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Abstract

The analysis of sensory and consumer-derived data involves the use of many 

different statistical techniques. The vast majority of these are multivariate in 

nature - for example, multidimensional scaling (MDS) and biplots. However, 

univariate techniques such as repeated measures analysis of variance and the 

Bradley-Terry model for paired comparison data are also common.

This thesis introduces enhancements to MDS based on the use of curved 

axes and trajectories.

Firstly, curved axes representing attributes are overlaid onto MDS maps, 

in an attempt to describe the maps in more detail. Different functions are 

used to define the axes, resulting in a biplot-like configuration that enables 

improved understanding of the data.

Secondly, the method of univariate paired comparisons is extended to 

the multivariate case, resulting in a methodology for visualising multivariate 

paired comparison data via an MDS-style approach. Again, the result is a 

biplot-like configuration, which allows projection of pairs of objects onto axes 

in order to determine which of the pair is generally preferred or chosen on 

each attribute.

Finally, dynamic MDS is introduced as method for visualising repeated

multivariate data, initially arising from consumer questionnaires carried out

vi



over a period of time. Trajectories are used to show how the proximities 

of the objects change with time. An extension shows that any continuous 

variable can be used in place of time.

The methodologies are demonstrated on a series of simulated data sets, 

and real data from the Home and Personal Care Industry.
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Chapter 1 

Introduction

1.1 What is Multidimensional Scaling?

Multidimensional Scaling (MDS) is a series of statistical techniques concerned 

with displaying certain kinds of data spatially using a map. The basic premise 

is that points on the map represent objects, and the more similar that two 

objects are to each other in multivariate space, then the closer the two rep­

resentative points will be together on the map. MDS can thus be used to 

analyse any data that represents how similar (or dissimilar) objects are to 

one another. For this reason, MDS has found application in a broad range 

of disciplines, including physics (Lilensten et al. (2007)), psychology (Yang 

and Lin (2008)), linguistics (Verheyen et al. (2007)), political science (Hook 

(2007)), genetics (Wang et al. (2007)), sensory science (Lim and Green (2007) 

and Yoshioka et al. (2007)), and shape analysis (Axelsson (2007) and Cooke 

et al. (2007)). In each case, MDS is used to construct a spatial representation 

of the similarity amongst objects, with the purpose of discovering relation­

ships or patterns. A discussion about these and further examples can be
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found in Section 1.8. The development of MDS was largely motivated by a 

desire for a psychophysical scaling method that did not presuppose a knowl­

edge of the attributes on which stimuli differ (Torgerson (1958), Young and 

Hamer (1987) and Mead (1992)).

A detailed theory of MDS can be found in many books such as Schiff- 

man et al. (1981), Coxon (1982), Everitt and Rabe-Hesketh (1997), Cox and 

Cox (2000), and Borg and Groenen (2005), the last of which also looks in 

depth at some of the standard MDS computer programs which have been 

developed. In addition, a chapter on MDS is often included in many Multi­

variate Analysis books such as Everitt and Dunn (2001) and Cox (2005).

1.2 Multidimensional Scaling - an example

The basic concept of MDS can be demonstrated using an example adapted 

from Kruskal and Wish (1978), and the type of which is used in many text­

books on multivariate analysis. Consider Table 1.1, showing the distances by 

road between ten English towns and cities. The data within this table can 

easily be constructed, if a map were available, by using a ruler and measuring 

the distances involved.

MDS is designed to solve the opposite (more difficult) problem of con­

structing a map from such data. From Table 1.1, it can be seen that the two 

closest places are Liverpool and Manchester, which are 54.9km apart. Thus it 

can be expected that the points representing these two cities will be close to­

gether on the map. Additionally, London and Carlisle are the furthest apart 

(497.3km), and so these two cities are expected to be far apart on the map. 

By carrying out MDS on these distances, a map of the cities is obtained

2



Tbwn Birm Brie Car Leeds Liv Lond Mane Newc Nor O xf

Birm ingham 0 139.9 313.8 190.7 157.2 191.2 135.4 333.6 255.7 107.4

Bristol 139.9 0 444.9 333.8 288.4 190.9 266.7 476.8 384.9 116.9

Carlisle 313.8 444.9 0 188.6 199.4 497.4 193.5 93.9 455.9 420.7

Leeds 190.7 333.8 188.6 0 116.7 314.3 67.9 154.5 279.2 270.4

Liverpool 157.2 288.4 199.4 116.7 0 342.6 54.9 270 344.4 274.4

London 191.2 190.9 497.4 314.3 342.6 0 319.1 457.3 189.8 100.3

M anchester 135.4 266.7 193.5 67.9 54.9 319.1 0 221.4 295.5 251.1

N ewcastle 333.6 476.8 93.9 154.5 270 457.3 221.4 0 407.1 412.3

N orwich 255.7 384.9 455.9 279.2 344.4 189.8 295.5 407.1 0 273.1

O xford 107.4 116.9 429.7 270.4 274.4 100.3 251.1 412.3 273.1 0

Table 1.1: Road distances (km) between selected towns and cities in the UK
( w w w .th eM .com  (2008))

as shown in Figure 1.1, which almost perfectly recreates the geographical 

arrangement o f the cities.

A reason for possible discrepancies between the map obtained and the 

usual geographical map is the fact that the distances in the table are those 

taken to travel between the cities by road, not the Euclidean distance that 

the MDS algorithm uses. The map also has an unusual orientation when 

compared to normal geographical maps - North is to the right hand side of the 

map, and East is towards the top. This is because the configuration obtained 

by MDS is not unique - the map is produced solely from the distances, and can 

be rotated, translated or reflected without changing the distances between 

the points. If the configuration in Figure 1.1 was rotated 90° anti-clockwise, 

and then reflected about the vertical axis, the ‘expected’ orientation would be 

obtained, and this still would be a valid MDS solution. Section 1.6 deals with

3
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Figure 1.1: Metric MDS map produced from road distances data

this in more detail, by introducing the technique of Generalised Procrustes 

Analysis.

An extension of this example shows that the input data are not limited 

to actual physical distances. Table 1.2 shows the length of time taken to drive 

between the places used in the previous example. Here, the basic premise is 

that the closer two places are, the shorter the time taken to drive between 

them. Figure 1.2 shows the MDS plot obtained from these data.

The first thing to notice about the map in Figure 1.2 is that it is 

reflected about the horizontal axis, when compared with the map in Figure 

1.1. There are also differences between the two maps with regards to the 

positions of the towns and cities, especially with regards to the location of 

Norwich. Physically, most of the places are joined by motorways, except 

for Norwich. Traffic on average tends to move faster on motorways, and so 

analysing time to drive has had the effect of moving Norwich further away

4



Tow n Birm Bris Car Leeds Liv Lond Mane Newc Nor O xf

Birm ingham 0 1.650 3.333 2.183 1.783 2.533 1.783 3.900 3.533 1.400

Bristol 1.650 0 4.600 3.583 3.050 2.367 3.050 5.300 4.450 1.483

Carlisle 3.333 4.600 0 2.367 2.083 5.467 2.117 1.367 6.167 4.417

Leeds 2.183 3.583 2.367 0 1.267 3.683 0.950 1.933 3.917 3.083

Liverpool 1.783 3.050 2.083 1.267 0 3.950 0.733 3.117 4.817 2.917

London 2.533 2.367 5.467 3.683 3.950 0 3.917 5.417 2.933 1.533

Manchester 1.783 3.050 2.117 0.950 0.733 3.917 0 2.783 4.350 2.883

Newcastle 3.900 5.300 1.367 1.933 3.117 5.417 2.783 0 5.383 4.817

N orwich 3.533 4.450 6.167 3.917 4.817 2.933 4.350 5.383 0 3.417

O xford 1.400 1.483 4.417 3.083 2.917 1.533 2.883 4.817 3.417 0

Table 1.2: Time taken (hours) to drive between selected places in England
( w w w .thcaa.com  (2008))

London
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Norwich

1
Birmingham

-3 J
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Figure 1.2: Metric MDS map produced from time taken to drive data
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from the other places, especially the Northern cities.

1.3 The Theory of MDS

Although the analysis of the inter-city distances is a somewhat artificial ex­

ample, it demonstrates the core idea underlying MDS: based on a dissimi­

larity measure (in these examples, physical distance or time taken) among a 

set of objects, MDS constructs a visualisation in which these objects appear 

as points on a map, and the closer two points are on the map, the nearer the 

objects are in multivariate space.

Mathematically, given O, a set of n objects, for each pair of objects 

(i, j )  G OxO a dissimilarity measure ¿¿j is defined - this being a non-negative 

number indicating how different or distant objects i and j  are in some sense. 

If objects i and j  are less alike than objects i' and j 1, then 8ij > 8i>j>. The 

MDS representation thus produced is a geometric configuration o f points 

x i, X2, • • • , x n in a p-dimensional space (often referred to simply as p-space) 

with Xi being the point corresponding to object ¿ G O ,  such that the set 

(d jj) of inter-point distances (usually Euclidean) matches ‘as well as possible’ 

the observed between-object dissimilarities {¿ ij} , and thus reflects the inter­

object information contained in the input dissimilarity data.

The phrase ‘as well as possible’ can be interpreted in many different 

ways, and this, along with the different ways of measuring d,j and 5^, leads 

to the different types of multidimensional scaling.

The dimensionality p of the configuration is fixed before the config­

uration is produced (ideally with p <  3 to aid visualisation). In order to 

determine the most appropriate dimensionality in which to display the MDS
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solution for a given set of dissimilarities, configurations can be produced for 

various values of p, and the optimum p can be chosen.

1.4 The input data - Proximities

The term proximities is often used with reference to the input data for multi­

dimensional scaling. The definition of proximity is nearness in space, time, or 

some other way. Proximities refer to both dissimilarity and the opposite con­

cept, similarity, with the obvious interpretation of measuring how dissimilar 

or similar objects are to each other.

Let the objects under consideration comprise a set O. The similar­

ity/dissimilarity measure between two objects is then a real function defined 

on OxO, giving rise to similarity Sij, or dissimilarity <%, between the ith and 

j th objects. Usually 8,j >  0, >  0, and the dissimilarity of an object with

itself is taken to be zero, i.e. ¿a =  0. Similarities are usually scaled so that 

the maximum similarity is unity, with sa =  1. A transformation such as 

=  (sa — 2 +  Sjj)* or =  s — s,j (for some constant s) can be used 

to convert from similarities to dissimilarities. Without loss of generality, 

dissimilarities will be dealt with in the sequel.

There are many different possible dissimilarity measures that can be 

used for a set o f objects (Cormack (1971), Snijders et al. (1990), Gower 

(1985), DeJordy et al. (2007)), which can broadly be classified into two 

groups, depending on whether the measure is computed or arrived at em­

pirically. An example of a computed measure is where there is a set of t 

variables recorded on n objects (for example, the results o f a sensory test), 

data which can thus be represented vectorially in terms of these measure­

ments. In this case, a dissimilarity value can be based on some combination

7



of the vector components, for example Euclidean distance for differences be­

tween the objects:

Sij —  i  ^  ^ (Xik Xjk)
\k=1

or correlation-based, for differences between attributes:

^  __ J __________£ jfc= l (X*k ~  a'») (Xjk ~  xj)__________

( £ l = l  (xik -  xi f  £1=1 (xjk -  Xj)2) *

The earlier map distances example demonstrates an empirical produc­

tion of dissimilarities. Another example is a card sort. Here, concepts and 

ideas about a product are written onto individual pieces of card, and sen­

sory panellists are asked to cluster the concepts together, determined by how 

similar they think the concepts are. The number of clusters is left to the 

individual panellist to decide. The input data for MDS then takes the form 

of the number of times pairs of cards are placed into the same cluster - the 

higher this measure of co-occurence, the more similar the concept (Blake 

(2008)).

Choice of proximity measure depends upon the problem at hand, and 

is often not an easy task. Cox and Cox (2000) contains a review of various 

proximity measures, together with their associated problems.

There are four demands to be made of a measure of dissimilarity:

1. Su =  0 Vi

This captures the notion that an object is not dissimilar to itself in any

way.

2. Sij > 0  Vi ^ j

This means that two non-identical objects have a non-negative dissim-

8



ilarity between them, in the same way that two non-coincident points 

have a positive distance between them.

3. Sij =  dji Vi, j

This represents the fact that usually the order in which the objects 

under consideration are presented is irrelevant for the dissimilarity cal­

culation. This symmetry of dissimilarities is not always evident, and 

theory exists to deal with asymmetric dissimilarity sets (Bove (2005)).

4. <  Sik Sjk Vi, j., k

Here, the concept is that if two objects i and j  are not too dissimilar 

from a third object k, then the dissimilarity ¿¿j should itself not be 

large.

When a dissimilarity measure satisfies all four of these conditions, it is called 

a metric. Condition 4 is not always insisted upon.

1.5 MDS models

As mentioned in Section 1.3, the aim of MDS is to match the inter-point 

distances dtj to the between-object dissimilarities 6  ̂ as closely as possible. 

There are many different ways for this matching to take place, each giving 

rise to a different type of MDS model. The most important division is into 

the classes of metric and non-metric methods. The main difference between 

the two is that in metric methods, the actual dissimilarity values themselves 

are important, whereas in non-metric methods, this is relaxed so that it is 

the rank order of the dissimilarities which is important.

In addition, it is worth highlighting here the problem that was en­

countered in Figure 1.1. Using most methods of MDS, the configuration of

9



points in p-space obtained from any given set of dissimilarities is by no means 

unique. In particular, any configuration can be translated, rotated and re­

flected, and still be a valid MDS representation of the information in the 

data. Furthermore, if a non-metric method is used, then the MDS solution 

is invariant with respect to uniform dilation/contraction also.

Borg and Groenen (2005) define an MDS model as a transformation /  

of dissimilarities ¿¿j into distances dtj in an MDS configuration in p-space, 

i.e.

dij — f  (8ij).

However, usually because of noise in empirical dissimilarities, and the 

use of iterative methods for minimising functions of several variables when 

actually finding such distances, it is necessary to relax the model to

dij ~  /  ) •

Borg and Groenen (2005) list several types of function giving rise to metric 

MDS models. For example, absolute MDS is where /  is the identify function:

dij =  8ij.

Alternatively there is ratio MDS

d  ̂ =  b8ij (b > 0)

and interval MDS

dij =  a +  b8ij (a ,6 > 0 ) .  

The function /  need not be linear, for example

10



dij =  a +  b log (Sij) (a, b >  0)

and

dij =  a +  bexp (5^) (a, b >  0).

Non-metric models require only a monotonic function such that

d ij <  d/rf f  (S ,j)  ^  f

Non-metric MDS methods are far more widely used in practice than metric 

methods, as often (especially for empirically collected dissimilarity data) all 

that is really of worth are the rank orders.

For more details of two of the main MDS models, see Appendix A and 

Appendix B.

1.6 Procrustes Analysis

The situation may arise when two MDS configurations are available for a 

given set o f objects. These could have arisen, for instance, by performing 

MDS via two different techniques, such as classical scaling and non-metric 

scaling. Alternatively, an experiment could have been repeated on the same 

objects at different times, or there could simply be two sets of measurements 

such as the distance and time measurements in Section 1.2. However they 

arise, there exists a one-to-one correspondence between the points in the two 

configurations.

Procrustes analysis (least-squares orthogonal mapping) was initially de­

veloped for use in factor analysis (Mosier (1939) and Green (1952)), and

11



its use in multidimensional scaling has been developed in papers such as 

Schonemann and Carroll (1970) and Gower (1971). Procrustes analysis is 

commonly used in statistical shape analysis, investigating the distributions 

of a set o f shapes. Reviews of Procrustes analysis can be found in Kendall 

(1989) and Gower and Dijksterhuis (2004).

Procrustes analysis finds the best match between two configurations. 

Simply put, the method is based on matching corresponding points (or land­

marks) from each of the two data sets. The objective is minimise the sum of 

the squared deviations (termed the error, and denoted as the m2 term) be­

tween landmarks through translating, rotating and dilating one configuration 

to match the other configuration (i.e. the target). The deviations between 

landmarks are called vector residuals - a small vector residual indicates a 

close agreement between the corresponding landmarks.

Mathematically, consider n points in two-dimensions, say [(x n ,x 2i), 

(x i2,X22),...,(£in ,x2„)]. The mean of these points is (x i.,x2.), where x<. =  

n_ 1 x%j\ (i =  1,2). Now the configuration is translated so that the 

mean is the origin (xi*,x2i) —► (xu — x i.,x 2* — x2.). Likewise, the scale can 

now be removed by finding the size of the configuration

and dividing the coordinates by the scale, s. There are also other methods 

for removing the scale that can be used.

To remove the rotational component, consider two configurations, that 

have had their scale and translation removed, with points (x li,x 2i) and 

(yu,y2i). Let the X  configuration be fixed, and the Y  configuration be 

rotated around the origin, so that the sum of the squared distances between

n

12



the points is minimised. Let (y 1», 3/2*) be mapped to (u ij,u2i) through a ro­

tation by angle 9. Thus (iiu, u2%) =  {yu cos 9 — y2i sin 9, yu sin 9 -I- y2i cos 9). 

The Procrustes statistic, or distance, is

n

d =  . ^ 2  [(Ul* — ^l*)2 +  (U2i — ^ i ) 2],
N *=1

which is minimised by using a least squares technique to find the angle 9 that 

gives a minimum distance. The distance d provides a metric to measure how 

close the two configurations match each other.

Generalized Procrustes analysis (GPA) is a procedure applying Pro­

crustes analysis to align more than two configurations. It can also be used 

to find the ‘average’ configuration of a set of configurations.

The following example shows the technique of generalized Procrustes 

analysis, and is based on the example in Section 1.2. Figure 1.3 shows non­

metric MDS maps of the Distance and Time to Travel data from Tables 

1.1 and 1.2. The aim is to produce an average configuration of the two 

configurations.

Procrustes analysis results in the plot in Figure 1.4. The points in blue 

represents the MDS configuration on the distance data, the points in green 

are the MDS configuration on the time data, whilst the points in red are the 

consensus configuration from the Procrustes analysis. As can be seen, the 

point for Norwich has altered considerably, which confirms the earlier detail 

about the lack of motorways impacting on the time taken to drive. However, 

the points for Newcastle, Carlisle and Bristol have also altered. This could 

be for any number of reasons.

13



Non-metrlc MDS of dstanc» data

Bristol

1.5 ■ 

1
Liverpool

O^ord Birm^nghaM® Manchester
Carlisle

2 . H-15Logdon
1 -05 I 

-0 5 •
0S Lef as i 1 5 2 2.

Newcastle

No^vich . J 5 -

-2 ■

Non-metric NIDS map of time to travel data

Bristol

1.5

1

Oxford BirmtnghaftS

■Laylan

Liveyjool
Manchester

-15 -05 O&eds

-0 5

Ca^isle
—i----------------1
1.5 2

Newcastle

-1

Norwich 1.5

-2

Figure 1.3: Non-metric MDS map based on distances, and non-metric MDS 

from time to travel data

1.7 Extensions to Multidimensional Scaling

1.7 .1  A dding inform ation to M D S  plots

As mentioned previously, it can be difficult to interpret multidimensional 

scaling plots. The map example of Section 1.2 could be interpreted using 

a basic knowledge of geography. However, in practice it can be much more

14



Results of GPA
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Figure 1.4: Results of GPA on distance and time MDS maps

difficult to interpret ‘real-life’ plots.

A simple method for finding meaningful directions or axes within the 

configuration is to use multiple linear regression (Kruskal and Wish (1978)). 

An axis is found for a variable related to the objects. This variable, which 

can be called y say, is taken as the dependent variable, with the coordinates 

of the points in the configuration being the independent variables.

The regression model is then

y  =  X /3  +  e

where y is the vector of observations {y*} (i =  1 , . . . ,  n), X  is the nx (p +  1) 

matrix consisting of a column of ones followed by the coordinates of the 

points in the configuration, (3 is the parameter vector, and e is the ‘error’
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vector.

The least squares estimate of ¡5 is given by

¡3 = ( X ,X ) ’ 1X 'y .

As long as the regression has a reasonable fit, tested either by an analysis 

of variance, or by the multiple correlation coefficient, then an axis for the 

variable can be defined through the origin of the configuration using the 

direction cosines

— f = =  =

1.7.2 Biplots

Biplots are statistical graphs that represent variables and objects in the same 

plot. Biplots can be seen as the multivariate analogue of scatter-plots: they 

give a graphical representation of a multivariate sample and they superim­

pose on the display a representation of the variables on which the sample 

is measured. Alternatively they can be thought of as a way of adding in­

formation about the attributes used to multidimensional scaling plots, in an 

attempt to aid interpretation.

In a biplot, objects are displayed as points (as with MDS), while the 

attributes are displayed either as vectors, linear axes, or non-linear trajecto­

ries. In the case of categorical variables, category level points may be used 

to represent the different levels of the variable, giving rise to a generalised 

biplot which displays information on both continuous and categorical vari­

ables. The biplot was introduced by Gabriel (1971) and developed further 

by others, but especially by Gower and Hand (1996). Recent examples and 

developments can be found in the work by Park et al. (2008), Pittelkow and

16



Wilson (2007) and Friendly (2007), whilst Udina (2005) develops an interac­

tive biplot graph.

For the continuous variables only case, the mathematics involve a sin­

gular value decompostion of the data. Let X  be an (nxk) matrix of data, 

representing n objects measured on k attributes, where n k. The singular 

valued decomposition of X  is given by

X  =  U  L V '
nxfc nxk kxk kxk

where the diagonal matrix L contains the singular values orderd by magni­

tude down the diagonal, U  contains the corresponding left singular vectors, 

and V  contains the corresponding right singular vectors.

For a two-dimensional biplot, the SVD results are used to form the 2x2 

matrix L, which contains the two elements of L with the highest singular 

values. The nx2 matrix U  and the kx2 matrix V  are formed by choosing 

those columns from U and V  which correspond to these highest singular 

values. The coordinates for the observations are given by

G =  U LC
nx2

and

H ' =  L 1- CV /
nx2

where the value o f c defines the type of biplot: •

• GH-Biplot: c =  0. This preserves correlations between the variables 

and allows projection of the objects onto the vectors.

• JK-Biplot: c =  1. This preserves distances between the objects (cf. 

MDS) and allows projection o f the objects onto the vectors. This type 

of biplot is equivilent to a PCA on the data.
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• SQ-Biplot: c =  0.5. This preserves distances and correlations, but the 

projection property is lost.

The objects are represented by the points with coordinates given by 

the rows of G , whilst the coordinates for the variables are given by the rows 

of H.

Example

A sensory test was carried out on the application properties of eight aerosol 

anti-perspirant deodorants. The trained panel were asked to score several 

attributes on a 100-point scale. A summary of the results is given in Table 

1.3. An Analysis of Variance was carried out on the data, along with Tukey 

HSD multiple comparison tests to highlight the nature of any significant 

differences. In Table 1.3, products that are not significantly different on an 

attribute at the 95% level of confidence have been given the same letter.
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A B C D

Loudness o f  spray 75.03 a 74.09 a 61.81 c 69.00 b

Evenness o f  spray 04.31 a 64.10 a 64.31 a 65.28 a

Ease o f  use o f  spray 73.81 a 74.06 a 73.78 a 74.09 a

Strength o f  spray 74.81 a 74.87 a 63.84 c 70.81 ab

D irectability o f  spray 74.34 ab 75.03 a 73.47 a b c 73.16 a b c

C oldness o f  spray 70.41 b 69.22 be 61.88 de 68.72 be

V isibility o f  p rod u ct on  skin 39.16 b 23.31 c 18.56 c 22.97 c

W etness on  skin 10.88 cd 23.91 be 20.63 cd 31.66 a

Stickiness on skin 13.16 cd 15.00 be 13.34 cd 18.28 a

G reasiness on  skin 18.44 be 20.81 b 20.50 b 26.19 a

E F G H p-value

Loudness o f  spray 67.28 b 67.62 b 67.03 b 65.84 be <  0.0001

Evenness o f  spray 64.47 a 64.75 a 65.41 a 64.28 a 0.5142

Ease o f  use o f  spray 74.09 a 73.90 a 73.68 a 72.84 a 0.1112

Strength o f  spray 67.03 be 68.16 be 70.97 ab 65.31 c <0.0001

D irectab ility  o f  spray 71.44 be 70.91 c 74.41 ab 73.31 abc 0.0004

C oldness o f  spray 64.88 cd 68.63 be 74.97 a 58.59 • <0.0001

V isib ility  o f  p rodu ct on  skin 21.53 cd 22.78 c 18.81 c 45.16 a <0.0001

W etness on  skin 27.10 ab 28.66 ab 28.47 ab 16.13 d <0.0001

Stickiness on  skin 16.44 ab 19.00 a 13.81 bed 11.22 d <0.0001

Greasiness on  skin 26.16 a 26.25 a 17.88 be 15.28 c <0.0001

Table 1.3: Mean scores from sensory study on deodorants, along with 

ANOVA results
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Figure 1.5 shows the GH biplot produced from these data.

The biplot is based on PC A, and so can be interpreted as follows. 

Dimension 1 is dominated by how the product feels (or looks) on the skin. 

Products towards the right hand side of the plot (D, E and F) are those which 

initially are wet on the skin (with the concepts of stickiness and greasiness 

being closely related to wetness), whereas towards the left is product H which 

is highly visible. In sensory testing of AP deodorants, visibility is defined as 

white marks, which tend to be dry and powdery. Thus dimension 1 can be 

thought of as dry to wet feel of application.

Dimension 2 differentiates the products on the physical application
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characteristics of the spray. There seems to be three groups of attributes 

driving this: Eveness/Directability, Loudness/Strength and Coldness. There 

are only a few products that score highly on these attributes (A then B, G 

and D). The Ease of Spray attribute differentiates H from the other products.

1.7.3 Individual Differences Scaling

The first model for Individual Differences Scaling, called INDSCAL (Car- 

roll and Chang (1970)), is an MDS technique dedicated to three-way data 

analysis. It analyses a set of individual dissimilarity matrices, one for each 

individual. INDSCAL iteratively defines an a priori fixed number of optimal 

dimensions mapping the objects. The strength of INDSCAL is that each 

assessor can weight differently each of these dimensions. These individual 

vectors of weights are defined in order to minimise the STRESS which is a 

least square criterion between the observed individual dissimilarities and the 

compromise object distances in the fitted space. Subsequent individual dif­

ferences scaling approaches have been developed by, amongst others, Young 

and Hamer (1987) and Krzanowski (1988). They form a group of techniques 

known as weighted MDS (WMDS) (Schiffman et al. (1981)). WMDS anal­

yses several data matrices at the same time - each matrix represents the 

results of a separate experimental condition, a separate individual, or group 

of individuals.

In WMDS, differences among individuals are reflected as differences 

in weights for a set of common underlying dimensions. In addition to a 

group stimulus space (or consensus spatial configuration), WMDS derives 

dimension weights for each individual that can range from 0 to 1 and reflect 

the relative importance of each dimension to the individual.
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WMDS shares many features in common with classical MDS. WMDS 

can be metric or nonmetric. The degree of fit is evaluated in the same 

fashion, except that there are measures of fit for the group space as well 

as the individual spaces. However, there is one technical difference. As 

seen previously, the dimensions in MDS can be rotated. But this is not the 

case for WMDS. This means that the dimensions in WMDS can possibly 

be interpreted. Schiffman et al. (1981), however, point out that this non- 

rotatability is true strictly only when the data contain no error. In the 

presence of error, some amount of rotation is permissable.

Finally, it should be noted that WMDS is based on a particular view 

of individual differences, namely that individuals differ in the relative impor­

tance they assign to a set of common dimensions. This is the only point of 

difference among individuals, according to the WMDS model. Mathematical 

extensions of WMDS models (see Young and Hamer (1987)) include differ­

ences among individuals in rotation of the group space and in the number 

of dimensions of the personal spaces. These extensions of the basic WMDS 

model, however, have found relatively few applications to date.

1.8 Applications of MDS

The aim of this Section is to demonstrate the many different areas and ap­

plications of Multidimensional Scaling. It is by no means an exhaustive dis­

cussion, but instead aims to give an idea of the possibilities of the technique, 

and some of the recent developments in the methodology.

As mentioned in Section 1.1, Multidimensional Scaling has found uses 

in many different fields. Perhaps of most relevance to this thesis, is its use 

in the areas of Consumer and Sensory science. For example, a study by Lim
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and Green (2007) looked at the ability of capsaican (often seen as a pure 

sensory irritant) to evoke, mask and desensitize bitter taste, suggesting that 

the burning sensation from capsaican might perceptually be related closely 

to the bitter taste. A sensory test was carried out looking at taste stimuli, 

and a MDS map from these data showed that capsaican was similar to qui­

nine sulphate (a very bitter compound) despite being mediated by different 

sensory modalities. Also this ‘bitter-burning’ group was clearly separated 

from the other taste stimuli (sweet, sour and salty), which may be due to 

their common function as sensory signals of potentially harmful stimuli. An­

other sensory study (Yoshioka et al. (2007)) investigating texture perception 

used MDS to investigate the similarities between a probe and the human 

finger on a variety of textured surfaces. The results showed that the two 

methods were similar though not identical - roughness ratings being near 

identical, but hardness and stickiness differing. Meanwhile, an investigation 

into what attributes are the major determinants of aesthetic appeal o f pho­

tographs used MDS to yield 3 dimensions that drive people’s perception of 

photographs (Axelsson (2007)). With the aid of attribute scales combined 

with measures of the manifest content of the photographs, it was possible to 

identify these dimensions as Hedonic Tone-Familiarity, Absence of Colour, 

and Expressiveness-Dynamics. Finally, an adaptation to MDS known as 

Probabilistic MDS provides a mechanism for accounting for the variability 

inherent in sensory data by using distributions, instead of points, to represent 

sensory objects (MacKay and O ’Mahony (2002)).

Giragame et al. (2006) used MDS to generate a perceptual structure 

map for colour tone stimuli responses from naive television viewers from 

two different cultures.. The map revealed that Japanese and Sinhala native 

speakers perceptually discriminate the six colour tone stimuli into six differ­
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ence categories. Furthermore, the semantic structures used for each hue were 

different from one another. Keeping with television, Nabi (2007) used MDS 

to find that there were two underlying dimensions along which audiences 

think about reality TV, based on data from a sorting task of thirty-three 

reality-based programs. These two dimensions were romance and competi­

tiveness.

Looking at mental object representations, Cooke et al. (2007) devel­

oped MDS to find that a single underlying perceptual map (with dimensions 

corresponding to shape and texture) could explain visual, haptic and bimodal 

similarity ratings on novel 3-dimensional objects.

MDS is very commonly used in the analysis of consumer data. Martins 

and Pliner (2006) carried out a study aimed at identifying what characteris­

tics of food made individuals perceive them as disgusting. A non-metric MDS 

map indicated two dimensions - i) aversive textural propery of the food; and 

ii) reminders of livingness/animalness - accounted for most o f the variability 

in the consumer scores. Meanwhile Cunningham (2006) used MDS to show 

that a 2 dimensional solution, that was identical across cultures, for describ­

ing how customers perceived and classified a set of Governmental services. 

Kagie et al. (2007) used MDS to develop a new graphical user interface for 

online shopping that uses a map of the product space to show consumers 

similar products, allowing consumers to improve their choice of the product 

range. This was demonstrated with an on-line shop for MP3 players. Con­

sumer opinions about on-line travel agencies were investigated by Kim et al. 

(2007), where MDS was used to display similarities and patterns based on 

travellers’ perceptions in terms of web features, user friendliness, security 

and cost. Continuing with consumer perception, MDS was used by Zheng 

et al. (2007) to see how perceived and actual perception are linked, and the
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effect of product appearance on the perceived useability of car infotainment 

systems, whilst Petiot and Grognet (2006) carried out a similar study on 

cars, and linked this into the product design process.

There have been several extensions to MDS to handle different aspects 

o f analysing consumer data. In Chen et al. (2008), a weighting is applied to 

the objects used to produce the MDS map in an attempt to match differ­

ences in the weighting that people give to subjective/perceptive judgements 

in the real world. DeSarbo et al. (2006) details a stochastic MDS that is 

calibrated from actual consumer consideration/choice sets to estimate and 

uncover competitive market structures that are asymmetric, whilst Faye et al. 

(2006) use MDS as an alternative to external preference mapping through 

two consumer test phases (a preference scaling and a perceptual free sorting 

followed by verbal description). This global approach allows preference to 

be explained by the consumer perceptual dimensions and these dimensions 

to be interpreted using the words that consumers use. In fact the applica­

tion of MDS to consumer semantics is a very common procedure - Lin et al. 

(1996) and Verheyen et al. (2007) both use the words of consumers to build 

psychological spatial representations that are used to aid product designers.

One of the biggest areas in which MDS is applied is in genetics, and the 

study of DNA and genomes. Alfonso-Sanchez et al. (2008) uses MDS to map 

the genomic diversity of the Arrento people of Australia, and finds that they 

are closely related to people from the Indian subcontinent. Thai et al. (2007) 

does a similar thing, but with the common carp in Vietnam, whilst Kar 

et al. (2008) separates the Mulberry germplasm based on genetic diversity 

and protein content. Finally Zhou et al. (2007) uses MDS to disprove a 

theory that the Liqian people of Northern China were descended from the 

Romans - they are in fact more closely related to a Chinese subgroup called
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the Han.

The genetics area also extends to Bioscience. Oh and Raftery (2007) 

apply this to gene expression data on genes believed to be informative about 

the distinction between two forms of leukemia, and were able to cluster the 

two sets of genes. Meanwhile Napolitano et al. (2008) used MDS to pro­

duce a 2-dimensional visualization of human cell cycle gene expression data, 

and use this to identify genes periodically expressed in a human cancer cell 

line. Amaratunga et al. (2008) used an extension of MDS for visualising 

DNA microarray data. MDS was also used to compare the different methods 

for reducing the alphabet of 20 amino acids involved in protein structures, 

thereby aiding the investigation of amino acid interactions (Luthra et al. 

(2007)).

Staying with biological data, many researchers have used MDS to map 

ecological data. Wright et al. (2005) used non-metric MDS to show differ­

ences in foliose algal community composition on temperate marine reefs due 

to grazing by sea-urchins, whilst Acevedo and Restrepo (2008) used the same 

method to show that land use followed by climate could explain most of the 

variation observed among the composition and abundance of birds in Puerto 

Rica. Moreover, endemic and exotic species were widely distributed through­

out the island, but the proportion o f endemic species was higher in closed 

forests, whilst exotic species were more abundant in open habitats. Also 

working in this area, Della Bella et al. (2008) used MDS on the taxonomic 

composition of aquatic plants between temporary and permanent ponds in 

central Italy, and Butler and deMaynadier (2008) looked at the diversity and 

composition of damselfly assemblages and related these to anthropogenic 

degradation in excessively developed waterbodies, using MDS. Finally, non­

metric MDS is mentioned in a review of appropriate multivariate methods
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for Environmental Survey data and Biotic (Species) Survey data by Kenkel 

(2006).

MDS is used in a wide variety of other applications too. Here, a small 

selection of examples is discussed. Mugavin (2008) has produced an intro­

duction of MDS as a technique for studying medical patients’ perception of 

cancer pain, breathlessness in individuals with chronic obstructive pulmonary 

disease, and the assessment of vulnerable populations where social desirabil­

ity is an issue. Staying with medicine, rules are tools used in the profession to 

diagnose disease. MDS has been applied to rule induction methods to show 

similarities between the rules generated from large datasets. This method 

gave experimental results useful for domain experts (Tsumoto and Hirano 

(2007)).

In crime studies, MDS was used by Dixon et al. (2008) to construct a 

classification system of men who are incarcerated for the murder of their fe­

male partner. MDS identified three sub-groups - low criminality/low pyscliopathol- 

ogy, moderate-high criminality/high pyschopathology, and high criminality/low- 

psychopathology, which can be used to determine appropriate treatment.

A free-sorting method coupled with MDS suggested that thinking about 

college student types in the US should include academic involvement and so­

cial involvement dimensions (Ashmore et al. (2007)). The MDS showed that 

positive and negative social, positive academic, and oppositional clusters 

of types were seen in studies of high school students, and that the cogni­

tive structure underlying perception o f college student types was converging 

across major demographic categories.

MDS is useful for determining the position of a mobile station in a 

wireless communication system (Chen et al. (2008)). Distances are measured
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between base stations (with known positions) and the mobile stations, using 

time-of-arrival measurements, and MDS used to locate the mobile stations. 

A  dynamic approach is used to improve performance by combining location 

information from measurements made at several sampling time points.

MDS is widely used in shape analysis. Both Liu et al. (2007) and 

Lespinats et al. (2007) use MDS as the basis of a nonlinear dimension reduc­

tion method and demonstrate the principles on facial expression and recog­

nition techniques.

In Matheus et al. (2006), industrial process monitoring involving the 

collection of real-time multivariate data (often ~  10 18 bytes of data produced 

every year for one process) is analysed using MDS with an iterative capa­

bility. Projected Orientation Mapping allows newly obtained data points to 

be added to the existing maps in real-time, so the operational regions of the 

process under specific conditions can be easily classified. This new method­

ology was applied to the oil industry. Interactive graphs were also used on 

social networking data in Hosobe (2007)

Profile Analysis via Multidimensional Scaling (PAMS) provides an ex­

ploratory technique for visualising profile data. In the paper by Ding (2007), 

PAMS provided an exploratory technique for identifying major growth pro­

files by extending the model for longitudinal data. The MDS profile model 

was solved for the growth parameters such that each MDS dimension corre­

sponded to a major growth profile. This led to an identification of the growth 

trends, allowing for a study of the individual differences with respect to those 

growth trends. Meanwhile, Kim et al. (2007) developed a Confirmatory Fac­

tor Analysis parameterisation of the PAMS model to demonstrate validation 

of a profile pattern hypothesis derived from MDS. This was applied to the 

General Occupation Theme survey, and looked at drivers of interest behind
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people’s opinions of their careers.

In Astronomy, Lilensten et al. (2007) used MDS to select the best set 

o f lines that could be used to reconstruct the solar Ultra-Violet spectrum. 

This allowed improved monitoring of solar irridiance, which is a crucial issue 

in space weather forecasting.

Finally, MDS has been used to estimate the positions and postures 

of a demonstrater which is to be mimiced by a humanoid robot (Lee and 

Nakamura (2007)).
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Chapter 2

Adding Curved Axes to MDS 

Maps

2.1 Introduction

As seen in Section 1.2, the interpretation of Multidimensional Scaling maps 

can be quite difficult. The map featured in Figure 1.2, showing a plot based 

on time to travel, is a case in point. It is known from basic UK geography 

that Newcastle is further North than London, and that Bristol is further 

West than Norwich. Thus it can easily be determined that the right hand 

side of the Figure represents North, and the top of the plot is West. However, 

this is a relatively trivial example. In practice, the interpretation is much 

more difficult, as the different dimensions could represent several attributes 

concurrently. Alternatively, the dimensions may not represent anything - 

they are just an artifact of the construction of the map after all. Most 

MDS maps are invariant to rotation and translation making the coordinate 

axes meaningless. There are some exceptions though, for example Individual
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Differences Scaling does have unique axes (Carroll and Chang (1970) and 

Young and Hamer (1987)).

As described in Section 1.7, there are several mechanisms for attempt­

ing to interpret MDS maps. The most simple method is to use multiple 

linear regression to fit an axis for a variable, which is taken as the depen­

dent variable(Kruskal and Wish (1978)). The independent variables are the 

coordinates o f the points in the final configuration.

Alternatively, biplots attempt to show not only the configuration of 

points representing the objects, but also axes within the plots that represent 

the variables upon which the original measures were made (Gower and Hand 

(1996)). In the simplest case, the axes are linear, but with generalisation 

the axes can be non-linear. However, to highlight one of the limitations with 

biplots - generally the variable that forms the axis must have been used to 

define the map. In the driving time example, there are no initial variables 

with which to construct a biplot - the input data are simply the times taken 

to travel between the cities.

What is needed is a method whereby additional information about the 

objects could be used to define axes that add meaning to the configuration. 

In the driving time example, once the map has been constructed, an axis 

based on the latitude of each city could be overlaid. This would indicate 

the North/South direction on the map - the greater the latitude, the further 

north a place is. A similar axis can be overlaid based on the longitude value 

for the East/West direction - see Figure 2 .1 . An axis has been fitted by 

projecting each object onto it, to give a projection score on the axis for that 

object. The parameters of the equation defining the axis are then adjusted in 

order to minimise the differences between the projection score and the actual 

observed score for each object.
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Figure 2.1: Example of MDS map for driving time data, with axes overlaid 

for longitude and latitude values. Axes point towards North and West

X3

\

Figure 2.2: Schematic showing the principle for fitting an axis y  to an MDS 

map of three objects Xi, Pi are the projected scores of the objects onto 

y , whilst Z{ are the observed values of object X t on the attribute that is 

represented by y.
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Figure 2.2 shows a schematic based on an MDS plot of three objects 

and a linear axis. This shows how a straight line can be fitted (analogous 

with the multiple linear regression method of Kruskal and Wish (1978)). 

However, it might sometimes be more useful to deal with cases where the 

optimum value is not at the end of the scale. An example of this are the 

so-called JAR scales in sensory science, where the scale runs from too little 

of a quantity through the optimum of Just About Right, to too much of a 

quantity (Gacula et al. (2007))

2.2 Adding Axes to Multidimensional Scal­

ing plots

Figure 2.3: Schematic showing projection of MDS points onto axis

Figure 2.3 shows a curved axis for an attribute y, fitted to an MDS 

plot. The axis has to have an origin defined, and a scale of measurement. 

The value read on the axis for a point is the distance along the axis from 

the origin to the point where X i  projects orthogonally onto the axis, say /¿.
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Let Zi be the actual recorded value for the attribute associated with point 

Xj. The curved axis then is fitted by minimising

n

i  =  S > - z‘ >2 ' (2.1.)
i= l

So far, the defining form of the axis has not been given. There is an 

unlimited choice of functions that could be used for its definition. In the next 

Subsection, polynomials of the Cartesian coordinates are used to demonstrate 

the procedure.

2.2.1 Fitting a Curved Axis

This Subsection details an axis defined by a quadratic polynomial of the 

Cartesian coordinates. Let the axis be parameterised by, for example, 

x i(t) =  t, X2 (t) =  ¿> o+ M + M 2; —oo <  t <  oo with the origin of the axis 

being when t =  0. The origin of the axis is not necessarily the same as the 

origin of the configuration. For this work, the axis has been forced through 

the origin of the configuration, as without this constraint, it is possible for 

the fitted axis to be located away from the configuration. Thus, here bo =  0.

Now, let the orthogonal projection of the point (with coordinates 

(xu,X2i)) onto the axis be point Pi, with coordinates Then the

value read from the curved axis for point Xi is the length of the curve from 

the origin to point Piy say Z<( as in Figure 2.4.

For the axis (xi (t) , x 2 (t)), the equation o f the normal to the tangent 

at any one particular point is

X2 =  — -px i +  c (2.2)
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y = [x1(t),x2(t)] =

[ t .b o + b ^ + b ^ 2]

x2l)=X,

Figure 2.4: Schematic showing the finding of the projected value li

where /3 is the slope of the tangent.

As the normal line must past through X*, which is (xu ,X 2i) then

X2i =  ~-pX\i+c
or

C X2i T  pXii. (2.3)

Now define U as the value of t at point P,. Then the slope of the tangent 

is given by
=  x'2 (U)

p * i (UY
This, along with (2.3), can be substituted into (2.2), giving

X2 -  - - X i  +  c

1 1
=  - ~ j X l + X 2i  +  ~ jX u

x '\ (*») x[ (tj) _
. ^ 1  T  X 2 i  T  / / ,

X2 ( î) x^iuy (2.4)
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A s th e norm al line a lso  p asses through  Pi th en  su b stitu tio n  in to  (2 .4)
gives

which, after rearrangement, gives an equation for i*:

x'2 ((,) [12 (U) -  X2i] +  (U) [*1 (<■) -  III] =  0. (2.5)

Now, as the axis [aq (t) ,  a:2 (f)] was previously defined in the example 

as [t, b0 +  bit +  62i2], then x[ (t) =  1 and x'2 (t) =  +  2b2t. So, substitution

of these values into (2.5) gives

(i>i + 2Mi) [{b0 + biti + — X2i\ + (1) [fj — Xii] = 0,

[252] + if [3&i&2] -f- ti +  26062 — 262a;2j + l] 4- [5i5o — ^iæ2i — l̂t] =  0,

which is a cubic equation. The solution to this cubic equation can have one 

real root, two real roots, or three real roots. These correspond to the three 

positions of points, A, B and C respectively in Figure 2.5.

A

Figure 2.5: Possible projections to a quadratic axis
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When there are two or more possible values for ti, the U is chosen as the 

one which gives the shortest Euclidean distance between Xi and Pi, which in 

Figure 2.5, the projection to the left hand side would be selected for object 

B.

Once U has been found, the distance from the origin of the axis to Pi 
can be found using the standard equation for the length of an arc. Thus the 

value li is given by

h =  Jq ' yjx\{t)2 +  x'2 {tfd t +  k, (2 .6)

where k is a constant which allows for the origin of the scale to be located 

anywhere along the axis.

Thus, for the example,

h =  f  [l +  (&i +  2 6 2 ^ ] 2 dt +  k 
Jo

and so

1» =  2 ^\A  +  (bi +  2M »)2 +  by +  262^

+ 2  +  (&i +  262U)2 +  k

A loss function, L, is then constructed for all objects i =  1, . . .  ,n giving

[ * - f t + * ) A ]2
n ’

where Zi is the actual observed value for object i on the attribute to be fitted 

and A is a scaling factor. The loss is minimised with respect to A, A: and the 

parameters defining the axis (b0, b\, and 62 here). The loss can be thought 

of as a measure of the average difference between calculated and observed 

values on the axis.
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It is also possible to remove scale from the attributes by dividing the loss 

function by the attribute standard deviation. This allows for the comparison 

of different attributes that have been measured on differing scales.

2.3 Examples and Applications

In this section, the methodology is demonstrated on simulated and real data 

sets.

2.3.1 Adding longitude and latitude axes to the city 

distance map

Table 2.1 shows the longitude and latitude measures for the cities featured 

in the example in Section 1 .2 .

An axis to indicate North would be expected to run from left to right 

on the map, whilst an axis for West would run from top to bottom.

Two axes were thus fitted to the MDS plot to represent the two vari­

ables (latitude and longitude). Initially, the axes were chosen to be linear, 

(f, bQ +  bit) and (t, fc2 +  M)> as this was believed to represent the geographi­

cal situation more precisely.

The results are shown in Figure 2.6. The axes are parameterised as 

(f, 3.85 +  2.19f) with k =  16.16 and A =  3.097 for the latitude, and 

(£, —0.57 +  1.62f) with k =  10.06 and A =  0.15 for the longitude. The loss 

values are 0.6310 and 0.5691 respectively, which show that these axes fit 

the data reasonably well (see Section 2.4 for more information about the 

goodness of fit).
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Town Latitude Longitude

Birmingham 52.48 1.68

Bristol 51.52 2.58

Carlisle 54.62 3.15

Leeds 54.05 1.25

Liverpool 53.5 3.07

London 51.52 0.10

Manchester 53.33 2.15

Newcastle 54.98 1.60

Norwich 52.77 -1.35

Oxford 51.62 1.08

Table 2.1: Longitude and latitude values for selected towns and cities in the
UK ( w w w .th e u .co m  (2006))

It is possible to add anchor points to the axes. For one axis, by defining 

¿min as slightly lower than the value U from the object projecting lowest onto 

the axis, it is possible to calculate the coordinates of the minimum anchor. 

The length along the axis from the zero point to ¿min, say, is given by

rtum I------- --------------
M i=  I \Jx[ (t)2 +  x'2 (¿)2dt +  k.

Jo
Thus the coordinates of ¿min axe given by (xi (Mi) ,£ 2  (A/»)). Similarly, an 

anchor point can be described at the opposite end of the axes by defining 

¿max as slightly larger than the U from the object projecting highest onto the 

axis. In Figure 2.6, the object that projects lowest on the Latitude axis is 

London, with a U of 51.40, whilst the largest is Newcastle, with a U of 55.01. 

Similarly for the Longitude, the extreme points are Norwich (U =  -1.39) and 

Carlisle (U =  3.19). Thus for the Latitude, ¿min =  51.3 and ¿max =  55.1, 

whilst for the Longitude ¿min =  —1.40 and ¿max =  3.20. These result in the
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Figure 2.6: Axes for longitude and latitude added to MDS map

anchor points shown in Figure 2.6.

2 .3 .2  Sim ulated data

This section details the application of the methodology to simulated data. As 

the data has been user-generated, then it is known what the results should 

be. This gives a measure of how well the methodology works.

A 2-dimensional map was constructed showing 10 objects, with co­

ordinates in both dimensions randomly selected from a uniform distribu­

tion between —1 and +1. To create the observed values, a quadratoc axis 

(bit, M  +  M 2) was chosen and the projection points from the objects to the 

axis calculated using the methodology in Section 2.2.1, as

h — [  \J  (^i)2 +  (̂ 2 +  2b-jt)2 dt +  k.
Jo
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based on Equations 2.5 and 2.6. The aim is to see if the methodology can 

recreate the axis.

Table 2.2 shows the simulated data, with the defining axis being 

(1.1Z, 0.4t — 0.3t2) and k =  1.

Object DIMl DIM2 Value

A -0.052 -0.671 1.395

B -0.683 -0.537 2.323

C -0.368 -0.707 2.000

D -0.297 0.586 0.934

E 0.665 -0.532 0.021

F -0.358 0.128 1.245

G -0.872 0.631 1.545

H 0.527 0.460 0 .110

I -0.802 -0.071 2.007

J -0.151 0.359 0.869

Table 2.2: Simulated data

As the values calculated are the actual projection points, then it is 

expected that the loss function will be zero, as Zj =  zit from Equation 2.7.

The calculated parameters for the axis are (1.091Z, 0.397Z — 0.295Z2), 

with k =  0.977 and a loss of 5.6611 x 10-6 . The loss is not exactly zero 

due to the limitations of the fitting software. The simulated and calculated 

results are shown in Figure 2.7.

As can be seen in Figure 2.7, the calculated axis matches the original 

simulated axis perfectly.
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Figure 2.7: Fitted axis based on simulated data

2 .3 .3  A dding m eaning to an M D S  map produced from  

a consum er survey

In Section 1.7.2, a sensory test on deodorants was used to demonstrate the 

biplot. Here, the same data set is used to demonstrate the use of the curved 

axes. First, a non-metric MDS map is produced from the data, as seen in 

Figure 2.8. Then each attribute will be overlaid, using (M , M  +  M 2) as the 

basis for the parameterisation of each axis.

The first attribute to be fitted is the Loudness of the Spray. The axis to 

describe this variable is given by (0.5282, 6.9242 +  1.15922), with a loss value 

of 4.87. As can be seen in Figure 2.9, this axis points from the bottom of 

the map towards the top - in other words products A and B have the loudest 

spray, whilst products C and H have the quietest. Looking at the raw data
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Figure 2.8: Non-metric MDS map of deodorant sensory data

in Table 1.3 and the biplot in Figure 1.5, it can be seen that this is indeed 

the case.

A second axis for Ease of use of spray has the parameters 

(4.0772, — 0.708J — 1.15422), and a loss of 0.395. Here, there is an improved 

fit over the biplot due to the quadratic nature of the axis. This axis goes 

from the left of the screen to the right, as shown in Figure 2.10, and again 

matches the biplot and the raw data.

A third axis for Evenness of spray is shown in Figure 2.11. It has 

parameters (—1.6632, 1.1532 — 4.35322), and a loss of 12.297. This is a highly 

quadratic axis with a large loss value, but a close investigation of the raw data 

shows the reason for this. First the products are not significantly different
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Figure 2.9: Non-metric MDS map of sensory data with axis for Loudness of 

spray overlaid

on this attribute - therefore differences are just due to noise. Second, if 

the products are ranked in order of their Evenness of spray, the sequence 

A > G > D > F > E > C > H > B  is obtained. Looking at the map, 

A and B are very close together, and so it is difficult to fit an axis for this 

attribute, and this is reflected in the high loss value. The fitted axis is the 

best representation of the data - this is not obvious from the biplot but is 

very obvious here.
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Figure 2.10: Non-metric MDS map of sensory data with axes for Loudness 

of spray and Ease of use overlaid

Repeating the process for each attribute results in the top plot in Figure 

2.12. The second plot is the biplot repeated for comparison purposes.

Comparing the two plots shows that they are showing the same mes­

sage. The products are in a similar place relative to each other, and each of 

the axes tends to point in the same direction. The curved axes allow for a 

better fitting map for the reasons discussed previously. The values for the 

parameters are shown in Table 2.3.
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Figure 2.11: Non-metric MDS map of sensory data with three axes overlaid
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Figure 2.12: Curvlinear plot (top) and biplot (bottom) of deodorant sensory 

data
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A ttribute Loss Scale (A) Zero (k ) b l b2 b3

Loudness o f  spray 4.87 4.620 5.692 0.528 6.924 1.159

Evenness o f  spray 12.29 271.6 0.370 •1.662 1.153 -4.353

Ease o f  use o f  spray 0.39 7.262 15.168 4.077 -0.708 -1.154

Strength o f  spray 2.67 0.232 •1.543 0.328 1.049 0.056

D irectability  o f  spray 0.89 11.994 6.780 2.287 -2.020 -1.680

C oldness o f  spray 6.61 8.920 7.975 -0.627 -2.036 -0.300

V isib ility  o f  p rodu ct on  skin 3.76 113.0 2.776 -4.093 3.726 -2.902

W etness on  skin 5.51 78.14 14.391 6.035 0.643 -1.171

Stickiness on  skin 1.39 46.771 8.461 4.899 0.568 1.181

G reasiness on  skin 2.87 16.01 2.408 •2.346 1.018 -0.902

Table 2.3: Parameters for axes for Deodorant Sensory Study
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2 .3 .4  A dding m eaning to the consumers

In Subsection 2.3.3, the technique was demonstrated on only 8 objects - the 

products in the study. However, there is no limit to the number of objects 

that the technique can use. In the study, 150 people were asked to score 

their overall opinion of each product. An MDS map can be produced on 

these people for each product in turn, and the technique used to overlay 

their overall opinion scores. This has been carried out in Figure 2.13 looking 

at product A.

Figure 2.13: MDS map of consumers, with overall opinion axis overlaid

The axis in Figure 2.13 has parameters (—3.2 +  6.3t,6.1i — 4.3433t2), 

and a loss of 20.81. It shows that there are differences between consumers, 

with those to the right hand side of the plot preferring the product to those 

on the left hand side. Similar patterns are seen for the other products.
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2.4 Goodness of fit

Section 2.3 has shown that the methodology can prefectly recreate the curved 

axis for the simulated data. However, this is an exceptional example, in that 

most data contains noise which will affect the axis fitting. This section shows 

what happens as increasing levels of noise are added to the simulated data 

(to both the object coordinates, and the object scores).

The simulated data from Section 2.3.2 was used to show the effect of 

increasing noise. First 1000 repeats were run of the data with no noise. 

Occasionally, the fitting software finds a local minimum, rather than the 

overall minimum, and this accounts for any variability here. Next random 

noise was added to the object coordinates and the parameters calculated. 

This was repeated 1000 times for each level of noise. The random noise was 

taken from a uniform distribution [ -n ,+ n ] , with n being set to 0 .0 0 1, 0 .0 1 , 

0.1 and 1 to represent increasing levels o f noise. As the original raw data for 

the coordinates was drawn form a uniform distribution from - 1  to + 1 , then 

these levels of noise are at 0 .1 %, 1 %, 10% and 100% respectively.

The mean, standard deviation, minimum and maximum value for each 

parameter (scale, zero, b\, 62 and 63) along with the loss are shown in Table 

2.4.
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0% Loss Scale Zero h b2 h
Mean 5.687x10“ ® 0.977 -0.0136 1.0906 0.397 -0.295

Std.Dev. 2.637xl0“ 7 0.00576 0.0109 0.00283 0.000933 0.001

Max. 5.66x10“ ® 0.966 -0.0031 1.0977 0.400 -0.281

Min. 8.31x10“ ® 0.919 -0.125 1.0624 0.387 -0.299

0.1 % Loss Scale Zero bi b2 bi

Mean 1.487xl0“ 5 0.975 -0.169 1.089 0.396 -0.294

Std Dev 0.00005 0.033 0.030 0.016 0.005 0.008

Max 0.00530 1.008 0.011 1.107 0.406 -0.216

Min 1.36x10-® 0.663 -0.266 0.933 0.346 -0.301

1 % Loss Scale Zero bi b2 63

Mean 0.00026 0.960 -0.035 1.082 0.397 -0.290

Std Dev 0.00142 0.082 0.090 0.038 0.014 0.019

Max 0.01430 1.160 0.076 1.163 0.469 -0.237

Min 4.26x10-® 0.747 -0.621 0.974 0.361 -0.336

10% Loss Scale Zero bi b2 ba
Mean 0.01400 0.917 -0.127 0.934 0.361 -0.254

Std Dev 0.02750 0.602 0.590 0.598 0.259 0.146

Max 0.29100 3.078 3.787 1.689 0.618 0.405

Min 0.00075 0.018 -1.175 -4.492 -2.087 -0.621

100% Loss Scale Zero bx b2 bi

Mean 0.91000 3.717 3.513 -0.686 -0.696 -4.610

Std Dev 0.50200 9.234 9.122 3.771 2.988 27.530

Mean 2.26840 61.917 60.950 3.890 2.260 6.400

Min 0.14500 0.016 -6.510 -31.370 -20.230 -285.800

Table 2.4: Summary data from adding noise to coordinates
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The distributions of the parameters are seen in Figures 2.14 to 2.18. 

Looking at Table 2.4 it can be seen that as the noise increases, the loss 

value increases. This is to be expected, as it is harder to fit the axis to 

the values. In addition, the ¿-parameters get further away from their true 

values of (¿i =  1.1,6a =  0 4 and 63 =  —0.3), along with an increase in the 

standard deviation. However, the mean values are still fairly close to the 

expected values, and axes produced using these parameter values still match 

the expected axes. In addition, when looking at the parameter distributions, 

they are skewed towards the expected values, and it is only a relatively few 

values that are lying away from the expected.

At 100% noise, then it appears that the values produced are very un­

reliable. However, looking at the distributions in Figure 2.18, then there are 

about 10 values out of the 1000 repeats that can be thought of as extreme 

outliers. If these values are removed, then the mean scores are as expected.

Figure 2.14: Distribution of parameters when there is no noise
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Loss Scale Zeroes

Figure 2.15: Distribution of parameters when there is 0.1% noise in the 

coordinates

Loss Scale Zeroes

Figure 2.16: Distribution of parameters when there is 1% noise in the coor­

dinates
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Figure 2.17: Distribution of parameters when there is 10% noise in the coor­

dinates

Loss Scale Zeroes

bj b3

F igure 2.18: D istr ib u tion  o f param eters w hen there is 100% noise in th e
coord in ates

54



The procedure was repeated but with noise being added to the observed 

values of the attribute (y, in Equation 2.7) instead of the object coordinates. 

Results are shown in Table 2.5 and Figures 2.19 to 2.22.

lo ss Scale Zeroes

b, bj b3

Figure 2.19: Distribution of parameters when there is 0.1% noise in the 

attribute scores

lo ss  Scale Zeroes

Figure 2.20: Distribution of parameters when there is 1% noise in the at­

tribute scores

The fact that despite increasing levels of noise, the calculated parame-
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loss Scale Zeroes

Figure 2.21: Distribution of parameters when there is 10% noise in the at­

tribute scores

loss Scale Zeroes

Figure 2.22: Distribution of parameters when there is 100% noise in the 

attribute scores

ters are consistent shows that the methodology is accurately capable of fitting 

the data.
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0 .1 % Loss Scale Zero £>i £>2 £>3

Mean 2.125xl0-5 0.969 -0.0179 1.087 0.396 -0.293

SD 9.299xl0 '5 0.044 0.0363 0.021 0.007 0.012

Max 0.00071 0.988 -0.0056 1.096 0.399 -0.219

Min 2.82xl0-6 0.674 -0.2686 0.948 0.352 -0.297

1 % Loss Scale Zero £>i £>2 £>3

Mean 0.0000757 0.971 -0.017 1.087 0.396 -0.293

SD 0.000173 0.076 0.069 0.039 0.013 0.019

Max 0.00155 1.092 0.054 1.139 0.413 -0.153

Min 8.33xl0-6 0.447 -0.576 0.791 0.293 -0.321

10% Loss Scale Zero £>i &2 h
Mean 0.0043391 0.982 -0.014 1.06 0.385 -0.286

SD 0.00275 0.389 0.287 0.209 0.075 0.093

Max 0.0227 1.917 1.051 1.441 0.524 -0.012

Min 0.00035 0.033 -1.037 0.21 0.074 -0.473

100% Loss Scale Zero bi £»2 £>3

Mean 0.436 3.908 2.091 0.626 0.139 -0.826

SD 0.197 4.439 12.698 2.316 1.047 2.315

Max 0.967 33.541 134 3.82 1.592 3.97

Min 0.0552 0.009 -9.7 -10.36 -4.535 -21.93

Table 2.5: Summary data from adding noise to attribute scores
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2.5 Model selection

So far only linear and quadratic functions have been used to define the axes. 

However, in theory, any differentiable function could be used, as long as the 

derivatives are not zero. This leads to the question - what is the best fitting 

axis? This can be answered using one of several model selection methods.

Model selection is the task of choosing a model from a set o f potential 

models with the best inductive bias, which in practice means selecting pa­

rameters in an attempt to create a model of optimal complexity given (finite) 

training data. A classical example is the principle of Occam’s Razor, which 

assumes that the simplest consistent hypothesis about the target function is 

actually the best. Thus model selection is a bias versus variance trade-off, 

and this is the statistical process of parsimony. Inference under models with 

too few parameters can be biased, whilst with models that have too many 

parameters, there may be poor precision, or identification of effects that are, 

in effect, spurious. These considerations call for a balance between under­

and over- fitted models - the so called model selection problem (Forster (2000) 

and Burnham and Anderson (2004a)).

Here, cross-validation will be used to demonstrate model selection on 

the simulated axis of Section 2.3.2. Cross-validation is a method o f evalu­

ating given models by means of their forecasts, and to choose a model with 

proper complexity (Hjorth (1982)). In theory, cross-validation is the sta­

tistical practice of partitioning a sample of data into subsets such that the 

analysis is initially performed on a single subset (the training set), while the 

other subset (s) are retained for subsequent use in confirming and validating 

the initial analysis (the validation or testing sets).

Different types of cross-validation exist, depending on how the parti­
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tioning occurs:

K-fold cross-validation partitions the original sample into K  subsam­

ples. Of the K  subsamples, a single subsample is retained as the validation 

data for testing the model, and the remaining K  — 1 subsamples are used as 

the training data. The cross-validation process is then repeated K  times, so 

that each one of the subsamples is used once as the validation data. The K  
results are then combined (often by averaging) to produce a single estimation.

Leave-one-out-cross-validation is the same as A'-fold cross-validation, 

but with K  being equal to the number of observations in the original sample 

- thus each validation set consists o f one observation.

After carrying out the cross-validation, the parameter estimation error 

can be computed. Common error metrics are the mean squared error and 

the root mean squared error, respecitvely giving the estimated variance and 

standard deviation of the cross-validation. If this process is repeated for each 

possible model, the best-fitting model can be selected as that with the lowest 

error.

In terms of axis fitting, each object can represent a subsample for the 

leave-one-out-cross-validation. An object can be removed from the sample, 

and the remaining objects used to fit the axis. Once the parameters have 

been calculated, then the score of the removed object can be calculated by:

where Scored is the estimated score for object i calculated when it has been 

removed from the data set.

An error term for each object can then be calculated by

Errori =  (Scorei -  ScoreJ)
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The MSE and RMSE can then be calculated. Such an approach was carried 

out on several possible axes for the simulated data in Section 2.3.2. The 

results can be found in Table 2.6.

Model MSE RMSE

(M ,M ) 0.7053 0.8398

(bit, b̂ t +  bit2) 0.0024 0.0492

(bit +  bit2, b̂ t +  b̂ t2) 1.7254 1.3135

Table 2.6: Results of LOOCV on axis selection for simulated data

The model with the lowest MSE and RMSE is the second one 

(bit,bit +  M 2), so it is this axis that describes the data best. This is not 

surprising, as this is the equation used in the simulation of the data.

Using the data from Section 2.3.3, the leave-one-out-cross-validation 

can be used to find the best-fitting axis for loudness of spray. The statistics 

for the fit o f several models are shown in Table 2.7.

Model MSE RMSE

(bit, bit) 12.476 1.249

(bit, bit -t- 63^ ) 93.165 3.412

(bit +  bit2, b$t +  b\t2) 191.921 4.896

Table 2.7: Results of LOOCV on axis selection for loudness of spray data

The model with the lowest error is (bit, bit). This is not surprising as 

close inspection of Figure 2.9 shows that when the axis was fitted previously, 

the quadratic term was close to zero. Fitting the ‘best’ axis gives parameters 

o f (0.719i,8.596i), with a loss of 23.658, zero point of 17.087 and scale factor 

of 4.0066.

Other model selection methods can be used. For example,
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• Akaike Information Criterion (AIC)

• Bayesian Information Criterion (BIC)

• Structural Risk Minimisation with VC-dimensions (SRMVC)

These three methods have the advantage over cross-validation in that only 

the training error is needed. Asymptotically though, AIC and leave-one-out- 

cross-validation should be identical (McQuarrie and Tsai (1998)).

2.6 Extensions to n-dimensions

So far, this chapter has dealt with fitting axes to 2-dimensional MDS maps. 

The methodology, however, is extendable to p-dimensions.

Let y =  {yr (f)} r =  1 ,...,p  be the axis to be fitted. Now p ,  the 

projection point of object i onto the axis can be given by

where xir is the coordinate for object i in dimensions r.

Once the P* has been calculated, the length along the axis from this 

projection point to the origin is given by

p

w )  m « )  -  *<r]= °

dt -I- k.

The goodness-of-fit measure for the p-dimensional axis is thus

goodness o f fit = S T - b - t t +  *)*)* (2.8)
n
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Figure 2.23: A 3-dimensional MDS plot with curved axes

Figure 2.23 shows an example of a 3-dimensional MDS plot, with an 

overlaid axis. The data used to generate this plot can be found in Table 2.8.

The equations for the axis in Figure 2.9 are

(0.98 sin (i ) ,  1.02 cos (f),0 .54i) 

with a goodness-of-fit of 3.244.

The discussions about model selection and goodness-of-fit in Sections 

2.4 and 2.5 are applicable here too.

62



h ¿2 h Z

0.63 0.23 -0.34 9

0.92 0.66 0.40 9

0.23 0.36 -0.02 5

0.70 0.51 0.28 1

0.98 0.81 0.02 6

0.76 0.69 0.42 3

0.47 0.17 0.30 10

0.60 0.76 -0.21 6

0.51 0.22 -0.18 4

0.44 0.16 -0.16 5

0.17 0.51 0.48 8

0.87 0.13 -0.37 7

Table 2.8: Simulated data for 3 dimensional MDS plot and axis to be fitted

2.7 Points for discussion

2.7.1 Measures of curvature

In vector calculus, the Frenet-Serret formulae describe the kinematic prop­

erties of a particle which moves along a continuous, differentiable curve in 

three-dimensional Euclidean space R3 (Guggenheimer (1977)). In more de­

tail, the formulae actually describe the derivatives of the tangent, normal and 

binormal unit vectors, in terms of each other (Struik (1961)). These ideas 

could be used as an alternative mechanism for describing the curves overlaid 

onto a 3-dimensional MDS map.

Suppose r (t) is a curve in Euclidean space which represents the axis as a
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function of time (as t{ is used in previous sections). The Frenet-Serret formula 

can be applied to such curves if they are non-degenerate. This roughly means 

that they have curvature, but can be expressed more formally as the velocity 

vector r' (t) and the acceleration vector r" (t) not being perpendicular (Spivak 

(1999)).

Let s {t) represent the arc length along the curve. The quantity s is used 

to give a natural parameterisation to the curve traced out by the trajectory 

over time, since many different paths may trace out the same geometrical 

curve by traversering it at different rates. In more detail, s is given by

* (0  = /  llr'( T)ll<iTJo

In addition, due to the assumption that r' ^  0, it is possible to solve for t 

as a function of s, and thus to write r (s) =  r (f (s)) (Iyer and Vishveshwara 

(1993) and Crenshaw and Edelstein-Keshet (1993)). The curve is therefore 

parameterised in a preferred manner by its arc length.

With a non-degenerative curve r (s ) , parameterised by its arclength, 

the Frenet-Serret formulae can now be defined:

dr
The tangent vector T  =  — . (2.9)

rfT
The normal vector N  =  . (2 -10 )

II ~da II
The binormal unit vector B  =  TxN . (2.11)

The binormal unit vector is defined as the cross-product of T  and N.

From equation 2.10 it follows that, since T  always has to have unit 

magnitude, then N  is always perpendicular to T , whilst from equation 2.11, 

B  is always perpendicular to T  and N . In other words, the three unit vectors
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are all perpendicular to each other, and can be used to define a unique line 

through Euclidean space.

The Frenet-Serret formulae can thus now be given as
dT
ds
dN
ds
dB
ds

=  kN

= —kT  +  rB

= - tN (2.12)

where k is the curvature and r  is the torsion.

The Frenet-Serret formulae are also known as the Frenet-Serret thereom, 

and can be more concisely represented using matrix notation. This gives a 

skew-symmetric matix.

T' 0 K 0 T

N' = — K 0 T N

B' 0 —r 0 B

The Frenet-Serret formulae can be generalised to higher-dimensional Eu­

clidean spaces - see Guggenheimer (1977) for more details.

Example 1

A simple example is demonstrated here in 2-dimensions, where only curvature 

is defined. For a curve (xi (t) ,x 2 (t)), the curvature is given by

_  A  (0  A  (0  ~  A  (t) Xi (t)

( * i ( 0 2 +  * 2 (0 2)*
Taking the axis from Section 2.3.2, (bit, b2t +  M 2), the curvature is

6i (263) — (b2 + 2£>3f) 0



So with the axis parameterised as bi =  1.091, 62 =  0.397, and 63 =  —0.295, 

the curvature is
0.643

K — ---------------------------------------- 2 •
(1.190 +  (0.397 -0 .590*)2) 2

Example 2

In three dimensions, let an example curve be defined as a helix 

r =  (6 cost, 6 sin i,t). From equations 2.9 to 2.11 it is possible to calculate 

the Frenet-Serret formulae as

rp _ 1 (  b s b s 1 \
” r “  V # T T sm v /62+ T ’ v ^ T T c° s \f& +  V  y / t fT i)  ’

T ' /  s s \
N  =  „ . „ =  ( — cos —7= = ,  — sin ■ ■ ■: ,0  I ,

II t ' II V V v  +  i  v /^ + T  J
and

B =  T x N =
(v /6r +T

sin
s

Vtf +  l'

where s =  ty/b2 +  1 .

1  s b \
-  .. ■ ----- cos ■ . , ■ = ■ ,
v/PTT v ^ T I V P T T /

Using Equation 2.12 the curvature and torsion can be calculated,

and

b
K ~  b2 +  1 

1
T “  b2 +  1 '

2.7.2 Curvilinear Coordinates

If p curved axes, representing some variables, are fitted to an MDS plot 

which is in p-dimensions, then these p axes can be considered as curvilinear 

axes defining the MDS space. The points in the space, which represent the
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products, can then be defined by these new axes. For example, in Figure 

2.13, if, in addition to the overall opinion axis, another axis was defined by 

likelihood to buy, then overall opinion and likelihood to buy could be used 

as curvilinear coordinates. The plot could then be compared to the simple 

scatterplot of likelihood to buy against overall opinion, in an attempt to see 

how the multivariate attributes affect these two scores.
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Chapter 3

An MDS approach to 

visualising multivariate paired 

comparison data

3.1 Introduction

The theory and practice o f paired comparison testing have advanced consid­

erably since Thurstone formulated his law of comparative judgment in 1927. 

The law of comparative judgment (more correctly, the model of comparative 

judgment) is a mathematical representation of a discriminal process. This is 

any process in which a comparison is made between pairs of a collection of 

entities, with respect to magnitudes of an attribute, trait, attitude, and so 

on. Thurstone introduced the concept of an underlying psychological scale 

(or latent variable) on which the comparison is made.

The law indicates that the scale difference between any two stimuli is 

a random variable whose probability density function forms a normal distri­
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bution. Thus, if 7̂  is the pyschological scale value of stimulus i, then

where Zij is the normal deviate corresponding to the proportion of times 

stimulus i is chosen over stimulus j ,  as the number of comparisons made 

tends to infinity; <7j and <Jj are the standard deviations for stimuli i and j  
respectively; and pij is the correlation coefficient between stimuli i and j.

In the fifth case of Thurstone’s Law of Comparative Judgement, all 

stimuli share the same standard deviation among observations, i.e. <7j =  

<Xj =  a, and the correlation between each stimulus is zero. Accordingly, the 

scale value difference, 71,• — 7Ty, has a standard deviation (o\/2) ,  and thus 

7Tj -  7Tj =  (Cui (2001)).

Since its early beginnings, the paired comparison test (or, more for­

mally, the 2-Alternative Forced Choice test) has become one of the most 

widely used o f sensory tests (McBride et al. (1984), Hymann and Lawless 

(1999), and Anon (2005)). Paired comparison testing generally nowadays 

refers to any process of comparing objects (or stimuli) in pairs to judge 

which of each pair is preferred, or has a greater amount of some quantitative 

property (Marden (1996)). This type of experiment on a set o f t objects 

results in (£) paired comparisons, usually shown to panellists in a random 

order. Traditionally a set number of panellists axe asked to carry out all 

the (*) comparisons. However, this is not always necessary, especially when 

there is a large number of objects.

Bradley and Terry (1952) introduced a simple and appealing model for 

the analysis of such tests, when t objects are compared in pairs, with object 

rating parameters, ?ri, . . .  7rt.
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In Bradley (1955), large-sample results and the asymptotic distribu­

tion of the maximum-likelihood estimators are given, whilst Ford (1957) de­

scribed an iterative solution of the likelihood equations. Hunter (2004) builds 

on a theory of algorithms known by the initials of MM, for minorization- 

maximization, and presents a powerful technique for producing iterative max­

imum likelihood estimation algorithms for a wide class of generalisations of 

the Bradley-Terry model.

The basic Bradley-Terry model has been extensively discussed in the lit­

erature (David (1988)) and various extensions have been proposed. To name 

just a few of these: ties (Rao and Kupper (1967), Davidson (1970), Kous- 

gaard (1976)), order effects (Davidson and Beaver (1977), Fienberg (1979)), 

the incorporation of explanatory vaiables (Kousgaard (1984), Matthews and 

Morris (1995), Francis et al. (2002)), and ordinal paired comparison models 

(Agresti (1992), Boeckenholt and Dillon (1997)). The main importance here 

for sensory testing has been work of Dittrich et al. (1998) to include panellist 

effects.

When several attributes are being considered concurrently, then the 

Bradley-Terry model can be fitted for each one in turn. However, a multivari­

ate approach might be preferable. This chapter first discusses the Bradley- 

Terry model in more detail, then describes a multivariate approach, leading 

to a map similar to the biplot, which shows how each object is scored on 

each attribute.

3.2 The Bradley-Terry model

The Bradley-Terry model (Bradley and Terry (1952) and Luce (1959)) is 

often applied to pairwise comparison data to scale preferences.
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For the univariate case, consider t treatments, or objects, to be com­

pared in pairs with treatment rating parameters 7Ti,...,7rt. The Bradley- 

Terry model postulates that treatments have true ratings on a particular 

subjective continuum such that 7r* >  0 and =  !• When treatment i is 

compared to treatment j ,  the probability I\j that treatment i is ranked over 

treatment j  (or receives a rank of 1 ) is given by

for each and 

expressed as

P  = . . .  (3-1)7Tj "T 7Tj
every pair o f treatments. The model could alternatively be

logit (Pij) =  Hi -  Hj

where /¿j =  log^  for all i.

Define =  1  if, in the kth paired comparison of treatments i and 

j ,  treatment i is selected over treatment j ,  and =  0 otherwise. Let 

treatments i and j  be compared JV̂ - independent times. Then riy*

is the number of comparisons out o f Nij when the ith treatment is selected or 

preferred over the jth  treatment. If the rating parameters remain the same 

from comparison to comparison, then n¿j follows a binomial distribution. 

The likelihood of the total experiment is the product of t (t — 1) /2  binomial 

functions (Bradley and El-Helbawy (1976)). Maximum likelihood estimates 

7b of 7Tj are obtained by solving the likelihood function iteratively. The 

likelihood equations are

7Ti = rii
Nij (*< +  7Tj)-1

, i — 1, . . . , Ì, (3.2)

where rq =  ny. This equation can be fitted using any number of stan­

dard statistical packages. For the purpose of this thesis, the PROC LOGIS­

TIC routine in SAS was used, which had the benefit of allowing additional 

effects, such as panellist, to be fitted.
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Table 3.1 shows the results of a paired comparison test with five prod­

ucts where each pair was compared eighteen times.

A B C D E

A • 11 9 7 3

B 7 . 11 9 7

C 9 7 . 8 6

D 11 9 10 • 6

E 15 11 12 12 ■

Table 3.1: Results from a paired comparison experiment. The values repre­

sent the number o f times the row object was chosen over the column product.

The products preferred are in the rows, so for example product A was 

chosen over B eleven times. The results o f the Bradley-Terry model give 

treatment rating parameters of it a =  0-14, its =  0.17, ire =  0.14, itD =  0.19, 

and 7T/j =  0.36. A plot of these values on an axis can be seen in Figure 3.1.

Figure 3.1: Treatment rating parameters from the univariate Bradley-Terry 

model

It can be seen that product E is much preferred over the other products, 

where for instance, the probability that product E is preferred over product
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D is estimated as

Ped
*E

7TJS +  7T£)
0.36

0.36 +  0.17

=  0.68

Causeur and Husson (2005) introduced a 2-dimensional extension of the 

model that accounts for interactions between the compared objects, building 

on the work of Hunter (2004). This allowed for plotting of the treatment 

parameters when they are not transitively related. For instance, in a sensory 

context, it can be observed that the product A, say, is markedly better than 

B, B is also markedly better than C; however, C is preferred to A. This 

work though is still univariate in nature, dealing with comparisons on one 

attribute only.

The hypothesis of interest in sensory testing is that all objects are 

equally preferred or are of equal ratings. In terms of the Bradley-Terry model 

parameters the hypothesis that objects have equal ratings can be expressed 

as:

HQ\Tti =  l/t for all i;

Pi : 7Ti ^  l/t for some i.

For testing the null hypothesis of equal ratings, the likelihood ratio test 

turns out to depend on the statistic

B =  ^ 2  N'i ln fa  +  *i) ~  y i  Tlj In tt»>
i<j

which, for a large scale experiment has an approximate distribution given by

(1.3863)Af -  2B «  xft-i).
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where N  is the total number of all paired comparisons in the experiment 

(Sen and Puri (1967)).

For the example data shown in Table 3.1, the null hypothesis of no 

difference between objects is strongly rejected. Following the calculations, 

B =  92.96, so the test statistic equals 62.20, which when compared with a 

xl distribution gives a p-value of 9.59e-13. Thus there is at least one signifi­

cant difference between the objects. To highlight the nature of these differ­

ences the multiple-comparison test is based on finding confidence intervals 

for (7Tj — 7Tj), say, which are given by

(7 T i - 7T j )  ±  Z Q/ 2 y  V a T  ( * <  -  7 T j)

where the variance of (7̂  — 7rj) is defined in terms of the variances and co- 

variances of 7Tj and 7Tj (Bradley (1955) and Dykstra (I960)). Davidson (1970) 

established the large-sample joint distribution of iti, and that (7̂  — ir,) have 

jointly an approximate multivariate normal distribution. These definitions 

allow the calculation of the required variances and covariances. David (1988) 

found that if all JV̂  are equal to N, and when the null hypothesis of 1q =  l/t 

is true, it follows that

an =  4 (t — 1) /Nt4 i =  1 ,... ft,

=  ~ 4 ¡Nt4 i ±  j  =  1 , . . . ,  t.

where a,j is the covariance between 7q and 7Tj, and an is the variance of 7q. 

Thus

var (7Tj — 7Tj) =  an +  ajj — 2 a^.

This of course assumes independence of the comparisons, which is not strictly 

correct. In sensory testing, the panellist effect is included in the model to 

overcome this.
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3.2.1 Multivariate extensions to the Bradley-Terry model

The two main non-parametric multivariate paired comparison tests for test­

ing the hypothesis of no difference among several treatements are:

• the Sen-David test (Sen and David (1968))

• the Davidson-Bradley test (Davidson and Bradley (1969))

with a versatile and relatively simple approach to multivariate paired com­

parisons building on these methods being provided by Imray et al. (1976).

A generalisation of Thurstonian probabilistic choice models for analysing 

both multiple preference responses and their relationships was proposed by 

Boeckenholt (1990).

Recent work by Dittrich et al. (2006) has developed a log-linear rep­

resentation of the Bradley-Terry model for multivariate paired comparison 

data. By converting such data to multiple binomial responses, dependencies 

between the decisions of the judges, as well as possible association structures 

between the attributes, can be incorporated into the model, providing an 

advantage over parallel univariate analyses o f individual attributes.

The Sen-David test

Suppose that the t objects i =  1 , . . . , *  are compared on the basis o f two 

characteristics, say (e,£). There are four possible outcomes for each set of 

comparisons:

k =  1 : Ci - * » 0 »

CNII-S6 c< - tj'X » i Cj>

k =  3 : c . tj'X i ~ C j >
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k — 4 : £j < tj \ C» *— Cji

where the direction of the arrow indicates preference. Thus in option 1 object 

i is chosen over object j  on both attributes, whilst for option 2 i is chosen 

on c and j  is chosen on £.

Using these definitions, it is possible to define preference frequencies 

Nij.k (k =  1 , . . .  ,4) which represents how often each comparison o f objects i 

and j  falls into each of the categories, along with the associated probabilities 

Pij.k- Note that for all i , j  and k (i j ),

The overall Nij comparisons (where Nij is the total number o f times ob­

jects i and j  are compared), assumed independent, result in the multinomial 

distribution

The null hypothesis of equality of the objects with respect to both (e, () 

may be expressed as

Pij.k — Pji.s—k fmd Nij.k Nji.s-k- (3.3)

(3.4)

Pij.k =  pk> k -  1 , . . . ,  4, i ±  j  =  1 , . . . ,  i,

which, by virtue of 3.3, means

1
Pi +P a=P l +P3=P2+P3=P3+P* =  2 ’ (3.5)

Equivalently, 3.5 may be written as
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where 6 is an association parameter ( —1 <  0 <  +1)- Correspondingly, the 

null hypothesis may therefore be written as

Ho : Pij.k =  ^ (1 +  9) k ~  4>

=  ^ (1 — 6) k =  2,3, for all i < j  =  1 , . . . ,  t.

Under H0, the likelihood funcion of the entire sample is, from 3.4

( y r  Njj\ \ {\ +  8)Ni{ l - e f - Ni

V f jn L iW  4"
where JVX =  ^ . ( % x +  % 4) and JV =  ^  Jty.

Thus the maximum likelihood estimator o f 0 is simply

(3.6)

« 2M  - N  Ni - N 2 
N N '

where N2 =  N -  Nlt i.e. 0N is the difference in the proportions of like and 

unlike preferences for (e,C).

In order to test Ho define

(M il -  M il )
J

and

Z K> =  E  V  (M il  -  M il )
j

for i ^  j  =  1 , . . .  }t, and if any Nij =  0, the corresponding term is omitted. 

Confining the discussion to a statement of the main results, let lim/v-,00 ^  =  

pij where 0 <  ptj < 1 for a l i i  <  j  =  1 , . . . ,  t.

Then for |0| <  1, under Ho in 3.6, the test statistic

2
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tends to a xl{t-i) distribution as N —► oo. To facilitate extension from 2 to 

p attributes, define
'T'(l) J N,i

_ 7(1) , 7(2)N,i

and

Then

Dn = t  [ P M ’  -  2¿ « 7 »  A  +

In the p-dimensional case \p{p— 1) association parameters correspond­

ing to 0 are needed. Define the p x p matrix © =  {tis.gh) ,  g, h =  1 , . . .  ,p,
A A

where &N.gh is the estimate for attributes g and h, and d̂ .gg =  1, g =  1 ,... ,p- 

If 6$  is the (g,h)th element in 0 “ 1 then the test statistic is

=«■*  E  E '» if  E  tW A I
5=1 A»=l t=l

which, under the null hypothesis o f homogeneity of the objects, tends to a 

Xp(i_!) distribution as N —► 00.

The Davidson-Bradley test

Davidson and Bradley (1969) describe an extension of the univariate treat­

ment parameters to p sets of treatment parameters, 7rQi , . . . ,  7rat, a =  1 , . . . ,  p, 

Kai >  0, i =  1 , . . .  ,t, 7rQi +  . . . + 7rat =  1, and if and X aj denote the paired 

response to treatments i and j  on attribute a, then p (Xai > X aj) =  Wa”“{raj » 

a  =  1 , . . .  ,p, i ±  j ,  i , j  =  1, ..  .t. As before, X ai > X aj is interpreted as 

choice of treatment i over treatment j ,  but now on attribute a.
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Let s =  (sx, • • •, sp) be a preference or choice vector such that, when 

objects i and j  are compared, sQ =  % or j  depending on whether object i 

or j  is chosen on attribute a. Define the cell probability p (s|e, j )  as the 

probability of the choice vector s for the (i, j )  object pairing.

Now the multivariate model that has been selected may be formulated 

as follows: for each object pair ( i , j )  the cell probabilities are given by

P(s|i, j )  =  P(1) (s\i,j)h(s\i,j) ,

where

p(1) (s|i'j)= n  d r î cQ=1

h («I*, j )  =  1 +  ^  6 (S“ > S$) P (7ra«/7r« i ) ^ (M“ ) ( W * « )  ,
Of</9

sa =  i ,j ,  a  =  1 , . . .  ,p and 5 (.,.) =  ±1 , the sign being positive if the two 

arguments are equal and negative otherwise. The preference parameters, 7r =  

{ 7 r a i ; i =  1 , . . . ,  t\a =  1 , . . .  ,p }, are restrained by £ ‘=1*ai =  1, a =  1 , . . .  ,p, 

and the parameters measuring association

P =  {pap, a  </?,£*,/? =  1, . . . , p } ,

are restricted by the requirement that /i(s|z,,7’) >  0 for each of the 2P cells 

associated with each of the Q  treatment comparisons. It is noted that 

p =  0 implies independence. Also it is interesting to note that, in the two- 

treatment, bivariate case, pi2 is the «^-coefficient of correlation for the single 

2x2 table.

Maximum-likelihood estimation is used to find the maximum-likelihood 

estimates of the model. The logarithm of the likelihood function is

p t p ___
 ̂=  In 7Tai - ATÿ In (7Tai +  (s|i, j )  In/i (s|i, j )

a=l t= l a = l  i<j i<j •
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where /  (s|i, j )  is the number of times the preference vector s occurs amongst 

the Nij responses to the object pair vai =  Yl' naij> the sum of the 

marginal frequencies of preference for object i over object j  on attribute a,

i.e. the number of times i is chosen over j  on a, and ]Tg is the sum over the 

2P possible values of s representing the possible preference responses. The 

maximisation is subject to the constraints 7r0i =  1 for all a  =  1 , . . .  ,p.

Davidson and Bradley (1971) considered an extension of the model 

looking at the problem of relating the response pattern on overall quality 

to that on a specified set of attributes. They derived a regression equation 

for a joint distribution of responses to dichotomous items, and applied it to 

the multivariate paired comparison model, along with a test of significance 

of the responses to specified attributes in estimating the responses to overall 

quality.
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Example

Davidson and Bradley (1969) present an example based on a Chocolate 

pudding test, which is recreated here.

The responses to paired comparisons on attributes (1) taste or flavour, 

(2) colour, and (3) texture or feel in the mouth, for treatments B, C, and 

E , have been tabulated and the resulting set of cell frequencies, f(s\ i,j) 
are presented in Table 3.2. These frequencies have been used to obtain the 

maximum likelihood estimates #  of 7r and p of p. The estimated frequencies 

obtained by use of the maximum-likelihood estimates are also given in Table 

3.2 in parentheses.

Treatment pair Cell frequencies /  (s|4, j ) Frequency

< i ( « 0 0 * 0 ( 0 0 O jO 0 0 ) O O ) ( 0 0 ( ¿ 0 )

1 2 8 1 1 1 0 2 0 9 22

(7.93) (1.09) (1.15) (1.69) (0.76) (0.97) (0.37) (8.03)

1 3 6 0 1 1 1 0 1 9 19

(8.25) (0.60) (1.24) (0.92) (1.12) (0.62) (0.64) (7.61)

2 3 7 1 1 1 3 1 1 6 21

(6.02) (0.37) (1.26) (0.60) (1.70) (0.75) (1.10) (8.31)

Table 3.2: Observed and expected cell frequencies for chocolate pudding test, 

recreated from Davidson and Bradley (1969) Product B is labelled as 1, C 

as 2 and E as 3.
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The set of final parameter estimates are presented in Table 3.3 and the 

correlation parameter estimates for the attributes are shown in Table 3.4. 

The likelihood ratio statistics have been computed for (i) the test of equal 

preferences on all three attributes in presence of correlation, (ii) the test of 

zero correlations, and (Hi) the test of goodness of fit, following the methods 

given in Davidson and Bradley (1969). These are presented in Table 3.5 

together with their significance test results.

a KaB TTaC

1 0.312 0.360 0.328

2 0.307 0.321 0.372

3 0.338 0.288 0.374

Table 3.3: Treatment parameter estimates for chocolate pudding test

(aß) Paß

12 0.675

13 0.654

23 0.588

Table 3.4: Correlation parameter estimates for chocolate pudding test

Test —2 In A p-value

Equal preferrences 2.362 0.88

Zero correlations 62.665 <  0.0005

Goodness of fit 9.135 0.69

Table 3.5: Likelihood ratio statistics and tests of hypotheses based on choco­

late pudding data
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The results of this experiment show that there are no significant dif­

ferences between the chocolate puddings on these three attributes (p=0.88). 

However, there is a high level of correlation between the attributes, as shown 

in Table 3.4.

In this Chapter a different approach is taken where an MDS type of 

analysis is used for visualising multivariate paired comparison data.

3.3 An MDS approach to multivariate paired 

comparison data

The aim of the technique is to produce a two-dimensional biplot-like repre­

sentation showing how objects score on several attributes, as shown in the 

schematic in Figure 3.2. To produce such a plot requires calculation of both 

the coordinates o f the points representing the objects, and the parameters of 

the axes for the attributes from the available data, which are the results of 

the various paired comparisons for each attribute.

For a bivariate paired comparison approach, the relationships between 

the attributes and between the objects can be represented simply by a two- 

dimensional scatter plot of the respective treatment parameters from the 

univariate Bradley-Terry test. However, increasing the number of attributes 

to a > 2 would mean that this approach would not be valid. Therefore, the 

focus of this Chapter is to detail a method for such instances, when a > 2.

Of course, representation of such multivariate data in only two dimen­

sions will lead to some reduction in the information displayed, and a method 

to reduce this loss is sought. The process described here is used to set up a 

map with an arbitrary starting configuration. The treatment parameters can
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then be determined for each attribute, and these used to calculate a pseudo­

likelihood for the configuration. Iterative procedures will then allow this to 

be maximised, leading to the optimal configuration for the data. The max­

imisation function is not a true likelihood due to correlations between the 

attributes, and the possible effect of the joint distributions of the attributes.

Figure 3.2 shows a schematic of a map produced by the approach based 

on 5 objects and 3 attributes - each object being represented by a point, and 

each attribute by an axis.

Attrl

Figure 3.2: Schematic showing an MDS approach to visualising multivariate 

paired comparison data

The orthogonal projection from a point to the axis gives the relevant 

object rating parameter - i.e. -nai is the object rating parameter for object 

i on attribute a . Thus the relative projection of two objects onto an axis 

shows the results of a paired comparison test on the two objects - the object 

projected furthest along the axis being chosen most often. For example in
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Figure 3.2, when comparing objects A and C on attribute 1, object A has 

been chosen most often, whereas when comparing B and C on the same 

attribute, the objects axe chosen equally often, as they project to the same 

point.

3.3.1 Calculation of the pseudo-likelihood

Assume that there are a attributes, and t treatments (or objects) compared 

in a pairwise manner on all of these attributes. Let Ndj be the number 

of times object i is compared with object j  on attribute a , i , j  =  1 , . . .  ,t, 

a =  1 , . . .  ,a. Let naij be the number of times (out o f Ndj) that object i is 

chosen over object j  on attribute a (thus ndj +  naji =  Ndj =  Naji)-

Let (xu, x2i) , i — 1 , . . . ,  t be the 2-dimensional coordinates o f the point 

representing object i, and ba, a =  1 , . . . ,  a be a slope parameter of the axis 

representing attribute a. The axis is made to go through the origin of the 

configuration, and is given by the equation x2 =  bax i. Finally, define ca,a  =  
1 , . . . ,  a as a parameter representing the origin (or zero point) o f the attribute 

on axis a. This origin does not necessarily correspond to the origin of the 

overall coordinate system, and so the former henceforth will be referred to 

as the zero point.

To calculate the pseudo-likelihood of this configuration, the first stage is 

to calculate the treatment parameters (i.e. 7rai) for each attribute a. Figure 

3.3 shows a schematic of how this is carried out for one attribute, a.

The object points (x^, x2i) are projected onto the axis, at the projection 

point labelled A^. Now let the the relevant treatment parameter ?raj be 

defined as the distance along the axis from the zero point to the projection 

point Xai.
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Figure 3.3: Schematic showing parameters needed for calculation of pseudo­

likelihood

Let the coordinates of Xai be which can be rewritten as

( x u \b ax Now, by definition, is located at the point where the 

distance between (Xu,X2i) and , bax^^j is a minimum. Let D  be the 

distance between the points and (x it>x2t)> an arbitrary point on the

axis, and so

D 2 =  (pen -  x'u )2 +  {x2i ~  bax'u )2 . 

Differentiating and equating to zero gives

d D
da:

T  =  - 2  (xu  -  x’u ) -  2ba (x2i -  bax'u ) =  0.

Solving this gives the coordinates as

Xu +  bax2i , (V) bax Xi +  b2ax 2i

* «  =  ~ r n r  l2i = ' 1 + %  '
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(3.7)

Now daij, the distance between Xai and Xaj can be calculated:

x /^ + ^ a

The zero point is now defined relative to the Aaj’s. The two objects 

giving rise to the maximum daij will be at either end of the set of Aai’s along 

the axis - denote these by i =  min and i =  max accordingly, with naij and 

nQji being used to determine which is which. The zero point is defined as a 

distance ca along the axis in a negative direction from Aa,min. The treatment 

parameters can now be formulated. Thus

where da>m¡n>< is the distance from Aa)inin and A*. When i =  min, then 

da.min,i =  0. The treatment parameters are then scaled so that Yli ^  =  1 

for each a.

The probability for chosing object i over object j  on attribute a is

The pseudo-likelihood, L, for all attributes and treatments can therefore 

be written as

(3.8)

or

Alternatively, the pseudo-likelihood can be written as

(3.10)
a r u  (̂ Oii +  ^aj) 2
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where nai. =  which is the total number of ‘wins’ for treatment i on

attribute a.

Taking logarithms of equation 3.10 gives the pseudo-loglikelihood,

i  = ln i = £ E !r M ’r“ ) " £ ? ^ In(’r“  + ,r.») ' (3-11)
ck i a

Combining Equations 3.8 and 3.11 gives

i  =  ^  ^ 2  ~2~ln (Ca +  X )  ~^L ln ^ Ca +  da’mia’i +  da<min̂  ■
a i  a i&

and hence

ca +
(a)

* «  l̂.min

- e e ¥ i-
a i t̂j

2ca +

y/1 +  bl  J
X u  + xxj -  2x5̂ ^ + ba (x2i -  x2j -  2a4“in ) 

■y/l +  ^a

where x ^ in̂  are the coordinates o f the point corresponding to AQ,mir

Maximum-likelihood estimates of the coordinates of the points and the 

parameters of the axes can now be found by maximising £. This was done 

iteratively using the double dogleg optimisation method found in PROC IML 

in the SAS software package. This optimisation method combines the ideas 

of the quasi-Newton and trust-region methods (Dennis and Mei (1979), Gay 

(1983) and Fletcher (1987)).

An example

Here, an example is given based on the chocolate pudding data from Davidson 

and Bradley (1969), as seen in Section 3.2.1. Initially, a univariate approach 

for each attribute in turn gives the results shown in Table 3.6.
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A ttribu te  1 Taste A ttribu te  2: C olour A ttribute 3: Texture

Product iu Product 7Ti Product 7Ti

C 0.409 C 0.388 E 0.379

E 0.309 E 0.354 C 0.320

B 0.281 B 0.261 B 0.299

p-value * 0.5495 p-value * 0.5350 p-value m 0.8031

Table 3.6: Univariate Bradley-Terry results for chocolate pudding data

T his confirms the earlier results in that there are no significant differ­

ences between the products. There also appears to be correlations between 

the attributes - note especially the order of the products for attributes 1 and 

2.

Applying the MDS-approach to the data results in the plot shown in 

Figure 3.4. This configuration has a pseudo-loglikelihood of t  =  —127.474. 

Looking at the projection of the points onto the axes, it can be seen that the 

univariate order is maintained, i.e. Attribute 1 has C  >  E > B t Attribute 2 

also has C > E > B, whilst Attribute 3 has E > C > B.

The treatment parameters calculated by the MDS-approach are shown 

in Table 3.7. They are identical to the univariate treatment parameters 

shown in Table 3.6. The reason why this occurs is because to fit three 

products to one axis, only two parameters are actually involved, and this 

means a perfect fit can be achieved in two dimensions (with the perfect fit 

here being defined as the treatment parameters derived from the univariate 

Bradley-Terry test). The necessary parameters are the zero point (which 

defines, say irai) and the ratio between the distances, say efai2 and <fai3> 

which allows definition of 7rQ2 and 7ra3. Thus there are six parameters and 

six coordinates.
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Figure 3.4: MDS-approach for displaying chocolate pudding data

Attribute 7TB T̂C 7TE

1 0.281 0.409 0.309

2 0.261 0.383 0.354

3 0.299 0.320 0.379

Table 3.7: Treatment parameters calculated by MDS-approach method

Table 3.8 shows a number of correlation measures between the at­

tributes. Also included are the p measures of association from the Davidson 

and Bradley method.

Whilst it appears the Pearson correlation is not giving the same re­

sults as the p, it should be remembered that this correlation is based on 

three points, so is not very robust. It is expected that the Pearson corre­

lation measure will give a better measure of association when the number
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Attributes P Pearson Spearman’s p Kendall’s r

Attrl:Attr2 0.675 0.8257 1.000 1.000

Attrl:Attr3 0.654 -0.0504 0.500 0.333

Attr2:Attr3 0.588 0.5128 0.500 0.333

Table 3.8: Measures of association for the attributes in the chocolate pudding 

test

of products is increased - this is explored in a future section. Meanwhile, 

the rank-order correlations are showing quite good relationship between the 

products, but again it remains to be seen what happens for increased product 

numbers.

3.3.2 Extending the methodology

The methodology is not limited to linear axes, nor a 2-dimensional represen­

tation. Here, a generalisation o f the method is presented.

The treatment points have coordinates (x u , . . . ,  xmi) in an m- dimen­

sional map, and are projected onto the axis, at the projection points labelled 

AQj. The axis is now defined as a regular curve (fia (t) ,  ha (0 > • • • > fma (0)-

Let the object closest to the zero point be denoted by i =  min with 

points AQimin and 7ra>min. Again the other treatment parameters 7rai are de­

fined as the distance along the axis from the zero point to the projection 

point AQi.

In Figure 3.5, object r projects closest to the zero point, and so this 

object has projection point Aaim;„ and treatment parameter 7rQimi„. This 

schematic represents a two-dimensional solution, but the principle is the same 

for m >  2 dimensions. The subsequent treatment parameters are then de­
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fl«(t),f2a(t)

Figure 3.5: Schematic showing parameters needed for calulcation of Pseudo­

likelihood

termined by the distance between its projection point and the zero point,

i.e.

TTm — CQ + ¿a,min,i i — • • • i

Let the coordinates of Xai be an<̂  ^ie value of t

at Aq*. Now following the same argument given in Section 2.2.1, the equation
m

E X  f t - )  ( U  -  ** ] -  0 (3.12)
fc=l

can be solved to find the value of tai for all i =  1 , . . . ,  t.

The next stage is to calculate the lengths between all the possible pairs 

of the projections points, i.e.

m
daij —

rLotj 
/ \ E

Jtai \
(3.13)

O nce th e  d aij have b een  ca lcu la ted , th e  n ext stage  is to  d eterm in e w hich
AQt is AQ min. T h is  is carried o u t by look ing  for d* =  m ax  (dap ) , w hich
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corresponds to the two projection points furthest apart, and using naij and 

Tiaji to determine which end is which.

Now, equation 3.8 can be used to define the treatment parameters, and 

the pseudo-loglikelihood calculated as in equation 3.10.

3.4 Examples and Applications

In this section, the methodology is demonstrated on a simulated data set to 

show how well it works, and then also on real data sets. Whilst the technique 

is capable of handling a large number of objects, here the examples are limited 

to just five objects. This is because the methodology is designed for analysing 

sensory data, and when carrying out paired comparisons in sensory testing, 

5 objects is often said to be the limit. Even with 5 objects, each panellist is 

being asked to make Q) =  10 individual comparisons. Any increase can lead 

to panellist fatigue.

3.4.1 Simulated data

Simulation of the data

A 2-dimensional map was constructed with 5 objects, with coordinates in 

both dimensions randomly selected from a uniform distribution between -0.5 

and +  0.5. Three linear axes were then selected to represent three attributes. 

The axes were parameterised as f ia (t) =  (ba\t, ba2 t) with the values for bQi 

and ba 2 being selected randomly from a uniform distribution between -5 and 

+5. The zero values, ca were all set to be 0.001. This forms a ‘perfect model’, 

which the methodology should be able to recreate perfectly. The addition of 

noise to the perfect model is dealt with later.
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The simulated plot can be seen in Figure 3.6. The axes are given by: 

( /u ( 0  =  0.9012, /21 (2) =  0.1152), ( / «  (2) =  -3 .23  22,/ 22 (2) =  2.43 12), and 

(/13  (2) =  0.75 62, / 23 (2) =  1.04 32), whilst the coordinates for the objects A, B, 

C, D and E are respectively (0.256,0.264), (—0.231, —0.232), (—0.142, 0.365), 

(0.396,-0.432) and (-0.279,0.035).

Figure 3.6: Simulated map displaying multivariate paired comparisons

Using equation 3.12, the projection points, AQj, for this configuration 

can be calculated, followed by the distances between each pair of projection 

points, daij, from equation 3.13. The treatment parameters, nai are then 

calculated using equation 3.8.

As the treatment parameters are known, the probability of choosing 

treatment i over treatment j  is also known, from equation 3.9. If in the 

simulated data, it is assumed that 50 subjects made the original comparisons
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(i.e. Naij — 50 for all a,i and j) , then some data are simulated by

Tlaij 50-
7T0

7T/vi “I“ 7T|aj

Calculations based on simulated data

Carrying out a univariate Bradley-Terry analysis on each simulated attribute 

in turn results in the treatment parameters in Table 3.9, with the parameters 

being plotted in Figure 3.7.

Attribute 1 Attribute 2 Attribute 3

D 0.383 a C 0.296 • A 0.375 a

A 0.352 a E 0.274 a C 0.296 a

C 0.149 b B 0.216 ab D 0.146 b

B 0.062 c A 0.183 b E 0.135 b

E 0.054 c D 0.031 C B 0.048 c

p-value <  0.0001 p-value <  0.0001 p-value <  0.0001

Table 3.9: Treatment parameters calculated by univariate Bradley-Terry 

model. Lower case letters join treatments that are not significantly different 

on that attribute at the 95% level of confidence

As can be seen in Figure 3.7, for attribute 1 object D scores the highest, 

followed by A, then C, with B and E being the lowest scoring objects. Thus 

it is expected that this order is maintained on the multivariate plot.

Figure 3.8 shows the plot generated by the methodology. As can be 

seen the plot has been rotated 90° clockwise from that produced from the 

generating data. This is because the orientation of the map produced is not 

unique. In addition, the locations of the points have moved slightly, but
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Figure 3.7: Univariate treatment parameters calculated from simulated data

the order of their projections has stayed exactly the same. For instance for 

attribute 1, the objects project in the order D, A, C, B and then E.

Figure 3.8: Fitted map for simulated data 

The pseudo-loglikelihood for this configuration is -825.751. One way
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to measure the goodness-of-fit of this configuration is to compare the calcu­

lated treatment parameters from the methodology with the known treatment 

parameters produced in the calculation of the method, which match the uni­

variate Bradley-Terry scores given in Table 3.9.

These scores can be compared using the following equation:

n _  Yhi ~ (3.14)
at

where 7rQi is the calculated the treatment parameter, and 7rai is the true 

treatment parameter. The lower the value of S, the better the configuration 

represents the data. The values of Trai and 7rai are shown in Table 3.10.

The value of S is 0.002 which shows a very good fit of the model.

The correlation values based on the calculated treatment parameters 

are shown in Table 3.11.

The correlations are showing that Attributes 1 and 2 are negatively 

related - as one increases in value, the other decreases. Looking at Figure 

3.8 it can be seen that the axes are pointing in opposite directions, which 

is what is expected. Meanwhile Attributes 1 and 3 tend to show a slight 

positive correlation - both axes in the plot are pointing to the left hand side, 

and so are measuring a similar trend. However, for Attributes 2 and 3 the 

projections of the points onto the axes show there is little correlation between 

the attributes, as confirmed by the coefficients.
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a i ft ai ft ai

1 1 0.354 0.352

1 2 0.061 0.062

1 3 0.149 0.149

1 4 0.381 0.383

1 5 0.053 0.054

2 1 0.186 0.183

2 2 0.213 0.216

2 3 0.298 0.296

2 4 0.029 0.031

2 5 0.272 0.274

3 1 0.371 0.375

3 2 0.047 0.048

3 3 0.300 0.296

3 4 0.144 0.146

3 5 0.136 0.135

Table 3.10: Calculated and ‘real’ treatment parameters from simulated data

Comparison Pearson Spearman Kendall

Attrl:Attr2 -0.7579 -0.7000 -0.6000

Attrl:Attr3 0.4997 0.6000 0.4000

Attr2:Attr3 0.1864 -0.1000 0.0000

Table 3.11: Correlation results on attributes from simulated data
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3.4.2 Visualising a multivariate paired comparison sen­

sory test on deodorants

A sensory test looking at the characteristics of several deodorants is used 

to illustrate the methodology. Fifteen assessors participated in this sensory 

experiment aiming at an analysis of the comparison of deodorants. Five 

different deodorants were used for this experiment. The deodorants were 

applied to each panellist in pairs (randomised across the two armpits), and 

the panellist asked to compare them on several sensory attributes.

To demonstrate the MDS approach to visualising such data, these data 

will be used to generate a map.

Table 3.12 shows the treatment parameters generated by the univariate 

Bradley-Terry model, with the values plotted in Figure 3.9.

Attribute A B C D E p- value

Attribute 1 0.252 ab 0.459 a 0.035 c 0.122 b 0.132 b <0.0001

Attribute 2 0.216 a 0.188 a 0.196 a 0.250 a 0.151 a 0.7543

Attribute 3 0.103 a 0.216 a 0.298 a 0.178 a 0.205 a 0.0668

A ttribute 4 0.307 ab 0.374 a 0.048 d 0.114 c 0.157 be <0.0001

A ttribute 5 0.168 a 0.124 a 0.263 a 0.207 a 0.237 a 0.2418

A ttribute 8 0.088 b 0.189 a 0.293 a 0.243 a 0.187 ab 0.0162

A ttribute 7 0.372 a 0.204 a 0.052 c 0.160 b 0.212 ab <0.0001

Attribute 8 0.189 a 0.123 a 0.232 a 0.182 a 0.275 a 0.2018

A ttribute 9 0.095 b 0.177 ab 0.313 ab 0.228 ab 0.187 ab 0.0237

Table 3.12: Treatment parameters calculated by univariate Bradley-Terry 

model on deodorant sensory data. Lower case letters join treatments that 

are not significantly different on that attribute at the 95% level of confidence.
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Figure 3.9: Plots of univariate treatment parameters for deodorant sensory 

data

Looking at the univariate results, it can be seen that there are no signif­

icant differences between treatments for the attributes 2, 5 and 8. I herefore 

these will be difficult for the multivariate methodology to fit. Deodorant C 

is always scored highest on attributes 3, 6 and 9, with A being the lowest. 

Deodorants B,D, and E are in the middle of this scale. Therefore, the three 

axes representing the these three attributes should be close together, due to
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the high correlation of the scores. Finally, deodorant C is always the lowest 

on attributes 1, 4 and 7, with B being the highest on attributes 1 and 4, and 

A on attribute 9.

Figure 3.10: Results of MDS approach for plotting deodorant sensory multi­

variate paired comparison data. Numbered labels on axes are at the higher 

end of the scales

The plot resulting from fitting quadratic axes by the multivariate anal­

ysis can be seen in Figure 3.10. The pseudo-loglikelihood value for this 

configuration is i  =  -771.117. Study of this plot reveals that the projected 

values are as expected. For example, the axis for attribute 1 has product
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C projecting at the lowest point, followed by D, E and A, with B being the 

highest projected point. This matches the order found in Table 3.12. Where 

there is less agreement between the plot and the univariate Bradley-Terry 

values, this could be due to several things: distortion due to representing 

multivariate data in 2-dimensional space; noise between the treatment pa­

rameters - for example for those attributes where there are no significant 

differences between the products, so it is difficult to fit a meaningful axis to 

such data. The top right hand corner of the plot highlights the importance 

of using curved axes. The projections of objects A and B onto the axes for 

attributes 1 and 9 would be incorrect if linear axes were used - see Section

3.6 for further details.

3.5 Goodness of fit

The above examples show that the methodology can perfectly recreate the 

simulated data. However, this is an exceptional example, in that there was 

no noise. Most data contain noise which will affect the optimisation pro­

cess. This section shows what happens to S as increasing levels o f noise are 

added to the simulated data. S, a measurement of the suitability of the 

configuration, was introducted in Section 3.4,

c  _  S q \̂ ai ~  
at

The smaller the value of S, the better the configuration.

Equation 3.15 shows how noise was added to the model.

riaij ~  Bn ( Naij, — ~ T ~ ]  >V TTa. +  XajJ

for a =  l , . . . , o ,  i =  2, . . . , t ,  and j  =  1 , . . . , * .  In other words, the 

nQij were randomly chosen from a binomial distribution with the probability
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being calculated from the treatment parameters. N aij was set to be 50, and 

balance within the raw data maintained by nQJj =  Naij — naij.

One thousand random samples were thus generated. The distributions 

of the pseudo-loglikelihood and S  are shown in Figure 3.11 with summary 

statistics in Table 3.13.

Figure 3.11: Distribution of fit statistics from methodology when noise is 

added by a binomial process. The pseudo-loglikelihood values are shown on 

the left hand side, and S  on the right hand side

PLL mean PLL std dev PL L max PLL min S mean S std dev S max S min

-960.6 16.77 -925 -1035 0.048 0.0119 0.1254 0.0288

Table 3.13: Summary of fit statistics from methodology when noise is added 

by a binomial process

The mean value for S  is 0.048, and the distribution shows a positive 

skew. This is what would be expected from a well fitting configuration (com­

pare though the value of S  of 0.02 when there was no noise at all to see the 

effect adding some noise has had).

To show increasing levels of noise, the following was used for a random
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sample of r of the 30 n'ai s:

Tidj ~  Bn f TVaij, +  /c J ,
\ TTo. "t* TTqji' /

where k ~  U (—k, +k). To show different levels of noise, the following values 

were chosen: r=l,2,5,10 and 20, and fc=0.0001, 0.001, 0.01, 0.1, 0.2, and 0.5. 

If the term representing the probability is less than 0 or greater than 1, then 

it is set to be 0 or 1 respectively.

Tables 3.14 and 3.15 show the summary statistics and Figures 3.12 

to 3.16 show the distributions of the pseudo-loglikelihood and S from the 

simulations. The left hand side plot shows the pseudo-loglikelihood values, 

whilst that on the right shows the S value.
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k r Mean Std.D ev M ax M in r Mean Std.D ev M ax M in

0.0001 1 -960.08 15.602 -929 -1040 10 -960.85 17.058 -927 -1040

0.001 1 -959.96 15.771 -928 • 1034 10 -960.78 15.784 -930 -1027

0.01 1 -961.03 17.715 -918 -1048 10 -960.64 16.555 -930 -1033

0.1 1 -960.92 16.471 -928 -1036 10 -959.35 15.996 -927 -1042

0.2 1 -960.84 16.930 -925 -1045 10 -958.22 18.945 -913 -1037

0.5 1 -960.59 17.265 -925 -1046 10 -957.43 25.047 -889 -1070

0.0001 2 -960.69 17.148 -926 -1044 20 •959.75 16.017 -928 -1058

0.001 2 -960.33 16.029 -928 • 1033 20 -059.99 15.743 -923 -1035

0.01 2 -060.90 17.132 -924 -1035 20 -960.06 15.808 -930 -1042

0.1 2 -960.35 16.916 -928 -1038 20 -058.89 18.200 •910 • 1039

0.2 2 -960.74 18.125 -927 • 1038 20 -956.97 21.336 -899 -1037

0.5 2 -958.80 17.270 -926 -1042 20 -953.24 32.543 -836 -1043

0.0001 5 -960.12 15.848 •920 -1044

0.001 5 -959.85 15.900 -929 -1037

0.01 5 -960.60 16.221 -929 -1035

0.1 5 -959.87 17.487 -927 -1038

0.2 5 -959.80 18.603 -907 -1041

0.5 5 -959.64 20.608 -902 -1034

Table 3.14: Pseudo-loglikelihood parameters from adding noise to simulated 

data set
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k r Mean Std .D ev M ax Min r Mean Std.D ev M ax M in

0.0001 1 0.0474 0.01146 0.117 0.030 10 0.0479 0.01261 0.108 0.027

0.001 1 0.0474 0.01156 0.109 0.027 10 0.0479 0.01168 0.100 0.027

0.01 1 0.0483 0.01286 0.106 0.030 10 0.0479 0.01194 0.118 0.028

0.1 1 0.0484 0.01243 0.108 0.026 10 0.0483 0.01153 0.105 0.027

0.2 1 0.0486 0.01234 0.107 0.029 10 0.0522 0.01174 0.108 0.029

0.5 1 0,0497 0.01220 0.118 0.024 10 0.0666 0.01569 0.141 0.028

0.0001 2 0.0480 0.01245 0.115 0.028 20 0.0471 0.01145 0.115 0.028

0.001 2 0.0476 0.01153 0.111 0.030 20 0.0473 0.01133 0.116 0.029

0.01 2 0.0477 0.01218 0.109 0.025 20 0.0471 0.01127 0.109 0.028

0.1 2 0.0480 0.01232 0.112 0.028 20 0.0499 0.01177 0.101 0.029

0.2 2 0.0490 0.01254 0.108 0.031 20 0.0556 0.01260 0.108 0.026

0.5 2 0.0509 0.01218 0.113 0.028 20 0.0804 0.01846 0.146 0.026

0.0001 5 0.0469 0.01195 0.116 0.025

0.001 5 0.0474 0.01134 0.106 0.030

0.01 5 0.0477 0.01219 0.109 0.030

0.1 5 0.0484 0.01245 0.110 0.025

0.2 5 0.0502 0.01218 0.103 0.027

0.5 5 0.0573 0.01369 0.111 0.027

Table 3.15: S (fitting) parameters from adding noise to simulated data set
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a) k = 0.0001 b) k = 0.001

Figure 3.12: Effect of adding noise when r =  1

The results show that overall the methodology is very robust. When 

the level of noise, or the number of affected points is low, then the S  statistic 

is still very close to the no noise value, with very little spread in the data. 

In fact, it is not until r  =  5 and k =  0.5 that the method has trouble finding 

a configuration.
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a) k = 0.0001 b) k = 0.001

c) k = 0.01

e) k = 0.2
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Figure 3.13: Effect of adding noise when r =  2
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a) k = 0.0001 b)k = 0.001

Figure 3.14: Effect of adding noise when r =  5
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Figure 3.16: Effect of adding noise when r  =  20
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3.6 Model selection

As the configuration is optimised using the (pseudo) maximum likelihood 

function, it seems obvious to use this in the selection of the functions to 

describe the axes. This instinctively leads to an Akaike Information Criterion 

(AIC) approach (Akaike (1974)). Given a data set, several competing models 

may be ranked according to their AIC, with the one having the lowest AIC 

being the best fitting.

In the general case, the AIC is

AIC =  2rn -  2i

where m is the number of parameters in the model, and t  is the maximised 

log-likelihood for the estimated model. AICc is AIC with a second order 

correction for small sample sizes,

AICc =  AIC +
2in (m — 1 )
N - m - V

where N  =  Yli j n<*ij is the sample size. Since AICc converges to AIC as 

n increases, AICc tends to be always used regardless of sample size (Burnham 

and Anderson (2004b)).

In the model selection for the MDS approach to multivariate paired 

comparisons, all of the axes are considered simultaneously. Thus m is the 

total number of parameters in all of the axes. The sample size n is chosen 

to be the total number of paired comparisons 0 (2)» where a is the number of 

attributes, and t the number of treatments.

Taking the simulated data from Section 3.4, the following axes were 

fitted:

• All axes linear: fu  (t) =  but and /21 (t) =  62̂  for all *.
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• Axis 1 quadratic; Axes 2 and 3 linear: f n =  but and f 21 =  b2\t 4- h it2; 
and fu  (t) =  but and f 2i (t) =  b2it for i — 2,3.

• Axis 1  linear; Axes 2 and 3 quadratic: fn  (t) =  bnt and /2 1 (t) =  h\t; 

and fu  (t) =  but and f 2i (t) =  b2it +  b3it2 for i =  2,3.

• All axes quadratic: fu  (t) =  but and f 2i (t) =  62*̂  +  hit2 for all i.

The pseudo-loglikelihood (£) and AICc for each model are shown in 

Table 3.16.

Model l m N AIC AICc

All axes linear -825.751 6 1500 1663.50 1663.54

One quadratic, 2 linear -824.815 7 1500 1663.63 1663.69

Two quadratic, 1 linear -823.942 8 1500 1663.88 1663.96

All axes quadratic -822.989 9 1500 1663.98 1664.08

Table 3.16: Results from model selection

This shows that the first option, all axes linear, is the best fitting (which 

is not surprising, as this was the generating form for the data). The inclusion 

of the quadratic terms has resulted in over-fitting, something which the AIC 

(and AICc) penalise (Sakamoto et al. (1989)).

The model selection is now demonstrated on some real data - the 

deodorant example from Section 3.4. The model previously fitted used a 

quadratic axis to represent each attribute. The effect of the quadratic term 

on the representation of the attributes 1 and 9 on products A and B was 

highlighted.

Therefore, as an example, the configuration is refitted with i) both these 

axes linear, ii) Attribute 9 linear, and iii) Attribute 1 linear, to see which 

configuration is best.
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Model £ m N AIC AICc

All quadratic -771.117 27 1350 1596.234 1597.296

i) Attributes 1 and 9 linear -775.654 25 1350 1601.308 1602.214

ii) Attribute 9 linear -774.119 26 1350 1600.238 1601.221

iii) Attribute 1 linear 773.243 26 1350 1598.486 1599.469

Table 3.17: Results from model selection on Deodorant data

Table 3.17 shows the various AICc results, with the all quadratic option 

being the best fitting. This process can be repeated across the attributes. 

Thus, by trying the various models for the axes, it can be seen how the 

optimal configuration can be found.
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Chapter 4

Dynamic Multidimensional 

Scaling

4.1 Introduction

Multidimensional Scaling, as dealt with so far in this thesis, has produced a 

map showing the relationships between objects at a set, static, time point. 

However, often measures on objects are recorded over time, and it is of 

interest to see how the relationships change. For example, consumers might 

be asked for their opinions on products over several weeks. One possible 

solution is to produce a separate map for each time point, and attempt to 

follow each object as it is depicted in each map. However, a more elegant 

solution would be to produce one map which shows, as trajectories, how 

the objects move relative to each other. This overcomes one of the main 

problems with the separate maps - their not being fixed in scale, location or 

orientation. Even if generalized Procrustes analysis was applied, there will 

still be deviations between each map that arise through the mapping process.
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This Chapter develops a methodology for such a process, called Dy­

namic Multidimensional Scaling (DMDS). Figure 4.1 shows a schematic of 

three MDS maps representing objects measured at three time points,

(f =  0,1,2).  It is difficult to understand how each object is changing. Figure 

4.2 shows a schematic of a DMDS map on the same data. Now it is rela­

tively easy to see what is happening - for example, the objects in the lower 

left hand quadrant are becoming more similar over time, as their trajectories 

are moving closer together. The length of each trajectory can also be thought 

of as an indication of how much variability over time there is for an object.

Time point 
=  0

Time point = 1 Time point = 2

• 0
t 0

Figure 4.1: Schematic of three MDS maps showing objects at three different 

time points

4.2 Previous work

Let there be n objects measured at T  successive time points, where Sjj is 

the dissimilarity between object i and j  at time point t, i, j  =  1, . . .  ,n, t =  

1 , . . . , T .  The aim is to produce a configuration of n T  points in a space, 

where each object is represented T  times, once for each of the time points.
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Figure 4.2: Schematic of a Dynamic Multidimensional Scaling map, based 

on data from Figure 4.1

It is hoped that the T  points for each object are not too distant from each 

other, and that by plotting their path over time the dynamic nature of the 

data can be seen.

One approach is to place all the dissimilarities into a super-dissimilarity

matrix, D,
D  n D j2 • • Dxr

D =

D ri

... 
eQ

D t t

where D ft =  (<5?.), the dissimilarity matrix formed from the dissimilarities 

collected at the tth time period.

In addition the matrix D tt/ =   ̂ has to be specified, where 6^

is the dissimilarity of object i at time point t with object j  at time point 

?,  t t!. Some information may be available from which these cross time 

period dissimilarities can be found. Alternatively they could be constructed
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from (¿ ‘j ) , by, for example,

Another way is to assume all are missing or equal to zero. However it 

is constructed, the matrix can be subjected to metric or nonmetric multidi­

mensional scaling in the usual manner.

Ambrosi and Hansohm (1987) describe a different approach for analysing 

such data. They use STRESS for nonmetric MDS based on the dissimilatities 

for time period t defined by

STRESS* =

where

v '  \< j
A

and djj is the estimated distance between the points representing objects i 

and j  at time point t. The combined STRESS for the T  time points can be 

chosen as either

r  £ L S , < , ( ^ - 4 ) 3

EL H x i i t i - f )2
or T

S = Y1 STRESS*.
t=i

This overall STRESS is minimised with the penalty that, in the resulting 

configuration, the T  points that represent each object tend to be close to 

each other. This is achieved by using a penalty function such as

v  =  - * u * .
t= l »=1 m =l
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where x- =  (rr^,. . . ,  x ‘p) are the coordinates representing object * at time 

period t. A  configuration is then chosen that minimises

STRESSt =  STRESS +  dJ, c >  0,

where e is a chosen constant < <  1. Minimising the STRESS and the penalty 

function U is then a compromise which depends on the value of e, which in 

turn will depend on the importance placed on the requirement that the T  

points representing an object are near to each other.

One problem with this method is that there is still the possibility that 

the solution will not give an understandable representation o f how the objects 

are moving over time. The methodology described in the next section shows 

how the points representing each object can be restricted to lie on a curved 

trajectory. This is the process shown in Figure 4.2.

4.3 Dynamic Multidimensional Scaling

Let X  represent the original data set, and use a distance measure (for example 

Euclidean distance) to calculate the proximity (£L) between each and every 

pair o f objects i and j ,  at each time point t, for all i , j  =  1 , . . . ,  TV and 

f =  l , . . . , T .

Now the trajectories for each object i =  1 , . . . ,  N are defined as

+  fu  (0  > and x 2i =  xli +  hi (0 »  f =  2 , . . . , T  (4.1)

where (x^ x^ )  are the coordinates of object i at time point t, with (i ^.Xj.) 

being the initial starting coordinates for object i at time point t =  1, and 

fu  (t) and / 2j (t) are the defining functions for the trajectory of object i.
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A STRESS value is defined as

STRESS = ELELiEii, (<*«-<$)’
TELEf^ ) 2

(4.2)

where d1̂ =   ̂ — rrQ 2 — (x^ — Z y ) 2)*»  i.e. the Euclidean distance be­

tween the points at time t', which have been forced onto the trajectory defined 

in equation 4.1.

The summation is over t and t' in order to take into account the inter­

time point distances, as well as the intra-time point distances. The inter-time 

point distances are included so as to make the configuration more robust. If 

they are not included, the process is such that the distances between time 

points for each object can be arbitrarily large. The inclusion of the cross-time 

points prevents this from happening and produces a ‘tighter’ configuration. 

In addition, a weighting could be included, such as

utt'

This would allow different time points to have different impacts. For instance 

if u11' =  1 for 11 — ¿'1 =  1 and zero otherwise, then STRESS is not influenced 

by d y ’s far apart timewise. When t =  t' then the weighting should always 

be one.

The STRESS is minimised with respect to Xj» and the parameters in 

fu  (t) and ¡ 2i (t) for all i =  1 , . . . ,  N iteratively by the Nelder-Mead simplex 

method found in PROC IML in the SAS software package (Nelder and Mead 

(1965) and Powell (1992)).
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4.4 Examples and Applications

In this section, the methodology is demonstrated on simulated and real data 

sets.

4.4.1 Simulated data

This section details the application of Dynamic MDS to simulated data. As 

the data has been user-generated, then it is known what the results should 

be, which can give a measure of how well the method can represent the data.

An initial 2-dimensional starting configuration of ten objects was gen­

erated, with coordinates (x^, Xjj) in both dimensions randomly selected from 

a uniform distribution between -5 and +5. Next, the trajectories were simu­

lated as (x^ =  x}j +  ant +  a^ f2, x^ =  Xjf 4- Put +  /?2»*2), where the param­

eters were selected from a uniform distribution between -0.5 and +0.5. The 

simulated data can be seen in Figure 4.3, and the starting configuration and 

parameters in Table 4.1. The letters identifying the objects are at the start 

o f the trajectories.

As can be seen in Figure 4.3, the products start-off quite similar, and 

as time progresses they tend to move further apart.

At time points t =  1 , . . . ,  6, the locations o f the trajectories were calcu­

lated, and the Euclidean distance between each location within a time point 

calculated. This led to 6 individual distance matrices, which form the input 

data for the method.

Carrying out the method on the data results in the configuration shown 

in Figure 4.4. This solution has a STRESS of 0.0166.
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Object (i) Ai Ai OC2i A i A»

A 0.241 -2.016 -0.303 -0.019 -0.476 -0.199

B 3.620 0.248 -0.179 -0.166 -0.484 0.000

C -2.329 3.740 0.153 0.075 0.184 0.069

D -0.760 0.221 -0.453 0.091 0.134 -0.156

E 0.483 1.055 -0.265 0.045 -0.467 0.080

F 2.381 -0.037 0.482 -0.151 -0.177 -0.162

G -4.376 -0.178 0.027 0.162 -0.314 -0.119

H 0.634 3.964 -0.101 0.135 -0.117 -0.090

I -0.619 -2.660 0.122 -0.087 -0.286 -0.044

J -2.775 3.943 0.102 0.018 0.079 -0.094

Table 4.1: Starting configuration and parameters for simulated data

The reason why the STRESS is not zero is that the Dynamic MDS 

algorithm involves a cross-time comparison (the t' in Equation 4.2) which 

impacts on the fit. The cross-time term was not factored into the data 

simulation process.

Despite this, the configuration shown in Figure 4.4 matches that of 

Figure 4.3 relatively well. However, the configuration has been rotated 90° 

anti-clockwise. In other words, as with usual MDS, Dynamic MDS does not 

result in a unique configuration.

4.4.2 Investigating hair styles over time

Twelve panellists were involved in a study to investigate how their hair style 

changed over time. Each panellist had their hair professionally styled, and 

was then asked to complete a daily questionnaire over a week.
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Figure 4.3: Simulated data to be recreated by Dynamic MDS. Trajectories 

start at the letter.

Figure 4.5 shows the Dynamic MDS plot produced from the data. The 

STRESS value of 0.475 indicates that this is a good representation of the 

data. Looking at the plot shows that the majority of panellists are moving 

in the same direction towards the bottom of the graph - i.e. their opinions of 

their hair are changing in the same way over time. Investigation of the raw 

data reveals that these panellists are perceiving a worsening of their hair style 

over time. Some panellists, however, are moving in the opposite direction, 

and these are found to be happy with their style, and also score highly on 

style retention.
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Figure 4.4: Results of Dynamic MDS on simulated data. Trajectories start 

at the letter.

4 .4 .3  Spray characteristics o f spray cans with different 

fill weights

The defining form of the trajectories is not limited to time - any relevant axis 

can be used. In this example, Dynamic MDS is used to investigate how the 

spray characteristics of nine deodorants change over varying levels of how 

full the can is. Nine deodorants (A,B,C,D,E,F,G,H and I) had several spray 

characteristics measured at each of five levels of can fill (20%, 40%, 60%, 80% 

and 100%). The configuration generated by Dynamic MDS, which had a 

STESS of 0.0538, is shown in Figure 4.6.
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Figure 4.5: Dynamic MDS plot of hair styling data. Trajectories start at 

label

When they are nearly empty, many of the deodorants have similar 

characteristics - for example, products F, G and H all start their trajectories 

in the centre of the map. With increasing fill, the characteristics start to 

differ, as can be seen with the trajectories radiating outwards. Product C 

has a unique set of characteristics, possibly due to its unique formulation.

4.5 Goodness of Fit

Section 4.4 showed that the methodology can recreate simulated data which 

contains no noise. It has also been seen that the STRESS value is a measure 

of how well the configuration represents the data. This section deals with 

investigating what happens when noise is added to the simulated data and 

how this impacts on the STRESS.
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Figure 4.6: Dynamic MDS plot of spray characteristics data. Trajectories 

start at label

Using the simulated data, noise was added to the dissimilarities. Ini­

tially, one Sij was chosen at random for each time point, and random error 

added to it. The value of the error was selected from a uniform distribution 

between —k and +k. The value of k was altered to investigate the effect 

of increasing levels of noise, with A:=l,5,10 and 15 being the selected val­

ues. The maximum level of k equates almost to the maximum 6^ of 16.8. 

In addition, the number of altered dissimilarities per time point was varied, 

with r — 1,5,10,20,25 being the selected values. If any altered dissimilarity 

became less than zero, it was set to be zero. For each combination of r  and 

k , the method was run 1000 times, and the STRESS recorded. In addition, 

a Procrustes statistic was calculated to see how closely the method fitted the 

altered data to the original data.
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Tables 4.2 to 4.6 shows the summary statistics of the STRESS and 

Procrustes statistic for each level of r and k, whilst Figures 4.7 to 4.11 show 

the distributions of the STRESS and Procrustes statistic values.

STRESS Procrustes

k Mean Std Dev Mean Std Dev

1 0.0196 0.00335 0.151 0.012

5 0.0351 0.00765 0.151 0.012

10 0.0702 0.0217 0.152 0.016

15 0.109 0.464 0.152 0.016

Table 4.2: Summary statistics of STRESS and Procruste Statistics from 

adding noise to one dissimilarity per time point in the simulated data

F igu re 4.7: D istr ib u tion  o f  S T R E S S  values and P rocru stes S ta t is t ic s  from
ad d in g  n o ise  to  one d issim ilarity  per tim e  p oin t in th e  sim u la ted  d a ta
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STRESS Procrustes

k Mean Std Dev Mean Std Dev

1 0.0234 0.00367 0.152 0.012

5 0.0954 0.0123 0.157 0.021

10 0.288 0.434 0.1G8 0.027

15 0.429 0.630 0.166 0.025

Table 4.3: Summary statistics of STRESS and Procruste Statistics from 

adding noise to five dissimilarities per time point in the simulated data

F igure 4.8: D istr ib u tion  o f S T R E S S  values and P rocru stes S ta tis t ic s  from
ad d in g  n o ise  to  five d issim ilarities per tim e  p oin t in th e  s im u la ted  d a ta
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STRESS Procrustes

k Mean Std Dev Mean Std Dev

1 0.0269 0.00389 0.153 0.011

5 0.168 0.0189 0.159 0.020

10 0.423 0.0477 0.166 0.027

15 0.684 0.0693 0.172 0.028

Table 4.4: Summary statistics of STRESS and Procruste Statistics from 

adding noise to ten dissimilarities per time point in the simulated data

k=lO k=l5

S T R E SS  Procrustes S T R E SS  Procrustes

F igu re 4.9: D istr ib u tion  o f S T R E S S  values and P rocru stes S ta t is t ic s  from
ad d in g  n o ise  to  ten  d issim ilar ities per tim e  p o in t in th e  s im u lated  d a ta
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STRESS Procrustes

k Mean Std Dev Mean Std Dev

1 0.0330 0.00464 0.153 0.014

5 0.303 0.0269 0.166 0.025

10 0.707 0.0558 0.177 0.028

15 0.995 0.0693 0.184 0.027

Table 4.5: Summary statistics of STRESS and Procruste Statistics from 

adding noise to fifteen dissimilarities per time point in the simulated data

F igure 4.10: D istr ib u tion  o f S T R E S S  values and P rocru stes S ta tis t ic s  from
ad d in g  n o ise  to  fifteen d issim ilarities per tim e  p o in t in th e  s im u la ted  d a ta
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STRESS Procrustes

k Mean Std Dev Mean Std Dev

1 0.0365 0.00416 0.150 0.013

5 0.364 0.0308 0.167 0.014

10 1.274 .0625 0.177 0.027

15 10.98 0.778 0.192 0.025

Table 4.6: Summary statistics of STRESS and Procruste Statistics from 

adding noise to twenty dissimilarities per time point in the simulated data

k= 10 k=15

S T R E S S  Procrustes S T R E S S  Procrustes

F igure 4.11: D istr ib u tion  o f S T R E S S  values and P rocru stes S ta tis t ic s  from
ad d in g  n o ise  to  tw enty d issim ilarities per tim e p oin t in th e  sim u lated  d a ta
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With increasing amounts o f noise, there is, as expected, an increase in 

the STRESS and Procrustes statistic. However, it seems that the methodol­

ogy is fairly robust, and even altering about half the dissimilarities by up to 

five units has very little impact on the fit statistics.

4.6 Model Selection

As the STRESS value is a measure of how well the configuration represents 

the data, then it seems obvious to use it in selecting the ‘best’ configuration. 

Different configurations, using different functions to describe the trajectories, 

can be fitted, and the one with the lowest STRESS selected. However, care 

must be taken not to overfit the data -  for example a quadratic term in 

the function would be expected to represent the data better than just the 

linear term. Thus, some penalty term should be included in the diagnostic 

to penalise over-fitting - in a similar way to the AIC of Section 3.6.

However, as can be seen in Figure 4.6, even when quadratic functions 

are used, the parameter for the quadratic term is often very close to zero 

when it is not needed to increase the fit. Whether this is true in all cases 

remains to be seen. Compare though the trajectories shown in Figures 4.5 

and 4.6.
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Chapter 5

Summary, Conclusions and 

Future Work

Multidimensional Scaling has been demonstrated to have a wide variety of 

applications, where multivariate data can be visualised in terms o f proximities 

between objects. Within the fields of sensory and consumer science, MDS 

is recognised as an important method of data visualisation and analysis. 

Because of its importance, a decision was made to develop adaptations to 

the methodology within this thesis.

The addition of curved axes to MDS maps was an attempt to aid in­

terpretation of the maps. By overlaying an axis that represents an attribute, 

it is possible to see how the objects score on that attribute. Thus, the axis 

guides the researcher by highlighting on the map how different attributes 

are changing. It is also possible when several axes are overlaid to determine 

which attributes are related. In a way, this resembles the biplot - attributes 

are represented by axes (or vectors), and objects by points, and it is possible 

to determine the relationships between attributes and objects.
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The methodology developed within this thesis allows for axes to be 

fitted to MDS plots of any dimensionality. The axes can be described by 

a set of differentiable functions. However, this leads to a problem - that of 

which is the best function to describe an axis. Simple linear terms would 

result in a straight line, whilst the addition of extra terms such as quadratics 

intuitively lead to ‘better’ fitting axes. However, one area of concern is how 

to define ‘better’ , whilst there is also the problem of overfitting. As with 

linear regression, the more terms that are added to an equation, the more 

the model is said to be overfitted, with the potential of just modelling random 

flucuations in the data. This is also a problem with the methodology. Whilst 

an attempt was made in the thesis to look at measuring the goodness-of-fit, 

using cross-validation methods, there remains more work that can be done 

in this area. For example, different metrics could be developed to determine 

how well a function represents the attribute. Or other methods could be used 

for comparing the axes, and ultimately solving the model selection problem.

Returning to the dimensionality of the solution, this can also cause a 

problem. Using the map example of Section 1.2 as an example - here the map 

of England is easily shown in two dimensions. However, suppose the input 

data was flight times between major cities of the world, with examples from 

all the continents. Now a two-dimensional map would not be satisfactory, as 

the points representing the cities would be expected to lie on a sphere, repre­

senting the shape of the globe. The axes representing longitude and latitude 

would now be expected to be circles shown in their relevant plane. However, 

would this three-dimensional representation be the ‘best’ representation?

Finally, work is needed to look at the loss function - what is an accept­

able value?

In Chapter 3, the methodology for displaying multivariate paired corn-
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parison data was developed. Again, as with the fitting of curved axes, one 

area where more research is needed is model selection - in other words, which 

functions should be used to define the axes. An Akaike’s Information Crite­

rion approach was suggested, but more work is needed to determine if this is 

the best approach. Additionally, dimensionality o f the solution needs to be 

factored into the goodness of fit measures, and further investigation into the 

behaviour of the pseudo-likelihood is needed.

When two MDS-like configurations have been produced from multi­

variate paired-comparison data, a method is needed for comparing them. It 

could be possible to compare just the configuration of the points using Gen­

eralised Procrustes Analysis. However, this does not take into account the 

location of the axes. Certain points could be calculated along each axis (for 

example, when t =  —2, —1,0, +1, +2, and these coordinates used within the 

GPA. However, whether this would be a suitable method remains to be seen.

Concerning the Dynamic Multidimensional Scaling procedure described 

in Chapter 4, one major adaptation that could be made is the use o f time se­

ries models for describing the axes instead of the functions already described. 

A simple example would be

x\i = x°u + ax^ 1

and

«M = *w +  ̂ a 7 1-
The advantage of this would be that the time series axes could be used 

to incorporating things like seasonality, assuming enough time points had 

been calculated. However, the major difficulty with such an approach is the 

conversion of the time series models into Cartesian coordinates for plotting.
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Another problem that could arise with the Dynamic Multidimensional 

Scaling is missing data points. If for example, objects are censored (for 

example, a panellist did not complete all the questionnaires, but instead 

dropped out half way through the study), or simply just one or two time 

points are missing for an object, then this will have an impact on the STRESS 

calculations. There is no way of incorporating the missing data into the inter­

time point calculations. Also, a similar problem is possible if the observations 

are not made at the same time points. A method needs to be solved for 

bringing such data into the calculation of the STRESS.

As mentioned in Section 4.6, there is currently no method for model 

selection. Whilst the STRESS provides a metric for determining how well 

the configuration is fitting the data, this does not take into account any pos­

sible over-fitting from the functions. As mentioned earlier a penalty function 

needs to be included. Thus a metric would be calculated that would enable 

comparisons of the different configurations, and thus selection of the ‘best’ .

Because Dynamic MDS produces a unique set of functions for each 

object, could these be used for some form of clustering o f the objects. For 

example, objects which have trajectories that move in the same direction 

could be said to be behaving similarly over time. Or objects with trajecto­

ries that converge are becoming more similar over time could be clustered 

together.

Finally there is the possibility of combining some o f the methods de­

scribed in the thesis. It is possible that once a configuration has been pro­

duced either by Dynamic MDS or the MDS approach to multivariate paired 

comparison, then description axes could be overlaid by the methodology in 

Chapter 2. This would enable a better understanding of the output. Alter­

natively could there be some of way of taking multivariate paired comparison

136



data that has been generated over time, and producing a Dynamic approach 

to analysing this?
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Appendix A

Classical Scaling

MDS was first developed in work by Eckart and Young (193G) and Young and 

Householder (1938). Torgerson (1952) used this earlier work to develop the 

MDS method known as classical scaling. Classical scaling is motivated by 

the need mentioned in Section 1.3 - to calculate a configuration X , in p-space 

which has inter-point distances given in A , where X  =  (xjr), a configuration 

matrix o f n points in p-space where x<r denotes the rth coordinate of point 

i and A  is a matrix of inter-point Euclidean distances. Before explaining 

classical scaling, we need some definitions.

D efin ition  A .0 .1 .

A matrix A  of dissimilarities dij is Euclidean if there exists a dimension k 

and a set of n points xi ,X2, . . . ,  xn € R* such that d? =  (x* — xf)T (x* — xf) 
(¿ , j  =  1 ,2 , . . .  , n ) .

D efin ition  A .0.2.

The matrix A  =  (a^) is defined by aij =  — ¿d^. The matrix B a  =  (hj) is 

defined by B a  =  C A C  where C  =  In — i l nl n .
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Note that the above definition implies that bij — — a*. — a,j +  a .

where a*. =  £ ^Zj=i a»j> °  j  =  n 5 Zt=i °y» 0•• =  S »= i 2 j=i a«j-

We can now answer the classical scaling question by stating what Job- 

son (1992) calls the fundamental theorem of MDS.

T h eorem  A .0 .1 .

A dissimilarity matrix A  is Euclidean «t=s> A  is such that 

B a  =  C A C  is positive semi-definite.

Proof =>

Let A b e  Euclidean so there exist X i ,x 2, . . .  , x n G R* such that 

(ffj =  (xj -  X j)T (xi -  xj) (i,j =  1 , 2 , . . . , n).

Then a  ̂ =  -| d y  =  - 5  (xfx* +  x jx j  -  2x fx j ) .

Let x r x  =  i  £ " = 1  xJTxr and x  =  i  53"=1 x r.

Then Oj. =  - i  ^x f +  x Tx  -  2 x fx ^ , a.j =  - 1  ^xTx  -(- x jx j  -  2xTxj Sj , 

a . =  ^2x r x  -  2xr x ) ,

so that — aij -  ai, — a.i +  a.. =  xjxj — xjx -  x TXj -(- x Tx 

=  (x< -  x)T (Xj -  x).

Now let X  =  (xi x 2 . . .  xn)T and consider 

X  -  l nx r  =  f  (xi -  x ) (x2 -  x ) . . .  (xn — x ) )  so that

X - l » * 1)  (X -1 „ 5 c3') T =

1 (xi -  x)T (Xj -  x) . . (xi -  x)T (xn -  x) ^

 ̂ (x„ -  x)r (xi -  x) . . (x„ -  x)T (xn -  x) y
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bn ... 6in ^

 ̂ bnl • • • bnn y

i.e. B A =  ( X  -  l „ x T)  ( X  -  1„ x t ) T.

Hence where z € Rn, zTB a z  =  zr ^X -  l „ x r )  -  l „ x r  j  z =  y Ty  >  0 

where y  =  ^X — l „ x T  ̂ and thus A is positive semi-definite. □

Proof. <=

Let A  be such that A  is positive semi-definite. B a t =  (C A C )T 

=  C TA C r  =  C A C  so A  is symmetric. A  has n non-negative eigenvalues 

since it is positive semi-definite. Suppose k o f these are positive and the rest 

zero, so that the eigenvalues are listed as

Ai > A2 > •.. A* > A/c+i = ... = An = 0
with corresponding normalised eigenvectors

Ui 2̂> • • • > Ifci lfc+li ■ • • > In-

Define the matrices Ai =  diag (Ai, A2, . . . ,  A*), A2 =  

diag(Afc+i,A/c+2, . . . , A n) =  diag(0,0 , . . . , 0 ) ,  Li =  (li ,I2»..• ,U) and L2 =  

Ofc+1» ■ • • t In)*

The spectral decomposition of A  is then

=  L iA j/2A}/2L f  =  L iA j72 ( l !A !/2) T =  X X r  (say).
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We have obtained a set of points x i , x 2, . . .  , x n € Kfc which are con­

tained in the matrix X  =  ( x i , x 2). . .  , x „ ) T by having A be such that A  is 

positive semi-definite. We will show that the inter-point distances in this 

configuration match A so that the result is proved.

Now A =  X X T so that by =  x fx j ,  and therefore

(xi -  X j)T (xj -  Xj) =  x fx i  -  2 x fy.j =  b« -  2bii +  bjj

= (an — a.i, — a,j + a..) — 2 (a  ̂— aix — a.j -I- a.) + (ajj — an — a.j + a.)

— an 2â j -I- Q*jj —— 2 d D

The latter proof is the important one, suggesting as it does, an algo­

rithm for producting a classical scaling MDS configuration given A:

1. Construct A from A.

2. Construct =  C A C .

3. Examine the largest k positive eigenvalues Ai >  A2 >  . . .  >  A* of 

B a and choose a dimensionality p < k in which to display the MDS 

configuration.

4. Put the normalised eigenvectors l lt 12, . . . ,  lp corresponding to the p 

largest eigenvectors Ai >  A2 >  . . .  >  Ap into the matrix

Lp =  (li, 12, • • •, 1P) and form Ap =  diag (Ai, A2, . . . ,  Ap).

5. The MDS configuration matrix X  of order n x  p (n points in p-space) 

is given by X  =  Lpa | .

Note that producing an MDS solution in p < k dimensions will render

the configuration approximate rather than exact as is the case when p =  k.
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Should we have a matrix of dissimilarities A  which produces a matrix 

B  which is not positive semi-definite (negative eigenvalues =>■ B  not positive 

semi-definite) then there are two options. The first is to discard the negative 

eigenvalues and execute the algorithm as usual, which gives an approximate 

solution using the remaining positive eigenvalues. Alternatively the solution 

to the additive constant problem can be employed. Cailliez (1983) produced 

value c*, such that when c >  c* is added to all off-diagonal dissimilarities 6r„ 

in A , the matrix B A becomes positive semi-definite. The value c* is found 

to be the largest eigenvalue of the matrix

where B Ac is formed from square roots of the original dissimilarities.

The final important consideration in classical scaling is that of choosing 

the appropriate number of dimensions in which to produce the MDS config­

uration. If the matrix B is positive semi-definite we can do this by plotting 

52i=i V  ^ r= i A. against p =  1 ,2 , . . .  ,n, whereas if B is not positive semi- 

definite we plot Yli=i A*/ EILi I Ai| or £ ? =1 A*/ £ " =1 A? or 

Yli=i Ai/ 2 " _ i  (positive eigenvalues) instead.
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Appendix B

Non-metric Scaling

The need to provide an explicit function /  mapping dissimilarities into Eu­

clidean distances was first relaxed in work by Shepard (1962a). Instead, the 

only requirement was that /  be some unspecified monotonic function, which 

enabled the finding of (i) the smallest dimensionality for the Euclidean space 

used to display the MDS configuration with iner-point distances monotoni- 

cally related to the initial dissimilarities, (ii) the coordinates of the points in 

the solution configuration, and (iii) a plot showing the shape of the (initially 

unspecified) function / .

Tests o f the algorithm developed in Shepard (1962a) using both simu­

lated and empirical data can be found in Shepard (1962b). In the discussion 

it is noted that

“The tests ... have supported the claim that when the proximity 

measures are monotonically related to distances in an underlying 

Euclidean configuration, this configuration can be metrically re­

covered by an analysis based essentially upon the rank order of 

the proximity measures alone”
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Shepard stresses the advantage of his method over traditional MDS 

techniques - in particular its applicability to the sorts of data found in the 

psychological literature, such as matrices of confusion frequencies, i.e. matri­

ces of the number of times that stimuli in a set are confused with each other. 

He also points out that his proposed method is more amenable than earlier 

methods to coping with generalisations such as missing data.

The foundations of Shepard’s method were built on by Kruskal (1964a). 

Kruskal describes “a technique for multidimensional scaling, similar to Shep­

ard’s, which arose from attempts to improve and perfect his ideas”. His main 

extension is the introduction of a measure quantifying the quality of the 

monotonic relationship between a set of dissimilarities and the inter-point 

distances in a solution configuration in p-space obtained for such a set.

In order to assess the quality of the monotone relationship between a 

lower triange of dissimilarities <5y and a set of distances d,j, Kruskal performs 

a monotone least squares regression of the distances upon the dissimilarities. 

First, the dissimilarities are arranged in ascending order

^hji »̂aja <  • • • <

(where M = n(n —1)/2), and then the distances are arranged in the sequence

dixj,, di2j2, . . . ,  diMjM.

Next a set of disparities dy are produced according to the following algorithm

1. Let k =  1 and set djUl =  djUl.

2. Increase A: by 1.

3. If dikjk >  dik_ljk_1 then set dikjk — dikjk, otherwise let t be the number 

of distances after dik_ljk_l , which are in the decreasing sequence whose
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4. If k ^  M  then go to step 2.

5. If the disparities are perfectly weakly monotonie then stop, otherwise 

go to step 1 using the disparities in place of the original distances in 

order to calculate a new set of disparities.

The way in which disparities are constructed ensures that they are 

monotonically related to the ordered dissimilarities. A measure of how 

well the inter-point distances match monotonically the ordered dissimilar­

ities is then given by the STRESS S(X)  of the p-space configuration X  =  

(xx, X2, . . . .  x „ )T. This is defined as

The lower the STRESS of a configuration, the better the monotonie rela­

tionship, with a STRESS of zero implying a perfect match. Thus the non­

STRESS is minimal.

The STRESS can be regarded as simply a function of the np coordi­

nate variables i n ,  x 12, . . . ,  x lp, X2 1 , . . . ,  xnp (via the distances dÿ). It is the 

values of these variables minimising the STRESS which are taken as being 

the coordinates of the p-space nonmetric MDS configuration. The compan­

ion paper Kruskal (1964b) details the algorithm required to find the MDS 

configuration given a set of dissimilarities ¿¿¿. The algorithm is based on the 

method of steepest descent:

metric technique can be simply stated as the search for a configuration whose
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1. Choose an intial configuration of n points in p-space. (Use a good con­

figuration for starting if possible, e.g. the configuration from classical 

scaling; otherwise an arbitrary starting configuration will suffice).

2. Translate this configuration to have its centroid at the origin.

3. Dilate/contract the configuration so that the root men square distance 

of the points from the origin is equal to unity.

4. Calculate the inter-point distances dÿ in this standardised configura­

tion.

5. Construct the disparities djj.

6. Put x  =  (xn, Xu, . . . ,  xip, X21, . . . ,  xnp)r  and calculate If

<  £, where e > 0 is a small tolerance level, then take x  as the 

solution configuration and stop. Otherwise continue.

7. Calculate a^e« =  4coe3 6 - 7713g5—\Uprev where 6 is the angle between 

gradients on present and previous iterations,

sfive =  min ( l ,  STS S a g o ) '  and 9 =
Note: the initial value of aprev is taken as about  ̂ when using an arbi­

trary starting configuration, and should be smaller for a low-STRESS 

starting configuration. If five iterations have not yet occurred, the 

quantity ‘STRESS five iterations ago’ is taken to be the initial ‘STRESS’ 

calculated. Similarly we can fix initial values of 0 and the quantity ‘pre­

vious STRESS’ on the first iteration.

8. The new configuration vector is given by

Xneu) — Xprev C*pres

dS(X)
OX

flS(X)
ax
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9. Go to step 2.

There are more recent algorithms for minimising STRESS, such as that 

of Grônen and Heiser (1996), but the above is the one used to perform non­

metric MDS in this thesis. STRESS has been the topic of considerable in­

vestigation, and a summary of the work done on the topic can be found in 

Cox and Cox (2000).

In order to avoid the ubiquitous pitfalls of local minima when minimis­

ing a function of many variables, Kruskal recommends starting the steepest 

descent algorithm from various different starting configurations and bear­

ing in mind that local minima configurations encountered should be rejected 

anyway unless they have suitably low STRESS.

As in the case of classical scaling, thought needs to be given to how 

many dimensions are needed for the MDS configuration. The way to deter­

mine the appropriate dimensionality is to find configurations in p =  2, 3, 4, 

... dimensions and then plot a graph of STRESS versus dimension. As p 

increases, STRESS decreases and the best policy is to choose the smallest 

p such that the STRESS decrease in moving from p to p +  1 dimensions is 

negligible.

After an MDS configuration has been produced a Shepard plot can
A

be constructed by plotting the dissimilarities <5̂  and the disparities dij on 

the vertical axis against the configuration distances on the horizontal axis. 

Hence, the form of the initially unknown function /  relating the dissimilarities 

and distances can be visualised.

Kruskal (1964a) mentions some important generalisations which could 

easily be incorporated into his method. The first is when some of the dis­

similarities are missing, either deliberately due to constraints on data col­
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lection, or accidently. The recommendation here was to simply omit from 

the STRESS function any terms corresponding to a missing dissimilarity iy . 

The strict requirement that dissimilarities must be symmetric was also re­

laxed, and the suggestion was to either replace the unequal iy  and Sji by 

(Sij +  Sji) ¡2 to achieve symmetry, or generalise STRESS to sum over all dis­

similarities rather than just over those £y with i > j.  Another assumption is 

that there are no ties in the data, i.e. dissimilarities are now permitted to be 

equal. In the presence of such ties, Kruskal provides the primary approach 

whereby the only constraint on the dissimilarities is that

Sij ^ y  —̂ dy ^ *,

meaning that dy is not required to be equal to dr<a<, and the secondary 

approach where both

A A A A

Sij ^  Ŝ/jf —t* dy ^  di'j> and Ŝ jf —̂ dy

hold.

Another generalisation described is where the distance function dy 

used in the STRESS function is not the Euclidean distance, but instead 

one of the more general Minkowski c-metrics dc whereby for two points 

x * =  faiii »̂2. . . . ,  xip)T and Xj =  • • • i xjp)T the inter-point distance

is given by

dc(x*,Xj) =  ~

with the Euclidean distance occuring when c =  2.

An important distinction between the Euclidean distance and other 

more general distances is that whilst configurations obtained using Euclidean 

distance can be rotated, configurations using other distances cannot. Everitt

148



and Dunn (2001) plot STRESS versus k for MDS solutions in 2-space in 

order to determine the best Minkowski c-metric to choose.

Finally it should be noted that although nonmetric MDS is more widely 

used than classical scaling, the latter procedure still has an important role 

in providing starting configurations for procedures such as nonmetric MDS.
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