based UI	0.8873	0.6353
	A_{42} GUI	0.5094	0.3647
	A_{51} Web-based UI	0.3543	0.2486
	A_{52} GUI	1.0709	0.7514
C_{6}	A_{61} MS MapPoint	0.7935	0.5179
	A_{62} ARC GIS	0.7387	0.4821

Therefore, ranking of the relative importance of the potential solution can be obtained by finding their priority weight $\left(w_{k}\right)$. The priority weight is simply the sum of the priority weights multiplies with the respective weight vector of the containing alternatives. It can be expressed with forumula below.

$$
\begin{equation*}
w_{\mathrm{k}}=\sum_{i}\left(w_{\mathrm{k}, \mathrm{i}}^{\prime} * v_{i}\right) \tag{K.2}
\end{equation*}
$$

For example, priority weight of $P S_{1}$ can be found as below:

$$
\begin{aligned}
w_{1}= & \left(w^{\prime} 11 * v_{1}\right)+\left(w_{21}^{\prime} * v_{2}\right)+\left(w_{31}^{\prime} * v_{3}\right)+\left(w_{41}^{\prime} * v_{4}\right)+\left(w_{51}^{\prime} * v_{5}\right)+\left(w^{\prime}{ }_{61} * v_{6}\right) \\
= & (0.6533 * 0.2844)+(0.5236 * 0.1763)+(0.7707 * 0.3447)+(0.6353 * 0.2433) \\
& +(0.2486 * 0.2332)+(0.5179 * 0.0185) \\
= & 0.7659
\end{aligned}
$$

Table K. 5 shows the priority weights of the potential solutions.
Table K. 5 Priority weight of potential solutions

Potential solutions $\left(P S_{\mathrm{k}}\right)$	Priority weight $\left(w_{\mathrm{k}}\right)$	Potential solutions $\left(P S_{\mathrm{k}}\right)$	Priority weight $\left(w_{\mathrm{k}}\right)$
$P S_{1}$	0.7659	$P S_{2}$	0.7652
$P S_{3}$	0.8831	$P S_{4}$	0.8825

$P S_{5}$	0.7001	$P S_{6}$	0.6994
$P S_{7}$	0.8173	$P S_{8}$	0.8166
$P S_{9}$	0.5793	$P S_{10}$	0.5786
$P S_{11}$	0.6965	$P S_{12}$	0.6959
$P S_{13}$	0.5134	$P S_{14}$	0.5128
$P S_{15}$	0.6307	$P S_{16}$	0.6300
$P S_{17}$	0.7576	$P S_{18}$	0.7569
$P S_{19}$	0.8748	$P S_{20}$	0.8742
$P S_{21}$	0.6917	$P S_{22}$	0.6911
$P S_{23}$	0.8090	$P S_{24}$	0.8083
$P S_{25}$	0.5710	$P S_{26}$	0.5703
$P S_{27}$	0.6882	$P S_{28}$	0.6875
$P S_{29}$	0.5051	$P S_{30}$	0.5045
$P S_{31}$	0.6224	$P S_{32}$	0.6217
$P S_{33}$	0.6787	$P S_{34}$	0.6780
$P S_{35}$	0.7959	$P S_{36}$	0.7953
$P S_{37}$	0.6129	$P S_{38}$	0.6122
$P S_{39}$	0.7301	$P S_{40}$	0.7294
$P S_{41}$	0.4921	$P S_{42}$	0.4914
$P S_{43}$	0.6093	$P S_{44}$	0.6087
$P S_{45}$	0.4262	$P S_{46}$	0.4256
$P S_{47}$	0.5435	$P S_{48}$	0.5428
$P S_{49}$	0.6704	$P S_{50}$	0.6697
$P S_{51}$	0.7876	$P S_{52}$	0.7870
$P S_{53}$	0.6045	$P S_{54}$	0.6039
$P S_{55}$	0.7218	$P S_{56}$	0.7211
$P S_{57}$	0.4838	$P S_{58}$	0.4831
$P S_{59}$	0.6010	$P S_{60}$	0.6003
$P S_{61}$	0.4179	$P S_{62}$	0.4173
$P S_{63}$	0.5352	$P S_{64}$	0.5345

Therefore, below are the top ten ranked potential solutions according to table below.

Table K. 6 Ranking of potential solutions

Ranking	Potential solutions ($P S_{\mathrm{k}}$)	Priority weight (w_{k})	Alternatives (A_{ij})
1	$P S_{3}$	0.8831	$\begin{array}{\|l\|} \hline A_{11} \text { GPS, } \\ A_{21} \text { MS Windows Mobile, } \\ A_{31} \text { Oracle } 10 \mathrm{~g}, \\ A_{41} \text { Web-based UI, } \\ A_{52} \text { GUI, } \\ A_{61} \text { MS MapPoint. } \\ \hline \end{array}$
2	$P S_{4}$	0.8825	A_{11} GPS, A_{21} MS Windows Mobile, A_{31} Oracle 10 g , A_{41} Web-based UI, A_{52} GUI, A_{62} ARC GIS.
3	$P S_{19}$	0.8748	A_{11} GPS, A_{22} Palm OS, A_{31} Oracle 10 g , A_{41} Web-based UI, A_{52} GUI, A_{61} MS MapPoint.
4	$P S_{20}$	0.8742	$\begin{array}{\|l\|} \hline A_{11} \text { GPS, } \\ A_{22} \text { Palm OS, } \\ A_{31} \text { Oracle } 10 \mathrm{~g}, \\ A_{41} \text { Web-based UI, } \\ A_{52} \text { GUI, } \\ A_{62} \text { ARC GIS. } \\ \hline \end{array}$
5	${ }^{P} S_{7}$	0.8173	$\begin{aligned} & \hline A_{11} \text { GPS, } \\ & A_{21} \text { MS Windows Mobile, } \\ & A_{31} \text { Oracle } 10 \mathrm{~g}, \\ & A_{42} \text { GUI, } \\ & A_{52} \text { GUI, } \\ & A_{61} \text { MS MapPoint. } \\ & \hline \end{aligned}$
6	$P S_{8}$	0.8166	$\begin{aligned} & \hline A_{11} \text { GPS, } \\ & A_{21} \text { MS Windows Mobile, } \\ & A_{31} \text { Oracle } 10 \mathrm{~g}, \\ & A_{42} \text { GUI, } \\ & A_{52} \text { GUI, } \end{aligned}$

			A_{62} ARC GIS.
7	$P S_{23}$	0.8090	$\begin{aligned} & A_{11} \text { GPS, } \\ & A_{22} \text { Palm OS, } \\ & A_{31} \text { Oracle } 10 \mathrm{~g}, \\ & A_{42} \text { GUI, } \\ & A_{52} \text { GUI, } \\ & A_{61} \text { MS MapPoint. } \end{aligned}$
8	$P S_{24}$	0.8083	$\begin{aligned} & A_{11} \text { GPS, } \\ & A_{22} \text { Palm OS, } \\ & A_{31} \text { Oracle } 10 \mathrm{~g}, \\ & A_{42} \text { GUI, } \\ & A_{52} \text { GUI, } \\ & A_{62} \text { ARC GIS. } \end{aligned}$
9	$P S_{35}$	0.7959	```A12 RFID, A21 MS Windows Mobile, A31}\mathrm{ Oracle 10g, A41 Web-based UI, A52 GUI, A61 MS MapPoint.```
10	$P S_{36}$	0.7953	```A12 RFID, A21 MS Windows Mobile, A 31 Oracle 10g, A41 Web-based UI, A52 GUI, A62 ARC GIS.```

APPENDIX L - PUBLISHED PAPER: A FAHP-BASED TECHNOLOGY SELECTION AND SPECIFICATION METHODOLOGY

This appendix archives the paper entitled "A FAHP-based Technology selection and Specification Methodology" that was published by Proceedings of the 10th International Conference on Enterprise Information Systems (ICEIS). The paper was the early version of the proposed TSS methodology.

A FAHP-BASED TECHNOLOGY SELECTION AND SPECIFICATION METHODOLOGY

Kin Chung Liu ${ }^{1}$, Dong Li ${ }^{2}$, Dennis F. Kehoe ${ }^{1}$
${ }^{1}$ The Aimes Centre, the University of Liverpool, 10 Duke Street, Liverpool. UK. L1 5AS
keithliu@liv.ac.uk,dfkehoe@liverpool.ac.uk
${ }^{2}$ The University of Liverpool, Chatham Street, Liverpool. UK L69 7ZH
dongli@liv.ac.uk

Keywords: fuzzy analytic hierarchy process (FAHP), system design, technology selection, system specification

Abstract

: Selection of technology in IT projects is recognized as a multi-criteria decision-making (MDCM) problem because it is important to incorporate multiple opinions from people and consider the interdependence among criteria (Lee and Kim, 2000). Various techniques were proposed to address the technology selection problems and some of them, such as analytic hierarchy process (AHP) (e.g. Bard, 1986), were proved effective in literatures. However, technology selection problem in a system development project can be viewed as a system design activity and there is lack of literatures view technology selection from system design perspective and integrate it with other system design activity. The research argues that AHP can be applied to generate technology specification and other useful information for system design purpose, in additions of technology selection. A high-level system design framework and the FAllP-based technology specification methodology are presented in this paper.

1 INTRODUCTION

Assessment and selection of technology in IT projects are required when more than one alternative are available and commit to a right technology can lead to optimal benefits to the business. Literatures (e.g. Chou et al., 2004) suggested that the technology selection can be viewed as a MDCM problem. It is because it involves activities that intakes multiple opinions from different parties and considers the interdependence among criteria (Lee and Kim, 2000). Analytic hierarchy process (AHP) has been studied extensively and been used in almost all the applications related with MCDM in the last 20 years (Ho, 2007). Literatures (e.g. Bard, 1986; Nelson and Kastenberg, 1986) indicate that AHP is an effective technique in the field of technology selection.

Technology assessment and selection happens in two stages of an IT project: project justification (Gunasekaran et al., 2006) and system design. The former activity may influence the later process by providing partial technology selection decisions to system designer in order to bind the developing system to certain technology strategically.

From a system development perspective, technologies that compose the developing system
must be well-defined in the system design process. However, there is lack of literature associates technology selection with system design activity. Also, the research proposes that the characteristics of AHP provide opportunities for system designer to collect useful information from people for purposes not limited to technology assessment.

The research proposes a generic high-level system design framework and an FAlIP-based technology specification methodology as a member of the framework.

2 A HIGH-LEVELSYSTEM DESIGN (HLSD) FRAMEWORK

According to Sommerville (2002), system design generally encompasses six activities include architecture design, abstract specification, interface design, component design, data structure design and algorithm design. Each of the activity takes design product input from previous activity and generate design product for the next activity (see figure 1).

In particular, the architecture design activity aims to identify sub-systems and relationships of the system while the abstract specification aims to specify the sub-system. These two activities aim to describe a complete picture of system with system architecture and specification of the architectural components. On the other hand, the other four activities specify the details of the architectural components. Therefore, these six activities can be separated into two groups according to the level of detail they concern, namely high-level design activities and detailed design activities.

Figure 1: A general model of the system design process (source: Sommerville, 2002)

According to above, there are two general highlevel design activities and they aim to produce the system architecture and system specification for the use of detailed design. Technology may be decided strategically before the high-level design. Despite the technology decisions made in project justification before system design, the need for technologies must be identified after the relevant details of the related architectural components are defined. This indicates that the technology selection is a part of the abstract specification activity. In fact, the activity aims to generate a system specification which includes the technology definitions.

The research proposes a high-level system design (HLSD) framework based on Sommerville's generic model and results from case studies. Based on case studies, eleven functional areas of abstract specification including technology selection and specification are identified. The framework covers the scope of the two activities mentioned above and proposes that the second activity is composed by the eleven identified functional areas. The eleven functional areas are divided into four groups, indicated by four different colours, according to the subject they concern. The framework aims to identify the role of technology selection within a general system design process. Figure 2 illustrates the proposed high-level system design (HLSD) framework.

A FAHP-based technology selection and specification (TSS) methodology is proposed in section 4 that supports technology selection and technology specification indicated by figure 2 . The function of the methodology is to provide a mean for
decision-makers to assess technologies and then select technologies among alternatives. Furthermore, it utilizes the AHP process to collect useful information from people and thereby generate technology specification of the developing system

which serves as the part of the content of system specification.

3 FUZZY-AHP (FAHP)

3.1 Introduction to FAHP

AHP was developed by Saaty in 1971 (Saaty, 1980) and is recogized as an effective technique for handling unstructured of semi-structured decisionmaking problem with involvements of multiple persons and multiple criteria inputs simultaneously (Durán and Aguilo, 2007; Saaty and Kearns, 1985). It has been proved to be effective tool for decision supporting in MCDM problems such as ranking, selection, evaluation, optimization, and prediction (Lee et al., 2001; Ho, 2007). In particular, AHP has been extensively applied to various technology selection problems and is proved to be an effective approach (e.g. Bard, 1986; Lai et al., 1999).

According to Saaty (1980) and other literatures (e.g. Liu et al., 2007; Lee et al., 2006; Chang, 1996), the conventional AHP encompasses two phases: decomposition and synthesis. The first phase is to decompose the complexity of problem by building a hierarchy model in order to discover and structure the relations. The second phase is to obtain useful results with the hierarchy model through pairwise comparisons and other techniques.

However, AHP has weakness in treating fuzziness and vagueness data which commonly exist in many decision-making problems (Levary and Wan, 1998; Ribeiro, 1996). Integrate the fuzzy set theory to the pairwise comparison of the AHP is believed an effective solution (Karsak and

Kuzgunkaya, 2002; Mon et al., 1994). The integration of the fuzzy set theory and the conventional AHP is named fuzzy-AHP (FAHP) which was first introduced by Van Laarhoven and Pedrycz (1983).

The FAHP approaches presented by literatures (e.g. Lee et al., 2006; Liu et al., 2007; Chang, 1996) are variable in steps and use of techniques. According to literatures (Lee et al., 2006; Liu et al., 2007; Sadiqa and Husain, 2005; Zeng et al., 2007; Durán and Aguilo, 2007), FAHP has modified the conventional AHP with the following steps generally:

- Fuzzification: judgments are transformed into fuzzy values and pairwise comparisons are based on fuzzy judgment matrices.
- Synthesis: instead of dealing with crisp judgment values conventionally using techniques such as eigenvalue and eigenvector, FAHP approach handles synthesis in a fuzzy environment. Methods such as fuzzy extent analysis (Chang, 1992, 1996) were proposed by literatures.
- Defuzzification: in order to obtain an overall ranking of alternatives, the score of alternatives in fuzzy number must either be transformed into crisp number or be compared.

3.2 FAHP as a Technology Selection and Specification Approach

FAHP is adopted in the proposed TSS methodology not only for technology selection purpose but also for generation of information. FAHP is adopted for the reason of its characteristics and the advantages it brings:

- AHP is "excellent for clarifying a problem and displaying the decision process" (Nelson and Kastenberg, 1986). Useful information such as end users' and decision makers' concerns and preferences, performance measurement of alternatives, and reasons of selection result can be identified through the AHP process. In the proposed methodology, AHP process contributes in the production of technologies specification.
- AHP is a powerful tool for communication (Roper-Lowe and Sharp, 1990). Outcome from AHP is a conclusion of selected participants' judgments. This meets the need in an IT project that people from different parties can be involved in selection of technology. This also shares the responsibility
among different people as well as have useful data input from appropriate people.
- Use of FAHP instead of conventional AHP means a significant benefit in a technology selection problem since failed to deal with the data fuzziness can lead to inaccurate performance measurement of alternatives.

4 THE FAHP-BASED TECHNOLOGY SELECTION AND SPECIFICATION (TSS) METHODOLOGY

4.1 Objectives

The proposed FAHP-based TSS methodology aims to facilitate the high-level design process mainly by 1) provides a mean for decision makers to assess alternatives and make decision on selection of technologies; 2) specify technologies and generate respective technology specifications.

4.2 Multi-level Solution Structuring

As a matter of previous literatures, technology is to be evaluated and decided separately from other parts of the system. The proposed methodology considers technology selection as a part of system design activity which aims to achieve a technology solution instead of only part of it.

To do that, the selection and specification needs of the developing system must be identified and structured into multiple hierarchical levels. Terminologically, the top level is the technology solution that includes solution components at lower levels. A solution component means a particular architectural component which requires the technology selection and specification process. For instance, design of an enterprise system requires selection and specification of a database management system which can be viewed as a solution component. A solution means a set of solution components indicated by system architecture.

The proposed methodology aims to evaluate alternatives of different solution components efficiently and thereby propose the best-performed solution considering compatibility issues.

4.3 The Six Phases

The TSS methodology is illustrated by figure 5 . It includes six phases: Preparation, Decomposition,

Solution Component Decomposition, Solution Component Assessment, Solution Assessment, and Conclusions. Each phase contains one or more steps and each step is composed by one or more process. Process may require external data input such as the requirement specification document and survey results.

The methodology begins with the Preparation phase in which a project team must be constituted (process 1.1.1) and the team will act as an important source of data in the later stages.

The second and the third phases are Solution Decomposition and Solution Component Decomposition respectively. The term "decomposition" was adapted from the first of the two basic phases of conventional AHP according to Saaty (1980). Decomposition is a process that decomposes the complexity of problem by building a hierarchy model in order to discover and structure the relations (Saaty, 1980).

In the second phase, the goal (process 2.1.1) and objectives (process 2.1.2), solution components (process 2.2.1) and the alternatives (process 2.2.2) of them are identified and arranged into a solution-level hierarchical model. Example of the goal can be "Evaluate and specify the most suitable technology solution ". Process 2.1.2 is a generalization process that translates the requirements into objectives for technology. The objectives must be created based on requirement specification in order to ensure the selection and specification results are responsible to it. The solution components can be defined with system architecture created previously in system design process.

As the outcome of the phase, the hierarchical model is based on a well-defined fundamentalobjective hierarchy (process 2.1.3) that graphically illustrates the relations between the hierarchy elements (see figure 3 for example). In particular, compatibilities of alternatives of each solution component to alternatives of each other solution component are considered. The alternatives that are considered completely incompatible or poorly compatible to alternatives of other solution component should be eliminated (process 2.2.3).

In the third phase, solution-component-level hierarchy models are created. While the solutionlevel hierarchy model reflects the solution-level elements, a solution-component-level hierarchy model is defined with a solution components perspective in regard to the solution-level goal and objectives.

Each solution component will have a hierarchy model created as the output of the third phase. The third phase is composed by two steps (step 3.1 and 3.2) and they are in iteration where each round will create a solution-component-level hierarchy model
for one solution component. A solution-componentlevel hierarchy model is created by define the means to the solution-level objectives by a particular solution component (process 3.1.1) and thereby to build the respective means-objective network for the solution component (process 3.1.3). As the means-to-objectives of different solution component can be different, some solution-level objectives may be found irrelevant to certain solution component and they must be eliminated from the solution-component-level hierarchy (process 3.1.2). On the other side, goal for the hierarchy must be defined according to the solution-level goal (process 3.2.1). With the goal and objective structured, the fundamental-objective hierarchy can be defined (process 3.2.2). A means-objective network and a fundamental-objective hierarchy together form a solution-component-level hierarchy model (see figure 4 for example).

Figure 3: An illustrative example of a solution-level hierarchy model

Figure 4: An illustrative example of a solution-componentlevel AHP hierarchy model

Figure 5: The proposed FAHP-based technology specification (TSS) methodology

Technology selection and specification were important in the system design stage of the system development process. The proposed TSS methodology can be applied in order to demonstrate the use of the proposed methodology.

5.2 Demonstration of the TSS Methodology

This section briefly outlines the key activities of the six phases of the TSS methodology with the case study.
In the first phase, a project team is formed with project manager and technology experts from the IT consultant (the Aimes Centre), personnel from management level of clients and end user.
In the second phase, solution components, alternatives of them, and solution-level fundamental-objective hierarchy are defined with goal "select and specify the best technology solution". Table 1 shows the 4 identified solution components and their alternatives.

Table 1: Solution component and alternatives

Solution Component	Alternatives
Database management system	Oracle database, SQL database
Vehicle tracking technology	Long-range RFID (Radio Frequency Identification), short-range RFID, GPS system
Software platform	Microsoft Net Platform, Java- based platform
Presentation	GUI, Web page
Network Connection	Web standards, private network standards

Therefore, the third phase had the four AHP hierarchy models created with means-objective network and the fundamental-objective hierarchy included. Each of the models was created for assessment of one of the solution components in the next phase.

The FAHP processing in the fourth phase has suggested the best alternatives of the solution component as shown in table 2.

Table 2: Solution component assessment results

Solution Component	Best Performed Alternative
Database management system	Oracle database
Vehicle tracking technology	GPS system
Software platform	Microsoft .Net Platform
Presentation	GUI
Network Connection	Web standards

Through the assessment process, information about judgment reason was collected from experts and they explain the reason for assessment result as well as providing specification data of the technologies. For instance, GPS was believed more preferable for the lower implementation cost as well as its satisfying capabilities. Before researched above opinion, capability and implementation cost of GPS and other alternatives were given, evaluated and compared. The information was documented for technology specification purpose.

Although GUI (Graphical User Interface) was recognized as the best-performed presentation technology for its capable of provide more powerful functionalities than Web portal, the fifth phase had proposed the bestperformed solution without it. The main reason was that GUI was recognized relatively less compatible than that of web portal in the fifth phase: it requires installation of extra application on user's computer, local security settings may disallow database connection, and GUI-based application is usually software platform dependent. Accessing Web portal through Web browser will not meet above problems and thereby work better with other technologies shown in table 2. The proposed solution includes Oracle database, GPS system, .Net Platform, Web portal and web standard network.

The best-performed solution above is currently applied by the live system. As there has no issue indicates any need in change of technology after the system has gone live for approximately a year, I can conclude that the methodology provides satisfying selection result to the goal.

6 CONCLUSIONS

A HLSD framework was proposed to indicate the role of technology selection process within a generic system design process. It suggests that the technology specification and specification can be a separate activity apart from other functional areas of abstract specification.

A FAHP-based TSS approach was proposed to support technology selection and specification activities of the HLSD framework. As a part of the framework, it takes input from the previous system design step and aims to generate specification information for later system design activities. By taking the advantages of AHP (see section 3.2), the proposed methodology attempts to generate useful information such as technology specifications for system design and project management purposes. The proposed methodology applies the means-objective network technique for strengthen the linkages between requirement specification and decisionmakers' judgments. It ensures that both technology selection and specification results are responsible to the requirement definitions. The proposed methodology also introduced the multiple-hierarchical-level solution structure technique in order to address the system design needs.

Beside the general advantages of FAHP that was mentioned in section 3.2, some advantages of the proposed FAHP-based TSS methodology are outlined below.

- Complete picture of technology solution is considered by the proposed methodology with compatibility issues between solution components.
- Instead of assess all of the potential solution using pairwise comparison according to conventional AHP approach, the proposed methodology divides the assessment of solution into two parts - phase 4 and phase 5. This greatly reduces the number of comparison judgment necessarily to be made and thereby has improved the efficiency. It implies reduction in risk of creating inconsistent datasets.
- As the proposed HLSD framework is developed based on a general design process model (see section 2), it's highly adaptable by various software process model such as waterfall model.

Nevertheless, there are limitations of the proposed methodology that indicates space of improvement in the future. For example, although the TSS methodology considers the compatibility of solution component alternatives in assessment of potential solutions, it can be more specific in handling different levels of compatibility since it may influence the ranking of potential solutions effectively.

REFERENCES

Bard, J. F., 1986. Evaluating space station applications of automation and robotics. IEEE Transactions on Engineering Management 33, 102-111.
Chang, D.Y., 1992. Extent Analysis and Synthetic Decision. Optimization Techniques and Applications, Vol. 1. World Scientific, Singapore, p. 352.
Chang, D.Y., 1996. Applications of the extent analysis method on FAHP. European Journal of Operational Research 95(3):649-655.
Chou, Y., Lee, C., and Chung, J., 2004. Understanding m-commerce payment systems through the analytic hierarchy process. Journal of Business Research, 57, 12, 1423-1430.
Durán, O., Aguilo, J., 2007. Computer-aided machine-tool selection based on a Fuzzy-AHP approach. Expert Systems with Applications.
Ho, William, 2007. Integrated analytic hierarchy process and its applications - A literature review. European Journal of Operational Research.
Karsak, E.E., Kuzgunkaya, O., 2002. A fuzzy multiple objective programming approach for the selection of a flexible manufacturing system. Int. J. Production Economics 79 101-111.
Lai, V.S., Trueblood, R.P., Wong, B.K., 1999. Software selection: A case study of the application of the analytical hierarchical process to the selection of a multimedia authoring system. Information \& Management 36, 221-232.
Lee, A.H.I., Kang, H.Y. and Wang, W.P., 2006. Analysis of priority mix planning for semiconductor fabrication under uncertainty. International Journal of Advanced Manufacturing Technology, 28(3-4), 351-361.

Lee, J.W. and Kim, S.H., 2000. Using analytic network process and goal programming for interdependent information system project selection. Computers \& Operations Research 27, 367-382.
Lee, W. B., Lau, H., Liu, Z., and Tam, S., 2001. A fuzzy analytic hierarchy process approach in modular product design. Expert Systems, February, 18(1), 32-42.
Levary, R.R., Wan, K., 1998. A simulation approach for handling uncertainty in the analytic hierarchy process. European Journal of Operations Research 106, 116-122.
Liu, Y.-W., Kwon, Y.-J., Kang, B.-D., 2007. A Fuzzy AHP approach to evaluating e-commerce websites. Fifth International Conference on Software Engineering Research, Management and Applications. 114-122.
Mon, D.K., Cheng, C.H, Lin, J.C., 1994. Evaluating weapon system using fuzzy analytic hierarchy process based on entropy weight. Fuzzy Sets and Systems 62 127-134.
Nelson, P. F. and Kastenberg, W. E., 1986. An extended value-impact approach for nuclear regulatory decision-making. Nuclear Engineering and Design 93, 311-317.
Ribeiro, R.A., 1996. Fuzzy multiple attribute decision making: A review and new preference elicitation techniques. Fuzzy Sets and Systems 78, 155-81.
Roper-Lowe, G.C. and Sharp, J.A., 1990. The Analytic Hierarchy Process and its Application to an Information Technology Decision. Journal of Operational Research Society 41(1):49-59.
Sadiqa, R. and Husain, T., 2005. A fuzzy-based methodology for an aggregative environmental risk assessment: a case study of drilling waste. Environmental Modelling \& Software 20 33-46.
Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw-Hill, New York, NY, U.S.A.
Saaty, T. L. and Kearns, K. P., 1985. Analytical Planning. Pergamon, New York.
Sommerville, Ian, 2001. Software Engineering, Sixth Edition. Addison-Wesley. ISBN 0-201-39815.
Van Laarhoven, P. J. M. and W. Pedrycz, 1983. A Fuzzy extension of Saaty's Priority Theory: Fuzzy Sets and Systems, Volume: 11, pp. 229-241.
Zeng, J.H., An, M., and Smith, N. J., 2007. Application of a fuzzy based decision making methodology to construction project risk assessment. International Journal of Project Management.

APPENDIX M - EXPERIMENT LOG FILES

This appendix archives two log files generated by a software programme.
The first \log file (log file 1) archives calculation results based on equation below:

$$
\begin{aligned}
& K=\left\{c^{*}\left[c-1+\left(\prod_{i} b i\right)^{2}-\prod b i\right]-\Sigma_{i}\left[c_{i}^{*}\left(c_{1}-1-b_{i}^{2}+b_{i}\right)\right]-a(a-1)\right\} \\
& \text { for } 2 \leq a \leq a_{\text {max }}, 2 \leq b_{i} \leq b_{\text {max }}, 1 \leq c \leq c_{\text {max }}, 1 \leq c_{i} \leq c .
\end{aligned}
$$

Under above given range of variables, there is huge number of calculation results (i.e. total number of calculated K is $2.38 \mathrm{E}+88$). In order to avoid unnecessarily huge \log file, the \log file in this appendix only shows a subset of the results using condition: $2 \leq a \leq 30, b_{i}=2,1 \leq$ $c \leq 30, c_{i}=c, i=1$ to a. However, the final conclusion at the end of the first log file taken all calculations into account.

It is noted that base on equations suggested in chapter 5 ,
$\left(t_{l}-t_{2}\right)=K^{*}(d / 2)$
with $d / 2$ as positive number, K is useful to indicate $\left(t_{l}-t_{2}\right)$ proportionally.
Furthermore, the second \log file (log file 2) stores value of variables for all the results with negative K.

Following the decomposition phases, the created hierarchy models will be used in the fourth phase Solution Component Assessment: It is a FAHP-based process for assessment of each solution component. It consists of two steps (step 4.1 and 4.2) and they are in iteration where each round will have created assessment result for one solution component. General FAHP steps are proposed in this phase: surveying (process 4.1.1 and 4.2.1), building of pairwise matrices (process 4.1.2 and 4.2.2), consistency test (process4.1.3 and 4.2.3), fuzzification (process 4.1.4 and 4.2.4), defuzzification and obtain overall ranking as the assessment result (process 4.1.6 and 4.2.0).

The key differences of the use of FAHP in the proposed methodology from other FAHP/AHP-based approaches in literatures can be summarized as below:

- The proposed methodology is not for project justification purpose but for the system design benefit. Instead of involving people from different background, Step 4.1 of the proposed methodology requires the involvement of experts to the fields of relevant technology. It helps to improve the data quality and the accuracy of assessment results.
- Assessment of alternatives in step 4.2 requires judgers to make judgment based on the means-toobjectives and the objectives are the generalization results of requirement specification. Therefore, the means-objective network acts as a linkage between the requirement specification and participants' judgments. This ensures the assessment results be responsible to requirement definitions.
- Judgers must provide evidence for the judgment based on the means-to-objectives. The evidence can be qualitative knowledge relate to the alternatives or quantitative measurement of their capabilities. These information explain how and how well a technology alternative satisfies the objectives. In additions, the information can be used for generate specification information about the assessed alternatives (process 6.1.1).

Alternatives of each solution component are ranked at the end of assessment (process 4.2.0). The rankings of solution component alternatives can be used to derive a score with crisp value through defuzzification methods, for example. The scores are useful for the assessment of the potential solutions in the fifth phase Solution Assessment. With the result from the compatibility analysis (process 2.2.3), the potential solutions to be assessed must first be defined (process 5.1.1) and thereby to be assessed (process 5.1.2). The assessment aims to rank the potential solutions by assign an overall score to each of them. An overall score is obtained through calculation with the scores of included solution component alternatives. The calculation should consider the relative importance of solution component and other necessary criteria. The final scores reflect how relatively well the solutions satisfy the solution-level objectives for the solution-level goal in regard to the requirement specification.

Finally, the sixth phase Conclusions provides a space for decision makers to make use of the information generated through the previous phases. The best performed solution(s) suggested by phase 5 will be proposed to decision makers and thereby decision makers may make decision on technology selection. On the other hand, the specification information of technologies can be identified qualitatively and/or quantitatively in phase 4. The process 6.1.1 concludes these findings and documents relevant information to form the technology specification for the detail design and for other project management purpose. Furthermore, other useful information such as relative importance weight of objectives obtained in step 4.1, ranking of alternatives obtained in step 4.2, and score of potential solutions in step 5.1 can be documented for various project management purposes as well.

5 CASE STUDY

5.1 Background

This section outlines the use of the key steps of the application of the TSS methodology to a transportation management system development project.

ContainerPort (www.containerport.co.uk) is a commercial project conducted by the Aimes Centre (www.aimes.net), the University of Liverpool. The project has developed an UK-based transportation management system with GPS (Global Positioning System), Oracle database, Microsoft .net Platform, and Web portal technologies.

Log file 1

Conditions: $\operatorname{amax}=30, \operatorname{bmax}=30, \operatorname{cmax}=30, i \max =30$
Log:

K	a	b1	C	c1	474	3	2	20	20
					456	3	2	21	21
14	2	2	1	1	434	3	2	22	22
28	2	2	2	2	408	3	2	23	23
40	2	2	3	3	378	3	2	24	24
50	2	2	4	4	344	3	2	25	25
58	2	2	5	5	306	3	2	26	26
64	2	2	6	6	264	3	2	27	27
68	2	2	7	7	218	3	2	28	28
70	2	2	8	8	168	3	2	29	29
70	2	2	9	9	114	3	2	30	30
68	2	2	10	10	236	4	2	1	1
64	2	2	11	11	478	4	2	2	2
58	2	2	12	12	714	4	2	3	3
50	2	2	13	13	944	4	2	4	4
40	2	2	14	14	1168	4	2	5	5
28	2	2	15	15	1386	4	2	6	6
14	2	2	16	16	1598	4	2	7	7
-2	2	2	17	17	1804	4	2	8	8
-20	2	2	18	18	2004	4	2	9	9
-40	2	2	19	19	2198	4	2	10	10
-62	2	2	20	20	2386	4	2	11	11
-86	2	2	21	21	2568	4	2	12	12
-112	2	2	22	22	2744	4	2	13	13
-140	2	2	23	23	2914	4	2	14	14
-170	2	2	24	24	3078	4	2	15	15
-202	2	2	25	25	3236	4	2	16	16
-236	2	2	26	26	3388	4	2	17	17
-272	2	2	27	27	3534	4	2	18	18
-310	2	2	28	28	3674	4	2	19	19
-350	2	2	29	29	3808	4	2	20	20
-392	2	2	30	30	3936	4	2	21	21
56	3	2	1	1	4058	4	2	22	22
114	3	2	2	2	4174	4	2	23	23
168	3	2	3	3	4284	4	2	24	24
218	3	2	4	4	4388	4	2	25	25
264	3	2	5	5	4486	4	2	26	26
306	3	2	6	6	4578	4	2	27	27
344	3	2	7	7	4664	4	2	28	28
378	3	2	8	8	4744	4	2	29	29
408	3	2	9	9	4818	4	2	30	30
434	3	2	10	10	982	5	2	1	1
456	3	2	11	11	1976	5	2	2	2
474	3	2	12	12	2962	5	2	3	3
488	3	2	13	13	3940	5	2	4	4
498	3	2	14	14	4910	5	2	5	5
504	3	2	15	15	5872	5	2	6	6
506	3	2	16	16	6826	5	2	7	7
504	3	2	17	17	7772	5	2	8	8
498	3	2	18	18	8710	5	2	9	8
488	3	2	19	19	9640	5	2	10	10

10562	5	2	11	11	162118	7	2	10	10
11476	5	2	12	12	178268	7	2	11	11
12382	5	2	13	13	194406	7	2	12	12
13280	5	2	14	14	210532	7	2	13	13
14170	5	2	15	15	226646	7	2	14	14
15052	5	2	16	16	242748	7	2	15	15
15926	5	2	17	17	258838	7	2	16	16
16792	5	2	18	18	274916	7	2	17	17
17650	5	2	19	19	290982	7	2	18	18
18500	5	2	20	20	307036	7	2	19	19
19342	5	2	21	21	323078	7	2	20	20
20176	5	2	22	22	339108	7	2	21	21
21002	5	2	23	23	355126	7	2	22	22
21820	5	2	24	24	371132	7	2	23	23
22630	5	2	25	25	387126	7	2	24	24
23432	5	2	26	26	403108	7	2	25	25
24226	5	2	27	27	419078	7	2	26	26
25012	5	2	28	28	435036	7	2	27	27
25790	5	2	29	29	450982	7	2	28	28
26560	5	2	30	30	466916	7	2	29	29
4014	6	2	1	1	482838	7	2	30	30
8048	6	2	2	2	65240	8	2	1	1
12072	6	2	3	3	130522	8	2	2	2
16086	6	2	4	4	195790	8	2	3	3
20090	6	2	5	5	261044	8	2	4	4
24084	6	2	6	6	326284	8	2	5	5
28068	6	2	7	7	391510	8	2	6	6
32042	6	2	8	8	456722	8	2	7	7
36006	6	2	9	9	521920	8	2	8	8
39960	6	2	10	10	587104	8	2	9	9
43904	6	2	11	11	652274	8	2	10	10
47838	6	2	12	12	717430	8	2	11	11
51762	6	2	13	13	782572	8	2	12	12
55676	6	2	14	14	847700	8	2	13	13
59580	6	2	15	15	912814	8	2	14	14
63474	6	2	16	16	977914	8	2	15	15
67358	6	2	17	17	1043000	8	2	16	16
71232	6	2	18	18	1108072	8	2	17	17
75096	6	2	19	19	1173130	8	2	18	18
78950	6	2	20	20	1238174	8	2	19	19
82794	6	2	21	21	1303204	8	2	20	20
86628	6	2	22	22	1368220	8	2	21	21
90452	6	2	23	23	1433222	8	2	22	22
94266	6	2	24	24	1498210	8	2	23	23
98070	6	2	25	25	1563184	8	2	24	24
101864	6	2	26	26	1628144	8	2	25	25
105648	6	2	27	27	1693090	8	2	26	26
109422	6	2	28	28	1758022	8	2	27	27
113186	6	2	29	29	1822940	8	2	28	28
116940	6	2	30	30	1887844	8	2	29	29
16228	7	2	1	1	1952734	8	2	30	30
32486	7	2	2	2	261578	9	2	1	1
48732	7	2	3	3	523212	9	2	2	2
64966	7	2	4	4	784830	9	2	3	3
81188 97398	7	2	5	5	1046432	9	2	4	4
97398 113596	7	2	6	6	1308018	9	2	5	5
129782	7	2	8	7	1569588	9	2	6	6
145956	7	2	9	8	1831142	9	2	7	7
					2092680	9	2	8	8

2354202	9	2	9	9	33537554	11	2	8	8
2615708	9	2	10	10	37729672	11	2	9	9
2877198	9	2	11	11	41921770	11	2	10	10
3138672	9	2	12	12	46113848	11	2	11	11
3400130	9	2	13	13	50305906	11	2	12	12
3661572	9	2	14	14	54497944	11	2	13	13
3922998	9	2	15	15	58689962	11	2	14	14
4184408	9	2	16	16	62881960	11	2	15	15
4445802	9	2	17	17	67073938	11	2	16	16
4707180	9	2	18	18	71265896	11	2	17	17
4968542	9	2	19	19	75457834	11	2	18	18
5229888	9	2	20	20	79649752	11	2	19	19
5491218	9	2	21	21	83841650	11	2	20	20
5752532	9	2	22	22	88033528	11	2	21	21
6013830	9	2	23	23	92225386	11	2	22	22
6275112	9	2	24	24	96417224	11	2	23	23
6536378	9	2	25	25	100609042	11	2	24	24
6797628	9	2	26	26	104800840	11	2	25	25
7058862	9	2	27	27	108992618	11	2	26	26
7320080	9	2	28	28	113184376	11	2	27	27
7581282	9	2	29	29	117376114	11	2	28	28
7842468	9	2	30	30	121567832	11	2	29	29
1047482	10	2	1	1	125759530	11	2	30	30
2095036	10	2	2	2	16773012	12	2	1	1
3142572	10	2	3	3	33546134	12	2	2	2
4190090	10	2	4	4	50319234	12	2	3	3
5237590	10	2	5	5	67092312	12	2	4	4
6285072	10	2	6	6	83865368	12	2	5	5
7332536	10	2	7	7	100638402	12	2	6	6
8379982	10	2	8	8	117411414	12	2	7	7
9427410	10	2	9	9	134184404	12	2	8	8
10474820	10	2	10	10	150957372	12	2	9	9
11522212	10	2	11	11	167730318	12	2	10	10
12569586	10	2	12	12	184503242	12	2	11	11
13616942	10	2	13	13	201276144	12	2	12	12
14664280	10	2	14	14	218049024	12	2	13	13
15711600	10	2	15	15	234821882	12	2	14	14
16758902	10	2	16	16	251594718	12	2	15	15
17806186	10	2	17	17	268367532	12	2	16	16
18853452	10	2	18	18	285140324	12	2	17	17
19900700	10	2	19	19	301913094	12	2	18	18
20947930	10	2	20	20	318685842	12	2	19	19
21995142	10	2	21	21	335458568	12	2	20	20
23042336	10	2	22	22	352231272	12	2	21	21
24089512	10	2	23	23	369003954	12	2	22	22
25136670	10	2	24	24	385776614	12	2	23	23
26183810	10	2	25	25	402549252	12	2	24	24
27230932	10	2	26	26	419321868	12	2	25	25
28278036	10	2	27	27	436094462	12	2	26	26
29325122	10	2	28	28	452867034	12	2	27	27
30372190	10	2	29	29	469639584	12	2	28	28
31419240	10	2	30	30	486412112	12	2	29	29
4192168	11	2	1	1	503184618	12	2	30	30
8384426	11	2	2	2	67100542	13	2	1	1
12576664	11	2	3	3	134201216	13	2	2	2
16768882	11	2	4	4	201301866	13	2	3	3
20961080	11	2	5	5	268402492	13	2	4	4
25153258	11	2	6	6	335503094	13	2	5	5
29345416	11	2	7	7	402603672	13	2	6	6

469704226	13	2	7	7	6442253886	15	2	6	6
536804756	13	2	8	8	7515962804	15	2	7	7
603905262	13	2	9	9	8589671694	15	2	8	8
671005744	13	2	10	10	9663380556	15	2	9	9
738106202	13	2	11	11	10737089390	15	2	10	10
805206636	13	2	12	12	11810798196	15	2	11	11
872307046	13	2	13	13	12884506974	15	2	12	12
939407432	13	2	14	14	13958215724	15	2	13	13
1006507794	13	2	15	15	15031924446	15	2	14	14
1073608132	13	2	16	16	16105633140	15	2	15	15
1140708446	13	2	17	17	17179341806	15	2	16	16
1207808736	13	2	18	18	18253050444	15	2	17	17
1274909002	13	2	19	19	19326759054	15	2	18	18
1342009244	13	2	20	20	20400467636	15	2	19	19
1409109462	13	2	21	21	21474176190	15	2	20	20
1476209656	13	2	22	22	22547884716	15	2	21	21
1543309826	13	2	23	23	23621593214	15	2	22	22
1610409972	13	2	24	24	24695301684	15	2	23	23
1677510094	13	2	25	25	25769010126	15	2	24	24
1744610192	13	2	26	26	26842718540	15	2	25	25
1811710266	13	2	27	27	27916426926	15	2	26	26
1878810316	13	2	28	28	28990135284	15	2	27	27
1945910342	13	2	29	29	30063843614	15	2	28	28
2013010344	13	2	30	30	31137551916	15	2	29	29
268418918	14	2	1	1	32211260190	15	2	30	30
536837992	14	2	2	2	4294901552	16	2	1	1
805257040	14	2	3	3	8589803314	16	2	2	2
1073676062	14	2	4	4	12884705046	16	2	3	3
1342095058	14	2	5	5	17179606748	16	2	4	4
1610514028	14	2	6	6	21474508420	16	2	5	5
1878932972	14	2	7	7	25769410062	16	2	6	6
2147351890	14	2	8	8	30064311674	16	2	7	7
2415770782	14	2	9	9	34359213256	16	2	8	8
2684189648	14	2	10	10	38654114808	16	2	9	9
2952608488	14	2	11	11	42949016330	16	2	10	10
3221027302	14	2	12	12	47243917822	16	2	11	11
3489446090	14	2	13	13	51538819284	16	2	12	12
3757864852	14	2	14	14	55833720716	16	2	13	13
4026283588	14	2	15	15	60128622118	16	2	14	14
4294702298	14	2	16	16	64423523490	16	2	15	15
4563120982	14	2	17	17	68718424832	16	2	16	16
4831539640	14	2	18	18	73013326144	16	2	17	17
5099958272	14	2	19	19	77308227426	16	2	18	18
5368376878	14	2	20	20	81603128678	16	2	19	19
5636795458	14	2	21	21	85898029900	16	2	20	20
5905214012	14	2	22	22	90192931092	16	2	21	21
6173632540	14	2	23	23	94487832254	16	2	22	22
6442051042	14	2	24	24	98782733386	16	2	23	23
6710469518	14	2	25	25	$1.03078 \mathrm{E}+11$	16	2	24	24
6978887968	14	2	26	26	$1.07373 \mathrm{E}+11$	16	2	25	25
7247306392	14	2	27	27	$1.11667 \mathrm{E}+11$	16	2	26	26
7515724790	14	2	28	28	$1.15962 \mathrm{E}+11$	16	2	27	27
7784143162	14	2	29	29	1.20257E+11	16	2	28	28
8052561508	14	2	30	30	1.24552E+11	16	2	29	29
1073708876	15	2	1	1	$1.28847 \mathrm{E}+11$	16	2	30	30
2147417934	15	2	2	2	17179737874	17	2	1	1
3221126964	15	2	3	3	34359475988	17	2	2	2
4294835966	15	2	4	4	51539214070	17	2	3	3
5368544940	15	2	5	5	68718952120	17	2	4	4

85898690138	17	2	5	5	$1.09951 \mathrm{E}+12$	19	2	4	4
$1.03078 \mathrm{E}+11$	17	2	6	6	$1.37439 \mathrm{E}+12$	19	2	5	5
$1.20258 \mathrm{E}+11$	17	2	7	7	$1.64926 \mathrm{E}+12$	19	2	6	6
$1.37438 \mathrm{E}+11$	17	2	8	8	1.92414E+12	19	2	7	7
$1.54618 \mathrm{E}+11$	17	2	9	9	2.19902E+12	19	2	8	8
$1.71797 \mathrm{E}+11$	17	2	10	10	2.4739E+12	19	2	9	9
$1.88977 \mathrm{E}+11$	17	2	11	11	$2.74877 \mathrm{E}+12$	19	2	10	10
$2.06157 \mathrm{E}+11$	17	2	12	12	$3.02365 \mathrm{E}+12$	19	2	11	11
$2.23337 E+11$	17	2	13	13	$3.29853 \mathrm{E}+12$	19	2	12	12
$2.40516 \mathrm{E}+11$	17	2	14	14	$3.57341 \mathrm{E}+12$	19	2	13	13
2.57696E+11	17	2	15	15	$3.84828 \mathrm{E}+12$	19	2	14	14
$2.74876 \mathrm{E}+11$	17	2	16	16	$4.12316 \mathrm{E}+12$	19	2	15	15
$2.92056 \mathrm{E}+11$	17	2	17	17	$4.39804 \mathrm{E}+12$	19	2	16	16
$3.09235 \mathrm{E}+11$	17	2	18	18	$4.67292 \mathrm{E}+12$	19	2	17	17
$3.26415 \mathrm{E}+11$	17	2	19	19	$4.94779 \mathrm{E}+12$	19	2	18	18
$3.43595 \mathrm{E}+11$	17	2	20	20	$5.22267 \mathrm{E}+12$	19	2	19	19
$3.60774 \mathrm{E}+11$	17	2	21	21	$5.49755 \mathrm{E}+12$	19	2	20	20
$3.77954 \mathrm{E}+11$	17	2	22	22	$5.77243 \mathrm{E}+12$	19	2	21	21
$3.95134 \mathrm{E}+11$	17	2	23	23	$6.0473 \mathrm{E}+12$	19	2	22	22
4.12314E+11	17	2	24	24	$6.32218 \mathrm{E}+12$	19	2	23	23
$4.29493 \mathrm{E}+11$	17	2	25	25	$6.59706 \mathrm{E}+12$	19	2	24	24
$4.46673 E+11$	17	2	26	26	$6.87193 \mathrm{E}+12$	19	2	25	25
$4.63853 \mathrm{E}+11$	17	2	27	27	$7.14681 \mathrm{E}+12$	19	2	26	26
$4.81033 \mathrm{E}+11$	17	2	28	28	$7.42169 \mathrm{E}+12$	19	2	27	27
$4.98212 \mathrm{E}+11$	17	2	29	29	7.69657E+12	19	2	28	28
$5.15392 \mathrm{E}+11$	17	2	30	30	$7.97144 \mathrm{E}+12$	19	2	29	29
68719214322	18	2	1	1	$8.24632 \mathrm{E}+12$	19	2	30	30
$1.37438 \mathrm{E}+11$	18	2	2	2	$1.09951 \mathrm{E}+12$	20	2	1	1
$2.06158 \mathrm{E}+11$	18	2	3	3	2.19902E+12	20	2	2	2
2.74877E+11	18	2	4	4	$3.29853 \mathrm{E}+12$	20	2	3	3
$3.43596 \mathrm{E}+11$	18	2	5	5	$4.39804 \mathrm{E}+12$	20	2	4	4
$4.12315 \mathrm{E}+11$	18	2	6	6	$5.49755 \mathrm{E}+12$	20	2	5	5
$4.81035 \mathrm{E}+11$	18	2	7	7	$6.59706 \mathrm{E}+12$	20	2	6	6
$5.49754 \mathrm{E}+11$	18	2	8	8	$7.69657 \mathrm{E}+12$	20	2	7	7
$6.18473 \mathrm{E}+11$	18	2	9	9	$8.79608 \mathrm{E}+12$	20	2	8	8
$6.87192 \mathrm{E}+11$	18	2	10	10	$9.8956 \mathrm{E}+12$	20	2	9	9
7.55911E+11	18	2	11	11	$1.09951 \mathrm{E}+13$	20	2	10	10
$8.24631 \mathrm{E}+11$	18	2	12	12	$1.20946 \mathrm{E}+13$	20	2	11	11
$8.9335 \mathrm{E}+11$	18	2	13	13	$1.31941 \mathrm{E}+13$	20	2	12	12
$9.62069 \mathrm{E}+11$	18	2	14	14	$1.42936 \mathrm{E}+13$	20	2	13	13
$1.03079 \mathrm{E}+12$	18	2	15	15	$1.53931 \mathrm{E}+13$	20	2	14	14
$1.09951 \mathrm{E}+12$	18	2	16	16	$1.64927 \mathrm{E}+13$	20	2	15	15
$1.16823 \mathrm{E}+12$	18	2	17	17	$1.75922 \mathrm{E}+13$	20	2	16	16
$1.23695 \mathrm{E}+12$	18	2	18	18	$1.86917 \mathrm{E}+13$	20	2	17	17
1.30567E+12	18	2	19	19	$1.97912 \mathrm{E}+13$	20	2	18	18
$1.37438 \mathrm{E}+12$	18	2	20	20	$2.08907 \mathrm{E}+13$	20	2	19	19
$1.4431 \mathrm{E}+12$	18	2	21	21	$2.19902 \mathrm{E}+13$	20	2	20	20
$1.51182 \mathrm{E}+12$	18	2	22	22	$2.30897 \mathrm{E}+13$	20	2	21	21
$1.58054 \mathrm{E}+12$	18	2	23	23	$2.41892 \mathrm{E}+13$	20	2	22	22
$1.64926 \mathrm{E}+12$	18	2	24	24	$2.52887 \mathrm{E}+13$	20	2	23	23
$1.71798 \mathrm{E}+12$	18	2	25	25	$2.63883 \mathrm{E}+13$	20	2	24	24
$1.7867 \mathrm{E}+12$	18	2	26	26	$2.74878 \mathrm{E}+13$	20	2	25	25
$1.85542 \mathrm{E}+12$	18	2	27	27	$2.85873 \mathrm{E}+13$	20	2	26	26
$1.92414 \mathrm{E}+12$	18	2	28	28	$2.96868 \mathrm{E}+13$	20	2	27	27
$1.99286 \mathrm{E}+12$	18	2	29	29	$3.07863 \mathrm{E}+13$	20	2	28	28
$2.06158 \mathrm{E}+12$	18	2	30	30	$3.18858 \mathrm{E}+13$	20	2	29	29
$2.74877 \mathrm{E}+11$	19	2	1	1	$3.29853 \mathrm{E}+13$	20	2	30	30
$5.49755 \mathrm{E}+11$	19	2	2	2	$4.39804 \mathrm{E}+12$	21	2	1	1
$8.24632 \mathrm{E}+11$	19	2	3	3	$8.79609 \mathrm{E}+12$	21	2	2	2

$1.31941 \mathrm{E}+13$	21	2	3	3	1.40737E+14	23	2	2	2
$1.75922 \mathrm{E}+13$	21	2	4	4	$2.11106 \mathrm{E}+14$	23	2	3	3
$2.19902 \mathrm{E}+13$	21	2	5	5	$2.81475 \mathrm{E}+14$	23	2	4	4
$2.63883 \mathrm{E}+13$	21	2	6	6	3.51844E+14	23	2	5	5
$3.07863 \mathrm{E}+13$	21	2	7	7	4.22212E+14	23	2	6	6
$3.51844 \mathrm{E}+13$	21	2	8	8	4.92581E+14	23	2	7	7
$3.95824 \mathrm{E}+13$	21	2	9	9	$5.6295 \mathrm{E}+14$	23	2	8	8
$4.39804 \mathrm{E}+13$	21	2	10	10	$6.33319 \mathrm{E}+14$	23	2	9	9
$4.83785 \mathrm{E}+13$	21	2	11	11	$7.03687 \mathrm{E}+14$	23	2	10	10
$5.27765 \mathrm{E}+13$	21	2	12	12	$7.74056 \mathrm{E}+14$	23	2	11	11
$5.71746 \mathrm{E}+13$	21	2	13	13	$8.44425 \mathrm{E}+14$	23	2	12	12
$6.15726 \mathrm{E}+13$	21	2	14	14	$9.14794 \mathrm{E}+14$	23	2	13	13
$6.59707 \mathrm{E}+13$	21	2	15	15	$9.85162 \mathrm{E}+14$	23	2	14	14
$7.03687 \mathrm{E}+13$	21	2	16	16	$1.05553 \mathrm{E}+15$	23	2	15	15
$7.47668 \mathrm{E}+13$	21	2	17	17	$1.1259 \mathrm{E}+15$	23	2	16	16
$7.91648 \mathrm{E}+13$	21	2	18	18	1.19627E+15	23	2	17	17
$8.35628 \mathrm{E}+13$	21	2	19	19	$1.26664 \mathrm{E}+15$	23	2	18	18
$8.79609 \mathrm{E}+13$	21	2	20	20	$1.33701 \mathrm{E}+15$	23	2	19	19
9.23589E+13	21	2	21	21	1.40737E+15	23	2	20	20
9.6757E+13	21	2	22	22	$1.47774 \mathrm{E}+15$	23	2	21	21
$1.01155 \mathrm{E}+14$	21	2	23	23	$1.54811 \mathrm{E}+15$	23	2	22	22
$1.05553 \mathrm{E}+14$	21	2	24	24	$1.61848 \mathrm{E}+15$	23	2	23	23
$1.09951 \mathrm{E}+14$	21	2	25	25	$1.68885 \mathrm{E}+15$	23	2	24	24
$1.14349 \mathrm{E}+14$	21	2	26	26	$1.75922 \mathrm{E}+15$	23	2	25	25
$1.18747 \mathrm{E}+14$	21	2	27	27	$1.82959 \mathrm{E}+15$	23	2	26	26
$1.23145 \mathrm{E}+14$	21	2	28	28	$1.89996 \mathrm{E}+15$	23	2	27	27
$1.27543 \mathrm{E}+14$	21	2	29	29	$1.97032 \mathrm{E}+15$	23	2	28	28
1.31941E+14	21	2	30	30	$2.04069 \mathrm{E}+15$	23	2	29	29
$1.75922 \mathrm{E}+13$	22	2	1	1	$2.11106 \mathrm{E}+15$	23	2	30	30
3.51844E+13	22	2	2	2	$2.81475 \mathrm{E}+14$	24	2	1	1
$5.27765 \mathrm{E}+13$	22	2	3	3	5.6295E+14	24	2	2	2
$7.03687 \mathrm{E}+13$	22	2	4	4	8.44425E+14	24	2	3	3
$8.79609 \mathrm{E}+13$	22	2	5	5	1.1259E+15	24	2	4	4
$1.05553 \mathrm{E}+14$	22	2	6	6	$1.40737 \mathrm{E}+15$	24	2	5	5
$1.23145 \mathrm{E}+14$	22	2	7	7	1.68885E+15	24	2	6	6
$1.40737 \mathrm{E}+14$	22	2	8	8	1.97032E+15	24	2	7	7
$1.5833 \mathrm{E}+14$	22	2	9	9	$2.2518 \mathrm{E}+15$	24	2	8	8
$1.75922 \mathrm{E}+14$	22	2	10	10	2.53327E+15	24	2	9	9
$1.93514 \mathrm{E}+14$	22	2	11	11	2.81475E+15	24	2	10	10
$2.11106 \mathrm{E}+14$	22	2	12	12	$3.09622 \mathrm{E}+15$	24	2	11	11
$2.28698 \mathrm{E}+14$	22	2	13	13	3.3777E+15	24	2	12	12
$2.46291 \mathrm{E}+14$	22	2	14	14	3.65917E+15	24	2	13	13
$2.63883 \mathrm{E}+14$	22	2	15	15	3.94065E+15	24	2	14	14
$2.81475 \mathrm{E}+14$	22	2	16	16	$4.22212 \mathrm{E}+15$	24	2	15	15
$2.99067 \mathrm{E}+14$	22	2	17	17	$4.5036 \mathrm{E}+15$	24	2	16	16
$3.16659 \mathrm{E}+14$	22	2	18	18	$4.78507 \mathrm{E}+15$	24	2	17	17
$3.34251 \mathrm{E}+14$	22	2	19	19	$5.06655 \mathrm{E}+15$	24	2	18	18
$3.51844 \mathrm{E}+14$	22	2	20	20	$5.34802 \mathrm{E}+15$	24	2	19	19
$3.69436 \mathrm{E}+14$	22	2	21	21	$5.6295 \mathrm{E}+15$	24	2	20	20
$3.87028 \mathrm{E}+14$	22	2	22	22	$5.91097 \mathrm{E}+15$	24	2	21	21
$4.0462 \mathrm{E}+14$	22	2	23	23	$6.19245 \mathrm{E}+15$	24	2	22	22
$4.22212 \mathrm{E}+14$	22	2	24	24	$6.47392 \mathrm{E}+15$	24	2	23	23
$4.39805 \mathrm{E}+14$	22	2	2.5	25	$6.7554 \mathrm{E}+15$	24	2	24	24
$4.57397 \mathrm{E}+14$	22	2	26	26	$7.03687 \mathrm{E}+15$	24	2	25	25
$4.74989 \mathrm{E}+14$	22	2	27	27	7.31835E+15	24	2	26	26
$4.92581 \mathrm{E}+14$	22	2	28	28	$7.59982 \mathrm{E}+15$	24	2	27	27
$5.10173 \mathrm{E}+14$	22	2	29	29	$7.8813 \mathrm{E}+15$	24	2	28	28
$5.27765 \mathrm{E}+14$	22	2	30	30	$8.16277 \mathrm{E}+15$	24	2	29	
$7.03687 \mathrm{E}+13$	23	2	1	1	8.44425E+15	24	2	30	30

$1.1259 \mathrm{E}+15$	25	2	1	1	$1.35108 \mathrm{E}+17$	26	2	30	30
$2.2518 \mathrm{E}+15$	25	2	2	2	$1.80144 \mathrm{E}+16$	27	2	1	1
3.3777E+15	25	2	3	3	$3.60288 \mathrm{E}+16$	27	2	2	2
$4.5036 \mathrm{E}+15$	25	2	4	4	$5.40432 \mathrm{E}+16$	27	2	3	3
$5.6295 \mathrm{E}+15$	25	2	5	5	$7.20576 \mathrm{E}+16$	27	2	4	4
$6.7554 \mathrm{E}+15$	25	2	6	6	$9.0072 \mathrm{E}+16$	27	2	5	5
$7.8813 \mathrm{E}+15$	25	2	7	7	$1.08086 \mathrm{E}+17$	27	2	6	6
$9.0072 \mathrm{E}+15$	25	2	8	8	$1.26101 \mathrm{E}+17$	27	2	7	7
$1.01331 \mathrm{E}+16$	25	2	9	9	$1.44115 \mathrm{E}+17$	27	2	8	8
$1.1259 \mathrm{E}+16$	25	2	10	10	1.6213E+17	27	2	9	9
$1.23849 \mathrm{E}+16$	25	2	11	11	$1.80144 \mathrm{E}+17$	27	2	10	10
1.35108E+16	25	2	12	12	$1.98158 \mathrm{E}+17$	27	2	11	11
$1.46367 \mathrm{E}+16$	25	2	13	13	$2.16173 \mathrm{E}+17$	27	2	12	12
1. $57626 \mathrm{E}+16$	25	2	14	14	2.34187E+17	27	2	13	13
1.68885E+16	25	2	15	15	2.52202E+17	27	2	14	14
$1.80144 \mathrm{E}+16$	25	2	16	16	$2.70216 \mathrm{E}+17$	27	2	15	15
$1.91403 \mathrm{E}+16$	25	2	17	17	$2.8823 \mathrm{E}+17$	27	2	16	16
$2.02662 \mathrm{E}+16$	25	2	18	18	$3.06245 \mathrm{E}+17$	27	2	17	17
$2.13921 \mathrm{E}+16$	25	2	19	19	$3.24259 \mathrm{E}+17$	27	2	18	18
$2.2518 \mathrm{E}+16$	25	2	20	20	$3.42274 \mathrm{E}+17$	27	2	19	19
$2.36439 \mathrm{E}+16$	25	2	21	21	$3.60288 \mathrm{E}+17$	27	2	20	20
$2.47698 \mathrm{E}+16$	25	2	22	22	$3.78302 \mathrm{E}+17$	27	2	21	21
$2.58957 \mathrm{E}+16$	25	2	23	23	$3.96317 \mathrm{E}+17$	27	2	22	22
$2.70216 \mathrm{E}+16$	25	2	24	24	$4.14331 \mathrm{E}+17$	27	2	23	23
$2.81475 \mathrm{E}+16$	25	2	25	25	$4.32346 \mathrm{E}+17$	27	2	24	24
$2.92734 \mathrm{E}+16$	25	2	26	26	$4.5036 \mathrm{E}+17$	27	2	25	25
3.03993E+16	25	2	27	27	$4.68374 \mathrm{E}+17$	27	2	26	26
3.15252E+16	25	2	28	28	$4.86389 \mathrm{E}+17$	27	2	27	27
$3.26511 E+16$	25	2	29	29	$5.04403 \mathrm{E}+17$	27	2	28	28
$3.3777 \mathrm{E}+16$	25	2	30	30	$5.22418 \mathrm{E}+17$	27	2	29	29
$4.5036 \mathrm{E}+15$	26	2	1	1	$5.40432 \mathrm{E}+17$	27	2	30	30
$9.0072 \mathrm{E}+15$	26	2	2	2	$7.20576 \mathrm{E}+16$	28	2	1	1
1.35108E+16	26	2	3	3	$1.44115 \mathrm{E}+17$	28	2	2	2
$1.80144 \mathrm{E}+16$	26	2	4	4	$2.16173 \mathrm{E}+17$	28	2	3	3
$2.2518 \mathrm{E}+16$	26	2	5	5	$2.8823 \mathrm{E}+17$	28	2	4	4
$2.70216 \mathrm{E}+16$	26	2	6	6	$3.60288 \mathrm{E}+17$	28	2	5	5
3.15252E+16	26	2	7	7	$4.32346 \mathrm{E}+17$	28	2	6	6
$3.60288 \mathrm{E}+16$	26	2	8	8	$5.04403 \mathrm{E}+17$	28	2	7	7
$4.05324 \mathrm{E}+16$	26	2	9	9	$5.76461 \mathrm{E}+17$	28	2	8	8
$4.5036 \mathrm{E}+16$	26	2	10	10	$6.48518 \mathrm{E}+17$	28	2	9	9
$4.95396 \mathrm{E}+16$	26	2	11	11	$7.20576 \mathrm{E}+17$	28	2	10	10
$5.40432 \mathrm{E}+16$	26	2	12	12	$7.92634 \mathrm{E}+17$	28	2	11	11
$5.85468 \mathrm{E}+16$	26	2	13	13	$8.64691 \mathrm{E}+17$	28	2	12	12
$6.30504 \mathrm{E}+16$	26	2	14	14	$9.36749 \mathrm{E}+17$	28	2	13	13
$6.7554 \mathrm{E}+16$	26	2	15	15	$1.00881 \mathrm{E}+18$	28	2	14	14
$7.20576 \mathrm{E}+16$	26	2	16	16	$1.08086 \mathrm{E}+18$	28	2	15	15
$7.65612 \mathrm{E}+16$	26	2	17	17	$1.15292 \mathrm{E}+18$	28	2	16	16
$8.10648 \mathrm{E}+16$	26	2	18	18	$1.22498 \mathrm{E}+18$	28	2	17	17
$8.55684 \mathrm{E}+16$	26	2	19	19	1.29704E+18	28	2	18	18
$9.0072 \mathrm{E}+16$	26	2	20	20	$1.36909 \mathrm{E}+18$	28	2	19	19
$9.45756 \mathrm{E}+16$	26	2	21	21	$1.44115 \mathrm{E}+18$	28	2	20	20
$9.90792 \mathrm{E}+16$	26	2	22	22	$1.51321 \mathrm{E}+18$	28	2	21	21
$1.03583 \mathrm{E}+17$	26	2	23	23	$1.58527 \mathrm{E}+18$	28	2	22	22
$1.08086 \mathrm{E}+17$	26	2	24	24	1.65732E+18	28	2	23	23
1.1259E+17	26	2	25	25	$1.72938 \mathrm{E}+18$	28	2	24	24
$1.17094 \mathrm{E}+17$	26	2	26	26	$1.80144 \mathrm{E}+18$	28	2	25	25
$1.21597 \mathrm{E}+17$	26	2	27	27	$1.8735 \mathrm{E}+18$	28	2	26	26
$1.26101 \mathrm{E}+17$	26	2	28	28	$1.94556 \mathrm{E}+18$	28	2	27	27
$1.30604 \mathrm{E}+17$	26	2	29	29	$2.01761 \mathrm{E}+18$	28	2	28	28

$2.08967 \mathrm{E}+18$	28	2	29	29	$8.64691 \mathrm{E}+18$	29	2	30	30
$2.16173 \mathrm{E}+18$	28	2	30	30	$1.15292 \mathrm{E}+18$	30	2	1	1
$2.8823 \mathrm{E}+17$	29	2	1	1	$2.30584 \mathrm{E}+18$	30	2	2	2
$5.76461 \mathrm{E}+17$	29	2	2	2	$3.45876 \mathrm{E}+18$	30	2	3	3
$8.64691 \mathrm{E}+17$	29	2	3	3	$4.61169 \mathrm{E}+18$	30	2	4	4
$1.15292 \mathrm{E}+18$	29	2	4	4	$5.76461 \mathrm{E}+18$	30	2	5	5
$1.44115 \mathrm{E}+18$	29	2	5	5	$6.91753 \mathrm{E}+18$	30	2	6	6
$1.72938 \mathrm{E}+18$	29	2	6	6	$8.07045 \mathrm{E}+18$	30	2	7	7
$2.01761 \mathrm{E}+18$	29	2	7	7	$1.22337 \mathrm{E}+18$	30	2	8	8
$2.30584 \mathrm{E}+18$	29	2	8	8	$1.15292 \mathrm{E}+19$	30	2	10	10
$2.59407 \mathrm{E}+18$	29	2	9	9	$1.26821 \mathrm{E}+19$	30	2	11	11
$2.8823 \mathrm{E}+18$	29	2	10	10	$1.38351 \mathrm{E}+19$	30	2	12	12
$3.17053 \mathrm{E}+18$	29	2	11	11	$1.4988 \mathrm{E}+19$	30	2	13	13
$3.45876 \mathrm{E}+18$	29	2	12	12	$1.61409 \mathrm{E}+19$	30	2	14	14
$3.74699 \mathrm{E}+18$	29	2	13	13	$1.72938 \mathrm{E}+19$	30	2	15	15
$4.03523 \mathrm{E}+18$	29	2	14	14	$1.95967 \mathrm{E}+19$	30	2	16	16
$4.32346 \mathrm{E}+18$	29	2	15	15	$2.07526 \mathrm{E}+19$	30	2	17	17
$4.61169 \mathrm{E}+18$	29	2	16	16	30	2	18	18	
$4.89992 \mathrm{E}+18$	29	2	17	17	$2.19055 \mathrm{E}+19$	30	2	19	19
$5.18815 \mathrm{E}+18$	29	2	18	18	$2.30584 \mathrm{E}+19$	30	2	20	20
$5.47638 \mathrm{E}+18$	29	2	19	19	$2.53643 \mathrm{E}+19$	30	2	21	21
$5.76461 \mathrm{E}+18$	29	2	20	20	30	2	22	22	
$6.05284 \mathrm{E}+18$	29	2	21	21	$2.65172 \mathrm{E}+19$	30	2	23	23
$6.34107 \mathrm{E}+18$	29	2	22	22	$2.76701 \mathrm{E}+19$	30	2	24	24
$6.6293 \mathrm{E}+18$	29	2	23	23	$2.8823 \mathrm{E}+19$	30	2	25	25
$6.91753 \mathrm{E}+18$	29	2	24	24	$2.9976 \mathrm{E}+19$	30	2	26	26
$7.20576 \mathrm{E}+18$	29	2	25	25	$3.11289 \mathrm{E}+19$	30	2	27	27
$7.49399 \mathrm{E}+18$	29	2	26	26	$3.22818 \mathrm{E}+19$	30	2	28	28
$7.78222 \mathrm{E}+18$	29	2	27	27	$3.34347 \mathrm{E}+19$	30	2	29	29
$8.07045 \mathrm{E}+18$	29	2	28	28	$3.45876 \mathrm{E}+19$	30	2	30	30
$8.35868 \mathrm{E}+18$	29	2	29	29			2	2	2

Conclusions:
Total number of K
$=2.38 \mathrm{E}+88$

Number of $K>0$
$=2.38 \mathrm{E}+88$
Number of $K<=0$
$=201$
+ve rate (P)
$=100 \%$

This is the end of report.

$\begin{aligned} K=-2, a & =2, c=17 \\ b[0] & =2, b[1]=2 \\ c[0] & =17, c[1]=17 \end{aligned}$	$\begin{aligned} c[0] & =22, c[1]=22 \\ K=-20, a & =2, c=23 \\ b[0] & =2, b[1]=2 . \end{aligned}$
$\mathrm{K}=-20, \mathrm{a}=2, \mathrm{c}=18$	$c[0]=20, c[1]=23$.
$\begin{aligned} & b[0]=2, \quad b[1]=2 \\ & c[0]=18, \quad c[1]=18 . \end{aligned}$	$K=-16, a=2, c=23$
$\mathrm{K}=-6, \mathrm{a}=2, \mathrm{c}=19$	$c[0]=21, c[1]=22$.
$\begin{aligned} & b[0]=2, \quad b[1]=2 . \\ & c[0]=18, \quad c[1]=19 . \end{aligned}$	$\begin{aligned} K=-58, a & =2, \quad c=23 \\ b[0] & =2, b[1]=2 \end{aligned}$
$K=-6, a=2, c=19$	$c[0]=21, c[1]=23$.
$\begin{aligned} & b[0]=2, \quad b[1]=2 . \\ & c[0]=19, \quad c[1]=18 . \end{aligned}$	$\begin{aligned} \mathrm{K}=-16, \mathrm{a} & =2, \mathrm{c}=23 \\ \mathrm{~b}[0] & =2, \mathrm{~b}[1]=2\end{aligned}$
$K=-40, a=2, c=19$	$c[0]=22, c[1]=21$
$\begin{aligned} & b[0]=2, \quad b[1]=2 \\ & c[0]=19, \quad c[1]=19 . \end{aligned}$	$\begin{aligned} \mathrm{K}=-56, \mathrm{a} & =2, \mathrm{c}=23 \\ \mathrm{~b}[0] & =2, \mathrm{~b}[1]=2 .\end{aligned}$
$K=-26, a=2, c=20$	$c[0]=22, c[1]=22$.
$\begin{aligned} & b[0]=2, b[1]=2 . \\ & c[0]=19, c[1]=20 . \end{aligned}$	$\begin{aligned} K=-98, a & =2, c=23 \\ b[0] & =2, b[1]=2 .\end{aligned}$
$K=-26, a=2, c=20$	$c[0]=22, c[1]=23$.
$b[0]=2, b[1]=2$.	$K=-20, a=2, c=23$
$c[0]=20, c[1]=19$.	$b[0]=2, b[1]=2$.
$K=-62, a=2, c=20$	$c[0]=23, c[1]=$
$b[0]=2, b[1]=2$.	$K=-58, a=2, c=23$
$c[0]=20, c[1]=20$.	$b[0]=2, b[1]=2$.
$K=-12, a=2, c=21$	$c[0]=23, c[1]=21$.
$b[0]=2, b[1]=2$ $\text { c[01 }=19 . c[1]=21$	$K=-98, a=2, c=23$
$K=-10, a=2, c=21$	$c[0]=23, c[1]$
$b[0]=2, b[1]=2$.	$K=-140, a=2, c=23$
$c[0]=20, c[1]=20$.	$b[0]=2, b[1]=2$.
$K=-48, a=2, c=21$	$c[0]=23, c[1]=23$.
$\begin{aligned} & b[0]=2, b[1]=2 . \\ & c[0]=20, c[1]=21 . \end{aligned}$	$\begin{gathered} K=-6, a=2, c=24 \\ b[0]=2, b[1] \end{gathered}$
$\mathrm{K}=-12, \mathrm{a}=2, \mathrm{c}=21$	$c[0]=20, c[1]=$
$\mathrm{b}[0]=2, \mathrm{~b}[1]=2$.	$K=0, a=2, c=24$
$c[0]=21, c[1]=19$.	$b[0]=2, b[1]=2$.
$K=-48, a=2, c=21$	$c[0]=21, c[1]=23$.
$b[0]=2, b[1]=2$.	$K=-44, a=2, c=24$
$c[0]=21, c[1]=20$.	$b[0]=2, b[1]=2$.
$K=-86, a=2, c=21$	$c[0]=21, c[1]=24$.
$\begin{aligned} & b[0]=2, b[1]=2 \\ & c[0]=21, \quad c[1]=21 \end{aligned}$	$\begin{aligned} K=-40, a & =2, c=24 \\ b[0] & =2, b[1]=2 \end{aligned}$
$K=-34, a=2, c=22$	$b[0]=2, b[1]=2$ $c[0]=22, c[1]=2$
$b[0]=2, b[1]=2$.	$\mathrm{K}=-84, \mathrm{a}=2, \mathrm{c}=24$
$c[0]=20, c[1]=22$.	$b[0]=2, b[1]=2$.
$K=-32, a=2, c=22$	$c[0]=22, c[1]=24$.
$b[0]=2, b[1]=2$.	$K=0, a=2, c=24$
$c[0]=21, c[1]=21$.	$b[0]=2, b[1]=2$.
$\mathrm{K}=-72, \mathrm{a}=2, \mathrm{c}=22$	$c[0]=23, c[1]=21$.
$\mathrm{b}[0]=2, \mathrm{~b}[1]=2$.	$K=-40, a=2, c=24$
$c[0]=21, c[1]=22$.	$b[0]=2, b[1]=2$.
$K=-34, a=2, c=22$	$c[0]=23, \quad c[1]=22$.
$b[0]=2, b[1]=2 .$	$K=-82, \mathrm{a}=2, \mathrm{c}=24$
	$b[0]=2, b[1]=2$.
$\begin{aligned} K=-72, a & =2, \quad c=22 \\ b[0] & =2, b[1]=2 \end{aligned}$	$c[0]=23, c[1]=23$.
$\begin{aligned} & b[0]=2, b[1]=2 . \\ & c[0]=22, c[1]=21 . \end{aligned}$	$K=-126, a=2, c=24$
$\mathrm{K}=-112, \mathrm{a}=2, \mathrm{c}=22$	$b[0]=2, b[1]=2 .$
$b[0]=2, b[1]=2$	$K=-6, \quad a=2, \quad c=24$

$b[0]=2, b[1]=2$.
$c[0]=24, c[1]=20$.
$\mathrm{b}[0]=2, \mathrm{~b}[1]=2$.
$4, a=2, c=24$
$b[0]=2, b[1]=2$.
$c[0]=24, c[1]=22$.
$b[0]=2, b[1]=2$.
$c[0]=24, c[1]=23$.
$b[0]=2, b[1]=2$
30, $a=2, c=25$
$b[0]=2, b[1]=2$.
$c[0]=21, c[1]=25$.
$b[0]=2, b[1]=2$.
$c[0]=22, c[1]=24$.
$K=-70, a=2, c=25$
$b[0]=2, b[1]=2$.
$c[0]=22, c[1]=25$.
$b[0]=2, b[1]=2$.
$c[0]=23, c[1]=23$.
$b[0]=2, b[1]=2$.
$c[0]=23, c[1]=24$.
$b[0]=2, b[1]=2$.
$c[0]=23, c[1]=25$.
$K=-24, a=2, c=25$
$b[0]=2, b[1]=2$.
$c[0]=24, c[1]=22$.
$b[0]=2, b[1]=2$.
$c[0]=24, c[1]=23$.
$K=-110, a=2, c=25$
$b[0]=2, b[1]=2$.
$c[0]=24, c[1]=24$.
$b[0]=2, b[1]=2$.
$c[0]=24, c[1]=25$.
$K=-30, a=2, c=25$
$b[0]=2, b[1]=2$.
$c[0]=25, c[1]=21$.
$b[0]=2, b[1]=2$.
$c[0]=25, c[1]=22$.
$K=-112, a=2, c=25$
$b[0]=2, b[1]=2$.
$c[0]=25, c[1]=23$.
$b[0]=2, b[1]=2$.
$c[0]=25, c[1]=24$.
$b[0]=2, b[1]=2$.
$c[0]=25, c[1]=25$.
$b[0]=2, b[1]=2$.

```
K=-2, a=2, c=27
    b[0] = 2, b[1] = 2.
    c[0] = 21, c[1] = 27.
K = -42, a = 2, c = 27
    b[0] = 2, b[1] = 2.
    c[0]=22,c[1] = 27.
K=-34, a=2, c=27
    b[0] = 2, b[1] = 2.
    c[0] = 23, c[1] = 26.
K = -84, a = 2, c = 27
    b[0] = 2, b[1] = 2.
    c[0] = 23, c[1] = 27.
K=-30, a = 2, c = 27
    b[0]=2,b[1]=2.
    c[0] = 24,c[1] = 25.
K=-78, a = 2, c = 27
    b[0] = 2, b[1] = 2.
    c[0] = 24, c[1] = 26.
K=-128, a = 2, c= = 27
    b[0] = 2, b[1] = 2.
    c[0] = 24, c[1] = 27.
K=-30, a=2, c=27
    b[0] = 2, b[1] = 2.
    c[0] = 25,c[1] = 24.
K=-76, a = 2, c = 27
    b[0] = 2, b[1] = 2.
    c[0] = 25,c[1] = 25.
K=-124, a=2, c=27
    b[0] = 2, b[1] = 2.
    c[0] =25,c[1] =26.
K=-174, a=2, c=27
    b[0] = 2, b[1] = 2.
    c[0] = 25, c[1] = 27.
K=-34, a=2, c=27
    b[0] = 2, b[1] = 2.
    c[0] = 26,c[1] = 23.
K=-78, a = 2, c=27
    b[0]=2,b[1] = 2.
    c[0] =26, c[1] = 24.
K=-124, a=2, c=27
    b[0] = 2, b[1] = 2.
    c[0] =26, c[1] = 25.
K=-172, a = 2, c= = 27
    b[0] = 2, b[1] = 2.
    c[0]=26, c[1] = 26.
K=-222, a=2, c=27
    b[0] = 2, b[1] = 2.
    c[0] = 26, c[1] = 27.
K=-2, a = 2, c=27
    b[0] = 2, b[1] = 2.
    c[0] = 27, c[1] = 21.
K=-42, a=2, c= 27
    b[0] = 2, b[1] = 2.
    c[0] = 27, c[1] = 22.
K = -84, a = 2, c = 27
    b[0] = 2, b[1] = 2.
    c[0] = 27, c[1] = 23.
K=-128, a = 2, c=27
    b[0] = 2, b[1] = 2.
        c[0] = 27, c[1] = 24.
K=-174, a=2, c=27
\(b[0]=2, b[1]=2\).
\(c[0]=27, c[1]=25\).
K=-222,a=2,c=27
    b[0] = 2, b[1] = 2.
    c[0] = 27, c[1] = 26.
K = -272, a = 2, c = 27
    b[0] =2,b[1] = 2.
    c[0] = 27, c[1] = 27.
K = -28, a = 2, c = 28
    b[0] = 2, b[1] = 2.
    c[0] = 22, c[1] = 28.
K = -18, a = 2, c = 28
    b[0] = 2, b[1] = 2.
    c[0] = 23, c[1] =27.
K = -70, a = 2, c = 28
    b[0] = 2, b[1] = 2.
    c[0] = 23, c[1] = 28.
K=-12, a = 2, c= = 28
    b[0] =2,b[1] = 2.
    c[0] = 24, c[1] = 26.
K=-62,a = 2, c=28
    b[0] = 2, b[1] = 2.
    c[0] = 24, c[1] = 27.
K = -114, a = 2, c = 28
    b[0] =2,b[1]=2.
    c[0] =24, c[1] = 28.
K=-10, a = 2, c=28
    b[0] = 2, b[1] = 2.
    c[0] = 25,c[1] = 25.
K=-58, a = 2, c= 28
    b[0] = 2, b[1] = 2.
    c[0] = 25, c[1] = 26.
K = -108, a = 2, c = 28
    b[0]=2,b[1]=2.
    c[0] =25,c[1] =27.
K = -160, a = 2, c=28
    b[0] = 2, b[1] = 2.
    c[0] = 25, c[1] = 28.
K=-12, a = 2, c= =28
    b[0]=2,b[1]=2.
    c[0] =26, c[1]=24.
K=-58, a = 2, c=28
    b[0] =2, b[1] =2.
    c[0] = 26, c[1] = 25.
K=-106,a=2,c=28
    b[0] =2,b[1]=2.
    c[0] = 26, c[1] = 26.
K=-156, a = 2, c=28
    b[0] = 2, b[1] = 2.
    c[0] = 26, c[1] = 27.
K=-208,a=2,c=28
    b[0] = 2, b[1] = 2.
    c[0]=26, c[1]=28.
K=-18, a = 2, c=28
    b[0]=2, b[1]=2.
    c[0] = 27, c[1]=23.
K=-62, a = 2, c=2 = 2
    b[0]=2,b[1]=2.
    c[0]=27, c[1]=24.
K=-108,a=2,c=28
    b[0] =2, b[1]=2.
```


$b[0]=2, b[1]=2$.
$c[0]=27, c[1]=25$.
$\mathrm{b}[0]=2, \mathrm{~b}[1]=2$.
38, $a=2, c=29$
$b[0]=2, b[1]=2$
90, $a=2, c=29$
$b[0]=2, b[1]=2$.
$c[0]=27, c[1]=28$.
[0] 2 b [1] 2
$b[0]=2, b[1]=2$.
, $a=2, c=29$
$b[0]=2, b[1]=2$.
$c[0]=28, c[1]=23$.
$b[0]=2, b[1]=2$.
$c[0]=28, c[1]=24$.
$b[0]=2, b[1]=2$.
$c[0]=28, c[1]=25$.
$b[0]=2, b[1]=2$
$c[0]=28, c[1]=26$.
$b[0]=2, b[1]=2$.
$c[0]=28, c[1]=27$.
$b[0]=2, b[1]=2$.
$c[0]=28, c[1]=28$.
$b[0]=2, b[1]=2$.
$c[0]=28, c[1]=29$.
$4, a=2, c=29$
$b[0]=2, b[1]=2$.
10]
$b[0]=2, b[1]=2$.
$c[0]=29, c[1]=23$.
$b[0]=2, b[1]=2$.
$c[0]=29, c[1]=24$.
$b[0]=2, b[1]=2$.
$c[0]=29, c[1]=25$.
$b[0]=2, b[1]=2$.
$c[0]=29, c[1]=26$.
$b[0]=2, b[1]=2$.
$c[0]=29, c[1]=27$.

```
K=-120, a=2, c=30
    b[0]=2,b[1]=2.
    c[0] = 28, c[1] = 27.
K=-172, a=2, c=30
    b[0] = 2, b[1] = 2.
    c[0] = 28, c[1] = 28.
K=-226, a = 2, c = 30
    b[0] = 2, b[1] = 2.
    c[0] = 28, c[1] = 29.
K=-282, a=2, c= = 30
    b[0] = 2, b[1] = 2.
    c[0] = 28,c[1] = 30.
K=-30, a = 2, c= = 30
    b[0] = 2, b[1] = 2.
    c[0] = 29,c[1] = 24.
K=-76, a = 2, c= = 30
    b[0]=2,b[1]=2.
    c[0] = 29, c[1] = 25.
K=-124, a = 2, c= = 30
    b[0]=2,b[1]=2.
    c[0] = 29, c[1] = 26.
K=-174, a=2, c=30
    b[0] = 2, b[1] = 2.
    c[0] = 29, c[1] = 27.
K=-226, a=2, c= = 30
    b[0] = 2, b[1] = 2.
    c[0] =29,c[1] = 28.
K=-280, a = 2, c= = 30
    b[0]=2,b[1]=2.
    c[0] = 29, c[1] = 29.
K=-336, a=2, c=30
    b[0]=2,b[1]=2.
    c[0] = 29, c[1]=30.
K=0,a=2,c=30
    b[0] = 2, b[1] = 2.
    c[0] = 30, c[1] = 22.
K=-42, a=2, c= = 30
    b[0] = 2, b[1] = 2.
    c[0] = 30,c[1]=23.
K=-86, a=2, c= = 30
    b[0]=2,b[1]=2.
    c[0]=30,c[1]=24.
K=-132,a=2,c= c=30
    b[0]=2,b[1]=2.
    c[0] = 30,c[1]=25.
K=-180, a=2,c= c=30
    b[0]=2,b[1]=2.
    c[0]=30, c[1]=26.
K=-230, a=2,c= c=30
    b[0]=2, b[1]=2.
    c[0] = 30, c[1]=27.
K=-282, a=2, c=30
    b[0] = 2, b[1]=2.
    c[0]=30,c[1]=28.
K=-336, a=2, c=30
    b[0]=2,b[1]=2.
    c[0] = 30, c[1] = 29.
K=-392, a=2, c=30
    b[0]=2,b[1]=2.
    c[0]=30,c[1]=30.
```


[^0]: Process 4.2.5

