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Abstract 

The self-organization of organic molecules on metal surfaces can play a crucial 
role in various subjects of science such as electrochemistry and heterogeneous 
catalysis. However, their practical applications have been suffering from lack of 
atomic scale understanding of the ordering behavior. Theoretically, however, the 
description of the self-assembly processes has been limited by the inability of 
microscopic models to account for the interplay of all elementary processes at re
alistic temperatures and pressures. In this work, we take the succinate molecules 
and Cu(llO) surface as a model system to study the nature of the asymmetric 
self-assembly behavior of the achiral adsorbates on an achiral surface. In the 
first step, density-functional theory (DFT) is used to accurately characterize the 
molecule-surface system on the microscopic level. The obtained energetics is then 
employed to parameterize a lattice gas Hamiltonian, which subsequently allows 
to address the mesoscopic ordering behavior at finite temperatures by means of 
Monte Carlo simulations. Two well-defined ordered structures have appeared in 
the Monte Carlo simulations. The (5 0, 3 2) structure has been confirmed to 
be the ground state configuration by direct DFT calculations. This structure 
has not been reported before and it can be the ordering configuration observed 
in some STM experiments. By summing up all the calculations, the nature of 
the self-organization behavior of succinate molecules on Cu(llO) is attributed 
to the indirect lateral interactions of the adsorbates. This result may provide a 
new understanding of designing two dimensional periodic architectures on metal 
surfaces. 
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Chapter 1 

Introduction 

1.1 Heterogeneous catalysis 

In the early of 1800's, the remarkable ease of water production from oxygen and 
hydrogen on Pt surfaces leaded to the definition of the term "catalysis" [1] : a 
(chemical) substance that accelerates (or slows down) chemical reactions without 
being changed itself. Due to its immense economical and environmental impor
tance, catalysis has over the last century been subject of numerous investigations 
and undergone an enormous development. Today, 90 percent of the chemical 
manufacturing processes in the world use catalysts in some form [2]. 

Catalysts can be split into two categories: homogeneous and heterogeneous cata
lysts. Homogeneous catalysts are in the same phase as the reaction mixture. As 
an illustration, enzymes are dissolved in a liquid phase, e.g. human blood, and 
so are the reactants, such as blood-sugars and proteins. The main advantage of 
this kind of catalyst is that they are well dispersed and form a uniform phase 
with reactants. This makes homogeneous catalysts easily accessible to reactants. 
But the main disadvantage is that industrial recycling of catalysts from such a 
homogeneous system is usually very expensive. In this case it is necessary to sep
arate the catalysts from products, because most homogeneous catalysts consist 
of ligands and metal ions; losing them with the products will not only increase 
the cost of production, but also pose health hazard to customers and pollute the 
environment. 

By contrast, heterogeneous catalysts are in a separate phase from reactants. Re
actions take place at the interfaces between catalysts and reactants. Catalytic 
oxidation of hydrogen is an example of this kind. On a Pt or Rh surface hydrogen 
reacts with oxygen at room temperature to produce water. The product, in this 
case water, can easily be removed from the metal catalysts. In heterogeneous 
catalysis, catalysts are often solids while reactants and products are usually in 
a liquid or a gas phase. If the product is of low molecular weight and volatile, 
e.g. acetaldehyde, the separation can usually be achieved by simple distillation 
and the industrial applications are therefore able to be designed on a continuous 
basis (the separation step is integrated in the production process). Because of the 
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easier separation, handling, recovery and higher stability, heterogeneous catalysis 
is industrially very attractive. 

1.2 Heterogeneous enantioselective catalysis 

1.2.1 Important definitions 

Stereoisomer 

In chemistry, molecules which have the same chemical compositions and identical 
connectivity of atoms but different from each other in the way that the atoms 
are oriented in three dimensional space are referred to as stereoisomers. Fig. 
1.1 shows the three stereoisomers of tartaric acid, namely, (R,R)-tartaric acid, 
(S,S)-tartaric acid and meso-tartaric acid. 

;fH:F: :f: 
CXlCJ-I CXlCJ-I cxx:ti 

(R,R)-tartaric acid (S,S)-tartarlc acid meso-tartaric acid 

Figure 1.1: Tartaric acid has three stereoisomers. {R,R}-tartaric acid and (8,8)
tartaric acid molecules are chiral while meso-tartaric acid molecule is achiral. 

Chiral molecules 

A close look shows that, (R,R)-tartaric acid and (S,S)-tartaric acid are actually 
mirror images of each other. Thus, one molecule can never be superimposed onto 
the other on the same plane, just like a left hand and a right hand (see Fig. 
1.2(a)). Molecules of this kind are called chiral molecules. The term "chiral" is 
derived from the Greek word "cheir", which means "hand". Meso-tartaric acid, 
however, is identical to its mirror image. It is therefore "achiral" (symmetric). A 
molecule is chiral if it is not superimposable on its mirror image[3}. 

Chiral center 

Bromochlorofluoromethane is one of the simplest chiral molecules, see Fig 1.2(b). 
It is chiral because it has a tetrahedral carbon atom which carries four different 
groups, H, F I Cl and Br. Such a carbon atom (carrying four different substituents) 
is known as a "chiral center" I or a "stereogenic center". It plays an important 
role in stereochemistry. A molecule which has one chiral center lacks a plane of 
symmetry and therefore must be chiral. However, molecules that contain more 
than one chiral centers can be either chiral (e.g. (R,R)-tartaric acid) or achiral 
(e.g. meso-tartaric acid). 
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H;( 
F Br 

XH 
Br F 

(a) (b) 

Figure 1.2: (a) Our hands are chiral, because they are mirror images to each 
other but the left hand cannot be superimposed on the right one. (b) (S)
bromochlorofluoromethane (left) and {R}-bromochlorofluoromethane {right} 

Enantiomer 

Two structures that are not identical but mirror images of one another are called 
"enantiomers". (R,R)-tartaric acid and (S,S)-tartaric acid are a pair of enan
tiomers. In achiral environments, two enantiomers are chemically identical. Take 
(S)-alanine and (R)-alanine as examples. The two enantiomers have the same Nu
clear Magnetic Resonance (NMR) and Infrared (IR) spectra, alanine produced 
in laboratories is always racemic (a mixture of two enantiomers in equal pro
portions). Their physical properties are also identical, with only one important 
exception: (S)-alanine rotates a beam of plane-polarized light passing through 
it to the right while (R)-alanine rotates the light to the left. Racemic alanine, 
however, lets the light pass without rotations. As a matter of fact, all pure chiral 
substances rotate the plane-polarized light passing through it to some extent. 
This property is known as "optical activity" of chiral molecules [4]. 

\ ..... CH3 

H2N~yH 
o 

(a) (b) 

Figure 1.3: {a} {R}-alanine and (b) {S}-alanine have identical physical properties 
except for their optical activity 

1.2.2 Labeling an enantimoer 

Two methods have been used to label an enantiomer. The first one uses their char
acteristic optical activities: the enantiomer that rotates plane-polarized light to 
the right is referred to as the (+ )-enantiomer (or the dextrorotatory enantiomer) 
while the other one which rotates plane-polarized light to the left is referred to 
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as the (-)-enantiomer (or the laevorotatory enantiomer). The advantage of this 
labeling method is that it clearly reflects the optical activity of each enantiomer. 
However, a main drawback is that the configurations of enatiomers cannot be 
deduced from their names. For instance, in Fig. 1.1, one can hardly say which 
tartaric acid is the (+ )-enantiomer, unless their optical activities have been tested. 

The second method describes enantiomers by the configurations of their chiral 
centers. Firstly, a priority number is assigned to each substituent of the chiral 
center. The group with higher atomic number has higher priority. Take the chi
ral center of a bromochlorofluoromethane molecule as an example (Fig. 1.2(b)). 
The sequence of atomic numbers is Br>Cl> F> H and so is the sequence of pri
ority numbers. Secondly, one orients the right hand so that the thumb points 
from the chiral center towards the lowest priority substituent (H atom in this 
example). Then one curls the fingers to connect the other three substitutents. If 
the connection is in a sequence of decreasing priority numbers then chiral center 
is assigned as (R), which is for "rectus" in Latin, meaning right. Otherwise, if 
the connection is in a sequence of increasing priority numbers, the chiral center 
is denoted as (S), which is for "sinister" in Latin, meaning left. Thus, in Fig. 
1.2(b), the enantiomer on the left is called (S)-bromochlorofluoromethane and 
the enantiomer on the right is called (R)-bromochlorofluoromethane. Likewise, 
in Fig 1.1, the tartaric molecule on the left has two chiral centers. Both of them 
are of (R) configurations. Thus it is labeled as (R,R)-tartaric acid. This labeling 
method is extremely useful for complicated molecules which contain more than 
one chiral centers, because one can immediately deduce the configuration of an 
enantiomer from its name. 

1.2.3 Importance of chirality 

Chirality of nature 

Since two enantiomers are chemically and physically very similar, it is quite sur
prising that they can usually be distinguished by living organisms, not only hu
mans but also animals, plants and even bacteria. For instance, the smells of or
anges and lemons differ in being two versions of the same molecule, limonene(see 
Fig. 1.4(a)). Pseudomonas putida, which is a bacterium, enantioselectively pro
duces I-bromo-2,3-benzenediol from the achiral bromobenzene (see Fig. 1.4(b)). 
In our bodies, all the amino acids are "left-handed" (Laevoratory), while sugars 
in DNA and RNA are all "right-handed" (Dextrorotatory). A truth that under
lies these interesting phenomenons is that the nature is asymmetrical. All living 
systems on the earth are chiral environments. The uniform chirality of natural 
sugars (Dextrorotatory) leads to the larger scale chirality of all living structures. 
Thus, racemic polypeptides cannot form specific structures required by enzymes 
and a single wrong-handed monomer would be able to disrupt the stability of 
DNA helixes. 

As all living systems are chiral' they will react differently to opposite enan
tiomers. Today, all drugs containing chiral centers are required to be analyzed in 
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6' Pseudomonas putida &r OH 

---...... I 
~ ~ OH 

(R)-limonene (S)-Iimonene Bromobenzene 1-Bromo-2 .3-b en zen ed iDI 

(a) (b) 

Figure 1.4: (aJThe (RJ-limonene smells round and orangey while the (8)
limonene smells sharp and lemony. (b}Pseudomonas putida enantioselectively 
produces l-bromo-2,3-benzenediol from the achiral bromobenzene 

terms of the effect of each enantiomer, and most of these drugs need to be sold 
in a homochiral form. 

1.2.4 Chiral catalysis 

In symmetric environments 

In achiral environments, two enantimoers are chemically identical because the 
symmetric difference of two configurations does not lead to any kinetic or ther
modynamic differences in reaction mechanisms. Take a cyanohydrin produc
tion reaction as an example ( see Fig. 1.5). Here, the carbonyl group has two 
faces; a cyanide ion could approach the carbonyl group either from the front 
face or the back face and therefore yield two products: (R)-cyanohydrin and (8)
cyanohydrin. As the two reaction mechanisms are of equivalent probability, the 
product obtained is always a 1:1 mixture of two enantiomers. If, for instance, a 
homochiral form of the product is required, the separation step would be very 
difficult and expensive. Even if the separation can be achieved via resolution, i.e. 
crystallization of diastereomeric adducts, it would be highly wasteful (at least 50 
percent of the product is wasted). In industry, producing one enantiomer through 
a resolution is always the last option unless recycling is possible. 

(a) 

Figure 1.5: (aJA cyanide ion attacks from the front face of carbonyl group. (b)A 
cyanide ion attacks from the back face of carbonyl group 
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In asymmetric environments 

Fortunately, enantiomerically enriched products can be directly made in asym
metric environments. If, for example, the above carbonyl-containing molecule 
possesses a chiral cent er in an a position, the two faces of carbonyl group would 
become unequal for an incoming cyanide ion. As shown in Fig. 1.6, the a carbon 
atom carries a carbonyl function group, a large-sized substituent L, a medium
sized substituent M and a small-sized substituent group S. When the cyanide 
ion approaches the carbonyl group, it will feel different stereo repulsions from 
the two faces and prefer to attack from the small substituent's side. The size 
of substituent L is related to the selectivity of the reaction. If the substituent 
L is large enough so that no cyanide ion can attack from its side, the produced 
cyanohydrin will be enantiomerically pure. Similar selectivity can also be ob
tained if the large-sized substituent is replaced or modified by a negative charged 
function group. Both kinds of substituents play a role in hindering the cyanide 
ion to attack from their side. 

~~C=N L"f, .. 
'. S H slow 

M (b) 

LII,Hf2:0 .... 011 
'. H 

S 
M 

Figure 1.6: (a) Cyanide ion preferentially attacks from front face of carbonyl group. 
(b )Cyanide ion attacking from back face of carbonyl group is hindered by the large
sized substituent. 

Chiral catalysis 

Today, the most economical option to produce an enantiomercially pure product 
is using chiral catalysts: a small amount of chiral material which can generate a 
large amount of chiral product from achiral starting materials. Take the asym
metric epoxidation of allylic alcohols as an illustration, Fig. 1.7 (a) shows the 
configuration of the oxidized Ti catalyst. One approach is favored because the 
transition state needs to be stabilized by fitting the specific shapes of catalyst 
and reactant (see Fig. 1.7 (b) and (c)). In the last step, the Ti catalyst is regen
erated when the epoxide is formed. In 2001, the Nobel Prize in Chemistry was 
awarded to research in this area (asymmetric homogeneous catalytic oxidation 
and asymmetric catalytic hydrogenation). 

Heterogeneous catalysis in enantioselective chemistry 

Most chiral catalysts cannot be derived from natural products but need to be 
carefully designed and synthesized. Producing a complex molecule like the one in 
Fig. 1.7(a) is often tortuous, time consuming and very expensive. It is a natural 
step to make chiral catalysts heterogeneous like for other catalytic applications. 
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CO,E' CO, E. CO, E' 

,.P"",O L o........-I-P' 
,~, 

~t 1 I~ , " lib 
,~ 0 E' 1>.£' O:-(~O cY"T --:~ i cY" ;.?" / 0 

I r-
r·Bu r·Bu r·Bu 

H~'" " O 
l( 

R 

w/ £. 

(a) (b) (c) (d) 

Figure 1.7: (a) The oxidized chiral Ti catalyst (b) Only one approach of allylic 
alcohol can be stabilized (c) Transition states of the reaction (d) The formation 
of an epoxide [4] 

The past several decades have witnessed substantial advances in this area. But 
very few approaches are really successful. A crucial problem is that enantioselec
tivity is often lower over the heterogeneous catalysts t han over the homogeneous 
counterparts[2]. Especially in the early years, the enantioselectivity was very low 
and often not even determined quantitatively. 

In 1940, Nakamura opened the door of using chiral auxiliaries to modify het
erogeneous catalysts [4]. Since then, absorbing functional organic molecules on 
metal surfaces to produce chiral architectures on two dimensional surfaces has 
been widely applied on different surfaces and chiral modifiers [5, 6]. In some re
actions, this method has resulted in very high selectivity. As a benchmark [7 , 8] , 
the hydrogenation of methylacetoacetate (MAA) has been reported to be very 
stereo directed on a tartaric acid modified Ni surface. The enantiomeric excess 
(e.e.) is over 90%, see Fig. 1.8. 

Despite the dramatic progress of this approach in scientific research, few re-

Ni surface with 
Cl-i 2CXXXli 3 H C ---.I (R,R) Tartaric acid 3 ~o, 

H3C .;/ \ " 11 11 CH3 

HQ H H2 0 0 

R-MHB Mehtylacetoacetate (MM) 

Ni surface with 

(S,S) Tartaric acid ---.lCl-i 2CXXXli 
3 

.. H3C7····. 

HO H 

S-MHB 

Figure 1.8: On a {R,R)-tartaric acid modified Ni surface, the product are domi
nated by R-methyl-3-hydroxybutrate (MHB). On an {S,S)-tartaric acid modified 
Ni surface, the product are doninated by S-MHB 

actions are used on an industrial scale today [8]. The reason are that (i) only a 
particular combination of a metal, a modifier and a substrate lead to good enan
tioselectivity. The types of reactions are quite limited. (ii) Chiral modifiers and 
many ' metal precursors are expensive and not easily available. Over the years, 
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much effort has been devoted to improve the catalytic performance and lower the 
cost of catalysts. But progress is still limited by our lack of deeper understanding 
of the reaction mechanisms. 

However, our empirical knowledge of most heterogeneous reactions is quite sub
stantial [9]. For instance, we know that Pd and Pt-Rh are the best exhaust 
catalysts for NO removal [10], Pt, Pd and Ag are widely used in catalytic oxi
dations [9], Co, Fe and Rh are wonderful Fischer-Tropsch catalysts [11], and Ru 
and Fe are the best ammonia synthesis catalysts [9]. Nevertheless, only a detailed 
investigation of the underlying elementary steps, e.g. bonding of molecules onto 
a surface, diffusion of adsorbates, transitional states of a reaction and forma
tion of the products can yield a deeper understanding of the mechanism of these 
catalytic processes. Due to the complex interactions among surface atoms and 
adsorbates and the coupling of their electronic states, it is unknown, at present, 
"what exactly happens on the surface at atomic scale". This is not only a prob
lem for large organic molecules on complicated surfaces but also for atoms and 
small molecules on single crystal surfaces. Thus, the study of some "simple" and 
well-defined model systems will help to obtain a detailed insight into the nature 
of enantiodifferentiations taking place at surfaces. 

1.3 The Scanning Tunneling Microscopy 

To date, the ongoing scientific research on surface model systems has been driven 
greatly by the concurrent emergence of new experimental techniques developed 
to study surfaces under ultra-high vacuum (UHV) conditions. These techniques 
are capable of giving very detailed information on the geometric and electronic 
structure of the surface as well as its chemical compositions; they are based 
on the interaction of electrons, ions and photons with the surface. To give a 
few examples, we mention low-energy electron diffraction (LEED), high-energy 
ion scattering (HEIS) and angle-resolved ultraviolet photoelectron spectroscopy 
(ARUPS). However, the structural information obtained by these techniques is 
averaged over large areas compared to the characteristic atomic distances on the 
surface. By contrast, Scanning Tunneling Microscopy (STM) offers the possibil
ity of direct, real-space determination of surface structures in three dimensions, 
including non-periodic structures. Since its invention by Binning and Rahrer in 
1982 [12, 13], the STM has become the most ubiquitous tool in surface science. 

As shown in Fig.1.9, the setup of an STM basically consists of a sharp tip 
which ideally has only a single apex atom, i.e. it is atomically sharp, mounted 
on a piezo-tube; this tip can be moved in all three dimensions on the picometer 
(1O-12m) scale. 

When the sharp tip is brought close to the surface, without actual contact (the 
distance then is in the range of a few A), a narrow vacuum potential barrier is 
created. Provided an external bias voltage, electrons can tunnel through the vac-
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STM t ip 4-4--n-n 

plazo tube 

Jt1:==t=l========tPOS/1iQ ,scan gene1ator 
plez.o voltage 

positioning 

vibration absorber 
Graphic display 

Figure 1.9: Schematic representation of STM operation. As the tip scans the 
surface, its height is adjusted to maintain a constant tunneling resistance. [14] 

uum barrier from the tip into the surface and vice versa, leading to a tunneling 
current flowing between the two leads. 

In STM operation, the current is usually set to a fixed value. When the tip 
scans the surface in two dimensions, its vertical position is varied by an elec
tronic feedback on the piezo-crystal, so that the current remains constant. As 
the tip scans the surface in two dimensions, recording its height changes gives 
an electronic contour map of the surface. Provided elaborate vibration damping, 
the best instruments today are capable of a vertical resolution better than 1 pm, 
or one 200th of an atomic diameter[15] . 

Although this seems to be rather simple, the whole process is highly influenced 
by (i}the chemical composition of surface and tip, (ii}the tip-surface distance, 
{iii}the electronic structure of both systems, (iv}the chemical interactions be
tween surface and tip atoms and (v)the electrostatic interactions of sample and 
tip[15, 16, 17, 18]. Hence the information that an STM map reveals is much 
more than simply a surface topography; the interpretation of those images is 
consequently not straightforward. 

Qualitatively, the generation of tunneling current can be described as follows: 
The potential barrier in the vacuum range of the two subsystems determine the 
decay of surface wave-functions in the same range. For a square potential barrier 
(see Fig. 1.10), the current decays exponentially with a constant exponent: 

I( z ) ex e- (~)z . 

Here, <P is the work function (the energy that required to move an electron from 
the fermi level into vacuum) of the two surfaces and z is the distance from the 
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Figure 1.10: Schematic representation of the potential barrier between the two 
subsystems when a bias voltage is applied. 

nucleus of the surface atoms to the nucleus of the tip apex. Although it is 
often a good approximation, in practice the work-function of sample and tip are 
generally not equal, the decay of electron states is not constant, and the density 
of states above the surface also varies with the exact location[151. Since the high 
STM precision is based on its sensitivity of surface-tip distance, a better model 
is needed. In Chapter 2, we shall present a more refined model to calculate the 
tunneling current. 

1.4 Succinic acid on a Cu(l10) surface 

Fortunately, building chiral surfaces is not simply limited to the approach of 
adsorbing chiral molecules on achiral surfaces[19, 201. Recent STM experiments 
have reported a surprising chiral behavior of intrinsically achiral organic molecules 
when adsorbed on a metal surface: at around 400K, succinic acid molecules ad
sorbed on Cu(llO) formed two thermally stable and asymmetric superstructures, 
in which succinate trimers extend in rows along the [1121 and [1 f2) directions[21]' 
see Fig. 1.11. An atomistic understanding of the nature of this intriguing order
ing process would obviously enhance the possibility of developing future enantio
selective heterogeneous catalysts from cheap and achiral starting materials. The 
two simple and well known subsystems (Cu(llO) surface and succinic acid) sug
gest a suitable model system for experimental and theoretical investigations. 

From the experimental side, in addition to STM, Low Energy Electron Diffraction 
(LEED) has been used to determine the (1 1, -9 0) and (90, -1 1) symmetry of 
chiral domains. Data obtained by Temperature Programmed Desorption (TPD) 
indicated that the adsorbate-metal interactions are so strong that intra-molecular 
bonds breaks prior to metal-molecule bonds. More detailed adsorption features 
have been identified by Reflection Absorption Infrared Spectroscopy (RAIRS) 
analysis[211. As the coverage of adsorbates is increased, the disappearance of 
a characteristic Vc=o stretch vibration (at 1700cm-1) reveals there is no car
boxylic groups present in the adsorbates. By contrast, the appearance of doublets 
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(a) (b) (c) 

Figure 1.11: (a) An STM image (260A x170A) of succinic acid molecules ad
sorbing on a Cu(110) surface. (b) and (c) are enlarged images for the two chiral 
domains. Parameters: V = -0.21 V, 1 = O.15nA [21] 

HO ~ );-I bH 
Cu(110) surface 

300 K-400 K 

o 

.. o. rl~ 
e)---l "'0 
o 

@ 
+2H 

Figure 1.12: Contacting a Cu(llO) surface, succinic acid molecules doubly depro
tonate and form chemical bond with Cu surface via its two bidentate carboxylate 
functionality 

at 1425cm-1 and 1408cm- 1 strongly suggest coupled vibrations of the identical 
COO- oscillators on each molecule[21, 22, 23]. The adsorbing unit has therefore 
been assigned to a doubly deprotonated bisuccinate, which bonds to the Cu sur
face via its two bidentate carboxylate functions (see Fig. 1.12). The produced 
hydrogen atoms are known to diffuse on Cu surfaces and undergo recombinative 
desorption into the gas phase as H2 [24, 25, 26]. 

1.4.1 Motivation of theoretical studies 

In spite of extensive experimental investigations of this model system, the atomic 
mechanism of this self organization process is still unclear. For instance, the local 
adsorption geometry of a bisuccinate molecule is unknown, the nature of inter
molecular interactions have not be characterized, and even more importantly, the 
electronic properties and/or the electron charge distribution of the modified chi
ral surface have not been fully investigated. 

Generally, experimental analysis alone cannot disentangle these questions unam
biguously. Because the information confined within the atomic or electronic scale 
can neither be obtained directly from experimental measurement nor interpreted 
unambiguously. Nevertheless, the missing information can usually be filled in by 
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precise first-principles calculations (treating many-body systems on the basis of 
first principles of quantum mechanics, without introducing any empirical parame
ters). With the help of first- principles methods, one can often obtain an accurate 
description of electronic structures of solids, surfaces, or clusters with moderate 
computational efforts. In the last few decades, Density FUnctional Theory (DFT) 
has been the primary driving force of developments in this area [27, 28], a detailed 
description of this method is given in Chapter 2. The obtained DFT results can 
then be used to perform STM simulations to compare with experimental images. 

In addition to the lack of knowledge in the microscopic regime, the self assembly 
processes also depends on a statistical interplay of all microscopic process at fini te 
temperatures. Thus the obtained first-principles description should be further 
treated statistically to investigate t he phase diagram of this substrate-adsorbates 
system. When all these calculations are finished , one would in principle be able 
to interpret the nature of the self assembly behavior of the succinate molecules, 
the origin of the st ability of two chiral domains, t he charge density distribution 
of the functional surface, and the stability of all possible ordering phases. Only 
if all the information listed above is known, one can take a step further by de
signing a heterogeneous catalysis circle or refining the electronic properties of the 
functional surfaces. 

1.4.2 Previous theoretical investigations 

Even though "simple" and potentially very important to a number of application 
areas, the succinate-Cu(llO) system has not been systemically investigated by 
theorists yet. To our best knowledge, only a few basic DFT calculations have 
been performed by Antonio [29] and Darling [30] in 2001 and 2007 respectively. 
According to Antonio's calculations [29] , at ground state, a single bisuccinate acid 

Figure 1.13: (a) Top view of the adsorption configuration of bisuccinate on a 
Cu(llO) surface. (b) and (c) are the side views. 

straddled straight across the long-bridge between Cu rows and bonded to the on-
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top sites of top-layer Cu atoms with its four oxygen atoms (see Fig.1.12). Upon 
adsorption, the molecular skeleton undergos a slight deformation by twisting its 
backbone about 5° away from the [100] direction. Similarly to tartaric acid on Ni 
surfaces [31 ], this spontaneous distortion of the molecular skeleton destroys both 
the molecular and local surface mirror plane, and yields a chiral site on a CU(l10) 
surface. Since a bisuccinate molecule is achiral, this twist can either be clockwise 
or counterclockwise with an equal probability. As a consequence, the ratio of 
the two enantiomeric chiral succi nates should be 1:1, which is consistent with the 
experimental result. Based on this theoretical adsorption model, the chiral do
mains have been characterized as the self-assembly of the homochiral adsorbates. 
In addition to the chiral twist of molecules, a lateral structural deformation has 
been found at the Cu substrate. Underneath each bisuccinate adsorbate, metal 
atoms display a Cu-Cu expansion in [l10] direction, which consequently results in 
a stress to the surrounding surface atoms. This surface stress was suggested to be 
responsible for the formation of succinate trimers because it would dynamically 
hinder four bisuccinates siting next to each other in [1l0] direction. Based on the 

(a) (b) 

Figure 1.14: Antonio's theoretical model of the self assembled structure of succi
nates on a Cu(llO) surface: (a) and (b). In this model, the two chiral domains 
are composed by stripes of succinate trimers. The growth direction of stripes are 
determined by the chirality of the footprint of each succinate molecule. 

experimental symmetric data and the DFT calculations, a geometric model of 
chiral domains has been proposed, see Fig. 1.14. The organizational chirality has 
therefore been attributed to the spontaneous chiral footprint and surface stress 
induced by adsorbates. 

Darling's calculations were carried out for a different ordering pattern of succinate 
molecules on a Cu(llO) surface. Instead of two mirror enantiomorphous chiral 
domains, the experimental STM images indicate that the succinate molecules 
are self-organized to form chirallines extending along the [001] direction. In the 
[110] direction, however, the adjacent chirallines are mirror images of each other. 
Thus the overlayer is globally racemic and displays a p( 4x2) symmetry. See, Fig. 
1.15 (a). Based on the experimental symmetry, a set of Density Functional The-
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ory calculations have been performed. Liu and Darling suggest that the chiral 
lines in Fig. 1.15 (a) are formed by a mixture of local chiral twists of succinate 
adsorbates in a 1:1 ratio. In [30], Darling has calculated the energetics of two 
possible adsorption configurations of succinate molecules on a Cu(110) surface. 
The first one is exactly the Antonio adsorption model (Fig. 1.15(b)) , while the 
second one is shown in Fig. 1.15(c), where the Cu atoms are still bonded to the 
COO functional groups of the succinate molecule. However one of the bonded 
Cu-atom pair undergoes an offset by one Cu lattice constant in the [110] direction 
and thus gives rise to a diagonal adsorption site rather than a rectangular one. 
Interestingly, the adsorption energy per molecule in the second model has been 
reported to be lower than the first one by 15.9 kJ Imol. Comparing the O· .. H 
distances in the relaxed configurations, this energy difference has been attributed 
to the distortion of the molecular configuration and the formation of weak hydro
gen bonds in and between the adsorbates [30]. 

It is quite interesting for many a few aspects. First of all, which adsorption 
model is the "real" ground state adsorption configuration? Secondly, since these 
two calculations were carried out based on two different cover ages of adsorbates, 
is it possible that the adsorption configuration of succinate depends on the cov
erage? What kind of interactions play a role in the self-assembly process? Are 
there any other ordered structures which have not be observed? If yes, what are 
they, and how stable they could be? Surprisingly, all these aspects of obvious 
importance to an atomic understanding of this self organization behavior as well 
as for any potential application of this model system, have hitherto not been 
addressed. 

(a) (b) (c) 

Figure 1.15: (a) The p(4x2) STM topography of the succinate molecules on a 
Cu(110) surface (80A x 80A) and an enlarge image of the local chiral features 
(17 A x 20A). The angles of the long axes of the oval shaped features and the 
[001] direction are ±65°. Parameters: 1 = 0.36nA, V = - 0.88V . (b) Theoretical 
p( 4x2) unit cell based on Antonio's adsorption model. (c) Theoretical p( 4x2) unit 
cell based on Darling's new adsorption model [30] . 
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1.5 Objects of this work 

In the previous DFT calculations all the unit cells were designed in order to per
fectly fit the experimental images. However, as is well known, in most cases of 
molecular adsorption it is very difficult to relate the observed electron densities 
with the absolute atomic positions [15]. Besides, as will be discussed later in 
Chapter 2, the energetic results of molecular interactions obtained with DFT are 
only relative differences of energy levels in the configuration space at zero tem
perature. Under the STM operating conditions, the succinate adsorbates and 
the copper surface are heated up to 400K. The mechanism of the self-assembly 
process therefore depends not only on the description of a few energy levels in 
the microscopic scale, but also the interplay of these energy levels in the mesa
scopic regime at realistic experimental conditions. Thus, in principle, a reliable 
theoretical description of such self-assembly process should include both accurate 
evaluations of all possible energy levels in the microscopic regime and a statistical 
mechanics treatment of their interplay at the mesoscopic scale. To this end, it 
is far from enough to just analyze the placement of a molecule on a particular 
surface unit cell. Instead, multi-scale modeling is required. 

In this work, the microscopic energy levels of simple ordered lattice configura
tions are characterized by first principle DFT calculations. For this method often 
represents a fair compromise between sufficiently high accuracy and feasible com
putational cost. The energy parameters of the disordered structure, due to the 
high level of complexity, are evaluated by an effective cluster expansion method 
based on a set of DFT calculations. The resulting energetics of all configura
tions in the microscopic scale are then employed to parameterize a Lattice Gas 
Hamiltonian, which can subsequently be used to address the mesoscopic ordering 
behavior at finite temperatures by means of Monte Carlo simulations. Based on 
the results of systematic Monte Carlo simulations, we aim at an atomic under
standing of the mechanism of self-assembly and an ab-inito prediction of a full 
phase diagram of this adsorbate-substrate system. The accuracy of prediction 
can then be checked by further DFT calculations and STM simulations. 
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Chapter 2 

Theoretical Background 

2.1 Electronic Structure Calculations 

In order to obtain a microscopic description of chemical reactions taking place at 
molecule-metal interfaces, one must in principle solve the Schrodinger equation 
for an enormous number (N) of electrons, which interact according to the laws of 
quantum mechanics. Since the problem is highly nontrivial and the computational 
effort grows very rapidly with increasing N, one has to find a method which 
can simplify the mathematical description of the system. Nowadays, the most 
successful and most often used technique to solve the many-electron problem is 
based on the density functional (DFT) method of Hohenberg and Kohn. In this 
section, the basics of Density FUnctional Theory together with the algorithms 
implemented for calculations are described. 

2.1.1 The Schrodinger Equation 

The ultimate goal of most theoretical approaches to quantum systems is finding 
the wavefuction of a many-body system consisting of M ions and N electrons, 
where N and M are of the order of Avogadro's constant. For a stationary state, 
if the many-body wavefuction '11 is known, any physical property A can be cal
culated by taking the expectation value of the associated (Hermitian) operator 

A. 
A[w] = (wIAlw) (2.1) 

In quantum mechanics, stationary states '11 and the corresponding energies E of a 
many-body system are determined by the time independent SchrOdinger equation. 

Hw = Ew (2.2) 

where the many-body Hamilton operator H includes the following contributions: 
(i) The kinetic energy of the N electrons: 

A N '11,2 
Te = - ~_"V2 L...J 2m rA: 

k=l 
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where m is the mass of an electron and v~", is the Laplacian operator acting on 
the kth electron. 

(ii) The kinetic energy of the M ions: 

(2.4) 

here, MI is the mass of the Ith ion and Vt.r is the Laplacian operator acting on 
the Ith ion. 

(iii) The electron-electron interaction (considering only the electrostatic inter
action): 

(2.5) 

Where "{rkO"k}" denote the position and spin of the kth electron. 

(iv) The interactions of the ions: 

All M,M e2 
Vion-Ion({R/}) = -2-4 - L IR R I ZIZI' 

7r€o I - I' 
1,1' 

(2.6) 

I¥-I' 

Here, the "{RI}" and "Z/, are used to represent the coordinate and charge of 
the ion I. 

(v) The electron-ion interaction: 

(2.7) 

where e'T]+ denotes all charge densities of the ions, assuming the positive charge 
is distributed continuously. 

Consequently, we may rewrite the time independent many-body Schrodinger 
equation as: 

(Te+Tlon + 'Ve-e+ ~on-Ion + 'Ve-Ion)W( {rkO"d, {RI}) = Ew( {rkO"k}, {RI}) (2.8) 

where W ( {rkO"k}, {RI}) is a function of the coordinates of the interacting M + N 
particles. It has long been known that there is no analytical solution for equation 
(2.8). We therefore have to use some, justified, approximations. 
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2.1.2 The Born-Oppenheimer Approximation 

The first important assumption used in many-body electronic structure calcula
tions was formulated in 1927 by Born and Oppenheimer[32]. The approximation 
is based on the fact that the electrons are much lighter than the ions (even the 
lightest 1 H atom is a factor of 1800 heavier than an electron), therefore the char
acteristic frequencies of electrons and ions are very different. The electronic and 
ionic motions can be separated by assuming that electrons move so quickly com
pared to the movement of ions that they are always in adiabatic equilibrium (in 
their ground state) with respect to ionic geometries. The consequence is that the 
wavefunction for the whole system can be decoupled into separate wavefunctions 
for the electrons and the ions, the total energy can then be considered as a func
tion of the ionic configurations in phase space only. For a given ionic geometry 
{RI}, the eigenstates <1>11 of the N electrons are defined by 

ir( {RI} ) <1>11 ( {RI}, {rkuk}) = E~{RI } <1>11 ( {RI}, {rkud) (2.9) 

where 
(2.10) 

The overall wavefuction of the M + N system can therefore be represented by the 
product of ionic wavefuntion All ( {RI}) and the electronic eigenfunctions of each 
ionic configuration <1>11 ( {RI}, {rkud)· 

11 

The corresponding many body Hermitian operator can be written as 

fI = fIe + Vlon- Ion + Tlon 

here, only Tlon cannot be interchanged with All. 

M 11,2 
Tlon(AII<I>II) = L L -2M V~r(AII<I>II) 

11 1=1 I 

with 

V~r(AII<I>II) - VRr [AII (VRr<l>lI) + (VRr AII )<I>II] 

(2.11) 

(2.12) 

(2.13) 

= AII(V~r<l>lI) + 2(VRrAII)(VRr<l>lI) + (V~rAII)<I>1I (2.14) 

Multiplying both sides of the many-body SchrOdinger equation by <1>: and inte
grating over the electronic coordinates, we obtain 

< <l>l'lfIlw > = EAJ.' 
- (E~ + Tlon + Vion-Ion)AJ.' 

M 11,2 
-L L 2M [(<I>J.'IV~r 1 <1>11 ) All + 2 (<1>1'1 VRr 1<1>11) VRrAII] 

11 1=1 I 
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where the second line arises from the contribution of electron-phonon coupling. 
However, according to the Born-Oppenheimer approximation, electrons are as
sumed to respond instantaneously to the ionic motion and thus the movement of 
ions shall not induce transitions from 4?" to 4? w Therefore, the matrix elements 
(4?IlIVt.rl4?,,) and (4?IlIVRrl4?,,) vanish for J.L =1= v. For J.L = v, on the other hand, 
the term (4?IlIVRrl4?ll) also vanishes because (4?IlIVRrl4?ll) = ~VRr(4?IlI4?Il) = 0, 
and the diagon~l element -2~r (4?IlIVirl4?ll) can usually be neglected. 

The ionic wavefunction of the M + N system now satisfies the following equation 

(2.15) 

The trajectory of ions can, due to their large mass, generally be described as 
classical particles using classical (Newton) equations of motion. The Coulomb 
summation of Vion-Ion converges very slowly in both real and reciprocal space, and 
is usually calculated by the Ewald Method [33]. In the the succeeding sections, 
the emphasis are put on the calculations of the electronic energy Ee 

2.1.3 The Hartree Approximation 

Up to this point, the only unknown term is the electronic energy Ee, which 
consists of the kinetic energy of the electrons, the potential energy of electrons 
in the field of the nuclei, and electron-electron interaction. Here, we rewrite the 
electronic Hamiltonian 

(2.16) 

The attractive potential exerted on the electron at position r due to the nucleis 
is often called the "external potential", Vext{r). Despite the decoupling of elec
tronic and ionic motions, the operator 'Ve-e still couples with coordinates of all 
electrons. The solution of the SchrOdinger equation with He is therefore still the 
many-body wavefunction, which depends on 3N spatial coordinates and N spin 
coordinates. 

The second historically very important approximation is the Hartree approxima
tion [34]. The formulation of this approximation is that each electron is assumed 
to move in a smooth potential field generated by all ions and other electrons. The 
movement of an electron therefore does not explicitly depend on the positions of 
other electrons but on the averaged charge density of the N-electron system. As 
a consequence, the Hartree approximation maps the original problem of N in
teracting electrons to a problem of N independent electrons moving in the mean 
field due to all other electrons. If we write the Hamiltonian for the kth electron 
as Hk, then the total Hamiltonian reads 

(2.17) 
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Since the spins of the electrons axe not taken into consideration, the electrons axe 
free to commute with each other, the wavefunction lJtHartree can therefore be writ
ten as the product of None-electron wavefunctions. In principle, lJtHartree can be 
any axbitrary function in the N-paxticle Hilbert space, which can be differentiated 
twice and normalized. 

(2.18) 

The eigenstates of the N-electron system can then be constructed from one
electron eigenstates. 

irlJtHartree = h(rl) + €2(r2) + ... + €N(rN)]lJtHartree 

The expectation value of fie is obtained from 

(2.19) 

In order to find the best set of IPk(rk), we introduce a Lagrange multiplier €k to 
guaxantee that the one-electron wavefunctions axe normalized, and minimize the 
above equation with respect to the wavefunctions IPA; 

/. [(fie) - t €k J IIPk(rkWd3rk] = 0 
IPk k=l 

(2.21) 

Then, we obtain the N single paxticle (Haxtree) equations which axe used to 
determine the functions IPk(rk) 

(2.22) 
The above function can be rewritten in a single-paxticle equation form : 

[-~ V2 + Vell(rk)] IPk(rk) = €kIPk(rk) (2.23) 

with 

veil (rk) = Vext(rk) + ~ J p(rk') d3rk' - ~ J IIPk(rk)1
2 

d3rk' (2.24) 
47r€o Irk' - rkl 47r€o Irk' - rkl 

The first term is the external potential due to the ions, the second term is called 
"Haxtree potential", VHartree, which can also be obtained from the Poisson Equa
tion 

(2.25) 
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and the third term is the "self interaction correction" for the Hartree potential. 
As can be seen, the "effective potential" itself depends on the solutions c,ok(rk). 
The Hartree equations are therefore just "effective" (not real) single-particle equa
tions. 

Since the "effective potential" is initially unknown, because the charge density 
p(r) is not known, the Hartree equations are solved by the self-consistent field 
(SCF) method [33J. 

2.1.4 The Hartree-Fock approximation 

'The Hartree-Fock approximation is an extension of the Hartree approximation to 
include the permutation symmetry of the wavefuncion. According to the Pauli 
exclusion principle, the total wavefunction must be antisymmetric with respect 
to an interchange of electrons. 

\lI (c,ol (ri, (11), c,02(r2, (12), ... , c,o N(r N, (1 N)) = - \lI (c,02 (r2, (12), c,ol (ri, (11), ... , c,o N (r N, (1N)) 
(2.26) 

where rk, (1k denote the position and spin of the kth electron respectively. There
fore no two electrons can have the same set of quantum numbers and electrons 
with the same spin cannot occupy the same state simultaneously. 

In order to fulfill the Pauli principle, the many-body wavefunction is represented 
by the Slater determinant of an N x N matrix of single particle wavefunctions, 
which has the form of a linear combination of all possible permutation of the 
single-particle wavefunctions. 

c,ol(rl, (11) 
c,02(rl! (11) 

c,01 (r2, (12) 
c,02(r2, (12) 

c,01 ( rN, (1 N ) 
c,02(rN, (1N) 

The factor 1/..fiiii makes sure that the many-body wavefunction is normalized. 
Following the same method of minimizing the expectation value of (\lIHFliIel\llHF) 
as we did in Hartree approximation to determine the best set of single-particle 
functions, we obtain the Hartree-Fock equations: 

-~ ~ r J c,ok' (rk,)c,ok(rk,)c,ok' (rd d3 
~~P' ~ 

41!"€o k'=1 k Irk' - rkl 
(2.27) 

The third line, which is not included in Hartree equations, is known as the "ex
change interaction". When k' = k, this term equals the "self interaction correc-
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tion" in the Hartree's approximation exactly. For k' i= k, the exchange interac
tion is negative when the considered electrons are of different spins. Therefore, 
in Hartree-Fock equations, each electron is surrounded by an "exchange hole", a 
small volume where like-spin electrons are not present (Pauli correlation) [28]. 

The Hartree-Fock approximation is obviously better than the Hartree approx
imation. However, the induced exchange interaction is a non-local integral which 
is state-dependent. This makes the Hartree-Fock equations very difficult to solve. 
In addition, since the Pauli interaction is not explicity included in the Hamiltonian 
but is taken into account via the constraint of an "antisymmetric wavefunction" , 
the dynamic Pauli correlation is not included in Hartree-Fock approximation. In 
fact, due to Coulomb repulsion, each electron will displace other electrons (both 
like spin and unlike spin) in its neighbourhood. The electrons do not move inde
pendently. Since Hartree-Fock theory uses a mean field approximation to describe 
the effective potential due to other electrons, the Coulomb correlation interactions 
are also missing. A direct consequence is that the Hartree-Fock approximation 
cannot describe the electronic screening in crystals properly. Consequently, if one 
uses this approximation in metals, he(or she) obtains a zero density of states at 
the Fermi Level. For semiconductors, the energy gap is always overestimated [35]. 
Thus, better approaches to determine the many-body ground state are required. 

2.1.5 Density Functional Theory 

In contrast to traditional electronic methods, which attempt to track all individ
ual electrons to find solutions \lI {ipk(rk, O"k)} to the SchrOdinger equation of N 
interacting electrons moving in an external electrostatic potential, density func
tional theory provides a much simpler approach, i.e. a scalar function, the density 
of electron charge p{r) is used to describe this many-body system: In 1998, WaI
ter Kohn was honored with the Nobel Prize in Chemistry for the development of 
Density Functional Theory. 

The Hohenberg-Kohn theorems 

The central theorem of DFT is that the problem of finding the ground state of a 
many-body system defined by many-body wavefunctions can be replaced by the 
physically equivalent problem of finding the ground state charge density of the 
system. The charge density is defined as 

p{r) = ( 'fl ~ o{r - r.) 'fl) (2.28) 

The formal justification of this approach, which is known as the Hohenberg-Kohn 
theorem, was proposed by Hobenberg and Kohn in 1964 [36]. The first part of 
the theorem states that: 

"The external potential Vezt{r) is (to within a constant) a unique functional of 
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the ground state charge density Po{ r); since, in turn 'Vext (r) fixes iIe, we see that 
the full many particle ground state is a unique functional of Po( r) ". 

For a system with non degenerate ground state, the first theorem means that 
there is a bijective mapping between the the ground state charge density po(r) 
and the external potential 'Vext{r). An immediate consequence is that the ground 
state electron density of a many electron system can uniquely determine the ex
ternal potential, which is sufficient to construct the full Hamilton operator and 
hence in principle to calculate the physical properties in all states of the system 
without the knowledge of the many electron wavefunction. Since, however, only 
the ground state charge density has the one-to-one correspondence with the ex
ternal potential, the density of an excited state cannot be used. 

With this theorem the energy of an N-electron system with a local external po
tential 'Vext (r) can be described by the Hamiltonian 

N 

iIe = re + Ve-e + L Vext{rd· 
k=l 

The total energy is a functional of the ground state electron density po(r), 

E[PoJ - Te[Po] + 'Ve-e[Po] + J Vext (r)po(r)d3r 

= Te[PoJ + 'Ve-e[Po] + 'Vext[Po] 
= F[po] + 'Vext[Po] . 

(2.29) 

(2.30) 

Here, the Hoenberg-Kohn functional F[po] is a new quantity given as a sum of 
two, system independent (universally valid for any system), parts. 

(2.31) 

As can be seen, the first theorem determines the basic strategy of DFT to deal 
with the many-body problem: Not the many-body wavefunction is the quantity 
which will be determined, but the ground state charge density po(r). Since this 
function depends on only three independent spatial coordinates rather than on 
3N coordinates of the wave-function, it is theoretically a great simplification of 
the numerical task and makes DFT computationally feasible even for large sys
tems. At this point, one has to solve the following problem: How can we be sure 
that a certain density is really the ground state density we are looking for? A 
formal prescription, how this problem should be tackled, is given by the second 
part of Hohenberg-Kohn theorem: the Variational Principle. 

For the N-electron system with external potential 'Vext(r), the energy of an N
electron trial density, per), is always greater than or equal to the true ground 
state energy of the system. Moreover, equality is achieved if and only if p( r) is a 
ground state density for this system. 
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with the constraint J p(r)d3r = N 

The second theorem gives a minimization principle which can be used to de
termine the ground-state density if we calculate the total energy for every trial 
density. Because if we happen to use the correct charge density for the total 
energy calculation, then the potential calculated from this charge density will 
be the correct groundstate potential, and then the total energy will be a min
imum. Provided the form of the total energy functional is known, the ground 
state density can be determined. 

The Kohn-Sham Scheme 

Since both the exact ground state charge density Po and the Hohenberg-Kohn 
functional F(P] are unknown, the problem remains now, how the Hohenberg-Kohn 
theorems can be used in practice to determine the actual ground state. The most 
common and successful applications are based on the Kohn-Sham scheme [37]. 

First, we can write the electron-electron interaction Ve-e as 

1 J J p(rk)p(rk') 3 3 Ve-e (P] = - I I d rkd rk' + Encl (P] = J[p] + Encl (P] 
2 rk - rk' 

(2.32) 

Here J(p] is just the classical Hartree interaction as we discussed before and 
Encl(P] contains all non-classical parts. Now the complete Hohenberg-Kohn en
ergy functional can be given as follows 

E(P] = Te[P] + Ve-e(P] + Vext[p] 
= Te[P] + J[p] + Encl[P] + Eext[P] 
,~ ~ -.......- -.......- (2.33) 

unknown known unknown known 
At this point, the basic problem is the unknown functional of the kinetic energy 
of interacting electrons with respect to the charge density. In 1965 Kohn and 
Sham gave a solution to this problem, where they formally split this functional 
into two parts 

(2.34) 

Here the first part T, is the kinetic energy of a model system of N non-interacting 
electrons. This can be expressed in a one particle approach similar to Hartree
Fock approximation, thus is well known. 

h? N 

T,(P] = - 2m :L)c,okIV2 Ic,ok) 
k=l 

(2.35) 

While the second part, which is still unknown, contains the difference of the real 
functional Te(P] and the one particle term T,(P]. Now, the electronic energy can 
be expressed as 

E(P] = T,(P] + J(p] + Vext[p] + Encl[p] + Tc(P] 
= T,(P] + J[p] + Vext[p] + Exc[p] 
~~~~ 
known known known unknown 
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Here the Exc[PJ is the so-called exchange-correlation functional, it is given by 

(2.37) 

To sum the above, we finally get 

(2.38) 

This equation which is called the Kohn-Sham orbital equation, has the form of the 
Schrodinger equation. Here, C{Jk and €k are the Kohn-Sham orbitals (wavefunction 
of non-interacting systems) and the Kohn-Sham eigenvalues of electronic states k, 
respectively. VHartree is the Hartree potential. The exchange-correlation potential, 
Vxc, is given by the functional derivative 

v, ( ) _ oExc[p(r)] 
xc r - op(r) (2.39) 

The central assertion of Kohn-Sham Scheme is that for any interacting system, 
one can find a non-interacting model system, with some local effective potential 
Ve,,(r), that has the ground-state density which exactly equals the ground-state 
density of the interacting system. The difference in the kinetic energy between 
the interacting electron system and the model non-interacting system, as well as 
the many-particle effects, the exchange and correlation energy contribution are 
taken into account in the term Exc{r). 

The minimization process corresponds to the determination of the solution of 
Kohn-Sham equation, which will again lead to the Lagrange multipliers €k. Since 
the potentials depend on the electron charge density, which in turn depends 
on the one-particle wavefunction C{Jk, the Kohn-Sham equations are solved self
consistently {see Fig. 2.1}. 

Solving the Kohn-Sham equations 

The numerical solution of Kohn-Sham orbital equations needs a reasonable de
scription of the one-particle wavefunction C{Jk. A mathematically important sim
plification often used in modelling of macroscopic systems are periodic boundary 
condition. In this context, a plane-wave basis set is a natural choice because any 
periodic function can be expressed as a sum of plane waves. The single-particle 
wavefuntions can then be expressed by 

P 

C{Jk = L c;4>~BiS (2.40) 
p=1 

where P is the total number of plane waves which are used to represent the kth 
Kohn-Sham orbital C{Jk, 4>';'BiS denotes the pth plane wave in the basis, and ~ 
is the coefficient of 4>';'8i8 in the Fourier expansion. Substituting equation (2.40) 
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Generate the starting charge density 

Setup of Kohn-Sham Hamiltonian 

Solve Kohn-Sham equation Mix the 
charge densities 

Construct a new charge density 

Check Energy 
Accuracy not reached 
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Self-consistent density 

Figure 2.1: Schematic representation of self-consistent field method 
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into equation (2.38), and from the left multiply with (tPr8i8
/ (i = 1,2, ... , P), we 

obtain 

The eigenvalues and eigenfunctions can then be solved by common matrix oper
ations. Each eigenvalue €k(k) corresponds to an eigenfunction (,ok(k, r), which is 
constructed by P plane waves. An exact representation of Kohn-Sham orbitals 
<Pk will need an infinite number of basis functions (P -+ 00). In practice, how
ever, only a limited number of plane waves are used to generate a function that 
is "close" to <Pk. For each eigenfunction <pk(k, r), we have 

Oma:Jl 

<pk(k,r) = L C~.kei(k+G)r (2.41) 
0=0 

Here, k is the wave vector in the first Brillouin zone and G is the reciprocal 
lattice vector, which is a linear combination of the primitive reciprocal vectors. 
The plane-wave basis is k dependent, i.e. the same set of P plane wave basis can 
be used to represent eigenfunctions with the same k but a different band index 
k. However, for the eigenfunctions at a different k point, a new basis needs to be 
used. This process should be repeated for an increasing number of k points until 
the first Brillouin zone is sampled densely enough. The parameter Gmax is used 
to truncate the number of plane waves in the basis. Increasing the number of G 
vectors in (2.41) plays the same role as increasing P in (2.40). In current DFT 
calculations, this truncation is often expressed by the "cut-off energy", Ecut : 

E _ n?G~ax 
cut - 2m (2.42) 

Pseudopotentials 

In spite of the simple mathematical picture of a plane-wave basis, this method has 
turned out to be entirely inapplicable to real atomic potentials. The reason for 
this failure lies in the strong attractive potential of the core region of an ion. In 
this region, core electrons are tightly bound to the nucleus and therefore possess 
high kinetic energy (a high cut-off energy is required). The valence electron 
wavefunctions, on the other hand, in order to be orthogonal to the core electron 
wavefunctions (as required by the exclusion principle) must oscillate rapidly in 
the core region. A correct description of all electronic states would therefore need 
an enormously large number of plane waves. However, in most calculations, we 
are only interested in valence electronic states, because the core electronic states 
do not contribute much to the interatomic interactions, but only play the role of 
screening the original ionic potential so that a valence electron does not feel a full 
but only a screened ionic potential. An effective method to simplify the electronic 
calculation is therefore to replace the electronic states in the core region by a 
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"(relativistic) effective core potential", which is also known as "pseudo potential". 
In this method, the core electrons are calculated only for a reference configuration 
(usually a sphere with a given radius re) and are kept fixed thereafter. The pseudo 
wavefunctions are constructed to be identical to the real all electron wavefunctions 
outside the core region and be node-less inside the core region. Such kind of 
pseudopotentials dramatically reduce the number of plane waves in the basis and 
directly yield the valence electronics states (but with a modified description of 
the attractive core region). In this work, all DFT calculations were performed 
using ultrasoft pseudopotentials. 

Physical meaning of the Kohn-Sham orbitals 

Although it is customary to regard the bonding between atoms and molecules 
in terms of the interactions among electronic orbitals, there are no such orbitals 
inherent to the many-particle system where the electron eigenstates are spread 
out and commonly overlap with more than just a few particles. Since the connec
tion between the interacting and non-interacting systems is only through the con
straint that they have the same charge density, the Kohn-Sham orbitals !Pk(rk, O"k) 
cannot be interpreted as the orbitals of the many-electron system. Likewise, one 
should not expect any straight interpretation of the Kohn-Sham orbital energies 
€k either. However, as an exception, the eigenvalue of the highest occupied Kohn
Sham orbital is equal to the negative of the ionization energy of the many-body 
system [38]. 

The Exchange-Corrlation functionals 

Up to this point, the framework of DFT was developed under the assumption 
that the exchange-correlation energy functional is known. However, its explicit 
expression is not known. Thus, further approximations have to be made. The 
first attempt of finding an expression of E,xe[p{r)] was based on a model system 
of a homogeneous interacting electron gas, where Ve,xt(r) and per) are constants. 
The exchange-correlation functional can be expressed as 

(2.43) 

where €,xe(P] represent the exchange-correlation energy per particle of the uniform 
electron gas. Since per) is just a constant, €,xe[P] becomes a function of the local 
charge density per). This approximation is called Local-Density Approximation 
(LDA). It means that the many-body system can be divided into infinitesimally 
small volumes, each of which contributes the same exchange-correlation energy 
as the same volume of homogeneous electron gas. 

(2.44) 

The expression of the function €~pA{p{r» can be further split into exchange and 
correlation contributions. 

(2.45) 
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The exchange part can be calculated by using the Hartree-Fock approximation 
(exchange interactions of an electron in a homogeneous electron gas) and has the 
form 

(2.46) 

The correlation part f~DA(p(r)) , however, is only numerically known from quan
tum Monte Carlo (QMC) simulations done by Ceperly and Alder in 1980 [39]. 
The obtained results can then be parameterized for DFT calculations, the two 
most widely used reresentations today were developed by Vosko, Wilk and Nusair 
in 1980 [40] and Perdew and Wang in 1992 [41]. 

Although LDA is a very drastic approximation for actual systems, it often gives 
surprisingly good results which are comparable or even better than the Hartree
Fock aprroximation. The reason is that the spherical average of wrong qualitative 
description of the exchange-correlation hole in LDA is very similar to the spheri
cal average of the real exchange-correlation hole [28]. A typical problem of using 
LDA, however, is that the binding energy is usually overestimated, as a result, 
the bond lengths and equilibrium volume are underestimated. 

An improvement in the description of the correlation energy is the General
ized Gradient Approximation (GGA), which introduces a function of the elec
tron spin-densities PT (r), P! (r) and their gradients VI Pt (r), VIp! (r). The exchange
correlation energy functional in GGA is expressed as 

(2.47) 

In addition to the local charge density p(r), the semi-local function also takes 
into account the electronic charge density in a direct neighborhood of the posi
tion r and therefore results in better binding energy comparing with LDA. For 
this reason, most current DFT calculations use GGA rather than LDA. 

In contrast with the unique definition for f xc in LDA, there exists more than 
one options to incorporate the charge density gradient. As a consequence, there 
are more than one GGA functionals. The one used in this work is the PW91 
functional, which developed by Perdew and Wang [42J. 

2.2 STM simulations 

As we discussed in the first section, the first principles calculations of the elec
tronic properties of a single metal or semiconductor surface based on DFT meth
ods often require vast amounts of computer time. Today, the straightforward cal
culation of the electronic properties and the conductance of a tunneling junction 
consisting of the two leads and an intermediate region is still only a remote possi
bility. This means that the effects of all calculations of the tunneling current are 
limited by underlying assumptions about the interaction between the scanning tip 
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and the sample surface. Over the last decades, quite a few models have been put 
forward to calculate the tunneling current[43]. In increasing order of theoretical 
difficulty, the four main approaches are: {i)the Tersoff-Hamann approach[44, 45], 
(ii)the transfer Hamiltonian or the Bardeen approach[46], (iii)the scattering or 
Landauer-Biitticker approach [47] , and (iv) the Keldysh or non-equilibrium Greens 
function approach[48] .. In this section, we will give an detailed description of the 
Tersoff-Hamann approach (perturbation approach) and Julian Chen's modified 
Bardeen's approach. Further information can be found in the review papers 
[49, 50]. 

2.2.1 Tersoff-Hamann Approach 

u 

E 
• 

~ 

------------~------------~~. z 
z==o 

Figure 2.2: Schematic representation of the one-dimension tunneling in a square 
potential well 

Considering the one-dimensional case, an electron with energy E moving in a 
finite square well potential U(z) (see Fig. 2.2), the SchrOdinger equation reads: 

fj} d,2 
- 2m dz2 1jJ(z) + U(z)l/J(z) = El/J(z). 

In the classically allowed region, E > U(z), the solutions are plane waves 

where 
k = ../2m(E - U) 

1i 
In the classical forbidden region, E < U(z), the solutions are , 

with 
../2m(U - E) 

K = -!--....:....----:.. 
1i 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

As can be seen, the electron states decay exponentially in z-direction. Conse
quently, there is always a non-vanishing probability (proportional to Il/Jo(z) 12e-21C.t) 
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of finding the electron in the barrier region z. Assuming that the surface and tip 
have the same work function t/> (the minimum energy required to take an electron 
from bulk to the vacuum) and only elastic tunneling is taken into account, the 
probability w of a surface electron with the energy of ESn to present in the tip 
state which have the same energy as ESn is 

(2.53) 

where z is the tip-surface distance, 1/Jsn (0) is the nth surface state and 

(2.54) 

However, there will not be net current between the two leads until a bias voltage 
Vbia is provided. The higher Vbia is, the more surface states come into play. 
Suppose the applied bias voltage is very small so that it will not significantly 
change the surface states, the tunneling current should be proportional to the 
number of surface states within the energy interval eVbia • 

ESn<EF 

I(z) ex L 11/J(z, ESnW (2.55) 
Esn>EF-eVbia 

where, EF denotes to the Fermi level of the surface states and En is the eigen
states of the surface electrons. The obtained tunneling current map is nothing 
but the Local Density of States (LDOS) of the surface around the Fermi Level. 

Due to its simple mathematic expression, the Tersoff-Hamann method has been 
incorporated into nearly all DFT codes. Nevertheless, in realistic cases, the work 
functions of the tips and surfaces are usually different, and the decay of the elec
trons states is not a constant. This method has been analyzed to be reliable only 
when the surface-tip distance is large (> 5 - 6A) and when the feature size is 
well above the typical length scale of electron states (about 1 - 2A) of an STM 
tip [43J. In addition, since the Tersoff-Hamann method is based the electronic 
structure of the sample surface alone (contributions form an STM tip are not 
included), it fails in cases where the properties of STM tips play an important 
role in imaging mechanisms. 

2.2.2 Bardeen Approach 

In Bardeen's tunneling theory, the tip and the sample surface are assumed to be 
sufficient far apart. When the bias voltage is low, the tunneling current can be 
regarded as the net effect of independent scattering events that transfer electrons 
across the tunneling barrier. Thus, instead of treating the combined surface
tip system as one quantum mechanical system, the approach takes the electronic 
structures of the two subsystems separately and then calculates the electron trans
fer between the tip and surface using time dependent perturbation theory. The 
method is based on three further assumptions: (i) the surface-tip interactions are 

31 



very weak, (ii) the electron-electron interactions can be neglected, (iii) occupation 
probabilities of the surface and the STM tip are independent from each other and 
do not change during tunneling. The total current is expressed by the following 
equation. 

where € is denoted to the value of bias voltage applied in an STM scanning and 
the function feE, T) is the Fermi distribution function 

feE T) _ 1 
, - e[(E-EF)/kBTj + 1 (2.57) 

and M denotes the tunneling matrix element, which is determined by the over
lap of the surface wavefunction ('ljJ) and the tip wavefunction(x) at a separation 
surface (z = zo). 

M = ~ 1 (x* 8'ljJ - 'ljJ 8X) dB 
2m z=zo 8z 8z 

(2.58) 

The original derivation of the equations can be found in [46]. As can be seen, in 
Bardeen's approach not only the tip wavefunction but also the working temper
ature and the bias voltage have to be taken into consideration. Thus, this model 
enables a quantitative prediction of tunneling current according to the real ex
perimental conditions. In practice, however, when an STM tip comes close to a 
sample surface, the wavefunctions of the two subsystems are no longer those of 
the isolated tip and surface systems, the interactions between the two leads then 
change the tunneling mechanism substantially[15, 51, 52]. 

2.2.3 Modified Bardeen Approach 

In STM operation, the tunneling of an electron from one electrode to the other 
is highly influenced by the interactions (such as van der Waals interactions, elec
trostatic interactions, chemical interactions and magnetic interactions) between 
an STM tip and a sample surface. The main challenge to a theoretical descrip
tion of the true tunneling process is that the order of the importance of these 
effects depends on the tip-surface distance and therefore on the tunneling condi
tions. The essence of the Modified Bardeen Approach (MBA) is to account for 
the long distance (10 f'V 100A) interactions, e.g. van der Waals force, with the 
stationary-state perturbation theory and treat the short distance (3 f'V lOA) in
teractions, e.g. resonance interaction, by using the time-dependent perturbation 
theory [53]. A brief introduction of time-dependent perturbation theory and the 
explicit derivation of MBA is given below. 

The Schrodinger picture 

Due to the interactions between the tip and a surface, the physical properties of 
a SUbsystem will typically change over time, the appropriate vectors and/or op
erators may also change over time. There are three distinct, equivalent, standard 

32 



approaches to compute the time dependency of these quantities, each of them is 
referred to as a different "picture" . 

In the Schrodinger picture, the time dependency of the actual physical systems is 
carried by the state vectors themselves, the energy operator fI does not depend 
on time. 

A h? 2 A 

H == - 2m V + V(r) (2.59) 

Then the time-dependent wavefunction w(r, t) develops according to 

a A 

in at w(r, t) = Hw(r, t) (2.60) 

The time-evolution of a state w(r, t) can usually be expressed by a time-evolution 
operator 0, which satisfies 

w(r, t} = U(t - O)w(r, 0) 

a a A A A 

in at w(r, t) = in at U(t - O)w(r, O} = HU(t - O)w(r, O} 

Thus we get 

=} in~O(t - O} = fIO(t - 0) =} O(t - 0) = e-k Ht 
at 

w(r, t) = e-kHtw(r, O} 

The change with time in this case is part of the wavefunctions. 

Heisenberg picture 

(2.61) 

(2.62) 

The Heisenberg picture can be derived from the Schrodinger picture, if we put all 
the time-dependency into the linear operators. The wavefunction, on the other 
hand, maintains exactly the same at whatever time. From (2.62) we have 

w(r,O) = w(r, t)ekHt (2.63) 

w(r,O) does not depend on time, because 

~w(r 0) = !"fIeiHt/liw(r t) + eiHt/li~w(r t) 
at' n ' at' 

= *fIeiHt/1i w(r, t) + eiHt/1i [_*fIw(r, t)] 

- *fI eiHt/1i w(r, t} - *fI eiHt/1iw(r, t) 

- 0 

The expectation value of an operator A in the state w(r, t) reads 

(w(r, t)IAlw(r, t)) = (w(r, O)leiHt/liAe-iHt/lilw(r, 0)) (2.64) 

The time dependent operator is defined as 

AH = AH(t) = eiHt/liAe-iHt/1i (2.65) 
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Interaction Picture 

The interaction picture is a combination of the last two pictures for the case 
when the Hamiltonian operator can be suitably divided into two (or possibly 
more) parts, one of which is well-understood. For instance, sometimes we have 
a situation, that the energy operator is composed of a time independent part Ho 
and a time dependent potential V (t) 

H == Ho + V(t) 

In this case, we can use the interaction picture, because it separates the ground
state, described by Ho, from the interaction, described by V(t). 
The wavefunction in the interaction picture is defined by 

wT = eiHot/Tiw(r, t) 

The operator A(t) in the the interaction picture is given by 

AT(t) = eiHot/Ti A(t)e-iHot/Ti 

The changes of the wavefunction in the interaction picture depend only on Y;.. 
We have 

fI !..eiHot/Tiw (r t) + eiHot/h.!!.. W (r t) 
0li, , 8t' 

~ i . . -i ~ ~ 
= HO"h,eiHot/hw(r, t) + eiHot/hT(Ho + V(t»w(r, t) 

- _*[eiHot/hV(t)e-iHot/hJ[eiHot/hw(r, t)] 

i ~ 
- -"h, v,.(t)wT(r, t) 

There is also an equation of motion for the operator VT(t) 

d~ i ~ ~ 8~ 
dt VT(t) = "h,[Ho, VT(t)] + at VT(t) 

These three pictures allow us to determine the evolution of a system once the 
ground state is known. 

Time dependent perturbation theory 

Since we know that 

We can easily integrate from to to t and get the integral equation 

ili,[wT(r, t) - wT(r, to)] = it dt'y"(t')wT(r, t') 
to 
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wT(r, t) = wT(r, to) + i~ lot dt'VT(t')wT(r, t') 

Note that the function wT(r, t) occurs twice: once on the left and then in the 
integral. We can use this equation successively, such a succession is called a per
turbation series. 

Zero-order: W T ( r, t) in the integral is zero 

w~(r, t) = wT(r, to) 

First-order: wT(r, t) in the integral is wT(r, to) 

Second-order:wT(r, t) in the integral is w~(r, t) 

We could use this solution to create the solution of w~(r, t), which would be the 
fourth-order, and so on, in principle till we arrive at a constant solution. This 
implies that our wavefunction w~(r, t) does not change from the approximation 
W~-l(r, t) 

In our model, we generally limit the series to the first order perturbation ex
pansion. Then, our solution is given by 

Transition to the first order 

Now let us assume that we have one electron in a state 1Pm at t=O, the interaction 
picture of this state is then 

1PTm(r, t) = eiHot/h,1Pm(r, t) 

1Pm(r, t) = e-iHot/fl1Pm(r) 

1PTm(r, t) = 1Pm(r) 

Next we want to calculate the wavefunction 1Pm at a later time, using our first 
order relation: 
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To get the transition probability from state t/Jm to another state t/Jn, we need 
to calculate the overlap of these two states: 

This involves: 

J d3rt/J;n (r)t/Jrm (r, t) = J d3rt/J;n (r)t/Jrm (r) - * 1: dt' J t/J~(r)eiHot/1iV(t')e-iHot/1it/Jrm(r 
= 8nm - * 1: dt' J d3r (t/J:(r)Vt/Jm(r)) ei(Wn-Wm)t' 

Here, 

And for the probability if nfm,we therefore get 

where 

Pm .... n(t) = 1* lot dt'ei(Wn-wm)t' (t/J:V(t')t/Jm)r 

- ~2J(W;m) 1(t/J:V(t')t/Jm)r 

J(W;m) = [Sini;r)f 

(2.66) 

As known, the maximum value of J(W~m )is t2 and this function vanishes for 

wnmt = 2mT n = 1,2,3 ... 

If t is large enough, we can express f(w~m) by a delta-functional 

J( !!!w.I:i.) • 2(!!:!.tuu!) 8(Wnm)'Jr = 2 = szn 2 

2 t (W~rg)2t 
(2.67) 

Substituting (2.67) into (2.66), the time transition velocity or the number of 
transitions per second is: 

(2.68) 

Julian Chen's Theory 

In the Modified Bardeen Approach, developed by C. Julian Chen [53], the surface 
potential is given by Us and the tip potential is given by UT. The potentials of 
the two components are required to fulfill the following two conditions. 
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For t < 0, the tip potential UT is switched off, and the Schrodinger Equation for 
the sample system is 

(2.69) 

For t ~ 0, the tip potential UT is switched on and the sample system starts to 
evolve according to the time dependent SchrOdinger Equation 

n,2 2 )'n, 81/J 
{ - 2m V + UT + Us 1/J = Z Ft 

The tip system is also described by a Schrodinger Equation 

n,2 
( __ V2 + UT)1/J", = E",1/J", 

2m 

(2.70) 

(2.71) 

The key point in Chen's derivation is to develop the wavefunction 1/J in terms of 
the unperturbed tip states 1/J", 

(2.72) 

(2.73) 

where for t = 0 we assume C",{O) = o. Now, we substitute equation (2.73) into 
equation (2.72) 

= 1/Jl-'e-iE,.t/1i. + I: C/I{t)1/J/le-Ellt/1i. (2.74) 
/I 

We can see from equation (2.74) that the wavefunction 1/J is now a linear combi
nation of the original state 1/J1-' and all the tip states 1/J",. All the changes of our 
system with time are included in the term C",{t). The time-dependent coefficient 
C",(t) can be evaluated with: 

C/I(t) ;"" i~ It ei(Ev-E,.)t' /1i.( 1/J",UT1/J/J)dt' (2.75) 

And the transition probability per unit time is 

(2.76) 

Calculation of the current 

According to the SchrOdinger Equation, the decisive matrix element M/J'" for the 
transition from state 1/J1-' of the surface to 1/J", of the tip can be rewritten to a 
Bardeen like form. The integral encompasses only the region of the tip, because 
the potential UT is zero outside. 

MI-'''' = (1/J",UT1/J/J) = loT dt1/J/JUT1/J; = loT dt1/J/J (E'" + ;~ V2
) 1/J; (2.77) 
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Due to the delta functional, E/-, and E", must be equal, and therefore, the matrix 
element can also be written as 

M/-,,,, = 2n2 r dt('I/J/-, V2'I/J; - 'I/J;V2'I/J/-,) (2.78) 
mJnT 

Note that the surface potential is zero in the region of integration. 

With the help of Gauss's theorem, the integral can be transformed into a surface 
integral over the separation surface S, while the operator of the kinetic energy 
becomes a gradient: 

(2.79) 

According to Chen's theory, the matrix element has the dimension of energy. 
From Chen's point of view, its physical meaning is the lowering of energy due to 
the interplay of the two states. Integrating over all the states of the tip and the 
sample, taking the occupation probabilities into account, the tunneling current is 

47re 1+00 

I = - dc[f(EF - eV + c) - f(EF + c)] x L IMJL'" 12 n -00 /-','" 
xc5(c - cl')c5(c - c"') (2.80) 

Where c is the eigen values of the tip and surface in the vacuum, feE) = [1 + 
exp(E - EF)/kBTt1 is the Fermi distribution, Ps(EF) is the density of state 
(DOS) of the sample at the fermi level, and p-r{EF) is DOS of the tip at the fermi 
level. 

Numerical Implementation 

The wave function for the surface is 

'l/JI' = L As {G-:S)e-K(Gs)zei(K+Gs)rii 

Gs 

The wavefunction for the tip is 

'I/J'" = L AT(G-;' )eK(G;')zei(K+G;')rjj 

G;' 

(2.81) 

(2.82) 

Here A is the amplitude, e-K(Gs)z and eK(G;')z describe the decay of the surface 
and tip states into the vacuum and ei(K+G)rii is a two dimensional planewave. K 

is ~efined by ~aking into acco~nt t~e kine~ic !mer~ associated w~th the given 
reclprocallattlce vector, U - "2mK(G)2 + :m (K + G)2 = E and U IS the barrier 
height. 

- 'l/J1':z'I/J: 
.E As (G-:S)A;' {G;' )ei(K+G~)riie-i(K+G;')riie-K(Gs)z K{G;' )eK(~83) 

GsG;' 
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is tPJ.' VtP; = ~ As(G:')A;'(G;')K(G;')eK(G;')Ze-K(Gs)z J dB ei(Gs-G;')rjj 

GSGT 
(2.84) 

J dSei(Gs-G;')rjj = J dxei(Gs-GT)xdyei(Gs-GT)Y (2.85) 

This integration can be performed analytically. For our calculations we used the 
BSKAN code, which is described in [43]. 

2.2.4 Applications of the first-principles STM simulations 

Interpret the STM images 

It is well known that an STM image is a map of electronic states of a surface. 
Its formation can be affected by many factors: e.g. the tunneling current, the 
bias voltage, the configurations of an STM tip and also the interactions between 
the tip and the surface. As a result, the interpretation of the microscopic surface 
structures of a given STM image has been regarded as one of the most delicate 
problems in surface science. The main applications of the first-principle STM 
simulations are therefore to interpret the images mapped in STM measurements. 

In principle, with the theory introduced above, one can perform STM simula
tions for all possible configurations under real experimental conditions: the same 
tip material, bias voltage and current value. The obtained images can then be 
compared with the constant current map produced from the STM experiment. 
The configuration, which is consistent with the experimental result, is very likely 
the surface structure of we are looking for. Although this strategy is easy to 
understand, the number of possible structures for a surface system are usually 
too large to be calculated. In addition, since the first-principles STM simulations 
are as time consuming as DFT calculations, the strategy used in practice was the 
following. 

• Step 1: Based on other experimental results, e.g. LEED, propose some 
possible structures of the adsorbate-substrate system. 

• Step 2: Perform the first-principle calculations to evaluate the low temper
ature adsorption energy per adsorbate of those configurations. 

• Step 3: Select only a few of configurations, which are associated with the 
lowest adsorption energies for STM simulations. Since most STM experi
ments are carried out at very low temperatures, the surface structure mea
sured by STM should be in (or very close to) the ground state configuration 
determined with DFT. 

• Step 4: Compare the simulated images with the STM experimental results. 
Ideally, only the global ground state configuration in the simulations can 
reproduce the experimental results. 
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As can be seen, the whole structure search process is based on first-principles 
calculations, except the first step. The accuracy of theoretical investigations 
using this strategy therefore significantly depends on the how close the proposed 
structures are to the global ground state. Since the initial "guess" plays such an 
important role in the search of the ground state configuration, this strategy is 
efficient and reliable only when the surface substrate is simple and the adsorbates 
possess only very few degrees of freedoms. 

Predict the· adsorption configuration for large organic molecules 

When the adsorbate we are interested in is large, the determination of the ground 
state adsorption site is always very difficult in first-principle calculations: 

• Large adsorbates usually require large super cells for DFT calculations. As 
the size of super cell increases, the time spent for each configuration also 
increases. 

• For large adsorbates, it is difficult to predict the actual adsorption site 
of the molecule. In order to determine the ground state configuration, in 
principle, one needs to scan the positions of the molecule in two dimensions 
on the surface. After each move, the total energy of the configuration has 
to be calculated by DFT. 

• After completing the two dimensional scan, the ground state adsorption 
configuration is the structure associated with the lowest total energy. 

This strategy is very time consuming and inefficient. By contrast, first-principles 
STM simulation can predict possible ground state configurations very efficiently. 
First of all, the STM tip used for simulation is prepared by attaching an adsorbate 
to the tip apex. Secondly, instead of the constant current mode, the modified 
STM tip should be kept at a constant hight during scanning (constant height 
mode). As the tip scans the clean substrate surface, a two dimensional map 
of tunneling current is generated. In this map, the points associated with high 
current values indicate the area, where the overlaps of the wavefunctions between 
the adsorbate and the substrate are large. Since the most stable adsorption 
configuration corresponds to the largest overlap of the wavefunctions, the ground 
state configuration is marked by the highest current value in the simulated STM 
image. Based on the result of this qualitative searching method, one can then 
perform DFT calculations for a quantitative evaluation [54]. 

Study the imaging selectivity of modified tips 

Due to the on-going refinement of STM techniques, today even the atomic-scale 
electronic properties of adsorbate-substrate systems can be explored. Recently, 
the selective measurement of individual molecular states or surface states has 
become a focus of research [55, 56]. These investigations are of great inter
est for molecular electronics and nano-scale device fabrication [57, 58, 59, 60]. 
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However, selectively imaging molecular or metal surfaces states in STM measure
ments is usually prevented by the complex coupling of the electronic st ates of 
the molecules, surfaces, and STM tips. Collaborating with the group of Hongjun 
Gao in Beijing, we studied the state selectivity of a modified tungsten ST M t ip 
functionalized by the attachment of organic molecules [18] . 

At low temperature and under UHV condition, the STM measurements were 
carried out on the perylene-Ag(llO) system. The chemical formula of a perylene 
molecule is C2oH12 . The density of states of an isolated molecule in the vacuum 
is shown in Fig. 2.3. The highest occupied molecular orbital (HOMO) , i. e. t he 7r 

st ates, can be visualized by a partial charge density calculation, see Fig. 2.4( c). 
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Figure 2.3: Density of states of a perylene molecule in the vacuum 

As seen in Fig. 2.4(a), the molecule is fiat and consists of five benzene rings. 
To isolate the interaction between one adsorbate and the substrate from the in
termolecular interactions, we chose the coverage of about 0.6ML to determine 
the optimized adsorption configuration , see Fig. 2.4(a). In total, twenty possible 
structures varying in the orientations and adsorption sites have been analyzed. 
The molecule is only weakly bound to the surface, the adsorbate-substrate in
teractions are mainly due to the overlap between the 7r states of the molecule 
and the electronic states of the surface. The ground state configuration is shown 
in Fig. 2.4(a), in which the cent er of the molecule is above the on-top site of 
the surface; the longitudinal axis is parallel to the [110] direction. With this ad
sorption geometry, the overlap of electronic states is maximized and leads to the 
adsorption energy of - 0.53 eV. Comparing the partial charge density of perylene 
in the vacuum and adsorbed on a Ag(llO) surface (see Fig. 2.4(b) and (c)) , it 
can be seen that the molecular states of perylene remain virtually unchang d, 
indicating only a physisorption of the molecule [18]. 
Previous low energy electron diffraction (LEED) experiments showed that, on 
Ag(llO) surfaces, the local adsorption configuration of perylene molecules does 
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Figure 2.4: The ground state adsorption configuration of perylene on the Ag(llO) 
surface. (b) Partial charge density of perylene molecule deposited on the Ag(llO) 
surface. (c) Partial charge density of an isolated perylene molecule in the vacuum 
(from -0.7 to +0.7 eV relative to the Fermi level) 

not depend much on the coverage [61 , 62] . Consequently, we can use the ground 
state configuration shown in Fig. 2.4(a) to analyze the perylene-Ag(llO) system 
for different coverages. Throughout this work, all STM simulations are based on 
the electronic structure of this configuration. 

Fig. 2.5(a) shows a high-resolution STM image of a perylene monolayer on t he 
Ag(llO) surface. Each perylene molecule is imaged as four bright lobes. First
principles STM simulations indicate that this image is obtained with a clean 
tungsten tip (see Fig. 2.5(b) and (c)) . The twist of the molecule in the ex
perimental images is probably due to lateral intermolecular interactions of the 
adsorbates. Comparing Fig. 2.5 with Fig. 2.4(b) , we see that the STM image 
obtained with a clean tungsten tip is roughly equivalent to the local charge den
sity, i.e. , the 7r states, of the perylene molecules on Ag(llO). The surface states 
do not show up in either experimental images or STM simulations. 

Functionalizing an STM tip is rather simple and straightforward in the experi
ments: move bring the tip close to the surface and apply voltage pulses. When 
this tip is used for STM scanning, the obtained image changes to a differ nt 
mode. We thus conclude that the electronic properties of the tip have changed . 
The most likely option in this case is that the tungsten tip has picked up a pery
lene molecule. Tuning the bias voltage and current, this functionalized tip can be 
used to block the tunneling from the perylene states the energy levels of perylene 
adsorbates and image only the surface state electrons. As seen in Fig. 2.6 (a), 
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Figure 2.5: A monolayer of perylene molecules adsorbed on Ag(llO) (a) A high
resolution STM image, 3nm x 3nm. (b) An enlarged image of one perylene 
molecule in (a), 1.2nm x 1.2nm. (c) Simulated STM image with a clean tungsten 
tip. Parameters: V = + 1.8V, I = 90pA. 

with a bias voltage of -0.8V and tunneling current of 27.5pA, part of the Ag 
surface appears as a protrusion. Varying the bias voltage to -0.67V and changing 
the current to 161.5pA (see Fig. 2.6(b)) , the whole Ag surface appears and Ag 
rows in [110] direction become visible. If the bias voltage is further increased to 
-1.5V, a current of 149pA yields a high resolution of the Ag surface while perylene 
adsorbates are seen as depressions, see Fig. 2.4(c). In order to ascertain that t he 
state selectivity is due to a perylene-functionalized t ip , a set of STM simulations 
have been carried out using the experimental tunneling parameters. As shown in 
Fig. 2.6 (d)-(i) , the simulated images with a perylene modified tip are consistent 
with the features obtained experimentally. The STM simulations thus clearly 
demonstrate that the functionality of the tip is due to the adsorbed molecule. In 
addition, we also note that varying the adsorption geometry of the perylene on 
the tungsten tip, e.g., by rotating the molecule with respect to the vertical axis or 
changing the adsorption site, does not significantly affect the results of the STM 
simulations. This indicates that the perylene molecule on t he STM tip rather 
than the underlying tungsten surface, is dominating the obtained STM image. 

To understand the nature of this effect , an additional partial charge density calcu
lation for a perylene molecule on a W(lOO) surface has been performed. As shown 
in Fig. 2.7(b) , the 7r orbitals of the perylene molecule merge completely with the 
charge density of the metal surface, thereby changing the electronic structure 
of the clean tungsten tip. The functionality of this tip, i.e., the discrimination 
of perylene states, can be attributed to a mismatch of energy levels of perylene 
molecules on the Ag surface and on the modified STM tip . 

To summarize, first-principles STM simulations successfully identified the func
tionality of modified STM tip. In addition , it also indicates that functionalizing 
STM tips with organic molecules can induce energy selectivity in the electronic 
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Figure 2.6: (a)-(c) STM images of perylene molecules adsorbed on Ag(llO) sur
faces. (d)-(f) High resolution details of a single feature in (a)-(c) respectively. 
(g)-(i) the corresponding STM simulation of (d)-(f) with a tungsten tip func
tionlized by a perylene molecule. The position of the molecule on the surface is 
indicated in (i). Parameters: (a) 10nm x lOnm, 0.5ML, V = -0.8V, I = 27.5pA; 
(b) 7.9nm x 7.9nm, 0.6ML, V = -0.67V, I = l61.5pA; (c) 10nm x 10 nm, 0.3 
ML, V = -1.5V, I = l49pA 

transport through organic interfaces. 

2.3 Multi-scale modeling 

With First Principle Density Functional Theory calculations and Scanning Tun
neling Microscopy simulations, one can study the electronic structures and phys
ical properties of any low temperature, low pressure "elementary process" . By 
the term "elementary process", we mean a physical process taking place within 
the electronic regime, which is limited within a length scale of a few nanometers 
and a time scale of several picoseconds, see Fig.2.8. 

This applies, for instances, to the interaction between a particle and a substrate, 
the rearrangement of electron density during the formation of a chemical bond, or 
the diffusion of an adsorbate on a surface, etc .. However, the physical processes 
within the mescoscopic and macroscopic regimes are either too complicated or too 
inefficient to be treated by DFT, even under the condition of "OK" and "ultra 
high vacuum (UHV)" . 

But it is well known that the organic catalysis functional surface in typical het-
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(a) (h ) 

Figure 2.7: (a) Perylene molecule attached to a W(lOO) surface. (b) Partial 
charge density of the perylene modified tungsten surface (from -O.7eV to +O.7eV 
relative to the Fermi level) . 

erogeneous catalytic cycles are usually exposed to pressures of the order of bar 
and temperatures well above room temperature. While the individual, elemen
tary processes occur on microscopic timescales, the actual catalytic behavior is 
determined by their concerted interplay. As a consequence, the self-assembly pro
cess of e.g. the succinic acid on a Cu(llO), cannot be interpreted based on the 
information from electronic regime alone. The proper theories to apply in meso
copic and macroscopic regimes are statistical mechanics and thermodynamics. A 
predictive modelling of such a multi-scale behavior must therefore combine an 
accurate description of all individual processes on the microscopic scale with a 
statistical mechanics treatment of their interplay at the mesoscopic level. Thus, 
an atomistic understanding of the nature of this self-ordering process can only be 
obtained through a multi-scale approach, which consists of electronic structure 
calculations, thermodynamics and statistical mechanics (see Fig.2.8). The rest 
of section 2.3 first reviews some basics of the theories in mesocopic regime, and 
then explains how statistically to deal with the information obtained from the 
microscopic regime. 

2.3.1 Thermodynamics 

In contrast to the theoretical methods described in section 2.1 and 2.2, which 
mainly concern physical properties of a system in the microscopic regime, ther
modynamics deals with the macroscopic or bulk equilibrium properties of matter. 

Thermal equilibrium 

A system is in thermal equilibrium if the state of the system does not change un
der time-independent external conditions. As an illustration, consider a gas of N 
identical particles confined in a volume V. For simplicity, we assume that all the 
particles behave like hard spheres, so that the particles always move in straight 
lines with constant velocity except during collisions. If one particle moves much 
faster than all the others, this particle will collide with its neighbors as it moves. 
Because its neighbors move very slowly, this particle will tend to slow down after 
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Figure 2.8: Schematic representation of the time and length scales used in chem
istry and physics. The elementary processes occuring within the electronic scale 
can usually be investigated by DFT. Statistical mechanics and thermodynamics 
are required to study the observable phenomena taking place in the mesoscopic 
and macroscopic regimes [63]. 

each collision, while its neighbors will pick up energy from collisions with this 
particle and move faster than before. After sufficient time, the momentum of all 
particles will average and remain unchanged from then on. In fact, not only the 
momentum, but also other observable properties, such as the density of particles, 
will average as long as enough time is allowed to elapse. We therefore expect a 
uniform thermodynamic state throughout the volume V. However, if the external 
conditions are changed, the corresponding thermal equilibrium configurations will 
also evolve. These equilibrium configurations are called "thermodynamic states" . 

A profound consequence of the thermal equilibrium picture is that systems in 
thermal equilibrium exhibit uniform dynamics throughout . Since the dynamics 
is uniform, each thermodynamic states can be uniquely defined by only a small 
number of "state variables" such as number of particles "N" , the volume in which 
particles are confined "V", the pressure that a gas is exposed to "P", the tem
perature "T" etc.. A change of a thermodynamic state can therefore always be 
referred to a change of one or more state variables. More importantly, since the 
state variables are independent of the path in which a particular thermodynamic 
state is achieved, one can always choose a convenient path to calculate the trans
formation of thermodynamic states. This makes thermodynamics very powerful 
in the study of macroscopic physical properties of a system in equilibrium. 
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Laws of thermodynamics 

The relation of state variables are derived from four basic postulates, which are 
called "laws of thermodynamics" . 

"The Zeroth law": If two systems are in thermal equilibrium with a third, they 
are also in thermal equilibrium with each other. 

"The First law": Energy can be neither created or destroyed, but can only trans
ferred betweens systems, or between a system and its surroundings. 

dU=8Q-8W (2.86) 

Here, dU is the change of internal energy of the system, 5Q is the heat added to 
the system and 5W is the work done by the system. The energy of an isolated 
system is conserved. 

"The second law": When two systems are brought into thermal contact, there 
exists no thermodynamic transformation whose sole effect is to extract a quantity 
of heat from the cold system to the hot system. This law plays an important role 
of indicating the spontaneous direction of physical and chemical processes. 

"The third law": all perfect materials have the same entropy S at T = OK, 
and this value may be taken to be S = OJK-1mol-1j at higher temperatures, S 
is always positive. However, it is impossible to cool any system to T = OK. 

The laws of thermodynamics are not obtained from mathematic derivations but 
were developed from countless observations of systems at the macroscopic level. 
Thus, the validity of thermodynamics is completely independent from the approx
imations we used in the microscopic scale. However, since thermodynamics uses 
only a few state variables to fully describe the average behavior of a large num
ber of particles in thermal equilibrium, it alone cannot give any insight into the 
physical states of individual particles at the microscopic scale. For an overview, 
see ref. [64]. 

2.3.2 Statistical mechanics 

The aim of Statistical Mechanics is to construct a bridge between the over
elaborate functions of the microscopic variables and the obscure generalities of 
the state variables in a macroscopic system at thermal equilibrium. Take again a 
gas of non-interacting identical particles of mass m as an illustration. At a set of 
fixed external conditions e.g. (N,V,P), each particle occupies different position 
coordinates and momentum vectors as time elapses. As a consequence, the whole 
well defined thermal equilibrium system will experience different microscopic con
figurations (or microstates). If all the possible microscopic configurations are col
lected in a set called the "state space" n, the number of states R contained in n 
should depend on the size of the macroscopic system and the number of degrees 
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of freedom of each particle. 

For each microscopic configuration, the value of a macroscopic state variable 
can be obtained by calculating the corresponding microscopic variables for all 
particles, because the macroscopic property is statistical in nature. For instance, 
if at a particular moment t = to, our model system is in the microstate i, the 
energy of the system can be written as 

(2.87) 

Although the Ei are well defined, the microscopic state of our system changes 
its microstates very rapidly. As an illustration, one mole of a typical gas will 
change its microstates roughly 1032 times per second, into another microstate i' 
[67]. The equation (2.87) thus fails to describe the averaged energy of the system 
for (t -+ 00). Under these circumstances, it becomes necessary for us to know 
the probability Pi (statistical weight) of each microscopic configuration i in the 
state space O. Once ~ is known, the expectation value of any observable A in 
the equilibrium system is given by: 

R 

<A>= LAi x~ 
i=l 

(2.88) 

For instance, the expectation value of energy is < E >= E Ei x~, which is also 
the internal energy U of the system. Thus, instead of studying the time evolution 
of microscopic variables for each particle, the key idea of statistical mechanics is 
to evaluate the probability of finding the equilibrium system in one or another 
microstate .. 

The most straightforward way to find the probability Pi of state i is via "time 
averages": to observe a thermal equilibrium system over a appropriate time in
terval. During the time of observation, the system will pass through a very large 
number of microstates. Based on the assumption that "For a system in equilib
rium, all accessible microstates are equally probable.", a reproducible value of 
Pi can be obtained by simple counting. In general, however, a complete set of 
simultaneous measurements is not accessible. As a result, only a subset of the 
state space 0 is averaged. 

Alternatively, the probability ~ can also be obtained from an "ensemble av
erage" approach, in which a whole set of identical systems are measured and 
each microstate is equally averaged over all possibilities. An ensemble is a set 
of sampled configurations of a system, where each individual sample may have 
a different microstate while sharing three common macroscopic properties [68]. 
To set up an ensemble, we take a sample system of specified volume V, number 
of particles N and think of it as replicated M times, all these M systems are 
thought in thermal equilibrium with each other. Since an ensemble is a collection 
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of imaginary replications of the system, M can be any large number, when ap
propriate, M can be infinite. Thus we expect that all the accessible microstates 
are contained in an assemble with correct proportions. The probability of a par
ticular microstate Pi is then just the number of sampled configurations in that 
particular state ni, divided by the total number of samples M. The statement 
that "the time average and the ensemble average are equivalent" is known as the 
"ergodic hypthesis [69]. 

Depending on the nature of the macroscopic constraints, we have different en
sembles. If all samples are "isolated systems" , i.e. neither energy nor matter can 
be exchanged between samples, the ensemble is called a "microcanonical ensem
ble" (N, V, E common). Since "all microstates of an isolated system are equally 
probable" [69], we have Pi = ni/M = l/R. If the condition of "isolated systems" 
is replaced by "closed systems" and all samples are in thermal contact with a 
heat bath, the corresponding ensemble is called a "canonical ensemble" (N, V, T 
common). In a closed system, ~ is proportional to exp( -Ei/kBT) , where kB is 
the Boltzmann constant (1.380658 x 1O-23J/K). If we proceed further and con
sider samples as "open systems", which means both energy and matter can be 
exchanged between the samples, the ensemble is called a "grand canonical ensem
ble" (N, V, J.L common, where J.L is the chemical potential in each sample system). 
The value of ~ in a open system is proportional to exp[-(Ei + J.LNi)/kBT]. See 
Fig. 2.9. 
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Figure 2.9: A schematic representation of (a) a canonical ensemble, (b) a micro
canonical ensemble and (c) a grand canonical ensemble 

Once a proper type of ensembles has been chosen, all statistical properties of that 
system are contained in the partition function of the ensemble [69]. Considering 
the most widely employed conditions of typical STM operations, where a certain 
coverage of adsorbates are scanned at a constant temperature in URV, it is a nat-
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ural choice to use the canonic ensemble for numerical modeling. The partition 
function of a canonical ensemble is 

(2.89) 

where Ei is the energy level if the system is at the microstate i, T is the temper
ature in Kelvin, and kB is the Boltzmann constant. The sum in (2.89) is over all 
possible microscopic configurations contained in state space. 

Direct connections between the partition function and thermodynamic state vari
ables are established by the Helmholtz free energy [70]: 

(2.90) 

All other thermodynamic state variable can be calculated from this relation. For 
instance, the internal energy of a system is U = -T28(F/T)8T. The equation 
(2.90) therefore plays the role of a bridge between thermodynamics and statistical 
mechanics. 

The probability that a system is in the microstate i is given by the Boltzman 
distribution [69]. 

R 1 -Ei/kBT (2.91) 
i = Ze 

Substituting equation (2.91) into (2.88), we obtain a much better expression for 
the expectation value of any observable A. 

R 1 
< A >= ""' _e-Ei/kBT A· 

LJZ ' 
i=l 

(2.92) 

However, there are still two unknown variables in Equation (2.92). The energy 
level of each microstate Ei and the value of the partition function Z. The for
mer can generally be calculated in the microscopic regime, the method of this 
calculation, which is called "cluster expansion", will be discussed later in this 
chapter. The latter, however, can usually not be calculated, because the number 
of possible microstates R can be astronomically large. For a typical system (e.g. 
a mole of gas), which is an assembly of N = 1023 particles, the number of terms 
contained in the partition function would be of order NN! This is far beyond our 
computational capacity. Nevertheless, as we will show in succeeding sections, this 
obstacle of applying equation (2.92) can be removed by the Monte Carlo method. 

2.3.3 The lattice gas model 

The archetypal lattice gas model is a two dimensional interacting system, where 
each lattice site can either be occupied by a particle or vacant. By the term 
" sites" , we mean the well-defined positions, where atoms or molecules adsorb 
on a surface. The occupancy variable u = 1,0 is used to represent occupied 
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or unoccupied sites, respectively. If the particle interacts with its four nearest 
neighbors, the Lattice Gas Hamiltonian (LGH) is: 

(2.93) 

where V is the nearest neighbor interaction, and Eo is the adsorption energy 
that controls the coverage of the adsorbates on the surface. A large positive Eo 
often corresponds to a low coverage of particles, while a large negative Eo often 
indicates that most of the lattice sites are occupied. As an illustration, we use 
oxygen atoms and a Pd(100) surface, see Fig 2.10(a). Oxygen atom adsorbs on 
the fcc hollow site of the Pd surface. In this model, the nearest neighbor distance 
will be the lattice constant ao . The energy E of a particular lattice configura
tion is calculated by investigating the four nearest neighbors of each site. A pair 
interaction V can be calculated for two adsorbates separated by a distance ao . 

Once the values of Eo and V are known, the energies of all lattice configurations 
can be calculated exactly. The probability for each lattice configuration is then 
given by equation (2.91) . 

(a) (b) (c) 

Figure 2.10: (a) A schematic representation of the lattice gas model, where only 
the binding energy Eo, and the interaction V between nearest neighbor are con
sidered (b) an example of an ordered lattice configuration (c) an example of a 
disordered lattice configuration 

Even though the lattice gas model appears to be a dramatic simplification of 
real systems, it is one of the most useful methods to study the thermodynamic 
properties at surfaces. Once thermal equilibrium has been reached, the coverage 
of the surface remains constant, and the adsorbates spend most time in their 
adsorption sites, while the diffusion and desorption processes take place only in 
very short intervals. Since for the purpose of this work, we are mainly interested 
in the equilibrium properties of succinate molecules on Cu(llO), we concentrate 
in the following on equilibrium states of adsorbates. 
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In most real systems, the energy value of a certain lattice configuration can
not be simply expressed by equation (2 .93), but has to be calculated explicitly. 
In practice, this can be done by zero temperature quantum mechanical methods, 
e.g. DFT. The obtained results, however, are not limited to low temperature 
applications, because the energy levels of a lattice gas model remain unchanged 
as the temperature increases . The temperature dependent quantity is just the 
occupancy of these energy levels, i.e. the Boltzmann distribution. 

Unfortunately, only the lattice configurations which are perfectly ordered (for 
instance, Fig. 2.10(b)) , can be simulated by today's DFT codes. For large dis
ordered configurations (for example, Fig. 2.10 (c)) , the quantum mechanical cal
culations become extremely inefficient. Since direct first-principles calculations 
are not an option, we have to resort to approximations. One obvious approach 
is to express the energy values by the lattice gas hamiltonian in equation (2.93). 
However , the number of energy parameters should be much larger than just two. 
Apart from pair interactions, we also need take into account t rio interactions, 
quatro interactions and higher orders. Each energy p81-ameter can be explicit ly 
evaluated by first principle calculations. This approach is called t he "effective 
cluster interaction method" . Some typical interaction energy parameters are 
shown in Fig. 2.11. 

(a) (b) (c) 

Figure 2.11: Some typical energy parameters of (a) pair interactions, (b) t rio 
interactions and (c) quatro interactions 

The corresponding lattice gas hamiltonian is given by 

all sites 1 all site pairs 1 all site trios 

E = L O"i E o + 2 L Vp(i ,j) O"i O"j + 3' L VT(i,j ,.:)O"i O"jO"k + ... (2.94) 
i ii-J i#j# 

where Eo is the isolated binding energy of the adsorbate on the surface, Vp and 
VT denote to the pair interactions and trio interactions respectively. We again 
t ake oxygen on Pd(lOO) as an illustration. Suppose that the size of our unit cell is 
large enough , so that the lattice configurations do not feel the existence of oxygen 
atoms in their translational symmetric images. (See Fig. 2.12.) Then the energy 
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(a) (b) (c) 

Figure 2.12: (a) An isolated oxygen on a Pd(100) surface, there is only one energy 
parameter : Eo (b) For paired configurations, there are two energy parameters, 
Eo and Vp (c) Three energy parameters in this configuration: Eo, Vp and Vr . 

parameters can be evaluated by the equations below: 

Eo E(unit cell (a)) - E(clean surface) - 1/2E(02) 

Vp E(unit cell (b)) - E(clean surface) - E(02) - 2Eo 

Vr = E(unit cell (c)) - E(clean surface) - 3/2E(02) - 3Eo - 2Vp 

If all interactions are considered in the sums of Eq. (2.94) , then, one could 
describe the energy value Ei for any lattice configuration i . However, for complex 
disordered lattice configurations, the number of energy parameters can be very 
large rendering the calculations very inefficient. Fortunately, the expansion of 
a lattice gas hamiltonian converges very rapidly with respect to the size of the 
considered clusters. We therefore expect that the energy of a lattice configuration 
can be expressed only by the short-distance pair interactions and small-size trio 
interactions. 

2.3.4 Monte Carlo Methods 

So far , the only unknown parameter in Eq. (2 .92) is the exact value of the par
tition function for an ensemble. As discussed in section 2.3.2, the main difficul ty 
which prevents an explicit evaluation of a partition function is the large number 
of microstates associated with the system. Fortunately, Eq. (2.92) can still be 
applied to thermal equilibrium systems by averaging the microstates generated 
by Monte Carlo technique. 

Importance sampling 

Let us first suppose that the value of the partition function Z is known. Then 
a straightforward next step is to calculate the energy Ei for each point i in the 
state space D. The value of Ei can then be substituted to equation (2.92) to 
obtain the expectation value of a macroscopic quantity. Unfortunately, it is not a 
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feasible approach. As one can expect, the total number of points R for a typical 
mesoscopic system is too large to be calculated. Of more importance, even if 
such a procedure could be performed, the obtained results would be subject to 
a large statistical error. Since a complete enumeration through phase space is 
not an option, we therefore consider a random method as a possible alternative : 
average only a (randomly generated) subspace of n to represent the expectation 
value of A with a reasonable accuracy. For the sake of efficiency, the number of 
sampling points M should be much smaller than the total number of microscopic 
configurations R. The average value of A is give by 

f(x) 

E:'I Ae-EdkBT 
AM = ,=1 t 

":'I e-Ei/kBT 
.LJt=1 

--~----------~~-------------+ x a b 

(2.95) 

Figure 2.13: evaluation of the expectation value of a one dimen~ional function 
f(x) with a random sampling method 

The accuracy of such a random sampling method can be illustrated by a one 
dimensional integral between two limits (see Fig. 2.13). The expectation value 
of f(x) should be calculated by a numerical integral over all points between a and 
b : 

< f(x) >= lb f(x)dx/(b - a). 

In a random sampling method, m points on the line are randomly selected and 
the corresponding values of f(x) at these points f(xl), f(x2), ... , f(xm ) can then 
be measured. The average value of f(x)m is given by 

1 
f(x)m = - [f(xl) + f(x2) + ... + f(xm)]. 

m 

It is quite clear that the quality of the obtained average depends largely on the 
locations and quantity of the selected sampling points. Since m must be a very 
small fraction of the total number of points, the obtained averages from such a 
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random sampling are generally neither close to the expectation value nor repro
ducible. In this example, the direct Monte Carlo sampling method fails mainly 
because there is a large region where the values of f{x) are negligibly small, while 
the non-zero value region is going to be scarcely sampled by a random selection. 
Thus, it would be much more efficient to sample a large number of points in the 
region where f(x) has non-zero values and few elsewhere. In other words, the 
number of sampled points in a region should be proportional to their contribu
tion in the expectation value < A >. This is a the basic idea of "importance 
sampling" in a Monte Carlo simultaion. 

Similar with the one dimensional model above, in macroscopic equilibrium, there 
are always a large number of microstates whose Boltzmann factors Pi are very 
small (effectively zero) due to the high value of configuration energy Ei {equation 
(2.91)). Only a very small proportion of the state space corresponds to low en
ergy configurations where sufficiently large Boltzmann factors are weighted. This 
is also a reflection of the nature of the state space, and the low' energy region 
coincide with the physically observed phases such as a solid, liquid, etc. [71]. 
Since only an extremely small part of the state space is important in determin
ing the averages, we resort to an "importance sampling" Monte Carlo method: 
the microstates are not sampled with equal probability, but according to their 
population in the ensemble. The states associated with a significant value of the 
Boltzmann factor are to be more easily to selected and sampled than the others. 
These selected microstates, when sampled in adequately large enough numbers, 
should constitute a very good approximation to a canonical ensemble. The ex
pectation value < A > of a macroscopic property can then be calculated as a 
simple arithmetic mean over the sampled microstates, Eq. (2.95). 

Markov chain 

In order to perform such a importance sampling, one needs to know the Boltz
mann factor for each microstate, so that the sampled points can be properly 
distributed in the state space. Theoretically, this decision can be made via the 
Boltzmann equation, Eq. (2.91). However, as shown in equation (2.89), the pre
cise value of the partition function Z needs to be calculated in the first place. 
Thus, there is a catch that brings us back to the original problem of summing 
over an impossibly large number of states. 

Luckily, Metropolis and his co-workers demonstrated that it is possible to select 
the "important states" randomly by generating a "Markov chain" of configura
tions according to certain probabilistic rules. If the number of configurations in 
the chain is sufficiently large, the selected states are qualified to constitute an 
equilibrium canonical ensemble [72]. 

A Markov chain is a discrete stochastic process in time. Consider a system 
with a finite set of possible states (S1I S2, ... , SR). At each time {to, tl, t2, t3, ... )of a 
discrete sequence, the system can be described as being in one of these possible 
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states. Let Stn be the state in which the system is at time tn . The state Stn is 
random and can be any state Si in the configuration space n with a conditional 
probability Pi' For a system in equilibrium the probability of Sn = Si is given 
by the Boltzmann distribution ~ = exp( -Ei/kBT)/Z, which is independent of 
the time index tn . In a discrete time stochastic evolution, the system starts from 
an arbitrary initial state Sto' experiences a number of states Stl' St2' ... and ends 
at Stn . For any state evolution process, the joint probability P( Sto, Stl' Sh, ... , Stn) 

can be calculated by 

P(Sto) x 

P(Stllsto) x 

P(st2l s tl1 Sto) x 
......... x 

P(Stn_2I Stn_3' Stn_4"" , Stl1 Sto) x 

P(stn_llstn_2,Stn_a,'" ,Stl'Sto) x 

P(Stn IStn_l' Stn_:I1'" , Stl' Sto)' 

The sequence of the state variables Sto' Stl , St2' ... , Stn constitute a Markov chain 
if the probability for each Stj at time ti is independent of all states but only the 
immediate predecessor St! -1 : 

(2.96) 

The Markov assumption implies that the probability of a system to visit a par
ticular state Si at time tn+1 depends only on the current state Stn but not the 
previous history of the system. Thus, for all Markov chains, we have 

(2.97) 

The Equation (2.96) can therefore be used to represent the transition probability 
of moving from the microstate i to microstate j in a single step: 

(2.98) 

Detailed balance 

Up to this stage, the task has been to calculate the transition probability Wij 

for all microstates. Once this is done, one would be able to construct a Markov 
chain of configurations according to the transition probabilities and subsequently 
obtain good approximation to an equilibrium canonical ensemble. The expecta
tion value of any macroscopic property can then be evaluated by averaging the 
sampled configurations. 

Let P(Si, tn ) denote the probability of finding the system in the state Si at time 

56 



tn. Then, the transition probability for all microstates should satisfy the master 
equation 

8P~, tn) = _ ~ WijP(Si, tn) + ~ WjiP(Sj, tn) (2.99) 
3 3 

and the sum rule 
(2.100) 

for any discrete time tn = (to, t l , t2 , ••• ). Since P(Si, tn) is a real number between 
zero and 1, the system would come to equilibrium as (n -+ 00). Once the equilib
rium has been reached, as discussed in 2.3.2 for any equilibrium systems, P(Si, tn) 
would become a constant (Boltzmann distribution). As a consequence, the right 
hand side of (2.99) must become zero, i.e. 

(2.101) 
j j 

Equation (2.101) is referred as the condition of the "global equilibrium". Nu
merically, in order to avoid the "dynamic equilibrium" (a Markov chain which 
is trapped in a cycle of limited states), we impose a stronger (sufficient but not 
necessary) condition called "detailed balance" to make sure a global equilibrium 
is achieved. The expression of the detailed balance condition is given by 

(2.102) 

which implies that 

(2.103) 

where 
(2.104) 

As seen, the ratios of the equilibrium transition probabilities between two mi
crostates is just the ratios of their Boltzmann weights. Thus, we do not need 
the precise value of the partition function to construct an approximation of an 
ensemble. What we need now is an algorithm which takes a system from one 
microstate to another in such a way that Eq. (2.103) is satisfied. This algorithm 
is known as the "Metropolis algorithm" [72]. 

Metropolis Algorithm 

Let us take the lattice gas model as an example. The Metropolis algorithm 
preforms stochastic dynamics (a Markov chain) which produces, starting from an 
arbitrary initial microstate St~, a sequence of microstates 
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The transition of Sti -+ Sti+l for each Metropolis algorithm should be non
deterministic, i.e. the sequence of configurations in a Markov chain is not pre
determined and fulfill the ergodicity condition, i.e. all states are accessible from 
each other with the finite length of a Markov chain. In addition, considering that 
the "important states" in an ensemble are usually confined in a rather narrow en
ergy region, the selected state at time tn should not differ much from the state at 
time tn- 1• The whole process of the Mertropolis algorithm can then be described 
as follows: 

1. Select an initial microstate Sto randomly form the state space n with equal 
probability 1/ R for all possible states. 

2. Let Si to be the state at time tto, then we randomly and with equal prob
ability choose an occupied site and an empty site in configuration Si and 
swap their occupation variable to obtain another configuration Sj. 

3. Calculate the lattice energies for these two configurations with the cluster 
expansion method. 

4. The energy difference of state Si and state Sj is defined by !:l.E = Ej -

Ei . According to the detailed balance condition, we have the transition 
probability Wij = exp( -!:l.E /kBT) 

5. Accept Sj as the state Stl in the Markov chain with a probability that con
sists with the detail balance condition. We rewrite the transition probability 
from state Si to and other state Sj as 

(2.105) 

where Sij denotes the selection probability of Sj from Si, and Aij represents 
the acceptance probability of Sj to be the state Stl. The Equation (2.103) 
can therefore be written is following 

~j = Sij X Aij = e-tl.E/kBT (2.106) 
Wji Sji x Aij • 

According to the selection method described in step 2, it is very clear that 

Sij = Sji 

Thus, we have 
Aij -tl.E/kBT -=e 
Aji 

(2.107) 

However, in order to make the algorithm more efficient, the acceptance ratio 
should be as large as possible so that the system could visit a wide region 
in the state space. Considering that the value of an transition probability 
cannot be larger than one, the value of acceptance probabilities is defined 
as P(Si -+ Sj) = min (l,e-tl.E/kBT). In other words 

{
I if !:l.E < 0 

P(Si -+ Sj) = e-tl.E/kBT if!:l.E > 0 
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In practice, we accept the state si by 

Si is accepted 
si is accepted 
si is rejected 

where ran is a random number, whose value is uniformly distributed be
tween zero and one. 

6. A Markov chain of microstates can then be produced by iterating the above 
steps i.e. repeatedly accepting or rejecting a proposed trial "move". 

To sum up, in the Meropolis algorithm a random walk through the whole con
figuration space is required (step 1 and repeating step 2), so that the sequence 
of microstates in a Markov chain is not predefined. This also ensures that the 
ergodicity condition is fulfilled, because in the lattice gas model, any state Si can 
be obtained by switching occupation variables finite times from another state Si. 

Step 3 to Step 5 guarantee that the random walk is in a "importance-weighted" 
fashion, which satisfies the condition of detailed balance. The Markov chain of 
configurations are therefore generated with a time ordered path. Given sufficient 
long "time" the sampled points should be able to construct an "effective ensem
ble". However, one needs to note that the "time" in this instance is referred to as 
"Monte Carlo time". There is no direct relation between the Monte Carlo time 
and real physical time. As a consequence, the Monte Carlo method described 
above is only used to study the physical properties in equilibrium rather than 
kinetic properties. 
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Chapter 3 

Calculations on 
Succinate/Cu(110) 

3.1 Density Functional Theory Calculations 

All the DFT calculation in this work were preformed with the Vienna Ab-initio 
Simulation Package (VASP), a plane wave based density functional code devel
oped by G. Kresse and J. Furthmiiller [73, 74, 75, 76J. Even though the detailed 
computational method has been already described in section 2.1, there are quite a 
few parameters that need to be determined before a set of systematic theoretical 
investigations starts. Take the density of sampled k-points in the first brillouin 
zone as an example: although a denser the k-mesh leads to a better description 
of the electronic structure, the calculations will be substantially slower. As a 
consequence, the values of these parameters need to be selected in the region 
of the convergence threshold, where both the reliable numerical accuracy and a 
reasonable amount of computing time are balanced. 

3.1.1 Computational Details 

The typical computational parameters in a VASP calculation are given below. 

• The density of sampled k-points in the irreducible first brillioun zone. 

• The cut-off energy for plane wave basis set. All plane-waves with a kinetic 
energy smaller than Ecu.t are included in the basis set, see equation (2.42). 

• The thickness of the slabs. 

• The vacuum region between slabs in the z direction. 

B~ed on the results of a set of test calculations, the copper surfaces throughout 
this work are modeled by super-cells that contain a four-layer slab, in which 
the top two layers of eu atoms are allowed to relax in three dimensions, and 
a vacuum range of about 12A, which is large enough to ensure that the metal 
surface interacts only negligibly with its periodic images. The r centered mesh 
with 3x2x1 and 1x1x1 special k-points is used for 6x6x4 and 8x6x4 unit cells, 
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respectively. This density of sampled k points gives a relative energy convergence 
of about 5 meV per unit cell. In all systems, the energy cutoff for plane waves 
is 400 eV; t he ionic relaxation is stopped when the forces on all relaxed atoms 
are smaller than O.Ol eV per Angstrom. In addition, as has been discussed in 
section 2.1.5, t he ion-electron interaction in all systems are described by ultrasoft 
pseudopotentials and the exchange correlation potentials are calculated by the 
generalized gradient approximation (GGA) of Perdew and Wang (PW91) [42]. 
Due the limited computational capacity, the tests of the GGA functions and 
pseudopotentials are omitted. 

3.1.2 Bulk eu 

Cu is a 4d transit ion metal element whose atomic structure of [Ar]3d1
04s1. The 

bulk copper crystallized in a face centered cubic (fcc) structure. T he equilibrium 
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Figure 3.1: Determining the equilibrium lattice constant ao a Cu bulk by the 
Murnaghan fit. The red dot represents the original calculation data, while the 
blue line is the fitted curve. The most optimized lattice constant obtain from this 
fitt ing is 3.64 A. 

lattice constant ao (nearest neighbor distance between two Cu atoms in the bulk) 
in this work is determined by minimizing the total energies of the primitive unit 
cell. In practice, VASP calculations are carried out for an increasing lattice 
constants in the range of 3.50 to 3.9 Angstrom with an interval of 0.01 Angstrom. 
T he obtained the energetics are then used for a Murnaghan equation state of fit 
[1'1,78, 79]: 

(3.1) 
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Here Vo is the equilibrium unit cell volume, which is related to ao by Vo = a~ . 
The bulk modulus B(T,V) is related to the curvature of E(V) by: 

B(T V ) = V a2
E(V ) I 

' aV2 · 
T 

(3 .2) 

Based on the results of the Murnaghan fit (see Fig. 3.1) , ao has been determined 
to be 3.640 Angstrom. This value is 0.6% larger than the experimental data (3.608 
Angstrom) [80]. The difference is attributed to the fact t hat the binding energies 
are always slightly under estimated by GGA functionals. The obtained equilib
rium bulk modulus is 139 GPa, which is also consist with the results obtained 
from experiments and all-electron GGA-PBE calculations [80, 81], see Table 3.1. 

Table 3.1: Comparison of the calculated bulk variables with the experimental 
data and other theoretical results [80, 81] 

Variables 
Equilibrium lattice constant (A) 
Equilibrium bulk modulus (GPa) 

Murnaghan fi t 
3.640 
139 

Experimental data GGA-PBE 
3.608 3.628 
138 139 

3.1.3 Succinic acid molecule in gas phase 

The 3D configuration of the succinic acid molecule is constructed according to 
the bonding parameters (bond lengthes and bond angles) of carbon, oxygen and 
hydrogen atoms in organic compounds [80] . As can be seen in Fig. 3.2, the four 

(a) (b) 

Figure 3.2: The molecular configuration of a succinic acid molecule in t he gas 
phase. The blue balls represent t he carbon atoms, while t he red ones and white 
ones represent the oxygen atoms and hydrogen atoms respectively. (a ) side view 
(b) top view. 

carbon atoms and two of the oxygen atoms are in the same plane, the init ial C-C 
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and C-O bond lengthes are set to be 1.50A and 1.30 A respectively. The typical 
H-C-H and O-C-O bond angle is 109.5 degree and the C-H bond length is known 
to be 1.01 A [80]. 

The total energy of the succinic acid molecule in gas phase is calculated with 
a supercell geometry: the molecular configuration shown in Fig. 3.2 is placed in 
a 20A x 20A x 20A unit cell. This size is large enough to prevent any interactions 
from periodic images in three dimensions. Since the above initial configuration is 
only a reasonable guess, all atoms in this structure are allowed to relax according 
to their instantaneous ground states. Considering the absence of dispersion in 
such a small Brillouin zone, we limit the calculation to only one k-point. In addi
tion, this calculation is performed spin polarized so that the Hund's role principle 
is fulfilled [4]. With this procedure, the obtained total energy for a fully relaxed 
molecular configuration is -86.075eV. 

3.1.4 An isolated succinate molecule on a Cu(110) surface 

The details of the molecular adsorption configuration of succinic molecule on a 
Cu(llO) surface are experimentally unknown. The only information we have got 
is that the molecule deprotonates and bonds to the Cu surface as a succinate, in 
which the four C-O bonds are chemically equivalent. With so little information, 
a complete ab-initio search of the ground state adsorption structure is difficult. 
However, as the ground state adsorption configuration is used for all DFT calcu
lations, the accuracy of obtained energetics may significantly affect the quality of 
our Monte Carlo simulations. 

Since the molecules are known to form chemical bonds with the metal surface, 
the nature of this chemical adsorption must be associated with the Cu-O inter
actions. As shown in the STM images of ref. [21], the long axis of the imaged 
adsorbates is roughly parallel with the [100] direction of the metal substrate, the 
adsorbates' structure seems consistent with the Antonio configuration [29]. We 
thus use an Antonio succinate configuration to determine the binding site of the 
an isolated succinate molecule on a Cu(llO) surface. 

In practice, (see Fig.3.3) the adsorption position of a succinate molecule is varied 
by putting the oxygen atoms above the on-top sites, short-bridge sites, fee-hollow 
sites and long-bridge sites of the Cu surface and perform DFT calculations. Dur
ing relaxations, only the two bottom layers of Cu atoms are fixed. The adsorption 
energy of each configuration is determined by 

Eads = Eunit cell + EHl - Eclean surface - Esuccinic acid· (3.3) 

Here, EH2 is the energy of one hydrogen molecule in the gas phase, and Esuccinic acid 

is the energy of one succinic acid molecule in the gas phase. The energetic values 
obtained from DFT calculations are listed in Table 3.2. As can be seen, the con
figuration in which the oxygen atoms are above Cu atoms leads to the maximum 
binding energy. Taking into account the large energy penalties for other sites, 
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(a) (b) (c) (d) 

Figure 3.3: Four configurations are used to determining the binding sites. The 
oxygen atoms of a succinate molecule are located above (a) the on-top sites, (b) 
short-bridge sites, (c) fec-hollow sites and (d) long-bridge sites. 

the adsorption sites of succinate molecules should exclusively be the on-top sites 
of Cu(110). 

Table 3.2: Determination of adsorption sites 

Configuration Eunit cell ( e V) E H2 (eV) Eclean surface ( e V) Esuccinic acid (e V) 
On-top sites -475.802 -6.771 -395.116 -86.075 

short-bridge sites -474.824 -6.771 -395.116 -86.075 
fec-hollow si tes -473.322 -6.771 -395.116 -86.075 

long-bridge sites -474.527 -6.771 -395.116 -86.075 

In order to obtain an understanding of the "spontaneous twist" of the adsorbates 
proposed in ref. [29], the initial configurations in Fig. 3.3 are designed so that 
the long axis of the succinate molecule is parallel with the [100] direction of the 
Cu surface. After the ionic relaxations, no obvious molecular twist is observed. 
However, if the backbone of the adsorbate is twisted, the relaxation lead to the 
Antonio's configuration, see Fig. 3.4(a). The resulting adsorption energy is 5meV 
higher than that of Fig. 3.3 (a). We thus agree that Antonio's adsorption model 
corresponds to a minimum in the energy space. Here, a rectangular footprint 
is formed on Cu(llO). A simulated STM image of the molecule-surface system 
using the Tersoff-Hamann method is shown in Fig. 3.4(b) 

An systematic comparison of the stabilities of the Darling and Antonio adsorp
tion model has been performed on a Cu(llO) 6x6 unit cell, see Fig. 3.5. The 
estimation of the relative molecular strain of a succinate molecule in these two 
models are carried out in a large vacuum unit cell, where the molecular structure 
in Fig. 3.5 (a) and (b) are kept fixed and all oxygen atoms are saturated by 
hydrogen. The surface strains are calculated by fixing all the surface atoms as 
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(a) (b) 

Figure 3.4: (a) The relaxed configuration of a succinate acid molecule on a 
CU(llO) with a little twist. (b) Simulated STM image with Tersoff-Hamann 
method, Vbias = -0.21 V . 

they are in Fig. 3.5 (a) and (b) , but without any of the molecular structures. The 
calculated results are listed in Table 3.3. As can be seen, the Darling model is 44 
meV more stable than the Antonio model. This value coincides with the differ
ence of the total energies due to surface strain and the molecular twist between 
these two configurations. We thus conclude that the Darling model is the ground 
state adsorption configuration, the physical reason is that this structure is closer 
to the ground state structure of the succinic acid in the gas phase and thus pays 
a lower energy penalty prior to adsorption. At low temperatures, all succinate 
molecules should exclusively take this structure on the Cu(llO) surfaces. 

Table 3.3: Comparison of the Antonio and Darling adsorption model 

Adsorption energy ( e V) relative molecular strain( e V) surface strain (e V) 

Antonio's model 
Darling's model 

-1.572 
-1.616 

0.174 
0.000 

An detailed structure analysis of the Darling model has been undertaken on a 
Cu(llO) 8 x 6 x 4 unit cell with a 2 x 2x 1 k-mesh, see Fig.3.6 (a) . Interestingly, 
the four oxygen atoms in the succinate molecule are not all equivalent. The oxy
gen A and D are close to the exact on-top site of the copper surface, while oxygen 
Band C are about 0.72 A away from the on-top sites. In the z direction , oxygen 
A and D are lower than oxygen Band C by about 0.12 A. As a consequence, the 
oxygen-copper bond length of oxygen A and D (1.9 A) is also o.lA shorter than 
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(a) (b) 

Figure 3.5: (The relaxed configuration of an isolated succinate molecule on a 
CU(llO) 6x6 surface unit cell (a)Antonio's adsorption model (b)Darling's model 

that of oxygen B and C. The carbon back bone in t his configuration is about 
26° from the [001] direction. A simulated STM image with the Tersoff-Hamann 
method is shown in Fig.3.6 (b). Surprisingly, the map of local density of states 
(LDOS) shows two protrusions for the succinate molecule. The exact locations of 

(a) (b) 

Figure 3.6: (a) The relaxed configuration of an isolated succinate molecule on 
a Cu(1l0)-8 x 6 x 4 unit cell (b) A simulated STM image with Tersoff-Hamann 
method, Vbias = - 0.21 V. 

the two protrusions are found close to the oxygen A and D but shifted to the right 
(to oxygen A) or left (to oxygen B). The angle between the line that connects 
the two peaks in Fig.3.6 (b) and the [001] direction is about 9 degree. The large 
blue areas around the succinate molecule in LDOS map indicates t hat electron 
charge flows from the surface to the adsorbate; the adsorpt ion of a molecule thus 
significantly changes the local electronic environment of the substrate. 

Additionally, an analysis of the displacements of the top-most layer copper atoms 
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(a) (b) 

Figure 3.7: (a) The movement of the top-most layer copper atoms in the [110] 
direction, (b) the movement of the top-most layer copper atoms in the [001] 
direction, and (c) the movement of the top-most layer copper atoms in t he z 
direction. 

is shown in Fig. 3.7. As can be seen, upon adsorption of a succinate molecule 
the copper surface atoms undergo ionic movements in three dimensions. In t he 
[001] direction and z direction, the movements of ions are significant only for the 
copper atoms directly bond to the oxygen. In the [110] direction, however , even 
the second nearest neighbor of the bonding sites give a displacement of 0.03A. 

3.1.5 Determination of the size of the Cu(110) unit cell 

Once the ground state adsorption structure is determined , as discussed in 2.3.3, 
the next step is to evaluate the energies of higher order interacting structures, e.g. 
pairs, trios, etc. However, before a systematic DFT calculations, one needs to de
termine the suitable size of the unit cell. A proper unit cell should be large enough 
to not only contain the adsorbates in a particular coverage, but also minimize the 
forces on surface atoms at the boundaries. A too small unit cell can result in an 
error in the energy values. For instance, as shown in Fig. 3.8, unit cell (a) and (b) 
represent the same ordering of the adsorbates on the Cu(110) surfaces. All other 
calculating parameters , including the sampled k-mesh, are identical for these two 
structures. The only difference is the size of the unit cells . As shown by DFT 
calculations, the difference in the adsorption energy per molecule with respect to 
the same configuration is as much as 3lmeV. Another example is shown in Fig. 
3.9. A succinate molecular chain along the [110] direction bas been separately 
constructed in two unit cells. The molecular structures before relaxations are 
completely identical. When the relaxation start s, however , the small unit cell 
does not have enough space to relax the surface atoms, the whole structure has 
therefore been broken, see Fig. 3.9(b). It seems that the molecular chain cannot 
be stabilized. By contrast, in t he larger unit cell , the molecules are fully relaxed 
without significantly disturbing the lattice configuration of the copper surface. 
The DFT result for this unit cell shows that the molecular chain is one of the 
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(a) (b) 

Figure 3.8: Unit cell (a) and (b) represent the same configuration of the succinate 
molecules on the Cu(llO) surface. Due to the size difference of the unit cell, the 
binding energy per molecule in (a) and (b) differ by 31meV 

stable structures on a CU(llO) surface. 

Taking the computational efficiency and the size of the higher-order interacting 
structures investigated into account, the unit cell shown in Fig. 3.6(a) (20 .59A x 
21.84A x 16A) has been chosen for all DFT calculations. Due to t he limitation 
of computational resources, a systematic test of t he maximum coverage for this 
unit cell was not possible. However, by estimating the surface area where the 
ionic movements occur due to the adsorption of one succinate molecule (see Fig. 
3.7), such a unit cell should properly contain three adsorbates. 

3.1.6 Lateral interactions 

Pair Interactions 

The energy parameters of all pair interactions in this work have been derived from 
the DFT results of two succinate molecules in one unit cell . All pair configurations 
taken into account are labeled by the relative positions of t he two adsorbates. For 
instance, in Fig. 3.1O(a), the two succinate molecules are separated by two lattice 
vectors in [HO] direction, this structure is therefore referred to as "P2_0" . In Fig. 
3.10(b), the molecule on the left can be superimposed onto the other by moving 
two lattice vectors in [HO] direction and then two lattice vectors in [001] direction, 
the configuration is therefore named as "P2.2". Following the same convention, 
Fig. 3.1O(c) and (d) are called "P-L2" and "PO_3", respectively. Since the pair 
interactions "PLj" and "P-L-j" correspond to the same pair configuration, only 
one of them needs to be calculated with DFT. 

For those configurations where the two adsorbates are very close to each other, 
the unit cell used for VASP calculations is regarded to be large enough to isolate 
the interactions from adjacent unit cells, see Fig. 3.11(a) . Thus, the energy 
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Ca) (b) (c) 

Figure 3.9: a) the initial configuration of one succinate in a Cu(110)-(2 x4x4) 
unit cell. (b) the relaxed configuration of (a ) with a DFT calculation. (c) the 
relaxed configuration of four succinate molecules in a row along the [110] direction 
of a Cu(110)-(8 x6x4) unit cell 

parameter of a pair interaction "Pi_j" is calculated with equation (3.4): 

1 
Vp(i , j) = 2[Eads (PLj) - 2 Eads (Isolate)] (3.4) 

Here, Eads (Pi-j) denotes to the energy gained by the adsorption of two succinate 
molecules in pair structure PLj i while Eads (Isolate) represents the binding energy 
of one succinate molecule in the unit cell 3.6(a). The adsorption energy of all 
pair configurations are evaluated by 

Eads(PLj) = E(PLj) + 2E(H2 ) - E(clean surface) - 2E(succinic acid) . (3.5) 

However, as the distance between two molecules in the unit cell increases, the 
intermolecular interactions between different unit cells become non-negligible. 
For instance, in Fig. 3.11(b) , each succinate molecule equally interacts with two 
other adsorbates: one from its own unit cell , the other from an adjacent unit 
cell. Consequently, the pair-interaction energy of these configurations should also 
take the molecules from neighboring unit cells into account. As an illustration, 
in 3.11 (b), the pair-interaction PO_3 is expressed by 

1 
Vp(0, 3) = 4[Eads(PO_3) - 2Eads (Isolate)] (3.6) 

Table 3.4 gives the pair-configurations calculated within the unit cell , and the 
values of their interaction energy. 
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Figure 3.10: Schematic representations of pair configuration (a) P2_0, (b) P2-2, 
(c) P-l-2 and (d) PO_3. 

Generally, for chemisorbed organic molecules on metal surfaces, simple pair in
teractions can generally be divided into three classes. 

• Direct interactions: when the separation distance of the two adsorbates is 
short, the wave functions of molecules may overlap to form chemical bonds. 

• Indirect interactions: at short range, the adsorption of one molecule will 
change the electronic and ionic structure of the substrate. As a consequence, 
the first adsorbate will affect the adsorption of a second molecule in its 
vicinity. 

• Nonlocal electrostatic effects: if the adsorbing species is charged, the elec
trostatic interactions between two adsorbates can be described by consid
ering the molecules as charged points. If the adsorbates are neutral but the 
cent er of positive charges and negative charges are different , electrostatic 
effects are mainly dipole-dipole interactions. 

As far as the succinate molecules on Cu(llO) surfaces are concerned, Table 3.4 
indicates a distance dependence of the pair interactions. As can be seen, all the 
strong interactions are confined with in an area shown in Fig. 3.12. 

At low coverage, the succinate molecules do not overlap with each other on the 
Cu(llO) surfaces. Thus, the only possible direct interactions between the ad
sorbates is hydrogen bonding. Having analyzed all the pair structures in Table 
3.4, we found that only in configurations "P2_0" and "PL-1", the shortest inter
molecular oxygen-hydrogen distances are below five angstroms (2.53A and 2.80 
A respectively). Correspondingly, the attractive hydrogen bonding in these two 
structures should be the strongest. However, as shown in Table 3.4, the DFT 
calculations indicate that the pair-interactions in "P2_0" and "PL-1" are repul
sive. As a matter of fact , these two configurations are the most unstable pair 
structures in the list. We thus conclude that the direct interactions do not play 
an important role in the ordering behavior of the succinate-Cu(llO) system. 
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(a) (b) 

Figure 3.11: (a) the molecules in one unit cell are far away from the molecules 
in adjacent unit cells (b) the molecules in one unit cell interact with molecule in 
another unit cell 

For the effects of indirect interactions, Fig. 3.6 and Fig. 3.7 showed very clearly 
that the adsorption of the first succinate molecule results in a significant change 
in the electronic structure and atomic positions around the binding sites. Of more 
importance, we found that the area of the local lattice distortions around an ad
sorption site (see Fig. 3.7) is very similar to the area of strong pair interactions 
highlighted in Fig. 3.12. We thus investigated the map of t he local density of 
states for PL-1 (a very repulsive pair interaction) , PO_2 (the most attractive pair 
interaction) and PO_3 (one of the weakest pair interactions), see Fig. 3.13. As 
can be seen, the charge density contours for the PL-1 and PO_2 are dramatically 
distorted due to molecular interactions. In the case of configuration PO_3, the 
local density of states around adsorbates are also different from t hat of Fig. 3.6 
(b), but the symmetry of protrusions in Fig. 3.13 (f) is consistent with Fig. 3.13 
(c). From these three examples, one can conclude that the strong interacting 
configurations are always associated with significant hybridizations of the local 
density of states between two adsorbates. The nature of t he pair interactions can 
therefore be attributed to the indirect interactions. 

The contributions of the nonlocal dipole-dipole interactions are estimated by an 
Electron Density Difference (EED) calculation [82]. When a molecule adsorbs on 
a surface, a charge transfer takes place at the interface. An EED analysis allows 
a visualization of this process. 

1. Denote the charge density of the relaxed adsorbate-substrate system as 
eRG1. 

2. Keep the molecular structure in the adsorbate-substrate system, remove all 
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Table 3.4: A list of the pair-configurations calculated with DFT and the values 
of their interaction parameters 

Configurations 
P2_0 
P3_0 
P4_0 
PL-1 
P2_-1 
P4_1 
P3_1 
PO..2 
P1..2 
P-L2 
P2..2 
P-2..2 
P3..2 
PO_3 
PL3 
P2_3 

Adsorption energy ( e V) 
-2.641 
-2.817 
-2.796 
-2.711 
-2.870 
-2.801 
-2.806 
-2.898 
-2.877 
-2.886 
-2.877 
-2.849 
-2.872 
-2.860 
-2.848 
-2.851 

Pair-interaction parameters ( e V) 
0.097 
0.009 
0.010 
0.062 
-0.017 
0.017 
0.015 
-0.032 
-0.021 
-0.025 
-0.021 
-0.007 
-0.019 
-0.006 
-0.003 
-0.004 

surface atoms, and calculate the charge density CHG2. 

3. Keep the surface atoms unchanged in the adsorbate-substrate system, re
move the molecular structure, and calculate the charge density CHG3. 

4. The EED can then be obtained by subtracting CHG2 and CHG3 from 
CHG1. 

Fig. 3.14 shows the results of EED calculation for an isolated Succinate molecule 
on the Cu(llO) surface. The surface unit cell is imaged in a transparent mode, 
so that the charge transfer inside the surface slab is visible. The blue color in 
Fig. 3.14 indicates the areas of charge depletion; while the yellow color shows 
areas of charge accumulation. As can be seen, in x-y dimensions (see Fig. 3.14 
(a) and (c)), the centres of negative charge accumulations and positive charge 
accumulations completely overlap. However, since the centre of the blue area is 
lower than that of the yellow area in z direction (see Fig. 3.14 (b) and (d)), there 
is a net charge flow from the copper surface to the adsorbed molecule. 

As illustrated in Fig. 3.15(b), a dipole moment is a vector that represents the 
arrangement of charges. Its magnitude is defined as 

J1. = qR. (3.7) 
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Figure 3.12: Only the pair configurations in which the cent er of the other succi
nate molecule is also in the highlighted area give strong pair interactions. 

When two dipoles are parallel (as in Fig. 3.15(a)) , the potential energy of two 
dipoles is expressed as below. 

_ ~1~2 ( 2 
Vdipole-dipole - -4 3 1 - 3cos ()) 

7rEor 
(3.8) 

where ~1 and /-L2 are the dipole moments. In case of succinate molecules on 
Cu(llO) , the dipole moments should be perpendicular to the copper surface. The 
centers of dipoles are in a plane, which is parallel to the surface (() = 7r / 2) . As a 
result, the dipole-dipole interaction energy of a molecule with its neighbors can 
be expressed by [83, 84] 

(3.9) 

However, since the positive charge center and negative charge cent er of each dipole 
are close to each other , the dipole moment should be rather small. In addit ion, the 
dipole-dipole separations on Cu(llO) are quite large, even the shortest dist ance 
is as large as 5.14 A. As a consequence, the dipole-dipole interactions (equation 
(3 .9)) can be neglected. 

Trio interactions 

Comparied with the pair configurations , the trio structures occupy a much larger 
area on the Cu(llO) surface. Due to the size limitation of t he unit cell , only the 
condensed trio interactions have been calculated by DFT. Trio configurations are 
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Figure 3.13: The atomic positions of the structures of PL-1 , PO_2, PO_3 and their 
local density of states. Vbias = -0.21V . 

also characterized by the relative positions of the adsorbates. For instance, as 
shown in Fig. 3.16 (a), the succinate molecule in the middle is separated from 
the other two by two lattice vectors in the [110] and -[110] direction , respectively. 
This configuration is therefore called "T20_-20" . Following the same naming rule, 
the other two structures in Fig. 3.16 are referred to as "T20_22" and "T2-L-21" 
respectively. Nevertheless, in the trio structures, the st art ing point can be any 
of the three molecules . Consequently, every trio configuration can have three 
different names. Taking Fig. 3.16 (a) as an illustration, the other two names 
of this structure are "T20AO" and "T-20_-40" if the starting point is the left or 
right molecule, respectively. In the following, only one of the three names is used 
to refer to a particular trio configuration. 

In addition, since the Cu(110) surface exhibits an atomic arrangement of C2 
symmetry, the trio configuration "Tij_pq" represent the same structure as "T
i-j_-p-q" . For instance, see Fig. 3.17, configuration T-1-2_2-1 is the same as 
T12_-21 after a rotation of 1800 along the [110] direction. Symmetry significantly 
reduces the number of structures to be calculated with DFT. 
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(a) (c) 

(b) 

Figure 3.14: Electron density difference plot (EDD) for one succinate molecule on 
the Cu(110) surface. (a) Top view of the isosurface where the charge difference 
is O.Ole. (b) Side view of the isosurface where the charge difference is O.Ole. (c) 
Top view of the isosurface where the charge difference is -O .Ole. (d) Side view of 
the isosurface where the charge difference is -O.Ole. 

The adsorption energy for each trio configuration is calculated with Equation 
3.10 : 

Eads(Tij_pq) = E(Pij_pq) + 3E(H2) - E(clean surface) - 3E(succinic acid). 
(3. 10) 

The trio interaction energy is evaluated by : 

VT(ij _pq) = ~ [Eads (Tij_pq) - 3Eads (Isolate) - pair interactions] (3. 11) 

We take the trio configuration T20_22 as an illustration, see Fig. 3.18. The unit 
cell is highlighted by a yellow frame, the three molecules are labeled by A, B, 
and C, respectively. Since the molecules in adjacent unit cells are far away from 
molecule A, B and C, the pair interactions included in this structure are P 2_0 (A 
+-t B) , P2~ (A +-t C) and PO_2 (B +-t C). Substituting the pair interactions into 
Equation (3.11) , the trio interaction T20~2 is given by : 

1 
VT(20_22) = 3 [Eads (T20_22) - 3Eads {Isolate) - 2Vp (2 , 0) - 2Vp (2 , 2) - 2Vp (0 , 2)]. 

(3.12) 
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Figure 3.15: Schematic diagram representing (a) two paralleled dipoles and (b) 
the dipole moment. 

(a) (b) (c) 

Figure 3.16: Schematic representations of trio interaction (a) T20_-20, (b) T20_22 
and (c) T2-L-21. 

In total, 33 trio interactions have been evaluated with the method described 
above. Their adsorption energies and the values of interactions are listed in Table 
3.5. Comparing the numbers in Table 3.4 with t hose in Table 3.5, we see that 
the average value of trio interactions is only about a third of the average value 
of pair interactions. In addition, the magnitude of most trio interactions are in 
the range of 10 meV. This suggests that the remaining higher-order configuration 
parameters should have even lower energy values. Thus , the expansion of all 
lattice configurations with pair interactions and small trio interactions is justified. 

3.2 Derivation of the lateral energy parameters 

The multi-scale sampling approach described in section 2.3 serves as a connec
tion between the macroscopic thermodynamics and microscopic DFT calcula
tions. The quality of this connection, however , is prominently dependent on the 
derived Lattice Gas Hamiltonian. In principle, a qualified LGH should be able to 
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Table 3.5: A list of the tio configurations calculated with DFT and the values of 
their interaction parameters 

Configurations 
T20_-20 
T02_0-2 
T22_-2-2 
T2-2_-22 
T12_-1-2 
Tl-2_-12 
T2-L-21 
T20_02 
T12_-12 
T32_12 

T-32_-12 
T1-L2-2 
T3L-3-1 
T32_-3-2 
T20..22 
T20A2 
T20_52 
T02_1-1 
T02..2-1 
T02_-3-1 
T02_30 
T02_-30 
T02_31 

T1-L-2-2 
T1-L-3-1 
T1-L12 
T1-1..22 
T12_-2-2 
T12_-3-1 
T12_-21 
T3L-2-2 
T32_51 
T32..2-1 

Adsorption energy ( e V) 
-3.816 
-4.457 
-4.367 
-4.314 
-4.339 
-4.389 
-4.327 
-4.118 
-4.118 
-4.112 
-4.102 
-3.942 
-4.198 
-4.411 
-4.129 
-4.114 
-4.083 
-4.206 
-4.352 
-4.319 
-4.291 
-4.320 
-4.270 
-4.108 
-4.068 
-4.190 
-4.172 
-4.320. 
-4.324 
-4.278 
-4.309 
-4.298 
-4.331 
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Trio interaction parameters ( e V) 
0.003 
-0.002 
-0.010 
-0.011 
0.004 
0.002 
-0.002 
0.006 
0.011 
0.009 
0.003 
0.025 
0.003 
-0.014 
0.012 
-0.004 
0.004 
-0.001 
0.005 
-0.011 
0.002 
0.004 
0.005 
0.010 
-0.005 
0.001 
0.003 
0.006 
-0.019 
0.007 
-0.014 
0.009 
0.002 



(a) (b) Cc) 

Figure 3.17: Schematic representations of trio interaction (a) T12_-21 , (b) T-1-
2_2-1 and (c) T-1-2_2-1 rotated by 180°. 

accurately evaluate the most important interactions governing the phase behavior 
and the configurational entropy on phase st ability of the system. Only a LGH of 
this kind is regarded to have the powder of prediction, and can be used to eval
uate the new configurations different from those in the selection. Nevertheless, a 
standard process of deriving lateral interaction parameters from first principles 
calculations remains to date a delicate task. 

3.2.1 The systematic approach 

The detailed description of the systematic derivation of an optimal LGH is in
cluded in Appendix A. Here, only the basic principles of the method are intro
duced. First of all , the database of the configurations directly investigated with 
first-principles calculations is denoted as a data space. This data space is then 
partitioned into two subspaces : "training" and "test" . The configurations in sub
space "training" are used to derive a LGH, while the subspace "test" is used to 
evaluate the predictive property of that LGH. For each partit ioning form , there 
will be a LGH derived from the "training" subspace. As list ed in Tables 3.4 and 
3.5, there are in total 49 lateral interactions calculated with DFT. The number 
of overall partitioning of this DFT database is therefore 249 , because each config
uration can either in the "training" or the "test" subspace. Since this number is 
astronomically large, a function optimizer is needed . 

In general, the search of a qualified LGH from a given DFT database can be 
divided as three subtasks: 

• Derive a LGH for any given "training" subspace. 

• Evaluate a LGH with the corresponding "test" subspace and assign a"fi tness 
value" to each LGH, so that the quality of different LGHs can be compared . 

• A "training" subspace generator, which enables one to improve the quali ty 
of the derived LGH. 
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Figure 3.18: The schematic representation of trio interaction T20_22 

For the first subtask, the energy parameters of a LGH are not derived using 
Equation 3.4 nor 3.1l. Instead , each of the configurations in the given "training" 
subspace is expressed with the lattice gas hamiltonian. 

LVo+ L VPl + L VP2 + · ·· LVPm + L VTl + LVT2 + ·· ·+ L VTH = Eads 
(3 .13) 

Here, Vo is denoted to the adsorption energy for an isolated molecule on a metal 
surface; while m and n represent the number of pair and trio interaction param
eters, respectively. 

Substituting Equation 3.13 into all interacting configurations contained in a 
"training" subspace, we obtain a large system of linear equations. 

Ao Vo + Al VPl + A2 VP2 + ... Am VP,n + Am+1 VTl + Am+2 VT2 + ... + Am+n v.:rN 

Bo Vo + BI VPl + B2 VP2 + ... Bm VPm + Bm+1 VTl + Bm+2 VT2 + ... + Bm+n VTN = 

Co Va + Cl VP1 + C2 VP2 + .. . Cm VPm + Cm+1 VT1 + Cm+2 VT2 + .. . + Cm+n VTN 

= 

Here, "N" is the number of configurations included in the given "training" database. 
The system (3 .14) can also be expressed in matrix notation: 

AV =E. (3.15 ) 
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Eads(l) 

Eads(2) 

Eads(3) 

Eads(N) 
(3.14) 



Here, A is the N x (m + n + 1) coefficient matrix; while V and E are column 
vectors representing the unknowns and energetics, respectively. 

[ 

Ao A1 .. . 
Bo B1 .. . 
· . . · . . · . . 

Qo Q1 

Am+n 1 [ Vo 1 [Ead8(1) 1 B~+n V~l _ Ead~(2) 

Qm+n VTN Ead8(N) 

Since the elements included in matrix A and column vector E are all known, the 
matrix Equation (3.15) can easily be solved or best estimated with linear algebra 
methods (Appendix A). 

When a LGH has been derived from a "training" database, its power of pre
diction is evaluated by a cross-validation (CV) error. 

M 
2 1",. . 2 

CV = M L.,.,(EDFT - ECE ) 
i=l 

(3.16) 

In Equation (3.16), M is the number of configurations in the whole DFT database, 
EbFT is the energy of ith configuration obtained fonn direct first-principles calcu
lations, while EbE represents the energy obtained from "cluster expansion" with 
that lattice gas hamiltonian. The LGH with the lowest CV value is associated 
with the best predictive property. 

For the last subtask, genetic algorithms (GA) are widely used for parameter 
optimizations. A typical implementation of the GA evolution in this kind of 
problem consists of five steps. 

1. Randomly select a number of "training" subspaces, and encode each of them 
with a string of binary numbers with a fixed length of "L". The collection 
of these binary strings are referred to as the "first generation" . 

2. Since each string represents a particular "training" subspace, it can be 
used to derive a LGH. 

3. The LGHs obtained from all strings are then evaluated by the cross-validation 
method so that the predictive property of the strings can be measured from 
the corresponding CV errors. 

4. However, in genetic algorithms, the quality of strings need to be expressed 
by "fitness values" , which measure how well the strings can solve the target 
problem. Of great importance, the value of fitness of a string has to be 
defined with respect to all other members of the current generation. 

5. The new generation can then be produced by "mutation" and "crossover" 
from the current generation. However, one needs to note that the reproduc
tive opportunity allocated to each string is not identical but proportional 
to its fitness value. Thus, the strings associated with higher "fitness values" 
have a better chance to produce "children" in the next generation. 
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6. Successively repeating step 2 to step 5 for a large number of generations, t he 
quality of the obtained strings is expected to converge. The LGHs derived 
from the last generation are supposed to have reliable predictive power. 

3.2.2 The non-systematic approach 

However, the implementation of a systematic derivation described in 3.2.1 and 
Appendix A requires a large number of configurations, which have been investi
gated by direct DFT calculations. In case of succinate molecule on a Cu(llO) 
surface, the number of configurations that can be properly evaluated is signifi
cantly reduced by the size of the unit cell. As a consequence, there are not enough 
configurations for a systematic derivation. Under this circumstance, however , all 
the configurations included in DFT database are used to derive the lattice gas 
hamiltonian. The method used for mapping DFT configurational energies onto 
LGH energy parameters has been described in section 3.1.6. Since we totally 
have 50 configurations evaluated with DFT, there are also 50 energy parameters 
contained in the derived LGH (see Tables 3.4 and 3.5). 

Figure 3.19: The schematic representation of trio interaction T03_32. The adsorp
tion energy per unit cell is -4.320eV from direct DFT calculations and -4.314eV 
from the LG H prediction 

In order to have a general idea about the predictive power of the generated LGH, 
we performed one more DFT calculation as the "test set", see Fig. 3.19. Sur
prisingly, the energy difference between the DFT result and cluster expansion 
prediction is only 6meV. Although the accuracy of predictions for other configu
ration may not be as good as this one, it can be expected that the expansion for 
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other lattice configurations with this LGH will retain the general DFT accuracy. 
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Chapter 4 

Thermodynamic properties of 
Succinate-Cu(110) 

So far, the investigations have been focused on the zero temperature energy levels 
of the succinate-Cu(llO) system. However, as stressed at the beginning of Sec
tion 2.3, only a statistical treatment of the obtained energy levels can result in a 
picture of the macroscopic physical properties of the system. In general, atoms 
or molecules chemically absorbed on a single crystal substrate tend to form some 
distinct two dimensional periodic structures which are uniform throughout the 
surface. This tendency is caused by a collective interplay of all elementary pro
cesses between the adsorbates. The formed ordered structures are referred to as 
the surface "phases". When a surface is in one of its phases, the electronic and 
structural properties of the surfaces are very well defined. Thus, the identification 
of these phases and the characterization of their chemical properties are of great 
importance to surface science and heterogeneous catalysis. If a phase is found to 
be particularly suitable for certain reactions, the external conditions can be tuned 
so that this phase can be stabilized during reactions. For the adsorbate-substrate 
systems, the stability of a surface state depends on the temperature T and the 
coverage e of chemisorbed species. One of the most succinct ways of presenting 
the changes of phases, a system can undergo, is its phase diagram, see Fig. 4.1. 

4.1 Thermodynamic stability of surface phases 

As can be seen in Fig. 4.1, a phase diagram shows the most stable state of a 
system for all combinations of coverage and temperatures. In thermodynamics, 
the stability of states is expressed by the direction of "spontaneous changes" , i.e. 
the changes that do not require work to be done to bring them about. Accord
ing to the Second Law of thermodynamics, the state function that identifies a 
spontaneous change is entropy: the entropy of an isolated system increases in the 
course of a spontaneous change. 

L:1Stotal > 0 (4.1) 
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Figure 4.1: Schematic representation of an order-disorder phase diagram. 

Here, AStotal represents the total entropy change of the system and the environ
ment. Thus, for any spontaneous processes, we have 

dS> dq 
- T' (4.2) 

where dq is the heat transferred between the system and environment during the 
changes. Equation (4.2) can be rewritten as 

dq-TdS:::; 0 (4.3) 

Considering that a thermodynamic change occurs at constant volume and in the 
absence of non-expansion work, we can write dq = dUo As a consequence, 

dU -TdS:::; o. (4.4) 

If the condition of constant volume is replaced by constant pressure, then we get 
dq = dH. As a result, 

dH -TdS:::; O. (4.5) 

In thermodynamics, U - TS is defined as the Helmholtz free energy F, while 
H - TS is referred to as the Gibbs energy G. Consequently, the direction for 
thermodynamically spontaneous processes can be expressed by Equation (4.6). 

{ 
AF < 0 constant volume 
AG :::; 0 constant pressure , 

(4.6) 

For the succinate-Cu(11O} system, the thermal expansion of the copper surface 
is negligibly small. The stability of the surface states are therefore dependent on 
their Helmholtz free energies. 
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At the temperature of OK, the Helmholtz free energy of a surface state is sim
ply the internal energy U(T = OK). As the temperature increases, however, the 
Helmholtz free energy F is distributed into both the internal energy U(T) and 
the entropy S(T): 

F=U-TS. (4.7) 

Since different thermodynamic states partition their free energy in different ways, 
one phase can be replaced by another phase if the external condition is properly 
changed. This kind of thermodynamic processes are the so called "phase transi
tions" . 

4.2 Phase transitions in two dimensions 

In elementary physics, a phase is a set of states in which the chemical composi
tion and physical properties are relatively uniform throughout the system. These 
phases correspond to the local minima of the free energy space. Under certain 
external conditions, the phases change. One of the classic examples of phase 
transitions is water. At 1 atm, ice is the most stable phase below 273.15K. As 
the temperature goes up, liquid water becomes more stable. Above 373.15K, all 
water molecules are in a gas phase. For molecules chemically adsorbed on the 
surfaces, the phases are commonly well defined two dimensional periodic struc
tures. Correspondingly, a phase transition for these systems is a change of the 
two dimensional pattern. 

Since the thermodynamic properties of each phase are encoded in the free en
ergy (Section 2.3.2), a phase transition occurs when there is a singularity in the 
free energy or one of its derivatives. If there is a finite discontinuity in one or more 
of the first derivatives of the appropriate thermodynamic potential, the transition 
is termed first-order. Transitions of this kind are characterized by the coexistence 
of two phases at the critical temperature Te. The most common examples are 
melting, freezing and vaporizing. If the first derivatives are continuous but the 
second derivatives are discontinuous or infinite, the transition is described as 
higher order, continuous, or critical. A transition of this kind is characterized by 
a divergent susceptibility, an infinite correlation length, and a power law decay 
of correlations [85]. 

When a phase transition occurs, it is often accompanied by a sharp change in the 
properties of the system. The properties used to characterize the whole phase 
transition process are called "order parameter". For different physical systems, 
the order parameter can be defined differently. For instance, in a liquid-gas tran
sition, it can be the difference in densities between liquid and gas phases at the 
transition. In a ferromagnet, it can be the homogeneous magnetization. 

In two dimensional surface structures, the order parameter most commonly used 
is the LEED diffraction intensity [86]. Fig. 4.2 shows a typical order-disorder 
transition of the surface structures. At low temperature, the value of the order 

85 



1.0 

~ 0.8 
G) 

~ 0.6 c. 
~ 

"E 0.4 0 

0.2 

0 100 200 300 

T(K) 

Figure 4.2: Schematic representation of an order-disorder phase transition at a 
constant coverage. The LEED diffraction intensity is plotted as a function of 
temperature. 

parameter is defined to be 1. As the temperature increases to about 120K, the 
original ordered phase starts to become disordered. Correspondingly, we see a 
sharp drop of the order parameter during 150K - 220K. Above 250K, the system 
is completely disordered. In a phase transition curve, the critical temperature Tc 
is denoted to the temperature, where the value of the order parameter is 0.5. 
The physical meaning of Tc is the temperature at which the two phases are in 
equilibrium and one phase is about to be replaced by the another. 

In addition to the LEED diffraction intensity, the phase transition can also be 
characterized by an singularity of the heat capacity of the system. At constant 
volume, the thermodynamic definition of heat capacity for an isolated system is 

Cv = (BU) 
aT NV , 

(4.8) 

During phase transitions, the value of Cv should significantly increase around 
the critical temperature, because the heat transferred to the system is mainly 
used for driving the change of phase rather than being stored as the internal 
energy. In the macroscopic scale, however, the results given by Equation (4.8) 
are not reliable because the determination of U is neither easy nor very accurate. 
Nevertheless, through statistical mechanics, the heat capacity can be related to 
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the spontaneous energy fluctuations of the system. 

(4.9) 

Here, f3 = 1/ KBT. Equation (4.9) opens a remarkable connection between the 
microscopic energy levels and the macroscopic state variables. Since the critical 
temperature of a phase transition is independent of the construction of the order 
parameter, both the LEED diffraction intensity and Cv can be used as order 
parameters for a Monte Carlo simulation. 

4.3 Metropolis Monte Carlo Simulations 

Once the Lattice Gas Hamiltonian has been determined, the energy for any lattice 
configuration can be predicted with the effective cluster expansion method. The 
quality of the phase diagram is then dependent on the method of numerical 
simulations. For molecules chemically adsorbed on surfaces a canonical ensemble 
is used for the numerical sampling, since experimental results are obtained at the 
conditions of ultra high vacuum and constant temperature. Correspondingly, the 
thermodynamic properties of the system are encoded in the partition function of 
the canonical ensemble 

(4.10) 

The important connection between the partition function Z and thermodynamic 
state variables is via the Helmoholtz free energy. 

(4.11) 

If the value of the partition function is known, the probability that the system is 
in state i is given by the Boltzman distribution. 

(4.12) 

The expectation value of any macroscopic property can then be calculated by 

(4.13) 

However, since only a small part of the state space are important in determining 
the expectation values of macroscopic state variables, Equation (4.13) can be 
approximately replaced by 

(4.14) 
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in which most of the selected states are t he "important" ones. As has been ex
tensively discussed in Section 2.3, the Metropolis Monte Carlo method would en
able a random but importance weighted walk in the whole configurational space. 
Given long enough "time", t he sampled st at es should be able to construct an 
effective ensemble. The practical implementation of the Metropolis Monte Carlo 
algorithm is illustrat ed in Appendix B. 

The main unit cell which is used for Monte Carlo simulations is CU(1l0)-50 x 50. 
Since one succinat e molecule occupies four copper surface atoms, t he maximum 
number of adsorbat es this unit cell can contain is 625. In this work, coverage of 
a surface is defined as 

e = number of molecules 
number of surface atoms 

(4.15) 

Therefore, the most condensed monolayer of adsorbates corresponds to a cover
age of 25%. For all simulated syst ems, the initial configurations are randomly 
generat ed so that they are independent from each other. In total, six values 
of coverage have been selected for the ground st at e search . For each configura-
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Figure 4.3: A plot of binding energy per molecule against temperature for 5, 10, 
12, 15, 18 and 20 percent coverage configurations as t he temperature increase 
from OK to 400K. 

t ion, t he growth of Markov chain stops when the averaged energy value for the 
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last 9 million "Monte Carlo steps" is independent of the "Monte Carlo time". 
In principle, the configurations obtained at OK correspond to the ground state 
of the system. When the system is heated, more and more thermal motion of 
the molecules come into play, so that an decrease of binding energy is expected. 
However, as shown in Fig. 4.3, at OK and lOOK the binding energy per molecule 
is generally less than the values at 200K. This is because at low temperatures, 
the acceptance probabilities in a Metropolis Monte Carlo simulation are so small 
that virtually no "movements" of molecules occurs for a very long "time" [88]. 
When the system is trapped in one of the local minima, it may never find its 
way to the ground state. For the systems with the coverage value of 5%, 10%, 
12%, 15%, 18%, the lowest energy configuration occurs above lOOK. By contrast, 
the configuration of 20% coverage does not reach its ground state until the tem
perature increases to 400K. This is also a common phenomena in Monte Carlo 
simulations, because 20% is very close to the maximum coverage value. Although 
the molecules repel each other due to the interactions, the number of empty sites 
is so limited that they experience an energy barrier to reach the ground state. 

In order to make sure that the average energy values for each coverage at all 
temperatures are independent on their initial configurations or the size of the 
unit cell, 40 x 40 unit cell is used for the same simulations. We found that the 
energy values obtained from these two unit cell are very consistent. This means 
the results shown in Fig. 4.3, are reliable not only for the structures we simulated 
but also for any other simulation cells. 

Fig. 4.4 shows the lowest energy structure obtained at different temperatures. 
At OK, the structure of 5% coverage gives an adsorption energy of -1.5leV per 
molecule. The tendency of succinate molecules to form chain-like structures indi
cates that intermolecular interactions are attractive at this coverage. From lOOK 
to 300K the ground state configuration is a succinate monolayer. In this work, 
this monolayer is called "structure A". As shown in Fig. 4.5{a), this monolayer 
corresponds to a coverage of 10 percent and gives a symmetry of (50, 32). When 
the temperature increases, the structure A vanishes between 300K to 400K. The 
surface then shows another monolayer referred to as "structure B". An enlarged 
image of this configuration is shown in 4.5{b). It can be seen that structure B is 
of the symmetry (5 0, 3 1). The adsorption energy per molecule of this structure 
is 16 meV lower than that of structure A. 

Comparing the three structures in Fig. 4.4, we found that the growth direction of 
some chain-like structures at 5% are very similar to the two monolayer structures. 
It seems that the molecules attempt to form well defined molecular chains, but 
the chain growth is disturbed by configurational interactions. In order to find the 
most stable chain structure in the 5% coverage configuration, the effective clus
ter expansion is performed for the configurations in Fig. 4.6. According to the 
simulated results, the binding energy per molecule for the structures in Fig. 4.6 
are -1.496 eV, -1.379 eV, -1.490 eV and -1.398 respectively. They are all higher 
than the value obtained from the structure search, see Fig. 4.3. We thus con-
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Figure 4.4: The lowest energy configurations of succinate molecules on the 
Cu(llO) surface at different temperatures. 

clude that the ground state at low coverage is very unlikely to be one-dimensional 
molecular chains. However, we also notice that some of the chain-like features 
show a tendency of 2D ordering (see Fig. 4.4). Thus, these ordered patterns were 
also evaluated by effective cluster expansion (see Fig. 4.6). However, neither 
of the configurations results in a higher binding energy than that obtained from 
structure search. Summing up all calculations, we conclude that the ground state 
structure for succinate-Cu(llO) system at very low coverage is (or very close to) 
the configuration shown in Fig. 4.4. 

As the coverage increase from 5% to 10%, the features of "structure A" first 
become manifest and then expand over the whole surface. Since this structure is 
associated with the lowest adsorption energy in our ground state search, it should 
be the configuration measured in the STM experiments. The thermodynamic sta
bility of this configuration has also been evaluated with averaged binding energy 
and heat capacity, see Fig. 4.8. The critical temperature obtained from these 
two parameters are 390I< and 430I<, respectively. Since the average energy is 
not as accurate as the heat capacity for determining critical temperatures, this 
small difference is acceptable. 
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(a) (b) 

Figure 4.5: The enlarged structure of (a) monolayer of "structure A". (b) mono
layer of "structure B" . 

When the coverage of succinate molecules exceed the threshold of 10%, "structure 
B" occurs. The ground state configuration in this case is a coexistence of the two 
structures. However, as the temperature is increased to around 400K, "structure 
A" disappears. The surface is dominated by the islands of "structure B" only. 
Heating up the surface further, all ordered structures disappear, see Fig. 4.9. 
The critical temperature of the order-disorder transition depends on the coverage 
of molecules. Once a monolayer of "structure B" is formed , the molecules cannot 
"move" any more, because there are no "effective" sites left on the surface. As a 
consequence, the critical temperature tends to infinite. 

In summary, with the standard Metropolis Monte Carlo simulations, we per
formed a ground state search for various coverages and temperatures. Two peri
odic ordered structures have been identified. The corresponding coverage values 
for these two structures are 10% and 20%, respectively. The most stable config
uration is "structure A", which is associated with a (5 0, 3 2) symmetry. The 
adsorption energy of this molecular monolayer is -1.543e V per molecule. At 
around 400K, the (5 0, 3 2) monolayer undergoes a phase transition. The second 
monolayer structure is of (5 0, 3 1) symmetry, the adsorption energy per molecule 
for this configuration is 16meV lower than that of "structure A". Between the 
coverage 10% and 20%, the ground state is the coexistence of the (5 0, 3 2) and 
(50, 3 1) structures. 
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(a) (b) 

(c) (d) 

Figure 4.6: The molecular chain structures showed up in the 5% coverage config
urations. 

(a) (b) 

Figure 4.7: Two dimensional ordering structures showed up in the 5% coverage 
configurations. 
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Figure 4.8: The phase transition diagram of the (5 0, 3 2) monolayer: (a) the 
averaged adsorption energy per molecule vs temperature. (b) heat capacity of 
the system vs temperature 

(a) (b) (c) (d) 

Figure 4.9: At the coverage of 12%, when the temperature is low, the ground 
state is a coexistence of two structure features. Above 400I<, the surface is 
dominated by islands of the "structure B". As the temperature goes higher, all 
ordered structures disappear. (a) T = 200I<. (b) T = 300I<. (c) T = 400I<. (d) 
T = 600I< . 
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Chapter 5 

Discussion and Outlook 

5.1 The (5 0, 3 2) structure 

As illustrated in Section 3.1, the electronic surface landscape of the succinate
CU(llO) system depends prominently on the lateral interactions of the adsorbates. 
From the symmetry of the STM image alone, the corresponding surface struc
tures can not be identified. Since the STM experiments were performed at low 
temperature, the (50, 3 2) ordered configurations may be the one we are looking 
for. The unit cell for (50,32) monolayer is shown in Fig. 5.1(a). The adsorption 
energy per molecule obtained from the first-principles calculations is -1.440 eV, 
which is 0.1 eV higher than the predicted value. However, as this calculation is 
performed on a different unit cell, this energy difference may be caused by the 
non-comparable K-mesh samplings. In order to make the energy values obtained 

(a) (b) 

Figure 5.1 : The unit cell of the (5 0, 3 2) monolayer used for DFT calculation. 
k-mesh is 2 x 2 · x 1. All the other calculation parameters are the same as the 
DFT calculations performed with the Cu(1l0)-8 x 6x 1 unit cell. 

from two unit cells be comparable, another isolated adsorption configuration is 
investigated, see Fig. 5.1(b). As shown in Table 5.1, the adsorption energy of the 
isolated succinate molecule in this unit cell is -1.473 eV, which is also about 0.1 eV 
higher than that in the Cu(1l0)-8x6x4 unit cell (1.572 eV). As a consequence, 
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the predicted intermolecular interaction energy on each succinate molecule is per
fectly consist with direct DFT evaluations. Take into account that the relative 

Table 5.1: Comparison of the energy values obtained from LGH predictions and 
direct DFT calculations. The lateral interactions per molecule is accurately pre
dicted with the lattice gas hamiltonian. 

Adsorption energy per molecule in Fig. 5.1(a) 
Adsorption energy per molecule in Fig. 5.1(b) 

Intermolecular interaction in structure (5 0, 3 2) 

LG H predictions 
-1.543 eV 
-1.572 eV 
0.029 eV 

DFT calculations 
-1.440 eV 
-1.473 eV 
0.033 eV 

energy differences in DFT calculations are very reliable and independent on the 
sampled k-meshes, we conclude t hat the lateral-interaction energy obtained from 
the effective cluster expansion fits the result of first-principle calculations. Thus, 
the ordered configuration (5 0, 3 2) is indeed the ground state when the coverage 
is 10%. 

Figure 5.2: The simulated STM image of the (5 0, 3 2) monolayer with the 
Tersoff-Hamann method. Vbias = -0.21 V. 

The simulated STM image with the Tersoff-Hamann method is shown in Fig. 5.2. 
As can be seen, the symmetry of the electronic structure is consistent with the 
ordering of adsorbates. The adsorbed succinate molecules are imaged as protru
sions with two small peaks. The shape of each protrusion, however, is very like 
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the features in Humblot 's image [29], rather than the Liu's [30]. Nevertheless, 
since the Tersoff-Hamann method does not include any imaging effects of the 
STM tips, a different shape of the adsorbates could be obtained by including the 
STM tip in the simulation. Although the detailed features of a surface structure 
can be very different when the scanning conditions are changed, the growth di
rections of the adsorbates generally remains the same. 

(a) (b) (c) 

Figure 5.3: (a) The high resolution STM image of succinate molecules on Cu(llO) 
surface [30]. (b) The theoretical model of the surface structure for image (a) [30]. 
(c) The structure of the (50, 32) monolayer. 

As seen in Fig. 5.3, since the molecular growth directions in the (50, 3 2) mono
layer is the same as that of Liu's image[30], it may also be the actual surface 
structure measured in Liu's STM experiment. However, we notice that the ap
peared coverage in the STM simulation is only half of that in the experimental 
result . The theoretical structure model in ref. [30] suggests that the ordering 
pattern of the imaged features in Fig. 5.3 (a) corresponds to a (5 0, 4 1) molec
ular overlayer, which doubles the density of adsorbates along the [112] direction 
and leads to a surface coverage of 20%, see Fig. 5.3 (b). If this model is correct, 
the pair interaction and trio interaction in Fig. 5.4 should be attractive or at 
least not too repulsive. However, the calculations show that these two configura
tions are the most repulsive interactions in all pair and trio configurations. The 
interaction energy is 62 meV and 25 meV per molecule for Fig. 5.4(a) and (b) , 
respectively. Comparing with this theoretical model, the (5 0, 3 2) configuration 
is thermodynamically much more stable. We thus suggest t hat the (5 0, 3 2) is 
the surface structure of the STM image Fig. 5.3(a). The growth directions of the 
molecular chains in this case are perfectly consistent. The difference of appeared 
coverage may be a result of the imaging effects of an STM tip. 
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(a) (b) 

Figure 5.4: (a) The pair configuration and (b) trio configuration in the theoretical 
model of Ref. [30]. 

5.2 Monte Carlo simulation with Antonio model 

Since the (1 1, -9 0) and (90, 1 -1) ordering pattern in Humblot's image has not 
been confirmed, we performed another set of DFT calculations based on Antonio 
adsorption configuration. The calculations were carried out in a smaller unit 
cell , see Fig. 5.5. In total, 32 configurations (18 pairs and 14 trios) have been 

(a) (b) (c) 

Figure 5.5: Schematic representation of some molecular structures calculated for 
Antonio adsorption configuration 

directly calculated by DFT. The lattice gas hamiltonian is constructed with the 
same procedure described in 3.2. The Monte Carlo simulations are performed 
on a 40 x 40 unit cell. As shown in Fig. 5.6, the ground state is always the 
same ordered pattern. The stability of the ordered structures increases with 
the coverage. Nevertheless, the growth direction of this ordered structure is very 
different from the (11 , -9 0) and (9 0, 1-1) configurations in ref. [29]. Considering 
also that this adsorption configuration is less st able, we conclude t hat t he Antonio 
model would not be correct . 
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(a) (b) (c) (d) 

Figure 5.6: Schematic representation of some molecular structures calculated for 
the Antonio adsorption configuration 

5.3 A new adsorption configuration 

Very recently, we found that if the original Antonio configuration is twisted, 
the obtained structure is found as stable as the Darling model. The adsorption 

(a) (b) 

Figure 5.7: The adsorption energy of the Darling model (a) and the new model 
(b) differs by only 3meV. 

energy of these two configurations differ only by 3meV. In order to ascertain this 
energy difference is not dependent on the number of k-points, the k-mesh has been 
increased to 2 x 2 x 1. The relative energy difference remains the same. Since 
this configuration has only been found recently, the first-principles calculations 
have not been completed. However, as a first result we found that the interaction 
energies obtained from DFT are very different. Due to the time constrain of this 
PhD project , we could not complete a suitable set of first-principle calculations 
for this configuration. But , taking its stability into account, this configuration 
may yield a stable molecular structure which could account for the (1 1, -9 0) 
and (9 0, 1 -1) molecular ordering observed in some experiments [29]. 
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5.4 Conel usions 

In this work, we combined a microscopic first-principles description of intermolec
ular interactions with a macroscopic description of a large number of adsorbates. 
Based on the Darling adsorption configuration, two ordered structures have been 
identified for succinate molecules on Cu(1lO). The (5 0, 3 2) monolayer structure 
is found to be the ground state configuration accounting for the STM images in 
Ref. [30]. The mechanism of the self-assembly behavior can be attributed to the 
indirect interactions of the succinate molecules on the Cu(llO) surface. 

This multi-sampling approach opens a connection between DFT in the micro
scopic scale and Thermodynamics and Statistics in the macroscopic scale. The 
generated Monte Carlo code is able to statistically treat the information collected 
in the electronic regime and produce reliable predictions of the thermodynamic 
properties in the macroscopic regime. 

Even though the multi-scale sampling method used in this work is one of the best 
approaches used to understand the nature of chemical processes, the limitations 
of this approach have also become evident. Differing from atomic adsorbates, 
organic molecules are associated with a large number of degrees of freedom; the 
ground state structure search for molecules on a surface thus plays a pivotal role 
in the simulated results. Since the determination of the ground state adsorption 
configuration is often ambiguous, the prediction of the ordered structures is not 
100% reliable. In addition, a systematic generation of a lattice gas hamiltonian 
require a large number of DFT calculations. With today's computational re
sources into account, the success of this approach in determining the ordering 
of atomic adsorbates [87] cannot be easily transferred to molecular species. In 
future, more efforts have to be made, in my opinion, to the improve the sampling 
methods. 
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Appendix A 

Derivation of LGH from a DFT 
database 

The basic idea of the multi-scale molecular sampling method is to statistically 
treat the elementary processes of a large number of quantum particles. Since 
not all elementary processes can be described by dedicated DFT calculations, the 
cluster expansion approximation is introduced: use a set of energy parameters 
to describe the energetics of all configurations of the quantum particles. For a 
two dimensional lattice gas system in which all adsorbates are identical, the set 
of energy parameters is called "Lattice Gas Hamiltonian" (LGH). The energy of 
a lattice configuration is express by 

all sites all site pairs all site trios 

E = E(clean surface}+ L: (J'iEo+ L: VP(i,j)(J'i(J'j+ L: 
i i#j 

(A.l) 
where the "sites" are corresponding to the local minima in the potential energy 
surface of the substrate-adsorbate system. The accuracy of predicted energy E 
in equation A.I is therefore primarily dependent on the quality of the energy 
parameters. 

A.1 Least-Squares Fitting of data 

In multi-scale sampling, the energy parameters are derived from a database of 
DFT calculations. For a given set of calculated lattice configurations, the ener
getics obtained from DFT are expanded with equation (A.I); while the energy 
parameters are evaluated with linear algebra methods. To understand this point, 
we give an example. We start with the simplest lattice gas hamiltonian, which 
contains only two terms: the adsorption energy Vo, and the interaction energy 
between nearest neighbors Vp • The substrate is a metal (100) surface and the 
adsorption sites are exclusively the hollow sites. 

Fig. A.l shows three lattice configuration calculated with DFT. As can be seen, 
Fig. A.I(a) contains seven adsorbates and two pair interactions. The energy of 
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(a) (b) (c) 

Figure A.l : Schematic representations of three lattice configurations. 

this configurations is therefore expressed as 

(A.2) 

In Fig. A.l(b) , there is no pair interactions but only 13 adsorbates. Thus, the 
energy expression for this structure is 

(A.3) 

In Fig. A.l(c) , the number of pair interactions is 7 while the total number of 
adsorbates is 13. As a result , t he energy for this configuration is expressed by 

(A.4) 

If we write the energy expressions of the three configurations together, we have 

El 7Vo + 2Vp 

E2 = 13Vo + OVp 

E3 13Vo + 7Vp . (A.5) 

The obtained system of linear equations can then be expressed by the matrix 
notation: 

Ax = b. (A.6) 

Here, A is the coefficient matrix, x is the column vector , which contains all 
unknown energy parameters in LGH; while b is the column vector representing 
the corresponding energies of the configurations. 

(A .7) 

Generally, the solutions of equation (A.6) can be considered in three situations. 
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• If there are more unknown variables than the independent equations, the 
equation system is under-determined. There will be infinite sets of solutions 
which satisfy the equation system. 

• If the number of the unknown variables equals to the number of equations, 
x has exactly one solution. 

• If the unknowns are less than the equations, the equation system is over
determined. As a consequence, there is no exact solution of the system. 

In multi-scale sampling, the LGH cannot be derived when the equation system is 
under-determined. For the situation of equal numbers of equations and unknowns, 
x can always be solved by 

ATb 
x = ATA. (A.8) 

Here AT represents the non-conjugate transpose of the coefficient matrix A. If the 
system is over-determined, the values of x can only be estimated by least squares 
fits. 

A ATb 
x= ATA (A.9) 

The difference between equation (A.8) and (A.9) is that the former results in an 
exact solution for Xj while the latter gives only the best solution that minimizes 
the squared error E2 (where E2 =11 b - Ax 11 2). In the sample equation system 
(A.7), the squared error is 

E2 _ 11 b-Ax 112 

= (El -7Vo - 2Vp)2 + (E2 -13Vo - OVp)2 + (E3 -13Vo -7vpfA.I0) 

A.2 Cross-Validation method 

Once a lattice gas hamiltonian has been derived, its predictive property has to 
be tested. Only the Hamiltonian providing the best prediction of configurational 
energy can be used for cluster expansions. Ideally, the predictive power of each 
lattice hamiltonian is tested by several extra first-principles calculations. If the 
predicted energy values are very close to the configurational energy calculated 
with DFT directly, the LGH can be regarded as a reliable predictor of energies of 
any other lattice configurations. Thus, the database of the DFT results should 
be partitioned into two sets: the "training set", where the LGH is derived and 
the "test set", which is used to evaluate the obtained LGH. 

However, the first-principles simulations are very time consuming and the num
ber of configurations for a particular unit cell is also limited. One thus needs 
a method to maximize the size of the two sets at the same time. Luckily, the 
cross-validation (CV) method [89, 90, 91] uses all available data for both training 
and testing purposes: the database is recursively partitioned into the "training 
set" and "test set" so that all possible combinations in training and testing are 
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included. 

For a given "training set", the lattice gas hamiltonian can be derived with the 
linear algebra methods shown in section B.I. The cross-validation error can then 
be estimated by 

N 
. 2 1 ~. . 2 

CV = N L..,(EDFT - ECE) , 
i=l 

(A.ll) 

where ECE represents the configurational energies predicted with the derived 
LGH. The smaller the obtained CV value is, the better the predictive power of 
the derived LGH has. The importance of the cross-validation method is therefore 
to provide a quantitative criterium to identify the best LGH. 

In contrast to the mean square error, the CV error does not monotonically de
crease with increasing numbers of parameters included in the LGH. Instead, the 
CV values first decrease because more degrees of freedom are available to account 
for the variation of energy, and then increases due to an increase of the noise in 
the data fitting, i.e. over-fitting. The LGH we are looking for is therefore the 
best compromise of the two effects, i.e. the minimum CV value. 

A.3 Genetic Algorithms 

For the next step, a large number of training sets are going to be investigated in 
order to identify the best LGH. However, the number of all possible systems of 
an N-configuration DFT database is 2N , because every configuration can either 
be in the "training set" or the "test set". Even for a moderate sized database, 
e.g. N = 40, the total number of possible training sets is already astronomically 
large. Of more importance, only very small partitions of the 2N systems are capa
ble of generating potentially important LGHs. Clearly, an optimized algorithm is 
needed to efficiently explore the equation-system space. Genetic algorithms (GA) 
are particularly suitable for this kind of problem. 

In general, GA are a class of population based function optimizers, which use 
selection and recombination operators to generate new sample points in a search 
space. An implementation of a genetic algorithm begins with a population of 
randomly selected chromosomes. Traditionally, the chromosomes are represented 
with binary bit strings of length L. The encoded chromosomes are referred to as 
the ''first generation". Once the initial population have been created, each string 
is evaluated by the "evaluation function" and then assigned a "fitness value". 
The fitness is a measurement of how well that chromosome can solve the target
ing problem. Very importantly, the value of fitness of a string is defined with 
respect other members of the current generation. For instance, in the canonical 
genetic algorithm, the fitness value is defined by : Id f, where li is the evalua
tion associated with the ith string and ! is the average evaluation of the current 
population. The new generation is then produced by "mutation" or "crossover" 
from the first generation. 
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The reproductive opportunity of each string is allocated proportional to its value 
of fitness, i.e. those chromosomes with better fitness values have more chances to 
"reproduce" than those whose fitness values are poor. As a consequence, a large 
proportion of the second generation are the "children" of the fittest chromosomes 
in the first generation. The best "genes" can therefore be transmitted from one 
generation to the next. Over successive generations, the population evolves to
wards an optimal solution. 

In this work, we aimed at an optimized lattice gas hamiltonian of predictive 
power for configurational energies. Thus, the corresponding chromosomes are the 
"training sets" partitioned from the DFT database. Since a "training set" can 
always be written in the format of a linear equation system (e.g. Equation 3.14), 
the chromosomes can be encoded into binary bit strings as following: 

• The length of the bit string L equals the number of configurations included 
in the whole DFT database. 

• All terms in DFT database are expressed by linear equations shown in 
Equation 3.14. 

• The equations selected into the "training set" are marked as "I" the others 
are marked as "0". For instance, if there are 5 configurations calculated by 
DFT and the first two are selected in the "training set" , the corresponding 
string for this partition is "11000". 

When the initial population has been encoded, the generated strings are then 
evaluated by the cross-validation method (evaluation function). The fitness values 
of each "training set" should therefore be determined by the CV errors of all 
individuals in the first generation: a small CV error corresponds to a high fitness 
value. Based on the "reproductive ability" allocated to each string, the next 
generation is then produced from the current generation by 

• Crossover: Select two strings as parents. Randomly choose a recombination 
point. Split the parent strings at that point and recombine the two parents 
to form two children, see Fig. A.2. 

• Mutation: Apply random changes to individual parents to produce children. 

100~101 
1111pOO 

parents 

crossover 
~ 

10011000 
1111~01 

children 

Figure A.2: A schematic representation of the crossover method. 
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Repeating the processes described above over a number of generations. The CV 
errors of the produced chromosomes are expected to converge to the minimum. 
A predictive LGH can therefore be selected. 
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Appendix B 

Implementation of the Metropolis 
Monte Carlo Algorithm 

B.l Set up a initial surface 

The Monte Carlo code starts with constructing a Cu(llO) surface of M x N sites. 
The adsorption sites are represented by a four dimensional array. In each row, 
the first two numbers indicate the positions of the sites and the last two num
bers express the occupation state and energy level of that site. The occupation 
parameter t akes only two values: 1 for occupied and 0 for empty. The energy 
parameter , however, is evaluated by effective cluster expansion. For any clean 
surfaces, the occupation and energy variables for all sites take the value of O. 
When a certain coverage of molecules adsorb on the surface, the corresponding 

(a) (b) 

Figure B.1: Schematic representation of the local occupation environment: (a) 
the atom in the cent er has four pair interactions , which are of t he same type. 
(b) Due to the periodic boundary condition the atom on the left has two pair 
interactions . 

percentage of sites change t heir occupation value to 1 and the energy value of t he 
sites are defined as following: 
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• Scan all the surface sites successively. 

• If the site is empty, its energy value is assigned as zero. 

• If the site is occupied, its neighboring sites are scanned. The energy value 
of this site is determined with the effective cluster expansion method, see 
Fig. B.l{a). 

E = Eo + L V pairs + L vtrios + ... (B.l) 

• In order to mimic an surface of infinite size, the boundary condition should 
be included in the energy calculation, see Fig. B.l{b). 

When the scan is finished,· the configurational energy of the surface can be cal
culated by summing up the energy values of all sites. 

B.2 Move the molecules on a surface 

Randomly select an occupied site A and an empty site B. Denote the energy 
value of site A as Eold• Swap the occupation values of the two sites. Calculate 
the site energy for B and denote its value as Enew. 

• If Enew < Eold, this movement is accepted. As a result, the occupation 
value becomes 0 for site A and 1 for site B, respectively. 

• If Enew > Eo/d, a random number, which is homogeneously distributed in 
the range of 0 to 1 should be generated. Here, we call this number as rand. 

Th th t · {accepted if rand < exp{ -!:l.E/KBT) en e movemen IS. . -
, rejected If rand> exp( -!:l.E / KBT) (B.2) 

where !:l.E = Enew - Eo/d. The occupation values of the selected sites are 
swaped in the case of acceptance and remain unchanged otherwise. 

• After each movement of adsorbates, the energy value of all lattice sites are 
updated, so that the total energy of the system can always be expressed as 
the sum of the site energies. 

• Repeat the steps described above for a large number of "Monte Carlo steps", 
the system should reach the thermodynamic equilibrium. The convergence 
can be checked with state variables such as the total energy and heat ca
pacity. 

• By tuning the values of temperature and coverage, this Monte Carlo code 
should produce a phase diagram of any adsorbate-substrate system. 

107 



B.3 Visualization of the lattice configurations 

At contain coverage and temperature, in principle, the Metropolis Monte Carlo 
method can always lead to the ground state lattice configuration if the number 
of "Monte Carlo steps" are large enough. When the thermal equilibrium has 
been reached, the growth of the Markov chain should be terminated. Since the 
information of the lattice configuration is encoded in the four dimensional array, 
a visualization program is needed to convert the array to an image. In the case 
of succinate molecules on Cu(llO), the adsorption site has been defined as the 
long-bridge site of the Cu surface. As a consequence, in the lattice configura
tional images, the long-bridge site is represented by a top-layer Cu atom and a 
second-layer Cu atom. When the clean surface has been properly constructed, a 
molecular structure is drawn above each occupied adsorption site. 

B.4 Testing an Monte Carlo program 

As has been stressed in the section 2.3, a Metropolis Monte Carlo code is used 
to study the physical properties of a thermodynamic equilibrium system. Since 
the state variables does not dependent the pathway how the equilibrium has been 
reached, the phase diagram should be independent on 

• the random number generator, which determines the "growth direction" of 
the Markov chain. 

• the size and shape of the unit cell used to represent an infinite adsorbate
substrate system in 2 dimensions. 

• the initial configuration from which the Markov chain starts. 

In this work, the thermodynamic properties of the succinate-Cu(llO) systems 
have been investigated with a 50 x 50 unit cell, and the obtained results are then 
checked with a 40 x 40 unit cell. Since the two sets of simulations result in the 
same ordering patterns and other physical properties for a certain combination of 
temperature and coverage. We conclude that this Monte Carlo code is qualified 
to simulate the succinate-Cu(llO) systems in equilibrium. 
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